
CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

’ve written this before, but it
bears repeating. This column
has evolved to a state where it is

almost exclusively about Access. When I
write about general issues (normalisation,
SQL, and so on) I try to keep it as generic
as possible but the fact remains that,
essentially, all the questions I receive (far
more than appear on the page) refer
explicitly to Access.

There are probably two reasons. Either
everyone who reads this column is using
Access, or people who are using another
RDBMS read the column and think “Huh.
That’s all about Access. No point in writing
in about anything else.”

I’m happy to accept any suggestions for
the future direction of topics covered and
platforms used. So if you want changes
please let me know and minority interests
can be represented.

Distinctly exact (or exactly DISTINCT)
In my series about SQL (Hands On
Workshop, PCW Oct’96-Jan’97) I said that
“the generic DISTINCT becomes
DISTINCTROW in Microsoft’s Access”. By
that I meant that if you build a query in
Access using the GUI, then by default it will
generate an SQL statement which starts:
SELECT DISTINCTROW….

In many cases this will return the same
record set as an SQL statement which
s t a r t s :
S E L E C T … .

or even
SELECT DISTINCT….

The differences between SELECT and
SELECT DISTINCT are explained in my
workshop series on SQL, and since that
was to do with generic SQL it didn’t seem

FROM CLIENTS;

r e t u r n s
N a m e
F r e d
J e a n
S a l l y

DISTINCT (as explained in my SQL
Workshop) forces SQL to remove the
duplicates in the answer table.

In this case (and in all cases where a
single table is queried) there is no difference
between SELECT and SELECT
DISTINCTROW. However, if we bring two
tables into the query, the two forms can be
d i s t i n g u i s h e d .
SELECT Name

FROM CLIENTS INNER JOIN ORDERS

ON CLIENTS.ClientID =

O R D E R S . C l i e n t I D ;

r e t u r n s :
N a m e
F r e d
F r e d
F r e d
F r e d
J e a n
J e a n
J e a n
F r e d
F r e d

which is one record for each order in the
ORDERS table because the join between
the tables has essentially generated nine
records, of which we have asked to see
only the name of the customer. By
contrast,
SELECT DISTINCT Name

FROM CLIENTS INNER JOIN ORDERS

ON CLIENTS.ClientID =

O R D E R S . C l i e n t I D ;

returns only two records:

Personal Computer World • February 1997 • 275

Hands OnD a t a b a s e s

Making the d i s t i n c t i o n
Mark Whitehorn on the peculiarities of DISTINCTROW in Access. Plus, if you’re developing
a large application, see how code and components can be versatile and non-specific.

I

p 2 7 6 ➢

to be the time or place to go into the
peculiarities of DISTINCTROW. But this
seems like an excellent place, so we will do
so! In order to demonstrate this we need a
couple of tables:

C L I E N T S
C l i e n t I D N a m e L o c a t i o n
1 F r e d W e l l i n g t o n
2 S a l l y W i m p y
3 J e a n H a l i f a x
4 F r e d L a n c a s t e r

O R D E R S
O r d e r N o C l i e n t I D
1 1
2 4
3 4
4 4
5 3
6 3
7 3
8 1
9 1

Note that we have two clients called
Fred and that Sally has yet to place an order
with our company.

B o t h
SELECT Name

FROM CLIENTS;

a n d
SELECT DISTINCTROW Name

FROM CLIENTS;

return four records:
N a m e
F r e d
S a l l y
J e a n
F r e d

w h e r e a s
SELECT DISTINCT Name

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

N a m e
F r e d
J e a n

The SELECT statement on its own
returns nine records, then the DISTINCT
part removes the duplicates.

The “problem” with this answer table is
that it implies that there are only two people
placing orders, whereas we know it is three
because there are two people called Fred. If
we expand the SQL statement to include
the location field,

SELECT DISTINCT Name, Location

FROM CLIENTS INNER JOIN ORDERS ON

CLIENTS.ClientID = ORDERS.ClientID;

then we get:
N a m e L o c a t i o n
F r e d L a n c a s t e r
F r e d W e l l i n g t o n
J e a n H a l i f a x
DISTINCT is very literal; it returns unique

records in the answer table, whether or not
they come from unique records in the
original table.

I used the term “problem” above, but of
course this is only a problem if you don’t
know what DISTINCT is supposed to do. In
fact, DISTINCT is doing exactly what it was
designed to do.

My guess is that Microsoft felt that naïve
users of a database might not appreciate
this level of subtlety. If they saw a single
name in an answer table, they would expect
that it represented a single person. So the
default in Access was set to DISTINCTROW
which in this case, as you will by now have
guessed, produces a separate record in the
answer table for each unique customer who
has placed an order.

T h u s :

SELECT DISTINCTROW Name

FROM CLIENTS INNER JOIN ORDERS

ON CLIENTS.ClientID =

O R D E R S . C l i e n t I D ;

r e t u r n s
N a m e
F r e d
J e a n
F r e d

By the way, these tables and queries are

276 • Personal Computer World • February 1997

Hands On D a t a b a s e s

about the way in which code and
components can be versatile and non-
specific. The obvious solution, at first, is to
try to pass the button’s caption to the query
as a parameter.

As far as I know (and I stand to be
corrected) this cannot be done. However,
we can achieve exactly the same result by
building a query which snatches the caption
from the button which has just been
pressed. In other words, you can’t attach a
piece of code to the OnClick event property
of a button which says “Run a query and
pass to it the caption of this button”.
Instead, you get the button to run a query
and get the query to locate the caption of
the button which has just been pressed.

In order to do this, we can make use
of an object called “Screen” and one of
its properties, “ActiveControl”. These are
defined in the manual thus: the Screen
object refers to a particular Microsoft
Access form, report, or control; the
ActiveControl Property is used to refer
to the control that has the focus. Or, to
put that another way,
Screen.ActiveControl always points to the
control which has the focus.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • February 1997 • 277

all on our cover-
mounted disc as
DISTINCT.MDB.
■ I’ll leave you with this
brainteaser: If you include

the primary key value from

CUSTOMERS in all of these

queries, does the difference

between SELECT DISTINCT

and SELECT

DISTINCTROW disappear?

As they say in all the
best text books, explain
your answer!

Hundreds and thousands
Reader, Glenn Rowe, recently contacted
me with an interesting database problem:
“I’m developing an application which stores
data about many countries. The data is
stored in a table, one field of which stores
the country code (GB for Great Britain…
and so on). The interface will contain many
buttons; one for each country. Each button
will have the country code as it’s caption
and, when pressed, will return the records

for that country. (These are, of course,
arranged hierarchically on many forms, not
all on one!)

The problem, as far as I can see, is that
I’m going to need hundreds/thousands of
queries and as many snippets of code.
Building it will be a nightmare, as will
debugging and maintenance. Surely this
process can be centralised in some way?”

The question is a good general one

Now consider a button on a form; if you
press it, that button, by definition, has the
focus. If the button runs a query which has
Screen.ActiveControl.Caption as its
criterion, then Property will return the
caption of the button.

The beauty of this scheme is that when
you design the query, you don’t have to
know which button is going to be pressed.
You don’t even need to know which form
the button will be on. As long as the button
calls up the query when it is pressed, the
query will seek out the button, read its
caption, and use that caption as a criterion.

To demonstrate this, I have used people
rather than countries. This choice simply
reflects the fact that I don’t know enough
country codes to fill even a sample table.

The table shown in the screenshot Fig 1
contains names of some individuals and the
food they like to eat. The query called Find
(Fig 2) has, in the criteria line:
[S c r e e n] . [A c t i v e C o n t r o l] . [C a p t i o n]

The form called PickName (Fig 3) has a
single button with the caption “Penguin”.
The OnClick property of this button is set to
=GetButtonCaption ()

which is the name of a function. The

Hands OnD a t a b a s e s

Fig 1 (a b o v e)

The names

used for the

b u t t o n - c a p t i o n

e x a m p l e

Fig 2 (l e f t) T h e

query called

Find, as both

GUI and SQL

Fig 4 The answer

table which appears

when the button

labelled Penguin is

p r e s s e d

Fig 5 Cloning the

b u t t o n

Fig 3 The form called PickName and the associated function which calls the query called Find

p 2 7 8 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

function, also shown in Fig 3, is composed
of a single line which simply calls the query.

So, the steps are simple: when you
press the button, the function is called; the
function runs the query; the query looks for
the active control (which is the button),
captures its caption, and uses that caption
as a criterion. The result is the answer table
shown in Fig 4.

To keep it short and sweet, there is no
error trapping in the demonstration code. It
is also rather crude. For example, unless
you close the query, pressing a different
button won’t re-query the table. However,
all of this can be cured by expanding the
code in the function from its current, rather
minimalistic, one line.

Having answered that question, I realised
that, essentially, the solution relied on the
fact that the function could be called as
soon as the button was pressed. This meant
that the solution couldn’t be applied to a
situation where several selections needed to
be made. I know there are manifold ways of
handling multiple selections and that combo
boxes are often the best solution, but I was
intrigued to see if an economical solution (in
terms of code and number of queries) could
be found while retaining the button-caption-
snatching idea.

The form MultipleSelections shows this
in operation. A little of the elegant simplicity
of the earlier solution is lost but much can
be retained. Each button runs a function
which places the button’s caption in the text
box above it. This text box is explicitly
named in the function, so each button can
be cloned vertically but each separate
column of buttons is calling a separate
function. Thus, if we made ten selections,
we would need ten functions. However, by
using Screen.ActiveForm (a close relative of
Screen.ActiveControl) in the functions, a
degree of flexibility has been retained so
that forms which are cloned from this one
should also work, as long as the same
names are used for the text boxes.

The “Go” button fires a query called
(rather imaginatively, I feel) “Find2”. The
query looks at the text boxes in the form,
takes the values from there and runs the
query. By using Screen.ActiveForm this
query should be versatile enough to work
with different forms.

278 • Personal Computer World • February 1997

Hands On D a t a b a s e s

p 0 0 0 ➢

Mark Whitehorn welcomes readers’
correspondence and ideas for the Databases
column at d a t a b a s e @ p c w . v n u . c o . u k

●P C W C o n t a c t s

Round and round we go

In the November issue, I published the following correspondence from Paul le Glassick:
“ …Incidentally, to get around the lack of an =Round equivalent, I use the Format$
function. This converts numbers to text, but rounds properly as we know it. With a
representative sample of nearly 3,000 records, the following nesting of functions gave
correct rounding when calculating VAT:
RoundNo = Val(Format$(CCur(Number), “0.00”))

where RoundNo is the result and Number is the number or calculation to be rounded. ”
Paul wanted to know if there was a better way. Simon Hawkins suggested:

RoundNo = int ((Number * 100) +1) /100

“Whether this is a faster method than using the Format function, described in the article,
I am not sure. Also, the above may need altering to deal with negative amounts. Hope
this is of some use.“

This has the great advantage of elegance. However, when I tested it in the form
Function Simon (Number) As Integer

Simon = Int((Number * 100) + 1) / 100

End Function

it returned 1 from 1.49 (which seems right), but 2 from 1.4999 (which seems wrong),
and then 2 from 2.49999 (which seems right), and even 2 from 2.499999999 (which is
still right, but conflicts oddly with the result from 1.4999!). In other words, it is slightly
inconsistent. Or maybe it’s my 486 processor. In the form:
Function Simon2 (Number) As Double

Simon2 = Int((Number * 100) + 1) / 100

End Function

it returns 1.51 when given 1.5 (which seems wrong).
This reply came from James Talbut: “I don’t like converting things to and from

strings. There is an operator in VB that appears to round correctly, and that is the ‘ \’
operator (integer division). Making use of this in a function is simple:
Function Round(dNumber As Double, iNumDigits As Integer) As Double

Dim dFactor As Double

dFactor = 10 ^ iNumDigits

Round = ((dNumber * dFactor) \ 1) / dFactor

End Function

“This function is simple, quick, and produces the same results as the version using
Format$ that you published. Interestingly it gives a different result to that of the ROUND
function in Excel. For some reason Round(2.15, 1) does not give 2.2 (as it would in
Excel), it gives 2.1 as does the formula you published.”

All of these suggestions work, up to a point, but none are perfect (see the form called
“Rounding” in Fig 6). So the plot thickens. Anyone got any further thoughts?

By the way, just as we were going to press, Simon came back with: “OK. Classic
case of using my memory instead of looking the code up (and testing it!). The function
should read

TxtOutput =

Int((TxtInput *

100) + .5) / 100

“This will round to
two decimal places.
Sorry about the earlier
c o n f u s i o n .”

Fig 6 The rounding

functions in operation.

Note the purely fortuitous

grouping of biblical

n a m e s !

