
CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • August 1997 • 279

Hands OnVisual Programming

p280 ➢

problems? There seems to be a variety of
reasons: the faster forms engine is fussier
about the video card and drivers than
previous versions; native compilation
introduces a new layer of complexity; and
VB’s dependence on ActiveX makes it
susceptible to any problems with OLE or
the system registry. Here are some tips for
those struggling to get VB 5.0 working:
■ Check “When a program starts — Save
Changes” in the Options-Environment dialog.
■ Do a fresh installation of Windows and
VB, preferably onto a newly-formatted hard
disk. This brute force approach corrects
two common problems: mismatched
system DLLs and/or a corrupt registry.
■ Double-check API calls and any calls to
external DLLs.
■ Check your current memory
and add more if possible. Thirty-
two megabytes is good.
■ VB 5.0 sometimes corrupts
memory when forms with many
controls are loaded. Removing a
form from a project and adding it
back can help.
■ Deselect toolbars in the view-
toolbars-customise menu.
■ Remove add-ins.
■ Switch to standard Windows
video drivers.

everal readers have reported
problems with Visual Basic 5.0.
Tim Gathercole writes: “I

upgraded to VB5 Professional about three
weeks ago and the program is proving to
be highly unstable when working with larger
projects. Four of my projects, which worked
fine under versions 2.0, 3.0 and 4.0, now
either crash version 5.0 at runtime or work
in runtime but crash when compiled. I got
the same result on both a Pentium and a
Pentium Pro machine, each with 32Mb of
RAM.” He goes on to enquire about a VB5
to VB4 converter, in order to get his
applications running again.

If anyone doubts that VB 5.0 is less
stable than it should be, try this: select two
or more controls on a form (anything with a
font property will do). Have the properties
window floating and the environment set to
MDI (the default). Then try to change the
font. VB responds: “This program has
performed an illegal operation and will be
shut down”.

While this font problem is a reproducible
bug, other faults seem to be annoyingly
unpredictable. Some users experience
constant crashes, while others find VB 5.0
stable and reliable. Native code compilation
can be problematic. Microsoft claims a bug-
fix release is on the way, but why all the

Dealing with dialogs
Tim George is using VB4 and tells me: “I
would like to be able to create a dialog box
which returns a single value, much like the
inputbox function but with extra
functionality. My problem is that I wish to
pass data to and from the dialog box
without resorting to global variables, but
using some kind of parameter list?”

In the days of Visual Basic 3.0, global
variables were hard to avoid. The only other
option was to keep the form in memory by
using the Hide method rather than unload.
Then you could refer to the values of the
form’s controls after the user has closed the
dialog. A better approach in VB 4.0 or
higher is to use custom properties.

In the General section of a form module,

Stabilising influence
Is Visual Basic 5.0 flaky? Tim Anderson offers some tips on preventing problems. He also

tries out BoundsChecker for Delphi and answers your visual programming queries.

S

Above A good way to do

dialogs in Visual Basic is by

using property procedures.

The secret is to remember

that in VB 4.0 and higher,

forms are like class modules

Left Visual Basic 5.0 has

many great features, but is

spoilt by instability during

development and at runtime

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • August 1997 • 281

Hands OnVisual Programming

p283 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

280 • Personal Computer World • August 1997

Hands On Visual Programming

tool like Visual C++
has a complex
interface and a
product-specific
book is helpful.
Fourth, most C++
programmers work

with a class library which needs learning in
its own right. An additional factor for
Windows programmers is that you need to
know how Windows itself fits together,
which means familiarity with the Windows
API. Since Geraint has Visual C++, a good
choice would be Inside Visual C++ by
David Kruglinski (Microsoft Press).

The tutorials included with Visual C++
are also good. Be warned that these
resources are specific to Windows, the
Microsoft Foundation Classes and Visual
C++. If you want general C++ skills, they
may be positively unhelpful.

Visual Basic is easier to learn. Another
advantage is that the supplied manuals are
actually very good. If your version came
without printed manuals, you can buy them
separately as Microsoft Press titles. Once
you have digested the official Programmer’s
Guide, you will be ready to tackle a more
specialist title depending on which aspect
you want to focus on. Books are regularly
reviewed in this Hands On section and past
columns in this section are included on our
PCW cover-disc.

Name that user
P Blomfield is using VB 4.0. He asks: “On a
network, how
do you find
the machine
name? How
do you find
the username
of the current
user logged
in?” This
information is
provided by
the Windows
API. The
relevant
functions are

GetUserName and GetComputerName. If
you copy the declaration from VB’s API
viewer, you can then call the functions (Fig 1).

BoundsChecker comes to Delphi
BoundsChecker is the flagship product of
NuMega Technologies. Its purpose is to
track down bugs which are otherwise hard
to catch. Until now it has been for C or C++
developers only, but version 5.0 gives
Delphi applications the same treatment.

Boundschecker installs itself into the
Tools menu of the Delphi 2.0 IDE. A patch
to work with Delphi 3.0 should be available
from NuMega’s website by the time you
read this. Delphi 1.0 is not supported.

The natural question to ask is: what can
BoundsChecker do that Delphi’s own
debugger cannot? One of the issues is
detecting memory leaks. For example, your
program might include the following code:
var

nullstring: pchar;

begin

nullstring := strAlloc(50);

strcopy(nullstring,’Never freed’);

end;

Delphi’s debugger will not show any fault
and the program will run fine. The problem is
that memory is allocated but never freed.
When BoundsChecker is active, the leak is
reported in an error window after the
program runs. Double-clicking the error
takes you to the point in the source where
the memory was allocated.

Another type of leak occurs when
objects are created in code but not freed.
For example, you might have a listbox
which contains a list of music CDs. Using
the AddObject method, you could associate
a TStringList object with each item in the list
box, perhaps to store a track listing. When
the listbox is destroyed, Delphi will
automatically free the items in the list but

Left By writing code to

print directly to a form,

and using TextWidth to

measure strings, you

can obtain good-

looking font effects

Windows to scale the font correctly to the
resolution of the output device. The
disadvantage, though, is that you need to
work harder to position text and graphics
elements correctly, using the printer object’s
CurrentX and CurrentY properties.

To determine how much space text will
take up when displayed in a label, use the
TextWidth method. TextWidth takes a string
parameter and returns the width of the text
when printed in the current font and size.
Unfortunately, labels do not have a
TextWidth method, so one possibility would
be to use a hidden picture box, adjust its
font as needed, and measure text with
TextWidth to discover how much will fit into
a label which has the same font.

Whatever you do, do not place
numerous picture boxes on a form to use
as fancy label controls, as this is wasteful of
Windows resources. Labels are better or,
better still, print directly to the form using its
print method. This approach has advantages
when you need paper output as well, as you
can easily adapt the code to work on the
printer object instead of the form.

Book search
People often ask me for book
recommendations. Geraint Preston asks:
“Could you recommend the best book from
which to learn C++? I’ve worked my way
through A Book on C and I’m keen to go on
to the next stage. Could you also
recommend (though my need is less
pressing) the best book from which to learn
Visual Basic? I bought Microsoft VB and
C++ together at a special price.”

The problem with the C++ question is
that there are at least four separate skills to
learn. First, there are the bare bones of the
language, and there are plenty of tutorials
available. Next there is the question of
object-orientated programming. Third, a

Fig 1 Finding the user
Dim sBuffer As String

Dim lRetVal As Long

Dim lLength As Long

sBuffer = String(32, “ “)

lLength = 31

lRetVal = GetComputerName(sBuffer, lLength)

Label1.Caption = “Computer name: “ & Left(sBuffer, lLength)

sBuffer = String(32, “ “)

lLength = 31

lRetVal = GetUserName(sBuffer, lLength)

Label2.Caption = “User name: “ & Left(sBuffer,lLength)

declare private variables for the dialog’s
values. Next, create property procedures to
access the variables. In your dialog’s OK
procedure, write the values from the dialog
controls back to the private variables.
Finally, you can create a ShowDialog
method which takes parameters to initialise
the dialog values.

When you have finished with the dialog,
use SET MyForm = Nothing to clear the
form module from memory. Here is some
example code:
‘Code for the form module

Private mResult As String

Property Get sResult() As String

sResult = mResult

■ Using Delphi 3.0

by Todd Miller and David Powell

Delphi’s weakest point is its documentation.

The online help is notorious for broken links

and skimpy examples, while the printed

manuals leave important subjects virtually

untouched. That opens the way for third-

party alternatives like this.

The book’s scope is impressive. In just

over 1,000 pages it runs from introductory

basics to the mysteries of “thunking”,

calling 16-bit DLL functions from 32-bit

code or vice-versa. The level is suitable for

anyone with some programming

experience. There is balanced coverage of

neglected topics like threads, OLE

automation, database programming and

creating ISAPI DLLs for web server

applications.

It is weak on techniques for object-

oriented programming. The bundled CD

includes example code, product demos,

and four strangely unrelated Que titles in

HTML format. Recommended.

■ Presenting JavaBeans

by Michael Morrison

Visual Basic and Delphi programmers

should take a keen interest in JavaBeans.

Beans are reusable visual or non-visual

components that expose properties and

handle events, just like ActiveX controls in

VB or components from Delphi’s Visual

Component Library.

Once suitable visual tools arrive,

JavaBeans will make rapid application

development easier and more effective.

This short title explains the JavaBeans API,

and gives four complete examples using

Sun’s Bean Development Kit. With a warm,

good-humoured writing style, the author

explains key concepts like properties,

introspection, event handling and

persistence. Some knowledge of Java is

assumed.

It is a basic introduction, useful for

anyone wanting to get up to speed on what

JavaBeans is all about.

■ Visual Basic 5.0 Programmer’s Guide

to the Win32 API by Dan Appleman

You have to admire an author who writes in

his foreword: “If you already own the

original, the

changes do

not justify the

price of a

new book.”

The

book in

question is

Appleman’s

classic guide

to calling the

Windows API

from Visual

Basic. The

previous

edition was

extensively

revised to cover the transition to 32-bit

Windows, but this time around the API is

essentially the same, so fewer changes are

necessary.

Actually, Appleman is right. The

changes are not enough to justify a new

purchase unless you have to have the latest

of everything. The new edition is revised for

Visual Basic 5.0 although version 4.0 is still

extensively covered for the sake of its 16-bit

compatibility. The frequent plugs for

products from Desaware, the author’s

company, are a little tiresome, though.

The book remains a superb reference

for those who need to go beyond Visual

Basic’s built-in functionality. For advanced

work with menus or fonts, for example, it is

near-essential. The accompanying CD has

a slightly expanded version of the book in

Windows help format, along with

Desaware’s API class library.

End Property

Sub ShowDialog(sParm As String)

mResult = sParm

Me.Show 1 ‘ show form modally

End Sub

Private Sub Form_Load()

Text1.Text = mResult

End Sub

Private Sub cbOK_Click()

mResult = Text1.Text

Unload Me

End Sub

‘ code to use the dialog

MyForm.ShowDialog(“MyParameter”)

MyResult = MyForm.sResult

Set MyForm = Nothing ‘ clears form

module from memory

Taking a look at books

The CD which comes with Appleman’s

Guide to the Win32 API has the whole book

as a Windows Help file. This is easier to

navigate and search than the more

common HTML or PDF electronic formats

Poster poser
Liam McAllister is working with fonts in
Visual Basic. “I am trying to write a program
to print posters of various sizes. When I
want to print out the poster, I take a bitmap
copy of a form with labels and send it to my
printer, stretching/shrinking (using API
functions) as necessary. This works fine up
to about A4 size but, as you can imagine,
when stretched to this size the text looks
very jaggy and rough. Also, the text I use on
the labels is varying in the font style and the
text entered: I would like the text entered to
fit into boxes of a predetermined size.”

Sending text to the printer as a bitmap is
not ideal. It is better to use the Print method
of the Printer object, as this will allow

not the associated StringList
objects. Running this through
BoundsChecker reveals the
leak, for example, “32 bytes
allocated by ReallocMem in
TStringList.SetCapacity”. The
solution is to write code that
frees the StringList objects
before the listbox is destroyed.

BoundsChecker illustrates the
point that Delphi is not as safe an
environment as Visual Basic or even Java.
These languages have a feature called
garbage collection which frees objects once
no valid reference to them exists. Advanced
Delphi programmers need to do their own
memory management to some extent. In
particular, working with the Windows API
inevitably means using pointers, the most
common source of memory errors.

NuMega’s BoundsChecker reports API
and OLE errors as well as memory leaks. It
also has an event reporting feature. When
enabled, this collects all the Windows API
calls, parameters and messages your
program sends and receives. The mass of
resulting information does make it hard to
track down problems, but with patience this
can reveal places where code is not
working or efficiency can be improved.

This is a specialised tool. While it is great
for finding memory problems, it will not help
you find logic errors in your code. It is most
useful for more advanced programmers
with large applications to debug, and in
these situations should soon repay its
purchase price. Its integration with Delphi is
impressive, or will be when the Delphi 3.0
patch is available.

Note that BoundsChecker for Delphi is
not quite as capable as the C++ version.
The latest Visual C++ edition uses a newer

technique called FinalCheck which can find
an additional set of memory and pointer
errors. Even so, BoundsChecker is an
excellent resource for Delphi developers.

And finally…
An unfortunate mix-up resulted in the June
1997 issue Hands On Visual Programming
feature not being printed last month — in
its place, an older version appeared. The
actual June issue column can be found at
www.cix.co.uk/~tim-anderson. Topics
include Visual Basic in Visio, VB 5
subclassing, and exploiting units in Delphi.

Left This pop-up dialog

intercepts an error and offers

several options for dealing

with it

Below BoundsChecker

shows the type of error,

source code when available,

call stack, and online help

explaining how to fix it

Hands OnVisual Programming

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • August 1997 • 283

Tim Anderson welcomes your Visual
Programming tips and queries. He can be
contacted at the usual PCW address or at
visual@pcw.co.uk.

BoundsChecker 5.0, Delphi Edition, costs £345
+ VAT from Grey Matter 01364 654100. Further
information at www.numega.com.

The following books are available from
Computer Manuals 0121 706 6000:
• Visual Basic 5.0 Programmer’s Guide to the
Win32 API by Dan Appleman, Ziff-Davis Press.
Book and CD £54.95 (inc VAT). Further
information at www.desaware.com.
• Using Delphi 3.0 by Todd Miller, David Powell
and others, Que. Book and CD £46.99 (inc VAT).
• Presenting JavaBeans by Michael Morrison,
Que. Book and CD £32.95 (inc VAT).

Contacts

with reference material aimed at C and
C++ programmers, since Windows itself is
mainly written in these languages.

Delphi and Excel 97
Another reader’s problem is: “According to
my testing, there is a problem with Delphi
2 and OLE-automation using the version of
Excel delivered with Office 97. Specifically,
I can start Excel via OLE-automation and
do some things (like ExcelApp.Visible :=
True), but if I try to access a range, for
instance, it just crashes with an
EOLESysError. Exactly the same test
program works fine if I uninstall Office 97
and use Office 95 instead.”

edric Maddox writes:
“I’m trying to get to
grips with Delphi. Your

review of the Appleman Guide was
very interesting and I would like a
similar guide for Delphi: can you
recommend one? If there isn’t a
Delphi guide available, would the
Appleman Guide for VB help with
Delphi API calls?”

Much of Daniel Appleman’s
guide to the Win32 API (Ziff-Davis)
would be useful to Delphi
developers since it is, after all, the
same API. I hesitate to
recommend it though, because
large parts are specific to Visual
Basic. Calling the Windows API is
actually easier in Delphi than in
Visual Basic: partly because the
language is a better fit, with direct
support for pointers and easy
handling of Windows messages;
and partly because Delphi’s
developers have helpfully defined
the types, function and procedure
headers for you.

Often, you can use an API function as if
it were native Pascal. But although calling
the API is easy, understanding how it
works is another matter. More advanced
Delphi titles like Delphi 2.0 Unleashed or
Delphi 2 Developer’s Guide, both from
Sams, contain helpful API tips. The official
Microsoft reference is essential, and an
online version comes with Delphi. Finally,
Charles Petzold’s Programming Windows
95 (Microsoft Press) is useful not as a
reference title, but as an explanation of
how Windows works behind the scenes.

Unfortunately, if you want to get deeply
into the Windows API, you have to put up

I suspect this is a bracket problem. The
code in Fig 1, when used with Excel 97,
fails with a “Member not found” message.
The solution is to replace the last line with:
RangeObj := ExcelObj.

Range[‘B2:B4’];

Rich text problems
Gavin Docherty writes: “For about three
months I have been trying to paste
bitmaps, metafiles and OLE objects into
the standard richtextbox control found in
the 32-bit common control DLL but
without success. Then, to my amazement,
you covered the subject in your May
column and gave code examples for VB,

Hands OnVisual Programming

but I couldn’t get it to work. What have I
done wrong?”

Unfortunately, the news is not as good
as I thought. The code printed in May’s
issue was tried and tested with Visual
Basic 4.0. But at some point, some
application or other had installed a later
version of the RICHTX32.OCX component
which makes it work, complete with an
updated help file. This later version is
required in order to work with pictures.

Programming Outlook 97
Outlook is an excellent starting point for an
Office 97 application. Most people need
an email reader and an address book or
contact manager, and Outlook does both.
The natural next step is to add
functionality. For example, Outlook’s
contact menu already has an option to
start a new letter to the current contact.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • July 1997 • 297296 • Personal Computer World • July 1997

Hands On Visual Programming

The Outlook is variable
Tim Anderson finds Outlook, the latest Visual Basic-enabled Office 97 application, to be a
powerful but frustrating solution. He gives his views about programming and creating forms.

C

p299 ➢

Get the syntax right and automating Excel is a powerful way of extending a Delphi application

(see “Delphi and Excel 97”, below)

Fig 1: A problem with brackets

var

ExcelObj: variant;

RangeObj: variant;

begin

ExcelObj := CreateOleObject(‘Excel.Application’);

ExcelObj.visible := True;

ExcelObj.Workbooks.Open(‘C:\TEST.XLS’);

RangeObj := ExcelObj.Range(‘B2:B4’);

...

■ Building
Applications with
Outlook 97
£37.49 (book and CD)
Microsoft Press

Outlook is a strange
combination of
elegant simplicity
and arcane
complexity. The
Outlook bar is
delightful, with easy
access to network
and internet mail, appointments, contacts and
to-do list. With its own form designer and a
version of Visual Basic, it seems the ideal
platform for building groupware applications.
Start developing, though, and Outlook shows
its other face. Want to save a form? There are
three ways to do it, claims the online help. Did
you want the open folder, the file or the forms
library? And if the latter, did you want the
personal forms library, the folder forms library,
or the organisation forms library?

The other problem is that Microsoft seems
determined to disguise the close relationship
between Outlook and Exchange. This book is
a case in point. The cover wording refers
several times to groupware but never to
Exchange. Without Exchange, though,
Outlook is only suitable for groups of one.

If you do have Exchange Server and want
to develop with Outlook, this title is all-but
essential. It describes Outlook’s main
elements and explains how to use the form
designer and Visual Basic Script. It concludes
with a step-by-step guide to creating three
sample applications: the first is a form for
requesting business cards, the second a help
desk application, and the third tracks

document production. This last is the most
interesting since it links to an Access database
using Data Access Objects. It’s a useful guide,
and really should have been part of the Office
97 Developer Edition. The only other caveat is
that you will need a lot more help than this
when it comes to managing the back-end of
an Outlook application, Exchange Server itself.

■ Using Visual Basic 5.0
by Mike McKelvy, Ronald Martinsen and
Jeff Webb — £36.99, Que

Smartly published to coincide with the release
of Visual Basic 5.0, this title in Que’s classic
“Using” series begins right at the beginning,
with topics like what is a program? And what
is a variable? By the end of its 950 pages it is
tackling API programming, callback functions
and remote automation servers. The result is a
comprehensive book, but lacking in sparkle.

There is too much here for real beginners,
while experienced VB developers migrating to
version 5.0 will find themselves skipping large
chunks of the material. It has more the style of
a manual than a real-world developer’s book.
Because Visual Basic is now such a large
product, this comprehensive approach means

little depth on any individual subject.
This is a good buy if you do not have

printed documentation, with clear, thorough
explanations covering every aspect of Visual
Basic. Others will be better served by one of
the many more specialist Visual Basic titles
now available.

■ Instant Visual Basic 5.0 ActiveX Control
Creation — £27.49, Wrox Press

Sporting no less than seven authors, this title
covers the hottest new feature of Visual Basic
5.0: the ability to create ActiveX controls. It
mainly covers the Control Creation Edition,
although it will be equally useful to owners of
the full version of Visual Basic. It is aimed at
experienced VB developers.

After an introductory section, the main
part of the book takes you, blow-by-blow,
through developing several example controls,
including an aggregate control, a data-bound
control, and a user-drawn control. An
aggregate control is one that contains several
other controls, while the term “user-drawn”
describes a control whose visual display is
handled entirely by the program.

Despite the book’s multiple authorship,
the style is clear and consistent. Creating
ActiveX controls presents many new issues for
VB developers and this is a helpful and
detailed guide. It would be better still if more
space were given to the design issues behind
component programming as opposed to just
the mechanics of how to do it. Other vital
topics are version control and web security,
neither of which are given sufficient coverage.
This does not detract from the high quality of
the subject matter included: recommended.
● The above books are available from
Computer Manuals on 0121 706 6000.

The Help

Desk

application is

explained in

Building

Outlook

Applications

You might want to add new options,
perhaps a choice of several standard
letters. Getting more ambitious, you could
pull in other information such as account
information or product preferences.
Another scenario could find you placing an

order for a contact you have just called.
Many things are possible since Outlook
has a forms designer and a scripting
language, but this is VB Script and not the
powerful Visual Basic for Applications. VB
Script is the cut-down version of Visual

Book Reviews

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Basic first used in Internet Explorer.
Outlook is a handy contact manager

but its database is a simple flat-file affair
which is not suitable as the main data
store for a business. The key then is to
integrate Outlook with other data sources.
Since VB Script has neither built-in
database features nor the GetObject or
CreateObject functions needed for
programming COM objects, it does not, at
first, seem promising.

By a roundabout route, though, it does

have those functions. Outlook’s
Application object has a CreateObject
method that opens the door to Data
Access Objects as well as the automation
of applications like Excel and Word. This
means you can keep a key field in each
contact record that matches the key field
in an external database (which might be a
desktop database like Access) or an SQL
server, and link to this external data as
needed (see “An Outlook example, page
300). Then you can use Outlook for its

address book and calendar features but
keep the mission-critical data in a fully-
fledged database management system
where it belongs.

Embark on Outlook development and
you hit the bleeding edge of Office 97.
Documentation is scant, some procedures
are hopelessly counter-intuitive, the script
editor is primitive, and late binding of COM
objects means performance is poor
compared to real Visual Basic. It is such a

Personal Computer World • July 1997 • 299

Hands OnVisual Programming

p300 ➢

Creating and saving Outlook forms

Outlook form-handling is perverse. For a
start, you cannot just get on and design
a new form as you would in Visual Basic.
The best way to design a form is to
pretend you want to create a new item in
the current folder. That opens a blank,
default form. Then you can choose
Design Outlook Form from the Tools
menu. Note that some forms, like the
Contacts form, cannot be completely
customised. Some parts are read-only.
There are plenty of spare tabs, though,
which you can use as you want.

It is when you have designed your
form and wrestled with the wretched
script editor that the real fun begins. It is
no use just saving the form, since all that
does is to create one new record with a
customised form. You must choose
Publish Form As… from the File menu.
You can publish to several locations,
depending on how widely the form
should be available. If you do not have
Exchange server, or are working on a
test form, the best choice is either your
personal forms library or in the specific folder where it is needed. If you choose the latter
option, it gets its own entry on the Compose menu.

Next, you have to tell Outlook to use your new form as the default for new items in this
folder. To do this, right-click the folder name in the folder list and choose Properties. On the
General tab is an option: “When posting to this folder, use…”; here you can specify the new
custom form. Now your custom form is used by default for new entries. But it is not over yet.
If you try opening any existing items in the folder, you find the old form still being used. The
solution is to run a short VBScript routine. Each item in Outlook has a MessageClass
property, a concept alien to VB developers but familiar to experts in Microsoft’s Mail API, or
MAPI. This property determines the form used to view the item.

This is the code to change it:

sub UpdateClass

Set currFolder = Application.ActiveExplorer.CurrentFolder

numItems = currFolder.Items.Count

For countvar = 1 to numItems

Set currItem = currFolder.Items(CInt(countvar))

currItem.MessageClass = “IPM.Contact.PCW Sports Club”

currItem.Save

Next

end sub

A key step is to specify the default form for

posting in this dialog

Fig 3 Choose View Code to open the Script

Editor. The cunningly-titled Run option does

not run the code but merely checks the

syntax

Fig 4 When the form opens, Outlook looks up

the list of sports from an external database

Fig 2 Create a new contact and then choose

Design Outlook Form to open the form

designer

nice component in other ways, though,
that it is worth persevering. Expect it to get
easier in the next version.

An Outlook example
The following example uses the same
Sports Club database as the recent
Hands On Visual Basic Workshop
(PCW February-May issues).

It is a relational database with three
tables. The Members table includes name
and address details, and is easily imported
into a new Outlook contact folder. When
mapping the fields, it is important to include

the key field which uniquely identifies each
record. Outlook will not let you map an
imported field directly to a custom field, so
the solution is use a spare built-in field. For
a tidy result, you can then add a custom
field to hold the ID number and write some
code to copy it across. In the example, this
field is called MemberID.

Note that not all the data is imported,
but only the Members table. In particular,
the information about which sports each
member enjoys is not available. The trick
now is to access this additional data from
within Outlook, without actually importing

a copy of the tables.
Here’s how to do it (also, see

Figs 2-4, page 299):
1. Open the contacts folder and
choose New Contact from the
Contact menu. This opens the
built-in Contacts form.
2. From the Tools menu choose
Design Outlook Form. This opens
the form in design mode with six
spare tabs available. Click the
second tab, rename it Sports, and
add a list box control. Name the
list box lstSports. You can add
labels and other decoration as
desired.
3. On the Form menu, choose
View Code. This opens the Script
editor. From the Script menu,
choose Event and then add the
Open event. Fig 5 is the code.
Note that you should replace the
database filename with the actual
location of the data on your system
if you use this example. Note also
that you can use the Run option in
the Script editor to find syntax
errors before you save the code.
The Run option does not actually
run the code as that would be far
too easy. Since the script editor
has no syntax highlighting and VB
Script has no debugger, it can pay
to enter and check chunks of code
in Visual Basic or Visual Basic for
Applications, beforehand.
4. Publish the form and make it the
view form for contacts in this
folder. This step is so far from
being intuitive that I have devoted
a separate panel to it (page 299).
Now, when you open a contact in
this folder, Outlook looks up the list
of sports from the original
database. Of course, a real-world

system could look up a far greater range
of information. The important thing is to
realise that this sort of link is possible.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

300 • Personal Computer World • July 1997

Hands On Visual Programming

Tim Anderson welcomes your Visual
Programming tips and queries. He can be
contacted at the usual PCW address or at
visual@pcw.co.uk.

The microsoft.public.outlook97 newsgroup is a
valuable source of help for Outlook development,
as is www.Microsoft.com. Another useful site is
www.Outlook.Useast.com.

Contacts

Fig 5: Accessing additional data from within Outlook

Function Item_Open()

On Error Resume Next

dbOpenSnapshot = 4

Set CurrListBox = _

Item.GetInspector.ModifiedFormPages(“Sports”).LstSports

recID = item.UserProperties.Find(“MemberID”).Value

Set dbEng = CreateObject(“DAO.DBEngine.35”)

Set dbSports = _

dbEng.Workspaces(0).OpenDatabase(“C:\OUTAPPS\SPORTS.MDB”)

If Err <> 0 then

msgbox “Error: “ & Err.Description

Exit Function

End If

sql = “Select * from sports, sportlink where sports.ID = sportlink.sportID “

sql = sql & “and sportlink.MemberID = “ & recID

Set snSports = dbSports.OpenRecordset(sql, dbOpenSnapshot)

If not (snSports.eof and snSports.bof) then

snSports.movelast

snCount = snSports.Recordcount

snSports.MoveFirst

For countvar = 1 to snCount

currListBox.Additem(snSports.Fields(“SPORT”))

snSports.MoveNext

Next

End if

snSports.Close

dbSports.Close

End Function

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • June 1997 • 283

Hands OnVisual Pro g r a m m i n g

p 2 8 5 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

282 • Personal Computer World • June 1997

Hands On Visual Pro g r a m m i n g

products and services. HTML pages can be
loaded from disk as well as from the
internet, so you could also use Webster as
a multimedia browser.

Sax Webster is a complete application
wrapped in a control. You can create a
browser simply by dropping the Webster
control onto a form in VB or Delphi. It claims
to support HTML version 3.0, but Sax adds
that, “because 3.0 is not yet defined as a
standard, it may differ from what Netscape
or some other 3.0 browser supports.” Here
is the problem with Webster and ultimately
with the web itself: lack of tightly defined
standards, resulting in compatibility
problems. It may not matter too much,
since it would be foolish to use a Webster
application as a replacement for Netscape
or Internet Explorer. Webster makes better
sense as a tool for accessing specific web
sites that are linked to the container
application, so you can ensure the

orget laptops and mobile
phones. The fashion
accessory of the

moment must be the personal web
site. Web sites are no use unless
they are visited, so why not build
point-and-click access into the
applications you distribute? You can
do this by calling an external
application like Netscape or Intenet
Explorer, but Sax Software lets you
go one better by building a
customised browser right into the
application.

The Webster control is a 32-bit
browser OCX that drops directly into
any compatible development tool,
such as Visual Basic 4.0 or Visual
C++ 4.0. With the rampant growth
of the internet and increasing
corporate usage of intranet
networks, Sax Webster has turned
up at just the right moment. For
example, online help might now
mean dynamic information on a web site,
rather than the static file shipped with an
application. Another option is to direct the
hapless user to a site offering further

Sax a p p e a l
Sax Webster is a browser builder that is just the last word in web applications. Tim Anderson
models it here for you, taking care not to neglect his widgets and tools while he’s at it.

F

Listing 1: Intercepting the mailto command

Private Sub Webster1_DoClickURL(SelectedURL As String, Cancel As

B o o l e a n)

If Left$(LCase$(SelectedURL), 7) = “mailto:” Then

‘ run MS Exchange, using file association

ShellExecute 0, “open”, SelectedURL, “”, “”, 0

SelectedURL = “”

‘ stop Webster attempting to act on this command

Cancel = True

End If

End Sub

Fig 1 All done with Webster: VB 4.0 visits the P C W home page

compatibility of those particular pages.
Some problems can also be overcome by
writing code to intercept Webster events.
For example, Webster does not support the
m a i l t o command that HTML uses to initiate
an email message. The VB 4.0 code in
Listing 1 will intercept mailto and call
whatever application is associated with that
command in the Windows 95 registry.

Another useful feature is the G e t C o n t e n t
method, which lets you read all or part of an
HTML page into a variable. Initially only

Fig 2 (a b o v e) The MhSplitter control from OLE

Tools attempting resolution independence.

Unfortunately, this text box does not always

get resized correctly…

Fig 3 (l e f t) Using a data grid and a data

dropdown. Clicking the PubID column drops

down the publisher table, so you can see the

full details when choosing the ID

available as a 32-
bit OCX, Sax has
now released a
16-bit OCX as well,
but nothing yet for
VB 3.0 or Delphi
1.0 diehards.

Widgets for your
d a t a
Sheridan’s Data
Widgets has long
been one of the
most popular
Visual Basic add-
ons, particularly
since the VB 3.0
grid is so poor. The
d a t a - b o u n d
controls in VB 4.0
are better, but still
leave room for
t h i r d - p a r t y
e n h a n c e m e n t s .
Version 2.0 brings
the expected

conversion to 16- and 32-bit OCX format,
but with enhancements. Sheridan has taken
the opportunity to restructure the data
widgets using objects and collections,
bringing it into line with other programmable
OLE objects. This makes for more logical
code and increases the programmer’s
control, the disadvantage being that code
which worked with Data Widgets 1.0 will
have to be extensively rewritten. For
example, to put a button in a DataGrid cell
in version 1.0 used a ColBtn property:
SSDbGrid1.ColBtn(2) = True

which in version 2.0 becomes:
SSDbGrid1.Columns(2).Style = 1

‘ edit button.

The actual Data Widgets controls are the
same six as before: Data Grid, Data
Combo, Data Dropdown, Data OptionSet,
Data Command and the Enhanced Data
Control. All are useful but the Data Grid is
the reason people buy this package. Its
neatest trick is to link with a Data
DropDown so that users can click on a grid
cell and select values from a dropdown list
bound to a field in another table (Fig 3).

Listing 2: Screensaver application

This application, which toggles the screensaver on and off, needs a VB
project with a form, a button and a code module. Note that to work in
Windows 3.1, the declarations will need to be adapted.
Code for the form:

Private Sub Form_Load()

bOldActive = isActive()

If bOldActive = True Then

Command1.Caption = “Disable screen saver”

E l s e

Command1.Caption = “Enable screen saver”

End If

End Sub

Private Sub Form_Unload(Cancel As Integer)

SetActive (bOldActive)

End Sub

Private Sub Command1_Click()

If isActive() = True Then

SetActive (False)

Command1.Caption = “Enable screen saver”

E l s e

SetActive (True)

Command1.Caption = “Disable screen saver”

End If

End Sub (continues page 285)

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • June 1997 • 285

Hands OnVisual Pro g r a m m i n g

p 2 8 6 ➢

Do you need Data Widgets? It depends
entirely on how you prefer to program. If
you make extensive use of bound controls,
this bundle is all-but indispensable,
particularly if a data grid is a key part of the
user interface. The data control in VB 4.0 is
not compromised in the same way as VB
3.0’s effort, so this is a perfectly sound
approach. The cautionary note is that large
OCX controls like these cause substantially
slower loading of your VB application, and
that grids are often not the best way to
present data to the user. Finally, the Data
Grid also works well as an unbound virtual
list control, a further enticement which may
sway doubters.

OLE tools
Microhelp’s OLE tools may have up-to-date
OCX technology, yet this package conveys
a dated impression. The main reason is that
apart from their OCX conversion, many of
the controls are little changed from earlier
versions, right down to their description in
the manual and the clunky example
applications. OLE tools also slipped up
during review when one of the genuinely
new items, M h S u b C l a s s, failed to deliver.
This is a message-trapping control that can
catch Windows API messages and either kill
them, or respond with a custom event and
then pass them on. M h S u b C l a s s is fine for
some purposes, for example if you want to
inspect W M _ M E N U S E L E C T messages in
order to provide a help text as the mouse
runs down a menu. But a common
requirement is to trap a message and then
write code to determine whether to kill it or
pass it on. M h S u b C l a s s cannot do this,
since the fate of the message has to be
determined before the VB event is
triggered. Rivals such as the
MessageBlaster OCX have no such
h a n d i c a p .

Never mind the quality. With 54 separate
controls, the bundle still rates as good
value. M h C a l e n d a r is a data-aware
calendar control. M h S p l i t t e r allows you to
build resolution-independence into
interfaces by automatically resizing controls
within the container, albeit rather slowly
(Fig 2). M h R e a l I n p u t is a text box that
improves on VB’s masked edit control for
working with real or currency values. And so
it goes on, providing something of value for
most VB projects.

Microhelp supplies two versions of these
tools. OLE tools has 16- and 32-bit OCXs,
while VB tools stays with the old VBX

format. There are differences between the
two. For example, the inadequate
M h S u b C l a s s is OCX-only, while the clever
M h O u t O f B o u n d s universal data binding
control is VBX-only. Finally, VB tools used to
come with a version of Farpoint’s Grid
control, but that has now been dropped.

Hacking the system in Windows 95
Mark Horton writes: “I’ve just bought a new
system with Windows 95 and VB 4.0. My

computer has a WIn/TV card, and I wanted
to write a program that would turn the
screensaver off and on without having to go
into the display properties tab. How or
where can I find out about the API calls
necessary to change the screensaver
settings? Is there a book on the market
which describes all the Win32 (and/or
Win16) API calls?”

Windows 3.1 introduced a handy
function called S y s t e m P a r a m e t e r s I n f o.

Listing 2 (continued from page 283)

Code for the module:

Option Explicit

Global bOldActive As Boolean

Declare Function SystemParametersInfo Lib “user32” Alias

“SystemParametersInfoA” (ByVal uAction As Long, ByVal uParam As

Long, lpvParam As Long, ByVal fuWinIni As Long) As Long

Public Const SPI_GETSCREENSAVEACTIVE = 16

Public Const SPI_SETSCREENSAVEACTIVE = 17

Function isActive() As Boolean

Dim lRetVal As Long

Dim pvParam As Long

lRetVal = SystemParametersInfo(SPI_GETSCREENS AVEACTIVE, 0,

pvParam, 0)

If lRetVal = False Then

MsgBox “Call to SystemParametersInfo failed”

isActive = False

Exit Function

End If

If pvParam = False Then

isActive = False

E l s e

isActive = True

End If

End Function

Sub SetActive(bActive As Boolean)

Dim lRetVal As Long

Dim pvParam As Long

lRetVal =

SystemParametersInfo(SPI_SETSCREENS AVEACTIVE, bActive,

ByVal pvParam, 0)

If lRetVal = False Then

MsgBox “Call to SystemParametersInfo failed”

End If

End Sub

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

286 • Personal Computer World • June 1997

Hands On Visual Pro g r a m m i n g

This reads or sets
numerous system
parameters including the
screensaver settings. L i s t i n g
2 (p p 2 8 3 / 2 8 5) shows a
small VB application for
Windows 95 which toggles
the screensaver on and off.
The two key functions,
I s A c t i v e and S e t A c t i v e,
work by calling
S y s t e m P a r a m e t e r s I n f o.
The application checks the
current state of the screen-
saver on loading, so that it
can be restored on exit.

Another possibility is for
your application to disable
the screensaver whenever it
has the focus. Windows
activates the screensaver
by sending a
W M _ S Y S C O M M A N D
message with w P a r a m s e t
to S C _ S C R E E N S A V E. By
intercepting and killing this
message, you prevent the
screensaver from kicking in.
Delphi programmers can trap messages
easily, but VB users will need an add-on like
the MessageBlaster OCX.

Many problems like this can only be
solved using the Windows API. That in turn
means having a good API reference, and

the starting point is the Windows SDK help
file (Fig 4) called W I N 3 1 W H . H L P f o r
Windows 3.1 and W I N 3 2 . H L P for 32-bit
Windows. Surprisingly, Visual Basic 4.0
comes with declarations for the 32-bit API
but not the 20Mb help file. An alternative is

Daniel Appleman’s
book, V B
P r o g r a m m e r ’ s
Guide to the
Windows API,
which provides
what is needed for
Windows 3.1 and
is to be updated for
W i n 3 2 .

Tips for Visual
P r o g r a m m i n g
■ Speed VBs load
time and slim your
applications by
stripping down
A U T O L O A D . M A K
(VB3) or
A U T O 3 2 L D . V B P
(VB4) to include
only controls and
r e f e r e n c e s
essential to every
p r o j e c t .

■ Avoid Dim iA, iB as Integer. This code
declares iA as a variant. Instead, use
Dim 1A as Integer, IB as Integer.
■ In VB4, disable Compile on Demand (in
Tools - Options - Advanced) to have the
compiler check for syntax errors before a
project runs.
■ Your Delphi application can easily check
for command-line parameters. P a r a m C o u n t
returns the number of parameters;
P a r a m S t r (0) returns the path and filename
of the application, and P a r a m S t r (n) r e t u r n s
the nth parameter up to P a r a m C o u n t.
(Listing 3)
■ If you are adding lines to a string control
like a listbox or memo, or an outline
component, use B e g i n U p d a t e to increase
performance by preventing screen updates.
(Listing 4)

Tim Anderson eagerly awaits your comments,
queries and tips, either at the usual P C W a d d r e s s
or by email at v i s u a l @ p c w . c o . u k.
Visual Basic Programmer’s Guide to the Windows
A P I by Daniel Appleman (Ziff-Davis Press, £33.02)
Computer Manuals 0121 706 6000
Sax Webster £110 (plus VAT)
Data Widgets 2.0 is £99 (plus VAT)
OLE Tools is 149.00 plus VAT and VB Tools £ 9 9
(plus VAT) from Contemporary Software
01727 811999

Contacts

Listing 3: ParamCount

procedure TForm1.Button1Click(Sender: TObject);

v a r

i: integer;

b e g i n

for i := 0 to ParamCount do

MessageDlg(ParamStr(i), mtInformation,

[mbOk], 0);

e n d ;

Listing 4: BeginUpdate

procedure TForm1.Button2Click(Sender: TObject);

b e g i n

l i s t b o x 1 . i t e m s . b e g i n u p d a t e ;

listbox1.items.add(‘One item’);

listbox1.items.add(‘another item’);

l i s t b o x 1 . i t e m s . e n d u p d a t e ;

e n d ;

Fig 4 Although aimed at C/C++ developers, the Win32 SDK is an essential reference for Visual Basic developers.

So why is this help file not supplied with Visual Basic 4.0?

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • May 1997 • 301

Hands OnVisual Pro g r a m m i n g

Development Kit CD used to be more or
less given away by Microsoft, presumably
on the grounds that it pays to have people
develop Office solutions, since in order to
deploy them a copy of Office must be
purchased for each installation.

Another noteworthy detail is that the
books in the Developer Edition are available
separately from Microsoft Press. A third

have heard muttering to the
effect that Office 97 is not much
different from Office 95, or even

Office 4.x. From some perspectives, that is
correct. Word looks similar, Excel looks
similar and all the casual user will notice at
first is the Office Assistant (fantastic or
horrific, according to taste) and a new,
flatter, look to the toolbars.

But developers should welcome Office
97 with open arms. It is even worth
explaining to the users why they really
should upgrade, even if the animated Clippit
is not their cup of paperclips. The reason is
Visual Basic for Applications combined with
the updated Office object model, all of
which is exposed for
programming. In
most cases,
equipping an Office
user with suitable
templates and
macros soon pays
for itself in increased
p r o d u c t i v i t y .

To do these
wonderful things, you
need appropriate
resources. This might
or might not include
the Office 97
Developer Edition,
Microsoft’s one-stop
solution. What you get is the Office
Professional CD, plus a further CD of
developer tools. There are also two books:
the Office 97 Visual Basic Programmer’s
Guide and Building Applications with
Access 97, along with a booklet of Object
Model charts.

Before getting too excited, though, it is
worth recalling that the original Office

observation is that not all the
documentation you might need is actually
included, neither on paper nor online. A
notable example is Building Microsoft
Outlook 97 Applications, which would be
particularly valuable as Outlook is brand
new. Another noteworthy example is the
Office 97 Resource Kit: the version on the
CD is for Office 95, or at least it is in my US
shrinkwrap copy. The resource kit is aimed
at network administrators but contains
useful information for developers as well.

The most essential developer reference,
the VBA reference for each application, is
actually on the Office 97 Professional CD so
it is questionable whether the Developer
Edition is worth having. Most of the material
can also be found on the Microsoft web
site, often in updated form. There is only
one convincing reason for buying this
product: to obtain the runtime version of
Access 97. This gives you a licence to
deploy Access applications royalty-free, and
could soon pay for itself. If you don’t need
it, just subscribe to MSDN (or buy a library

Open and shut c a s e
Office 97… just more of the same and not worth the upgrade? To casual users, maybe; but

for developers, it offers a more open programming environment. Tim Anderson explains.

I

p 3 0 2 ➢

L e f t The Office 97

Developer edition is

great if you need

Access runtime, but

otherwise it is not

e s s e n t i a l

Below, left You can

develop applications

in Microsoft Outlook

by creating custom

forms driven by VB

Script. Nearly

wonderful, but not

quite there yet

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • May 1997 • 303

Hands OnVisual Pro g r a m m i n g

SendKeys statement simulates the CTRL-V
keypress which pastes from the clipboard
at the insertion point.

For some reason, Delphi’s equivalent
rich text control does not support graphics.
It is odd, since both use the same
underlying common control, and it is likely
that careful investigation of the Visual
Component Library would reveal a way to
overcome the problem by creating a new
component which exposes more of the
features in the rich text control. Or, you
could use VisualWriter, an OCX and VBX
control which does support graphics. Better
still, use a native Delphi component like
WPTools (it’s shareware but works well).
The WPRichText control, part of WPTools,
has a PicInsert method which lets you insert
a picture. It also support fonts and styles so
you could implement scrollable text and
graphics as required. The main snags with
WPTools are its uneven documentation,
and extensive use of pointers which can be
error-prone. Fig 2 shows example code
using WPTools.

String along with SQL
Michael O’Reilly writes: “I have been
following your excellent VB tutorial, and
while using some of the code given in the
February issue article I encountered a
problem I can`t solve. In the example given,
you take a string from a text box and use it
in an SQL query. How do you do the same

with a number from a text box?”
When you create an SQL string for

querying a database, you use a different
technique according to whether the field is
character or numeric. If it is the former, the
value must be in single quotation marks,
as in:
sSql = “select * from

members where

members.surname = ‘“ &

mySurname & “‘“

Admittedly this looks ugly, but it works
well. If the field is numeric, then the single
quotation marks must not be used. All you
need to do is convert the numeric value to

a string like this:
sSql = “select * from members where

members.surname = “ &

s t r $ (m y I D)

The following question comes from
Andrew Shaw: “I need a lot more input
boxes than the PCW Sports Club uses and
want to implement some kind of
counter/loop to run through the
DisplayPerson code. I want to avoid:
txtForename = CurrPerson.Forename

txtSurname = CurrPerson.Surname

“I tried an array of text boxes and a
laborious trawl through the manual, with no
success. I want to try something like:
txtInput(Counter) =

C u r r P e r s o n . C o u n t e r

“What should the CurrPerson.Counter
part look like?”

Andrew’s idea is to write a loop that

iterates through all the fields of a particular
record, filling text boxes with the values
along the way. This can be done as follows:
Dim iCountvar As Integer

For iCountvar = 0 To

(ds.Fields.Count - 1)

Label1(iCountvar).Caption =

d s . F i e l d s (i C o u n t v a r) . N a m e

Text1(iCountvar).Text = “” &

d s . F i e l d s (i C o u n t v a r) . V a l u e

N e x t

The trick is to get at the Fields collection
of a Recordset object. You could make the
routine even more flexible by creating the
necessary labels and text boxes at runtime.

p 3 0 5 ➢

Even Delphi 1.0 is able to display text and

graphics within a scrolling document using

WPTools (illustrated here), or a component

such as Visual Writer

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

302 • Personal Computer World • May 1997

Hands On Visual Pro g r a m m i n g

controls come digitally
signed with CAB versions
included for web
d i s t r i b u t i o n .

Active Threed offers
seven controls which are
intended as plug-in
replacements for the
standard Windows items
like command buttons and
check boxes, but with extra
features. These include
marquee captions which

blink, scroll, slide and bounce, plus
animated pictures created with a sequence
of bitmaps. There is also a splitter control
which lets you create windows with
resizable panes. The controls are 32-bit
only; not even Visual Basic 4.0 16-bit is
supported. Packages like this
cause me to hesitate since
many VB applications are slow
enough without the additional
weight of controls which aren’t
strictly necessary.

Two things make
ActiveThreed worth a second
look, though. Firstly, the
SSplitter control is well
implemented and provides a
feature which has become
something of a Windows
standard. Secondly, the
SSRibbon control allows you to
create toolbar icons with an
active border, as seen in Office
97 and Internet Explorer 3.0. I
was also glad to find that Delphi
samples had been included.

Rich Text in Delphi and VB
Dr Francis Burton asks: “I want
to be able to alternate graphics
and text in a scrollable window,
with the ability to cut and paste
text (and possibly
bitmaps/metafiles, too). New
text and graphics are appended
to the end of the window. Do
you know of any controls, either
Visual Basic or Borland Delphi,
which implement scrollable
graphics/text windows?”

If you are working in
Windows 95 or NT, the
standard rich text control can
display formatted text and
graphics. It is easy to miss this
functionality in Visual Basic,

since there is no InsertPicture method. You
can insert OLE objects, though, using the
OLEObjects collection. For example, this
code inserts a line of text and a picture:
RichTextBox1.Text = “This is a

p i c t u r e ”

RichTextBox1.OLEObjects.Add , ,

“ c : \ t e s t . b m p ”

Unfortunately, this can have
unpredictable results depending on how
OLE file associations are set up in the
registry. There is also an overhead involved
with OLE which makes the rich text box
update rather slowly when an object is
inserted. A safer approach would be to use
the clipboard. The example in Fig 1 and the
Delphi one (Fig 2) assume you have placed
the picture you want to insert into an
invisible image control on a form. The final

CD from time to time) and buy the books
you really need from a bookshop.

Outlook: nearly great
Is it a Personal Information Manager, or an
email client, or maybe groupware? Outlook
is ambitious, and nearly the foundation of a
complete Office solution. For example, it
should be possible, with a bit of
customisation, to right-click a contact name
and open up a customer’s order history or
an index of previous correspondence.

There are two snags, though. One is that
Outlook has VB Script but not yet Visual
Basic for Applications. The second is that
you need Exchange Server to do anything
serious with Outlook over a network, like
sharing an address book or viewing other
people’s calendars. In fact, Outlook without
Exchange Server is less capable than the
old Schedule, a fact which has not gone
down well with small businesses running
peer-to-peer networks. Exchange Server
needs Windows NT, is priced for the
Enterprise market and needs client licences,
too, which makes Outlook far less
attractive. Incidentally, if you decide to get
going with Outlook development, a trip to
Microsoft’s web site is essential.
Documentation and numerous sample
applications are available for free download.

Sheridan’s Active Threed
Sheridan products now come on a Toolkit
CD containing all the company’s developer
tools. You can install demonstration
versions of any tool, or full versions where
you have the right key code. For instance, if
you purchase Active Threed you get the
code for this product along with the CD.
There is no manual, the lame excuse being
that Sheridan wanted to check the printed
manual against the release code. A voucher
lets you obtain it at nominal cost. But the
manual aside, the all-in-one CD is a great
idea. Another plus is that the ActiveX

Fig 1 Using the clipboard

Dim cr As String

cr = Chr$(13) & Chr$(10)

RichTextBox1.Text = “This is a picture” + cr

RichTextBox1.SelStart = Len(RichTextBox1.Text)

R i c h T e x t B o x 1 . S e t F o c u s

C l i p b o a r d . C l e a r

Clipboard.SetData Image1.Picture, vbCFBitmap

SendKeys “^v”

A printed picture does no justice to this Active Threed form, which is crawling with animation.

Note the split window at bottom left — a genuinely useful feature

Fig 2 Using WPTo o l s

v a r

lpzCR: pchar;

lpzText: pchar;

b e g i n

lpzText := stralloc(256);

lpzCR := stralloc(3);

t r y

s t r c o p y (l p z C R , c h r (1 3)) ;

strcat(lpzCR, chr(10));

R i c h T e x t . c l e a r ;

RichText.Font.Name := ‘Arial’;

RichText.Font.Size := 24;

strcopy(lpzText,’This is a line of Text’);

strcat(lpzText, lpzCR);

R i c h T e x t . I n p u t T e x t (l p z T e x t) ;

RichText.PicInsert(image1.picture, 0,0);

R i c h T e x t . I n p u t T e x t (l p z C R) ;

RichText.Font.Name := ‘Arial’;

RichText.Font.Size := 12;

RichText.Font.Style := [fsItalic];

strcopy(lpzText,’After the graphic,

another line of text’);

strcat(lpzText, lpzCR);

R i c h T e x t . I n p u t T e x t (l p z T e x t) ;

f i n a l l y

s t r D i s p o s e (l p z T e x t) ;

s t r D i s p o s e (l p z C R) ;

e n d ;

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Hands OnVisual Pro g r a m m i n g

The main value of a routine like this is in
applications where the number and type of
fields in the recordset may vary at runtime.
For example, you could let the user choose
which fields they wanted to view, build an
SQL string to return just those fields, and
display them using the procedure described.

Where’s the tab strip?
Phil Richard asks: “In a recent column, you
mentioned a tab strip option in VB4 which I
would like to use; either TabStrip or
SSTab. Neither seem to be included in my
installation of Standard Edition VB4, which
I purchased as an upgrade. I have,
however, found TABCTL32.OCX from the
Sheridan web site. Is there a way of
registering it, as it appears as not found
when trying to load the PCWClub project.”

Unfortunately Phil is correct, and the Tab
custom controls are only present in the

Professional edition of Visual Basic. While a
lot can be done with the Standard version, it
is severely restricted both in its use of the
JET database and in the number of custom
controls supplied. It is also cheap, and my
guess is that Microsoft views it as an
introductory, learning product rather than a
real development tool.

With TABCTL32.OCX, most third-party
OCX vendors allow free distribution of its
controls. So in order to make some sales,
use of an OCX in developing an application
is allowed only if you have purchased the
control. When you do buy it, you get either
a .LIC file or special registry entries that
allow you to use it for development.

How do I cancel?
Ammar EL-Hassan has this query: “I am
trying to add a facility to enable the user of
my VB application to CANCEL the

operation which Closes his form. The user
clicks the control box in the top left corner
of the form. They then click the Close
option, which unloads the form (application
dead!). How can I interrupt this to enable
the user to cancel after selecting Close?”

VB forms have a QueryUnload event for
this purpose (Fig 3). Use code like this:
Private Sub Form_QueryUnload(Cancel

As Integer, UnloadMode As Integer)

If MsgBox(“Really unload”,

vbOKCancel) = vbOK Then

Cancel = False

E l s e

Cancel = True

End If End Sub

You can even discover why the form is
trying to close, by inspecting the
UnloadMode parameter. If it is
vbAppWindows, then the user is trying to
close down Windows.

Tim Anderson welcomes your Visual
Programming comments, queries and tips.
Contact him at the usual P C W address or email
v i s u a l @ p c w . v n u . c o . u k.

Office Developer Edition is £639 (ex VAT).
Upgrades from Office 97 Professional are £215
(ex VAT). Contact M i c r o s o f t 0345 002000
Office 97 Visual Basic Programmer’s Guide
available separately at £32.49 from C o m p u t e r
M a n u a l s 0121 706 6000
Sheridan Active Threed £99 (ex VAT) from
Contemporary Software 01344 873434
Inside COM (Microsoft Press) is £32.99 from
Computer Manuals 0121 706 6000.
Visual Writer is £195 (ex VAT) from
Visual Components 01892 834343
WP Tools is shareware. Contact Julian Ziersch
1 0 0 7 4 4 . 2 1 0 1 @ c o m p u s e r v e . c o m

Contacts

Fig 3 (above) Using the

QueryUnload event to

confirm a close

d e c i s i o n

L e f t (see “Inside Com”)

This application from

Inside COM

d e m o n s t r a t e s

a g r e g a t i o n ,

containment, and

i n t e r c h a n g e a b l e

components. The

Tangram pieces look

like a rabbit… allegedly

Inside COM by
Dale Rogerson

Inside COM is a book that takes you step by
step through the mysteries of COM
interfaces, reference counting, globally
unique identifiers, containment, aggregation
and automation. All the examples are in C++
but the author has avoided Windows-specific
code where possible. The strength of the
book is that it is about COM rather than OLE
or ActiveX technologies which are based on
COM, so it does a good job of explaining
what COM is and how it works. Of course,
the impressive thing about tools like Visual
Basic and Delphi is that you can use COM
without needing to understand much about
it. When it comes to advanced development
or troubleshooting, though, a book like this
provides an invaluable background.

Personal Computer World • May 1997 • 305

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • April 1997 • 307

Hands OnVisual Pro g r a m m i n g

p 3 0 8 ➢

the license key to think about, which any
number of applications may be using. A
clue to the extent of this devastation is given
in the note at the end of the fix. “Reinstall
third party custom controls,” it says, “and
any software that may use the registry to
store licensing information.”

As for Regclean, a utility that comes with
VB, I have come to mistrust it deeply. In a

misguided moment I ran the latest version
3.0 which you can download from
w w w . m i c r o s o f t . c o m. The idea was to fix the
annoying messages VB gives you when
something is awry in the registry: “Object
server not correctly registered”. To my great
amusement, the end result was worse.
Post-Regclean, VB gave me this inspiring
piece of technical information 148 times
before it would open the Custom Controls
dialog. At times like that, you reach for your
registry backup with relief.

This problem is not going to go away.

magine you have paid a four-
figure sum for a top-of-the-range
client-server development

system. One day you open up the
development environment and the splash
screen declares it to be the entry-level
hobbyist version. Next, you open the
application you are working on to be
informed that you are not licensed to use
some of its components. Sighing, you
reinstall the product from CD but it does not
fix the problem.

Sounds fun? This is exactly what can
happen with Visual Basic 4.0. The reason,
as you will have guessed, is that both VB
itself and the many OCX controls which
come with it depend on numerous registry
settings. If the registry gets scrambled, this
is the kind of thing that can happen.

The good news is that Microsoft’s web
site has a fix. Article Q149619 is entitled
“Visual Basic displays incorrect splash
screen”, although the splash screen is the
least of your problems. It is not such good
news though. The official fix goes as follows:
1 . Using a registry editor, delete the
HKEY_CLASSES_ROOT\LICENSES key.
2. Run Regclean.exe and delete all *.OCX
and *.OCA files.
3. Delete OLEPRO32.DLL.
4. Restart Windows and reinstall Visual
B a s i c .

Is this a good fix? Well, it’s better than
destroying your hard disk with a
sledgehammer, but not much. As a
developer, you will know that those .OCX
and .OCA files represent most of the
ActiveX controls on your system. An OCA
file, by the way, is an OLE-type library
created by VB when you first load an OCX.
And ActiveX, says Microsoft, is becoming
the foundation of Windows. Then there is

An added twist is that the software industry
now gives huge distribution to beta
versions, via demonstration CDs and over
the web. We are all encouraged to spend
our time installing trial software, often laden
with ActiveX elements, and probably fixed
to stop working after a certain date. Frankly,
the registry stands no chance of staying
clean in these circumstances. Naturally, it is

not just developers who install all this stuff,
but clients and users as well. Any
application that uses standard Microsoft or
third-party ActiveX controls or servers may
find the ground sweetly removed from
under its feet. In the meantime, here are my
tips for avoiding registry hell:
1. Check your registry backup procedures.
2. Press Microsoft to come up with proper
registry management tools, rather than
these draconian “delete everything and
reinstall” solutions.
3 . Install beta software on a machine

Clean-up c a m p a i g n
Tim Anderson wrestles with the registry in an attempt to unscramble his settings, tries to get
Access from Delphi, and plays Sherlock Holmes to detect which applications he has running.

I

Microsoft’s RegClean 3.0: proceed at your own risk

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Hands OnVisual Pro g r a m m i n g

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Hands On Visual Pro g r a m m i n g

Personal Computer World • April 1997 • 309

Mixing Delphi and Access
Guy Cartwright writes: “I’m led to believe
that, using Borland’s Database Engine, I can
access data stored in a Microsoft Access
database. I’ve followed the procedure in a
book and created an alias called TstAcess,
but I get the message ‘Application is not
enabled for use with this driver. Alias:
TstAccess’. I’ve trawled the net for an
answer but to no avail.”

Thanks to the popularity of Microsoft
Office Professional and Visual Basic,
desktop data is frequently stored in Access
MDB files. This creates a problem for other
applications which need to get at the data,
especially since Microsoft has never
documented the structure of an MDB. In
any case, the format changes with each
new release of Access. Borland’s Database
Engine can only get at an MDB through
ODBC, which is the method Guy has tried.
Sadly, the BDE is not at its best with ODBC,
and Microsoft’s ODBC drivers for Access
are nothing special either.

The situation is complicated by the
inclusion of ODBC drivers with Microsoft
Office, that are designed only to work with
Office applications. This might well cause
the error Guy is seeing. It is important to get
hold of the separate ODBC desktop driver
pack, for example from the Microsoft
Developer Network CDs, but even then it
might not work. It needs the right
combination of DLLs, registry entries and
even INI files to work as it should, and one
or other can easily get corrupted.
Sometimes the only solution is to remove

dedicated to that purpose. Do not install it
on a system used for real work.
4. Persuade your users to adopt the same
p o l i c y .
5. So you only have one PC? Well, you have
been warned.

Delphi

Borland’s Conference CD
Borland developers who look with envy at
the Microsoft Developer Network CDs,
stuffed with documentation and tips, will be
interested in the recently issued Developer
Conference CD. At first glance it looks
great, with technical papers and example
code covering many real-world problems.
The two most prominent products are
Delphi and C++ 5.0. The catch is that what
you get depends on whether individual
speakers at the 1996 Borland conference
bothered to send in their notes.

For example, an entry on “Client server
development using Delphi and Oracle”
leads to a detailed article with source code
and a Powerpoint slide show, while another
entitled “Rapid application with Delphi 2.0”
brings up only a speaker biography.
Everything is in HTML and no search
program is provided, so you are left to use
your own search tools. You also get a
collection of patches, technical notes and
demonstration versions. Overall there are
plenty of good nuggets of information, but it
is all rather a mish-mash and mostly
available free from Borland’s web site. A
useful resource, but not for the price
Borland is asking.

308 Personal Computer World • April 1997

Powers of detection

nce you get started with Windows
programming, you soon find you need to
communicate with other applications. At

its simplest, for example, you might want to run the
Windows calculator from a menu option in a VB
application. Easily done with the Shell function but
what if the Calculator is already running? In that
case, you probably want to bring forward the
existing instance rather than starting a new one.
Here is how you can find out.

The key to detecting an application is to look for
its main window. The API offers functions for listing
or searching all the current windows. FindWindow
takes two parameters, both null terminated strings.
The first is a classname, the second the text of a
window title. You can search for one or both and if it
finds a matching top-level window, FindWindow
returns the handle. For example:
hwnd = FindWindow(vbNullString, “Calculator”)

If it returns 0, then Calculator is not running. Of course
FindWindow must be declared, and you can copy the declaration
from VB’s API viewer.

In the example above, FindWindow searched for the window
title. This works fine with Calculator, although you could not be
sure which calculator you were getting. It falls down with MDI
applications, where a maximised document window adds its title
to the main window. You might want to use the classname
instead. It is not obvious what the right classname is, but there is
another API function, GetClassName, which reveals all.
Calculator turns out to have a classname of “SciCalc”, while
Word is “OpusApp”. VB is “ThunderMain”, and a VB application,
“ThunderForm” or in version 4.0, “ThunderRTForm”. Delphi
applications get their classname from the name of the main
application window, for example “TForm1”. So the decision to
look for a classname, a window title or both depends on which
application you are trying to detect.

If the application is running, the next step is how to bring it
forward. One possibility is the API function BringWindowToTop.
For example, the following code detects Word and brings it
forward if found:
hwnd = FindWindow(“OpusApp”, vbNullString)

If hwnd <> 0 Then

BringWindowToTop (hwnd)

End if

The one time this will fail is if Word is running but minimised.
A minimised window brought to the top is not much help. Time
for another API function or two, in this case
GetWindowPlacement and ShowWindow. Using the API viewer,
add the declarations for the following:
GetWindowPlacement

ShowWindow

Type POINTAPI

Type RECT

Type WINDOWPLACEMENT

Public Const SW_SHOWMINIMIZED

Public Const SW_RESTORE

You can now discover whether a non-VB window is
minimised like this:
Function isMinimised(hwnd) As Boolean

Dim lpWnd As WINDOWPLACEMENT

lpWnd.Length = 44 ‘ 22 in 16-bit Windows

Call GetWindowPlacement(hwnd, lpWnd)

If lpWnd.showCmd = SW_SHOWMINIMIZED Then

isMinimised = True

E l s e

isMinimised = False

End If

End Function

Now the function for bringing Word forward can be modified
as follows:
hwnd = FindWindow(“OpusApp”, vbNullString)

If hwnd <> 0 Then

If isMinimised(hwnd) Then

iRetVal = ShowWindow(hwnd, SW_RESTORE)

E l s e

BringWindowToTop (hwnd)

End if

End if

If you look up GetWindowPlacement and ShowWindow in
an API reference, you will find numerous other fields and
parameters that give you fine control over the results. One point
to notice is that the length field of a WINDOWPLACEMENT type
(or structure in C) must be set before it is passed as a
parameter in GetWindowPlacement. Unfortunately VB has no
SIZEOF function, so you cannot do this neatly. All you need to
know for the moment is that in 16-bit Windows the magic
number is 22, and in 32-bit Windows it is 44. Occasional
inconveniences like this are the price you pay for avoiding the
intricacies of C.

O

Using API functions you can find out which other applications are running

Borland’s Developer Conference CD has some

great resources, but why pay when you can

visit the web site?

Fig 1 Routine written from the DAO COM interface

v a r

sSql: string;

dbEngine: Variant;

db: Variant;

snMembers: variant;

b e g i n

sSql := ‘Select * from members order by surname;’;

dbEngine := CreateOleObject(‘DAO.DBEngine’);

db := dbEngine.OpenDatabase(‘C:\DATA\SPORTS.MDB’);

snMembers := db.OpenRecordSet(sSql, 4);

{4 is dbOpenSnapshot}

If not snMembers.EOF Then

b e g i n

Edit1.text := snMembers.Fields[‘SURNAME’].Value;

e n d ;

s n M e m b e r s . c l o s e ;

d b . c l o s e ;

e n d ;

p 3 1 1 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • April 1997 • 311

Hands OnVisual Pro g r a m m i n g

both the ODBC driver and the BDE,
weeding out any registry entries as well, and
then to reinstall them both. Microsoft Query,
which comes with Office, lets you test
ODBC data sources by running queries
against them.

There is another option if you are running
Windows 95 or NT. Microsoft has created a
COM interface to the JET database engine
under the name Data Access Objects
(DAO). It is documented and can be called
from Delphi, and you can write routines like
i n Fig 1 (page 308). For this to work, DAO
must be installed on the system, as it will be
if you have Microsoft Office 95, for example.

There are several other problems.
Microsoft’s documentation is aimed at
users of Visual Basic or Visual C++, so you
have to feel your way to some extent. None
of Delphi’s data-aware components will
work. Finally, you cannot freely distribute
the DAO files with a Delphi application. All
but the last can be fixed by buying a third-
party tool for using DAO with Delphi. Two
well-known ones are Titan Access and
Opus DirectAccess, while Nortech Software
has a third in preparation. One of these is
likely to be the smoothest route towards
using Delphi with Access MDBs.

Visual Basic

Going vertical
Andy Smith asks: “How can I print vertical
text in a Visual Basic application?”

There are a couple of easy solutions,
and a better but more difficult one. The easy
way is to use a paint program to rotate
some text — Windows Paint or the
shareware Paintshop Pro will do nicely —
and paste it into an image control. You
could even have several different messages
and load them at runtime. For the best

performance, do not load them from disk
but use invisible image controls, or the
PicClip control, or the Imagelist control.

If you want to be able to specify any text
you like at runtime, another possibility is to
use the WordArt applet that comes with
Microsoft Office or Publisher. Here’s how:
1 . Pop an OLE container onto a form and
set it to contain a new WordArt 2.0 object.
2. Right-click the OLE container and
choose Open. In the WordArt dialog,
choose the text shape and font required.
3. Use code like this to update the text at
r u n t i m e :
OLE1.AppIsRunning = True

OLE1.Format = “CF_TEXT”

OLE1.DataText = Text1.Text

O L E 1 . U p d a t e

The snags with the WordArt approach
are firstly that you need the applet installed
on the user’s system, and secondly a little
overhead thanks to OLE. If that rules it out,
the heavy coder’s method is to call the
Windows API. Windows uses a structure
called a LOGFONT to define font
characteristics, including several properties
not exposed by VB’s Font properties. One
of these is lfEscapement, which specifies
the angle of the text. Assuming that the y

co-ordinates count from top to bottom, the
lfEscapement field specifies the anti-
clockwise angle in tenths of a degree. That
means you can print diagonal text or even
write a routine using a timer that would
rotate text around a central point. To set a
font using the API, take the following steps:
1. Declare the necessary API types,
constants and functions.
2. Define the fields of a LOGFONT variable.
3 . Create a logical font by calling Create-
FontIndirect. This returns a handle to a font.
4 . Select the font into a device context by
calling SelectObject. For example, VB

Picture Boxes, Forms, and
the Printer object all have
hdc properties which give
you a handle to the device
c o n t e x t .
5 . Print to the device
context using VB’s print
method or API functions
such as TextOut or
D r a w T e x t .
6 . Clean up by unselecting
the font and calling Delete-
Object with the font handle.

Minimal sample code
for drawing vertical text in
VB 4.0 is included on the

CD. Similar code works in VB 3.0 or 16-bit
VB 4.0. It seems complex at first but it is the
kind of code you can use again. Then again,
alongside the four lines needed to automate
WordArt, it does look like an argument for
sticking to the easy way.

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual P C W address or at
v i s u a l @ p c w . v n u . c o . u k

Borland Developers Conference CD £59
(plus VAT) from Borland 0800 454065
Delphi 2 Developer’s Guide (Pacheco and
Teixeira) from SAMS/Borland Press £54.99
Opus DirectAccess £189 (plus VAT) from QBS
0181 956 8000, w w w . o p u s . c h
Nortech Software is at w w w . w i z z k i d s . c o m
Titan Access 32 is £225 (plus VAT) from QBS
0181 956 8000, w w w . r e g g a t t a . c o m

Contacts

Cover CD

The MSDN starter edition for Visual Basic
is on this month’s cover-mounted CD-
ROM. It includes 125Mb of searchable
information on VB 3.0 and VB 4.0.

L e f t Vertical text

the hard way, setting

the font with the

Windows API

B e l o w Vertical text the

easy way, using the

OLE container and a

WordArt object

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • March 1997 • 315

Hands OnVisual Pro g r a m m i n g

p 3 1 6 ➢

spreadsheet application which pops up on
demand to enable you to create workbooks
interactively.

Formula One is superb and its main
competition is from Excel itself. Excel is a
strong development tool and its worksheets
can be embedded in other applications and
controlled programmatically. Excel is the
more powerful, but in comparison Formula
One is small, nimble and royalty-free.

First Impression, the Suite’s charting
component, is updated to version 2.1. Not
much has changed, mainly the support for

isual Components has upgraded
its Visual Developers Suite Deal, a
collection of ActiveX controls for

Visual Basic and other ActiveX clients. These
are heavyweight components, each being
almost an application itself. They are supplied
as both 16-bit and 32-bit OCX controls. The
runtime versions can be distributed royalty-
free, making the Suite excellent value if you
need this kind of functionality.

Cream of the crop is Formula One, now
at version 4.0, a spreadsheet control which
does a remarkable job of emulating Excel. It
can read and write files in
Excel format up to version
7.0, as in Office 95, but there
are limitations: Formula One
does not understand Excel
charts or macros, for
example. A large number of
worksheet functions are
supported, and the ability to
move sheets to and from
Excel is a valuable asset.
Formula One has its own
drawing tools and can link
with First Impression, the
charting control in the Suite
Deal, to create charts. You
can place buttons, checkboxes and drop-
down listboxes on sheets.

New in version 4.0 is support for double-
byte character sets, HTML export, and
Uniform Data Transfer, an OLE standard
which lets you drag and drop data between
applications. Formula One is not a data-
bound control, but it has built-in ODBC
support so you can query an ODBC data-
base and the results appear in a worksheet.

Version 4.0 includes several new ODBC
functions. Another nice touch is the
workbook designer, a fully-featured

double-byte character sets and
Uniform Data Transfer.

Visual Writer is a word processor
control now at version 3.1. It’s good,
but not of the quality of Formula One.
Under Windows 95 or NT, Visual Writer
has to compete with the built-in Rich
Text Control which does the same job
of displaying formatted text with
embedded bitmaps. Visual Writer does
have some extra functions like fields,
zooming, spell checking via the

supplied Visual Speller control, print
preview, and a ready-made button bar,
status bar and ruler. It also has some
quirks. Rich Text Format (RTF) is supported,
but it prefers its own proprietary format.
This is a disadvantage, especially since it
will not accept .RTF as a valid format when
bound to a document database. Also
lacking is any kind of HTML support. For
Windows 3.1 developers, though, Visual
Writer or something like it is all but essential
if you need to display formatted text. It’s a
shame the supplied 16-bit version is an

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

315 • Personal Computer World • March 1997

Hands On Visual Pro g r a m m i n g

A new D e a l
Tim Anderson checks out the new Formula One spreadsheet control in the latest upgrade to
the Visual Developers Suite Deal, answers VB and Delphi queries and hides a blinking caret.

V
R i g h t Now at version

4.0, Formula One

will save in HTML

f o r m a t

B e l o w F i r s t

Impression’s chart

wizard offers a

range of layouts and

s t y l e s

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Hands OnVisual Pro g r a m m i n g

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Hands On Visual Pro g r a m m i n g

Rolling your own
Reader Richard Hustwayte writes:
“My project will require some databases to
be made — nothing complex like
client/server but simple, flat-file databases. I
have looked at two versions of Delphi: the
standard version (about £70) and the
desktop version (about £230). The latter
version is advertised as having the Borland
Database Engine. What is this? And if I
don’t have it, am I unable to create
database applications?”

All versions of Delphi come with the
Borland Database Engine. This is a library of
functions designed to simplify database
work by acting as an intermediary between
your application and the driver software
which actually accesses the data. One
benefit is that you can use data-aware
components, so you can create simple
database applications without writing any
code. A number of database drivers are
available for the BDE and it can also use
ODBC drivers, the Windows standard for
database access.

The BDE is good, but there is a cost
involved. The BDE is a substantial piece of
software and adds a considerable overhead

to your application. Additionally, not all
database drivers work well with it. In
particular, it is not a good match for data in
Microsoft Access format. For several
reasons, then, you might not want to use it.

The most efficient alternative for a simple
database is to roll your own using Delphi’s
file functions. If that does not appeal, there
are database libraries such as Sequiter’s

CodePascal which provide a lightweight
alternative. Then again, the BDE comes in
the box and is fairly easy to use, so most
Delphi developers do not look elsewhere.

Which Delphi book?
Darren Davies writes: “I’m just about to buy
Delphi Developer 2.0. I was wondering if
you could recommend a book to learn how
to program in this language? I’ve had quite
a bit of experience with Pascal for DOS and
object-oriented Pascal for Windows, but not
much with visual programming.”

For someone with programming
experience, a good choice is Delphi 2.0
U n l e a s h e d by Charles Calvert (SAMS). At
1,400 pages, it goes some way to compen-
sating for Delphi’s poor documentation.

A terminal problem
“I’m trying to get my new Terminal Program
to automatically log in to a BBS. How do I get
MSCOMM to wait for a login prompt before it
enters the user details like Login name and
Password?” asks Aaron H o d g s o n .

The MSCOMM custom control, which is

Personal Computer World • March 1997 •317
p 3 1 9 ➢

similar in Visual Basic 3.0 and 4.0, offers
two ways of intercepting data. The first
technique involves a program loop which
continually checks the receive buffer, a
technique called “polling”. Fig 2 shows what
it looks like in pseudo-code. While it is a
useful technique, it is difficult to write a well-
structured application if it spends much
time sitting in a loop like this. Another
method is preferable, which is to use the
OnComm event to respond to incoming
data. This event fires whenever a
communication error or event occurs. You
can respond with a select case statement,
like that shown in Fig 3 (page 319).

Your code should respond to all the

Java books

■ Professional Java Fundamentals
by Sly Cohen, Tom Mitchell and others
Most Java programmers are already skilled in
another language: often C++. This book is
aimed at that readership, providing a concise
introduction to Java and focusing on its
distinctive features. Beginning with a
description of the Java language and object-
oriented programming, it goes on to explain
packages, threads and streams. Five
chapters are devoted to the Abstract Window
Toolkit, including a detailed explanation of
various layout managers. The most advanced
chapters cover networking, building libraries,
implementing an application framework, and
interfacing with C++.

There seem to be lots of poor Java titles
around, and in contrast here is a
knowledgeable and well-judged guide which
complements rather than repeats what is
easily obtainable online. Recommended.

■ Using Java (Second Edition)
by Joseph Weber and others
The flash on the cover states: “Covers new
JDK 1.1 features” which is a bold claim since,
at the time of writing, the JDK 1.1 was still in
beta. You will find some useful material on
JDBC database classes and a little on remote
method invocation but, of course, much of
JDK 1.1 is not actually included. What you
get is over 1,000 pages which take you step-
by-step through Java’s tools, language,
classes, applets and applications, graphics
and layout, security and more. There is an
emphasis on Sun’s tools rather than third-
party contributions, although the online
version includes a chapter on different
development environments.

Overall, Using Java is a thorough guide,
although at times rather ponderous and
unexciting. On the CD, you get online
versions of four other titles covering
JavaScript, Visual J++, CGI scripting and
HTML, along with additional chapters and
example Java applets. As a one-stop Java
reference library, this book is hard to beat.

A b o v e FarPoint’s Input Pro gives

fine control over validation during

data entry

R i g h t Behind those drag-and-drop

data controls lurks the Borland

Database Engine, a substantial

application in its own right

Fig 2 Pseudo-code for “polling”
Begin do loop

DoEvents or Sleep to allow windows to run other processes

Check InBufferCount property

If there is data, read input property and add to string buffer

Check buffer is not too full and correct if necessary

Check for time out, data complete, broken connection or other errors

End do loop

class the TMemo object, giving it a custom
message handler. You can either do this
entirely within your application, or create a
new custom memo component and install it
on the component palette. For a one-off,
the first approach is fine, the only snag
being that because you create the control at
runtime, you cannot place it visually or use
the Object Inspector. How it works is
shown in Fig 1.

Of course, you will also want to set other
properties and perhaps write event code for
the memo control, all of which you can do in
code. Sledgehammer to crack a nut?
Maybe. But once you have learnt how to
subclass Delphi controls, many other
problems can be easily solved.

You can also build up a library of
customised components which can be
used many times over. For example, you
could create a memo with a Boolean
ShowCaret property that turns caret display
on or off. In the long term, the productivity
gains are enormous.

Input Pro
Once upon a time, it was
Aware/VBX. FarPoint has
renamed this set of data-entry
controls to the more natural Input
Pro. It is an unglamorous
collection, but is also one of the
most useful for anyone doing
data entry forms in Visual Basic
or other ActiveX clients. A VBX
version is also supplied.

There is not much extra
functionality in Input Pro, as
opposed to Aware/VBX. The
main difference is the move to

ActiveX. There are eight controls including
currency, date and time, masked edit, and
a memo control which overcomes the
normal 64Kb limit. All are data-aware. The
main purpose of InputPro is for validating
data entry (never an easy task): its controls
greatly simplify matters. For example, the
DateTime control rejects invalid dates and
times, can limit their range, and can auto-
complete partial entries.

OCX, as the VBX control type is more
widely supported in Windows 3.1.

Carets and messages
The following question is asked by
reader, Deborah Pate: “How can I stop
the cursor flashing in a TMemo
component on a form with no other
control that can accept the focus?
Setting it to read-only does not help.”

This is a fair question, although I
am not sure why you would n o t w a n t
the cursor flashing in a memo control
that has the focus. Anyway, this is the
kind of thing that should send you
scurrying to the Windows API. One thing
you must realise is that what most people
call the cursor, Windows calls the caret.
There are eight functions specifically
concerned with this little flashing creature.
For example, you can control the blink
rate with SetCaretBlinkTime. Hiding the
caret is just a matter of calling the right
function. That is:
H i d e C a r e t (M e m o 1 . h a n d l e) ;

The remaining problem is where to call
the function. The obvious place is in the
OnShow event method for the form but it
doesn’t work. The memo component
receives a SetFocus message after the form
shows and that helpfully reinstates the caret.

The OnPaint event does the trick but this
is not the best solution. In certain
circumstances the memo control can
receive a SetFocus message without the
form’s OnPaint event firing, and back
comes the caret. If you call HideCaret in
enough places you can probably make it
watertight, but it’s not elegant
programming.

The best answer is to trap the SetFocus
message itself. To do this you need to sub-

316 Personal Computer World • March 1997

L e f t Visual Writer is

invaluable for 16-bit

Windows but less

useful in Windows 95

B e l o w A solution to the

flashing cursor

problem. The TMemo

object is subclassed,

creating a component

which is sufficiently

general to be used

many times over

Fig 1 Trap that SetFocus

1 . In the type section of the form unit, declare the following object:
TMyMemo = class(TMemo)
p r i v a t e
procedure MySetFocus(var Message: TWMSetFocus); message WM_SETFOCUS;
e n d ;

2 . In the public declarations for TForm1, include:
Memo1: TMyMemo;
3 . In the implementation section, include:
Procedure TMyMemo.MySetFocus(var Message: TWMSetFocus);
b e g i n
inherited; {call the default handler for this message}
hidecaret(self.handle); {hide the caret}
e n d ;
4 . In the FormCreate method, include:
Memo1 := TMyMemo.create(self);
Memo1.Parent := self;
H i d e C a r e t (M e m o 1 . h a n d l e) ;

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • March 1997 • 319

Hands OnVisual Pro g r a m m i n g

possible events in order to trap
communication errors. You also need to
check that the string buffer is kept to a
reasonable size. Using the CommEvent it is
possible to write a reasonable
communications program in Visual Basic,
and there is an example called VbTerm that
comes with Visual Basic.

Although the event-driven approach is
better for most purposes, Aaron’s particular
problem can easily be solved by polling.
You can write a WaitFor function that
doesn’t return until a particular piece of data

has been sent, or until
an error has occurred.
An example of this is
shown in Fig 4.

Note that if you have also written code to
respond to the OnComm event, you need
to ensure that events of the type
comEvReceive do not fire when the WaitFor
function is running. You can do this by
setting the Rthreshold property to zero.

Finally, communications code is tricky,
mainly because so many things can go
wrong. At one extreme, poor lines and

dropped connections cause difficulties,
while the opposite problem is data coming

in so fast that some
part of your software
cannot keep up. If this
last problem occurs,
Microsoft makes two
r e c o m m e n d a t i o n s .
One is to extract data
immediately the
OnComm event fires,
without bothering to
check the type (see
Fig 5). Also, the
MSCOMM control
may not always be
satisfactory and as a
last resort you can call
the Windows API
directly. This is well
covered in the first
edition of Daniel
Appleman’s V i s u a l
Basic Programmer’s
Guide to the Windows

A P I but not in the second, 32-bit edition,
although there is some material on the CD
which accompanies the book.

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual P C W address or at
v i s u a l @ p c w . v n u . c o . u k

Visual Developer’s Suite Deal is £235 (plus VAT)
from Visual Components 01892 834343
Input Pro (FarPoint) is £105 (plus VAT) from
Contemporary Software 01344 873434

Professional Java Fundamentals, by Sly Cohen,
Tom Mitchell and others is £32.49; ISBN
1-861000-38-3, published by Wrox Press.
Using Java (Second Edition) by Joseph Weber
and others costs £56.49 (incl. VAT); ISBN 0-7897-
0936-8, published by Que.
Delphi 2 Unleashed by Charles Calvert costs
£54.95 (incl. VAT); ISBN 0-672-30858-4.
These books are available from
Computer Manuals 0121 706 6000

Contacts

Fig 4 WaitFor function

Function WaitFor(sWaitString As String, lTimeout As Long) As Integer

Dim lStartTime As Long
Dim sBuffer As String
Dim iOldThreshold as integer

lStartTime = Timer
iOldThreshold = Comm1.RThreshold
Comm1.RThreshold = 0
‘ prevents comEvReceive firing

D o
DoEvents ‘ or call Sleep API function
If Comm1.InBufferCount > 0 Then
sBuffer = sBuffer & Comm1.Input
‘ should check for buffer too large
End If

If InStr(sBuffer, sWaitString) 0 Then
WaitFor = 0
Exit Do
End If

If Timer >= (lStartTime + lTimeout) Then
WaitFor = 1
‘ you can define constants and report errors
‘ using the return value
Exit Do
End If

L o o p

Comm1.Rthreshold = iOldThreshold

End Function
Now you can write code like this:

If WaitFor(“login: “, 60) = 0 Then
‘ waits for up to 60 seconds
Comm1.Output = “qix” & Chr(13)
MsgBox “Successfully posted response”
Comm1.Rthreshhold = 1
‘ Enables comEvReceive event
E l s e
MsgBox “Login error”
Comm1.PortOpen = False ‘ Closes port
End If

A b o v e The VBTerm

sample comes with

Visual Basic and

demonstrates the

use of the MSCOMM

c o n t r o l

Fig 3 A select case statement

Select Case Comm1.CommEvent
Case comEvReceive
sBuffer = sBuffer & Comm1.Input
‘ or send to data processing function

Case comRxOver
MsgBox “Error: receive buffer
o v e r f l o w ”
Case comTxFull
MsgBox “Error: transmit buffer full”

End Select

Fig 5 Extract data

Sub Comm1_OnComm ()

Static ReceiveBuffer As String

ReceiveBuffer = ReceiveBuffer &

C o m m 1 . I n p u t

E t c . . .

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World •February 1997 • 295

Hands OnVisual Pro g r a m m i n g

p 2 9 6 ➢

Where there’s an O there’s an A
You might be forgiven for wondering where
this new Active Platform comes from.
Microsoft’s publicity implies that a range of
new technologies, such as the Active
Desktop, the Active Server and Dynamic
HTML, have emerged brand new and
sparkling from a magician’s black hat
somewhere in Redmond.

The truth is more prosaic. For years
Microsoft has been promising to rebuild
Windows on an OLE foundation, and that
strategy has not changed. In many cases
Microsoft has simply replaced the word
OLE with Active. So, ActiveX controls are
OLE controls, OLE automation servers are
now Active Servers, and similarly the OLE
object model once known as Data Access

’m sitting here looking at a sheaf
of press releases and a stack of
CDs which comprise the

Microsoft Active Platform in its current, beta
guise. The papers are an intricate display of
verbal gymnastics: there are generous
sprinklings of key buzzwords like open,
standards-based, scaleable, multiple
operating systems, and so on. The name
Active Platform itself is a political statement.
Sun calls Java a platform; Netscape
Communications calls its browser a
platform; others see the Network Computer
as a platform. At stake is the question of
who will be at the centre, and who will be
satellites. Like all the best prima donnas,
none of the main industry players wants to
be anywhere less than centre stage.

Objects has become the ActiveX Data
Object or ADO. With that in mind, here’s a
plain English summary of what is in the
Active Platform.
1. Active Desktop This is essentially a web
browser with support for HTML, VB Script,
Java applets and ActiveX controls. In other
words, it is Internet Explorer. Full
implementation is in the forthcoming version
4.0, which is fully-integrated into the
Windows shell.
2. Active Server This means that Internet
Information Server can be controlled
through what used to be called OLE
automation.
3. Active Server Pages Here, Microsoft is
referring to the ability to embed scripts,
typically written in Visual Basic, into HTML
web pages. Previously such scripts could
only be executed by Internet Explorer on the
client’s PC. Now, a new tag lets you run the
script on the server. Web sites have been
doing this for years using CGI scripts, but
this new approach is easier and removes
the need to compile the script into a binary
e x e c u t a b l e .
4. Dynamic HTML Code-named Trident,
this is a set of extensions to HTML which
implement much-needed features like
layering and exact positioning. It provides
an enhanced object model with more
control over frames, tables and scripts.
5. Active Data Object Like Data Access
Objects, this is a COM object model for
database access. It hooks into ODBC for
connectivity to a broad range of database
s e r v e r s .
6. Design-time ActiveX These are add-ins
for Internet Studio which typically generate
HTML and VB Script in response to user
input while authoring a web page. You can

Active s e rv i c e
Tim Anderson investigates the Active Platform – is it really new? Plus how to use resources
in Delphi, new books reviewed, and a preview of the Visual Basic control creation edition.

I

The Internet Studio project browser in file view (left), an ActiveX layout being designed (centre),

and the resultant form at runtime in Internet Explorer

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

296 • Personal Computer World • February 1997

Hands On Visual Pro g r a m m i n g

think of them as web page wizards. They
are ActiveX controls but are not used at
runtime and do not need to be downloaded
to the client’s computer.
7. HTML layout One of the most useful
ActiveX controls is the HTML layout
component, simply a container for other
controls. Using the Active Control Pad or
Internet Studio’s layout editor, you can build
forms which include scripts, much as you
would with standalone Visual Basic.

Will it work?
The usefulness or otherwise of Microsoft’s
new web initiative depends on which hat
you wear. For general Windows developers,
this is significant. Internet Studio, the tool
that brings all these gizmos together, is a
viable alternative to Visual Basic and
Access. You can design forms, write VB
code, and simply have your final application
run within Internet Explorer rather than
directly from the Windows desktop.

As Windows evolves, that last distinction
will become increasingly blurred. The
advantages are that your application can
be Intranet-ready and database
independent. On an Intranet, you have full
control over whether code is executed on
the client or on the server. Assuming
Windows remains popular, I see this kind of
approach as gradually replacing existing
development techniques.

The ActiveX Control Pad

Released without fanfare onto Microsoft’s web site, the ActiveX Control Pad is an essential tool
for authoring ActiveX applications. It combines a simple text editor with a VB-like form designer.
The idea is that you open an HTML document in the editor, design a form known as an HTML
Layout, and then insert it into the document. The HTML layout is itself an ActiveX control, but
exists only as a container for other components. You can also insert ActiveX controls directly,
without using a layout. The control pad generates a bit of HTML code using the OBJECT tag,
including the long alphanumeric CLASSID which uniquely identifies each ActiveX component.

The control pad does not only handle the placement of controls. Using the script wizard, you
can also write code to bring the form to life. The scripting language can be either VB Script or
JavaScript, although the two cannot be mixed on one page. In list view, the script wizard will

write code for
you based on
your response
to dialogs, or
you can
choose code
view and bang
out code in
the old-
f a s h i o n e d
way.

There are
m a n y
advantages to
using the
control pad.
One is that
you can
p o s i t i o n
c o n t r o l s
p r e c i s e l y
within the
l a y o u t ,

something which you cannot do with pure HTML. Controls have a z-order too, so you can
position one in front of another. The other plus is that a control’s properties and methods are
listed in the property editor and script wizard, so you do not need to look them up. Visual Basic
programmers will soon feel at home. A similar tool is in Internet Studio, where it is called the
HTML layout editor.

The biggest problem is that the control pad does no syntax checking and has no debugger
— a sure sign of immaturity. Internet Explorer will report errors in your code, but otherwise you
are reduced to tricks like throwing up message boxes to check the status of variables. The other
problem is that ActiveX layouts currently work only with Internet Explorer 3.0. No surprise there.

The ActiveX control pad, showing an HTML document, a layout, and the script wizard

What about Web developers? It is these
that Microsoft is courting most visibly, with
its “site builder” initiative. But success is far
from assured. Microsoft can do what it likes
with Windows, but does not own the web.
The grave weakness of its Active Platform is
that, despite noises to the contrary, it is not
a cross-platform initiative. There is no
problem with the server-side aspect, since
the server can do what it likes as long as it
delivers HTML that the browser can
understand. The problem is with the Active
Desktop. ActiveX controls, remember, are
binary executables which run natively on the
client’s computer. If you want to create an
ActiveX control which runs on, say,
Windows, the Macintosh and Unix, then you
must create three separate executable files.
Even if Microsoft delivers what it promises,
versions of Internet Explorer for these

platforms, it is hard to see this strategy
w o r k i n g .

By contrast, a Java applet runs on any
platform for which a Java Virtual Machine
exists. That means Sun’s Java Beans
model holds all the cross-platform aces.
Java applets can accomplish many of the
same tasks as ActiveX components.
Performance can be poor, but just-in-time
compilers and eventually Java-based
operating systems will crack that problem.
Microsoft is making it enticingly easy to
create web sites built with ActiveX controls,
but such sites will to some extent shut out
non-Windows browsers. If that drives more
people to use Windows, Microsoft wins. But
if these factors lead to Java rather than
ActiveX dominating the Internet, the
popularity of Windows itself will inevitably
decline. The stakes are high.

Unmistakably a platform; but with the ActiveX

Platform, things are less clear cut

Visual Basic Control Creation Edition
Unlike Internet Studio or the ActiveX control
pad, the VB Control Creation Edition is not just
for web development. As its name implies, it is a
tool for creating ActiveX controls in Visual Basic,
and these controls can then be used in any
Windows development tool or document
capable of hosting ActiveX, formerly known as
OCX controls. In its determination to reinforce
the ActiveX standard, Microsoft is making the
control edition a free download, both the beta
and final versions. Incidentally, it also offers a
preview of what the VB 5.0 interface may look
like when it emerges.

Since version 4.0 Visual Basic has been
able to create OLE automation servers. You can
declare an object class in a VB project, and then
have other applications create objects of that
class. Borland’s Delphi 2.0 is similarly capable.
The one piece missing in both products is the
ability to create OLE objects that have a visual
interface, or in other words, ActiveX controls.
That gap has now been plugged. With the
control creation edition, you can develop
ActiveX components that can be installed on the
component palette in products like Visual Basic,
Access and Delphi. It is a great step forward, the
main snag being that in this version, compilation
to native code is not possible, so performance will not match ActiveX
controls written in C++. VB controls can be very small, but require a
substantial runtime library which makes distribution awkward.
Microsoft now calls this the VB Virtual Machine. The implication is that
a VM for Visual Basic may be implemented on more than one platform,
although Microsoft has not stated this explicitly. Such a move would
make ActiveX a more plausible cross-platform contender.

To test the control creation edition, I built a simple control. Using
an image control and a timer, I displayed the P C W logo on a form. With
one line of code I made the logo’s background colour change
whenever the timer event fired. Next, I used the Interface wizard to
choose which properties and methods to expose, including a custom

property to set the timer interval. The property page wizard created a
standard property page, and finally Make OCX built the control.

Nobody can now say that creating an ActiveX control is difficult.
The main flaw in the VB control creation edition is not technology, but
human fallibility. Creating a control is easy; but creating a good control
still requires skill. The documentation observes how important it is to
maintain a consistent interface when controls are developed, and
warns that a poorly-implemented control can be a security risk even
without malicious intent on the part of its developer. For example, if a
method is exposed that enables a named file to be created on the
user’s hard disk, the control is not safe for scripting. Considering the
number of VB developers, both professional and hobbyist, mistakes
are inevitable.

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

D e l p h i

Delphi and Windows resources

Delphi can
use standard
Windows
resource files
(with a .RES
extension)
and indeed
there are
occasions

when this might be essential: creating a
screensaver for Windows NT, for example.
It is yet another of those areas which
Borland has scarcely bothered to
document. Bizarrely, there is

Personal Computer World • February 1997 • 297

Hands OnVisual Pro g r a m m i n g

A preview of Visual Basic 5.0. The Control Creation Edition at last makes it easy to write ActiveX components

documentation in WINAPI.HLP, supplied
with Delphi, that covers the Microsoft
command-line resource compiler, but not
for the Borland resource compiler actually
supplied. You didn’t know Delphi comes
with a resource compiler? It does, and it is
the executable called BRCC.EXE or
BRCC32.EXE, the 16- and 32-bit versions
respectively. The versions called BRC.EXE
and BRC32.EXE are shells which are able
to call both the resource compiler and the
resource linker, RLINK, to bind a resource
to an executable — but you do not need to
know this since Delphi will do it for you.

To find out how these programs work,
run them from a command line without
parameters and the options are
d i s p l a y e d .

What Delphi does not have is a resource
editor. Simple resource scripts can be
created by hand, otherwise you will want to
use an editor such as the one distributed

Creating full

system tray

apps with

native Visual

Basic 4. See the

full code on the

cover CD

p 2 9 9 ➢

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

Personal Computer World • February 1997 • 299

Hands OnVisual Pro g r a m m i n g

with Borland’s C++ products. Using
resources in Delphi takes several steps:
1. Create a resource script and compile it to
a .RES file.
2. In your Delphi application, include the
compiler directive:
{$R MYRES.RES}

where MYRES.RES is the name of your
resource file. A good place to put it is in the
project source below the similar directive
{$R *.RES} which Delphi includes by default
in all projects. The reason is that the
application icon is stored in a .RES file of
the same name as the project. It is best not
to edit this generated resource file, since
Delphi may overwrite your work.
3. Your Delphi code can now load these
resources using API functions. Here is a
simple example. The following resource
script contains a string table with one string:
STRINGTABLEBEGIN1, “I wandered

lonely as a cloud”END

Save this as TEST.RC, compile it using
BRCC to TEST.RES, and then include it in a
Delphi project. Now you can retrieve the
string in your Delphi application as follows:
lpzTest := stralloc(26);

LoadString(hInstance,1,lpzTest,25);

where lpzTest is declared as a pChar.
LoadString’s second parameter is the ID of
the string to load, often replaced with a
constant for clarity, and the last parameter
is the maximum length of the string to
retrieve.

Visual Basic

More about the System Tray
James Talbut writes:

“You mention the usage of the
Shell_NotifyIcon function and state that it is
not possible to use the messages without
additional software. But you can. Essentially
you create a hidden control on your form
and use an unrequired message for
controlling it.”

The system tray is controlled by an API
call Shell_NotifyIcon, which takes a pointer
to a NOTIFYICONDATA record as one of
its parameters. This record includes fields
for a window handle and a message
identifier, the idea being that Windows
sends that message to the specified
window when
the user clicks on an icon in the tray.

In C++ or Delphi you would use a
custom message handler, but VB does not
offer that facility. The workaround is to
hijack an existing message handler, and

Books for Visual Pro g r a m m i n g

Using ActiveX by Brian Farrar
This is nearly very good. Aimed at those
considering doing the web the Microsoft
way, it presents all the main elements clearly
and concisely, with examples. The book
covers VB Script, ActiveX technology, the
Control Pad, the Internet Control Pack,
Internet Information Server and its ISAPI
interface, and CGI scripting. It is fine as an
introduction and overview, but does not go
into enough depth to merit the “using” part of
its title. For example, ActiveX security issues
are skated over in a couple of pages. To be
fair, Microsoft’s ActiveX SDK, included on
the supplied CD, does give the required
detail; but most readers will have it already
from another source. Buy this for an excellent
overview, but expect to need further help
very soon afterwards.

Using VBScript by Ron Schwarz and Ibrahim Malluf
This title is both longer and more tightly focused than its companion, Using ActiveX, in the same
series. Without assuming much prior knowledge, the authors show how to program web pages
using VB Script, touching on related areas like ActiveX and SQL Server web extensions.
Considerable space is given to HTML itself, including an appendix documenting all HTML tags
supported by Internet Explorer 3.0. There is a CD with all the examples from the book, and as a
bonus, the full text of another Que title, Using Visual Basic 4.0. It is a nice extra, but ironically
none of the web pages on the CD are well designed. Overall, it is a good introduction to VB
Script, but do not expect it to answer all your Web queries.

Programming Windows 95 with MFC by Jeff Prossie
You have to respect someone who knows his
limitations. Jeff Prossie is not a database
programmer, nor is he an OLE enthusiast.
“Certain parts of OLE are promising,” he says,
“but the OLE documents protocol is overly
difficult to implement and of limited value in
the real world.” That explains why his book on
Microsoft’s Foundation Classes, the leading
C++ Windows class library, covers neither
MFC’s database classes, nor OLE in any form.
Instead, he gives a nuts-and-bolts description
of how to program with MFC, starting with
“Hello World” and progressing to documents,
views, common controls and multi-threaded
development. It is a valuable book, since most
other tutorials focus more on using Visual
C++ and its wizards, than on MFC itself.
Look elsewhere for ActiveX, web development
or database work, but buy this book to learn
the fundamentals of Windows development
using MFC.

James suggests using a hidden picture box
and the WM_MOUSEMOVE message.
Then, you can write code in the
MouseMove event that will respond to
system tray events.

It works, and James has written an
example notelet application, which is on the
cover CD. It lets you store notes which pop
up when you right-click an icon in the tray.
Thanks, James – you have won a book
token for your efforts.

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual P C W address or at
v i s u a l @ p c w . v n u . c o . u k

Programming Windows 95 with MFC by Jeff
Prossie (Microsoft Press), book and CD, £49.95
inc VAT.
Using ActiveX by Brain Farrar (Que), book and
CD, £37.99 inc VAT.
Using VB Script by Ron Schwarz and Ibrahim
Malluf (Que), book and CD, £46.99 inc VAT.

●P C W D e t a i l s

upgrade and developers with better things
to do than write their own report engine will
find it invaluable.

GeoPoint 1.0
Visual Components is responsible for some
of the best ActiveX components around,
including Formula 1 and Visual Writer.
GeoPoint is a more specialist control. It

isual programming means
dropping components into your
application and making them go

by setting properties and calling methods.
That, at least, is the plan and here is an
evaluation of some recent components.
Your views matter most though, so please
let me know which components work well
or badly for you.

Crystal Reports 5.0
Crystal Reports is hard to avoid, being
widely bundled with products like Visual
Basic and Visual dBase. Seagate naturally
hopes that users of these bundled versions
will want to upgrade. Version 5.0 is the
latest release. The Standard version
supports most desktop database formats
like dBase, Access and Paradox, while the
Professional version adds full ODBC and
various native SQL formats.

There is a new interface for designing
reports, with better drawing features and
in-place OLE editing. Of most interest to
developers is the new sub-report feature,
which enables you to insert a report within
a report. Normally, this would be linked to
the main report for displaying child records,
but it can also display unrelated data.
Another new feature enables you to export
HTML for adding to web sites.

Crystal is a powerful tool and has
components for most development
languages including 16- and 32-bit Visual
Basic, Delphi and C++. But I do have
reservations. One is the sheer size of the
product: the main print engine is now over
3Mb; another is that Crystal has its own
formula language and although reasonably
capable, it is ugly and old-fashioned.
Nevertheless, version 5.0 is a significant

displays maps in MapInfo or Autocad
format. By using it alongside the separate
Legend control, you can programmatically
control the text and shading of each area of
the map. A technique called “binning” lets
you categorise data into ranges, and then
shade the map accordingly: a typical
example would be a display of sales
performance by region. The user can also

select an area of the
map by clicking, so
the application can
show related data.
GeoPoint can be
bound to a data
control to display your
data.

This useful
component is spoilt by
its presentation. There
is no printed manual
and the online
documentation is
poor. The other snag
is that the few supplied

Microhelp Fax Plus
Fax software may not
be exciting but it is
exceptionally useful, at
least until the whole
world gets webbed.

Fax Plus 2.0 is the
new 32-bit version of
Microhelp’s Fax add-
on. It is designed for
Windows 3.1 and 95,
but not NT. It consists
of several controls,
including a fax control

that handles communications, and a
FaxImage control for creating and modifying
fax bitmaps. There is a printer driver and
control which lets you send faxes by
printing from any Windows application. The
Fax Plus driver creates a fax image and
then fires a StartDoc event in the printer
control, so that your code can handle
sending the fax.

Unfortunately though, using FaxPlus is
not as easy as it should be. In part this is
because of fickle telephone lines and
diverse hardware that turn faxing into a
trouble-prone business. Other problems are
down to FaxPlus itself, which is awkward to
code and not entirely bug-free. For
instance, at the time of writing, the VBX
version is unable to correctly convert text
files to fax images. Still, it beats trying to
write your own fax driver.

Microhelp VB Viewer 2.0
VB Viewer is a product of limited ambitions.
Drop it onto a form and you can use it to
display files of around 30 different types,
including multimedia files. With text
documents you can search for text and

Hands OnVisual Programming

maps, heavily biased to the USA, are not
likely to be what you want. That means
purchasing add-on maps, or buying MapInfo
or Autocad to create your own. Making full
use of GeoPoint will be expensive.

Sax Webster or Internet Explorer?
The Sax Webster control displays HTML
documents. Now at version 2.0, it comes
as 16- or 32-bit OCX controls that you can
drop into your application.

It is easy to use. You can, for example,
display a web page by setting the PageURL
property. The main change from the first
Webster control is the HTML version
supported, now version 3.0 but without
frames. It works well and may be useful on
16-bit systems or where a small memory
footprint is required. Otherwise, on 32-bit
Windows a better option is Microsoft’s
freely available Internet Explorer 3.0. In
Visual Basic 4.0, open the Custom Control
dialogue and check Microsoft Internet
Controls. This installs the WebBrowser
component which is the HTML display part
of Internet Explorer. It is just as easy to use
as Webster, and far richer in terms of HTML
support. You will need to get hold of the
Internet Explorer object model, which is
part of the ActiveX SDK available on the
Microsoft web site.

Personal Computer World • January 1997 • 321320 • Personal Computer World • January 1997

Hands On Visual Programming

Spare parts
Tim Anderson compares components for Basic and Delphi. Plus, for those who can’t see
the wood for the trees there’s a guide to choosing a visual programming package .

V

Above The Crystal

Select Expert lets you

create custom fields

using the formula

editor

Right GeoPoint is a

neat tool with which to

analyse geographic

data, but its USA map

will not be of much

use in the UK

Left Sax Webster: it

works, but why not

use Internet Explorer

instead?

Below FaxPlus:

does it have to be

so complicated?

How to choose a visual language

Shaun Nicolson writes: “I am considering buying a visual programming package but cannot
decide which one. I am considering Microsoft’s Visual Basic and Visual C++. The language I
choose would have to produce network applications. What are the pro’s and con’s of these?”
1. Ease of use. This is where Visual Basic scores highly, since you can have a simple utility up
and running very fast. That does not mean VB will be the easiest for a large, complex application,
since many other factors will then come into play. Delphi also scores well, while Visual C++ is
hard to learn with limited visual tools.
2. Performance. This is where languages that compile to native executable code, like C++ or
Delphi, generally win over interpreted languages like VB, FoxPro or Java. Database processing
speed should be judged separately as all products use fully-compiled database engines. In
some applications, performance is not an issue, or is determined more by factors like graphics or
hard disk speed rather than the language used.
3. Power. The developer’s nightmare is to spend months on a project, only to find that some
intractable problem means that it cannot be completed with the current tool. Visual Basic is
vulnerable since some features of Windows like callback functions or custom message handling
are not available. There is usually a way around it by using a custom control or DLL but these
must be written in another language. Version 5.0 should solve some of these problems. If you
dread brick walls, C++ is the safest option, with Delphi a close second.
4. Database engine. Most languages have a native database engine, along with the ability to
connect to other databases via SQL libraries or ODBC. If you know which database you will be
working with, good connectivity is the first thing to check.
5. Availability of add-ons. This is where Visual Basic scores best. Most VBX and ActiveX controls
are designed for VB, and may not work well elsewhere. There are also plenty of code libraries for
C and C++, but native add-ons for other languages are more limited.
6. Reusable code. To protect your investment, you want to write code that will be reusable in
future projects, perhaps even on other computer platforms. This is one of the benefits of object
orientation, with Delphi scoring well, C++ fairly well, and Visual Basic less well. Best of all is Java,
which forces you to write object-orientated code and runs on multiple platforms.

p323 ➢

Hands OnVisual Programming

copy to the clipboard.
But overall, VB Viewer
is a disappointment.
One let-down is that
formatted documents
in word processor
formats are displayed
as plain text only, unlike
the much better
QuickView utility that
comes free with
Windows 95. Some
basic formats like
HTML and Rich Text
Format are not
supported at all. You
can set VB Viewer to use QuickView
viewers, but files then appear in the
QuickView window rather than embedded in
your form.

Sax Basic Engine
One way to impress users is to supply an
application with its own macro language,
like Excel or Word. The Sax Basic Engine
lets you do just that. The control has its own
IDE, so getting started takes little more than
placing it onto a form. The language itself is
compatible with Visual Basic for
Applications, with excellent support for OLE
automation and class modules.

To make Sax Basic useful, you need to
extend its language to communicate with
your application. The way to do this differs,
depending on whether you use the VBX or
OCX version. With the VBX, you can add
keywords that fire an event called AppExec.
You can then write code using Select Case
to interpret the command. The OCX version

has a more elegant solution. You write
extensions in a VB class module, and then
add them to Sax Basic using the control’s
AddExtension method. If your application
needs a macro language, Sax Basic is ideal
and a lot cheaper than licensing the genuine

VBA from Microsoft.
Visual Basic
MT Emms writes: “Using Paint I’ve created
four BMP files. Each is divided into four
sectors, the other three being left
transparent. I have written a program to
merge these bitmaps into one but the last
one dominates — in other words, the
transparent sectors are not transparent. It
was simple on the Mac and Archimedes;
surely VB should be able to cope?”

Visual Basic can cope, but it is not as
simple as it might be. The secret in this
case is to use the PaintPicture method, on
either a form or a picture box. The syntax
for PaintPicture is:
object.PaintPicture picture, x1,

y1, width1, height1, x2, y2,

width2, height2, opcode

The final parameter is a long value that
defines a bit-wise operation which is
performed on the picture as it is drawn. As
the VB manual remarks, you can find a list
of these operators in the BitBlt topic in the
Windows SDK help.

The easy way to use them is to define
them as constants in your VB application.
For example:
Const SRCAND = &H8800C6 ‘ (DWORD)

dest = source AND dest

Const SRCCOPY = &HCC0020 ‘ (DWORD)

dest = source

If you then call PaintPicture with the
SRCAND constant value, the bitmaps will
merge in the way Mr Emms requires. Yes, it
is more like programming in C than in Visual
Basic, but at least it does the job. An
example application is on our cover-

Left VB Viewer can

manage a picture, but

struggles to display

HTML

Below A language within

a language, Sax Basic

lets you deliver

programmable

applications

Merging bitmaps using VB and the SRCAND

bitwise operator

Personal Computer World • January 1997 • 323
p324 ➢

Hands On Visual Programming

mounted CD, which also shows how to
move the bitmaps across a form for an
animated effect.

Delphi departure
In October, Anders Hejlsberg, the chief
architect of Delphi, announced his
departure from Borland for the safe
pastures of Microsoft. Zack Urlocker,
another key member of the Delphi team,
has pointed out that “the architectural work
that Anders covers is complete for Delphi
97. Anders’ departure won’t affect the
shipping date or features going forward.”

Even so, Anders is widely seen as the
man without whom Delphi would never have
happened, so his move is significant news. If
anyone can knock VB into better shape as
an OO language, he must be the man.
Although Delphi is as good as ever, this
weakens the case for migration from
Microsoft tools. Personally, I hope that
Borland can sustain Delphi’s momentum, as
it still delivers the best combination of rapid

development, power and performance.
Word processing tools
Some months ago I mentioned a shareware
product called WP Tools, a native Rich Text
control for Delphi. On closer inspection, I
am impressed. The feature list is good, with
support for merge fields, graphics, tables
and hyperlinks. The range of controls has a
lightweight rich text label and a data-aware
text box as well as the usual word
processor, toolbar and status bar
components. In tests, it has proved fairly
reliable, though not entirely bug-free.

The advantage of WP Tools is that as a

native VCL supplied with source, you can
track down bugs and amend the code if you
can work out what is going wrong. Another
benefit is richer functionality. You can
access the data structures for both text and
formatting, giving a fine degree of control.
The Finder class offers sophisticated search
and replace, including formatting properties.
You can print to a canvas control in order to
implement page preview.

Performance is good, on a par with
rivals like Visual Writer, AllText and HighEdit.
If you are developing for 16-bit Windows, a
custom component is all but essential for

Dear Santa…

Sensible developers want an easy life. That means fast application building, reusable
code, blinding performance and results that run everywhere. Well Santa, it seems you
have a habit of giving with one hand and taking back with the other. Last year I asked for an end to
the OS wars: a fanciful request, perhaps, but twelve months on and Java may provide an answer.
Except that (dear Santa), we need easier, richer interface building, better performance, and decent
support for platforms which Java finds difficult, like Windows 3.1 and the Macintosh. In the
meantime, even developers who fix upon Windows have three versions with which to contend.

Forget the platform, then, let’s look at the tools. First, there’s Visual Basic, still the most
popular all-round Windows language. Last year’s wish-list included a compiler and better OO.
The signs are that VB 5.0 delivers some of that, although it will never have the elegance of
Delphi’s component library. But Office 97 and VBA 5.0 are great news for developers of Office
solutions. Thanks, Santa. And thanks for Optima ++, which is real visual development for C++
at last.

While I have your attention, there are a few things I’d like in my stocking for next year. Top of
the list has to be a faster, better-organised internet. The web is irresistible for developers, both for
technical support and as a platform in itself. But it has to get quicker and more reliable. Please.

Second, an un-present: Windows 3.1, please take it away. It’s as bad as DOS, but worse,
because people with working Windows 3.1 installations see no reason to change. I understand
their point of view, but for developers this is a disaster. Develop two versions, with all the extra
costs? Develop 16-bit only and waste all the advantages in 95 and NT? Develop 32-bit only and
forget half the market? Hmmm, did I hear someone mention Java?

Third, I’d like better tools for troubleshooting OLE, ActiveX, COM, call it what you will. It’s
funny how quickly a Visual Basic 4.0 installation produces an “object server not correctly
registered” message when you install custom controls. It means a registry problem and there’s no
easy way to fix it. This highlights a problem that will get worse if ActiveX continues to grow.

324 • Personal Computer World • January 1997

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual PCW address or as
freer@cix.co.uk

Components listed below are available from:
Contemporary Software 01344 873343; Grey
Matter 01364 654100; and QBS 0181 956 8000.
Sax Webster £110 for the 16- or 32-bit version
(£175 for both), plus VAT.
VB Viewer £110 (plus VAT)
FaxPlus £195 (plus VAT)
Seagate Crystal Reports 5.0 Standard £199,
Professional £299 (both plus VAT)
Sax Basic 3.0 Pro £345 (plus VAT)

GeoPoint 1.0 costs £195 (plus VAT) from Visual
Components 01892 834343
WP Tools is $119 to register, available via
CompuServe, or from the web at
members.aol.com/JZIERSCH/wptools

●PCW Contacts

working with formatted text, while even in
Windows 95 and NT it has advantages over
the built-in rich text control.

There are problems. This is shareware,
and the documentation is unclear.
Advanced users need to be comfortable
with such things as streaming and
pointers, as WP Tools uses them
extensively. To succeed with this product,
you must be willing to pore over the source
and not be put off by the odd mixture of
English and German comments in the
code. The extra effort and risk is rewarded
by a product that works rather well.

WP Tools is a fully-featured, shareware-rich

text control for 16- or 32-bit Delphi

DeMichillie: “It’s difficult to say, simply
because Beans is just so vaguely defined at
this point. We want to make sure that
anything Beans does works well with COM.

“Our overriding goal is to make sure that
Java developers have access to the
thousands and thousands of COM
components that already ship. ActiveX
controls and OLE controls form the most
successful component software market.”

PCW: Why have you hooked into Internet
Explorer (IE) and not made your product
browser-independent?
DeMichillie: “We’re not directly hooked into
IE. We’re hooked directly into MS’s
implementation of the Java Virtual Machine,
which currently is hosted inside IE. But
because the interpreter is itself an ActiveX
control, that VM could be hosted inside any
executable. The first reason is that the VM
offers COM support and ActiveX support,
and second, the VM supports a new set of
debug interfaces. I would personally love
Netscape to adopt the Microsoft VM so we
could cut down on the number of VMs that
are out there.”

PCW: At some future point, might Visual
J++ be able to compete with Visual C++ in
creating mainstream Windows applications?
DeMichillie: “Sure. My ultimate goal is for
large-scale development to be possible in
J++. The growth in Java will come at the
expense of C++. People have now dealt
with C++ for a number of years and have
seen some
aspects that are
more complicated
than they might
like. Java offers a
simplification that
is very appealing.
As the tools
evolve, Java will
be able to do
many of the things
that now would
need C++.

“It’s important
to distinguish
between
component
builders and
component users.
The majority of
ActiveX controls
out there are
written with C++.

VB 5.0 will also create controls. It will be
interesting to see where the component
builders go. Component users gravitate
towards VB and will eventually gravitate
towards VJ++ as these very GUI-based,
RAD-like tools appear.”

PCW: If the lowest common denominator is
not a long-term solution, does that mean
cross-platform isn’t either?
DeMichillie: “No. There will be a core
subset that’s the same everywhere. But
there will also be extra capabilities, even in
Java, where one platform has an extra class
and another doesn’t. For example, there are
a number of capability differences between
Windows and the Macintosh. Do you really
want to restrict the class library to only
those that are common? Or do you want a
class library that has the room to contain
components that maybe work on three or
four platforms, and other components that
work on a different three or four platforms?
Microsoft understands that the market is
not just Windows, but includes Macintosh
as well as Unix. But it does not follow that
you are only going to do things that can be
implemented on every platform.”

DELPHI

Anyone who writes a screensaver must
have time on their hands. Screen burn is not
common now, and in any case, perfectly
functional savers are supplied with
Windows. But they are fun! At least,

icrosoft’s Visual Java tool is now
out (see our review in “First
Impressions”). But what is the

company doing with a language that
threatens Windows desktop dominance?
Another consideration is that Sun’s
proposed Java Beans component model is
at odds with Microsoft’s ActiveX strategy.

I interviewed Microsoft’s development
manager, Greg DeMichillie, to find out more.

Visual J++

PCW: I was disappointed by the lack of a
visual environment for building an interface.
DeMichillie: “I totally agree. Our long-term
direction is towards graphical interface
builders but the reason we haven’t got this
is because of work going on with class

out a form, the layout is stored in the code
for the form’s class. There’s no separation
of the code from the data. Maybe these
points are addressable, but the larger
architectural problems are more difficult.

“I think AWT was rushed out early. A lot
of the fundamental Java technology was
ready to go; the byte codes, the compiler
and AWT got rushed. We support AWT
because there are no viable alternatives.”

PCW: How would you envisage your class
library developing? Would you implement
Windows-specific features, or go for
compatibility?
DeMichillie: “My personal view is that the
least common denominator solutions are
not ultimately compelling. We want to

Hands OnVisual Programming

expose all the richness and functionality of
Windows but we want to do so in a way
that enables us to port to other platforms.

“For example, take Direct3D and
DirectX, our multimedia systems. Those
take advantage of high-performance
Windows graphics cards, but the API is
generic enough to implement on other
systems. Or database access — there’s no
reason database access APIs would only
be on the Windows platform.”

PCW: Is Microsoft happy to see Sun
controlling the language, or would you like
to see an ANSI Java, or something like that?
DeMichillie: “We don’t necessarily need an
ANSI committee, Sun has control over what
is considered standard Java. But there are
a number of vendors working on class
libraries independent of Sun and over which
Sun has no influence.

“I would expect Sun to be keenly
involved in things like the byte code format,
but I don’t think class libraries are really one
of those areas. In our relationship with Sun,
we’re competitive in many areas and I make
no apology for that. But having said that,
there are going to be huge areas of
commonality. We don’t want to see byte
code format proliferation. I think the Java
language will evolve.”

PCW: What about the Java Beans
proposals? Do they fall into the area that is
competitive?

Personal Computer World • December 1996 • 317316 • Personal Computer World • December 1996

Hands On Visual Programming

Future threat
What’s behind Visual J++? Might it overtake C++ as a mainstream Windows application?
Tim Anderson talks to Microsoft. Plus, screensavers in Delphi, and a free MSDN sample.

The Windows 95 screensaver control panel looks slick, but increases the

work for developers

DeMichillie: Aiming for large-scale

development in Visual J++

M

Visual J++ integrates seamlessly into Windows, but will other Java players accept Microsoft's

ActiveX standards?

libraries. The question is whether the
Abstract Window Toolkit is the long-term
windowing model, or whether it will it be an
alternative? I’ll be back in less than a year
talking about a new version of Visual J++.”

PCW: What are the problems with the AWT
library?
De Michillie: “The first question is whether
AWT will continue to only do things that can
be done on 19 Unix variations plus the Mac,
plus Windows 3.1, plus NT, plus 95.
Second, AWT was developed by many
different people and that comes through in
the APIs that are exposed. There are
different designs and they don’t mesh well.
There are problems with layout, which is
entirely code-based. That means when I lay

Books for Visual
Programming

Visual J++ by Charles Wood
The best and worst thing about this book
is that it exists. It was on sale before
Visual J++ was officially released in the
UK and unfortunately it shows signs of
haste. Nearly a third of the book is a list
of Java methods — something you can
get from online help. There is only brief
coverage of ActiveX and COM and the
author refers us to his forthcoming, more
advanced book on the subject. Data
Access Objects, one of the key selling
points of Visual J++, are hardly
mentioned. The rather important resource
wizard (which lets you convert Windows
menus and dialogues to Java) is
skimmed over as being “beyond the
scope of this book”. What’s left is an
unexceptional general introduction to
Java programming. It’s not really the
author’s fault, since he was working with
a beta product. But my message to you
is, beware — the first books to come out
for a new product are often not the best.

p318 ➢

Andrew Jeffries must think so, since he
asks: “I am having a few problems writing
32-bit screensavers using Delphi 2.0,
running Win95 and NT: How do you do a
small preview in 95 without the configuration
form always appearing? How do you
implement security? How do you make the
screensaver’s name appear in NT and 95?”

The problem with screensavers is that
they are not well documented. The trusty
Software Development Kits (SDKs) for the
various Windows versions assume you will
use C or C++, and that you will link your
application with SCRNSAVE.LIB, a
Microsoft-supplied library that holds the
secrets of screensaver operation.
Screensavers do not have to use
SCRNSAVE.LIB, but avoiding it means
extra work on the part of the programmer.
Another snag is that screensavers work
differently in each version of Windows.

Screensavers are executed by Windows
in two ways: either when an interval of
inactivity causes Windows to execute the
screensaver, or when it is being configured
in Control Panel. In Windows 95,
screensavers have four modes of execution
and these are selected by command line
parameters:
■ Preview mode. When you select the
saver in Control Panel, Windows sends two

parameters, /p HWND, to select preview
mode and to pass the handle of the preview
window.
■ Configuration mode. When you click
Settings, Windows sends a parameter, /c,
to select configuration mode. The saver
responds by presenting a configuration
dialogue.
■ Password mode. When you click to
change the password, Windows sends two
parameters, /a HWND, to select password
mode and to pass the handle of the parent
window for your password dialogue.
■ Start mode. When you click Preview, or
when the saver is called for real, Windows
sends a parameter, /s, to select start mode.

So the answer to Andrew’s first question
is that the application should check the
command line parameters to see whether it
should draw in the preview window or
present a configuration dialogue. See the tip
panel (above) for how to detect parameters.

Screensaver security is treated in
different ways by Windows 95 and
Windows NT. Under Windows 95, most
screensavers call the Windows Master
Password Router. This is a DLL called
MPR.DLL which exports password
functions like PwdChangePassword. They
are usually called via another DLL,
PASSWORD.CPL, which works as an

extension to the Control Panel. Neither of
these libraries are fully documented in the
Windows SDK, but some have worked out
how to use them. The alternative is to
implement your own password checking
and throw up your own password dialogue
when the saver is called in password mode.

Windows NT is different. Passwords for
NT screensavers are the same as those
used for logging on to Windows. The
Control Panel marks a registry entry to
indicate a secure screensaver:
HKEY_CURRENT_USER\Control

Panel\Desktop\ScreenSaverIsSecure

Finally, there is the matter of the
description line. Confusingly, Microsoft has
devised three ways of identifying this.
Originally, it was the module description
entry, which had to be of the form
“SCRNSAVE : My Description.”

Under Windows 95 and NT it became a
resource string with an ID of 1 — and yes,
Delphi can use standard Windows
resources. This is the documented way; but
actually, Windows 95 does not use it. It
simply uses the long filename, less the .SCR
extension. By the way, Windows will find
any screensaver, identified by a .SCR
extension, in the Windows or System
folders, so at least installation is easy.

I’ve answered Andrew’s questions, but I

318• Personal Computer World • December 1996

Hands On Visual Programming

Want to catch command line parameters in Delphi? No problem

p320 ➢

Delphi tip: Detecting command line parameters
It is often useful to supply parameters to an application at startup. For example, if an application handles documents, then passing the name of a
document as a parameter should run the application and open the document. Delphi has two functions to make this possible. ParamCount()
returns the number of command line
parameters, and ParamStr(Index: Integer)
returns a string representing the parameter
that corresponds to Index. ParamStr(0)
always returns the application name with full
path.

The following routine detects command
line parameters and writes them to a log file:

var

iCount: integer;

iMax: integer;

F: textfile;

begin

AssignFile(F, ‘C:\TESTLOG.TXT’);

Rewrite(F);

iMax := paramcount;

for icount := 0 to iMax do

begin

Writeln(F, paramstr(icount)); {

write to log }

end;

CloseFile(F);

end;

CYAN•MAGENTA•YELLOW•BLACK
PERSONAL COMPUTER WORLD

do not mean to suggest that writing
screensavers is easy. The main problem is
poor documentation, especially if you are
not using Visual C++. A hunt around
CompuServe or the web will throw up
Delphi examples and help files created by
other frustrated users.
■ Psst! Want Delphi cheap? Borland is
bundling Delphi 1.0 with a book, Teach
Yourself Delphi in 21 Days, and offering it for
just £34.99 (plus VAT). A similar package for
Delphi 2.0 costs around £69. Borland says
the packs are aimed at “students, hobbyists
and programming beginners”.

VISUAL BASIC

The web is buzzing with talk of VB 5.0, now
likely to be released early in 1997. There’s
even a web site devoted to VB 5.0 news

and comments from anonymous beta
testers. If the rumours are even half true, it
looks like both performance and features
will be hugely boosted.

In the meantime, Aaron Hodgson has
contacted me with a question about Visual
Basic: “I am trying to write a terminal
program using SAXCOM.VBX. The terminal
works fine but I would now like to add an
automatic logon sequence, where the
logon details are read from an initialisation
file when the remote computer on the other
end of the modem prompts the user to log
in. If the answer to my questions involves
complex things like DLLs please explain,
because I don’t know the first thing about
using DLL files with Visual Basic.”

Reading data from an initialisation file is
not difficult. You can use API functions like
GetPrivateProfileString, which uses a
standard Windows .INI file. Searching the

free MSDN sample on our cover CD-ROM
will soon pull up an example. Alternatively, if
you prefer native BASIC, there are the
neglected statements like Open, Print# and
Input#. These are well-documented in the
Visual Basic manuals, with examples.

Microsoft Developer Network
By special agreement and arm-twisting,
we’ve included the MSDN starter edition
for Visual Basic on this month’s cover-
mounted CD-ROM. I get regular enquiries
about MSDN, and now you can try it for
yourself.

Although this is only a starter edition,
there is 125Mb of documentation, tips and
tricks included, so no-one need feel short-
changed. It even includes two complete
books: Petzold’s classic Programming
Windows 3.1, and BrockSchmidt’s tome
explaining OLE 2. Much of the information
covers VB 3.0 as well as 4.0.

The best thing about MSDN is its fast
searching. For example, you might want to
know how to set a window to be always on
top. Click search, enter “Always on top”,
and then Run Query. A moment later,
MSDN presents 273 topics ordered by
likely relevance. Article 7, “Solving the 15
most common mysteries”, has a section
explaining exactly how to do it.

A subscription to the full MSDN comes
at several levels and prices. Information is
available on the CD, or call Microsoft for
details.

■ See next month’s PCW for a review of
the new Crystal Reports 5.0, and
components from Sax software and
Microhelp.

320• Personal Computer World • December 1996

Hands On Visual Programming

(Left) Free on our

cover-mounted CD:

the Microsoft

Developer Network

starter edition is a

mine of VB and

Windows

information

(Below) MSDN

query results are

displayed in order

of likely relevance

and clicking a title

in the list displays

the selected article

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual PCW address, or at
freer@cix.co.uk
or www.cix.co.uk/~tim-anderson/

Learn Borland Delphi in 21 Days £34.99 (plus
VAT), or £69 (plus VAT) for the Delphi 2.0 version.
Borland is on 01734 320022.
Visual J++ is by Charles Wood, ISBN
07615-0814-7. £32.99 from Computer Manuals,
0121 706 6000.
Microsoft Developer Network is on
0800 960279.

●PCW Contacts

Cover Disk

Files from last month’s Hands On Visual
Programming were, unfortunately, left off the
CD, but they can be found on this month’s
cover disc.

boundary between document and
application. The final consideration is the
sheer momentum of cross-industry
support. For anyone planning a new
software project, an HTML front-end must

be a strong contender, particularly for
database applications.

Secondly, users like browsers. Maybe
the network computer will catch on, or
maybe PCs running Windows will remain
dominant. Either way, the browser is going
to be the primary user interface. Once users
discover they can manage files, run
applications, get help and surf the web, all
from the comfort of their browser, they will
be reluctant to learn other kinds of interface.
For developers, that means creating
applications which work well in that context.

Thirdly, networks are intranets.
Company intranets solve a lot of problems.
Publishing documents, email, and database

hould you care about the
internet? Over hyped and under-
powered, at least for those

suffering modem connections, it would be
easy to dismiss it as being of little relevance

for most developers. Easy, but wrong.
Here are three reasons why, to keep

your skills marketable, you have to be web-
savvy:

Firstly, HTML is here to stay. It is ironic
that Hyper-Text Mark-up Language,
designed to add a few simple formatting
options for web display, is evolving into the
new standard for rich-text documents. The
closest previous contender was RTF, or
Rich Text Format, used internally by the
Windows clipboard. But HTML does forms
as well as documents, can host Java
applets or, in its Microsoft incarnation,
ActiveX controls, and is scriptable with
JavaScript or VB Script. It blurs the

access are all comfortably handled by an
intranet. If you buy a new server operating
system, you are likely to find web-server
software bundled with it, just as workstation
software comes with a browser pre-
installed. It is irresistible and companies that
have not yet done so will inevitably install
intranets alongside their Notes, Exchange,
client-server or any other systems. Anyone
developing software for use over a network
should make it intranet-friendly.

So there are good reasons why software
companies are falling over themselves to
produce web software, and why you will
see increasing coverage of web software
tools in this column. The catch is that chaos
is heading our way, with wars over
standards, languages, objects and web
servers. But we are all web developers now.

Visual J++ preview
A late beta of Microsoft’s Java development
tool has arrived in time for a brief preview.
The package is hosted by the same
Developer Studio used by Visual C++ and
shares some of its tools. If you are
comfortable with the Visual C++
environment, you will find the transition to
Java easy. Each project can be viewed in a
hierarchical class view, or file by file, and
online documentation is fully integrated.

A clever touch is the resource wizard
which converts compiled resources into
equivalent Java code. There is still the
problem, inherent to Java, that the Abstract
Window Toolkit (AWT) Java class library
does not support the range of controls
available under Windows. Java projects can
be either applets, hosted by a browser, or
standalone applications which are executed

online and flashes when data is sent or
received. When the mouse is over the icon,
a tooltip shows more detailed information, in
this case the number of bytes received.
Double-clicking opens a dialogue of further
options.

All this is done through the
Shell_NotifyIcon function. The declaration in
VB is:
Declare Function Shell_NotifyIconA

Lib “SHELL32” _

(ByVal dwMessage As Long, lpData

Hands OnVisual Programming

from the command line using the supplied
JVIEW tool.

Microsoft is licensed to produce the 32-
bit Windows reference version of the Java
virtual machine. The key point of interest is
the integration between Java and COM, the
object model behind OLE. This enables you
to treat Java applets as COM objects and
vice-versa. Visual J++ has a type library
wizard which creates Java .CLASS files as
an interface to ActiveX controls or OLE
servers.

You can also expose Java interfaces as
COM interfaces and use a tool called
JavaReg to register the Java class as an
OLE object. This means the Java class
becomes accessible to OLE clients like
Visual Basic or Delphi, as well as in web
applications. Another interesting point is
that when a Java applet is running in
Internet Explorer, all its public methods and
variables automatically become available to
Visual Basic Script or JavaScript for
scripting, as if the Java applet were an
ActiveX control. The snag is that this
integration only workd on platforms which
implement COM, which essentially means
Windows.

Visual J++ is a good Java development
tool, whether or not you want the OLE
features. Like Visual C++, it is not a visual
environment in the same way as Visual
Basic, Delphi or Optima. Borland’s Latte
promises something more along those
lines. As proof that Microsoft is serious
about Java, though, it is more than enough.

Visual Basic and the System Tray
Sagar Shah writes: “I recently moved up to
Visual Basic Pro 4.0 (32-bit). While creating
some small utility applications, I ran into a
problem with the system tray on the
taskbar. I cannot find any entries in the
manual which tell me how to add to the
system tray. I found the function
Shell_NotifyIcon in the WIN32APTI.TXT file,
and using this function I can add and delete
a blank space but nothing more.”

The system tray is a corner of the
taskbar reserved for status display, in
Windows 95 or NT 4.0. It is also called the
taskbar notification area. Typically, a utility
installs itself as an icon in the system tray,
which automatically updates. For example,
if you install a modem, a modem icon
appears in the system tray when you go

Personal Computer World • November 1996 • 309308 • Personal Computer World • November 1996

Hands On Visual Programming

All together now…
We’re all web developers now, says Tim Anderson, who previews Visual J++, deals with
Delphi components, lists VB Script limitations, and serves up the Windows 95 system tray.

S

As NOTIFYICONDATA) As Integer

The dwMessage parameter is one of
three constants which tell the system to
add, delete or modify an icon in the system
tray. The second parameter points to a
record type which can include an icon
handle, a string for the tooltip, a window
handle and an application-defined message
identifier. The idea is that you define a
message handler in your application which
responds when the user clicks the icon. The
message parameters indicate what type of

Visual Basic

Visual Basic Script —
what it does not do

Now that Microsoft Explorer 3.0 is
around, VB Script has become useful,
particularly on an intranet where you can
ensure compatible browsers. Microsoft
has also clarified its limitations, some of
which are for security reasons while
others are merely shortcomings of the
language. Here are some of the things VB
script cannot do:

■ No data access: data access from a
web page needs either CGI scripting or
special features of particular web servers.
■ No debugging: you cannot even step
through code.
■ No control arrays.
■ No classes.
■ No OLE automation except the OLE
interface to Internet Explorer itself.
■ No file operations.
■ No types, other than variants.
■ No access to system objects like the

printer or the clipboard.
Many of these limitations

can be overcome by using
ActiveX controls, which have
unrestricted access to the
system. A rogue ActiveX
could cause lots of problems,
which is why system
administrators are watching
nervously to see if the digital
signature scheme for
verifying ActiveX controls is
successful in preventing
viruses.Visual J++

looks just like

its C++

partner and

creates

cross-

platform Java

applications

Visual Basic Script is fine for scripting, but with major

limitations

VB can easily

control icons

in the system

tray, but

responding to

mouse clicks

is more

difficult

p310 ➢

work at all. Another problem is getting at
certain VBX properties, such as string
properties which Delphi converts to Pascal
string types, cheerfully truncating them if
needs be. OCX controls present a different
set of problems, but since there are several
different levels of OCX compliance,
compatibility is by no means guaranteed.
Finally, you cannot easily build either VBX or
OCX components in Delphi. Borland has
considered providing an OCX wizard to
convert Delphi native components, but so
far it has not emerged.

To avoid the problems with VBX and
ActiveX you can extend Delphi’s Visual
Component Library either by coding your
own custom components or obtaining add-
ons from a third party. Coding your own is
fairly easy, although harder than straight
Delphi programming. The advantage of
native components is full compatibility and
the most efficient interface between the
component and the rest of your application,
and therefore the best performance. The
disadvantages are that the component can
only be used in Delphi, and if you have
several applications using the same
component, inefficient use of disk space
because the whole component is compiled
into every executable you create. If this

becomes a major problem, you can move
parts of the code into dynamic linked
libraries so it is shared between
applications.

Frankly, in most projects a VCL
component is preferable where available.
Availability is the problem, but the situation
is improving. Delphi 2.0 includes the
QuickReport component which is vastly
more efficient than wheeling in ReportSmith.

Crystal Reports 5.0 also comes with a
VCL, although the huge Crystal DLLs do not

compare with QuickReport for efficiency.
Other leading component vendors have
been slow to support Delphi but may find
themselves losing sales to smaller upstarts
as a result. A good example is WPTools, a
VCL-implementation of a rich text edit
control. This one works in 16-bit Delphi as
well as Delphi 2.0 and is not just a wrapper
for the Windows 95 common RTF control: it
supports large documents, fonts, styles,
images and hypertext links, and full source
is available to registered customers. Look
out for a full assessment in a future article.

Delphi 2.0 16-bit?
Borland is considering an update to 16-bit
Delphi, and is using the web to survey
developers about what features they would
like and whether they would buy it. TI would
prefer to see resources go to developing
Delphi for 32-bit Windows. There is still a
big market for 16-bit development, but I
sense that the tide has turned. Companies
have both NT 4.0 and Windows 95 from
which to choose and web developments
favour 32-bit Windows. It is too late for 16-
bit Delphi 2.0, and Borland risks getting it
wrong again.

Personal Computer World • November 1996 • 313

Hands OnVisual Programming

mouse event has occurred. Your
application window can be hidden so that it
only pops up when needed.

Unfortunately, not all this functionality is
available from Visual Basic. You can easily
make an icon appear and set the text for
the tooltip. But since VB has no way to
intercept custom messages, you cannot
make a dialogue appear when the user
clicks the icon.

The way round this would be to use a
control like MessageBlaster that adds this
feature to Visual Basic. If you are content
with more limited features, you can easily
create an application like the example on
our cover-mounted CD.

Note that you need to include an icon
handle in the NOTIFYICONDATA record.
You can obtain this in several ways: one is
to use the icon or picture of a form or
control; another is the LoadIcon API
function; or there is the LoadResPicture
function which works on icons stored in a
resource file. The technique used in the
example is to call LoadPicture to place an
icon into an invisible image control, and
then use its picture property to obtain an
icon handle.

SELECT for Visual Basic
Bridging the gap between those who
theorise about business object models and
actual working systems is no trivial matter.
SELECT is a set of tools based on object
models developed by J Rumbaugh and Ivor
Jacobson. There is a modelling tool, from
which you can generate both SQL code and
a set of Visual Basic forms and classes.
There is also an automatic documentation
feature that works with MS Word. SELECT
needs the VB Enterprise edition, while other

versions work with Forte and C++.
Unlike other tools which you can pick up

and drop as required, committing to
SELECT is almost a way of life. It replaces
the free-and-easy VB style with a rigorous
development process.

The best advice to those considering a
system such as this is a careful evaluation
procedure including full consultation with
others actually using the system.

Using components in Delphi
When it comes to components, Delphi
users have a difficult decision. The most
obvious solution is to use VBX controls in
Delphi 1.0, or OCX/ActiveX in Delphi 2.0.
These component types are abundant,
mainly thanks to the popularity of Visual
Basic, and now that ActiveX plays a key role
in Microsoft’s internet strategy, you can
expect them to proliferate.

Often, the component you want is only
available in VBX or ActiveX form. The
second advantage of these Microsoft
standards is that they can be hosted by
several different tools. For example, a VBX
can be used by Delphi, Visual Basic and
Visual C++, provided you use the 16-bit
versions.

Unfortunately, these benefits are
balanced by several problems, one of which
is compatibility. Some VBX vendors assume
that their controls will be hosted by Visual
Basic and that not all their features work in
Delphi. In particular, data-bound VBXs lose
their data-aware functions in Delphi, if they

310 • Personal Computer World • November 1996

Hands On Visual Programming

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual PCW address or as
freer@cix.compulink.co.uk

Visual J++ (price not yet announced) from
Microsoft 0345 002000

WP Tools is shareware from Julian Ziersch,
100744.2101@compuserve.com

SELECT VB Enterprise Edition £2,995.
SELECT Software 01242 229700

Rapid Development by Steve McConnell,
(Microsoft Press). £32.49 from Computer Manuals
0121 706 6000

●PCW Contacts

A book for visual programming

■ Rapid Development by Steve McConnell

Software projects are notorious for going wrong. The concept of rapid application development

seems to offer a solution by using tools that dramatically cut programming time, but there are

still plenty of problems.

Whereas his previous book, Code Complete, studied the detail of coding and debugging an

application, this one analyses the whole development process, exploring common reasons for

failure and offering tips for a successful strategy.

Really, the book is mis-titled. It is not only about rapid development, but any kind of software

project. If your emerging application is suffering from feature-creep, unrealistic schedules, tools

that do not work, problems integrating work from different team members, heavy overtime and

low morale, then McConnell will tell you why, how to rescue the project, and how to avoid

repeating history next time around.

Although the author does not focus on specific languages, there are some good

observations about visual programming. The key advantage of products like Visual Basic and

Delphi is reduced coding time, but there are associated risks. The main ones are over-estimated

productivity savings, failure to scale well as the project expands, and the encouragement of

sloppy programming. The answer is to be aware of the limitations of a particular tool and to

allow time for working around them. Another key point is that the larger the project, the less time

is spent on coding as opposed to other elements like designing and testing. Therefore, visual

tools yield their biggest benefits on small projects.

There are plenty of case studies and examples in the book, although it is a shame that most

are invented rather than real-life projects. It is repetitive in places and at times dispiriting, as the

author tends to focus on how not to do things. But this is excellent reading for developers,

especially those who work in a team.

Delphi Component Options

Component type Pros Cons

VBX, ActiveX, OCX • Widely available • Not always compatible
•Shared between applications • Cannot easily create in Delphi

• Version control problems

VCL • Best performance • May not be available
• Can create or customise • Not shared between applications
in Delphi
•No version control problems

DELPHISELECT for

Visual Basic

Enterprise: not

for the faint-

hearted

Delphi components

are installed by

rebuilding the

component library.

But which

component type is

best?

A third-party

has produced a

full-featured

rich text control

as a native VCL

component

p313 ➢

but will be before the end of the year. It is a
cross-platform product, with versions
initially available for OS/2 and Windows NT.
Windows 95 compatibility will follow, and it
will be possible to deploy Visual Age for
Basic applications on AIX.

With Visual Age for Basic, IBM seems to
have several goals in mind. One is to make
OS/2 a more appealing platform, by
introducing an enormously popular
language and making it easy to convert
existing Visual Basic applications. It is also
part of IBM’s attempt to establish its
preferred object model, SOM, on the
Windows platform. Visual Age for Basic will
support SOM, OpenDoc and OCX. Finally, it
is a tool for IBM’s DB2 database, with
integrated access using embedded SQL
and the ability to create stored procedures
and user-defined functions.

As a DB2 add-on or an OS/2 utility,
Visual Age Basic looks likely to succeed,
but whether it will challenge Visual Basic
itself on the Windows platform looks more
doubtful. Judging by the beta, system
demands are as high or higher, with 24Mb
RAM recommended for development. Like
VB 4.0, it is an interpreted language and
unlikely to win on performance. It is broadly
compatible with Visual Basic, but that
compatibility does not extend to data
access code. On the plus side, IBM
promises a proper implementation of
inheritance and, should SOM catch on,
Visual Age Basic will be very useful. Look
out for a full review in due course.

Back in the seventies, a partnership
between two Frenchmen, one a computer

ll programming is visual now. The
quick riposte is that most
programming tools are resolutely

procedural with an array of visual tools to
disguise the fact. But there’s no doubt that
the likes of Visual Basic and Delphi have
won the argument about how to program.
That leaves a difficult choice for a column
like this one. With so many visual tools out
there, should it become a pot-pourri of
miscellaneous programming news and tips?
Or should it revert to being product specific,
dedicated to Visual Basic which remains the
most popular Windows development tool?
A further complication is that third-party
components in the form of VBX or
OCX/ActiveX controls can be hosted by a
variety of different programming tools.

In response, Visual Programming Hands
On has been expanded and will be divided
into three parts. The first will cover visual
programming generally, including
components that are useful in a wide range
of products. The other two sections will
cover Visual Basic and Delphi respectively,
so that users of the two most popular
general-purpose visual languages will
always find something specifically for them.
Much of the material in this column is a
direct response to your comments and
queries, so please keep them coming to
me, by email or at the usual PCW address.

IBM’s new BASIC
At the time of writing, IBM is in open beta
with its version of Basic, an addition to the
VisualAge product family. The press release
refers superciliously to Basic as a “scripting
language”, but nevertheless IBM’s release is
a great testimony to VB’s influence. The
final release date has not been announced,

scientist and one a logician, produced a
new language called Prolog (short for
Programming in Logic). Unlike procedural
languages, which give step-by-step
instructions to the computer, Prolog does
problem solving by inference and recursion.
To give you a flavour, here’s a complete
program that looks up a telephone number:

PREDICATES

nondeterm tel_no(symbol,symbol)

CLAUSES

tel_no(“Bill”,”0123 4567”).

tel_no(“Jane”,”0765 4321”).

GOAL

tel_no(“Jane”, Number).

In this case the output is:

Number=0765 4321

1 solution

Prolog’s particular strength is in artificial
intelligence and expert systems. It would be
a good choice for an application that
assessed insurance risks or for a program
to create timetables for schools, trains or
airlines. In the late eighties, Prolog was
marketed by Borland as Turbo Prolog,
following which rights reverted to the Prolog
Development Center (PDC). PDC has now
come up with Visual Prolog, a graphical
development environment for Windows (16
and 32-bit) and in due course for OS/2.
Visual Prolog includes layout editors and
Code Experts, which allow you to create a
graphical interface by using drawing tools
and responding to dialogs. It works by
means of a set of Prolog extensions called

p314 ➢

Hands OnVisual Programming

the Visual Programming Interface, a
framework for controlling a graphical
interface.

PDC argues that Prolog’s clarity and
efficiency makes it not only a tool for
building expert systems, but a challenge to
more popular products like Delphi and
Visual Basic. It compiles to native
executables and performance is impressive.
ODBC is supported for database work. A
particularly nice feature is the integrated
help authoring system, which makes it easy
to create and edit online help from within
the development environment.
Nevertheless, the unfamiliar language
combined with lack of support for VBX or
OCX components, or OLE in any form, will
ensure that Visual Prolog remains a niche
product. For projects which lend
themselves to a Prolog implementation,
though, Visual Prolog is mightily impressive.

Trouble with menus
VB programmer Ian Moss writes with a
menu problem. “I can add and remove
items from indexed menus, no problem.
What I want to do is create menus that have
submenus. I am adding menu items that are
divisions of a basketball league. Each
division has teams associated with it. I read
the division names from a database, and
create the correct number of menu items. I
want each division menu to have a sub
menu containing the teams in that division.”

Here is a classic Visual Basic problem.
Ian needs to create menus that have
submenus, at runtime. VB’s menu editor is
a doddle to use. Creating menu items at
runtime is easy using a control array and the
Load command. But creating submenus at
runtime is not in the book. It can be done,
but only by trickery. It is another reason why
serious VB programmers need Daniel
Appleman’s book, Visual Basic
Progammer’s guide to the Windows API
(see review).

Using the Windows API, you can modify
and add to the menus in a VB application.

Personal Computer World • October 1996 • 313312• Personal Computer World • October 1996

Hands On Visual Programming

Into the Visual Age
Tim Anderson looks at IBM’s plans for VisualAge Basic, finds a new visual implementation
of Prolog, and introduces new sections for Visual Basic and Delphi.

A

Fig 1 VB Tip: Creating submenus at runtime

Private Sub Command1_Click()

Dim mainmenuhandle As Long
Dim DivMenuHandle As Long
Dim DummyMenuHandle As Long
Dim NewMenuHandle As Long

Dim lRetVal As Long
Dim spareID As Long
Dim iCount As Integer

‘ this routine appends a new submenu
‘ to the first menu on the form

‘ get the menu handles
mainmenuhandle = GetMenu(Me.hwnd)
DivMenuHandle = GetSubMenu(mainmenuhandle, 0)
DummyMenuHandle = GetSubMenu(mainmenuhandle, 1)

‘ Now load two menu items into the
‘ dummy menu. We use these to provide
‘ ID’s for the new submenu items.

‘ count the existing items in the dummy submenu
iCount = GetMenuItemCount(DummyMenuHandle)

‘ load two new ones
Load Me!mnuDummyArray(iCount)
Me!mnuDummyArray(iCount).Caption = “Team one”

Load Me!mnuDummyArray(iCount + 1)
Me!mnuDummyArray(iCount + 1).Caption = “Team two”

‘ Create the new submenu
NewMenuHandle = CreatePopupMenu()

‘ Add two items to the submenu
spareID = GetMenuItemID(DummyMenuHandle, iCount)
lRetVal = AppendMenu(NewMenuHandle, MF_ENABLED Or
MF_STRING, spareID, “Team one”)

spareID = GetMenuItemID(DummyMenuHandle, iCount + 1)
lRetVal = AppendMenu(NewMenuHandle, MF_ENABLED Or
MF_STRING, spareID, “Team two”)

‘ Append the new submenu
lRetVal = AppendMenu(DivMenuHandle, MF_ENABLED Or
MF_POPUP, NewMenuHandle, “Division added at runtime”)

End Sub

Visual Prolog

Visual Basic

For this routine to work, you will need to use
the VB menu editor to create a menu with two
toplevel items. The first (Divisions) must have
at least one sub-item, to make it a pop-up
menu in API terms. The second (Dummy) must
also have a sub-item, with an index value set,
to make it a control array. I’ve named this
mnuDummyArray. Finally, give the second
toplevel item an empty string for a caption, and
an enabled property of False. The user will
never see the dummy menu.

Several API functions are included and
these must be declared. The code below is for
32-bit Visual Basic, but with small
amendments will work in 16-bit as well. Code
to respond to clicks on the new menu items
should be placed in the

mnuDummyArray_Click event, using the Index
parameter to detect which one was chosen.

You can create VB submenus at runtime, with

a little help from the Windows API

Fig 3 DragDrop code

procedure TForm1.DragDrop(var Message: TWMDropFiles);
var
i, numfiles: integer;
lpzFileName: PChar;
begin
numfiles := DragQueryFile(Message.Drop,Word(-1),nil,0);
ListBox1.Items.BeginUpdate;
lpzFileName := strAlloc(101);
for i := 0 to numfiles do

begin
strPCopy(lpzFilename,’’);
DragQueryfile (Message.Drop,i,lpzFileName,100);
ListBox1.Items.Add (StrPas(lpzFileName));
end;

strDispose(lpzFileName);
ListBox1.Items.EndUpdate;
DragFinish(Message.Drop);
Message.Result := 0;
end;

Sending, trapping, and creating custom
messages are excellent techniques for
creating powerful and flexible applications.

As an example, here’s a couple of tips
from Ian Briscoe (thanks for the tips, Ian - a
book token is on its way). The first is for
displaying hints for the System menu. The
system menu does not appear in Delphi’s
menu editor, but you can still display hints
by trapping the WM_MENUSELECT
message. In the private section of a form
declaration, add the following:

procedure SysMenuHint (var Message:

TWMMenuSelect); message

WM_MENUSELECT;

Note the message directive at the end of
the declaration that tells Delphi this is a
message handler. Fig 2 is the code for the
procedure.

Ian adds, “Note that the menu selected
is not the System menu. We call the
inherited menu handler to allow Delphi to
add its own hint functionality. We don’t set
the caption of the panel directly, but go
through Delphi’s own methods to display
the hint, allowing you to still catch the
OnHint event to add any additional coding.”

The second tip is for trapping a drag-
and-drop message from File Manager or
Explorer. This is a neat trick that enables
users to drag files into your application, for
example to open documents in a text
editor. First, add ShellAPI to the uses clause
of the main form. Then declare the following
message handler:

Procedure DragDrop (var Message:

TWMDropFiles); message

WM_DROPFILES;

Now in the FormCreate procedure add:
DragAcceptFiles(Form1.Handle,

True);

Fig 3 is the code for the DragDrop
procedure. This example just displays the
filenames in a listbox, but your code can do
whatever you want with the files.

Personal Computer World • October 1996 • 315

Hands OnVisual Programming

An entry with a submenu is not a normal
menu item, but the top level of a pop-up
menu, so you use the CreatePopupMenu
function to return a handle to a new pop-up
menu. Then AppendMenu is used both to
add items to the submenu, and finally to
add the pop-up menu to the existing menu
structure.

The new menu will look pretty, but won’t
execute any code without further work. The
problem is that VB creates menus with a
two-stage process. When you design a
menu, or change menu properties with VB
code, you interact with an internal VB menu
object. Visual Basic uses this internal object
to generate the correct API calls that make
the menu work. If you call the API directly,
bypassing the internal VB object, VB doesn’t
know about the changes you have made.

When you click on a menu item,
Windows sends a WM_COMMAND
message to the application which includes
a menu ID. This ID identifies the menu item,
enabling the correct code to be executed. If
you add a menu item using the API, VB will
not recognise the ID, so the message sent
when that item is clicked is ignored.

The workaround is to set up a dummy
menu, where the toplevel item is disabled
and has no caption, and which contains a
control array. Note that the visible property
must be True, otherwise the following tip will
not work. When you need to add a menu
item using the API, your code must first add
an item to this control array. Then you can
steal the ID for the new menu item, using

the API call GetMenuItemID, and use it to
create the new API menu item. When the
user clicks on the menu you have created,
VB is tricked into thinking that the item in
the dummy menu has been selected, and
will execute code in its click event. Fig 1
contains example code.

I must emphasise that this procedure is
only necessary if you must create new
submenus at runtime. Adding items to an
existing menu or submenu is no problem.
Another possibility is to create all your
submenus at design time, and set their
visible property to false, so that your code
can reveal them as required. Finally, why

not rethink the user interface completely?
Ian’s example application might be better
served by an outline control, displaying
divisions and teams in a tree view.

Delphi Gets the Message
One great thing about working with Delphi
is how easy it is to trap Windows
messages. Just to recap, much of Windows
functionality is a result of system messages
being sent to individual windows. For
example, moving the mouse sends a
WM_MOUSEMOVE message to a window.

314 • Personal Computer World • October 1996

Hands On Visual Programming

Visual Basic Programmer’s Guide to the Win32 API

Noted VB guru Daniel Appleman
has issued an update to his
popular API guide for Visual Basic
users. This is no cursory update.
The book has expanded by 500
pages and is more brick-like than
ever. Even so, the author
apologises for not including every
Win32 API function. It is not his
fault as the API is now so huge that
to include everything would have
made the book unmanageable. He
correctly observes that once you
know how the API ticks, it is not
too hard to learn new functions
and call them from VB.

Most serious Visual Basic
developers will want this book. It
accomplishes two things. First, it
documents most API functions
from a VB perspective, giving the
correct declaration and explaining
the particular benefits and pitfalls
of each one. Second, there is

masses on information on how
Windows hangs together,
including such topics as window
handles, messages, co-ordinate

systems and memory
management. There’s no other
book like it, and Appleman does
the job well.

I do have one nagging doubt,
and that is why we need this book
when Visual Basic should be
powerful enough without it. The
truth is, the deeper you get into the
API from VB, the stronger the case
for switching to a more suitable
language such as C++ or Delphi.
To get the best from VB, you need
to be using it mostly within its
natural limits, otherwise the
benefits of RAD disappear under
an avalanche of obscure code. The
answer is to use this stuff with
discretion, to solve problems that
would otherwise leave you stalled.
One example is optimisation. For
instance, Appleman demonstrates
a routine for searching listboxes
that is five times faster than pure
VB code. For users of your
application that could make all the
difference.

Fig 2 Code for message handler

procedure TForm1.SysMenuHint (var Message: TWMMenuSelect);
begin
if (Message.MenuFlag and MF_SYSMENU) = MF_SYSMENU then
begin
case Message.IDItem of
0: Application.Hint := ‘’;
SC_CLOSE:
Application.Hint := ‘Closes the window and quits the application’;
SC_MAXIMIZE:
Application.Hint := ‘Expands the windows to fill the screen’;
{...etc. Look up the constants in WINAPI.HLP under WM_SYSCOMMAND}
else
Application.Hint := ‘’;
end;
Message.Result := 0;
end
else
inherited;
end;

DELPHI

Visual Prolog combines the Prolog language with a capable set of

visual tools

All done with messages: this Delphi application displays hints for the System menu, and accepts

drag-and-drop files from Explorer or File Manager

Tim Anderson welcomes your Visual
Programming comments and tips. He can be
contacted at the usual PCW address or at
freer@cix.compulink.co.uk, or
http://www.compulink.co.uk/~tim-anderson/

Visual Basic Programmers’ Guide to the Win32
API is by Daniel Appleman. ISBN 1-56276-287-7.
£46.99. Contact Prentice Hall, Tel. 01442 881900

Visual Prolog costs £477 from PDC UK, Tel.
01603 611291

VisualAge

Basic brings

easy

application

development

to OS/2 at

last

●PCW Contacts

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 0 3
P E R S O N A L C O M P U T E R W O R L D

S E P T E M B E R 1 9 9 6

from Visual Components, best
known for the Visual Develop-
ers Suite. Again it is a VB data-
base application, but is a
standalone program rather
than an add-in. The idea is that
all your re-usable routines are
stored in the CodeBank data-
base. When you want to make
use of them, you ask Code-
Bank to create a new, empty
.BAS module, and add the
required routines. Finally, the
generated module is added to
your Visual Basic project in the
normal way.

CodeBank has a tidy,
effective interface. Proce-
dures are shown in a tree, which can be
sorted by category, author, name or type
(procedure or function). Each routine can
have substantial information stored with it,
including short and long descriptions, an
example of use, maintenance history, and
links to any declarations or other routines
that are required. Codebank is intelligent
about these links: if a particular procedure
makes use of a user-defined Type, the
generated Basic module will include the
declaration as well as the procedure itself.

The bonus is that CodeBank includes a
library of 160 routines, with the emphasis
on economy and performance. Many of
them use VB code to emulate what might
normally be done with a VBX or OCX con-
trol: for example, the outline used by
CodeBank is drawn entirely using VB
code. Another example is a procedure
which shows text next to a control by print-
ing directly to the controls’ container,
avoiding the need for a conventional label
control. These routines are impressive, let-
ting you create sophisticated graphic
effects without the perfor-
mance and size penalty of
adding lots of components.
Anyone interested in efficient
VB coding will enjoy them.

CodeBase 6.0
If the idea of distributing
applications on a single flop-
py disk appeals to you, you
will like CodeBase. Very
small executables can be
built in C, while VB or Delphi
applications require a 500Kb
runtime DLL, much smaller
than either JET or the Bor-
land Database Engine. Well-
established in the xBase
community, CodeBase is a C
library for handling database

32-bit DLL is available on
request. Pascal documenta-
tion is more complete than in
previous releases, but
examples are in the form
of short routines rather
than a full demonstration
application.

No effort has been made to create Delphi
units or components to simplify use of
CodeBase, which is a missed opportunity,
bearing in mind the large number of
migrants from Clipper, dBase and FoxPro
now using Delphi. Successware, with its
xBase product called Apollo, has done more
to appeal to the Delphi community.

It is worth persevering, for the sake of
fast performance on modest hardware, as
long as you are willing to get your hands
dirty with mysterious functions like
“relate4createslave” and “code4initundo.”
While it is fine for both single and multi-
user databases, it is harder to see the
benefits for client-server work, unless you
have an existing CodeBase system to
upgrade. It is competing with many other
advanced SQL-based systems, as well as
another Sequiter product, the ODBC-
compatible CodeSQL.

Code Complete makes a splash
Seasoned VB developers will know the
story. A bemused user calls and says, “I

tried to run your appli-
cation. A message
came up saying,
‘Wrong version of
SOMESTUFF.VBX’,
and then it quit.” Win-
dows is highly vulner-
able to this kind of
problem, and increas-
ing use of OLE, which
has its own myriad
support libraries, will
only make things
worse.

Microhelp has a
solution in the form of
the Splash Wizard.
From its name, you
would think this is just
a way of creating

tables in .DBF format, which are either
FoxPro, Clipper or dBase IV compatible.
Sequiter now provides versions for C++,
Visual Basic and Delphi. The new version
bundles the lot onto a single CD-ROM,
which is convenient if you use more than
one of these languages.

Other significant changes in version 6.0
are limited 32-bit support, the addition of
client-server support via a new CodeBase
database service application, and new
transaction processing functions that will
be useful in both standalone and client-
server applications.

There are rough edges in this product.
Although a 32-bit DLL is supplied for Visual
Basic, the data-aware CodeControls are
VBX only. An error in one of the main VB
examples prevents it from running. Delphi
support is currently only 16-bit, although a

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 0 2
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 6

One of the keys to developing efficient,
robust software, especially if you

want to do so quickly, is to re-use code.
Ways to do this include creating Delphi
components, C++ classes, or using VBX
or OCX controls in Visual Basic.

Dynamic Link Libraries (DLLs) are the
foundation of Windows, and a great way
to create functions that you can call from
any programming language. You cannot
create old-style DLLs with VB, but version
4.0 introduced OLE DLLs, allowing VB
code to be called from other applications
via OLE automation.

These are good ways to re-use code,
but there is still a place for the oldest and
crudest technique, which is cutting and
pasting routines from one application to
another. Programmers are lazy and will
happily ransack old but working code to
save time and avoid errors.
For example, a common requirement in
VB database applications is to export a
query as a .DBF table, the most universal
format for mail merge, or transfer to other
applications. JET’s SQL supports a
SELECT ... INTO clause that creates a
new table from a query. If the database in
question is an Access MDB, this only
creates a new table in .MDB format. To get
round this, I use this technique:
1. Output the query to a temporary table.
2. Copy the structure of the table to a new
.DBF.
3. Copy the records in the temporary table
to the .DBF.

This works well, and I have no intention
of rewriting the code, which gets popped
into applications as required. Only the sec-
ond step takes more than a single SQL

module. A better solution is to write your
own database application, storing each
procedure in its own memo field.

Alternatively, there are utilities that aim
to make it easier to manage your code
library. One is Sheridan’s VB Assist, now
at version 4.0a. VB Assist loads as an
add-in, and includes Code Assistant.
Code Assistant has two main elements.
One is a visual clipboard, a text window to
which clipboard output can be redirected.
The other is a code database, called Code
Librarian, which is actually a VB front-end
to an MDB. You can create groups within
which to store your routines, and add key-
words for easy search and retrieval.

Code Librarian is a good idea, but it’s
not as well implemented as it should be.
The way the database is structured sug-
gests an outline tree for navigation, rather
than the drop-down combos actually used.
It is silly that keywords can be no more
then ten characters long. You can edit
code within the Assistant or Librarian, but
it’s not a good environment for coding, with
no syntax highlighting or search-and-
replace facility. But it’s better than nothing.

CodeBank
Unlike Code Assistant, which is part of VB
Assist, CodeBank is a separate product

A break from the old
routine
Tim Anderson makes a splash with Visual Basic,
and studies a slimline alternative to the Microsoft
or Borland database engines.

Part of Sheridan’s VB Assist, Code

Assistant lets you create libraries of

code, and copy routines either direct to

your application or to an intermediate

clipboard

Codebank comes with a

generous library of routines

for slimline VB program-

ming. No, there is not a tab

control on this dialogue —

it’s all done with Basic

CodeBase can be integrated with your

preferred visual tools, but not without

some nitty-gritty coding

command, so this is wrapped in a re-
usable function declared like this:
Sub CopyStructureToDBF(MDBName As
String, TableName As String, DBFPath
As String, DBFName As String)

It is vital that no paths or field names
are hard-coded into the routine as this
would wreck its re-usability.

The DIY solution
Once you have built up a library of rou-
tines, the next question is where to store
them. Simplest is to have a directory full of
.BAS files, but this is awkward to manage.
It can also lead to the inefficient and
unsafe strategy of including many unused
routines in your project, for the sake of
one or two that happen to be in the same

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 0 4
P E R S O N A L C O M P U T E R W O R L D
S E P T E M B E R 1 9 9 6

fancy welcome screens, but this is sec-
ondary. The Splash Wizard creates a new
executable which does comprehensive
version-checking before launching your
application. That way, problems can be
identified before your application tries to
load. Another possibility is to check for a
valid user name and serial number. You
can configure things so that your applica-
tion can only run after the splash exe-
cutable gives the OK.

Splash Wizard is a good idea, but I
was not convinced by its implementation.
It is fiddly to use, particularly since the
wizard only operates from scratch. If you
want to amend an existing splash exe-
cutable, you have to tweak its resource
file by hand, or by using a resource editor.
Finally, in a simple test run, I tried out the

Wizard took a finger-tapping fifteen seconds
to report the problem; the VB application
on its own took two or three seconds.

Code Complete comes with three other
components. The Assistants automate the
creation of common dialogues, message
boxes, and allocating help IDs to VB con-
trols, this last one being the most useful.
Code Analyst will analyse and cross-refer-
ence Visual Basic projects, commenting
on unused code and identifying deviations
from standards you specify. For example,
you can check that all modules include
Option Explicit, or that error handling is
enabled in all procedures.

If you have problems, the fourth com-
ponent, AutoCoder, may help you out. A
template-based system, it can automati-
cally edit your code by adding error han-
dlers for example. Another useful trick is to
add temporary timing functions so that you
can profile the application, discovering
which routines are slowing down your soft-
ware and need tweaking.

And finally...
Keep honing those Visual Basic skills.
Microsoft is licensing the next version of
the VBA engine to third-parties, so expect
to see it in new versions of applications
including Photoshop, AutoCAD and Visio.

Splash Wizard by deliberately deleting a
.DLL needed by a VB application. The

Delphi 2 Tutor, by Mike McKelvy
Ironically, the software which runs this
Delphi tutor is written in Visual Basic 4.0,
assisted by Lotus ScreenCam. It is the
opposite to Delphi Unleashed. Introductory
and shallow, the excuse is that it is for
complete beginners. The special feature is
that each lesson has several screen
demonstrations with explanatory voiceovers;
seeing something done is certainly a help,
but in this case it is not well implemented.
The interface for the tutorial application is
poor, a shame in a teaching tool, and the
reference section is skimpy and inadequate.
While Mike McKelvy’s accompanying book
has clear explanations of basic
programming concepts, there is not enough
information here to build real applications of
any substance. A better approach would be
to take the reader step-by-step through
creating an example project. Video
demonstrations are counter-productive
unless they encourage hands-on experience
as well.

Visual Programming: read all about it

PCWDetails
Contemporary Software
07000 422224
(VB Assist 4.0a, £135; Code Complete,
£175) Visual Components
01892 834343 (Codebank, £99)
Highlander Software 0181 316 5001
(CodeBase 6.0, £225)

Books
Books from Computer Manuals
0121 706 6000
Delphi 2 Unleashed (Sams). Book and
CD, £54.95 (inc VAT)
Delphi 2 Tutor (Que). Book and CD
£46.99 (inc VAT)

Delphi 2 Unleashed, by Charles Calvert
The first edition of Delphi Unleashed estab-
lished itself as one of the best titles for seri-
ous Delphi developers. The author works
for Borland and is well placed to uncover
Delphi’s inner workings. This is no cosmetic
rewrite: the new edition has over 1,400
pages, and more than half of this bulky vol-
ume is completely new. For example, you
get 50 pages on multithreading, 250 pages
on databases, 150 pages on OLE, and 200
pages on multimedia development. It is an
enormously useful resource, clearly written,
with sound explanations of both Object Pas-
cal and the Windows API. The sheer
amount of material makes it an intimidating
volume, both physically and otherwise.
Some will be glad to know how to create
windows without using Delphi’s Visual
Component Library; others will wonder why
we need to be told. Overall, not for the faint-
hearted or beginners, but still a great com-
panion to Delphi’s inadequate manuals and
online help.

Splash

Wizard is an

expert

version

checker, but

can be slow

Delphi 2 Tutor

includes plenty

of video

sequences, but

neither the

presentation

nor the content

is inspiring

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 0 9
P E R S O N A L C O M P U T E R W O R L D

A U G U S T 1 9 9 6

I do have misgivings about the
hundreds of VBX and OCX

controls on the market. It’s not that
they are no good: many are
excellent and enable you to create
a database manager, a web brows-
er or a word processor in less time
than it takes a C programmer to
create a single “Hello world”
window.

The problem is that every time
you pop another component onto a
Visual Basic form, your application
grows more bloated and perfor-
mance suffers. Canny developers
will ask themselves, “Do I really
need this control?” before commit-
ting to yet another OCX.

Farpoint’s Tab Pro, now at ver-
sion 2.0, is a case in point. Tabbed
dialogues have become important
in creating a clear, intuitive user
interface and Tab Pro offers more
than VB 4.0’s native tab strip. It is
supplied in every combination of
16-bit and 32-bit VBX, OCX and
DLL, for use with virtually any
Windows development tool.

The tab control is a container, unlike

includes five 16-bit and 32-bit OCX
components, each of which is virtually a
complete application in itself. There is the
Formula One spreadsheet, First Impres-
sion charting control, Visual Speller,
Visual Writer word processor control and,
new in this version, WebViewer HTML
control. The three most complex controls,

for spreadsheet, charting and
word processing, are among
the best in their category.

There are hesitations. Visual
Writer is no longer indispens-
able now that a rich text control
is part of 32-bit Windows and
the WebViewer faces tough
competition from Microsoft’s
freely-distributed Internet
Control Pack. It is a shame that
Visual Components has chosen
to implement 16-bit OCXs,
rather than the more widely
supported VBX, for its 16-bit
controls. But taken as a whole,
the suite is excellent value and

while these compo-
nents will slow down
your application,
they also provide
functionality that a
VB developer could
otherwise only
dream about.

Do we still need
Delphi?
Guy Robinson com-
ments: “As soon as

Microsoft releases a compiler version of
Visual Basic, Borland will have lost most of
the advantage that Delphi currently
possesses.

With Microsoft controlling the operating
system as well, Borland must ultimately
lose the advantage. I found it surprising
that Borland’s Zack Urlocker (quoted in
PCW, May) wasn't more positive towards
a cross-platform Delphi. Or is Java the
company’s intended cross-platform
vehicle?

I am an OS2 user, and if you talk to Mr
Urlocker again you can tell him I would be
one of the first to purchase Delphi for OS2
if it became available.”

VB’s tab strip which must be used in
conjunction with another container like a
picture box. Then there are more than 250
functions along with nearly as many prop-
erties which control the appearance of the
tabs and which can look like a ring binder
as well as a conventional tabbed dialogue.
Tabs can be bound to a database to
achieve a neat card-index style interface.

Tab Pro is only around 300K and is well
documented in two smart manuals. But do
you really need it? Something like the
Visual Developers’ Suite, from Visual
Components, makes better sense. No-
one could accuse these controls of being
merely decorative. Instead, this package

…that’s Visual Developers Suite. Tim Anderson
checks it out, answers Delphi queries and solves a
common Visual Basic problem.

Not just a pretty face

First Impression, (above)

part of the Visual

Developers Suite Deal, is

an impressive charting

component. WebViewer,

(right) is new to the Visual

Developers Suite but

Microsoft’s Internet

Control Pack offers better

functionality

If you want a tabbed dialogue to look

like a ring binder, Tab Pro is the

obvious choice

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 1 1
P E R S O N A L C O M P U T E R W O R L D

A U G U S T 1 9 9 6

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 1 0
P E R S O N A L C O M P U T E R W O R L D
A U G U S T 1 9 9 6

How can you detect whether your Visual Basic application is running in the development
environment or standalone? For example, you might want to enable extra debugging code
when running in the IDE. Here are two ways to do it. The easy way is to use inspect
App.Exename. App is a global object with several useful properties. For example, App.Path
returns the directory from which the executable is run. App.Exename returns the name of
the project, when running in the IDE, or the name of the executable when running
standalone. If you give the project and the executable different names, then hey presto! you
have an easy way to detect which is running.

If you would rather show off your Windows API skills, there is another method to use. All
VB applications have a hidden parent window. In the IDE, this has a window class of
ThunderMain, but in standalone executables the class is ThunderRTMain. Here’s a function
that exploits this difference to detect which is running:
' Declarations for 16-bit VB - amend for 32-bit.
Declare Function GetClassName% Lib "User" (ByVal hwnd%, ByVal lpClassName$,
ByVal nMaxCount%)
Declare Function GetWindowWord% Lib "User" (ByVal hwnd%, ByVal nIndex%)
Global Const GWW_HWNDPARENT = (-8)

Function isDev () As Integer
Dim ParentHwnd As Integer
Dim ParentClass As String
Dim iClassLen As Integer

ParentHwnd = GetWindowWord(form1.hWnd, GWW_HWNDPARENT)
ParentClass = String$(33, 32)
iClassLen = GetClassName(ParentHwnd, ParentClass, 32)
ParentClass = Left$(ParentClass, iClassLen)
If ParentClass = "ThunderMain" Then
isDev = True
Else
isDev = False
End If
End Function

Visual Basic tip: detecting the IDE

so you could create an application that
would supply the required data to any OLE
automation client (see above; Automating
Delphi with OLE).

If the client could also draw charts, as
Microsoft Excel or Lotus WordPro can,
then you could write code on the client side
to extract the data and draw the graph. An
insertable OLE object would be a better
solution but an easy way to implement
such a thing will have to wait for future ver-
sions of Delphi and Visual Basic. These
will be able to create OLE controls; OLE
automation objects with a visual interface.

OLEContainer1.CreateLinkToFile('C:\te
st.bmp',False);

OLE will then splutter and whir and the
bitmap will be displayed. If the bitmap is
later updated by another application, you
can update it with:
OLEContainer1.UpdateObject;

In such a simple example, you could
get similar results more efficiently using
the LoadFromFile method of the picture in
a standard image control, but the OLE
approach has advantages. For instance,
the OLE container will work with any OLE
server on your system and supports things
like in-place activation. You can save OLE
objects to disk using TOLEContainer’s
SaveToStream method .

What about using Delphi as an OLE
server, supplying information to display a
graph or chart in a word processor
document? Since this is not supported by
the VCL, it is not easy to do in Delphi. The
latest OWL or MFC-class libraries
specifically support this OLE feature, so in
this case C++ is a better option. What
Delphi does support is OLE automation,

If you think cross-platform compatibility
is important, and the rise of the Internet
suggests that it is, then Java must be a
more promising way forward for Borland
than simply releasing versions of Delphi
for other platforms. But I do not see Delphi
being seriously threatened by a compiled
Visual Basic. It is not just a matter of per-
formance, it is the design and structure of
Delphi that is richer and more elegant than
Visual Basic. Another advantage is that
Delphi is equally suitable for small utilities
or major applications. VB has its own
strengths, and a compiled version should
address the performance issue, but Delphi
will not lose its niche.

Combo Box defaults
Brendan Breen asks: “I have a ComboBox
in a dialogue. I want to set its style to Drop-
DownList. When the dialogue is displayed
I want to show a default value in the
combo. But it always appears blank. I
have tried all sorts of things but none of
them work. Any ideas?”

Writing to the Text or SelText property
of a combobox does not work when its
style is “csDropDownList”. The solution is
to write to the ItemIndex property. For
example, you could put this into the
dialogue’s Show event:
ComboBox1.ItemIndex := 3;

Delphi 2.0 and OLE
Peter Harris queries Delphi’s OLE capabil-
ities: “We are currently developing
software using Borland's C++ (4.52) and
OWL to develop a graphical interface to a
specialised database. We were very inter-
ested in developing the front end in Delphi
and purchased V2.0. However, we seem
to have come across a fairly major limita-
tion of Delphi2, in that it will not act as an
OLE2 server and client. We need to be
able to embed bitmaps and suchlike in our
application windows, and also allow
linking/embedding of our graphical stats
results into other apps — specifically, word
processors. We’ve been unable to find
anything in the Delphi documentation
about this. I wonder if you have come
across this problem, or a way around it?”

Delphi 2.0 will act as an OLE 2.0 server
and client, but the server bits do not yet
support embedding, at least not as imple-
mented in the visual component library.
On the client side, there is the
TOleContainer which is to be found on the
System tab of the component palette. For
documentation, placing one of these on a
form and then pressing F1 brings up all
that Borland has seen fit to provide.

For example, you could create a link to
a bitmap file with the following line of code:

Delphi’s

Automation Object

Expert lets you

enter the key

characteristics of

a new OLE

automation object.

Later, you have to

register the object

in the Windows

registry

Step by step, here’s how to create a OLE
automation server in Delphi:
1. Start a new application or DLL and save
it as, for example, MYAPP.DPR. DLLs are
in-process servers that run in the same
address space as the calling application.
2. From Delphi’s file menu, choose New
and select Automation Object from the
dialogue.
3. Enter a class name, for example MyObj.
By default, Delphi will make the OLE class
name the same as the application name, so
the new OLE object will be MyApp.MyObj.
4. Choose the instancing. Internal is a
rarely-used setting for OLE objects that are
not available to other applications. Single
instancing means that each instance of the
server can only export one instance of the
OLE object. Multiple instancing, which is
required for DLLs, allows multiple instances
of the OLE object.
5. Add OLEAuto to the uses clause in the
project source. If it is a DLL, follow it with
this section, observing case sensitivity:
exports
DllGetClassObject, DllCanUnloadNow,
DllRegisterServer,
DllUnregisterServer;
This is all you need. You don’t need to add
OLE objects and methods to the exports
clause. Contrary to the documentation, you
don’t need to call
Automation.ServerRegistration in the
project source.
6. In the Automated section of the new OLE
object, add the methods, properties and
functions that are to be exposed, defining
them in the implementation section in the
normal way. There are limitations in terms
of which types and declarations are allowed
and normally these will be caught by the
compiler if you try to use them. Here’s an
example type declaration:
type
MyObj = class(TAutoObject)
private
{ Private declarations }

Automating Delphi with OLE

MyVar: integer;
function GetMyProp: integer;
procedure SetMyProp(iParm:

integer);
automated
{ Automated declarations }
function MyMethod(iParm:

integer): integer;
property MyProp: integer read

GetMyProp write SetMyProp;
end;
Note that you cannot access fields

directly in an OLE object. You have to use
property access methods.
7. Finally, the OLE automation object must
be registered. Applications can be
registered by running them with a /regserver
parameter. You can register a DLL using
Microsoft’s REGSVR32.EXE utility, or failing
that by calling the exported
DllRegisterServer function. This need only
be done once.

You can easily test the OLE object. Here
is some example Visual Basic code:
Dim myOLEobj As Object
Set myOLEobj =
CreateObject("myapp.myobj")
myOLEobj.myprop = 345
MsgBox "The property was set to: " &
str$(myOLEobj.myprop)

Why use OLE automation
servers?
Performance of OLE servers is good,
particularly in-process servers, but they are
not as quick as standard DLLs. So why
bother?

Firstly, because programming OLE
objects is easy and intuitive, compared to
ordinary DLLs which require case-sensitive
function declarations.

Secondly, OLE objects bring with them
the benefits of object-orientation, inheritance
aside. Thirdly, OLE objects have a greater
degree of language independence. Fourthly,
as OLE progresses it should be possible to
do things like remote automation using the
objects you have developed.

PCWContacts
Tim Anderson welcomes your Visual
Programming comments and tips. He can
be contacted at the usual PCW address,
or at freer@cix.compulink.co.uk
or http://www.compulink.co.
uk/~tim-anderson/

Contemporary Software 07000 422224
(FarPoint Tab Pro 2.0; £99 plus VAT).
Visual Components 01892 834343
(Visual Developers Suite; £235 plus VAT).

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 1 9
P E R S O N A L C O M P U T E R W O R L D

J U L Y 1 9 9 6

Microsoft’s theme for 1996 is the
Internet, which featured strongly at

the recent London VBITS conference for
Visual Basic developers.

At one session, the presenter rashly
asked how many delegates were actually
developing for the Internet. A scattering of
hands were raised. Okay, how many plan
to develop for the Internet? A few more
hands. The message is that while tools
vendors steam ahead with Internet prod-
ucts, the actual developers are mostly
stuck in the old world of databases,
accounts and local networks.

Another key question is how many
developers have switched to 32-bit Win-
dows. Microhelp’s VB or OLE tools is a
new product, available in 16- and 32-bit
versions, and distributor Contemporary
Software, exhibiting at VBITS, reports that
sales in the first quarter of 1996 were 57
percent in favour of the 32-bit product — a
one-off statistic but an indication that the
move to Windows 95 and NT is finally
happening.

Those who did attend found a high
standard of presentations, including API
guru Daniel Appleman’s demonstration of
how to write a VB interface that runs as
fast as C++. The answer is don’t use con-
trols, use VB’s drawing methods instead.
Of course, if you write VB applications like
that you will be even less productive than
your C++ counterpart. Even so, a point
well made and a warning to go easy on
controls, and especially VBX or OCX add-
ons, if fast performance is a priority.

As expected, there are plenty of new
Internet add-ons for Visual Basic and Visu-
al C++. Microsoft’s Internet Control Pack is
a free download (beta at the time of writ-
ing) and contains OCX controls for inte-
grating Web viewing, email, newsgroups
and FTP file transfer into applications.

C++ 4.1, an important update which adds
MFC support for the Internet Information
Server, Microsoft’s Web server for Win-
dows NT. A generous set of 12 third-party
OLE controls has been added to Visual
C++ 4.1, including Desaware’s souped-up
list box, the Sax Basic Engine for adding
macro language support to your applica-
tion, and Protoview’s Interactive Diagram-
ming Object for displaying data in the form
of a diagram that can be visually modified
by the user.

Finally, Microsoft has released the
Solutions Development Kit, a CD which
updates the Office Development Kit for
those building applications with Office for
Windows 95. For the latest news on
Microsoft’s tools, browse around the com-
pany’s home page at http://www.
microsoft.com.

Finding threads in Delphi 2.0
The word “thread” is not to be found in the
index of any Delphi 2.0 manuals. Although
a major feature of 32-bit Windows, the only

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 1 8
P E R S O N A L C O M P U T E R W O R L D
J U L Y 1 9 9 6

It’s also been announced that Visual
Basic 5.0, due out this year, will be able
to create Active controls; another name
for lightweight OCX components for Inter-
net use.

The Internet again features in Visual

Right, said thread…
Tim Anderson explores threads in Delphi 2.0,
picks up snippets from the VBITS conference,
and answers your VB queries.

Wrox Press delivered one of the first books
on Delphi 1.0, and now repeats the
performance with The Revolutionary Guide
to Delphi 2.0. Unfortunately, the trick is partly
illusion, since much of the book covers 16-bit
Delphi. This is a multi-author title aimed at
those already competent with Delphi and
attempts to cover every aspect of the
package, making it a mixed bag. There are
good chapters on debugging, component
writing and the Windows API, along with
skimpy coverage of the Borland Database
Engine, ReportSmith, and issues specific to
32-bit Delphi. It would have been better to
focus exclusively on Delphi 2.0 and cover
fewer issues in greater depth. Nevertheless,
the authors are knowledgeable and most
Delphi developers will find plenty of valuable
tips here.

Books for Visual Programming

Visual C++

version 4.1

comes with

additional

third-party

controls

including

the Sax

Basic

Engine

The

Solutions

Development

Kit is for

high-level

development

with

Microsoft

Office. This

page shows

how to create

an office-

compatible

toolbar

protected
constructor Create(panel: TPanel);
procedure Execute; override;
procedure UpdateColour;
end;
All classes based on TThread must

override the Execute method as this is the
procedure which runs when the thread
object is created. If you create the new
thread class by choosing Thread Object
from Delphi’s object repository, the skele-
ton declaration will do this for you.

Keeping in step
The essence of multithreading is that at
any time the operating system may switch
processing time between one thread and
another. This is no problem if the threads
are truly independent, but what if they
interact?

For example, TPCWThread needs to
update a panel on a form. Other threads,
including the main application thread, also
have every right to update that panel. This
is the reason for the warning comment that
appears when you create a new Thread
Object: “Important: Methods and proper-
ties of objects in VCL can only be used in a
method called using Synchronize.”

“Synchronize” is a TThread method
which performs a vital function, letting you
safely call VCL components such as Del-
phi forms and controls without conflicts.
Synchronize takes a method name as its
parameter.

In this example, there is an Update-
Colour procedure which updates the
panel, called from the main Execute
method via Synchronize.

Calling the thread
When the user clicks the “Start a thread”
button, the following code executes:

documentation for Delphi’s multithreading
support is some sketchy online help and
one sample application. It is just another
example of Delphi’s rough-and-ready doc-
umentation, but is particularly disappoint-
ing given that this is unfamiliar territory
for many developers. As it happens, Del-
phi’s Visual Component Library includes a
TThread object that simplifies
multithreaded programming. What follows
is a quick look at how it works.

Under Windows 95 and NT, each 32-
bit running application is described as a
“process” and has its own space in mem-
ory. A thread is an execution path within a
process, sharing its memory but able to
execute independently, with processor
time allocated by the operating system.
This means you can create applications
which are more responsive, performing
lengthy background tasks while remaining
available to the user. Unfortunately, multi-
threading makes program design even
more difficult and introduces new possibili-
ties for bugs and conflicts: that is no rea-
son to ignore threads, but it does suggest
caution.

The example application is designed to
cycle through 140,000 colour combina-
tions, displaying the results in a panel con-
trol. Real-world applications would not do
this, but might be rendering an image or
downloading a file from the Internet, to
name two common background tasks.

In order to spin this off as a separate
thread, we derive a new thread class from
TThread, declared as follows:
TPCWThread = class(TThread)
private
iRed: integer;
iGreen: integer;
iBlue: integer;
thispanel: TPanel;

● Charles Petzold’s Programming Windows
95 is a major new edition of a book revered
by developers for its clear description of how
Windows hangs together. The emphasis is
on understanding Windows internals, starting
with the creation and control of windows
themselves and going on to include text and
graphics, resources, memory management,
input devices and dynamic link libraries.
There are brand new chapters on the user
interface, multitasking and multithreading
and OLE, two of which are by co-author, Paul
Yao. Given the huge complexity of Windows,
Petzold is remarkably clear and concise.
There is nothing here about Microsoft
Foundation Classes, Visual Basic or Delphi,
but simply an explanation of the Windows
API with examples in C and occasionally
C++. Highly recommended.

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 2 1
P E R S O N A L C O M P U T E R W O R L D

J U L Y 1 9 9 6

PCWContacts
Tim Anderson welcomes your Visual
Programming comments and tips. He can
be contacted at the usual PCW address,
or at freer@cix.compulink.co.uk
or http://www.compulink.co.
uk/~tim-anderson/

Visual C++ 4.1 and the Solutions
Development Kit CD are available as part
of a Microsoft subscription. The Solutions
Development Kit will also be sold
separately, price not yet available.
Phone 0800 960279

Books
All books available from Computer
Manuals 0121 706 6000 (prices incl VAT).
The Revolutionary Guide to Delphi 2
(Wrox Press). Book and CD £46.99
Programming Windows 95
(Microsoft Press). Book and CD £46.99

☎

☎

large a slice of processor
action the thread receives. A
corresponding radio button is
checked.

Finally, a procedure is
assigned to the Terminate
event, so that the application
can take appropriate action
when the thread finishes its
work. In this case, all the

OnTerminate procedure has to do is re-
enable the button.

There is no space here to print all the
code but it can be found on our free,
cover-mounted CD-ROM together with a
compiled executable that anyone can run.

The finished application enables two
TPCWThread objects to run side by side.
Even with both running, the program

This application shows how a control's Container property is

used to add option buttons to a frame at runtime

To avoid creating two MyThread
objects, the first line of code disables the
button. Next, the thread object is created
with the display panel passed to the con-
structor. The FreeOnTerminate property is
set to true, which means the thread object
is automatically destroyed when the
thread stops running. Then, one of seven
priority values is assigned, controlling how

remains responsive: the user can resize
the window or move it around the screen.
Each thread can be suspended and
resumed, or heartlessly terminated before
it finishes its task. The user can also con-
trol the priority that Windows gives to each
thread.

All these are great benefits for certain
types of application but this does not make
it easy, so for serious multithreaded work,
developers will need to look well beyond
Delphi’s sparse manuals.

Declare Function SetParent Lib “user32” (ByVal hWndChild
As Long, ByVal hWndNewParent As Long) As Long
but the good news is that you probably don’t need it.

In VB 3.0, although you can add new container controls like
frames or picture boxes at runtime through a control array, the only
way to add child controls to the new container is through the
SetParent API call. VB 4.0 controls have a new Container property
that overcomes the problem. For example, if you loaded a new frame
at runtime, you could add an option button to it like this:
Load Option1(OptionIndex)
Set Option1(OptionIndex).Container = Frame1(FrameIndex)
Option1(OptionIndex).Visible = True ‘ Display new button

Chris John is contemplating a move to Visual Basic 4. He asks: “I
have been thinking of upgrading from VB 3 to VB 4 but have been
concerned about the problems of converting existing applications. I
have written to Microsoft which has given me some comfort
regarding conversion, but the company was rather non-specific
when referring to API calls. Your reference to the API call
SetWindowPos [in the April issue] has encouraged me. However, I
have also used the call:
Declare Function SetParent% Lib “User” (ByVal H%, ByVal J%)
to enable me to add and remove member frames to, or from, an
array of frames together with their contents (other control arrays) at
runtime. Can you tell me what modifications to this call might be
needed, or does version 4 provide for the addition of members to an
array of frames together with their contents, which would do away
with the need for an API call?”

Visual Basic 3.0 code should run fine in VB 4.0 16-bit version, but
the move to 32-bits is problematic. For a start, VBX add-ons are not
supported and although OCX versions are generally available, the
transition is not always smooth.

Next, although most API functions have a 32-bit equivalent, it is a
different API and the declarations need changing. VB 4.0 comes with
an API text viewer applet that lets you copy the declarations you
need. In this case, the new declaration is:

You can check on Threads

in a Delphi 2.0 application

by showing the Thread

Status window. In this

demonstration, three are

running, one for the main

application thread and two

TPCWThread objects. The

user can control the priority

of each thread while it is

running. A thread can also

be suspended or terminated

Parent problems

procedure TForm1.cbStart1Click(Sender: TObject);
begin
cbStart1.Enabled := False;
MyThread:= TPCWThread.create(Panel1);
Mythread.FreeOnTerminate := true;
Mythread.Priority := tpNormal;
rbNormal1.Checked := True;
Mythread.OnTerminate := MyThreadTerminate;
end;

H A N D S O N ● V I S U A L P R O G R A M M I N G

the same six as before: Data Grid, Data
Combo, Data Dropdown, Data OptionSet,
Data Command and the Enhanced Data
Control. All are useful, but the Data Grid is
the reason people buy this package. Its
neatest trick is to link with a Data Drop-
Down so that users can click on a grid cell
and select values from a dropdown list
bound to a field in another table.

Do you need Data Widgets? It depends
on how you prefer to program. If you make
extensive use of bound controls this bun-
dle is all but indispensable, particularly if a
data grid is a key part of the user interface.
The data control in VB 4.0 is not compro-
mised in the same way as VB 3.0’s effort,
so this is a perfectly sound approach. The
cautionary note is that large OCX controls
like these cause substantially slower load-
ing of your VB application, and grids are
often not the best way to present data to
the user. The Data Grid also works well as
an unbound virtual list control — a further
enticement which may sway doubters.

Tools of the trade
Microhelp’s OLE tools may have up-to-
date OCX technology, yet the package
conveys a dated impression: the main rea-
son being that apart from their OCX con-
version, many of the controls are little
changed from earlier versions, right down
to their description in the manual and the
clunky example applications. OLE tools
also slipped up during review when one of
the genuinely new items, MhSubClass,
failed to deliver. This is a message-trap-
ping control that can catch Windows API
messages and either kill them, or respond
with a custom event and pass them on.

MhSubClass is fine for some purposes;
for example, if you want to inspect
WM_MENUSELECT messages in order to
provide a help text as the mouse runs
down a menu. But a common requirement
is to trap a message and then write code
to determine whether to kill it or pass it on.
MhSubClass cannot do this, since the fate
of the message has to be determined

before the VB event is triggered.
Rivals such as the Message-
Blaster OCX have no such
handicap.

Never mind the quality —
with 54 separate controls, the
bundle still rates as good value.
MhCalendar is a data-aware

3 1 9
P E R S O N A L C O M P U T E R W O R L D

J U N E 1 9 9 6

FORGET LAPTOPS AND MOBILE
phones; the fashion accessory of the

moment must be the personal Web site.
Web sites are of no use unless they are
visited, so why not build point-and-click
access into the applications you distribute?

You can do this by calling an external
application like Netscape or Internet
Explorer, but Sax Software lets you go one
better by building a customised browser
right into the application.

application. Another option is to direct the
hapless user to a site offering further prod-
ucts and services. HTML pages can be
loaded from disk as well as from the Inter-
net, so you could also use Webster as a
multimedia browser.

Sax Webster is a complete application
wrapped in a control. You can create a
browser simply by dropping the Webster
control onto a form in VB or Delphi. It
claims to support HTML version 3.0, but
Sax notes that “because 3.0 is not yet
defined as a standard, it may differ from
what Netscape, or some other 3.0 browser,
supports.”

Here is the problem with Webster, and
ultimately with the Web itself: lack of tightly
defined standards resulting in compatibility
problems. It may not matter too much,
since it would be foolish to use a Webster
application as a replacement for Netscape
or Internet Explorer. Webster makes better
sense as a tool for accessing specific Web
sites that are linked to the container appli-
cation, so you can ensure the compatibility
of those particular pages.

Some problems can also be overcome
by writing code to intercept Webster
events: for example, Webster does not
support the mailto command that HTML
uses to initiate an email message. The VB
4.0 code in Fig 1 will intercept mailto and
call whatever application is associated with
that command in the Windows 95 registry.

Another useful feature is the GetCon-
tent method, which lets you read all or part
of an HTML page into a variable.

Initially only available as a 32-bit OCX,
Sax has now released a 16-bit OCX as
well, but nothing yet for VB 3.0 or Delphi
1.0 diehards.

New-look Data Widgets
Sheridan’s Data Widgets has long been
one of the most popular Visual Basic add-
ons, particularly since the VB 3.0 grid is so
poor. The data-bound controls in VB 4.0
are better but still leave room for third-
party enhancements. Version 2.0 brings
the expected conversion to 16- and 32-bit
OCX format, but with enhancements.
Sheridan has taken the opportunity to
restructure the Data Widgets using objects
and collections, bringing it into line with
other programmable OLE objects. This
makes for more logical code and increas-
es the programmer’s control, the disad-
vantage being that code which worked
with Data Widgets 1.0 will have to be
extensively rewritten (Fig 2).

The actual Data Widgets controls are

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 1 8
P E R S O N A L C O M P U T E R W O R L D
J U N E 1 9 9 6

The Webster control is a 32-bit browser
OCX that drops directly into any compati-
ble development tool, such as Visual
Basic 4.0 or Visual C++ 4.0. With the ram-
pant growth of the Internet and increasing
corporate usage of Intranet networks, Sax
Webster has turned up at just the right
moment.

For example, online help might now
mean dynamic information on a Web site,
rather than the static file shipped with an

Ooh, you Saxy thang!
Build point-and-click access into your applications
with Sax Webster, says Tim Anderson. There’s
widgets and Windows, too.

Private Sub Webster1_DoClickURL(SelectedURL As String, Cancel As Boolean)
If Left$(LCase$(SelectedURL), 7) = “mailto:” Then
‘ run MS Exchange, using file association
ShellExecute 0, “open”, SelectedURL, “”, “”, 0
SelectedURL = “”
‘ stop Webster attempting to act on this command
Cancel = True
End If
End Sub

Fig 1 Intercepting mailto

All done with Webster: VB 4.0 visits the

PCW home page

● Speed VB’s load time and slim your applications by stripping down AUTOLOAD.MAK
(VB3) or AUTO32LD.VBP (VB4) to include only controls and references essential to every
project.
● Avoid “Dim iA, iB as Integer”. This code declares iA as a variant. Instead, use “Dim 1A as
Integer, IB as Integer”.
● In VB4, disable Compile on Demand (in Tools - Options - Advanced) to have the compiler
check for syntax errors before a project runs.
● Your Delphi application can easily check for command-line parameters. ParamCount
returns the number of parameters; ParamStr(0) returns the path and filename of the
application; and ParamStr(n) returns the nth parameter up to ParamCount.
For example:
procedure TForm1.Button1Click(Sender: TObject);
var
i: integer;

begin
for i := 0 to ParamCount do
MessageDlg(ParamStr(i), mtInformation,
[mbOk], 0);

end;
● If you are adding lines to a string control like a listbox or memo, or an outline component,
use BeginUpdate to increase performance by preventing screen updates. For example,
procedure TForm1.Button2Click(Sender: TObject);

begin
listbox1.items.beginupdate;
listbox1.items.add(‘One item’);
listbox1.items.add(‘another item’);
listbox1.items.endupdate;
end;

Top Tips: slim, dim and begin

To put a button in a DataGrid cell in version 1.0 of
Data Widgets, use a ColBtn property:
SSDbGrid1.ColBtn(2) = True
which in Version 2.0 becomes
SSDbGrid1.Columns(2).Style = 1 ‘ edit button

Fig 2 On the button

H A N D S O N ● V I S U A L P R O G R A M M I N G

calendar control. MhSplitter allows you to
build resolution-independence into inter-
faces by automatically resizing controls
within the container, albeit rather slowly.
MhRealInput is a text box that improves
on VB’s masked edit control for working
with real or currency values. And so it
goes on, providing something of value for

Screensaver settings:
hacking into the Win95 API
“I’ve bought a new system with Windows
95 and VB 4.0. My computer has a WIn/TV
card, and I wanted to write a program that
would turn the screensaver off and on
without having to go into the display prop-
erties tab.

How or where can I find out about the
API calls necessary to change the screen-
saver settings? Is there a book which
describes all the Win32 (and/or Win16)
API calls?”
Mark Horton

Windows 3.1 introduced a handy function
called SystemParametersInfo. This reads
or sets numerous system parameters
including the screensaver settings.

Fig 3 shows a small VB application for
Windows 95 which toggles the screen-
saver on and off. The two key functions,
IsActive and SetActive, work by calling
SystemParametersInfo. The application
checks the current state of the screen-
saver on loading, so that it can be restored
on exit.

Another possibility is for your applica-
tion to disable the screensaver whenev-
er it has the focus. Windows activates
the screensaver by sending a
WM_SYSCOMMAND message with
wParam set to SC_SCREENSAVE. By
intercepting and killing this message,
you prevent the screensaver from kick-
ing in. Delphi programmers can trap
messages easily but VB users will
need an add-on like the Message-
Blaster OCX.

Many problems such as this can only
be solved using the Windows API. That, in
turn, means having a good API reference
and the starting point is the Windows SDK
help file called WIN31WH.HLP for Win-
dows 3.1, and WIN32.HLP for 32-bit Win-
dows. Surprisingly, Visual Basic 4.0
comes with declarations for the 32-bit API
but not the 20Mb help file.

An alternative is Daniel Appleman’s
book, VB Programmer’s Guide to the
Windows API, which provides what’s
needed for Windows 3.1 and is to be
updated for Win32.

most VB projects.
Microhelp supplies two

versions of these tools:
OLE tools has 16- and 32-
bit OCXs, while VB tools
stays with the old VBX for-

mat. There are differences between the
two. For example, the inadequate MhSub-
Class is OCX-only, while the clever
MhOutOfBounds universal data binding
control is VBX-only.

Finally, VB tools used to come with a
version of Farpoint’s Grid control, but that
has now been dropped.

3 2 1
P E R S O N A L C O M P U T E R W O R L D

J U N E 1 9 9 6

PCWContacts
Tim Anderson welcomes your Visual
Programming comments and tips. He can
be contacted at the usual PCW address,
or on freer@cix.compulink.co.uk
or http://www.compulink.co.
uk/~tim-anderson/

Contemporary Software supplies Sax
Webster £110; Data Widgets 2.0 £99;
OLE Tools £149; and VB Tools £99.
Tel 01727 811999 ☎

The MhSplitter control

from OLE Tools

attempting resolution

independence.

Unfortunately, this text

box does not always get

correctly resized

Here are two functions to detect the status of the screensaver and to check its state. Note
that to work in Windows 3.1, the declarations will need to be adapted.
Option Explicit
Declare Function SystemParametersInfo Lib “user32” Alias ➞
“SystemParametersInfoA” (ByVal uAction As Long, ➞
ByVal uParam As Long, lpvParam As Long, ByVal fuWinIni As Long) As Long
Public Const SPI_GETSCREENSAVEACTIVE = 16
Public Const SPI_SETSCREENSAVEACTIVE = 17

Function isActive() As Boolean
Dim lRetVal As Long
Dim pvParam As Long

lRetVal = SystemParametersInfo (SPI_GETSCREENSAVEACTIVE, 0, pvParam, 0)
If lRetVal = False Then
MsgBox “Call to SystemParametersInfo failed”
isActive = False
Exit Function
End If
If pvParam = False Then
isActive = False
Else
isActive = True
End If
End Function

Sub SetActive(bActive As Boolean)
Dim lRetVal As Long
Dim pvParam As Long
lRetVal = SystemParametersInfo ➞
(SPI_SETSCREENSAVEACTIVE, bActive, ByVal pvParam, 0)
If lRetVal = False Then
MsgBox “Call to SystemParametersInfo failed”
End If
End Sub

(Note: ➞ this symbol has been used where the code shown on the following line is a
continuation, and should be entered as such. You’ll find the complete code on this month’s
cover-mounted CD-ROM, together with versions for VB3 and Delphi).

Fig 3 A little application to toggle with

