
with reference material aimed at C and
C++ programmers, since Windows itself is
mainly written in these languages.

Delphi and Excel 97
Another reader’s problem is: “According to
my testing, there is a problem with Delphi
2 and OLE-automation using the version of
Excel delivered with Office 97. Specifically,
I can start Excel via OLE-automation and
do some things (like ExcelApp.Visible :=
True), but if I try to access a range, for
instance, it just crashes with an
EOLESysError. Exactly the same test
program works fine if I uninstall Office 97
and use Office 95 instead.”

edric Maddox writes:
“I’m trying to get to
grips with Delphi. Your

review of the Appleman Guide was
very interesting and I would like a
similar guide for Delphi: can you
recommend one? If there isn’t a
Delphi guide available, would the
Appleman Guide for VB help with
Delphi API calls?”

Much of Daniel Appleman’s
guide to the Win32 API (Ziff-Davis)
would be useful to Delphi
developers since it is, after all, the
same API. I hesitate to
recommend it though, because
large parts are specific to Visual
Basic. Calling the Windows API is
actually easier in Delphi than in
Visual Basic: partly because the
language is a better fit, with direct
support for pointers and easy
handling of Windows messages;
and partly because Delphi’s
developers have helpfully defined
the types, function and procedure
headers for you. 

Often, you can use an API function as if
it were native Pascal. But although calling
the API is easy, understanding how it
works is another matter. More advanced
Delphi titles like Delphi 2.0 Unleashed or
Delphi 2 Developer’s Guide, both from
Sams, contain helpful API tips. The official
Microsoft reference is essential, and an
online version comes with Delphi. Finally,
Charles Petzold’s Programming Windows
95 (Microsoft Press) is useful not as a
reference title, but as an explanation of
how Windows works behind the scenes. 

Unfortunately, if you want to get deeply
into the Windows API, you have to put up

I suspect this is a bracket problem. The
code in Fig 1, when used with Excel 97,
fails with a “Member not found” message.
The solution is to replace the last line with: 
RangeObj := ExcelObj.

Range[‘B2:B4’];

Rich text problems
Gavin Docherty writes: “For about three
months I have been trying to paste
bitmaps, metafiles and OLE objects into
the standard richtextbox control found in
the 32-bit common control DLL but
without success. Then, to my amazement,
you covered the subject in your May
column and gave code examples for VB,

Hands OnVisual Programming

but I couldn’t get it to work. What have I
done wrong?”

Unfortunately, the news is not as good
as I thought. The code printed in May’s
issue was tried and tested with Visual
Basic 4.0. But at some point, some
application or other had installed a later
version of the RICHTX32.OCX component
which makes it work, complete with an
updated help file. This later version is
required in order to work with pictures. 

Programming Outlook 97
Outlook is an excellent starting point for an
Office 97 application. Most people need
an email reader and an address book or
contact manager, and Outlook does both.
The natural next step is to add
functionality. For example, Outlook’s
contact menu already has an option to
start a new letter to the current contact. 

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

Personal Computer World • July 1997 • 297296 • Personal Computer World • July 1997 

Hands On Visual Programming

The Outlook is variable
Tim Anderson finds Outlook, the latest Visual Basic-enabled Office 97 application, to be a
powerful but frustrating solution. He gives his views about programming and creating forms.

C

p299 ➢

Get the syntax right and automating Excel is a powerful way of extending a Delphi application 

(see “Delphi and Excel 97”, below)

Fig 1: A problem with brackets

var

ExcelObj: variant;

RangeObj: variant;

begin

ExcelObj := CreateOleObject(‘Excel.Application’);

ExcelObj.visible := True;

ExcelObj.Workbooks.Open(‘C:\TEST.XLS’);

RangeObj := ExcelObj.Range(‘B2:B4’); 

...

■ Building
Applications with
Outlook 97 
£37.49 (book and CD)
Microsoft Press

Outlook is a strange
combination of
elegant simplicity
and arcane
complexity. The
Outlook bar is
delightful, with easy
access to network
and internet mail, appointments, contacts and
to-do list. With its own form designer and a
version of Visual Basic, it seems the ideal
platform for building groupware applications.
Start developing, though, and Outlook shows
its other face. Want to save a form? There are
three ways to do it, claims the online help. Did
you want the open folder, the file or the forms
library? And if the latter, did you want the
personal forms library, the folder forms library,
or the organisation forms library? 

The other problem is that Microsoft seems
determined to disguise the close relationship
between Outlook and Exchange. This book is
a case in point. The cover wording refers
several times to groupware but never to
Exchange. Without Exchange, though,
Outlook is only suitable for groups of one.

If you do have Exchange Server and want
to develop with Outlook, this title is all-but
essential. It describes Outlook’s main
elements and explains how to use the form
designer and Visual Basic Script. It concludes
with a step-by-step guide to creating three
sample applications: the first is a form for
requesting business cards, the second a help
desk application, and the third tracks

document production. This last is the most
interesting since it links to an Access database
using Data Access Objects. It’s a useful guide,
and really should have been part of the Office
97 Developer Edition. The only other caveat is
that you will need a lot more help than this
when it comes to managing the back-end of
an Outlook application, Exchange Server itself.

■ Using Visual Basic 5.0
by Mike McKelvy, Ronald Martinsen and
Jeff Webb — £36.99, Que

Smartly published to coincide with the release
of Visual Basic 5.0, this title in Que’s classic
“Using” series begins right at the beginning,
with topics like what is a program? And what
is a variable? By the end of its 950 pages it is
tackling API programming, callback functions
and remote automation servers. The result is a
comprehensive book, but lacking in sparkle. 

There is too much here for real beginners,
while experienced VB developers migrating to
version 5.0 will find themselves skipping large
chunks of the material. It has more the style of
a manual than a real-world developer’s book.
Because Visual Basic is now such a large
product, this comprehensive approach means

little depth on any individual subject. 
This is a good buy if you do not have

printed documentation, with clear, thorough
explanations covering every aspect of Visual
Basic. Others will be better served by one of
the many more specialist Visual Basic titles
now available.

■ Instant Visual Basic 5.0 ActiveX Control
Creation — £27.49, Wrox Press 

Sporting no less than seven authors, this title
covers the hottest new feature of Visual Basic
5.0: the ability to create ActiveX controls. It
mainly covers the Control Creation Edition,
although it will be equally useful to owners of
the full version of Visual Basic. It is aimed at
experienced VB developers. 

After an introductory section, the main
part of the book takes you, blow-by-blow,
through developing several example controls,
including an aggregate control, a data-bound
control, and a user-drawn control. An
aggregate control is one that contains several
other controls, while the term “user-drawn”
describes a control whose visual display is
handled entirely by the program. 

Despite the book’s multiple authorship,
the style is clear and consistent. Creating
ActiveX controls presents many new issues for
VB developers and this is a helpful and
detailed guide. It would be better still if more
space were given to the design issues behind
component programming as opposed to just
the mechanics of how to do it. Other vital
topics are version control and web security,
neither of which are given sufficient coverage.
This does not detract from the high quality of
the subject matter included: recommended.
● The above books are available from
Computer Manuals on 0121 706 6000.

The Help

Desk

application is

explained in

Building

Outlook

Applications

You might want to add new options,
perhaps a choice of several standard
letters. Getting more ambitious, you could
pull in other information such as account
information or product preferences.
Another scenario could find you placing an

order for a contact you have just called.
Many things are possible since Outlook
has a forms designer and a scripting
language, but this is VB Script and not the
powerful Visual Basic for Applications. VB
Script is the cut-down version of Visual

Book Reviews



CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

Basic first used in Internet Explorer. 
Outlook is a handy contact manager

but its database is a simple flat-file affair
which is not suitable as the main data
store for a business. The key then is to
integrate Outlook with other data sources.
Since VB Script has neither built-in
database features nor the GetObject or
CreateObject functions needed for
programming COM objects, it does not, at
first, seem promising. 

By a roundabout route, though, it does

have those functions. Outlook’s
Application object has a CreateObject
method that opens the door to Data
Access Objects as well as the automation
of applications like Excel and Word. This
means you can keep a key field in each
contact record that matches the key field
in an external database (which might be a
desktop database like Access) or an SQL
server, and link to this external data as
needed (see “An Outlook example, page
300). Then you can use Outlook for its

address book and calendar features but
keep the mission-critical data in a fully-
fledged database management system
where it belongs.

Embark on Outlook development and
you hit the bleeding edge of Office 97.
Documentation is scant, some procedures
are hopelessly counter-intuitive, the script
editor is primitive, and late binding of COM
objects means performance is poor
compared to real Visual Basic. It is such a

Personal Computer World • July 1997 • 299

Hands OnVisual Programming

p300 ➢

Creating and saving Outlook forms 

Outlook form-handling is perverse. For a
start, you cannot just get on and design
a new form as you would in Visual Basic.
The best way to design a form is to
pretend you want to create a new item in
the current folder. That opens a blank,
default form. Then you can choose
Design Outlook Form from the Tools
menu. Note that some forms, like the
Contacts form, cannot be completely
customised. Some parts are read-only.
There are plenty of spare tabs, though,
which you can use as you want.

It is when you have designed your
form and wrestled with the wretched
script editor that the real fun begins. It is
no use just saving the form, since all that
does is to create one new record with a
customised form. You must choose
Publish Form As… from the File menu.
You can publish to several locations,
depending on how widely the form
should be available. If you do not have
Exchange server, or are working on a
test form, the best choice is either your
personal forms library or in the specific folder where it is needed. If you choose the latter
option, it gets its own entry on the Compose menu.

Next, you have to tell Outlook to use your new form as the default for new items in this
folder. To do this, right-click the folder name in the folder list and choose Properties. On the
General tab is an option: “When posting to this folder, use…”; here you can specify the new
custom form. Now your custom form is used by default for new entries. But it is not over yet.
If you try opening any existing items in the folder, you find the old form still being used. The
solution is to run a short VBScript routine. Each item in Outlook has a MessageClass
property, a concept alien to VB developers but familiar to experts in Microsoft’s Mail API, or
MAPI. This property determines the form used to view the item. 

This is the code to change it: 

sub UpdateClass

Set currFolder = Application.ActiveExplorer.CurrentFolder

numItems = currFolder.Items.Count

For countvar = 1 to numItems

Set currItem = currFolder.Items(CInt(countvar))

currItem.MessageClass = “IPM.Contact.PCW Sports Club”

currItem.Save

Next

end sub

A key step is to specify the default form for

posting in this dialog

Fig 3 Choose View Code to open the Script

Editor. The cunningly-titled Run option does

not run the code but merely checks the

syntax

Fig 4 When the form opens, Outlook looks up

the list of sports from an external database

Fig 2 Create a new contact and then choose

Design Outlook Form to open the form

designer



nice component in other ways, though,
that it is worth persevering. Expect it to get
easier in the next version. 

An Outlook example 
The following example uses the same
Sports Club database as the recent
Hands On Visual Basic Workshop
(PCW February-May issues). 

It is a relational database with three
tables. The Members table includes name
and address details, and is easily imported
into a new Outlook contact folder. When
mapping the fields, it is important to include

the key field which uniquely identifies each
record. Outlook will not let you map an
imported field directly to a custom field, so
the solution is use a spare built-in field. For
a tidy result, you can then add a custom
field to hold the ID number and write some
code to copy it across. In the example, this
field is called MemberID.

Note that not all the data is imported,
but only the Members table. In particular,
the information about which sports each
member enjoys is not available. The trick
now is to access this additional data from
within Outlook, without actually importing

a copy of the tables. 
Here’s how to do it (also, see

Figs 2-4, page 299):
1. Open the contacts folder and
choose New Contact from the
Contact menu. This opens the
built-in Contacts form.
2. From the Tools menu choose
Design Outlook Form. This opens
the form in design mode with six
spare tabs available. Click the
second tab, rename it Sports, and
add a list box control. Name the
list box lstSports. You can add
labels and other decoration as
desired.
3. On the Form menu, choose
View Code. This opens the Script
editor. From the Script menu,
choose Event and then add the
Open event. Fig 5 is the code.
Note that you should replace the
database filename with the actual
location of the data on your system
if you use this example. Note also
that you can use the Run option in
the Script editor to find syntax
errors before you save the code.
The Run option does not actually
run the code as that would be far
too easy. Since the script editor
has no syntax highlighting and VB
Script has no debugger, it can pay
to enter and check chunks of code
in Visual Basic or Visual Basic for
Applications, beforehand. 
4. Publish the form and make it the
view form for contacts in this
folder. This step is so far from
being intuitive that I have devoted
a separate panel to it (page 299).
Now, when you open a contact in
this folder, Outlook looks up the list
of sports from the original
database. Of course, a real-world

system could look up a far greater range
of information. The important thing is to
realise that this sort of link is possible.

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

300 • Personal Computer World • July 1997 

Hands On Visual Programming

Tim Anderson welcomes your Visual
Programming tips and queries. He can be
contacted at the usual PCW address or at
visual@pcw.co.uk.

The microsoft.public.outlook97 newsgroup is a
valuable source of help for Outlook development,
as is www.Microsoft.com. Another useful site is
www.Outlook.Useast.com.

Contacts

Fig 5: Accessing additional data from within Outlook

Function Item_Open()

On Error Resume Next

dbOpenSnapshot = 4

Set CurrListBox = _

Item.GetInspector.ModifiedFormPages(“Sports”).LstSports

recID = item.UserProperties.Find(“MemberID”).Value

Set dbEng = CreateObject(“DAO.DBEngine.35”)

Set dbSports = _

dbEng.Workspaces(0).OpenDatabase(“C:\OUTAPPS\SPORTS.MDB”)

If Err <> 0 then

msgbox “Error: “ & Err.Description

Exit Function

End If

sql = “Select * from sports, sportlink where sports.ID = sportlink.sportID “

sql = sql & “and sportlink.MemberID = “ & recID 

Set snSports = dbSports.OpenRecordset(sql, dbOpenSnapshot)

If not (snSports.eof and snSports.bof) then

snSports.movelast

snCount = snSports.Recordcount

snSports.MoveFirst

For countvar = 1 to snCount

currListBox.Additem(snSports.Fields(“SPORT”))

snSports.MoveNext

Next 

End if

snSports.Close

dbSports.Close

End Function


