
H A N D S O N ● D A T A B A S E S

shortly afterwards that I met up with Chris
Date. I couldn’t resist showing him the
tables and asking his opinion. In fact, we
discussed three tables, the third being one
where each record contains a pointer to
the “previous” reading; as in the
screenshot, Table 3.

Chris gave the following opinion: “We
can ask ourselves ‘what is the effect of
normalisation?’ Well, basically, it’s to
reduce redundancy but in order to consid-
er that question carefully we have to have
a careful definition of what redundancy is,
and without getting into such a refined
definition (because I don’t think I could
give you one), I will simply point out that
normalisation per se does not, in general,
eliminate all redundancy.

“Here’s a classical example” (he
indicated Table 2). “This is in third normal
form and yet there is clear redundancy.
What normalisation does (normalisation to
the ultimate normal form) is to get you to a
position that guarantees that you will not
have any update anomalies that can be
removed by taking projections. It doesn’t
say it’ll get rid of all anomalies, it just gets
rid of those anomalies which can be
removed by taking projections.

So yes, you can have redundancy, and
normalisation doesn’t help. In fact, normal-
isation is the one tiny piece of science we
have but it is not enough — there are all
kinds of other questions — is this” (Table
2) “a good design or a bad design? —
I don’t know because it is subjective, there
is no science there. The only sort of work-
ing definition of redundancy you can have
is if, somehow, you can make something
smaller: then you have redundancy. My

gut feeling is that it’s a bad design, but I
can’t quantify or qualify that really.”

I think the information Chris gives here
is well worth stressing, if only because
several books that I have on database
design get this wrong. Normalisation
doesn’t guarantee to remove all redun-
dancy,it only removes that which can be
removed by projection. Therefore, you
can normalise a set of tables and still have
redundancy and, hence, update
anomalies lurking in the tables.

So, to answer my own questions:
which is flawed in terms of the relation
model? All three are in third normal form,
but Table 2 contains redundant data, and
both Tables 2 & 3 can suffer from update
anomalies (see below). To what update
and delete anomalies does the flawed one
lead? Tables 2 & 3 have potential update
and delete anomalies.

For example, consider Table 3. Sup-
pose that we discover that meter no.1 was
also read on 01/02/93 and yielded a read-
ing of 300. We can add a record like this:

2 8 3
P E R S O N A L C O M P U T E R W O R L D

A U G U S T 1 9 9 6

Over the last two issues, we have
looked at SQL (having started with

the fundamental operators which underly
the language). To my delight, the Editor
has decided that SQL warrants wider
coverage. So, next month, we will begin a
separate three-part series on the subject,
as a feature elsewhere in PCW.

This gives us more room in the column
to look at other issues, which is handy
because I want to finish off the continuing
“meter problem” once and for all, (see the
letter from Phil Bowles, below).

Meter for measure
I will briefly recap for the benefit of non-
regular readers. In the March issue I
posed a problem which my colleague,
Stephen, had encountered in real life. It

replies, several of which were published in
the May issue.

However, two further points arose. One
was normalisation. One respondent (as
discussed in the June issue), suggested
that the table I had originally used was not
normalised and that this was part of the
problem. He suggested the screenshot,
Table 2, as an alternative. The primary key
in this table is Reading No.

So, in the June issue I asked readers:
which one do you think is flawed in terms
of the relation model, and why?; to what
update and delete anomalies does the
flawed one lead?; which one will be faster
when queried?; and what are the
implications of using each table in a real
database? The other issue was one of
speed. Several people wanted to know; of
the SQL solutions presented, which was
the fastest?

In this issue we’ll look at both of these
areas, since both are relevant to more than
merely the original question.

Normalisation and data
redundancy
By far the majority of readers who replied
felt that Table 1 was properly normalised,
as did Chris Date… yes, the same; the
other half of “Codd and Date”.

Regular readers will remember, that in
the June issue a certain respondent
suggested that I should “…go away and
re-read Codd”. Happily, I found I could do
better than that because it was very

H A N D S O N ● D A T A B A S E S

2 8 2
P E R S O N A L C O M P U T E R W O R L D
A U G U S T 1 9 9 6

involved a table of readings from electricity
meters; see the screenshot, Table 1. The
primary key, in this case is made from
[Meter No] and [Date].

The problem was that the people who
produced the data also wanted to see it as
shown in the screenshot, Table 2. This
table shows data from two records in the
same row and the apparently simple
question was, how can you produce a
table like that shown in the screenshot Fig
1 from Table 1 without offending the
relational model?

Stephen and I found a workable way of
deriving the second table from the first, but
as our solution offended the relational
model, I asked in this column if anyone
knew of a solution which didn’t cause such
offense. I was grateful to be inundated by

Back to normality
The mighty meter problem is finished off once and for all as
Mark Whitehorn covers normalisation of the original table and
the fastest SQL solution.

Table 1 The primary key is compounded

from Meter No. and Date

Reading Meter Prevs
no.* no. Date Reading readg

no.

15 1 12/04/92 175 5
16 1 01/07/92 230 9
17 1 21/11/92 270 16
18 1 12/12/92 290 17
19 1 01/04/93 324 18
20 1 01/02/93 300 18

Table 2

The primary key is the “Reading No.”

H A N D S O N ● D A T A B A S E S

Times to complete the queries are
given in seconds.

solution let me know — but please, only if
it is significantly faster!
● For more about SQL, see the new
feature series starting in next month’s
issue.

2 8 5
P E R S O N A L C O M P U T E R W O R L D

A U G U S T 1 9 9 6

The fact that the row is “out of
sequence” (at least, in terms of dates) is of
no consequence. However, the addition of
record 20 has rendered the pointer in
record 19 incorrect (it now points to the
wrong record). So unless we locate the
errant record and correct it, the table now
has an internal inconsistency.

In a nutshell this is what is wrong with
this type of table design (in my view).
Simple changes — updates, and by the
same token, deletions — to, or of, one
record can cause anomalies in other
records. To ensure internal data integrity,
some or all of the table has to be checked
for integrity after every update. This is
clearly not impossible to do but does
makes extra work for the developer and
may well slow down the database,
particularly in a multi-user environment.

In addition, even if the developer’s work
is perfect, later maintenance work on the
database may unknowingly circumvent
the checks and lead to a loss of integrity.

Incidentally, the same generic problem
exists with Table 2:

H A N D S O N ● D A T A B A S E S

2 8 4
P E R S O N A L C O M P U T E R W O R L D
A U G U S T 1 9 9 6

who wanted the original table. However, if
the necessary checking is performed after
updates, it will be slower to update.

What are the implications of using each
table in a real database? To summarise,
Table 1 makes the maintenance of data
integrity much easier: queries run against
Tables 2 and 3 should run queries more
rapidly.

My feeling is that I would rarely
implement a base table like 2 or 3, and
most readers agreed, although many, like
correspondent Phil Bowles, gave an
impressively balanced view:

“It may well be that with all those things
considered, his choice of solution is a
shooting offence. Who can tell?
Personally, I try to adhere to a clean
design at the outset as experience shows
me that it prevents major problems in the
future and I’m clever enough to cope with
complicated SQL — so I’d go with you. But
then again, if I had a team of trainee pro-
grammers who were SQL-illiterate, I might
consciously make the compromise,
adulterate the design and simplify the SQL
to reduce development problems.

Its all so complicated, isn’t it? These
are the reasons that I am no longer an IT
professional — at the end of the day, who
cares? This type of ‘holy war’ is one of the
reasons why I left IT to become a police
officer. If there’s going to be a row, let it be
over something that matters.”

PCWContacts

Mark Whitehorn welcomes readers’
correspondence and ideas for the
Databases column. He’s on
m.whitehorn@dundee.ac.uk

Be warned, he closed his email
with “So my final answer is: I don’t
care who is right or wrong but if
you don’t stop arguing right now,
someone’s going to get nicked."

…OK, guv’, fair enough.
The truth is, of course, that

both of these table designs have
advantages. The good news is
that with a bit of extra work we
should be able to have our speed
and our data integrity.

Suppose we store the data in
Table 1, and use that table for all
data entry, updates and deletes.
Suppose also that, every night,
we run a background process that
generates Table 2 from Table 1
and writes it to disk. We can then
run the user queries against Table
2, and they will run like greased
lightning.

Certainly there are disadvan-
tages. The queries that we run
under this regime have the
potential to yield answers which

are a maximum of one day out of date. So
we might run the update of Table 2 twice a
day, or three times a day — the important
point is to discuss it with the users and
discover what are acceptable limits. We
can even offer them two alternatives: fast
queries (run against Table 2) where the
data might be slightly out of date; or
slower ones (which run against Table 1)
which are guaranteed to be up to date. In
essence, what I am suggesting is a very
simple form of data warehousing. It
combines the best of both worlds, which is
why it has become so popular recently.
Trendy isn’t necessarily bad.

Speed
It is worth stressing that in the original
question all those months ago, I didn’t ask
for a rapid solution. I never mentioned
speed at all, I asked for elegance,
academic purity, relational correctness,
whatever you want to call it, but not speed.
So, while some of the original replies turn
out to be slow, this in no way reflects badly
upon either the “worth” of the original reply
or the worth of the people who supplied
them.

However, you asked for the relative
speeds so here they are. I looked at three
solutions. The first (labelled 4-Stage SQL)
is the original one that Stephen and I con-
cocted. It’s crude, it’s messy, it offends the
relational model, but it works. The second
is a two stage solution which used two
SQL statements and the third is a single
SQL solution. (Both of these solutions
were featured in the May issue).

For those who still maintain an interest,
and wish to speed test their own solutions,
I have included an MDB file, on our cover-
mounted CD-ROM, which is the testing
database that I used. It is crude and
essentially undocumented, because I
developed it for my own use. Neverthe-
less, I suspect that readers who are
competent enough to try their own SQL
solutions will be able to drive it.

There is a form, with associated code,
which will generate the test data for you. If
you can find a really fast, yet still pure,

Reading Meter Prevs.

No.* No. Date Reading Readg.

15 1 12/04/92 175 91

16 1 01/07/92 230 214

17 1 21/11/92 270 230

18 1 12/12/92 290 270

19 1 01/04/93 324 290

20 1 01/02/93 300 290

Number of records
processed per second

Number Four- Two- Single
of stage stage SQL
Records SQL SQL

100 50 33 6
200 67 33 3
400 100 22 1
1000 200 8 *
2000 250 4
20000 345

Number Four- Two- Single
of stage stage SQL
Records SQL SQL

100 2 3 18
200 3 6 79
400 4 18 395
1000 5 117 *
2000 8 553
20000 58

*(After 2,700 seconds, the completion
bar for the query was showing one per-
cent. I know those bars are
notoriously inaccurate but even so I
thought the point had been made that
it was very slow. I stopped the test
because I needed the PC for something
else).

Table 3 An alternative to Table 2, which

essentially uses pointers rather than

the data from the previous recordFig 2 The results of the speed tests

Fig 1 The way in which the users want

to see the data

Now see Fig 2; the obvious implication
from these results is that the original,
rather offensive, solution, happens to be
very fast. The single stage SQL, while
interesting, is very slow, even compared to
the two-stage one. However there is a
more fundamental difference. It is clear (if
we invert the figures) that the efficiency of
the “pure” solutions, in terms of the number
of records processed per second, drops as
the size of the table increases.

By contrast, the efficiency of the
original method measured in these terms,
actually increases. I must admit, that this
answer surprised me initially, because I
expected the set operations to be
inherently faster. However, a little thought
suggested an answer.

The original method still uses set oper-
ations — they are only “impure” in terms of
the relational model. The great advantage
for this method is that it simply has to
manipulate tables of the same size as the
test data. The problem for both of the
“pure” solutions is that they involve self-
joins. These in turn are generating huge
intermediate tables which are presumably
increasing in size by something like the
square of the number of records. I suspect
it is this that is gluing up the processing.

Which one will be faster when queried?
It is clear that Table 2 will be the fastest for
queries like the one desired by the people

