
this is that you can avoid global variables,
which are notoriously error prone, and use
object properties instead. 
2 . Well-designed objects can be used in
more than one application.
3 . To exploit the power of OLE (Object
Linking and Embedding) you need to define
objects that can be made available to other
a p p l i c a t i o n s .

This workshop will explore how to make
use of VB’s class modules, which create
user-defined objects, in order to derive
these benefits. 

Building a database application 
Anyone can build a Visual Basic database
application. Just place a data control on a
form, set the databasename and
recordsource properties, add some bound
text boxes to display the fields, and it’s
done. There is even an add-in that will do it

represented by objects with properties,
methods and events. These objects are
VB’s essential building blocks.
2. OLE objects. These include ActiveX
controls, also known as OCX controls, and
applications like Excel which expose
functionality in the form of objects you can
access from Visual Basic. The advantage of
OLE objects is that they are system-wide
and not just limited to one application.
3. User-defined objects. You create these
by inserting class modules into your project.
You can also customise forms by adding
your own properties and methods. 

If you have used VB at all, you will
already have worked with the first two kinds

ike it or loathe it, you can hardly
avoid it — Visual Basic is the
most popular Windows

development language. It is also the macro
language of Microsoft Office, and with
Microsoft now willing to license it to third
parties, VB will more frequently appear in
third-party products such as the Visio
charting package. So time spent learning
Visual Basic (VB) soon repays the effort,
giving you program control over many
powerful applications.

This workshop will show you how to
make the most of VB: including data
access, automation of other applications
like Word and Excel, and using ActiveX
components for rapid application
development. And along the way you will
build a useful application. The software is
for managing a sports club but could easily
be adapted for a contact manager, book or
CD collection, customer database and
many other purposes. 

Our workshop uses Visual Basic 4.0. It
makes use of features introduced in that
version so you will not be able to follow the
workshop using older editions. A little
knowledge of VB is assumed, so complete
beginners are advised to become familiar
with the product before starting on the
w o r k s h o p .

Objects in focus 
Visual Basic makes extensive use of
objects. What is confusing, though, is that
the word is used in several different ways.
Here are three kinds of VB objects:
1. Internal objects and controls. F o r
example, there is a global App object which
has useful properties like Title and Path.
There are also VB’s built-in controls like
command buttons and text boxes,

of object but may not have used the third. It
is possible to write major VB applications
without using them, especially if either the
application or the developer started in Visual
Basic 3.0, where they did not exist. In fact,
the Visual Basic environment does not
encourage you to use them. 

The obvious way to build an application
is to draw buttons and controls onto a form,
setting their properties and writing code for
their events. With that approach you may
not see the need to define your own
objects. It is worth making the effort. Here
are three reasons why:
1 . Object-orientated programs are more
robust and easier to debug. One reason for

Hands OnWorkshop: Visual Basic

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

Personal Computer World • February 1997 • 247246 • Personal Computer World • February 1997 

Hands On Workshop: Visual Basic

O b j e c t of the exercise
Tim Anderson takes you through the first in a four-part teach-in about Visual Basic. 
You’ll learn how to get to grips with VB objects and snap together a powerful database
application using a few lines of code.

L

p 2 4 8 ➢

Fig 1 Not all VB objects are the same. This application shows three kinds: built-in, OLE, and

u s e r - d e f i n e d

Will the real VB stand up?

Visual Basic exists in various forms. The standalone product comes in three editions:
Standard, Professional and Enterprise. 

The Standard edition is cheap but not all that cheerful. It is fine for learning the Basic
language but data access is limited to the data control. Few custom controls are
included and it is unsuitable for creating applications for distribution. It works only on
Windows 95 or NT. The Professional edition fills the gaps, includes a 16-bit version, full
data access, important OLE features and a wide range of custom controls. For general-
purpose work, the Professional edition is all you need. The Enterprise edition adds
features for client-server work and team development.

That leaves two other types of VB. Visual Basic for Applications is the version that
ships with Microsoft Office and now a number of third-party applications, too. VBA in
Office 95 has no forms engine, which limits its power, but VBA 5.0 in Office 97 is almost
the same as the standalone version. The main difference is that you cannot compile a
standalone executable. VB Script is a stripped-down language for Internet Explorer.
Microsoft hopes that other web browsers will adopt VB Script, too, although so far this
has not happened.

for you; the data form designer. The typical
result is shown in Fig 2.

The speed of development is impressive,
but in other respects applications built like
this are poor. For a start, a visible data

control is not the world’s most stylish
graphical interface. Worse, it encourages a
navigational approach to viewing data. If the
visible record is not the one you want, click
Next until you find it. It may work for half a
dozen records but it’s hopeless for large
database tables. It is also fundamentally at
odds with the set-based strategy of SQL,
the native query language of VB’s database
engine. Additionally, working with bound
controls increases the risk of inadvertently
changing the data. All these problems can
be overcome by adding code for searching,
validation, and so on. Another option is to
use an entirely different approach.

A particularly powerful technique uses 
a listbox and a text box to create a
database searcher. The user types one or
more letters into the text box and presses
Enter. The listbox then fills with all the
matching records. By double-clicking an
entry in the list, the full details of the record
can be displayed. It allows control over 
the precision of the search, and it is fast,
with no need to enter criteria into a 
search dialogue. 



Fig 5 Code for the search button

List1.Clear 

' now do the search

Data1.RecordSource = _

"select * from members where members.surname like '" _

& Trim$(txSearch.Text) & "*' order by members.surname"

D a t a 1 . R e f r e s h

' now fill the list box

If Not (Data1.Recordset.BOF And Data1.Recordset.EOF) Then

' there are matching records

D a t a 1 . R e c o r d s e t . M o v e F i r s t

Do While Not Data1.Recordset.EOF

List1.AddItem (Data1.Recordset!surname & ", " &

D a t a 1 . R e c o r d s e t ! f o r e n a m e )

List1.ItemData(List1.NewIndex) = Data1.Recordset!ID_NO 

' stores the ID in the list box

D a t a 1 . R e c o r d s e t . M o v e N e x t

L o o p

List1.ListIndex = 0 ' select first matching record

cbShow_Click ' show the first record

E l s e

' add code here to clear the form’s fields, report no match, etc

End If 

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

Personal Computer World • February 1997 • 249

Hands OnWorkshop: Visual Basic

Here are the three steps which make this
method work:
1 . Start a new project and place a listbox, a
data control and an edit box on the form.
You will also need text boxes and labels to
display field values, and buttons for other
functions like searching the data, displaying
a record and saving changes.
2 . Set the data control’s visible property to
false. We will not be using its visual interface
but as a convenient way to obtain a
recordset. In the form, load procedure and

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

include this line of code;
Data1.DatabaseName = App.Path & 

“ \ S P O R T S . M D B ”

Setting the database name in code
avoids the problem of hard-coded path
n a m e s .
3. The code for the search button is shown
in Fig 5.

Why do it like that? 
This short routine (in item 3, above)
demonstrates several techniques. First, the

248• Personal Computer World • February 1997 

Hands On Workshop: Visual Basic

Tim Anderson welcomes your VB comments and
tips. Contact him either by post c/o P C W or email
at visual@pcw.vnu.co.uk

For more information about Visual Basic, contact
M i c r o s o f t on 0345 002000.

●P C W C o n t a c t s

lets you store an ID number against each
item in the list. It is then easy to look up 
the correct record when the user selects
the item. 

The underlying principle is not to use a
complicated ActiveX control where a
simple, lightweight VB control will do just 
as well.

Putting objects to work
Not all the code is shown here (for reasons
of space) but if you look at the example
project on our cover-mounted CD you will
notice a class module, CPerson. 

The application maintains an instance of
the CPerson class and obtains member
details by inspecting its properties. The
Save button works by calling the save
method of the currPerson object. This
approach will bring several advantages as
the application develops. For example, a
weakness of traditional database forms is
that they only show one record at a time.
Fig 4 is a database application which uses
an enhanced CPerson class that has the
capability to display itself. That makes it
easy to simultaneously view the details of
several individuals. 
■ Next month: A closer look at VB class
m o d u l e s .

Fig 4 This alternative approach lets you view

several records at once

Fig 2 The typical VB instant database

Fig 3 A more practical database viewer which

works on large or small tables

code uses SQL to create a dynaset-type
recordset based on the text the user has
entered. By adding the star character to the
string and using the Like keyword, we find
all the surname fields which begin with that
string. JET, the Visual Basic database
engine, is not case-sensitive, which
simplifies matters. A nice feature is that the
user can enter wildcards. For example, the
string “??i” finds all surnames with a third
letter i. Your users will think this is very
clever, but it is VB’s SQL that has done the
work for you.

Second, the code uses a standard list
box rather than the databound list box or
the bound grid control. Using a databound
control would save the few lines of code
which fill the list. But unfortunately, the
bound list control can only display one field,
limiting its use. The databound grid is a
viable option but is, frankly, overkill in view
of what’s required. In version 4.0, Microsoft
enhanced VB’s list box by adding the
ItemData property and this is ideal since it


