
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Speedy the Math Coprocessor
Hardware

Written by: Rich Collyer June 1989

This Technical Note presents an overview of the 68881 and 68882 math coprocessors, and it 
covers general information about the chips as well as how using the chips directly can help 
speed your math–intensive code.

Introduction

Generally  we  don’t  recommend  that  you  assume  the  existence  of  specific  hardware. 
However, if your program does proper feature checking using _SysEnvirons and there is 
a Floating–Point Unit  (FPU) available, than you can use code which will run your math 
intensive code much faster.  This Technical Note is basically a condensed version of the 
Motorola MC68881/MC68882 Floating–Point  Coprocessor User’s  Manual.   I  will  cover 
some of the basics of what the chips can do, their differences, and how to take advantage of 
what they have to offer.

If  _SysEnvirons returns  hasFPU = FALSE, then your code should use the routines 
provided by the Standard Apple Numeric Environment (SANE).  The routines which SANE 
provide are covered in the Apple Numerics Manual.

So What Can These Chips Do?

The MC68881 and MC68882 are floating–point coprocessors which implement the IEEE 
standard for binary floating–point arithmetic.  The two chips are fully interchangeable and 
are primarily for use as coprocessors to the MC68020 and MC68030 central processors.  The 
two chips will work as peripheral processors to the MC68000, MC68008, and MC68010 
central processors.

Both chips have eight 80–bit general purpose floating–point data registers (FP0-FP7), 67–
bit arithmetic units with precision greater than the extended format, 67–bit barrel shifter, 46 
instructions, trigonometric and transcendental functions, and 21 constants.  The MC68882 
also has the capability of concurrent execution of multiple floating–point instructions.
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Internal Registers for a Higher Capacity to Think

There  are  eleven  separate  registers  in  these  puppies:   eight  data  registers,  one  control 
register, one status register, and one address register.
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Data Registers

There are eight 80–bit floating–point data registers labeled FP0–FP7.  The extended format, 
which is used by these registers, will be covered later.  When using the FPU from an MPW 
C and Pascal application, you can us  FP0–FP3 for temporary storage without saving and 
restoring their values.  If you wish to use FP4–FP7 in your assembly routine, then you must 
save these registers at the start of your assembly code and restore them before you leave the 
assembly code.

Control Register (FPCR)

Below is a representation of the control register.  For the most part, there is no need for you 
to do anything to the control register directly.  It is used internally for determining precision, 
rounding, and error checking.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Unused Word, reserved by Motorola

03 01 0002

Unused, Reserved

14 13 12 11 10 09 0815

Branch/Set on Unordered
Signalling Not a Number

Operand Error
Overflow

Underflow
Divide by Zero

Inexact Operation
Inexact Decimal Input

Exception Enable Byte

07 06

00 Extended
01 Single
10 Double
11 reserved

05 04

00 Nearest
01 To Zero
10 – inf
11 + inf

Precision Mode
Rounding

Figure 1–Control Register

Status Register (FPSR)

The status register is diagrammed in Figure 2.  This register is also used mostly for internal  
chores.   The  condition–code byte  is  set  at  the  end of  each arithmetic  instruction.   The 
condition–code byte is translated into a data type; Table 1 shows the relationship between 
condition codes and data types.  The condition code is also used to determine logic equates.  
If you wish to determine if two numbers are equal, than the  Compare statement (FCMP) 
will check the condition code.  Table 2 shows the relationship between the condition codes 
and logic equates.
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The quotient byte is set at the completion of FMOD (Modulo Remainder) and FREM (IEEE 
Remainder).   This  byte  can  be  used  before  a  transcendental  function  to  determine  the 
quadrant 

Developer Support Center June 1989



Macintosh Technical Notes

of a circle in which an operand resides.  The FP–exception status byte is used in conjunction 
with the exception–enable byte of the control register.  The FP–accrued exception byte is 
used to keep a history of the FP exceptions that have occurred since the last set or clear.

31 30 29 28

Unused, Reserved

Not a Number or Unordered

27 26 25 24

Negative
Zero

Infinity

Condition Code Byte

Sign of Quotient

23 22 21 20 19 18 17 16

Quotient Bits

7 Least Significant 
Bits of Quotient

15 14 13 12 11 10 09 08

Exception Status Byte

Branch/Set on Unordered
Signalling Not a Number

Operand Error
Overflow

Underflow
Divide by Zero

Inexact Operation
Inexact Decimal Input

07 06 05 04 03 02 01 00

Accrued Exception Byte

Invalid Operation
Overflow

Underflow
Divide by Zero

Inexact
Unused, Reserved

Figure 2–Status Register

Negative Zero Infinity NAN Result Data Type
0 0 0 0 + Normalized or Denormalized
1 0 0 0 –  Normalized or Denormalized
0 1 0 0 + zero
1 1 0 0 –  zero
0 0 1 0 + infinity
1 0 1 0 –  infinity
0 0 0 1 + NAN
1 0 0 1 –  NAN

Table 1–Condition Code versus Result Data Type
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Logic Equate Abbreviation Condition Code
Equal to EQ Z
Not Equal NE not Z
Greater Than GT or OGT not(N or NAN or Z)
Not Greater Than NGT or UGT NAN or Z or N
Greater Than or Equal GE or OGE Z or (not(NAN or N))
Not (Greater Than or Equal) NGE or UGE NAN or  (N and  (not 
Z))
Less Than LT or OLT N and (not(NAN or Z))
Not Less Than NLT or ULT NAN or (Z and (not N))
Less Than or Equal LE or OLE Z or (N and (not NAN))
Not (Less Than or Equal NLE or ULE NAN or (not (N or Z))
Greater or Less Than GL or OGL not (NAN or Z)
Not (Greater or Less Than)NGL or UEQ NAN or Z
Greater, Less or Equal) GLE or OR not NAN
Not (Greater, Less or Equal) NGLE or UN NAN

Oxx is ordered Z –> Zero
Uxx is unordered N –> Negative

Table 2–Logic Equates

Address Register (FPIAR)

Since the coprocessor can do concurrent processing with the MC68020 and MC68030, as 
well as with itself, the program counter is not necessarily pointing to the logical address of 
the instruction upon which it is working.  So the address register stores the logical address of 
each floating–point instruction before executing it.

Floating–Point Data Formats

There are four floating–point numeric formats:  single–precision binary real format, double–
precision binary real format, eXtended–precision binary real format, and Pack decimal real 
format (a.k.a., BCD).  I have given examples of what the FPU will convert your numbers to. 
The number which I have used for the four examples is Planck’s constant (4.136 x 10 -15 eV–sec). 
Other than the size, the first three formats are very similar.  The three formats all have the same conversion method and ordering of information.

Single (S) 32 bit

Single precision is represented by 32 bits of information.  The high bit (bit 31) is the sign bit (s).  The next byte of information (bits 30–23) is the exponent (e),  
and the last 23 bits (bits 22–0) are the fraction (f).  The bits of information are converted into a floating–point number by the following equation:

(–1)s * 2(e-127) * (20 + f)

The fraction (f) is the strange value.  Each bit in the fraction value represents a negative exponent of two.  So if bit 22 and bit 16 are high, and all the rest of the  

bits are low, than the fraction would equal 0.5078125 or (2-1 + 2-7).  So when I give the FPU the number 4.136e–
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15, it converts the number into the hexadecimal number $04F1503DE, which, in the above equation, looks like:

(–1)0*2(79-127)* 20+2-3+2-5+2-7+2-14+2-15+2-16+2-17+2-19+2-20+2-21+2-22

This number is than converted back to a base ten number as 4.13600004803759899e–15.  As you can see, the number is correct up to the seventh decimal place.

Double (D) 64 bit

Double precision is represented by 64 bits of information.  The high bit (bit 63) is the sign bit (s),  The next 11 bits of information (bits 62–52) are the exponent  
(e), and the last 52 bits (bits 51–0) are the fraction (f).  The bits of information are converted into a floating–point number by the following equation:

(–1)s * 2(e-1023) * (20 + f)

When I give the FPU the number 4.136e–15 as a double, it converts the number into the hexadecimal number $03CF2A07BBC5ED155.  This number is than  
converted back to a base ten number as 4.13600000000000015e–15.  As you can see, the number is correct up to the fifteenth decimal place.

EXtended (X) 96/80 bit

Extended precision is represented by 96 bits of information; SANE and FP data register use 80–bit extended numbers, but the FPU extended numbers are 96 bits  
with 16 unused bits, so the two are basically the same.  The high bit (bit 95) is the sign bit (s),  The next 15 bits of information (bits 94–81) are the exponent (e),  
there are 16 unused bits (bits 80–64), and the last 64 bits (bits 63–0) are the fraction (f).  The bits of information are converted into a floating–point number by the  
following equation:

(–1)s * 2(e-16383) * (20 + f)

When I give the FPU the number 4.136e–15 as a extended, it converts the number into the hexadecimal number $03FCF(0000)9503DDE2F68AA66F.  This  
number is than converted back to a base ten number as 4.136e–15.  This number is correct to about the nineteenth decimal place.

Pack Decimal Real (P) BCD Format 96 bits

Pack Decimal Real is represented by 96 bits of information.  The bits of these numbers are represented as follows:

bit 95 Sign of Mantissa
bit 94 Sign of Exponent
bit 93–92 used for +–infinity and NANs,otherwise zero
bits 91–81 10–bit Exponent (3 digit exponent)
bits 80–68 unused, zero
bit 67–0, 68 bit Mantissa (17 digit mantissa)
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When I give the FPU the number 4.136e–15 as a PDR, it converts the number into the hexadecimal number $401500041360000000000000.  This hexadecimal 
number is filled into the above bit as follows:

bit 95 Sign of Mantissa 0 (binary)
bit 94 Sign of Exponent 1 (binary)
bit 93–92 used for +–infinity and NANs,otherwise zero 00 (binary)
bits 91–80 11–bit Exponent (3 digit exponent) 000000010101 (binary)
bits 79–68 unused, zero 000000000000 (binary )
bit 67–0 68 bit Mantissa (17 digit mantissa) 41360000000000000 (hex)

This number is than converted back to a base ten number as 4.136e–15.  This number is correct to the seventeenth decimal place.

So What Tools Do I Have to Play With?

There are four types of opcodes which the math coprocessors support:  moves, monodic, 
dyadic, and miscellaneous conditions.  When a coprocessor operation is executed, the first 
operation which  the coprocessor performs is to convert the data to the internal extended 
precision  format,  and  when  the  operation  is  completed,  the  data  is  converted  to  the 
destination data format.

Moves

The first type which I will describe are the move opcodes.  Below is a list of the various  
formats in which the move commands come.

Move
FMOVE.<fmt> <ea>, FPn
FMOVE.<fmt > FPm, <ea>
FMOVE.X FPm, FPn

Move Multiple
FMOVEM <ea>, FP0 - FP3/FP7
FMOVEM FP2/FP4/FP6, <ea> ;the registers are always moved

as 96 bit extended
;data without conversion

Move Register
FMOVE.L <ea>, FPCR ;move to control register
FMOVE.L FPCR, <ea> ;move from control register

Move Constants from ROM to floating-point register
FMOVECR.X #ccc, FPn ;see Table 3 for #ccc

Save and Restore Machine State
FSAVE <ea> ;virtual machine state save
FRESTORE <ea> ;virtual machine state restore

<ea> is a main processing unit (MPU) effective address operand (any 68xxx addressing mode).
<fmt> is the data format size (Byte, Word, Long, Single, Double, eXtended, Packed decimal).
FPm and FPn are floating–point data registers.
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#ccc Mathematical Representation Numeric Representation
$00 pi 3.14159265358979324
$0B log(base 10)(2) 0.301029995663981195
$0C e 2.71828182845904524
$0D log(base 2)(e) 1.442695040888963410
$0E log(base 10)(e) 0.434294481903251828
$0F zero 0
$30 ln(2) 0.693147180559945309
$31 ln(10) 2.302585092994045684
$32 10^0 1
$33 10^1 10
$34 10^2 100
$35 10^4 10,000
$36 10^8 100,000,000
$37 10^16 10,000,000,000,000,000
$38 10^32 100...(28 more zeros)...00
$39 10^64 100...(60 more zeros)...00
$3A 10^128 100...(124 more zeros)...00
$3B 10^256 100...(252 more zeros)...00
$3C 10^512 100...(508 more zeros)...00
$3D 10^1024 100...(1020 more zeros)...00
$3E 10^2048 100...(2044 more zeros)...00
$3F 10^4096 100...(4092 more zeros)...00

Table 3–Constants

Monodic

A monodic operation has one operand.  The operand may be a floating–point data register or an MPU effective address.  The  
result is always stored in a floating–point data register.  The syntax for monodic operations is listed below:

Fxxxx.<fmt> <ea>, FPn
Fxxxx.X FPm, FPn
Fxxxx.X FPn

where: <fmt> is (B,W,L,S,D,X,P)
xxxx is one of the Trigonometric (SIN), Transcendental (ATANH), Exponential (ETOXM1), Misc. commands (NEG)

Dyadic

A dyadic operation has two operands.  The first operand can be in a floating–point data register, or an MPU effective address.  The second  
operand is the contents of a floating–point data register.  The result of the operation is stored in the second operand.  The syntax for dyadic  
operations is listed below:

Fxxxx.<fmt> <ea>, FPn
Fxxxx.X FPm, FPn

where <fmt> is (B,W,L,S,D,X,P)
xxxx is a arithmetic (ADD), compare (CMP)
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Condition operations

There are four condition operations:  branch (FBcc), decrement and branch (FDBcc), set according to condition (FScc), and trap on condition 
(FTRAPcc).

Why and How do I Program for a 68882?

Any code which runs on a 68881 will run on a 68882 and vice versa.  You do not need to 
take special care to program for the 68882, but if the chip is available, than special care can  
noticeably improve the speed of your code.  Figure 3 demonstrates the difference between 
code run on a 68881 and the same code run on a 68882.  The 68882 is completely finished 
running before the 68881 has even started executing the FMOVE instruction.  The extra work 
which you need to do to take advantage of the concurrent processing is fairly minimal.
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Figure 3–Concurrent Execution versus Non–Concurrent Execution

Before you jump right in and start writing code, you need to understand that there are three 
different  levels  of  concurrency.   The first  level  is  the minimum concurrency operations. 
These are operations which cannot run concurrently with other operations.  Most of these 
operations are non–floating–point format operations.  The minimum concurrency operations 
are listed in Table 4.
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Table 4–Minimum Concurrency

Instruction Operand Syntax Operand Format
FMOVE <ea>, FPn B,W,L,P

FPm, <ea> B,W,L
FPm, <ea> P
FPm, <ea> P
<ea>, FPcr L
FPcr, <ea> L

FMOVECR #ccc, FPn X
FMOVEM <ea>, <list> L,X

<ea>, Dn X
<list>, <ea> L,X
Dn, <ea> X

FTST FPm B,W,L,P
F<monodic> <ea>, FPn B,W,L,P
F<dyadic> <ea>, FPn B,W,L,P
FSINCOS <ea>, FPc:FPs B,W,L,P

The next level of operations are the operations which can share some of the FPU time with 
other operations, these are the partial concurrency operations and they are listed in Table 5.  
The partial concurrency operations include most of the floating–point format operations.

Instruction Operand Syntax Operand Format
FTST <ea> S,D,X

FPm X
F<monodic> <ea>, FPn S,D,X

FPm, FPn
F<dyadic> <ea>, FPn S,D,X

FPm, FPn
FSINCOS <ea>, FPc:FPs S,D,X

FPm, FPc:FPs X

Table 5–Partial Concurrency

The highest level of concurrency is the fully–concurrent operations which are listed in Table 
6.  The only operations which can run fully concurrently are the FMOVE operations.  There 
are certain guidelines which you need to follow in order to achieve full concurrency, these 
guidelines are outlined in Table 6.  The most important rule to follow is to avoid register  
conflict.  There are basically two type of register conflict.  The first is when the destination 
register of an operation is the source register of the following operation, and the following 
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operation is a fully–concurrent operation:

FADD.<fmt> <ea>, FP0
FMOVE.<fmt> FP0, <ea> ;FP0 conflicts

The second type of register conflict occurs when the destination register of an operation is the destination register of the following operation, 
and the following operation is a fully–concurrent operation:
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FADD.<fmt> <ea>, FP0
FMOVE.<fmt> <ea>, FP0 ;FP0 conflicts

where <fmt> is S, D, or X
No Concur Partial Concur

No Partial
Instruction Syntax Format Concurrency Concurrency
FMOVE FPm, FPn X a b,c,f
FMOVE <ea>, FPn S,D,X b,c,f
FMOVE FPm, <ea> S,D a b,d,e
FMOVE FPm, <ea> X a b

a:  Register conflict of FPm with preceding instruction’s destination FP data register
b:  NAN, unnormalized or denormalized data type
c:  Rounding Precision in FPCR set to Single or Double
d:  INEX2 bit in FPCR EXC byte is enabled
e:  An overflow or underflow occurs
f:  Register conflict of FPn with preceding instruction’s destination FP data register

Table 6–Fully Concurrent

The next most important optimization rule is to unroll loops.  If you properly unroll your loops, than you will be able to eliminate more of the  
register  conflicts.   Most  loops  are  designed  to  do  one  iteration  of  a  set  of  instructions.   This  means  that  each  iteration  of  the  loop  is  
accomplishing one iteration of the set of instructions.  If you unroll the loop, then each iteration of the loop can accomplish two or more  
iterations of the set of instructions.  Figures 4 and 5 demonstrate how to unroll your code.  The second version (Figure 5) is 25–30 percent faster  
than the first.

MOVE.L #count,D0

LOOPTOP FMOVE.X <ea_Xi>, FP3

FNEG.X FP3
FETOX.X FP3
FMOVE.X FP3,FP4 ;conflict
FSUB.X <ea_Xi>, FP3

FNEG.X FP4
FSUB.X #1, FP4
FDIV.X FP4,FP3
FNEG.X FP3
FADD.X <ea_Xi>,FP3

FMOVE.X FP3, <ea_Xi> ;conflict

DBRA D0, LOOPTOP

Figure 4–Newton–Raphson’s Method
Xi+1 = Xi + f(Xi)/f'(Xi) : f(X) = exp(-x) - x

MOVE.L #count,D0
FMOVE.D <ea_Xi>, FP0
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LOOPTOP FNEG FP0,FP3
FETOX FP3
FMOVE FP3,FP4 ;conflict
FSUB FP0,FP3
FNEG FP4
FSUB.X #1,FP4
FDIV FP4,FP3
FSUB FP3,FP0
DBRA D0, LOOPTOP

FMOVE.D FP0, <ea_Xi>

Figure 5–Newton–Raphson’s Method (resister–based, unrolled)
Xi+1 = Xi + f(Xi)/f'(Xi) : f(X) = exp(-x) - x

Conclusion

The last comment which I have to make is for code which is to run during interrupt time.  If  
you plan to use the math coprocessor during interrupt  time, you must call FSAVE at the start 
of your routine and FRESTORE at the end of your routine.  If you do not make these calls 
and you interrupt another program which is using the FPU, then the other program will not 
find the FPU in the same state that it was in before the interrupt, and this causes certain  
death.   For  more  information,  refer  to  Technical  Note  #235,  Cooperating  with  the 
Coprocessor.

If you made it this far, and you are still awake, then you should be already to start writing 
assembly routines for your code which will speed up your math–intensive programs.  Just 
remember that before you try to use the code, you need to check  hasFPU with a call to 
_SysEnvirons, and if the machine does not have an FPU, then use an alternate SANE 
version of the math code.

Further Reference:
• Apple Numerics Manual, Second Edition
• Motorola MC68881/MC68882 User’s Manual
• Technical Note M.OV.GestaltSysenvirons —

Gestatlt and Sysenvirons : a Never Ending Story
• Technical Note M.HW.MathCoProc —

 Cooperating with the Coprocessor
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