
CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • April 1997 • 307

Hands OnVisual Pro g r a m m i n g

p 3 0 8 ➢

the license key to think about, which any
number of applications may be using. A
clue to the extent of this devastation is given
in the note at the end of the fix. “Reinstall
third party custom controls,” it says, “and
any software that may use the registry to
store licensing information.”

As for Regclean, a utility that comes with
VB, I have come to mistrust it deeply. In a

misguided moment I ran the latest version
3.0 which you can download from
w w w . m i c r o s o f t . c o m. The idea was to fix the
annoying messages VB gives you when
something is awry in the registry: “Object
server not correctly registered”. To my great
amusement, the end result was worse.
Post-Regclean, VB gave me this inspiring
piece of technical information 148 times
before it would open the Custom Controls
dialog. At times like that, you reach for your
registry backup with relief.

This problem is not going to go away.

magine you have paid a four-
figure sum for a top-of-the-range
client-server development

system. One day you open up the
development environment and the splash
screen declares it to be the entry-level
hobbyist version. Next, you open the
application you are working on to be
informed that you are not licensed to use
some of its components. Sighing, you
reinstall the product from CD but it does not
fix the problem.

Sounds fun? This is exactly what can
happen with Visual Basic 4.0. The reason,
as you will have guessed, is that both VB
itself and the many OCX controls which
come with it depend on numerous registry
settings. If the registry gets scrambled, this
is the kind of thing that can happen.

The good news is that Microsoft’s web
site has a fix. Article Q149619 is entitled
“Visual Basic displays incorrect splash
screen”, although the splash screen is the
least of your problems. It is not such good
news though. The official fix goes as follows:
1 . Using a registry editor, delete the
HKEY_CLASSES_ROOT\LICENSES key.
2. Run Regclean.exe and delete all *.OCX
and *.OCA files.
3. Delete OLEPRO32.DLL.
4. Restart Windows and reinstall Visual
B a s i c .

Is this a good fix? Well, it’s better than
destroying your hard disk with a
sledgehammer, but not much. As a
developer, you will know that those .OCX
and .OCA files represent most of the
ActiveX controls on your system. An OCA
file, by the way, is an OLE-type library
created by VB when you first load an OCX.
And ActiveX, says Microsoft, is becoming
the foundation of Windows. Then there is

An added twist is that the software industry
now gives huge distribution to beta
versions, via demonstration CDs and over
the web. We are all encouraged to spend
our time installing trial software, often laden
with ActiveX elements, and probably fixed
to stop working after a certain date. Frankly,
the registry stands no chance of staying
clean in these circumstances. Naturally, it is

not just developers who install all this stuff,
but clients and users as well. Any
application that uses standard Microsoft or
third-party ActiveX controls or servers may
find the ground sweetly removed from
under its feet. In the meantime, here are my
tips for avoiding registry hell:
1. Check your registry backup procedures.
2. Press Microsoft to come up with proper
registry management tools, rather than
these draconian “delete everything and
reinstall” solutions.
3 . Install beta software on a machine

Clean-up c a m p a i g n
Tim Anderson wrestles with the registry in an attempt to unscramble his settings, tries to get
Access from Delphi, and plays Sherlock Holmes to detect which applications he has running.

I

Microsoft’s RegClean 3.0: proceed at your own risk

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Hands OnVisual Pro g r a m m i n g

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Hands On Visual Pro g r a m m i n g

Personal Computer World • April 1997 • 309

Mixing Delphi and Access
Guy Cartwright writes: “I’m led to believe
that, using Borland’s Database Engine, I can
access data stored in a Microsoft Access
database. I’ve followed the procedure in a
book and created an alias called TstAcess,
but I get the message ‘Application is not
enabled for use with this driver. Alias:
TstAccess’. I’ve trawled the net for an
answer but to no avail.”

Thanks to the popularity of Microsoft
Office Professional and Visual Basic,
desktop data is frequently stored in Access
MDB files. This creates a problem for other
applications which need to get at the data,
especially since Microsoft has never
documented the structure of an MDB. In
any case, the format changes with each
new release of Access. Borland’s Database
Engine can only get at an MDB through
ODBC, which is the method Guy has tried.
Sadly, the BDE is not at its best with ODBC,
and Microsoft’s ODBC drivers for Access
are nothing special either.

The situation is complicated by the
inclusion of ODBC drivers with Microsoft
Office, that are designed only to work with
Office applications. This might well cause
the error Guy is seeing. It is important to get
hold of the separate ODBC desktop driver
pack, for example from the Microsoft
Developer Network CDs, but even then it
might not work. It needs the right
combination of DLLs, registry entries and
even INI files to work as it should, and one
or other can easily get corrupted.
Sometimes the only solution is to remove

dedicated to that purpose. Do not install it
on a system used for real work.
4. Persuade your users to adopt the same
p o l i c y .
5. So you only have one PC? Well, you have
been warned.

Delphi

Borland’s Conference CD
Borland developers who look with envy at
the Microsoft Developer Network CDs,
stuffed with documentation and tips, will be
interested in the recently issued Developer
Conference CD. At first glance it looks
great, with technical papers and example
code covering many real-world problems.
The two most prominent products are
Delphi and C++ 5.0. The catch is that what
you get depends on whether individual
speakers at the 1996 Borland conference
bothered to send in their notes.

For example, an entry on “Client server
development using Delphi and Oracle”
leads to a detailed article with source code
and a Powerpoint slide show, while another
entitled “Rapid application with Delphi 2.0”
brings up only a speaker biography.
Everything is in HTML and no search
program is provided, so you are left to use
your own search tools. You also get a
collection of patches, technical notes and
demonstration versions. Overall there are
plenty of good nuggets of information, but it
is all rather a mish-mash and mostly
available free from Borland’s web site. A
useful resource, but not for the price
Borland is asking.

308 Personal Computer World • April 1997

Powers of detection

nce you get started with Windows
programming, you soon find you need to
communicate with other applications. At

its simplest, for example, you might want to run the
Windows calculator from a menu option in a VB
application. Easily done with the Shell function but
what if the Calculator is already running? In that
case, you probably want to bring forward the
existing instance rather than starting a new one.
Here is how you can find out.

The key to detecting an application is to look for
its main window. The API offers functions for listing
or searching all the current windows. FindWindow
takes two parameters, both null terminated strings.
The first is a classname, the second the text of a
window title. You can search for one or both and if it
finds a matching top-level window, FindWindow
returns the handle. For example:
hwnd = FindWindow(vbNullString, “Calculator”)

If it returns 0, then Calculator is not running. Of course
FindWindow must be declared, and you can copy the declaration
from VB’s API viewer.

In the example above, FindWindow searched for the window
title. This works fine with Calculator, although you could not be
sure which calculator you were getting. It falls down with MDI
applications, where a maximised document window adds its title
to the main window. You might want to use the classname
instead. It is not obvious what the right classname is, but there is
another API function, GetClassName, which reveals all.
Calculator turns out to have a classname of “SciCalc”, while
Word is “OpusApp”. VB is “ThunderMain”, and a VB application,
“ThunderForm” or in version 4.0, “ThunderRTForm”. Delphi
applications get their classname from the name of the main
application window, for example “TForm1”. So the decision to
look for a classname, a window title or both depends on which
application you are trying to detect.

If the application is running, the next step is how to bring it
forward. One possibility is the API function BringWindowToTop.
For example, the following code detects Word and brings it
forward if found:
hwnd = FindWindow(“OpusApp”, vbNullString)

If hwnd <> 0 Then

BringWindowToTop (hwnd)

End if

The one time this will fail is if Word is running but minimised.
A minimised window brought to the top is not much help. Time
for another API function or two, in this case
GetWindowPlacement and ShowWindow. Using the API viewer,
add the declarations for the following:
GetWindowPlacement

ShowWindow

Type POINTAPI

Type RECT

Type WINDOWPLACEMENT

Public Const SW_SHOWMINIMIZED

Public Const SW_RESTORE

You can now discover whether a non-VB window is
minimised like this:
Function isMinimised(hwnd) As Boolean

Dim lpWnd As WINDOWPLACEMENT

lpWnd.Length = 44 ‘ 22 in 16-bit Windows

Call GetWindowPlacement(hwnd, lpWnd)

If lpWnd.showCmd = SW_SHOWMINIMIZED Then

isMinimised = True

E l s e

isMinimised = False

End If

End Function

Now the function for bringing Word forward can be modified
as follows:
hwnd = FindWindow(“OpusApp”, vbNullString)

If hwnd <> 0 Then

If isMinimised(hwnd) Then

iRetVal = ShowWindow(hwnd, SW_RESTORE)

E l s e

BringWindowToTop (hwnd)

End if

End if

If you look up GetWindowPlacement and ShowWindow in
an API reference, you will find numerous other fields and
parameters that give you fine control over the results. One point
to notice is that the length field of a WINDOWPLACEMENT type
(or structure in C) must be set before it is passed as a
parameter in GetWindowPlacement. Unfortunately VB has no
SIZEOF function, so you cannot do this neatly. All you need to
know for the moment is that in 16-bit Windows the magic
number is 22, and in 32-bit Windows it is 44. Occasional
inconveniences like this are the price you pay for avoiding the
intricacies of C.

O

Using API functions you can find out which other applications are running

Borland’s Developer Conference CD has some

great resources, but why pay when you can

visit the web site?

Fig 1 Routine written from the DAO COM interface

v a r

sSql: string;

dbEngine: Variant;

db: Variant;

snMembers: variant;

b e g i n

sSql := ‘Select * from members order by surname;’;

dbEngine := CreateOleObject(‘DAO.DBEngine’);

db := dbEngine.OpenDatabase(‘C:\DATA\SPORTS.MDB’);

snMembers := db.OpenRecordSet(sSql, 4);

{4 is dbOpenSnapshot}

If not snMembers.EOF Then

b e g i n

Edit1.text := snMembers.Fields[‘SURNAME’].Value;

e n d ;

s n M e m b e r s . c l o s e ;

d b . c l o s e ;

e n d ;

p 3 1 1 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • April 1997 • 311

Hands OnVisual Pro g r a m m i n g

both the ODBC driver and the BDE,
weeding out any registry entries as well, and
then to reinstall them both. Microsoft Query,
which comes with Office, lets you test
ODBC data sources by running queries
against them.

There is another option if you are running
Windows 95 or NT. Microsoft has created a
COM interface to the JET database engine
under the name Data Access Objects
(DAO). It is documented and can be called
from Delphi, and you can write routines like
i n Fig 1 (page 308). For this to work, DAO
must be installed on the system, as it will be
if you have Microsoft Office 95, for example.

There are several other problems.
Microsoft’s documentation is aimed at
users of Visual Basic or Visual C++, so you
have to feel your way to some extent. None
of Delphi’s data-aware components will
work. Finally, you cannot freely distribute
the DAO files with a Delphi application. All
but the last can be fixed by buying a third-
party tool for using DAO with Delphi. Two
well-known ones are Titan Access and
Opus DirectAccess, while Nortech Software
has a third in preparation. One of these is
likely to be the smoothest route towards
using Delphi with Access MDBs.

Visual Basic

Going vertical
Andy Smith asks: “How can I print vertical
text in a Visual Basic application?”

There are a couple of easy solutions,
and a better but more difficult one. The easy
way is to use a paint program to rotate
some text — Windows Paint or the
shareware Paintshop Pro will do nicely —
and paste it into an image control. You
could even have several different messages
and load them at runtime. For the best

performance, do not load them from disk
but use invisible image controls, or the
PicClip control, or the Imagelist control.

If you want to be able to specify any text
you like at runtime, another possibility is to
use the WordArt applet that comes with
Microsoft Office or Publisher. Here’s how:
1 . Pop an OLE container onto a form and
set it to contain a new WordArt 2.0 object.
2. Right-click the OLE container and
choose Open. In the WordArt dialog,
choose the text shape and font required.
3. Use code like this to update the text at
r u n t i m e :
OLE1.AppIsRunning = True

OLE1.Format = “CF_TEXT”

OLE1.DataText = Text1.Text

O L E 1 . U p d a t e

The snags with the WordArt approach
are firstly that you need the applet installed
on the user’s system, and secondly a little
overhead thanks to OLE. If that rules it out,
the heavy coder’s method is to call the
Windows API. Windows uses a structure
called a LOGFONT to define font
characteristics, including several properties
not exposed by VB’s Font properties. One
of these is lfEscapement, which specifies
the angle of the text. Assuming that the y

co-ordinates count from top to bottom, the
lfEscapement field specifies the anti-
clockwise angle in tenths of a degree. That
means you can print diagonal text or even
write a routine using a timer that would
rotate text around a central point. To set a
font using the API, take the following steps:
1. Declare the necessary API types,
constants and functions.
2. Define the fields of a LOGFONT variable.
3 . Create a logical font by calling Create-
FontIndirect. This returns a handle to a font.
4 . Select the font into a device context by
calling SelectObject. For example, VB

Picture Boxes, Forms, and
the Printer object all have
hdc properties which give
you a handle to the device
c o n t e x t .
5 . Print to the device
context using VB’s print
method or API functions
such as TextOut or
D r a w T e x t .
6 . Clean up by unselecting
the font and calling Delete-
Object with the font handle.

Minimal sample code
for drawing vertical text in
VB 4.0 is included on the

CD. Similar code works in VB 3.0 or 16-bit
VB 4.0. It seems complex at first but it is the
kind of code you can use again. Then again,
alongside the four lines needed to automate
WordArt, it does look like an argument for
sticking to the easy way.

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual P C W address or at
v i s u a l @ p c w . v n u . c o . u k

Borland Developers Conference CD £59
(plus VAT) from Borland 0800 454065
Delphi 2 Developer’s Guide (Pacheco and
Teixeira) from SAMS/Borland Press £54.99
Opus DirectAccess £189 (plus VAT) from QBS
0181 956 8000, w w w . o p u s . c h
Nortech Software is at w w w . w i z z k i d s . c o m
Titan Access 32 is £225 (plus VAT) from QBS
0181 956 8000, w w w . r e g g a t t a . c o m

Contacts

Cover CD

The MSDN starter edition for Visual Basic
is on this month’s cover-mounted CD-
ROM. It includes 125Mb of searchable
information on VB 3.0 and VB 4.0.

L e f t Vertical text

the hard way, setting

the font with the

Windows API

B e l o w Vertical text the

easy way, using the

OLE container and a

WordArt object

