
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

MultiFinder Revisited: The 6.0 System Release
Overview

Revised by: Andrew Shebanow, Jim Reekes, & Dave Radcliffe April 1990
Written by: Dave Burnard August 1988

This Technical Note describes several new features found in MultiFinder 6.0 and answers a
few more commonly-asked questions.
Changes since December 1989: Added a warning to the section on childDiedEvents
about distribution of MultiFinder 6.1bx.

How Can I Tell If MultiFinder is Present?

Once again, you cannot. Previous Technical Notes discuss how to check for the new
services available with MultiFinder (i.e., _WaitNextEvent and the temporary memory
allocation calls).

Currently, since an application cannot tell if MultiFinder is present, the application also
cannot know how a sublaunch will behave (see M.PS.SubLaunching). Unfortunately, the
two possible sublaunch behaviors are radically different; with MultiFinder the _Launch
trap returns to the application and without MultiFinder it does not. For most applications,
however, these differences in sublaunch behavior should not matter. Hopefully, the
_Launch trap will be improved in a future System Software release.

_WaitNextEvent is Always Available

In System 6.0 and later, _WaitNextEvent is present whether or not MultiFinder is
present. Calling _WaitNextEvent without MultiFinder installed is virtually identical to
calling it with MultiFinder installed. Your application can still “sleep” for a specified time
and be notified if the cursor location is outside a specified region. The only difference when
MultiFinder is not installed, is that your application is not suspended or resumed. If your
application requires System 6.0 or later, DTS recommends calling _WaitNextEvent
instead of _GetNextEvent in your main event loop.

_MFTopMem

Developer Support Center April 1990

Macintosh Technical Notes

The Programmer’s Guide to MultiFinder, which is distributed through APDA, incorrectly
documents _MFTopMem on page E-1. It does not return a pointer to the top of your
application’s memory partition as it is documented. It does, however, return a pointer to the

Developer Support Center April 1990

Macintosh Technical Notes

top of the addressable RAM space in the machine, and is documented correctly on page 3-15
of the manual. Note that earlier releases of this manual referred to this call as _MFMemTop.

MFTempHandles Are Not Handles

The MultiFinder temporary memory allocation call, _MFTempNewHandle, currently does
not return a “true” Handle in the sense that it can be used interchangeably with a Handle
obtained from a call to _NewHandle. Specifically, you cannot pass a Handle obtained
from a call to _MFTempNewHandle to any Memory Manager routine or Toolbox routine
which, in turn, passes it to the Memory Manager (either directly or indirectly). Like a true
Handle, however, you can still dereference a Handle obtained from
_MFTempNewHandle. You should treat a Handle from _MFTempNewHandle in the
same way you would a fake Handle (i.e., a Handle not obtained from the Memory
Manager—see M.OV.CompatibilityWhy). This restriction on the use of MultiFinder
temporary memory may not apply in future System Software releases.

Mouse-Moved Event Confusion

There has been some confusion over the mouseRgn parameter to _WaitNextEvent, and
under what circumstances it returns a mouse-moved event. Most of the confusion is caused
by the word “moved.” Many applications have assumed that mouse-moved events are
generated only when the mouse actually leaves the mouse region. In System 6.0 and later,
_WaitNextEvent returns a mouse-moved event whenever the cursor is outside the mouse
region. Thus, when an application receives a mouse-moved event, it should compute a new
mouse region based upon the new cursor location before calling _WaitNextEvent again,
otherwise _WaitNextEvent continues to return mouse-moved events until the user
moves the cursor back inside the mouse region or until a new mouse region is specified.

New MultiFinder Features

Open Document and Quit

In System 6.0 and later, MultiFinder adds the ability to open application documents from the
Finder when the owner application is already open. For the moment, MultiFinder
accomplishes this by simulating a mouse-down event in the application’s menu item for
opening files. The application usually responds by calling _SFGetFile, which
MultiFinder short circuits into returning the document opened in the Finder layer. This is
similar to the way that MultiFinder triggers applications to quit when the user selects Shut
Down or Restart from the Finder’s Special menu.

In future System Software releases, this mechanism will probably change to a more

Developer Support Center April 1990

Macintosh Technical Notes

straightforward method of notifying the application that it needs to open a document or to
quit.

How does MultiFinder find the Open item? By default, MultiFinder looks for a File menu
with an item named Open…, Open …, Open..., etc. Of course, some applications do not
have a File menu or they name their Open item something different (i.e., Open Document).
To compensate for this difference, MultiFinder first looks in the application’s resource fork
for

Developer Support Center April 1990

Macintosh Technical Notes

'mstr' or 'mst#' resources in the range of 100-103. An 'mstr' resource has the same
format as an 'STR ' resource (a Pascal string) and contains the name of the menu or menu
item for which MultiFinder should look. An 'mst#' resource has the same format as an
'STR#' resource (a list of Pascal strings) and contains a set of names for the menu or
menu item for which MultiFinder should look. MultiFinder uses this same mechanism to
locate the application’s Quit command. Table 1 documents these resource IDs and their
meanings.

Resource ID Meaning
100 Name or names of the menu containing the Quit
command.
101 Name or names of the menu item or items corresponding
to the Quit command.
102 Name or names of the menu containing the Open
command.
103 Name or names of the menu item or items corresponding
to the Open command.

Table 1–Resource IDs and Meanings

As always, be careful to avoid any “clever” tricks that rely upon this information;
MultiFinder will not always work this way.

Additions to the 'SIZE' Resource

The 'SIZE' resource has four new flags (onlyBackground, getFrontClicks,
acceptChildDiedEvents, and is32BitCompatible) which communicate
information about an application to MultiFinder. Figure 1 illustrates the locations of these
new flags. Setting both the onlyBackground flag and the canBackground flag
informs MultiFinder that an application is a “faceless background task,” that is, it has no
user interface (i.e., no windows and no ports) and should only be run in the background. An
example of a faceless background task is the System Software application Backgrounder.

getFrontClicks

onlyBackground

multiFinderAware

canBackground

RESERVED

acceptSuspendResumeEvents

RESERVED

Bits 0 - 6 RESERVED9101112131415 8 7

acceptChildDiedEvents

is32BitCompatible

Developer Support Center April 1990

Macintosh Technical Notes

Figure 1–'SIZE' Resource Flag Bits

An application can set the getFrontClicks flag if it wants to receive the mouse-up and
mouse-down events when the user brings the application’s layer to the front. Typically, the

Developer Support Center April 1990

Macintosh Technical Notes

user merely wants to bring an application to the front, so it may not be desirable to move the
insertion point or start drawing immediately after coming to the foreground. If
getFrontClicks is set, the mouse click is passed to the application. If
getFrontClicks is set and a click is made in the content region of the background
application’s frontmost window, then the application receives a click in the content region of
that window.

Clicking on a window that is behind another window within the same layer causes the usual
event processing (i.e., the mouse-down event is visible to the application), for which the
application calls _SelectWindow, to bring the window forward. This is true whether or
not the bit is set. Ordinarily, these events are not passed to the application, so setting the
getFrontClicks flag is usually not appropriate. The Finder, however, is one example of
an application which has the getFrontClicks flag set.

The acceptChildDiedEvents flag is used by SADE to get notification when an
application it launched quits or crashes. A childDiedEvent is another MultiFinder
app4Evt with a message field of the event record which Figure 2 illustrates.

$FD Status Reserved Reserved

Figure 2–Message Field of childDiedEvent

Note: Your application does not receive childDiedEvent events unless the user is
running MultiFinder 6.1b7 (shipped with SADE 1.0) or 6.1b9 (available on
AppleLink in Developer Services: Macintosh Developer Technical Support:
Tools: SADE MultiFinder). The MultiFinder which comes with System 6.0.x
(and earlier) does not send these events. Your application should not depend on
these events for its operation—they are documented for debugger use only. In
addition, developers may not distribute MultiFinder 6.1bx to customers, even
if licensed to distribute Apple’s Macintosh System Software.

The Status parameter in the message field is a system error code if the application crashed
or zero if it quit normally. The where field of the event record contains the process
identifier (pid) of the quitting process. The _Launch trap returns the pid of the newly
created application in D0 if the call to _Launch succeeds (if D0 is negative, it contains an
OS error code).

Note: Future versions of System Software may operate only in 32-bit mode on
machines with 68020 or newer CPUs, and applications which are not 32-bit
clean will not function correctly on these machines.

The is32BitCompatible bit will be used in future systems to warn users that running
an application which does not have the bit set may crash their system, if it is running in 32-
bit mode. Developers should not set this bit unless they have thoroughly tested their
Developer Support Center April 1990

Macintosh Technical Notes

applications on a 32-bit system. Currently, the only 32-bit system available for testing is
A/UX, so running under A/UX should be considered the “litmus test” for 32-bit
compatibility until newer System Software is available. Note, however, that the
is32BitCompatible bit does not have to be set to run an application under the current
version of A/UX.

Developer Support Center April 1990

Macintosh Technical Notes

Further Reference:
• Programmer’s Guide to MultiFinder (APDA)
• MultiFinder Development Package (APDA)
• M.OV.CompatibilityWhy
• M.TB.MultiFinder
• M.TB.MultiFinder1Bug
• M.TB.MultiFinderMisc
• M.OV.32BitClean

Developer Support Center April 1990

