Workshop: Visual Basic

Getting automated

Tim Anderson does clever stuff with automation servers in the final part of the workshop.
Plus, polishing the Sports Club database and adding some essential new functions.

ast month’s workshop
demonstrated how a Visual
Basic class can be plucked out
of the standalone version of VB and, with
care, planted into Microsoft Office as a
Visual Basic for Applications class. That is
one way of re-using code, but an even
better approach is to create objects that
can communicate with any number of
different applications without the need to
recompile. With the rise of PC networks,
and now the internet, this kind of software is
the way of the future.

Under Windows, the way to achieve this
is by using Microsoft’s Component Object
Model, or COM. This is the technology
beneath OLE and ActiveX, and Visual Basic
programmers can use it without knowing

the detail of how it all works. For example,
what if the PCW Sports Club wants to get
at membership details not only via Word,
but also from other programs like accounts
and desktop publishing packages?

A key part of the Sports Club application
is the CPerson class module which
describes a club member. By making a few
changes, that class module can become an
automation object which exposes its
properties and methods to other
applications. The steps are as follows:

1. Open the CPerson module and press F4
to reveal the class properties. Set the
Instancing property to CreateTable
MultiUse, and the Public property to True.
2. Add a module to the project using Insert -
Module. In the module, create a Sub Main.

o pewliub - Microsofl Yisual Badic [design]
File Edit “iew Inset Bun Tools Addins Help

ik O Y

§ H2Us%3NZ0

Envirgrment ;| ditar || Advanced]|

fmSe. Stattup Fom:

Piojent Mame::

Dptions [%}

Propeities - [Perstn]
[CPerson ClassModuls .."_i

Modu | Help File:

T [5ub Main | [PCw/Ciub

Instancing 2 - Creatable Multilse
CPefson

HelpContextiD.

o Statttdode
* Standalone. OLE Server

Compatible OLE Sedver.

Public True

S

#pplication Descrption:

IPEW Sp_nrls Club server

o]

Cangel l Help

Ohject l [General]

Ll Proc: l[declalalinns]

Option Explicit

Private wForename iLs String
Private mSurnsame is String
Private middressl ks String

- Frivate middressz iLs String
A

Two key steps in creating an automation server are: first, the properties for the class to be

exposed; and second, the project options

2 58 « Personal Computer World « May 1997

3. On the Tools menu, in Options - Project,
change the project name to PCWClub, and
put a few words of description in the
Application Description field. Finally, change
the Startup Form to Sub Main.

The project name must be unique to
your automation server. The full class name
of objects in your server will be of the form
PCWClub.MyClass.

By taking these simple steps, you have
created an automation server that lets other
applications create and control objects of
the CPerson class. All that remains is to
register the class in the system registry. If
you run the application in VB’s development
environment, it will be registered
temporarily. If you build an .EXE or OLE
DLL, it will be registered permanently. Then
you can write code like this in Excel:

Dim myobj As Object
Set myobj = CreateObject
(“PCWClub.CPerson’)

1T myobj .FindPerson(“Bloggs”,
“Fred”) Then
MsgBox “Fred lives at: “ &
myobj -Address1l
End If

Although applications such as Excel
function both as automation servers and
standalone, most VB applications will be
one or the other. Often, VB automation
servers have no user interface, since this is
provided by the client application. The
workshop example, though, is designed to
work in both guises. The trick is to use Sub
Main to detect whether the application is
running standalone or as an automation
server. Here is the code:
Sub Main()

1T App.StartMode <>

iciosoll Excel - Book2

Workshop: Visual Basic

Remind me, what is Fred's address

‘ﬁ Eile Edit View Insert Format Tooks Data Window Help
[imi= = N e > L@ | oo =
[s =wl 2= 7 e A

14 | =

AL w [| m e [[[[e =
7 =
2_ Microsoft Excel

Fred ives-at: 14, The Gardens:

44 [¥ [M}\Sheet1 (Shestz [Sheets /
Ready

i Microsult Visual Basii: - Book2 frunning] - [Sheetl [Eode]] |

”m Ele Edit Wiew Insert Format Debug Bun Tools: ‘Window Help

|52 @- W]
iy act

Bk oy g w2
B

) |

| [etiek =l

| |Cummandﬂuﬂun1

= &% vBAProject (Book2)
B+ Microsoft Excel Objects

£ Shestl (Shieett)

8 sheetz (shest2)

B sheet3 {Shest3)

Private Sub CommandButtonl Click()
Dim mwyob) As Chject
Set myob)] = CreateChbject ("PCWClub.CPerson')

If myob].FindPerson("Bloggs", "Fred'") Then

MsgBox "Fred lives at: " & myobj.Addressi
1887 Thistorkbook End If
End 3ub :
=s | L!_I

Excel is able to get at Sports Club details by using a VB automation server

vbSModeAutomation Then
frmSearch.Show
End If

End Sub

You may wonder what Sub Main does
when running as a server? The answer is,
nothing at all. The only thing the server
application does is to expose its classes so
other applications can create and control
objects. For testing, you can simulate this
mode by setting the startmode in Project
Options to OLE Server. Run the application

and then minimise VB. Next, run another
instance of VB, open the References dialog
and check the PCW Sports Club server.
Now you can test the server by creating
objects of the CPerson class.

If you have run a compiled VB
automation server such as PCWCLUB.EXE,
it will be entered permanently in the system
registry. Once you have finished testing, it is
good practice to remove it. You can do so
by running it from a command line with the
/UNREGSERVER parameter. DLLs are
unregistered using REGSVR32.EXE which

is found in the System directory. Run it
without parameters to see the switches.

Automation servers are powerful but do
present some new programming
challenges. The section of the Visual Basic
manual called “Creating OLE Servers” is
essential reading.

Adding the essentials

The Sports Club database is also used as a
standalone application, and the version in
last month’s workshop is lacking some
essential features. First, there is no way to
add or delete members; and second, you
cannot add or remove sports from the list
which applies to each member.

The thinking behind the design of this
simple application is that interface code
belongs in the main form, while database
code belongs in the CPerson class so that it
can be used in other applications or as an
automation server. The natural approach is
to create new public methods for CPerson
that give this new functionality. For example,
here is code to add a new member:
Function CreateNew(sSurname As
String) As Long
“ creates a new person in the
database
Dim 11d As Long
myRecordSet.AddNew
myRecordSet!surname = sSurname
11d = myRecordSet!I1D
myRecordSet.Update
Me.load (11d)

End Function
p260 O

Personal Computer World « May 1997 « 2 5 9

Workshop: Visual Basic

“5, pewliiub - Microzofl isual Basio [run]

Adddns. Help

i&_l o T

R
12

* I |'I'-.T 2751215

Baker, Jake
Barrett, John Faothall
Eloggs, Fred Sﬂuu_ker
Brown, David Tennis
W PCW Sports Club
Select 3 sport and click Ok, or Cancel to exit without
choosing & sport.
Search ||
= fudd Swimriing
S | s | Dees | — Table Tennis

Tennis

1

Object | [General]

Function iddSport(sportID is Long) is Bo

Dim ds As Recordset
Dim =%gl ks String

iddSport = False '

A

defaults

Adding a sport to a member’s list of interests is achieved via a simple dialog

button creates a new member with the
surname “Unnamed”. If the user wants to
cancel the addition, it is just a matter of
clicking Delete.

The DeletePerson method is a little more
involved. The problem is that there may be
other records, in the SPORTLINK table,

The ID field is a counter, which means
that the JET database handles the business
of ensuring that the new member has a
unique number. There is an issue, though,
about how to cope with users who change
their mind.

What if someone starts to create a new

member, and then wants to back out and
leave things as they were? One possibility is
to call the AddNew method, but not to call
Update until the user confirms the action.
Unfortunately, bullet-proofing the
application so that Update is only called
after AddNew or Edit is prone to error. The
easier approach is to minimise the time
when JET has unsaved changes in its copy
buffer. In this application, clicking the Add

which refer to the member being deleted.
To maintain data integrity, these records
also need to be removed. Database objects
have an Execute method which is an ideal
solution. Execute takes an SQL command
and applies it to the database. For example:
sSgl = “DELETE * from SPORTLINK
where SPORTLINK.MEMBERID = “ &
strs(l1d)

myDB.Execute sSgl, dbFailOnError

Beating the OLE jargon

OLE has lots of strange jargon. and here are two examples that can cause confusion. Mastering
these issues is important to make good use of the technology.

First, you will see references to in-process and out-of-process servers. In-process servers
are DLLs which run in the same address space as the calling application, whereas out-of-
process servers run in their own address space. This is a decision you take when building a VB
executable. In-process servers have substantially better performance but introduce more
programming restrictions.

Second, there is the matter of early or late binding. Binding is the process of locating the
properties and methods which the client application calls. If you use variables declared as Object
in the client application, then these identifiers are not resolved until runtime. This is called late
binding. On the other hand, if you use an OLE-type library to resolve these identifiers at compile
time, the code will execute faster. This is early binding. To use early binding in Visual Basic, open
the Tools - References dialog and check the type library required. Then, declare variables of the
specific class required, rather than the generic Object. This is much faster and also enables you
to detect errors in parameters, properties or method names when the application is compiled.
Another bonus is that you can use an object browser to inspect the interface of available classes.

Naturally, the best performance combines both techniques — that is, in-process servers
called with early binding.

2 60 « Personal Computer World « May 1997

The code at form level also has some
work to do. When a member is deleted, the
name must be removed from the list
currently displayed, and the other fields on
the form updated as necessary.

To make sense of adding sports to a
member’s list of interests, you need to
throw a dialog listing the available sports.
The dialog has a SportID property. To add a
sport, the application takes these steps:

1. Show the Sports dialog modally, which
means the user must either choose a sport,
or cancel, before continuing.

2. When the OK button is clicked, the
Sports dialog sets the SportlD property to
the currently selected sport.

3. Next, the program calls CPerson’s
AddSport method, passing the SportID as a
parameter. AddSport creates a dynaset-
type recordset which looks for records in
the SPORTLINK table that match this
member with the chosen sport. If the
dynaset is empty, AddSport adds the
required record. If it is not empty, AddSport
reports that the member is already linked to
that sport.

4. Finally, the program updates the form
with the new list of sports.

Finishing touches
There is plenty more work to do in
improving the Sports Club application. One
professional touch is to enable and disable
buttons according to whether or not they
are applicable. For example, when no
sports are listed, the Remove sport button
should be disabled. Next, you can add
keyboard shortcuts for mouse-free typing.

Another important area is error-handling,
to prevent the program from crashing and
to show the user informative messages
when things go wrong. For instance, the
database could become corrupted.

Finally, there is the issue of multiple
users and what happens when two people
try to update a record at the same time.

m All the code for this month’s workshop is
on the cover CD. And see Hands On Visual
Programming (p301) for answers to queries
concerning this workshop and other Visual

Basic problems.

Tim Anderson welcomes your comments and
queries. Write to the usual PCW address, or email
freer@cix.co.uk.

