
H A N D S O N ● B E G I N N E R S

A computer program is nothing more
than a sequence of instructions

which are designed to make your comput-
er behave in a certain way. There are liter-
ally hundreds, if not thousands, of pro-
gramming languages and they are all dif-
ferent. Some have only superficial
differences, while others differ hugely.
Nevertheless, all programming languages
have some things in common: they all
attempt to describe the processing of data,
and because of this they all share certain
basic facilities.

Here, I’ll be giving an overview of pro-
gramming principles and common struc-
tures (and if you’re about to embark on a
programming course, this will give you a
good head start). Once you’ve understood
the basic principles of programming, you
should be able to get to grips with practi-
cally any language.

What is a computer program?
Computers are not very intelligent things.
They can’t philosophise on the meaning of
life, but they are very good at performing
boring, repetitive tasks very quickly and
very accurately.

Deprived of a program written by a
human being, a computer can do nothing.
If a program is badly written, it can very
obediently turn perfectly good data into
complete gibberish… just one small error
can alter the behaviour of an entire
application.

There are three basic facilities which all
programming languages must have. First-
ly, they must have some way of represent-
ing data and performing operations on it.
Most provide some form of primitive data
and structured data, and some allow you
to create your own data types.

Secondly, programming languages
must provide some kind of evaluation
mechanism; some way of describing the
way in which you would like the data to be
transformed.

Thirdly, every programming language
must have a set of naming and declara-
tion rules. These rules state when you can
and cannot refer to other elements of a
program.

Constants and variables
Most computer programs use some num-
bers which do not change their value
throughout the duration of the program.
These values are called constants and are
usually declared at the beginning of the
code.

The rate of VAT, for instance, is a figure
which may be referred to many times in a
program but always as the same value.

This can be declared at the beginning of
the code (e.g. VAT = 17.5). Then, every
time you need to use the figure, you can
simply refer to “VAT”. What’s more, when
the rate of VAT alters, all you need to
change is the constant declaration at the
top of the code.

A variable, as you’ve probably guessed,
is a value which changes throughout the
program. The value of a variable can be
altered and manipulated by the program,
and certain operations may be performed,
depending on its value. All constants and
variables have names and values.

Data types
Before a variable can be referred to in
code, it must first be declared and given a
data type; the program needs to know the
type of thing with which it is dealing.

3 1 5
P E R S O N A L C O M P U T E R W O R L D

S E P T E M B E R 1 9 9 6

Programming primer
Pay attention at the back! Eleanor Turton-Hill

provides an overview of programming principles
and common structures.

Most programming lan-
guages acknowledge several
data types, the major distinction
being between text and num-
bers. In Pascal, there are four
basic data types: char (for char-
acter strings), int (for integer
values), and real (for double
precision real numbers).

There is also a Boolean type
which is used as a flagging
mechanism. A Boolean vari-
able can hold just one of two
values like Yes/No, or On/Off,
or 1/0.

Another data type used in
most programming languages is the array
type. This is used for managing lists.
When an array is defined, it is given an
index which enables you to uniquely
identify any one of its elements (see
Arrays, above).

Controlling program flow
Every language has different conventions
for beginning a program. In both C and
Pascal, programs start with the reserved
word “main”. This makes it clear where
execution should begin (Fig 1).

The following text shows three basic
control structures which are universal in
procedural programming languages. Each
structure has variations and each is
written slightly differently, depending on
the syntax rules of the language you’re
using. Here, I’ve made the examples sim-

ple and used pseu-
do-code to illustrate
their structure.

● IF THEN ELSE
The IF statement is
probably the easiest
programming struc-
ture to understand. It

C Pascal
main () { PROGRAM main (input,output);
definitions; definitions
statements; BEGIN
} statements

END.

Fig 1 A ‘main’ point

H A N D S O N ● B E G I N N E R S

3 1 6
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 6

ables, data types, and basic control struc-
tures, you’re ready to start writing simple
programs. But when your code starts to
become more complex, then you’ll have to
learn about scope rules and structure.

It’s easy to turn a perfectly good work-
ing program into complete garbage if you
don’t follow a few design principles. Your
program may still work quite well but will
gradually become unreadable and, worst
of all, unmaintainable.

Over the years there have been many
theories about how programs should be
designed. The idea of the procedure
emerged in the seventies with C and Pas-
cal. It attempted to break code down into
manageable and well-specified chunks,
making it easier to write and maintain,
especially by large teams. This “modular”
style of programming, which is based on

PCWContacts
Eleanor Turton-Hill welcomes any
feedback and suggestions from
readers. She is at
ellie@pcw.ccmail.compuserve.com

Borland 0990 561281
Microsoft 01734 270000

What is object-orientated programming?

☎
☎

There’s been much confusion recently about the meaning of the
term “object-orientated”. This is largely because it has been bandied
about by all and sundry to mean a multitude of different things. Put
simply, object-orientated programming is a collection of design
principles for writing code. It is only supported by some languages
and aims to break programs down into manageable units called
“objects”. The core idea behind this is to make components which
are sufficiently general purpose as to enable them to be re-used in
other programs.

This method of designing code yields many advantages. Firstly, a
program which is divided into independent chunks is easier to
understand, easier to debug and generally easier to maintain.
Secondly, if many of those chunks are re-usable, time will be saved
in future projects. Thirdly, an application made out of many
independent parts can be more easily created by teams, thus
increasing productivity.

The first object-orientated programming languages (Simula and
Smalltalk) were conceived more than 20 years ago, but it’s only
recently that people have started taking its principles seriously. C++
is now the most popular object-orientated language. Objects within
C++ can correspond to real-world entities such as bank accounts,
employees or customers. But they can also correspond to computer
hardware and software components such as communications ports,
or video display windows, or data structures such as stacks or lists.

What are classes?
Many of the objects that a program uses have the same structure. A
program which simulates the operations of a bank, for example, will
need many account objects and many customer objects. Once the
structure of an object has been set up, it is possible to produce many
copies of it. This is done by using “classes”; each contains a complete
description of one kind of object. Truly object-orientated code must
have the three essential characteristics of inheritance, encapsulation
and polymorphism. This may sound frighteningly technical, but in fact
the whole thing rests on three fairly simple concepts.

One: classes can be defined from scratch, or they can be created
by modifying an existing class. Derived classes take on all of the
characteristics of the existing class, plus any modifications. This is
called inheritance, and can save you an incredible amount of time and
effort in code writing. Two: objects are available to the programmer
through an interface which responds to a limited number of different
kinds of message. The internal structure of individual objects is hidden
from the programmer and this data hiding, or encapsulation, simplifies
the use of objects. And three: a major attribute of an object-orientated
language is that all the objects of the derived classes of a parent class
are type compatible. This means that a derived class can be used
anywhere that the parent class is expected. This is called inheritance
polymorphism and enables clients of a family to see a simple uniform
interface.

the idea of packaging data and functions,
developed into what is now known as
“object-orientated” code (see the box,
above).

If you are thinking of learning a pro-
gramming language, there are plenty of
ways to get started. Turbo Pascal and
Turbo C++ are both available from Bor-
land, in DOS and Windows versions.
Microsoft offers a Visual Basic Pro and
Visual C++ Student Pack which you can
get for a street price of about £80.

will execute one or other group of state-
ments depending on the value of a condi-
tion. We use this structure in normal lan-
guage all the time: “If it’s sunny, we’ll go
out, otherwise we’ll stay at home”.

In code, it looks more like this:
IF condition true THEN
instructions

ELSE
instructions

END IF

● WHILE DO
The WHILE statement is iterative rather
than conditional. It will execute a state-
ment continually until a condition no longer
holds. This translates to normal language
something like this: “While John is well, he
will keep working. If he is unwell, he will
stop”.

In code, it looks something like this:
WHILE Condition is true
DO Instructions

WEND

● FOR..NEXT
The FOR..NEXT control structure is also a
repeating routine. It is used to execute a
single statement, a specified number of
times: “For the next five days, I’ll be going
to work”.

In code, it looks rather like this:
FOR
n=1 TO 5
Instructions
NEXT
Structure
Once you’ve got used to the idea of vari-

There are plenty of

good programming

tutorial pages on

the internet. Check

out this one,

written by Steve

Holmes of the

University of

Strathclyde, for

some lessons in C:

http://www.strath.

ac.uk/CC/Courses/

NewCcourse/

ccourse.html

