3D Graphics

Rays of [ignt

POVRay is a lot of raytracing software downloadable in a
4Mb website file, and despite its heavy maths and
programming bias, Benjamin Woolley got to grips with it.

s someone once said, “There is

no such thing as a free lunch”.

But there is such a thing as a free
raytracing 3D graphics package. POVRay
(Persistence Of Vision Raytracer) is among
the most sophisticated around and, as |
write this column, the Beta test phase of
version 3 is drawing to a close. It is available
in all flavours including DOS, Mac, Amiga,
Unix, Linux and, as tested here, Windows.
By the time you read this, the final version
should be available, and | urge you to
download it from the official POVRay
website at www.povray.org or
CompuServe’s GRAPHDEV forum.

The self-installing executable you get is
over 4Mb, but this includes documentation
and a generous helping of sample files and
some fairly substantial binaries. It is quite
remarkable that you can get such a lot of
software in a file of this size, given that a
commercial 3D package would come on a
CD-ROM and colonise half your hard disk.

Installation is no more than a double-
click on the downloaded file and a few
simple answers to a few simple questions.
By the time the disk-thrashing is over, you
should find POVRay for Windows
seamlessly settled into your Windows 3.11,
95 or NT system (it is a full 32-bit
application) and ready to run.

| have to admit that the first time | used
it, my feeling was one of disappointment.
With POVRay, you re-enter a world that
many of us had hoped to leave behind: the
world of programming, command-line
interpreters, declarations, variables and,
(ugh!) maths. What follows is a sample
taken from a tutorial in the help file for

298 * Personal Computer World ® October 1996

creating a colour gradient:

If you want to start one of the colours at
a specific angle, you'll first have to convert
the angle to a colour map index. This is
done by using the formula
color_map_index = (1 - cos(angle))
/ 2
where the angle is measured against the
negated earth’s surface normal.

I have not personally encountered a

cosine since fifth form, and can’t remember
what one is, except that it has something to
do with angles.

However, the mathematically timid
should persist because, as | soon began to
discover, the wonder of POVRay is that
even without maths or a fondness for
programming languages you can achieve a
great deal.

Unlike commercial 3D graphics
packages, POVRay is just a renderer. It does
not include a modeller. This means that it
takes scene descriptions, essentially 3D
graphics programs, and turns them into
rendered images. To use it, you have to write
these scene descriptions yourself or use a
program that will generate them for you.

| began by trying to write a few scenes
for myself. There is a series of tutorials in the
help file which helps you start coding, and
you will find that you are soon able to create

Fig 1

simple objects. The best
way to proceed is to

#include “colors.inc”

// First create a background colour
background { color Cyan }

//sphere
camera {
location <0, 2, -3>
look_at <0, 1, 2>
}

//colour it yellow
sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow } //
}
}

//add a white light

//add a camera at position O units along the x
//axis, 2 units along the y axis, and -3 units
//along the z axis. It points towards another
//point at co-ordinates 0,1,2, the position of the

//create a sphere, two units in diameter and

light_source { <2, 4, -3> color White}

copy the lines of code
supplied in the tutorial
and paste them into a
text editor. You can
save the text as afile
with the .pov extension,
start up the POVRay
renderer, and watch the
scene emerge before
your very eyes. If you
have made a syntax
error, POVRay reports
which line caused the
problem. By adjusting a
few parameters here
and there and re-
rendering the scene,
you can begin to get a
feel for their effect.

An example of just
about the simplest
scene description file
you can get is given in
Fig 1. The “include”
statement at the

Listing for a simple POVRay scene description

beginning merges the
commands contained in

the “colors.inc” file into the scene
description. “Include” files can contain any
legitimate POVRay statement, but are
typically used to contain data, such as the
definitions of colours, shapes and textures.
They define Cyan as having the
red/green/blue values 0, 1, 1 which means
no red, full green and full blue. The rest of
the program does as indicated in the
comments prefixed with //.

POVRay has an incredibly powerful
scene description language that allows you
to create 3D fractals, superquadric
ellipsoids (which are objects with soft
edges), halo effects, layered fog, and dust
clouds. It creates more than those
packages costing thousands of pounds. In
its atmospheric capabilities, for example, it
is ahead of 3D Studio Release 4. To exploit
such features to the full, you should
probably spend some time poring over the
documentation, probably buy a book or two
(for example, Ray Tracing Worlds with
POVRay by Alexander Enzmann, Lutz
Kretzschmar and Chris Young), and get the
CD-ROM.

For the lazy ones among us, there is an
easier way. You get an existing file and
mess around with it. This is what | did to
produce the image in Fig 2, which was
rendered using POVRay version 3. | created
it by adapting a 3D Studio file, which meant
| could use 3D Studio’s modeller to work on
the geometry. There are POVRay modellers
available as shareware, the best-known of

3D Graphics

Night and Day

The image pictured right first appeared in 3D
Artist, the American magazine for 3D graphics
users. | found it on the magazine’s web site,
which is well worth a visit: www.3dartist.com.

The picture may be familiar to some of
you. It is by Maurits Escher, the Dutch artist
who for many expresses the weirdness and
beauty of the information age with his mind-
boggling images of infinite loops and distorted
perspectives. People interested in the origins
of his association with computing should look
at Douglas Hofstadter’s wonderful book,
Godel, Escher and Bach.

Escher’s best-known picture is probably
“Ascending and Descending” (1960), which
shows little elfin figures trooping up and down
a staircase, the bottom of which impossibly
connects to the top. Less well known is “High
and Low”. Well, you see a version of it here,
renamed “Night and Day”. It was created by
Richard Stein Ill, a 3D artist who worked on
the 7th Guest and 11th Hour games for
Trilobyte, and who kindly gave me permission
to reprint the picture.

Stein generated the image using 3D
Studio. He points out, “An X-Y-Z-based
program doesn’t have enough perspective
points for us to build this type of image
accurately. Morph software won’t do it.
Stretching the camera lens beyond fish-eye
won’t do it. But bending the objects in a
specific way just might fake it.” And this is
exactly what he has done, bending the objects
away from the centre so that the illusion of
Escher’s original picture is reproduced. The
result is a fake in the sense that the illusion
would quickly be lost if you tried to create an
animation that moved through the scene.
Because it was generated from a 3D model,
Stein could render the scene as a “stereo
pair”: two pictures showing the same scene
from slightly different perspectives, thus giving
the image real depth. | spent ages staring at

the pair on my monitor, and succeeded in
getting flashes of the stereoscopic effect.
Escher would have loved it.

At the time of writing, Robert had put a
range of his stereo pairs on the web. They are
splendid, and you may still find them at
www.tbyte.com/people/stein/stereo.htm. |
have also reprinted the picture because, to
me, it provides an object lesson in the effective
use of materials: look at the floor in the centre
of the image; the sheen of the stone is perfect.
The walls have a rich, almost tactile texture to
them. It just goes to show how wrong people
are in thinking that computer-generated art is
plastic-looking.

which is Moray. It is not the most wonderful
piece of software and if anyone knows of
anything better that is free or cheap, drop
me a line. Meanwhile, | shall continue to
look around for myself.

b
) | §

|l

L

||

e
=

S

| converted the 3DS files
generated by 3D Studio using
a lovely freeware program
called 3DS2POV, by Steve
Anger and Jeff Bowermaster,
downloaded from the
CompuServe GRAPHDEV
forum. Using a text editor, |
adapted the resulting .pov file
by borrowing little bits of extra
code from the tutorials, to

Fig 2 Scene rendered using POVRay. The reflections show

create the clouds in the

some of the advantages of raytracing over faster but cruder background. | spent nearly all

scanline renderers

my time with POVRay using

this jackdaw strategy, taking existing bits of
code, playing around with them and
rendering up the result to see what sort of
mess | had made.

Since POVRay is freeware, widely
distributed and designed to run on just
about every type of computer you can think
of, short of Babbage’s Analytical Engine,
there are endless samples you can use and
abuse in this manner. All samples are
generously donated by their authors and
widely posted across the internet and on
various online services, mostly on
CompuServe.

Benjamin Woolley, writer and broadcaster, can
be contacted at woolley@illumin.co.uk. His
home page is www.illumin.co.uk/woolley/

Personal Computer World October 1996 299

