
start “Demon Status” cmd.exe /

c finger status

@ g a t e . d e m o n . c o .

uk && pause

(which Demon Internet users might find
useful on a DOSKEY macro).

For those moments when you need a
console window quickly, drag a copy of the
shortcut from the
Startup folder onto
your desktop. Edit
the parameters in
the target field if
necessary, set the
run style to normal
and assign a
shortcut-key. Now,
from most
W i n d o w s

ollowing my first couple of
Hands On NT columns,
when I covered the mixed

delights of the console window and
DOSKEY macros, I received a number
of emails from people asking how to
get the macros to load automatically
when the console window is created.

I mentioned at the time that I keep
two console sessions running: a small
one in the corner of the desktop, and a
larger one which spends its time
minimised until needed. The larger of
the two is started during logon from a
shortcut in the StartUp folder. It has the
target field set to:
%SystemRoot%\system32\cmd.exe /

k cmdinit.bat startup

and runs minimised. This console
window runs the cmdinit.bat (Fig 1)
procedure which opens the second
and then waits at the command prompt
for something else to do.

It’s useful to note that we’re starting
console windows in two slightly different
ways here: one from a shortcut and the
other from a Start command. If you adjust
the properties of a window started from the
shortcut (select the window then press
ALT-space, P) the changes can be saved
back into the shortcut for subsequent uses.
Create additional shortcuts when you need
windows with different properties.

On the other hand, console windows
started with the Start command have no
shortcut, so their properties are stored in
the Registry and indexed by the window’s
initial title. Therefore a console started with:
start “Console” cmd.exe

can have a different layout to a window
started with:

applications, just press the shortcut-
key combination and a console
window should spring into view.

Filename completion
While we’re revisiting the console
window, here’s a handy tip that I don’t
believe Microsoft has documented
anywhere so far. (This isn’t available
on releases prior to NT 4.)

It’s all very well having long,
descriptive folder and file names but
it means you spend half your day
typing path names into console
commands. Well, no longer —
except, don’t attempt this if you’re

uncomfortable about editing the Registry.
Fire-up the Registry editor (type

regedt32 into your nearest console window)
and switch to the HKEY_CURRENT_USER
window. Locate the Software key, and
within that, the Microsoft key. If there isn’t
already a sub-key called “Command
Processor”, create one (Edit/Add Key —

Hands OnWindows NT

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • February 1997 • 259258 • Personal Computer World • February 1997

Hands On Windows NT

Cultured P e r l
Dale Strickland-Clark extols the virtues of Perl, having decided on it as his batch language
of choice. He reopens console windows, and makes some selections from his bookshelf.

F

leave the key class blank). Then, within that
key, create a value called “CompletionChar”
of type REG_DWORD and assign it a value
of 9. In other words, set
H K E Y _ C U R R E N T _ U S E R \ S o f t w a r e \

Microsoft\Command Processor\

CompletionChar = REG_DWORD 0x9

Once that’s saved, start a new console
window. The tab key will now assist by
completing partially-entered filenames. If the
filename offered isn’t the one you want, just
press tab again. Press shift-tab to go back
through the list of offered names. A partial
filename is only recognised if it is at the start
of the command or preceded by a space.

If you prefer CTRL-key combinations
instead of the tab key, replace the 9 in the
registry with 1 for CTRL-A, or 2 for CTRL-B
and so on (tab is the same as CTRL-I).

Alternative batch languages
One of the other improvements tucked
away in NT 4 is the ability to use alternative
batch languages, transparently. The two
most popular languages available are
probably Rexx (originally from IBM’s VM
mainframe operating system, subsequently
transferred to OS/2) and Perl (a popular
Unix shell language much loved by web-site
developers). The NT port of Rexx was
commissioned by Microsoft to assist users
converting from OS/2, and they funded the
Perl port to help attract Unix users and
capture the web server market.

p 2 6 0 ➢

Both languages have their strengths:
Rexx has a clean, logical, syntax and good
string manipulation, while Perl has extensive
string manipulation wrapped in a rich,
powerful, but less readily-mastered (some
might say bizarre) language.

After years as a dedicated Rexx user, I
switched to Perl and it’s now my batch
language of choice, so I’ll show the steps
required to set it up:
1 . Install the Perl system. The latest can be
downloaded from f t p . p e r l . h i p . c o m(s e e
w w w . p e r l . h i p . c o m for more information)
and I’ve included a copy on the cover CD.
Simply unzip it into the directory where it is
to live and run the install.bat procedure.
2 . Choose the extension you’re going to
use for Perl files (I use .perl but .pl is also
popular). Create a new environment variable
called PATHEXT and assign to it the
following string:
.com;.exe;.bat;.cmd;.perl

Use Control Panel -> System ->
Environment to do this permanently.

Enter it into the system or user variables
depending on your preference. The order of
the extensions listed determines the search
order. I’ve just added .perl to the end of the
default value but you can juggle it to suit
y o u r s e l f .
3 . Register a file type using the FTYPE
c o m m a n d :
FTYPE perlfile=perl.exe %1 %*

4 . Associate the file type with the extension
by running the ASSOC command:
ASSOC .perl=perlfile

Note that the FTYPE and ASSOC
commands update the Registry and so only
need to be run once.

You are now ready to go. Fig 2 is a test
program to check your installation and whet
your appetite. It scans the directories listed
in the search path and shows which contain
the file specified as the first parameter.

Fig 2 SearchPath.perl

Finds a file in the path and shows the directory in which found.

$target = shift;

print “Looking for $target\n”;

for (split /;/, $ENV{‘PATH’}) {

print “$_”;

print “\\$target <=====” if (-e “$_\\$target”);

print “\n”;

}
SearchPath.perl — If you’ve ever wanted to know from which directory a program is being
loaded, this little program searches your path and points to the program’s home.

C o n s o l e

w i n d o w s

created with a

S T A R T

command have

no shortcut so

their properties

are stored here

in the registry

The Target field contains the command

and options necessary to start a

console window. Use the shortcut key

to make it instantly accessible

Fig 1 Cmdinit.bat

@echo off

cd \

doskey /macrofile=c:\batch\macros.txt

prompt THHHHH$H P+$G

if .%1 == .startup start “Console” cmd /k cmdinit.bat
This simple batch file sets the current directory, loads the DOSKEY
macros, sets a prompt and finally, if it’s been passed the startup
parameter, starts the mini console window.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

260 • Personal Computer World • February 1997

Hands On Windows NT

Dale Strickland-Clark is a journalist and
consultant on Windows/NT and the internet.
He can be reached at n t @ p c w . v n u . c o . u k.
Computer Manuals 0121 706 6000

●P C W C o n t a c t s

Fig 3, ListUser.perl, is a bit more complex,
demonstrating the ability of Perl to achieve a
lot with few statements. It’s a post-processor
for NT’s NET USER command and displays
the value of a single attribute for each user in
a domain. The program takes a single
parameter which should be enclosed in
double quotes if it contains spaces. The
parameter is the name, or part of the name,
of the attribute to display. For a list of all the
accepted attributes, enter:
NET USER <your id> /DOMAIN

into a console window. If you’re not logged
on to a domain, remove the option from the
command and both uses of the NET

command in the program.
For example, to list the last logon time

for each user, the command is
listuser “last logon”

The GetUserNames subroutine is self-
contained and can be plucked out for use in
another program or transferred to a function
library. (Both the Perl programs listed here
are included on our cover-mounted CD.)

■ Perl 5 by Example
A u t h o r David Medinets
P r i c e £37.49
(incl. CD-ROM)
P u b l i s h e r Q u e
We’ve been crying out
for a good introductory
text to Perl 5 and it has
arrived. David Medinets
gives the novice and
e x p e r i e n c e d
programmer a good
understanding of Perl

with only an occasional lapse into that
irritating, patronising, tone that spoils many
similar programming books. He is clear and
l o g i c a l .

This 658-page book is best treated as a
course text, being arranged into increasingly
complex subjects, each with its own
summary and exercises. The final quarter is
devoted to web programming and CGI
scripts. The index is good enough to allow
you to quickly locate a particular topic.

The CD-ROM is a bit of a mystery. Given
that Perl is distributed free under the Gnu
artistic licence, you might expect to find
various versions for different systems on the
CD. But no; there are copies of the code
samples from the book, plus texts from a
couple of other books and a copy of
Microsoft’s Internet Explorer. There’s a copy
of MIRC (Internet chat client), too, whose
connection with the book’s subject-matter is
tenuous to say the least.

■ Perl 5 Quick
R e f e r e n c e
A u t h o r Micheàl Ó Foghlú
P r i c e £ 1 8 . 4 9
P u b l i s h e r Q u e
If this book does nothing
else, it at least helps end
the debate about what
works on NT’s Perl and
what doesn’t. With each
function listed, there is a
set of compliance icons
indicating whether the
feature works on
versions 4, 5 or NT; the

implication being that everything works on
U n i x .

Overall, it’s a bit of a mess. There are a
number of typographical errors, the section
on pattern matching omits any mention of
alternation (the use of the bar, “ | ” symbol to
match either of two patterns), although the
information can be found at the back of the
book.

But if you have this 345-page book, you
will use it. It’s a handy reference for your
bookshelf. It might have been a handy
pocket reference had they not been quite so
extravagant with space, which is wasted in
abundance. But then it wouldn’t have looked
like eighteen quid’s worth, would it?

Fig 3 ListUser.perl

List all users in the domain along with one selected attribute.
Subroutine to return an array of all the usernames in the domain

sub GetUserNames

{ my $userline = 0;

map /(\S.{1,19}?)\s\s{1,19}/g, grep {

if (/^———-/)

{ $userline = 1;

0

}

e l s e

{ $userline = 0 if /^The command/;

$ u s e r l i n e

}

} qx(net user /domain);

}
Retrieve parameter or supply default

$property = shift || “Full name”;

Define output format for report header

format STDOUT_TOP =

User Id @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$ p r o p n a m e

------------------- ------------------------

- - - - - - - - - - - - - - -

.

Define output format for report body

format STDOUT =

@<<<<<<<<<<<<<<<<<<<

@ < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

$_, $value

.

Iterate through all the user names extracting the selected attribute.

for (GetUserNames)

{ ($line) = grep (/$property/i, qx(net user “$_” /domain));

($propname, $value) = $line =~ /^(\S.+?)\s{2,}(\S*.*)$/;

w r i t e ;

}
ListUser.perl. Lists all the users in your domain with a single specified attribute. The program is
rather simple-minded: if you mis-type the attribute name it won’t notice; neither will it produce
interesting output. The program demonstrates useful techniques, like capturing the output from
commands, filtering and extracting information from them and formatting a simple report.

On the bookshelf

