
Fig 1 (left) T h e

letter wizard begins

by asking which

template is

needed. You can

easily add further

o p t i o n s

he “P C W Sports Club” is
continually sending letters,
reminders of coming events,

subscription invoices, sympathy for broken
bones and the like. The secretary has been
running the Visual Basic application to look
up the address and then using A l t - T a b t o
switch back and forth from Word while she
copies it across. It is time to make her life a
bit easier.

The first thought was to use VB’s
C l i p b o a r d object to copy addresses. This is
easy: just add a C o p y A d d r e s s method to
the C P e r s o n class, as in Listing 1.

But Windows can do better than that. It
is possible to automate far more of the
process of getting addresses into Word.
Word has a mail-merge wizard that works
fine for bulk mailings, but for ad hoc letters a
custom solution is needed.

Here, I will show you how to create a
Word letter wizard for the sports club (see
screenshots, F i g s 1 - 4). The wizard is for
Word 97, since earlier versions do not
support Visual Basic. (As an aside, it is
possible to do something similar in earlier
versions, using the WODBC.WLL Word
add-in and getting at data through ODBC.
Another possibility is to automate the
WordBasic object from a VB application.
But Word 97 makes it easier.)

The plan is to create a Word macro using
Visual Basic for Applications, accessing the
same SPORTS.MDB database.

Because this tutorial is based on VB 4.0,
you cannot import the form in Word. The
good news, though, is that the C P e r s o n
class module can be reused, as is. The
procedure is as follows:
1. In Word, open the Visual Basic editor.
Choose Tools, References, and check the
Microsoft DAO 3.0 (or higher) object library.

Hands OnWorkshop: Visual Basic

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • April 1997 • 257256 • Personal Computer World • April 1997

Hands On Workshop: Visual Basic

First class l e t t e r s
With VB you can use Word to create letters that virtually write themselves. Tim Anderson
shows you how. Plus, how to delegate in Visual Basic to achieve the benefits of inheritance.

T

This enables Word to use the same data
access objects as VB 4.0.
2. Insert a new module into the Normal
project. This means the macro will be
stored in NORMAL.DOT. Call the macro
G e t C l u b A d d r e s s and give it a Sub Main.
3. Insert two new userforms. These will be
steps one and two of the letter wizard.
4. Name the first userform d l g S t y l e, and put
two or more option buttons on it, along with
O K and C a n c e l buttons. Give the form a

The M a i n procedure continues by
opening d l g S t y l e to obtain a choice of
template, and then d l g N a m e to get the ID
of name in the M e m b e r s database. At each
point, the user has an option to cancel. The
code for the d l g N a m e dialog is almost the
same as that used in the main VB 4.0
application, the main difference being that
VBA has no data control so you have to
create a recordset in code. When a
member ID has been retrieved, the record is
loaded into the C P e r s o n object.
7. The final step is to start a new document
based on the chosen template. The
templates must be pre-designed with
bookmarks where the name and address
information is needed. The wizard finishes
by inserting the fields in the bookmark
positions and then exits. Controlling Word
from VB in this way is not difficult using
Word’s new object model. For example:

Fig 2 (right) The next stage is to

choose a name to write to

Fig 3 (below) In the third step,

the wizard has placed the

address details into a new

document based on the

chosen template

C h o i c e property using a
memory variable and property
procedures. This is for choosing
a letter template.
5. Name the second userform
d l g N a m e, and put on it a
listbox, an editbox and three
command buttons. This is for
choosing a name for the letter.
6. In the Declarations section of

G e t C l u b A d d r e s s, declare a public
database object. For the example code, I
have also declared some convenient
constants. Then in Sub Main, open the
SPORTS.MDB database using code like:
Set db = DAO.OpenDatabase(sPath &

“ \ S P O R T S . M D B ”)

s P a t h is a variable to store the path to
the database file. (See below for how to get
this path from the system registry.) S u b
M a i n also creates a new C P e r s o n o b j e c t .

Listing 1

Sub CopyAddress()

‘ copies address to Windows clipboard

Dim sAddress As String

Dim cr As String * 2 ‘ fixed-length

cr = Chr$(13) & Chr$(10)

If mForename <> “” Then

sAddress = mForename & “ “ & mSurname & cr

E l s e

sAddress = mSurname & cr

End If

If mAddress1 <> “” Then

sAddress = sAddress & mAddress1 & cr

End If

. . .

Clipboard.SetText sAddress, vbCFText

End Sub

p 2 5 8 ➢

Fig 4

Editing the

VBA macro

from Word

is very like

w o r k i n g

w i t h

s t a n d a l o n e

V B

■ A common criticism of Visual Basic is that it doesn’t support
inheritance. If all your programming has been done in Visual
Basic, which is probably true of the majority of VB programmers,
this may not mean much to you. Fortunately, it’s easy to explain.
A class, both in VB and other object-orientated languages,
defines an object. In VB, every class starts from scratch without
any properties or methods. By contrast, C++, as an example, lets
you begin a class definition like this:
class monkey : public animal

The result is that the monkey class inherits the properties and
methods of the animal class. The monkey class just needs to add
specialised code that describes monkeys; the generic animal
code comes for free.

Although VB does not support inheritance, there are other
ways of achieving some of the benefits. It is possible to contain
one class within another. Then you can implement properties and
methods of the parent class by calling the properties and
methods of the contained class. This is called delegation, and the
properties and methods of a class are called its interface. For
example, the tutorial application has a CPerson class. Imagine
you wanted to create a CEmployee class which used the
properties and methods of CPerson. Here is how you can do it:
1. Insert a new class module and set its name property to
C E m p l o y e e .
2. In the declarations section, put:
Private m_person As CPerson

Private m_wage As Currency

3. In the initialise section put:
Set m_person = New CPerson

4. Create a CEmployee interface that calls the CPerson interface.
For example:
Public Property Get surname() As

S t r i n g

surname = m_person.surname

End Property

5. Add new properties and methods specific to CEmployee. For
instance, you must expose the wage property.

The fourth step (a b o v e) is tedious, but beats re-coding all the
functionality of CEmployee in CPerson. It could be automated by
a VB Wizard. In Visual Basic 5.0 this approach to object-
orientation is built into the language, with a new Implements
keyword which guarantees that all the methods of the contained
class are implemented by the outer class. You can implement the
interface of any ActiveX automation server. Finally, there is nothing
to stop you implementing several interfaces in a single class.

Delegation works, but it is neither as intuitive nor as elegant as
traditional inheritance. For the moment, though, this is the VB
way. It ties in with ActiveX, the component model which is
becoming more powerful and pervasive as Windows evolves.
VB may not be the fastest or most thoroughly object-orientated
language out there, but Microsoft does ensure that it stays up to
date with the latest ActiveX developments.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

258 • Personal Computer World • April 1997

Hands On Workshop: Visual Basic

Tim Anderson welcomes your comments and
queries. Write to the usual P C W address, or email
p c w @ v n u . c o . u k.

Contact

Documents.Add (sTempLate) ‘ starts

a new document based on the given

t e m p l a t e

A c t i v e D o c u m e n t . B o o k m a r k s (“ n a m e ”) .

Select ‘ sets cursor to the “name”

bookmark in the new document

Selection.InsertAfter Trim

(currCustomer.forename & “ “ _

& currCustomer.surname) ‘ inserts

text at the cursor position

Problem-solving
There are a few things to notice about
this joint Visual Basic and Word project.
Although Word VBA is downward
compatible with VB 4.0, there are some
objects which are available in VB but not
VBA. One example is the global App
object which, in Word, is the Application
object.

The original C P e r s o n class used
A p p . P a t h to discover the location of
SPORTS.MDB. This strategy fails in any
case, when the code runs in other
applications. A better idea is to use a
registry entry, using VB’s G e t S e t t i n g

■ Next month: Back to native Visual Basic
for the final stage in the PCW Sports Club
a p p l i c a t i o n .

Delegating your inheritance

command. The registry entry is created by
the main VB 4.0 application when it first
runs. This way, the data can easily be found
by any Windows application.

Another catch is that VBA has no
Clipboard object, so CPerson’s
CopyAddress method does not compile in
Word. The workaround is to declare a
public Clipboard variable as a D a t a O b j e c t:
VBA’s private version of the clipboard. To
demonstrate, there is a Clipboard button on
the d l g N a m e s form which uses the
DataObject’s P u t I n C l i p b o a r d method to
transfer text to the read clipboard.

Enhancing the wizard
There are plenty of ways you can improve
on the Letter Wizard. For instance, you can
add database fields for things like job title
and salutation. You could increase the
range of templates on offer. For the
subscription template, you could write
code to check a person’s outstanding
balance and insert the amount into the
letter. By adding the bulk of the code to a
shared class module like CPerson, you can
easily reuse it in VB 4.0 or in other VBA
applications such as Excel.

Installing the example
code from the P C W C D

When you unpack the tutorial code from our
cover-mounted CD, you will find a VB 4.0
project and a Word 97 template. To install the
example code, copy PCWCLUB.DOT into
your Word templates directory. Then start a
new document based on this template. If you
then choose Tools, Macro, Visual Basic
Editor, you will find the example macros.
Choose Tools, Macro, Run, to run the macro.
You can also copy the macros into
NORMAL.DOT if you want, by using Tools,
Templates and Add-ins, Organizer. Finally,
the macro will not run without a registry
setting for the data path. To create this
setting, run PCWCLUB.EXE.

