
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Checking for Specific Functionality
Overview

Revised by: March 1988
Written by: Jim Friedlander September 1987

This technical note explains how to check at run time to see if specific functionality, such as
the “new” TextEdit, is present.

Applications should strive to be compatible across all Macintoshes, but there are times when
an application must have knowledge about the machine that it is running on. The new trap,
SysEnvirons, will give an application most of the information that it requires (what
hardware, what version of system software…).

Using SysEnvirons

In most cases, if you examine why you want to test for the existence of a specific trap, you
will find that there is an alternative method, for example:

I need to see if the “new” TextEdit calls are available.

Call SysEnvirons and check to see that SysEnvRec.machineType >= 0 (128K
ROMs or newer) and that we are running System 4.1 or later (System 4.1 and later support
the new TextEdit on 128K and greater ROM machines—we can check this by just seeing if
the SysEnvirons trap exists, if we get an envNotPresent error, we know it doesn’t).
In Pascal:

CONST
CurrentVersion = 1; {Current version of SysEnvirons}

VAR
newTextAvail : BOOLEAN;
theWorld : SysEnvRec;

BEGIN
{
This code checks to see if System 4.1 or later is running by calling
SysEnvirons. If SysEnvirons returns an envNotPresent error, we know that
we are running a system prior to 4.1, so we know we don’t have the new
TextEdit. If SysEnvirons doesn’t return envNotPresent, we check machine
type to make sure we aren't running on 64K ROMs (note: we assume that envMachUnknown
doesn't have 64K ROMs when we check machineType >= 0)
}

IF SysEnvirons(CurrentVersion,theWorld) = envNotPresent THEN
newTextAvail:= FALSE

ELSE
newTextAvail:= (theWorld.machineType >= 0);

END;

Developer Support Center March 1988

Macintosh Technical Notes

Developer Support Center March 1988

Macintosh Technical Notes

In C:

/* Current version of SysEnvirons */
#define CurrentVersion 1
{

Boolean newTextAvail;
SysEnvRec theWorld;

/*
see comment in the above Pascal

*/
if (SysEnvirons(CurrentVersion,&theWorld) == envNotPresent)

newTextAvail = false;
else

newTextAvail = (theWorld.machineType >= 0);
}

I need to see if PopUpMenuSelect is implemented.

The same answer as above applies here, since the “new” Menu Manager calls are only implemented in System 4.1 on 128K or larger ROM
machines (and, as we found above, PopUpMenuSelect has the same trap number as Rename, so calling NGetTrapAddress won’t work
on 64K ROMs).

Checking for Specific Functionality

There are rare times when you may feel that it is necessary to test for specific functionality. In order to allow for testing of specific trap
functionality, there is an official unimplemented trap. This trap ($A89F) is unimplemented on all Macintoshes. To test to see if a particular trap
that you wish to use is implemented, you can compare its address with the address of the unimplemented trap. Here are two fragments that show
how to check to see if Shutdown is implemented. First, Pascal:

CONST
 ShutDownTrapNum = $95;{trap number of Shutdown}
 UnImplTrapNum = $9F;{trap number of “unimplemented trap”}

VAR
 ShutdownIsImplemented : BOOLEAN; {is Shutdown implemented}

BEGIN
{Is Shutdown implemented?}
 ShutdownIsImplemented :=

NGetTrapAddress(ShutDownTrapNum,ToolTrap) <>
NGetTrapAddress(UnImplTrapNum,ToolTrap);

END;

Here’s a C fragment:

/*trap number of Shutdown*/
#define ShutDownTrapNum 0x95
/*trap number of “unimplemented trap”*/
#define UnImplTrapNum 0x9F

{
Boolean ShutdownIsImplemented;

Developer Support Center March 1988

Macintosh Technical Notes

 /*Is Shutdown implemented?*/
 ShutdownIsImplemented =

NGetTrapAddress(ShutDownTrapNum,ToolTrap) !=
NGetTrapAddress(UnImplTrapNum,ToolTrap);

}

NGetTrapAddress is used because it ensures that you will get the correct trap in case there is a ToolTrap and an OSTrap with the same
number. Please note that calling NGetTrapAddress does not cause compatibility problems with 64K ROMS. When run on those ROMs, it
just becomes a GetTrapAddress call. You have to be careful on 64K ROMs—you can’t test for PopUpMenuSelect ($A80B), for
example, because it has the same trap number as Rename($A00B). The 64K ROM didn’t really differentiate between ToolTraps and
OSTraps (there was no overlap in trap numbers). So, if you wanted to test for PopUpMenuSelect, you would need to first check to make
sure you weren’t running on 64K ROMs (see below).

You can get the trap number of the trap you wish to test for from Inside Macintosh (Appendix C of Volumes I-III and Appendix B of Volume
IV). You can tell if the trap is an OSTrap or a ToolTrap by checking to see if bit 11 in the trap word is set, that is, traps like $A8xx (or
$A9xx or $AAxx) that have the “8” component set, are ToolTraps and traps that don’t ($A0xx) are OSTraps. The trap number that you
pass to NGetTrapAddress for ToolTraps is the low 10 bits of the trap word (the trap number for PopUpMenuSelect[$A80B] is
$00B). The trap number that you pass to NGetTrapAddress for OSTraps is the low 8 bits of the trap word (the trap number for
MoveHHi[$A064] is $064).

Shutdown ($A895) is just an example of a trap that we might need to check before calling. Most applications won’t call ShutDown, so this
is just an example of how to do the testing.

Further Reference:
• Operating System Utilities
• Assembly Language
• M.OV.GestaltSysenvirons

Developer Support Center March 1988

