
Public Sub ListSports(listVar As

L i s t B o x)

Dim sn As Recordset

Dim sSql As String

l i s t V a r . C l e a r

‘ build up the SQL command

sSql = “SELECT * FROM Sports,

Sportlink “

sSql = sSql & “ WHERE Sports.ID =

Sportlink.SportID “

sSql = sSql & “AND

Sportlink.MemberID = “ & Str$(mID)

sSql = sSql & “ ORDER BY

S p o r t s . S p o r t ”

Set sn = myDB.OpenRecordset(sSql,

d b O p e n S n a p s h o t)

‘ now fill the list box

If Not (sn.BOF And sn.EOF) Then

‘ there are records

s n . M o v e F i r s t

Do While Not sn.EOF

listVar.AddItem (sn!SPORT)

l i s t V a r . I t e m D a t a (l i s t V a r . N e w I n d e x)

= sn![SPORTLINK.ID]

‘ the square brackets and table

name are needed because

‘ there are two different ID fields

\ in the result set

s n . M o v e N e x t

L o o p

E l s e

listVar.AddItem “None”

End If End Sub

this new information. Since a member may
sign up for any number of sports, these are
best displayed in a listbox control. To keep
the form from getting cluttered, a good tip is
to use a tab control as well. Visual Basic 4.0
comes with two: a TabStrip which is for

ast month’s workshop showed
how to create a simple database
application for the P C W s p o r t s

club. It was a flat-file database, which
means all the data was stored in a single
table, like a card-index. At the sports club,
though, it is important to know which sports
a member has signed up for. A member
can sign up for any number of sports, and
each sport is played by any number of
members. This is a classic many-to-many
relationship, but it is not always obvious
how best to store this kind of information.

One strategy would be to add several
fields to the table of members, for Sport1,
Sport2, Sport3, etc. Another possibility is a
notes field with the sports entered line by
line. Both these ideas are fatally flawed.
Although they seem easy, they are actually
inefficient and inflexible. For example, what
happens when you want a list of all the
footballers? You would end up with a
horrible keyword search and probably get
inaccurate results.

The correct approach is to analyse the
data into three tables. The first one is the
table of members. Next there is a table of
sports, which for the moment has just two
fields, Sport and ID. The third table
records which member belongs to which
sport. SportLink again has two fields,
MemberID and SportID. If you view the
table on its own it will look like a
meaningless string of numbers, but in
combination with the other tables it makes
sense. Later you might want to add other
fields to SportLink, perhaps a Role field
which contains information like
“Goalkeeper” or “Captain”. It is important
to grasp this principle, which is a great
way to store all kinds of data.

The main form needs adapting to display

Windows 95 only, and the SSTab which
comes as both a 16-bit and 32-bit OCX. In
this example SSTab is used. The tabs work
at design time, making it easy to lay out the
form. When a tab is selected, controls placed
on it belong to that tab. Controls placed on

Hands OnWorkshop: Visual Basic

the form itself will show through all the tabs.
Fig 1 shows buttons for adding and
removing members from particular sports,
but these are not yet enabled.

The next step is to write code to display
the list of sports for each member. One idea
is to add a ListSports method to the
CPerson class. The ListSports method
takes a listbox control as a parameter. It
searches the database to get the list of

sports and adds them to the listbox. Doing
it this way means that if a list of sports is
needed at some other point in the
application, it will not be necessary to
rewrite the code. All you need do is to
supply the ListSports method with an
available listbox. The code for
CPerson.ListSports is in Fig 2.

Much of this code is similar to that used
last month for searching the members

table. The main difference is that the SQL
query for extracting data from two tables is
more complex. If you followed P C W’ s
recent SQL workshop, you will have no
problem. If not, notice that the SQL string
includes several sections:
1. Which fields to extract — SELECT * for all
f i e l d s .
2. How the two tables are linked — the first
part of the WHERE clause.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • March 1997 • 267266 • Personal Computer World • March 1997

Hands On Workshop: Visual Basic

A sporting c h a n c e
Visual Basic gives the mythical PCW sports club the database treatment in the second
of our workshops, conducted by Tim Anderson. He also studies the life of a VB object.

L

Fig 3 A good ruse

when you need to work

out SQL for Visual

Basic is to let the

Access query builder

generate it for you

Fig 1 The enhanced

Sports Club

application stores data

in a many-to-many

r e l a t i o n s h i p

Fig 2 The code for CPerson.ListSports

p 2 6 8 ➢

ntroduced in Visual Basic 4.0,
class modules are a way to
create user-defined objects.

For example, the Sports Club application
has a CPerson class with properties and
methods. These constitute the interface
which a person object presents to the
application. Whenever your other code
has to interact with a person object, it
does so through this interface. If the
interface stays the same, you can change
or improve its implementation (the code
which drives those properties and
methods) with no danger of breaking the
application. If you add to the interface,
those new features are available wherever
a Person object is referenced.

The first thing to understand is the lifetime
of an object. Unlike other variables, you can’t
simply DIM a CPerson object and then refer
to its properties. Objects must be
instantiated. For example, this gives an error:
Dim Myperson as CPerson

Myperson.surname = “Baxter”

Error — object variable not set. Instead
you need code like this:
Dim Myperson as Cperson

set Myperson = New CPerson

Myperson.surname = “Baxter”

Or if you start with:
Dim Myperson as New Cperson

VB will instantiate the object when first
r e f e r e n c e d .

The question of instantiation is
important because it does not just allow
you to start using the object. It fires an

event, Initialize. All class modules have this
event predefined. It is extremely valuable,
since you can do things like setting default
values for properties, or opening a link to a
database, or instantiating other subsidiary
objects as required. Sadly, Initialize cannot
take parameters, making it less useful
than it should be. There is another, similar
event called Terminate, which occurs
when the object is destroyed.

But when is the object destroyed? It
is destroyed when there is no longer any
active reference to it in your code. This
feature is designed to make it easy to
manage objects, but can get confusing.
If you have an object variable declared in
a procedure, it goes out of scope and
the object is destroyed when the
procedure finishes. But if you have
assigned the object to another variable
which is still in scope, the object is not

destroyed: the
listing (left)
illustrates the point.
So far, not too
difficult. It’s harder
when your objects
are more ambitious.
Perhaps you want a
CPerson to have a
Display method
which creates and

shows a form. VB forms are just another
kind of class, and the obvious approach
would be like this:
public sub Display()

Dim myform As New DisplayForm

‘ ... code to fill the fields

m y f o r m . S h o w

But to encapsulate things you will want
a Hide method which disposes of the
form. That means keeping a reference to
the form in the CPerson class, so the
DisplayForm variable needs to be
scoped to the class. It is likely the form will
need to interact with its corresponding
CPerson object, so you give the form a
Person property. The references start to
proliferate, and neither the DisplayForm
nor the Person object will be destroyed
until the last one goes out of scope or is
set to Nothing. If your Hide method was
like this:
Unload myform

that would not destroy the form object. In
turn, the form object would prevent the
Person object from being destroyed,
because it still has an active reference to
it. You have to add the line:
Set myform = Nothing

to clean it up properly. The conclusion is
that you need to watch the lifetime of VB
objects closely or they could stick around
for longer than they are wanted.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

268 • Personal Computer World • March 1997

Hands On Workshop: Visual Basic

Tim Anderson welcomes your comments and
queries. Write to the usual P C W address, or email
f r e e r @ c i x . c o . u k

Contact

The life of a VB object

I

D e s t roy all objects!

Dim Myperson As New CPerson

Myperson.surname = “Baxter”

Set FormPerson = Myperson

‘ assumes FormPerson is scoped to the form

‘ both now refer to the same object

Set Myperson = Nothing ‘ Object is NOT destroyed

Set FormPerson = Nothing ‘ Object is destroyed

Judicious

use of

D e b u g . P r i n t

can help

track the

lifetime of VB

o b j e c t s

3. An additional restriction — the second
part of the WHERE clause after AND. This
ensures that only data for the current
member is extracted.
4. An ORDER BY clause to sort the results.
Working out SQL acceptable to JET, the VB
database engine, can be tricky. A good

ploy is to build a query in Access, then cut-
and-paste the generated SQL code (Fig 3).
Note that often, more than one SQL
expression will product the same result,
sometimes with performance differences.
■ All the code for this month’s VB
workshop is on this month’s cover CD.

■ Next month: Visual Basic, inheritance and
d e l e g a t i o n .

