
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Graphics Devices Manager Q&As
Devices

Revised by: Developer Support Center June 1993
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As in this Technical Note:
NewGWorld error code -151

NewGWorld error code -151
Date Written: 1/8/93
Last reviewed: 4/1/93

I received an error code of -151 from NewGWorld when creating a very large off-screen
bitmap. Does this mean not enough memory? If so, can I count on it not to change in future
versions of the system? It’s not listed as one of the possible errors in Inside Macintosh
Volume VI.

The error -151 is cTempMemErr, “failed to allocate memory for temporary structures,” or in
other words, there wasn’t enough temporary memory available in NewGWorld. NewGWorld
returns this error after it receives a MemFullErr from NewTempHandle. (See the Memory
Manager chapter of Inside Macintosh Volume VI for more information about temporary
memory.)

This was inadvertently left out of Inside Macintosh, but does appear in the MPW interface

Developer Support Center June 1993

Macintosh Technical Notes

files. You can count on this error code in future versions of system software; it was
accidently omitted.

Developer Support Center June 1993

Macintosh Technical Notes

GWorld direct access and graphics cards with cached GWorlds
Date Written: 12/1/92
Last reviewed: 3/1/93

Our application draws directly to off-screen GWorlds using our own line-drawing routines
and then using CopyBits to get the result to the screen. Since we require direct access to our
off-screen GWorld’s buffer, is it safe for us to continue to not use the keepLocal flag in our
NewGWorld calls? I’m worried that some graphics cards, due to their implementation,
assume that the only way that an application will draw to a cached GWorld is by making
QuickDraw calls.

There’s no problem with not using the keepLocal flag. However, keep in mind that you
should call GetPixBaseAddr to get the base address of the off-screen GWorld. This ensures
that you get the correct base address even if the GWorld is cached. In addition, since the
accelerator may be drawing asynchronously, you should make sure there are no operations
currently pending. Otherwise, you may get garbage if your drawing conflicts with the
asynchronous drawing. You can call QDDone to determine whether pending QuickDraw
operations are completed. Both routines are documented in Inside Macintosh Volume VI.

Drawing dimmed outline across screens with different depths
Date Written: 12/9/91
Last reviewed: 1/27/92

When the OK button is disabled in the System 7 Standard File dialog box, it’s drawn in gray.
I was looking for sample code on how to do this in a way that’s appropriate for multiple
screens at various color depths. For example, how should you draw the outline if you have
an OK button in a movable modal dialog box with half the OK button on an 8-bit color
screen and the other half on a 1-bit monochrome screen?

There are two ways to draw the gray (dimmed) outline across several screens in different
depths: one uses MakeRGBPat (Inside Macintosh Volume V, page 73), the other uses
DeviceLoop (Inside Macintosh Volume VI, page 21-23). Look for GrayishOutline.p in the
Snippets folder on the Developer CD Series disc for a code sample that demonstrates both
ways.

Drawing into GWorld after using UpdateGWorld
Date Written: 11/21/91
Last reviewed: 12/11/91

When I resize my real-time animation window in System 6, I call UpdateGWorld with the
new size, and after that any drawing into the GWorld has no effect. This same code works

Developer Support Center June 1993

Macintosh Technical Notes

perfectly in System 7. What could cause this?

You probably can’t draw anything into your GWorld after using UpdateGWorld to resize it
because of the clipping region of your GWorld. In system software versions before 7.0,
UpdateGWorld always resizes the GWorld’s clipping region proportional to the amount that
the GWorld itself is resized. Unfortunately, NewGWorld initializes the clipping region of the

Developer Support Center June 1993

Macintosh Technical Notes

GWorld to the entire QuickDraw coordinate plane, [T:-32767 L:-32767 B:32767 R:32767].
If UpdateGWorld resizes any of these coordinates so that they fall outside this range, the
coordinates wrap around to the other end of the signed integer space, and that makes the
clipping region empty. Empty clipping regions stop any drawing from happening.

The change in System 7 is that UpdateGWorld explicitly checks for the clipping region
[T:-32767 L:-32767 B:32767 R:32767]. If it finds this, it doesn’t resize the clipping region.
Otherwise, UpdateGWorld acts the same way that it did before System 7.

One of our mottos is, “Never give QuickDraw a chance to do the wrong thing.” In keeping
with that, we always explicitly set the clipping region of a GWorld whenever we change the
size of the GWorld. So after calling NewGWorld, set its clipping region to be coincident
with its portRect. After calling UpdateGWorld to resize the GWorld, set its clipping region to
be coincident with its new portRect. That way, you’ll always have a known environment and
you won’t have to worry about the change that was made in System 7—and you’ll be less
susceptible to bugs in this area in the future.

UpdateGWorld dithering bug workaround
Date Written: 11/14/91
Last reviewed: 12/12/91

UpdateGWorld doesn’t seem to respond to the ditherPix flag unless color depth changes. The
return flag after changing my color table is 0x10000, indicating that color mapping happened
but not dithering. Is this a bug?

Yes, this is a bug. UpdateGWorld ignores dithering if no depth change is made. It probably
won’t be changed in the near future. The workaround is as follows:

1. Create a new pixMap with the new color table.
2. Call CopyBits to transfer your image to the newly created pixMap with dithering from the
original GWorld’s pixMap.
3. Update the GWorld with the new color table without using ditherPix.
4. Use CopyBits from the newly created pixMap without dithering back to the GWorld.

This will give you the same effect as UpdateGWorld with ditherPix.

Determining if a file is read from CD-ROM or hard disk
Date Written: 8/23/91
Last reviewed: 9/24/91

How can we tell whether a particular Macintosh file is being read from a CD-ROM or a hard
disk?

Developer Support Center June 1993

Macintosh Technical Notes

You can call the Device Manager routine OpenDriver using the “.AppleCD” string to find a
driver reference number of the AppleCD SC drive. If there is more than one AppleCD SC
drive hooked up, then additional “.AppleCD” driver reference numbers can be obtained by
using the PBControl call with a csCode = 97 (WhoIsThere). This command returns a mask
of which

Developer Support Center June 1993

Macintosh Technical Notes

SCSI devices are being serviced by the “.AppleCD” driver (that is, which other drives are
AppleCD SCs).

The following code returns the driver reference number for an “.AppleCD” driver instance.
The input parameter CDDrive specifies which logical AppleCD SC drive in the SCSI chain
to open.

#define csWhoIsThere 97

typedef unsigned short Word;
typedef unsigned long Long;

typedef struct WhoIsThereRec {
 ParamBlockHeader
 short ioRefNum;
 short csCode;
 struct {
 Byte fill;
 Byte SCSIMask;
 } csParam;
} WhoIsThereRec;

pascal OSErr OpenCD(Byte CDDrive, short *ioRefNum) {

 auto OSErr osErr;
 auto short ioRefNumTemp,
 CDDriveCount,
 SCSIID;
 auto WhoIsThereRec *pb;

 pb = (WhoIsThereRec *) NewPtrClear(sizeof (*pb));
 osErr = MemError();
 if (0 != pb && noErr == osErr) {
 osErr = OpenDriver("\p.AppleCD", &ioRefNumTemp);
 if (noErr == osErr) {
 (*pb).ioRefNum = ioRefNumTemp;
 (*pb).csCode = csWhoIsThere;
 osErr = PBStatus((ParmBlkPtr)pb, false);
 if (noErr == osErr) {
 CDDriveCount = 0;
 for (SCSIID = 0; SCSIID < 7; ++SCSIID) {
 if (BitTst(&(*pb).csParam.SCSIMask, 7 - SCSIID)) {
 ++CDDriveCount;
 if (CDDrive == CDDriveCount) {
 *ioRefNum = -(32 + SCSIID) - 1;
 DisposPtr((Ptr) pb);
 return noErr;
 }
 }
 }
 osErr = paramErr;
 }
 }
 DisposPtr((Ptr) pb);
 }
 return osErr;
}

You can modify OpenCD to do exactly what it is you need it to do. Or, you might use it to iterate over the logical CD drive numbers from 0 to 6
until OpenCD returns something other than noErr. If you modify the OpenCD routine, you’ll need the “AppleCD SC Developers Guide, Revised
Edition” (APDA #A7G0023/A, $25.00) to be successful. Note also that all

Developer Support Center June 1993

Macintosh Technical Notes

unused fields of a parameter block used with the “.AppleCD” driver must be set to zero before calling PBControl.

Iterating over the seven possibilities will result in a table of known “.AppleCD” drive entries—perhaps something like the following structure:

 struct {
 int count;
 short cdDRefNum[7];
 } knownCDDRefNum;

With this table in hand, you can match the driver reference number for the volume of any file. In most cases you know which volume the file
was on when you opened it. Also, the routines PBGetFCBInfo and PBGetCatInfo both return the volume reference number for a file.

Once you determine the volume reference numbers, either traverse the VCB table or call PBGetVInfo to get the driver reference number. This
driver reference number is the driver handling all requests made by the File System for your file!

If that driver reference number for the file is in our “knownCDDRefNum” table, then that file resides on an AppleCD SC drive. This technique
works only for Apple or Apple-compatible drivers. An alternate approach to the problem is stepping through the driver table and locating all
entries with the name “.AppleCD,” noting their driver reference numbers, and then following the procedure outlined above to determine if a file
is on a volume owned by that driver.

The csCode method is far clearer than this one, and should be used whenever possible. The bottom line is that there is no guaranteed method of
locating a CD-ROM drive due to the lack of a standardized driver model.

X-Ref:
Device Manager chapters of Inside Macintosh Volumes II, IV, and V
“Finding a Slot for a Driver” note on latest Developer CD Series disc

Accessing a Macintosh driver resource fork at accRun time
Date Written: 6/20/91
Last reviewed: 8/13/91

How do I get Macintosh resources from a driver Init file at accRun time? I can’t think of a
way other that getting the full path name, which is discouraged.

Basically, you need to call PBGetFCBInfo at INIT time to grab the filename, directory ID
and volume reference number for the INIT’s resource fork. You can then store these in your
INIT and pull them out at accRun time. At accRun, just call HOpenResFile to get to your
resources. This method is _much_ better than using a full pathname, since this still works in
the case where the user re-names the folder containing your INIT.

Here’s some sample code that does what you need:

OSErr GetCurResLocn(short *saveVRefNum,long *saveDirID,StringPtr saveFName)
{

Developer Support Center June 1993

Macintosh Technical Notes

 FCBPBRec pb;
 OSErr err;
 short theFile;
 Str255 fName;

 theFile = CurResFile();

 pb.ioFCBIndx = 0;
 pb.ioVRefNum = 0;
 pb.ioRefNum = theFile;
 pb.ioNamePtr = saveFName;

 err = PBGetFCBInfo (&pb,false);

 *saveVRefNum = pb.ioFCBVRefNum;
 *saveDirID = pb.ioFCBParID;

 return err;
}

OSErr SetCurResLocn(short saveVRefNum,long saveDirID,StringPtr saveFName,
 short *newResFile)
{
 short resRef;
 OSErr err;

 HOpenResFile(saveVRefNum,saveDirID,saveFName,fsRdWrPerm);
 err = ResError();
 if (err!=noErr)
 return err;

 UseResFile(resRef); /* <-- needed in case the res. file was prev. open */

 *newResFile = resRef;

 return ResError();
}

void main()
{
 OSErr err;
 short saveVRefNum;
 long saveDirID;
 Str255 saveFName;
 short newResFile;

 err = GetCurResLocn(&saveVRefNum,&saveDirID,saveFName);
 if (err!=noErr)
 return;

 /* … pass control off to computer here (we're an app, so we fake it) … */

 err = SetCurResLocn(saveVRefNum,saveDirID,saveFName,&newResFile);
 if (err!=noErr)
 DebugStr("\pfailed");
}

As you can see, this is an application, so you’ll have to do some minor modifications (possibly convert to 680x0). It’s pretty straightforward, and
the HOpenResFile call is included in MPW glue for MPW 3.0 and is a built-in call for System 7.

Developer Support Center June 1993

Macintosh Technical Notes

DAs in background under System 7.0 lack UnitTable entries
Date Written: 3/14/91
Last reviewed: 6/17/91

Under System 6 my driver, which runs all the time, can send a control call to my open DA
(because it too is a driver). Under System 7.0 I get badUnitErr errors (-21) because evidently
my DA resides in a different process that is inaccessible to my system-resident driver. How
can I get around this?

DAs in System 7.0 do not actually have UnitEntries unless they are currently running, so
your driver cannot call your DA unless the DA is frontmost. What you might consider
instead is having the DA perodically issue a call to the driver, asking if there is anything for
it at the moment. If you have an entity that hands data to your resident driver, and the DA
then requests the data from the resident driver from time to time, you should have a very
robust mechanism, albeit a slightly slower one with greater latency.

Macintosh LC SIntInstall & SLOTIRQ Interrupt Handling
Date Written: 1/4/91
Last reviewed: 1/4/91

How can we get our Macintosh driver to talk with hardware using the SLOTIRQ provided
on the bus?

To get SLOTIRQ to work correctly you need to use SIntInstall to add a slot interrupt queue
element for slot $E. The interrupt service routine pointed to by the slot interrupt queue
element must clear the interrupt line before returning. The slot interrupt enable bit in the V8
chip referred to by the Macintosh LC developer note (page 26 in the /SLOTIRQ signal
description) is enabled during the boot process, so you don’t need to worry about it.

SIntInstall is described in Inside Macintosh Volume V on pages V-426 through V-428 and in
Designing Cards and Drivers for the Macintosh Family on pages 161 through 163.
Designing Cards and Drivers for the Macintosh Family also includes an example of a driver
on pages 178 through 202.

JMP or JSR When Calling IODone
Date Written: 12/12/90
Last reviewed: 1/16/91

After an I/O call to a Macintosh slot device driver, shouldn’t the IODone routine be called
by a JSR instead of a JMP instruction in order for a slot device to return to it with D0 set to
an appropriate value depending on whether the interrupt was serviced?

Developer Support Center June 1993

Macintosh Technical Notes

You only call IODone when the queued up I/O request has been fully completed. If the
interrupt handler is completing an asynchronous call, then you need to call IODone. IODone
returns via an RTS, and preserves D0. Therefore, what you should do is have your interrupt
service routine set D0 and then jump to IODone (via JIODone*). IODone will do its thing
return via an RTS instruction. The sequence would be something like:

Developer Support Center June 1993

Macintosh Technical Notes

0. A program is running
1. The interrupt occurs
2. The Device Manager does a JSR to your Interrupt Service Routine (ISR)
3. The I/O request is complete, so your ISR sets D0 and jumps through JIODone
4. IODone does an RTS, which will be back to the Device Manager
5. The Device Manager does an RTE back to the program
6. The program continues

*The J (in JIODone) stands for Jump, so the ISR pushes JIODone onto the stack, which puts
the address of what’s in JIODone ($8FC) on the stack. This is followed by an RTS
instruction which executes it. So JIODone can be thought of as a vector to IODone.

If you are just handling a hardware interrupt or the I/O is not yet complete, don’t call
IODone. Do an RTS like the example in Designing Cards and Drivers for the Macintosh
Family (Chapter 9 source example, starting with the BeginIH
label).

New info on Macintosh Device Manager calls
Date Written: 12/5/90
Last reviewed: 1/16/91

Are Macintosh Device Manager status calls with csCode=1 calls filtered out? Also, are all
high-level Device Manager routines always executed synchronously? If all the calls are
synchronous, why is there a high level KillIO routine (to terminate current and pending
processes)?

Yes, a Status call made with a csCode of 1 never calls your driver. Instead, it returns (in the
csParam field) the handle to your driver’s Device Control Entry from the Unit Table.

High-level Device Manager calls are executed synchronously. Only the low-level calls can
be specified to execute asynchronously. The high-level KillIO routine is useful for
terminating I/O pending from a low-level call, which may have been initiated by someone
else.

X-Refs: Inside Macintosh Volume II, Chapter 6

Macintosh Device Manager handles queuing and asynchronous calls
Date Written: 5/3/89
Last reviewed: 12/17/90

How can the Macintosh Device Manager help my driver handle things like asynchronous

Developer Support Center June 1993

Macintosh Technical Notes

calls, queueing, and so on?

The Device Manager will handle all the queueing and asynchronous niceties for you with the
jFetch, jStash, and jIODone calls. jIODone handles queueing and calling completion
routines for asynchronous calls. jFetch, and jStash are for the interrupt handlers, and provide
the mechanism for knowing how far along you are in a particular request.

Developer Support Center June 1993

Macintosh Technical Notes

When you call jIODone, the entry that was being handled will be removed from the queue,
its completion routine is called, and then if there is another entry in the queue, your driver
will be called to handle it.

If you return via an RTS rather than jIODone (you haven’t yet completed the operation
requested—that is, waiting for more bytes), the queue entry will remain in the queue, and
others behind it will not execute until the next jIODone is called. Queued entries are always
executed in sequence. If your driver is not asynchronous, you still need to call jIODOne to
clear the queue for the next entry (unless the IMMED bit is set in the ioTrap field).

jFetch and jStash are two calls provided to assist an interrupt driven asynchronous driver.
From within your interrupt routine, you can call jFetch to get the next byte from the caller’s
buffer, or jStash to place the next byte in the caller’s buffer. In addition to dealing with the
caller’s buffer, these two calls also handle the ioActCount and let you know when you have
completed the current request (see Inside Macintosh Volume II, pages 194-195).

A good example of this is the serial drivers. In the case of the output driver, if the calling
application makes a pbWrite call to the serial output driver, and specifies a buffer of 200
characters, the Device Manager places the request in the queue for the Serial Driver and calls
the prime routine. The prime routine gets the first character from the buffer by using the
jFetch call, and places it in the transmit buffer of the SCC chip and simply does an RTS. The
SCC chip has the ability to generate an interrupt when the transmit buffer is empty, so when
that happens, the interrupt handler gets the next character from jFetch, and sticks it in the
transmit buffer. When jFetch finally gets the last character, the interrupt routine places it in
the transmit buffer, and calls jIODone, which then removes that request from the queue, calls
the completion routine, if any, and executes the next queued request, if any.

If your driver is supporting non-interrupt driven hardware, you can just receive the prime
call, and use jFetch (for example) to get the requested bytes from the buffer, send them to
your hardware, and repeat until jFetch returns buffer empty, then return via jIODone. This is
an example of synchronous operation that still uses the queueing mechanism, except that no
new requests will ever have a chance to get queued until the previous request is completed.

X-Ref:
“Device Manager,” Inside Macintosh Volumes II and IV

Given a Macintosh gdRefNum, how can I find the associated slot?
Date Written: 3/9/90
Last reviewed: 12/17/90

Given a Macintosh gdRefNum, how can I find the associated slot?

Get the slot number from the auxiliary DCE. The following code snippet indexes through the

Developer Support Center June 1993

Macintosh Technical Notes

GDevices (it’s assumed the check showed the presence of Color QuickDraw), and pulls the
slot number from each GDevice record:

 gGDHandle := GetDeviceList; {get the first GDevice list handle}
 repeat
 if gGDHandle <> nil then
 begin
 gAuxDCEHandle := AuxDCEHandle(GetDCtlEntry(gGDHandle^^.gdRefNum));

Developer Support Center June 1993

Macintosh Technical Notes

 { do whatever slot specific work is desired, now that the slot }
 { number is known }
 gGDHandle := GetNextDevice(gGDHandle);
 { pass in present GDHandle; the next one is returned }
 end;
 until gGDHandle = nil;

X-Refs:
“Device Manager,” Inside Macintosh Volumes II and IV
“Graphics Devices,” Inside Macintosh Volume V

Macintosh journaling mechanism
Date Written: 5/3/89
Last reviewed: 12/17/90

How can I use the journaling mechanism described in Inside Macintosh?

The old journaling mechanism isn’t supported any more. It is no longer necessary because of
MacroMaker and similar products. MacroMaker now “owns” the older driver, and any future
journaling will be done through MacroMaker. Currently there is no technical documentation
available for MacroMaker. The current abilities of MacroMaker may not support what some
developers will want to do with journaling. Future versions of MacroMaker may add more
features.

How do I support locked and ejectable SCSI devices?
Date Written: 5/14/90
Last reviewed: 12/17/90

How do I support locked and ejectable SCSI devices?

The only things you should have to support are the _DriveStatus call and modify the DrvQEl
record. The rest will be handled by the Macintosh system. The _DriveStatus call gives the
information for srvStsCode. This is how the system will know what your disk can support. It
is typically only used by floppy (or removable) disk drives. The sample SCSI driver from
Apple doesn’t need to support it, because it doesn’t support any of the information in the
_DriveStatus call.

The DrvSts record contains some information of no concern here. The diskInPlace,
twoSideFmt, and needsFlush are probably ignored for your device. It’s best to zero them out.
The DrvSts information is pretty much just the same information returned in the DrvQEl
record.

Also, people sometimes get into trouble while developing a driver because current File
Manager documentation about the drive queue element is vague. There are 4 bytes in front
of a DrvQEl record. These determine the device’s abilities, but THESE BYTES ARE NOT
ALLOCATED BY THE SYSTEM. When creating the DrvQEl record, you need to add these
Developer Support Center June 1993

Macintosh Technical Notes

four bytes in front of the record yourself. The pointer to a DrvQEl will be the actual record,
which is AFTER these 4 bytes. To read these bytes yourself, you’ll have to subtract 4 bytes
from the DrvQEl pointer.

Developer Support Center June 1993

Macintosh Technical Notes

It is important to note that the Disk Switch error dialog is not an actual dialog, but the
system error. It is handled by the same code as SysError which shows the system bomb alert.
While this window is present, _SystemTask is not being called. This means the driver will
not get an accRun call. To work around this, you will need a VBL task. When the VBL is
called it checks the SCSI bus for being free and if so, tests for a new cartridge. Once found,
posts a diskInsertEvt. This will be received by the driver.

While the media is inserted, the VBL should not be running until after the cartridge is
ejected. Otherwise, the SCSI bus will continue to be accessed unnecessarily, which slows the
bus. The VBL task could also slow the system while virtual memory is running.

Developer Support Center June 1993

