
especially at the front on the motherboard
which may be unsupported as a result and
may flex alarmingly when inserting cards or
processors. The solution is to install stand-
offs in the appropriate holes but to cut off
the lugs that fit the holes in the system
case, so the stand-offs merely act as legs.

Cabling
Having fixed the motherboard in place in the
system case, our next task is to connect the
myriad cables. These are the power cables,
the cables which drive the LED displays, the
loudspeaker and the reset button.
■ First in line are the two power cables, the
two chunky female plugs with multi-colour

ast month I looked at the pros
and cons of the build-it-yourself
PC and led you through the

process of choosing the motherboard and
the system unit, and specifying all the
components needed to build your PC. I
chose a games PC for the reason that it
represents the most powerful PC available.
I then began preparing the motherboard.

This time I’m going to describe the final
installation of the motherboard, and begin
installing the expansion cards.

Install the new motherboard
1. Give the new motherboard a final once-
over to make sure you’ve correctly set all
the jumpers. Check that the SIMMs are
correctly mounted in their slots and that the
CPU has been orientated properly.
2. If you have a “cache-on-a-stick” module,
make sure it’s plugged into its socket. If you
have a mini-tower system case, lay it on its
side so the area where the motherboard will
go is at the bottom.
3. Slide the new motherboard into position
in the base of the case so the stand-offs
engage in the corresponding locating holes
in the floor: the position of the keyboard
socket (and the hole in the casing for it) will
help you locate the motherboard correctly.
4. Slide the motherboard as far to the right
as possible (this may entail a little wiggling).
5. Make sure all the stand-offs have
engaged in the base. Your system case
may have several threaded nuts on the
base — align the remaining holes in the
motherboard with these and fit the supplied
bolts to secure the motherboard in place.

Sometimes the system case may lack
mounting holes that correspond with holes
in the motherboard. This can be a problem,

cables attached. They will be labelled P8
and P9. By the rear right-hand corner of the
motherboard you’ll find the male socket for
these plugs — it’s probably white or cream
and about 50mm long.

The plugs are identical, and while it’s
impossible to fit them facing the wrong way,
it’s certainly possible to put the one that
belongs on the left, on the right, and vice-
versa. Luckily, there’s an easy way to
orientate them correctly; fit them so that the
black cables on each plug go together.

Hands OnWorkshop: Build your own PC

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • August 1997 • 241240 • Personal Computer World • August 1997

Hands On Workshop: Build your own PC

Cable junction
In the third part of his Workshop series on building your own PC, Roger Gann explains how
to install the motherboard, how to connect the cables, and how to check that all is well so far.

L

■ If you have an ATX motherboard, its
power connector is slightly different: it’s a
single 20-pin socket and you’ll need an
ATX-style case that has a PSU (Power
Supply Unit) with the appropriate connector.
■ The most fiddly task of all is fitting the little
multicoloured cables. Typically, these are
positioned along the front edge of the
motherboard. Your case will have quite a
few of these and will include connectors for
these cables: keylock, reset, power, turbo
LED, and switch and speaker.

There’s no earthly reason why the
number of leads and plugs attached to the
case should match the number of
connectors on the motherboard, so
occasionally you’ll have to use your noddle
when ne’er the twain shall meet. For
example, the leads can be grouped
together to form just two or three plugs. If
this is a problem because the motherboard
connectors are not so arranged, it’s OK to
split the plastic plug into two separate plugs
with a sharp knife. Pay close attention to the
schematics provided in the motherboard
manual and make sure you get the
orientation of the plugs right. Often the
connectors are tightly crammed together
and badly labelled.
■ If you’re fitting a 486 processor, you
should now fit the heatsink which just clips
on over the processor. If you are fitting a
DX4 or a Pentium, you will need a
combination cooling fan and heatsink —
and this will need to pick up power from
somewhere. Modern motherboards often

have a power connector specifically for the
fan, located adjacent to the ZIF socket,
while others may have a fly lead which will
take its power from one of the peripheral
power leads.

Your PSU may make no special
provision for the cooling fan, so you may
have to buy a special lead and plug it in to
one of the normal power leads. Buy a “Y”
power lead adapter to avoid sacrificing a
precious power lead.

I/O ports
All modern motherboards now feature
integrated I/O (input/output). Rather than
use dedicated I/O cards which hog
expansion slots like a serial/parallel/floppy/
IDE card, these ports are now built into the
motherboard. So the next step is to

Make sure you check all your motherboard

components thoroughly before mounting it

in its case

If the system case lacks mounting holes

for your motherboard, slice the standoffs

in half so that they sit flat on the base

p242 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

242 • Personal Computer World • August 1997

Hands On Workshop: Build your own PC

Back Issues

See p12, or this month’s PCW CD-
ROM, for how to obtain Parts I and II
of the Workshop, which appeared in
the June and July ’97 issues.

motherboards use shrouded connectors
with a polarising notch which prevents you
from inserting the motherboard plug
incorrectly. (Note that some motherboards
don’t have a joystick port, relying on the fact
that most sound cards come with one.)
■ Another connector you might come
across is the PS/2 mouse connector. There
should be a motherboard connector close
to the keyboard socket and the mouse port
is almost certainly supplied on a blanking
plate. Check the Pin 1 alignment as above
when plugging in the data cable.

Fit the peripherals
That completes the cabling phase and we
can start fitting the peripherals at long last.
But we won’t get carried away; we’ll start
with the graphics card. The reason for this
is that I want to do a little preliminary system
checking and make sure that what I’ve
done so far is OK before proceeding any
further. So, unpack your graphics card,
again remembering to discharge any static
electricity before touching any electronic
components on it.
1. The card will probably be a PCI card, so
fit it in a free PCI slot. Undo the bolt
securing the blanking plate at the end of the
slot and remove the plate.
2. Hold the card firmly by its top edge and
press its edge connector firmly into the
expansion slot (it may be a tight fit and
you may have to use a modicum of steady
force). Tighten up the bolt to stop the

commission your new PC’s basic I/O.
■ Because expansion cards are no longer
needed, the various sockets for these I/O
ports have to be separately mounted on
the chassis. You should find a set of these
ports (a parallel and a pair of serial ports
complete with grey ribbon cable and
sockets) included with the motherboard.
■ Sometimes these are mounted on an
expansion slot blanking plate, which makes
installation a cinch — you just substitute a
spare blanking plate for this one. Try to use
the blanking plate closest to the power
supply to avoid losing the use of a precious
PCI. Make sure the lower socket doesn’t
foul up anything on the motherboard (they
tend to be located low down on the
blanking plate).
■ You may have to use cut-outs in the rear
panel of the system case to mount your
ports. These are held in place by a bit of
solder and a light tap with an old
screwdriver will dislodge them. Undo the
bolts on the sockets, offer up the socket
from inside the case and tighten up the
bolts. They can be a fiddle to tighten
because they’re mounted so close to the
socket itself. Install the parallel two serial
ports in this way.
■ Complete the job by plugging the ribbon
cable attached to each port into the
appropriate header connector on the
motherboard. Pin 1 should be marked on
the motherboard. Align the coloured edge
of the ribbon cable with Pin 1. Better

card from flapping around.
3. Now, without putting the cover back on
(but taking the usual safety precautions),
plug in the keyboard and monitor to their
respective ports at the back of the system
unit. Plug in the mains lead to the system
unit and hit the on/off button.

Is it happening?
With luck, things should start to happen:
the power LED should light, the CPU
cooling fan should spin and the floppy disk
drive should make a little grinding noise
(“perform a seek” in technical jargon). The
motherboard’s BIOS should now perform
its POST (Power On Self Test). It will count
through the installed memory as it checks
it, so watch this.

There’s no boot device so your new PC
cannot boot yet, but you can enter CMOS
setup (typically, by pressing the DEL key at
boot time) and set useful things like the
time and date. This also confirms that the
basic PC is a working machine.

If nothing happens, check the mains
lead, the two mains plugs and the miniature
multicoloured cables. Also check that the
graphics card is plugged in and that the
monitor is connected to it. Check the CPU
in its ZIF socket. If the LEDs light up, but
nothing happens on-screen and instead
you hear a series of beeps, you have a
fundamental error condition: listen to the
pattern of the beeps and then consult the
motherboard manual to see what error
condition they indicate. Often it is a problem
with main memory or with the graphics
card, so try re-seating them in case it is a
poor contact.

Next month, we will fit the remaining
peripherals.

Roger Gann can be contacted by post c/o PCW
at the usual address or via email at
hardware@pcw.co.uk.

Contact

Check that the CPU is correctly

mounted in its ZIF socket

Preparing the motherboard
1. First, get your toolkit together. You’ll need:
• a Phillips screwdriver;
• an electrician’s screwdriver; and
• a pair of fine needle-nose pliers.
2. Take a moment to examine your new motherboard and read
through its (no doubt sparse) manual. Check whether there’s
anything important of which you should be aware.
3. Most motherboard manuals are invariably terse and techie but
you should try to identify the positions of important components
and jumpers.
4. If the processor is supplied loose, fit it into the ZIF socket on the
motherboard:
• lift the socket lever clamp;
• orientate the CPU so that the bevelled corner on the processor
(a.k.a. Pin 1) aligns with Pin 1 on the ZIF socket; and
• lower the CPU in, then lower the lever to clamp the chip into its
socket.

Most modern motherboards support a variety of processors
from Intel, AMD and Cyrix, and you normally have to move a fair
number of jumpers to configure the motherboard for the particular
type of processor you’re using.

You’ll also have to configure the motherboard for the clock
speed of the CPU. Many Pentium motherboards are festooned
with these tiny black jumpers which are often poorly laid out (from
a point of view of ease of use). Mercifully, though, jumpers are on
the way out and the latest motherboards are entirely software-
configurable from the CMOS Setup menu.

Fitting a SIMM
While access to the motherboard is so easy, take the opportunity
to fit the SIMM memory. You will probably have planned to buy
EDO SIMMs but if both your motherboard chipset and your
budget support it, consider buying Synchronous DRAM (SDRAM)
instead — it’s a tad faster than EDO.
1. SIMMs are notched at one end to prevent them being inserted
incorrectly in their sockets. Find the notched end and locate the

when it comes to running 16-bit apps and
doesn’t have MMX support (although the
Pentium II will), so we’ll shortlist the
200MHz Pentium MMX. Although not many
games support MMX at present, the list is
growing, and it’s a must-have for the
serious games and multimedia user.

The other hot candidate for fast game
play is the recently announced AMD K6
processor. This is faster than the Intel
Pentium and in some cases is faster than
the Pentium Pro. It’s also about 25 percent
cheaper than the equivalent Pentium and
available in a 233MHz version too, making it
both cheap and fast. Add to this the fact
that there’s no performance penalty when
running 16-bit apps, that it supports MMX
and that it is Socket 7 compatible, and the
K6 begins to look very interesting.

Because the K6 is so new, make sure
the motherboard you buy supports this
advanced CPU. (See last month’s column,
which dealt with selecting a motherboard.)

Storage: hard disks & CD-ROM drives
Although the most powerful games will run
almost exclusively from CD-ROM, the hard
disk still has an important role to play, so
you should ensure that you’ve got the
fastest-possible hard disk subsystem. The
vast majority of new PCs these days come
equipped with Enhanced IDE hard disks
and, thanks to the modern miracle of Mode
4 PIO, can belt out data at a cracking pace
of up to 16Mb/sec. Very soon, though,
motherboards will appear which support
Ultra DMA EIDE, delivering 33Mb/sec
throughput.

OK, so the EIDE transfer rate is good;
but there’s a price to pay, and that is
extremely high CPU utilisation rates. But

ast month we looked at the pros
and cons of building your own PC
and how to go about selecting

those most anonymous of components, the
system case and the motherboard. This
time around I’ll deal with specifying the
ultimate games PC, from the ground up.

When I tell you that a top games PC is
probably the most powerful, this side of a
dedicated graphics workstation, it gives you
some idea of what is possible when you
have the luxury of being able to build your
own PC. But if you don’t actually need that
much power, you’ll be able to scale down
the specification accordingly. I’ll also be
covering the first stage of assembly — the
preparation of the motherboard.

You might think that the most powerful
PCs are invariably to be found on business
desktops? Wrong. The most powerful PCs
are those dedicated to playing games, and
these are found in the home. If you’re
serious about games-playing on a PC, then
you’ll need a serious PC on which to play
them. And I’m talking about really serious,
modern games, which incorporate all
manner of multimedia effects: sound,
animation, video and 3D rendering; these
test the capabilities of a PC like few other
programs can. It may sound preposterous,
but Intel is aiming the latest and fastest
200MHz MMX Pentiums at the home
market simply because games run better on
the fastest processor you can buy.

The processor
So, the good news is that as far as games
are concerned, you now have two choices.
Your first port of call is the 200MHz Pentium
MMX. The Pentium Pro is undoubtedly a
more powerful processor, but it’s not so hot

thanks to PIO, the CPU alone has to
supervise every chunk of data that is
hoovered up off the disk and this takes up
plenty of its time; time which could be better
spent actually running your game.

Games purists should avoid Enhanced
IDE hard disks altogether, good though they
are, and instead plump for SCSI because it
is clever and handles all data transfers itself,
thus not wasting processor power.

Here, I’d recommend something like the
Adaptec AHA-2920 or 2940 host adaptor
cards coupled to a Seagate Hawk Fast
SCSI-2 drive. Or, if you’re very keen, go for
Ultra Wide SCSI such as the AHA-2940UW
plus an Ultra Wide SCSI drive. This
combination can deliver phenomenal
throughput in the region of 20Mb/sec to
40Mb/sec.

For the same reasons, you’d have to
choose a SCSI CD-ROM as well. Even
though most modern CD-based games are
mastered on four-speed drives, it is a good
idea to get a faster drive. Right now, the
fastest CD-ROM drives are 12- and
16-speed models. Unfortunately, these are
mostly IDE/ATAPI drives which make severe
demands on the CPU to deliver this kind of
performance: SCSI CD-ROM drives don’t,
so I’d recommend these above their ATAPI
counterparts any day. Sadly, they’re also
considerably more expensive, but I would
bite the bullet and opt for something like the
new Plextor 12/20Plex drive which can
deliver data at 3,000Kb/sec.

Graphics cards
Without doubt, if you want the most
realistic-looking games you’ll need a
graphics accelerator which supports 3D
graphics. Unfortunately, the development

Hands OnWorkshop: Build your own PC

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • July 1997 • 255254 • Personal Computer World • July 1997

Hands On Workshop: Build your own PC

The games that PCs play
Why not build your own PC? It’s easier than you imagine. Here, in Part II, Roger Gann considers
a high-power spec, prepares the motherboard, and shows how to fit the SIMM and stand-offs.

L

p256 ➢

Step by Step — Motherboard, SIMM and stand-offs

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

256 • Personal Computer World • July 1997

Hands On Workshop: Build your own PC

Motherboard check list

Your minimum motherboard specification should look something like this:
■ At least a 166MHz Pentium MMX (or equivalent) CPU.
■ At least four SIMM slots. Maybe one DIMM slot.
■ At least 256Kb of pipeline burst-mode secondary cache memory.
■ A Triton 430HX or 430VX chipset.
■ At least three PCI and four ISA slots.
■ On-board I/O (e.g. EIDE, floppy, serial and parallel ports).
■ A PnP BIOS of reputable brand such as AMI, Award, MR or Phoenix.

You should be able to get a motherboard to this specification for about £275 (ex VAT).
Don’t forget the memory: at the time of writing, 16Mb SIMMs cost about £55 and you’ll need
a pair of them, making £110 (ex VAT).

Back Issues

See page 12 or this month’s PCW
CD-ROM for details of how to obtain
Part I of this Workshop, which
appeared in the June 1997 issue.

hardware vendors will not have to worry
about what games you have. So you should
check for Direct 3D support when making
your choice of graphics accelerator.

3D hardware
So what 3D hardware is available? The
most popular 3D accelerators are based
around S3’s ViRGE and ViRGE/VX
chipsets; cards like the entry-level Diamond
Stealth 3D. As well as offering 3D
rendering, they can all be hooked up to
S3’s Scenic/MX2 hardware MPEG decoder
and, potentially, to other multimedia
components via S3’s Scenic Highway
local-peripheral bus.

Because 3D cards deal with a third
dimension, they require far more memory
than a 2D card and you should be thinking
about 4Mb or maybe even 8Mb of display
memory for these.

Then there are the dedicated 3D
processors, like the VideoLogic Apocalypse
3D or the Diamond Multimedia Monster

and take-up of 3D games has been
hindered by Microsoft’s dilly-dallying over
Windows 95 graphics standards. Ordinary
DOS games, which are always looking for
maximum performance, access the
graphics hardware directly; something that
was verboten under Windows 3.1x. As a
result, most DOS games couldn’t run under
Windows, or if they did, ran so slowly as to
make them unplayable.

That settles it — it’s DirectX
After much to-ing and fro-ing, Microsoft
finally settled on DirectX, a video standard
which permitted games to run under
Windows 95. This standard embraces
DirectDraw, DirectVideo, DirectSound and
Direct3D, among others. All are supposed
to simplify and speed operating-system
access to hardware devices by providing
direct access with as little driver overhead
as possible.

Most 3D (and 2D) cards now ship with
DirectX drivers but it’s an emerging
technology and you should check
Microsoft’s web site, which can be found at
www.microsoft.com, to see whether
updates are available.

DirectX and especially Direct3D are
important because until recently games
were, in the absence of a common 3D
standard, specific to a particular graphics
accelerator. Once Direct3D becomes
ubiquitous, you’ll be able to play any
Direct3D game on any 3D graphics card.

Games developers will no longer have to
account for what 3D acceleration hardware
you might possess, and 3D acceleration

corresponding key in the SIMM socket.
2. Insert the SIMM module, at a shallow angle, into the first SIMM
socket (they’ll be numbered), then gradually rotate it until it’s
vertical and the side clips have snapped into place.
3. Do the same for the second SIMM (they have to be fitted in
pairs).

Fit the stand-offs
Our final task for this month is to fit the plastic stand-offs to the
motherboard. These plastic legs both secure the motherboard to
the system unit and insulate it.
• The motherboard will have a number of holes through which the
plastic stand-offs are pushed. These stand-offs then locate in
tapered “key-holes” in the floor of the system unit. The problem
here is that the two sets of holes seldom match up exactly and
there will probably be more holes in the system unit base than
there are on the motherboard itself.
• At this point you have to carefully work out which holes in the
motherboard match up with the corresponding holes in the base

of the system unit and only fit stand-offs in these holes.

■ Next month: We’ll actually fit the motherboard and the rest of
the peripherals.

cards. These work in conjunction with
existing 2D cards to deliver high-quality 3D
graphics. They add realism to 3D objects by
using transparency effects, lifelike shadows,
shading, fogging and search-lighting. These
cards are fast, too, because they perform
the complex 3D calculations on-card and
don’t bog-down the CPU. Priced at less
than £150, these 3D add-ons are worthy of
an appearance on your shortlist.

Roger Gann can be contacted by post c/o PCW
at the usual address or via email at
rgann@mcgilivray.win-uk.net.

Contact

there’s the warranty. Escom owners may
have a view on the value of service
warranties, but any warranty is better than
no warranty; and when you brew your own
PC, you’re on your own.

Degrees of difficulty
To be honest, building a PC isn’t for
everyone, and if you’re the technically timid
sort that finds fitting a graphics card an
ordeal, you should stop reading here and

n my Hands On Hardware
column over the past year or so,
I’ve looked at the many ways you

can upgrade your PC’s hardware, from
adding a SCSI host adaptor to replacing
your motherboard. Over the next four
months I’ll be taking you through a much
larger upgrade project: building your own
PC from scratch. I’ll take you through the A
to Z of building a decent quality entry-level
Pentium PC, complete with an Enhanced
IDE hard disk and a CD-ROM drive.

Let’s face it, assembling your own PC
isn’t a popular pastime, and doesn’t begin
to rival gardening or fishing as a hobby. But
building a DIY PC can be a lot of fun and it’s
very instructive: at the end of it you’ll have a
much clearer understanding of PC internals
and how they work together. You’ll also be
better placed to troubleshoot hardware
problems in future. By building it yourself,
you can opt for the piecemeal approach,
spreading the purchase of the components
over a period of time. You’ll have the benefit
of a PC built to your exact specification and
to your standards of workmanship.

That’s the good news. There’s bad
news, too. For a start, most PC assemblers
already build PCs to your precise
specification. More importantly, you’re
unlikely to beat them on price by opting for
the DIY PC. You’ll be buying components
individually, while PC manufacturers will buy
en masse so their unit costs will be much
lower. Factor in the time spent building it,
add up the cost of bundled software so
often included with PCs sold today, and
you’ll see that, overall, it will be cheaper to
buy a complete PC. So there are no savings
to be had from building it yourself: but we’re
not doing it for the money, are we? Then

quickly turn to the next feature, as building a
PC from scratch would be a big mistake.

However, if you’ve attempted any of the
more adventurous upgrades I’ve covered
over the months, such as swapping a
motherboard or fitting a hard disk, building
a PC really isn’t substantially any more
complex than this. Rocket science isn’t
involved: there are just more bits to fit and a
tad more preparation and planning. Once
you’ve started, will it take ages to

Mystique or VideoLogic GrafixStar 600
(£ 1 0 0 / £ 8 0)
■ 15in 0.28mm dot-pitch SVGA display
(£ 2 5 0)
■ 102-key AT Windows 95 keyboard (£25)
■ Mouse (£20)
■ System case with power supply (£50)
■ Motherboard and P166 CPU (£300)
■ Any software, i.e. Windows 95

Choosing the system case
Between them, the case and the
motherboard amount to the foundations of
your PC, so it pays to thoroughly check out

what’s available. These parts may look as
alike as peas in a pod in the ads, but believe
me, they aren’t. With system cases, it’s
important to actually see the case and open
it up. This way, you can judge for yourself just
how easy it is to use and whether it meets
your needs. If possible, don’t buy “blind” (off-
the-page); buy in person. Case ergonomics
should play a big part in your choice but
you’ll probably only discover its
shortcomings after you’ve bought it. An
example of this is my PC’s tower case. I had
to remove the entire motherboard just to be
able to undo a pair of bolts in order to swap

Hands OnWorkshop: Build your own PC

complete? No, is the short answer. With all
the bits in front of you, a simple PC can be
assembled in less than an hour.

Sadly, there seems to be little in the way
of books on the subject. Incredible as it may
seem, until recently there were no books at
all in the Computer Manuals catalogue on
this subject. Now there’s one, called, funnily
enough, Build Your Own PC. But no fear:
over the next four months I’ll be giving you
the low-down on the whole process, from
start to finish.

Choosing components
Choosing some of the most important
components of your home-brewed PC
will be particularly tough. OK, you’ll have
the reviews at the front of P C W to guide
you when you come to choose hard
disks, graphics accelerators, monitors
and the like. But you’ll be on your own
when it comes to such things as
motherboards and cases, as these are
invariably ignored when it comes to
product reviews in any computer
magazine. I guess cases are just too dull
and motherboards too anonymous and
unbranded to bother with.

Assuming you’ve got no spare hardware
lying around, you’ll need the following:
■ 3.5in floppy drive (£15)
■ 2Gb hard disk (EIDE) (£165)
■ Eight-speed CD-ROM drive (£65)
■ 72-pin EDO or SDRAM SIMM memory
(16Mb) (£50)
■ PCI graphics accelerator, e.g. Matrox

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • June 1997 • 239238 • Personal Computer World • June 1997

Hands On Workshop: Build your own PC

The home-brewed P C
Why not try building your own PC? It’s fun, and you can learn a lot about what makes computers
tick while you’re tinkering. Roger Gann starts off with a list of the bits and pieces you’ll need.

I
Check out Tom’s Hardware Guide for some seriously detailed hardware info

p 2 4 0 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

a sickly hard-disk d r i v e .
Flicking through the ads reveals that a

good selection of system cases are
available. However, they’re all much of a
muchness and fall into four broad types:
normal desktop, slimline desktop, compact
desktop/mini tower, and full tower. Prices
start at about £35 and top out at about £85
for a full tower, although if you want a case
that complies with the Euro CE safety
standard you can add roughly a tenner to
these prices. Wherever possible, try and get
the biggest system unit possible. Not only
will this give you maximum expansion
potential, but it also makes access to the
internal components easier. Unless you
specifically want a slimline case, go for the
larger case. In the end, the final decision
boils down to expansion potential: if you
want to fit a lot of drives, buy a tower case.
If not, buy a desktop or mini-tower case.
Don’t forget, you get what you pay for: pay
peanuts for a case, and you’ll get
something of flimsy construction and
awkward to use.

All “Baby AT” motherboards will fit
standard cases, but watch that the slimline
case doesn’t require an expansion card
riser or “tree” so that cards can be fitted
horizontally. If it does, be sure to select a
motherboard that has these features and,
most importantly, fits the case. And if you’re
fitting an ATX-style motherboard, make sure
you buy a case designed to take ATX form-
factor boards.

Most cases come with a 150W or 200W
power-supply unit (PSU) as standard, but
this might be a bit light for a well-stocked
full tower. Ask how many power connectors
the PSU has (the more the merrier), and
what sort they are. It should have two
types: the standard Molex, and the mini
power connector. Most PSUs have power
leads for only four peripherals, but try and
find one with six. Ask whether it comes
complete with all the fixings and
accessories, things like printed circuit-board
(PCB) supports, mounting bolts and drive
rails. Consider at this point whether you
want to fit a removable hard-disk tray.

Choosing the right motherboard
If choosing a simple thing like a system
case isn’t straightforward, choosing a
motherboard to go inside it is tougher still.
The motherboard is, of course, the heart of
your PC and, thus, is a fairly technical piece
of kit. They are mainly sold as virtually
unbranded, generic devices, each one near

enough identical to its neighbour. There are
such things as motherboard “best buys”,
but in the absence of proper product
reviews who’s to know? Sadly, there’s no
comfort to be derived from relying upon
brand names to guide you. With the
exception of Intel, you probably won’t have
heard of the major motherboard players:
people like Asus, Abit, ECS/EliteGroup,
Gigabyte, Micronics and SuperMicro.

So what should you be looking for in the
ideal Pentium motherboard? Well, there’s a
veritable laundry list of desirable features
that should appear on your checklist. There
are the obvious ones like the form factor
(Baby AT or ATX), the number of PCI and
ISA slots, and the nature of the on-board
I/O it has (EIDE, fast serial and enhanced
parallel ports). There are other less obvious
but just as important features. These
include having a Flash BIOS (which permits
software upgrading), the number of SIMM
slots (usually four but sometimes eight), and
is there a DIMM slot? Does it have an IR
port or support for Universal Serial Bus?

On the techie side, you should check the
board supports a wide variety of processors,
including Cyrix and AMD CPUs. It should
have an adjustable CPU voltage regulator

(Standard/VRE/MMX), support EDO and
SDRAM (particularly the latter) and should
have a modern, up-to-date chipset. If it’s an
Intel chipset, it ought to be a Triton 430VX,
HX, or the just-released TX.

So which motherboard is best? Luckily,
there is an excellent web site that conducts
benchmarking tests on motherboards
which you can refer to. Tom’s Hardware
Guide (w w w . s y s d o c . p a i r . c o m) contains an
absolute goldmine of technical info plus
hints and tips about PC hardware, and is
well worth a visit. There you’ll find various
motherboard “Top Tens”. For example, for
430HX boards, Tom Pabst recommends
the Asus P/I-P55T2P4 and Abit IT5H
boards, and for Triton 430VX boards, the
Abit IT5V. Boards like these not only offer
jumperless “Soft Menu” configuration but
can also run the bus at 75MHz or even
83MHz (as opposed to 66MHz) for the latest
generation of fast CPUs. It’s worth searching
Yahoo on the keyword “motherboards”:
you’ll find all the motherboard manufacturers
with an internet presence.

And that’s all for this month. In part two,
I’ll be looking at what you’ll need if you want
to build the ultimate games platform, plus
the first step, installing the motherboard. ■

240 • Personal Computer World • June 1997

Hands On Workshop: Build your own PC

The Asus

P / I - P 5 5 T 2 P 4

m o t h e r b o a r d

r e c o m m e n d e d

in Tom’s

H a r d w a r e

Guide pushes

the new Intel

430HX chipset

to its full

p o t e n t i a l

and then minimise VB. Next, run another
instance of VB, open the References dialog
and check the PCW Sports Club server.
Now you can test the server by creating
objects of the CPerson class.

If you have run a compiled VB
automation server such as PCWCLUB.EXE,
it will be entered permanently in the system
registry. Once you have finished testing, it is
good practice to remove it. You can do so
by running it from a command line with the
/UNREGSERVER parameter. DLLs are
unregistered using REGSVR32.EXE which

the detail of how it all works. For example,
what if the PCW Sports Club wants to get
at membership details not only via Word,
but also from other programs like accounts
and desktop publishing packages?

A key part of the Sports Club application
is the CPerson class module which
describes a club member. By making a few
changes, that class module can become an
automation object which exposes its
properties and methods to other
applications. The steps are as follows:
1. Open the CPerson module and press F4
to reveal the class properties. Set the
Instancing property to CreateTable
MultiUse, and the Public property to True.
2. Add a module to the project using Insert -
Module. In the module, create a Sub Main.

ast month’s workshop
demonstrated how a Visual
Basic class can be plucked out

of the standalone version of VB and, with
care, planted into Microsoft Office as a
Visual Basic for Applications class. That is
one way of re-using code, but an even
better approach is to create objects that
can communicate with any number of
different applications without the need to
recompile. With the rise of PC networks,
and now the internet, this kind of software is
the way of the future.

Under Windows, the way to achieve this
is by using Microsoft’s Component Object
Model, or COM. This is the technology
beneath OLE and ActiveX, and Visual Basic
programmers can use it without knowing

3. On the Tools menu, in Options - Project,
change the project name to PCWClub, and
put a few words of description in the
Application Description field. Finally, change
the Startup Form to Sub Main.

The project name must be unique to
your automation server. The full class name
of objects in your server will be of the form
P C W C l u b . M y C l a s s .

By taking these simple steps, you have
created an automation server that lets other
applications create and control objects of
the CPerson class. All that remains is to
register the class in the system registry. If
you run the application in VB’s development
environment, it will be registered
temporarily. If you build an .EXE or OLE
DLL, it will be registered permanently. Then
you can write code like this in Excel:
Dim myobj As Object

Set myobj = CreateObject

(“ P C W C l u b . C P e r s o n ”)

If myobj.FindPerson(“Bloggs”,

“Fred”) Then

MsgBox “Fred lives at: “ &

m y o b j . A d d r e s s 1

End If

Although applications such as Excel
function both as automation servers and
standalone, most VB applications will be
one or the other. Often, VB automation
servers have no user interface, since this is
provided by the client application. The
workshop example, though, is designed to
work in both guises. The trick is to use Sub
Main to detect whether the application is
running standalone or as an automation
server. Here is the code:
Sub Main()

If App.StartMode <>

is found in the System directory. Run it
without parameters to see the switches.

Automation servers are powerful but do
present some new programming
challenges. The section of the Visual Basic
manual called “Creating OLE Servers” is
essential reading.

Adding the essentials
The Sports Club database is also used as a
standalone application, and the version in
last month’s workshop is lacking some
essential features. First, there is no way to
add or delete members; and second, you
cannot add or remove sports from the list
which applies to each member.

The thinking behind the design of this
simple application is that interface code
belongs in the main form, while database
code belongs in the CPerson class so that it
can be used in other applications or as an
automation server. The natural approach is
to create new public methods for CPerson
that give this new functionality. For example,
here is code to add a new member:
Function CreateNew(sSurname As

String) As Long

‘ creates a new person in the

d a t a b a s e

Dim lId As Long

m y R e c o r d S e t . A d d N e w

myRecordSet!surname = sSurname

lId = myRecordSet!ID

m y R e c o r d S e t . U p d a t e

Me.load (lId)

End Function

Hands OnWorkshop: Visual Basic

vbSModeAutomation Then

f r m S e a r c h . S h o w

End If

End Sub

You may wonder what Sub Main does
when running as a server? The answer is,
nothing at all. The only thing the server
application does is to expose its classes so
other applications can create and control
objects. For testing, you can simulate this
mode by setting the startmode in Project
Options to OLE Server. Run the application

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • May 1997 • 259258 • Personal Computer World • May 1997

Hands On Workshop: Visual Basic

Getting a u t o m a t e d
Tim Anderson does clever stuff with automation servers in the final part of the workshop.
Plus, polishing the Sports Club database and adding some essential new functions.

L

Two key steps in creating an automation server are: first, the properties for the class to be

exposed; and second, the project options

Excel is able to get at Sports Club details by using a VB automation server

p 2 6 0 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

The ID field is a counter, which means
that the JET database handles the business
of ensuring that the new member has a
unique number. There is an issue, though,
about how to cope with users who change
their mind.

What if someone starts to create a new
member, and then wants to back out and
leave things as they were? One possibility is
to call the AddNew method, but not to call
Update until the user confirms the action.
Unfortunately, bullet-proofing the
application so that Update is only called
after AddNew or Edit is prone to error. The
easier approach is to minimise the time
when JET has unsaved changes in its copy
buffer. In this application, clicking the Add

button creates a new member with the
surname “Unnamed”. If the user wants to
cancel the addition, it is just a matter of
clicking Delete.

The DeletePerson method is a little more
involved. The problem is that there may be
other records, in the SPORTLINK table,
which refer to the member being deleted.
To maintain data integrity, these records
also need to be removed. Database objects
have an Execute method which is an ideal
solution. Execute takes an SQL command
and applies it to the database. For example:
sSql = “DELETE * from SPORTLINK

where SPORTLINK.MEMBERID = “ &

S t r $ (l I d)

myDB.Execute sSql, dbFailOnError

The code at form level also has some
work to do. When a member is deleted, the
name must be removed from the list
currently displayed, and the other fields on
the form updated as necessary.

To make sense of adding sports to a
member’s list of interests, you need to
throw a dialog listing the available sports.
The dialog has a SportID property. To add a
sport, the application takes these steps:
1. Show the Sports dialog modally, which
means the user must either choose a sport,
or cancel, before continuing.
2. When the OK button is clicked, the
Sports dialog sets the SportID property to
the currently selected sport.
3. Next, the program calls CPerson’s
AddSport method, passing the SportID as a
parameter. AddSport creates a dynaset-
type recordset which looks for records in
the SPORTLINK table that match this
member with the chosen sport. If the
dynaset is empty, AddSport adds the
required record. If it is not empty, AddSport
reports that the member is already linked to
that sport.
4. Finally, the program updates the form
with the new list of sports.

Finishing touches
There is plenty more work to do in
improving the Sports Club application. One
professional touch is to enable and disable
buttons according to whether or not they
are applicable. For example, when no
sports are listed, the Remove sport button
should be disabled. Next, you can add
keyboard shortcuts for mouse-free typing.

Another important area is error-handling,
to prevent the program from crashing and
to show the user informative messages
when things go wrong. For instance, the
database could become corrupted.

Finally, there is the issue of multiple
users and what happens when two people
try to update a record at the same time.

■ All the code for this month’s workshop is
on the cover CD. And see Hands On Visual
Programming (p301) for answers to queries
concerning this workshop and other Visual
Basic problems.

260 • Personal Computer World • May 1997

Hands On Workshop: Visual Basic

Tim Anderson welcomes your comments and
queries. Write to the usual P C W address, or email
f r e e r @ c i x . c o . u k.

Adding a sport to a member’s list of interests is achieved via a simple dialog

Beating the OLE jarg o n

OLE has lots of strange jargon. and here are two examples that can cause confusion. Mastering
these issues is important to make good use of the technology.

First, you will see references to in-process and out-of-process servers. In-process servers
are DLLs which run in the same address space as the calling application, whereas out-of-
process servers run in their own address space. This is a decision you take when building a VB
executable. In-process servers have substantially better performance but introduce more
programming restrictions.

Second, there is the matter of early or late binding. Binding is the process of locating the
properties and methods which the client application calls. If you use variables declared as Object
in the client application, then these identifiers are not resolved until runtime. This is called late
binding. On the other hand, if you use an OLE-type library to resolve these identifiers at compile
time, the code will execute faster. This is early binding. To use early binding in Visual Basic, open
the Tools - References dialog and check the type library required. Then, declare variables of the
specific class required, rather than the generic Object. This is much faster and also enables you
to detect errors in parameters, properties or method names when the application is compiled.
Another bonus is that you can use an object browser to inspect the interface of available classes.

Naturally, the best performance combines both techniques — that is, in-process servers
called with early binding.

Contacts

Fig 1 (left) T h e

letter wizard begins

by asking which

template is

needed. You can

easily add further

o p t i o n s

he “P C W Sports Club” is
continually sending letters,
reminders of coming events,

subscription invoices, sympathy for broken
bones and the like. The secretary has been
running the Visual Basic application to look
up the address and then using A l t - T a b t o
switch back and forth from Word while she
copies it across. It is time to make her life a
bit easier.

The first thought was to use VB’s
C l i p b o a r d object to copy addresses. This is
easy: just add a C o p y A d d r e s s method to
the C P e r s o n class, as in Listing 1.

But Windows can do better than that. It
is possible to automate far more of the
process of getting addresses into Word.
Word has a mail-merge wizard that works
fine for bulk mailings, but for ad hoc letters a
custom solution is needed.

Here, I will show you how to create a
Word letter wizard for the sports club (see
screenshots, F i g s 1 - 4). The wizard is for
Word 97, since earlier versions do not
support Visual Basic. (As an aside, it is
possible to do something similar in earlier
versions, using the WODBC.WLL Word
add-in and getting at data through ODBC.
Another possibility is to automate the
WordBasic object from a VB application.
But Word 97 makes it easier.)

The plan is to create a Word macro using
Visual Basic for Applications, accessing the
same SPORTS.MDB database.

Because this tutorial is based on VB 4.0,
you cannot import the form in Word. The
good news, though, is that the C P e r s o n
class module can be reused, as is. The
procedure is as follows:
1. In Word, open the Visual Basic editor.
Choose Tools, References, and check the
Microsoft DAO 3.0 (or higher) object library.

Hands OnWorkshop: Visual Basic

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • April 1997 • 257256 • Personal Computer World • April 1997

Hands On Workshop: Visual Basic

First class l e t t e r s
With VB you can use Word to create letters that virtually write themselves. Tim Anderson
shows you how. Plus, how to delegate in Visual Basic to achieve the benefits of inheritance.

T

This enables Word to use the same data
access objects as VB 4.0.
2. Insert a new module into the Normal
project. This means the macro will be
stored in NORMAL.DOT. Call the macro
G e t C l u b A d d r e s s and give it a Sub Main.
3. Insert two new userforms. These will be
steps one and two of the letter wizard.
4. Name the first userform d l g S t y l e, and put
two or more option buttons on it, along with
O K and C a n c e l buttons. Give the form a

The M a i n procedure continues by
opening d l g S t y l e to obtain a choice of
template, and then d l g N a m e to get the ID
of name in the M e m b e r s database. At each
point, the user has an option to cancel. The
code for the d l g N a m e dialog is almost the
same as that used in the main VB 4.0
application, the main difference being that
VBA has no data control so you have to
create a recordset in code. When a
member ID has been retrieved, the record is
loaded into the C P e r s o n object.
7. The final step is to start a new document
based on the chosen template. The
templates must be pre-designed with
bookmarks where the name and address
information is needed. The wizard finishes
by inserting the fields in the bookmark
positions and then exits. Controlling Word
from VB in this way is not difficult using
Word’s new object model. For example:

Fig 2 (right) The next stage is to

choose a name to write to

Fig 3 (below) In the third step,

the wizard has placed the

address details into a new

document based on the

chosen template

C h o i c e property using a
memory variable and property
procedures. This is for choosing
a letter template.
5. Name the second userform
d l g N a m e, and put on it a
listbox, an editbox and three
command buttons. This is for
choosing a name for the letter.
6. In the Declarations section of

G e t C l u b A d d r e s s, declare a public
database object. For the example code, I
have also declared some convenient
constants. Then in Sub Main, open the
SPORTS.MDB database using code like:
Set db = DAO.OpenDatabase(sPath &

“ \ S P O R T S . M D B ”)

s P a t h is a variable to store the path to
the database file. (See below for how to get
this path from the system registry.) S u b
M a i n also creates a new C P e r s o n o b j e c t .

Listing 1

Sub CopyAddress()

‘ copies address to Windows clipboard

Dim sAddress As String

Dim cr As String * 2 ‘ fixed-length

cr = Chr$(13) & Chr$(10)

If mForename <> “” Then

sAddress = mForename & “ “ & mSurname & cr

E l s e

sAddress = mSurname & cr

End If

If mAddress1 <> “” Then

sAddress = sAddress & mAddress1 & cr

End If

. . .

Clipboard.SetText sAddress, vbCFText

End Sub

p 2 5 8 ➢

Fig 4

Editing the

VBA macro

from Word

is very like

w o r k i n g

w i t h

s t a n d a l o n e

V B

■ A common criticism of Visual Basic is that it doesn’t support
inheritance. If all your programming has been done in Visual
Basic, which is probably true of the majority of VB programmers,
this may not mean much to you. Fortunately, it’s easy to explain.
A class, both in VB and other object-orientated languages,
defines an object. In VB, every class starts from scratch without
any properties or methods. By contrast, C++, as an example, lets
you begin a class definition like this:
class monkey : public animal

The result is that the monkey class inherits the properties and
methods of the animal class. The monkey class just needs to add
specialised code that describes monkeys; the generic animal
code comes for free.

Although VB does not support inheritance, there are other
ways of achieving some of the benefits. It is possible to contain
one class within another. Then you can implement properties and
methods of the parent class by calling the properties and
methods of the contained class. This is called delegation, and the
properties and methods of a class are called its interface. For
example, the tutorial application has a CPerson class. Imagine
you wanted to create a CEmployee class which used the
properties and methods of CPerson. Here is how you can do it:
1. Insert a new class module and set its name property to
C E m p l o y e e .
2. In the declarations section, put:
Private m_person As CPerson

Private m_wage As Currency

3. In the initialise section put:
Set m_person = New CPerson

4. Create a CEmployee interface that calls the CPerson interface.
For example:
Public Property Get surname() As

S t r i n g

surname = m_person.surname

End Property

5. Add new properties and methods specific to CEmployee. For
instance, you must expose the wage property.

The fourth step (a b o v e) is tedious, but beats re-coding all the
functionality of CEmployee in CPerson. It could be automated by
a VB Wizard. In Visual Basic 5.0 this approach to object-
orientation is built into the language, with a new Implements
keyword which guarantees that all the methods of the contained
class are implemented by the outer class. You can implement the
interface of any ActiveX automation server. Finally, there is nothing
to stop you implementing several interfaces in a single class.

Delegation works, but it is neither as intuitive nor as elegant as
traditional inheritance. For the moment, though, this is the VB
way. It ties in with ActiveX, the component model which is
becoming more powerful and pervasive as Windows evolves.
VB may not be the fastest or most thoroughly object-orientated
language out there, but Microsoft does ensure that it stays up to
date with the latest ActiveX developments.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

258 • Personal Computer World • April 1997

Hands On Workshop: Visual Basic

Tim Anderson welcomes your comments and
queries. Write to the usual P C W address, or email
p c w @ v n u . c o . u k.

Contact

Documents.Add (sTempLate) ‘ starts

a new document based on the given

t e m p l a t e

A c t i v e D o c u m e n t . B o o k m a r k s (“ n a m e ”) .

Select ‘ sets cursor to the “name”

bookmark in the new document

Selection.InsertAfter Trim

(currCustomer.forename & “ “ _

& currCustomer.surname) ‘ inserts

text at the cursor position

Problem-solving
There are a few things to notice about
this joint Visual Basic and Word project.
Although Word VBA is downward
compatible with VB 4.0, there are some
objects which are available in VB but not
VBA. One example is the global App
object which, in Word, is the Application
object.

The original C P e r s o n class used
A p p . P a t h to discover the location of
SPORTS.MDB. This strategy fails in any
case, when the code runs in other
applications. A better idea is to use a
registry entry, using VB’s G e t S e t t i n g

■ Next month: Back to native Visual Basic
for the final stage in the PCW Sports Club
a p p l i c a t i o n .

Delegating your inheritance

command. The registry entry is created by
the main VB 4.0 application when it first
runs. This way, the data can easily be found
by any Windows application.

Another catch is that VBA has no
Clipboard object, so CPerson’s
CopyAddress method does not compile in
Word. The workaround is to declare a
public Clipboard variable as a D a t a O b j e c t:
VBA’s private version of the clipboard. To
demonstrate, there is a Clipboard button on
the d l g N a m e s form which uses the
DataObject’s P u t I n C l i p b o a r d method to
transfer text to the read clipboard.

Enhancing the wizard
There are plenty of ways you can improve
on the Letter Wizard. For instance, you can
add database fields for things like job title
and salutation. You could increase the
range of templates on offer. For the
subscription template, you could write
code to check a person’s outstanding
balance and insert the amount into the
letter. By adding the bulk of the code to a
shared class module like CPerson, you can
easily reuse it in VB 4.0 or in other VBA
applications such as Excel.

Installing the example
code from the P C W C D

When you unpack the tutorial code from our
cover-mounted CD, you will find a VB 4.0
project and a Word 97 template. To install the
example code, copy PCWCLUB.DOT into
your Word templates directory. Then start a
new document based on this template. If you
then choose Tools, Macro, Visual Basic
Editor, you will find the example macros.
Choose Tools, Macro, Run, to run the macro.
You can also copy the macros into
NORMAL.DOT if you want, by using Tools,
Templates and Add-ins, Organizer. Finally,
the macro will not run without a registry
setting for the data path. To create this
setting, run PCWCLUB.EXE.

Public Sub ListSports(listVar As

L i s t B o x)

Dim sn As Recordset

Dim sSql As String

l i s t V a r . C l e a r

‘ build up the SQL command

sSql = “SELECT * FROM Sports,

Sportlink “

sSql = sSql & “ WHERE Sports.ID =

Sportlink.SportID “

sSql = sSql & “AND

Sportlink.MemberID = “ & Str$(mID)

sSql = sSql & “ ORDER BY

S p o r t s . S p o r t ”

Set sn = myDB.OpenRecordset(sSql,

d b O p e n S n a p s h o t)

‘ now fill the list box

If Not (sn.BOF And sn.EOF) Then

‘ there are records

s n . M o v e F i r s t

Do While Not sn.EOF

listVar.AddItem (sn!SPORT)

l i s t V a r . I t e m D a t a (l i s t V a r . N e w I n d e x)

= sn![SPORTLINK.ID]

‘ the square brackets and table

name are needed because

‘ there are two different ID fields

\ in the result set

s n . M o v e N e x t

L o o p

E l s e

listVar.AddItem “None”

End If End Sub

this new information. Since a member may
sign up for any number of sports, these are
best displayed in a listbox control. To keep
the form from getting cluttered, a good tip is
to use a tab control as well. Visual Basic 4.0
comes with two: a TabStrip which is for

ast month’s workshop showed
how to create a simple database
application for the P C W s p o r t s

club. It was a flat-file database, which
means all the data was stored in a single
table, like a card-index. At the sports club,
though, it is important to know which sports
a member has signed up for. A member
can sign up for any number of sports, and
each sport is played by any number of
members. This is a classic many-to-many
relationship, but it is not always obvious
how best to store this kind of information.

One strategy would be to add several
fields to the table of members, for Sport1,
Sport2, Sport3, etc. Another possibility is a
notes field with the sports entered line by
line. Both these ideas are fatally flawed.
Although they seem easy, they are actually
inefficient and inflexible. For example, what
happens when you want a list of all the
footballers? You would end up with a
horrible keyword search and probably get
inaccurate results.

The correct approach is to analyse the
data into three tables. The first one is the
table of members. Next there is a table of
sports, which for the moment has just two
fields, Sport and ID. The third table
records which member belongs to which
sport. SportLink again has two fields,
MemberID and SportID. If you view the
table on its own it will look like a
meaningless string of numbers, but in
combination with the other tables it makes
sense. Later you might want to add other
fields to SportLink, perhaps a Role field
which contains information like
“Goalkeeper” or “Captain”. It is important
to grasp this principle, which is a great
way to store all kinds of data.

The main form needs adapting to display

Windows 95 only, and the SSTab which
comes as both a 16-bit and 32-bit OCX. In
this example SSTab is used. The tabs work
at design time, making it easy to lay out the
form. When a tab is selected, controls placed
on it belong to that tab. Controls placed on

Hands OnWorkshop: Visual Basic

the form itself will show through all the tabs.
Fig 1 shows buttons for adding and
removing members from particular sports,
but these are not yet enabled.

The next step is to write code to display
the list of sports for each member. One idea
is to add a ListSports method to the
CPerson class. The ListSports method
takes a listbox control as a parameter. It
searches the database to get the list of

sports and adds them to the listbox. Doing
it this way means that if a list of sports is
needed at some other point in the
application, it will not be necessary to
rewrite the code. All you need do is to
supply the ListSports method with an
available listbox. The code for
CPerson.ListSports is in Fig 2.

Much of this code is similar to that used
last month for searching the members

table. The main difference is that the SQL
query for extracting data from two tables is
more complex. If you followed P C W’ s
recent SQL workshop, you will have no
problem. If not, notice that the SQL string
includes several sections:
1. Which fields to extract — SELECT * for all
f i e l d s .
2. How the two tables are linked — the first
part of the WHERE clause.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • March 1997 • 267266 • Personal Computer World • March 1997

Hands On Workshop: Visual Basic

A sporting c h a n c e
Visual Basic gives the mythical PCW sports club the database treatment in the second
of our workshops, conducted by Tim Anderson. He also studies the life of a VB object.

L

Fig 3 A good ruse

when you need to work

out SQL for Visual

Basic is to let the

Access query builder

generate it for you

Fig 1 The enhanced

Sports Club

application stores data

in a many-to-many

r e l a t i o n s h i p

Fig 2 The code for CPerson.ListSports

p 2 6 8 ➢

ntroduced in Visual Basic 4.0,
class modules are a way to
create user-defined objects.

For example, the Sports Club application
has a CPerson class with properties and
methods. These constitute the interface
which a person object presents to the
application. Whenever your other code
has to interact with a person object, it
does so through this interface. If the
interface stays the same, you can change
or improve its implementation (the code
which drives those properties and
methods) with no danger of breaking the
application. If you add to the interface,
those new features are available wherever
a Person object is referenced.

The first thing to understand is the lifetime
of an object. Unlike other variables, you can’t
simply DIM a CPerson object and then refer
to its properties. Objects must be
instantiated. For example, this gives an error:
Dim Myperson as CPerson

Myperson.surname = “Baxter”

Error — object variable not set. Instead
you need code like this:
Dim Myperson as Cperson

set Myperson = New CPerson

Myperson.surname = “Baxter”

Or if you start with:
Dim Myperson as New Cperson

VB will instantiate the object when first
r e f e r e n c e d .

The question of instantiation is
important because it does not just allow
you to start using the object. It fires an

event, Initialize. All class modules have this
event predefined. It is extremely valuable,
since you can do things like setting default
values for properties, or opening a link to a
database, or instantiating other subsidiary
objects as required. Sadly, Initialize cannot
take parameters, making it less useful
than it should be. There is another, similar
event called Terminate, which occurs
when the object is destroyed.

But when is the object destroyed? It
is destroyed when there is no longer any
active reference to it in your code. This
feature is designed to make it easy to
manage objects, but can get confusing.
If you have an object variable declared in
a procedure, it goes out of scope and
the object is destroyed when the
procedure finishes. But if you have
assigned the object to another variable
which is still in scope, the object is not

destroyed: the
listing (left)
illustrates the point.
So far, not too
difficult. It’s harder
when your objects
are more ambitious.
Perhaps you want a
CPerson to have a
Display method
which creates and

shows a form. VB forms are just another
kind of class, and the obvious approach
would be like this:
public sub Display()

Dim myform As New DisplayForm

‘ ... code to fill the fields

m y f o r m . S h o w

But to encapsulate things you will want
a Hide method which disposes of the
form. That means keeping a reference to
the form in the CPerson class, so the
DisplayForm variable needs to be
scoped to the class. It is likely the form will
need to interact with its corresponding
CPerson object, so you give the form a
Person property. The references start to
proliferate, and neither the DisplayForm
nor the Person object will be destroyed
until the last one goes out of scope or is
set to Nothing. If your Hide method was
like this:
Unload myform

that would not destroy the form object. In
turn, the form object would prevent the
Person object from being destroyed,
because it still has an active reference to
it. You have to add the line:
Set myform = Nothing

to clean it up properly. The conclusion is
that you need to watch the lifetime of VB
objects closely or they could stick around
for longer than they are wanted.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

268 • Personal Computer World • March 1997

Hands On Workshop: Visual Basic

Tim Anderson welcomes your comments and
queries. Write to the usual P C W address, or email
f r e e r @ c i x . c o . u k

Contact

The life of a VB object

I

D e s t roy all objects!

Dim Myperson As New CPerson

Myperson.surname = “Baxter”

Set FormPerson = Myperson

‘ assumes FormPerson is scoped to the form

‘ both now refer to the same object

Set Myperson = Nothing ‘ Object is NOT destroyed

Set FormPerson = Nothing ‘ Object is destroyed

Judicious

use of

D e b u g . P r i n t

can help

track the

lifetime of VB

o b j e c t s

3. An additional restriction — the second
part of the WHERE clause after AND. This
ensures that only data for the current
member is extracted.
4. An ORDER BY clause to sort the results.
Working out SQL acceptable to JET, the VB
database engine, can be tricky. A good

ploy is to build a query in Access, then cut-
and-paste the generated SQL code (Fig 3).
Note that often, more than one SQL
expression will product the same result,
sometimes with performance differences.
■ All the code for this month’s VB
workshop is on this month’s cover CD.

■ Next month: Visual Basic, inheritance and
d e l e g a t i o n .

this is that you can avoid global variables,
which are notoriously error prone, and use
object properties instead.
2 . Well-designed objects can be used in
more than one application.
3 . To exploit the power of OLE (Object
Linking and Embedding) you need to define
objects that can be made available to other
a p p l i c a t i o n s .

This workshop will explore how to make
use of VB’s class modules, which create
user-defined objects, in order to derive
these benefits.

Building a database application
Anyone can build a Visual Basic database
application. Just place a data control on a
form, set the databasename and
recordsource properties, add some bound
text boxes to display the fields, and it’s
done. There is even an add-in that will do it

represented by objects with properties,
methods and events. These objects are
VB’s essential building blocks.
2. OLE objects. These include ActiveX
controls, also known as OCX controls, and
applications like Excel which expose
functionality in the form of objects you can
access from Visual Basic. The advantage of
OLE objects is that they are system-wide
and not just limited to one application.
3. User-defined objects. You create these
by inserting class modules into your project.
You can also customise forms by adding
your own properties and methods.

If you have used VB at all, you will
already have worked with the first two kinds

ike it or loathe it, you can hardly
avoid it — Visual Basic is the
most popular Windows

development language. It is also the macro
language of Microsoft Office, and with
Microsoft now willing to license it to third
parties, VB will more frequently appear in
third-party products such as the Visio
charting package. So time spent learning
Visual Basic (VB) soon repays the effort,
giving you program control over many
powerful applications.

This workshop will show you how to
make the most of VB: including data
access, automation of other applications
like Word and Excel, and using ActiveX
components for rapid application
development. And along the way you will
build a useful application. The software is
for managing a sports club but could easily
be adapted for a contact manager, book or
CD collection, customer database and
many other purposes.

Our workshop uses Visual Basic 4.0. It
makes use of features introduced in that
version so you will not be able to follow the
workshop using older editions. A little
knowledge of VB is assumed, so complete
beginners are advised to become familiar
with the product before starting on the
w o r k s h o p .

Objects in focus
Visual Basic makes extensive use of
objects. What is confusing, though, is that
the word is used in several different ways.
Here are three kinds of VB objects:
1. Internal objects and controls. F o r
example, there is a global App object which
has useful properties like Title and Path.
There are also VB’s built-in controls like
command buttons and text boxes,

of object but may not have used the third. It
is possible to write major VB applications
without using them, especially if either the
application or the developer started in Visual
Basic 3.0, where they did not exist. In fact,
the Visual Basic environment does not
encourage you to use them.

The obvious way to build an application
is to draw buttons and controls onto a form,
setting their properties and writing code for
their events. With that approach you may
not see the need to define your own
objects. It is worth making the effort. Here
are three reasons why:
1 . Object-orientated programs are more
robust and easier to debug. One reason for

Hands OnWorkshop: Visual Basic

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • February 1997 • 247246 • Personal Computer World • February 1997

Hands On Workshop: Visual Basic

O b j e c t of the exercise
Tim Anderson takes you through the first in a four-part teach-in about Visual Basic.
You’ll learn how to get to grips with VB objects and snap together a powerful database
application using a few lines of code.

L

p 2 4 8 ➢

Fig 1 Not all VB objects are the same. This application shows three kinds: built-in, OLE, and

u s e r - d e f i n e d

Will the real VB stand up?

Visual Basic exists in various forms. The standalone product comes in three editions:
Standard, Professional and Enterprise.

The Standard edition is cheap but not all that cheerful. It is fine for learning the Basic
language but data access is limited to the data control. Few custom controls are
included and it is unsuitable for creating applications for distribution. It works only on
Windows 95 or NT. The Professional edition fills the gaps, includes a 16-bit version, full
data access, important OLE features and a wide range of custom controls. For general-
purpose work, the Professional edition is all you need. The Enterprise edition adds
features for client-server work and team development.

That leaves two other types of VB. Visual Basic for Applications is the version that
ships with Microsoft Office and now a number of third-party applications, too. VBA in
Office 95 has no forms engine, which limits its power, but VBA 5.0 in Office 97 is almost
the same as the standalone version. The main difference is that you cannot compile a
standalone executable. VB Script is a stripped-down language for Internet Explorer.
Microsoft hopes that other web browsers will adopt VB Script, too, although so far this
has not happened.

for you; the data form designer. The typical
result is shown in Fig 2.

The speed of development is impressive,
but in other respects applications built like
this are poor. For a start, a visible data

control is not the world’s most stylish
graphical interface. Worse, it encourages a
navigational approach to viewing data. If the
visible record is not the one you want, click
Next until you find it. It may work for half a
dozen records but it’s hopeless for large
database tables. It is also fundamentally at
odds with the set-based strategy of SQL,
the native query language of VB’s database
engine. Additionally, working with bound
controls increases the risk of inadvertently
changing the data. All these problems can
be overcome by adding code for searching,
validation, and so on. Another option is to
use an entirely different approach.

A particularly powerful technique uses
a listbox and a text box to create a
database searcher. The user types one or
more letters into the text box and presses
Enter. The listbox then fills with all the
matching records. By double-clicking an
entry in the list, the full details of the record
can be displayed. It allows control over
the precision of the search, and it is fast,
with no need to enter criteria into a
search dialogue.

Fig 5 Code for the search button

List1.Clear

' now do the search

Data1.RecordSource = _

"select * from members where members.surname like '" _

& Trim$(txSearch.Text) & "*' order by members.surname"

D a t a 1 . R e f r e s h

' now fill the list box

If Not (Data1.Recordset.BOF And Data1.Recordset.EOF) Then

' there are matching records

D a t a 1 . R e c o r d s e t . M o v e F i r s t

Do While Not Data1.Recordset.EOF

List1.AddItem (Data1.Recordset!surname & ", " &

D a t a 1 . R e c o r d s e t ! f o r e n a m e)

List1.ItemData(List1.NewIndex) = Data1.Recordset!ID_NO

' stores the ID in the list box

D a t a 1 . R e c o r d s e t . M o v e N e x t

L o o p

List1.ListIndex = 0 ' select first matching record

cbShow_Click ' show the first record

E l s e

' add code here to clear the form’s fields, report no match, etc

End If

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • February 1997 • 249

Hands OnWorkshop: Visual Basic

Here are the three steps which make this
method work:
1 . Start a new project and place a listbox, a
data control and an edit box on the form.
You will also need text boxes and labels to
display field values, and buttons for other
functions like searching the data, displaying
a record and saving changes.
2 . Set the data control’s visible property to
false. We will not be using its visual interface
but as a convenient way to obtain a
recordset. In the form, load procedure and

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

include this line of code;
Data1.DatabaseName = App.Path &

“ \ S P O R T S . M D B ”

Setting the database name in code
avoids the problem of hard-coded path
n a m e s .
3. The code for the search button is shown
in Fig 5.

Why do it like that?
This short routine (in item 3, above)
demonstrates several techniques. First, the

248• Personal Computer World • February 1997

Hands On Workshop: Visual Basic

Tim Anderson welcomes your VB comments and
tips. Contact him either by post c/o P C W or email
at visual@pcw.vnu.co.uk

For more information about Visual Basic, contact
M i c r o s o f t on 0345 002000.

●P C W C o n t a c t s

lets you store an ID number against each
item in the list. It is then easy to look up
the correct record when the user selects
the item.

The underlying principle is not to use a
complicated ActiveX control where a
simple, lightweight VB control will do just
as well.

Putting objects to work
Not all the code is shown here (for reasons
of space) but if you look at the example
project on our cover-mounted CD you will
notice a class module, CPerson.

The application maintains an instance of
the CPerson class and obtains member
details by inspecting its properties. The
Save button works by calling the save
method of the currPerson object. This
approach will bring several advantages as
the application develops. For example, a
weakness of traditional database forms is
that they only show one record at a time.
Fig 4 is a database application which uses
an enhanced CPerson class that has the
capability to display itself. That makes it
easy to simultaneously view the details of
several individuals.
■ Next month: A closer look at VB class
m o d u l e s .

Fig 4 This alternative approach lets you view

several records at once

Fig 2 The typical VB instant database

Fig 3 A more practical database viewer which

works on large or small tables

code uses SQL to create a dynaset-type
recordset based on the text the user has
entered. By adding the star character to the
string and using the Like keyword, we find
all the surname fields which begin with that
string. JET, the Visual Basic database
engine, is not case-sensitive, which
simplifies matters. A nice feature is that the
user can enter wildcards. For example, the
string “??i” finds all surnames with a third
letter i. Your users will think this is very
clever, but it is VB’s SQL that has done the
work for you.

Second, the code uses a standard list
box rather than the databound list box or
the bound grid control. Using a databound
control would save the few lines of code
which fill the list. But unfortunately, the
bound list control can only display one field,
limiting its use. The databound grid is a
viable option but is, frankly, overkill in view
of what’s required. In version 4.0, Microsoft
enhanced VB’s list box by adding the
ItemData property and this is ideal since it

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS LEFT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

attempts to put text and numeric data into
the same field and should fail. (In practice,
some RDBMSs
will allow this and
convert the
resulting field to
the lowest
common
denominator,
such as text.)

However, the
result shown in
Fig 1 (page 269)
may not be
particularly
meaningful.

The first
example I gave
for UNION
(combining a
LEFT and RIGHT
join) serves as an
excellent example. However, it isn’t the
only way in which it can be used. Suppose
that you have another table of sales people
who, for whatever reason, are stored in a
separate table from the other employees.
Take a look at the following:

SALESPEOPLE
EmployeeNo FirstName LastName CarNo
1 Fred Williams 1
2 Sarah Watson 4
3 James Hatlitch 6
4 Simon Webaston
5 Sally Harcourt
6 Martin Boxer
7 Trevor Wright 7

You want to throw a party for all the
employees, and to include those sales
people with company cars (because they

ended last month’s tutorial by
illustrating that while you can
have all of the cars some of the

time, and all of the people some of the time
(in your SQL statement), what you really
want to know is: can we have all of the
people all of the time? The answer is “yes”
but you need to make use of UNION.

UNION returns all of the records from
two queries and displays them, minus any
duplicates, in a single table. Thus:
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS RIGHT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo

UNION

SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS LEFT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

produces:
Make Model FirstName LastName

John Greeves
Aston Martin DB Mk III
Bentley Mk. VI Bilda Groves
Ford GT 40
Ford Mustang
Jaguar D Type
Shelby Cobra Sally Smith
Triumph Spitfire
Triumph Stag Fred Jones

Clearly, the two answer tables that are
produced by the separate SELECT
statements must be compatible in order for
the UNION to combine them sensibly. So:
SELECT CARS.CarNo, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS RIGHT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo

UNION

SELECT CARS.Make, CARS.Model,

have volunteered to drive the employees
home afterwards).

You can use:
SELECT FirstName, LastName

FROM EMPLOYEES

UNION

SELECT FirstName, LastName

FROM SALESPERSON

WHERE SALESPERSON.CarNo Is Not

Null;

to yield;
FirstName LastName
Bilda Groves
Fred Jones
Fred Williams
James Hatlitch
John Greeves
Sally Smith
Sarah Watson
Trevor Wright

You can also use UNION to produce a
list of all employees and sales people who
have company cars:
SELECT DISTINCTROW

VALUES

(SELECT

FROM SALES2

WHERE SaleNo > 200);

The table SALES2 looks like that shown
in Fig 5, and this SQL statement will add the
five records for which [SaleNo] is greater
than 200 to the SALES table.

Closure is important here because the
statement within the brackets:
(SELECT

FROM SALES2

WHERE SaleNo > 200);

generates a table in its own right which is
then INSERTED into SALES.

SQL is not always as standard as it
should be. As another example, the syntax
for this statement in Access is:
INSERT INTO SALES

SELECT *

FROM SALES2

WHERE SaleNo > 200;

UPDATE
The UPDATE command allows you to alter
the values in fields. The general format is:
UPDATE tablename

SET Fieldname(s) = value

WHERE fieldname = value

although the WHERE condition is optional.
Thus:
UPDATE SALES

SET Customer =”Smith”;

will change Fig 6 to Fig 7.
As you might imagine, this command

can be a little devastating in the wrong
hands. The WHERE command generally
limits its scope. So:
UPDATE SALES

SET Customer =”Smith”

WHERE Customer = “Simpson”;

will act on the same initial table to produce
that shown in Fig 8.

It is quite possible to use different fields
in the SET and WHERE clauses. Thus:
UPDATE SALES

SET Customer =”Smith”

WHERE SaleNo < 5;

produces Fig 9.
Other variations are possible, and indeed

common. For example:
UPDATE SALES

SET AMOUNT = AMOUNT * 1.1;

will update all the values in SALES.[Amount]
by 10 percent, as in Fig 10. This sort of
variant is particularly useful.

DELETE
The DELETE command allows you to alter

Hands OnWorkshop: SQL

SALESPEOPLE.FirstName,

SALESPEOPLE.LastName, CARS.Make,

CARS.Model

FROM

(CARS INNER JOIN SALESPEOPLE

ON CARS.CarNo = SALESPEOPLE.CarNo)

UNION

SELECT DISTINCTROW

EMPLOYEES.FirstName,

EMPLOYEES.LastName, CARS.Make,

CARS.Model

FROM

(CARS INNER JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo);

FirstName LastName Make Model
Bilda Groves Bentley Mk. VI
Fred Jones Triumph Stag
Fred Williams Triumph Spitfire
James Hatlitch Ford Mustang
Sally Smith Shelby Cobra
Sarah Watson Ford GT 40
Trevor Wright Aston Martin DB Mk III

SELECT summary
Suppose you import a table of data like this:

InvoiceNo Foo
1 King
2 Baby Blue
3 Royal
2 Crested
5 Humbolt
2 Jackass

into a database and then try to make the
field InvoiceNo into a primary key (the Foo
field is simply a shorthand representation of
the boring information that would usually be
displayed in an invoice). This should fail
because the field contains duplicate values.
In this tiny table we can see them, but what
if it had 50,000 records? With a little
imagination, a query will find the errant
records for us.
SELECT InvoiceNo, Count(InvoiceNo)

AS NoOfDuplications

FROM INVOICES

GROUP BY [InvoiceNo]

HAVING Count([InvoiceNo])>1;

InvoiceNo NoOfDuplications
2 3

INSERT
Firstly, a brief note about the sample
Access database which is provided. It is
tempting to open each query as an SQL
view, read it, and then look at the answer
table by pressing the “Datasheet View
button”. This works for most of the
examples provided but not for the INSERT
queries. Press the “Run” button instead.

It is also worth bearing in mind that these

Personal Computer World • January 1997 • 267266 • Personal Computer World • January 1997

Hands On Workshop: SQL

State of the union
In the final part of our four-part tutorial, Mark Whitehorn covers UNION, insert, update
and delete commands.

I

queries will update the base tables, so you
should be working on a copy of the
database. In addition, remember that the
tables have primary keys, so if you run the
same INSERT query twice without deleting
the additional record, the query will fail to
run the second time.

As if all that weren’t enough, please also
note that I have encountered what appear
to be “software anomalies” in using these
queries in Access 2.0. The first example of
an SQL INSERT statement will only run two
or three times. Thereafter, even if the new
record is dutifully deleted from the target
table, the query will generate the error
message shown in the screenshot, Fig 3.
This is despite the fact that it hasn’t been
edited, or even opened for editing. Once
this error message appears, the only way to
get the query to run again is to delete the
existing query, open a new one and type
the SQL statement again.

SELECT is undoubtedly the most
commonly used SQL statement, but we
shouldn’t forget the other members of the
Data Manipulation Language (DML),
INSERT, UPDATE and DELETE.

INSERT is used to add rows to a table.
Thus the statement:
INSERT INTO SALES

VALUES (8, 1, “Jones”, “Sofa”,

“Harrison”, 235.67);

This is not the only allowable
construction. Indeed, Access will run this
syntactical construction, but if you save the
query, Access converts it to :
INSERT INTO SALES

SELECT 8, 1, “Jones”, “Sofa”,

“Harrison”, 235.67;

Both constructions will add this record to
the SALES table shown in Fig 2.

A slightly more verbose form is possible:
INSERT INTO SALES (SaleNo,

EmployeeNo, Customer, Item,

Supplier, Amount)

SELECT 8, 1, “Jones”, “Sofa”,

“Harrison”, 235.67;

which has exactly the same result. We can
also add to specific fields:
INSERT INTO SALES (SaleNo,

EmployeeNo, Customer, Amount)

SELECT 9, 1, “Jones”, 235.67;

which adds a single record as shown in Fig 4.
But don’t forget closure. Any operation

that we perform on a table (or tables) in a
relational database must have, as its result,
another table. So suppose we write an
INSERT statement like this:
INSERT INTO SALES

p268 ➢

Fig 3 Error message generated when the first INSERT command is used
too frequently!

Personal Computer World • January 1997 • 269

Hands OnWorkshop: SQL

Fig 1
Car No Model First Name Last Name

John Greeves
2 Mk. VI Bilda Groves
3 Stag Fred Jones
5 Cobra Sally Smith

Aston Martin DB Mk III
Bentley Mk. VI Bilda Groves

Ford GT 40
Ford Mustang
Jaguar D Type
Shelby Cobra Sally Smith

Triumph Spitfire
Triumph Stag Fred Jones

Fig 2
Sale No Employee No Customer Item Supplier Amount

8 1 Jones Sofa Harrison £235.67

Fig 3
SaleNo EmployeeNo Customer Item Supplier Amount

1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Jones Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453
8 1 Jones Sofa Harrison £235.67
9 1 Jones £235.67

Fig 2
Sale No Employee No Customer Item Supplier Amount

3 2 Smith Stool Ford £82.78
5 3 Smith Sofa Harrison £235.67

213 3 Williams Suite Harrison £3421
216 2 McGreggor Bed Ford £453
217 1 Williams Sofa Harrison £235.67
218 3 Aitken Sofa Harrison £235.67
225 2 Aitken Chair Harrison £453.78

Fig 6 — will change to…
Sale No Employee No Customer Item Supplier Amount

1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Jones Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453

…Fig 7
Sale No Employee No Customer Item Supplier Amount

1 1 Smith Sofa Harrison £235.67
2 1 Smith Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Smith Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Smith Sofa Harrison £235.67
7 1 Smith Bed Ford £453

Fig 9
Sale No Employee No Customer Item Supplier Amount

1 1 Smith Sofa Harrison £235.67
2 1 Smith Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Smith Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453

Fig 11
Sale No Employee No Customer Item Supplier Amount

Fig 12
Sale No EmployeeNo Customer Item Supplier Amount

1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453

Fig 14
Sale No Employee No Customer Item Supplier Amount
225 2 Aitken Chair Harrison £453.78
218 3 Aitken Sofa Harrison £235.67
217 1 Williams Sofa Harrison £235.67
216 2 McGreggor Bed Ford £453
213 3 Williams Suite Harrison £3,421

Fig 15
‘SaleNo>200’ ‘Emp AND Sale’ EmployeeNo SaleNo Customer
-1 -1 3 213 Williams
-1 -1 2 216 McGreggor
-1 -1 1 217 Williams
-1 -1 3 218 Aitken
-1 -1 2 225 Aitken

Fig 13 — the correct answer
Sale No Employee No Customer Item Supplier Amount

217 1 Williams Sofa Harrison £235.67
216 2 McGreggor Bed Ford £453
225 2 Aitken Chair Harrison £453.78
213 3 Williams Suite Harrison £3,421
218 3 Aitken Sofa Harrison £235.67

Fig 10
Sale No Employee No Customer Item Supplier Amount

1 1 Simpson Sofa Harrison £259.24
2 1 Johnson Chair Harrison £499.16
3 2 Smith Stool Ford £91.06
4 2 Jones Suite Harrison £3,763.10
5 3 Smith Sofa Harrison £259.24
6 1 Simpson Sofa Harrison £259.24
7 1 Jones Bed Ford £498.30

Fig 8
Sale No Employee No Customer Item Supplier Amount

1 1 Smith Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Jones Suite Harrison £3,421
5 3 Smith Sofa Harrison £235.67
6 1 Smith Sofa Harrison £235.67
7 1 Jones Bed Ford £453

Figs 1-15

Examples to accompany part four of the SQL tutorial,
covering the UNION, INSERT, UPDATE and DELETE
commands, and the associated brainteaser.

the values in fields.
The general format of the command is:

DELETE FieldName(s)

FROM tablename

WHERE fieldname = value

although the WHERE condition is optional.
Thus:
DELETE *

FROM SALES;

is a particularly powerful (not to say
dangerous) statement since the output
table looks like Fig 11. To be more specific,
this command deletes the entire contents of
the SALES table. Please be aware of the
consequences of any injudicious use of this
command.

More commonly (and less alarmingly) the
command is used like this:
DELETE *

FROM SALES

WHERE [EmployeeNo] = 2;

which deletes two records and produces
the table in Fig 12. Of course, closure
comes into its own and we can write
statements like:
DELETE *

FROM EMPLOYEES

WHERE EmployeeNo IN

(SELECT EmployeeNo

FROM SALES

GROUP BY EmployeeNo

HAVING COUNT (*) < 2);

which is neither friendly nor amiable, but
effective in database terms. It deletes all
employees from the EMPLOYEES table
who have made fewer than 2 sales. The

SALES table is unaffected, but one of our
employees disappears from EMPLOYEES.

Bear in mind that this statement will try
to remove employees who have performed
badly, but the data dictionary may in fact
prevent this deletion in order to preserve
data integrity. This will depend upon
whether Cascade Delete has been set
between the two tables. In the sample
database, the query will complete.

Summary
SQL is great, and if you spend any time at
all with databases, it repays the effort
required to learn it. One of the best ways to
learn is to practise using it, which is why the
sample database has 70 sample queries.
However, you might also like to wile away
your time on this brainteaser:
■ Question (and a free SQL diagnostic tool)
The two SQL statements below are
perfectly legal. Both will run. The question
is, which will be sensible? One of them will
find all the records where the SaleNo is
>200 and order the answer table by
EmployeeNo and SaleNo. The other won’t.
Q1
SELECT *

FROM SALES2

WHERE SaleNo>200

ORDER BY EmployeeNo, SaleNo;

or is it…
Q2
SELECT *

FROM SALES2

WHERE SaleNo>200

ORDER BY EmployeeNo AND SaleNo;

The only difference, to save you wasting
time comparing them, is in the ORDER BY
statement.
Answer: Q1 is correct and returns the table
shown in Fig 13. Q2 returns the table in Fig
14 because it has a very odd construction:
ORDER BY EmployeeNo AND SaleNo

Despite appearances, this does NOT say
“order the records by EmployeeNo and
then by SaleNo”. Instead, it says “evaluate
the expression ‘EmployeeNo AND SaleNo’
for truth (the answer will come back as -1
[True] or 0 [False]) and then stack the
records based on this value.” You can
prove this by adding the expressions which
are being evaluated to the list of information
that you want to see. Thus:
SELECT SaleNo>200 AS

[‘SaleNo>200’],

EmployeeNo AND SaleNo AS [‘Emp AND

Sale’],

EmployeeNo, SaleNo, Customer

FROM SALES2

WHERE SaleNo>200

ORDER BY EmployeeNo AND SaleNo;

produces Fig 15. In all the records, the
expression ‘EmployeeNo AND SaleNo’
happens to evaluate to -1, so the sorting
has no effect.

If and when you come across an
intractable SQL statement that runs but
doesn’t give you the answer you expect,
then you can use SQL’s own ability to show
you the results of expressions as a
diagnostic tool.

268 • Personal Computer World • January 1997

Hands On Workshop: SQL

The only difference between these tables
and the way they appeared in last month’s
issue is that John Greeves has lost his
licence, so he is no longer allocated a
company car. (This does not affect any of
the examples shown in previous months.)

Note that in order to maintain
consistency with my previous article, the
first SQL statement this month is labelled as
“Multi-Table 3” (not “Multi-Table 1”) in the
Access database provided on the cover-
mounted CD-ROM. Last month, we looked
at SQL which worked across multiple
tables. The statement we finished with was:
SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES, EMPLOYEES

WHERE SALES.EmployeeNo =

EMPLOYEES.EmployeeNo;

ast month I promised to continue
dealing with the subject of
working with multiple tables and

how to use the SELECT statement to draw
data from more than one. This month, I’ll
look at how it works and what it’s doing.

The sample tables and the joins between
them are shown in the two screenshots
(Figs 1 & 2). In the sample Access
database, which is included on our cover-
mounted CD, I have removed the joins.
Some of the SQL commands alter the
sample tables so I have included extra
versions of those, stored with the word
SAFE after the name. Once you have run
the SQL statement, you can delete the
altered table and replace it with a copy of
the “safe” version. This replacement
process is easier if the joins are removed.

which yields:
Customer LastName Amount
Simpson Groves £235.67
Johnson Groves £453.78
Simpson Groves £235.67
Jones Groves £453
Smith Greeves £82.78
Jones Greeves £3,421
Smith Smith £235.67

In order to see how this is working, we
can add the EmployeeNo fields, from the
two tables, into the answer table and
remove the WHERE statement. (I’ve used
synonyms for the tables to reduce the size
of the table headings.)
SELECT S.Customer, E.LastName,

S.Amount, S.EmployeeNo,

E.EmployeeNo

FROM SALES S, EMPLOYEES E;

See the table in Fig 3 (page 258).
Without a WHERE clause, the answer

table contains every record in the SALES
table matched against every record in the
EMPLOYEE table, giving 4 x 7 = 28
records. The WHERE clause ensures that
we see in the answer table only those
records in which the EmployeeNo in SALES
matches the EmployeeNo in EMPLOYEES.
This is logically reasonable since we are
using the value in SALES.EmployeeNo to
indicate which employee made the sale.

It is possible to join more than two tables
by adding to the WHERE clause. For
example:

unique values (I am using the term “unique”
to mean that the values are found in one
table but not the other) then the join ignores
the records that are associated with these
values. Thus, the table CARS has a
delightful Aston Martin, CarNo = 7, but
since there is no corresponding value in
EMPLOYEES.CarNo, this fine automobile
never appears in the answer table.

So instead of a Natural join, what you
need to use here is an Unnatural join. Okay,
I admit it, that was just to see if you were
awake. It is really known as an “Outer” join.

Outer joins
There are two distinct types of Outer join,
Left and Right.

The following SQL statement
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS LEFT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

yields:
Make Model FirstName LastName
Triumph Spitfire
Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Ford GT 40
Shelby Cobra Sally Smith
Ford Mustang
Aston Martin DB Mk III
Jaguar D Type

Hands OnWorkshop: SQL

SELECT SALES.Customer,

EMPLOYEES.FirstName, CARS.Make,

CARS.Model

FROM CARS, EMPLOYEES, SALES

WHERE EMPLOYEES.EmployeeNo =

SALES.EmployeeNo

AND EMPLOYEES.CarNo = CARS.CarNo;

Customer FirstName Make Model
Simpson Bilda Bentley Mk. VI
Johnson Bilda Bentley Mk. VI
Simpson Bilda Bentley Mk. VI
Jones Bilda Bentley Mk. VI
Smith Sally Shelby Cobra

Note that this query is finding the car
driven by the sales person who dealt with a
given customer, so it isn’t supposed to
present particularly meaningful information.

The most recent ISO standard for SQL
(SQL-92) includes a new way of expressing
joins such that:
SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES, EMPLOYEES

WHERE SALES.EmployeeNo =

EMPLOYEES.EmployeeNo;

Customer LastName Amount
Simpson Groves £235.67
Johnson Groves £453.78
Simpson Groves £235.67
Jones Groves £453
Smith Greeves £82.78
Jones Greeves £3,421
Smith Smith £235.67

can be replaced by:
SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES INNER JOIN EMPLOYEES

ON EMPLOYEES.EmployeeNo =

SALES.EmployeeNo;

This produces the same answer table
and is generally considered to be more
readable. However, it does raise another
question: what is this INNER business?

Inner (natural) joins
Suppose your boss says: “Give me a list of
all the cars and the sales person to whom

Personal Computer World • December 1996 • 257256 • Personal Computer World • December 1996

Hands On Workshop: SQL

Practical joinery
In part III of our SQL tutorial, Mark Whitehorn explains how multiple tables work together
and highlights the distinction between left, right, inner and outer joins.

L

each is currently allocated.”
You are immediately tempted to use the

SQL statement:
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS INNER JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

but this will give the answer:
Make Model FirstName LastName
Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Shelby Cobra Sally Smith

which doesn’t list all the cars because that
delectable D-type Jaguar, for instance,
hasn’t been allocated to anyone.

In fact, your boss has phrased the
question badly, since the original question
assumes that every car is allocated to an
employee and this is not the case.
However, voicing your opinion about the
inexact use of English is likely to be a CLM
(Career Limiting Move). Better to keep quiet
and find a query that will list all the cars and
show what has been allocated to which
lucky employees.

But before that, we’ll have a look at
what’s wrong with the query shown above.
By default, a join combines the two tables
via fields that have identical values. This is
known as a “Natural” or “Inner” join.
However, if one or both of the fields contain

Fig 1 The tables used in the examples. I have

set the dates to show four-digit years in

response to email from readers worried about

the coming of the millennium. In fact, Access

stores all dates as four-digit years: it is just the

default format which doesn’t show them

Fig 2 Two tables used in a couple of the later

examples.The Foo field is simply a shorthand

representation of the boring information that

would usually be displayed in an invoice

p258 ➢

Essentially, the substitution of LEFT JOIN
for INNER JOIN has made all the difference.

The other sort of outer join is RIGHT,
which simply ensures that every record in
the table on the right-hand side of the join is
included in the answer table, so
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM CARS RIGHT JOIN EMPLOYEES

ON CARS.CarNo = EMPLOYEES.CarNo;

yields:
Make Model FirstName LastName

John Greeves
Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Shelby Cobra Sally Smith

It is important to note that
SELECT CARS.Make, CARS.Model,

EMPLOYEES.FirstName,

EMPLOYEES.LastName

FROM EMPLOYEES LEFT JOIN CARS

ON CARS.CarNo = EMPLOYEES.CarNo;

produces exactly the same answer table,
namely:

Make Model FirstName LastName
John Greeves

Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Shelby Cobra Sally Smith

In other words, the LEFT and RIGHT simply
refer to the tables as named in the SQL
statement. So
FROM EMPLOYEES LEFT JOIN CARS

and
FROM CARS RIGHT JOIN EMPLOYEES

will include all the
employees and some
of the cars:
FROM CARS LEFT

JOIN EMPLOYEES

and
FROM EMPLOYEES

RIGHT JOIN CARS

will include all the
cars and some of the
employees.

The upshot is that
you can have all of
the cars some of the
time, and indeed, you
can have all of the
people some of the
time. But what you
really want to know
is, can we have all of
the cars and all of the
people all of the
time?

The answer, not
surprisingly, is “Yes”.
But in order for that
to happen, we need
to make use of
UNION and I’ll be
covering this and
other topics in next
month’s column.

■ You will find the Access sample file in the
Resources section on this month’s
cover-mounted CD.

258 • Personal Computer World • December 1996

Hands On Workshop: SQL

Fig 3
Customer LastName Amount S.EmployeeNo E.EmployeeNo

Simpson Groves £235.67 1 1

Johnson Groves £453.78 1 1

Smith Groves £82.78 2 1

Jones Groves £3,421 2 1

Smith Groves £235.67 3 1

Simpson Groves £235.67 1 1

Jones Groves £453 1 1

Simpson Greeves £235.67 1 2

Johnson Greeves £453.78 1 2

Smith Greeves £82.78 2 2

Jones Greeves £3,421 2 2

Smith Greeves £235.67 3 2

Simpson Greeves £235.67 1 2

Jones Greeves £453 1 2

Simpson Smith £235.67 1 3

Johnson Smith £453.78 1 3

Smith Smith £82.78 2 3

Jones Smith £3,421 2 3

Smith Smith £235.67 3 3

Simpson Smith £235.67 1 3

Jones Smith £453 1 3

Simpson Jones £235.67 1 4

Johnson Jones £453.78 1 4

Smith Jones £82.78 2 4

Jones Jones £3,421 2 4

Smith Jones £235.67 3 4

Simpson Jones £235.67 1 4

Jones Jones £453 1 4

Mark Whitehorn welcomes readers’
correspondence. He is at
m.whitehorn@dundee.ac.uk

●PCW Contacts

which is how it appears in the Access
dialect of SQL. All three of the above yield a
table like this:

SumOfAmount
£5,117.57

The AS followed by a field name simply
tells the SQL statement to put the data into
a field of that name in the answer table.

It is permissible to mix two or more
functions, for example:
SELECT SUM(Amount) AS SumOfAmount,

COUNT(Amount) AS CountOfAmount,

AVG(Amount) AS AvgOfAmount,

MIN(Amount) AS MinOfAmount,

MAX(Amount) AS MaxOfAmount

FROM SALES;

which yields the table shown in Fig 1.
It’s also perfectly permissible to mix

fields like this:
SELECT COUNT(Customer) AS

CountOfCustomer,

AVG(Amount) AS AvgOfAmount

FROM SALES;

giving:
CountOfCustomer AvgOfAmount

7 £731.08

These functions will even operate on
fields which contain no data. If we amend
the base table (for the sake of this example

ast month, we looked at the basic
building-blocks of SQL and the
ways in which they can be put

together to elicit information from a
database. With those commands alone you
could pose an almost infinite series of
queries, but SQL still has a whole range of
tricks up its sleeve.

(Last month’s sample tables reappear in
the screen shots here, so you won’t have to
fight with two magazines at once).

■ Built-in Functions
SQL includes several simple statistical
functions:

Function
SUM Total
COUNT The number of occurrences
AVG Average
MIN Minimum
MAX Maximum

Thus, it is possible (although not normal
practice) to write SQL statements such as:
SELECT SUM(Amount)

FROM SALES;

Some systems will actually accept this.
Access, for instance, generates a “dummy”
field name (Expr1000) and yields the
following table:

Expr1000
£5,117.57

It is common to explicitly name the field
into which to place the output. For example:
SELECT SUM(Amount) “Sum of Amount”

FROM SALES;

or:
SELECT SUM(Amount) AS SumOfAmount

FROM SALES;

or even:
SELECT DISTINCTROW

SUM(SALES.Amount) AS SumOfAmount

FROM SALES;

only) to be as shown in Fig 2, then the SQL
statement above will give:

CountOfCustomer AvgOfAmount
5 £282.76

The COUNT function finds only five
values and AVG sums the values that it
finds and then divides the result by six
(i.e.the number of values in that particular
field) rather than seven (the number of
records).

However, these functions are designed
to yield only a single figure each. Thus, SQL
statements such as:
SELECT Customer,

AVG(SALES.Amount) AS AvgOfAmount

FROM SALES;

are illegal because SELECT Customer can
(and in this case, would) have an output
consisting of multiple records, while the
second:
SELECT AVG(SALES.Amount) AS

AvgOfAmount

can only have an output of a single record.
Several SQL implementations provide

more than the basic functions.
For example, Access also provides:

Function
StDev Standard Deviation
Var Variance

produces:
Customer
Johnson
Jones
Simpson
Smith

At first, it appears that this is the same as:
SELECT DISTINCT Customer

FROM SALES;

which yields the same answer table, but
adding another field demonstrates the
difference. Thus:
SELECT DISTINCT Customer, Amount

FROM SALES;

produces:
Customer Amount
Johnson £453.78
Jones £453.00
Jones £3,421.00
Simpson £235.67
Smith £82.78
Smith £235.67

whereas:
SELECT Customer, Amount

FROM SALES

GROUP BY Customer;

fails to run. Why? To answer this, we must
look at what the SQL clauses are trying to
achieve. The command:
SELECT Customer

FROM SALES

GROUP BY Customer;

essentially says “Sort the records in the
SALES table so that identical values in the
Customer field are together. Then ‘crush
together’ the records with identical
Customer values so that they appear to be
one record.” Thus:
SELECT Customer, Amount

FROM SALES

GROUP BY Customer;

Hands OnWorkshop: SQL

It is just this kind of variation from the
standard which demonstrates that SQL is
still a fairly fluid standard.

■ GROUP BY — collecting information
So far, our generic SELECT statement looks
like this:
SELECT field name(s)

FROM table name

WHERE condition(s)

ORDER BY field name(s)

We can expand it with:
SELECT field name(s)

FROM table name

WHERE condition(s)

GROUP BY Field name(s)

ORDER BY field name(s)

Last month we looked at the command
ORDER BY, which provides a way of
presenting information in ascending or
descending order. Further control over your
answer data is given by GROUP BY. The
syntax is:
GROUP BY Field name(s)

To illustrate its usefulness, we’ll consider
the simple statement below:
SELECT AVG(Amount) AS AvgOfAmount

FROM SALES;
AvgOfAmount

£731.08

This averages the values found in the
[Amount] field for all records in the SALES
table. Suppose you want to examine the
records which refer to customer
“Simpson”? You’d use WHERE, as follows:-
SELECT AVG(Amount) AS AvgOfAmount

FROM SALES

WHERE Customer = “Simpson”;

AvgOfAmount
£235.67

Personal Computer World • November 1996 • 247246 • Personal Computer World • November 1996

Hands On Workshop: SQL

Group therapy
Having dealt with the basics, Mark Whitehorn delves deeper into SQL and shows you how
to organise your records logically, in part II of our four-part tutorial.

L

Fig 1
SumOfAmount CountOfAmount AvgOfAmount MinOfAmount MaxOfAmount
£5,117.57 7 £731.08 £82.78 £3,421.00

Fig 2
SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Stool Ford £82.78
4 2 Jones Suite Harrison
5 3 Smith Sofa Harrison £235.67
6 1 Sofa Harrison £235.67
7 1 Jones Bed Ford £453.00

Fig 3
SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison £235.67
2 1 Johnson Chair Harrison £453.78
3 2 Smith Stool Ford £82.78
4 2 Jones Suite Harrison £3,421.00
5 3 Smith Sofa Harrison £235.67
6 1 Simpson Sofa Harrison £235.67
7 1 Jones Bed Ford £453.00

Fig 4
SaleNo EmployeeNo Customer Item Supplier Amount
2 1 Johnson Chair Harrison £453.78
7 1 Jones Bed Ford £453.00
4 2 Jones Suite Harrison £3,421.00
6 1 Simpson Sofa Harrison £235.67
1 1 Simpson Sofa Harrison £235.67
5 3 Smith Sofa Harrison £235.67
3 2 Smith Stool Ford £82.78

Now, suppose
you want to do this
for each customer.
An inelegant, brute-
force solution
would be to run the
query multiple
times, once each
for each customer.
A clever solution is
to get the SQL
statement to group
the records
together by the
name of the
customer and then

apply the AVG
function to the values in the groups.

We can visualise the process as follows:
going from the data shown in Fig 3, to that
shown in Fig 4; and then to this, which is a
full but compact summary of the required
information:

Customer AvgOfAmount
Johnson £453.78
Jones £1,937.00
Simpson £235.67
Smith £159.23

The SQL statement required to perform
this magic is impressive:
SELECT Customer, AVG(Amount) AS

AvgOfAmount

FROM SALES

GROUP BY Customer

Order BY Customer;

The GROUP BY clause can be used
more simply than this. For example:
SELECT Customer

FROM SALES

GROUP BY Customer;

The relationship editor, showing the joins between the tables

p248 ➢

fails because there’s a conflict (real in this
case, potential in others) between the
number of records that should be output.
SELECT Customer

FROM SALES

GROUP BY Customer;

will output four records:
Customer
Johnson
Jones
Simpson
Smith

while:
SELECT Amount

FROM SALES;

will output seven records:
Amount
£235.67
£453.78
£82.78
£3,421.00
£235.67
£235.67
£453.00

Combining these two incompatible
requests is impossible and SQL engines will
refuse the statement. As you can see from
the above, there is no obligation to combine
GROUP BY with one or more of the
functions. However, it is commonly done
because we often only want to group
records in order to be able to perform some
type of manipulation on selections of
records. It is perfectly possible to GROUP
BY more than one field.

Thus:
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier;

produces more groups than the SQL
statement above that grouped by one field,
because it is grouping those records which
share the same value in Customer and
Supplier. The answer table is this:

Customer Supplier AvgOfAmount
Johnson Harrison £453.78
Jones Ford £453.00
Jones Harrison £3,421.00
Simpson Harrison £235.67
Smith Ford £82.78
Smith Harrison £235.67

which raises another interesting question:
how can you tell how many records are
actually contributing to each group? One
answer (but by no means the only one) is:

SELECT Count(*) AS NumberInGroup,

Customer, Supplier, AVG(Amount) AS

AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier;

The only addition is the “Count(*) AS
NumberInGroup” bit which simply says that
the number of records in each group should
be counted (Fig 5).

We could equally well use:
SELECT Count(Customer) AS

NumberInGroup, Customer, Supplier,

AVG(Amount)

AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier;

which returns the same answer table.
GROUP BY is an incredibly powerful tool

248 • Personal Computer World • November 1996

Hands On Workshop: SQL

The tables

used in my

examples

Personal Computer World • Novemebr 1996 • 249

Hands OnWorkshop: SQL

Customer Supplier AvgOfAmount
Jones Ford £453.00
Johnson Harrison £453.78
Jones Harrison £3,421.00

■ Working with multiple tables
So far, we have looked at using the
SELECT statement with a single table.
Clearly, since the relational model
encourages us to split complex data into
separate tables we will often find it
necessary to recover data from two or more
tables. To do this, we have to use the
SELECT statement to draw data from both
and the WHERE clause to form the joins.

Before we do, let’s try querying the
tables without using the WHERE clause.
SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES, EMPLOYEES;

produces the data shown in Fig6.
Note that this SQL statement includes,

for the first time, the table names when
fields are being specified. Up to this point
our SELECT statements have referred to
single tables. Since field names within a
single table must be unique, the field name
alone allowed us to unambiguously identify
the fields. However, field names can (and
often are) shared by different tables. For
example, both SALES and EMPLOYEES
have a field called EmployeeNo. Therefore,
the only way to identify a precise field
uniquely is to use the table name as well.
SQL syntax typically has the table name first
in upper case, followed by a dot, followed
by the field name in lower case.

SQL allows you to substitute temporary
synonyms for table names:
SELECT S.Customer, E.LastName,

S.Amount

FROM SALES S, EMPLOYEES E;

which can shorten statements considerably
but also tends to makes them less
readable.

Note that the synonyms are defined in
the FROM clause, but can still be used in
the SELECT clause which tells you
something about the way in which the SQL
statement is read by the RDBMS.

To return to the multiple table query, if
we were to add a WHERE clause as

and it can be made even more so with the
addition of HAVING.

■ GROUP BY and HAVING —
Collecting information together
Whereas the GROUP BY clause puts
records into logical groupings, the HAVING
clause allows you to select the groups that
you want to see based on values which
appertain to that group. Consider the
example given above.
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier;

Customer Supplier AvgOfAmount
Johnson Harrison £453.78
Jones Ford £453.00
Jones Harrison £3,421.00
Simpson Harrison £235.67
Smith Ford £82.78
Smith Harrison £235.67

Suppose, now the records are grouped
in this way, that we are only interested in the
groups where the average amount is £250
or more? The foolish solution is:
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier

ORDER BY AVG(Amount);

Customer Supplier AvgOfAmount
Smith Ford £82.78
Smith Harrison £235.67
Simpson Harrison £235.67
Jones Ford £453.00
Johnson Harrison £453.78
Jones Harrison £3,421.00

which, although it renders the desired
values easy to find, nevertheless still leaves
the job of actually locating them, up to the
user. A much better solution would be:
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier

HAVING AVG(Amount) >= 250;

Customer Supplier AvgOfAmount
Johnson Harrison £453.78
Jones Ford £453.00
Jones Harrison £3,421.00

You can, of course, still order the groups:
SELECT Customer, Supplier,

AVG(Amount) AS AvgOfAmount

FROM SALES

GROUP BY Customer, Supplier

HAVING AVG(Amount) >= 250

ORDER BY AVG(Amount);

shown here:

SELECT SALES.Customer,

EMPLOYEES.LastName, SALES.Amount

FROM SALES, EMPLOYEES

WHERE SALES.EmployeeNo =

EMPLOYEES.EmployeeNo;

we get:
Customer LastName Amount
Simpson Groves £235.67
Johnson Groves £453.78
Simpson Groves £235.67
Jones Groves £453.00
Smith Greeves £82.78
Jones Greeves £3,421.00
Smith Smith £235.67

Referring to the base tables shows that

this is a more useful answer table than the

previous one.

How it works, and what it’s doing, will be

revealed next month. ■

Fig 5
NumberInGroup Customer Supplier AvgOfAmount
1 Johnson Harrison £453.78
1 Jones Ford £453.00
1 Jones Harrison £3,421.00
2 Simpson Harrison £235.67
1 Smith Ford £82.78
1 Smith Harrison £235.67

Fig 6

Customer LastName Amount

Simpson Groves £235.67

Johnson Groves £453.78

Smith Groves £82.78

Jones Groves £3,421.00

Smith Groves £235.67

Simpson Groves £235.67

Jones Groves £453.00

Simpson Greeves £235.67

Johnson Greeves £453.78

Smith Greeves £82.78

Jones Greeves £3,421.00

Smith Greeves £235.67

Simpson Greeves £235.67

Jones Greeves £453.00

Simpson Smith £235.67

Johnson Smith £453.78

Smith Smith £82.78

Jones Smith £3,421.00

Smith Smith £235.67

Simpson Smith £235.67

Jones Smith £453.00

Simpson Jones £235.67

Johnson Jones £453.78

Smith Jones £82.78

Jones Jones £3,421.00

Smith Jones £235.67

Simpson Jones £235.67

Jones Jones £453.00

operations such as creating tables, but it
remains true that the most common usage
of the language is to ask questions of a
database. This part of the language
comprises the Data Manipulation Language
(DML) statements of SQL.

DML statements are, by convention,
written in UPPERCASE. The first ones we’ll
look at are SELECT, FROM, DISTINCT and
WHERE. The sample tables shown in Fig 1
will be used for the examples.

■ SELECT & FROM
The first statement, SELECT, is used to
extract a collection of fields from a given
table. FROM simply directs attention to the
table in question. Therefore, the statement
SELECT SaleNo, Item, Amount

FROM SALES;

will yield the following;
SaleNo Item Amount
1 Sofa £235.67
2 Chair £453.78

QL stands for Structured Query
Language, which is referred to
either as its individual letters or is

called “Sequel”. It appears as if the former
reference is more common in the UK and
the latter in the US, but as the two are
interchangeable don’t let it be a cause of
anxiety.

Despite many similarities to C, Pascal,
BASIC et al, SQL is not a programming
language. It is a data access language or
data sub-language. As such, it is a very
restricted language which deals only with
how tables of data can be manipulated. It
lacks many of the other features (such as
the ability to write information to a particular
place on the screen) which characterise a
full programming language.

Using SQL
SQL is often described as a standard, but
when you actually start using it you find
that, like many standards, it’s not as
standard as all that.

The examples given here are in a
generic form of SQL: you may well
find discrepancies depending on the
actual version used. For example, the
generic DISTINCT becomes
DISTINCTROW in Microsoft’s
Access. Having said that, the
differences are not great, and should
not pose serious problems.

The name itself (“SQL”) is
somewhat misleading as it implies
that this sub-language is concerned
exclusively with querying. In fact, the
language is sufficiently rich to allow
the user to perform many other

3 Stool £82.78
4 Suite £3,421.00
5 Sofa £235.67
6 Sofa £235.67
7 Bed £453.00
SQL doesn’t eliminate duplicates by

default, so:
SELECT Item, Amount

FROM SALES;

will yield

Item Amount
Sofa £235.67
Chair £453.78
Stool £82.78
Suite £3,421.00
Sofa £235.67
Sofa £235.67
Bed £453.00

■ DISTINCT
You can force SQL to remove the
duplicates by using the statement
DISTINCT, which dictates that all rows in
the answer table must be unique. The query
SELECT DISTINCT Item, Amount

FROM SALES;

produces:
Item Amount
Bed £453.00
Chair £453.78
Sofa £235.67
Stool £82.78
Suite £3,421.00

■ WHERE
SELECT lets you choose the fields with
which to work, and WHERE lets you
choose the records.
SELECT Item, Amount

FROM SALES

WHERE Item = ‘Sofa’;

produces
Item Amount
Sofa £235.67
Sofa £235.67
Sofa £235.67

while
SELECT Item, Amount

FROM SALES

WHERE Item = ‘Sofa’ AND Customer =

‘Smith’;

yields
Item Amount
Sofa £235.67
All sorts of variations are already

possible, combining SELECT and WHERE
statements: as you can see from the last
example, WHERE clauses can contain
conditions.

sofas for sale numbers greater than six;
SELECT Item, Amount

FROM SALES

WHERE Item = ‘Sofa’ AND SaleNo > 6;

There are none.
This next statement asks for all records

for sofas, suites and beds, regardless of
sale number:
SELECT Item, Amount

FROM SALES

WHERE Item IN (‘Sofa’, ‘Suite’,

‘Bed’);

Item Amount
Sofa £235.67
Suite £3,421.00
Sofa £235.67
Sofa £235.67
Bed £453.00

and this one adds a condition which
specifies records for the same three pieces
of furniture with sale numbers greater than
six:
SELECT Item, Amount

FROM SALES

WHERE Item IN (‘Sofa’, ‘Suite’,

‘Bed’) AND SaleNo > 6;

Item Amount
Bed £453.00
Conditions are nothing if not logical, and

rendering a series of conditions into plain
English is a good way of understanding
what it will do in practice.

■ ORDER BY
Another useful command is ORDER BY. It
gives you control over the order in which

records appear in the answer table
generated by the query. You specify the
field by which you want records ordered, as
in the following statement:
SELECT Item, Amount

FROM SALES

WHERE Item = ‘Sofa’

ORDER BY SaleNo;

where the records are ordered by the
number of each sale, with the default being
in ascending order. If you feel you want to
specify this, the command is ASC, as
shown below:
SELECT Item, Amount

FROM SALES

WHERE SaleNo > 6

ORDER BY Item ASC;

It’s a perfectly acceptable statement, but
it’s tautological. The next statement:
SELECT Item, Amount

FROM SALES

WHERE SaleNo > 6

ORDER BY Item DESC;

will produce exactly the same data but will
be sorted differently, as DESC, as you’ll
have gathered, sorts records in descending
order. You can use sorts in both directions:
SELECT Item, Customer, SaleNo,

Amount

FROM SALES

WHERE SaleNo > 0

ORDER BY Customer ASC, Amount DESC;

Note that Amount doesn’t have to be in
the SELECT statement to be used for
sorting the records in the answer table,
although this would often be the case.

This will sort the customer records in
ascending order, with the amounts each
customer has spent shown in descending
order.
Item Customer SaleNo Amount
Chair Johnson 2 £453.78

p254 ➢

Hands OnWorkshop

Conditions
We’ll digress here to cover the range of
Conditions that are acceptable within a
WHERE clause. Conditions typically consist
of logical expressions which can be
evaluated for truth; in other words, they are
checked to discover whether they are true
or false.

Thus if we use the SQL statement
SELECT EmployeeNo, FirstName,

LastName, DateOfBirth, DateEmployed

FROM EMPLOYEES

WHERE EmployeeNo = 2;

then we can expect the RDBMS to examine
every record in the EMPLOYEE table, and
place in the answer table only those records
for which the condition
WHERE EmployeeNo = 2

is true. As you’d hope, this is only true for
one record (Fig 2).

A condition is constructed from
operators such as those shown in Fig 3.

The logical operators in Fig 4 have a
lower priority than those above and are
therefore processed after them, unless
brackets are used to alter precedence.

The following SQL statement asks for a
table of the items and amounts from the
Sales table for sale numbers greater than
six:
SELECT Item, Amount

FROM SALES

WHERE SaleNo > 6;

Item Amount
Bed £453.00

while this one only wants to see records for

Personal Computer World • October 1996 • 253252 • Personal Computer World • October 1996

Hands On Workshop

Question time
Which database querying tool is text-based and
reactionary, yet immensely adaptable and even a boon in
some social circles? Why, SQL of course. In the first part of
our new tutorial, Mark Whitehorn introduces the basics.

S

Fig 3 Operators
Symbol Meaning Example Notes Records returned from

Employee table

= Equal to EmployeeNo = 2 1

> Greater than EmployeeNo > 2 2

< Less than EmployeeNo < 2 1

<> Not equal to EmployeeNo <> 2 3

>= Greater than or Equal to EmployeeNo >= 2 3

<= Less than or Equal to EmployeeNo <= 2 2

IN Equal to a value within a collection EmployeeNo IN (2, 3, 4) 3
of values

LIKE Similar to LastName LIKE “Gr*” Finds Greeves and Groves. 2
Uses wildcards. Wild cards vary
between SQL implementations.

BETWEEN…AND Within a range of values, including EmployeeNo
the two values which define the limits BETWEEN 2 AND 4 Equivalent to: EmployeeNo IN (2, 3, 4) 3

IS NULL Field does not contain a value DateEmployed IS NULL 0

Fig 2 One record found
EmployeeNo FirstName LastName Date of Birth DateEmployed

2 John Greeves 21 March 1967 01 January 1990

Fig 1 The sample files used in my examples

In association with In association with

Suite Jones 4 £3,421.00
Bed Jones 7 £453.00
Sofa Simpson 6 £235.67
Sofa Simpson 1 £235.67
Sofa Smith 5 £235.67
Stool Smith 3 £82.78

Wild cards
Wild cards are used in SQL much as they
are used elsewhere, for occasions where
you want a range of data that fits a certain
pattern. The variation below is not
uncommon:
SELECT *

FROM SALES

WHERE SaleNo > 1;

In this case, the * symbol is used as a
wild card, meaning “all Fields”.

Sub-queries
The use of conditions can be expanded into
sub-queries to add further refinement to
queries. In the following example:
SELECT Customer

FROM SALES

WHERE EmployeeNo IN

(SELECT EmployeeNo

FROM EMPLOYEES

WHERE DateEmployed > 12/5/89);

the statement inside brackets is known as a
sub-query and would work perfectly happily
as a query all on its own. (Incidentally, this is
a good case where dialects of SQL differ.
Access requires that the date be wrapped
up in # symbols, thus the last line would
read as
WHERE DateEmployed > #12/5/89#)

Any operation
performed on a table
(or tables) results in
another table — one
containing the answer.
This is termed “closure”
and it is an invariable

rule. The aforementioned sub-query
produces an answer table, shown here:

EmployeeNo
2
3
4

By looking at the answer table generated
by the sub-query, we can see that the
original statement in its full form can be
simplified to:
SELECT Customer

FROM SALES

WHERE EmployeeNo IN (2,3,4)

and the records from the SALES table for
which this is true are shown in Fig 5.

So the query actually yields:
Customer

Smith
Jones
Smith

We can eliminate the duplicate records
by adding the word Distinct to the first line
of the SQL command.
■ There will be more on honing your SQL
skills in part 2 of this workshop next month.

254 • Personal Computer World • October 1996

Hands On Workshop

Fig 5 Records from SALES table
Sale No. Employee No. Customer Item Supplier Amount

3 2 Smith Stool Ford £82.78

4 2 Jones Suite Harrison £3,421.00

5 3 Smith Sofa Harrison £235.67

Fig 4 Logical operators
Symbol Meaning Example Notes Records returned

from Sales table

AND Both expressions must be true in SaleNo > 3 AND AND is evaluated before OR 1
order for the entire expression Customer = “Smith”
to be judged true

OR If either or both expressions are SaleNo > 3 OR AND is evaluated before OR 5
true, the entire expression is Customer = “Smith”
judged to be true

NOT Inverts Truth SaleNo NOT IN (just as well it isn’t available 4
(2, 3, 4) for the real world!)

In association with

