
CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • May 1997 • 285

Hands OnD a t a b a s e s

p 2 8 6 ➢

generate different forms (normal view,
outline view, etc.) and generate reports
(print-out). You see? A document is really a
database and a word processor is really a
DataBase Management System.

I wouldn’t want to take this argument
too far, but what about a competition? We’ll
offer one of our much sought after
book/record tokens for the most unusual
example of an application developed with a
recognised RDBMS. It doesn’t have to be
developed by you or your company, but if it
happens to be so, that’s fine. Just to start
the ball rolling, I’ve heard of a really odd

his column has harboured
several discussions about
rounding functions in Access. I

thought all had gone quiet until two
intriguing emails arrived, one from Roger
Moran and the other from Ray Hall. While
some of us (myself included) find this topic
fascinating, I am loath to devote much more
space to it since it may be of limited interest
to some people. So, I have included their
emails in full as memo fields in the
DBCMAY97.MDB file on the CD-ROM. This
ensures that the information is available to
those people who wish to look at it, but
doesn’t soak up bandwidth for those who
aren’t. See the form called “Rounding” if
you are interested, and thanks to Roger and
Ray for their contributions.

Competition time!
From Andrew Leaman: “I am interested in
databases but find it difficult to think of
useful applications. Could you possibly
supply a list of typical applications, starting
at the simplest and working up to the more
c o m p l e x ? ”

Starting with the most basic database is
easy: an address list, maybe a list for
sending Christmas cards. As to the more
complex uses, these are almost without
number and range. Banking systems, air
traffic control systems, process control
systems in factories — all have at their
heart some form of database. In fact, it is
possible to argue that almost all computer
applications are essentially databases;
some of them just have rather odd
front-ends.

Take a word processor, for example. It
stores and manipulates data. You can
query the database (with the search facility),

application, developed in Australia, which
made the international news recently... But
I’ll leave it open for a reader to suggest that
one since I’m sadly excluded from the list of
potential prize-winners.

Sets and subsets
Greg Barstow writes: “I do freelance for a
range of companies. Each company has a
number of people who can commission
work from me for the company concerned. I
need to generate invoices for each piece of
work, and I want a form in Access which
lets me pick the company from a combo

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

000 • Personal Computer World • May 1997

Hands On D a t a b a s e s

In the r o u n d
The subject of rounding in Access gets a discreet revival, and your contributions are sought

for the most unusual RDBMS application. Mark Whitehorn briefs you on what’s re q u i red.

T

Fig 1 Taken from

DBCMAY97.MDB and

showing the tables

from Greg Barstow’s

q u e s t i o n

Fig 2 The two combo boxes on

the form from DBCMAY97.MDB

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • May 1997 • 287
p 2 8 8 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

286 • Personal Computer World • May 1997

Hands On D a t a b a s e s

in the COMPANY table.
● Then use that to find the people who
work for the company. This has to be done
via the table called WORKSFOR, since that
is the table which stores the information
about who works for which company.
● Finally, collect the relevant person’s ID
number and assemble their name neatly,
attaching the first and last name together so
that it looks tidy in the combo box.

If we run through that again, we can add
in the relevant bits of the SQL statement:

Find the value which is in the combo box
above.
[f o r m s] ! [i n v o i c e s] ! [c o m p a n y I D]

Use that value to find the correct record
in the COMPANY table.
WHERE ((COMPANY.CompanyID=

[f o r m s] ! [i n v o i c e s] ! [c o m p a n y I D]))

Then use that to find the people who
work for the company; this has to be done
via the table called WORKSFOR, since that
is the table which stores the information
about who works for which company.

FROM PEOPLE

INNER JOIN (COMPANY INNER JOIN

WORKSFOR

ON COMPANY.CompanyID =

WORKSFOR.CompanyID)

ON PEOPLE.PersonID =

W O R K S F O R . P e r s o n I D

Finally, collect the relevant person’s ID
number and assemble their name neatly,
attaching the first and last name together so
that it looks tidy in the combo box.
SELECT DISTINCTROW

COMPANY.CompanyID,

[FirstName]+” “+[Lastname] AS Name,

P E O P L E . P e r s o n I D

FROM PEOPLE

The nett result is that, when the second
combo box is opened, the only names that
appear belong to people who work for the
company you have just chosen in the upper
combo box. At least it w o u l d, except that it
doesn’t work automatically all the time
because Access often buffers information so
it doesn’t automatically re-query the source
for a control. The lower combo box has the
query called TheRightPeople as its source. If
this query has already returned an answer
table, then simply selecting a different
company in the upper combo box doesn’t
cause TheRightPeople to be re-run; hence
the list of people may not be up to date
when it appears in the lower combo box.

The answer is to force a re-query every
time you use the lower combo box. This
can be done in code or with a macro, and

box (which I can do easily). Then I want the
next combo box (which allows me to pick
the person to whom the invoice should be
sent) to show me only the people who work
in that company.”

This is a good generic question. Essentially
it asks: “Given a long list of options which
can be unequivocally sub-setted by a
choice in another list, how do I show this
elegantly on a form?” There are many
applications. If you have different sales
people who work on different product lines,
or different aircraft which are serviced by
different engineers, this is an area which
may be of interest to you.

For one possible solution, see
DBCMAY97.MDB. Fig 1 (p 2 8 5) shows the
tables involved and a small quantity of
sample data. It also shows a tempting but
incorrect set of relationships between the
tables. Those who enjoy conundrums can
work out why this particular set of
relationships works but is non-optimal. The
answer is on page 288 (the relationships in
the MDB file on the CD-ROM are correct).

The form (Fig 2) has two combo boxes.
The upper one is straightforward. It looks up
values in the table COMPANY:
Select [CompanyID],[Company Name]

From [COMPANY];

and writes the value from
COMPANY.CompanyID into
I N V O I C E S . C o m p a n y I D .

The lower combo box is more devious. It
pulls data from a query called
TheRightPeople rather than directly from
PEOPLE. The purpose of this query is to
find the people who work for the company
which has been selected in the upper
combo box.

The SQL for this query (Listing 1) is, like
a great deal of SQL, impenetrable at first
glance. Translated into English (more or
less) it says:
● Find the value which is in the combo box
above.
● Use that value to find the correct record

since I usually demonstrate everything in
code, I thought for the sake of variety I’d
use a macro (Fig 3).

David Ruffel emailed in a question which
seems to have general application. He
maintains a list of consultants who are
experts in various areas — mathematics,
computing, etc. There is a many to many
relationship between the consultants and
their subject areas, hence three tables are
needed to model this relationship, while a
fourth table contains information about
times when the consultants are absent (F i g
4). Finding those consultants who can
provide information about a given subject,
say, Chemistry, presents no problem

(Listing 2, p288).
However, David also maintains a table of

the dates during which particular
consultants are unavailable. What he
needed was a query which found not only
the consultants who were experts in a
particular area, but also those who were
available on a particular date.

To my twisted mind, the easiest way to
solve this one is to use one query to find all
of the Chemists who are unable to work.
This can be accomplished with Listing 3
which looks pretty horrible if you aren’t used
to SQL, but is much more understandable
in Access’ GUI (Fig 4a). This produces an
answer table which looks like Fig 5.

Fig 3 The extensive, and highly complex, macro used to force a re-query of the lower combo

box on the form

Fig 4 The tables used in David Ruffel’s database

Listing 1 SQL for TheRightPeople query

SELECT DISTINCTROW COMPANY.CompanyID,

[FirstName]+” “+[Lastname] AS Name, PEOPLE.PersonID

FROM PEOPLE

INNER JOIN (COMPANY INNER JOIN WORKSFOR

ON COMPANY.CompanyID = WORKSFOR.CompanyID)

ON PEOPLE.PersonID = WORKSFOR.PersonID

WHERE ((COMPANY.CompanyID=[forms]![invoices]![companyID]));

Hands OnD a t a b a s e s

The ConsultantCode identifies the
Chemist who can’t work on the given date
(in this case I am using the Date() function
to return today’s date). Then, a simpler
query can use the information in this
answer table to identify all of those who
can work (Listing 4).

This solution may not be optimal and I
haven’t tested it extensively, but you might
want to use something akin to it if you have
a similar problem.

The sample file is on the CD-ROM as an
Access 7 file called QP4.MDB.

The format of this file (Access 7) brings
me to another email, from Dave Milor.

Versioning
“Is there any specific reason why you write
your articles with reference to Access
version 2 but are using the Windows 95
interface? I have heard that there are
problems with version 7 regarding speed
and possible bugs.”

I use Access 2.0 whenever possible simply
because Access maintains compatibility in
only one direction. If I provide a solution in
Access 2.0, anyone using that version or
later can read it. However, if I supply an
MDB file in the most recent version, Access
97, only those people with that version can
use it. All of the machines that I now use are
running either Windows 95 or NT 4, which
is why the screenshots of Access 2 appear
as they do. When run under 95 or NT,
Access 2 “acquires” the look and feel of
these particular systems.

With regard to bugs, Access 7 certainly
has them; but then, so does every bit of
software I have ever seen (including my
own). I haven’t come across any which
would make the product unusable.

The speed issue is more complex. Given
any RDBMS, speed considerations can be
split into two areas. First, there is how fast
the interface runs. This is non-trivial, since a
slow interface makes development work
painful and will upset end-users. Second,
there is data-processing speed: essentially
the speed with which queries run. This is
very different, and also clearly non-trivial.
This second measure of speed is the one
which people like myself love to benchmark,
but we shouldn’t ignore the interface speed,
even if it is more difficult to quantify.

So, what about speed in Access 7? The
interface speed is worse than Access 2.0,
but the data processing speed is a bit
better with certain queries. Access 97 (the

Fig 4a T h e

GUI version

of a rather

i m p e n e t r a b l e

S Q L

s t a t e m e n t

Fig 7 Showing a better set of relationships to use in DBCMAY97.MDB

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

next version on) definitely requires a better
machine to run the interface (in other words,
it is even slower). However, the data-
processing is markedly faster, even given
machines of the same spec.

A client-server future
In the February issue I asked if the column
was too biased towards Access and, more
generally, what did people want me to
cover in future issues. The area which was
overwhelmingly popular as a new topic was
practical information regarding client-server
databases.

This email from Tom Cliff was typical:
“I’ve been building databases for a couple

of years and all of them have been on
standalone PCs. Some of these have grown
and now need to be migrated to a client-
server system, because the volume of data
has increased or they need to become multi-
user. What I need is a good overview/

description of what is involved. How much
work is it? How do I actually do it?”

So, we’ll start next month having a look
at the hardware you need, then move on to
actually installing a back-end RDBMS,
setting up a database on it, connecting to
that database from clients, and so on.

Answer to conundrum
The relationships shown in Fig 1 ensure that
the values inserted in INVOICES.PersonID
are drawn from the available list of people
(which is kept in table PEOPLE). They also
ensure that the values inserted into
INVOICES.CompanyID are drawn from the
list of available companies. What these

relationships d o n ’ t forbid is an entry into the
INVOICES table like Fig 6. This is bad,
because person 3 doesn’t work for
company 1.

A much better set of relationships to use
are those shown in Fig 7 (p 2 8 7). These
ensure that the INVOICE table can only ever
contain “meaningful” combinations of
CompanyID and PersonID.

288 • Personal Computer World • May 1997

Hands On D a t a b a s e s

Fig 5 Answer table from Listing 3
Subject Area Description C o n s u l t a n t C o d e Away From U n t i l
c h e m i s t r y 5 Thursday, January 02, 1997 Thursday, June 19, 1997

Fig 6 Entry into the INVOICES table
I n v o i c e N o C o m p a n y I D P e r s o n I D V a l u e
1 1 3 £ 2 0 0 . 0 0
2 1 4 £ 0 . 0 0

Mark Whitehorn welcomes readers’
correspondence and ideas for the Databases
column, at d a t a b a s e @ p c w . v n u . c o . u k

Contact

Listing 2 Finding Chemistry consultants
SELECT DISTINCTROW subjects1.Subject_Description, Consultants.Title, Consultants.Surname

FROM subjects1

INNER JOIN (Consultants INNER JOIN Consult_subject_table1

ON Consultants.Consultant_Code = Consult_subject_table1.Consultant_Code)

ON subjects1.Subject_ID = Consult_subject_table1.Subject_ID

WHERE (((subjects1.Subject_Description)=”Chemistry”));

Listing 4 Identifying the Chemists who can work

SELECT DISTINCTROW [Able Chemists].Consultant_Code, Consultants.First_Name, Consultants.Surname

FROM Consultants

INNER JOIN [Able Chemists]

ON Consultants.Consultant_Code = [Able Chemists].Consultant_Code

WHERE ((([Able Chemists].Consultant_Code) Not In (Select Consultant_Code from [Chemists unable to work])));

Listing 3 Finding the Chemists who are unable to work

SELECT subjects1.Subject_Description, Consultants.Consultant_Code, Absent_Table.Absent_From,

A b s e n t _ T a b l e . A b s e n t _ T o

FROM subjects1

INNER JOIN ((Consultants LEFT JOIN Absent_Table

ON Consultants.Consultant_Code = Absent_Table.Consultant_Code)

INNER JOIN Consult_subject_table1 ON Consultants.Consultant_Code = Consult_subject_table1.Consultant_Code)

ON subjects1.Subject_ID = Consult_subject_table1.Subject_ID

WHERE (((subjects1.Subject_Description) Like “ch*”)

AND ((Absent_Table.Absent_From)<=Date())

AND ((Absent_Table.Absent_To)>=Date()));

