Databases

ticklish problems, taped.

Slood, sweat
and coding

Mark Whitehorn reports from Database Expo, where he has
been judging a programming application contest. Plus, two

have just returned from Database

Expo, which was run as one of

the IT Expo group of events. It's
held in Birmingham at the end of June and if
you missed it this year, pencil it in for next
because it was great. The exhibition
organisers also ran a RAD (Rapid
Application Development) race as part of
the exhibition. The rules are simple. A
charity in need of a database is selected (in
this case NACRO — National Association
for the Care and Resettlement of
Offenders). The charity submits a set of
requirements from which a formal
specification is drawn up. Teams consisting
of up to two programmers are given two
days to develop an application which meets
the specification.

| was asked to be one of the judges and,
along with the others, was keen to make
the application development in the race as
close to reality as possible. So we decided
to allow the contestants to use not only any
commercial software which took their fancy,
but also any and all toolboxes, commercial
or otherwise. Although other races of this
kind tend to restrict contestants to shrink-
wrap development tools only, we felt the
open approach was by far the more
realistic. How many good developers have
you met who don’t have their own
toolboxes? Additionally, in these object-
orientated days, the extensibility of a
development tool is a major consideration.
Secondly, we decided that we would

announce a change to the specification

278 * Personal Computer World ® October 1996

during the moming of the second day. After
all, have you ever worked on a specification
which didn’t change during development?
We felt that this would favour teams and
tools which were adaptable: a highly
desirable trait in both. After some
deliberation, we decided to warn the
contestants at the start of the competition
that this “Judges’ googlie” was coming
(mainly through fear of physical violence if
we bowled it to them unannounced!).

The competition went well, and was won
by the Borland/Dunstan Thomas team. The

@M Microsoft Access
Eile Edit View GQuer ‘Window Help

mm Table: Hist
VideoNumber \ Trans_Date |
1 01/06/67

06/07/89
01/02/34
02/03/4b
06/05/45
05/06/6b
03/06/55

07/08/56

tool was Delphi and the team consisted of
Jason Vokes and Colin Ridgewell. Dunstan
Thomas is one of Borland’s Client/Server
Partners based in Portsmouth which
specialises in developing client/server and
internet business systems.

One company, notable by its absence
from the contestants, was Magic. This is a
company which, over the years, has built a
comprehensive advertising campaign
around winning races of this type. What
made its absence all the more apparent
was that it had initially been a keen
supporter of this particular race. In May,
Graham Young, marketing manager for
Magic software had said, “We believe that
the professional software development
industry needs an attractive one-stop shop
for showcasing the latest technologies and
products. With Blenheim’s (the exhibition
organiser) backing, the RAD race is well-
positioned to become an important
milestone in the IT calendar.”

With about one week to go before the
race, Magic announced that it had decided
not to enter a team. The reason given was
that Magic felt it had already demonstrated
its superiority in this field. Graham Young
told me afterwards: “We’ve already
thrashed Delphi on many occasions in the
past.” While this is perfectly true, we are
talking about a different competition, here,
with a different target application and a
unique set of rules (including the unusual
“open toolbox” item).

One is left to ponder whether its past

[[2]%]

SELECT HIST.¥ideoNumber, Count{HIST.VideoNumber] =
AS VidCount

04/05/67 FROM HIST

01/03/96 GROUP BY HIST.VideoNumber

04/04/44 HAVING [Count[HIST.VideoNumber))>= 3

03/06/89 ORDER BY Count[HIST.VideoNumber] DESC;

03104756

05/04/67
04405/67
06/06/66
01/05/67
07/07/77
08/09/78

| VideoNumber | VidCount |
» 3

4
2
1

[B P B P) 00O WWWWN NN ==

W]« [Recod]12 Jor 21 HH]

Ready

08/08/88 H] «[FRecord]T Jof 4 3]

1 o T

Fig 1 Since the data files are small, this query is finding only those videos which have been

rented out three or more times, but it illustrates the general idea

Databases

victories were the only reason for Magic’s
non-participation? For a start, in a rapidly
evolving field like database development
tools, superiority needs to be regularly
demonstrated. Last quarter’s victory is as
stale as yesterday’s news; and for a
company to refuse what might perhaps be
an easy victory (with its associated positive
publicity), may be laudable but is unlikely to
impress the shareholders.

Whatever the reason, | really hope that
Magic takes part next year. The more teams
that take part, the more impressive the win
— whoever gets it — and it could be you.
Why not talk to your boss about entering
yourself and a colleague as a team? We can
promise you two days of sweat, blood and
coding. What better break could there be
from the daily grind?

A rental problem, taped

“I am nearing completion of a program to
handle videotape rental. Each transaction is
written to a history table to provide flexible
reporting.

The table HISTORY contains information
about videos and customers but the
important fields are Video_no and
Trans_Date. Using Video_No and the
function COUNT, you can produce a list
giving Video_no and the total number of
times that video has been hired —
essentially a top ten list. If you bring
Trans_Date into the equation you can
produce a top ten for a specific period, say
the last two weeks, which is far more useful.

Unfortunately though, this is not a true
top ten list. SQL will return a set containing
a record for each video on the system (in
practice this is between one and 12,000
records). Is there a way to return just the
first ten records? I'm no SQL wizard and in
my experience the answer is definitely ‘no’.
Perhaps you know better?

Here is my SQL (cut to a minimum):
SELECT HIST.VideoNumber,

count (HIST.VideoNumber) as
HIST.VidCount
FROM “:DBVIDEO:HISTORY” HIST
GROUP BY HIST.videonumber
ORDER by HIST.VidCount DESC

I am using Borland Delphi with Paradox
tables and Borland’s Local-SQL. I’'m not
looking for an application-specific solution
but the low-end SQL implementations often
omit features that ORACLE and GUPTA
users take for granted. Local-SQL does not
support nested SELECT statements.”

Eamonn Mulvihill

The good news is that you are correct.
My understanding is also that it can’t be
done with “standard” SQL. The bad news
is, of course, that being correct doesn’t help
you to solve your problem: a bit of a video
nasty. Given that what you ask is impossible
in Standard SQL, any answer | give is going
to be more or less unsatisfactory; but it may
be helpful, particularly to other readers. An
Access derivation of your SQL would be:
SELECT VideoNumber,

Count (VideoNumber) AS VidCount
FROM HIST
GROUP BY VideoNumber
ORDER BY Count(VideoNumber) DESC;

One approach to the problem would be
to set a value for Count(VideoNumber)
above which you want to see the video. For
example, you might know that the top-
selling (renting) ones are often taken out,
say, 12 times or more. So you could use
the form:

SELECT VideoNumber,

Count (VideoNumber) AS VidCount
FROM HIST
GROUP BY VideoNumber
HAVING (Count(VideoNumber))> =12
ORDER BY Count(VideoNumber) DESC;

This lists only those videos which have
been rented out more than 12 times (Fig 1).
| know that this won’t necessarily give you
exactly ten videos as the answer, since
fewer or more may fit this criterion, but you
might, with some practice, be able to get
approximately the answer you want. For
Access freaks, there is a sample table and
query in this month’s .MDB file on our
cover-mounted CD-ROM.

The variation is an Access-specific
variation which will give the top 10.

SELECT Top 10 VideoNumber,
Count (VideoNumber) AS VidCount
FROM HIST
GROUP BY VideoNumber
ORDER BY Count(VideoNumber) DESC;

As an aside, it is tempting to hope that
these SQL statements will execute faster
than one which returns usage counts for all
the videos. However, whether ten or 10,000
records are returned in the answer table,
the entire base table still has to be scanned
in order to provide the answer.

An eggsacting problem

“A client runs a medium-sized food
wholesale business. He has asked me to
design a system in which each customer
can have certain products at different prices.
For instance, one client might negotiate a
p280 [J

Personal Computer World October 1996 27 9

Databases

=8 Microzol

ACCESS

File Edit View Fomat Becords Window Help

(S]] [[E) (98] (8202 (2] 2] < (o] o =) [(4]] (382
CustomerlD | Name | | ltemiD | ttem | Price |
¥ H Fred > 1 Bread £1.56
2 Jane 2 Eqgs £0.56
3 Sally 3 Haddock £3.76
4 Sarah 4 Hake £756
b Billy 5 Herring £0.34
6 Simon 6 Salmon £8.23
7 James *| (Counter) £0.00
{Counter)

W[4 [Record]1

[of 7

Fig 2 (above) Two
sample tables for
the second
problem. Note,
seven customers
and six items

Fig 3 (right) We can
use a third table to
match every
customer to every
item. Note the tiny

W[[Fecod]l

[of &

D]

sample tables used
here mean 6 x7 =
42 records in this
table. The real
problem would
generate about
140,000

Fig 4 (right) Two
tables store the
basic data, and a
third stores the
exceptions to the
rule

special price on, say, eggs, while another
might have a special price on milk.

Given the logic of database design, my
solution was to try to have three or four
price lists calculated as queries and to have
a field in the customer table assigning each
client to a particular price level. However,

280 * Personal Computer World ® October 1996

& Eggs

Hadkdaok
& FHaho

E Haiimng
B Smei

this does not provide the client with the
flexibility he requires, nor is he satisfied with
the idea of combining the last solution with,
say, a special overall discount (this being
stored in the customer table).

Given that he has some 400 customers
and 300+ products, the whole thing is

becoming a major headache. Any
suggestions, apart from aspirins or suicide,
would be immensely welcome.”

Mark Squire

Hmm... hopefully no aspirin or suicide
required. This is an excellent problem
because it is one example of a generic class
of problem and as such is worth examining
in some detail. As usual, the solution is
shown in Access but could be implemented
in any RDBMS.

Let’s assume that we start with two
entities: Customers and ltems. Each gets
their own table, as shown in Fig 2. Just for
now, let’s assume that all customers pay
the same price for each item even though
we know it isn’t true. So in this case, the
price would be an attribute of the entity Item
and would therefore be placed in the same
table, as shown.

Now let’s assume that each customer
negotiates a unique price for every item and
that there is no standardisation whatsoever
(equally untrue). In this case, we would
typically generate a third table which tied
the first two together and we would move
the prices into that table (Fig 3). In practice,
given 400 customers and, say, 350
products, this will be 400 x 350 = 140,000
records in the joining table. Big, but
necessary.

These two approaches represent
opposite ends of the spectrum. At one end,
each item has but a single price. At the
other end, each customer-item interaction
has a price, and we position the pricing
information accordingly. Mark’s problem is
that the real-world problem he is trying to
model falls somewhere in-between the two.
Most of his customer-item interactions use
the default price, and a few are exceptions.

One answer is to put the default prices
back into the Items table and create an
Exceptions table which stores the exceptions
to the defaults. Never let it be said that | can’t
pick suitable names for my tables.

This stores all the data in a reasonably
efficient manner (Fig 4). As far as | can see,
remembering from a couple of issues ago
that this is an art, not a science, there is not
much duplicated data here. So that’s the
problem solved, isn’t it? Well, “yes” in terms
of storage, but a big “not yet” in terms of
implementation. How do we actually look
up the price of an item for a particular
customer?

A reasonable question is, “How would
we do it if this were a paper-based

p283 [J

Databases

T, L |
G Gl ys Bl Sele jiaw . . .
[[P) 00 (] : Fig SThis form ties
the Items and
Exceptions tables

together using code
tied to the “After
Update” Property of
the Item combo

Ceger An | g
Date: T 10.keian
enlomer
el

Faei 2

Howiank |2

box. The code pops
up a message box
telling you the price

is an exception

e e

Fig 6 This query
shows every
default price for
every customer.
Note that there
are seven
customers and
six items, so this
table has 42
records

Fig 7 This query
adds in the
special prices

where
appropriate.
Could be better
though: any
ideas?

11 T N O O

ltems and Exceptions

SELECT DISTINCTROW Customers.CustomerID, Customers.Name, Items.ItemID,
Items.Item, Items.Price
FROM Customers, Items
ORDER BY Customers.CustomerID, Items.ItemID;

followed by
SELECT DISTINCTROW [Default list].CustomerID, [Default list].Name,
[Default 1list].Item, [Default list].Price AS DefaultPrice,
Exceptions.Price AS SpecialPrice
FROM Exceptions
RIGHT JOIN [Default list] ON (Exceptions.CustomerID = [Default
list].CustomerID) AND (Exceptions.ItemID = [Default list].ItemID);

Fig 8 Generating a table from Items and Exceptions

system?” If a customer ordered an item,
we’d look first in the exceptions list to see if
there was a special price. If not, we’d look
in the standard price list and use the price
shown there.

This effectively defines the algorithm |
have used in the form shown in Fig 5. You
select the Customer using the first combo
box and then the Item with the second. A
block of code runs whenever the second
combo box is updated, which says:

1. Open the Exceptions table.

2. Search for an entry which has this
customer and this item.

3. If an entry is found, copy the price from
that record into the price field on this form.
4. If not, open up the Item table, find the
correct item and copy the price from there.

This form is actually based on a simple
Orders table, which records the date,
customer ID, Item ID and Price. Please note
that this is not a complete implementation
since we all know that Orders are usually for
more than one Item. The form is logically
flawed at present. The price is only checked
when the Item combo box is updated, so
you can fool the system by selecting the
[tem and then changing the customer.
However, it does demonstrate that the data
can be pulled from the correct table in a
manner which is transparent to the user.

Just out of interest, if we suppose that
almost all of the prices were unique (which
would then favour the use of a large joining
table as described above), it might still be
advantageous to keep the prices in the
ltems and Exceptions table. We could
update the Exceptions table as changes
occurred and then use a make-table query
to generate the 140,000-record table which
would be used on a day-to-day basis.

| was musing about the best way of
generating such a table from Items and
Exceptions, and the best | could come up
with is shown in Fig 8.

The first query generates a list of all
Customers and all default prices (Fig 6)
while the second adds the special prices to
that, where appropriate (Fig 7). I'd be the
first to admit that it isn’t perfect because it
doesn’t replace the default price with the
special one when both occur in the same
record. Can anyone come up with a better
solution?

Mark Whitehorn welcomes readers’
correspondence and ideas for the Databases
column. He’s on m.whitehorn@dundee.ac.uk

Personal Computer World ® October 1996 ¢ 283

