
quadrium2
Reference

All Nodes

Below is a comprehensive alphabetic list of all nodes available in quadrium. After this, we have it
broken down into categories (the same that are used in the browser).

2D Affine 1
2D P-Rotator 1
2D P-Skew 1
2D Rotator 1
2D Skew 1
Abs 2
Abs Max Reducer 2
Abs Min Reducer 2
Abs Sine 2
AbsMax Blend 2
AbsMin Blend 3
Add Max Blend 3
Alpha Blend 3
Angled RGB Lights 3
Angled RGB Planes 3
Apollonian Packing 4
Averager 4
Barnsley Fractal 4
Bit And 4
Bit Or 4
Blackness Adjuster 5
Blorp Lens 5
Boolean Blender 5
Bump Map 5
Bump Normal 5
CMYK to RGB 6
Cartesian→Polar 6
Celtic Texture 6
Center Warp 6
Charm Fractal 6
Checker Warp 7
Chladni Pattern 7
Chunky Pixelizer 7
Clipper 8
Clustered Shapes 8

Color Noise 8
Color Turbulence 8
Complex Add 8
Complex Add Norm 9
Complex Colorer 9
Complex Div 9
Complex Exp 9
Complex Inverse 9
Complex Log 10
Complex Max 10
Complex Min 10
Complex Mult 10
Complex Polar Map 10
Complex Sub 11
Complex Warptal 11
Cone Lens 11
Corniside 11
Craters 11
Cross Blend 12
Crystalizer 12
Cubic Warptal 12
Custom Charm Fractal 12
Custom Fractal 12
Custom Julia 13
Dew Drops 13
Difference Blend 13
Distance 13
Distance^2 13
EggCrate 14
Escher Disk 14
Escher Square 14
Exp Warptal 14
Facet Spinner 14
Facet Tiler 15
Fearful Icon Fractal 15
Filter Adjuster 15
Fish Eye 15
Flower Petals 15
Fourier Texture 16

Fourier Vecture 16
Fourier Warp 16
Fractal Carpet 16
Fractal Landscape 16
Frame Mat 17
Frieze Tiler 17
Gausian 17
Giza Colorizer 17
Giza Displacer 17
Giza Pixelizer 18
Giza Texture 18
Gradient 18
Grid Lines 18
HSB to RGB 18
HSV to RGB 19
Harmonic Sine 19
Hue Adjuster 19
HyperTransform 19
Hyperbolic Sine 19
I Adjuster 20
Image 20
Interference Sine 20
Inverted Gausian 20
Inverter 20
Irregular Colored Shapes 21
Irregular MetaShapes 21
Irregular Shapes 21
Julia Fractal 21
Juliaˣ Fractal 21
Koch Snowflake 22
LED Segments 22
Lambda Exp Fractal 22
Lambda Fractal 22
Lightness Adjuster 22
Linear 23
Log 23
Log Warptal 23
Lucas Circle 23
Lyapunov 24

MagnetJ² Fractal 24
MagnetJ³ Fractal 24
MagnetM² Fractal 24
MagnetM³ Fractal 24
Mandelbrot² Fractal 25
Mandelbrot³ Fractal 25
Mandelbrotˣ Fractal 25
Mandelbrot⁴ Fractal 25
Mandelbrot⁵ Fractal 25
Max Blend 26
Max Reducer 26
Mayan Warp 26
Menger Tiling 26
Mercury Warp 26
Min Blend 27
Min Max Blend 27
Min Reducer 27
Min+Max Blend 27
Mira Fractal 27
Mirror 28
Mirror 10 28
Mirror 4 28
Mirror 6 28
Mirror 8 28
Modulated Sine 29
Modulated Spiral 29
Moire Fractal 29
Moire Warptal 29
Nazca Lines 29
Negative Absolute 30
Newton Fractal 30
Noise 30
Noise Warp 30
Noisy HLS Gradient 30
NovaJ Fractal 31
NovaM Fractal 31
NuPhoenix Fractal 31
NuPhoenixJ Fractal 31
Offset Product 31

Offseter 32
Overlay Blend 32
P-Displace 32
P-Scaler 32
P-Sine Distort 32
P-Splash 33
P-Wave 33
Pattern Texture 33
Perlin Noise 33
Perlin Warp 33
Petalizer Sine 34
Phoenix Fractal 34
PhoenixJ Fractal 34
Pinwheel 34
Pixelizer 34
Poincare Disk 35
Polar→Cartesian 35
Poly Warp 35
Polynomial 35
Power 35
Power Curve 36
Power Sine 36
Q Adjuster 36
Quad Colorer 36
RGB to CMYK 36
RGB to HSB 37
RGB to HSV 37
RGB to XYZ 37
RGB to YIQ 37
RGBA Color 37
Radial Hues 38
Rain Drops 38
Random Rectangles 38
Random Vectangles 38
Recip Warptal 38
Regular Shapes 39
Ripple Attractor 39
Rippled Texture 39
Rod Lens 39

Saturation Adjuster 39
Saw 40
Scaled Product 40
Scaled Sum 40
Scaler 40
Scales 40
Scatter Displacer 41
Scattered Bumps 41
Scattered Sierpinski Texture 41
Scattered Splash 41
Selector Blend 41
Sierpinski 42
Sierpinski Tiling 42
Sin Add Reducer 42
Sin Mult Reducer 42
Sin Warptal 42
SinCos Warptal 43
SinH Fractal 43
Sine 43
Sine Distort 43
Sine Lens 43
Sinh Warptal 44
Sphere Chain 44
Sphere Lens 44
Spider Fractal 44
Spike Curve 44
Spiral 45
Spiral Tiler 45
Splash 45
Square Flake 45
Square Tiler 45
Square Warptal 46
Squarify Warp 46
Stair Step 46
Standard Map 46
Starburst Sine 46
Starfield 47
Static 47
Step Saw 47

Strange Attractor 47
Strange Fractal 47
Super Balancer 48
Super Blender 48
SuperJulia Fractal 48
Thorn Fractal 48
Transformed Grid 48
Triangle Tiler 49
Truchet Texture 49
Turbulence 49
Unity Fractal 49
Value Adjuster 49
Voronoi Texture 50
Voronoi Vecture 50
Vortex 50
Wallpaper Tiler 50
Waterline 50
Wave 51
Weaver 51
Whirls 51
X Color Adjuster 52
XYZ to RGB 52
Y Adjuster 52
YIQ to RGB 52

Filters

Filters are nodes that operate on multiple channels independently of each other. You can use
one, two, three or all four of the input channels, and the respective output.

Abs 2
Abs Sine 2
Clipper 8
Filter Adjuster 15
Gausian 17
Harmonic Sine 19
Hyperbolic Sine 19
Inverted Gausian 20
Inverter 20
Linear 23
Log 23
Modulated Sine 29
Negative Absolute 30
Offseter 32
P-Displace 32
P-Scaler 32
Power 35
Power Curve 36
Power Sine 36
Saw 40
Scaler 40
Sine 43
Spike Curve 44
Stair Step 46
Step Saw 47

Combiners

Combiners are nodes that operate on multiple channels and combine them to a single output
channel. For the most part, they are order independent (you can connect the input to the first or
last channel and get the same output), though there are a couple of exceptions. Most also have
per-channel parameters that can be adjust, as well as overall parameters (such as a scale or
offset).

Abs Max Reducer 2
Abs Min Reducer 2
Averager 4
Bit And 4
Bit Or 4
Distance 13
Distance^2 13
Max Reducer 26
Min Reducer 27
Offset Product 31
Polynomial 35
Scaled Product 40
Scaled Sum 40
Sin Add Reducer 42
Sin Mult Reducer 42

Complex

Complex nodes are complex in the sense that they use complex math, but are otherwise actually
usually fairly simple. Complex math involves using a pair of numbers - a 'real' part (representing
ordinary numbers) and a 'imaginary' part (representing a multiple of i, which the imaginary value
representing the square root of -1). If this meaningless to you, don't despair - think of these nodes
as nodes that operate on pairs of channels (such as a 2D (x,y) coordinate pair) and produce the
same thing. Of particular usefulness is the Complex Inverter node which distorts things such that
what was infinitely far away is moved to the center (and vice versa).

Complex Add 8
Complex Add Norm 9
Complex Div 9
Complex Exp 9
Complex Inverse 9
Complex Log 10
Complex Max 10
Complex Min 10
Complex Mult 10
Complex Sub 11
Complex Warptal 11
Cubic Warptal 12
Exp Warptal 14
Log Warptal 23
Recip Warptal 38
Sin Warptal 42
SinCos Warptal 43
Sinh Warptal 44
Square Warptal 46

Adjusters

Adjusters are nodes which adjust RGB colors to produce another RGB color. These are useful to
add subtle shading to an image, or otherwise manipulating the image to add details (such as
making certain areas darker to represent distance).

Blackness Adjuster 5
Bump Map 5
Hue Adjuster 19
I Adjuster 20
Lightness Adjuster 22
Q Adjuster 36
Saturation Adjuster 39
Value Adjuster 49
X Color Adjuster 52
Y Adjuster 52

Blenders

Blender are nodes that combine a pair of RGBA channels to produce a third RGBA set of
channels. This can be often done to superimpose two different images on each other. Blender
nodes can also often be used as series of 4 parallel mini-reducer nodes, since the channels are
usually handled independently.

AbsMax Blend 2
AbsMin Blend 3
Add Max Blend 3
Alpha Blend 3
Boolean Blender 5
Cross Blend 12
Difference Blend 13
Max Blend 26
Min Blend 27
Min Max Blend 27
Min+Max Blend 27
Overlay Blend 32
Selector Blend 41
Super Balancer 48
Super Blender 48

Warpers

Warpers are used to convert a coordinate space into another space, often distorting things in the
process in a wide variety of ways. In general, however, the result is "continuous" - meaning that
the result is similar to taking the image on a sheet of rubber and stretching & twisting it (and not
cutting it apart into different pieces, which Tilers do).

2D Affine 1
2D P-Rotator 1
2D P-Skew 1
2D Rotator 1
2D Skew 1
Blorp Lens 5
Cartesian→Polar 6
Center Warp 6
Checker Warp 7
Complex Inverse 9
Complex Polar Map 10
Complex Warptal 11
Cone Lens 11
Corniside 11
Craters 11
Cubic Warptal 12
Dew Drops 13
EggCrate 14
Exp Warptal 14
Fish Eye 15
Fourier Warp 16
HyperTransform 19
Log Warptal 23
Mayan Warp 26
Mercury Warp 26
Modulated Spiral 29
Moire Warptal 29
Noise Warp 30
P-Sine Distort 32
P-Splash 33
P-Wave 33
Perlin Warp 33
Petalizer Sine 34

Polar→Cartesian 35
Poly Warp 35
Rain Drops 38
Recip Warptal 38
Rod Lens 39
Sin Warptal 42
SinCos Warptal 43
Sine Distort 43
Sine Lens 43
Sinh Warptal 44
Sphere Lens 44
Spiral 45
Splash 45
Square Warptal 46
Squarify Warp 46
Standard Map 46
Starburst Sine 46
Vortex 50
Waterline 50
Wave 51
Whirls 51

Tilers

Tilers are similar to Warpers but instead of producing a smooth, continuous result, a tiler will break
the original coordinate space into smaller pieces and reassemble them in a different way, often
repeating these pieces. They sometimes are seamless (like you'd find on the pattern on desktop
of your computer monitor), other times there are visual edges between them.

Escher Disk 14
Escher Square 14
Facet Spinner 14
Facet Tiler 15
Frame Mat 17
Frieze Tiler 17
Giza Displacer 17
Interference Sine 20
Koch Snowflake 22
Menger Tiling 26
Mirror 28
Mirror 10 28
Mirror 4 28
Mirror 6 28
Mirror 8 28
Pinwheel 34
Scattered Sierpinski Texture 41
Sierpinski Tiling 42
Spiral Tiler 45
Square Flake 45
Square Tiler 45
Triangle Tiler 49
Wallpaper Tiler 50

Resamplers

Resamplers are similar to Tilers but take very small parts of the original coordinate space and
convert them to larger areas in the result. If one were to take a small bitmap in a painting program
and stretch it out large, resulting in a chunky coarse image, that's the sort of thing a resampler
does.

Chunky Pixelizer 7
Crystalizer 12
Giza Pixelizer 18
Pixelizer 34
Scales 40
Voronoi Texture 50

Textures

Textures are general purpose nodes that take a 2D (or sometimes 3D) coordinate and convert it to
a grayscale value that looks like something (sometimes a real world object, other times not).
These are often the building blocks of an image - space is altered using a warper or tiler, it runs
through a texture to produce the basic image, and then some colorizer such as a gradient to
produce the result.

Bump Normal 5
Celtic Texture 6
Chladni Pattern 7
Clustered Shapes 8
Flower Petals 15
Fourier Texture 16
Fractal Carpet 16
Giza Texture 18
Grid Lines 18
Irregular MetaShapes 21
Irregular Shapes 21
LED Segments 22
Lyapunov 24
Nazca Lines 29
Pattern Texture 33
Poincare Disk 35
Random Rectangles 38
Regular Shapes 39
Rippled Texture 39
Scales 40
Starfield 47
Transformed Grid 48
Truchet Texture 49
Voronoi Texture 50
Weaver 51

Vectures

Vectures are like textures but instead of producing a grayscale value, it produces a 2D value. This
usually represents something like a direction. This result can be used to add subtle shading or
highlighting to an image.

Fourier Vecture 16
Giza Colorizer 17
Giza Texture 18
Irregular MetaShapes 21
Irregular Shapes 21
Random Vectangles 38
Rod Lens 39
Scattered Bumps 41
Scattered Splash 41
Sine Lens 43
Sphere Lens 44
Voronoi Vecture 50

Colorizers

Colorizers convert something into a full color RGBA result. This could be as simple as a a single
solid color, or the frequently used Gradient node (which converts grayscale data from a texture
into color). There are also some colored versions of texture nodes which directly produce colors
instead of grayscale values.

Angled RGB Lights 3
Angled RGB Planes 3
Color Noise 8
Color Turbulence 8
Complex Colorer 9
Giza Colorizer 17
Gradient 18
Image 20
Irregular Colored Shapes 21
Noisy HLS Gradient 30
Quad Colorer 36
RGBA Color 37
Radial Hues 38

Fractals

Fractals, for the most part, refer to nodes that produce a self-similar image - one that looks similar
at different magnification levels. Most fractal nodes are what are known as "escape function plots"
or "limit functions". Basically, a starting value is taken from the input channel (an (x,y) coordinate
pair). That function is evaluated with that input, which produces a new coordinate pair. This is
repeated as many times as the iteration limit is set for (so a high value on this parameter will take
longer). If that result ends up being close to (0,0) it is assumed that at that point the function is
stable (and on the 'inside') - if the value ends up a long ways from (0,0) then it is assumed that the
function value has "escaped" (and on the 'outside'). The number of iterations it takes to determine
if that starting point results on the inside or outside is used to determine the final grayscale value.
This result is often adjusted using a wide variety of techniques to add additional shading and
structure to the image.

For more details on how to work with escape fractal, see Appendix B.

Apollonian Packing 4
Barnsley Fractal 4
Charm Fractal 6
Custom Charm Fractal 12
Custom Fractal 12
Custom Julia 13
Fearful Icon Fractal 15
Julia Fractal 21
Juliaˣ Fractal 21
Koch Snowflake 22
Lambda Exp Fractal 22
Lambda Fractal 22
Lucas Circle 23
MagnetJ² Fractal 24
MagnetJ³ Fractal 24
MagnetM² Fractal 24
MagnetM³ Fractal 24
Mandelbrot² Fractal 25
Mandelbrot³ Fractal 25
Mandelbrotˣ Fractal 25
Mandelbrot⁴ Fractal 25
Mandelbrot⁵ Fractal 25
Menger Tiling 26
Mira Fractal 27
Moire Fractal 29

Newton Fractal 30
NovaJ Fractal 31
NovaM Fractal 31
NuPhoenix Fractal 31
NuPhoenixJ Fractal 31
Phoenix Fractal 34
PhoenixJ Fractal 34
Ripple Attractor 39
Scattered Sierpinski Texture 41
Sierpinski 42
Sierpinski Tiling 42
SinH Fractal 43
Sphere Chain 44
Spider Fractal 44
Square Flake 45
Strange Attractor 47
Strange Fractal 47
SuperJulia Fractal 48
Thorn Fractal 48
Unity Fractal 49

Noise

Noise nodes are nodes that are based on random noise, and so give unpredictable results. Most
noise nodes include a "phase" parameter, which can be adjusted to give a completely different set
of random results. Note that these results are actually consistent between documents and
sessions (and even across machines), so if an image is created using a noise node, it will
produce the same image everywhere.

Celtic Texture 6
Chunky Pixelizer 7
Clustered Shapes 8
Color Noise 8
Color Turbulence 8
Craters 11
Crystalizer 12
Dew Drops 13
Facet Spinner 14
Facet Tiler 15
Fractal Carpet 16
Fractal Landscape 16
Giza Colorizer 17
Giza Displacer 17
Giza Pixelizer 18
Giza Texture 18
Irregular Colored Shapes 21
Irregular MetaShapes 21
Irregular Shapes 21
LED Segments 22
Mercury Warp 26
Nazca Lines 29
Noise 30
Noise Warp 30
Noisy HLS Gradient 30
Perlin Noise 33
Perlin Warp 33
Rain Drops 38
Random Rectangles 38
Random Vectangles 38
Scatter Displacer 41
Scattered Bumps 41
Scattered Sierpinski Texture 41

Scattered Splash 41
Starfield 47
Static 47
Truchet Texture 49
Turbulence 49
Voronoi Texture 50
Voronoi Vecture 50
Whirls 51

2D Affine
Provide generic 2D affine transformation - any sort of combination of
scaling, transformation, rotation, and skewing is possible.

2D P-Rotator
Rotates the 2D coordinated controlled by a third, parametric, input
channel.

2D P-Skew
Skews the 2D coordinated controlled by a third, parametric, input
channel.

2D Rotator
Rotates the 2D coordinates clockwise or counterclockwise.

2D Skew
Skews the coordinate system, skewing each axis independantly.

1

Abs
Find the absolute value of each channel.

Abs Max Reducer
Takes the maximum of the absolute values of all four input channels
as the output channel.

Abs Min Reducer
Takes the minimum of the absolute values of all four input channels as
the output channel.

Abs Sine
Calculate the absolute value of the sine of each channel, scaling both
the frequency and amplitude, and adjusting the phase of the result.
Note that this produces a series of 'humps'.

AbsMax Blend
Blends each output channel as the maximum of the two
corresponding input channels.

2

AbsMin Blend
Blends each output channel as the minimum of the two corresponding
input channels.

Add Max Blend
Blends each output channel as the maximum of the left corresponding
input channels and the weighted sum of the right and left channels.

Alpha Blend
Blends each output channel as the a weighted balance between the
two corresponding inputs, utilizing the alpha channel of each as well.

Angled RGB Lights
Creates colors based on overlapping cones of pure primary colors
from the origin.

Angled RGB Planes
Creates colors based on overlapping planes of pure primary colors.

3

Apollonian Packing
Packs a series of spheres inside other spheres so they just touch the
other spheres (and then the gaps are filled in with more spheres).

Averager
Combines the four input channels to produce a weighted average of
them.

Barnsley Fractal
Creates an iterated escape fractal based on the Barnsley function.

Bit And
Combines all four input channels using a bitwise boolean AND, which
gives a 'digital' look to the results.

Bit Or
Combines all four input channels using a bitwise boolean OR, which
gives a 'digital' look to the results.

4

Blackness Adjuster
Adjusts the black component of the input color (by converting RGB to
CMYK, adjusting the K, and converting back to RGB).

Blorp Lens
Warps the coordinate space as if viewed through a rod with sine-wave
'blorps' on it.

Boolean Blender
Compares the each pair of input channels to produce either 1.0 or 0.0
depending on the comparison result.

Bump Map
Takes a 3D vector and color and applies bump-mapped lighting for
3D style textures

Bump Normal
Calculates the a value to simulate a light shown at an angle against
the surface whose normal is the input (such as the output of a vecture
and a height map), which can be used in an adjuster or blender for
lighting effects.

5

CMYK to RGB
Convert CMYK color space to RGB.

Cartesian→Polar
Converts cartesian coordinates (X,Y) into polar coordinates (angle,
distance).

Celtic Texture
Creates a random 'celtic knot' pattern.

Center Warp
Warps the image radially, randomly inward/outward toward/away from
the center.

Charm Fractal
A charm fractal is based on a strange attractor formula, but rather than
plotting the orbit of the attractor, we record the minimum magnitude of
the orbit. What makes this particular node different is that besides
the slider parameters, the coefficients of the quadratic used are
presented as editable text.

Each coefficient is represented by the letter 'A' through 'Y', and there

6

are 12 of them all told, so you can put in any random series of letters
(in either uppercase or lowercase). If you enter something that isn't
between 'A' and 'Y' it will ignore it. If you don't enter enough letters, it
will add an 'L' and then repeat the letters entered (so if you don't enter
anything, you get a series of 'L's). As a result, any sort of mashing of
the keyboard can be converted to a valid coefficient specifier (or you
can choose from the pop-up list of various valid and "interesting"
coefficients).

Note that there are two outputs - one is the minimum orbit point (using
the specified shape as a measurement criteria), and the other
contains the index of when that point was hit. Connecting one to the
input of a gradient and the other to and adjuster of that gradient's
output can produce rich and subtlety shaded images.

Checker Warp
Warps the coordinates to produce something that often resembles a
checkerboard.

Chladni Pattern
Creates patterns based on drawing a bowstring against a salt covered
metal plate, as demonstrated by Ernst Chladni in the 1700s.

Chunky Pixelizer
Pixelizes the coordinate space into varying sizes pixels.

7

Clipper
Limit the upper and lower value of each channel.

Clustered Shapes
Produces random clusters of the specified shape.

Color Noise
Produces colored noise based on Perlin noise functions.

Color Turbulence
Produces colored noise based on turbulence noise functions.

Complex Add
Treats the inputs as complex numbers and adds them.

8

Complex Add Norm
Treats the inputs as complex numbers, adds them, and then
normalizes the result.

Complex Colorer
Converts a complex number into a color, based on two user specified
colors.

Complex Div
Treats the inputs as complex numbers and divides the left by the right.

Complex Exp
Treats the input as a complex number and performs a complex
exponential on it

Complex Inverse
Treats the input as a complex number and calculates the inverse of it.
This warps space such that infinity is move to the origin, and the origin
is stretched to infinity.

9

Complex Log
Treats the input as a complex number and performs a complex
logarithm on it

Complex Max
Treats the input as complex numbers and find the larger of the two.

Complex Min
Treats the input as complex numbers and find the smaller of the two.

Complex Mult
Treats the inputs as complex numbers and multiplies them,

Complex Polar Map
Transforms the coordinate space by treating it as a complex number
and applying a polar map to it.

10

Complex Sub
Treats the input as complex numbers and subtracts one from the
other.

Complex Warptal
Applies a complex number function to the input coordinates to warp it
into a new, distorted space.

Cone Lens
Warps the coordinate space as if viewed through a pair of cones
joined at the tips.

Corniside
Warps the coordinate space, pushing things into the quadrant corners
near the origin, leaving the area near the axis relatively untouched.

Craters
Creates randomly scattered distortions that resemble a crater-marked
surface.

11

Cross Blend
Blends the two input colors into a color that is a uniform blend of the
two (controlled by the slider).

Crystalizer
Resamples the coordinate space to break it into varying sized crystal
facets instead of squares.

Cubic Warptal
Warps space by treating the coordinates as a complex number and
cubing the result multiple times.

Custom Charm Fractal
Similar to a charm fractal (finding a minimal orbit point using a
customizably shaped distance function) but allows a custom formula
to be specified.

Custom Fractal
Creates a Mandelbroit style escape iterative fractal with a user
specified expression.

12

Custom Julia
Creates a Julia style escape iterative fractal with a user specified
expression.

Dew Drops
Creates randomly scattered distortions that resemble drops of water
on the surface.

Difference Blend
Blends two colors together by taking the absolute value of the
difference between the two.

Distance
Calculates the distance from the origin that the input coordinate is.

Distance^2
Calculates the square of the distance from the origin that the input
coordinate is.

13

EggCrate
Warps space to resemble an egg crate.

Escher Disk
Tiles the coordinates to produce a hyperbolic tessellation similar to
the 'Circle Limit' works of M.C. Escher.

Escher Square
Tiles the coordinates to produce a tessellation similar to the 'Square
Limit' work of M.C. Escher.

Exp Warptal
Warps space by treating the input coordinates as a complex number
and using the exponent function on it.

Facet Spinner
Breaks the coordinate space into multiple irregular tiled facets which
are rotated around the origin.

14

Facet Tiler
Breaks the coordinate space into multiple irregular tiled facets.

Fearful Icon Fractal
Iterative fractal based on Fearful Icon formula

Filter Adjuster
Adjust up to four indepedent channels simultaneously.

Fish Eye
Warps the image as if viewed through a fish-eye lens.

Flower Petals
Creates a texture that looks like various combinations of overlapping
flower petals.

15

Fourier Texture
Using pseudo-Fourier transformations, creates a texture based on the
source image frequencies (details vs flat spaces). Will work if only
one input is connected (or connect same source to both inputs).

Fourier Vecture
Using pseudo-Fourier transformations, creates a vecture based on the
source image frequencies (details vs flat spaces). Will work if only
one input is connected (or connect same source to both inputs).

Fourier Warp
Using pseudo-Fourier transformations, warps either details or gentle
curves of the source space (or just use it like any old warper).

Fractal Carpet
Creates a fractally generated carpet, where the corners determine the
middle of the square, which is subdivided and the process repeated.

Fractal Landscape
Creates a fractal landscape via the offset midpoint technique.

16

Frame Mat
Creates a frame for an image, producing the coordinates for the frame
material, its alpha (allowing the inside to show through), and a Y-
Adjustment value to create a lighting effect

Frieze Tiler
Tiles the coordinate space in one direction in any of the 7 classical
'frieze' patterns.

Gausian
Apply a Gaussian transform to each channel, resulting bell curve
shape.

Giza Colorizer
Creates a colored texture composed of randomly sized pyramid
structures.

Giza Displacer
Warps space to wrap it around randomly sized scattered pyramid
structures.

17

Giza Pixelizer
Resamples the coordinate space, converting it to a series of randomly
sized squares & triangles instead of square pixels.

Giza Texture
Creates a texture composed of randomly sized pyramid structures.

Gradient
Converts the input coordinate into a color based on an specified
gradient.

Grid Lines
Generates a periodic grid of lines.

HSB to RGB
Convert HSL color space to RGB.

18

HSV to RGB
Convert HSV color space to RGB.

Harmonic Sine
Creates a harmonic version of a sine wave.

Hue Adjuster
Uses the last input channel to control the hue of the incoming color.

HyperTransform
Warps the coodinate space through a hyperbolic transformation,
which maps the entire space into a disk, with infinity at the edge of the
disk, and then flips it again ouside that disk such that the origin is at
infinity.

Hyperbolic Sine
Calculate the hyperbolic sine of each channel, scaling both the
frequency and amplitude, and adjusting the phase of the result.

19

I Adjuster
Adjusts the input color using last parameter to change the 'I' chroma.

Image
Converts the input coordinate to the pixel at that location in the
specified image.

Interference Sine
Warp space based on the interference between two different sine
waves.

Inverted Gausian
Apply an inverted Gaussian transform to each channel, which
smoothly limits values that approach infinity.

Inverter
Calculate the reciprocal of each channel.

20

Irregular Colored Shapes
Creates an irregularly spaced set of colored shapes, creating a wide
variety of effects, from cell membranes to barnacles.

Irregular MetaShapes
Super imposes a network of irregular shapes, allow for a much more
sophisticated texture.

Irregular Shapes
Creates an irregularly spaced set of shapes, creating a wide variety of
effects, from cell membranes to barnacles.

Julia Fractal
Calculates an iterative Julia fractal based on a quadratic.

Juliaˣ Fractal
Calculates an iterative Julia fractal based on a power function.

21

Koch Snowflake
Fractally tiles space into the shape of a Koch Snowflake.

LED Segments
Create a texture composed of random LED displays.

Lambda Exp Fractal
Calculates an iterative Julia fractal based on the exp function.

Lambda Fractal
Calculates an iterative fractal based on the lambda function.

Lightness Adjuster
Adjust the 'Lightness' color component.

22

Linear
Apply a linear transformation to each channel independently. Note
that a single scaling and offset value are used for all four channels.

Log
Apply the log function to each channel.

Log Warptal
Warps space by treating the coordinates as a complex number and
take the log the result.

Lucas Circle
Take a circle, with three equally spaced points along the
circumference of it. Now imaging three circles nested inside the first
circle such that they touch each other and the other circle at those
three points. These three circles circles are called Lucas Circles (and,
combined with the outer circle and another inner circle that would lay
between them and just touch the three circles are called Soddy
Circles).

If you then take each of those circles, and the point there it touches the
outer circle and the other two circles, and use those three points to
generate the next generation of circles, and repeat, you create this
delicate lacework of circles.

23

Lyapunov
Creates a texture based on the Lyapunov function.

MagnetJ² Fractal
A Julia style fractal based on second order magnet field equations
(great for traps).

MagnetJ³ Fractal
A Julia style fractal based on third order magnet field equations (great
for traps).

MagnetM² Fractal
A Mandelbort style fractal based on second order magnet field
equations (great for traps).

MagnetM³ Fractal
A Mandelbort style fractal based on third order magnet field equations
(great for traps).

24

Mandelbrot² Fractal
Calculates an iterative fractal based on a quadratic.

Mandelbrot³ Fractal
Calculates an iterative fractal based on a cubic.

Mandelbrotˣ Fractal
iterative fractal based on an arbitrary power equation

Mandelbrot⁴ Fractal
Calculates an iterative fractal based on a fourth power equation.

Mandelbrot⁵ Fractal
Calculates an iterative fractal based on a fifth power equation.

25

Max Blend
Blends two colors by taking the maximum of each of the respective
channels.

Max Reducer
Combines all the input channels and takes the maximum of them.

Mayan Warp
Warps space to produce something that often resembles Mayan style
heiroglyphics.

Menger Tiling
Similar to Sierpinksi Tiler, breaks space into 3x3 grids, repeating this
process for 8 of the 9 grids.

Mercury Warp
Warps space by distorting it with random noise;

26

Min Blend
Blends two colors by taking the minimum of each of the respective
channels.

Min Max Blend
Blends two colors by taking the blend of maximum and minimum of
each of the respective channels.

Min Reducer
Combines all the input channels and takes the minimum of them.

Min+Max Blend
Blends two colors by taking the sum of maximum and minimum of
each of the respective channels.

Mira Fractal
Calculates an iterative fractal based on the Mira function.

27

Mirror
Splits space as if a mirror was placed in it, reflecting it in half.

Mirror 10
Splits space as if angled mirrors were placed in it, reflecting it in
tenths.

Mirror 4
Splits space as if two mirrors were placed in it at right angles,
reflecting it in quarters.

Mirror 6
Splits space as if angled mirrors were placed in it, reflecting it in sixths.

Mirror 8
Splits space as if angled mirrors were placed in it, reflecting it in
eights.

28

Modulated Sine
Calculate the sine of each channel multiplied by the original value,
scaling both the frequency and amplitude, and adjusting the phase of
the result.

Modulated Spiral
Warps the coordinates into a spiral of ripples.

Moire Fractal
Calculates an iterative fractal based on a Moire function.

Moire Warptal
Warps space using a Moire function.

Nazca Lines
Generates random straight lines that criss-cross (or stop) no unlike the
lines on the Nazca plain in Peru.

29

Negative Absolute
Subtract the absolute value of each channel from a constant.

Newton Fractal
Calculates an iterative fractal based on the Newton method of root
finding.

Noise
Random noise generated using a white noise function.

Noise Warp
Distorts space using random noise.

Noisy HLS Gradient
Creates a gradient based on a single color using noise to generate
different hues or saturations.

30

NovaJ Fractal
A Julia-set style fractal based on the Nova function.

NovaM Fractal
A Mandelbrot-set style fractal based on the Nova function.

NuPhoenix Fractal
Calculates an iterative Mandelbrot-set fractal based on an enhanced
Phoenix function.

NuPhoenixJ Fractal
Calculates an iterative Julia-set fractal based on an enhanced
Phoenix function.

Offset Product
Reduces the input parameters by multiplying them all together.

31

Offseter
Offset each channel independently by four independent offsets.

Overlay Blend
Overlays one image on top of another, using both a transparency and
the alpha change of the top image.

P-Displace
Displaces all four input channels by a fifth, parametric, channel.

P-Scaler
Scales all four input channels by a fifth, parametric, channel.

P-Sine Distort
Distorts space using a sine function modulated by a parametric
channel.

32

P-Splash
Distorts space like splash, modulated by a parametric channel.

P-Wave
Distorts space like a wave, modulated by a parametric channel.

Pattern Texture
Generates repeating grayscale square patterns.

Perlin Noise
Random noise generated using a Perlin noise function.

Perlin Warp
Distorts space using a Perlin noise function.

33

Petalizer Sine
Warps space to squeeze and pinch it into various flower petal like
shapes.

Phoenix Fractal
Calculates an iterative Mandelbrot-set fractal based on the Phoenix
function.

PhoenixJ Fractal
Calculates an iterative Julia-set fractal based on the Phoenix function.

Pinwheel
Slices and spins space around like a pinwheel, repeating a pie-
shaped slice to form a complete circle.

Pixelizer
Resamples space to pixelize a square grid with all the same values
within the grid.

34

Poincare Disk
Generates a Poincare disk with hyperbolic parallel lines repeatedly
bisecting it.

Polar→Cartesian
Converts from Polar coordinates (angle, distance) to Cartesian (X,Y).

Poly Warp
Warps the image using a complex polynomial, whose coefficients are
the parameters, yeilding a vaguely fractalish distortion.

Polynomial
Reduces the four inputs using a fourth order polynomial (the first
channel is raised to the fourth, the second channel is cubed, etc...)

Power
Apply a power function to each channel.

35

Power Curve
Apply a power function to each channel, maintaining the sign of the
original value.

Power Sine
Similar to a sine function, but then passes the output through a power
function.

Q Adjuster
Adjust the 'Q' chroma color component.

Quad Colorer
Blends together four colors, one from each quadrant, to produce the
final color. This is simplified 2 dimensional gradient.

RGB to CMYK
Convert RGB color space to CMYK.

36

RGB to HSB
Convert RGB color space to HSL.

RGB to HSV
Convert RGB color space to HSV.

RGB to XYZ
Convert RGB color space to XYZ.

RGB to YIQ
Convert RGB color space to YIQ.

RGBA Color
Creates a single solid fixed color - also useful for providing up to four
constant values.

37

Radial Hues
Generates a color wheel around the origin.

Rain Drops
Creates randomly scattered distortions that resemble a pond in the
rain.

Random Rectangles
Generates random shaded rectangles.

Random Vectangles
Generates a random vector texture of rectangles, with the output being
the width and height of the rectangles.

Recip Warptal
Warps space by treating the coordinates as a complex number and
taking the reciprocal and offsetting multiple times.

38

Regular Shapes
Creates a texture composed of evenly spaced dots (or squares,
diamonds, etc...).

Ripple Attractor
Creates a strange attractor style fractal based on transformed
polynomials.

Rippled Texture
Distorts space by introducing periodic circular ripples.

Rod Lens
Warps the coordinate space as if viewed through a cylindrical rod.

Saturation Adjuster
Adjust the saturation of the input color.

39

Saw
Converts each channel to a triangle wave, with the given frequency,
amplitude, and phase.

Scaled Product
Combines all the input channels by multiplying them all together to
form the output.

Scaled Sum
Combines all the input channels by multiplying each by a different
constant and then summing the results.

Scaler
Multiply each channel independently by four independent scales.

Scales
Generates a texture similar to overlapping snake (or other creature)
scales.

40

Scatter Displacer
Disperses space by a random amount, making the result appear
'fuzzy'.

Scattered Bumps
Creates a vector texture composed of 2D-bumps scattered randomly
about.

Scattered Sierpinski Texture
Remaps space similar to a Sierpinski Tiling, but with randomness
determining the output instead of simple rules.

Scattered Splash
Creates a vector texture composed of 2D-splashes scattered
randomly about.

Selector Blend
Uses a parametric input channel to determine which of the two sets of
inputs are used for the output.

41

Sierpinski
Creates a recursive structure known as Sierpinski's Triangle.

Sierpinski Tiling
Tiles space to make it appear similar to Sierpinski's Triangle, but with
the underlying coordinates instead of solid colors.

Sin Add Reducer
Combines the input channels by applying a sine function to each and
then totaling them.

Sin Mult Reducer
Combines the input channels by applying a sine function to each and
then multiplying them.

Sin Warptal
Warps space by treating the coordinates as a complex number and
taking the sine of it multiple times.

42

SinCos Warptal
Warps space by treating the coordinates as a complex number and
taking the produce of sine and cosine of it multiple times.

SinH Fractal
Iterative escape fractal based on the hyperbolic sine function.

Sine
Calculate the sine of each channel, scaling both the frequency and
amplitude, and adjusting the phase of the result.

Sine Distort
Distorts space by offsetting it with a sine wave.

Sine Lens
Warps the coordinate space as if viewed through a circular lens with a
strange sine wave cross section.

43

Sinh Warptal
Warps space by treating the coordinates as a complex number and
taking the hyperbolic sine of it multiple times.

Sphere Chain
Creates an image that simulates a chain of reflecting silvered spheres.

Sphere Lens
Warps the coordinate space as if viewed through a spherical lens with
a strange sine wave cross section.

Spider Fractal
Calculates an iterative fractal based on a Spider function.

Spike Curve
Produce a sharp spike from each channel.

44

Spiral
Warps space by wrapping it in a spiral around the origin.

Spiral Tiler
Tiles space into a series of strips that are then spiraled around the
center.

Splash
Warps space as if the surface a pond was splashed with a rock.

Square Flake
Fractally tiles space in a recusive square subdivision (creating a
Peano style curve).

Square Tiler
Tiles space using a series of simple flips, rotations, or mirror images.

45

Square Warptal
Warps space by treating the coordinates as a complex number and
taking the square of it multiple times.

Squarify Warp
Warps space so the entire plane fits in a unit square (mapping infinity
to 1.0), which is then repeated.

Stair Step
The moral equivalent of a pixelizer for 1D values, converts a smooth
curve into a series of fixed steps.

Standard Map
Warps space by applying a Standard Map function to it multiple times.

Starburst Sine
Warps space into a starburst like shape.

46

Starfield
Creates a random series of tiny dots scattered on a field of black.

Static
Creates a texture composed of pure random static values.

Step Saw
Converts each channel to a sawtooth wave, with the given frequency,
amplitude, and phase.

Strange Attractor
Creates a plot of a quadratic strange attractor, with an optional non-
linear space.

Strange Fractal
Calculates an iterative fractal based on the escape values of a
quadratic strange attractor.

47

Super Balancer
Blends together two RGBA colors using a third set of channels to
control balancing each channel individually.

Super Blender
Blends together two RGBA colors using a third set of channels to
control blending each channel individually.

SuperJulia Fractal
Calculates an iterative Julia fractal based on a quadratic function that
uses an extra set of inputs to determine the other complex parameter
(which can then vary through the image).

Thorn Fractal
Calculates an iterative Thorn fractal, also known as the Secant Sea.

Transformed Grid
Layers of gridded objects, each layer transformed by rotation, scaling,
and displacement.

48

Triangle Tiler
Tiles space using a triangular cell in the classic wallpaper tiling
symmetries.

Truchet Texture
Generates a random texture using a Truchet texture - randomly
selected 'cells' that connect to form a complex pattern.

Turbulence
Generates random turbulence based on the input channels.

Unity Fractal
Calculates an iterative fractal based on a Unity function.

Value Adjuster
Adjust the value of the input color. Similar to, but not exactly the same
as, adjusting the intensity or lightness.

49

Voronoi Texture
Creates a texture representing a Voronoi Set, which resembles dried
crack mud, or certain reptile scales.

Voronoi Vecture
Creates a vecture representing a Voronoi Set, which resembles dried
crack mud, or certain reptile scales.

Vortex
Warps space by having a single large spinning vortex in the center of
it.

Wallpaper Tiler
Tiles space using a rectangular/rhombic cell in the classic wallpaper
tiling symmetries.

Waterline
Creates a rippled reflection that makes the image appear as if
reflected over a lake's surface.

50

Wave
Distorts space with a series of waves in both the X and Y axis.

Weaver
Weaver models an eight shaft, eight treadle loom. If that doesn't mean
anything to you, just play around with the various presets. The left
output provides the shape of the woven material - if you hook only this
output up to a gradient, it will provide a nice texture. The right output
is used to determine the "color" of the thread, and can be used either
as an input for a gradient, or in a blender to determine which of
multiple images are used (which can produce "woven images"). If this
is done, you'll want to run the left output to a Value Adjuster to shade
the result (to give it the texture of woven thread).

If "an eight shaft, eight treadle loom" does mean something to you, you
can click the "Edit" button to bring up window that allows editing the
warp and weft, as well as what colors the threads are, and the tie up
used. On the left are the warp and weft descriptions - a series of digits
1-8 to represent which shafts/treadles are used in the warp/weft. The
right two fields let you enter the thread color in a similar manner, but it
uses the letters A-Z (uppercase) to allow for up to 26 colors. The
checkboxes on the right control the tie up. Changes made in this
dialog will immediately be shown in the image, so you can see your
updates "live".

You can also import ".wif" (Weaving Information File) formatted files,
though you are limited to 8 shafts & treadles (it can remap thread color
if more than 24 are present).

As a short cut, you can use the "-" (minus) character to represent a
range of either letters or digits. For example, "1-5-2" is equivalent to
"12345432".

Whirls
Creates a series of small vortices scattered throughout the image.

51

X Color Adjuster
Adjusts the input color as balanced between to user specified colors.

XYZ to RGB
Convert XYZ color space to RGB.

Y Adjuster
Adjust the 'Y' chroma of the input color.

YIQ to RGB
Convert YIQ color space to RGB.

52

Appendix A - Shapes

quadrium supports a number of underlying shapes in a variety of nodes. Rather than having a node that represents a series
of spheres, and another representing a series of pyramids, etc... it's more convenient to have a single node and be able to
specify the underlying shape used. Shapes are used in Regular Textures, Irregular Textures, traps in various escape
fractals, and as a distance function in the Charm Fractal. In all instances, this causes a repetition of the underlying shape,
often distorted, stretched, twisted, warped, or otherwise made "more interesting".

Shapes provide not only the outline of the underlying object, but are actually continuous functions unto themselves. This
means that the result of a circular shape function (which is based on the square root of the sum of the squares of the X and Y
coordinate - i.e., traditional Euclidian distance) actually produces values that range from 0 at the edge of the shape, to 1 at the
center, which produces nice smooth contoured shape. As a result, if viewed as grayscale data, it results in shaded "three
dimensional" shapes (a circle actually looks like sphere).

Below is the list of available shapes:

Circle/Sphere Ring Squares/Pyramid

Diamond Astroid Gem

Star Pillow Hexagon

Cross Spiral + Spiral -

Hyperbola Waves X Waves Y

Petals Decarte Folium Devil's Curve

Maltese Cross Eight Curve Butterfly

Lips Cardoid

Appendix B - Escape Fractals

Escape fractals are one of the more complex nodes available in quadrium. These include the
various versions of the Mandelbrot fractal, as well as Julia, Dragon, Spider, Thorn and others.
Despite their varying appearance, they all produce the same kinds of results, which can be
interpreted in a wide variety of ways, producing wildly different images. Escape fractals work by
partitioning the image into areas that are "outside" and ones that are "inside". This corresponds to
points that "escape" (become increasingly large when evaluated using the underlying formula) and
ones that don't. Besides that underlying "inside" vs "outside", quadrium can take additional
information (such as the number of iterations that were required before reaching the point of
"escape", or the maximum value found while iteration) and use that to produce something more
detailed than just the outline of the shape.

These techniques are the various coloring variations available to all escape fractals. There are a
relatively small number of ways to color (and by color, we mean "add more possible values" so that
a gradient can produce more than just two colors) the inside, while there are a much larger number
of ways to color the outside. Below is a list of the currently available internal colorings (external is
set to zero, all other parameters and nodes are unchanged):

Solid Tension 1 Tension 2

Tension 3 Tension 4 Tension 5

Min Distance Beauty Index Max Delta

Min Delta Inner Max Inner Min

Curvature ATan

Besides different coloring styles, we can also adjust the "contrast" parameter, which is used to scale
the result as show below (since the output goes to a cyclical clut, the result is more bands of color):

Contrast = 0.0 Contrast = 10.0

Finally, internal coloring can be regular or inverted. Instead of producing a value that ranges up
from zero, if inverted, it goes down from zero (and since the gradient is cyclic, this causes the colors
at the end of the cycle to be used instead of the start - this is a way to make it easier to use different
sets of colors for the inside and outside):

Regular Inverted

The external color schemes are more varied. Again, all parameters are left set to the same values
(with exception of bailout, which is increased for the last set of images, since low bailout values
obscure the patterns for Pinecone, etc..), with the internal style set to zero:

Level Continuous Shaded

Twisted 1 Twisted 2 Twisted 3

Harsh 1 Harsh 2 Shiny

Shattered 1 Shattered 2 Shattered 3

Scalloped Curved One

Checkered Cellular Triangular

Crossed Krinkled Squares

Bricks Curvature Pinecone

Rivulet Diamond Tree Mosaic

Hobnail Satin Distance

Some coloring styles work better on some fractals than others - you'll need to experiment to see
which works the best in any given case. For example, Pinecone, Rivulet, Diamond Tree, Mosaic
Hobnail and Satin are designed for simple quadratics such as Mandelbroit and Julia fractals - the
'color focus' slider can be used to help adjust these for optimal results on other fractals. Similarly,
the various parameters such as iterations and bailout can change the appearances:

Iterations = 10 Iterations = 20 Iterations = 50

In general, increasing the iterations adds more detail, and has the side effect of "narrowing" the
results as well (not to mention taking more time to display).

Bailout = 0.0 Bailout = 4.0 Bailout = 10.0

Bailout, however, tends to "widen" the outside area (this varies from fractal to fractal, however).

As of version 1.1, there is a new menu that controls how the escape value is calculated, which
causes changes in the shape of the "bands" on the outside of the fractal. Previously, the escape
value was only calculated by circular distance - there are now several variations available:

Circle Diamond Cross

Square Real Imag

Hyperbola

Escape fractals now have three additional outputs - X,Y and Alpha. The X and Y output represent
the last state of the calculation - the value when it escapes from the formula. These values can be
fed into a "complex colorer" node (which was specifically designed to convert these values into RGB
colors) or can be used to adjust gradient colors, or even directly set the final color. There are
actually several possible values that can be calculated - either the final value, the change between
that value and the previous iteration (or the iteration before that, etc...), the total change between the
final value and the starting value, the average value for the most recent iterations, or the total
average value. Below are examples of different effects possible with these settings:

Escape Value Last Delta Delta + 1

Delta + 2 Total Delta Recent Average

Total Average

The exact effect of these options will vary greatly with the fractal chosen, as well as whatever method
is used to convert this X & Y value into colors (these connections are great to feed into a bump map
filter to create "embossed" style fractals)

The other output in quadrium is an alpha channel. This can be used to blend or superimpose the
fractal on another image, or the alpha channel can be used to adjust the color value generated from
a gradient. The alpha can be set to show or hide any specific feature (inside, outside, or traps - see
below), as well as fading them "in" or "out". If we connect the alpha channel to the alpha of the
output color, and render with alpha over a solid red color, we can get the following effects:

Hide Inside Hide Outside Fade Exterior

Fade Interior, Hide Inside

Traps are ways to enhance an escape fractal. The way they work is that while calculating the each
iteration of the fractal, quadrium examines the value and see if it falls within a given area, which can
"trap" that value (and later be used to produce different coloring). This results in adding "structures"
to the fractal (and that structure is shaped similar to the resulting fractal). This is very flexible,
because it can be applied to both the inside and outside (or just one or the other):

Plain Super Semi

Plain is applied only to the inside, super is both inside and outside, while semi is outside only. Note
that large bailout values tends to cause traps in the external area to often become overwhelmed in
"noise".

Furthermore, quadrium can use either the first or last time the value crosses into the trap, or which
trap is "closest" or "furthest", or any wide variety of blending

First Last Closest

Furthest Blend In Blend Out

Blend Over Blend First Blend Last

Multiply Screen Min

Max

Besides just a single trap, we can have a large grid of traps, which will produce a lace like mesh, or
repeating pattern of the underlying trap shape:

Grid on

quadrium2.1 introduces the ability to move a trap. There are two different techniques - the first is the
ability to change where the trap is located (previously, the trap shape was assumed to be centered
on the origin). This basically just moves the trap:

Trap X Origin -0.3 Trap Y Origin -0.3 Trap X & Y Origin -0.3

The other ability results in moving the trap origin at each iteration, based on the value itself.

Relative Delta Product

Average Lagging
The effect is even more noticeable and interesting when zoomed into some of the fractal details.

The "trap limit" parameter controls the size of the trap - the smaller the limit, the larger the resulting
trap appears. Taken to extremes, the resulting traps (especially if grid is enabled) will completely
overwhelm the underlying fractal, resulting in a image similar in shape to the original fractal, but with
a completely different texture:

Trap Limit = 1.5 Trap Limit = 0.8 Trap Limit = 0.4

The traps are based on the same shapes as are used for Regular Shapes texture node (among
others), with many additions. Omega Cross is the underlying X and Y axis of the image (and if grid
is enabled, it effectively is like the Grid Lines texture node). Omega Real is just the real component
of the number (the X coordinate) while Omega Imag is the imaginary component of the number (the
Y coordinate). Thus, Omega Cross is the same as combining Omega Real and Omega Imag.

(NB: Trap Limit and other parameters changed for emphasis)

Omega Cross Omega Real Omega Imag

Circle Ring Square

Diamond Astroid Gem

Star Hyperbola Spiral +

Spiral - Waves X Waves Y

Petals Decarte Folium Devils Curve

Eight Curve Butterfly Lips

Cardoid Lemniscate

Finally, there are some other coloring styles for the traps - their basic coloring (set to a solid value, or
some subtle shading) as well as a way to "partition" the traps between even and odd (but extended
to more than just two - all the way up to eight). The actual effect is often difficult to anticipate, and
sometimes quite subtle, so it's worth playing with to see which looks best for your particular case:

1 Level 5 Levels

Note how in "1 Level" all the traps have the same color, while at 5 there are a number of different
colors.

Often with traps, the first trap is often large and completely obscures subsequent traps (especially
with the traps set to show the "First" trap as opposed to the "Last" trap). To hide some of the earlier
traps, the "Trap Skip" parameter can be increased:

Trap Skip = 0.0 Trap Skip = 0.076 Trap Skip = 0.273

Notice how the traps on the outside disappear when the trap skip parameter is increased - this is
because those values initially hit one or two early traps, and then escape, while the internal traps
often hit many traps. If you view the these traps as "layers" you can see how the top trap layers are
"peeled" off to reveal detail below it.

Appendix C - Custom Formulas

In quadrium, one normally connects various nodes together to form the mathematical
basis for an image. This works well for many things, but there are some special cases
where it is easier to type in a formula than to try to wire things up and set the parame-
ters accordingly. Also, for various fractals, there was no way to experiment with arbi-
trary formulas (since you couldn’t rewire things “inside” a node). quadrium 1.1 solves
this problem by introducing special “user custom formula” versions of these various
nodes.

In general, these formulas follow the syntax of algebraic formulas found in spreadsheets
or other computer languages. There are, however, some special extensions provided to
support complex math (which is extremely common in fractal research). If you are un-
familiar with complex math, the basic idea is that instead of just a single number, there
is actually a pair of numbers, representing a coordinate on the “complex plane”. The
first number is the real number (which corresponds to regular, ordinary numbers), and
the second is the imaginary number (so called because it represents a multiple of the
imaginary value i, which represents the square root of -1). There are then various rules
to explain how to apply standard mathematic operations on these complex numbers, but
the details of this aren’t important here - for now, you can just think of these as an (x,y)
coordinate pair.

Types
quadrium formulas support the following types:

Type Details

integer Any whole number, such
as 5, -3, or 1052

float Any real number, such as
1.34, -65.232, or 634.3421

complex A complex number {1.3, 0},
{12, 23.54}, {-5.5, 0.12}

boolean The result of a comparison
such as x > 5.3, or z ==
{0,0} or the constants true
or false.

As you can see, complex numbers are written inside braces ‘{’, ‘}’. The first number is
the real component, and the second is the imaginary component. There is very little dif-
ference between “integers” and “floats” - there are only a few special cases where inte-

ger values are treated specially (for example, integer powers vs. real powers), but they
are otherwise interchangeable.

For the most part, complex numbers and floats can also be interchanged, and quadrium
will automatically promote real numbers to complex where needed (since real numbers
are complex numbers with their imaginary component set to zero). However, there are
places where real numbers are required (and don’t make sense for complex numbers),
and will produce an error if a complex value is provided.

Booleans, however, are another case - they are never promoted to floats, complex
numbers or integers, nor are those every converted implicitly to boolean values. If a
function uses a boolean value, it must be from a comparison, or the boolean constants.

Operators
Below is a table of the operators and their precedences (i.e, multiplication is performed
before addition).

Class Operators Example

Nested expressions () x * (5 + 3)

Unary - -y

Power ^ x ^ 4

Multiplication *, / {3, 1.5} * x / 2

Addition +, - x + {4, 5}

Comparison <,<=, >, >=, ==, != x > 5

Boolean ‘and’ & 0 < x & x < 10

Boolean ‘or’ | x < 0 | x > 10

Functions
Besides the various common math operations, there are a number of special functions.
The table below lists the functions. Unless otherwise stated, functions take a single real
or complex parameter, and return the a value that is the same type (so sin(real) = real,
sin(complex) = complex). Note that user functions are case insensitive, so “Sin”, “sin”,
and “SIN” all refer to the same function.

Function Notes

sin Sine

cos Cosine

Function Notes

tan Tangent

cosh Hyperbolic cosine

sinh Hyperbolic sine

tanh Hyperbolic tangent

log Logarithm

exp Exponent (ex)

sqrt Square root

abs Absolute value

norm, cabs Normal (same as abs for real parameters, which is
why the function can also be called “cabs”)

flip Exchange the real and imaginary components of a
complex number

conj Complex Conjugate (real parameters are un-
changed)

min Minimum - only supported for real parameters, and
can have two or more parameters

max Maximum - only supported for real parameters,
and can have two or more parameters

ave Average, supports two or more parameters (all
must be real for the result to be real, otherwise
everything is converted to complex number)

if Takes three parameters - the first is a boolean
(such as a comparison), if that is true, then the
function evaluates as the second parameter, oth-
erwise it evaluates as the third parameter.

The table below lists functions that convert from complex numbers to real numbers. If a
real number is passed as the parameter, either that original value or 0.0 will be the re-
sult (depending on the function).

Function Notes

real Real component (does nothing for real parameters).

imag Imaginary component (same as 0.0 for real parameters).

theta Theta, the “angle” of the complex number (0.0 for real parame-
ters)

Parameters and Constants
Nodes that use custom formulas will have different ways of allowing access to the input
values and the values of various sliders. In all cases, however, the result of the expres-
sion is used for output (or the next value for fractals). Similarly, the input connections
are always referred to as “input1”, “input2”, etc... (Note that some nodes may refer to
these values as other parameter names as well). The sliders are, in general, the same
as their names (spaces and other punctuation are removed, combining the words of the
title together).

There are also some common constants and other globally available values:

Name Value

pi 3.1415926535897931

e 2.7182818284590451

sqrt2 1.4142135623730951

