Beginners

Hard disk know-how

Types, performance, upgrades and SCSI vs IDE. Eleanor Turton-Hill helps you get to

know your hard disk.

he hard disk is that part of your
system which holds all the
programs, documents and data

when your PC is switched off. The longer
you have your computer, the more
documents you create and the
more data you store, the more
valuable your hard disk

becomes. In fact, hard disks
which crack up can put small
companies out of business in a flash.

In short, your hard disk is the storage
place for your valuable work, so it’s
important to have a good understanding of
how it works. Here, I'll be answering some
common questions about hard disks
including what to look for when shopping
for one, how to upgrade and how the hard
disk affects the performance of your PC.

How many types of hard disk are there?
It is now well known that the internal parts
of the average home PC do not (alas) fit
together like the bricks in a Lego set.
However, as the personal computer market
matures, universal standards are gradually
making an impact on the design and
compatibility of PC hardware. But it’s a slow
process and, as with many other consumer
products, standardisation is a difficult and
Messy process.

One of the earliest and most significant
standards introduced into PC hardware
was IDE (Integrated Drive Electronics): a
standard which controls the flow of data
between the processor and the hard disk.

The IDE concept was initially proposed
by Western Digital and Compag in 1986 to
overcome the performance limitations of
earlier subsystem standards like ST506 and
ESDI. The term IDE itself is not an actual
hardware standard but the proposals which
had been put forward were incorporated
into an industry-agreed interface
specification known as ATA (Advanced
Technology Attachment). ATA defines a
command and register set for the interface
which creates a universal standard for

326 * Personal Computer World ® November 1996

communication
between the drive
unit and the PC.

One of the major innovations
brought about by IDE was the
integration of the disk controller functions
onto the disk drive itself. The separation of the
controller logic from the interface made it
possible for drive manufacturers to enhance
the performance of their drives independently
— there were no performance-boosting
features incorporated into the ATA interface
itself.

Mass acceptance of the IDE standard
hinged on its ability to serve the needs of the
market in terms of the two most important
criteria: cost and compatibility. Over the
years, these two factors have been more
significant to mainstream PC users than high
performance and thus IDE has become
established as a mass-market standard.

How is disk performance measured?

The speed of a hard disk can be measured
in different ways and it is important to know
exactly what figures are being quoted when
you’re shopping for a new one. The
performance of your hard disk is very
important to the overall speed of the system.
A slow hard disk will hinder a fast processor
like nothing else in your system can.

Virtually all hard
disks today use a set of
read/write heads that float
above a rapidly-rotating rigid metal

plate. Here you can see that the hard disk
is made up of multiple platters and multiple
heads which increase the capacity and
speed of the disk drive

As an initial gauge, look for the drive’s
“average access time”: the time taken by
the drive to locate the track on which a
piece of data is stored, and the specific
place on that track where the data is sitting.
This is usually quoted in milliseconds (ms).

In addition to “average access time”, also
look out for “transfer rates”. The transfer rate
is the speed at which the drive can deliver
the data from the disk platters to the CPU.
This is generally described in megabytes per
second (Mb/sec).

In order to get an accurate view of a hard
drive’s performance, the average access
time and the transfer rate should be looked
at in tandem. Drive makers and dealers have
a reputation for bending the truth on such
issues and are often found to quote the fast
access time of a drive, without any mention
of the transfer rate —you’ll see this in
advertisements, too. Unfortunately, a high
access time coupled with a slow transfer
rate produces a slow drive.

Because access time is measured in
milliseconds and transfer rate is measured in
Mb/sec, the overall drive performance can
be difficult to get your head around.
Essentially, you're looking for the lowest

possible access time and the highest
possible transfer rate.

Another measure of hard disk
performance, of which you should be aware,
is “seek time” which is conveniently
confused (by some people) with the access
time. Seek time is also measured in
milliseconds and defines the amount of time
it takes a hard drive’s read/write head to find
the physical location of a piece of data on
the disk. The seek time says absolutely
nothing about the speed of a hard drive.

The importance of the access time and
transfer rate is that they tell you how long a
hard drive takes to locate and retrieve data.

How do | upgrade my hard disk?
Computer technology changes quickly.
Every year, processor speeds increase and
hard drive capacity grows. Before you know
it, there’s a new generation of feature-rich
software waiting to cripple your poor aged
PC. Sooner or later you'll have to face up to
the fact that your machine is becoming
outmoded, and find some way of dealing
with this.

The speed of your hard disk has a major
impact on the overall performance of your
machine. Hard drives found in old
computers tend to be physically large, slow,
power-hungry and of limited capacity. If your
machine is really ancient, a modern IDE hard
disk would greatly improve performance.

Before splashing your money around,
there are a few basic facts you need to know
about your PC. First, take the lid off and look
at the arrangement of components. The first
and most obvious thing to find out is
whether you actually have room for another
hard disk.

Check up on the manufacturer of your
hard drive and the drive’s type (if you've lost
your manual, look at the machine’s setup
screen) before you go shopping for a new
hard disk because the BIOSs (Basic
Input/Output System) in some older
machines do not officially support IDE. Ask
the dealer whether the new drive will work in
a “master/slave” configuration with the old
one and finally, cover yourself by checking
that the drive you buy has a “no questions
asked” return policy.

There are essentially two types of modern
drive interface: SCSI and IDE (see the panel).
We’ll concentrate on the more common IDE
variety. Unfortunately, adding a second IDE
drive is not always a simple procedure,
because not all IDE drives work to the same
standard. If both your drives adhere to the

Beginners

Mopmases

If you’ve ever leafed through one of our PCW computer group tests you couldn’t
fail to have noticed the many seemingly-incomprehensible acronyms like those
I’ve already mentioned. They refer to interface standards which define the way in
which the hard drive connects to your PC. In the first generation of computers,
the electronics to manage the hard disk were placed on a separate controller
card. Technology has moved on since then and the same advances in
microchips, which have led to faster processors and cheaper memory, now
enable the controller function to be placed on the disk itself.

m Integrated Drive Electronics (IDE) is currently the most common hard drive
interface and is also (not by coincidence) the least expensive. IDE disks are
connected to an interface card by a cable which extends the signals from the bus
inside the PC. The cable does not plug directly into the ISA bus so it either goes
into an interface port on the main board, or into an interface card. The IDE
standard supports two disks connected together, the first acting as a controller
and the second as a slave, with both disks sharing a single I/O (input/output)
address and interrupt.

m Enhanced IDE (EIDE) is a much-upgraded version of IDE. All computers built
since 1994 should have an EIDE hard disk controller and this provides many
advantages over IDE. Firstly, EIDE can support four devices (instead of two)
which don’t necessarily have to be hard disks. They can also be CD-ROMs or
tape drives compatible with the EIDE standard. Secondly, IDE was always
restricted in that it would not support hard disks larger than 528Mb. The third, but
certainly not least, improvement was in the massive increase in data throughput
compared with standard IDE. This massive speed enhancement puts EIDE on an
equal level with SCSI as a high-end drive interface.

m SCSI (pronounced “scuzzy”) stands for Small Computer Systems Interface and
is another standard for connecting hard drives and peripherals to your PC. SCSI
hard drives are very fast and very expensive. They act as good interfaces for high
capacity hard drives used as network file servers and for very high-powered
scientific and engineering applications. For the average user, it is not really worth

performance results.

spending lots of extra money on SCSI, especially as EIDE now provides similar

ANSI standard (ATA), both drives should
happily co-exist. If they are incompatible, you
could end up throwing away your old one.

IDE drives can control two hard disks on
the same cable and, in order to make them
work together, one must be set up as a
slave and the other as a master. This can be
done fairly simply by moving a jumper at the
back of the drive from one position to
another. When you plug in the drive, make
sure that the cable is plugged in the right
way around, otherwise your machine will
appear to be dead when you turn it on. Pin
1 is usually marked so that you can line up
the cable in the correct way.

The hard disk which you buy will
generally be faster than the one you've
already got so set this one up as the master
and your existing one as the slave. They'll
work more efficiently together if you store
your applications on the faster disk and data

on the slow one.

Once you've physically connected your
new hard drive to the machine, you will have
to configure the PC’s BIOS . The BIOS
contains a series of entries such as number of
heads, cylinders and sectors per track which
define the type of hard drive in the machine.

Generally, you can get into the BIOS
setup utility by pressing a key combination
when you boot up. Here you’ll need to
configure the hard drive type number as well
as other system configuration details. Make
sure you have all the information you need
before you go anywhere near your BIOS or
you could end up frustrated for hours, or
even days, trying to put it right.

Eleanor Turton-Hill welcomes feedback and
suggestions from readers. She is at
ellie@vnu.co.uk

Personal Computer World ® November 1996 327

Acomputer program is nothing more
than a sequence of instructions
which are designed to make your comput-
er behave in a certain way. There are liter-
ally hundreds, if not thousands, of pro-
gramming languages and they are all dif-
ferent. Some have only superficial
differences, while others differ hugely.
Nevertheless, all programming languages
have some things in common: they all
attempt to describe the processing of data,
and because of this they all share certain
basic facilities.

Here, I'll be giving an overview of pro-
gramming principles and common struc-
tures (and if you're about to embark on a
programming course, this will give you a
good head start). Once you’ve understood
the basic principles of programming, you
should be able to get to grips with practi-
cally any language.

What is a computer program?
Computers are not very intelligent things.
They can’t philosophise on the meaning of
life, but they are very good at performing
boring, repetitive tasks very quickly and
very accurately.

Deprived of a program written by a
human being, a computer can do nothing.
If a program is badly written, it can very
obediently turn perfectly good data into
complete gibberish... just one small error
can alter the behaviour of an entire
application.

There are three basic facilities which all
programming languages must have. First-
ly, they must have some way of represent-
ing data and performing operations on it.
Most provide some form of primitive data
and structured data, and some allow you
to create your own data types.

Secondly, programming languages
must provide some kind of evaluation
mechanism; some way of describing the
way in which you would like the data to be
transformed.

Thirdly, every programming language
must have a set of naming and declara-
tion rules. These rules state when you can
and cannot refer to other elements of a
program.

Constants and variables
Most computer programs use some num-
bers which do not change their value
throughout the duration of the program.
These values are called constants and are
usually declared at the beginning of the
code.

The rate of VAT, for instance, is a figure
which may be referred to many times in a
program but always as the same value.

HANDS ON o

BEGINNERS

Programming primer

Pay attention at the back! Eleanor Turton-Hill
provides an overview of programming principles

Arrays
This is a one dimensional
array or simple list. Each of
[cp[v[r[z]o]i []] ite elements is referenced in

identified.
[wimlilaulx[f[o]
[clP[k[d]ila[c]d]
range.

This can be declared at the beginning of
the code (e.g. VAT = 17.5). Then, every
time you need to use the figure, you can
simply refer to “VAT”. What's more, when
the rate of VAT alters, all you need to
change is the constant declaration at the
top of the code.

A variable, as you’ve probably guessed,
is a value which changes throughout the
program. The value of a variable can be
altered and manipulated by the program,
and certain operations may be performed,
depending on its value. All constants and
variables have names and values.

Data types

Before a variable can be referred to in
code, it must first be declared and given a
data type; the program needs to know the
type of thing with which it is dealing.

Fig 1 A ‘main’ point

an index so that its data
contents can be uniguely

Arrays can have any number
of dimensions. This is a two
dimensional array or list of
lists. Each element can still be
uniquely identified, only it
requires one value from each

and common structures.

Most programming lan-
guages acknowledge several
data types, the major distinction
being between text and num-
bers. In Pascal, there are four
basic data types: char (for char-
acter strings), int (for integer
values), and real (for double
precision real numbers).

There is also a Boolean type
which is used as a flagging
mechanism. A Boolean vari-
able can hold just one of two
values like Yes/No, or On/Off,
or 1/0.

Another data type used in
most programming languages is the array
type. This is used for managing lists.
When an array is defined, it is given an
index which enables you to uniquely
identify any one of its elements (see
Arrays, above).

Controlling program flow

Every language has different conventions
for beginning a program. In both C and
Pascal, programs start with the reserved
word “main”. This makes it clear where
execution should begin (Fig 1).

The following text shows three basic
control structures which are universal in
procedural programming languages. Each
structure has variations and each is
written slightly differently, depending on
the syntax rules of the language you’re
using. Here, I've made the examples sim-
ple and used pseu-
do-code to illustrate
their structure.

C Pascal
main () { PROGRAM main (input,output);
definitions; definitions e IF THEN ELSE
statements; BEGIN The IF statement is
1 statements probably the easiest
END. programming struc-
ture to understand. It

315
PERSONAL COMPUTER WORLD
SEPTEMBER 1996

HANDS ON e BEGINNERS

What is object-orientated programming?

T here’s been much confusion recently about the meaning of the
term “object-orientated”. This is largely because it has been bandied
about by all and sundry to mean a multitude of different things. Put
simply, object-orientated programming is a collection of design
principles for writing code. It is only supported by some languages
and aims to break programs down into manageable units called
“objects”. The core idea behind this is to make components which
are sufficiently general purpose as to enable them to be re-used in
other programs.

This method of designing code yields many advantages. Firstly, a
program which is divided into independent chunks is easier to
understand, easier to debug and generally easier to maintain.
Secondly, if many of those chunks are re-usable, time will be saved
in future projects. Thirdly, an application made out of many
independent parts can be more easily created by teams, thus
increasing productivity.

The first object-orientated programming languages (Simula and
Smalltalk) were conceived more than 20 years ago, but it's only
recently that people have started taking its principles seriously. C++
is now the most popular object-orientated language. Objects within
C++ can correspond to real-world entities such as bank accounts,
employees or customers. But they can also correspond to computer
hardware and software components such as communications ports,
or video display windows, or data structures such as stacks or lists.

What are classes?

Many of the objects that a program uses have the same structure. A
program which simulates the operations of a bank, for example, will
need many account objects and many customer objects. Once the
structure of an object has been set up, it is possible to produce many
copies of it. This is done by using “classes”; each contains a complete
description of one kind of object. Truly object-orientated code must
have the three essential characteristics of inheritance, encapsulation
and polymorphism. This may sound frighteningly technical, but in fact
the whole thing rests on three fairly simple concepts.

One: classes can be defined from scratch, or they can be created
by modifying an existing class. Derived classes take on all of the
characteristics of the existing class, plus any modifications. This is
called inheritance, and can save you an incredible amount of time and
effort in code writing. Two: objects are available to the programmer
through an interface which responds to a limited number of different
kinds of message. The internal structure of individual objects is hidden
from the programmer and this data hiding, or encapsulation, simplifies
the use of objects. And three: a major attribute of an object-orientated
language is that all the objects of the derived classes of a parent class
are type compatible. This means that a derived class can be used
anywhere that the parent class is expected. This is called inheritance
polymorphism and enables clients of a family to see a simple uniform
interface.

will execute one or other group of state-
ments depending on the value of a condi-
tion. We use this structure in normal lan-
guage all the time: “If it’s sunny, we’ll go
out, otherwise we’ll stay at home”.

In code, it looks more like this:
IF condition true THEN

There are plenty of
good programming
tutorial pages on
the internet. Check
out this one,
written by Steve

instructions Holmes of the
ELSE University of
instructions Strathclyde, for
END IF some lessons in C:
http:/lwww.strath.
e WHILE DO ac.uk/CC/Courses|/

NewCcoursel
ccourse.html

The WHILE statement is iterative rather
than conditional. It will execute a state-
ment continually until a condition no longer
holds. This translates to normal language

e i P G Bl e i

-

=
- — Lt

o | e s i B Lot i He i i il 0 WS L O E R s |

= Elo= e

i MR 2 Fyom msa Peerhini g §

C Languaze Keyvwords
Tir oy mmwcy e mwred by e lnpuage. Thor momarg o drrach defend. wnd ey ook br re-debierd e mem
iy 4

bk raar rfanh

| s A mmber
| 4 Al e P i o

I = (=13 H Imi kxg mgeim

| i e ik widin wrod ek

| el ceka weslged seal sAds

ey e ey, e e e wrw oo of memmmebl g oy sl fogsiery o The s o b et

sbran a amdeTeon (hanT s b, we-duer o comen boar, st wd sdemcn

- [
|

something like this: “While John is well, he

will keep working. If he is unwell, he will
stop”.

In code, it looks something like this:
WHILE Condition is true

DO Instructions
WEND

e FOR..NEXT
The FOR..NEXT control structure is also a
repeating routine. It is used to execute a
single statement, a specified number of
times: “For the next five days, I'll be going
to work”.
In code, it looks rather like this:

FOR

n=1 TO 5
Instructions
NEXT
Structure
Once you've got used to the idea of vari-

316
PERSONAL COMPUTER WORLD
SEPTEMBER 1996

ables, data types, and basic control struc-
tures, you’re ready to start writing simple
programs. But when your code starts to
become more complex, then you'll have to
learn about scope rules and structure.

It's easy to turn a perfectly good work-
ing program into complete garbage if you
don’t follow a few design principles. Your
program may still work quite well but will
gradually become unreadable and, worst
of all, unmaintainable.

Over the years there have been many
theories about how programs should be
designed. The idea of the procedure
emerged in the seventies with C and Pas-
cal. It attempted to break code down into
manageable and well-specified chunks,
making it easier to write and maintain,
especially by large teams. This “modular”
style of programming, which is based on

the idea of packaging data and functions,
developed into what is now known as
“object-orientated” code (see the box,
above).

If you are thinking of learning a pro-
gramming language, there are plenty of
ways to get started. Turbo Pascal and
Turbo C++ are both available from Bor-
land, in DOS and Windows versions.
Microsoft offers a Visual Basic Pro and
Visual C++ Student Pack which you can
get for a street price of about £80.]

Eleanor Turton-Hill welcomes any
feedback and suggestions from
readers. She is at
ellie@pcw.ccmail.compuserve.com

Borland 0990 561281
Microsoft 01734 270000

Sound principles

Eleanor Turton-Hill explains how to make the most
of the sound-making capabilities of your PC.

These days, most PCs come with a
sound card pre-installed but very few
people fully exploit the sound capability of
their machines.

Sound cards don’t only make games
and multimedia applications sound great
but with the right software you can also
compose, edit and print your own music as
well as learn to play the piano, record and
edit digital audio, and play audio CDs from
your desktop.

Before you start fiddling with your
recording software, however, it helps to
understand some of the underlying
principles of sound generation on PCs.
Here, I've given a brief summary of the
most important technical concepts relating
to sound.

Feature connector

for a Wavetable

Daughterboard
CD-ROM drive
interface CD audio cable

connector

=/ 0 :Ianking plates

Motherboard

Why does a PC need a sound
card?

Sound is a relatively new capability for PCs
because no-one really thought about it
when the PC was first designed. The
original IBM-compatible PC was designed
as a business tool, not as a multimedia
machine, so it's hardly surprising that
nobody thought of including a dedicated
sound chip in its architecture. Computers,
after all, were seen as calculating
machines; the only kind of sound
necessary was the beep that served as a
warning signal.

For years, the Macintosh has had built-
in sound capabilities far beyond the realms
of beeps and clicks, but PCs with integrat-
ed sound are still few and far between.
That's why PCs continue to require an
add-in board or sound card to produce
decent noises.

Sound card

HANDS ON e BEGINNERS

The popularity of multimedia applica-
tions over the past few years has
accelerated the development of the sound
card, and the increased competition
between manufacturers has led to these
devices becoming cheaper and more
sophisticated.

Sound cards can cost from as little as
£30 to as much as £300. Most modern
boards now use WaveTable technology
which uses sampled sounds of real instru-
ments. WaveTable has greatly improved
the quality of sound available on a PC
compared to the synthesised sounds of a
few years ago. Digital Signal Processing
(DSP) technology is becoming more
widespread on sound cards and this allows
reverb, delay, and other digital effects to
be applied to instruments or samples.

What is Plug and Play?

Plug and Play is a standard introduced by
Microsoft in its latest operating system,
Windows 95. Essentially, Plug and Play
was introduced to make the installation of
new devices easier by automating the
whole process. Windows 95 includes
drivers for a large number of sound cards
and should automatically detect Plug and
Play cards when they are installed.

P s e

T s e 7 g

BEECT]
et Dl s di=d
ey g
ol ~ :EI’*H-\.--“ B | [Fwceioa |
b ,, —'.::a:- a | SN . ———)
B B
Hua e eew
R -
v A Pl AP S i -\:‘;.#u:
B R T p— P
- 5 —— R S
etk T sl P 0238 W1
Eommrr bk Lomed B B a Sl
[r———— | | |
o Bt e _— |l="_-|-.!¢l-|l| ——
Fogel | Pl | Bpms | R
L - el s B - N T
B | e | r.—q' 1
=
|_'_i._| L |

Sound cards which conform to the Plug and Play standard have only
just started to appear on the market. Those which live up to their
promises should install automatically and report no conflicts

323
PERSONAL COMPUTER WORLD
AUGUST 1996

HANDS ON o

BEGINNERS

WaveTable daughterboards

I you're thinking of improving the sound capability of your PC, check
your existing sound card first to see if it has a feature connector. If it
does, then you could save some money by upgrading the card with a
WaveTable daughterboard.

WaveTable daughterboards are compatible with any 16-bit sound
card that has a feature connector. The connector is easy to find and
will be located at the bottom left-hand side of the card near to the
blanking plate. It looks similar to a CD-ROM interface, only smaller.
Some cards, including the Value edition of the SoundBlaster 16, may
not have this connector, so check first.

Installing a WaveTable daughterboard couldn’t be easier. Simply
remove your sound card and “sit” the daughterboard on top, making
sure the connectors are firmly attached. Three plastic spacers will also
be provided which prevent the two cards from damaging each other.

The most interesting thing about this type of upgrade is that you

don’t have to install any software for it to work and there are no dip
switches to configure. If you want the daughterboard to be the
default synthesiser in Windows, which is likely, you will need to edit
the MIDI mapper, or MIDI output port if you're using Windows 95.
This is straightforward and is explained in the accompanying
manuals.

The quality of the instruments on each WaveTable
daughterboard vary significantly. This is usually determined by how
much ROM the card has. Most cards contain between 1Mb and
4Mb of samples and offer digital effects which include reverb,
chorus and delay. Reverb gives the impression that the instruments
are being played in large halls or churches, which is great for when
you're playing Doom. When chorus is applied, the sound is similar
to many instruments playing at once when only one is actually being
used. Delay is just a posh word for echo.

The operating system reads your
Config.sys and System.ini files and scans
for existing drivers on installation. If the
card’s drivers are pre-bundled with the
operating system, they’ll be installed and
configured for you. If not, you'll be prompt-
ed for an installation disk.

Sound cards which aren’t Plug and
Play-compatible must be installed
manually using the Add New Hardware
Wizard in Windows 95. As with many new
Plug and Play devices, the “seamless
integration” concept does not always work
in practice; often, cards which claim to
conform to the Plug and Play standard
don’t install smoothly.

WaveTable synthesis

WaveTable cards play back pre-recorded
samples of real instruments. A WaveTable
ROM, therefore, is an electronic table of
waveforms. Whereas one FM sound card
will sound much the same as the next,
WaveTable cards differ significantly in
quality. The quality of a card’s instruments
is determined by several factors: the
quality of the original recording of each
instrument; the sampling rate, or frequen-
cy, of the recordings; the number of
samples wused to reproduce each
instrument; and the compression methods
used to store the samples.

By using high ratio compression tech-
niques, more samples (or instruments) can
be “squeezed” into small amounts of ROM.
There is a trade off with quality, however,
as compression often results in loss of
dynamic range and quality.

Every instrument produces subtly
different timbres depending on how it is
played. For example, when a piano is
played softly, you don’t hear the hammers
hitting the strings. When it’s played harder,
not only does this become more apparent,
but there are also changes in tone.

324
PERSONAL COMPUTER WORLD
AUGUST 1996

Many samples and variations have to
be recorded for each instrument to
recreate this range of sound accurately
with a synthesiser. Inevitably, more sam-
ples require more ROM. A typical sound
card may contain up to 700 instrument
samples within 4Mb ROM. To accurately
reproduce a piano sound alone, however,
you’re looking at between 6Mb and 10Mb
of data. This is why there is no comparison
between the synthesised sound and the
real thing.

Digital signal processors

Digital effects can dramatically improve
the overall quality of sound cards. Digital
Signal Processors (DSPs) use complex
algorithms to add reverb and other effects
to give the impression that instruments are
being played in large concert halls. Other
popular effects include stereo choruses
and delays.

Adding a stereo delay to a guitar part
can “thicken” the texture and give it a
spacious stereo presence. Chorus is also
used to thicken instruments and gives the
impression that many instruments are
playing when, in fact, only one is being
used.

What is MIDI?
MIDI stands for Musical Instrument Digital
Interface. It was developed as a communi-
cations protocol so musical instruments
could “talk” to each other. MIDI was first
developed to allow keyboard players to
“layer” the sounds produced by several
synthesisers, although today MIDI is used
mainly for sequencing. A sequencer is a
piece of software that records and plays
back MIDI information. It allows complex
musical arrangements to be built up that
would otherwise be impossible for one
person alone to play.

MIDI doesn’t transmit any sound, just

simple binary information. The ones and
zeros that are sent down the cables
contain very specific instructions. The most
common instructions tell the receiving
instrument to play a particular note for a
duration of time — a note-on message
followed by a note-off message. The same
instructions contain details of how loud to
play that note.

The synthesiser knows which sound to
play using a simple program change
message. This message tells the
synthesiser to select sound number 67, for
example, which in the General MIDI specifi-
cation is a saxophone. Before General MIDI
came into effect, sequences containing
program change messages were meaning-
less if played back on an instrument other
than the one on which it was recorded. This
was because program 3 on the original
synthesiser may have been a piano, while
on another synthesiser it may have been a
trombone. The result is a tune that sounds
nothing like the composer intended.

In much the same way as you can have
seven SCSI devices in a chain, MIDI com-
municates over 16 channels allowing up to
16 MIDI instruments to be played from only
one interface. Since the majority of sound
cards are multi-timbral, 16 instruments can
be played simultaneously from only one
device. Adding a second MIDI interface
opens up another 16 MIDI channels. Some
MIDI interfaces offer as many as 16
outputs, making it possible to access 256 at
the same time. This might sound ridiculous,
but in large MIDI setups you can easily run
short of channels.

L]

Eleanor Turton-Hill welcomes any
feedback and suggestions from readers.
She is at
ellie@pcw.ccmail.compuserve.com

Hardware basics

Eleanor Turton-Hill looks under the bonnet to
demistify and explain the workings of your PC’s

engine components.

J udging by some of the emails
and letters I've been getting
recently, there’s still a fair amount
of confusion out there when it
comes to understanding hardware.

HANDS ON o

BEGINNERS

used on the next. Such data needs to be
stored somewhere close at hand so it is
put into address registers and data regis-
ters on the CPU itself. This prevents the
processor from having to access the mem-
ory every time it generates data.

RAM
One of the concepts which confuses
beginners is that of the location of data.
The CPU spends its time fetching instruc-
tions and executing them according to
what program is running. But where is the
data? Is it in the hard disk?... the memo-
ry?... the cache? Well, the answer is that
data is continually moved around. It’s in
different places depending on the particu-
lar stage of the CPU cycle.

The CPU can perform operations

ADDRESS ADDRESS
BUS BUS
CPU CACHE MEMORY
DATA BUS DATA BUS

All computers have four basic

elements: a processor, memory,
storage devices and I/O devices.
Understanding the relationship between
these four units is an essential starting
point if you're trying to get to grips with
hardware, so here’s an overview.

CPU
One of the first things you’ll hear people
talking about is the type of processor in
their machine. This is the central process-
ing unit (CPU) and is the single most
important component in the machine
because it processes data and controls all
other parts of the computer.

Even the simplest processor is an
extremely complex device. I’'m not going to
go into great detail here, but it is useful to
have an outline of its main functions.

If you take the lid off your computer you
will see several flat, black, blocks stuck to
a green board. The CPU is the big square
one usually marked “Intel” but
sometimes “Cyrix” or “AMD”.

Essentially, what the processor
does is to store, move and manip-
ulate data. It can only do very sim-
ple things like move numbers from
one place to another or perform
very basic mathematical opera-

A “cache hit” occurs when data required
by the CPU is found in the cache.
Because the cache provides data at high
speed, it can dramatically improve the
performance of the whole system

results. The particular instructions which
the CPU is following at any one time are
determined by the program it is running.

If | say that my computer is able to pro-
duce reports, what | mean is that it has a
program which instructs the CPU to exe-
cute a particular group of instructions
which create a report. If | say that my com-
puter knows my friend’s phone number,
what | actually mean is that the number is
stored on my PC’s hard disk.

Often, the CPU performs several oper-
ations on the same data, or it may need to
hold the result from one operation, to be

PROGRAMMER

tions, but it does all of these things END USER
very fast.
The CPU works by continually OPERATING SYSTEM
retrieving instructions from memo-
ry that tell it where to get data, COMPUTER HARDWARE

what operations to perform on the
data and where to store the

directly on data stored in its own registers,
but it can also perform operations on the
data in memory and on data stored on
disks or tapes. But data on your hard disk
or tape must first be brought into memory
before the CPU can do anything with it.

RAM stands for Random Access Mem-
ory. It's the working memory used by your
computer to store instructions and data
before they can be committed to the hard
disk. Because RAM works much faster
than the hard disk, it's used for handling all
the data which is in constant use while pro-
grams are running. The hard disk is used
for dumping any data which the system
does not currently need.

Cache
Modern computers have a very large
amount of memory compared with the first

The hierarchical view of
hardware can be extended to
software. The ultimate aim of a
computer is to provide a set of
applications for the end-user.
These applications are developed
by the application programmer
using a particular operating
system (OS). The OS masks the
details of the hardware from the
programmer and provides the
programmer with a convenient
interface for using the system

331
PERSONAL COMPUTER WORLD
JULY 1996

HANDS ON o

PCs of the early eighties and this has had
an effect on the development of the PC’s
architecture.

Storing and retrieving data from a very
large block of memory is more time con-
suming than from a small block. With a
large amount of memory, the difference in
time between a register access and a
memory access is very great and an extra

Hard disk speed

The speed of a hard disk can be measured
in lots of different ways, and it is important to
know exactly what figures are being quoted
when you're shopping for a new one. The
performance of your hard disk is very
important to the overall speed of the system:
a slow hard disk will hinder a fast processor
like nothing else in your system can.

As an initial gauge, look for the drive’s
“average access time”. This is the time
taken by the drive to locate the right track on
which a piece of data is stored, and the
specific place on the track where that data is
sitting. This time is usually quoted in
milliseconds.

As well as “average access time” look
out for “transfer rates”. The transfer rate is
the speed at which the drive can deliver the
data from the disk platters to the CPU. This
is generally described in megabytes per
second.

In order to get an accurate view of a hard
drive’s performance, the average access
time and the transfer rate should be looked
at together. Drive makers and dealers have
a reputation for bending the truth on such
issues and are often found to quote the fast
access time of a drive without any mention
of the transfer rate. You'll also see this in
advertisements. Unfortunately, a high
access time coupled with a slow transfer
rate produces a slow drive.

Because access time is measured in
milliseconds and transfer rate is measured
in megabytes per second, the overall drive
performance can be difficult to get your
head around. Essentially, you're looking for
the lowest possible access time and the
highest possible transfer rate.

Another measure of hard disk
performance of which you should be aware
is “seek time”, which is conveniently
confused (by some) with the access time.
Seek time is also measured in milliseconds
and defines the amount of time it takes a
hard drive’s read/write head to find the
physical location of a piece of data on the
disk. The seek time says absolutely nothing
about the speed of a hard drive. The
importance of the access time and transfer
rate is that they tell you how long a hard
drive takes to locate and retrieve data.

332
PERSONAL COMPUTER WORLD
JULY 1996

BEGINNERS

layer is required
in the storage

CPU REGISTERS

hierarchy.

A device called
a cache sits in
between the +

CACHE

CPU’s registers
and main memo-
ry. This cache is

FASTER
ACCESS

GREATER
STORAGE

MEMORY

much faster than
main memory but
slower than the

HARD DISK

CPU’s registers.

Its advantage is
that it can hold

OTHER STORAGE DEVICES
TAPE STREAMERS

more data than
can be held in
registers and can work faster than main
memory.

When the CPU goes to read data from
a certain address in memory for the first
time, the cache goes to find it from memo-
ry. When it has retrieved the data, it
records the address and data in its own
fast memory. Eventually, the cache’s
memory fills up with records of addresses
and data that the CPU has requested and
when those same pieces of data are
requested again, they are taken directly
from the cache.

When the requested data happens to
be in the cache, a “cache hit” is said to
have occurred. Any requests which are
made for data which is not already in the
cache result in a “cache miss” and one of
the records in the cache is then replaced.

Hard disk

The hard disk is the part of your system
which holds all the programs, documents
and data when your PC is switched off.

The longer you have your computer
and the more documents you create and
the more data you store, the more valu-
able your hard disk becomes. In fact, hard
disks which crack up can put small com-
panies out of business in a flash. Your
hard disk is the storage place for all your
valuable work.

The programs which you run (i.e. your
word processor, graphics package or
spreadsheet) are replaceable. When you
buy your PC, you’ll often get some of this
software pre-installed on the hard disk, but
you’ll also get a set of floppy disks which
you can use to re-install it if anything goes
wrong. Anything else which you create
should be instantly backed up onto a
spare floppy disk.

The hard disk inside your PC is made
of aluminium alloy covered with a magnet-
ic coating. This makes the disk itself a
pretty rigid plate: hence the name “hard”
disk. Hard disks are completely sealed

In order to perform satisfactorily, the
PC uses a hierarchy of memory/
storage technologies. As you go down
the hierarchy, the cost per bit
decreases. Thus the smaller, more
expensive memories are
supplemented by the larger, cheaper,
slower ones

inside the disk drive and are not remov-
able like many other media. They also spin
very fast and have high recording densi-
ties, which means that they must be kept
free from dust and any other kind of envi-
ronmental contamination if they are to be
maintained properly.

Thankfully, for the user, most hard
disks look pretty much the same and peo-
ple rarely know much about their internal
workings. Hard disks have changed radi-
cally over the years, especially in terms of
capacity. The smallest hard disks held a
tiny 5Mb while these days 8Gb is the max-
imum hard disk capacity. The average PC
bought today has between 500Mb and
1Gb in hard disk storage.

Data is recorded onto the magnetic sur-
face of the hard disk in exactly the same
way as it is on floppies or digital tapes. If
you've ever defragmented your hard disk,
then you probably have some mental
image of how the surface of the disk looks.
Essentially, the surface of your hard disk is
treated as an array of dot positions, each
of which can be identified and set to a
binary “1” or “0”. The position of each array
element is not identifiable in an “absolute”
sense, and so a scheme of guidance
marks helps the recorder find positions on
the disk. The need for these guidance
markings explains why disks have to be
formatted before they can be used. =

Eleanor Turton-Hill welcomes feedback
and suggestions from readers. She is on
ellie@pcw.ccmail.compuserve.com

