
which is how it appears in the Access
dialect of SQL. All three of the above yield a
table like this:

SumOfAmount
£5,117.57

The AS followed by a field name simply
tells the SQL statement to put the data into
a field of that name in the answer table.

It is permissible to mix two or more
functions, for example:
SELECT SUM(Amount) AS SumOfAmount,

COUNT(Amount) AS CountOfAmount,

AVG(Amount) AS AvgOfAmount,

MIN(Amount) AS MinOfAmount,

MAX(Amount) AS MaxOfAmount

FROM SALES;

which yields the table shown in Fig 1.
It’s also perfectly permissible to mix

fields like this:
SELECT COUNT(Customer) AS

CountOfCustomer,

AVG(Amount) AS AvgOfAmount

FROM SALES;

giving:
CountOfCustomer AvgOfAmount

7 £731.08

These functions will even operate on
fields which contain no data. If we amend
the base table (for the sake of this example

ast month, we looked at the basic
building-blocks of SQL and the
ways in which they can be put

together to elicit information from a
database. With those commands alone you
could pose an almost infinite series of
queries, but SQL still has a whole range of
tricks up its sleeve.

(Last month’s sample tables reappear in
the screen shots here, so you won’t have to
fight with two magazines at once).

■ Built-in Functions
SQL includes several simple statistical
functions:

Function
SUM Total
COUNT The number of occurrences
AVG Average
MIN Minimum
MAX Maximum

Thus, it is possible (although not normal
practice) to write SQL statements such as:
SELECT SUM(Amount)

FROM SALES;

Some systems will actually accept this.
Access, for instance, generates a “dummy”
field name (Expr1000) and yields the
following table:

Expr1000
£5,117.57

It is common to explicitly name the field
into which to place the output. For example:
SELECT SUM(Amount) “Sum of Amount”

FROM SALES;

or:
SELECT SUM(Amount) AS SumOfAmount

FROM SALES;

or even:
SELECT DISTINCTROW

SUM(SALES.Amount) AS SumOfAmount

FROM SALES;

only) to be as shown in Fig 2, then the SQL
statement above will give:

CountOfCustomer AvgOfAmount
5 £282.76

The COUNT function finds only five
values and AVG sums the values that it
finds and then divides the result by six
(i.e.the number of values in that particular
field) rather than seven (the number of
records).

However, these functions are designed
to yield only a single figure each. Thus, SQL
statements such as:
SELECT Customer,

AVG(SALES.Amount) AS AvgOfAmount

FROM SALES;

are illegal because SELECT Customer can
(and in this case, would) have an output
consisting of multiple records, while the
second:
SELECT AVG(SALES.Amount) AS

AvgOfAmount

can only have an output of a single record.
Several SQL implementations provide

more than the basic functions.
For example, Access also provides:

Function
StDev Standard Deviation
Var Variance

produces:
Customer
Johnson
Jones
Simpson
Smith

At first, it appears that this is the same as:
SELECT DISTINCT Customer

FROM SALES;

which yields the same answer table, but
adding another field demonstrates the
difference. Thus:
SELECT DISTINCT Customer, Amount

FROM SALES;

produces:
Customer Amount
Johnson £453.78
Jones £453.00
Jones £3,421.00
Simpson £235.67
Smith £82.78
Smith £235.67

whereas:
SELECT Customer, Amount

FROM SALES

GROUP BY Customer;

fails to run. Why? To answer this, we must
look at what the SQL clauses are trying to
achieve. The command:
SELECT Customer

FROM SALES

GROUP BY Customer;

essentially says “Sort the records in the
SALES table so that identical values in the
Customer field are together. Then ‘crush
together’ the records with identical
Customer values so that they appear to be
one record.” Thus:
SELECT Customer, Amount

FROM SALES

GROUP BY Customer;

Hands OnWorkshop: SQL

It is just this kind of variation from the
standard which demonstrates that SQL is
still a fairly fluid standard.

■ GROUP BY — collecting information
So far, our generic SELECT statement looks
like this:
SELECT field name(s)

FROM table name

WHERE condition(s)

ORDER BY field name(s)

We can expand it with:
SELECT field name(s)

FROM table name

WHERE condition(s)

GROUP BY Field name(s)

ORDER BY field name(s)

Last month we looked at the command
ORDER BY, which provides a way of
presenting information in ascending or
descending order. Further control over your
answer data is given by GROUP BY. The
syntax is:
GROUP BY Field name(s)

To illustrate its usefulness, we’ll consider
the simple statement below:
SELECT AVG(Amount) AS AvgOfAmount

FROM SALES;
AvgOfAmount

£731.08

This averages the values found in the
[Amount] field for all records in the SALES
table. Suppose you want to examine the
records which refer to customer
“Simpson”? You’d use WHERE, as follows:-
SELECT AVG(Amount) AS AvgOfAmount

FROM SALES

WHERE Customer = “Simpson”;

AvgOfAmount
£235.67

Personal Computer World • November 1996 • 247246 • Personal Computer World • November 1996

Hands On Workshop: SQL

Group therapy
Having dealt with the basics, Mark Whitehorn delves deeper into SQL and shows you how
to organise your records logically, in part II of our four-part tutorial.

L

Fig 1
SumOfAmount CountOfAmount AvgOfAmount MinOfAmount MaxOfAmount
£5,117.57 7 £731.08 £82.78 £3,421.00

Fig 2
SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Stool Ford £82.78
4 2 Jones Suite Harrison
5 3 Smith Sofa Harrison £235.67
6 1 Sofa Harrison £235.67
7 1 Jones Bed Ford £453.00

Fig 3
SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Jones Suite Harrison £3,421.00
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453.00

Fig 4
SaleNo EmployeeNo Customer Item Supplier Amount
2 1 Johnson Chair Harrison £453.78
7 1 Jones Bed Ford £453.00
4 2 Jones Suite Harrison £3,421.00
6 1 Simpson Sofa Harrison £235.67
1 1 Simpson Sofa Harrison £235.67
5 3 Smith Sofa Harrison £235.67
3 2 Smith Stool Ford £82.78

Now, suppose
you want to do this
for each customer.
An inelegant, brute-
force solution
would be to run the
query multiple
times, once each
for each customer.
A clever solution is
to get the SQL
statement to group
the records
together by the
name of the
customer and then

apply the AVG
function to the values in the groups.

We can visualise the process as follows:
going from the data shown in Fig 3, to that
shown in Fig 4; and then to this, which is a
full but compact summary of the required
information:

Customer AvgOfAmount
Johnson £453.78
Jones £1,937.00
Simpson £235.67
Smith £159.23

The SQL statement required to perform
this magic is impressive:
SELECT Customer, AVG(Amount) AS

AvgOfAmount

FROM SALES

GROUP BY Customer

Order BY Customer;

The GROUP BY clause can be used
more simply than this. For example:
SELECT Customer

FROM SALES

GROUP BY Customer;

The relationship editor, showing the joins between the tables

p248 ➢

fails because there’s a conflict (real in this
case, potential in others) between the
number of records that should be output.
SELECT Customer

FROM SALES

GROUP BY Customer;

will output four records:
Customer
Johnson
Jones
Simpson
Smith

while:
SELECT Amount

FROM SALES;

will output seven records:
Amount
£235.67
£453.78
£82.78
£3,421.00
£235.67
£235.67
£453.00

Combining these two incompatible
requests is impossible and SQL engines will
refuse the statement. As you can see from
the above, there is no obligation to combine
GROUP BY with one or more of the
functions. However, it is commonly done
because we often only want to group
records in order to be able to perform some
type of manipulation on selections of
records. It is perfectly possible to GROUP
BY more than one field.

Thus:
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier;

produces more groups than the SQL
statement above that grouped by one field,
because it is grouping those records which
share the same value in Customer and
Supplier. The answer table is this:

Customer Supplier AvgOfAmount
Johnson Harrison £453.78
Jones Ford £453.00
Jones Harrison £3,421.00
Simpson Harrison £235.67
Smith Ford £82.78
Smith Harrison £235.67

which raises another interesting question:
how can you tell how many records are
actually contributing to each group? One
answer (but by no means the only one) is:

SELECT Count(*) AS NumberInGroup,

Customer, Supplier, AVG(Amount) AS

AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier;

The only addition is the “Count(*) AS
NumberInGroup” bit which simply says that
the number of records in each group should
be counted (Fig 5).

We could equally well use:
SELECT Count(Customer) AS

NumberInGroup, Customer, Supplier,

AVG(Amount)

AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier;

which returns the same answer table.
GROUP BY is an incredibly powerful tool

248 • Personal Computer World • November 1996

Hands On Workshop: SQL

The tables

used in my

examples

Personal Computer World • Novemebr 1996 • 249

Hands OnWorkshop: SQL

Customer Supplier AvgOfAmount
Jones Ford £453.00
Johnson Harrison £453.78
Jones Harrison £3,421.00

■ Working with multiple tables
So far, we have looked at using the
SELECT statement with a single table.
Clearly, since the relational model
encourages us to split complex data into
separate tables we will often find it
necessary to recover data from two or more
tables. To do this, we have to use the
SELECT statement to draw data from both
and the WHERE clause to form the joins.

Before we do, let’s try querying the
tables without using the WHERE clause.
SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES, EMPLOYEES;

produces the data shown in Fig6.
Note that this SQL statement includes,

for the first time, the table names when
fields are being specified. Up to this point
our SELECT statements have referred to
single tables. Since field names within a
single table must be unique, the field name
alone allowed us to unambiguously identify
the fields. However, field names can (and
often are) shared by different tables. For
example, both SALES and EMPLOYEES
have a field called EmployeeNo. Therefore,
the only way to identify a precise field
uniquely is to use the table name as well.
SQL syntax typically has the table name first
in upper case, followed by a dot, followed
by the field name in lower case.

SQL allows you to substitute temporary
synonyms for table names:
SELECT S.Customer, E.LastName,

S.Amount

FROM SALES S, EMPLOYEES E;

which can shorten statements considerably
but also tends to makes them less
readable.

Note that the synonyms are defined in
the FROM clause, but can still be used in
the SELECT clause which tells you
something about the way in which the SQL
statement is read by the RDBMS.

To return to the multiple table query, if
we were to add a WHERE clause as

and it can be made even more so with the
addition of HAVING.

■ GROUP BY and HAVING —
Collecting information together
Whereas the GROUP BY clause puts
records into logical groupings, the HAVING
clause allows you to select the groups that
you want to see based on values which
appertain to that group. Consider the
example given above.
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier;

Customer Supplier AvgOfAmount
Johnson Harrison £453.78
Jones Ford £453.00
Jones Harrison £3,421.00
Simpson Harrison £235.67
Smith Ford £82.78
Smith Harrison £235.67

Suppose, now the records are grouped
in this way, that we are only interested in the
groups where the average amount is £250
or more? The foolish solution is:
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier

ORDER BY AVG(Amount);

Customer Supplier AvgOfAmount
Smith Ford £82.78
Smith Harrison £235.67
Simpson Harrison £235.67
Jones Ford £453.00
Johnson Harrison £453.78
Jones Harrison £3,421.00

which, although it renders the desired
values easy to find, nevertheless still leaves
the job of actually locating them, up to the
user. A much better solution would be:
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier

HAVING AVG(Amount) >= 250;

Customer Supplier AvgOfAmount
Johnson Harrison £453.78
Jones Ford £453.00
Jones Harrison £3,421.00

You can, of course, still order the groups:
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier

HAVING AVG(Amount) >= 250

ORDER BY AVG(Amount);

shown here:

SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES, EMPLOYEES

WHERE SALES.EmployeeNo =

EMPLOYEES.EmployeeNo;

we get:
Customer LastName Amount
Simpson Groves £235.67
Johnson Groves £453.78
Simpson Groves £235.67
Jones Groves £453.00
Smith Greeves £82.78
Jones Greeves £3,421.00
Smith Smith £235.67

Referring to the base tables shows that

this is a more useful answer table than the

previous one.

How it works, and what it’s doing, will be

revealed next month. ■

Fig 5
NumberInGroup Customer Supplier AvgOfAmount
1 Johnson Harrison £453.78
1 Jones Ford £453.00
1 Jones Harrison £3,421.00
2 Simpson Harrison £235.67
1 Smith Ford £82.78
1 Smith Harrison £235.67

Fig 6

Customer LastName Amount

Simpson Groves £235.67

Johnson Groves £453.78

Smith Groves £82.78

Jones Groves £3,421.00

Smith Groves £235.67

Simpson Groves £235.67

Jones Groves £453.00

Simpson Greeves £235.67

Johnson Greeves £453.78

Smith Greeves £82.78

Jones Greeves £3,421.00

Smith Greeves £235.67

Simpson Greeves £235.67

Jones Greeves £453.00

Simpson Smith £235.67

Johnson Smith £453.78

Smith Smith £82.78

Jones Smith £3,421.00

Smith Smith £235.67

Simpson Smith £235.67

Jones Smith £453.00

Simpson Jones £235.67

Johnson Jones £453.78

Smith Jones £82.78

Jones Jones £3,421.00

Smith Jones £235.67

Simpson Jones £235.67

Jones Jones £453.00

