
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Speedy the Math Coprocessor
Hardware

Written by: Rich Collyer June 1989

This Technical Note presents an overview of the 68881 and 68882 math coprocessors, and it
covers general information about the chips as well as how using the chips directly can help
speed your math–intensive code.

Introduction

Generally we don’t recommend that you assume the existence of specific hardware.
However, if your program does proper feature checking using _SysEnvirons and there is
a Floating–Point Unit (FPU) available, than you can use code which will run your math
intensive code much faster. This Technical Note is basically a condensed version of the
Motorola MC68881/MC68882 Floating–Point Coprocessor User’s Manual. I will cover
some of the basics of what the chips can do, their differences, and how to take advantage of
what they have to offer.

If _SysEnvirons returns hasFPU = FALSE, then your code should use the routines
provided by the Standard Apple Numeric Environment (SANE). The routines which SANE
provide are covered in the Apple Numerics Manual.

So What Can These Chips Do?

The MC68881 and MC68882 are floating–point coprocessors which implement the IEEE
standard for binary floating–point arithmetic. The two chips are fully interchangeable and
are primarily for use as coprocessors to the MC68020 and MC68030 central processors. The
two chips will work as peripheral processors to the MC68000, MC68008, and MC68010
central processors.

Both chips have eight 80–bit general purpose floating–point data registers (FP0-FP7), 67–
bit arithmetic units with precision greater than the extended format, 67–bit barrel shifter, 46
instructions, trigonometric and transcendental functions, and 21 constants. The MC68882
also has the capability of concurrent execution of multiple floating–point instructions.

Developer Support Center June 1989

Macintosh Technical Notes

Internal Registers for a Higher Capacity to Think

There are eleven separate registers in these puppies: eight data registers, one control
register, one status register, and one address register.

Developer Support Center June 1989

Macintosh Technical Notes

Data Registers

There are eight 80–bit floating–point data registers labeled FP0–FP7. The extended format,
which is used by these registers, will be covered later. When using the FPU from an MPW
C and Pascal application, you can us FP0–FP3 for temporary storage without saving and
restoring their values. If you wish to use FP4–FP7 in your assembly routine, then you must
save these registers at the start of your assembly code and restore them before you leave the
assembly code.

Control Register (FPCR)

Below is a representation of the control register. For the most part, there is no need for you
to do anything to the control register directly. It is used internally for determining precision,
rounding, and error checking.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Unused Word, reserved by Motorola

03 01 0002

Unused, Reserved

14 13 12 11 10 09 0815

Branch/Set on Unordered
Signalling Not a Number

Operand Error
Overflow

Underflow
Divide by Zero

Inexact Operation
Inexact Decimal Input

Exception Enable Byte

07 06

00 Extended
01 Single
10 Double
11 reserved

05 04

00 Nearest
01 To Zero
10 – inf
11 + inf

Precision Mode
Rounding

Figure 1–Control Register

Status Register (FPSR)

The status register is diagrammed in Figure 2. This register is also used mostly for internal
chores. The condition–code byte is set at the end of each arithmetic instruction. The
condition–code byte is translated into a data type; Table 1 shows the relationship between
condition codes and data types. The condition code is also used to determine logic equates.
If you wish to determine if two numbers are equal, than the Compare statement (FCMP)
will check the condition code. Table 2 shows the relationship between the condition codes
and logic equates.

Developer Support Center June 1989

Macintosh Technical Notes

The quotient byte is set at the completion of FMOD (Modulo Remainder) and FREM (IEEE
Remainder). This byte can be used before a transcendental function to determine the
quadrant

Developer Support Center June 1989

Macintosh Technical Notes

of a circle in which an operand resides. The FP–exception status byte is used in conjunction
with the exception–enable byte of the control register. The FP–accrued exception byte is
used to keep a history of the FP exceptions that have occurred since the last set or clear.

31 30 29 28

Unused, Reserved

Not a Number or Unordered

27 26 25 24

Negative
Zero

Infinity

Condition Code Byte

Sign of Quotient

23 22 21 20 19 18 17 16

Quotient Bits

7 Least Significant
Bits of Quotient

15 14 13 12 11 10 09 08

Exception Status Byte

Branch/Set on Unordered
Signalling Not a Number

Operand Error
Overflow

Underflow
Divide by Zero

Inexact Operation
Inexact Decimal Input

07 06 05 04 03 02 01 00

Accrued Exception Byte

Invalid Operation
Overflow

Underflow
Divide by Zero

Inexact
Unused, Reserved

Figure 2–Status Register

Negative Zero Infinity NAN Result Data Type
0 0 0 0 + Normalized or Denormalized
1 0 0 0 – Normalized or Denormalized
0 1 0 0 + zero
1 1 0 0 – zero
0 0 1 0 + infinity
1 0 1 0 – infinity
0 0 0 1 + NAN
1 0 0 1 – NAN

Table 1–Condition Code versus Result Data Type

Developer Support Center June 1989

Macintosh Technical Notes

Logic Equate Abbreviation Condition Code
Equal to EQ Z
Not Equal NE not Z
Greater Than GT or OGT not(N or NAN or Z)
Not Greater Than NGT or UGT NAN or Z or N
Greater Than or Equal GE or OGE Z or (not(NAN or N))
Not (Greater Than or Equal) NGE or UGE NAN or (N and (not
Z))
Less Than LT or OLT N and (not(NAN or Z))
Not Less Than NLT or ULT NAN or (Z and (not N))
Less Than or Equal LE or OLE Z or (N and (not NAN))
Not (Less Than or Equal NLE or ULE NAN or (not (N or Z))
Greater or Less Than GL or OGL not (NAN or Z)
Not (Greater or Less Than)NGL or UEQ NAN or Z
Greater, Less or Equal) GLE or OR not NAN
Not (Greater, Less or Equal) NGLE or UN NAN

Oxx is ordered Z –> Zero
Uxx is unordered N –> Negative

Table 2–Logic Equates

Address Register (FPIAR)

Since the coprocessor can do concurrent processing with the MC68020 and MC68030, as
well as with itself, the program counter is not necessarily pointing to the logical address of
the instruction upon which it is working. So the address register stores the logical address of
each floating–point instruction before executing it.

Floating–Point Data Formats

There are four floating–point numeric formats: single–precision binary real format, double–
precision binary real format, eXtended–precision binary real format, and Pack decimal real
format (a.k.a., BCD). I have given examples of what the FPU will convert your numbers to.
The number which I have used for the four examples is Planck’s constant (4.136 x 10 -15 eV–sec).
Other than the size, the first three formats are very similar. The three formats all have the same conversion method and ordering of information.

Single (S) 32 bit

Single precision is represented by 32 bits of information. The high bit (bit 31) is the sign bit (s). The next byte of information (bits 30–23) is the exponent (e),
and the last 23 bits (bits 22–0) are the fraction (f). The bits of information are converted into a floating–point number by the following equation:

(–1)s * 2(e-127) * (20 + f)

The fraction (f) is the strange value. Each bit in the fraction value represents a negative exponent of two. So if bit 22 and bit 16 are high, and all the rest of the

bits are low, than the fraction would equal 0.5078125 or (2-1 + 2-7). So when I give the FPU the number 4.136e–

Developer Support Center June 1989

Macintosh Technical Notes

15, it converts the number into the hexadecimal number $04F1503DE, which, in the above equation, looks like:

(–1)0*2(79-127)* 20+2-3+2-5+2-7+2-14+2-15+2-16+2-17+2-19+2-20+2-21+2-22

This number is than converted back to a base ten number as 4.13600004803759899e–15. As you can see, the number is correct up to the seventh decimal place.

Double (D) 64 bit

Double precision is represented by 64 bits of information. The high bit (bit 63) is the sign bit (s), The next 11 bits of information (bits 62–52) are the exponent
(e), and the last 52 bits (bits 51–0) are the fraction (f). The bits of information are converted into a floating–point number by the following equation:

(–1)s * 2(e-1023) * (20 + f)

When I give the FPU the number 4.136e–15 as a double, it converts the number into the hexadecimal number $03CF2A07BBC5ED155. This number is than
converted back to a base ten number as 4.13600000000000015e–15. As you can see, the number is correct up to the fifteenth decimal place.

EXtended (X) 96/80 bit

Extended precision is represented by 96 bits of information; SANE and FP data register use 80–bit extended numbers, but the FPU extended numbers are 96 bits
with 16 unused bits, so the two are basically the same. The high bit (bit 95) is the sign bit (s), The next 15 bits of information (bits 94–81) are the exponent (e),
there are 16 unused bits (bits 80–64), and the last 64 bits (bits 63–0) are the fraction (f). The bits of information are converted into a floating–point number by the
following equation:

(–1)s * 2(e-16383) * (20 + f)

When I give the FPU the number 4.136e–15 as a extended, it converts the number into the hexadecimal number $03FCF(0000)9503DDE2F68AA66F. This
number is than converted back to a base ten number as 4.136e–15. This number is correct to about the nineteenth decimal place.

Pack Decimal Real (P) BCD Format 96 bits

Pack Decimal Real is represented by 96 bits of information. The bits of these numbers are represented as follows:

bit 95 Sign of Mantissa
bit 94 Sign of Exponent
bit 93–92 used for +–infinity and NANs,otherwise zero
bits 91–81 10–bit Exponent (3 digit exponent)
bits 80–68 unused, zero
bit 67–0, 68 bit Mantissa (17 digit mantissa)

Developer Support Center June 1989

Macintosh Technical Notes

When I give the FPU the number 4.136e–15 as a PDR, it converts the number into the hexadecimal number $401500041360000000000000. This hexadecimal
number is filled into the above bit as follows:

bit 95 Sign of Mantissa 0 (binary)
bit 94 Sign of Exponent 1 (binary)
bit 93–92 used for +–infinity and NANs,otherwise zero 00 (binary)
bits 91–80 11–bit Exponent (3 digit exponent) 000000010101 (binary)
bits 79–68 unused, zero 000000000000 (binary)
bit 67–0 68 bit Mantissa (17 digit mantissa) 41360000000000000 (hex)

This number is than converted back to a base ten number as 4.136e–15. This number is correct to the seventeenth decimal place.

So What Tools Do I Have to Play With?

There are four types of opcodes which the math coprocessors support: moves, monodic,
dyadic, and miscellaneous conditions. When a coprocessor operation is executed, the first
operation which the coprocessor performs is to convert the data to the internal extended
precision format, and when the operation is completed, the data is converted to the
destination data format.

Moves

The first type which I will describe are the move opcodes. Below is a list of the various
formats in which the move commands come.

Move
FMOVE.<fmt> <ea>, FPn
FMOVE.<fmt > FPm, <ea>
FMOVE.X FPm, FPn

Move Multiple
FMOVEM <ea>, FP0 - FP3/FP7
FMOVEM FP2/FP4/FP6, <ea> ;the registers are always moved

as 96 bit extended
;data without conversion

Move Register
FMOVE.L <ea>, FPCR ;move to control register
FMOVE.L FPCR, <ea> ;move from control register

Move Constants from ROM to floating-point register
FMOVECR.X #ccc, FPn ;see Table 3 for #ccc

Save and Restore Machine State
FSAVE <ea> ;virtual machine state save
FRESTORE <ea> ;virtual machine state restore

<ea> is a main processing unit (MPU) effective address operand (any 68xxx addressing mode).
<fmt> is the data format size (Byte, Word, Long, Single, Double, eXtended, Packed decimal).
FPm and FPn are floating–point data registers.

Developer Support Center June 1989

Macintosh Technical Notes

#ccc Mathematical Representation Numeric Representation
$00 pi 3.14159265358979324
$0B log(base 10)(2) 0.301029995663981195
$0C e 2.71828182845904524
$0D log(base 2)(e) 1.442695040888963410
$0E log(base 10)(e) 0.434294481903251828
$0F zero 0
$30 ln(2) 0.693147180559945309
$31 ln(10) 2.302585092994045684
$32 10^0 1
$33 10^1 10
$34 10^2 100
$35 10^4 10,000
$36 10^8 100,000,000
$37 10^16 10,000,000,000,000,000
$38 10^32 100...(28 more zeros)...00
$39 10^64 100...(60 more zeros)...00
$3A 10^128 100...(124 more zeros)...00
$3B 10^256 100...(252 more zeros)...00
$3C 10^512 100...(508 more zeros)...00
$3D 10^1024 100...(1020 more zeros)...00
$3E 10^2048 100...(2044 more zeros)...00
$3F 10^4096 100...(4092 more zeros)...00

Table 3–Constants

Monodic

A monodic operation has one operand. The operand may be a floating–point data register or an MPU effective address. The
result is always stored in a floating–point data register. The syntax for monodic operations is listed below:

Fxxxx.<fmt> <ea>, FPn
Fxxxx.X FPm, FPn
Fxxxx.X FPn

where: <fmt> is (B,W,L,S,D,X,P)
xxxx is one of the Trigonometric (SIN), Transcendental (ATANH), Exponential (ETOXM1), Misc. commands (NEG)

Dyadic

A dyadic operation has two operands. The first operand can be in a floating–point data register, or an MPU effective address. The second
operand is the contents of a floating–point data register. The result of the operation is stored in the second operand. The syntax for dyadic
operations is listed below:

Fxxxx.<fmt> <ea>, FPn
Fxxxx.X FPm, FPn

where <fmt> is (B,W,L,S,D,X,P)
xxxx is a arithmetic (ADD), compare (CMP)

Developer Support Center June 1989

Macintosh Technical Notes

Condition operations

There are four condition operations: branch (FBcc), decrement and branch (FDBcc), set according to condition (FScc), and trap on condition
(FTRAPcc).

Why and How do I Program for a 68882?

Any code which runs on a 68881 will run on a 68882 and vice versa. You do not need to
take special care to program for the 68882, but if the chip is available, than special care can
noticeably improve the speed of your code. Figure 3 demonstrates the difference between
code run on a 68881 and the same code run on a 68882. The 68882 is completely finished
running before the 68881 has even started executing the FMOVE instruction. The extra work
which you need to do to take advantage of the concurrent processing is fairly minimal.

start con-
vert

start

start

calculateround

MC68881

FMUL

FMUL

FMOVE

MC68020/
MC68030

trans-
fer

idle (interrupts,
bus arbitration)

init-
iate

idle (interrupts, bus
arbitration allowed)

calculateround

init-
iate

trans-
fer

init-
iate

trans-
fer

trans-
fer

trans-
fer

con-
vert

con-
vert

trans-
fer

start calculate round

start

start

MC68882

FMUL

FMUL

FMOVE

MC68020/
MC68030

idle (inter.,
bus arb.)

next
instruc.

calculate round

init-
iate

init-
iate

init-
iate

trans-
fer

trans-
fer

trans-
fer

trans-
fer

trans-
fer

trans-
fer

con-
vert

con-
vert

con-
vert

Figure 3–Concurrent Execution versus Non–Concurrent Execution

Before you jump right in and start writing code, you need to understand that there are three
different levels of concurrency. The first level is the minimum concurrency operations.
These are operations which cannot run concurrently with other operations. Most of these
operations are non–floating–point format operations. The minimum concurrency operations
are listed in Table 4.

Developer Support Center June 1989

Macintosh Technical Notes

Table 4–Minimum Concurrency

Instruction Operand Syntax Operand Format
FMOVE <ea>, FPn B,W,L,P

FPm, <ea> B,W,L
FPm, <ea> P
FPm, <ea> P
<ea>, FPcr L
FPcr, <ea> L

FMOVECR #ccc, FPn X
FMOVEM <ea>, <list> L,X

<ea>, Dn X
<list>, <ea> L,X
Dn, <ea> X

FTST FPm B,W,L,P
F<monodic> <ea>, FPn B,W,L,P
F<dyadic> <ea>, FPn B,W,L,P
FSINCOS <ea>, FPc:FPs B,W,L,P

The next level of operations are the operations which can share some of the FPU time with
other operations, these are the partial concurrency operations and they are listed in Table 5.
The partial concurrency operations include most of the floating–point format operations.

Instruction Operand Syntax Operand Format
FTST <ea> S,D,X

FPm X
F<monodic> <ea>, FPn S,D,X

FPm, FPn
F<dyadic> <ea>, FPn S,D,X

FPm, FPn
FSINCOS <ea>, FPc:FPs S,D,X

FPm, FPc:FPs X

Table 5–Partial Concurrency

The highest level of concurrency is the fully–concurrent operations which are listed in Table
6. The only operations which can run fully concurrently are the FMOVE operations. There
are certain guidelines which you need to follow in order to achieve full concurrency, these
guidelines are outlined in Table 6. The most important rule to follow is to avoid register
conflict. There are basically two type of register conflict. The first is when the destination
register of an operation is the source register of the following operation, and the following

Developer Support Center June 1989

Macintosh Technical Notes

operation is a fully–concurrent operation:

FADD.<fmt> <ea>, FP0
FMOVE.<fmt> FP0, <ea> ;FP0 conflicts

The second type of register conflict occurs when the destination register of an operation is the destination register of the following operation,
and the following operation is a fully–concurrent operation:

Developer Support Center June 1989

Macintosh Technical Notes

FADD.<fmt> <ea>, FP0
FMOVE.<fmt> <ea>, FP0 ;FP0 conflicts

where <fmt> is S, D, or X
No Concur Partial Concur

No Partial
Instruction Syntax Format Concurrency Concurrency
FMOVE FPm, FPn X a b,c,f
FMOVE <ea>, FPn S,D,X b,c,f
FMOVE FPm, <ea> S,D a b,d,e
FMOVE FPm, <ea> X a b

a: Register conflict of FPm with preceding instruction’s destination FP data register
b: NAN, unnormalized or denormalized data type
c: Rounding Precision in FPCR set to Single or Double
d: INEX2 bit in FPCR EXC byte is enabled
e: An overflow or underflow occurs
f: Register conflict of FPn with preceding instruction’s destination FP data register

Table 6–Fully Concurrent

The next most important optimization rule is to unroll loops. If you properly unroll your loops, than you will be able to eliminate more of the
register conflicts. Most loops are designed to do one iteration of a set of instructions. This means that each iteration of the loop is
accomplishing one iteration of the set of instructions. If you unroll the loop, then each iteration of the loop can accomplish two or more
iterations of the set of instructions. Figures 4 and 5 demonstrate how to unroll your code. The second version (Figure 5) is 25–30 percent faster
than the first.

MOVE.L #count,D0

LOOPTOP FMOVE.X <ea_Xi>, FP3

FNEG.X FP3
FETOX.X FP3
FMOVE.X FP3,FP4 ;conflict
FSUB.X <ea_Xi>, FP3

FNEG.X FP4
FSUB.X #1, FP4
FDIV.X FP4,FP3
FNEG.X FP3
FADD.X <ea_Xi>,FP3

FMOVE.X FP3, <ea_Xi> ;conflict

DBRA D0, LOOPTOP

Figure 4–Newton–Raphson’s Method
Xi+1 = Xi + f(Xi)/f'(Xi) : f(X) = exp(-x) - x

MOVE.L #count,D0
FMOVE.D <ea_Xi>, FP0

Developer Support Center June 1989

Macintosh Technical Notes

LOOPTOP FNEG FP0,FP3
FETOX FP3
FMOVE FP3,FP4 ;conflict
FSUB FP0,FP3
FNEG FP4
FSUB.X #1,FP4
FDIV FP4,FP3
FSUB FP3,FP0
DBRA D0, LOOPTOP

FMOVE.D FP0, <ea_Xi>

Figure 5–Newton–Raphson’s Method (resister–based, unrolled)
Xi+1 = Xi + f(Xi)/f'(Xi) : f(X) = exp(-x) - x

Conclusion

The last comment which I have to make is for code which is to run during interrupt time. If
you plan to use the math coprocessor during interrupt time, you must call FSAVE at the start
of your routine and FRESTORE at the end of your routine. If you do not make these calls
and you interrupt another program which is using the FPU, then the other program will not
find the FPU in the same state that it was in before the interrupt, and this causes certain
death. For more information, refer to Technical Note #235, Cooperating with the
Coprocessor.

If you made it this far, and you are still awake, then you should be already to start writing
assembly routines for your code which will speed up your math–intensive programs. Just
remember that before you try to use the code, you need to check hasFPU with a call to
_SysEnvirons, and if the machine does not have an FPU, then use an alternate SANE
version of the math code.

Further Reference:
• Apple Numerics Manual, Second Edition
• Motorola MC68881/MC68882 User’s Manual
• Technical Note M.OV.GestaltSysenvirons —

Gestatlt and Sysenvirons : a Never Ending Story
• Technical Note M.HW.MathCoProc —

 Cooperating with the Coprocessor

Developer Support Center June 1989

