
CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World •February 1997 • 295

Hands OnVisual Pro g r a m m i n g

p 2 9 6 ➢

Where there’s an O there’s an A
You might be forgiven for wondering where
this new Active Platform comes from.
Microsoft’s publicity implies that a range of
new technologies, such as the Active
Desktop, the Active Server and Dynamic
HTML, have emerged brand new and
sparkling from a magician’s black hat
somewhere in Redmond.

The truth is more prosaic. For years
Microsoft has been promising to rebuild
Windows on an OLE foundation, and that
strategy has not changed. In many cases
Microsoft has simply replaced the word
OLE with Active. So, ActiveX controls are
OLE controls, OLE automation servers are
now Active Servers, and similarly the OLE
object model once known as Data Access

’m sitting here looking at a sheaf
of press releases and a stack of
CDs which comprise the

Microsoft Active Platform in its current, beta
guise. The papers are an intricate display of
verbal gymnastics: there are generous
sprinklings of key buzzwords like open,
standards-based, scaleable, multiple
operating systems, and so on. The name
Active Platform itself is a political statement.
Sun calls Java a platform; Netscape
Communications calls its browser a
platform; others see the Network Computer
as a platform. At stake is the question of
who will be at the centre, and who will be
satellites. Like all the best prima donnas,
none of the main industry players wants to
be anywhere less than centre stage.

Objects has become the ActiveX Data
Object or ADO. With that in mind, here’s a
plain English summary of what is in the
Active Platform.
1. Active Desktop This is essentially a web
browser with support for HTML, VB Script,
Java applets and ActiveX controls. In other
words, it is Internet Explorer. Full
implementation is in the forthcoming version
4.0, which is fully-integrated into the
Windows shell.
2. Active Server This means that Internet
Information Server can be controlled
through what used to be called OLE
automation.
3. Active Server Pages Here, Microsoft is
referring to the ability to embed scripts,
typically written in Visual Basic, into HTML
web pages. Previously such scripts could
only be executed by Internet Explorer on the
client’s PC. Now, a new tag lets you run the
script on the server. Web sites have been
doing this for years using CGI scripts, but
this new approach is easier and removes
the need to compile the script into a binary
e x e c u t a b l e .
4. Dynamic HTML Code-named Trident,
this is a set of extensions to HTML which
implement much-needed features like
layering and exact positioning. It provides
an enhanced object model with more
control over frames, tables and scripts.
5. Active Data Object Like Data Access
Objects, this is a COM object model for
database access. It hooks into ODBC for
connectivity to a broad range of database
s e r v e r s .
6. Design-time ActiveX These are add-ins
for Internet Studio which typically generate
HTML and VB Script in response to user
input while authoring a web page. You can

Active s e rv i c e
Tim Anderson investigates the Active Platform – is it really new? Plus how to use resources
in Delphi, new books reviewed, and a preview of the Visual Basic control creation edition.

I

The Internet Studio project browser in file view (left), an ActiveX layout being designed (centre),

and the resultant form at runtime in Internet Explorer

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

296 • Personal Computer World • February 1997

Hands On Visual Pro g r a m m i n g

think of them as web page wizards. They
are ActiveX controls but are not used at
runtime and do not need to be downloaded
to the client’s computer.
7. HTML layout One of the most useful
ActiveX controls is the HTML layout
component, simply a container for other
controls. Using the Active Control Pad or
Internet Studio’s layout editor, you can build
forms which include scripts, much as you
would with standalone Visual Basic.

Will it work?
The usefulness or otherwise of Microsoft’s
new web initiative depends on which hat
you wear. For general Windows developers,
this is significant. Internet Studio, the tool
that brings all these gizmos together, is a
viable alternative to Visual Basic and
Access. You can design forms, write VB
code, and simply have your final application
run within Internet Explorer rather than
directly from the Windows desktop.

As Windows evolves, that last distinction
will become increasingly blurred. The
advantages are that your application can
be Intranet-ready and database
independent. On an Intranet, you have full
control over whether code is executed on
the client or on the server. Assuming
Windows remains popular, I see this kind of
approach as gradually replacing existing
development techniques.

The ActiveX Control Pad

Released without fanfare onto Microsoft’s web site, the ActiveX Control Pad is an essential tool
for authoring ActiveX applications. It combines a simple text editor with a VB-like form designer.
The idea is that you open an HTML document in the editor, design a form known as an HTML
Layout, and then insert it into the document. The HTML layout is itself an ActiveX control, but
exists only as a container for other components. You can also insert ActiveX controls directly,
without using a layout. The control pad generates a bit of HTML code using the OBJECT tag,
including the long alphanumeric CLASSID which uniquely identifies each ActiveX component.

The control pad does not only handle the placement of controls. Using the script wizard, you
can also write code to bring the form to life. The scripting language can be either VB Script or
JavaScript, although the two cannot be mixed on one page. In list view, the script wizard will

write code for
you based on
your response
to dialogs, or
you can
choose code
view and bang
out code in
the old-
f a s h i o n e d
way.

There are
m a n y
advantages to
using the
control pad.
One is that
you can
p o s i t i o n
c o n t r o l s
p r e c i s e l y
within the
l a y o u t ,

something which you cannot do with pure HTML. Controls have a z-order too, so you can
position one in front of another. The other plus is that a control’s properties and methods are
listed in the property editor and script wizard, so you do not need to look them up. Visual Basic
programmers will soon feel at home. A similar tool is in Internet Studio, where it is called the
HTML layout editor.

The biggest problem is that the control pad does no syntax checking and has no debugger
— a sure sign of immaturity. Internet Explorer will report errors in your code, but otherwise you
are reduced to tricks like throwing up message boxes to check the status of variables. The other
problem is that ActiveX layouts currently work only with Internet Explorer 3.0. No surprise there.

The ActiveX control pad, showing an HTML document, a layout, and the script wizard

What about Web developers? It is these
that Microsoft is courting most visibly, with
its “site builder” initiative. But success is far
from assured. Microsoft can do what it likes
with Windows, but does not own the web.
The grave weakness of its Active Platform is
that, despite noises to the contrary, it is not
a cross-platform initiative. There is no
problem with the server-side aspect, since
the server can do what it likes as long as it
delivers HTML that the browser can
understand. The problem is with the Active
Desktop. ActiveX controls, remember, are
binary executables which run natively on the
client’s computer. If you want to create an
ActiveX control which runs on, say,
Windows, the Macintosh and Unix, then you
must create three separate executable files.
Even if Microsoft delivers what it promises,
versions of Internet Explorer for these

platforms, it is hard to see this strategy
w o r k i n g .

By contrast, a Java applet runs on any
platform for which a Java Virtual Machine
exists. That means Sun’s Java Beans
model holds all the cross-platform aces.
Java applets can accomplish many of the
same tasks as ActiveX components.
Performance can be poor, but just-in-time
compilers and eventually Java-based
operating systems will crack that problem.
Microsoft is making it enticingly easy to
create web sites built with ActiveX controls,
but such sites will to some extent shut out
non-Windows browsers. If that drives more
people to use Windows, Microsoft wins. But
if these factors lead to Java rather than
ActiveX dominating the Internet, the
popularity of Windows itself will inevitably
decline. The stakes are high.

Unmistakably a platform; but with the ActiveX

Platform, things are less clear cut

Visual Basic Control Creation Edition
Unlike Internet Studio or the ActiveX control
pad, the VB Control Creation Edition is not just
for web development. As its name implies, it is a
tool for creating ActiveX controls in Visual Basic,
and these controls can then be used in any
Windows development tool or document
capable of hosting ActiveX, formerly known as
OCX controls. In its determination to reinforce
the ActiveX standard, Microsoft is making the
control edition a free download, both the beta
and final versions. Incidentally, it also offers a
preview of what the VB 5.0 interface may look
like when it emerges.

Since version 4.0 Visual Basic has been
able to create OLE automation servers. You can
declare an object class in a VB project, and then
have other applications create objects of that
class. Borland’s Delphi 2.0 is similarly capable.
The one piece missing in both products is the
ability to create OLE objects that have a visual
interface, or in other words, ActiveX controls.
That gap has now been plugged. With the
control creation edition, you can develop
ActiveX components that can be installed on the
component palette in products like Visual Basic,
Access and Delphi. It is a great step forward, the
main snag being that in this version, compilation
to native code is not possible, so performance will not match ActiveX
controls written in C++. VB controls can be very small, but require a
substantial runtime library which makes distribution awkward.
Microsoft now calls this the VB Virtual Machine. The implication is that
a VM for Visual Basic may be implemented on more than one platform,
although Microsoft has not stated this explicitly. Such a move would
make ActiveX a more plausible cross-platform contender.

To test the control creation edition, I built a simple control. Using
an image control and a timer, I displayed the P C W logo on a form. With
one line of code I made the logo’s background colour change
whenever the timer event fired. Next, I used the Interface wizard to
choose which properties and methods to expose, including a custom

property to set the timer interval. The property page wizard created a
standard property page, and finally Make OCX built the control.

Nobody can now say that creating an ActiveX control is difficult.
The main flaw in the VB control creation edition is not technology, but
human fallibility. Creating a control is easy; but creating a good control
still requires skill. The documentation observes how important it is to
maintain a consistent interface when controls are developed, and
warns that a poorly-implemented control can be a security risk even
without malicious intent on the part of its developer. For example, if a
method is exposed that enables a named file to be created on the
user’s hard disk, the control is not safe for scripting. Considering the
number of VB developers, both professional and hobbyist, mistakes
are inevitable.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

D e l p h i

Delphi and Windows resources

Delphi can
use standard
Windows
resource files
(with a .RES
extension)
and indeed
there are
occasions

when this might be essential: creating a
screensaver for Windows NT, for example.
It is yet another of those areas which
Borland has scarcely bothered to
document. Bizarrely, there is

Personal Computer World • February 1997 • 297

Hands OnVisual Pro g r a m m i n g

A preview of Visual Basic 5.0. The Control Creation Edition at last makes it easy to write ActiveX components

documentation in WINAPI.HLP, supplied
with Delphi, that covers the Microsoft
command-line resource compiler, but not
for the Borland resource compiler actually
supplied. You didn’t know Delphi comes
with a resource compiler? It does, and it is
the executable called BRCC.EXE or
BRCC32.EXE, the 16- and 32-bit versions
respectively. The versions called BRC.EXE
and BRC32.EXE are shells which are able
to call both the resource compiler and the
resource linker, RLINK, to bind a resource
to an executable — but you do not need to
know this since Delphi will do it for you.

To find out how these programs work,
run them from a command line without
parameters and the options are
d i s p l a y e d .

What Delphi does not have is a resource
editor. Simple resource scripts can be
created by hand, otherwise you will want to
use an editor such as the one distributed

Creating full

system tray

apps with

native Visual

Basic 4. See the

full code on the

cover CD

p 2 9 9 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • February 1997 • 299

Hands OnVisual Pro g r a m m i n g

with Borland’s C++ products. Using
resources in Delphi takes several steps:
1. Create a resource script and compile it to
a .RES file.
2. In your Delphi application, include the
compiler directive:
{$R MYRES.RES}

where MYRES.RES is the name of your
resource file. A good place to put it is in the
project source below the similar directive
{$R *.RES} which Delphi includes by default
in all projects. The reason is that the
application icon is stored in a .RES file of
the same name as the project. It is best not
to edit this generated resource file, since
Delphi may overwrite your work.
3. Your Delphi code can now load these
resources using API functions. Here is a
simple example. The following resource
script contains a string table with one string:
STRINGTABLEBEGIN1, “I wandered

lonely as a cloud”END

Save this as TEST.RC, compile it using
BRCC to TEST.RES, and then include it in a
Delphi project. Now you can retrieve the
string in your Delphi application as follows:
lpzTest := stralloc(26);

LoadString(hInstance,1,lpzTest,25);

where lpzTest is declared as a pChar.
LoadString’s second parameter is the ID of
the string to load, often replaced with a
constant for clarity, and the last parameter
is the maximum length of the string to
retrieve.

Visual Basic

More about the System Tray
James Talbut writes:

“You mention the usage of the
Shell_NotifyIcon function and state that it is
not possible to use the messages without
additional software. But you can. Essentially
you create a hidden control on your form
and use an unrequired message for
controlling it.”

The system tray is controlled by an API
call Shell_NotifyIcon, which takes a pointer
to a NOTIFYICONDATA record as one of
its parameters. This record includes fields
for a window handle and a message
identifier, the idea being that Windows
sends that message to the specified
window when
the user clicks on an icon in the tray.

In C++ or Delphi you would use a
custom message handler, but VB does not
offer that facility. The workaround is to
hijack an existing message handler, and

Books for Visual Pro g r a m m i n g

Using ActiveX by Brian Farrar
This is nearly very good. Aimed at those
considering doing the web the Microsoft
way, it presents all the main elements clearly
and concisely, with examples. The book
covers VB Script, ActiveX technology, the
Control Pad, the Internet Control Pack,
Internet Information Server and its ISAPI
interface, and CGI scripting. It is fine as an
introduction and overview, but does not go
into enough depth to merit the “using” part of
its title. For example, ActiveX security issues
are skated over in a couple of pages. To be
fair, Microsoft’s ActiveX SDK, included on
the supplied CD, does give the required
detail; but most readers will have it already
from another source. Buy this for an excellent
overview, but expect to need further help
very soon afterwards.

Using VBScript by Ron Schwarz and Ibrahim Malluf
This title is both longer and more tightly focused than its companion, Using ActiveX, in the same
series. Without assuming much prior knowledge, the authors show how to program web pages
using VB Script, touching on related areas like ActiveX and SQL Server web extensions.
Considerable space is given to HTML itself, including an appendix documenting all HTML tags
supported by Internet Explorer 3.0. There is a CD with all the examples from the book, and as a
bonus, the full text of another Que title, Using Visual Basic 4.0. It is a nice extra, but ironically
none of the web pages on the CD are well designed. Overall, it is a good introduction to VB
Script, but do not expect it to answer all your Web queries.

Programming Windows 95 with MFC by Jeff Prossie
You have to respect someone who knows his
limitations. Jeff Prossie is not a database
programmer, nor is he an OLE enthusiast.
“Certain parts of OLE are promising,” he says,
“but the OLE documents protocol is overly
difficult to implement and of limited value in
the real world.” That explains why his book on
Microsoft’s Foundation Classes, the leading
C++ Windows class library, covers neither
MFC’s database classes, nor OLE in any form.
Instead, he gives a nuts-and-bolts description
of how to program with MFC, starting with
“Hello World” and progressing to documents,
views, common controls and multi-threaded
development. It is a valuable book, since most
other tutorials focus more on using Visual
C++ and its wizards, than on MFC itself.
Look elsewhere for ActiveX, web development
or database work, but buy this book to learn
the fundamentals of Windows development
using MFC.

James suggests using a hidden picture box
and the WM_MOUSEMOVE message.
Then, you can write code in the
MouseMove event that will respond to
system tray events.

It works, and James has written an
example notelet application, which is on the
cover CD. It lets you store notes which pop
up when you right-click an icon in the tray.
Thanks, James – you have won a book
token for your efforts.

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual P C W address or at
v i s u a l @ p c w . v n u . c o . u k

Programming Windows 95 with MFC by Jeff
Prossie (Microsoft Press), book and CD, £49.95
inc VAT.
Using ActiveX by Brain Farrar (Que), book and
CD, £37.99 inc VAT.
Using VB Script by Ron Schwarz and Ibrahim
Malluf (Que), book and CD, £46.99 inc VAT.

●P C W D e t a i l s

