
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Device Management Overview Q&As
Devices

Revised by: Developer Support Center October 1992
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

Extending Macintosh mouse location beyond screen boundary
Date Written: 2/28/92
Last reviewed: 2/28/92

We would like to watch mouse movement directly in our program. This means that we
would like to make the mouse disappear and then watch the mouse as it moves left and right.
We do not want to have any limits on the movement from the size of the screen or anything
like that. For instance, if the user keeps moving to the right, we would like our “x”
coordinate tracking variable to keep increasing...

Is there anyway to do this easily? I thought of taking out the mouse handler interrupt,
watching it there, and then increasing a counter, etc. Is there an easier way?

Below you’ll find a generic code sample that shows how to track changes in the mouse
position. There are many ways of doing this, but the one included below is pretty
straightforward and can be done at the application level with no patching involved.

You started by saying that the cursor would be hidden when you do this. That’s good since
the method below would look very bad if the cursor were visible. This method is also polling

Developer Support Center October 1992

Macintosh Technical Notes

for mouse changes; you could install a VBL task that performs this operation as well, though
it probably won’t be necessary.

Developer Support Center October 1992

Macintosh Technical Notes

The low-memory globals MTemp and RawMouse contain the current mouse location; they
should always equal each other when you reset CrsrNew. CrsrNew simply tells the system
that the mouse has changed location. You should be able to drop this routine into any
running program. (If you have MPW, modify SAMPLE.P to call FussMouse right after
initialize and it works great.)

procedure FussMouse;

type PointPtr=^Point;

var RawMouse:PointPtr;
 MTemp:PointPtr;
 RandPt:Point;
 CrsrNew:ptr;
 CrsrCouple:ptr;
 fred:Longint;
 curH,curV:Longint;
 numStr:str255;
 aWindow:WindowPtr;

begin
 aWIndow:=FrontWindow;
 setPort(aWIndow);
 EraseRect(aWindow^.portRect);
 HideCursor;
{ Environment set up to draw the current location }
 RawMouse:=PointPtr($82C);
 MTemp:=PointPtr($828);
 CrsrNew:=ptr($8CE);
 CrsrCouple:=ptr($8CF);
{ Pointers to the low memory globals are inited...
 RawMouse and MTemp both contain the current absolute mouse position
 CrsrNew is a flag that tells the system when the mouse has changed
 CrsrCouple is what CrsrNew should be set to when the mouse has changed }

 curH:=0;
 curV:=0;
 RawMouse^:=Point($00640064);
 MTemp^:=Point($00640064);
{Base all movement detection off of 100,100 so that we have enough room to detect all mouse
movements in the negative and positive directions.}

 CrsrNew^:=CrsrCouple^;
 repeat
 If $00640064<>Longint(MTemp^) then {Mouse Moved?}
 begin
 RandPt:=MTemp^; {Get the current mouse location}
 RawMouse^:=Point($00640064); {Reset Low memory for the
 next time}
 MTemp^:=Point($00640064);
 CrsrNew^:=CrsrCouple^;
 CurH:=curH+(RandPt.h-$0064); {Compute how much the mouse
 has moved}
 CurV:=CurV+(RandPt.V-$0064); {and add it to our logical
 position}
 Moveto(10,15); {now simply report the new position to
 the user}
 EraseRect(aWIndow^.PortRect);
 NumToString(CurH,NumStr);
 DrawString(concat(NumStr,','));
 NumToString(CurV,NumStr);
 DrawString(NumStr);

Developer Support Center October 1992

Macintosh Technical Notes

 end;
 until Button;
end;

Apple HD SC Setup and third-party hard drives
Date Written: 10/15/91
Last reviewed: 10/15/91

The Apple HD Setup utility formats my third-party drive, but it reports an error mounting the
drive before partitioning it.

The Apple HD SC Setup utility is written for Apple drives—or, more specifically, for the
controller on Apple drives. Even if the hard drive you are trying to format with the utility is
from an Apple supplier, it may have a different controller than an Apple drive. You should
use the formatting utility that was included with your drive.

Disk First Aid checks native HFS structures, not file contents
Date Written: 11/6/91
Last reviewed: 11/6/91

What does Disk First Aid check in the Macintosh System, desktop, and other files to
determine that they are invalid? Does it check the resources, the resource map, or something
else?

Disk First Aid doesn’t check the system or desktop files at all; it treats all files the same
without examining their contents. The only things it does check are the native HFS
structures, such as the catalog and extents b-trees, and the volume bitmap.

System 7.0, Disk First Aid 7.0, and Hard Disk Setup 2.0.4
Date Written: 7/30/91
Last reviewed: 8/1/91

We were told that it would be highly advisable to do a file-by-file back-up of all hard drives,
a fresh format, and a restore because of a bug in the B-Tree algorithms that’s been fixed in
the System 7.0 Golden Master. Can we do this and then return to System 6.0.7 safely? Is
Apple going to make any sort of general announcement about this problem? Also, can we
expect that it is not a “contagious” problem in any way—that is, can we back things up and
restore without worrying about it moving from disk to disk?

Apple is recommending that users run the final version of Disk First Aid (version 7.0) on all
their hard drives to determine if there are any problems with the B-Trees. The reason for this

Developer Support Center October 1992

Macintosh Technical Notes

is that a bug has existed in the Macintosh (HFS) operating system from its inception such
that the B-Tree structures for devices would become corrupted under certain EXTREMELY
RARE circumstances. If and only if DFA reports a problem that it cannot fix (it will tell you
if it can or

Developer Support Center October 1992

Macintosh Technical Notes

can’t) should users perform a file-by-file back up of their data, then reformat all Apple hard
drives using HD Setup before copying files back. Making a mirror backup of your data will
only put the damaged B-Tree catalog back onto the drive when you restore, so be sure to
make your backup file-by-file.

Apple does not intend to make any general published announcement about this because it is
addressed in the System 7.0 documentation. As for the commonly asked question, “Why
should we back up our data before upgrading to System 7.0? Are we in danger of losing our
data?”: Backing up your data on a regular basis is always a good idea, and we are
recommending it prior to installing System 7.0 only because there is always a chance of data
loss when major changes are made to any system configuration. Since System 7.0 is very
different in many ways from previous system software versions, some software packages are
no longer compatible under this release and conflicts can potentially cause loss of data
integrity.

There has been some confusion as to what, exactly, Disk First Aid version 7.0 can do. This
version can detect problems with the B-Tree structures (whereas previous versions could not
—the only clue it would offer is the “unable to verify status of disk” error). It cannot fix the
damage, however. Another bug that DFA 7.0 can correct lies in the Directory Valance. This
bug went generally unnoticed for years; it usually resulted in VERY INfrequent occurrences
of some annoying behaviors such as not being able to throw away an empty folder
(remember the old “Trash could not be emptied because a file was busy or locked” error?).
Like the B-Tree structure corruption, this is a bug, not a virus, and is in no way contagious.

If you reformat the drive then reinstall System 6.0.x, you run the risk of damaging the B-
Tree structures again because the bug is still present in the B-Tree Manager in ROM. Again,
however, let me reiterate that it isn’t easy to take it that far. Suffice it to say, you will, in fact,
be almost assuredly safe if you run DFA 7.0 occasionally to make sure your B-Tree
structures are OK. If it says everything is fine, it is. If not, back up your data and reformat.

Another important step in your upgrade to System 7.0 is updating all SCSI device drivers by
using the Hard Disk Setup (2.0.4 or later) utility for Apple hard drives that accompanies the
System 7.0 software (for third-party devices, refer to the vendor to determine if updated
drivers are necessary) BEFORE upgrading to System 7.0. The reason for this is that these
newer drivers are incompatible with Virtual Memory. Failure to update these structures will
prohibit using VM—it won’t even turn on—however, you’ll be able to use all other features
of System 7.0 without any problems provided, of course, that your configuration meets the
recommended memory requirements and all your software is fully compatible with this
system software release.

Eliminating Macintosh VBL animated cursor ghosts
Date Written: 12/14/90
Last reviewed: 7/26/91

Developer Support Center October 1992

Macintosh Technical Notes

What do I have to do to prevent an animated cursor from leaving ghosts on the Macintosh
screen?

Make sure the low-memory global CrsrBusy is FALSE before you try to change the cursor.
MacApp does this.

Developer Support Center October 1992

Macintosh Technical Notes

Multiple Macintosh disk partitions
Date Written: 12/10/90
Last reviewed: 2/20/91

I want to divide my 80 MB internal hard disk into two 40 MB Macintosh partitions to keep
Systems 6.0.x and 7.0 on the same disk and to speed up 40 MB tape backups, but “Apple
HD SC Setup” doesn’t seem to support multiple Macintosh partitions.

While Apple’s own “HD SC Setup” utility does not allow multiple Macintosh partitions,
several third-party products, such as SilverLining from La Cie, allow you to partition your
drive with 2 or more Macintosh partitions.

You could also have two system folders on your one partition, one for System 6.x and one
for 7.0, and switch between them.

Macintosh interrupt routines and I/O
Date Written: 10/1/91
Last reviewed: 10/1/91

Are there any dangers in doing a synchronous read at interrupt time? In particular, if an
asynchronous write is executing and is interrupted by a synchronous read, can the re-
entrancy into the Macintosh ROM read/write code cause problems?

The Macintosh ROMs are not re-entrant. For this and for timing considerations, you should
do as little as possible within an interrupt routine. In any case, you should not be doing I/O
of any kind from within your interrupt routines. You should simply use the interrupt to do the
minimum possible to respond to the signaled condition and set indicators to your larger
application to handle the larger context, like initiating additional I/O.

Macintosh System 6.0.4 and HD Setup 2.0.1
Date Written: 5/3/90
Last reviewed: 7/25/91

Is it OK to initialize a Macintosh IIci with Apple HD Setup 2.0.1 (shipped with System
6.0.5) to get the interleave factor of 1 instead of 2, but then install and use System 6.0.4
instead of System 6.0.5?

Yes, it’s OK to initialize any Macintosh, including the Macintosh IIci, using HD Setup 2.0.1,
which was shipped with System 6.0.5. It’s better, however, to use HD Setup 7.0, included on

Developer Support Center October 1992

Macintosh Technical Notes

the System 7.0 CD, with Virtual Memory and File Share disk driver support.

System 6.0.4 is no longer recommended for use on either the Macintosh Portable or the
Macintosh IIci.

Developer Support Center October 1992

Macintosh Technical Notes

How the Macintosh mouse/cursor mechanism works
Date Written: 5/3/89
Last reviewed: 12/17/90

I’m writing a tablet (mouse, pointer, etc.) driver, and I need to be able to position the cursor
and post mouseUp mouseDown events. How do I do it?

Here is an explanation of the Macintosh mouse/cursor mechanism, which should provide the
information necessary for you to place the cursor:

The mouse is a “relative” device, which means it does not return actual coordinates; it
returns a “count” or amount of movement since the last report.

When the mouse has new information, it interrupts the Macintosh. The interrupt handler
adds the horizontal and vertical counts to MTemp (a low-memory location), and sets
crsrNew to tell the system that the coordinates are new. Some time later (but before normal
VBLs are executed) the cursor VBL task is executed, and it compares MTemp with
RawMouse (which has the last value), and figures out the delta (that is, the horizontal and
vertical distance moved), and does the scaling trick depending on what the user has selected
in the control panel. It also updates MTemp to reflect the new value. Then it draws the
cursor.

Here are the names and locations of the relevant low-memory locations:

 RawMouse equ $82C ;point
 MTemp equ $828 ;point
 CrsrNew equ $8CE ;byte
 CrsrCouple equ $8CF ;byte

(NOTE: These may change in future CPUs.)

If you wish to place the cursor in an absolute location on the screen, you must set RawMouse, and MTemp to the same value, and set CrsrNew
to the same value as CrsrCouple.

Keep in mind that moving the cursor from an application may violate the Human Interface Guidelines, possibly confusing and frustrating the
user. Also keep in mind that the low-memory locations named above are not documented, and as such, are considered unsupported and volatile.

Posting mouse down/up events is a simple matter of keeping track of the last state of your device button, and when you detect a change, you
post the appropriate event. If you wish to support the ToolBox Event Manager call Button, you must also update the low-memory global
MBState. The high bit of MBState reflects the current state of the mouse button: 1 = button up, 0 = button down.

Unfortunately, the system mouse driver will change this value if it notices that the state of MBState is different from the state of the real mouse
button. This means if there is a mouse connected to the Macintosh while your device is connected, it will override whatever you put in MBState.
On systems equipped with ADB, this will happen only when the mouse moves, or the button is pressed. On earlier systems this happens all the
time, since the button checking

Developer Support Center October 1992

Macintosh Technical Notes

routine was a VBL task, and is always executed. One possible workaround is to patch Button, and return the state of your button, rather than
MBState. The obvious problem is that you disable the real mouse from working with Button.

Information on the IOP Manager not available
Date Written: 6/29/90
Last reviewed: 12/17/90

After reading the preliminary release notes for the Macintosh IIfx, I found myself craving
more information on the IOP interface and the IOP Manager. Where can I get more
information about this new manager?

Apple will not be releasing IOP Manager information to developers because we plan on
expanding the use of the IOPs in the future.

As the release notes stated, the IOP Manager can handle up to eight IOPs, but only two are
currently used. The other six cannot be used by developers, because they are reserved by
Apple for this future expansion.

How to set the Macintosh cursor at interrupt time
Date Written: 5/14/90
Last reviewed: 12/17/90

How do I set the Macintosh cursor at interrupt time, such as a VBL task?

Changing the cursor at interrupt time is permissible as long as the cursor handle is locked in
memory and the cursor routines are not busy. A test needs to be performed before changing
the cursor. If you want to call SetCursor (with a cursor handle locked in memory), you must
check CrsrBusy, a low-memory global defined in MPW SysEqu. If CrsrBusy is true, then
you cannot call SetCursor. Changing the cursor while CrsrBusy is true causes it to leave
mouse bits, or trails, on the screen.

 CrsrBusy EQU $8CD ; Cursor locked out? [byte]

Developer Support Center October 1992

