
CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

reader called Andrew writes:
“First of all, may I say how much
I have enjoyed your column in

P C W” (ah, I love flattery — MW). “But
unfortunately it has got me thinking about a
problem which I have never satisfactorily
resolved for myself.” (Sounds like work! —
M W ). “It involves a recursive link field in a
t a b l e :
Field Name Type D e s c r i p t i o n
1 Code Inc Primary Key
2 Parent LongInt Parents Key
3 Category String Category Title

“The idea is to provide a hierarchy by
using the table to emulate a tree structure
which could be used for categorising
animals, or departments in an organisation. 

“I have been searching for an
efficient way of finding all the
categories that are below the
current item. My best effort has
been to run a query that finds all
records whose parent is current
code, add these to a result table
and then query the answer to find
all the records where there is a
match on any of the codes. I keep
this going until there are no records
returned (when I’ve reached the
bottom of the tree). Although this
works, it does not seem very
efficient. Do you have any ideas?”

What I have done is to look at
ways of handling data from a table
like the one Andrew describes. 
Fig 1 shows such a table. It
describes a hierarchy which is used
to name the animals in a zoo. 

Each record simply represents a
single link in the structure, so the
data is stored in a reasonably
economical manner. However, you

is merely an expanded version of this:
SELECT DISTINCTROW Animals.Category 

AS First, Animals_1.Category AS 

S e c o n d

FROM Animals AS Animals_1 

RIGHT JOIN Animals ON 

Animals_1.Parent = Animals.Code

WHERE ((Animals.Parent=0))

ORDER BY Animals.Category, 

A n i m a l s _ 1 . C a t e g o r y ;

which works for two levels of hierarchy.
This naming hierarchy is a little

anarchistic in that names can appear at
several levels. Suppose we have a more
defined structure which must have, say,
four levels. This will use the same base-
table structure, but it provides a little more

Personal Computer World • March 1997 • 295

Hands OnD a t a b a s e s

Animal m a g i c
Mark Whitehorn casts a beady eye over hierarchy in the zoo and shows a way of handling
categorisation data. In addition, he passes on some improved solutions to past problems.

A

p296 ➢

need to look at several records to trace
back up the structure. 

So, for example, record 12 tells us that
Harry’s parent record is number three,
which in turn tells us that Harry is a King.
This in turn leads us to record two, and
hence to record one, by which time we
know that Harry is a King Penguin, which is
a species of bird. The storage is
economical, but a little unwieldy. 

Fig 2 illustrates the information in a more
legible state, and Fig 3 shows the query.
Note that the answer table is not showing
one record for each record in the base
table. This is because it takes several
records to define one “branch” of the tree.
The SQL is a little tortuous, but essentially it

Fig 1 Table of animals’ names



CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

scope when it comes to defining forms.
Two possibilities, one of which makes use
of combo boxes, are shown in Fig 4, but
neither is entirely satisfactory. 

If anyone wants to try improving them,
be my guest. The work so far is in the MDB
file called DBCMAR97 on our CD-ROM. 

Finally, it is possible to count those
categories which exist under any given one,
using a GROUP BY query based on the
query (in this case called Project) which
displays the data in the manner seen in the
top right of Fig 4. So
SELECT DISTINCTROW Project.Group, 

Count(Project.Priority) AS 

C o u n t O f P r i o r i t y

FROM Project

GROUP BY Project.Group

ORDER BY Count(Project.Priority) 

D E S C ;

produces the answer table for the data
s h o w n :

Group C o u n t O f P r i o r i t y
Prototyping 4
Design 4
Repair 2
Year 2000 1
Modification 1
Consultancy 1

Rounding out
On to a little housekeeping. Over the past
few months I’ve published several problems
with solutions and asked for comments
and/or improvements. This month, we’ll tidy
these up. Although most of the problems
originate in Access, the solutions are usually
applicable in most RDBMSs.

Last November I published an algorithm
for rounding in Access. In last month’s
column I used several answers (of differing
efficiency!) from readers. James Talbut
came back with a modified version of his:
“I’m probably too late, but anyway, I think I
have fixed that rounding code:
Function Round(dNumber As Double, 

iNumDigits As Integer) As Double

Dim dFactor As Double

Dim dTemp As Double

dFactor = 10 ^ iNumDigits

dTemp = dNumber * dFactor

If 2 * dTemp = Int(2 * dTemp) And 

Int(dTemp) <> dTemp Then dTemp = 

dTemp + dTemp / 2 /

Abs(dTemp) Round = (dTemp \ 1) / 

d F a c t o r

End Function

“The solution was simple. I just had to
stare at it until my eyes ached. My fudge

factor was either 1 or -1, depending on
the sign of dTemp. Unfortunately, this was
compounding the way in which Access
alternates between rounding up or down.
The solution was simply to fudge by 0.5 or
-0.5. It’s still hideous, for something as
simple as a rounding function. But as a
technical exercise I think it’s kind of neat.
And it’s probably still quicker than
converting to and from a string.”

I agree. It’s ridiculous that we have to
write something like this just to round a
number. Why doesn’t Access simply
include a rounding function? Microsoft,
please note for future versions.

Case-sensitive joins
In last December’s edition of my column, I
published an email from Andrzej Glowinski
who bemoaned the lack of case-sensitive
joins in Access. I published a solution but
he found it too slow, so I asked for other
ideas as well as solutions in other
RDBMSs. I was impressed with the
intriguing answers, reproduced here.

On the subject of case sensitivity and
the lost ninth data type, Stephen Parry
writes: “There is another solution to
Andrzej’s problem with case sensitivity in
joins, indices and sorting. It does, however,
rely on a partially documented feature of
access, data type 9 (aka BINARY). The
BINARY field data type has been in Access

296 • Personal Computer World • March 1997 

Hands On D a t a b a s e s

“To add a binary column to an existing
table, I suspect an ALTER TABLE
statement should work, although I have not
tried it. This would allow you to add a new
binary column to an existing table. You
could then use code or query to copy the
data from an existing column and then
remove the original column. Thus, you have
a long-winded means of changing a
column’s data type to binary.

“Of course, this all begs a fundamental
question: why the (b e e p !) is something as
useful as this so well hidden? I suspect that
with sustained use, various ‘holes’ might be
found in the functionality of this data type.

“Microsoft obviously intended a more
complete but as yet unrealised solution to
problems like this, but needed a quick
solution to the Paradox and dBase
connectivity problems, as well as a quick fix
for some internals. For now, however, I will
certainly continue to use it.

“By the way, I have noticed that in
Access 7, nasty ol’ Microsoft has encrypted
its Wizards and other .MDA add-in files in
this release. I have derived many useful
programs from hacked versions of the
Access 2.0 wizards, e.g. a database object
directory comparison tool and a scripting
tool based on the documentor, which just
outputs a mammoth text file without
generating a report or a temporary table.
Hence, I was miffed to find that A7 has all
its wizards compiled/encrypted in some
way. Have you seen any way around this? I
vaguely recall seeing an MSDN article on

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

Personal Computer World • March 1997 • 297

since its earliest beginnings but has been
omitted from key places in the package and
its documentation throughout. Various
system table fields use it and it appears as
the data type for certain field types, in tables
attached from other database products. 

“It behaves much like TEXT in all
respects except any comparison operations
(joins, indexing, sorting) operate on ASCII
code value, i.e. case sensitively. Very useful;
but how do you create one? ‘Not easily’ is
the answer to that. BINARY does not
appear as an entry in the field type list in
table design view. If you try to use
DB_BINARY with the CreateField method in

A.B. you get an error. Not very helpful. The
way around this is to use a CREATE TABLE
data definition query:
CREATE TABLE(MyField BINARY (30))

“This creates a table with a single field
(column) called MyField of type BINARY and
a length of 30. Type this into the SQL view
of an empty data definition query, execute it
and it will create such a table. Remember to
refresh the table list in the database window
to show the new table. You can then edit
the table definition in table design view as
per normal. You can even change the
properties of the binary column(s). The data
type column correctly indicates a field type
of binary. You can change this, of course,
but once changed you can’t get it back!

securing add-in code and possibly one
giving the unsecured contents of certain
wizards, but I have not been able to find
either again.” 

I knew of the binary data type but hadn’t
thought of it as a solution to this problem.
As to decrypting the Access 7.0 wizards,
has anyone else found a way?

On the subject of case sensitivity, the
following came from Neil Howie: “A bell
rang at the back of my mind, so I set about
creating a similar query in Paradox 7 but
taking advantage of the fact that if you have
maintained secondary indexes, you can set
a case-sensitive option. 

“Adding an auto primary index to each
table and setting up secondaries on the
Names fields let me set up the join in the
query window and display the required
result with the greatest of ease.

“For further investigation I took a long
doc, converted it to text and wrote a little
routine to extract the words to create two
files, 12,000 records long. I modified the
second to capitalise the last letter of nine
words out of ten at random, then pushed
these into Paradox. Because of repetitions,
it produced 15,000 matches in 18
seconds, so I guess on your enquirer’s
200,000++ records it would still not be a
practical proposition if he had to do it 
too often. 

“However, what is now worrying me is
that executing the same query in Delphi
(using Paradox’s SQL) takes almost 50
seconds. What am I doing wrong?”

Hands OnD a t a b a s e s

p 2 9 8 ➢

Fig 2 The data is stored in a reasonably economical manner

Fig 3 This SQL looks a bit complex, but it is just an expanded version of the code listing on p295



CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

Making your mark
Last month I published a problem from
Andy, a teacher who was using Access 2.0
to store his pupils’ marks. He wanted not
only to store the marks that his students
achieved in their tests, but also their
positions in the various class groups. 

I suggested there was a conflict here
between relational theory and expediency,
and asked for suggestions and restraint (in
the hope of avoiding a holy war). I am
delighted to report that (nearly) everyone
kept their heads and the majority of
answers were helpful rather than religious.
Paul Mapstone’s answer (below) was the
most complete. It is also applicable to any
situation in which a rank order is required. 

“My advice on this is not to store derived
data (i.e. the Position column) unless you
have to, for performance reasons. This is a
good example. It is fairly straightforward to
calculate the Position column in standard
SQL using a correlated subquery as follows:
SELECT A.[Pupil ID], A.[Test ID], 

A.Score, A.Position,

(select Count(*) + 1

from [Test Scores] AS B

where B.[Test ID] = A.[Test ID] 

and B.Score > A.Score ) AS Rank

FROM [Test Scores] AS A

WHERE A.Score is not null

ORDER BY Score DESC

“Column Rank in the above query should

298 • Personal Computer World • March 1997 

Hands On D a t a b a s e s

correctly return the required Position. This
works because the Position is equal to the
number of people who have a better
position + 1. Alternatively, you can use the
SQL’92 outer join syntax (which Access
seems to partially support) as follows:
SELECT A.[Pupil ID], A.[Test ID], 

A.Score, A.Position, 

Count(B.Score) + 1 AS 

R a n k

FROM [Test Scores] AS A LEFT JOIN 

[Test Scores] AS B

ON A.[Test ID] = B.[Test 

ID] and A.Score < B.Score

WHERE A.Score is not null

GROUP BY A.[Pupil ID], A.[Test

ID], 

A.Score, A.Position

ORDER BY A.Score DESC

“We need the outer join, as the inner
join will eliminate the top result. Either of
the above queries could be used as the
basis of any required reports etc, but if
your teacher really wants to store the rank
in the Position column (and suffer potential
update anomalies), simply save one of the
above queries with the name ‘Rank query’
and use it in the following UPDATE query:” 
UPDATE [Test Scores]

SET Position = dlookup(“Rank”, 

“Rank query”,

“[Pupil ID]=” & [Pupil ID] &

“ and [Test ID]=” 

& [Test ID])

WHERE Score is not null;

An excellent answer. Paul’s first
paragraph touches on the heart of the
conflict. Storing derivable data usually has
no benefits and several major
disadvantages (such as causing potential
update anomalies). However, storing such
data can occasionally yield a major
performance benefit. Of course, a real purist
would never consider mere performance as
a justification for breaking one of the central
tenets of the relational model. Non-purists,
on the other hand, wouldn’t even hesitate. I
sit uncomfortably on the fence, sticking to
the purist line whenever possible and
worrying every time expediency forces me
to break what I know to be a sensible rule.

Paul’s solutions are on this month’s
cover-mounted CD-ROM as PAUL.MDB
and PAUL95.MDB. The first is an Access
2.0 version which crashes Access every
time I try to run the update query. There
cannot be anything fundamentally wrong
with the solution because the problem does
not occur in Access 95. So perhaps it is my
machine? 

Mark Whitehorn welcomes readers’
correspondence and ideas for the Databases
column at d a t a b a s e @ p c w . v n u . c o . u k

Contact

Fig 4 A defined structure

with four levels provides

more scope when

defining forms


