
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Apple Event Manager Q&As
Interapplication Communication

Revised by: Developer Support Center June 1993
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As for this Technical Note:
AETracker tracks Apple events

AETracker tracks Apple events
Date Written: 1/22/93
Last reviewed: 4/1/93

Do you have any software that detects Apple events? I need something that will let me know
when my application sends Apple events and if the receiving application processes them
correctly.

If brevity is the soul of wit, then I’m one funny dude: Try AETracker on the Developer CD
(in the Tools & Apps: OS/Toolbox: Apple Events folder).

Descriptor disposal after AEPutXXXX
Date Written: 12/7/92
Last reviewed: 3/1/93

Developer Support Center May 1993

Macintosh Technical Notes

When a request for information is passed to me through an Apple event, the direct object
parameter of my reply event is a descriptor list that includes an AERecord of my
information. When I use AEPutPtr and the AEPutParamDesc, is the data copied or merely
referenced?

Developer Support Center May 1993

Macintosh Technical Notes

Should I be disposing of the AERecord and/or the descriptor list, or should I expect
AEProcessAppleEvent to dispose of them?

Whenever you make an AEPutXXXX call, the Apple Event Manager copies the data you put
into the list, event, or record, so as soon as you do an AEPutXXXX you can dispose of the
data you put. Thus, the following is correct:

AEPutParamDesc(&theEvent, keyDirectObject, &theSpec);
AEDisposeDesc(&theSpec);

And so is this:

HLock(myTextHandle);
AEPutParamPtr(&theEvent, keyDirectObject, typeText,
 (Ptr)*myTextHandle, GetHandleSize(myTextHandle));
DisposeHandle(myTextHandle);

The only two descriptors disposed of by the Apple Event Manager itself (at the conclusion of AEProcessAppleEvent) are the original Apple
event and the reply Apple event. So, anything that you create and manipulate yourself should be disposed of by you when you add it to another
Apple event record or when you’re done with it. The only two you don’t dispose of yourself are theEvent and reply, which are passed to you, as
in:

pascal OSErr AEXXXHandler(AppleEvent *theEvent, AppleEvent *reply,
 long refIn)

This even holds true for AESend. When you send an event, you can immediately dispose of your copy of the event, as follows:

AESend(&myEvent, nil, kAENoReply, kAENormalPriority,
 kAEDefaultTimeout, nil, nil);
AEDisposeDesc(&myEvent);

Limit for number of files opened from the Finder using 'odoc' event
Date Written: 11/9/92
Last reviewed: 3/1/93

Is there some limitation on the number of files you can open from the Finder using the 'odoc'
event? I wrote a simple drag-and-drop application, using the 'odoc' event. When I tried to
drag and drop 190 files over it, it froze.

These limits aren’t officially documented anywhere. For drag and drop, the limit should be
whatever causes the event to be passed going over 64K, since the High-Level Event
Manager doesn’t handle anything over 64K right now. 600 files at roughly 250 bytes per
alias would push you way over the limit. At that point the Finder is probably not able to
recover gracefully from a HLE error.

Construction of Apple events

Developer Support Center May 1993

Macintosh Technical Notes

Date Written: 4/9/91
Last reviewed: 8/1/92

How do I pass an Apple event to an application at launch time?

You can coerce the 'odoc' Apple event to a data type that doesn’t need to be pre-addressed.A
sample called ProcDoggie on the Developer CD demonstrates this . If you look in the
UProcessUtils.inc1.p file, you’ll find this comment:

“To create the kAEOpenDocuments or kAEPrintDocuments Apple event, a target address
descriptor is needed. Because we’re converting the Apple event into a typeAppParameters
descriptor rather than sending it somewhere, it doesn’t matter what target address we use. I
just used the process serial number (PSN) of this application as a dummy value. Because this
is an application and not something like a driver, I can just use the “kCurrentProcess”
constant to represent this application’s PSN. A descriptor is made of this PSN, then this PSN
is used when creating the new kAEOpenDocuments AppleEvent. Once this Apple event is
created, the PSN descriptor is no longer needed and is disposed of.”

In other words, you just dummy up an address and coerce the descriptor to be of type
typeAppParameters, and the address will be corrected for you by the AppleEvents Manager.
Please refer to the ProcDoggie sample source code or to LaunchWithDoc (in the Snippets
collection) for the complete picture of how this is done.

Apple event application error handling
Date Written: 7/22/91
Last reviewed: 8/1/92

What do we return to the Apple event handler if we get an application error while processing
a standard event, Edition Manager event, or custom Apple event for commands and queries?
Probably not errAENotHandled, since that means we didn’t handle the event, which is
different from trying to handle it and failing. Would it be errAEFail? What if we want to
return more specific error information? Do we define our own errors, or try to use Apple’s
errors such as memFullErr or parmErr?

You pass back errAENotHandled, because it’s true, and because some simple applications
will not be able to handle anything more than that. What you can also do, and what most
commercial applications will do (particularly applications that want to be scripting savvy), is
add errn and errs parameters to the reply record for that event (as shown on page 6-49 of
Inside Macintosh Volume VI). You can be as descriptive as you like in the text—the more
the better, in fact, since this text will be seen at the user level usually. The errn value you
pass back can be the system error number; then the sending program may be able to recover
and try again.

Developer Support Center May 1993

Macintosh Technical Notes

Apple events to yourself bypass WaitNextEvent processing
Date Written: 8/12/91
Last reviewed: 8/1/92

If I send Apple events to myself and specify kAEQueueReply to AESend, the event doesn’t
get put in the queue as I requested. It shows up immediately in the reply parameter.
According to

Developer Support Center May 1993

Macintosh Technical Notes

Inside Macintosh, if I specify kAEQueueReply I should treat the reply event as undefined.
Please help; my application falls apart because it never receives the event it’s supposed to. If
this is a bug, will the behavior be changed in the future?

This isn’t a bug; it’s an undocumented “feature” of the Apple Event Manager (AEM). If you
send an Apple event to yourself, the AEM directly dispatches to the handler you’ve installed
for that event. So Apple events you send to yourself don’t come in through WaitNextEvent.
This means that if you reply to an Apple event you sent yourself, your 'ansr' handler will get
called directly.

This was not an arbitrary decision, though it can have some confusing ramifications for an
application. Two factors influenced the decision—the first minor, the second major:

• Speed. The AEM has all the handlers for your application in a hashed table, and can
dispatch very quickly to them, so for performance reasons direct dispatching was
implemented.

• Event priorities and sequencing. Apple events have a lower priority than user-generated
events (keystrokes, clicks); they come in right before update events. This created a
potentially serious problem for applications that sent Apple events to themselves.

If all Apple events came through the event loop, you could easily create the following
scenario:

1. The user selects a menu item, the application sends an Apple event to itself in response,
and this Apple event requires a reply or will cause other Apple events to be sent.

2. The user clicks the mouse in an application window.

The mouse click has a higher priority than the reply or any Apple events that are sent in
response to the first Apple event, and gets posted ahead of the Apple event in the event
queue. This means that the mouse click happens and conceivably changes the current context
of the application (perhaps switching windows, for example); then when the Apple events
sent by the menu item handler are processed through the queue, the application state is not
the same as it was when the menu selection was made, and the menu selection may be totally
inappropriate for the current configuration.

So, to prevent a loss of sequencing, the AEM directly dispatches. Any non-Apple events that
happen while you’re sending and processing an Apple event to yourself will be queued and
won’t interrupt the Apple event process you’ve initiated. What this means in the case you’re
describing is that queued replies don’t happen when you’re sending to yourself. The AEM
will directly dispatch to your 'ansr' handler, bypassing WaitNextEvent processing of Apple
events to prevent any other events from breaking the chain of Apple events you may be
processing. This isn’t a major problem, but it’s something you need to be aware of if you’re

Developer Support Center May 1993

Macintosh Technical Notes

expecting some other events to be processed before you get a reply or other Apple event.

Target Process must be valid and high-level event aware
Date Written: 8/16/91
Last reviewed: 8/1/92

Developer Support Center May 1993

Macintosh Technical Notes

When I send an 'odoc' Apple event to an already-running application, I get an -600 error at
the AESend call. The process serial number is correct at entry. What is this error, and is it
documented anywhere?

The error -600 means that the process serial number that you sent is either invalid or is the
serial number of a process that does not accept Apple events—that is, the high-level event bit
of the destination process’s size resource isn’t set.

LaunchApplication and event sequence
Date Written: 2/19/92
Last reviewed: 8/1/92

Is it true that if I double-click a document belonging to my application, the application will
be launched and will receive an 'odoc' Apple event, but will not receive an 'oapp' event—that
is, it will receive either 'odoc' or 'oapp' but not both?

Yes, except actually it will receive one of 'oapp', 'odoc', or 'pdoc'. The 'pdoc' will be followed
(as the next event) by a 'quit' if the 'pdoc' was the event sent as the application was launched.

This is the normal sequence of events, and should be adhered to by everyone who launches
applications. However, it isn’t enforced by the system or the Finder. It’s possible for any
application to launch your application with any event, since it can stuff anything in the
launchAppParameters field of LaunchApplication, as long as it’s a valid high-level (not even
Apple) event. Launching another application this way would be bad programming, and
would break most applications, but you should be aware that someone who doesn’t
understand event handling may do this to you.

Note that if another application launches your application using LaunchApplication and
doesn’t specify any high-level event in the launch parameter block, the Finder will
automatically supply the 'oapp' event. So, in general, if Apple events and launching have
been coded correctly, you’ll always receive an 'oapp', 'odoc', or 'pdoc'.

Ignoring or purging an event from high-level event queue
Date Written: 3/6/92
Last reviewed: 8/1/92

Inside Macintosh Volume VI states that you cannot use FlushEvents to flush high-level
events. I need to flush a single newFile event from the high-level event queue. How can I do
this?

Developer Support Center May 1993

Macintosh Technical Notes

Typically, if you need to ignore a particular event which you would otherwise handle, you
can just set a flag to tell the handler routine not to take its normal action. For most
circumstances, this is the easiest and most appropriate way to ignore a particular event.

There may be circumstances where you need to purge a specific event from the high-level
event queue. That can be done by searching for the event with GetSpecificHighLevelEvent
and an

Developer Support Center May 1993

Macintosh Technical Notes

appropriate filter proc; if the event is found, just call AcceptHighLevelEvent to dequeue it.
Here’s an example which removes all 'pdoc's from the high-level event queue:

TYPE
 EvtClassIDPtr = ^EvtClassID;
 EvtClassID = RECORD
 class: OSType;
 evtID: OSType;
 END;
VAR
 theEvtClassID: EvtClassID;
 retCode: OSErr;
 gotHLEFlag: Boolean;

 FUNCTION MyGSHLEFilter(myDataPtr: Ptr; msgHLEMPtr: HighLevelEventMsgPtr;
 sender: TargetID): BOOLEAN;
 VAR
 myTarg: TargetID;
 myRefCon: LongInt;
 myBuff: Ptr;
 myLen: LongInt;
 myErr: OSErr;
 BEGIN
 MyGSHLEFilter := FALSE;
 IF (OSType(msgHLEMPtr^.theMsgEvent.message) =
 EvtClassIDPtr(myDataPtr)^.class) AND
 (OSType(msgHLEMPtr^.theMsgEvent.where) =
 EvtClassIDPtr(myDataPtr)^.evtID) THEN
 BEGIN
 myLen := 0;
 myBuff := NIL;

 myErr := AcceptHighLevelEvent(myTarg, myRefCon, myBuff, myLen);
 IF myErr = bufferIsSmall THEN
 BEGIN
 myBuff := NewPtr(myLen);
 myErr := AcceptHighLevelEvent(myTarg, myRefCon, myBuff, myLen);
 END;
 IF myErr <> noErr THEN HandleError(myErr);
 IF myBuff <> NIL THEN DisposePtr(myBuff);

 MyGSHLEFilter := TRUE;
 END;
 END;
...
BEGIN { main }
 ...
 { purge all print doc Apple events from the HLE queue }
 theEvtClassID.class := kCoreEventClass;
 theEvtClassID.evtID := kAEPrintDocuments;
 REPEAT
 gotHLEFlag := GetSpecificHighLevelEvent(@MyGSHLEFilter,
 @theEvtClassID, retCode)
 UNTIL (NOT gotHLEFlag) OR (retCode <> noErr);
 ...
END.

GetSpecificHighLevelEvent is documented in Chapter 5 of Inside Macintosh Volume VI.

Developer Support Center May 1993

Macintosh Technical Notes

Apple Event handler: Installation code
Date Written: 9/10/91
Last reviewed: 8/1/92

I’m writing a small application that uses Apple events, which neither opens documents nor
prints. Inside Macintosh Volume VI says that all Apple event-aware applications should
support the odoc and pdoc Apple events, but these are not appropriate in my case. What
should I do?

You don’t necessarily need to install a handler for each event, but it makes your code
cleaner. If you don’t have a handler, the Apple Event Manager will automatically return
errAEEventNotHandled from your AEProcessAppleEvent call, since it can’t find a handler
for the event in the handler tables. But we recommend installing handlers for the required
Apple events anyway; it makes your code cleaner and easier to understand, as well as easily
allowing you a place to put a routine when you need to implement it. And it doesn’t take up
much memory. Just install a handler like this (in MPW C):

pascal OSErr AEPrintHandler(AppleEvent *messagein,
AppleEvent *reply, long refConIn)
{
/* Tell the compiler I'm not using these parameters */
#pragma unused (reply,refConIn,messagein)
 return(errAEEventNotHandled); /* and return my error */
}

Finding Apple event sender’s target ID or process serial number
Date Written: 10/25/91
Last reviewed: 8/1/92

How can I identify the sender of an Apple event?

If your application is just sending a reply, it should not be creating an Apple event or calling
AESend. Instead, the Apple event handler should stuff the response information into the
reply event, as shown on page 6-50 of Inside Macintosh Volume VI. The Apple Event
Manager takes care of addressing and sending the event.
To find the target ID or process serial number of the sender of an Apple event, use
AEGetAttributePtr to extract the address attribute, as follows:

retCode := AEGetAttributePtr(myAppleEvent, keyAddressAttr,
 typeWildCard, senderType, @senderBuffer,
 sizeof(senderBuffer), senderSize)

The senderBuffer can later be used with AECreateDesc to create an address to be passed to AESend. The buffer should be at least as large as
data type TargetID. See Inside Macintosh Volume VI, page 5-22, for a description of TargetID.

Launching an application remotely
Date Written: 4/16/92
Last reviewed: 5/21/92
Developer Support Center May 1993

Macintosh Technical Notes

I need to launch an application remotely. How do I do this? The Process Manager doesn’t
seem to be able to launch an application on another machine and the Finder Suite doesn’t
have a Launch Apple event.

What you need to do is use the OpenSelection Finder event. Send an OpenSelection to the
Finder that’s running on the machine you want to launch the other application on, and the
Finder will resolve the OpenSelection into a launch of the application.

As you can see if you glance at the OpenSelection event in the Apple Event Registry, there’s
one difficulty with using it for remote launching: You have to pass an alias to the application
you want to launch. If the machine you want to launch the application on is already mounted
as a file server, this isn’t important, since you can create an alias to that application right at
that moment. Or, if you’ve connected in the past (using that machine as a server) you can
send a previously created alias and it will be resolved properly by the Finder on the remote
machine.

However, if you want to launch a file without logging on to the other machine as a server,
you’ll need to use the NewAliasMinimalFromFullPath routine in the Alias Manager. With
this, you’ll pass the full pathname of the application on the machine you want to launch on,
and the Alias Manager will make an alias to it in the same way it does for unmounted
volumes. The obvious drawback here is that you’ll need to know the full pathname of the
application — but there’s a price to pay for everything. The FinderOpenSel sample code on
the Developer CD Series disc illustrates this use of the NewAliasMinimalFromFullPath
routine.

Opening documents from another application
Date Written: 5/2/91
Last reviewed: 8/1/92

How can I open Macintosh documents that belong to an application that’s already running?

If you find that you have the Apple Event Manager present, then build 'odoc' Apple events to
your heart’s content, and send them to whomever you wish. The Process Manager will hop
in there if the target isn’t Apple event-aware and coerce the required Apple event to the
appropriate Puppet String for you. No further hacks on your part are required. You literally
don’t care (at least for the purposes of the required Apple events) whether your target is
Apple event aware or not.

Alert user instead of sending 'quit' Apple event to free RAM
Date Written: 5/2/91

Developer Support Center May 1993

Macintosh Technical Notes

Last reviewed: 8/1/92

Is it acceptable to force other Macintosh applications to quit to free up memory?

While it’s possible to free up memory by sending a 'quit' Apple event, a much better
alternative from a human interface standpoint is to pose an alert to the user indicating that
you couldn’t open the documents they requested due to a lack of memory, and asking the
user to please try

Developer Support Center May 1993

Macintosh Technical Notes

quitting some other applications and try again. It’s better to leave the user in control of the
process.

High-level Macintosh events and user reference numbers
Date Written: 4/24/92
Last reviewed: 7/13/92

We’re using Apple events with the PPC Toolbox. We call StartSecureSession after
PPCBrowser to authenticate the user’s identity. The user identity dialog box is displayed and
everything looks good. However, in the first AESend call we make, the user identity dialog
is displayed again. (It isn’t displayed after that.) Why is this dialog being displayed from
AESend when I’ve already authenticated the user identity with StartSecureSession?

First, a few PPC facts:

• When a PPC session is started, StartSecureSession lets the user authenticate the session (if
the session is with a program on another Macintosh) and returns a user reference number for
that connection in the userRefNum field of the PPCStartPBRec. That user reference number
can be used to start another connection (using PPCStart instead of StartSecureSession) with
the same remote Macintosh, bypassing the authentication dialogs.

• User reference numbers are valid until either they’re deleted with the DeleteUserIdentity
function or one of the Macintosh systems is restarted.

• If the name and password combination used to start a session is the same as that of the
owner of the Macintosh being used, the user reference number returned refers to the default
user. The default user reference number normally is never deleted and is valid for
connections to the other Macintosh until it’s deleted with DeleteUserIdentity or one of the
Macintosh systems is restarted.

With that out of the way, here’s how user reference numbers are used when sending high-
level events and Apple events: When you first send a high-level event or an Apple event to
another Macintosh, the code that starts the session with the other system doesn’t attempt to
use the default user reference number or any other user reference number to start the session,
and it doesn’t keep the user reference number returned to it by StartSecureSession. The
session is kept open for the life of the application, or until the other side of the session or a
network failure breaks the connection.

When you started your PPC session, StartSecureSession created a user reference number that
could be used to start another PPC session without authentication. However, the Event
Manager knows nothing of that user reference number, so when you send your first Apple
event, the Event Manager calls StartSecureSession again to authenticate the new session.
Since there isn’t any way for you to pass the user reference number from the PPC session to

Developer Support Center May 1993

Macintosh Technical Notes

the Event Manager to start its session, there’s nothing you can do about this behavior.

Sending applications must be high-level event aware
Date Written: 7/30/92
Last reviewed: 9/15/92

Developer Support Center May 1993

Macintosh Technical Notes

Why do I get error -903 (a PPC Toolbox noPortErr) when I send an Apple event to a running
application with AESend?

The isHighLevelEventAware bit of the sending application’s SIZE -1 resource (and SIZE 0
resource, if any) must be set.

Developer Support Center May 1993

