Numbers Count

A Countdown conundrum

Carol Vorderman replaced by a machine? The very idea. But here, Daniel Norris-Jones and
Julian Sweeting dare to ponder, as Mike Mudge sorts the vowels from the consonants.

his month’s project is proposed
H by Daniel Norris-Jones and

Julian Sweeting of Wheldrake,
Yorkshire (Dan@akga.com).

Carol Vorderman or machine?

Those of you who have watched the TV
show, Countdown, will know that Carol
Vorderman is not infallible when it comes to
the numbers game. Now and then she is
unable to solve the problem and this raises
the question: “Is it always possible?”

The Countdown numbers game requires
the contestants to pick six cards. Each card
has a number on the back. The cards are
arranged into four rows. The top row
contains the numbers 10, 25, 50, 75 and
100. The other three rows have cards from
one to ten.

A random number generator then
creates a target number (an integer
between 0 and 999) and the contestants
must then use the six numbers and the four
operators (+, -, X, +) to create a number as
close to the target as possible. The
contestants have 30 seconds in which to
achieve this target, using only pencil, paper
and mental power. Carol, on the other
hand, gets a little longer because the
contestants prove their solutions first.

There are two ways to approach this
problem: intelligence, or brute force and
ignorance. The Artificial Intelligence solution
may only be as good as Carol Vorderman,
and until the ADI Dynamic Link Library is
available it would prove difficult to
implement. So this results in the solution at
which computers are best. Try every
possible combination of numbers and
operators and then you will know whether it
is possible to achieve the target.

As a schoolboy, Julian Sweeting
attempted this on an Atari 8-bit home
computer. Naturally he suffered from low
computing power and limited knowledge.
He did, however, identify the problem of
parenthesis which complicated the number
of permutations and combinations of
operators and numbers. Initial estimates of
the number of potential calculations were in
the order of tens of millions, far beyond the
home computing power of the eighties.

Five years on, while learning to program
LISP, Sweeting came across Reverse
Polish Notation and recognised that it
removed the need to consider parenthesis.
Obviously this was the way to tackle the

problem. Some time later, during a road trip
around America, he happened to discuss
the problem with his fellow traveller,
programmer Daniel Norris-Jones. Their
appetite for solving this problem was
whetted and the project sparked into life.
Travelling to LA from Las Vegas, the two
applied the limited processing power they
had available (two Psion 3a organisers) to
parts of the problem.

The essential aspects of the problem are
as follows: there are six numbers and so
thereare6!=6*5*4*3*2*1=720
possible ways of ordering the numbers, i.e.
i 1,2,3,10,25,50
2- 2,1,3,10,25,50
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Hands On Numbers Count

2,3,1,10,25,50
719-
720- 50,25,10,3,2,1

Ignoring parenthesis, an operator may
be placed between each number pair.
Hence five operators, each of which can
take four values, 4 to power 5or4 *4*4*
4*4=1,024. That is:

1 ++++
2 -
3 +H*
1,023 *111]
1,024 1111

The Psion Organiser was used to
attempt simple problems not requiring
parenthesis. Because limited battery life
made it possible to calculate only a few tens
of numbers per second, the 700,000 was
out of the question.

The road trips continued and in the
desert near Roswell, Sweeting and Norris-
Jones had their first inclination of whether
the problem could be solved within 30
seconds. They required a compiled
language (100 times faster than the
interpreted OPL from Psion) run on a fast
computer, perhaps a few hundred times
faster than a Psion. The parenthesis
problem proved simple. Reverse Polish
Notation showed there are only ten ways to
arrange the operators and operand, which
brings the total to approximately seven
million numbers to calculate in 30 seconds.

The two programmers arrived in Albany,
New York, where they had access to some
“real” computers (IBM
RISC 6000
workstations).
Not all solutions
to the numbers
game require all
six numbers to
be used. Itis
therefore
necessary to

258 * Personal Computer World e August 1997

check intermediate results to determine
whether you have the answer. Successive
calculations differ only slightly, so only the
change requires calculation. This allows
intermediate results to throw a helping hand
to the floundering processor. For example,
given the numbers 1, 2, 3, 10, 25, 50, the
calculations may be done as follows:
check 50 + 25 + 10 + 3 + 2 - 1
check 50 + 25 + 10 + 3 + 1 - 2

10 calculations

As can be seen, the calculations are
reduced if the intermediate result is stored.
i=50+25+ 10 + 3
check i
check i + 2 - 1
check 1 + 1 - 2

7 calculations

This may be applied simply in the nesting
of the code and reduces the number of
calculations per combination from five to
between two and five.

At this stage, the solution was within
reach. The code had been rewritten in C
and was ready to go. The interpreter of the
Psion had flagged overflows and these
were dealt with easily. However, the Unix C
compiler was not so accommodating.
Overflows could go unnoticed and hence
reproduce spurious results. Sweeting and
Norris-Jones had come across a question
which must have been asked by every
serious programmer: “How do | detect
integer overflow?”

Fortunately, at 3am that night they found
Marcus, a diehard programmer, in an
Albany bar. When the whole Countdown
problem was explained to him, he
suggested they use assembler. They
claimed they required “machine
independence” (the best excuse when you
want to avoid using assembler, which
nobody really does). Marcus gave an

answer that was both robust and fast at

instruction level: two single
- precision integers (except zero)
| r when

operated on with +, -, * or / cannot be larger
than a double precision integer. So use
single precision integers throughout and if
the answer requires any of the bits of
double precision, the operation has
overflowed. The code was complete.

The program executed and found
solutions within five seconds. When given a
problem that was impossible to calculate,
the solution required inspection of all the
seven million combinations. In these cases
the RISC 6000 completed the job in 25
seconds: a complete success.

The performance of the program was of
interest and a small routine was created to
simulate the picking of numbers. A
reasonable sample would be required to
analyse the performance properly, but at up
to 25 seconds a game, such a sample
would require a few hours of runtime.
Unfortunately, as these machines were for
university use, a different kind of access
was required. Fortunately access was
available, but not in the physical sense. The
code was sent to a machine back in LA
using ftp, and this machine was remotely
set up to execute the program for 3,678
seconds every night from midnight.
Generally, Unix machines are on day and
night, so exclusive processor use could
almost be guaranteed at that time. The NY
workstations were set up for remote viewing
of the LA machine’s processor occupancy.
The scrolling bar chart changed from a thin
line to a solid black rectangle. The
processor was running flat out.

That was October 1995. The program is
still running with a log file of a few megabytes:
nobody likes an idle computer. We can now
replace Carol Vorderman if we wish. A Unix
workstation does the trick, but nowadays a
Pentium should be sufficient and a pretty
cheap replacement. The next task? How
about trying to replace Richard Whiteley?

Investigations of this problem should be
sent to Mike Mudge at the address below.
A prize will be awarded to the best entry
received by 1st November. (SAE for return

of entries, please.)

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational maths, together with
suggested subject areas or specific problems for
future articles. Email numbers@pcw.co.uk or
write to Mike at 22 Gors Fach, Pwyll-Trap,

St Clears, Carmarthenshire SA33 4AQ.
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Detector wor

A prime number detector requiring only semi-colons? Pretty tight code, you may
think. It lends Mike Mudge inspiration to set another poser for investigative readers.

nce upon a time, when Jonathan
Cochrane started “messing
about” with prime numbers, the

first thing he did was to write a function to
test whether a number is prime or not. It
was easy enough, basically a function of the
form:

int prime (int x)

{

algorithm;

return PRIME or NOT_PRIME

}

While getting the routine working and
thinking of what to do next, he decided to
try to optimise the
prime number routine
as much as possible
(haven’t we all made
this decision? — MM)
and he came up with a
prime number detector
that requires only semi-
colons: pretty tight
code, he thought! Can
any readers implement
a prime number
detector satisfying the
following
specifications?

1. Use any amount of C
code you want, but only
two semi-colons are to
be present.

2. Only allowed to pass
one variable to the
function, that is, the
number to be tested.

3. No pointers are
allowed.

4. The function must
retumaiora0

depending on prime or composite.

5. Semi-colons within the brackets of a for

loop do not count, i.e. for

(x=2.3;x<99; x++)

[ I 1 _ _ _don’t count.

6. The following style is also excluded,

define semi_colon; Jonathan claims to have

tried this on a number of colleagues without

finding any solutions (other than his ownl).
A different style of investigation, the

responses from Numbers Count readers,

will be examined with interest. Perhaps

other code-based optimisation criteria

might be applied?

An exercise in change of number base
Mr P Cowen of Middlesbrough has
extended the recent result of JJ Clessa, viz.
to find a number using the digits 1 to 9 once
each only, such that the leading N digits of
the number be divisible by N - to different
number bases.

His first observation, that the number
base must be even (why?) was followed by
the use of a Pentium Pro 200 with 64Mb
ROM “which constipated with hard disk
over-use at base 34,” he tells us, but found
results for bases 2, 4, 6, 8, 10 and 14. Can
any readers extend this investigation, and, if
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possible, find an underlying theory which
can be used to dramatically reduce the
amount of computation needed to discover
such numbers?

Any investigations of the above
problems may be sent to me at the address
below (see “PCW Contacts”), to arrive by
1st October 1997. All material received will
be judged using suitable subjective criteria
and a prize will be awarded by PCW to the
best entry arriving by the closing date. (SAE
for return of entry if required, please.) Each
contribution should contain brief
descriptions of the hardware and software
used, together with coding, run times and a
summary of the results obtained. General
comments on the topics, with references to
published or unpublished work in these
general areas, would be appreciated.

JAMS: a result

Further to my column which dealt with the
subject of JAMS (Numbers Count, April) the
result X(34732165539) = 876 has been
reported by both Mike Bennet (2hr, 11min,
3 sec on an Acorn Risc PC with a
StrongARM processor) and by Nigel
Backhouse (41/, days on a Pentium 133).
So, do not become despondent at the lack
of output from this investigation!

Appeals for reference material
Alexander Slack at 106431.2710@
compuserve.com would like an elementary
introduction to Mandelbrot Sets and
wonders if there is any software available in
QBASIC? Help for a 14-year-old embryo
computer scientist would be appreciated.
Perhaps this is not quite in the spirit of
Numbers Count, but the author would be
interested to receive references to the
problem of Tesselations in two dimensions.
These need not involve any aspects of
computing, although this is clearly a subject
where computer graphics skills can be
exploited both before and after the
underlying maths has been understood.

Close relations

Going back to Numbers Count, December
’96, John Sharp observes that the
recurrence relation T, =2T,,4 - Tya
associated with t4 = 2t3 + 1 (number E)
yields the sequence: 0, 1,1, 1,2, 3,5, 9,
16, 29,... for which the ratio of successive
terms converges, albeit very slowly, to the
Tribonacci Number. Duncan Moore, Nigel
Hodges and others found simple algebraic
functions for A through | and partial results

for the snubdodecahedron, e.g.
I = (t(t+2))**1/5, G = (2t+3)**1/,

NH also proved, in relation to Problem SL,
that: T(2)=128, T(cubes)=12758, T(fourth
powers)=5134240,T(fifth powers)
=67898771, while T(6th powers) greater
than 500 million and T (triangular numbers)
=33.

The worthy prizewinner, however, is
Paul Richter of Tunbridge Wells, for a non-
sophisticated approach to this investigation.
Details from John Sharp at 20 The Glebe,
Watford WD2 6LR (or from me).

Going back to your roots

This item in the November "96 column
proved to be very popular. The Problem
Function lead to a great deal of analysis.
Ultimately, Nigel Hodges printed out the two
roots to 700 places of decimals showing
them to differ in the 647th place. Other
analyses included using a program called
“Mercury” on a 486DX by Martin Sewell.
Duncan Gray refers to p3 of the Excel
workbook, Solutions. James Lea cites
Numerical Recipes in C (2nd edition), so this
section is very well known.

RF Tindall has been aware of a very fast
converging method of approximating to
square roots, which is exactly equivalent to
the algorithm given, for some time. But he
observes that if N is at all large, there are
difficulties finding the initial solution.

The worthy prizewinner is Matthew
Davies of Luton, who offers an error
estimate for the iteration scheme, a
generalisation to rational rather than
integers, a list of (mg,ng) seeds generated
using a Turbo Pascal version 6.0 program in
the range (1,100). And there’s a concluding
observation that “If this technique were to
be used as the basis of root calculations on
something like an embedded system, I'd be
inclined to compile a look-up table of
N....(mg,Ng) pairs rather than determine
them on-the-fly.”

m Correction: Dec’96 issue, p294, col.3 —
for “Scientific American” read “American
Scientist”.

POW Cortzet

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational maths, together with
suggested subject areas or specific problems for
future articles. Email numbers@pcw.co.uk or
write to Mike at 22 Gors Fach, Pwyll-Trap,

St Clears, Carmarthenshire SA33 4AQ.
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Mystery maths

Mike Mudge consults the book Unsolved Problems for his teasers this month, including
distances and square numbers and circles. Plus, roll up for a number theory conference.

his is inspired by Unsolved
Problems in Geometry by HT
Croft, KJ Falconer and RK Guy,
ISBN-0-387-97506-3, Springer Verlag 1991.
Question A. What is the maximum diameter
of n equal circles that can be packed into a
unit square? How should n points be
arranged in a unit square so the minimum
distance between them is greatest? These
problems are equivalent: if a collection of
points in a unit square are at a distance of at
least d from each other, the points can serve
as the centres of a collection of circles of
diameter d that will pack into a square of
side 1 +d.

Consider the second version of this
problem and denote by d, the greatest
minimum distance between n points in a unit
square. Exact results are known for n less
than or equal to 9; also forn = 14, 16, 25
and 36. For n lying between 2 and 5 these
are “easy” to obtain. Graham has
established the result for n = 6, the results
forn =7, 8 &9 are due to Schaer and Meir,
those for 14, 16 & 25 & 36 are attributed to
Wengerodt & Kirchner. Examples of both
exact results and conjectual bounds are

points that is denser than the square lattice
packing, but he conjectures that for 49, the
square lattice packing is best.

Are there any values of n such that d,, =
dp.1? The problem can be asked for
packing an equilateral triangle. Oler has
shown that if n is a triangular number, of the
form m(m+1)/2, the obvious configuration is
the extremal one. The natural question is,
can one do better if nis 1 less than a
triangular number? Note that n spheres have
been packed into a cube and certain other
polyhedra, but even for a cube, exact results
are only known for n less than eleven. A great
deal of work is stilll to be done in this areal

Question B. Spreading points in a circle
The analog of the previous problem for the
circle can be posed in a few equivalent ways:
1. What is the maximum radius of a disk, n
copies of which can be packed into a circle
of radius 1?

2. What is the radius of the smallest circle
into which n unit disks can be packed?

3. What is the radius of the smallest circle
containing n points, no pair of these points
being a distance of less than 1 apart?

least distance is 2*sin(Pl/n) and forn = 7,8 &
9 the least distance is 2*sin(Pl/(n-1)) with the
obvious configurations. This is
straightforward for n less than eight and
was proved by Pirl for n=8 & 9. He also
solved the case of n = 10 and conjectured
the values for n less than 20.

Suggested approaches to the problems
include randomly generated points with
analysis of large samples to estimate bounds,
and the use of computer graphics to draw the
optimum configurations, in the cases where
these are known, and to examine and
conjecture solutions for higher n.

Any investigations of the above
problems may be sent to Mike Mudge at
22 Gors Fach, Pwil-Trap, St Clears,
Carmarthenshire SA33 4AQ, tel 01994
231121, to arrive by 1st September 1997.
All material received will be judged using
suitable subjective criteria and a prize will be
awarded by PCW to the best entry arriving
by the closing date (SAE for retumn of
entries, please). Each contribution should
contain details of run times and a summary
of the results obtained.

Comments on the topics would be
appreciated. The topics

ik included here range from
n 2 3 4 7 10* 13* 17* 26* tiling and dissection
d, 21/2 61/2 - 21/2 1 2(2-31/2) 0.421 0.366 0.306 0.239 through packing and
*Indicates a conjecture as far as the writer is aware. covering to include nets

givenin Fig 1 (above).

Up to which square number is the square
lattice packing the best? Certainly for up to
36. Wengerodt has found a packing of 64

Conference on Smarandache-type Notions
in Number Theory

21st-24th August 1997, Craiova, Romania.
Bringing together those interested in
Smarandache-type functions, sequences,
algorithms, operations, criteria, theorums.
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4. How large can the least distance between

a pair chosen from n points in the circle be?
The last formulation yields the result that

for n between two and six...inclusive...the

Contributed papers or plenary lectures are
invited from all areas of Number Theory. For
info: Dr C Dumitrescu, Mathematics Dept,
University of Craiova, R-1100 Romania.

Tel (40) 51-125302. Fax (40) 51-413728. kety
prod@topedge.com , research37@aol.com.

of polyhedra and lattice point problems.
m Details of the winner of November 1996
Numbers Count will appear next month.

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational maths, together with
suggested subject areas or specific problems for
future articles. Email numbers@pcw.co.uk.
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Morph code

Instead of dots and dashes, Mike Mudge checks his figures to find out whether numbers
are nonamorphic or nonagonal. He also wonders why readers have been slow to respond.

nce upon a time... In the Journal
of Recreational Mathematics Vol.
20(2), 1988, Charles W Trigg, of
San Diego, addressed the problem of which
primes had the sums of the squares of their
digits also prime, e.qg. if Prime (P) = 9431,
then 92 + 42 + 32 + 12 =107 (Q) which is
also prime. Among the 1229 prime
numbers less than 104, Charles found 237
primes with this property... five two-digit,
47 three-digit and 185 four-digit primes. He
observed that among the generating primes
were the nine palindromes:
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11, 101, 131, 191, 313, 353, 373,
797 & 919
The smallest of these is the sole prime
repunit P = 11. For further study of repunits
see Repunits and Repetends by Samuel
Yates, Library of Congress Catalog Card
Number 82-502451 (Star Publishing Co,
Boiynton Beach, Florida 33435, in 1982).
There are also two near repunits, 223
and 8887. Among other structures present
are members of the 25 reversal prime pairs
such as 3169 and 9613. The smallest
numbers of the pairs include

113, 179, 199.. 3389, 3583, 7187,
7457, 7949 and 9479.

There are also some cases where the
sums of the digits and the generating prime
are equal, e.g. any prime permutation of
1136 giving 47 and 11, a prime permutation
of 337, 1741 or 3037 giving 67 and 13, a
prime permutation of 119 or 1019 giving 83
and 11. The most complex structure
observed by Charles showed ten chains of
primes wherein each Qis a P for the next
link in the chain, e.g;

191, 83, 73, :443, 41, 17, :463,

Numbers Count

61, 37, :1699, 199, 163 :6599, 223,
17, : 6883, 173, 59, : 467, 101, 2,
1883, 137, 59 : 449, 113, 11, 2,:
797, 179, 131, 11, 2,:

m Problem CWT

Extend this analysis to both squares of digits
of integers greater than 104, the cubes and
higher powers of the digits of such prime
numbers... and also address the problem to
other “well-known” classes of integers like
Fibonacci Numbers, Triangular Numbers,
Tetrahedral Numbers etc. There may be
underlying structures that deserve
attention? Finally on this particular topic, the
MM special: how do these results extend to
other number bases? (Is there anything
particular about base ten, from a number
theoretic viewpoint? And if so, why?).

Nonamorphic numbers

Charles Trigg, the author cited above,
introduced this terminology in the Journal of
Recreational Mathematics, 13:1, pp 48-49
(1980-81). Definition: Nonagonal Numbers
have the form N(n) = n(7n - 5)/2. A number
is said to be nonamorphic if it teminates its
nonagonal number.

Clearly, 1 is trivially nonamorphic in any
number base. With this exception there are
no nonamorphic numbers in bases two,
three, four, five, eight and nine. In base ten
there are five nonamorphic numbers less
than 104, namely
N(1)=1, N(5)=75, N(25)=2125,
N(625)=1365625 and
N(9376)=307659376.

In base six there are five nonamorphic
numbers less than 104, namely
N(1)=1, N(4)=114, N(13)=1113,
N(213)=253213 and
N(5344)=302505344.

Now, in base seven there are 42 such
numbers!

m Problem CWT nonamorph

Extend the above statistics to number
bases greater than seven, and investigate
any structure within these nonamorphs.

Finally, generate further “agonals” with
associated “amorphs” and attempt to find
an underlying general theory relating to their
distributions within a given number base,
and in particular the number bases in which
non-trivial “amorphs” do not occur.

Can we consider “almost amorphs”,
where the termination differs from the input
number in only one digit (by only one digit in
that place)? Are we losing sight of number

theory here and just playing with pattems?
An underlying theory would say no.

Send any investigations of the above
problems to Mike Mudge (see “PCW
Contact”, below) to arrive by 1st August,
1997. All material received will be judged
using suitable subjective criteria and a prize
will be awarded by PCW to the best entry
arriving by the closing date (SAE for the
return of entries, please). Each contribution
should contain brief descriptions of the
hardware and coding used, together with run
times and a summary of the results obtained,
and general comments on the topics.
References to published or unpublished
work in these areas would be appreciated.

Stop Press
In the March issue of PCW | requested a
proof that 12 + 22 ... +n2 = N2 had no
solutions other than n =1 and n = 24. The
reference has been supplied by Robin John
Chapman of the University of Exeter to
WS Anglin, The Square Pyramid Puzzle,
American Mathematical Monthly Vol. 97, pp
120-124 (February 1990). Thanks, Robin.
George Sassoon has investigated x2 =
ny2 = p and has so far (10/2/97) found that
the value p = 316234801 leads to integer
solutions for n = 1(1)30. He wonders what
percentage of possible n values give
solutions and suggests that there is no
upper bound on values for p yielding such
solution sets? Your comments, please.

Review of “Prime candidate”,
(Numbers Count 162, Oct "96)

For reasons totally beyond my
comprehension, this did not prove to be a
popular hunting ground for PCW readers.
The worthy prizewinner is therefore the
originator of the problem: Jonathon Ayres,
59 Watson Road, Leeds LS14 6AE.

Are there any readers with at least partial
results to Jonathon’s questions? If so,
please contact him directly. There is also a
fourth question to consider: What happens
if you use different functions such as the
highest Alliott Hailstone function, so that
HAHF = highest alliott function (a*x + b)?

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational maths, together with
suggested subject areas or specific problems for
future articles. Email numbers@pcw.vnu.co.uk
or write to 22 Gors Fach, Pwll-Trap, St Clears,
SA33 4AQ (tel 01994 231121).
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Mods and rockers

Mike Mudge JAMS with mod sequences. No, he hasn’t joined a retro band; here he presents
a stimulating exercise in occurrences to get your feet tapping and your calculators clicking.

Numbers Count

AMS, or Jonathon Ayres Mod
Sequences, are believed to have
their origins in Leeds in the
autumn of 1996. | am indebted to Jonathon
for the following presentation of the idea
which both he, and | hope readers of this
column, will find interesting and stimulating.

Mod sequences

The mod sequence is defined as

X(n) = (2*X(n-1)+1) mod n

where n starts at 1 and x(0) equals 0. The
first few numbers in the mod sequence are
0,1,0,1,3,1,3,7,6and 3.

1. Occurrence of X

When does a number occur in this
sequence? The first occurrence of the
numbers O to 19 in the mod sequence

Supernumerary

m On 6th December, Tony Forbes of
Kingston-Upon-Thames announced his
discovery of a triplet of 1,083-digit primes,
believed to be the largest known prime triplet.
(Further details of these numbers and the
underlying theory/computation on request —
MM.)

= Anyone who knows the means of obtaining
a “zooming Mandlebrot plotter” please email
Gogul@aol.com.

m Anyone wishing to get involved in the
“Great Internet Mersenne Prime Search”
mentioned in PCW (Jan) should contact Nigel
Backhouse, Division of Applied Mathematics,
University of Liverpool, M&O Building,
Liverpool L69 3BX (Kevin Edge, please note).
m In response to frequent requests for
reasonably priced (or free) software for long
integer manipulation: | can provide UBASIC
free of charge on receipt of a suitably
stamped, addressed, padded bag.
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are shown in Fig 1.

All numbers less than 1,000 occur in this
sequence, for n less than 10,000,000, with
the exception of 204, 344, 614, 622, 876
and 964. These first occur at:

X(n)= 614, n= 10629529
X(n)= 204, n= 15245143
X(n)= 344, n= 26713415
X(n)= 622 n= 47286732
X(n)= 964 n= 67815823

| have not been able to find the first
occurrence of X(n)=876, but if it does occur
n is bigger than 75,000,000.

2. Special values of X(n)

e X(n)=0forn=1, 3, 79, 35, 431, 1503,
2943, 6059, 6619, 18911 and 54223.

e X(n)=n-1,forn=1, 2, 8, 32, 46, 392,
12230, 1565942, 659488, 1025582,
10471228 and 3437088

e X(n)=n/2, for n=2, 78, 234, 430, 1502,
2942, 6058, 6618, 18910 and 54222

e X(n) and n end in the same last four digits
for n=34875, 52363, 54975 and four others
less than 100,000, and with the last five
digits of both the same, the only values of n
less than 1,000,000 are n=389103, 469599
and 742955.

3. Distribution of X(n)

o The most common occurring values of
X(n) are of the form 2Ap-1, so that for n
less than 1,000,000, the number 63
occurs 47 times.

e The average value of x(n) is about n/4.

e There are no values of n greater than 1 so
that X(n)=X(n+1), but for X(n)=X(n+2) this is
true for n=6, 7, 12, 13, 24, 25, 174, 175,
2448, 2449, 3072, 3073, 6768 and 6769.
o X(n)+1=X(n+1) is true for the values of n,

Fig 1

First occurrences of the numbers Y,
Y=0 to 19, so that X(N)=Y

Y N Y N
0 0 10 149
1 2 11 27
2 53 12 91
3 5 13 18
4 71 14 21
5 26 15 17
6 9 16 43
7 8 17 20
8 19 18 29
9 72 19 50

Numbers Count (PCW, September '96) — ‘Fraction Action’

m Gareth Suggett obtained successive
length records for the period of the
continued fractions of the square roots of
the non-square integers up to d=10,000,
terminating with d=9,949 having cycle
length 217. However, Gareth discovered
a program called “CALC”, written by KR
Matthews of the University of
Queensland. The MSDOS version is
available from the Mathematics Archives
ftp site: ftp://archives.math.utk.edu/
software/msdos/number.theory/
krm-calc. On a 256MHz 386 PC, each of
the 10-digit results quoted in the original
article can be obtained in about 20
minutes. The final 11-digit result was
confirmed on a 133MHz Pentium in 15
minutes, producing a 6.8Mb output file!
John Borland observed that at some
time, “continued fractions were a
standard topic in higher mathematics”.
Readers’ experiences of instruction in this
topic would be most interesting, together

Fig 2

First values of n so that X(n)+a = X(n+1)
A X A X
1 3 11 151
2 6 12 29
3 55 13 93
4 9 14 64
5 73 15 29823
6 28 16 33
7 63 17 45
8 18 18 42
9 21 19 71
10 74 20 52

n=3, 5, 81, 237, 433, 1505, 2945...
Fig 2 shows the first values of n so that

X(n)+a = X(n+1). All values of a, less than

500, occur for n less than 10,000,000
except for 205, 215, 345 and 391.

e For pairs of numbers x and y, y is at most

2x+1. The values of x where y has values
other than 2x+1, are x=1,3,6,7,13,14,15,
16,17,18,20,283...

with their personally recommended
reference books both for numerical and
function approximation theory
applications.

This month’s prizewinner, however, is
Duncan Moore of Birkenhead for his
major contribution to “Something
Different”, spread over August 1993 and
January 1997. The total number of
solutions now known is 30.

Also in relation to this problem,
Henry lbstedt reported (November '96)
finding one with three of p, g, 1, s, t
sharing one factor and the other two
sharing a different factor. This solution is
p=286, =154 sharing the factor 2, and
r=s=t=11 sharing the factor 11 with (2,
11)=1.

Henry points out that p and g also
share the factor 11 but that this was not
excluded from the question — there is
still a great deal of work to be done
before this problem is fully understood.

Questions

m Do all numbers occur in this sequence,
and also, do they occur an infinite number
of times?

m |s there always a value of n, for every a
(positive or negative) so that X(n)+a =
X(n+1)?

m |s there a way of predicting when a
number will occur in the sequence?

m |s there a formula which gives the n’th
value of the sequence, without calculating
the rest of the series?

m What happens for other sequences, such
as x(n)=ax(n-1)+b mod n or x(n)=(x(n-1)
+x(n-2)) mod n?

Something different
This item was taken from Computer Weekly

(19th January edition, 1989).

Following up on the observation that
156226,4 = 62251, and further that
994814 = 18499, 4 (Where the subscript
denotes the base in which the number is
represented), find the lowest five-digit
number (in any base). Generalise this
process to n-digit integers.

Answering back...

Please send any investigations of the above
problems to Mike Mudge at 22 Gors Fach,
Pwll-Trap, St Clears, Carmarthenshire,
SA33 4AQ (tel 01994 231121), to arrive by
1st July, 1997. All material received will be
judged according to suitable criteria and a
prize will be awarded by PCW to the best
entry arriving by the closing date (an SAE is
required for the return of entries). Each
contribution should contain brief
descriptions of the hardware and coding
used, together with run times and a
summary of the results obtained.

General comments on the topic of
JAMS would be welcome, together with
any practical (or unusual) applications of
integer arithmetic in number bases other
than 2 and 10.

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational maths, together with
suggested subject areas or specific problems for
future articles. Email numbers@pcw.vnu.co.uk
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Power points

Mike Mudge faces a stiff challenge in proving a solution, and this leads him to considering a
number of related problems concerned with the power sums of separate digits.

was asked (by Cyprian
Stockford) for a proof that the
only solution to
12 + 22 + 4+ n2 = N2
is n =24 when N = 70, viz. positive integer
solution of
n(n+1) (2n+1) = 6N
is unique as asserted in The Penguin Book
of Curious and Interesting Numbers (David
Wells, 1987) and elsewhere. Being unable to
provide such a proof (can any readers help?)
my attention was caught by a number of
notionally related problems involving the
power sums of the separate digits or the
partitions of a given positive integer.
m 1: 1201 seems to be the smallest prime
number which can be represented by the
expression x2+ny? for all values of n from 1
to 10. Is this true? What other prime
numbers can be so represented, and what
happens if the range of values of nis
increased to 1 to M for an arbitrary M?
m 2: Itis clear that 1233 = 122+332 while
8833 = 882+332. Under what circumstances
is a given integer equal to the sums of the
squares of its partitions into pairs? How
does this result extend to the cases of
higher powers (i.e. cubes) and also to the
cases of partitions into ordered triples, 4-
tuples, etc? Does this lead to a sensible
problem in number bases other than 107
m 3: 3435 = 33+44+33+55 while it is said
that (Wells, p.190) 438579088 is the only
other number exhibiting this behaviour
when powers of a single digit are
considered. Can this result be generalised
to pairs, i.e. abcdef... = (ab)a0 + (cd)ed + ...
or even to triples, etc? What happens in
other number bases?
m 4: By inspection, 175 = 11 + 72 + 53,
when, in general, does
aly + a2 + aS3 + .. + al, = ajas.ay
where the right-hand side is understood to

mean the integer so written in any number
base? It is more natural to reverse the
powers and even to start at zero, thus
requiring
b0y + bly + b2, + ..
bob4bg
The Subfactorial Function is defined as
IN=N! (1 - 1/1! +1/2! - 1/3! +
1/41 .. (-1)N/N! )
where
N! = 1.2.3.N e.g. !5 =5! (1- 1/1!
+ 1/2! - 1/3! + 1/4! - 1/5!) = 44
while 17 = 1854. It is stated that 148349 is
the only number equal to the sum of the
subfactorials of its digits.
m 5: Prove this result and attempt to
generalise it to other number bases. Try
replacing subfactorial by factorial and/or
replacing sum by product. Comment on the
function obtained from the subfactorial
function by introducing only positive signs
into the definition.
m 6: Regarding the individual digits of an
integer: is it possible to get a prime number
from any given number by changing one of
its digits? The answer is “No”. The smallest
integer for which this is not possible is 200.
Is it possible to get a prime number from
any given integer by changing two of its
digits? If not, what is the smallest number
for which this is not possible?
Investigations of the above problems
should be sent to Mike Mudge, 22 Gors
Fach, Pwll-Trap, St Clears, SA33 4AQ, by
1st June 1997. All material will be judged
using suitable subjective criteria and a prize
will be awarded to the best entry arriving by
the closing date (SAE for return of entries).

bM, = bpbp.g -

Golomb Rules, OK (PCW, Aug ’96)

This problem produced a large and varied
response. In the problem Pl seeking a
solution greater than 7 to n! + 1 = N2, Alan

Cox extended Kraitchik’s lower bound from
1020 to 2500 using MAPLE V release 4 on
a Dell 486D DX33 with 8Mb RAM and
about 250Mb hard disk, in about six hours.

Problem P2 is solved completely.

Dr John Cohen gave the reference to
Finkelstein & London in J. Number Th. 2
(1970), pp 310-321, together with
references to work on y2 + k = x3 for a large
range of k by Josef Gebel. Nigel Backhouse
obtained a list of Golomb Rulers up to order
15, the final length being 151 with an
example (0, 4, 20, 30, 57, 59, 62, 76, 100,
111,123, 136, 144, 145, 151).

Gareth Suggett indicates that a group
from Duke University have obtained
optimum rulers up to 19 marks (New
Algorithms for Golomb Rulers Derivation
and Proof of the 19 Mark Ruler, Dollas,
Rankin & McCracken, Nov '95). Gareth
speculated on the metric result for
measuring all distances in centimetres from
1 to 100 on a metre rule. He refers to The
Dipole column in The IEE News some years
ago with the best known solution as 15
marks at 1, 2, 8, 14, 25, 36, 47, 58, 69, 80,
85, 90, 95, 98, 99. Is this minimal and/or
unique?

Our prizewinner is RF Trindall, of
Cambridge, for his extension to circular
Golomb Rulers with n(n-1) + 1 points
spaced round a circle uniformly and n of
them marked to measure every distance
from 1 to n(n-1). This was accompanied by
analysis of P2 and P3 and some (accepted)
criticism of their difficulty... sorry, readers!

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational maths, together with
suggested subject areas or specific problems for
future articles. Email numbers@pcw.vnu.co.uk
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Not nhumerology but
numeralogy!

There’s a world of difference between the o and the a, as Mike Mudge explains.

umerology is variously defined as we generate S(2). Prime-product sequence Here T, is
the study of numbers as 1,2,4,5,10,11,13,14,28,29,31,... one greater than the product of the first n
supposed to show future events Generalised S(1)Same initial conditions, primes with the proviso that T{=2.

or the relationship between numbers and but no t-term arithmetic progression in the Sequence begins

the occult. However, the term numeralogy, sequence for t greater than 3. 2,7,31,211,2311,30031. ..

supplied by P Castini of Arizona, USA, is Query How does the density of such a since 2*3*7*11*13+1 = 30031.

defined (by him) as “Properties of the sequence, i.e. the fraction of the integers Query How many members of this

Numbers”: his proposal for a Numbers less than N which it contains, vary with N, sequence are prime numbers?

Count column includes some 37 sequences  (My,my) &t7? S(3). Square-product sequence As S(2)

each with a rule of generation above with primes replaced by

and some associated queries squares, viz.

for investigation. 2,5,37,577,14401,

There follows a 518401, ....

(random?) sample of these. since

Others may be included at a 12%02%32%42%52%62 + { =

later date depending on the 518401

popularity of such research
areas.

The PROBLEM CAS. (n).
is the same in every case, viz.
implement a computer
algorithm to generate the
defined sequence and
hence, or otherwise,
investigate the associated
queries.

S(1). Non-arithmetic
Progression. General
definition: If my & m,, are the
first two terms of the
sequence, then m, for k
greater than 2 is the smaller
number such that no 3-term
arithmetic progression is in
the sequence, i.e. we do not
find

mp = mq = mq = mr

for distinct p,q &r.

eg.if

mi=1 & m2 =2

Query How many members of
this sequence are prime
numbers?
Generalised S (3) Replace
squares by cubes, fourth powers,
etc. and investigate the same
query. May also be generalised
using the products of the factorial
numbers
1,2,6,24,120,720....
Now let (T,)) be a sequence
defined by a property P and
screen this sequence, selecting
only those terms whose individual
digits hold the property P to
obtain the S. P-digital
subsequence. e.g. the S. square-
digital subsequence
0,1,4,9,49,100,144,..
is obtained from
0,1,4,9,16,25,36,49, ..
by selecting the terms whose
digits are all perfect squares —
only 0,1,4 & 9 allowed.

p280 [
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Numbers Count

Numbers Count, June 1996

“Sequence of events”, Descriptive
Number Sequences Part (1), PCW June
1996, proved very popular. It is intended
to review at length the two parts of this
topic in the next issue. Suffice it to
announce the prizewinner as Jean
Flower of The Mathematics Centre,
Chichester IHE, Upper Bognor Road,
Bognor Regis, West Sussex PO21 1HR,
who used Mathematica on a Pentium
120 and (eventually) was able to find all
cycles of length less than 17, with a
greater than 1 and n greater than 13. All
of this was accompished in about five
minutes of processor time and was
accompanied by a fascinating alphabetic
version of the same problem. Consider
the sequence of sentences. “This
sentence contains three hundred and
seventeen occurences of the letter ‘e™,
the next term being a sentence which
decribes the previous one etc. What
about carrying this analysis on a
computer?

More to come on this topic.

Similarly for the S. cube-digital
subsequence and higher powers.

S (4). Consider the S. prime-digital
subsequence

2,3,5,7,37,53,73, ..

Query Is this sequence infinite?

S (5). The S. odd sequence
1,13,135,1357,13579, 1357911, ...
Query How many terms are prime?

S (6). The S. even sequence
2,24,246,2468,246810, . .

Query How many terms are the nth powers
of a positive integer?

S (7) The S. prime sequence
2,23,235,2357,235711, ...

Query How many terms are prime?

For further study of S(4) through (7) see:
Sylvester Smith, Bulletin of Pure and
Applied Sciences, vol. 15. E (no. 1) 1996.
pp101-107. A set of conjectures on
Smarandache* Sequences.

*All the sequences discussed this month
have appeared in print under Smarandache
Notions.

For further information on this area of
work see Smarandache Notions Journal,
vol. 7 no. 1-2-3, August 1996. ISSN 1084-
2810. Department of Mathematics,
University of Craiova, Romania.

Something totally different

Eric Adler has drawn my attention to the
approximate sizes of elements in the
Mathematica 3.0 Software Package where
“Front end etc. 6.0Mb, Kemel etc. 18,5Mb,
MathLink Libraries 0.5Mb and Fonts 4.5Mb
total 27.5Mb whilst Standard Add-on
Packages at 9.0Mb together with The
Mathematica Book of 36Mb, Listing of Built-
In Functions at 5.5Mb, Standard Add-on
Packages occupying 11.0Mb and
Additional Documentation of 15.0Mb (the
latter four items totalling 66Mb) yield
74.5Mb. The total size of storage (again
approximate) is quoted as 96Mb whilst
strict addition yields 106.0Mb.”

Eric asks: “How do they get that?” and
offers ten IBM format 3.5in 1.44Mb floppy
disks as first prize, with 40 IBM-format 3.5in
1.44Mb floppy disks with UBASIC as
runners-up prizes. Facetious answers such
as “They used a Microsoft Calculator” or
“They are measuring using Microsoft Drive
Space” will not be eligible for the first prize!

Stop press!

Would Duncan Moore please let me have
his address as | have some information for
him. Sorry, Duncan, for the inefficiency of
my filing system!

Following on from the study of “Golomb
rulers” in the August 1996 issue of PCW, at
least one reader has expressed an interest
in the “Circular Golomb Ruler”. Here, the
problem is essentially the same except that
the points are spaced around the
circumference of a circle and distances
measured along the circumference also.
Apparently solutions are known for some n
(maximum distance to be measured); it is
further known that for certain n, no solution
is possible. What happens if the distance is
measured in a straight line!?

Any investigations of this month’s queries
may be sent to Mike Mudge, 22 Gors Fach,
Pwill-Trap, St Clears, Carmarthenshire SA33
4AQ, tel. 01994 231121, to arrive by 1st May
1997. All material received will be judged
using suitable criteria and a prize will be
awarded by PCW to the best entry (SAE for
return of entries, please).

Contributions Welcome

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational mathematics, together
with suggested subject areas and/or specific
problems for future Numbers Count articles.

Email him at numbers@pcw.vnu.co.uk




his month, | have a number of

appeals to make:

1. Nigel Backhouse of the
Division of Applied Mathematics at the
University of Liverpool wonders if any
readers would be interested in joining the
Great Internet Mersenne Prime Search? He
tells me that George Woltman is asking for
volunteers with Pentiums and 486s and
access to the web, to join a team searching
for new, large Mersenne Primes. He
provides free software and full instructions
on how to use it. This can be downloaded
from our world.compuserve.com/home
pages/just for fun/prime.htm.
2. Alan Cox has been studying the paper by
Artur Ekert and Richard Jozsa in Reviews of
Modern Physics, July "96, pp1-28, entitled
“Quantum Computation and Shor’s
Facturing Algorithm”. In common with your
columnist, he finds it difficult to understand
but realises the importance of the subject
area. Is anyone willing to produce a simple
guide to the concepts involved? PCW may
consider such material for publication, as it
would be to the benefit of many readers
and relate to the very frontiers of
computational theory.
3. Caryl Takvorian is anxious to access a
paper on the subject of NP-complete and
intractable problems. Is any reader able to
supply a suitable reference or offer such a
paper to PCW and/or Caryl directly?

FRACTRAN: a simple universal
programming language for arithmetic
Fractran: Due to JH Conway, Open
Problems Commun. Comput, pp4-26,
published in 1986.

To play the Fraction Game
corresponding to a given list: f,f,...,f of
fractions and a starting integer N, we
repeatedly multiply the integer which is
defined at any stage (initially N) by the
earliest f; in the list for which the answer
remains an integer. Whenever there is no
such f; the game stops.

Formally: the sequence (N,,) is defined by
No = N (given) while N1 =N, where i
between 1 &k inclusive is the least i for which
fiN, is integral, providing such an i exists.
Experiment 1 Consider the list of fractions
17/gy 78/gs 19/5; 28/50 29/5n 77/,5 95/50 77/

/47 1/43 18/44 18/, 1/7 95/, : these define
PRIMEGAME (after Conway). Choosing
N = 2, the other powers of 2 which are
generated are those whose indices are the
Prime Numbers in ascending order.
Experiment 2 Consider the list of fractions

Numbers Count

Festive fractions

Mike Mudge gets stuck into a feast of fractions for
Christmas, and appeals for help on behalf of readers.

365/, 2%/161 "9/575 67% 451 315% 413 8%/407
478/371 ©38/355 43%/335 89535 /209 7%/122
31/, /115 517/g9 111/g5 305/ 28/55 78/1,
61/g7 37/51 1959 8957 41/5q 833/,7 53/,45 86/,
18/50 28/52 67/ T1/p9 83/,9 475/47 59/,5 41/50,
/7 /41 V1004 /g7 89/ : these define
PIGAME (after Conway). Choosing N as 2n
the next power of 2 to appear is 2r( where
p(n) is the nth digit after the point in the
decimal expansion of PI.
Experiment 3 Consider the list of fractions
583/550 62%/551 437/507 82/517 ©1%/3p9 371/ 129
115 5%/gs 43/53 2%/ 47 34V 46 41/43 T/ 41 /57
875y 299/ 55 47/ 161/, 527/,5 159/, 1/,2 1/,
1/3: these define POLYGAME (after
Conway). Define f,(n) +m if, when Polygame
is started at c22", then it stops at 22",
otherwise leave f.(n) undefined. Then every
computable function appears among fy, f;,
fp... The number ¢ is called the Catalogue
Number and is “easily computed for some
quite interesting functions”. Conway gives f,
for any ¢ whose largest odd divisor is less
than 210,

Problem

Understand and implement FRACTRAN in
the form of the first two experiments. Follow
this with an initial investigation of
Experiment 3... and comment upon this
approach to computable functions.

m Send any implementation of the above
algorithms to Mike Mudge, by 1st April,
1997. All material received will be judged
using suitable subjective criteria and a prize
will be awarded for the best entry (SAE for
return of entries, please).

m Responses to the three appeals should
also be sent to Mike Mudge (for forwarding).
George Woltman can be contacted directly
as indicated above.

Report on Numbers Count May '96
Nigel Hodges examined “Problem MM” and
used x = m/n, y = a/b (in their lowest terms)
to distinguish two cases p does/does not
divide m: obtaining solutions for p = 5
involving integers of 15 & 16 digits for m&n
and 22, 23, 24 digits for a and b. Note that
A. Bremner and J. Cassels, Mathematics of
Computation, vol. 42, no.165, Jan 1984, pp
257-264, cite “a most startling generator of
all solutions for p = 877 where 42 & 40 digit
integers arise as m & n whilst a & b have 63
& 60 digits respectively”. However, the
prizewinner this month is Patrick Moss, of
26 Hillside, Grays RM17 5SX. His
submission, “Rational Points on a Cubic
Curve”, includes an arithmetic/algebraic
section followed by a section dealing with
geometrical arguments, and finally, a set of
special cases and generalisations. The
computational aspects were programmed
in C++ on a Gateway 2000 P5-120,
prompting Patrick to ask if any reader has
access to some decent code or knows of a
not-too-expensive piece of software for
handling large integer-length arithmetic? He
used Microsoft Excel to draw the graphs
but wonders whether other software could
have done the job?

Details of this work on request to Patrick.
A number of his results were subsequently
confirmed in The Arithmetic of Elliptic
Curves by JH Silvermann.

PO Comacts

Contributions welcome: Mike Mudge welcomes
correspondence from readers on any subject
within the areas of number theory and
computational mathematics, together with
suggested subject areas and/or specific problems
for future Numbers Count articles. Write to him at
22 Gors Fach, Pwll-Trap, St Clears SA33 4AQ,
or phone 01994 231121.
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Close relations

Mike Mudge presents the relationship between Archimedean Polyhedra and the Tribonacci
Series. Mersenne Non-Primes get some attention, too.

n a recent letter John Sharp, of

Watford, wrote: “It is well known

that the dodecahedron and the
icosahedron are intimately bound up with
the Golden Section, which is in turn related
to the Fibonacci Series.” Readers whose
knowledge of geometry is minimal may
already feel discouraged. However, this is
an arithmetic problem.

John has studied the Archimedean
Polyhedra known as the snub-cube and the
snub-dodecahedron and has found a
similar relationship between the former and
the Tribonacci Series, defined by the
recurrence relationship:

Teer = Tk + Ty + Tieo
with suitable initial values for
To, T1 & Ty

The constant associated with this series is
t = 1.83928675521416. .
this being the positive root of the quartic
equation:
t4 - 2t3 + 1 = 0%

Now, relative to a snub-cube with unit
sides, the diagonals have (approximate)
length:

A= 1.68501832488972

B = 1.83928675521416
.16300104263277
.320124084592509
.382975767906236
.434474230834721
.584293619236854
.601144274317068
.657357374421356

H I O M m O o
1]
NG \C RN \C R \C R \C R \C I G

A= (t+1)1/2, B=1t, E*x =t + 1/t
= (2t + 2)1/2

Intuition tells John Sharp that the lengths
of the other diagonals have “some relatively
simple relationships to t” but how can these

294 * Personal Computer World ® December 1996

be found computationally”?
For the snub-dodecahedron with
constant
m = 1.943151259243865
there are 28 lengths commencing with:

A

1.715561499697342
m

= 2.343373277136706
2.467232466141474
2.528610449446665
4.260575577706465
2.775836816301074

B
C
D
E
AA
F

G = 2.782298391314399
H = 3.059283956591891
I
J

3.118888631147017

= 3.144084782738732 down to
BB = 4.294380888587396

There is a database available on the
internet called the Inverse Symbolic
Calculator (ISC) by J. A. Sloane and S.
Plouffe, having, on August 1996, 45 million
entries which (reference: “A question of
numbers”, by Brian Hayes, Scientific
American, vol. 84, Jan-Feb 1996) Plouffe

Numbers Count

foresees expanding to a billion entries. The
internet address is www.cecm.sfu.ca/
projects/IS/ISCmain.html. Here, the
Tribonacci constant is easily found but
there is no entry “close to” m. Help!

Mersenne NON-PRIMES

On 3rd September 1996, Cray Research
announced that Slowinski and Gage had
found the 34th Mersenne Prime, being
21257787 - 1 with 378632 decimal digits.
(Note: This may not be the 34th in order of
magnitude as the search algorithm is not
exhaustive). However, Jonathan Ayres of
Leeds, one of our regular readers, drew my
attention to certain problems related to
Mersenne NON-PRIMES.

Revision note: a Pseudo-Prime to base
b is a number, n, such that bn-1-1 is
divisible by n. For example, 15 is the
smallest pseudo-prime to base 4, because
414 - 1 = 268435455 is divisible by 15.
Similarly, 217 is the second smallest
pseudo-prime to base 4. 91 is the smallest
pseudo-prime to base 3, 341 and 641 are
the first two pseudo-primes to base 2,
while 161038 is the smallest even pseudo-
prime to base 2.

A Carmichael Number (or Absolute
Pseudo-Prime) is a pseudo-prime to any
base. So, 561, 1729, 2821, 1105, 1729,
2464, 2821 are examples of such
numbers, a560 - 1 being divisible by 561
whatever the value of a.
= PROBLEMS MNP
1. Are all non-prime Mersenne numbers
pseudo-prime to some base b, and more
generally pseudo-prime to some base 2r?
Are there some Mersenne numbers that
are Carmichael numbers?

2. Are all non-prime Mersenne numbers
pseudo-primes to some base b, where b is
not a power of 2, and how does this
number relate to p? Furthermore, is there
some base b, that is not a power of 2 but is
a pseudo-prime basis for more than one
Mersenne number?

3. Are all composite xy + 1 pseudo-primes
for some base b, and are there any
Carmichael numbers of this form?

Some of the early numerical results
relating to problems MNP can be obtained
by sending a stamped addressed envelope
to Mike Mudge.

Any investigations of Problems MNP
and/or advice for John Sharp may be sent
to me, Mike Mudge at the address shown in
the PCW panel here, to arrive no later than
1st March 1997.

INTEGRAL BASES and Computer
Experiments due to Shen Lin

| have a further item which follows on from
last month’s theme, based on an article by
P. Shiu. Let S=(s4,sy,...S...) be a sequence
of positive integers and, consider the set
P(S) consisting of all numbers which are
representable as a sum of a finite number
of distinct terms of S. We say that Sis
complete if all sufficiently large integers
belong to P(S). For a complete sequence,
we call the largest integer not in P(S) the
threshold of completeness T(S). It is known
that for the sequence of squares
$=(1,4,9,16,..) T(S) - 128

and for the sequence of cubes
S$=(1,8,27,64..) T(S) = 12758

® PROBLEM SL. Determine the value of
T(S) for the sequence of fourth primes and
triangular numbers. (Generated using

n(n + 1)/2).

Report on “Chiefs and Indians”
(Numbers Count, PCW April 1996)

“Stop Press”: Rex Gooch analysed up to
six consecutive prime pairs to 109 and also
confirmed Nigel Backhouse’s result, of 14
consecutive prime pairs starting at
678771479, 678771481, while John
Sutton looked at the alternative problem of
the span containing n prime pairs, relaxing
the requirement of no intervening primes. A
future research area?

Now to the “Chiefs and Indians”. Alan
Cox quotes from Rouse Ball where the
“Josephus problem” is referred to with the
reference Hegesippus’s “De Bello Judaico”.
Nigel Hodges generates samples of the
numbers of Indians needed for the Chief to
be successful for “step-factors” up to 49.
For example, 1169262 Indians will
constitute good news for the Chief if the
“step-factor” is 44.

However, the worthy prizewinner this
month is Robert Newmark of Cleadon,
Sunderland, who programmed in C on a
Toshiba T2110-486DX for up to 5,000
Indians with jumps from two to 20: total
analysis in one second. The program is
available on request.

Contributions Welcome

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational mathematics, together
with suggested subject areas and/or specific
problems for future Numbers Count articles. Write
to him at 22 Gors Fach, Pwll-Trap, St. Clears,
SA33 4AQ or phone 01994 231121.
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Going back to your roots

Mike Mudge presents a square-root algorithm suitable for newcomers to this column, and
rational approximations to square roots of integers should crank your brains into gear.

Numbers Count

his month’s theme is based upon
an article by P. Shiu in
Mathematical Spectrum, vol 4,

no. 1, 1971/72, pp26.30.

To approximate to the square root of N,
i.e. N2, where N is a given square-free
integer, first seek an integer solution mg,ng
of the equation n(n+1) = Nm,. Then observe
that this equation is also satisfied by the
sequence:
2mg(2ng + 1), ny = 4ng(ng + 1)
4nq(ngy +

1
m, = 2my(2ny + 1), n, =

Mysq = 2M (2N, + 1) 5 Ngyq = 4n(ny +
1)
While n1/2 is approximated to (from
above) by:
re = (20 + 1)/(2my)
e.g. If N =2 we may choose mg =ng =1
when the above recurrence relations yield:
my = 6, ny = 8; my = 204, n, = 288;
m; = 235416, n; = 332928; m, =
313506783024, n, = 443365544448;
These numbers yield an n, which differs
from 21/2 by less than 10-24. We have an
approximation to square root of two correct
to 24 decimal places!
PROBLEM ROOTS. Implement the Shiu
Algorithm to initially find an mg,ng pair for a
given N, followed by the sequence of
fractions (r,) which approximate to Ny ,.
PROBLEM ROOTS*. Attempt to generalise
this process to cuberoots and beyond,
comparing its computational efficiency with
other, more commonly used algorithms.

An ‘almost incomputable’ function
The recently-published text by Arnold R.
Krommer and Christoph W. Ueberhuber,
“Numerical Integration on Advanced

Computer Systems”, Lecture Notes in
Computer Science 848, Springer-Verlag
1994, has a 268-item bibliography and a
commensurate body of text, an altogether
outstanding publication. On page 186,
readers are introduced to the function

f(x) = 3x2 + (PI)-4log((PI - x)2) + 1
which has a pole at x = PI, by which we
mean that its value is unbounded below
(infinitely large and negative) at x = PI.

Since clearly the function is positive over
very large ranges of x, it must have two
zeros (at least) one on either side of the
pole. However, if it is sampled at ALL
MACHINE NUMBERS differing by 2-54
(approximately 5.6 x 10-17) and
corresponding to Double Precision IEEE
Arithmetic, the pole cannot be detected and
indeed no negative values are generated.
PROBLEM FUNCTION. Devise a means of
exhibiting either graphically or numerically
the true behaviour of this function. Such
revelations may come from a sophisticated
programming technique, or by the use of
some algebraic transformation?
PROBLEM FUNCTION*. Indicate some
other functions which exhibit this type of
behaviour. Do any of them have a practical
application?

e Any investigations of the above problems
may be sent to Mike Mudge, 22 Gors Fach,
Pwll-Trap, St. Clears, Carmarthenshire
SA33 4AQ, tel 01994 231121, to arrive by
1st February 1997. All material received will
be judged using suitable subjective criteria
and a prize will be awarded by Mike Mudge
to the “best” entry arriving by the closing
date. Each contribution should contain brief
descriptions of the hardware and coding
used, together with run times and a

summary of the results obtained. (SAE for
return entries, please.)

Report on Numbers Count -155-
‘Pounding the beat’, PCW March 1996
All aspects of this column generated
interesting responses. The “Full Houses” or
“Prime Decades” upto 100000 numbering
40 (less the two inadmissable 11,7,5,3 and
13,11,7,5) these consist of the 37 regular
ones and the anomalous 2,3,5,7. Alan Cox
obtained these with UBASIC and its
NXTPRM(x) function (can any reader tell us
how this function works?) in 48 seconds on
a “slow 8086”, while Hugh Spence used an
AMD 585 running at 133MHz in Modula-2
(“the last Topspeed incarnation”) to
reproduce the results in 9.5 seconds.

Problem GS produced responses,
including one from Tim Thorp who refers to
Donald Knuth’s The Art of Programming
where the base three (being the integer
nearest to e) is “in some sense” optimal for
numerical operations.

This month’s winner is David Price of
13 The Hall Close, Dunchurch, Rugby,
Warwickshire CV22 6NP: his representation
of numbers in various bases extended to
complex bases and involved Fortran in
double precision on a 486 PC. Altogether a
commendable mixture of algebra/calculator
arithmetic and programming.

Contributions Welcome

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational mathematics, together
with suggested subject areas and/or specific
problems for future Numbers Count articles.
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he first area of investigation this
month is due to Jonathon Ayres
of Leeds, who writes as follows:

Highest prime function
| have recently been investigating what |
have called the highest prime function —

Numbers Count

Prime candidate

Prime functions take centre stage and hailstones are a big
hit, in this month’s maths musings. With Mike Mudge.

HPF(X), which is defined as the highest
prime factor of x, so that HPF(7) = 7 and
HPF(10) = 5.

1) Highest prime function sequence
HPFS(x,x4) is defined so that

Xn = HPF (X;_1*Xp.2*1)

So,

HPFS(1,2) = 3, 7, 11, 13, 3, 5,
2, 11, 23, 127, 487, 1237,
331,127,21019, 1811, 140983,
2239651, 10005473, ..

and

HPFS(3,2) = 7,.
3, 2, and so on
(this has period 4).

5,38, 2,7,5,

Questions

HADS(3,5) =8, 1, 3, 2, 1,...
¢) HPFSm(a,b) = HPF(@*b+m)
d) HPFS(a,b,c) = HPF(@*b*c+1)

Highest Prime Hailstone Function

This is similar to the “Hailstone Function”,
which is defined as: if nis even, then n is
divided by 2, else it is multiplied by 3 and
one is added.

The highest prime hailstone function,
HPHF (4 ) (Xn) = HPF(a*x,_q+b)
HPHF (5 1) (1) =38, 7, 5, 11, 23,
47, 19, 13, 3, 11, 23, 47, 19, 13,

has period 7, with the lowest value in the

different a (for example, a being prime, then
the period seems to be quite low)?
2). Do all HPHF, 1) (x), for fixed a,b and
variable X, lead to recurring sequences?

For fixed a and b, is there more than one
recurring sequence? For example,
HPFH(9_1)(1) leads to a sequence with
lowest value 13, highest 97 and length 5;
and HPF(911>(41) leads to a sequence with
lowest value 37, highest 269 and length 7.
If so, how many different recurring
sequences?

For fixed a and b, what value of x takes
the longest/shortest time to reach a
repeating sequence, and what value of x

1). Do all HPFSs eventually lead to
recurring sequences? For example,

Values for recurring sequence

reaches the highest values?
3). Do all HPHF lead to recurring

HPFS(x,y) leads to a,b,c,d ... a,b,c,d,
and so on. If not, do all the non-
recurring HPFS go through all
possible numbers? (The function
HPFS(Xp) = HPF(Xp.{*Xp.o*. ..
X{y , Xg t1), starting 2,83,7,
43, 139 ..

has been shown not to repeat, nor is
it ever equal to

5,11,138,17.)

2). For recurring HPFS, what are the
smallest numbers a,b so that
HPFS(a,b) has period n, and are
there any values of n so there are no

- 4 O 00 NO O ~wNZ

- O

Period Lowest value Highest value

7 3 47
5 2 17
7 5 71
3 2 11
18 13 13219
3 2 23
12 11 1097
5 13 97
6 43 15971
2 17 47

sequences?

Any responses to these problems to
be sent to: Mike Mudge, 22 Gors Fach,
Pwll-Trap, Carmarthenshire SA33 4AQ
(01994 231121), by 1st January 1997.

Spot the difference

Stephen Saxon, of Stockport, has
suggested an interesting problem — it
combines an area of mathematics
predating computers “as we know
them” by several centuries, with current
programming techniques. The question
is, how to fit a polynomial of the lowest

HPFS(a,b) with period n?

3). How many different HPFS do numbers
converge to? For instance, HPFS(2,3) and
HPFS(2,11) converges to the same
sequence?

4). What happens for related sequences
such as:

a) Lowest prime factor sequence
LPFS(3,7) = 2,3,1
b) Highest alliott divisor sequence (not
including the number itself)

periodic sequence being 3 and the highest
47.

The table above shows the period,
lowest and highest value for the recurring
sequence which HPHF, 1) (1) leads to.

Questions

1). Do all HPHF(aJ) (1) lead to recurring
sequences, and how does the period,
lowest and highest value change for

possible degree to a set of equally
spaced data points? An answer will be
provided next month by The Calculus of
Finite Differences or, as Stephen calls it, The
Newtonian Difference Method.

Contributions Welcome

Mike Mudge welcomes correspondence from
readers on any subject within the areas of number
theory and computational mathematics, together
with suggested subject areas and/or specific
problems for future Numbers Count articles.

Personal Computer World ® October 1996 © 29 1




HANDS ON o

Fraction action

Mike Mudge presents continued fractions — when
are they periodic, and how long are the periods?

Definition: an expression of the form
agt1/(as+1/(ax*+1/(as... is called a
regular, or simple, continued fraction.
Throughout this work a, will denote
positive integers. (ag may be zero.) The
SIMPLE continued fraction numerically
equal to any rational number (i.e. the
quotient of two integers) must terminate.
That is, have only a finite number of partial
quotients a,,; although such expressions
have certain applications, including the
design of gear trains, they have very
limited appeal in computational or pure
mathematics. For example, 105/38 =
2+ 1/(1+1/(3 + 1/(4 + 1/2))). To simplify
this somewhat cumbersome notation, we
write 105/38 = (2;1,3,4,2.).

Theorem A. Look at Continued Frac-
tions by A. Ya Khinchin (Phoenix Science
Series, The University of Chicago Press,
1964). The necessary and sufficient condi-
tion for a simple continued fraction to be
finite is that it represents a rational number.

Theorem B. /oc.cit. above. The neces-
sary and sufficient condition for a simple
continued fraction to be periodic is that it
should represent a quadratic irrational.
That is, a non.integer real root of a
quadratic equation: ax2 + bx + ¢ = o where
a, b and c are integers, a not equal to zero.

e Problem 1. Write a simple computer
program to generate the (finite) continued
fraction corresponding to any given
positive rational number, i.e. input p/q and
output (ag;as;asas,...an.)-

e Problem 2. Write a simple computer
program to solve exactly any given qua-
dratic equation with integer coefficients,
i.e.inputa,b&casinax2+bx+c=0and
output the roots as P+SQRT(Q).

It is suggested that the reader now
experiments  with  simple  periodic

continued fractions such as (0;1,1,1,...),
also (2;3,4,3,4,3,4,...) to see the quadratic
equation whose root they represent. Note
in the first example, x = 0+1/(1+x), while in
the second example,
x-2=(0;3,43,434,.)=y
say where
y = 1/(3+1/(4+y)).
Hence, the desired quadratic equations
and exact values for x & y can be found.
The more complicated experiment is to
start with a given quadratic equation and
determine the continued fraction expan-
sion of any positive real roots which it may
have. Note: these must be periodic; the
analysis may be beyond the mathematical
experience of some readers, but its
omission does not affect the continuity of
the rest of this discussion. Now restrict the
quadratic equation to the form, x2-a =0,
and focus on the root SQRT(a). In their
paper Some Periodic Continued Fractions
with Long Periods (Mathematics of Com-
putation vol 44, number 170, April 1985 pp
523-532), CD Patterson and HC
Williams used The University of Manitoba
Sieve Unit (UMSU), “a machine similar to
DH Lehmer's DLS-127", to investigate
cases of long periodicity. Theoretically,
they identified four classes of ‘a’ of
interest: (1) a= 3 (mod 8) ‘a’ prime; (2) a =
7 (mod 8) ‘a’ prime; (3) a = 6 (mod 8) ‘a’/2
prime; and (4) a = 1 (mod 8) ‘a’ prime.
Denoting the period by p(a), typical results
in each of these classes are:
a 2186009851 2763423391 2340752254
18901431649
p(a) 151838 170804 157036 433383

e Problem 3. Attempt to determine the
period of the simple continued fraction
expansion of SQRT(a) in such a manner
that the investigation can be extended to
the orders of integers indicated above.

NUMBERS COUNT

Verify that the period is bounded by:
f(a) = a'2log log(a) if a = 1(mod 8) and by
f(a) = a'2log log(4a) otherwise.

o Something different

In March 1986, readers were invited to find
integer solutions p,q,r,s,t for
5(p2+qg2+r2+s2+t2)2 = 90pqrst + 7(p4+g4
+r4+s4+t4).

An extensive investigation by PCW
reader, Duncan Moore, generalised the 90
to 5n and led to the following questions:
(a) Are there any solutions with three of
p,q.r,s,t sharing one factor and the other
two sharing a different factor? If not, then
the search for solutions with three only
sharing a common factor could be
significantly speeded up.

(b) Are there any solutions with n = 1 or
withn =-1?

Any investigations of the above prob-
lems, together with answers (either
complete or partial) to Duncan Moore’s
questions, should be sent direct to: Mike
Mudge, 22 Gors Fach, Pwll-Trap,
Carmarthenshire SA33 4AQ (tel 01994
231121), to arrive by 1st December. The
author also welcomes comments on the
subject areas chosen this month: namely,
continued fraction theory and Diophantine
equations. Details of recent results either
published or unpublished in these areas
would be particularly appreciated.

Interesting Powers of Ten
Hugo Steinhaus’ problem (PCW, January)
was of great interest. This produced a very
interesting set of responses. Worthy of men-
tion in the Interesting Powers of Ten, are
Paul Leyland’s conclusion that there are no
less than 1063017, other than those quoted
— the result of almost three hours’ comput-
ing time on a DEC Alpha. Nigel Hodges used
Microsoft C++ on his Packard Bell up to
210000 jn three seconds and then established
some associated probabilities. Steinhaus,
being simple to comprehend, yielded a great
deal of results. However, the clear prize-
winner is Richard M Tobin, 2 Flr, 53
Spottiswoode Street, Edinburgh, EH9 1DQ,
who programmed a Sun Sparcstation 5/110
in C and summarised all of the Steinhaus
cycles up to and including twenty fifth pow-
ers! This latter took eight days and revealed
nine perfect digital invariants (including 1),
the next one having 24 digits.

Contributions Welcome

Mike Mudge welcomes correspondence from
readers on any subject within the areas of
number theory and computational
mathematics, together with suggested subject
areas and/or specific problems for future

Numbers Count articles.
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Golomb rules, OK

Mike Mudge deals with the concept of perfect and

imperfect rulers.

“Golomb rulers”

...with a pre-metric introduction
(Inspiration acknowledged from Malcolm
E. Lines’ Think of a Number [1990. Adam
Hilger. ISBN 0-85274-183-9] chapter 11,
pp 101-105.)

Consider a one-foot ruler having only
inch markings: for the benefit of younger
readers this represents a uniform scale of
length, with 12 equal sub-divisions.

We see that there are 12 ways of
measuring one unit of length, viz. 0-1, 1-2,
2-3,...11-12; also, seven ways of
measuring six units of length, viz. 0-6, 1-
7,...6-12; with four ways of measuring
nine units of length 0-9, 1-10, 2-11, 3-12.
Clearly,there is considerable redundancy
in this instrument.

Starting with a “trivial prototype” ruler of
unit length marked 0 & 1, this measures
one possible distance in one possible way.
However, a two-length ruler with three
markings at 0, 1 & 2 has already
introduced an inefficiency since it
measures one unit in two different ways,
viz. 0-1 & 1-2. However, if the marks
are at 0, 1 & 3 we have a ruler

cannot be measured;
(b) there may be some distances which
can be measured in two or more ways.

The “next best thing” to the non-
existent perfect five-mark ruler might
possibly be defined as one that contains
each measurable distance only once, but
which is unable to measure every possible
distance up to the length of the ruler.
Clearly not an adequate definition since a
five-mark ruler, marked at 0, 4, 10, 27 &
101, measures distances of 4, 6, 10, 17,
23, 27, 74, 91, 97 & 101 each one way
only. the challenge is to find the
SHORTEST ruler which does not
measure any one distance in more than
one way.

The shortest five-mark ruler is of length
11; with mark positions at 0, 1, 4, 9, 11, i.e.
one unit longer than the PERFECT TEN.
The only length less than ten which it
cannot measure is 6. In general, the
shortest ruler with n-marks is called the “n-
mark Golomb ruler” in honour of its
inventor. Malcolm Lines lists all of the
Golomb rulers known to him in Fig 1.

Fig 1 Golomb rulers

measuring distances 1, 2 & 3 each Number of marks 234 5 6 7. 13 14 15

one way only.

Pencil and paper study should
convince the reader that it is not possible
to construct a ruler which will achieve this
for either 4 or 5. Marks at 0, 1, 4 & 6
generate such a ruler (called PERFECT)
of length 6, since either of the distances 1,
2, 3, 4 & 5 can be measured in one way
only. This idea is originally due to
Professor  Solomon Golomb of the
university of Southern California; see later
reference.

Now a ruler with five
marks can measure ten
distances, therefore if it
were a PERFECT ruler it L
would be of length 10. Note
that a ruler can be IMPERFECT in two
distinct ways:

(a) there may be some distances which

Golomb length

Number of marks 16 17 18
Shortest known 179 199 216 246 283 333 358 372 425

136 11 17 25.. 106 127 151

The fifteen-mark Golomb ruler has
marks at 0, 6, 7, 15, 28, 40, 51, 75, 89, 92,
94,121, 131, 147, 151.

Now to research! There exists a
formula which yields the shortest length
that a Golomb ruler with any particular
length can possibly have. This yields the
entries in row L (Lower bound) shown in
Fig 2.

Fig 2 The entries in row L

19 20 21 22 23 24

154 177 201 227 254 283 314 346 380
Problem: Golomb

The following quotation is intended to
inspire readers to investigate the problem

NUMBERS COUNT

of Golomb rulers: “In co-operation with a
personal computer, it is quite likely that the
enthusiast can improve on some of the
‘shortest known’ rulers in the above table,
although a demonstration that the actual
Golomb ruler has been located is probably
beyond all but the most powerful of today’s
computers.” (M.E.L. 1990).

Investigate the table at Fig 2, extending
where possible and making a serious
attempt to quantify the difference between
any “shortest known” results, i.e. from a
particular algorithm, and the actual length
of the Golomb ruler. Further, how do these
values differ from L?

Any investigation of the above problem,
together with comments on the concept of
Golomb rulers (which do have applications
in both radio astronomy and satellite
communications) may be sent to Mike
Mudge, 22 Gors Fach, Pwill-Trap,
Carmarthenshire SA33 4AQ (tel 01994
231121) to arrive by 1st November. All
material received will be judged using
suitable subjective criteria and a prize will
be awarded, by Mike Mudge, to the “best “
entry arriving by the closing date. Such
contributions  should contain  brief
descriptions of the hardware and coding
used, together with run times and a
summary of the results obtained. (SAE for
entries to be returned, please.)

Some simply-posed problems
for beginners

P1) Does there exist a positive integer n
greater than 7 for which n! + 1 is the
square of the integer? It is known that if n
exists it must be greater than 1020.
M.Kraitchik (Paris, 1924).

P2) Obtain all solutions in integers of the
equation x3 - y2 = 18. It has been proved
that the number of solutions is finite but it
is not known how many there are.

P3) Do there exist three rational numbers
(i.e. fractions with integer numerators and
integer denominators) whose sum and
product are each equal to 1? =

Contributions Welcome

Mike Mudge welcomes readers’
correspondence on any subject within the
areas of number theory and
computational mathematics, together with
suggested subject areas and/or specific
problems for future Numbers Count
articles.
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| Back in sequence

Descriptive Number Sequences, part two,

presented by Mike Mudge.

Continuing the study of Numbers
Count, June 1996: Recall the defini-
tion, due to Jonathan Ayres, of Leeds:
ds,(m) where n is the index of the
sequence and m the original number.
Thus:

ds;(0) = 10

because the original number consists of 1
zero; whilst

ds,(0) = 1011

because ds4(0) consists of 1 zero and 1
one.

Problem A. Is there a way of deciding if a
given initial number, x say, leads to a self-
descriptive number (such as 1031223314)
without calculating the whole descriptive
sequence?

Empirical evidence suggests that as x
increases, the likelihood of a sequence
becoming self-descriptive decreases. Why
is this?

Problem B. Is there any function which
relates the chances of a number becoming
self-descriptive with the magnitude of the
number?

COMPLETELY DESCRIPTIVE
SEQUENCES, Ds(n)

These are similar to descriptive
sequences, but the next number in the
sequence refers to all the digits zero to
nine i.e. it does not omit the reference to
non-occurring digits.

Ds;(0) = 10010203040506070809,

Ds,(0) = 100211213141516171819

This process converges to the

amicable descriptive pair:

Dsg(0) = 10714213141516171819,

Ds;(0) = 10812213241516271819
Problem C. Do all numbers n lead to the
above amicable descriptive pair?

WHAT HAPPENS IN DIFFERENT
NUMBER BASES?

In binary, for example,

ds;(0) = 10, ds,(0) = 1011 whilst
dsz(0) = 10111

We have 11 ones since 3 is
represented in binary as 11; subsequently
dsg(0) = ds{g(0) = ... = 1101001
a self-descriptive number in binary, having
three zeros and four ones.

Example: in base 6 there is an

amicable descriptive pair consisting of
103142132415 & 104122232415

Problem D. Are there any number bases
with period four or larger amicable
descriptive sequences?

DESCRIPTIVE SEQUENCES OF
ORDER GREATER THAN ONE

Here the digits are regarded in groups of
order n which may be either CONSECU-
TIVE...TYPE |, or GROUPED..TYPE II?

In type 1 the number zero generates
the following:
dsc2, (0) = 0100
which is then split into 01, 10 & 00
dsc?,(0) = 010001010110 and dsc23(0) =
0200040104100111 ...
whilst in type Il the number zero
generates the following:
dsg2,(0) = 0100
(because order two uses two digits so O
goes to 00 and 1 goes to 01)
dsg2,(0) = 01000101
i.e. one zero and one one.
dsg23(0) = 01000301
i.e. one zero and three ones etc.

It is found that dsg24g4(0) and its amica-
ble descriptive partner are each 395 digits
long; whilst dsc244(0) having 395 digits
also is part of an amicable descriptive pair.
Problem E. Analyse completely the
behaviour of type | & type Il descriptive
sequences of order two, consider the
extension to higher orders. (Remember
the order is the size of the subsets of digits
being counted.)

TWO-DIMENSIONAL DESCRIPTIVE
SEQUENCES, 2DS(n)
Descriptive sequences can be generalised
from one-dimensional “lines” of numbers
to two-dimensional “planes” of numbers.
One way to do this consistently is to define
the columns, m, of 2DS,,4(x) to be equal to
ds4(row m) as is illustrated by the following
example:
2DS;(0) = 1, (because ds;(0) = 10)
thus
2DS,(0) = 114 (because ds;(1) = 11
and ds;(0) = 10) repeated iteration
leads to:
2DS5(0) = 4 1 2 1

1 0 1 1

NUMBERS COUNT

3 1

1 2
Jonathan Ayres has failed to discover
any two-dimensional self-descriptive or
amicable descriptive sequences, having
investigated up to 2DS4q0(0) and beyond.
However, he observes that 2DS( ) must
lead to a recurrent sequence because it is
fixed in size. The biggest 2DS( ) gets in
size is 19 rows by 19 columns and since
each position contains a digit 0..9 then
there are 10361 possible values for 2DS( ),
but half the possible positions on average
are spaces and half the remaining num-
bers are fixed because they are the digit
number, so maximum period is about 1081,
Problem F. Investigate two-dimensional
descriptive sequences with a view to

finding self-descriptive or amicable
descriptive patterns.
Any investigations of the above

problems may be sent to Mike Mudge, 22
Gors Fach, Pwll-Trap, Carmarthenshire
SA33 4AQ, tel 01994 231121, to arrive by
1st October 1996. All material received will
be judged using suitable subjective criteria
and a prize will be awarded by Mike
Mudge, to the “best” entry arriving by the
closing date.

Feedback: November 1995 —
Squambling
This proved to be a remarkably popular
topic. Why? Gareth Suggett established the
answer to the original Sunday Times
problem as 46, for which one iteration of the
squambling function gives 232, and a
second gives 47. He found all of George
Sassoon’s loops and lists a 105-step loop,
40372656... whose smallest entry is 5 and
largest entry is 43055027. He found mod-
squam less interesting, being monotonic
decreasing and ending (always) with 1.
Nigel Hodges proved that squambling
sequences and their various generalisa-
tions cannot diverge. However, this month
the prize is awarded to G.D. Williams of 18
Mawnog Fach, Bala, Gwynedd LL23 7YY,
who displays an awareness of the problems
of integer overflow even when program-
ming in Turbo C++. Mr Williams has noted
the basic difference in the behaviour (as he
perceives it) between sqgm( ) & modsgm( ).
There is scope for further investigation
of this function, in particular when the
number base is different from ten.

Contributions Welcome

Mike Mudge welcomes readers’
correspondence on any subject within the
areas of number theory and computation-
al mathematics, together with suggested
subject areas and/or specific problems for
future Numbers Count articles.
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S eq u e n Ce Of eve ntS Amicable descriptive sequences for
triplets
Period 2
Descriptive Number SequenceS, 103142132415 - 104122232415
presented by Mike Mudge_ 314213241516 - 412223241516,
314213241517 - 412223241517,
314213241518 - 412223241518,
HIS APPARENTLY NEW AND This leads to my first question: 814213241519 - 412223241519
certainly fascinating topic has been (1) Is this an exhaustive list of self- 41421314251617 - 51221334151617,
suggested by Jonathan Ayres of Leeds. descriptive numbers? 41421314251618 - 51221334151618,
The sequences are denoted by ds,(m) Sequences which do not lead to self- 41421314251619 - 51221334151619
where n is the index of the sequence and  descriptive numbers instead lead to 1051421314152617 - 1061221324251617,
m is the original number. There is a amicable descriptive sequences. For 1051421314152618 - 1061221324251618,
S|mpI|f|ed version of the example, in the case of dS(4), see Flg 2. 1051421314152619 - 1061221324251619
GLEICHNISZHLEN-RIEHE sequence ds;(40) = ds4,(40), so this sequence
with the property that the next number in has entered into a recurring sequence of DL ARLEN GRS Al sl G s
the sequence describes the number of numbers with a period of 2, because 5142131415261719 - 6122132425161719
each digit in the previous number. ds, (40) = ds, .5(40), n 10. 106142131415162718 -
So, taking the case of ds(0) in Fig 1. 104122232415 and 103142132415 107122132415261718,
106142131415162719 -
107122132415261719,
I ™ T I | :21c141516271819 -
Gleichniszhlen-Riehe sequence for ds(0) 712213241526171819,
ds;(0) = 10 (1 zero in previous number, 1 is the digit 10714213141516172819 -
number and 0 is the occurrence number) 10812213241516271819
ds,(0) = 1011 (1 zero and 1 one in previous number) Period 3
dsz(0) = 1031 (1 zero and 3 ones in previous number) 10414213142516 - 10512213341516 -
ds,(0) = 102113 (NB. Because there are no twos in previous number the 0O 10512223142516
twos are not listed, so ds,(0)=102113 instead of 10210213. 10414213142517 - 10512213341517 -
(I will deal with this case later.) 10512223142517
dss;(0) = 10311213 “ 10414213142518 - 10512213341518 -
dsg(0) = 10411223 Amicable descriptive sequences for ds(40) 10512223142518
ds,(0) = 1031221314 ds, (40) = 1014 10414213142519 - 10512213341519 -
dsg(0) = 1041222314 ds1(40) - 103114 10512223142519
dsg(0) = 1031321324 d82(40) - 10311214 41421314251617 - 51221334151617 -
ds;o(0) = 1031223314 ds3(40) 1041121314 51222314251617
ds;;(0) = 1031223314, and so on 4 41421314251618 - 51221334151618 -
dss(40) = 1051121324
dsg(40) = 104122131415 °1222314251619
After ds11(0) all further numbers in the ds,(40) = 105122132415 41421314251619 - 51221334151619 -
sequence are equal to 1031223314. This  |ds,(40) = 104132131425 el
is a self-descriptive number, i.e. it dse(40) = 104122232415
describes itself. For example, ds;o(40) = 103142132415 (2) Is this a complete list of the
1031223314 is composed of 1 zero, 3 dsy;(40) = 104122232415 amicable descriptive sequences?
ones, 2 twos, 3 threes and 1 four = ds;,(40) = 103142132415, and so on (3) Are there any of higher period?
1031223314.

From my investigations the self-

descriptive numbers are:

22

10311233

21322314, 21322315, 21322316,
21322317, 21322318, 21322319

31123314, 31123315, 31123316,
31123317, 31123318, 31123319 *

1031223314, 1031223315, 1031223316,
1031223317, 1031223318, 1031223319 *

3122331415, 3122331416, 3122331417,
3122331418, 3122331419 *

The asterisked lines are related
families because the final 1n is not
important as n is not involved with the
rest of the number.

are known as an amicable descriptive pair

of numbers, because

ds;(104122232415) = 103142132415

and ds;(103142132415) = 104122232415
There are also amicable descriptive

triplets such as

10414213142516 - 10512213341516 -

10412223142516

which have a period of 3. The amicable

descriptive sequences are shown in Fig 3.
From this | define ds(x) to be the

lowest recurring value of dsn(x), so that

ds(x) is either a self-descriptive number

or ds(x) is the lowest member of an

amicable sequence, i.e. ds(0) =

1031223314.

Any investigations of these three
questions may be sent to Mike Mudge,
22 Gors Fach, Pwll-Trap, St. Clears,
Carmarthenshire SA334 AQ, tel 01994
231121, to arrive by 1st September 1996.
All material received will be judged using
suitable subjective criteria and a prize will
be awarded to the “best” response
arriving by the closing date. =

Contributions welcome

Mike Mudge welcomes readers’
correspondence on any subject within the
areas of number theory and computational
mathematics, together with suggested
subject areas and/or specific problems for
future Numbers Count articles.
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