
CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • March 1997 • 315

Hands OnVisual Pro g r a m m i n g

p 3 1 6 ➢

spreadsheet application which pops up on
demand to enable you to create workbooks
interactively.

Formula One is superb and its main
competition is from Excel itself. Excel is a
strong development tool and its worksheets
can be embedded in other applications and
controlled programmatically. Excel is the
more powerful, but in comparison Formula
One is small, nimble and royalty-free.

First Impression, the Suite’s charting
component, is updated to version 2.1. Not
much has changed, mainly the support for

isual Components has upgraded
its Visual Developers Suite Deal, a
collection of ActiveX controls for

Visual Basic and other ActiveX clients. These
are heavyweight components, each being
almost an application itself. They are supplied
as both 16-bit and 32-bit OCX controls. The
runtime versions can be distributed royalty-
free, making the Suite excellent value if you
need this kind of functionality.

Cream of the crop is Formula One, now
at version 4.0, a spreadsheet control which
does a remarkable job of emulating Excel. It
can read and write files in
Excel format up to version
7.0, as in Office 95, but there
are limitations: Formula One
does not understand Excel
charts or macros, for
example. A large number of
worksheet functions are
supported, and the ability to
move sheets to and from
Excel is a valuable asset.
Formula One has its own
drawing tools and can link
with First Impression, the
charting control in the Suite
Deal, to create charts. You
can place buttons, checkboxes and drop-
down listboxes on sheets.

New in version 4.0 is support for double-
byte character sets, HTML export, and
Uniform Data Transfer, an OLE standard
which lets you drag and drop data between
applications. Formula One is not a data-
bound control, but it has built-in ODBC
support so you can query an ODBC data-
base and the results appear in a worksheet.

Version 4.0 includes several new ODBC
functions. Another nice touch is the
workbook designer, a fully-featured

double-byte character sets and
Uniform Data Transfer.

Visual Writer is a word processor
control now at version 3.1. It’s good,
but not of the quality of Formula One.
Under Windows 95 or NT, Visual Writer
has to compete with the built-in Rich
Text Control which does the same job
of displaying formatted text with
embedded bitmaps. Visual Writer does
have some extra functions like fields,
zooming, spell checking via the

supplied Visual Speller control, print
preview, and a ready-made button bar,
status bar and ruler. It also has some
quirks. Rich Text Format (RTF) is supported,
but it prefers its own proprietary format.
This is a disadvantage, especially since it
will not accept .RTF as a valid format when
bound to a document database. Also
lacking is any kind of HTML support. For
Windows 3.1 developers, though, Visual
Writer or something like it is all but essential
if you need to display formatted text. It’s a
shame the supplied 16-bit version is an

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

315 • Personal Computer World • March 1997

Hands On Visual Pro g r a m m i n g

A new D e a l
Tim Anderson checks out the new Formula One spreadsheet control in the latest upgrade to
the Visual Developers Suite Deal, answers VB and Delphi queries and hides a blinking caret.

V
R i g h t Now at version

4.0, Formula One

will save in HTML

f o r m a t

B e l o w F i r s t

Impression’s chart

wizard offers a

range of layouts and

s t y l e s

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Hands OnVisual Pro g r a m m i n g

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Hands On Visual Pro g r a m m i n g

Rolling your own
Reader Richard Hustwayte writes:
“My project will require some databases to
be made — nothing complex like
client/server but simple, flat-file databases. I
have looked at two versions of Delphi: the
standard version (about £70) and the
desktop version (about £230). The latter
version is advertised as having the Borland
Database Engine. What is this? And if I
don’t have it, am I unable to create
database applications?”

All versions of Delphi come with the
Borland Database Engine. This is a library of
functions designed to simplify database
work by acting as an intermediary between
your application and the driver software
which actually accesses the data. One
benefit is that you can use data-aware
components, so you can create simple
database applications without writing any
code. A number of database drivers are
available for the BDE and it can also use
ODBC drivers, the Windows standard for
database access.

The BDE is good, but there is a cost
involved. The BDE is a substantial piece of
software and adds a considerable overhead

to your application. Additionally, not all
database drivers work well with it. In
particular, it is not a good match for data in
Microsoft Access format. For several
reasons, then, you might not want to use it.

The most efficient alternative for a simple
database is to roll your own using Delphi’s
file functions. If that does not appeal, there
are database libraries such as Sequiter’s

CodePascal which provide a lightweight
alternative. Then again, the BDE comes in
the box and is fairly easy to use, so most
Delphi developers do not look elsewhere.

Which Delphi book?
Darren Davies writes: “I’m just about to buy
Delphi Developer 2.0. I was wondering if
you could recommend a book to learn how
to program in this language? I’ve had quite
a bit of experience with Pascal for DOS and
object-oriented Pascal for Windows, but not
much with visual programming.”

For someone with programming
experience, a good choice is Delphi 2.0
U n l e a s h e d by Charles Calvert (SAMS). At
1,400 pages, it goes some way to compen-
sating for Delphi’s poor documentation.

A terminal problem
“I’m trying to get my new Terminal Program
to automatically log in to a BBS. How do I get
MSCOMM to wait for a login prompt before it
enters the user details like Login name and
Password?” asks Aaron H o d g s o n .

The MSCOMM custom control, which is

Personal Computer World • March 1997 •317
p 3 1 9 ➢

similar in Visual Basic 3.0 and 4.0, offers
two ways of intercepting data. The first
technique involves a program loop which
continually checks the receive buffer, a
technique called “polling”. Fig 2 shows what
it looks like in pseudo-code. While it is a
useful technique, it is difficult to write a well-
structured application if it spends much
time sitting in a loop like this. Another
method is preferable, which is to use the
OnComm event to respond to incoming
data. This event fires whenever a
communication error or event occurs. You
can respond with a select case statement,
like that shown in Fig 3 (page 319).

Your code should respond to all the

Java books

■ Professional Java Fundamentals
by Sly Cohen, Tom Mitchell and others
Most Java programmers are already skilled in
another language: often C++. This book is
aimed at that readership, providing a concise
introduction to Java and focusing on its
distinctive features. Beginning with a
description of the Java language and object-
oriented programming, it goes on to explain
packages, threads and streams. Five
chapters are devoted to the Abstract Window
Toolkit, including a detailed explanation of
various layout managers. The most advanced
chapters cover networking, building libraries,
implementing an application framework, and
interfacing with C++.

There seem to be lots of poor Java titles
around, and in contrast here is a
knowledgeable and well-judged guide which
complements rather than repeats what is
easily obtainable online. Recommended.

■ Using Java (Second Edition)
by Joseph Weber and others
The flash on the cover states: “Covers new
JDK 1.1 features” which is a bold claim since,
at the time of writing, the JDK 1.1 was still in
beta. You will find some useful material on
JDBC database classes and a little on remote
method invocation but, of course, much of
JDK 1.1 is not actually included. What you
get is over 1,000 pages which take you step-
by-step through Java’s tools, language,
classes, applets and applications, graphics
and layout, security and more. There is an
emphasis on Sun’s tools rather than third-
party contributions, although the online
version includes a chapter on different
development environments.

Overall, Using Java is a thorough guide,
although at times rather ponderous and
unexciting. On the CD, you get online
versions of four other titles covering
JavaScript, Visual J++, CGI scripting and
HTML, along with additional chapters and
example Java applets. As a one-stop Java
reference library, this book is hard to beat.

A b o v e FarPoint’s Input Pro gives

fine control over validation during

data entry

R i g h t Behind those drag-and-drop

data controls lurks the Borland

Database Engine, a substantial

application in its own right

Fig 2 Pseudo-code for “polling”
Begin do loop

DoEvents or Sleep to allow windows to run other processes

Check InBufferCount property

If there is data, read input property and add to string buffer

Check buffer is not too full and correct if necessary

Check for time out, data complete, broken connection or other errors

End do loop

class the TMemo object, giving it a custom
message handler. You can either do this
entirely within your application, or create a
new custom memo component and install it
on the component palette. For a one-off,
the first approach is fine, the only snag
being that because you create the control at
runtime, you cannot place it visually or use
the Object Inspector. How it works is
shown in Fig 1.

Of course, you will also want to set other
properties and perhaps write event code for
the memo control, all of which you can do in
code. Sledgehammer to crack a nut?
Maybe. But once you have learnt how to
subclass Delphi controls, many other
problems can be easily solved.

You can also build up a library of
customised components which can be
used many times over. For example, you
could create a memo with a Boolean
ShowCaret property that turns caret display
on or off. In the long term, the productivity
gains are enormous.

Input Pro
Once upon a time, it was
Aware/VBX. FarPoint has
renamed this set of data-entry
controls to the more natural Input
Pro. It is an unglamorous
collection, but is also one of the
most useful for anyone doing
data entry forms in Visual Basic
or other ActiveX clients. A VBX
version is also supplied.

There is not much extra
functionality in Input Pro, as
opposed to Aware/VBX. The
main difference is the move to

ActiveX. There are eight controls including
currency, date and time, masked edit, and
a memo control which overcomes the
normal 64Kb limit. All are data-aware. The
main purpose of InputPro is for validating
data entry (never an easy task): its controls
greatly simplify matters. For example, the
DateTime control rejects invalid dates and
times, can limit their range, and can auto-
complete partial entries.

OCX, as the VBX control type is more
widely supported in Windows 3.1.

Carets and messages
The following question is asked by
reader, Deborah Pate: “How can I stop
the cursor flashing in a TMemo
component on a form with no other
control that can accept the focus?
Setting it to read-only does not help.”

This is a fair question, although I
am not sure why you would n o t w a n t
the cursor flashing in a memo control
that has the focus. Anyway, this is the
kind of thing that should send you
scurrying to the Windows API. One thing
you must realise is that what most people
call the cursor, Windows calls the caret.
There are eight functions specifically
concerned with this little flashing creature.
For example, you can control the blink
rate with SetCaretBlinkTime. Hiding the
caret is just a matter of calling the right
function. That is:
H i d e C a r e t (M e m o 1 . h a n d l e) ;

The remaining problem is where to call
the function. The obvious place is in the
OnShow event method for the form but it
doesn’t work. The memo component
receives a SetFocus message after the form
shows and that helpfully reinstates the caret.

The OnPaint event does the trick but this
is not the best solution. In certain
circumstances the memo control can
receive a SetFocus message without the
form’s OnPaint event firing, and back
comes the caret. If you call HideCaret in
enough places you can probably make it
watertight, but it’s not elegant
programming.

The best answer is to trap the SetFocus
message itself. To do this you need to sub-

316 Personal Computer World • March 1997

L e f t Visual Writer is

invaluable for 16-bit

Windows but less

useful in Windows 95

B e l o w A solution to the

flashing cursor

problem. The TMemo

object is subclassed,

creating a component

which is sufficiently

general to be used

many times over

Fig 1 Trap that SetFocus

1 . In the type section of the form unit, declare the following object:
TMyMemo = class(TMemo)

p r i v a t e

procedure MySetFocus(var Message: TWMSetFocus); message WM_SETFOCUS;

e n d ;

2 . In the public declarations for TForm1, include:
Memo1: TMyMemo;

3 . In the implementation section, include:
Procedure TMyMemo.MySetFocus(var Message: TWMSetFocus);

b e g i n

inherited; {call the default handler for this message}

hidecaret(self.handle); {hide the caret}

e n d ;

4 . In the FormCreate method, include:
Memo1 := TMyMemo.create(self);

Memo1.Parent := self;

H i d e C a r e t (M e m o 1 . h a n d l e) ;

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • March 1997 • 319

Hands OnVisual Pro g r a m m i n g

possible events in order to trap
communication errors. You also need to
check that the string buffer is kept to a
reasonable size. Using the CommEvent it is
possible to write a reasonable
communications program in Visual Basic,
and there is an example called VbTerm that
comes with Visual Basic.

Although the event-driven approach is
better for most purposes, Aaron’s particular
problem can easily be solved by polling.
You can write a WaitFor function that
doesn’t return until a particular piece of data

has been sent, or until
an error has occurred.
An example of this is
shown in Fig 4.

Note that if you have also written code to
respond to the OnComm event, you need
to ensure that events of the type
comEvReceive do not fire when the WaitFor
function is running. You can do this by
setting the Rthreshold property to zero.

Finally, communications code is tricky,
mainly because so many things can go
wrong. At one extreme, poor lines and

dropped connections cause difficulties,
while the opposite problem is data coming

in so fast that some
part of your software
cannot keep up. If this
last problem occurs,
Microsoft makes two
r e c o m m e n d a t i o n s .
One is to extract data
immediately the
OnComm event fires,
without bothering to
check the type (see
Fig 5). Also, the
MSCOMM control
may not always be
satisfactory and as a
last resort you can call
the Windows API
directly. This is well
covered in the first
edition of Daniel
Appleman’s V i s u a l
Basic Programmer’s
Guide to the Windows

A P I but not in the second, 32-bit edition,
although there is some material on the CD
which accompanies the book.

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual P C W address or at
v i s u a l @ p c w . v n u . c o . u k

Visual Developer’s Suite Deal is £235 (plus VAT)
from Visual Components 01892 834343
Input Pro (FarPoint) is £105 (plus VAT) from
Contemporary Software 01344 873434

Professional Java Fundamentals, by Sly Cohen,
Tom Mitchell and others is £32.49; ISBN
1-861000-38-3, published by Wrox Press.
Using Java (Second Edition) by Joseph Weber
and others costs £56.49 (incl. VAT); ISBN 0-7897-
0936-8, published by Que.
Delphi 2 Unleashed by Charles Calvert costs
£54.95 (incl. VAT); ISBN 0-672-30858-4.
These books are available from
Computer Manuals 0121 706 6000

Contacts

Fig 4 WaitFor function

Function WaitFor(sWaitString As String, lTimeout As Long) As Integer

Dim lStartTime As Long

Dim sBuffer As String

Dim iOldThreshold as integer

lStartTime = Timer

iOldThreshold = Comm1.RThreshold

Comm1.RThreshold = 0

‘ prevents comEvReceive firing

D o

DoEvents ‘ or call Sleep API function

If Comm1.InBufferCount > 0 Then

sBuffer = sBuffer & Comm1.Input

‘ should check for buffer too large

End If

If InStr(sBuffer, sWaitString) 0 Then

WaitFor = 0

Exit Do

End If

If Timer >= (lStartTime + lTimeout) Then

WaitFor = 1

‘ you can define constants and report errors

‘ using the return value

Exit Do

End If

L o o p

Comm1.Rthreshold = iOldThreshold

End Function

Now you can write code like this:

If WaitFor(“login: “, 60) = 0 Then

‘ waits for up to 60 seconds

Comm1.Output = “qix” & Chr(13)

MsgBox “Successfully posted response”

Comm1.Rthreshhold = 1

‘ Enables comEvReceive event

E l s e

MsgBox “Login error”

Comm1.PortOpen = False ‘ Closes port

End If
A b o v e The VBTerm

sample comes with

Visual Basic and

demonstrates the

use of the MSCOMM

c o n t r o l

Fig 3 A select case statement

Select Case Comm1.CommEvent

Case comEvReceive

sBuffer = sBuffer & Comm1.Input

‘ or send to data processing function

Case comRxOver

MsgBox “Error: receive buffer

o v e r f l o w ”

Case comTxFull

MsgBox “Error: transmit buffer full”

End Select

Fig 5 Extract data

Sub Comm1_OnComm ()

Static ReceiveBuffer As String

ReceiveBuffer = ReceiveBuffer &

C o m m 1 . I n p u t

E t c . . .

