
CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • June 1997 • 283

Hands OnVisual Pro g r a m m i n g

p 2 8 5 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

282 • Personal Computer World • June 1997

Hands On Visual Pro g r a m m i n g

products and services. HTML pages can be
loaded from disk as well as from the
internet, so you could also use Webster as
a multimedia browser.

Sax Webster is a complete application
wrapped in a control. You can create a
browser simply by dropping the Webster
control onto a form in VB or Delphi. It claims
to support HTML version 3.0, but Sax adds
that, “because 3.0 is not yet defined as a
standard, it may differ from what Netscape
or some other 3.0 browser supports.” Here
is the problem with Webster and ultimately
with the web itself: lack of tightly defined
standards, resulting in compatibility
problems. It may not matter too much,
since it would be foolish to use a Webster
application as a replacement for Netscape
or Internet Explorer. Webster makes better
sense as a tool for accessing specific web
sites that are linked to the container
application, so you can ensure the

orget laptops and mobile
phones. The fashion
accessory of the

moment must be the personal web
site. Web sites are no use unless
they are visited, so why not build
point-and-click access into the
applications you distribute? You can
do this by calling an external
application like Netscape or Intenet
Explorer, but Sax Software lets you
go one better by building a
customised browser right into the
application.

The Webster control is a 32-bit
browser OCX that drops directly into
any compatible development tool,
such as Visual Basic 4.0 or Visual
C++ 4.0. With the rampant growth
of the internet and increasing
corporate usage of intranet
networks, Sax Webster has turned
up at just the right moment. For
example, online help might now
mean dynamic information on a web site,
rather than the static file shipped with an
application. Another option is to direct the
hapless user to a site offering further

Sax a p p e a l
Sax Webster is a browser builder that is just the last word in web applications. Tim Anderson
models it here for you, taking care not to neglect his widgets and tools while he’s at it.

F

Listing 1: Intercepting the mailto command

Private Sub Webster1_DoClickURL(SelectedURL As String, Cancel As

B o o l e a n)

If Left$(LCase$(SelectedURL), 7) = “mailto:” Then

‘ run MS Exchange, using file association

ShellExecute 0, “open”, SelectedURL, “”, “”, 0

SelectedURL = “”

‘ stop Webster attempting to act on this command

Cancel = True

End If

End Sub

Fig 1 All done with Webster: VB 4.0 visits the P C W home page

compatibility of those particular pages.
Some problems can also be overcome by
writing code to intercept Webster events.
For example, Webster does not support the
m a i l t o command that HTML uses to initiate
an email message. The VB 4.0 code in
Listing 1 will intercept mailto and call
whatever application is associated with that
command in the Windows 95 registry.

Another useful feature is the G e t C o n t e n t
method, which lets you read all or part of an
HTML page into a variable. Initially only

Fig 2 (a b o v e) The MhSplitter control from OLE

Tools attempting resolution independence.

Unfortunately, this text box does not always

get resized correctly…

Fig 3 (l e f t) Using a data grid and a data

dropdown. Clicking the PubID column drops

down the publisher table, so you can see the

full details when choosing the ID

available as a 32-
bit OCX, Sax has
now released a
16-bit OCX as well,
but nothing yet for
VB 3.0 or Delphi
1.0 diehards.

Widgets for your
d a t a
Sheridan’s Data
Widgets has long
been one of the
most popular
Visual Basic add-
ons, particularly
since the VB 3.0
grid is so poor. The
d a t a - b o u n d
controls in VB 4.0
are better, but still
leave room for
t h i r d - p a r t y
e n h a n c e m e n t s .
Version 2.0 brings
the expected

conversion to 16- and 32-bit OCX format,
but with enhancements. Sheridan has taken
the opportunity to restructure the data
widgets using objects and collections,
bringing it into line with other programmable
OLE objects. This makes for more logical
code and increases the programmer’s
control, the disadvantage being that code
which worked with Data Widgets 1.0 will
have to be extensively rewritten. For
example, to put a button in a DataGrid cell
in version 1.0 used a ColBtn property:
SSDbGrid1.ColBtn(2) = True

which in version 2.0 becomes:
SSDbGrid1.Columns(2).Style = 1

‘ edit button.

The actual Data Widgets controls are the
same six as before: Data Grid, Data
Combo, Data Dropdown, Data OptionSet,
Data Command and the Enhanced Data
Control. All are useful but the Data Grid is
the reason people buy this package. Its
neatest trick is to link with a Data
DropDown so that users can click on a grid
cell and select values from a dropdown list
bound to a field in another table (Fig 3).

Listing 2: Screensaver application

This application, which toggles the screensaver on and off, needs a VB
project with a form, a button and a code module. Note that to work in
Windows 3.1, the declarations will need to be adapted.
Code for the form:

Private Sub Form_Load()

bOldActive = isActive()

If bOldActive = True Then

Command1.Caption = “Disable screen saver”

E l s e

Command1.Caption = “Enable screen saver”

End If

End Sub

Private Sub Form_Unload(Cancel As Integer)

SetActive (bOldActive)

End Sub

Private Sub Command1_Click()

If isActive() = True Then

SetActive (False)

Command1.Caption = “Enable screen saver”

E l s e

SetActive (True)

Command1.Caption = “Disable screen saver”

End If

End Sub (continues page 285)

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • June 1997 • 285

Hands OnVisual Pro g r a m m i n g

p 2 8 6 ➢

Do you need Data Widgets? It depends
entirely on how you prefer to program. If
you make extensive use of bound controls,
this bundle is all-but indispensable,
particularly if a data grid is a key part of the
user interface. The data control in VB 4.0 is
not compromised in the same way as VB
3.0’s effort, so this is a perfectly sound
approach. The cautionary note is that large
OCX controls like these cause substantially
slower loading of your VB application, and
that grids are often not the best way to
present data to the user. Finally, the Data
Grid also works well as an unbound virtual
list control, a further enticement which may
sway doubters.

OLE tools
Microhelp’s OLE tools may have up-to-date
OCX technology, yet this package conveys
a dated impression. The main reason is that
apart from their OCX conversion, many of
the controls are little changed from earlier
versions, right down to their description in
the manual and the clunky example
applications. OLE tools also slipped up
during review when one of the genuinely
new items, M h S u b C l a s s, failed to deliver.
This is a message-trapping control that can
catch Windows API messages and either kill
them, or respond with a custom event and
then pass them on. M h S u b C l a s s is fine for
some purposes, for example if you want to
inspect W M _ M E N U S E L E C T messages in
order to provide a help text as the mouse
runs down a menu. But a common
requirement is to trap a message and then
write code to determine whether to kill it or
pass it on. M h S u b C l a s s cannot do this,
since the fate of the message has to be
determined before the VB event is
triggered. Rivals such as the
MessageBlaster OCX have no such
h a n d i c a p .

Never mind the quality. With 54 separate
controls, the bundle still rates as good
value. M h C a l e n d a r is a data-aware
calendar control. M h S p l i t t e r allows you to
build resolution-independence into
interfaces by automatically resizing controls
within the container, albeit rather slowly
(Fig 2). M h R e a l I n p u t is a text box that
improves on VB’s masked edit control for
working with real or currency values. And so
it goes on, providing something of value for
most VB projects.

Microhelp supplies two versions of these
tools. OLE tools has 16- and 32-bit OCXs,
while VB tools stays with the old VBX

format. There are differences between the
two. For example, the inadequate
M h S u b C l a s s is OCX-only, while the clever
M h O u t O f B o u n d s universal data binding
control is VBX-only. Finally, VB tools used to
come with a version of Farpoint’s Grid
control, but that has now been dropped.

Hacking the system in Windows 95
Mark Horton writes: “I’ve just bought a new
system with Windows 95 and VB 4.0. My

computer has a WIn/TV card, and I wanted
to write a program that would turn the
screensaver off and on without having to go
into the display properties tab. How or
where can I find out about the API calls
necessary to change the screensaver
settings? Is there a book on the market
which describes all the Win32 (and/or
Win16) API calls?”

Windows 3.1 introduced a handy
function called S y s t e m P a r a m e t e r s I n f o.

Listing 2 (continued from page 283)

Code for the module:

Option Explicit

Global bOldActive As Boolean

Declare Function SystemParametersInfo Lib “user32” Alias

“SystemParametersInfoA” (ByVal uAction As Long, ByVal uParam As

Long, lpvParam As Long, ByVal fuWinIni As Long) As Long

Public Const SPI_GETSCREENSAVEACTIVE = 16

Public Const SPI_SETSCREENSAVEACTIVE = 17

Function isActive() As Boolean

Dim lRetVal As Long

Dim pvParam As Long

lRetVal = SystemParametersInfo(SPI_GETSCREENS AVEACTIVE, 0,

pvParam, 0)

If lRetVal = False Then

MsgBox “Call to SystemParametersInfo failed”

isActive = False

Exit Function

End If

If pvParam = False Then

isActive = False

E l s e

isActive = True

End If

End Function

Sub SetActive(bActive As Boolean)

Dim lRetVal As Long

Dim pvParam As Long

lRetVal =

SystemParametersInfo(SPI_SETSCREENS AVEACTIVE, bActive,

ByVal pvParam, 0)

If lRetVal = False Then

MsgBox “Call to SystemParametersInfo failed”

End If

End Sub

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

286 • Personal Computer World • June 1997

Hands On Visual Pro g r a m m i n g

This reads or sets
numerous system
parameters including the
screensaver settings. L i s t i n g
2 (p p 2 8 3 / 2 8 5) shows a
small VB application for
Windows 95 which toggles
the screensaver on and off.
The two key functions,
I s A c t i v e and S e t A c t i v e,
work by calling
S y s t e m P a r a m e t e r s I n f o.
The application checks the
current state of the screen-
saver on loading, so that it
can be restored on exit.

Another possibility is for
your application to disable
the screensaver whenever it
has the focus. Windows
activates the screensaver
by sending a
W M _ S Y S C O M M A N D
message with w P a r a m s e t
to S C _ S C R E E N S A V E. By
intercepting and killing this
message, you prevent the
screensaver from kicking in.
Delphi programmers can trap messages
easily, but VB users will need an add-on like
the MessageBlaster OCX.

Many problems like this can only be
solved using the Windows API. That in turn
means having a good API reference, and

the starting point is the Windows SDK help
file (Fig 4) called W I N 3 1 W H . H L P f o r
Windows 3.1 and W I N 3 2 . H L P for 32-bit
Windows. Surprisingly, Visual Basic 4.0
comes with declarations for the 32-bit API
but not the 20Mb help file. An alternative is

Daniel Appleman’s
book, V B
P r o g r a m m e r ’ s
Guide to the
Windows API,
which provides
what is needed for
Windows 3.1 and
is to be updated for
W i n 3 2 .

Tips for Visual
P r o g r a m m i n g
■ Speed VBs load
time and slim your
applications by
stripping down
A U T O L O A D . M A K
(VB3) or
A U T O 3 2 L D . V B P
(VB4) to include
only controls and
r e f e r e n c e s
essential to every
p r o j e c t .

■ Avoid Dim iA, iB as Integer. This code
declares iA as a variant. Instead, use
Dim 1A as Integer, IB as Integer.
■ In VB4, disable Compile on Demand (in
Tools - Options - Advanced) to have the
compiler check for syntax errors before a
project runs.
■ Your Delphi application can easily check
for command-line parameters. P a r a m C o u n t
returns the number of parameters;
P a r a m S t r (0) returns the path and filename
of the application, and P a r a m S t r (n) r e t u r n s
the nth parameter up to P a r a m C o u n t.
(Listing 3)
■ If you are adding lines to a string control
like a listbox or memo, or an outline
component, use B e g i n U p d a t e to increase
performance by preventing screen updates.
(Listing 4)

Tim Anderson eagerly awaits your comments,
queries and tips, either at the usual P C W a d d r e s s
or by email at v i s u a l @ p c w . c o . u k.
Visual Basic Programmer’s Guide to the Windows
A P I by Daniel Appleman (Ziff-Davis Press, £33.02)
Computer Manuals 0121 706 6000
Sax Webster £110 (plus VAT)
Data Widgets 2.0 is £99 (plus VAT)
OLE Tools is 149.00 plus VAT and VB Tools £ 9 9
(plus VAT) from Contemporary Software
01727 811999

Contacts

Listing 3: ParamCount

procedure TForm1.Button1Click(Sender: TObject);

v a r

i: integer;

b e g i n

for i := 0 to ParamCount do

MessageDlg(ParamStr(i), mtInformation,

[mbOk], 0);

e n d ;

Listing 4: BeginUpdate

procedure TForm1.Button2Click(Sender: TObject);

b e g i n

l i s t b o x 1 . i t e m s . b e g i n u p d a t e ;

listbox1.items.add(‘One item’);

listbox1.items.add(‘another item’);

l i s t b o x 1 . i t e m s . e n d u p d a t e ;

e n d ;

Fig 4 Although aimed at C/C++ developers, the Win32 SDK is an essential reference for Visual Basic developers.

So why is this help file not supplied with Visual Basic 4.0?

