
Extensis Portfolio 5.0

Visual Basic Reference

Table of Contents

Overview.. 2
The purpose of this document
What this document is not

Starting Portfolio... 4
Working with Catalogs ... 5

Opening catalogs
Opening a catalog on a server
Creating catalogs

Working with Galleries... 6
Selecting a Gallery
Sorting a Gallery

Adding files to a gallery .. 7
Cataloging Options

Working with records ... 8
Working with Selections
Selecting items
Clearing the selection

Working with Fields.. 9
Determining the fields for a catalog
Changing Field Values
Notes on Setting Field Values

Searching the catalog .. 11
Building the Query

Importing and Exporting.. 12
Exporting HTML
Importing text data

The Portfolio_V5 Interface………………………………………………………….…13
Opening catalogs with User-based Access

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 3

Overview

The purpose of this document
This document is meant as a brief overview to the Portfolio commands available via the Automation
interface in Extensis Portfolio 5.0 for Windows. The examples shown here were done in Visual Basic, but
users familiar with other languages capable of using Automation should be able to extrapolate from the
examples for their particular languages. This document assumes a basic level of familiarity with Visual
Basic.

What this document is not
This document is meant neither as an introduction to Visual Basic nor as a tutorial for how to script
Portfolio to perform specific tasks.

Plenty of information is already available on how to use Visual Basic. An excellent starting point for Visual
Basic information is available on the Internet at http://msdn.microsoft.com/vbasic/. This site contains a
great deal of useful information on Visual Basic as well as links to other programming-related web sites.

For more information on how to script Extensis Portfolio, refer to the additional files provided on the
Extensis CD. Additional information is also available on Extensis’ website at http://www.extensis.com in
the Portfolio product section.

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 4

Starting Portfolio
As with any application being accessed through Automation, create a variable to hold the object which
references the Portfolio.document class and then create the object using the set command

Example:
Dim PortObj as Portfolio.document
Set PortObj = New Portfolio.Document

If Portfolio is already running, the VB application will use that instance of the application. Portfolio is a
single-instance application, so there is no way to force a new instance of the application from within VB.

Note: Throughout much of this document, the examples will refer to an object named ‘PortObj’. This is
the object created above, and represents a Portfolio.Document object.

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 5

Working with Catalogs

Opening catalogs
To open a Portfolio catalog via Automation, use the Open function of the Document object. If the catalog
has already been opened with this copy of Portfolio (either through scripting or manually), the first gallery
of the catalog will come to the front and become the active gallery.

Function Open(Path As String, AccessMode As Integer, Password As String) As Integer

The acceptable values for AccessMode are as follows:
READER = 1
EDITOR = 2
PUBLISHER = 3
ADMINISTRATOR = 4

Example:
x = PortObj.Open(“C:\test.fdb”,4,””)

Opening a catalog on a server
To open a Portfolio catalog which is being served by a Portfolio Server, use the OpenServer function of
the Document object. The command takes the ‘address’ of the catalog in the form “server/catalog”, where
“server” is the server’s name or IP address.

Function OpenServer(Path As String, AccessMode As Integer, Password As String) As Integer

The acceptable values for AccessMode are the same as above (but be aware that served catalogs cannot be
opened in Administrator mode).

Example:
x = PortObj.OpenServer("192.0.0.0/Test.fdb",3,””)

Creating catalogs
To create a new catalog, use the new command. By default, the catalog opens in Administrator mode.

Function New(Path As String) As Integer

Example:
x = PortObj.New(“C:\test.fdb”)

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 6

Working with Galleries
Once a catalog has been opened or created, the majority of commands will be directed at the Gallery object
(in fact, there is no Catalog object in Portfolio’s Automation model).

Selecting a Gallery
The majority of actions require a reference to a Gallery object. This tells Portfolio not only which catalog’s
records are to be manipulated, but which set of visible records are being worked upon. The standard use of
the object is to pass in an index:

PortObj.Gallery(x)

To get the count of the open galleries in Portfolio, get the Count property of the Document object:

gCount = PortObj.Count

To determine the active gallery, use the GetActive function of the Document object. This returns the
name of the active gallery. If no gallery is open when this function is called, a Visual Basic automation
error will occur.

sActive = PortObj.GetActive

To convert a gallery’s string name, use the GetGalleryIndexFromName function of the Document
object.

Function GetGalleryIndexFromName(GalleryName As String) As Integer

The following example references the active gallery:

Example:
PortObj.Gallery(PortObj.GetGalleryIndexFromName(PortObj.GetActive))

Sorting a Gallery
Use the sort function of the Gallery object to put the records in a gallery in a particular order. Be sure to
only used indexed, single-valued fields for sorting. Set the Direction attribute to True to sort in
ascending order, False to sort in descending order.

Function Sort(FieldName As String, Direction As Boolean) As Boolean

Example:
x = PortObj.Gallery(1).Sort(“Filename”,True)

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 7

Adding files to a gallery
To add source files to a gallery, use the catalog function of the Gallery object. The catalog command
observes all the settings set in the Cataloging Options dialog in the Portfolio application.

Function Catalog(Path As String, IncludeDirs As Boolean) As Boolean

Example:
x = PortObj.Gallery(1).Catalog(“C:\Images\”, True)

Any path can be used as the string; this makes it very simple to catalog folders or entire volumes, as well as
individual files. To catalog subfolders of a folder or volume, set the IncludeDirs property to True.

Cataloging Options
Cataloging Options can also be controlled through the Automation interface by accessing the Options
object. The Options object contains 15 properties; these properties correspond to the controls available in
Portfolio’s Cataloging Options dialog on the General and Rules tabs. The available properties are:

AddExtractDescription
AddExtractKeywords
AddExtractThumbnail
AddSkipFiles
ModifyMethod

0 – Add
1 – Update
2 – Add and Update
3 – Add Unconditionally
4 – Update Unconditionally

ParseKeywords
PathKeywords

0 – None
1 – File Name
2 – File and Folder Name
3 – Path Name
4 – Path Name and Volume

ThumbnailQuality
0 – High
1 – Medium
2 – Low

ThumbnailSize
0 – 112 x 112
1 – 256 x 256

UpdateAppendDescription
UpdateExtractDescription
UpdateExtractKeywords
UpdateExtractThumbnail
UpdateMergeKeywords
UpdateThumbnail

The following example instructs Portfolio to attempt to extract an embedded thumbnail from a source file
the next time a file is cataloged in the gallery.

Example:
PortObj.Gallery(1).Options.AddExtractThumbnail = True

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 8

Working with records
Each gallery typically contains one or more record objects (though it may also contain no records). Use the
record objects to iterate through a particular set of records to manipulate the values of the fields within each
record. Records are typically referenced through the AllRecords object. This object contains a record
object for each record in the selected gallery. Be aware that an index represents the current order of records
within a particular gallery, so a particular record’s index will change based on the contents and order of the
gallery.
To access a particular record in a catalog, pass in the index for the desired record object into the
AllRecords object.

PortObj.Gallery(1).AllRecords(x)

To get the count of all the records in a gallery, use the Count property.

rCount = PortObj.Gallery(1).AllRecords.Count

Note: Be aware that this returns the number of records in the gallery, which is not necessarily the same as
the number of records in the entire catalog.

Working with Selections
A common use of scripts is to perform operations based on the selection of records the user has made in the
catalog. To determine which records are currently selected, simply refer to the SelectedRecords
object within a particular Gallery object. As with the AllRecords object, an index is used to identify a
particular record object within the SelectedRecords object.

Example:
PortObj.Gallery(1).SelectedRecords(x)

As with the AllRecords object, SelectedRecords also has a count property. This can then be used
to iterate through all the selected records in the gallery.

Selecting items
To modify the selection, use the select and deselect functions. The select function does not
deselect the current selection, so it may be necessary to use the deselect function first to clear the
selection.

Examples:
PortObj.Gallery(1).AllRecords(1).Select
PortObj.Gallery(1).SelectedRecords(2).Deselect

In addition, the Gallery object has a SelectAll function, which will set the selection to every record in
the gallery.

Example:
PortObj.Gallery(1).SelectAll

Note: Changes to the selection may not be visible on screen until the gallery is refreshed. The selection
will be accurate, but the screen may not redraw if the items being manipulated are already visible.

Note: List view does not support modifying the selection. The SelectedRecords object is accessible, but the
Select and Deselect functions will not work.

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 9

Working with Fields
Each Record object contains a number of Field objects (one for each system field and one for each custom
field. A particular field is identified by passing in the field’s name.

PortObj.Gallery(1).AllRecords(1).Field(x)

To determine a value for a field, use the Field object’s Value property.

SDesc = PortObj.Gallery(1).AllRecords(1).Field(“Description”).Value

To determine the number of fields in a catalog, get the Count property of a particular record.

fldCount = PortGal.AllRecords(1).Count

Determining the fields for a catalog
Because Portfolio allows the user to customize the catalog by creating their own fields, it is often useful to
determine which fields are present in a particular catalog. To do this, simply iterate through the list of all
the field names for a particular record (any record within a catalog will return the same results) and
examine the Name property.

Example:
fldCount = PortGal.AllRecords(1).Count
For i = 1 To fldCount
 If PortObj.Gallery(1).AllRecords(1).Fields(i).Name = "FieldName" Then
 ‘ Found the field titled FieldName
 End If
Next

Changing Field Values
One of the most powerful aspects of the Portfolio scripting interface is the ability to not only read all of the
fields in a record, but also to modify all of the fields (including the system fields). Be aware that while this
is a very useful tool, it is also possible to ruin a catalog by incorrectly modifying data that Portfolio uses to
manage source files. For example, incorrectly modifying the path of each record in a catalog could result in
Portfolio being unable to find any records again.
Setting the field value is done in the same manner as getting the field values.

Example:
PortObj.Gallery(1).AllRecords(1).Field(“Description”).Value = “This is the new description”

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 10

Notes on Setting Field Values
Data Types
For scripting purposes, all values for setting field values should be passed to Portfolio as strings, regardless
of the data type of the field within Portfolio. Passing the value as anything else will result in an error. The
reason for this is that Portfolio uses its own internal validation routines to determine whether the data being
passed in is appropriate for the field type. The following example shows the “Last Updated” field (a date
field) being set by passing in a string.

Example:
PortObj.Gallery(1).AllRecords(1).Field(“Last Updated”) = "July 4, 1776"

Multi-valued Fields
Field objects contain a set of functions for handling multi-valued data. For reading the multi-valued list, use
the MVDataCount property to determine the number of items in the list, and then iterate the list using the
GetMVData function to read the values.

Example:
iCount = PortObj.Gallery(1).AllRecords(1).Field("Keywords").MVDataCount
For i = 1 To iCount
 sValue = PortObj.Gallery(1).AllRecords(1).Field("Keywords").GetMVData(i)
 ' Do something with the data
Next i

Set the Value property to add a value to the multi-valued list. Use the DeleteMVData function to
remove a particular value, or use the DeleteData function to remove all values from the list.

Examples:
‘Adds Dog to the keyword list
PortObj.Gallery(1).AllRecords(1).Field("Keywords").Value = “dog”

‘Removes Dog from the keyword list
result = PortObj.Gallery(1).AllRecords(1).Field("Keywords").DeleteMVData(“dog”)

‘Removes all the keywords from this item
result = PortObj.Gallery(1).AllRecords(1).Field("Keywords").DeleteData

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 11

Searching the catalog
To perform a search in a Portfolio catalog, use the find function in the Gallery object. Searches in
Portfolio are executed by passing in a text string which represents the search criteria as they are laid out in
the Find dialog in Portfolio. The basic functionality is shown below. See the next section on how to
formulate the query variable properly.

Function Find(SearchString As String, AllRecords As Boolean, SetNewGallery As Boolean) As Integer

The AllRecords attribute is the equivalent of the “Find in Gallery” checkbox in the Portfolio Find
dialog. A value of True is the equivalent of that box being unchecked. The SetNewGallery attribute is
the equivalent of the “Display Results in New Gallery” checkbox in the Portfolio Find dialog. A value of
True is the equivalent of that box being checked.

To find all the records in the catalog, simply pass in a query that cannot fail.

Example:
PortObj.Gallery(1).Find((“Filename” & vbTab & “starts with” & vbTab & “”), True, False)

Building the Query
Searches in Portfolio are executed by passing in a text string which represents the search criteria as they are
laid out in the Find dialog in Portfolio. As in the Portfolio Find dialog, the basic query structure consists of
three clauses: the field, the operator, and the value. Each of these clauses is passed in as a textual string,
and the tab character separates each clause.

Example:
theQuery = "Keywords" & vbTab & "starts with" & vbTab & "test"

PortObj.Gallery(1).Find(theQuery, True, False)

To build a more complex search, a return character must be used to delimit each line. In addition, each line
after the first one needs to begin with the join condition (either “and” or “or”). Below is an example of a
two line search query.

Example:
theQuery = "Filename" & vbTab & "starts with" & vbTab & "test" & vbNewLine & “and" & vbTab &

"Keywords" & vbTab & "starts with" & vbTab & "key"

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 12

Importing and Exporting
The Portfolio scripting interface also provides for importing and exporting data.

Exporting HTML
The scripting interface for the Export HTML command is very similar to the Export HTML command
within Portfolio. To export the current selection using the layout of the gallery as the template, use the
ExportHTML function of the Gallery object. As in Portfolio, the Export HTML command is selection-
based, so a record set must be selected for the command to work correctly.

Function ExportHTML(HTMLPath As String, HTMLName As String, SavedSetName As String) As
Integer

The HTMLPath attribute is a string pointing at the destination directory. The HTMLName attribute is a
string with the name of the first HTML file to be generated. The SavedSetName is the name of the
HTML Template to be used. To use the current gallery’s settings, simply pass in an empty string.

Examples:
result = PortObj.Gallery(1).ExportHTML(“C:\Test\”, “myHTML.htm”, “”)
result = PortObj.Gallery(1).ExportHTML(“C:\Test\”, “myHTML.htm”, “MySavedTemplate”)

Notes:Any alerts that might come up during the Export process (such as overwrite warnings) are
automatically overridden. If files of the same name already exist at the location specified, they will
be automatically overwritten.
The template specified must already exist in the selected catalog; it cannot be created through the
scripting interface.

Importing text data
To import text data using Portfolio’s Import Field Values command, use the ImportFieldValues
function of the Gallery object. The path passed in is the text file to be used, and the SavedSet property
specifies the Import Saved Set to be used for matching up the incoming data with Portfolio fields.

Function ImportFieldValues(Path As String, SavedSet As String) As Boolean

Example:
result = PortObj.Gallery(1).ImportFieldValues(“C:\Test\TestFile.txt”, “MySavedSet”)

Note: The template specified must already exist in the selected catalog; it cannot be created through the
scripting interface.

PORTFOLIO 5.0 VISUAL BASIC REFERENCE 13

The Portfolio_V5 Interface

All objects, properties, and methods of the Portfolio interface (as described in the rest of this document) are
supported in the Portfolio_V5 interface. In addition, the Portfolio_V5 interface has two functions:
“OpenByUserName” and “OpenServerByUserName” to allow for the opening of catalogs with user-based
access security. To access the interface, create an object variable to hold a reference to the
Portfolio_V5.Document class and create the reference using the set command.

Example:
Dim Port5Obj as Portfolio_V5.Document
Set Port5Obj = New Portfolio_V5.Document

Opening catalogs with User-based access
To open a catalog with user-based access security, use the Document.OpenByUserName function for
catalogs on disk, or the Document.OpenServerByUserName function for served catalogs (native or via the
SQL service). The catalog is automatically opened at the maximum access mode allowed for the specified
user.

 Function OpenByUserName (Path As String, UserName As String, Password As String) As Integer
 Function OpenServerByUserName (Path As String, UserName As String, Password As String) As Integer

Example:
 x = Port5Obj.OpenByUserName(“C:\test.fdb”,"User1", ”password”)
 x = PortObj.OpenServerByUserName("192.0.0.0/Test.fdb","User1",”password”)

