
H A N D S O N ● V I S U A L P R O G R A M M I N G

3 0 9
P E R S O N A L C O M P U T E R W O R L D

A U G U S T 1 9 9 6

I do have misgivings about the
hundreds of VBX and OCX

controls on the market. It’s not that
they are no good: many are
excellent and enable you to create
a database manager, a web brows-
er or a word processor in less time
than it takes a C programmer to
create a single “Hello world”
window.

The problem is that every time
you pop another component onto a
Visual Basic form, your application
grows more bloated and perfor-
mance suffers. Canny developers
will ask themselves, “Do I really
need this control?” before commit-
ting to yet another OCX.

Farpoint’s Tab Pro, now at ver-
sion 2.0, is a case in point. Tabbed
dialogues have become important
in creating a clear, intuitive user
interface and Tab Pro offers more
than VB 4.0’s native tab strip. It is
supplied in every combination of
16-bit and 32-bit VBX, OCX and
DLL, for use with virtually any
Windows development tool.

The tab control is a container, unlike

includes five 16-bit and 32-bit OCX
components, each of which is virtually a
complete application in itself. There is the
Formula One spreadsheet, First Impres-
sion charting control, Visual Speller,
Visual Writer word processor control and,
new in this version, WebViewer HTML
control. The three most complex controls,

for spreadsheet, charting and
word processing, are among
the best in their category.

There are hesitations. Visual
Writer is no longer indispens-
able now that a rich text control
is part of 32-bit Windows and
the WebViewer faces tough
competition from Microsoft’s
freely-distributed Internet
Control Pack. It is a shame that
Visual Components has chosen
to implement 16-bit OCXs,
rather than the more widely
supported VBX, for its 16-bit
controls. But taken as a whole,
the suite is excellent value and

while these compo-
nents will slow down
your application,
they also provide
functionality that a
VB developer could
otherwise only
dream about.

Do we still need
Delphi?
Guy Robinson com-
ments: “As soon as

Microsoft releases a compiler version of
Visual Basic, Borland will have lost most of
the advantage that Delphi currently
possesses.

With Microsoft controlling the operating
system as well, Borland must ultimately
lose the advantage. I found it surprising
that Borland’s Zack Urlocker (quoted in
PCW, May) wasn't more positive towards
a cross-platform Delphi. Or is Java the
company’s intended cross-platform
vehicle?

I am an OS2 user, and if you talk to Mr
Urlocker again you can tell him I would be
one of the first to purchase Delphi for OS2
if it became available.”

VB’s tab strip which must be used in
conjunction with another container like a
picture box. Then there are more than 250
functions along with nearly as many prop-
erties which control the appearance of the
tabs and which can look like a ring binder
as well as a conventional tabbed dialogue.
Tabs can be bound to a database to
achieve a neat card-index style interface.

Tab Pro is only around 300K and is well
documented in two smart manuals. But do
you really need it? Something like the
Visual Developers’ Suite, from Visual
Components, makes better sense. No-
one could accuse these controls of being
merely decorative. Instead, this package

…that’s Visual Developers Suite. Tim Anderson
checks it out, answers Delphi queries and solves a
common Visual Basic problem.

Not just a pretty face

First Impression, (above)

part of the Visual

Developers Suite Deal, is

an impressive charting

component. WebViewer,

(right) is new to the Visual

Developers Suite but

Microsoft’s Internet

Control Pack offers better

functionality

If you want a tabbed dialogue to look

like a ring binder, Tab Pro is the

obvious choice

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 1 1
P E R S O N A L C O M P U T E R W O R L D

A U G U S T 1 9 9 6

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 1 0
P E R S O N A L C O M P U T E R W O R L D
A U G U S T 1 9 9 6

How can you detect whether your Visual Basic application is running in the development
environment or standalone? For example, you might want to enable extra debugging code
when running in the IDE. Here are two ways to do it. The easy way is to use inspect
App.Exename. App is a global object with several useful properties. For example, App.Path
returns the directory from which the executable is run. App.Exename returns the name of
the project, when running in the IDE, or the name of the executable when running
standalone. If you give the project and the executable different names, then hey presto! you
have an easy way to detect which is running.

If you would rather show off your Windows API skills, there is another method to use. All
VB applications have a hidden parent window. In the IDE, this has a window class of
ThunderMain, but in standalone executables the class is ThunderRTMain. Here’s a function
that exploits this difference to detect which is running:
' Declarations for 16-bit VB - amend for 32-bit.
Declare Function GetClassName% Lib "User" (ByVal hwnd%, ByVal lpClassName$,
ByVal nMaxCount%)
Declare Function GetWindowWord% Lib "User" (ByVal hwnd%, ByVal nIndex%)
Global Const GWW_HWNDPARENT = (-8)

Function isDev () As Integer
Dim ParentHwnd As Integer
Dim ParentClass As String
Dim iClassLen As Integer

ParentHwnd = GetWindowWord(form1.hWnd, GWW_HWNDPARENT)
ParentClass = String$(33, 32)
iClassLen = GetClassName(ParentHwnd, ParentClass, 32)
ParentClass = Left$(ParentClass, iClassLen)
If ParentClass = "ThunderMain" Then
isDev = True
Else
isDev = False
End If
End Function

Visual Basic tip: detecting the IDE

so you could create an application that
would supply the required data to any OLE
automation client (see above; Automating
Delphi with OLE).

If the client could also draw charts, as
Microsoft Excel or Lotus WordPro can,
then you could write code on the client side
to extract the data and draw the graph. An
insertable OLE object would be a better
solution but an easy way to implement
such a thing will have to wait for future ver-
sions of Delphi and Visual Basic. These
will be able to create OLE controls; OLE
automation objects with a visual interface.

OLEContainer1.CreateLinkToFile('C:\te
st.bmp',False);

OLE will then splutter and whir and the
bitmap will be displayed. If the bitmap is
later updated by another application, you
can update it with:
OLEContainer1.UpdateObject;

In such a simple example, you could
get similar results more efficiently using
the LoadFromFile method of the picture in
a standard image control, but the OLE
approach has advantages. For instance,
the OLE container will work with any OLE
server on your system and supports things
like in-place activation. You can save OLE
objects to disk using TOLEContainer’s
SaveToStream method .

What about using Delphi as an OLE
server, supplying information to display a
graph or chart in a word processor
document? Since this is not supported by
the VCL, it is not easy to do in Delphi. The
latest OWL or MFC-class libraries
specifically support this OLE feature, so in
this case C++ is a better option. What
Delphi does support is OLE automation,

If you think cross-platform compatibility
is important, and the rise of the Internet
suggests that it is, then Java must be a
more promising way forward for Borland
than simply releasing versions of Delphi
for other platforms. But I do not see Delphi
being seriously threatened by a compiled
Visual Basic. It is not just a matter of per-
formance, it is the design and structure of
Delphi that is richer and more elegant than
Visual Basic. Another advantage is that
Delphi is equally suitable for small utilities
or major applications. VB has its own
strengths, and a compiled version should
address the performance issue, but Delphi
will not lose its niche.

Combo Box defaults
Brendan Breen asks: “I have a ComboBox
in a dialogue. I want to set its style to Drop-
DownList. When the dialogue is displayed
I want to show a default value in the
combo. But it always appears blank. I
have tried all sorts of things but none of
them work. Any ideas?”

Writing to the Text or SelText property
of a combobox does not work when its
style is “csDropDownList”. The solution is
to write to the ItemIndex property. For
example, you could put this into the
dialogue’s Show event:
ComboBox1.ItemIndex := 3;

Delphi 2.0 and OLE
Peter Harris queries Delphi’s OLE capabil-
ities: “We are currently developing
software using Borland's C++ (4.52) and
OWL to develop a graphical interface to a
specialised database. We were very inter-
ested in developing the front end in Delphi
and purchased V2.0. However, we seem
to have come across a fairly major limita-
tion of Delphi2, in that it will not act as an
OLE2 server and client. We need to be
able to embed bitmaps and suchlike in our
application windows, and also allow
linking/embedding of our graphical stats
results into other apps — specifically, word
processors. We’ve been unable to find
anything in the Delphi documentation
about this. I wonder if you have come
across this problem, or a way around it?”

Delphi 2.0 will act as an OLE 2.0 server
and client, but the server bits do not yet
support embedding, at least not as imple-
mented in the visual component library.
On the client side, there is the
TOleContainer which is to be found on the
System tab of the component palette. For
documentation, placing one of these on a
form and then pressing F1 brings up all
that Borland has seen fit to provide.

For example, you could create a link to
a bitmap file with the following line of code:

Delphi’s

Automation Object

Expert lets you

enter the key

characteristics of

a new OLE

automation object.

Later, you have to

register the object

in the Windows

registry

Step by step, here’s how to create a OLE
automation server in Delphi:
1. Start a new application or DLL and save
it as, for example, MYAPP.DPR. DLLs are
in-process servers that run in the same
address space as the calling application.
2. From Delphi’s file menu, choose New
and select Automation Object from the
dialogue.
3. Enter a class name, for example MyObj.
By default, Delphi will make the OLE class
name the same as the application name, so
the new OLE object will be MyApp.MyObj.
4. Choose the instancing. Internal is a
rarely-used setting for OLE objects that are
not available to other applications. Single
instancing means that each instance of the
server can only export one instance of the
OLE object. Multiple instancing, which is
required for DLLs, allows multiple instances
of the OLE object.
5. Add OLEAuto to the uses clause in the
project source. If it is a DLL, follow it with
this section, observing case sensitivity:
exports
DllGetClassObject, DllCanUnloadNow,
DllRegisterServer,
DllUnregisterServer;
This is all you need. You don’t need to add
OLE objects and methods to the exports
clause. Contrary to the documentation, you
don’t need to call
Automation.ServerRegistration in the
project source.
6. In the Automated section of the new OLE
object, add the methods, properties and
functions that are to be exposed, defining
them in the implementation section in the
normal way. There are limitations in terms
of which types and declarations are allowed
and normally these will be caught by the
compiler if you try to use them. Here’s an
example type declaration:
type
MyObj = class(TAutoObject)
private
{ Private declarations }

Automating Delphi with OLE

MyVar: integer;
function GetMyProp: integer;
procedure SetMyProp(iParm:

integer);
automated
{ Automated declarations }
function MyMethod(iParm:

integer): integer;
property MyProp: integer read

GetMyProp write SetMyProp;
end;
Note that you cannot access fields

directly in an OLE object. You have to use
property access methods.
7. Finally, the OLE automation object must
be registered. Applications can be
registered by running them with a /regserver
parameter. You can register a DLL using
Microsoft’s REGSVR32.EXE utility, or failing
that by calling the exported
DllRegisterServer function. This need only
be done once.

You can easily test the OLE object. Here
is some example Visual Basic code:
Dim myOLEobj As Object
Set myOLEobj =
CreateObject("myapp.myobj")
myOLEobj.myprop = 345
MsgBox "The property was set to: " &
str$(myOLEobj.myprop)

Why use OLE automation
servers?
Performance of OLE servers is good,
particularly in-process servers, but they are
not as quick as standard DLLs. So why
bother?

Firstly, because programming OLE
objects is easy and intuitive, compared to
ordinary DLLs which require case-sensitive
function declarations.

Secondly, OLE objects bring with them
the benefits of object-orientation, inheritance
aside. Thirdly, OLE objects have a greater
degree of language independence. Fourthly,
as OLE progresses it should be possible to
do things like remote automation using the
objects you have developed.

PCWContacts
Tim Anderson welcomes your Visual
Programming comments and tips. He can
be contacted at the usual PCW address,
or at freer@cix.compulink.co.uk
or http://www.compulink.co.
uk/~tim-anderson/

Contemporary Software 07000 422224
(FarPoint Tab Pro 2.0; £99 plus VAT).
Visual Components 01892 834343
(Visual Developers Suite; £235 plus VAT).

