
but will be before the end of the year. It is a
cross-platform product, with versions
initially available for OS/2 and Windows NT.
Windows 95 compatibility will follow, and it
will be possible to deploy Visual Age for
Basic applications on AIX.

With Visual Age for Basic, IBM seems to
have several goals in mind. One is to make
OS/2 a more appealing platform, by
introducing an enormously popular
language and making it easy to convert
existing Visual Basic applications. It is also
part of IBM’s attempt to establish its
preferred object model, SOM, on the
Windows platform. Visual Age for Basic will
support SOM, OpenDoc and OCX. Finally, it
is a tool for IBM’s DB2 database, with
integrated access using embedded SQL
and the ability to create stored procedures
and user-defined functions.

As a DB2 add-on or an OS/2 utility,
Visual Age Basic looks likely to succeed,
but whether it will challenge Visual Basic
itself on the Windows platform looks more
doubtful. Judging by the beta, system
demands are as high or higher, with 24Mb
RAM recommended for development. Like
VB 4.0, it is an interpreted language and
unlikely to win on performance. It is broadly
compatible with Visual Basic, but that
compatibility does not extend to data
access code. On the plus side, IBM
promises a proper implementation of
inheritance and, should SOM catch on,
Visual Age Basic will be very useful. Look
out for a full review in due course.

Back in the seventies, a partnership
between two Frenchmen, one a computer

ll programming is visual now. The
quick riposte is that most
programming tools are resolutely

procedural with an array of visual tools to
disguise the fact. But there’s no doubt that
the likes of Visual Basic and Delphi have
won the argument about how to program.
That leaves a difficult choice for a column
like this one. With so many visual tools out
there, should it become a pot-pourri of
miscellaneous programming news and tips?
Or should it revert to being product specific,
dedicated to Visual Basic which remains the
most popular Windows development tool?
A further complication is that third-party
components in the form of VBX or
OCX/ActiveX controls can be hosted by a
variety of different programming tools.

In response, Visual Programming Hands
On has been expanded and will be divided
into three parts. The first will cover visual
programming generally, including
components that are useful in a wide range
of products. The other two sections will
cover Visual Basic and Delphi respectively,
so that users of the two most popular
general-purpose visual languages will
always find something specifically for them.
Much of the material in this column is a
direct response to your comments and
queries, so please keep them coming to
me, by email or at the usual PCW address.

IBM’s new BASIC
At the time of writing, IBM is in open beta
with its version of Basic, an addition to the
VisualAge product family. The press release
refers superciliously to Basic as a “scripting
language”, but nevertheless IBM’s release is
a great testimony to VB’s influence. The
final release date has not been announced,

scientist and one a logician, produced a
new language called Prolog (short for
Programming in Logic). Unlike procedural
languages, which give step-by-step
instructions to the computer, Prolog does
problem solving by inference and recursion.
To give you a flavour, here’s a complete
program that looks up a telephone number:

PREDICATES

nondeterm tel_no(symbol,symbol)

CLAUSES

tel_no(“Bill”,”0123 4567”).

tel_no(“Jane”,”0765 4321”).

GOAL

tel_no(“Jane”, Number).

In this case the output is:

Number=0765 4321

1 solution

Prolog’s particular strength is in artificial
intelligence and expert systems. It would be
a good choice for an application that
assessed insurance risks or for a program
to create timetables for schools, trains or
airlines. In the late eighties, Prolog was
marketed by Borland as Turbo Prolog,
following which rights reverted to the Prolog
Development Center (PDC). PDC has now
come up with Visual Prolog, a graphical
development environment for Windows (16
and 32-bit) and in due course for OS/2.
Visual Prolog includes layout editors and
Code Experts, which allow you to create a
graphical interface by using drawing tools
and responding to dialogs. It works by
means of a set of Prolog extensions called

p314 ➢

Hands OnVisual Programming

the Visual Programming Interface, a
framework for controlling a graphical
interface.

PDC argues that Prolog’s clarity and
efficiency makes it not only a tool for
building expert systems, but a challenge to
more popular products like Delphi and
Visual Basic. It compiles to native
executables and performance is impressive.
ODBC is supported for database work. A
particularly nice feature is the integrated
help authoring system, which makes it easy
to create and edit online help from within
the development environment.
Nevertheless, the unfamiliar language
combined with lack of support for VBX or
OCX components, or OLE in any form, will
ensure that Visual Prolog remains a niche
product. For projects which lend
themselves to a Prolog implementation,
though, Visual Prolog is mightily impressive.

Trouble with menus
VB programmer Ian Moss writes with a
menu problem. “I can add and remove
items from indexed menus, no problem.
What I want to do is create menus that have
submenus. I am adding menu items that are
divisions of a basketball league. Each
division has teams associated with it. I read
the division names from a database, and
create the correct number of menu items. I
want each division menu to have a sub
menu containing the teams in that division.”

Here is a classic Visual Basic problem.
Ian needs to create menus that have
submenus, at runtime. VB’s menu editor is
a doddle to use. Creating menu items at
runtime is easy using a control array and the
Load command. But creating submenus at
runtime is not in the book. It can be done,
but only by trickery. It is another reason why
serious VB programmers need Daniel
Appleman’s book, Visual Basic
Progammer’s guide to the Windows API
(see review).

Using the Windows API, you can modify
and add to the menus in a VB application.

Personal Computer World • October 1996 • 313312• Personal Computer World • October 1996

Hands On Visual Programming

Into the Visual Age
Tim Anderson looks at IBM’s plans for VisualAge Basic, finds a new visual implementation
of Prolog, and introduces new sections for Visual Basic and Delphi.

A

Fig 1 VB Tip: Creating submenus at runtime

Private Sub Command1_Click()

Dim mainmenuhandle As Long
Dim DivMenuHandle As Long
Dim DummyMenuHandle As Long
Dim NewMenuHandle As Long

Dim lRetVal As Long
Dim spareID As Long
Dim iCount As Integer

‘ this routine appends a new submenu
‘ to the first menu on the form

‘ get the menu handles
mainmenuhandle = GetMenu(Me.hwnd)
DivMenuHandle = GetSubMenu(mainmenuhandle, 0)
DummyMenuHandle = GetSubMenu(mainmenuhandle, 1)

‘ Now load two menu items into the
‘ dummy menu. We use these to provide
‘ ID’s for the new submenu items.

‘ count the existing items in the dummy submenu
iCount = GetMenuItemCount(DummyMenuHandle)

‘ load two new ones
Load Me!mnuDummyArray(iCount)
Me!mnuDummyArray(iCount).Caption = “Team one”

Load Me!mnuDummyArray(iCount + 1)
Me!mnuDummyArray(iCount + 1).Caption = “Team two”

‘ Create the new submenu
NewMenuHandle = CreatePopupMenu()

‘ Add two items to the submenu
spareID = GetMenuItemID(DummyMenuHandle, iCount)
lRetVal = AppendMenu(NewMenuHandle, MF_ENABLED Or
MF_STRING, spareID, “Team one”)

spareID = GetMenuItemID(DummyMenuHandle, iCount + 1)
lRetVal = AppendMenu(NewMenuHandle, MF_ENABLED Or
MF_STRING, spareID, “Team two”)

‘ Append the new submenu
lRetVal = AppendMenu(DivMenuHandle, MF_ENABLED Or
MF_POPUP, NewMenuHandle, “Division added at runtime”)

End Sub

Visual Prolog

Visual Basic

For this routine to work, you will need to use
the VB menu editor to create a menu with two
toplevel items. The first (Divisions) must have
at least one sub-item, to make it a pop-up
menu in API terms. The second (Dummy) must
also have a sub-item, with an index value set,
to make it a control array. I’ve named this
mnuDummyArray. Finally, give the second
toplevel item an empty string for a caption, and
an enabled property of False. The user will
never see the dummy menu.

Several API functions are included and
these must be declared. The code below is for
32-bit Visual Basic, but with small
amendments will work in 16-bit as well. Code
to respond to clicks on the new menu items
should be placed in the

mnuDummyArray_Click event, using the Index
parameter to detect which one was chosen.

You can create VB submenus at runtime, with

a little help from the Windows API

Fig 3 DragDrop code

procedure TForm1.DragDrop(var Message: TWMDropFiles);
var
i, numfiles: integer;
lpzFileName: PChar;
begin
numfiles := DragQueryFile(Message.Drop,Word(-1),nil,0);
ListBox1.Items.BeginUpdate;
lpzFileName := strAlloc(101);
for i := 0 to numfiles do

begin
strPCopy(lpzFilename,’’);
DragQueryfile (Message.Drop,i,lpzFileName,100);
ListBox1.Items.Add (StrPas(lpzFileName));
end;

strDispose(lpzFileName);
ListBox1.Items.EndUpdate;
DragFinish(Message.Drop);
Message.Result := 0;
end;

Sending, trapping, and creating custom
messages are excellent techniques for
creating powerful and flexible applications.

As an example, here’s a couple of tips
from Ian Briscoe (thanks for the tips, Ian - a
book token is on its way). The first is for
displaying hints for the System menu. The
system menu does not appear in Delphi’s
menu editor, but you can still display hints
by trapping the WM_MENUSELECT
message. In the private section of a form
declaration, add the following:

procedure SysMenuHint (var Message:

TWMMenuSelect); message

WM_MENUSELECT;

Note the message directive at the end of
the declaration that tells Delphi this is a
message handler. Fig 2 is the code for the
procedure.

Ian adds, “Note that the menu selected
is not the System menu. We call the
inherited menu handler to allow Delphi to
add its own hint functionality. We don’t set
the caption of the panel directly, but go
through Delphi’s own methods to display
the hint, allowing you to still catch the
OnHint event to add any additional coding.”

The second tip is for trapping a drag-
and-drop message from File Manager or
Explorer. This is a neat trick that enables
users to drag files into your application, for
example to open documents in a text
editor. First, add ShellAPI to the uses clause
of the main form. Then declare the following
message handler:

Procedure DragDrop (var Message:

TWMDropFiles); message

WM_DROPFILES;

Now in the FormCreate procedure add:
DragAcceptFiles(Form1.Handle,

True);

Fig 3 is the code for the DragDrop
procedure. This example just displays the
filenames in a listbox, but your code can do
whatever you want with the files.

Personal Computer World • October 1996 • 315

Hands OnVisual Programming

An entry with a submenu is not a normal
menu item, but the top level of a pop-up
menu, so you use the CreatePopupMenu
function to return a handle to a new pop-up
menu. Then AppendMenu is used both to
add items to the submenu, and finally to
add the pop-up menu to the existing menu
structure.

The new menu will look pretty, but won’t
execute any code without further work. The
problem is that VB creates menus with a
two-stage process. When you design a
menu, or change menu properties with VB
code, you interact with an internal VB menu
object. Visual Basic uses this internal object
to generate the correct API calls that make
the menu work. If you call the API directly,
bypassing the internal VB object, VB doesn’t
know about the changes you have made.

When you click on a menu item,
Windows sends a WM_COMMAND
message to the application which includes
a menu ID. This ID identifies the menu item,
enabling the correct code to be executed. If
you add a menu item using the API, VB will
not recognise the ID, so the message sent
when that item is clicked is ignored.

The workaround is to set up a dummy
menu, where the toplevel item is disabled
and has no caption, and which contains a
control array. Note that the visible property
must be True, otherwise the following tip will
not work. When you need to add a menu
item using the API, your code must first add
an item to this control array. Then you can
steal the ID for the new menu item, using

the API call GetMenuItemID, and use it to
create the new API menu item. When the
user clicks on the menu you have created,
VB is tricked into thinking that the item in
the dummy menu has been selected, and
will execute code in its click event. Fig 1
contains example code.

I must emphasise that this procedure is
only necessary if you must create new
submenus at runtime. Adding items to an
existing menu or submenu is no problem.
Another possibility is to create all your
submenus at design time, and set their
visible property to false, so that your code
can reveal them as required. Finally, why

not rethink the user interface completely?
Ian’s example application might be better
served by an outline control, displaying
divisions and teams in a tree view.

Delphi Gets the Message
One great thing about working with Delphi
is how easy it is to trap Windows
messages. Just to recap, much of Windows
functionality is a result of system messages
being sent to individual windows. For
example, moving the mouse sends a
WM_MOUSEMOVE message to a window.

314 • Personal Computer World • October 1996

Hands On Visual Programming

Visual Basic Programmer’s Guide to the Win32 API

Noted VB guru Daniel Appleman
has issued an update to his
popular API guide for Visual Basic
users. This is no cursory update.
The book has expanded by 500
pages and is more brick-like than
ever. Even so, the author
apologises for not including every
Win32 API function. It is not his
fault as the API is now so huge that
to include everything would have
made the book unmanageable. He
correctly observes that once you
know how the API ticks, it is not
too hard to learn new functions
and call them from VB.

Most serious Visual Basic
developers will want this book. It
accomplishes two things. First, it
documents most API functions
from a VB perspective, giving the
correct declaration and explaining
the particular benefits and pitfalls
of each one. Second, there is

masses on information on how
Windows hangs together,
including such topics as window
handles, messages, co-ordinate

systems and memory
management. There’s no other
book like it, and Appleman does
the job well.

I do have one nagging doubt,
and that is why we need this book
when Visual Basic should be
powerful enough without it. The
truth is, the deeper you get into the
API from VB, the stronger the case
for switching to a more suitable
language such as C++ or Delphi.
To get the best from VB, you need
to be using it mostly within its
natural limits, otherwise the
benefits of RAD disappear under
an avalanche of obscure code. The
answer is to use this stuff with
discretion, to solve problems that
would otherwise leave you stalled.
One example is optimisation. For
instance, Appleman demonstrates
a routine for searching listboxes
that is five times faster than pure
VB code. For users of your
application that could make all the
difference.

Fig 2 Code for message handler

procedure TForm1.SysMenuHint (var Message: TWMMenuSelect);
begin
if (Message.MenuFlag and MF_SYSMENU) = MF_SYSMENU then
begin
case Message.IDItem of
0: Application.Hint := ‘’;
SC_CLOSE:
Application.Hint := ‘Closes the window and quits the application’;
SC_MAXIMIZE:
Application.Hint := ‘Expands the windows to fill the screen’;
{...etc. Look up the constants in WINAPI.HLP under WM_SYSCOMMAND}
else
Application.Hint := ‘’;
end;
Message.Result := 0;
end
else
inherited;
end;

DELPHI

Visual Prolog combines the Prolog language with a capable set of

visual tools

All done with messages: this Delphi application displays hints for the System menu, and accepts

drag-and-drop files from Explorer or File Manager

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual PCW address or at
freer@cix.compulink.co.uk, or
http://www.compulink.co.uk/~tim-anderson/

Visual Basic Programmers’ Guide to the Win32
API is by Daniel Appleman. ISBN 1-56276-287-7.
£46.99. Contact Prentice Hall, Tel. 01442 881900

Visual Prolog costs £477 from PDC UK, Tel.
01603 611291

VisualAge

Basic brings

easy

application

development

to OS/2 at

last

●PCW Contacts

