
JXTA v1.0 Protocols Specification

Revision 1.1.1
June 12, 2001

discuss@jxta.org

Copyright (c) 2001 Sun Microsystems, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
“This product includes software developed by the Sun Microsystems, Inc. for Project JXTA.” Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally
appear.

4. The names “Sun”, “Sun Microsystems, Inc.”, “JXTA” and “Project JXTA” must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please
contact Project JXTA at <http://www.jxta.org>.

5. Products derived from this software may not be called “JXTA”, nor may “JXTA” appear in their name, without
prior written permission of Sun.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SUN MICROSYSTEMS INCORPORATED OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of Project JXTA. For more information
on Project JXTA, please see <http://www.jxta.org/>.

This license is based on the BSD license adopted by the Apache Foundation.

Project JXTA Protocols Specification 1.1.1 iii

Table of Contents

1. Introduction . 1

The JXTA Protocols . 1

JXTA Assumptions . 4

Why JXTA? . 7

The JXTA Three Layer Cake . 8

2. Conceptual Overview . 9

Peers . 9

Peer Groups . 10

Network Services . 12

Pipes . 13

Messages . 15

Advertisements . 16

Credentials . 16

IDs . 17

Content . 18

iv Project JXTA Protocols Specification 1.1.1

3. IDs . 19

Introduction . 19

Format of a JXTA URN . 19

Format of the JXTA NULLID URN . 20

Format of a JXTA UUID URN. 21

JXTA UUID Field Definitions . 22

4. Advertisements . 25

Introduction . 25

XML . 25

Peer Advertisement . 26

PeerGroup Advertisement . 28

Pipe Advertisement . 29

Service Advertisement . 30

Content Advertisement . 33

EndpointAdvertisement . 34

5. JXTA Protocols . 37

Peer Discovery Protocol . 37

Peer Resolver Protocol . 41

Peer Information Protocol . 43

Peer Membership Protocol . 45

Pipe Binding Protocol. 49

Endpoint Routing Protocol . 52

6. Messages . 57

Introduction . 57

Project JXTA Protocols Specification 1.1.1 v

Message Format . 57

Revision in Progress . 60

7. Transport Bindings. 63

TCP/IP Transport . 63

HTTP Transport . 64

vi Project JXTA Protocols Specification 1.1.1

Project JXTA Protocols Specification 1.1.1 1

Introduction 1

The JXTA Protocols
The JXTA protocols are a set of six protocols that have been specifically designed for
ad hoc, pervasive, and multi-hop peer-to-peer (P2P) network computing. Using the
JXTA protocols, peers can cooperate to form self-organized and self-configured peer
groups independently of their positions in the network (edges, firewalls), and without
the need of a centralized management infrastructure.

In designing the JXTA protocols, we sought to create a set of protocols that had very
low overhead, made few assumptions about the underlying network transport and
limited requirements of the peer environment, but yet were able to be used to deploy a
wide variety of P2P applications and services in a highly unreliable and changing
network environment.

Peers use the JXTA protocols to advertise their resources and to discover network
resources (services, pipes, etc.) available from other peers. Peers form and join
peergroups to create special relationships. Peers cooperate to route messages allowing
for full peer connectivity. The JXTA protocols allow peers to communicate without
needing to understand or manage the potentially complex and dynamic network
topologies which are becoming common.

The JXTA protocols allow peers to dynamically route messages across multiple
network hops to any destination in the network (potentially traversing firewalls). Each
message carries with it either a complete or partial ordered list of gateway peers
through which the message might be routed. If a route information is incorrect, the
intermediate peer can assist in dynamically finding a new route.

2 Project JXTA Protocols Specification 1.1.1

The JXTA protocols are composed of six protocols that work together to allow the
discovery, organization, monitoring and communication between peers:

• The Peer Discovery Protocol (PDP) is the mechanism by which a peer can
advertise its own resources, and discover the resources from other peers (peer
groups, services, pipes and additional peers). Every peer resource is described and
published using an advertisement. Advertisements are programming language-
neutral metadata structures that describes network resources. Advertisements are
represented as XML documents.

• The Peer Resolver Protocol (PRP) is the mechanism by which a peer can send a
query to one or more peers, and receive a response (or multiple responses) to the
query. The PRP implements a query/response protocol. The response message is
matched to the query via a unique id included in the message body. When a peer is
discovered via PDP, a query can be sent to that peer.

• The Peer Information Protocol (PIP) is the mechanism by a which a peer may
obtain status information about other peers, such as state, uptime, traffic load,
capabilities, etc.

• The Peer Membership Protocol (PMP) is the mechanism by which peers can self-
organize and group themselves into peer groups. Peer groups form a logical
boundary of peers with a common interest. A single peer can belong to multiple
peer groups. PMP is used by a peer to join or leave an existing peergroup
discovered via the PDP.

• The Pipe Binding Protocol (PBP) is the mechanism by which a peer can establish
a virtual communication channel or pipe between one or more peers. The PBP is
used by a peer to bind the two or more ends of the connection (pipe endpoints).
Pipes provide the foundation communication mechanism between peers.

• The Peer Endpoint Protocol (PEP) is the mechanism by which a peer can discover
a route (sequence of hops) used to send a message to another peer. If a peer A
wants to send a message to peer C, and there is no direct route between A and C,
then peer A needs to find the intermediary peer(s) to route the message to C. PEP is
used to determine the route information. If the network topology has changed such
that the route to C can no longer be used, because a link along the route no longer
works, the peer can use PEP to find any routes other peers know to construct a route
to C.

All of these protocols are implemented using a common messaging layer. This
messaging layer is what binds the JXTA protocols to various network transports. (See
“Messages”)

Project JXTA Protocols Specification 1.1.1 3

Each of the JXTA protocols is independent of the others, and a peer is NOT REQUIRED
to implement all six protocols. A peer just needs to implement the protocols that it
needs to use. For example, a device may have all the advertisements it uses pre-stored
in memory, so that peer does not need to implement the Peer Discovery Protocol. A
peer may use a pre-configured set of peer routers to route all its messages, hence the
peer does not need to implement the Peer Endpoint protocol. It just sends messages to
the routers to be forwarded. A peer may not need to obtain or wish to provide status
information to other peers, hence the peer does not to implement the Peer Monitoring
Protocol. The same can be said about all of the other protocols.

The JXTA protocols do no require periodic messages of any kind at any level to be
sent within the network. For example, JXTA does not require periodic polling, link
status sensing, or neighbor detection messages, and does not rely on these functions

Transport

Peer Resolver
Protocol

Peer Endpoint
Protocol

Peer Discovery
Protocol

Pipe Binding
Protocol

Peer Information
Protocol

Peer Membership
Protocol

Endpoint

Peer

PeerGroup

Transport

Peer Resolver
Protocol

Peer Endpoint
Protocol

Peer Discovery
Protocol

Pipe Binding
Protocol

Peer Information
Protocol

Peer Membership
Protocol

Endpoint

Peer

PeerGroup

JXTA Protocols

Resolver Resolver

4 Project JXTA Protocols Specification 1.1.1

from any underlying network transport in the network. This entirely on-demand
behavior of the JXTA protocols and lack of periodic activity allows the number of
overhead messages caused by JXTA to scale all the way down to zero, when all peers
are stationary with respect to each other and all routes needed for current
communication have already been discovered.

A peer may decide to cache advertisements discovered via the Peer Discovery Protocol
for later usage. It is important to point out that caching is not required by the JXTA
architecture, but caching can be an important optimization. The caching of
advertisements by a peers avoids performing a new discovery each time the peer is
accessing a network resource. In highly-transient environment, performing the
discovery is the only viable solution. In static environment, caching is more efficient.

An unique characteristic of P2P networks, like JXTA, is their ability to replicate
information toward end-users. Popular contents tend to be replicated more often,
making them easier to find as more copies are available. Peers do not have to always
go back to the same peer to obtain the information they want (current client/server
model). Peers can obtain information from neighboring peers that have already cached
the information. Each peer becomes a provider to all other peers.

The JXTA protocols have been designed to allow JXTA to be easily implemented on
uni-directional links and asymmetric transports. In particular, many forms of wireless
networking do not provide equal capability for devices to send and receive. JXTA
permits any uni-directional link to be used when necessary, improving overall
performance and network connectivity in the system. The intent is for the JXTA
protocols to be as pervasive as possible, and easy to implement on any transport.
Implementations on reliable and bi-directional transports such as TCP/IP or HTTP
should lead to efficient bi-directional communications.

The JXTA uni-directional and asymmetric transport also plays well in multi-hops
network environment where the message latency may be difficult to predict.
Furthermore, peers in a P2P network tends to have nondeterministic behaviors. They
may appear or leave the network very frequently

JXTA Assumptions
This section is a guide to the assumptions that inform the design of JXTA. There are
two types of assumptions stated here, those which describe the requirements of JXTA
implementations and those which describe the expected behavior of the JXTA
network.

Project JXTA Protocols Specification 1.1.1 5

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as
described in IETF RFC 2119. (HTTP://IETF.ORG/RFC/RFC2119.TXT)

A peer SHALL NOT make assumptions about the runtime environments or programming
languages in use by another peer. The network of peers reachable by any peer is likely
to be contain many peers with very heterogeneous implementations and capabilities.

You SHOULD assume that capability and complexity of the network peers supporting
these protocols can range from a single light switch to a highly-available
supercomputer cluster.

A peer MUST implement the JXTA protocols such that all interaction with other peers
is correct and conformant.

A peer MAY implement only the JXTA protocols it requires and for correct and
conformant interaction with other peers.

A peer MAY implement only a portion (client-side or server-side only for example) of
a protocol.

Peers wishing to interact with other peers within the JXTA network SHOULD be willing
to participate fully in the protocols. In particular, peers SHOULD cache advertisements
and forward messages for other peers in the JXTA network. But, this participation is
OPTIONAL.

The JXTA protocols MAY be implemented over the Internet, a corporate intranet, a
dynamic proximity network, or in a home networking environment.

Peers receiving a corrupted or compromised message MUST discard the message.
Messages may be corrupted or intentionally altered in transmission on the network.
The JXTA protocols provide

Peers MAY appear, disappear and move at any time without notice. In particular, the
JXTA protocols support very arbitrary environment changes allowing a peer to
dynamically discover and reconnect to its changing environment.

Communication ability between any pair of peers MAY at times not work equally well
in both directions. That is, communications between two peers will in many cases be
able to operate bi-directionally, but at times the connection between two peers may be
only uni-directional, allowing one peer to successfully send messages to the other
while no communication is possible in the reverse direction.

6 Project JXTA Protocols Specification 1.1.1

The JXTA protocols MAY take advantage of additional optimizations, such as the easy
ability to reverse a source route to obtain a route back to the origin of the original
route.

The JXTA protocols are defined as idempotent protocol exchanges. The same
messages MAY be sent/received more than once during the course of a protocol
exchange. No protocol states are REQUIRED to be maintained at both ends.

Due to unpredictability of P2P networks, assumptions MUST NOT be made about the
time required for a message to reach a destination peer. JXTA Protocols SHALL NOT
impose any timing requirements for message receipt.

A JXTA protocol message which is routed through multiple hops SHOULD NOT be
assumed to reliably delivered, even if only reliable transports such as TCP/IP are used
through all hops. A congested peer MAY drop messages at any time rather than routing
them.

Bidirectional, reliable data transfers or specific data transfers (streaming) are expected
to be provided at a service layer.

Message encodings for network transports MUST allow for the transmission of arbitrary
numbers of message sections containing an arbitrary amount of data. All data should
be

While the JXTA protocols are defined in term of XML messages, an XML parser is
OPTIONAL. XML messages MAY be pre-compiled on small implementations.

The diameter of a multi-hops network is the minimum number of hops necessary for a
message to reach from any peers located at one extreme edge of the network to another
peer located at the opposite extreme. Empirical measurements on P2P networks such as
Gnutella or Freenet shows this diameter to be around 5-7 hops.

The JXTA protocols MUST NOT require a broadcast or multicast capability of the
underlying network transport. Messages intended for receipt by multiple peers
(propagation) MAY be implemented using point-to-point communications.

One SHOULD make the assumption that if a destination address is not available at any
time during the message transmission, the message will be lost.

Each peer MUST be a member of the World peer group. Membership in this group is
automatic.

Peers MUST be members of the same peer group in order to exchange messages.
(Remember that all peers are members of the World peer group)

Project JXTA Protocols Specification 1.1.1 7

A peer MUST NOT assume that there is a guaranteed return route to a peer from which
it has received communication. The lack of a return route may either be temporary or
permanent.

Names are not unique unless a coordinated naming service is used to guarantee name
uniqueness. A naming service is OPTIONAL.

Once a content has been published to the JXTA network, it MUST NOT be assumed that
that the content can be later retrieved from the JXTA network. The content may be
only available from peers that are not currently reachable or nowhere.

Once a content has been published to the JXTA network, it MUST NOT be assumed that
that the content can be deleted. Republication of content by peers is unrestricted and
the content may propagate to peers which are not reachable from the publishing peer.

Why JXTA?
The JXTA Project is an open network computing platform designed for peer-to-peer
(P2P) computing.

The JXTA protocols standardize the manner in which peers:

• Discover each others

• Self-organize into peer groups

• Advertise and discover network resources

• Communicate with each others

• Monitor each other

The JXTA protocols do NOT:

• Require the use of any particular computer language or operating system.

• Require the use of any particular network transport or topology.

• Require the use of any particular authentication, security or encryption model.

The JXTA protocols enable developers to build and deploy interoperable services and
applications, further spring-boarding the peer to peer revolution on the Internet.

The JXTA Project intends to address this problem by providing a simple and generic
P2P platform to host any kinds of network services:

• JXTA is defined by a small number of protocols. Each protocol is easy to
implement and integrate into P2P services and applications. Thus service offerings

8 Project JXTA Protocols Specification 1.1.1

from one vendor can be used transparently by the user community of another
vendor’s system.

• The JXTA protocols are defined to be independent of programming languages, so
that they can be implemented in C/C++, Java, Perl, and numerous other languages.
Heterogeneous devices with completely different software stacks can interoperate
with the JXTA protocols.

• The JXTA protocols are designed to be independent of transport protocols. They
can be implemented on top of TCP/IP, HTTP, Bluetooth, HomePNA, and many
other protocols.

The JXTA Three Layer Cake
The JXTA Project is divided in three layers.

• Platform. This layer encapsulates minimal and essential primitives that are
common to P2P networking, including peers, peergroups, discovery,
communication, monitoring, and associated security primitives. This layer is ideally
shared by all P2P devices so that interoperability becomes possible.

• Services. This layer includes network services that may not be absolutely necessary
for a P2P network to operate but are common or desirable to be available to the P2P
environment. Examples of network services, include search and indexing, directory,
storage systems, file sharing, distributed file systems, resource aggregation and
renting, protocol translation, authentication and PKI services.

• Applications. This layer includes P2P instant messaging, entertainment content
management and delivery, P2P E-mail systems, distributed auction systems, and
many others. Obviously, the boundary between services and applications is not
rigid. An application to one customer can be viewed as a service to another
customer.

Project JXTA Protocols Specification 1.1.1 9

Conceptual Overview 2

JXTA is intended to be a small system with a limited number of concepts at its core.
This chapter introduces the concepts which are core to JXTA.

Peers
A peer is any networked device (sensors, phones, PDAs, PCs, servers, supercomputers,
etc.) that implements one or more of the JXTA protocols.

Each peer operates independently and asynchronously of all other peers. Some peers
MAY have more dependencies with other peers due to special relationships (gateways
or routers).

Peers spontaneously discover each other on the network to form transient or persistent
relationships called peer groups. Peergroups are a collection of peers that have some
common interests. Peergroups MAY also be statically predefined.

Peers of the same kinds tend to be inter-changeable. It MAY not matter which peers a
peer interact with.

Peers MAY publish network resources (CPU, Storage, Routing) to other peers.

A peer MAY cache information, but it is OPTIONAL. Peers MAY have persistent storage.

Peers typically interact with a small number of other peers (network neighbors or
buddy peers).

Assumptions MUST NOT be made about peer reliability or connectivity. A peer MAY
appear or leave the network at any time.

10 Project JXTA Protocols Specification 1.1.1

Peers MAY provide network services that can be used by other peers.

Peers MAY have multiple network interfaces, though a peer does not need to publish all
of its interfaces for use with the JXTA protocols. Each published interface is
advertised as a peer endpoint. A peer endpoint is a URI that uniquely identify a peer
network interface. Peer endpoints are used by peers to establish direct point-to-point
connection between two peers.

Peers may not have direct point-to-point network connection between themselves,
either due to lack of physical network connections, or network configuration (NATs,
firewalls, proxies, etc.). A peer MAY have to use one or more intermediary peers to
route a message to another peer.

Each peer is uniquely identified by a unique Peer Id.

Peer Groups
Peers self-organize into Peer Groups. A peer group is a collection of peers that have a
common set of interests. Each peer group is uniquely identified by a unique PeerGroup
Id. The JXTA protocols does not dictate when, where, or why peergroups are created.
The JXTA protocols only describe how a peers may publish, discover, join, and
monitor peergroups.

JXTA recognizes three common motivations for creating peer groups:

• To create a secure environment. Peergroup boundaries permit member peers to
access and publish protected contents. Peergroups form logical regions which
boundaries limit access to the peergroup resources. A peergroup does not
necessarily reflect the underlying physical network boundaries such as those
imposed by routers and firewalls. Peergroups virtualize the notion of routers and
firewalls, subdividing the network in secure regions without respect to actual
physical network boundaries.

• To create a scoping environment. Peergroups are typically formed and self-
organized based upon the mutual interest of peers. No particular rules are imposed
on the way peergroups are formed, but peers with the same interests will tend to
join the same peergroups. Peergroups serve to subdivide the network into abstract
regions providing an implicit scoping mechanism. Peergroup boundaries define the
search scope when searching for a group’s content.

• To create a monitoring environment. Peergroups permit peers to monitor a set of
peers for any special purpose (heartbeat, traffic introspection, accountability, etc.).

Project JXTA Protocols Specification 1.1.1 11

A peergroup provides a set of services called peergroup services. JXTA defines a core
set of peergroup services. The JXTA protocols specify the wire format for these core
peergroup services. Additional peergroup services can be developed for delivering
specific services. For example, a lookup service could be implemented to find active
(running on some peer) and inactive (not yet running) service instances. The core peer
group services are:

• Discovery Service

– The Discovery service is used by a peer members to search for peergroup
resources (peers, peer groups, pipes).

• Membership Service

– The membership service is used by the current members to reject or accept a
new group membership application.

– We expect that most peergroups will have at least a membership service, though
it may be a “null” authenticator service which imposes no real membership
policy. The membership service is used by a member peer to allow a new peer to
join a peergroup. In order for a peer to join a peergroup, a peer is REQUIRED to
have discovered at least one member of the peergroup.

– Peers wishing to join a peer group must first locate a current member, and then
request to join. The application to join is either rejected or accepted by the
collective set of current members. The membership service MAY enforce a vote
of peers or elect a designated group representative to accept or reject new
membership applications. A peer MAY belong to more than one peergroup
simultaneously.

• Access Service

– The Access service is used to validate requests made by one peer to another. The
peer receiving the request provides the requesting peers credentials and
information about the request being made to the Access Service to determine if
the access is permitted.

– Not all actions within the peer group need to be checked with the Access
Service, only those actions which only some peers are permitted to use.

• Pipe Service

– The pipe service is used to manage and create pipe connection between the
different peer group members.

• Resolver Service

12 Project JXTA Protocols Specification 1.1.1

– The resolver service is used to send query string to peers to find information
about a peer, a peer group, a service or a pipe.

• Monitoring Service

– The monitoring service is used to allow one peer to monitor other members of
the same peer group.

Not all the above services MUST be implemented by a peergroup. Each service has a
defined protocol, the specifications for which are the main content of this document.

Network Services
Peers cooperate and communicate to publish, discover and invoke network services. A
peer can publish as many services that it can provide. Peers discover network services
via the Peer Discovery Protocol.

The way network services are invoked is beyond the scope of this specification.
Upcoming standards such as WSDL, ebXML, SOAP, UPnP can be used.

The JXTA protocols recognize two levels of network services:

• Peer Services

• PeerGroup Services

A peer service is accessible only on the peer that is publishing the service. If that peer
happens to fail, then service also fails. Multiple instances of the service can be run on
different peers, but each instance publishes its own advertisement.

A peergroup service is composed of a collection of instances (potentially cooperating
with each other) of the service running on multiple members of the peergroup. If any
one peer fails, the collective peergroup service is not affected, because chances are the
service is still available from another peer member. Peergroup services are published
as part of the peergroup advertisement.

Services can either be pre-installed into a peer or loaded from the network. The
process of finding, downloading and installing a service from the network is similar to
performing a search on the internet for a web page, retrieving the page, and then
installing the required plug-in. In order to actually run a service, a peer may have to
locate an implementation suitable for the peer’s runtime environment. Multiple
implementations of the same service may allow Java peers to use Java code
implementations, and native peers to use native code implementations.

Project JXTA Protocols Specification 1.1.1 13

Service Invocation

Service invocation is beyond the scope of JXTA. JXTA intent is to interoperate and be
compatible with any Web service standard (WSDL, uPnP, RMI, etc.). The JXTA
protocols define a generic framework to publish and discover any kinds of service
advertisements. Peers publish and discover service advertisements via the Peer
Discovery Protocol. The service advertisement will typically contain all the necessary
information to invoke the service. The JXTA protocols define a Service
Advertisement, but it is for the most part open ended and allows for any form of
service specification.

JXTA-Enabled Service

JXTA-Enabled services are services that publish pipe advertisements as their main
invocation mechanism. The service advertisement specifies one or more pipe
advertisements that can be used by a peer to create output pipes to invoke the service.
The service advertisement also contains a list of pre-determined messages that can be
sent by a peer to interact with the service. The service advertisement describes all
messages that a client may send or receive. JXTA-Enabled service advertisements
extend the W3C WSDL service schema where the service port is described as a pipe
advertisement. Once a service is discovered, pipes can be used to communicate with
the service.

Each service has a unique id that uniquely identifies the service.

Pipes
Pipes are virtual communication channels used to send and receive messages between
services or applications over two peer endpoints. Pipes provide a network abstraction
over the peer endpoint transport. Peer endpoints correspond to the available peer
network interfaces that can be used to send and receive data from another peer. Pipes
provide the illusion of a virtual in and out mailbox that is independent of any single
peer location, and network topology (multi-hops route).

Different quality of services can be implemented by a pipe. For example:

• Uni-directional asynchronous: The endpoint sends a message, no guarantee of
delivery is made.

• Synchronous request-response: The endpoint sends a message, and receives a
correlated answer.

• Bulk transfer: Bulk reliable data transfer of binary data.

14 Project JXTA Protocols Specification 1.1.1

• Streaming: Efficient control-flow data transfer.

The uni-directional and asynchronous pipe is the REQUIRED by the JXTA protocols,
the other forms may be used my other services and protocols.

Pipes connect one or more peer endpoints. At each endpoint, software to send, or
receive, as well as to manage associated pipe message queues or streams is assumed,
but message queues are OPTIONAL. The pipe endpoints are referred to as input pipes
(receiving end) and output pipes (sending end).

Pipe endpoints are dynamically bounded to a peer endpoint at runtime, via the Pipe
Binding Protocol (see Protocols chapter). The pipe binding process consists of
searching and connecting the two or more endpoints of a pipe.

When a message is sent into a pipe, the message is sent by the local output pipe to the
destination pipe input currently listening to this pipe. The set of currently listening
peer endpoints (where the input pipe is located) is discovered using the Pipe Binding
Protocol.

A pipe offers two modes of communication:

• Point to Point

– A point to point pipe connects exactly two pipe endpoints together, an input pipe
that receives messages sent from the output pipe. No reply or acknowledgement
operation is supported. Additional information in the message payload like a
unique id may be required to thread message sequences. The message payload
may also contain a pipe advertisement that can be used to open a pipe to reply to
the sender (send/response).

• Propagate Pipe

– A propagate pipe connects one output pipe to multiple input pipes together.
Messages flow into the input pipes from the output pipe (propagation source). A
propagate message is sent to all listening input pipes. This process may create
multiple copies of the message to be sent. On TCP/IP, when the propagate scope
maps an underlying physical subnet in a 1 to 1 fashion, IP multicast may be used
as an implementation for propagate. Propagate can be implemented using point
to point communication on transports that do not provide multicast such as
HTTP.

Project JXTA Protocols Specification 1.1.1 15

Figure 2-1 Pipe Modes

Pipes may connect two peers that do not have a direct physical link. One of more
intermediary peer endpoints are used to route messages between the two pipe
endpoints

Messages
The information transmitted using pipes is packaged as messages. Messages define an
XML envelope to transfer any kinds of data. A message MAY contain an arbitrary
number of named sub-sections which can hold any form of data.

It is the intent that the JXTA protocols be compliant with W3C XML Protocol
standards, so the JXTA protocols can be implemented on XML transports such as
SOAP, XML-RPC, etc.

Binary data may be encoded using Base64 encoding scheme in the body of an XML
message. A CDATA section may also be used.

Peer

Input Pipe

Output Pipe

Point to Point Pipe

Propagate Pipe

receive

receive

send

send

receive

16 Project JXTA Protocols Specification 1.1.1

The JXTA protocols are specified as a set of XML messages exchanged between peers.
Each software platform binding describes how a message is converted to and from a
native data structures such as a Java object or ‘C’ structure.

The use of XML messages to define protocols allows many different kinds of peers to
participate in a protocol. Each peer is free to implement the protocol in a manner best
suited to its abilities and role.

Advertisements
All network resources, such as peers, peergroups, pipes and services are represented by
an advertisement. Advertisements are JXTA’s language neutral metadata structures
that describe JXTA related peer resources. The JXTA protocols define the following
advertisement types:

• Peer Advertisement.

• PeerGroup Advertisement

• Pipe Advertisement.

• Service Advertisement.

• Content Advertisement.

• Endpoint Advertisement.

The complete specification of advertisements is given in the Advertisements chapter.
The JXTA protocols chapters make heavy reference to advertisements, so the reader
should be familiar with advertisements before moving on the protocol specification
chapters. Advertisements are by far the most common document exchanged in the
protocol messages.

Services or peer implementations MAY subtype any of the above advertisements to
create their own advertisements.

Credentials
The need to support different levels of resource access in a dynamic and ad hoc P2P
network leads to a role-based trust model in which an individual peer will act under the
authority granted to it by another trusted peer to perform a particular task. Peer
relationships MAY change quickly and the policies governing access control need to
be flexible in allowing or denying access.

Four basic security requirements MUST be provided:

Project JXTA Protocols Specification 1.1.1 17

• Confidentiality: guarantees that the contents of the message are not disclosed to
unauthorized individuals.

• Authorization: guarantees that the sender is authorized to send a message.

• Data integrity: guarantees that the message was not modified accidentally or
deliberately in transit.

• Refutability: guarantees the message was transmitted by a properly identified sender
and is not a replay of a previously transmitted message.

XML messages allow to add a large variety of metadata information to message such
as credentials, digests, certificates, public keys, etc.

A credential is a token that when presented in a message body is used to identify a
sender and can be used to verify that sender’s right to send the message to the
specified endpoint. The credential is an opaque token that must be presented each time
a message is sent.

The sending address placed in the message envelope is cross-checked with the sender’s
identity in the credential. Each credential’s implementation is specified as a plug-in
configuration, which allows multiple authentication configurations to co-exist on the
same network.

Message digests guarantee the data integrity of messages. Messages may also be
encrypted and signed for confidentiality and refutability.

It is the intent of the JXTA protocols to be compatible with widely accepted transport-
layer security mechanisms for message-based architectures such as Secure Sockets
Layer (SSL) and Internet Protocol Security (IPSec). However, secure transport
protocols such as SSL and IPSec only provide the integrity and confidentiality of
message transfer between two communicating peers. In order to provide secure transfer
in multi-hops network, one MUST establish a trust association among all the
intermediaries peers. Security is compromised if anyone of the communication links is
not secured.

IDs
Within the JXTA protocols there are a number of entities that need to be uniquely
identifiable. These are peers, peergroups, pipes and contents. A JXTA ID uniquely
identifies an entity and serves as a canonical way of referring to that entity.

URNs are used for the expression of JXTA IDs.

18 Project JXTA Protocols Specification 1.1.1

Content
The JXTA protocols assume that many kinds of contents may be shared, exchanged,
and replicated between peers. A content can be a text file, a structured document (like
a PDF or a XML file), a Java “.jar” or loadable library, code or even an executable
process (checkpointed state). No size limitation is assumed.

A content is published and shared amongst the peer members of a peergroup. A
content MAY only belong to one peergroup. If the same content must be published in
two different peergroups, two different contents MUST be created.

Each content is uniquely identified by a unique id.

All contents make their existence known to other members by publishing a content
advertisement.

An instance of content is a copy of a content. Each content copy may be replicated on
different peers in the peergroup. Each copy has the same content id as well as a similar
value.

Replicating contents within a peergroup help any single item of content be more
available. For example, if an item has two instances residing on two different peers,
only one of the peers needs to be alive and respond to the content request.

The JXTA protocols does not specify how contents are replicated. This decision is left
to a higher-level content service manager.

Project JXTA Protocols Specification 1.1.1 19

IDs 3

Introduction
Within the JXTA protocols there are a number of entities that need to be uniquely
identifiable. Currently these are peers, peer groups, pipes and contents. In the future
additional types of entities may be defined. A JXTA ID uniquely identifies some entity
and serves as a canonical way of referring to that entity.

Originally a URI type was specified for JXTA IDs, “jxta:”. After further consideration
it seems that URNs are a better choice for the expression of JXTA IDs. The “jxta:”
URI form will be used for other types of references within JXTA, but no longer for the
JXTA IDs. See IETF RFC 2141 for more information on URNs.

Format of a JXTA URN
A JXTA URN is not a type of URI, but rather a namespace for a URN. The namespace
identifier “jxta” identifies a JXTA URN. Following the namespace is a textual
encoding of a JXTA ID. The format allows for a wide variety of possible JXTA ID
representations and constructions. Common to all representations is that the last two
characters of the representation contain an identifier for the encoding format. Currently
two encoding formats have been defined.

<JXTAURN> ::= "urn:jxta:"1*<URN chars> <JXTA encoding>

<JXTA encoding> ::= <hex> <hex>

<URN chars> ::= <trans> | "%" <hex> <hex>

<trans> ::= <upper> | <lower> | <number> | <other> |

20 Project JXTA Protocols Specification 1.1.1

 <reserved>

<upper> ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |

 "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |

 "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" |

 "Y" | "Z"

<lower> ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |

 "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |

 "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |

 "y" | "z"

<number> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |

 "8" | "9"

<hex> ::= <number> | "A" | "B" | "C" | "D" | "E" | "F" |

 "a" | "b" | "c" | "d" | "e" | "f"

<other> ::= "(" | ")" | "+" | "," | "-" | "." |

 ":" | "=" | "@" | ";" | "$" |

 "_" | "!" | "*" | "'"

<reserved> ::= "%" | "/" | "?" | "#"

The jxta URN namespace does not currently define any special symbols from the
reserved set.

Format of the JXTA NULLID URN
There are two special reserved JXTA IDs. These are the NULL id and the World Peer
Group ID. All implementations must support this ID encoding.

<JXTANULLURN> ::= "urn:jxta:" <JXTANULLENCODINGID> "-"

 <JXTANULLENCODING>

<JXTANULLENCODING> ::= "00"

<JXTANULLENCODINGID> ::= <JXTANULL> | <JXTAWORLDGROUP>

<JXTANULL> ::= "null"

<JXTAWORLDGROUP> ::= "worldgroup"

Project JXTA Protocols Specification 1.1.1 21

Format of a JXTA UUID URN
The initial implementation of JXTA IDs uses UUIDs encoded as hex digits as basis for
the uniqueness of the identifiers. This ID scheme is identified by “01” as the final two
hex characters of the URN. Immediately preceding this identifier are two hex
characters that identify the type of JXTA ID. Currently, four ID Types are defined.
Preceding the ID Type is the data portion of the ID.

<JXTAUUIDURN> ::= "urn:jxta:"(1*(<hex> <hex>)) <JXTAUUIDIDTYPE>

 <JXTAUUIDENCODING>

<JXTAUUIDENCODING> ::= "01"

<JXTAUUIDIDTYPE> ::= <CODATID> | <PEERGROUPID> | <PEERID> |

 <PIPEID>

<CODATID> ::= "01"

<PEERGROUPID> ::= "02"

<PEERID> ::= "03"

<PIPEID> ::= "04"

The characters preceding the ID type identifier are the encoded form of the ID. The
encoding consists of a variable number of characters dependant upon the ID type being
encoded. To decode the ID the hex characters are translated in order into the elements
of a 64-byte array from which the various ID components can be retrieved. All of
JXTA UUID IDs are manipulated as 64 byte arrays though no ID type currently
requires all the full 64 bytes to encode their contents. Position 63 always contains the
UUID Encoding value “01” and position 62 contains the UUID ID Type value. The
remainder of the ID fields are defined beginning at Position 0 and increment towards
Position 62.

To make the text encoding of JXTA IDs as URNs more compact implementations must
not encode the value of unused Positions within the array. Since they are irrelevant to
the value of the ID they can assumed to be zero. Implementations must also omit from
the encoding the value of any Positions that precede the unused portion and contain
zero. The reference Java implementation accomplishes this by scanning from Position
61 towards Position 0 searching for the first non-zero value. It then encodes from
position 0 to the discovered location followed by the encoding for Positions 62 and 63.
The text encoding of a JXTA ID must be canonical according to the URN
specification, thus this “zero-saving” technique must be present in every
implementation.

22 Project JXTA Protocols Specification 1.1.1

Example:

"urn:jxta:000301020450201"

Decodes to:

JXTA UUID Field Definitions
Each of the four types of JXTA IDs has a specific definition for how its fields are
represented within the common 64-byte array structure. Common between the four
types is the definition of Positions 62 and 63. These are reserved, respectively for the
ID Type and Encoding fields.

JXTA UUID CodatID Fields

0:00 1:03 2:01 3:20 4:45 5-61:00 62:02 63:01

0:Group MSB ...GROUP UUID...

...GROUP UUID (cont.)... 15:Group LSB

16:ID MSB ...CODAT UUID...

...CODAT UUID (cont.)... 31:ID LSB

32:Hash0 CODAT SHA1 Hash...

...CODAT SHA1 Hash...

...CODAT SHA1 Hash 51:Hash19

62:IDType 63:Encoding

Project JXTA Protocols Specification 1.1.1 23

JXTA UUID PeerGroupID Fields

JXTA UUID PeerID Fields

0:MSB ...GROUP UUID...

...GROUP UUID (cont.) 15:LSB

62:IDType 63:Encoding

0:Group MSB ...GROUP UUID...

...GROUP UUID (cont.)... 15:Group LSB

16:ID MSB ...PEER UUID...

...PEER UUID (cont.)... 31:ID LSB

62:IDType 63:Encoding

24 Project JXTA Protocols Specification 1.1.1

JXTA UUID PipeID Fields

0:Group MSB ...GROUP UUID...

...GROUP UUID (cont.)... 15:Group LSB

16:ID MSB ...PIPE UUID...

... PIPE UUID (cont.)... 31:ID LSB

62:IDType 63:Encoding

Project JXTA Protocols Specification 1.1.1 25

Advertisements 4

Introduction
The JXTA protocols use advertisements to describe, and publish the existence of a
peer resources.

The JXTA protocols define the following advertisements:

• Peer Advertisement.

• PeerGroup Advertisement

• Pipe Advertisement

• Service Advertisement

• Content Advertisement

• Endpoint Advertisement

Advertisements are represented as XML documents. Users may subtype these
advertisements to create their own types. Subtypes may add an unlimited amount of
extra and richer metadata information.

XML
All JXTA advertisements are represented in XML. XML provides a powerful means of
representing data and metadata throughout a distributed system. XML provides
universal (software-platform neutral) representation:

• XML is language agnostic.

26 Project JXTA Protocols Specification 1.1.1

• XML is self-describing.

• XML is strongly-typed.

• XML ensures correct syntax.

All XML advertisements are strongly typed and validated using XML Schemas. Only
well-formed XML documents that descend from the base XML advertisement types are
accepted by peers supporting the various protocols.

The other powerful feature of XML is its ability to be translated into other encodings
such as HTML and WML. This feature allows peers that do not support XML to access
advertised resources.

Advertisements are composed of a series of hierarchically arranged elements. Each
element can contain its data or additional elements. An element can also have
attributes. Attributes are name-value string pairs. An attribute is used to store meta-
data, which helps to describe the data within the element.

Peer Advertisement
A PeerAdvertisement describes the peer resources. The primary use of this
advertisement is to hold specific information about the peer, such as its name, peer id,
registered services and available endpoints.

<?xml version="1.0" encoding="UTF-8"?>

<jxta:PeerAdvertisement>

<Name> name of the peer</Name>

<Keywords>search keywords </Keywords>

<Pid> Peer Id </Pid>

<Services>

<jxta:ServiceAdvertisement>

...

</jxta:ServiceAdvertisement>

</Services>

<Endpoints>

<jxta:ServiceAdvertisement>

...

</jxta:EndpointAdvertisement>

Project JXTA Protocols Specification 1.1.1 27

</Endpoints>

<InitialApp>

<jxta:ServiceAdvertisement>

...

</jxta:ServiceAdvertisement>

</InitialApp>

</jxta:PeerAdvertisement>

The peer advertisement contains the following fields:

• Name: This is an optional string that can be associated with a peer. The name is not
required to be unique unless the name is obtained from a centralized naming service
that guarantees name unicity.

• Keywords: This is an optional string that can be used to index and search for a peer.
The string is not guarantee to be unique. Two peers may have the same keywords.
The keywords string may contain spaces

• Peer Id: This is a required element that uniquely identifies the peer. Each peer has a
unique id. The peer id representation is given in the Id Chapter.

• Service: a service advertisement element for each service published on the peer.
Services started on a peer may publish themselves to the peer. Not all services
running on the peer need to publish themselves.

• Endpoint: an endpoint URI (tcp://129.144.36.190:9701 or
http://129.144.36.190:9702) for each endpoint available on the peer.

• InitialApp: Optional application/service started when the peer is booted. A service
advertisement is used to describe the service.

Table 0-1 Peer Advertisement

Element Name Occurrence Element Value Type

Name 0/11 String4

Keywords 0/1 String

Pid 1 Jxta ID

Services *2 ServiceAdvertisement

Endpoints +3 EndpointAdvertisement

InitialApp 0/1 ServiceAdvertisement

28 Project JXTA Protocols Specification 1.1.1

PeerGroup Advertisement
A PeerGroupAdvertisement describes peergroup specific resources: name, group id,
membership, and available peergroup services.
<?xml version="1.0" encoding="UTF-8"?>

<jxta:PeerGroupAdvertisement>

<Name> name of the peer group</Name>

<Keywords>search keywords </Keywords>

<Gid> Peer group Id </Gid>

<Services>

<jxta:ServiceAdvertisement>

...

</jxta:ServiceAdvertisement>

</Services>

<InitialApp>

<jxta:ServiceAdvertisement>

...

</jxta:ServiceAdvertisement>

</InitialApp>

</jxta:PeerGroupAdvertisement>

• Name: This is an optional name that can be associated with a peergroup. The name
is not required to be unique unless the name is obtained from a centralized naming
service that guarantee name unicity.

• Keywords: This is an optional string that can be used to index and search for a
peergroup. The string is not guarantee to be unique. Two peergroups may have the
same keywords. The keywords string may contain spaces.

• PeerGroup Id: This is a required element that uniquely identifies the peergroup.
Each peergroup has a unique id. The peergroup id representation is given in the Id
Chapter.

1. 0/1 indicate 0 or 1 element
2. ‘*’ indicate 0 or more elements
3. ‘+’ indicate 1 or more elements
4. The String type in the following is assumed to not contain any XML

delimiter characters but may contain blank characters.

Project JXTA Protocols Specification 1.1.1 29

• Service: a service advertisement element for each peergroup service available in the
peergroup. Not all peergroup services need to be instantiated when a peer joins a
peergroup. It is expected that at least a membership service MUST be available, so
the membership service nay implement a null authenticator membership. Everybody
can join the group.

• InitialApp: Optional application/service started when a peer is joining a peergroup.
A service advertisement is used to describe the service. The InitialAPP MAY be
started when the peer is joining a group, it is left at the discretionary of the joining
peer to decide to either start or not the peergroup application.

Pipe Advertisement
A PipeAdvertisement describes a pipe communication channel. A pipe advertisement
is used by the pipe service to create associated input and output pipe endpoints.

Each pipe advertisement can include an optional symbolic name, to name the pipe and
a pipe type to indicate the type of the pipe (point-to-point, propagate, secure, etc.).

<?xml version="1.0" encoding="UTF-8"?>

<jxta:PipeAdvertisement>

<Name> name of the pipe</Name>

<Id> Pipe Id </Id>

Table 0-2 PeerGroup Advertisement

Element Name Occurrence Element Value Type

Name 0/1 String

Keywords 0/1 String

Gid 1 JxtaID

InitialApp 0/1 ServiceAdvertisement

Services + ServiceAdvertisement

30 Project JXTA Protocols Specification 1.1.1

<Type> Pipe Type </Type>

</jxta:PipeAdvertisement>

• Name: This is an optional name that can be associated with a pipe. The name is not
required to be unique unless the name is obtained from a centralized naming service
that guarantee name unicity.

• Pipe Id: This is a required element that uniquely identifies the pipe. Each pipe has a
unique id. The pipe id representation is given in the Id Chapter.

• Type: This is an optional pipe type which may be provided to specify the quality of
services implemented by the pipe. The following types are defined:

– RELIABLE (guarantee delivery and ordering, and deliver only once)

– UNRELIABLE (MAY not arrive at the destination, MAY be delivered more
than once to the same destination, MAY arrive in different order)

– SECURE (reliable and encrypted transfer)

Service Advertisement
A ServiceAdvertisement describes a JXTA-enabled service. A JXTA-enabled service
is a service that uses pipes as primary invocation mechanism. To invoke the service,
the peer sends a message to the associated service pipe.

All the built-in core peergroup services (discovery, membership, resolver) are JXTA-
enabled services. JXTA-enabled services are published using the above service
advertisement.

The service advertisement describes how to invoke and use a service. The pipe
advertisement and the access method fields provide the placeholder for any kinds of

Table 0-3 Pipe Advertisement

Element Name
Occurrenc
e Element Value Type

Name 0/1 String

Id 1 JxtaID

Type 0/1 UNRELIABLE, RELIABLE, SECURE

Project JXTA Protocols Specification 1.1.1 31

service invocation schema that define the valid set of XML messages accepted by the
service and the associated message flow. The intent if for the JXTA protocols to be
agnostic of service invocation and interoperate with any existing framework.

A service advertisement access method filed MAY refer to a WSDL
(www.w3.org/TR/wsdl) , ebXML (www.ebxml.org), UPnP (www.upnp.org) or a
client-proxy schema.

For example, a WSDL access method will define messages, which are abstract
descriptions of the data being exchanged, and the collections of operations supported
by the service using a WSDL schema

A service advertisement MAY contain multiple access method tags as they could be
multiple ways to invoke a service. The intent is for the peer to ultimately decide which
invocation mechanism to use. Small devices may want to use a small-footprint
mechanism or a service framework they already have the code for. Larger devices may
decide to download a client-proxy code.
<?xml version="1.0" encoding="UTF-8"?>

<jxta:ServiceAdvertisement>

<Name> name of the Service</Name>

<Version> Version Id </Version>

<Keywords>search keywords </Keywords>

<Id> Service Id </Id>

<Pipe> Pipe advertisement</Pipe>

<Params> service configuration params </Params>

<URI> service provider location</URI>

<Provider> Service Provider</Provider>

<AccessMethods>

...

</AccessMethods>

</jxta:ServiceAdvertisement>

• Name: This is an optional name that can be associated with a service. The name is
not required to be unique unless the name is obtained from a centralized naming
service that guarantee name unicity.

• Keywords: This is an optional string that can be used to index and search for a
service. The string is not guarantee to be unique. Two services may have the same
keywords. The keywords string may contain spaces.

32 Project JXTA Protocols Specification 1.1.1

• Service Id: This is a required element that uniquely identifies a service. Each
service has a unique id. The service id representation is given in the Id Chapter.

• Version: This is a required element that specifies the service version number.

• Provider: This is a required element that gives information about the provider of the
service. This will typically be a vendor name.

• Pipe: This is an optional element that specifies a pipe advertisement to be used to
create an output pipe to connect to the service. Not all services are REQUIRED to
use pipes.

• Params: is a list of configuration parameters available to the peer when invoking the
service. The parameter field is optional. Parameters are defined as a list of strings.

• URI: This is an optional parameter that can be used to specify the location of where
the code for the service may be found (URI).

• Access Methods. At least one access method is REQUIRED to specify how to
invoke the service. Multiple access method tags may be used when multiple access
methods are available.

Table 0-4 Service Advertisement

Element Name Occurrence Element Value Type

Name 0/1 String

Keywords 0/1 String

Id 1 JxtaID

Version 1 String

Pipe 0/1 PipeAdvertisement

Params * String

URI 0/1 URI

Provider 1 String

AccessMethod + AccessMethod

Project JXTA Protocols Specification 1.1.1 33

Content Advertisement
A ContentAdvertisement describes a content that can be shared in a peer group. A
content can be a file, a byte array, code or process state. There is no restrictions on the
type of contents that can be represented.
<?xml version="1.0" encoding="UTF-8"?>

<jxta:ContentAdvertisement>

<Mimetype> name of the pipe</Mimetype>

<Size> length</Size>

<Encoding> type </Encoding>

<Id> Content Id</Id>

<RefId> Content Id about </RefId>

<Document> document </Document>

</jxta:ContentAdvertisement>

• id: All contents have an unique id. This is a REQUIRED element.

• size: The total size of the content in bytes. A long (unsigned 64-bits) represented as
a string. “-1” indicates that the size is unknown.

• mimetype: The mime type of the content. The type may be unknown.

• encoding: Specifies the encoding used.

• refId - If the advertised content is about another content. The refid is the content ID
of the referenced content.

Table 0-5 Content Advertisement

Element Name Occurrence Element Value Type

MimeType 1 String

Size 1 String

Encoding 1 String

34 Project JXTA Protocols Specification 1.1.1

EndpointAdvertisement
An EndpointAdvertisement describes a peer transport protocol. A peer MAY have
many transport protocols. Typically, their will be one peer endpoint for each
configured transports (TCP/IP, HTTP, etc). Some peers MAY have multiple network
interfaces. Each interface MAY have its own set of endpoints.

The endpoint advertisement is an element in the peer advertisement (see
PeerAdvertisement) to describe the endpoints available on the peer.

Endpoints are represented with a virtual endpoint address that embeds all necessary
information to create a physical connection to the specific endpoint transport. For
example, “tcp://123.124.20.20:1002” or “http://134.125.23.10:6002” are URI strings
representing endpoint addresses.
<?xml version="1.0" encoding="UTF-8"?>

<jxta:EndpointAdvertisement>

<Name> name of the endpoint</Name>

<Keywords> search string </Keywords>

<Address> endpoint logical address </Address>

</jxta:EndpointAdvertisement>

The EnpointAdvertisement has the following fields:

• Name: This is an optional name that can be associated with an endpoint. The name
is not required to be unique unless the name is obtained from a centralized naming
service that guarantee name unicity.

• Keywords: This is an optional string that can be used to index and search for an
endpoint. The string is not guarantee to be unique. Two endpoints may have the
same keywords.

Id 1 JxtaID

RefId 0/1 JxtaID

Document 1 Bytes

Table 0-5 Content Advertisement

Element Name Occurrence Element Value Type

Project JXTA Protocols Specification 1.1.1 35

Table 0-6 EndpointAdvertisement

Element Name Occurrence Element Value Type

Name 0/1 String

Keywords 0/1 String

Address 1 URI

36 Project JXTA Protocols Specification 1.1.1

Project JXTA Protocols Specification 1.1.1 37

JXTA Protocols 5

Peer Discovery Protocol
The Peer Discovery Protocol is used to discover any published peer resources.
Resources are represented as advertisements. A resource can be a peer, a peergroup, a
pipe, or a service or any resource that has an advertisement. Each resource MUST be
represented by an advertisement.

The Peer Discovery Protocol (PDP) enables a peer to find advertisements on other
peers. The PDP protocol is the default discovery protocol for all user defined peer
groups and the world peergroup. Custom discovery services MAY choose to leverage
PDP. If a peer group does not have its own discovery service, the PDP will be used as
a “lowest common denominator” method for probing peers for advertisements.

The PDP protocol provides at the lowest level, the minimum building blocks for
propagating discovery requests between peers. The intent is for PDP to provide the
essential discovery infrastructure for building high-level discovery services. In many
situation, discovery information is better known by a high-level service, because the
service MAY have a better knowledge of the topology (firewall traversal), and the
connectivity between peers.

The PDP protocol provides a basic mechanism to discover advertisements while
providing hooks so high-level services and applications can participate in the discovery
process. Services SHOULD be able to give hints to improve discovery (i.e. decide
which advertisements are the most valuable to cache).

The PDP protocol is based on web-crawling, and the use of predefined rendezvous
peers to propagate discovery requests. Rendezvous peers are like any other peers, but
they offer to cache advertisements to help others peers discover resources. We can

38 Project JXTA Protocols Specification 1.1.1

have as many rendezvous peers as peers in a peergroup. So, not every peers need or
can be a rendezvous (no caching capabilities). Only rendezvous peers can forward a
discovery request (multi-hop request). A peer will usually be connected to a set of
rendezvous peers that help him discover resources.

If a peer does not know the information, it SHOULD ask the surrounding peers (hop of
1) if they know the answer. One peer MAY already have the answer. If no surrounding
peers know the answer, the peer MAY ask its rendezvous peers to find advertisements.

The rendezvous peers can forward requests between themselves. The discovery process
continues until one rendezvous peer has the answer or the request dies. There is
typically a Time To Live (TTL) associated with the request, so it is not infinitely
propagated.

For example, suppose a peer A is attempting to discover a resource R on the network.
Peer A issues a discovery request specifying the type (peer, peergroup, pipe, service)
of advertisements, it is looking for.

To initiate the Discovery, peer A sends a Discovery Request message as a single
propagate packet to all its available endpoints. The packet MUST contain the requested
peer advertisement, so the receiving peer can respond to the requester. Each Discovery
Request identifies the initiator, and an unique request identification specified by the
initiator of the request.

When another peer receives the Discovery Request (let’s assume peer B in this
example), if it has the requested R advertisement, it will return to peer A the
advertisement for R in a Discovery Response message.

If Peer A does not get response from its surrounding peers (hop of 1), Peer A MAY
send the request to its known rendezvous peers. If the rendezvous peers do not have
the advertisement, they can propagate the request to all other rendezvous peers they
know. When a rendezvous receives a respond to a request, the rendezvous MAY cache
the R advertisement for future usage, before sending it to the requestor.

A peer MUST NOT initiate a new Discovery Request until the minimum allowable
interval between Discoveries is reached. This limitation on the maximum rate of
Discoveries is similar to the mechanism required by Internet nodes to limit the rate at
which ARP requests are sent for any single target IP address.

Messages to Discover Advertisements

Messages to discover advertisements within a peergroup. Message contains peer group
credential of probing peer. Identifies probing peer to the message recipient. The
destination address is:

Project JXTA Protocols Specification 1.1.1 39

• any peer within a region (a propagate message)

• a rendezvous peer (a unicast message)

The response message returns one or more advertisements. There is no guarantee that
a response to a discovery query request will be made.

Discovery Query Message

The discovery query message is used to send a discovery request to find
advertisements. The discovery query is sent as a query string (tag,value) form. A null
query string can be sent to match any results. A threshold value is passed to indicate
the maximum number of matches requested by a peer.
<?xml version="1.0" encoding="UTF-8"?>

<DiscoveryQueryMsg>

<Credential> Credential </Credential>

<QueryId> query id</QueryId>

<Type> type of request (PEER, GROUP, ADV) </Type>

<Threshold> requested number of responses </Threshold>

<PeerAdv> peer advertisement of requestor </PeerAdv>

<Query> query string (tag, value)</Query>

</DiscoveryQueryMsg>

Table 0-7 Discovery Query Message

Element Name Occurrence Element Value Type

Credential 1 Credential

Type 1 PEER,GROUP,PIPE,SERVICE,ADV

QueryId 1 long

Threshold 1 Int

PeerAdv 1 PeerAdvertisement

Query 1 String

40 Project JXTA Protocols Specification 1.1.1

Discovery Response Message

The Discovery response message is used by a peer to respond to a discovery query
message.
<?xml version="1.0" encoding="UTF-8"?>

<DiscoveryResponseMsg>

<Credential> Credential </Credential>

<QueryId> query id</QueryId>

<Type> type of request (PEER, GROUP, ADV) </Type>

<Count> number of responses </Count>

<Adv>

peer or peer group or pipe or service advertisement
response

</Adv>

<............>

<Adv>

peer or peer group or pipe or service advertisement
response

</Adv>

</DiscoveryResponseMsg>

• Credential: The credential of the sender

• QueryId: Query Id (long as a String)

• Type: specify which advertisements are returned

• count: how many responses

Table 0-8 Discovery Response Message

Element Name Occurrence Element Value Type

Credential 1 Credential

Type 1 PEER,GROUP,PIPE,SERVICE,ADV

QueryId 1 long

Count 1 Int

Adv + Advertisement

Project JXTA Protocols Specification 1.1.1 41

• Adv: advertisement responses.

Peer Resolver Protocol
The Peer Resolver Protocol (PRP) enables a peer to send a generic query to another
peer service. Each service can register a handler in the peergroup resolver service to
process resolver query requests. Resolver queries are de-multiplexed to each service.
Each service can respond to a peer via a resolver response message.

The PRP protocol enables each peer to send and receive generic queries to find or
search service information such the state of the service, the state of a pipe endpoint,
etc.

Each resolver query has a unique service handler name to specify the receiving service,
and a query string to be resolved.

The Resolver protocol provides a generic mechanism for peers to send queries, and
receive responses. It removes the burden for registered message handlers by each
service, and set message tags to ensure uniqueness of tags. The PRP protocol ensures
that messages are sent to correct addresses, and peergroups. It performs authentication,
and verification of credentials and drop rogue messages.

There is no guarantee that a response to a resolver query request will be made.

Resolver Query Message

The resolver query message is used to send a resolver query request to another member
of a peergroup. The resolver query is sent as a query string to a specific service
handler. Each query has a unique Id. The query string can be any string that will be
interpreted by the targeted service handler.
<?xml version="1.0" encoding="UTF-8"?>

<ResolverQueryMsg>

<Credential> Credential </Credential>

<HandlerName> name of handler </HandlerName>

<QueryId> incremental query Id </QueryId>

<Query> query string </Query>

</ResolverQueryMsg>

The ResolverQueryMsg defines the following fields:

42 Project JXTA Protocols Specification 1.1.1

• Credential: The credential of the sender

• QueryId: Query Id (long as a String)

• HandlerName: service the query needs to be passed

• Query: query string

Resolver Response Message

The resolver response message is used to send a resolver response message in response
to a resolver query message.
<?xml version="1.0" encoding="UTF-8"?>

<ResolverResponseMsg>

<Credential> Credential </Credential>

<HandlerName> name of handler </HandlerName>

<QueryId> query Id </QueryId>

<Response> response </Response>

</ResolverResponseMsg>

The ResolverResponseMsg defines the following fields:

• Credential: The credential of the sender

• QueryId: Query Id (long as a String)

• HandlerName: service the query needs to be passed

• Response: response String

Table 0-9 Resolver Query Message

Element Name Occurrence Element Value Type

Credential Required Credential

HandlerName Required String

QueryId Required Int

Query Required String

Project JXTA Protocols Specification 1.1.1 43

Peer Information Protocol
Once a peer is located, its capabilities and status may be queries. PIP provides a set of
messages to obtain a peer status information.

Messages to Obtain Peer Status

To see if a peer is alive (responding to messages), send it a ping message.

• The destination address is the peer’s endpoint returned during discovery.

– Message contains credential of requesting peer. Identifies probing peer to
message recipient.

– Message also contains a ID unique to sender. This ID must be returned in the
response.

Messages to Get Peer Info

The peerinfo message gets a list of named properties exported by a peer. All properties
are named (by a string), and are “read-only”. Higher-level services may offer “read-
write” capability to the same information, given proper security credentials.

Each property has a name and a value string. Read-write widgets allow the string value
to be changed, while read-only widgets do not. PIP only gives read access.

The destination address is:

• a peer’s main endpoint returned in a discovery response message.

Table 0-10 Resolver Response Message

Element Name Occurrence Element Value Type

Credential 1 Credential

HandlerName 1 String

QueryId 1 Int

Response 1 String

44 Project JXTA Protocols Specification 1.1.1

Ping Message

The Ping message is sent to a peer to check if the peer is alive and to get information
about the peer. The ping option defines the response type returned. A full response
(peer advertisement) or a simple acknowledge response (alive and uptime) can be
returned.
<?xml version="1.0" encoding="UTF-8"?>

<Ping>

<Credential> Credential </Credential>

<SourcePid> Source Peer Id </SourcePid>

<TargetPid> Target Peer Id </TargetPid>

<Option> type of ping requested</Option>

</Ping>

PeerInfo Message

The peer info response message is used to send a response message in response to a
ping message.
<?xml version="1.0" encoding="UTF-8"?>

<PeerInfo>

<Credential> Credential </Credential>

<SourcePid> Source Peer Id </SourcePid>

<TargetPid> Target Peer Id </TargetPid>

<Uptime> uptime</Uptime>

<TimeStamp> timestamp </TimeStamp>

Table 0-11 Ping Message

Element Name Occurrence Element Value Type

Credential 1 Credential

SourcePid 1 JxtaID

TargetPid 1 JxtaID

Option 1 String

Project JXTA Protocols Specification 1.1.1 45

<PeerAdv> Peer Advertisement </PeerAdv>

</PeerInfo>

Peer Membership Protocol
The Peer Membership Protocol (PMP) allows a peer to:

• Obtain group membership requirements and application credential.

• Apply for membership and receive a membership credential along with a full group
advertisement.

• Update an existing membership or application credential.

• Cancel membership or application credential.

The first step to joining a peergroup is to obtain a credential that is used to become a
group member.

Membership Messages

PMP defines the following messages:

• Apply - This message is sent by a potential new group member to the group
membership application authenticator (its endpoint is listed in the peer group
advertisement of every member). A successful response from the group’s

Table 0-12 PeerInfo Message

Element Name Occurrence Element Value Type

Credential 1 Credential

SourcePid 1 JxtaID

TargetPid 1 JxtaID

Uptime 1 long

TimeStamp 1 long

PeerAdv 1 PeerAdvertisement

46 Project JXTA Protocols Specification 1.1.1

authenticator will include an application credential and a group advertisement that
lists (at a minimum) the group’s membership service. The apply message contains
the following fields:

– The current credential of the candidate group member.

– The peer endpoint for the peer group membership authenticator to respond to
with an ack message

<?xml version="1.0" encoding="UTF-8"?>

<MembershipApply>

<Credential> Credential of requestor </Credential>

<SourcePid> Source pipe id</SourcePid>

<Authenticator> Authenticator pipe adv</Authenticator>

</MembershipApply>

• Join - This message is sent by a peer to the peergroup membership authenticator (its
endpoint is listed in all peer group advertisements) to join a group. The peer must
pass an application credential (from apply response ack msg) for authentication
purposes. A successful response from the group’s authenticator will include a full
membership credential and a full group advertisement that lists (at a minimum) the
group’s membership configurations requested of full members in good standing.
The message contains the following fields:

– Credential (application credential of the applying peer: See Ack msg) This
credential acts as the application form when joining.

– The peer endpoint for the authenticator to respond to with an Ack message
<?xml version="1.0" encoding="UTF-8"?>

<MembershipJoin>

Table 0-13 Membership Apply Message

Element Name Occurrence Element Value Type

Credential 1 Credential

SourcePid 1 JxtaID

Authenticator 1 PipeAdvertisement

Project JXTA Protocols Specification 1.1.1 47

<Credential> Credential of requestor </Credential>

<SourcePid> Source pipe Id </SourcePid>

<Membersship> membership pipe Advertisement </Membership>

<Identity> identity</Identity>

</MembershipJoin>

• Ack - This message is an acknowledge message for both join and apply operations.
It is sent back by the membership authenticator to indicate whether or nor the peer
was granted application rights (peer is applying) or full membership (peer is
joining) to the PeerGroup. The message contains the following fields:

– Credential (application or membership credential allocated to the peer by the
peer group authenticator)

– A more complete peer group advertisement (providing access to further
configurations). Not all configuration protocols are visible until the peer has
been granted membership or application rights. Some configurations may need to
be protected. Also, depending on the peer credential, the peer may not have
access to all the configurations.)

<?xml version="1.0" encoding="UTF-8"?>

<MembershipAck>

<Credential> Credential </Credential>

<SourcePid> Source pipe Id </SourcePid>

<Membersship> membership pipe adv</Membership>

<PeerGroupAdv> peer group advertisement </PeerGroupAdv>

<PeerGroupCredential> credential granted </PeerGroupCredential>

Table 0-14 Membership Join Message

Element Name Occurrence Element Value Type

Credential 1 Credential

SourcePid 1 JxtaID

Membership 1 PipeAdvertisement

Identity 1 Identity

48 Project JXTA Protocols Specification 1.1.1

</MembershipAck>

• Renew - This message is sent by a peer to renew its credential (membership or
application) access to the peer group. An ack message is returned with a new
credential and lease (if renew was a “Accepted”). The renew message contains the
following fields:

– Credential (membership or application credential of the peer). The peer endpoint
to send an ack response message

<?xml version="1.0" encoding="UTF-8"?>

<MembershipRenew>

<Credential> Credential </Credential>

<SourcePid> Source pipe Id </SourcePid>

<Membership> membership pipe Adv</Membership>

</MembershipRenew>

Table 0-15 Membership AckMessage

Element Name Occurrence Element Value Type

Credential 1 Credential

SourcePid 1 JxtaID

Membership 1 PipeAdvertisement

PeerGroupAdv 1 PeerGroupAdvertisement

PeerGroupCredential 1 Credential

Table 0-16 Membership Renew Message

Element Name Occurrence Element Value Type

Credential 1 Credential

SourcePid 1 JxtaID

Membership 1 PipeAdvertisement

Project JXTA Protocols Specification 1.1.1 49

• Cancel - This message is sent by a peer to cancel membership in or application
rights in a peer group. The message contains the following fields:

– Credential (membership or application credential of the peer). The peer endpoint
to send an ack message. Successful ack to a cancel contains only a response
status of: “Accepted”.

<?xml version="1.0" encoding="UTF-8"?>

<MembershipCancel>

<Credential> Credential </Credential>

<SourcePid> Source pipe Id </SourcePid>

<Membersship> membership pipe Adv </Membership>

</MembershipCancel>

Pipe Binding Protocol
The Pipe Binding Protocol (PBP) is used by peer group members to bind a pipe
advertisement to a pipe endpoint. A pipe is conceptually a virtual channel between two
pipe endpoints (input and output pipes).

The pipe virtual link (pathway) can be layered upon any number of physical network
transport links such as TCP/IP. Each end of the pipe works to maintain the virtual link
and to re-establish it, if necessary, by binding or finding the pipe’s currently bound
endpoints.

Table 0-17 Membership Cancel Message

Element Name Occurrence Element Value Type

Credential 1 Credential

SourcePid 1 JxtaID

Membership 1 PipeAdvertisement

50 Project JXTA Protocols Specification 1.1.1

Pipe Implementations and Transport Configurations

A pipe can be viewed as an abstract named message queue, supporting create,
open/resolve (bind), close (unbind), delete, send, and receive operations. Actual pipe
implementations may differ, but all compliant implementations use PBP to bind the
pipe to a pipe endpoint. During the abstract create operation, a local peer binds a pipe
endpoint to a pipe transport.

Each peer that create a pipe, makes an endpoint available (binds) to the pipe’s
transport.

Pipe Messages

PBP defines the following messages:

• query: - This message is sent by a peer pipe endpoint to find a pipe endpoint bound
to the same pipe advertisement. The message contains the following fields:

<?xml version="1.0" encoding="UTF-8"?>

<PipeBindingQuery>

<Credential> query credential </Credential>

<Peer>

optional tag. If present, it includes the URI of the

only peer that is supposed to answer that request.

</Peer>

<Cached> true if the reply can come from a cache </Cached>

<PipeId> pipe id to be resolved </PipeId>

</PipeBindingQuery>

The requestor may ask that the information was not obtained from the cache. This is to
obtain the most up-to-date information from a peer to address stale connection.

Project JXTA Protocols Specification 1.1.1 51

• answer- This response message is sent back to the requesting peer by each peer
bound to the pipe. The message contains the following fields:

<?xml version="1.0" encoding="UTF-8"?>

<PipeBindingAnswer>

<Credential> credential </Credential>

<PipeId> pipe id resolved </PipeId>

<Peer>

peer URI where a corresponding InputPipe has been created

</Peer>

<Found>

true: the InputPipe does exist on the specified peer (ACK)

false: the InputPipe does not exist on the specified peer

(NACK)

</Found>

</PipeBindingAnswer>

Table 0-18 Pipe Binding Query Message

Element Name Occurrence Element Value Type

Credential 1 Credential

Peer 0/1 URI

Cached 1 boolean

PipeId 1 JxtaID

Table 0-19 Pipe Binding Answer Message

Element Name Occurrence Element Value Type

Credential 1 Credential

Peer 1 URI

Found 1 boolean

PipeId 1 JxtaID

52 Project JXTA Protocols Specification 1.1.1

Endpoint Routing Protocol
The JXTA network is an ad hoc, multi-hops, and adaptive network by nature.
Connections in the network may be transient, and message routing is nondeterministic.
Routes MAY be unidirectional and change rapidly. Peers MAY appear and leave
frequently. A peer behind a firewall can send a message directly to a peer outside a
firewall. But a peer outside the firewall cannot establish a connection directly with a
peer behind the firewall.

The Endpoint Routing Protocol defines a set of request/query messages, that is
processed by a routing service to help a peer route message to its destination.

When a peer is asked to send a message to a given peer endpoint address, it looks in its
local cache if it has a route to this peer. If it does not find a route, it sends a route
resolver query message to its available peer routers asking for a route information. A
peer can have as many peer routers as it can find or they can be pre-configured. Any
number of peers in a peergroup can elect themselves to become peer routers for other
peers. Peers routers offer the ability to cache route information, as well as bridging
different physical (different transport) or logical (firewall and NAT) networks. A peer
can dynamically found its router peer via a qualified discovery search.

When a peer router receives a route query, if it knows the destination (a route to the
destination), it answers the query by returning the route information as an enumeration
of hops. The message can be sent to the first router and that router will use the route
information to route the message to the destination peer. The route is ordered from the
next hop to the final destination peer. At any point the routing information MAY be
obsolete requiring the current router to find a new route.

The peer endpoint adds extra routing information in the messages sent by a peer. When
a message goes through a peer, the endpoint of that peers leaves its trace onto the
message. The trace can be used for loop detection, and to discard recurrent messages.
The trace is also used to record new route information by peer routers

ERP provides the last resort routing for a peer. More intelligent routing can be
implemented by more sophisticated routing services in place of the core routing
service. High-level routing services can manage and optimize routes more efficiently
than the core service. JXTA intent is to provide just the hook necessary for user
defined routing services to manipulate and update the route table information (route
advertisements) used by the peer router. The intent is to have complex route analysis
and discovery to be performed above the core by high-level routing services, and have
those routine services provide intelligent hints to the peer router to route messages.

The Endpoint Routing Protocol (ERP) is used by a peer router to send messages to
another peer router to find the available routes to send a message to a destination peer.

Project JXTA Protocols Specification 1.1.1 53

Two communicating peers may need to use a peer router to route messages depending
on their network location. For instance, the two peers may be on different transports,
or the peers may be separated by a firewall.

Route information are represented as follow:
<?xml version="1.0" encoding="UTF-8"?>

<EndpointRouter>

<Src> peer id of the source </Src>

<Dest> peer id of the destination </Dest>

<TTL> time to leave </TTL>

<Gateway> ordered sequence of gateway </Gateway>

<...................>

<Gateway> ordered sequence of gateway </Gateway>

</EndpointRouter>

The ERP protocol is composed of two messages a route request, and a route answer
from the router peer. There is no guarantee that a route response will be received after
a query is sent.

Peer routers will typically cache route information. Any peer can query a peer router
for route information. Any peer in a peer group MAY become a peer router.

Table 0-20 Endpoint Route

Element Name Occurrence Element Value Type

Src 1 JxtaID

Dest 1 JxtaID

TTL 1 int

Gateway + URI

54 Project JXTA Protocols Specification 1.1.1

Route Query Request

This message is sent by a peer to a peer router to request a route information. Route
information may be cached or not. The query MAY indicate to bypass the cache
content of a router, and search dynamically for a new route.

<?xml version="1.0" encoding="UTF-8"?>

<EndpointRouterQuery>

<Credential> credential </Credential>

<Dest> peer id of the destination </Dest>

<Cached>

true: if the reply can be a cached reply

false: if the reply must not come from a cache

</Cached>

</EndpointRouterQuery>

Route Answer Request

This message is sent by a router peer to a peer in response to a route information
request.
<?xml version="1.0" encoding="UTF-8"?>

<EndpointRouterAnswer>

<Credential> credential </Credential>

<Dest> peer id of the destination </Dest>

<RoutingPeer>

Table 0-21 Endpoint Router Query

Element Name Occurrence Element Value Type

Credential 1 Credential

Dest 1 JxtaID

Cached 1 boolean

Project JXTA Protocols Specification 1.1.1 55

URI of the router that knows a route to DestPeer

</RoutingPeer>

<RoutingPeerAdv>

Advertisement of the routing peer

</RoutingPeerAdv>

<Gateway> ordered sequence of gateway </Gateway>

<>

<Gateway> ordered sequence of gateway </Gateway>

</EndpointRouterAnswer>

Table 0-22 Endpoint Router Answer

Element Name Occurrence Element Value Type

Credential 1 Credential

Dest 1 JxtaID

RoutingPeer 1 URI

RouterPeerAdv 1 PeerAdvertisement

Gateway + URI

56 Project JXTA Protocols Specification 1.1.1

Project JXTA Protocols Specification 1.1.1 57

Messages 6

Introduction
The JXTA protocols assume a low-level XML message transport layer as a basis for
providing internet-scalable peer to peer communication. JXTA protocol messages are
sent between peer endpoints. A peer endpoint is a logical destination (embodied as a
URN) on any networking transport capable of sending and receiving datagram-style
messages. Endpoints are mapped into physical addresses by the messaging transport
layer at runtime.

The intent is for the messaging layer to be compatible with W3C XML messaging
standards.

Each peer’s endpoint messaging layer delivers an ordered sequence of bytes from one
peer to another peer. The messaging layer sends information as a sequence of bytes in
one atomic message unit.

The messaging layer uses the transport specified by the URN to send and receive
messages. Both reliable connection-based transports such as TCP/IP and unreliable
connection less transports like UDP/IP are supported. Other existing message
transports such as IRDA, and emerging transports like Bluetooth are easily supported
by using the peer endpoint addressing scheme.

Message Format
JXTA endpoint messages are specified as follow:

• Contain an envelope, a stack of protocol headers with bodies and an optional trailer

58 Project JXTA Protocols Specification 1.1.1

– The envelope contains a header, a message digest, source endpoint, and
destination endpoint.

– Each protocol header consists of a tag, naming the protocol in use and a body
length.

– Each protocol body is a variable length amount of bytes that is protocol tag
dependent.

– the optional trailer may contain traces and accounting information

The following specification of a JXTA peer endpoint message matches the current
state of the reference implementation.

It is important to point out that the current message representation is not a well-formed
and valid XML document. The document is missing a root element.
<JxtaMessageVersion> version number “1.0”</JxtaMessageVersion>

<JxtaMessageDest> destination peer id </JxtaMessageDest>

<JxtaMessageSrc> source peer id </JxtaMessageSrc>

<JxtaMessageDigest> digest </JxtaMessageDigest>

Version

Destination Address

Source Address

Message Digest (Kind, Length, and Body)

Message Body (Text, XML, Binary....)

 Body Header Tag | Body Length
Envelope

Payload
Tag

Message Body (Text, XML, Binary....)

Body Header Tag | Body Length

Message Optional trailer

Project JXTA Protocols Specification 1.1.1 59

<JxtaMessageTagName> tag </JxtaMessageTagName>

<JxtaMessageTagData> body </JxtaMessageTagData>

...........

<JxtaMessageTagName> tag </JxtaMessageTagName>

<JxtaMessageTagData> body </JxtaMessageTagData>

<JxtaMessageTrailer> String</JxtaMessageTrailer>

The version number is a string “1.0”. The destination and source peer ids are
represented as JXTA id’s (See ID chapter for Id representation). The digest is either an
MD5 or SHA1 hash. A message can have as many tag parts as needed. The tag name
is a String and the body is a byte array containing a string without XML escape
characters (“<“, ”>”) or a base64 encoded string.

The message trailer and digest are currently not implemented.

Table 0-23 Endpoint Messages

Element Name Occurrence Element Value Type

JxtaMessageVersion 1 String

JxtaMessageDest 1 JXTA ID

JxtaMessageSrc 1 JXTA ID

JxtaMessageDigest 0/1 String3

3. The String is assumed to not contain any XML delimiter characters (“<“,
“>”)

JxtaMessageTagName +1

1. ‘+’ indicate 1 or more elements

String

JxtaMessageTagData *2

2. ‘*’ indicate 0 or more elements

Bytes

JxtaMessageTrailer 0/1 String

60 Project JXTA Protocols Specification 1.1.1

Revision in Progress
The specification of the message format is under review by the JXTA community.
There is a consensus that the format must be changed in order to fully support binary
data and multi-part message with mime-types.

This message format must:

 1. Allow for arbitrary message header fields, including optional header fields.

 2. Must allow for data verification of message contents, cryptographic signing of
messages.

 3. An arbitrary number of named sub-sections which could contain any form of data
of any (reasonable) size.

 4. Must be “email-safe” such that its contents can be extracted reliably after standard
textual transformations committed my E-mail client and server software.

Proposals for this canonical format generally advocate XML. XML accommodates the
first 2 requirements inherently. Requirements 3 and 4 must be accommodated by using
conventions for encoding data. Four suggestions have been made for requirement 3 :

 a. Encode sub-section data using Base64 in the body of an XML tag.

 b. Encode sub-section data into XML CDATA sections using extensions to the XML
standard to overcome restrictions with CDATA.

 c. Encode the entire message as a multipart mime. The XML envelope would be one
section and refer to other sections. Message sub-sections could be encoded using
Base64.

 d. Use BEEP/BXXP : http://www.faqs.org/rfcs/rfc3080.html also has a binding to
TCP described in http://www.faqs.org/rfcs/rfc3081.html

All four of these suggestions can satisfy requirement 4.

While an XML based encoding format meets all of the preceding requirements, there
are some problems with using it as the exclusive message encoding format. The most
commonly identified complaints are:

 a. Messages must be parsed in order to determine the length of sub-sections.

 b. non-XML data must be encoded using Base64 (or something similar).

 c. Overhead concerns for parsing in general.

Project JXTA Protocols Specification 1.1.1 61

Suggestions for addressing these concerns have focused around using non-XML
message encodings. Suggestions have been:

 a. Binary Data Formats : XTalk and IFF

62 Project JXTA Protocols Specification 1.1.1

Project JXTA Protocols Specification 1.1.1 63

Transport Bindings

TCP/IP Transport
The following section describes the transport binding of the JXTA protocols over
TCP/IP. The document describes the message wire format of JXTA endpoint messages
over a TCP/IP socket connection.

TCP/IP Wire Format

This section defines the TCP/IP message wire format. Each TCP/IP message is
composed of a header and a body.

• Header

• Body

Header
The format of the header is:

The header fields are as follow:

Type: 1 byte

• 1 = this is a propagate message.

• 2 = this is a unicast message.

Type Src IP Src Port Size Option Unused

64 Project JXTA Protocols Specification 1.1.1

• 3 = This for ACK //unused

• 4 = This is for NACK // unused

Src IP: 4 bytes (IP addresses are in the IPv4 format)

Src Port: 2 bytes (network byte order representation)

Size: 4 bytes body size no counting the header (network byte order representation)

Option: 1 byte option

• HANDCHECK = 1 not implemented yet

• NONBLOCKING = 2 (asynchronous transfer)

Unused: 4 bytes

Body
The format of the body is described in the Message Chapter and represented as a byte
array.

Connection States

The TCP/IP binding does not require to maintain any states. The normal operation is
for one peer to send a TCP/IP packet to another one, and closes the socket after the
packet was send. This is the minimum functionality required to implement
unidirectional pipes.

Optional Optimizations

Keep Alive Optimization
If a receiving end decides to keep the connection active (socket "keep alive"), it can
return the value 1 (byte) to the sender to tell the sending end that it is keeping the
connection alive. The sending end can reuse the same socket to send a new packet.

HTTP Transport
The following section defines the wire message format for the HTTP binding of the
JXTA protocols.

An HTTP request format message is composed of a header and a body

Project JXTA Protocols Specification 1.1.1 65

<HTML>

<Code> Header </Code>

<Msg> Body </Msg>

</HTML>

Header

The header of the message is defined by the following string:

“1” = OK Request succeeded

“2” = Request Failed

“3” = empty (no body)

“4” = Response. The msg body is not empty

Body

The format of the body is described in the Message Chapter and represented as a string
in the HTML request document.

Connection States
• Peer Connection: Before a message can be sent to a HTTP server peer, the HTTP

client is required to send a request for connection to the other peer. The request for
connection message uses the empty header type. The message is sent using a GET
request to the following server URL: http://ip-name:port/reg/client-peerid/. ip-name
specifies the IP of the server peer and the port is the corresponding server port
number (8080 for example). The server replies with an empty message containing
either the ok (1) or failed (2) header type.

• Message Sending: To send a message to another peer server, the client sends a
message with the header code (4) and a message body part. The server replies with
an ok or failed message. The message is sent to the following URL using the PUT
method: http://ip-name:port/snd/. The server replies with an ok or failed response.

• Message Retrieving: To retrieve messages from a peer server, the client sends a
GET request message with the empty header tag to the following URL http://ip-
name:port/rec/client-peerid/. The server replies with a Failed message or with a
Content message containing the messages retrieved.

66 Project JXTA Protocols Specification 1.1.1

