Lasso 25

The Ultimate FileMaker® Pro
Web Development Tool

blueworld

bringing business to the internetm™

©1997 Blue World Communications, Inc. All rights reserved.

Blue World Communications, Inc.
10900 NE 8th Street, Suite 1525
Bellevue, Washington 98004 U.S.A.

Tel: (425) 646-0288 Fax: (425) 646-0236
blueworld @blueworld.com
http://www.blueworld.com
All products mentioned in this publication are the property of their respective owners. Lasso and Blue

World Communications are trademarks of Blue World Communications, Inc. Claris and FileMaker Pro are
trademarks of Claris Corporation, registered in the U.S. and other countries.

Contents

Chapter 1: New Featuresinlasso 2.5............... 1
Chapter 2: Introduction 5
General Requirementsouiuon... 5
What's Includedonthe CD 6
Setup Q & A ..o 7
Usage Rights 8
Chapter 3: Installation and Setup 9
Lasso CGIL 9
Lasso Plug-in 10
Lasso Server 11
LassoModules 12
Lasso Startup Items 13
Upgrading from Other Versions of Lasso 13
FileMaker Pro Setup 15
Chapter 4: Lasso Methodology 17
General Overview i, 17
Format Files 17
LassoTagso i 19
ComponentsofalassoTag 21
Tags WithinTags 21
Using Name=Value Pairs 22
Pre-Lasso vs Post-Lasso 22
SpecifyingPaths 24
Calling Lassot 26
Chapter 5: Getting Started 29
FEMLink 29
Tutorial: Web-Enable a Basic Database 32
Chapter 6: Lasso Server 59
Preparing Format Files 59
Menu Optionst 59
Multihoming 63
Chapter 7: Security0t 65
Lasso Security Databases 65
Two Methods for Configuring Security Settings 65
Successfully Accessing Security Databases 66
Essential Configuration Issues 66
Configuration Keywords 67
Factors Affecting Security 68
User Authentication 69
Database-Level Security 69
Field- and Record-Level Security 70

Lasso Tags Related to Security 72

Remote Security Administration 73

Custom Security Violation Pages 74
Creating Links to Detail 75
Password Protect Individual Records 76
Lasso and Realm-Based Security 77
Prompt for User Authentication 78
Chapter 8: Searching 79
Background Information 79
Lasso Search Operatorscuuuiuenn... 81
Logical Operatoro .. 83
SortFieldand Order 84
Maximum Records 86
Find All Records i 86
Display Search Parameters 87
Required Field Entry on Form Submit 89
Chapter 9: Graphics and Multimedia............... 91
Serving Images Stored in FileMaker Pro 91
Implementation Notes 92
GIF Conversion Using clip2gif 92
Extending the [image: ...]Tag 93
Displaying Images from the Web Serving Folder 94
Rotating Banners Example 94
Serving Multimedia Files 97
Chapter 10: Repeating Fields and Related Fields 99
Repeating Fields 99
Related Data i 100
Related Fields 100
Portals 101
Chapter 11: Executing FileMaker Pro Scripts 105
Specifying a FileMaker Pro Script 105
FMP Script Commandso..... 105
Chapter 12: Email 107
Sending Email fromaForm 108
Sending Email with an Embedded URL 108
Sending Email within an [inline: ...] 109
Sending Email Without a Database 110
Database Substitutions for Email Tags 113
Checking Email Addresses 114
Sending Email from a Format File: An Example 115
Sending a Conditional Email Response: An Example 117
Chapter 13: Includes and Inlines 119
The [include: ...]Tag 119
The [inline: ...]Tag 119

The [post_inline: ...]Tag 122

Chapter 14: Conditional Statements 125

The [if: ...]Tag 125
The [while: ...]Tag 132
Chapter 15: Logging Lasso Activity 139
The [log: ...] ContainerTag 139
Activity Log Using [inline: ...] 141
Chapter 16: HTTP Content and Controls 143
The [referrer] Tag 143
Time/Date Stampingiiiian .. 143
ClientContentttt .. 144
Header 146
Timeout 149
ContentType 149
PIXO Support 149
Chapter 17: Retrieving Values 151
The [form_param: ...]Tag 151
Values Paired withaLassoTag 154
Retrieving FileMaker Pro Database Info 154
Loop . 156
LoopCount 157
Lasso Process 158
HTML Comment0 ittt 158
Chapter 18: Variables, Tokens, and Cookies 159
Declaring Variables 159
Tokens 163
CooKies 166
Chapter 19: Math and String Tags 169
MathTags i 169
StringTags 171
Chapter 20: Sending Apple Events 173
Event Tag Parameters 173
Post-Apple EventTags 175
Chapter 21: Java-Enabling FileMaker Pro 177
Java OVerview i 177
Lassoand Java 179
The LassoProxy API Reference 184
Appendix A: Tips and Techniques 189
Use of Frames with Lasso 189
Testing Without a Network Connection 194
Optimizing Performance 195
Serving Pages from Other Platforms 196
FileMaker Pro Server 197
Multiple Servers 198

Using Lasso as the Default Action for All Pages 199

Creating Sub-Summary Headers Within a Search 199

Backing up a FileMaker Pro Database 201
Select Field to Search on from Pop-up List 202
Miscellaneous Tipso oot i 203
Addendum 207
Appendix B: Character Sets and Translation 209
The ISO Latin-1 and Mac OS Character Sets 209
Lasso Character Translation 210
Field Encoding 211
Global Encoding and Decoding 214
Appendix C: Troubleshooting 217
Receiving “No records found” Message 217
Lasso Does Not Seem to Operate At All 218
Nothing is Added to the FileMaker Pro Database 219
Lasso Does Not Add Information to a Specific Field 221
Unexpected Search Results 221
Searching Appears to be Case-Sensitive 222
Pop-up List Does Not Work Properly 223
Only the First Option in a Pop-Up List is Displayed 223
FileMaker Pro Database is Damaged 224
Add Results in Failed Search 224
FM Link Does Not Show Tags 226
FM Link Does Not Show FileMaker Pro Database 226
Form Submission Fails After Updating to New Version227
Portal Does Not Display Related Fields 227
Appendix D: ErrorCodes 229
Appendix E: Support i i, 237
Technical Support 237
LassoTalk 238
Documentation Updates 238
Appendix F: Usage Rights 239
Lasso License Agreementc...couue.... 239
clip2gif Disclaimer 241
Appendix G: LDML 2.5 Quick Reference Chart 243

Appendix H:Index, 247

Chapter 1: New Features
in Lasso 2.5

There have been many internal changes to Lasso offering improved
performance, enhanced functionality, new interoperability
between tags, and greater standardization of tag operations.

Plug-in Architecture: Lasso 2.5 introduces a plug-in architecture
which allows one to enhance Lasso’s functionality and compati-
bility simply by placing module files into the “Lasso Modules”
folder.

Math Tags: The Math Tags module offers six mathematical tags
which perform arithmetic calculations.

String Tags: The String Tags module provides several tags which
perform powerful text parsing and manipulation.

FileMaker 4.0 Pro Tag Support: The FMP4 Tags module handles
compatibility with Claris FileMaker Pro 4.0 Web Companion. Web
Companion tags (CDML) can be used with Lasso (LDML) to
seamlessly upgrade solutions.

Field-Level Logical Operators: Using the -opbegin and -opend
command tags, field-level logical operators are now available,
including the NOT operator.

Multihoming: Lasso 2.5 Server supports multihoming, allowing
multiple domain names to operate smoothly on a single machine.

Lasso Startup Items: Lasso 2.5 adds support for a startup items
folder which launches items prior to starting Lasso.

Tags Within Tags: Any substitution tag can now be used as a value
or parameter to any other substitution tag. For instance, one can
output the data from a field whose name is specified by another
field.

Relative Paths: Path names can now be relative. Paths in format
and include files without a beginning slash (“/”) are assumed to
be relative.

Response Field: A database field may be specified to format the
response by simply referencing the field name in the response
command. A new “ResponseField” security option is added to the
Lasso Security database.

2

CHAPTER 1:

NeEw FEATURES IN LAsso 2.5

Usernames and Passwords: Usernames and passwords are
submitted using a browser authentication dialog or by using the
new -lassousername and -lassopassword command tags.

Over 50 New Tags: LDML (Lasso Dynamic Markup Language) is
now considerably larger, with over 200 tags in total. Some exam-
ples include:

[post_inline: ...] — Executes inlines after the currently
processed page is finished and returned to the user.

[total_records] — Displays the total number of records in the
current database.

[response_file_path] — Displays the name of the current
response file.

[field_name] — Displays the the names of fields.

[var: ...] — Allows for variable declarations within a page for
conditional value checking.

[while: ...] — Allows for conditional looping. As long as the
conditional returns true, the loop continues.

[lasso_process: ...] — Allows Lasso to process any tags
located within the parameter strings for the tag.

Standardization: Additional standards are now adhered to.

UTF Encoding — Database names are now UTF decoded
when layout names are requested (Java only).

PIXO Support — Lasso now allows other Web server plug-ins
to send data to Lasso for processing.

MIME Handling — When a directory path is placed in the
Lasso Server “Processed Items” window, only files with the
MIME type of “text/*” (where * is any MIME subtype) are
processed.

Keep Alive — Lasso Server now supports the Keep Alive
convention for increased performance.

HTTP Headers — The HEAD method is now understood.

CLF Standard — Added support for Common Log Format
(CLF) to Lasso Server.

Realm Security — Lasso Plug-in and CGI can now use
WebStar realms to restrict file access.

CHAPTER 1: NEw FEATURES IN LAsso 2.5

Specifying FileMaker Scripts: FileMaker Pro scripts may now be
referenced before or after calling Lasso, and may operate in the
foreground or background.

Error Handling: Several improvements have been made to Lasso’s
error handling. Value list information is now available in error
pages. Errors are logged to a “LassoErrors.log” file. A default error
page can be set for Lasso Server.

File Structure Flexibility: The Lasso Plug-in now works when the
Web server does not live at the root of the document tree.

Next and Previous Links: The links created by the [next], [prev],
and [referrer] container tags can now be displayed on the response
file using the new [next_url], [prev_url], and [referrer_url] substitu-
tion tags.

Multiple Parameter Retrieval: Specific tag parameters are now
retrieved. For example, the phrase [form_param: paramName, 2]
will return the second parameter.

Value Counting: The number of values for a specified form para-
meter can now be retrieved with the count keyword.

Sending Apple Events: The [event_result], [event_resultcode], and
[event_errorstring] tags can refer to data from the preceding Apple
Event tag instead of the last Apple Event tag on the page.

Syntax: Several changes in preferred syntax have been made.

e Action and command tags are now preceded with a dash (“-")
rather than surrounded with square brackets.

e When using “list_value” in a conditional statement to see if
the value is “checked,” one must now use the following form:
[if: list_value, checked != ""], which will evaluate to true if the
list value is checked, false otherwise.

¢ The beginning and ending of parameter tags can now be
enclosed between parentheses. This is particularly helpful in
clarifying the use of tags within tags.

3

Chapter 2: Introduction

General Requirements

The following items are required for Lasso 2.5:

Power Macintosh (or compatible) computer (68020-68040
Macintosh computers are not supported).

24 MB RAM available for the basic application set: Mac OS,
the Web server, FileMaker Pro and Lasso application. (16 MB
is acceptable for Mac OS 7.1 - 7.6.1).

Mac OS 7.1 or greater.

FileMaker Pro 3.0v4 or greater (client edition, not to be
confused with FileMaker Pro server edition). All Roman-based
language editions of FileMaker Pro are supported.

Mac OS Web server which follows the StarNine Technologies’
specifications as follows:

For Lasso CGI: WebSTAR CGI communications standard
(which includes virtually all Mac OS Web servers).

For Lasso Plug-in: WebSTAR API (plug-in specification).
For Lasso Server: No additional Web server is required.

clip2gif 0.7.2 (a freeware application which must be obtained
separately) if on-the-fly conversion of graphics stored in a
FileMaker Pro database to GIF format is required.

System Extensions

AppleScript ™ (standard with System 7.1 or greater).

ObjectSupportLib 1.2 (for Mac OS 7.1 to 7.6.1; not necessary
with Mac OS 8 or above as this library is now built-in).

Finder Scripting Extension (for Mac OS 7.1 to 7.5.5; not
necessary with Mac OS 7.6 or above as this extension is built-
in).

QuickTime™ and QuickTime™ PowerPlug (version 2.5 or
greater) if on-the-fly conversion of graphics stored in a
FileMaker Pro database to JPEG format is required.

CHAPTER 2: INTRODUCTION

e Open Transport 1.1.1 or greater (version 1.3 is required for
Lasso Server’s multihoming feature). Note: With Lasso CGI or
Plug-in, MacTCP is acceptable.

What's Included on the CD

Lasso Editions Included
Lasso 2.5 is available in three editions: CGI, Plug-in and Server.

1. Lasso Plug-in — Lasso Plug-in implements version 1.0 of the
WebSTAR API plugin specification for extending the function-
ality of Web servers, and therefore requires a Web server which
uses this API version 1.0.

2. Lasso.acgi — Lasso CGI (Common Gateway Interface) is an
“asynchronous CGI,” thus the suffix “acgi” is used. Lasso.acgi
application runs as a separate application from your Mac OS
Web server application, and requires your Web server follow
the WebSTAR CGI communications standard.

3. Lasso Server — Lasso Server is a high-performance HTTP
server integrated with all the features of Lasso available in the
CGI/ Plug-in. Beyond the basics, Lasso Server offers high-end
features such as multihoming, multiple format logging,
support for Keep Alive, startup items, and more. Lasso Server
is the best option to use when the Web server’s primary task is
to serve FileMaker Pro databases via Lasso.

Other Lasso Components

¢ Modules — Lasso 2.5 provides a plug-in architecture, allowing
separate module files to be integrated into any of the above
Lasso editions.

¢ LassoCommonCode — The “LassoCommonCode” file
contains core code common to all editions of Lasso. This
required file works with the Lasso application as well as
modules to provide all of Lasso’s functionality.

e Lasso Security Databases — These databases contain security
configuration information.
Other Lasso Files Included

Also included are additional files and information to get you
started with Lasso 2.5:

CHAPTER 2: INTRODUCTION

¢ FM Link — FM Link is an authoring tool for rapidly building
Lasso format files.

e Employees Example — An employees example database and
corresponding format files are provided to demonstrate key
Lasso features.

e Database Template — A template database is provided.

e Lasso Tag Converter — This BBEdit plug-in allows one to
easily upgrade format files or update files from FileMaker Pro
4.0.

Setup Q & A

Q: Should | use Lasso CGl, Plug-in, or Server? The decision
depends upon many factors, some of which are described below.

Lasso Server: Lasso Server is a high-performance HTTP server espe-
cially optimized for serving FileMaker Pro databases via Lasso. The
integrated architecture makes this the overall best performing
option.

CGI or Plugin: The main differences between the Lasso Plug-in and
CGI editions concern the amount of data that can be transferred.

The Lasso Plug-in provides all features of the Lasso CGI, except
that the Lasso Plug-in does not support the -timeout parameter
(the Lasso Plug-in uses your Web server’s timeout value).

Q: Can Lasso be used with FileMaker Pro 4.0 acting as the
Web server? FileMaker Pro 4.0 cannot be used as a server with
any other CGI/plug-in. However, Lasso can integrate with its data-
base functionality in the same manner as with FileMaker Pro 3.0.

Q: How many hits can a PowerPC Mac OS Web server
handle at one time? For example, is there a limit to how
many ports it can have open at a time? The number of hits is
dependent upon the number of available concurrent ports. With
Open Transport about 150 ports can be used simultaneously. With
MacTCP (not compatible with Lasso Server), about 50 ports can be
open at one time. However, some of these ports may be dedicated
to other applications.

Q: How much Web traffic can a Mac OS Web server with
Lasso handle? Many Lasso integrated Web sites are known to
handle hundreds of thousands of hits per day. For details on how
to optimize your Web server for Lasso databases, refer to
OPTIMIZING PERFORMANCE in APPENDIX A: TiPS AND TECHNIQUES.

8

CHAPTER 2:

INTRODUCTION

Q: How many databases can Lasso serve at one time?
Lasso is restricted by the number of databases that can be opened
by FileMaker Pro, which is currently 50.

Q: How many users can connect to the same database at
the same time? Database “connections” on the Web are entirely
different than database connections in the traditional sense.
Unlike with FileMaker Pro Server, a Web-enabled database can
handle as many users as resources allow. Connections are estab-
lished with each Web request, not via login. Consequently, the
number of simultaneous users is only limited by the number of
simultaneous requests. Since Lasso is multi-threaded, it can handle
numerous simultaneous requests. FileMaker Pro is not multi-
threaded; it must handle requests one at a time. Lasso queues
requests as it waits for a response from FileMaker Pro.

Usage Rights

Your license permits a single copy of Lasso to be installed and
used on a single CPU. You may install Lasso on as many CPUs as
you have purchased Lasso serial numbers. You may install and use
the FM Link application on as many machines as you desire.

The Lasso serial number is network protected. This means that
only one copy of Lasso with the same serial number can run on
the same AppleTalk network.

Chapter 3: Installation and
Setup

Lasso CGI

Installation

¢ Copy the “Lasso.acgi” and “LassoCommonCode” files found
in the CGI folder in the Lasso package to any location within
your Mac OS Web server folder. Note: Lasso.acgi and
LassoCommonCode must be kept together at the same level in
your directory structure.

¢ Copy the “Lasso Modules” folder found in the CGI folder in
the Lasso package to the same location as the “Lasso.acgi” and
“LassoCommonCode” files.

¢ Copy the “Lasso Startup Items” folder found in the CGI folder
in the Lasso package to the same level as “Lasso.acgi.” This
folder contains the Lasso Security databases and must be
installed for Lasso Security to operate. If you do not copy this
folder, Lasso will create “Lasso Startup Items” as an empty
folder when it is first launched, without the databases
required for security. Note: To properly protect items placed
within the “Lasso Startup Items” folder, you must set up a
security realm for this folder. To set up the realm, consult your
Web server manual.

¢ If you intend to use remote administration of Lasso Security,
copy the “Security” folder found in the CGI folder in the Lasso
package to the same location as Lasso.acgi. All of the HTML
files found within the “Security” folder must remain within
this folder, unaltered.

¢ Copy the “Databases” folder found in the CGI folder in the
Lasso package to any location on the drive the Web server
resides on. For security reasons, do not place databases within
your Web serving folder. Be sure to open all Web-enabled
databases prior to launching Lasso (unless they reside in the
“Lasso Startup Items” folder).

¢ Copy the “Employees” folder found in the CGI folder in the
Lasso package to the same location as Lasso.acgi.

10

CHAPTER 3:

INSTALLATION AND SETUP

Copy the “FM Link” and “User Guide” folders to your drive;

no specific location is required. The contents of each must

remain intact.

Registration

Launch the “Lasso.acgi” application and enter your serial number
into the dialog box. Click “OK” to register the software. Quit and
relaunch “Lasso.acgi” to store the serial number within the appli-
cation.

Lasso Plug-in

Installation

Copy the “Lasso Plug-in” file found in the Plug-in folder in
the Lasso package to the Plug-ins folder of your Mac OS Web
server folder. If the Lasso Plug-in is installed properly it will be
automatically loaded when you launch your Mac OS Web
server (and noted in the Web server’s log window).

Copy the “LassoCommonCode” file and “Lasso Modules”
folder found in the Plug-in folder in the Lasso package to the
same location as your Web server application.

Copy the “Lasso Startup Items” folder found in the Plug-in
folder in the Lasso package to the same location as your Web
server. If you do not copy this folder, Lasso will create “Lasso
Startup Items” as an empty folder when it is first launched,
without the databases required for security.

If you intend to use remote administration of Lasso Security,
copy the “Security” folder found in the Plug-in folder in the
Lasso package to the same location as your Web server. All of
the HTML files found within the “Security” folder must
remain within this folder, unaltered.

If you intend to use remote administration of Lasso Security,
copy the “Security” folder found in the server folder to the
root level. All of the HTML files found within the “Security”
folder must remain within this folder, unaltered.

Copy the “Databases” folder found in the Plug-in folder in the
Lasso package to any location on the drive the Web server
resides on. For security reasons, do not place databases within
your Web serving folder. Be sure to open all Web-enabled
databases prior to launching Lasso (unless they reside in the
“Lasso Startup Items” folder).

CHAPTER 3: INSTALLATION AND SETUP

e Copy the “Employees” folder found in the Plug-in folder to
the root level of your Web server.

e Copy the “FM Link” and “User Guide” folders to your drive;
no specific location is required. The contents of each must
remain intact.

Registration

When Lasso receives the first action through your Mac OS Web
server you will be prompted to enter your Lasso serial number into
the dialog box. Click “OK” to register the software. Quit and
relaunch your Mac OS Web server to store the serial number.

Lasso Server

Installation

e Copy the “Lasso Server” and “LassoCommonCode” files
found in the Server folder in the Lasso package to a new folder
designated for Web serving. This folder may reside anywhere
on your drive, and will be considered the “root level” of your
Web serving environment. Note: Lasso Server and
LassoCommonCode must be kept together at the same level in
your directory structure.

e Copy the “Lasso Modules” folder found in the Server folder in
the Lasso package to the root level of your new Web serving
folder.

e Copy the “Lasso Startup Items” folder found in the Server
folder in the Lasso package to the root level of your Web
serving folder (the same level as Lasso Server). This folder
contains the Lasso Security databases and must be installed
for Lasso Security to operate. If you do not copy this folder,
Lasso will create “Lasso Startup Items” as an empty folder
when it is first launched, without the databases required for
security. Note: Lasso Server denies requests to download files
contained within the “Lasso Startup Items” folder. Databases
and other sensitive files may be securely stored there.

e If you intend to use remote administration of Lasso Security,
copy the “Security” folder found in the Server folder to the
root level. All of the HTML files found within the “Security”
folder must remain within this folder, unaltered.

e Copy the “Databases” folder found in the Server folder in the
Lasso package to any location on the drive the Web server

11

12

CHAPTER 3:

INSTALLATION AND SETUP

resides on. For security reasons, do not place databases within
your Web serving folder. Be sure to open all Web-enabled
databases prior to launching Lasso (unless they reside in the
“Lasso Startup Items” folder).

Copy the “Employees” folder found in the Server folder to the
root level of your Web server.

Copy the “FM Link” and “User Guide” folders to your drive;
no location is required. The contents of each must remain
intact.

Registration

Launch the Lasso Server application and enter your serial number
into the dialog box. Click “OK” to register the software. Quit and
relaunch Lasso Server to store the serial number within the appli-
cation.

Lasso Modules

Lasso Tags Module: This required module contains the basic
core set of Lasso tags.

Math Tags Module: This module offers six mathematical tags
which perform arithmetic calculations.

String Tags Module: This module offers several tags which
perform powerful text parsing and manipulation.

Log Tag Module: This module logs Lasso activity to a targeted
file or database.

Database Info Tags Module: This optional module provides
information about open databases. Note: Due to possible
security concerns, this module is optional.

Encoding Tags Module: This optional module performs raw, url,
smart, standard encoding and url decoding.

FMP4 Module: This optional module provides compatibility
with Claris FileMaker 4.0 Web Companion and CDML tags.

Non-Relative Response Tag and Include Tag Modules: These
optional modules provide backward compatibility with
-response and [include] tags as they were handled prior to
Lasso 2.5.

CHAPTER 3: INSTALLATION AND SETUP

o Apple Event Tags Module: This optional module provides tags
that allow Apple Events to be sent from Lasso. Note: Due to
possible security concerns, this module is optional.

e Old If Tag Module: This optional module provides backward
compatibility with the way the [if: ...] tag was handled prior
to Lasso 2.5.

Configuring Modules

Similar to how Mac OS extensions operate, the order in which
Lasso modules load is important. The functionality within one
module may add to or replace like functionality in other modules
that load before it. Lasso must be relaunched after installing or
removing modules.

Lasso Startup Items

The “Lasso Startup Items” folder can be used to launch specific
applications, open databases, or to process format files when Lasso
initially launches. It is located in the same folder as the Lasso
application (if it does not exist, this folder will be created when
Lasso is first launched). When Lasso starts up, it will open every
item in the folder. If the item is a FileMaker Pro database, Lasso
will wait until the database is accessible before opening the
following items or initializing security. This allows one to place the
Lasso Security databases in this folder and have them completely
opened before Lasso proceeds to initialize security. If the item is a
text file with the suffix “lasso” (or “las”), Lasso will process the
page as a format file. Thus, one can execute database activity
immediately after the server has started.

Upgrading from Other Versions of
Lasso

Any Lasso solution that was created with a previous version of
Lasso is easily upgraded to Lasso 2.5 without extensive modifica-
tions. For the most part, the principles and construction of format
files are the same in all versions of Lasso. However, since there
have been syntax changes during the development of Lasso, a few
adjustments will be necessary. For adjustments that apply across
numerous Lasso format files, we recommend using a tool such as
BBEdit which allows one to rapidly search and replace text strings
among multiple text files. For your convenience, we have included
a demo of BBEdit 4.5 in the Lasso package, although until it is
purchased you will not be able to save changes to documents.

13

14

CHAPTER 3:

INSTALLATION AND SETUP

Lasso Tag Converter

To make upgrading easier, included in the Lasso package is a
BBEdit Plug-in called Lasso Tag Converter.

Lasso Tag Converter upgrades Lasso format files for all versions
prior to 2.5. In addition, Lasso Tag Converter converts FileMaker
Pro 4.0 CDML format files to Lasso 2.5 LDML.

The Lasso Tag Converter plug-in requires BBEdit 4.0 or higher.
A demo version of BBEdit is included in the Lasso package, or
it can be obtained from:

http://www.barebones.com/

To install the Lasso Tag Converter, place it in your “BBEdit
Plug-in” (or “BBEdit Extensions”) folder, and restart BBEdit. In
the “Tools” (or “Extensions”) menu, you will now see the
Lasso Tag Converter.

Open an old Lasso format file, or a FileMaker Pro 4 format
file, and choose the “Lasso Tag Converter” item from BBEdit’s
“Tools” (or “Extensions”) menu.

The Lasso Tag Converter will quickly convert all tags to their
Lasso 2.5 equivalent.

The Lasso Tag Converter will alert you of any tag it is unable
to process, allowing you to simply click on “warnings” to have
the questioned instance highlighted for easy editing.

New (“Untitled”) documents can be processed by the Lasso
Tag Converter, but warnings will not be triggered. It is always
preferable to convert saved documents. Changes made to your
documents will not be saved automatically, and BBEdit's
“Undo” feature is fully supported.

The Lasso Tag Converter will always convert entire documents,
not just the current selection.

There are over 200 string searches, permutations and replace-
ments accomplished by the Lasso Tag Converter. Processing
documents with a large number of lines can take a bit of time.
If enough memory is available, a progress dialog will appear
during long operations. Document processing can be stopped
by pressing command and period (.) together or clicking the
progress dialog “Cancel” button. The Lasso Tag Converter will
then finish the current search/replace, then stop.

Note: Make sure that BBEdit's windows are not set to “soft
wrap text” or the warning browser window will highlight
incorrect lines.

CHAPTER 3: INSTALLATION AND SETUP

Converting from CGl to Plug-In

To migrate from the CGI to the Plug-in edition, a simple change to
your format files is needed.

The primary difference between format files used with Lasso.acgi
and Lasso Plug-in is how the form action is specified. Simply
perform a global find on “Lasso.acgi” and replace with
“action.lasso.” Change from:

<form action="Lasso.acgi" method="post">
To:
<form action="action.lasso" method="post">

For pre-Lasso form submissions (depending upon how your files
were previously set up to operate with Lasso CGI), you may need
to change the path to access the Lasso Plug-in in the form action.

Upgrading Security Databases to Lasso 2.5

The “Lasso Security” database and remote security format files
have been updated for Lasso 2.5. As new security functionality has
been introduced, you must use the new databases for security to
operate properly. Import the data from your previous copy of the
“Lasso Security” database into the new “Lasso Security” database,
using matching fields. Also, replace the previous “Security” folder
with the new “Security” folder. The “Security” folder contains the
HTML format files used for remote administration of the “Lasso
Security” databases.

FileMaker Pro Setup

FileMaker Pro databases do not need to be modified for use with
Lasso. However, to improve performance (sometimes dramati-
cally), create basic FileMaker Pro layouts which correspond with
the fields used in your Lasso format files (especially when working
with more sophisticated or larger databases). Target your Lasso
format files to link to specific FileMaker Pro layouts which contain
only the necessary fields.

The following rules apply:
All Lasso-enabled FileMaker databases:

¢ must be opened by FileMaker Pro before a Lasso form action is
called.

15

16

CHAPTER 3:

INSTALLATION

AND SETUP

must be opened on the same CPU as the Mac OS Web server
in the client version of FileMaker Pro (as opposed to the
FileMaker Pro server application). The FileMaker Pro Server
version does not contain the full suite of Apple Event support
found in the FileMaker client. For further information, consult
FILEMAKER PRO SERVER in APPENDIX A: TIPS AND TECHNIQUES.

must be in browse mode (to allow Apple Events to be sent, for
better performance, and for FM Link to operate; but also for
general performance).

should be opened in single-user mode, but can be used as
“guest” to a “multi-user” database, as the “host” of a multi-
user database, or as a guest to a database hosted by FileMaker
Pro Server.

should be opened with the master password if passwords have
been established, specifically such that all necessary fields,
layouts, scripts, and functions (browsing, printing, exporting,
creating records, etc.) are available. For more details, see error
-10004 and -10005 in the “Error Codes” section of the
FileMaker Pro User Guide.

Chapter 4: Lasso
Methodology

General Overview

Lasso operates by interpreting special codes, referred to as “Lasso
tags” or “LDML” (Lasso Dynamic Markup Language), placed in
simple text files referred to as Lasso “format files.” Combined with
HTML, LDML provides the instructions Lasso uses to communicate
with FileMaker Pro and a Web server. Communication occurs
based upon actions, commands and the types of tags specified.

Tags are used in different ways depending upon whether the
format file is accessed before Lasso is called (pre-Lasso) or after
Lasso is called (post-Lasso). As data moves from a visitor's Web
browser to a Web server, through Lasso, to a database, and then
back, the data passes through many applications which use
different protocols for handling data. Consequently, data is trans-
lated (“encoded” and “decoded”) as it passes through the process.

Format files may contain other format files (“includes”) or contain
embedded operations (“inlines”). Data values can be manipulated
irrespective of a database (with Math and String tags), and sending
email and other operations can also occur with no database inter-
action. FIGURE 1: How LAsso EXCHANGES DATA shows various ways
Lasso exchanges data.

Format Files

Format files are templates Lasso uses to format the data it sends
and retrieves to and from FileMaker Pro databases. Format files also
contain all the instructions for handling non-database operations.

The basic format file types are as follows:
e Add — Adds new records to a database.
¢ Add Reply — Acknowledges a successful record addition.

e Add Error — Sends an error page due to data entry errors
when attempting to add a record.

e Update — Updates pre-existing records.

18 CHAPTER 4: LASSO METHODOLOGY

Figure 1: How Lasso Exchanges Data

Web Email
Browser Client
Y 4
| /
Web SMTP
PIXO |<— gerver Mail Host
Post-
Inline Post-Lasso Q/é& Post-Lasso
(response) (input) Include
Format Format File
Include i File o O File
File (response) (input)
I Inline
' ool
Inline Sverge
_ Other
Database [~ Applications

* Unnecessary if Lasso 2.5 Server is used.

e Delete Reply — Acknowledges a successful deletion of a
record.

e Search — Searches records.
e Search Results — Displays the results of a search.

¢ Detail — Displays the details of a single record from the data-
base. Delete and Duplicate actions may appear here.

¢ Update Reply — Acknowledges a successful update.

¢ Duplicate Reply — Acknowledges a successful record duplica-
tion.

e No Results Error — Returns an error when a search provides
no results.
Referencing Format Files Stored in a Database Field

Rather than accessing format files stored on disk, Lasso can refer-
ence format file data stored within a FileMaker Pro database field.
The syntax is as follows:

-response=field:fieldname

CHAPTER 4: LASSO METHODOLOGY

You must first assign “ResponseField” permissions in Lasso
Security before any targeted field can serve this function.

Editing Format Files

As some HTML editors do not support extended HTML (as in
LDML), use extreme caution when editing format files in anything
but a text editor.

Lasso Tags

There are five types of Lasso tags: Action, Command, Substitution,
Container and Sub-Container.

Action Tags
(-add, -search, -show, etc.)

Action tags direct Lasso to perform a specific action when a format
file is submitted. Generally, a single action occurs with each form
submission. However, using the [inline: ...] tag, several actions can
occur in a single form submission.

Action tags are specified within an HTML “submit” button, as
names within an HTML hidden input or within a form action
statement. For example, the submit button for an “Add” action
appears as follows:

<input type="Submit" name="-add" value="Add Record">

For all actions, the name of the submit button must be an action
tag. The value can be any text you want to appear on the button.
Images may also be used as submit buttons, as in the following
example:

<input type="Image" src="searchgraphic.gif' name="-search">

If no action is specified, Lasso defaults to the -nothing action.
Lasso will still process the page without conducting any database
activity.

Command Tags

(-database, -response, -emailto, etc.)

Command tags instruct Lasso on how to define the specified
action. Command tags are specified as hidden input names or may
appear within a form action statement

19

20

CHAPTER 4: LASSO METHODOLOGY

Substitution Tags
([field: ...], [server_date: ...], [include: ...], etc.)

Substitution tags are placeholders for where data is inserted. The
data may originate from a database, from the HTTP header of the
current request, a separate file, or represent a value from a previous
submission. Substitution tags can take other tags to their value or
parameters.

Container Tags
([if: ...]...[/if], [record: ...]...[/record], [inline: ...]...[/inline], etc.)

Container tags function as substitution tags, but are different
because they require an opening and closing tag pair. Some Lasso
container tags allow HTML and other Lasso substitution tags to
reside within their tag pair.

Sub-Container Tags
([else], [list_value], [repeat_value], etc.)

Sub-container tags operate within select container tags. Like substi-
tution tags, sub-containers can take other tags for their value or
parameters.

Basic Rules

In terms of syntax, LDML recognizes some basic rules:

" on,

e Action and command tags begin with a dash (“-”; e.g., -add or

-database).

e Substitution, container, and sub-container tags are surrounded
by square brackets (e.g., [record] or [field: ...]).

e Container and sub-container tags are similar to HTML tags in
that they have opening and closing tag components (e.g.,
[record]...[/record]).

e Sub-containers, as indicated by their name, are used only in
conjunction with container tags, between container tags’
opening and closing components.

e Some tags — particularly substitution tags — can be used
within other tags. In this case, the embedded tag is not
surrounded by brackets or preceded by a dash.

e LDML is not case-sensitive; i.e., Lasso will recognize “-data-
base” or “-Database” or “-dataBase.

CHAPTER 4: LASSO METHODOLOGY

Components of a Lasso Tag

Lasso tags are constructed and operate in a manner analogous to
HTML form elements. HTML form elements operate by specifying
a “name,” “value” and “type.” The corresponding items in LDML
are “tag name,” “value” and “parameters.” The following repre-
sents the basic structure applicable to the majority of Lasso substi-
tution, container and sub-container tags.

[tag: "value", parameter]
The tag structure is explained as follows:
® name — A tag name is required.

e value— The value can be a literal text string (must be
surrounded by quotes) or another tag (not surrounded by
quotes).

¢ parameter— There are four types of parameters.

1. Keywords: Some keywords work with many tags as para-
meters (e.g., “count”); others work with a single tag (e.g.,
“jpeg” works only with [image: ...]).

2.Encoding Keywords: The “raw,” “url, “break” and “smart”
encoding keywords work with all substitution tags to
apply character encoding.

3. Other Tags: Substitution and sub-container tags can func-
tion as parameters within other tags. Quotes should not
be used.

4. Literal String Value: Literal strings must be surrounded
by quotes.

Tags Within Tags

It is possible to use Lasso substitution tags within any other substi-
tution or sub-container tag. The “embedded” tag becomes a value
or parameter of the “embedding” tag. For instance, one can output
the data from a field whose name is specified by another field:

[field: (field: "InsertField")]

To clarify which values or parameters belong to which tag, paren-
theses should be used.

Parentheses are required if an embedded tag uses more than one
parameter. For example:

[inline: database="main", layout="web" name=(field: name,row), search]

21

22

CHAPTER 4: LASSO METHODOLOGY

Or:

[if: (field: "name",raw)=="john"]

Using Name=Value Pairs

The following rules apply to tags that use “name=value” pairs
([if: ...], [inline: ...], [set_var: ...], [post_inline: ...],
[set_cookie: ...], and all of the math and string tags):

e The name=value pairs and the Lasso action are separated by
commas (rather than ampersands as with embedded URLs).

e Input fields are indicated by the name of the field in quotes.

¢ Substitution fields using the “field” tag to substitute the
current value of a field must use the tag name “field” followed
by a colon (i.e., field:category).

e Do not use any square brackets within other square brackets.
Similarly, do not use hyphens before action or command tags
within square brackets.

Pre-Lasso vs Post-Lasso

“Pre” means before a Lasso action is processed, and “post” refers
to after a page is processed . The distinction is actually rather
simple, and important to keep in mind when determining how
format files and appropriate tags are referenced.

Pre-Lasso: Files Not Served Via Lasso

With the pre-Lasso method, HTML pages are referenced through a
direct hyperlink, or URL. A standard HTML page, which has not
first been parsed by Lasso, does not contain any dynamic data
(from FileMaker Pro or any other source). Field values must be
hard-coded into the HTML page. Pre-Lasso files (basic search or
add forms) may reside anywhere on the Internet.

Post-Lasso: Files Served Via Lasso

With the post-Lasso method Lasso builds forms and HTML pages
“on-the-fly” using elements found in a FileMaker Pro database.
The post-Lasso form is parsed by Lasso, and then returned to the
server for display. On a post-Lasso form, field values may be auto-
populated with values from a database. The post-Lasso method
applies to all Lasso format files that define how data is retrieved or
displayed as a result of a Lasso action. Post-Lasso format files must
be located on a volume mounted on the Mac OS Web server, and
accessible by AppleTalk.

CHAPTER 4: LASSO METHODOLOGY

Figure 2: Pre-Lasso Form Input

Web
Browser
A
Pre-Lasso
(input)
Format
SWeb > File
erver (input)
Post-
Inline Post-Lasso
(response)
Include | F%riTgat
File (response)
" A
Inline

Database

An Example of Pre-Lasso and Post-Lasso Methods

In the provided “Employees” example, the “add2.html” and
“search2.html” files represent a post-Lasso method of serving
forms via Lasso, while the “add.html” and “search.html” files
represent a pre-Lasso method of serving forms.

e Pre-Lasso — The files “search.html” and “add.html” can be
directly called up to view a complete form. Here is how one
would retrieve the “search.html” form:

Search

e Post-Lasso — Lasso generates “add2.html” and “search2.html”
forms using data from the specified FileMaker Pro database
using the -show command. Here is how you would retrieve
the “search2.html” form:

<a href="http://lwww.your_server.com/Lasso.acgi?-database=Employees&
-layout=Detail&-response=Example/search2.html&-show">Search

23

24

CHAPTER 4: LASSO METHODOLOGY

Specifying Paths

This section discusses methods for specifying paths to Lasso
actions for the various editions of Lasso, and discusses how to
reference Lasso format files. Note: With Lasso 2.5, Lasso now
recognizes relative path names.

Pre-Lasso

Lasso.acgi

The best way to reference Lasso.acgi in a pre-Lasso file is to place
an alias of the Lasso.acgi application in your project folder and
rename it “Lasso.acgi.”

To indicate the path to an example folder, use the following:

<form action="/example/Lasso.acgi" method="post"> or
<a href="/example/Lasso.acgi?-database=..."

This allows for relative references to be used throughout for all the
format files stored within the “Example” folder, thus simplifying
the creation of path names within these format files.

It is recommended that you locate the Lasso.acgi in the same
folder as the Web server application (to simplify the process of
defining path names); however, if it is buried in folders, a path
from the HTML file to Lasso must be indicated. For example:

<form action="/cgi-bin/Lasso.acgi" method="post"> or

Lasso Server and Plug-in

The best way to reference the Lasso Server or Plug-in on a pre-
Lasso file is to specify the path to the project folder as follows:

<form action="/example/action.lasso" method="post"> or

Although the server requires only the “action.lasso” portion to
direct the action to Lasso, the path that is included makes it
possible to use relative references to all format files from this point
on.

Alternately, Lasso can be referenced from the root level as follows:

<form action="/action.lasso" method="post"> or

Note: A slash is used to indicate that the path begins at the root
level of the Web serving folder.

CHAPTER 4: LASSO METHODOLOGY

Absolute
Lasso can be specified with an absolute location, for example:

<form action="http://www.domain.com/web server/Lasso.acgi" method="post">

Post-Lasso

All post-Lasso calls are either “Lasso.acgi” or “action.lasso” since
Lasso is considered to be the source of the document.

For the Lasso Server and Plug-in:

<form action="action.lasso" method="post"> or

For Lasso.acgi:

<form action="Lasso.acgi" method="post"> or

Referencing Format Files

The following guidelines can be used for specifying paths to files
referenced by Lasso. The -response tag requires a valid path, as it
specifies the name of the format file to be used to format the
successful response of a Lasso action.

Use the following guidelines when specifying a path:
¢ The name of files and directories are not case-sensitive.
e Relative path names are supported.

e Format files are usually located only within the Web serving
folder. However, Lasso can recognize format files stored
outside of the Web serving folder if the filename ends with
“lasso” or “las.”

¢ A format file on another server cannot be referenced unless
the file resides on a volume mounted on the primary server
via AppleTalk and the filename ends with “lasso” or “las.”

¢ The path to a format file can refer to an alias of the format
file.

¢ An absolute path can be used if it specifies all directories that
lead to the referenced file.

Note: In versions of Lasso prior to 2.5, post-Lasso format files were
specified from the location of the Lasso application rather than
relative to the previously called file.

25

26

CHAPTER 4: LASSO METHODOLOGY

Calling Lasso

With a Form

To submit a form, you generally specify actions and commands
within the form action statement. For example:

<form action="action.lasso?-database=Employees&-layout=summary&
-search"> ...rest of the HTML form </form>

In a form action statement, the action should always be the last tag
specified. As some older browsers may not support actions speci-
fied within form statements, you can also specify actions and
commands within hidden HTML input fields as follows:

<form>

<input type="hidden" name="-database" value="Employees">
<input type="hidden" name="-layout" value="Summary">

rest of the HTML form...

<input type="Submit" name="-add" value="Add Record">
</form>

</body>

</html>

With a Link

Lasso actions can be embedded in a URL that is executed when a
hyperlink is selected. For example:

<a href="http://domain.com/webserver/Lasso.acgi?-database=
database_nameé...etc">

An embedded URL strings together Lasso tags and other
“name=value” pairs to specify the values and parameters for the
action. When Lasso performs a search, it automatically creates
embedded URLs for the [next] and [prev] links, as well as links to
detailed records.

When constructing embedded URLs, please keep the following in
mind:

¢ Tags which modify other tags (such as the -operator tag) must
always appear before the tags they affect.

¢ All data encoded in a hyperlink is encoded as “name=value”

u_ny,

pairs, separated by an equals sign (“="):
name=value

e “Name=value” pairs are separated with ampersands:

CHAPTER 4: LASSO METHODOLOGY

name1=value1&name2=value2&name3-value3&nameN=valueN...
¢ The name of a reference database is always required:
-database=DatabaseName

¢ The name of a reference layout is not required, but recom-
mended:

-layout=LayoutName

(Lasso cannot search summary fields, portals, calculation
fields, auto-entered fields, etc., if a layout name is not speci-
fied.)

For example, to search a sample “Gurus” database using the layout
named “Detail” for all records where the field “Last Name”
contains “Cusick,” return five records at a time starting with record
11 of the result set, sort the records by “Last Name,” and have the
results formatted based on file “Detail Format.html,” the URL
would appear as follows:

<a href="action.lasso?-database=Gurus&-layout=Detail&-response=
Detail+Format.html& -op=cn&Last+Name=Cusick&-maxRecords=5&
-skiprecords =10&-sortfield=Last+Name&-search"> Search

Note: Blank spaces are encoded with a plus sign (“+"). See
APPENDIX B: CHARACTER SETS AND TRANSLATION for details.

27

Chapter 5: Getting Started

This chapter describes the FM Link tool and provides a tutorial
designed to help beginners get up and running quickly.

FM Link Figure 3: FM Link

Specially created for use with - STLInk =8|
Lasso, FM Link assists with the #

creation of Lasso format files. E_Mhm
Complementing your text editor Rl e el
or HTML authoring program, Coiawes La

FM Link provides a palette of
LDML tags and dynamically

retrieves data from open
FileMaker Pro databases.

FM Link queries any open
FileMaker Pro database and
generates a list of related data-
bases, layouts, fields and scripts.

The “Lasso Tags” tab presents a
comprehensive listing of Lasso
tags. Detailed information for a
specific tag is obtained simply
by double-clicking on the tag's
name.

Drag Menu

The following options are available under the “Drag” menu:

As Text/As HTML

There are two options for the method used when dragging items
from the FM Link palette. Text can be dragged: “As Text,” “As
HTML,” or both (if both are checked). If using a standard text
editor, leave both selected.

These selections were introduced to allow FM Link to operate with
certain HTML authoring applications. The problem arises when
dragging the HTML content of the various menu items into the
GUI design mode of some HTML authoring tools. Symbols used to
create HTML are encoded and appear as literal text instead of as
HTML. To correct this, deselect the “Text” item so that content is
dragged as HTML only.

30

CHAPTER 5: GETTING STARTED

Include Field Labels

When “Include Field Labels” is selected, the name of the field will
be included, along with a colon, followed by the HTML used for
the field entry and/or the Lasso tags used to display that field. This
drag option is only enabled when the “Fields” tab is selected.

By deselecting this option, the field name will not be included.
The two modes are toggled using the menu or the command-L key
combination.

Add Carriage Returns

When “Add Carriage Returns” is selected, a carriage return is auto-
matically inserted after the item is dragged from the FM Link
palette. This drag option applies to all items in all tabs. Thus if two
items are dragged in succession, each will be placed on their own
line. This is particularly useful when dragging fields using the
“Post-Lasso (Display)” mode.

By deselecting this option, a carriage return will not be inserted.
This is useful when dragging menu items into pre-existing HTML
containers or tags, for example, between the quotes of a value
equation. The option to add a carriage return can be toggled using
the menu or the command-R key combination.

Drag-and-Drop Options

Dragging the text of any menu item from the FM Link window will
drag the text or HTML associated with that selection, as well as a
carriage return. The content of what is dragged is described below.

Option-drag (select the option key while dragging) items to drag
just the text shown in the FM Link window. Any database, layout,
field, list value, script, or Lasso tag item is inserted without the
corresponding tag syntax or carriage return.

How to Use FM Link

1. Open your FileMaker Pro Database

Open the FileMaker Pro database to be used with Lasso. The data-
base must be open and in “browse” mode. It should remain open
and in browse mode when using FM Link.

2. Select a Database

¢ Drag the database name from the list into a text editor; the
Lasso -database command tag will be included with the
correct database name inserted.

CHAPTER 5: GETTING STARTED

e Option-drag to drag a specific database name.

¢ Click the “Update” button to update the list of databases after
opening/closing databases.

¢ Double-click the database name to proceed to the “Layouts”
tab.

3. Select a Layout

e Drag one of the layouts listed into a text editor and the Lasso
-layout command tag will be included with the correct data-
base name inserted.

e Option-drag to drag a specific layout name.

¢ Click the “Update” button to update the list of layouts after
creating/deleting layouts in FileMaker Pro.

e Double-click the layout name to proceed to the “Fields” tab.

4. Selecting Fields/Values

¢ In the “Fields” tab, choose an HTML field type from the
“HTML Type” pop-up menu.

e Next, select the “mode” this page will be used for. If the file is
accessed as a standard HTML file, the “Pre-Lasso” tab should
be used; if the format file is processed by Lasso and field
values are gathered from a FileMaker database, then either of
the “post-Lasso” modes should be used. The display type will
simply display the field value on the response page; the
update selection will place this field value into HTML input
tags for use on an update form.

e If a field does not have a value list associated with it in the
specified layout, then the only options are “Text,” and “Text
Area.” If a field has a value list, all selection list types are avail-
able for that field (pop-up, scrolling list, radio button, and
check box).

e Select a field name from the fields list and drag to the text
editor. All value list items are selected by default. To option-
drag the name of just a single value, first deselect all values by
command-clicking on the white space in “Values” list and
then option-drag the value name.

e Option-drag to drag a specific field name or value list item
name.

¢ Click the “Update” button to update the list of fields and
values after editing fields and values in FileMaker Pro.

32 CHAPTER 5: GETTING STARTED

5. Selecting Scripts

In the “Scripts” tab, choose the “mode” a script will be used for.
The choices are:

e Pre — The script will execute before any other operations are
completed.

e Pre-Sort — The script will execute after all other operations
are completed, but before any sorts take place.

e Post — The script will execute after all operations are
completed.

e Pre.Back, Pre-Sort.Back, and Post.Back — The script executes
either before other actions, prior to a sort or after all actions,
and operates in the background.

6. Lasso Tags

In the “Lasso Tags” tab, choose a tag name and drag it to your text
editor. The indicated Lasso tag with appropriate HTML code is
inserted.

e Option-drag to drag just the Lasso tag name.

e Double-click on a tag name to open the Lasso tags help
window. (HTML code may also be dragged from the help
window.)

7. Templates

The following templates are available in FM Link:
¢ Add Record e Add Record Reply e Add Record Error
e Search Records e Search Results e No Search Results

¢ Detail Record e Update/Delete/ e Delete Reply
Duplicate Record

e Update Reply e Duplicate Reply e Email Template

¢ Email Message
Template

Tutorial: Web-Enable a Basic
Database

This tutorial provides step-by-step instructions for Web-enabling a
basic database, using the “MyDatabase.fp3” database supplied in
the “Databases” folder, FM Link, the format file templates listed
above, and a text editor. After completing this tutorial you will
understand how to add, search, update, delete and duplicate
FileMaker Pro Web database records and how to handle errors.

CHAPTER 5: GETTING STARTED

The next series of sections are designed to be read linearly; detailed
explanations are not repeated for each step. For more details on
each of the tags mentioned, refer to the provided “Lasso 2.5
Reference” database. In this manual, HTML authoring packages are
grouped with other text editors and singularly referred to as “text
editor.”

Sample Database

A sample database, named “MyDatabase.fp3,” is provided in the
“Databases” folder included with Lasso. “MyDatabase.fp3” is a
simple file with one layout, named “MyLayout,” and six fields
(one number field and five textual ones), as shown in FIGURE 4: SET
UPp DATABASE.

Figure 4: Set Up Database

Define Fields for “MyDatabase™
& field(s])
Field Manne Tupe Options Wiew by [zreation order »
MyFirstField Text Required “Walue -
MySecondField Mumber MNurnbetr [
MyThirdField Tewxt
MyFourthField Tewxt
MyFifthField Text
MySixthField Text
A [y | »
Field Name | |
E"'Type
. @ Text %T O Container %0 | |_Create JJ[options.. |
2 Number #N (» Calculation 3C [S] [Duplicate]
) Date D O Summary #S
O Time #1 O Global IO [Delete] [Done _]
: "
Setup

1. Create a folder called “MyDatabase” at the root level of your
Web server.

2. Launch FileMaker Pro and open the database
“MyDatabase.fp3.”

3. Launch Lasso, a text editor, a Web browser, and FM Link.

Note: All examples below are constructed for Lasso Plug-in or
Lasso Server editions. They are easily modified for the Lasso
CGI as discussed elsewhere.

33

34 CHAPTER 5: GETTING STARTED

Add Records

1. Using your text editor, create a new document named
“add.html.”

2. Go to the template section of the FM Link palette (select the
“Lasso Tags” tab and scroll to the bottom). Select “Add Record
Template,” and drag it to the empty “add.html” document in
the text editor.

3. Save this file to the “MyDatabase” folder.

Figure 5: Add Record

bor b ape Bad Brind Trwglaie TH]
L5323 Suaeq [~]
o e
Add Heoond Larm Trmpluie
MPPLITRl Py . pyi i Tew Binn
w—— (1 2 — |
HFrosFra 1 ons o bt o] () e < s
.) sl S “"‘”."—":_‘l“
X — Tl
e P
- b LT
Add Record Template
<html>
<head>
<title>Add Record Template</title>
</head>
<body bgcolor=white>
<center>
<table cellspacing="0" cellpadding="1" width=550>
<tr>

<td align=left valign=middle>Add
Record</td>

<td align=right valign=middle>Lasso
Template</td>

</tr>
</table>
<hr width=550>
<form action="action.lasso?-add" method="post">

CHAPTER 5: GETTING STARTED

<input type="hidden" name="-database" value="MyDatabase.fp3">
<input type="hidden" name="-layout" value="MyLayout">
<input type="hidden" name="-response" value="addreply.html">
<input type="hidden" name="-addError" value="adderror.html">
<table cellspacing="0" cellpadding="1">
<tr>
<td valign=middle>MyFirstField (text, required):</td>
<td align=left valign=middle>
<input type="text" size=30 name="MyFirstField"></td>
</tr>
<tr>
<td valign=middle>MySecondField (number):</td>
<td align=left valign=middle>
<input type="text" size=30 name="MySecondField"></td>
<ftr>
<tr>
<td valign=middle>MyThirdField:</td>
<td align=left valign=middle>
<select name="MyThirdField" size=1>
<option value="" selected>
<option value="pop-up1">pop-up1
<option value="pop-up2">pop-up2
<option value="pop-up3">pop-up3
<option value="pop-up4">pop-up4
</select></td>
<Jtr>
<tr>
<td valign=middle>MyFourthField:</td>
<td align=left valign=middle>
<input type="radio" name="MyFourthField" value="" checked>None
<input type="radio" name="MyFourthField" value="radio1">radio1
<input type="radio" name="MyFourthField" value="radio2">radio2
<input type="radio" name="MyFourthField" value="radio3">radio3
<input type="radio" name="MyFourthField" value="radio4">radio4</td>
<Jtr>
<tr>
<td valign=middle>MyFifthField:</td>
<td align=left valign=middle>
<input type="checkbox" name="MyFifthField"
value="checkbox1">checkbox1
<input type="checkbox" name="MyFifthField"
value="checkbox2">checkbox2
<input type="checkbox" name="MyFifthField"
value="checkbox3">checkbox3
<input type="checkbox" name="MyFifthField"

36

CHAPTER 5: GETTING STARTED

value="checkbox4">checkbox4</td>
<ftr>
<tr>
<td valign=top>MySixthField:</td>
<td align=left valign=top>
<textarea name="MySixthField" rows=4 cols=40
wrap=soft></textarea></td>
<ftr>
</table>
<p>
<input type="Submit" name="-add" value="Add Record">
<input type="Reset" value="Clear Form">

</form>
<p>
<hr width=550>

Search Records
</center>
</body>
</html>

Let's look at the Lasso action and tags used in detail:

The syntax “action.lasso” designates Lasso as the recipient of
the form, and the syntax “?-add” tells Lasso what action to
perform when the form is submitted.

The command tag -database instructs Lasso to use the data-
base “MyDatabase.fp3.” This is accomplished using an HTML
input statement to pair the -database tag with a value, that is,
the name of the database.

The command tag -layout instructs Lasso to use the layout
“MyLayout.” This is accomplished using an HTML input state-
ment to pair the -layout tag with a value, that is, the name of
the layout.

The command tag -response instructs Lasso which format file
to use to process or display the result of a form submission
(in this case, “addreply.html”).

The command tag -adderror instructs Lasso which format file
to use to display a custom error page if a user did not fill out
the form correctly.

The action tag -add (used in this form as the name of the
submit button) instructs Lasso to add a record to the database.
While this was already specified in your form statement, some
browsers require the action to appear as the last item on a page.

CHAPTER 5: GETTING STARTED

Add Record Reply

Create a new document in your text editor, drag from FM Link the
“Add Record Reply Template,” saving it as “addreply.html” into the
“MyDatabase” folder.

Figure 6: Add Record Reply

] “rhnape Al B Sephy Teagale ir
i 33603+ B
f— | DT

Al Hprcemisl Lasso Tempiais

o VI B TR

HpFemfall Ter e
L e LS R
FpTewifea gopm
LT S
L]
HpludPok Trosg

Add Record Reply Template

<html>
<head>
<title>Add Record Reply Template</title>
</head>
<body bgcolor=white>
<center>
<table cellspacing="0" cellpadding="1" width=550>
<tr>
<td align=left valign=middle>Add Successful</ffont></td>
<td align=right valign=middie>Lasso Template</id>
<ftr>
<ftable>
<hr width=550>
<blockquote>Your record was added
successfully.<ffont>

</blockquote>
<table cellspacing="0" cellpadding="1">
<tr>
<td align=left valign=middle>MyFirstField:</td>

37

38 CHAPTER 5: GETTING STARTED

<td valign=middle>[field:"MyFirstField"]<td>
<ftr>
<tr>
<td align=left valign=middle>MySecondField:</d>
<td valign=middle>[field:"MySecondField"|</td>
<fr>
<tr>
<td align=left valign=middle>MyThirdField:</td>
<td valign=middle>{field:"MyThirdField"|</td>
<fr>
<tr>
<td align=left valign=middle>MyFourthField:</td>
<td valign=middle>{field:"MyFourthField"|</td>
<fr>
<tr>
<td align=left valign=middle>MyFifthField:</td>
<td valign=middle>[field:"MyFifthField"]</d>
<fr>
<tr>
<td align=left valign=top>MySixthField: </td>
<td valign=middle>[field:"MySixthField",break]</td>
<fr>
<ftable>
<p>
<hr width=550>

Search Records |
Add a Record |
Update this Record
</center>
</body>
<html>

You'll notice that only two new Lasso tags are used in this source
code — the [field: ...] tag and the [detail_link: ...] tag.

The [field: ...] tag simply references the specified field and the
[detail_link: ...] inserts the current record ID into the URL calling
the update format file when selected.

Now that you've created both an “Add” and “Add Reply” format
file, you are ready to try it out. Making sure that Lasso and your
Web server are running, and that the files you have created are not
open in your text editor, enter the following URL into your Web
browser:

http://www.YourServerName.com/MyDatabase/add.html

CHAPTER 5: GETTING STARTED

Note: If you have any difficulty successfully launching your Web
server, read the “Testing Without a Network Connection” tip found
in APPENDIX A: TIPS AND TECHNIQUES.

Input and select values for all the fields and then submit the form
by clicking the “Add Record” button.

Add Record Error

Notice that the first two fields in “MyDatabase.fp3” have certain
FileMaker Pro options selected. “MyFirstField,” a standard text
field, has the validation option “required” checked.
“MySecondField,” a numeric field, has the validation option “of
type number” selected. Lasso recognizes these settings and gener-
ates errors if users do not comply.

To test this, re-submit the “Add Record” form leaving the
“MygFirstField” field blank.

Figure 7: Add Record Error

|] Sertrage Al B Do Teagiade [
LR YN H?II
osema) Ry TR s e e T i
Add Reooed Brror L Trmplwie

Tia B e
el s fcires w "Bk Lo mall kel B o oot i rampless
el o0 v -
1O PR N AR G R ST I

* [ETET

To create the format file that generated this page, create a new
document named “adderror.html.” In the template section of FM
Link, locate “Add Error Template” and drag it to the empty
“adderror.html” document in the text editor. Save this file to the
“MyDatabase” folder.

Add Record Error Template

<html>

<head>

<title>Add Record Error Template</title>
</head>

39

40

CHAPTER 5: GETTING STARTED

<body bgcolor=white>
<center>
<table cellspacing="0" cellpadding="1" width=550>
<tr>
<td align=left valign=middle>Add Record
Error</td>
<td align=right valign=middle>Lasso
Template</td>
</tr>
</table>
<hr width=550>

<blockquote>The record was not
added.

Select your browser's "Back" key

and check that your submission is complete
and that all

data entered is of the correct format
(i.e., numbers are numbers,
dates are in mm/dd/yy format).</blockquote>

<p>

<hr width=550>

</center>

</body>

</html>

Search Records
1. Create a new document named “search.html.”

2. Go to the template section of the FM Link palette and select
“Search Template,” dragging it to the empty “search.html”
document in the text editor.

3. Save this file to the “MyDatabase” folder.

You now have a pre-Lasso format file. It is pre-Lasso because it is
directly called up from a URL without interacting with Lasso.

Search Records Template

<html>

<head>

<title>Search Records Template<ftitle>

</head>

<body bgcolor=white>

<center>

<table cellspacing="0" cellpadding="1" width=550>
<tr>

Figure 8: Search Records

] Arhinape - tran b B lenglsies .1
4 o 3 % &2 & G = &£ 7 ﬂ
[e R - W e S e
| Ty e T P o T
Brurch Reconiy Lasso Templain
T kL] L
[e T [
HyThSTRRL T O B et =

CHAPTER 5: GETTING STARTED

HE =mred o Vs (0 |) o (i 3 e
L T [eSS PSP T
HTER =
T Lo |
e B, P
Pty - N . _ | =l
Hor [[ERET]
s sl R
TR]
o Fa gl

<td align=left valign=middle>Search
Records</td>
<td align=right valign=middle>Lasso
Template</td>
</tr>
</table>
<hr width=550>
<form action="action.lasso?-search" method="post">
<input type="hidden" name="-database" value="MyDatabase.fp3">
<input type="hidden" name="-layout" value="MyLayout">
<input type="hidden" name="-response” value="searchresults.html">
<input type="hidden" name="-noresults" value="noresults.html">
<table cellspacing="0" cellpadding="1">
<tr>
<td valign=middle>MyFirstField (text):</td>
<td align=left valign=middle><select name="-op">
<option value="bw" selected>begins with
<option value="eq">equals
<option value="cn" >contains
<option value="ew">ends with
</select></td>
<td align=left valign=middle><input type="text" size=30
name="MyFirstField"></td>
<Jtr>
<tr>
<td valign=middle>MySecondField (number):</td>

41

42 CHAPTER 5: GETTING STARTED

<td align=left valign=middle><select name="-op">
<option value="eq" selected>equals
<option value="gt"> >
<option value="gte"> > or =
<option value="t"> <
<option value="lte"> < or =
</select></td>
<td align=left valign=middle><input type="text" size=30
name="MySecondField"></td>
</tr>
<tr>
<td valign=middle>MyThirdField:</td>
<td valign=middie>(select from pop-up list)</td>
<td align=left valign=middle><select name="MyThirdField" size=1>
<option value="" selected>
<option>pop-up1
<option>pop-up2
<option>pop-up3
<option>pop-up4
</select></td>
<ftr>
<tr>
<td valign=middle>MyFourthField:</td>
<td colspan="2" align=left valign=middle><input type="radio"
name="MyFifthField" value="" checked>None
<input type="radio" name="MyFourthField" value="radio1">radio1
<input type="radio" name="MyFourthField" value="radio2">radio2
<input type="radio" name="MyFourthField" value="radio3">radio3
<input type="radio" name="MyFourthField" value="radio4">radio4</td>
<ftr>
<tr>
<td valign=middle>MyFifthField:</td>
<td colspan="2" align=left valign=middle><input type="checkbox"
name="MySixthField" value="checkbox1">checkbox1
<input type="checkbox" name="MyFifthField"
value="checkbox2">checkbox2
<input type="checkbox" name="MyFifthField"
value="checkbox3">checkbox3
<input type="checkbox" name="MyFifthField"
value="checkbox4">checkbox4</td>
<ftr>
<tr>
<td valign=middle>MySixthField:</td>
<td colspan="2" align=left valign=middle><font size="-
1">(contains)

CHAPTER 5: GETTING STARTED

<input type="hidden" name="-operator" value="cn"><input type="text"

size=30 name="MySixthField"></td>

</tr>
<tr>
<td colspan="3" align=left valign=middle><hr></td>
</tr>
<tr>
<td valign=middle> </td>
<td align=center valign=middle>
<p><input type="Submit" name="-search" value="Start Search"></td>
<td align=center valign=middle>
<input type="Submit" name="-findall" value="Find All">
<input type="Submit" name="-random" value="Random">
<input type="Reset" value="Clear Form"></td>
<ftr>
<tr>
<td colspan="3" align=left valign=middle><hr>

Select Optional Search Parameters</td>
<Jtr>
<tr>
<td valign=middle>Sort By:</td>
<td align=left valign=middle><select name="-sortfield" size=1>
<option selected>Unsorted
<option value="MyFirstField">MyFirstField
<option value="MySecondField">MySecondField
<option value="MyThirdField">MyThirdField
<option value="MyFourthField">MyFourthField
<option value="MyFifthField">MyFifthField
</select></td>
<td align=left valign=middle><select name="-sortorder">
<option selected>ascending
<option>descending
<option>custom
</select></td>
<Jtr>
<tr>
<td valign=middle>Max Records:</td>
<td align=left valign=middle><select name="-maxRecords" size=1>
<option>5
<option selected>10
<option>20
<option>30
<option>50
<option>all
</select></td>

43

44

CHAPTER 5: GETTING STARTED

<td valign=middle> </td>
</tr>
<tr>
<td valign=middle>Logical Operator:</td>
<td align=left valign=middle><input type=radio name="-logicalop"
value="and" checked>AND
<input type=radio name="-logicalop" value="or">OR</td>
</tr>
</table>
</form>
<p>
<hr width=550>

Add a Record
</center>
</body>
</html>

Notice that the majority of the code is HTML. Note the following
points:

The search operators Lasso uses correspond to FileMaker Pro’s
search operators (eq, gt, gte, It, Ite, cn, bw, and ew).

The syntax “action.lasso” designates Lasso as the recipient of
the form, and the syntax “?-search” instructs Lasso to perform
the search action.

The -noresults command tag specifies which format file to use
for the response if a user’s search yields no results.

The -operator command tag determines how Lasso compares
the submitted field values.

The -maxrecords command tag specifies the number of hits to
show on the response page.

The -sortfield command tag displays the name of the field
used to sort the current found set of records.

The -findall command tag finds all records in a FileMaker Pro
database.

The -random command tag finds a random record in a data-
base.

The -logicalop command tag selects a global operator (“and”
or “or”) to search by.

CHAPTER 5: GETTING STARTED

Search Results

Create a search results (sometimes called a “hitlist”) template to
display the results of the search.

1. Create a new document named “searchresults.html.”

2. Go to the template section of the FM Link palette and select
“Search Results Template,” dragging it to the empty “searchre-
sults.html” document in the text editor.

3. Save this file to the “MyDatabase” folder.

Figure 9: Search Results

‘] el Lewebs Sl e pinle |5
i 2p8u2e1 o
e T e e e
Brurch Hewslin Lasso Templain
s et i T
ot . [[T PP T e L e e
ErfarFea 5 e Pk o r W
Tl IE.] Fre - bl Tresy
it UET = P == rvidand Trrum
- FETaa
Search Results Template
<html>
<head>
<title>Search Results Template</titie>
</head>
<body bgcolor=white>
<center>
<table cellspacing="0" cellpadding="1" width=550>
<tr>

<td align=left valign=middle>Search
Results</td>
<td align=right>Lasso Template</td>
</tr>
</table>
<hr width=550>

46

CHAPTER 5: GETTING STARTED

<p>
Displaying records [begNum] thru [endNum]
([nShown] records displayed).

([nFound] records found out of [total_records] in database)
<p>
[prev] |Previous| [/prev] [next] |[Next| [/next]

<p>
Select the link in MyFirstField to view more details about that record.
<p>

<table cellpadding=2>
<th>MyFirstField</th>
<th>MySecondField</th>
<th>MyThirdField</th>
<th>MyFourthField</th>
<th>MyFifthField</th>
<th>MySixthField</th>
<th>[record]</th>
<tr>
<td align="left">
[field:MyFirstFiel
dj
</td>
<td align="center">[field:"MySecondField"]</td>
<td align="left">[field:"MyThirdField"]</td>
<td align="left">{[field:"MyFourthField"]</td>
<td align="left">[field:"MyFifthField"]</td>
<td align="left">{[field:"MySixthField"]</td>
<td>[/record]</td>
<ftr>
</table>
<p>
<hr width=550>

Add a Record
</center>
</body>
</html>

This file introduces eight new Lasso tags (|begnum], [endnum)],
[total_records], [nfound], [nshown], [prev], [next], and [record]).

¢ The [begnum] tag displays the numeric range in a found set of

records.

¢ The [endnum] tag displays the ending number in a range of a

found set of records.

CHAPTER 5: GETTING STARTED 47

e The [total_records] tag inserts the total number of records in
the database used in the previous Lasso action.

¢ The [nfound] tag displays the total number of records found.

¢ The [nshown] tag displays the total number of records in a
subset of returned records.

e The [prev] tag displays the previous group in the found set of
records.

¢ The [next| tag displays the next group in the found set of
records.

e The [record] tag displays elements for every record returned
from a database.
No Search Results
1. Create a new document named “nosearchresults.html.”

2. Go to the template section of the FM Link palette and select
“No Results Template,” dragging it to the empty “nosearchre-
sults.html” document in the text editor.

3. Save this file to the “MyDatabase” folder.

Figure 10: No Results

rlu me bw Brad b lmagale |
i, = & 1 ﬂ-|
L) Frod vy .
Larm Trmplwie
e o v T
T v B ey 1 Tom L bl oy s e

No Results Template

<html>

<head>

<title>No Results Template</title>
</head>

48

CHAPTER 5: GETTING STARTED

<body bgcolor=white>
<center>
<table cellspacing="0" cellpadding="1" width=550>

<tr>

<td align=left valign=middle>No Search
Results</td>
<td align=right valign=middle>Lasso

Template</td>

<ftr>
</table>
<hr width=550>

<blockquote>No records were found which match your search
criteria.

Select your browser's "Back" key and try your search
again.<ffont>
</blockquote>
<p>
<hr width=550>
</center></body>
</html>

Record Detail

If a search is successful, the user can click on a link to display
details for any of the found records.

1. Using your text editor, create a new document named

“detail.html.”

2. Go to the template section of the FM Link palette and select

“Record Detail Template,” dragging it to the empty
“detail.html” document in the text editor.

3. Save this file to the “MyDatabase” folder.

Record Detail Template

<html>
<head>
<title>Record Detail Template</titie>
</head>
<body bgcolor=white>
<center>
<table cellspacing="0" cellpadding="1" width=550>

<tr>

<td align=left valign=middle>Record

Detail</td>

CHAPTER 5: GETTING STARTED 49

Figure 11: Record Detail

“riymy e mrd Beiwi lompimin
i 5 T B
e Feosed Sk — e e L .
| S T P P G PP PR T e P T R e R
Hezprd wiml Larm Trmplwis
HPErEEE e[
FrdomiFuen
WFTHHFEH o
HpFariFam
LT T PR R
ApFEREE e
B v e ki i oo | Lot s Dt
o |

<td align=right valign=middle>Lasso
Template</td>
<Jtr>
</table>
<hr width=550>
<table cellspacing="0" cellpadding="1">
<tr>
<td align=left valign=middle>MyFirstField:</td>
<td valign=middle>[field:"MyFirstField"]</td>
<ftr>
<tr>
<td align=left valign=middle>MySecondField:</td>
<td valign=middle>[field:"MySecondField"]</td>
<ftr>
<tr>
<td align=left valign=middle>MyThirdField:</td>
<td valign=middie>[field:"MyThirdField"]</td>
</tr>
<tr>
<td align=left valign=middle>MyFourthField:</td>
<td valign=middle>[field:"MyFourthField"]</td>
</tr>
<tr>
<td align=left valign=middle>MyFifthField:</td>
<td valign=middle>[field:"MyFifthField"]</td>
<Jtr>
<tr>
<td align=left valign=top>MySixthField:</td>

50 CHAPTER 5: GETTING STARTED

<td valign=middle>[field:"MySixthField",break]</td>
<ftr>
</table>
<p>
<hr width=550>

Search Records |
Add a Record |
Update this
Record
</center>
</body>
</html>

Update/Delete/Duplicate Record

Create an update format file which also contains buttons to dupli-
cate or delete a record.

1. Using your text editor, create a new document named
“update. html.”

2. Go to the template section of the FM Link palette and select
“Update Record Template,” dragging it to the empty
“update.html” document in the text editor.

3. Save this file to the “MyDatabase” folder.

Update Record Template

<html>
<head>
<title>Update Record Template</title>
</head>
<body bgcolor=white>
<center>
<table cellspacing="0" cellpadding="1" width=550>
<tr>
<td align=left valign=middle>Update
Record</td>
<td align=right valign=middle>Lasso
Template</td>
</tr>
</table>
<hr width=550>
<form action="action.lasso?-update" method="post">
<input type="hidden" name="-database" value="MyDatabase.fp3">
<input type="hidden" name="-layout" value="MyLayout">

CHAPTER 5: GETTING STARTED

Figure 12: Update Record

] Arlumr duiale Erienk lgdaie | 5
i + A B = & U & oF ﬂ]
Ber Foserd hiksd s bed e e iy

e e e e e
Lipshuin Becomi Lasso Templain
L g B Trei i Splaiew
Hvierosd Pe ey |17
Hr T P []
Herwmdma o ot o pelin |) e’ i () ek et
Heiln i] sasciginary y 1 rigsrn sy [l sy . O] el s
Holandd wd | e N
[Fercnn |—|
L
[T Il]
[[T [ety
B pant i ot e
- Feriris

<input type="hidden" name="-response” value="updatereply.html">
<input type="hidden" name="-recid" value="[recid_value]">
<input type="hidden" name="-duplicatereply" value="duplicatereply.html">
<input type="hidden" name="-deletereply" value="deletereply.html">
<table cellspacing="0" cellpadding="1">
<tr>
<td>MyFirstField (text):</td><td>
<input type=text size=30 name="MyFirstField" value="[field:
"MyFirstField"]">
</td>
<ftr>
<tr>
<td valign=middle>MySecondField (number):</td>
<td align=left valign=middle>
<input type=text size=30 name="MySecondField" value="[field:
"mysecondfield"]">
<ftd>
<Jtr>
<tr>
<td valign=middle>MyThirdField:</td>
<td align=left valign=middle>
<select name="MyThirdField"><option value="">[option:
"MyThirdField"]</select>
<ftd>
<Jtr>
<tr>
<td valign=middle>MyFourthField:</td>

51

52 CHAPTER 5: GETTING STARTED

<td align=left valign=middie>
<input type="radio" name="MyFourthField" value="">None
[value_list: "MyFourthField"]
<input type="radio" name="MyFourthField" value="[list_value]"
[checked]>[list_value]
[Ivalue_list]
<td>
<ftr>
<tr>
<td valign=middle>MyFifthField:</td>
<td align=left valign=middie>
[value_list: "MyFifthField"]
<input type="checkbox" name="MyFifthField" value="[list_value]"
[checked]>[list_value]

[Ivalue_list]
<input type="hidden" name="MyFifthField" value="">
</td>
<ftr>
<tr>

<td valign=top>MySixthField:</td>
<td align=left valign=top>
<textarea name="MySixthField" rows=4 cols=30

wrap=soft>[field:"MySixthField"]</textarea>
</td>

</tr>
</table>
<p>
<input type="Submit" name="-update" value="Update">
<input type="Submit" name="-duplicate" value="Duplicate">
<input type="Submit" name="-delete" value="Delete">
<input type="Reset" value="Reset Form">
<[form>
<p>
<hr width=550>

Search Records |
Add a Record
</center>
</body>
</html>

Again, the majority of the code is HTML. Ten Lasso tags are used:
(-update, -recid, -duplicate, -duplicatereply, -delete, -deletereply,
[option: ...], [value_list: ...], [list_value], and [checked]).

CHAPTER 5: GETTING STARTED

Keep in mind the following points when reviewing the code:

e The -recid command tag instructs Lasso which record to
update. It is paired with the [recid_value] tag, which is substi-
tuted with the record ID for a specific record in the database
when this file is processed.

e The -duplicate action tag instructs Lasso to make a copy of the
current record in the database.

e The -duplicatereply command tag specifies which format file
to use after a successful deletion.

e The -delete action tag instructs Lasso to delete the current
record from the database.

¢ The -deletereply command tag specifies which format file to
use after a successful deletion.

e The [option: ...] substitution tag is used within selection lists
to indicate where data is to be submitted.

e The [value_list: ...] container, along with the [list_value] sub-
container, displays values from a FileMaker Pro value list.

e The [checked] sub-container tag places the HTML “checked”
tag into the format file so that any items currently selected for
this record display as checked items on the form.

Update Reply

To indicate that a database record update was successful, create an
update reply template:

1. Using your text editor, create a new document named
“updatereply.html.”

2. Go to the template section of the FM Link palette and select
“Update Reply Template,” dragging it to the empty
“updatereply.html” document in the text editor.

3. Save this file to the “MyDatabase” folder.

Update Reply Template

<html>

<head>

<title>Update Reply Template</title>
</head>

<body bgcolor=white>

<center>

54

CHAPTER 5: GETTING STARTED

Figure 13: Update Reply

Seiviege Upduie Begly Tempicis]|
i A A4 » & b o & 1 H
s Fosed Sk e s e e iy
N | e T P T T T T
Lipghuir Suecreelul Lassn Templuiz
i v wptwed ooty
HyFesimi Teslow D peed
MiSrialreE)

FyTasifekic po o
LTI T S]
HyFERPel: e
HrlilmdFul T

il o Byl | iy e P

" ERO AT

<table cellspacing="0" cellpadding="1" width=550>
<tr>
<td align=left valign=middle>Update
Successful</td>
<td align=right valign=middle>Lasso
Template</td>
</tr>
</table>
<hr width=550>
<blockquote>Your record was updated
successfully.

</blockquote>
<table cellspacing="0" cellpadding="1">
<tr>
<td align=left valign=middle>MyFirstField:</td>
<td valign=middle>{[field:"MyFirstField"]</td>
<ftr>
<tr>
<td align=left valign=middle>MySecondField:</td>
<td valign=middie>[field:"MySecondField"]</td>
<ftr>
<tr>
<td align=left valign=middle>MyThirdField:</td>
<td valign=middie>[field:"MyThirdField"]</td>
<ftr>
<tr>
<td align=left valign=middle>MyFourthField:</td>

CHAPTER 5: GETTING STARTED

<td valign=middle>[field:"MyFourthField"]</td>
<ftr>
<tr>
<td align=left valign=middle>MyFifthField:</td>
<td valign=middle>[field:"MyFifthField"]</td>
</tr>
<tr>
<td align=left valign=top>MySixthField:</td>
<td valign=middle>[field:"MySixthField" break]</td>
<ftr>
</table>
<p>
<hr width=550>

Search Records |
Add a Record |
Update this
Record
<[center>
</body>
</html>

Delete Reply

To indicate that a database record deletion was successful, create a
delete reply template:

1. Using your text editor, create a new document named
“deletereply.html.”

2. Go to the template section of the FM Link palette and select
“Delete Reply Template,” dragging it to the empty
“deletereply.html” document in the text editor.

3. Save this file to the “MyDatabase” folder.

Delete Reply Template

<head>
<title>Delete Reply Template</titie>
</head>
<body bgcolor=white>
<center>
<table cellspacing="0" cellpadding="1" width=550>

<tr>

<td align=left valign=middle>Delete

Successful</td>

56 CHAPTER 5: GETTING STARTED

Figure 14: Delete Reply

brlsapr Remie Fepiy feegd ks T
i A A = & G < & 1 H
Ber Fosed Wk e s S e e iy
N | e T o T T
[glein Eocooeniul Lassn Templain
Pl b L A e el
& EE O

<td align=right valign=middle>Lasso

Template</td>

<ftr>
</table>
<hr width=550>

<blockquote>Your record was deleted successfully.

<[font></blockquote>
<p>
<hr width=550>

Search Records | Add a
Record
</center>
</body>
</html>

Duplicate Reply

To indicate that a database record duplication was successful,
create a duplicate reply template:

1. Using your text editor, create a new document named
“duplicatereply.html.”

2. Go to the template section of the FM Link palette and select
“Duplicate Reply Template,” dragging it to the empty
“duplicatereply.html” document in the text editor.

3. Save this file to the “MyDatabase” folder.

CHAPTER 5: GETTING STARTED 57

Figure 15: Duplicate Reply

briniape Tapi ale Brpiy fengisie [
E s 38~ & 4 340 H
e e e e
Duoglicnis Hercersl sl Larm Trmplwis
s Fcman sedi o el
o' I I.J. IJ E!

Duplicate Reply Template

<html>
<head>
<title>Duplicate Reply Template</titie>
</head>
<body bgcolor=white>
<center>
<table cellspacing="0" cellpadding="1" width=550>

<tr>

<td align=left valign=middle>Duplicate
Successful</td>
<td align=right valign=middle>Lasso

Template</td>

<ftr>
</table>
<hr width=550>

<blockquote>Your record was duplicated successfully.

<[font></blockquote>
<p>
<hr width=550>

Search Records | Add a
Record
<[center>
</body>
</html>

58 CHAPTER 5: GETTING STARTED

After you've completed this tutorial and understand the basics of
how to create Lasso format files, set up the provided “Employees”
example and read the comments provided within the supplied
format files.

Chapter 6: Lasso Server

The Lasso Web Server application incorporates all of the Lasso CGI
functionality for publishing FileMaker Pro databases on the Web.
The Lasso Server includes the following features:

¢ Ability to serve HTML, JPEG, GIF and multiple MIME file
types.

¢ Support for serving multiple sites, each with its own IP
address (multihoming) and configuration options.

¢ Optimized for maximum efficiency when serving FileMaker
Pro databases, outperforming both CGI and Plug-in solutions.

¢ Enhanced for security.

Lasso Server does not support other CGls, plug-ins or realm secu-
rity.

Preparing Format Files

All of the work to prepare your format files is carried out in the
same manner as with the Plug-in version of Lasso. Lasso Server’s
default configuration recognizes the “lasso” extension. Thus, Lasso
knows to direct processing to itself when it receives a request with
the extension “lasso” in the file name portion of the URL. For
example:

<form action="action.lasso" method="post">
...rest of form
<[form>

Here is an example of the first part of an embedded URL:

The location of the Lasso application does not need to be indi-
cated. All response files and file references are considered to be
relative to the base URL.

Menu Options

The Lasso Server menus provides control and configuration
options.

60

CHAPTER 6: LASSO SERVER

File Menu
The “File” menu contains options for:
¢ Displaying or closing the log window.

¢ Quitting the application.

Server Menu

The “Server” menu contains the following configuration options:

Stop Servers

Servers are started and stopped by toggling between the two
choices at the top of the “Server” menu list.

Configuration

This dialog is used to configure a single served site, as well as
multihomed sites. The following applies to each served site. Refer
to the multihoming section for details on setting up multiple
served sites.

e Active — If checked, the currently viewed site is active (default
is checked).

¢ Logging Enabled — If checked, Lasso will write log details to
a file. See the “Log Window” details below (default is
checked).

e Port — Sets the port used by the server; note that all virtual
hosts can use the same port (default is port number 80).

¢ Max Connections — Sets the maximum number of simulta-
neous connections (default is 15 connections).

e Timeout — Sets the time that Lasso will wait for a completed
request (default is 60 seconds).

¢ TCP Buffer Size — Sets the size of the TCP packet for sending.
(The recommended default for TCP is 8192 bytes).

e Default File — Sets the name used as the default file for a
specific directory, e.g., “index.html” or “default.html.” This file
is the one used if a specific file for a path is not specified in a
URL.

e Error File — Sets the file used when a request is made for a
file that does not exist. A colon before the name indicates that
the file is to be saved at the root level of the Web serving
folder (default is “:error.html”).

CHAPTER 6: LASSO SERVER

e No Access File — Sets the file used when an unauthorized
request is made for a secured file (default is “:noaccess.html”).

e Max. Keep Alive Sessions — See below (default is 5 sessions).
e Keep Alive Timeout — See below (default is 15 seconds).

¢ Site Root Folder — Sets the location of the Web serving folder
for a specific served site (default is the folder Lasso currently
resides in).

The “default,” “error” and “no access” files need to be created and
stored within the root folder of a specific site.

Keep Alive

The Keep Alive extension to HTTPD, as defined by the HTTP/1.1
draft, allows persistent connections. These long-lived HTTP
sessions allow multiple requests to be sent over the same TCP
connection, and in some cases have been shown to result in an
almost 50% performance increase in latency times for HTML
documents containing many images. In order for Keep Alive
support to be used, the browser must support it. Many current
browsers, including Netscape Navigator 2.0 and higher, and
Spyglass Mosaic-based browsers (including Microsoft Internet
Explorer) support Keep Alive.

Configuration settings take effect when the “Save Current Site”
button is selected. Lasso Server does not need to be restarted.
However, when modifying the Server Port or Maximum
Connections settings, the Lasso Server application needs to be
stopped and then restarted. (Note: This is not to be confused with
quitting and relaunching the application, which is not necessary.)
To stop the server, select “Stop Servers” from the “Server” menu,
then select “Start Servers.”

Suffix Mapping

Lasso Server can be set to process and/or serve:
¢ Files named with certain suffixes.
e Files of a particular MIME type.

Several default suffixes are pre-configured. Lasso will automatically
process any file with the following suffixes:

e “lasso”

61

62 CHAPTER 6: LASSO SERVER

If a file with a suffix that is set to process is requested by a client,
the file will first be filtered through Lasso before returning to the
client. Lasso will perform any actions specified within the file,
including sending email, database activity, etc. Any MIME type that
is not set to serve will not be returned to the client.

To add a MIME type to the list:
e Type in the MIME type and file suffix.
e Select the “add” button to add it to the list.
To make changes to an existing MIME type suffix:
¢ Double-click on the name of the item to be changed.
¢ Make the desired changes.
e Select the update button.
To remove an item from the list.
e Highlight the item.
e Select the “Remove” button.

When the “Save” button is selected the settings are saved and
immediately apply. If the window is closed without saving the
changes, the changes are discarded.

If a new file type is set to be processed, the action for an HTML
form can be different. For example, the suffix “html” within an
HTML form element can be specified as:

<form action="action.html" method="post">
...rest of form
<[form>

Or:

Processed ltems

Lasso Server can be configured to process specific files or files in
specific folders. All files that are listed in the processed items list
are first processed by Lasso before returning to the client. For a
folder, any files within that folder, and all its nested folders, are
processed by Lasso before returning to the client.

CHAPTER 6: LASSO SERVER

To set the items to be processed, open the “Processed Items”
configuration window. Items are added using the buttons at the
bottom of the window, or by dragging-and-dropping items to be
processed into the window itself.

Log Window

Lasso Server writes current server activity to the log window when
the window is open. Logging still occurs when this window is
closed, it is just not visible. The log window option allows for a
choice between two types of log formats: CLF and Lasso Style. The
log file type does not affect the activity of the server.

The standard Lasso Style log appears as follows:

11/23/97 6:47:15 PM 209.19.18.252 209.19.18.229/templatefolder/default.html
129 bytes/8 ticks

This reports the date, time, IP number of guest, absolute path of
file accessed, and the elapsed time for the action to be performed.

The Common Log Format, CLE is a standard format used for log
analysis. It would appear as follows:

209.19.18.252 - - [19/Nov/1997:13:31:02 -0800] "GET /Example/green_dot.gif
HTTP/1.0" 304 129

209.19.18.252 - - [19/Nov/1997:13:31:16 -0800] "POST /Example/action.lasso
HTTP/1.0" 200 18054

Lasso will also create a log file called “Lasso Server.log” when the
“Logging Enabled” checkbox is selected in the “Configuration”
dialog. The log file is saved by default to the root level of the Web
serving folder. The CLF log style is used as the default logging style
for the “Lasso Server.log” file. This cannot be customized or
changed to Lasso Style logging.

Multihoming

Lasso Server can provide Web services for multiple virtual hosts on
a single computer.

To configure each of the multi-homed sites, open the
“Configuration” dialog and select one of the available IP numbers.
Custom settings can be assigned to each available IP address with
different site root folders to separate the contents of each Web site.
Each of the settings described in the “Configuration” section apply
to that specific virtual host. Use the “Save All Sites” button to save
the settings for all sites at one time.

63

64 CHAPTER 6: LASSO SERVER

The multiple IP addresses for your computer are established using
Open Transport (1.3 and above). One way to add additional IP
addresses is to create a text file called “IP Secondary Addresses.” This
file needs to list the various IP numbers to be used. Here is an
example:

; 'ip=' for ip address, 'sm=" subnet mask
; Note: no space in 'ip=17.201.22.200";

. IP address Subnet Mask
ip=209.19.18.224

ip=209.19.18.225

ip=209.19.18.226

(The lines which start with a semi-colon are comment lines.)

Save this file in the Preferences folder within the System Folder, and
then restart your computer.

Chapter 7: Security

Lasso security uses a method similar to a Web server’s realm-based
security to determine whether or not a file can be accessed. Both
require that a “username” and “password” be authenticated with a
security dialog when a specified item is requested. The difference
between the two is that Web server realms protect files or directo-
ries, while Lasso security protects databases, fields, records and
actions. Once the authenticated username and password are estab-
lished, they are sent by the browser with every request to the Web
server. Lasso checks these values against the settings configured in
a set of security databases, and then determines if privileges exist
for a specific action.

The Lasso security scheme is configured by assigning usernames,
passwords and access privileges in the Lasso security databases.
The databases can be modified directly in FileMaker Pro or via
Lasso’s own remote security administration Web interface.

If installed according to the provided installation instructions,
Lasso’s default installation is with security enabled. With a stan-
dard installation, one must first enable security setting for data-
bases in order to serve them with Lasso.

Lasso Security Databases

Lasso security is controlled by a main database called
“Lasso_Security.fp3,” and two related databases, called
“Lasso_Users.fp3” and “Lasso_Fields.fp3.” Lasso reads the security
databases when first launched, and initializes, or stores, all security
information in RAM.

The security databases are found in the folder named “Lasso
Startup Items” within the Lasso distribution package and conse-
quently load automatically when Lasso launches. The databases,
however, can be stored anywhere on the computer on which the
Lasso application resides.

Two Methods for Configuring
Security Settings

Security settings may be configured directly within the provided
Lasso Security databases, or from within a Web browser.

66

CHAPTER 7: SECURITY

1. Configuring Security Settings Within FileMaker Pro

Changing configurations while working directly on a live Web
server computer is not recommended, as this will affect the
server’s performance. In addition, if the Lasso Security data-
bases are modified directly with FileMaker Pro (or via
commands sent from other applications), Lasso.acgi and Lasso
Server must restart for the changes to take effect. With the
Lasso Plug-in, the Web server must be restarted.

2. Configuring Security Settings Within a Web Browser

If a global administrator has been established (see below), all
Lasso Security settings can be configured remotely via a Web
browser. Changes made this way do not require that Lasso or
the Web server restart., and there is no impact to performance
on the Web server during configuration. However, unless you
are using the Plug-in and an SSL-encrypted Web server, any
security information submitted is not encrypted.

Successfully Accessing Security
Databases

Upon launch, Lasso attempts to read information from the secu-
rity databases. If Lasso fails to read the security databases for any
reason, Lasso security is disabled. There are four circumstances in
which Lasso is unable to read the security databases:

1. FileMaker Pro isn’t running when Lasso is launched.

2. The “Lasso_Security.fp3” database isn't open when Lasso is
launched.

3. An unexpected error occurs while reading the security data-
bases. Lasso will display an error code in its console window.

4. The Lasso Server, Lasso.acgi, or the Web server (for the Plug-
in) application does not have enough memory allocated in
order to store the settings stored in the “Lasso_Security.fp3”
database. Note that this will only be the case when thousands
of users have privileges assigned in these databases.

Essential Configuration Issues

Protecting Lasso Databases

It is essential that the Lasso Security databases are installed
correctly such that they cannot be downloaded remotely by
anyone on the Web. If the databases are contained within the

CHAPTER 7: SECURITY

“Lasso Startup Items” folder (recommended; default installation),
then it is critical that measures are taken to prevent unauthorized
access to these databases. This can be accomplished by either
establishing a Web server realm or Web server action to deny
serving any files with the suffix “fp3” (the latter approach is
recommended).

Note: The Lasso Server is internally configured to deny access to all
files containing the “fp3” suffix.

Protecting Other Databases

All other databases installed on one’s Web server should be
protected in the same manner that Lasso Security databases are
protected. By using a standard file suffix (“fp3”) for all databases,
and denying direct downloads of these files, it is then quite easy to
protect all databases, regardless of where they are installed.

Protecting Lasso Format Files

Similar to methods described above, it is recommended that Lasso
format files are protected by either realms or unique file suffixes
(for example, “lasso” or “fmt”).

Setting Up a Global Administrator

The recommended first step for configuring the Lasso Security
databases is to set up a global database administrator.. This admin-
istrator will have all permissions granted to all databases installed.
The global administrator is configured directly within FileMaker
Pr.o.

Configuration Keywords
Lasso recognizes two special configuration keywords:

¢ All Databases — The “All Databases” keyword is used as the
database name for assigning access privileges (permissions)
for all databases served by Lasso. The “Lasso_Security.fp3”
database contains a special record called “All Databases.”
Select users may have certain permissions which apply to all
databases they use. Generally, the database administrator has
all permissions enabled.

¢ All Users — The “All Users” keyword allows all visitors to a
specific database to share a common set of permissions. When
a database is assigned “All Users,” there is no need to enter a
username or password for the assigned actions.

67

68

CHAPTER 7: SECURITY

It is possible to provide “All Users” permissions for “All
Databases” to provide certain access privileges for all users for all
databases (for example, to allow all users the permission to search
databases).

Factors Affecting Security

In order for a database to be served via Lasso when security is
enabled, one of the following conditions must be true:

1. A record exists in the “Lasso_Security.fp3” database defining
usernames, passwords, and permissions for a specific database.

2. A record exists in the “Lasso_Security.fp3” database defining
usernames, passwords, and permissions for “All Databases.”

In order for a user to access a database served via Lasso when secu-
rity is enabled, one of the following conditions must be true:

1. The username, password, and permissions are defined for the
specified database.

2. The username, password, and permissions are defined for “All
Databases.”

3. “All Users” have permissions defined for the specified data-
base.

4. “All Users” have permissions defined for “All Databases.”

Figure 16: Lasso Security Database — “All Databases” Record

al ~ Lavie_fecariig e ——mm
T e T i e
[T Vool prim] TR,
E=H i o Dleas Bosn Wicas i B woow o]
Tim Seian

Viwl Hares Emuirisiiams
pe— Cwvlien Cwvismrs BB el] Fanpian Cfassies [] Bt [~
E L] O o Oyt @ ariese JTsmpras Of avbesn [legcian

CE—H— LRt L2t JheBitH CR-soer Oisa— o |

K

CHAPTER 7: SECURITY

User Authentication

The user authentication dialog is presented when a user initially
attempts to access a database protected by Lasso security. The user-
name and password entered into the user authentication dialog
must match those entered in the Lasso security databases for the
specified database.

Once the user has entered their username and password success-
fully, the username and password values are sent by the Web
browser in every request to a specific Web server. The user will not
be presented with the authentication dialog again unless they try
to access another database or call an action set with different
permissions requiring a new username or password. If the user is
prompted for a username and password by the Web server for
realm-based security, the values are also included by the browser
in requests sent to Lasso. Therefore, if their Lasso username and
password are the same as those used by the Web server, the user
won't be presented with an authentication dialog again.

Database-Level Security

Access to databases served via Lasso is controlled by assigning
usernames, passwords, and permissions in the “Lasso_Security.fp3”
database. Database-level security is controlled via the upper
portion of the display. The lower portion is used to control field-
and record-level security.

Defining Permissions

Perform the following steps from the FileMaker Pro user interface
to define usernames, passwords, and permissions for a database
served via Lasso:

1. Select the New Record command from the Mode menu. This
will create a blank record.

2. Enter the name of the database to be served via Lasso in the
“Database Name” field.

3. Enter usernames and passwords in the yellow and white
striped portal in the upper portion of the display. Passwords
must contain a value.

4. Set the permissions for each user.

69

70 CHAPTER 7: SECURITY

There are six possible permissions that can be granted to a user for
a database:

e Admin — Grants the user permission to use Lasso remote
security administration to modify user permissions for the
database across the Web. This also exempts the user from any
field- or record-level security restrictions defined for the data-
base and automatically grants the user permission to perform
the other five actions for the database, even if they are not
explicitly granted.

e Search — Grants the user permission to search the database,
subject to any field- or record-level security restrictions.
Includes -show and -findall.

e Add — Grants the user permission to add records to the data-
base.

e Update — Grants the user permission to update records in the
database, subject to any record-level security restrictions.

¢ Delete — Grants the user permission to delete records in the
database, subject to any record-level security restrictions.

e Scripts — Grants the user permission to execute FileMaker
Pro scripts via the -scripts tag, or scripts that appear in forms
with other actions via the -doscript tag. If the script is run with
another action the user must have permission for that action
as well as for scripts. For example, if a script appears in a
search form via the -doscript tag and the user doesn’t have
scripts permission, they won't be able to execute the search.

The -show action is not included on the permission list, but if a
user is granted either search or add permission for the specified
database, they can also use the -show action to bring up a search
or add form. The -findall tag also does not have a selection, but is
protected in the same manner as “search.”

Field- and Record-Level Security

The pink and white striped portal in the lower portion of the
“Lasso_Security.fp3” display is used to control field- and record-
level security for a database. These security features are imple-
mented by defining restrictions that limit the use of specified fields
in a database. Field- and record-level restrictions may be defined
for “All Databases.” A “Security Violation” error page is returned to
the end user if any of these restrictions are violated and the user
does not have sufficient privileges for that database (or “All
Databases”).

CHAPTER 7: SECURITY

There are three field-level security restrictions that can be defined
for any field in any database served via Lasso:

¢ DontShow — Data from the field is not available for display
in a Lasso format file except to users with “Admin” privileges
for the database. If a field with this restriction appears in a
format file, a blank value is returned as if the field was empty.

e DontSearch — The field cannot be used in a search form
except by users with “Admin” privileges for the database. If a
field with this restriction appears in a search form, the field is
not used in the search request sent by Lasso to FileMaker Pro.

¢ ResponseField — Enables the specified field to be used as the
response for a Lasso action. This method can also be used
with any of the following command tags: -response, -dupli-
catereply, -adderror, -deletereply, -noresults, -reqfieldmissing,
and -emailformat.

In addition, there are three record-level security restrictions that
can be defined for any field in any database served via Lasso:

¢ ExactSearch — Only records whose fields contain the exact
value specified for the search will be returned. When “exact-
search” is assigned to a field, the “equals” operator must be
used with that field when it is present in a search action. In
addition, if any field is defined as “exactsearch” then the -
findall action cannot be used with that database.

e ExactUpdate — When updating a record, the value provided
by the user for this field must exactly match the value in the
database. This has the side effect of preventing updates to
fields with this restriction.

e ExactDelete — When deleting a record, the value provided by
the user for this field must match the value in the database.

If you have any field set with record-level security, the field must be
included in the form that specifies that action. For example, if two
fields are set to be “exactsearch” in the “Lasso_Security.fp3” data-
base, the search form will need to add two text entries for these
same fields. A security violation will occur if either of the fields are
left blank. The same is true for ExactUpdate and ExactDelete.

Each of the record-level security restrictions can be made on a related
field, if the relation is specified with the relationship name followed
by a double colon and then the field name. A non-blank value must
be specified for the field when searching the database. In addition,
the specified value must not contain any FileMaker Pro wildcard or

u nou

range search characters (*, @, !, =, //, ".”, ”...”, or ellipsis).

71

72

CHAPTER 7: SECURITY

Lasso Tags Related to Security

If Lasso Security is initialized, Lasso will check the access privileges
of the current user when a request is made to a specific database.
The username and password values that are sent by the browser
are checked against those stored in the “Lasso Security” database.
There are two sets of tags that allow one to submit or display these
authentication values for the current request.

Substitution Tags

The Lasso substitution tags [client_username] and [client_pass-
word] can be included in a response file to substitute the user
authentication values passed by the Web browser. These values can
be displayed, saved in a database, or used in a conditional state-
ment to determine the content of the returned format file. For
example, one may want to save these values to a activity log using
an inline action as follows:

[inline: add, database="site_log.fp3", layout="main",
"PasswordField"=client_password, "User"=client_username,
"Date"=server_date, "time"=server_time]

[/inline]

Note that the [client_username] and [client_password] values are
not available if the user authentication dialog was not presented
and successfully passed.

Submit Tags

The -lassousername and -lassopassword tags can be used to submit
the user authentication values with a Lasso action. In other words,
the values used for checking access privileges to a protected data-
base can be set in a Lasso action. The -lassousername tag is used to
set the username, while -lassopassword is used to set the password
used in the security check. Standard browser authentication will be
used if a username and password are required. The value used for
these tags can be a hard-coded literal value or a value returned
from a database field.

For example, if a “business” database is set to require an exact
search for the “name” and “pw” fields, a search can still occur with
an embedded URL link using the following syntax:

<a href="action.lasso?-search&-database=business&-layout=main&
-response=detail.ntml&name=[field:"name"|&-lassousername=admin&
-lassopassword=goahead"> Search

CHAPTER 7: SECURITY

In another example, the tags are used in an inline action as
follows:

[inline: database="business", layout="main", "leads"="top",
lassousername="admin", lassopassword="goahead", search]
[record]
Top Leads = [field:"name"]

[frecord]
[/inline]

Note that in these examples “admin” and “goahead” are sample
values. In this case they would need to be assigned in the
“Lasso_Security.fp3” database with, at least, search privileges.

Remote Security Administration

Lasso security can be administered remotely via a Web browser.
The HTML format files necessary to accomplish remote adminis-
tration are located in the folder named “Security.” A global admin-
istrator is able to make changes to all databases. In addition,
administrators for specific databases can be established. The global
administrator password must be set directly within FileMaker Pro
before the remote security administration can be used.

Lasso recognizes the special username “Admin” (predefined in the
“Lasso_Security.fp3” database; see FIGURE 16: LASSO SECURITY
DATABASE — “ALL DataBASES” RECORD) for “All Databases.” Only the
“Admin” user is allowed to add databases in Lasso security via
remote administration, and exercise remote administration privi-
leges for “All Databases.” Users who have been granted “Admin”
permission for a specific database may modify security for the
database via remote administration. It is not possible to delete
databases from the security setup via Remote Security
Administration, but users can be deleted.

Follow these steps to remotely establish security for Lasso data-
bases for either the Lasso Plug-in, Lasso.acgi, or Server version:

1. Make sure that Lasso has been installed correctly and that the
“Lasso_Security.fp3” database is open. Check that the
“Security” folder is at the root-level of the Web serving folder.

2. No password is predefined for user “Admin.” From within
FileMaker Pro, open the file named “Lasso_Security.fp3” and
locate the password field just to the right of the “Admin” user
on the database record for “All Databases” (see FIGURE 16:
LASSO SECURITY DATABASE — “ALL DATABASES” RECORD). Insert a
password value.

73

74

CHAPTER 7: SECURITY

3. Launch either the Lasso.acgi, Lasso Server, or Web server appli-
cation (for the Lasso Plug-in version).

4. The Remote Security Administration feature is accessed via the
“default.html” file in the “Security” folder. Launch the Web
browser and go to:

http://www.yourserver.com/security/default.html

5. From the default page you can either search for a database to
administer, or add a new database. To set up a database for
the first time, enter the name of the new database name, new
username, and new password. Alternately, “All Users” can be
used to allow full access to the new database.

6. A user authentication dialog box will then appear. Enter
“Admin” and the password set earlier in FileMaker Pro. A user
with “Admin” permissions for a specified database can modify
permissions for other users of that database, including giving
them “Admin” permission.

7. At this point, options are presented to assign database action
privileges or any field-level setting. Links can also be followed
to log in and view another database.

If administrators are established for specific databases, they can
access their particular database by entering the database name in
the initial prompt and then the username and password that has
been established for them in the user authentication dialog. They
will then be able to make changes to usernames, permissions,
record-level or field-level access to that particular database. To get
to another database they would need to know the password for it,
so other databases are protected.

Note: Remote administration of Lasso Security will not work with
versions of WebSTAR prior to 2.0.

Note: Do not edit any of the HTML files located within the secu-
rity folder (except for customizing security violation pages as indi-
cated below) or change their names or locations.

Custom Security Violation Pages

There are two security violation error pages that can be returned to
the end user, one for database-level security errors and another for
field- and record-level security errors. These error pages are stan-
dard HTML pages placed in the “Security” folder and are given the
following names:

CHAPTER 7: SECURITY

Name Purpose
Database_Violation.html Error response returned

to user for database-
level security violations

Field_Violation.html Error response returned
to user for field-level
and record-level
security violations

The “Security” folder should be located at the root level of your
Web serving folder. If Lasso doesn't find these files or is unable to
open them for any reason, default security violation pages
(internal to the Lasso application) are returned to the end user.

Important: The violation error pages can be customized to display
your own message or images; however, do not change their names
or locations.

Creating Links to Detail

When using “exactsearch,” “exactupdate,” or “exactdelete” to
protect specific records with Lasso security, detail links must
contain the username and password information in order for a
search to be completed securely. Detail links can be constructed
manually as follows:

1. Include the -lassousername and -lassopassword tags set to the
Admin username and password.

2. Include all of the fields that are required for the exact search
and build the elements of the detail link without using the
[detail_link: ...] tag. For example, if an exact search is set to
the fields “id” and “name,” create the link as follows:

<a href="action.lasso?-database=database_nameé&-layout=layout_name&
-recid=[recid_value]&
-operator=eq&id=[field:"id"|&-operator=eq&name=[field:"name"|&
-maxRecords=all&-search">

Link to Detail

Note the use of the “equals” operator.

The image tag must also be constructed manually, for
example:

<img src="action.lasso?-database=database_name&
-recid=[recid_value]&photo=jpeg&
-operator=eq&id=[field:"id"|&-operator=eq&name=
[field:"name"]&-image">

75

76

CHAPTER 7: SECURITY

Note that the above ampersands used before field names are
encoded as “&” to prevent the ampersand from
completing an HTML character reference.

Although the user will see the special field values for their
record displayed in the location field, users will only see the
values they entered. These values will also persist only for the
length of the session. No one else will be able to gain access
to the values in those special fields (unless they are standing
over your shoulder watching you type in the values). In addi-
tion, you could have an “exit” page that would flush the
cached pages using the Lasso [header] tag.

One could also put the detail link into a form so that a
submit button is selected to go to the link. The advantage here
is that the form can be set up as “post” so that the link will
not display the location, nor the search args string containing
the values for the “exactsearch” fields.

Note: Because of the way that FileMaker Pro indexes a field, an
exact match is a match of a single “word” in a field, and not the
value for the entire field. This is because FileMaker Pro indexes all
fields by breaking up the field contents into separate words. This is
important to note when using equals matches to find specific user-
names or passwords. To overcome this, you could restrict users to a
single word with no spaces for the field. Another option would be
to either change the field to a “number” type field (the compar-
ison would then be only on the first indexed item), or change the
“Storage Options” to “index as ASCII” (this is found in the
“Define Fields” dialog and will require that the password be case-
sensitive). See CHAPTER 8: SEARCHING for more details.

Password Protect Individual Records

What follows is a description of how to password protect indi-
vidual records:

1. Create two fields, “username” and “password” (they can be
given any name) in the database to contain the protected
records. Within FileMaker Pro, set these fields to contain
required values.

2. Setup an entry in the “Lasso_Security.fp3” database with
“exactsearch” applied to these fields.

3. Quit and restart Lasso.acgi, Lasso Server, or the Web server
application (if using the Plug-in).

CHAPTER 7: SECURITY

4. In a search page include text entry fields for “username” and
“password” and a search button. Add an operator for each
field to search using only the “equals” operator.

Here is an example login form:

<form action="action.lasso?-search&-database=resume&
-layout=main&-response=resume.html" method="post">
<p><input type="hidden" name="-operator" value="equals">
<input type="text" name="username" size="15">

<p><input type="hidden" name="-operator" value="equals">
<input type="text" name="password" size="15">

<input type="Submit" name="-search" value="Login">
<[form>

Lasso and Realm-Based Security

Lasso Security and Web server realms-based security can work in
conjunction, as well as in conflict with each other, depending on
your configuration. Problems may arise if one accesses a Lasso
format that relies on Lasso’s security mechanism but is stored
within a Web server password-protected realm and the
username/password settings differ between the two security
methods.

To avoid conflicts, you may simply choose to avoid using Web
server realms and instead rely on protection by unique file suffixes.
If this is inconvenient, it is not too difficult to design a setup
where Lasso Security and Web server realms work in harmony. This
is possible given that Lasso passes Web server information with
each request. As long as settings between the two match for any
given access request, there is no conflict.

Lasso loads realm information at startup and stores it in RAM. If
realms are changed, Lasso should be restarted for the changes to
take effect.

Note: At the time of this writing, there are issues which prevent
proper interoperability of realms between Quid Pro Quo 2.0 and
Lasso 2.5. These issues are not present with versions prior to Quid
Pro Quo 2.0.

Note: Lasso Server does not use realm security; rather, files and
folders can be protected using the powerful “processed file”
options. See CHAPTER 6: LASsO SERVER for details.

77

78

CHAPTER 7: SECURITY

Prompt for User Authentication

At some point it may be desirable to prompt for new authentica-
tion values to replace the current settings saved in the Web
browser. The [header] tag can be used to “reset” the username and
password by changing the HTTP header of the HTML file. Here is
an example of the Lasso syntax used to accomplish this:

[header]

HTTP/1.0 401

Server: Lasso/2.5

WWW-Authenticate: Basic realm=some_realm_name

[/header]

To indicate that the authentication values stored in the Lasso_Security.fp3
database be used you would substitute some_realm_name with "database
name_of_database" as follows:

[header]

HTTP/1.0 401

Server: Lasso/2.5

WWW-Authenticate: Basic realm="database name_of_database"
[/header]

Separate the test “database” from the name of the database
“name_of_database” with a space. Also, change “name_of_data-
base” to the actual name of the database you are checking against
(including “All Databases”). Put two returns before [/header] and
change “some_realm_name” to an actual value which is the new
realm (for example the folder your Lasso format files are in). The
syntax is simply placed anywhere on the format file, for example at
the top of the page (and can even be before the opening opening
<HTML> tag). This will invoke a prompt for a username and pass-
word for the specified realm. See CHAPTER 16: HTTP CONTENT AND
ConTroLS for more details.

Chapter 8: Searching

Lasso provides several options for refining a database query. The
search parameters include: the fields that should be searched on,
how to compare these values to the records contained in the data-
base, the maximum number of records to return, how the returned
records should be sorted, and whether any fields are required for
the search to be submitted. In addition, the hitlist response page
can display or utilize the previous search parameters.

Background Information

Search parameters are the components of a search that determine
which fields are to be searched on and how the search is to occur.
Although Lasso sends the search parameters to FileMaker Pro, it is
the FileMaker Pro application which performs the actual search.
Thus, the rules used for searching are set by FileMaker Pro. Lasso
has been designed to emulate FileMaker Pro searches. For example,
“begins with” is the default operator for both Lasso and FileMaker
Pro. Also true for both is that a search with no search criteria will
result in a “No Records Found” error, as opposed to finding all
records, as is the case with other types of database applications.

FileMaker Pro Field Indexing

The rules used by FileMaker Pro in searching a database affect
Lasso searches. This is most evident with how FileMaker Pro
indexes a field, since indexing governs the way search parameters
are compared to values in a field.

It is possible to view a field’s index to see how this occurs (only
for indexed fields). To view the index, enter “Browse” mode and
place the cursor into the field. Go to the “Edit” menu and select
“Paste Special,” and then “From Index.” You can then check the
option “Show individual words” to see how the indexing has
produced a list of words.

Note: Indexing will remove certain characters, such as periods (*.")
or “@" symbols and break values into components, separated by
spaces.

An example of how FileMaker Pro responds to search requests sent
by Lasso can be seen in Lasso operators’ interpretation. An “equals”
search will find those records that exactly match the word or string
entered into the search field on a Lasso Web-based search form.

80

CHAPTER 8: SEARCHING

However, the comparison is applied to all indexed items or words
in the field, not the field as a whole. This is because FileMaker Pro
indexes all fields by breaking up field contents into components
based on where spaces occur. In other words, if a field had “Tom
and Jerry go fishing” an “equals” search would find “Tom,” “Jerry”
and “fishing,” as well as “Tom and Jerry,” since the index contains
each word as separate items. Similarly, a “begins with” search finds
all records containing the first characters in every individual word.
Thus, if the value “Frank” is entered into a “begins with” search,
the records with “Franklin,” “Ben Franklin” and “Hot Dogs and
Frankfurters” would all be in the found set.

To overcome FileMaker Pro indexing, indexing could be turned off
for a field, but it will slow down searching dramatically. To turn a
field’s indexing on or off in FileMaker Pro, open the “Define
Fields” dialog, select the field’s options, and click the “Storage
Options” button. Fields which are able to be indexed can be
manually indexed by turning the “Indexing” radio button on.
Indexing will occur when a find request is completed on that field.

Another option is to change the field type from “text” to
“number.” FileMaker Pro will then only compare the search para-
meter with the first value in the field (not each word). However,
this works only when the search parameter is a single word. In
addition, a field could be set to “Index as ASCII” (under “Storage
Options”). When indexed as ASCI], all characters are used in the
search; however, the field is also case-sensitive.

FileMaker Pro Search Operators

The following FileMaker Pro search operators can be used directly
within Lasso search form fields:

> (less than) ... (range)
>= (less than or equal to) // (today’s date)
< (greater than) ! (duplicates)

<= (greater than or equal to)

Entering a FileMaker Pro search symbol into a field in a Lasso
search form is the same as performing a Find operation directly in
FileMaker Pro.

FileMaker Pro operators can also be included within a selection
list. For example:

CHAPTER 8: SEARCHING

Number of Rooms: <select name="rooms">
<option value="=Studio">Studio
<option value=">0" selected>All
<option value="1...3">1 to 3
<option value=">2">More than 3
<option value=">3">More than 4
</select>

Note that the double quotes used to enclose literal text in
FileMaker Pro find operations cannot be used. Double quotes
within double quotes will not work in HTML.

Lasso Search Operators

The -operator command tag, which can also be abbreviated as -op,
directs Lasso on how to find matches. The operator is inserted
directly before the field the operator affects. For example:

Search Values that: <select name="-operator">
<option selected> contains
<option> equals
<option> not equals
<option> begins with
<option> ends with
</select>
<input type="text" size=30 name="field_name">

All of the following operators are supported by Lasso:

Long Form Short Form
equals eq

not equals neq
contains cn
begins with bw
ends with ew
greater than gt
greater than or equals gte

less than It

less than or equals Ite

Note: Values used with the -operator command are not case-sensitive.

It is not necessary to have the user select an operator in the search
form, as the default operator is “begins with.” The operator will
default to “begins with” for each field that is not immediately
preceded with an operator.

81

82 CHAPTER 8: SEARCHING

As with selection lists, you can display alternate text for compar-
ison operators, if the attribute “value” (e.g., value="contains”) is
used. For example:

Search Values That: <select name="-operator">
<option value="equals" selected> =
<option value="greater than"> >
<option value="greater than or equals"> > or =
<option value="less than"> &t;
<option value="less than or equals"> < or =
</select>

<input type="text" size=30 name="field_name">

The values specified must match either the “long form” or “short
form” (abbreviated) of the search operators supported by Lasso.
An example of an operator using abbreviations is as follows:

Search Values That:<select name="-operator">
<option value="bw" selected>begins with
<option value="eq">equals
<option value="cn" >contains
<option value="ew">ends with

</select>

<input type=text size=30 name="YourFieldName">

The -operator command may also be used as a hidden input field
to “hard-code” a search. For example:

<input type="hidden" name="-operator" value="contains">

Date and Time Search Operators

If a field is defined as a date or time type field, then you must
specify an operator that is either “equals,” “greater than,” “greater
than or equals,” “less than,” or “less than or equals.” For example:

<p align=right>Hire Date
<select name="-operator">
<option value="gte"> from
<option value="gt"> after
</select>
<input type=text name="Hire Date" size=10>
<select name="-op">
<option value="Ite"> to
<option value="It"> before
</select>
<input type=text name="Hire Date" size=10>

CHAPTER 8: SEARCHING

For an [inline: ...] tag to search for a date value in a date field, the
following could be used:

[inline: database="site_log.fp3", layout="Main", operator="eq",
"Date"=server_date, search]

Logical Operator

A logical operator (AND or OR) can be used to determine whether
the search criteria will find:

e Records that fulfill all the parameters indicated (this would be
an AND-type search).

e Records in which any one (or more) of the parameters indi-
cated are valid (this would be an OR-type search).

The logical operator applies to all search fields in the form. If no
operator is indicated, the default logical operator is AND. The
syntax for selecting a logical operator is as follows:

<input type="radio" name="-logicalop" value="and" checked>AND
<input type="radio" name="-logicalop" value="or">OR

This can also be coded as a hidden input type. For example, to
specify OR-type searching, use:

<input type="hidden" name="-logicalop" value="or">

Multiple Logical Operators and NOT Support

The -opbegin and -opend command tags can be used to create a
field-level operator, or multiple field-level operators. Any fields
specified between the -opbegin and -opend tags in a search form
will be grouped under the specified logical operator. The value of
this tag can be “and,” “or,” or “not.” The default is “and.” There
must be one -opend tag for every -opbegin tag. The -opend tag
does not need to specify any value.

Here is one idea for how this can be used:
Search for this ...

Model: <input type="text" name="model" size="30">
and, either

<input type="hidden" name="-opbegin" value="or">
Price: <input type="text" name="Price" size="30">

83

84

CHAPTER 8: SEARCHING

or

Color: <input type="text" name="color" size="30">
<input type="hidden" name="-opend">

The “not” logical operator can be applied only to one subsequent
item to indicate that the value entered should not be used in a
search. The item can be either a search field, or another -opbegin
tag which can group other search fields or -opbegin tags. For
example:

<input type="hidden" name="-opbegin" value="not">
<input type="hidden" name="-opbegin" value="and">
Do not include Names: <input type="text" name="name" size="30">
Do not include Dates: <input type="text" name="date" size="30">
<input type="hidden" name="-opend">
<input type="hidden" name="-opend">

In the example above, both input values contained within the
nested “and” operator are required in order for the “not” opera-
tion to succeed.

If the [search_args] ... [/search_args] tags are used on the reply
page, then the “no_ops” parameter should be used as follows:

[search_args,no_ops] ... [/search_args]

The current field-level logical operators will not be displayed along
with the other fields used in the search.

Sort Field and Order

Search results can be sorted using the -sortfield and -sortorder
command tags.

¢ -sortfield indicates which field (or fields) to sort.

e -sortorder specifies how the search field (or fields) should be
sorted.

The optional -sortfield tag instructs Lasso which fields sort the
results. Any number of fields can be included (as long as they
appear on the referenced FileMaker Pro layout). Records are left
unsorted if the -sortfield command is not used, or is not given a
value. The value of “unsorted” (not case-sensitive) is recognized by
Lasso to leave records unsorted. An example of the -sortfield
command is as follows:

Select field to sort by: <select name="-sortfield">
<option selected>Unsorted
<option>First Name

CHAPTER 8: SEARCHING

<option>Last Name
<option>Employee Number
<option>Hire Date
<option>Group
<option>Shift</select>

To have several fields used in a sort, list multiple -sortfield tags in
the format file. The sorts are nested in the order in which they
appear in the HTML. In other words, the first one becomes the
primary sort and the next is the secondary sort and so on. For
example, if the primary sort is on the “city” field and the next is on
the “last name” field, the records returned would be sorted by the
city field, and then, within groups of cities, the records would be
sorted by the last name.

Multiple sorts can also be accomplished using a scrolling list and
holding down the “command” key to make multiple field name
selections, or by using a checkbox selection list. In these cases, the
primary field sorted is the first item selected, the secondary is the
one that was selected second, and so on.

If the sort order is indicated, the -sortorder command applies to
the -sortfield tag that appears immediately before it. It is reset to
“ascending” for subsequent sort fields. The -sortfield command tag
is optional.

The values of “ascending,” “descending,” or “custom” (not case-
sensitive) are recognized by Lasso to determine how to sort the
results of a search. The default sort order is ascending if none are
indicated.

Custom sorting is identical to the FileMaker Pro sort option
“Custom order based on value list” using the value list that is spec-
ified for that field in the referenced layout (thus the field must
have a value list). Any option can be included as a hidden field to
predetermine the sort order. An example of the -sortorder
command is as follows:

Sort By:<select name="-sortorder">
<option selected>ascending
<option>descending
<option>custom

</select>

85

86

CHAPTER 8: SEARCHING

Maximum Records

The -maxRecords command is used to indicate the maximum
number of records returned per group in a hitlist page. Values may
be any whole number. A value of “all” will return all records in the
found set. The syntax for providing the visitor a choice of how
many records to return per page is as follows:

Return <select name="-maxRecords">
<option>5
<option selected>10
<option>20
<option>all
</select> records per page

The number of records per group can also be predetermined using
a “hidden” HTML input field.

Find All Records

The Lasso action -findall is used to find all of the records in the
database. For example:

<input type="submit" name="-findall" value="Find All">
Or, as part of the form action:

<form action="../Lasso.acgi?-database=YourDBName&
-layout=YourLayoutName&
-response=Pathto/YourFileName.html&-findall" method="post">

The -findall action uses a default of 50 maximum records, so if all
records are to be found, indicate -maxRecords="all” within an
embedded URL or within the form.

The -findall action can also be specified in an embedded URL
which can be used in a hyperlink as follows:

<a href="Lasso.acgi?-database=YourDBName&-layout=YourLayoutName
&-response=YourFileName.html&-maxRecords=all&-sortfield=YourFieldName
&-sortorder=ascending&-findall"> View all records in Database

In order to execute the -findall action, the user must have “search”
permission for the database. If the user doesn’t have search permis-
sion, a database security violation error is returned. If any field in
the database has been defined in the Lasso Security database with
an “exactsearch” restriction, a security violation will be returned if
the user tries to execute the -findall action.

CHAPTER 8: SEARCHING

Display Search Parameters

The search parameters used in performing a search may be
displayed as HTML. Search parameters are sometimes useful to
display on the hitlist return page or any subsequently retrieved
pages from the initial search. There are four search parameters that
can be displayed:

[search_field] and [search_value] — These display the name of the
field search and the value entered for the search. These tags accept
the optional “raw” parameter which prevents Lasso from applying
HTML character encoding (for example, [search_value,raw]). The
“url” parameter can also be used to specify URL encoding. If
omitted, HTML encoding is performed by default.

[search_op] — This displays the operators applied to the field.
This tag accepts optional parameters “short” and “long,” as in
[search_op, short]. The default is “long.” “Long” inserts the field
operator in its long form: “equals,” “begins with,” “greater than,”
etc. “Short” uses the Lasso abbreviations “eq,” “bw,” “gt,” etc.
Specify “short” if using [search_op] to create a URL.

[logicalop_value] — This substitutes “and” or “or” into the output
HTML based on the logical operator specified in the original
search.

The tags [search_field], [search_op], and [search_value] are valid
only within a [search_args]...[/search_args| container. The tag
[logicalop_value] can be used anywhere, since the logical operator
applies to the search as a whole, and cannot be applied to specific
fields.

All HTML appearing between [search_args| and [/search_args]
containers is repeated for every field included in the search. The
tags are simply placed in the reply file as follows:

[search_args]
[search_field]
[search_op]
[search_value]

[/search_args]

[logicalop_value]

As with all other Lasso tags, HTML can be used to format the
returned values.

Generally, these tags are useful only for displaying the search argu-
ments. To include these values in a conditional [if: ...]...[else]...[/if]
expression, use the [form_param: ...] tag discussed elsewhere.

87

88

CHAPTER 8: SEARCHING

[search_args]...[/search_args] — Substitutes the search criteria
used in the previous search. The following sub-container tags are
valid only within the [search_args| container, and one or all can be
used:

[search_field] — Will display the name of the field the search
was made on

[search_value] — Will display the value entered for the search
for a particular [search_field].

[search_op] — Will display the operators applied to the
[search_field]. [search_op] accepts the optional keywords
“short” and “long,” as in [search_op,short]. The default is
“long” which inserts the field operator in its long form:
“equals,” “begins with,” “greater than,” etc. “Short” uses the
Lasso abbreviations “eq,” “bw,” “gt,” etc.

Note that everything between the [search_args]...[/search_args]
and [sort_args]...[/sort_args] containers will be repeated for every
field used for the search. For example:

[search_args]
Field Searched: [search_field]

Operator: [search_op]

Value Entered: [search_value]
<hr>
[/search_args]

Complex Embedded Searches

When a found set of records is called up, alterations to the
displayed hitlist may be desired. However, to resort or reformat the
list, the search must be performed again. Instead of having the
user return to a search form and resubmit their search, links using
all of the custom search settings selected by a user on the previous
page can be created.

The previous search elements can be retrieved using the following
tag construction:

<a href="action.lasso?-search&-database=[database_name,url]&
-layout=[layout_name,url]&-response=[response_file_path,url]
[search_args]&-operator=[search_op,url)&[search_field,url]=[search_value,url]
[/search_args][sort_args]&-sortfield=[sort_field,url]&
-sortorder=[sort_order,url][/sort_args]&-logicalop=[logicalop_value]&
-maxrecords=[maxrecords_value]&-skiprecords=[skiprecords_value]">

Link to Accomplish the Same Search

CHAPTER 8: SEARCHING

For example, a link could be set up to find a set of records that are
part of the current found set, but sorted in a different order, as
follows:

<a href="action.lasso?-sortfield=YourFieldName&-sortorder=ascending&
-database=[database_name,url]&-layout=[layout_name,url]&
-response=[response_file_path,url][if:lasso_action=="findall"|&-findall[else]&
-search[search_args]&-operator=[search_op,url]&
search_field,url]=[search_value,url][/search_args]&
-logicalop=[logicalop_value][/if]&maxrecords=[maxrecords_value]&
-skiprecords=[skiprecords_value]">Search Again and Sort by Date

Note that there should be no spaces or carriage returns anywhere
in this URL string. The URL keyword was used to URL-encode field
values.

The above embedded URL link was constructed by first specifying
new sort criteria and then instructing Lasso to substitute values
from the previous search:

action.lasso?-sortField=change_field_name_here&-sortorder=ascending&
-database=[database_name,url]&-layout=[layout_name,url]&
-response=[response_file_path,url]&...

Since there can be multiple instances of fields used in the search,
the [search_args]...[/search_args| container is used to ensure each
item is included:

...&-search[search_args]&
-operator=[search_op,url]&[search_field,url]=[search_value,url][/search_args]...

Because no search arguments are used on a -findall action, a
conditional statement is used to exclude the [search_args: ...]...
[/search_args| container, as well as the -logicalop tag:

...[if:lasso_action=="findall"|&-findall[else]&-search[search_args]&
-op=[search_op,url]&[search_field,url]=[search_value,url][/search_args]&
-logicalop=[logicalop_value][/if]...

Required Field Entry on Form
Submit

The -required command tag is used to require that a value is
entered into a specified field before a form can be successfully
submitted. Although -required can also be used on “add” or
“update” forms, it is mentioned here since this is where it has the

89

90

CHAPTER 8: SEARCHING

greatest utility. For example, if a search form has fields for a user-
name and password the -required tag could be used to require that
specific values be entered into both fields.

The -required tag is placed in a hidden input field and applies
only to the field that immediately follows. For example:

<input type="hidden" name="-required">
<input type="text" name="fieldname" size=20>

The -required command can also be used in combination with
operators. For example, the required field could be formatted as
follows:

<input type="hidden" name="-required">
<input type="hidden" name="-operator" value="eq">
<input type="text" name="fieldname" size=20>

Different -operator or -required commands can be specified for
several different fields on the same form.

Any form that was submitted without values entered into the
“required” field is rejected. In this case, Lasso displays a “required
field missing” error page. A customized error page can be used in
place of this generic message. The required field error page is speci-
fied with the -reqfieldmissing tag (for both search and add forms).
The customized error is specified as:

<input type="hidden" name="-reqfieldmissing"
value="InsertPathtoFile/FileName.htmI">

Chapter 9: Graphics and
Multimedia

Lasso is able to display graphic images in two ways: either from
images stored in FileMaker Pro, or from images stored and referenced
in the Web server folder. In the first case, the [image: ...| tag can be
used to convert PICT files stored in FileMaker Pro to either JPEG or
GIF In the latter case, GIFs and JPEGs stored within the Web server
folder may be referenced using standard HTML and combined with
textual content retrieved on-the-fly from your database.

Serving Images Stored in FileMaker
Pro

Lasso has the ability to directly convert FileMaker Pro pictures for
display in Web browsers. Graphics are stored in a FileMaker Pro
container field as a PICT file. The FileMaker Pro field which
contains the PICT image is specified in a Lasso format file using
the [image: ...] tag. The format used is as follows:

The default parameter is “jpeg.” If “gif” is indicated, you must have
“clip2git” installed as described below.

Additional parameters can be used with the “jpeg” parameter to
control the amount of compression. Specify 16 or 32 as the bit-
depth for each pixel. The default is 16. Specify a number 0
through 4 for the compression amount. 0 yields the best quality,
but results in larger files. Four yields satisfactory quality for smaller
files. The default is 4.

Some examples:

[image: FieldName, jpeg, 16, 0]
[image: FieldName, jpeg, 32, 4]
[image: FieldName, jpeg, 16, 4] (equivalent to [image: FieldName, jpeg])

Warning: Setting the bit-depth to 32 will greatly increase Lasso’s
memory requirements! Increase the memory allocation of the
Lasso application if you plan to use 32-bit JPEG images. If using
the Plug-in, increase the memory of the Web server application.

92

CHAPTER 9: GRAPHICS AND MULTIMEDIA

When a Lasso action is called, the picture is converted to GIF or
JPEG. When the format file is processed, Lasso displays the image
by substituting the [image: ...] tag with HTML code that points to
the record where the image is located. The syntax is as follows:

<img src="/Lasso.acgi?[database]=database_name&[recid]=#&
photo=jpeg&[image]">

”

In the above example, the symbol “#” is the record ID for the
targeted image and “photo” is the field name. If, instead of the
converted image displaying after Lasso processes the page the
actual HTML code for specifying the image conversion appears,
then an error has occurred. If the image is not displayed, it could
be because not enough memory is available, no parameter was
indicated, the image field was not correctly specified, the “gif”
parameter was specified and clip2gif was not installed, or because
there was no image in the database to return.

Implementation Notes

If you plan to return images from a FileMaker Pro database,
consider several points:

¢ Increase Lasso.acgi’s allocated memory to at least 1500K, or to
2500K if converting 32-bit JPEG images. (the more RAM the
better). If using the Plug-in or Lasso Server, allocate more
memory to the server application.

e To serve JPEG images directly from the FileMaker Pro database
using the [image: ...] tag, QuickTime is required.

e If using the [image: ...] tag to return PICT graphics, then use
FileMaker Pro 3.0v4 or greater. Updates can be obtained from
Claris Corporation.

GIF Conversion Using clip2gif

JPEG format generally works best for photographs or other photo-
realistic images, while GIF format generally works best for pictures
that contain large blocks of solid colors such as logos or simple
graphics. GIF format is also supported by all browsers (except text-
only browsers). In order to convert FileMaker Pro pictures to the
GIF format via Lasso, the freeware utility clip2gif must be installed
on your Mac OS server. Using the “gif” parameter, pictures will
automatically be transferred to an intermediary application,
clip2gif, when a Lasso action is called. clip2gif converts the image
to GIE

CHAPTER 9: GRAPHICS AND MULTIMEDIA

Additional parameters can be used with the “gif” parameter to
control the quality of the image. Specify “true” or “false” for inter-
laced or non-interlaced; the default is “false” (non-interlaced).
Also for GIF images, specify 1, 2, 4, or 8 for bit-depth; the default
is 8. The bit-depth determines how many colors are used in
creating the GIF. For example, a black and white image is consid-
ered a 1-bit, 2-color image.

Some examples:

[image: image_YourFieldName, gif, false, 8]
[image: image_YourFieldName, gif, true, 4]
[image: image_YourFieldName, gif, false, 2]

The clip2gif application does not need to be launched and left
open, it just needs to be on the same drive. However, the most reli-
able method is to place clip2gif in the same folder as Lasso. As of
December, 1997, the current version of clip2gif is 0.7.2. You can
download clip2gif from your favorite Macintosh software archive
or the clip2gif home page at:

http://iawww.epfl.ch/Staff/Yves.Piguet/clip2gif-home/

Note: Please see the clip2gif copyright notice at the back of this
manual.

Extending the [image: ...] Tag

The field containing the image should not be placed on the layout
referred to in a search as this will dramatically slow down the
search operation.

It is not possible to check an image field to determine whether an
image is available using an [if: ...] conditional check. For example,
the following cannot be used to determine if an image is present:

[If:field:"Photo"==""][else]
[/if]

As a workaround, create an additional field in the database and for
each record that has an image, check a box. An [if: ...] comparison
can then be made on that field to determine whether the image
tag is used. For example, for a field called “image_available,”
include the following:

[Iffield:"image_available"==""][else]
[/if]

93

94

CHAPTER 9: GRAPHICS AND MULTIMEDIA

Displaying Images from the Web
Serving Folder

Images can be displayed directly from the Web serving folder using
standard HTML. For example:

To specify an image for a record, create a field in a database that
contains only the name (or path and name) of the image. The
syntax to reference this field would appear as follows:

In the example above, a folder within one’s Web serving folder
named “images” contains GIFs or JPEGs. The exact names (text
only) of these images are stored within a database field named
“imageFieldName.” For a value named “picture.gif” stored within
the database field “imageFieldName,” the previous example would
generate the following result:

When the server returns the HTML to the browser, the image is
displayed (as long as the proper path name to graphics stored
within your Web server folder has been specified).

When using images as path names stored within FileMaker Pro
fields, use the “url” parameter for the appropriate field. The “url”
parameter instructs Lasso to perform URL encoding rather than
HTML encoding (the default). For more details on character
encoding, refer to APPENDIX B: CHARACTER SETS AND TRANSLATION.

Rotating Banners Example

To incorporate an image that changes each time a Web page is
called up, it is possible to have Lasso randomly return a record
containing a different image. To accomplish this, first save various
images into a database. Then, substitute the name of your data-
base, layout, and the field that contains the image into the
following syntax:

[inline: database="YourDBName", layout="YourLayoutName", random]
[If: inline_result=="noErr"]

[else]ERROR= [inline_resulf]
[/if]

[/inline]

CHAPTER 9: GRAPHICS AND MULTIMEDIA

Place this in the location where the image is to display.

The inline action occurs whenever the page is processed (including
when the page is reloaded). The optional conditional statement is
used to check for errors. To ensure that something appears, remove
the error message (between [else] and [/if]) and add a default
image reference. Also, make sure that the inline action occurs on a
layout that does not actually contain any images, as this will slow
the search operation.

This procedure also works if all the images are saved as JPEG or
GIF images in a folder within the Web serving folder. Simply
substitute the image reference with a field value from the database
that indicates the location of a specific JPEG or GIF image. The
syntax is as follows:

[inline: database="YourDBName", layout="YourLayoutName", random]

[/inline]

Note that HTML is also included to make the image a linked URL
reference, and that “path-to-image” should be replaced with the
path relative to the active URL.

Counting the Number of Times an Image is Displayed

To know how many times an image was displayed, add a new field
to the image database, for example “visitcount” and add a nested
inline statement to increment that field by one each time it is
found. For example:

[inline: database="YourDBName", layout="YourLayoutName", random]
[If: inline_result=="noErr"]

[inline: update, database="database_name", layout="layout_name",
visitcount=(math-add:field:"visitcount",1), recid=recid_value] [/inline]
[else]ERROR= [inline_resulf]
[/f]

[/inline]

Because the nested inline may slow things down a bit, you may
want to use a post-inline tag. The syntax for the page displaying
the banner would then be as follows:

[inline: database="YourDBName", layout="YourLayoutName", random]
[If: inline_result=="noErr"]

[post_inline: post_response="inline_imagecount.txt", "which"=recid_value,

95

96

CHAPTER 9: GRAPHICS AND MULTIMEDIA

"visitcount"=(math-add:field:"visitcount",1)]
[else]ERROR= [inline_resul{]
[if]

[/inline]

The inline update action would occur when Lasso next had idle
time. The named parameter “which” does not have any meaning
as a Lasso tag or parameter; it is simply a word that is used in
conjunction with the [form_param: ...] tag. The record ID value
can then be retrieved on the page processed by the

[post_inline: ...] tag using [form_param: "which"].

The file that the post inline processes, “inline_imagecount.txt,”
contains the statement:

[inline: update, database="YourDBName", layout="YourLayoutName",
visitcount=form_param:"visitcount", recid=form_param:"which",
token=form_param:"which"] [/inline]

As a way to test if the post inline is occurring as expected, the

[log: ...] tag could be added within the inline on the
“inline_imagecount.txt” file. To do so, add the following statement
within the [inline: ...]...[/inline] container:

[If: inline_result=="noErr"]
[log:window]Record was updated: [form_param:"visitcount"]
times for record ID: [token_value]
[log]
[else]
[log:window]ERROR= [inline_resulf]
[Nog]
[/f]
The result of the inline will be displayed in the log window. Note:
A token was used in the inline statement in order to pass the

record ID value ([form_param: "which"]) to the log tag contained
within the inline.

By extending this example, the image that has been shown the
fewest number of times could be shown rather than a random
image. For example:

[inline: database="YourDBName", layout="YourLayoutName",
sortfield=visitcount,
sortorder=descending, findall]
[inline: database="YourDBName", layout="YourLayoutName",
recid=recid_value, search]

[/inline]
[/inline]

CHAPTER 9: GRAPHICS AND MULTIMEDIA

The first inline searches the entire database for the record least
often displayed. Note that the -skiprecords tag could also be used
to skip the first one or two records. The second inline searches for
one specific record, in order to retrieve only one image from the
database.

Serving Multimedia Files

Lasso can serve multimedia files, such as AIFF and WAV sounds or
QuickTime movies, in the same way Lasso can serve images: by file
and path name references stored within a database field.
Additional HTML syntax for dealing with sound:

[if: "sound_file"==""] [else] <embed src="path_to_sounds_folder/
[field:"name_of_field"]" width=2 height=2 autostart=true loop=true>
<bgsound src="path_to_sounds_folder/[field:"name_of_field"]> [/if]

The first “embed” tag is for Netscape Navigator, the “bgsound” tag
is for Microsoft Internet Explorer. Any type of supported multi-
media file can be served by storing its file and path name reference
in a FileMaker Pro field and returning that information in the
output HTML.

97

Chapter 10: Repeating
Fields and Related Fields

Repeating Fields

Adding Records to a Repeating Field

Adding records to a repeating field in FileMaker Pro requires the
following:

¢ Make sure the targeted FileMaker Pro layout displays all the
repetitions specified for the field.

¢ Display the repeating field's specified number of repetitions
within one’s format file by simply placing multiple instances
of an HTML text input reference to the field. For example, a
repeating field set to three repetitions is properly referenced as

follows:

<input type="text" name="fieldname" value="" size=30>
<input type="text" name="fieldname" value="" size=30>
<input type="text" name="fieldname" value="" size=30>

Displaying Repeating Fields

When displaying a repeating field, the number of repetitions
defined for that field in the specified layout are returned. The
following syntax is used in any post-Lasso format file to display
the contents of a repeating field:

[repeating: fieldName]
[repeat_value]
[/repeating]

Updating Repeating Fields

The following syntax is used in any post-Lasso format file to
update the contents of a repeating field:

[repeating: "fieldName"]
<input type="text" size=30 name="fieldname" value="[repeat_value]">
[/repeating]

100 CHAPTER 10: REPEATING FIELDS AND RELATED FIELDS

Repeating fields can include value lists using the [value_list] and
[option] tags inside a [repeating: ...] container as follows:

[repeating: "fieldName"]
[option: "fieldName"]
[repeating]

Related Data

FileMaker Pro allows for database files to be related together to
share data. Fields are related either by a one-to-one or one-to-
many relationship. In a one-to-one relationship, the related data-
bases share a common field, but only one record in each database
is related to a record in the other database. One-to-many relation-
ships are handled by a “portal” to display multiple related records
from another database. FileMaker Pro does not typically handle
many-to-many relationships.

Lasso exchanges data with related fields that appear either inside
or outside of portals. Related records in portals can be updated
and new related rows added to the portal. Deleting rows can be
accomplished if the databases are specially designed to accommo-
date this.

Related Fields

Displaying Related Fields

Related fields may be specified anywhere in your Lasso format file
(for related fields positioned outside of a portal within one’s

FileMaker Pro layout) or specified within the [portal: ...] container
tag (for related fields set within a portal in one’s FileMaker Pro
layout).

Adding and Updating Related Fields

A related field is identified by the name of the relationship along
with the field name separated by double colons. For example:

[field: "InsertReIName::YourFieldName"]
To add to a related field, the following syntax is used:
<input type="text" size=30 name="InsertRelName::YourFieldName">
To update a related field the following syntax is used:

<input type="text" size=30 name="field: InsertReIName::YourFieldName
value="[field: InsertRelName::YourFieldName]">

CHAPTER 10: REPEATING FIELDS AND RELATED FIELDS 101

The related field must appear in the referenced database layout.
The same Lasso rules for the [field: ...] command apply to related
fields. For instance, if a value list is assigned to the related field in
the FileMaker Pro interface, then value lists can be dynamically
generated on post-Lasso forms. In addition, character encoding
parameters can be used. For example, the “break” parameter trans-
lates all carriage return characters to HTML
 tags. Parameters
are used with related fields as follows:

[field: "InsertRelName::YourFieldName",break]

Portals

The [portal: ...]...[/portal] container is used to display or update
multiple related records contained in a portal in the referenced
FileMaker Pro database layout.

The opening [portal: ...] tag must specify the name of the
FileMaker Pro relationship. In addition, the field names within a
[portal: ...] tag must also be fully specified with the FileMaker Pro
“Relationship Name::Field Name” syntax, as follows:

[portal: "InsertRelName"]
[field: "InsertRelName::YourFieldName"]
[/portal]

All HTML within a [portal: ...] container is repeated once for each
record in the portal’s found set. Several field references (from the
same relationship) may also be included within a [portal: ...]
container, as in the following example:

Record for: [field: "contact"]
<table border=1>
<tr>
<td rowspan=4 valign=middle><img src="sunny.gif" border=0
alt="sunny">
</td>
<ftr>
[portal: "travel"]
<tr><td>Cities:</td><td>[field: "Travel::Cities"|</td>></tr>
<tr><td>Countries:</td><td>[field: "Travel::Countries"]</td></tr>
<tr><td>Airlines:</td><td>[field: "Travel::Airlines"]</td></tr>
[/portal]
</table>

Only related fields from relationships specified in the [portal: ...]
tag can appear within a [portal: ...] container.

102 CHAPTER 10: REPEATING FIELDS AND RELATED FIELDS

The [repetition] tag used within an [if: ...] conditional statement
can also be used within [portal: ...] containers. The repetition can
test for the number of related records (rows), and based on this,
display any HTML element or Lasso-returned value in that pattern.
For example, to shade every other row in a table, use the following:

<table>

<tr> <td>Name</td>

<td>Rank</td>

<td>Serial Number</td></tr>

[portal:"related"]

<tr> <td>[field:"related::name"]</td>
<td>[field:"related::rank"]</td>
<td>[field:"related::serial"]</td>

<ftr>

[if: repetition=2]

<tr bgcolor="#dddddd"><td>[field:"related::name"]</td>

<td>[field:"related::rank"]</td><td>[field:"related::serial"|</td>

<[tr>

[/if]

[/portal]

</table>

The [value_list: ...]...[/value_list] container may appear inside a
[portal: ...]...[/portal] container as follows:

[portal: Relationship Name] [field: Relationship Name::Field Name]
[value_list: Relationship Name::Field Name][list_value][checked]
[Ivalue_list]

[/portal]

Example of Updating Related Records Within a Portal

The following example shows how to set up a portal with updat-
able related records set within table cells.

<p><form action="/Lasso.acgi?-recid=[recid_value]&-database =Employees&
-layout=Summary&-update&-response= Example/view_expenses.html"
method="post">
[portal: "expenselist"]
<tr>
<td valign="top">
<select name="expenselist::expense_category">
[option: "expenselist::expense_category"]|</select></td>
<td valign="top">
<input type="text" size="30" name="expenselist::description"
value="[field: "expenselist::description"]"></td>

CHAPTER 10: REPEATING FIELDS AND RELATED FIELDS

<td align="center" valign="top">
<input type="text" size="8" name="expenselist::date"
value="[field: "expenselist::date"]"></td>
<td align="right" valign="top">
<input type="text" size="10" name="expenselist::amount"
value="[field: "expenselist::amount"]"></td>
</tr>
[/portal]
<tr>
<td><input type="submit" value="update">
<input type="reset" value="reset"></td>
<td colspan=3 align="right" valign="top">
total: [field: "total_expense"]</td>
<ftr>
</form>

Deleting Related Records Within a Portal

To delete records in a portal, a unique serial number field must be
established in the related database. This is because the record ID
cannot be retrieved from a related database when the data from
the related database is viewed through a portal. The record ID that
is present is actually the record ID for the record in the main data-
base. With FileMaker Pro 4.0, the record ID of the related database
can retrieved using a calculation field and the
“Status(CurrentRecordID)” calculation.

In the following example, a delete is accomplished by first
searching the related “Employees_Related.fp3” database for the
“expense_id” field to identify the record to be deleted.

<a href="action.lasso?-database=employee_related&-layout=main&
-response=expenses_view.html&-token=[field: employee_id]&
expense_id=[field: expenselist::expense_id]&-search">

The delete occurs after the reply file is processed via an inline
action. The inline in the “expenses_view.html” file is as follows:

[inline: database=database_name, recid=recid_value,
token=token_value, delete]
[/inline]

After the delete action is completed in the related database, a
search must be carried out on the main database to call back the
record you started with. For example:

[inline: database=Employees, layout=Summary,

employee_id=token_value, token=token_value, search]
[include: "expense_include.txt"]

[/inline]

103

104 CHAPTER 10: REPEATING FIELDS AND RELATED FIELDS

Since the record ID of the record in the main database cannot be
used to find the current record, a token was set to the value in the
“employee_id” field before linking to the related record. The
“employee_id” field is the unique serial number field used to iden-
tify the record and is used here in lieu of the actual record ID. It is
also the key value that relates the main “Employees.fp3” database
with the “Employees_Related.fp3” database. Note that the record
ID of the record in the main database could be used to serve the
same purpose using token=[recid_value].

Chapter 11: Executing
FileMaker Pro Scripts

For active Web servers, relying on FileMaker Pro scripts to assist
with data management is not recommended. In the majority of
cases, similar functionality is achieved using Lasso's rich data
manipulation capabilities. As Lasso is multithreaded and
FileMaker Pro is not, routines executed in Lasso will be much
faster. For situations where executing FileMaker Pro scripts is
required, Lasso provides several options.

Specifying a FileMaker Pro Script

There are two parts to specifying a FileMaker Pro script within a
Lasso format file:

e Specify the -scripts action.
¢ Specify one of the six “FMP Script” commands (see below).
The syntax is as follows:

<input type="hidden" name="-doscript" value="InsertScriptName">
<input type="submit" name="-scripts" value="Run FileMaker Scripts">

An example embedded URL may appear as follows:

<a href="Lasso.acgi?-database=database_name&-layout=layout_name&
-response=Pathto/YourFileName.html&-doscript=Script_Name&-scripts">
Run Script

FMP Script Commands

The six “FMP Script” commands define which FileMaker Pro script
to execute and how the script is executed. These commands are
described as follows:

e FMP Script Post-Lasso (-doscript.post) — Processes script
after all other specified Lasso actions are completed. Brings
FileMaker Pro to foreground while script is processing, then to
background after completion.

e FMP Script Post-Lasso in Background (-doscript.post.back)
— Processes script after all other specified Lasso actions are
completed. Keeps FileMaker Pro in the background while
processing.

106 CHAPTER 11:

EXECUTING FILEMAKER PRO SCRIPTS

FMP Script Pre-Lasso (-doscript.pre) — Processes script
before all other specified Lasso actions are completed. Brings
FileMaker Pro to foreground while script is processing, then to
background after completion.

FMP Script Pre-Lasso in Background (-doscript.pre.back) —
Processes script before all other specified Lasso actions. Keeps
FileMaker Pro in the background while script is processing,
then to background after completion.

FMP Script Pre-Sort (-doscript.presort) — Processes script
before Lasso -sort command is invoked in a Lasso -search
action. Only works in conjunction with Lasso -search action.
Brings FileMaker Pro to foreground while script is processing,
then to background after completion.

FMP Script Pre-Sort in Background (-doscript.presort.back)
— Processes script before Lasso -sort command is invoked in a
Lasso -search action. Only works in conjunction with Lasso
-search action. Keeps FileMaker Pro in the background while
processing.

Important Notes

¢ Empty Found Sets — If the FileMaker Pro found set is empty

after performing the scripts specified for a -scripts action,
Lasso returns a -50 error. The user should make sure the
FileMaker Pro found set is not empty after performing a
scripts action.

Security Concern — Because of potential security concerns,
the ability to execute FileMaker Pro scripts must be enabled
with Lasso Security (see CHAPTER 7: SECURITY). In addition, if
you allow users to upload Lasso format files and/or FileMaker
Pro databases, beware of modifications that may compromise
the security or performance of your Web server. You may want
to require that any new databases that are uploaded to your
Web server go through a quick security check to ensure the
user has not inadvertently set a potentially destructive or
processing-intensive script.

Chapter 12: Email

Lasso has the ability to automatically send an email message after
a Lasso action is taken. The five-step code sequence for email noti-
fication can be included in any Lasso format file, embedded in a
link, or used within an inline. The email is sent whenever the
format file is submitted, the link clicked, or the inline processed.

In order to send an email, five email command tags must be
assigned a value. The first four are as follows:

-emailhost — Sets the mail host (SMTP) through which the
email is sent.

-emailfrom — Sets the sender’s (from) email address. Only
one address may be specified.

-emailsubject — Sets the subject that appears in the email
header. Only one subject may be specified.

-emailformat — Sets the format file used to create the body of
the email message. This format file can contain any of the
usual Lasso formatting tags, and completely controls the
format of the message. Only one format may be specified.

In addition to those four required tags, one of the following three
must be specified, and the other two are optional:

-emailto — Sets the email address for the primary recipient.

-emailcc — Sets the email address for a recipient to receive a
copy of the email message

-emailbcc — Sets the email address for a recipient to receive a
“blind” copy of the email message.

The email message can include the contents of a single record, or
all messages in the found set may be displayed using the [record]
tag.

Lasso email command tags need to be customized to a specific
email account (or get values from field values returned by Lasso).
All email command tags included in the format file must be
assigned a value or the message will not be sent.

108 CHAPTER 12: EMAIL

Sending Email from a Form

The five Lasso command tags normally appear as hidden input
parameters in an HTML format file using the following syntax:

<input type=hidden name="-emailhost" value="mail.senderdomain.com">
<input type=hidden name="-emailfrom" value="sender@senderdomain.com">
<input type=hidden name="-emailto" value="receiver@receiverdomain.com">
<input type=hidden name="-emailsubject" value="Email Delivered by Lasso">
<input type=hidden name="-emailformat" value="path_to_file/Email_Format.txt">

The optional tags are formatted in a similar manner:

<input type=hidden name="-emailcc"
value="ccreceiver@ccreceiverdomain.com">

<input type=hidden name="-emailbcc" value="bccreceiver@
bcereceiverdomain.com™>

Lasso can send email to several recipients if several tags are
included in the set of email tags. The tags that can appear multiple
times on one form include:

-emailto, -emailcc, -emailbcc
For example, several additional recipients can be added as follows:

<input type=hidden name="-emailhost" value="mail.senderdomain.com">
<input type=hidden name="-emailfrom" value="sender@senderdomain.com">
<input type=hidden name="-emailto"
value="receiver1@receiveridomain.com">

<input type=hidden name="-emailto"
value="receiver2@receiver2domain.com">

<input type=hidden name="-emailto"
value="receiver3@receiver3domain.com">

<input type=hidden name="-emailto"

value="receiverd @receiver4domain.com">

<input type=hidden name="-emailsubject" value="Email Delivered by Lasso">
<input type=hidden name="-emailformat" value="path_to_file/
Email_Format.txt">

Sending Email with an Embedded
URL

For an email message to be sent from an embedded URL, the five
required email tags must be placed in a string with the Lasso
action, for example:

CHAPTER 12: EmMAIL 109

<a href="Lasso.acgi?-database=YourDBName&-layout=YourLayoutName&
-response=path/response.html&-recid=[recid_value]&
-emailhost=mail.senderdomain.com& -emailfrom=
sender@senderdomain.com&-emailto=receiver@receiverdomain.com&
-emailsubject=Email%20Delivered%20by%20Lasso&
-emailformat=PathtoFile/Email_Format.txt&-search">Send Email

The record ID reference “-recid=[recid_value]” is only necessary if
the URL is on a detail page for a specific record and you want to
continue to work with the current record (i.e. for updates or
deletes).

An unrelated embedded URL could also be referenced as follows:

<a href="Lasso.acgi?-database=name&-layout=name&
-response=http://www.domain.com&-emailhost=mail.senderdomain.com&
-emailfrom=sender@senderdomain.comé&-emailto=
receiver@receiverdomain.com& -emailsubject=Email%20Delivered%20
by%20Lasso& -emailformat=PathtoFile/Email_Format.txt&

-show">Send Email

A different database and layout that contains the elements to be
retrieved by the show action must be specified.

It is important to remember that, in any URL, all spaces should be
removed and characters encoded according to the HTTP standard.
It is not good practice, however, to use ampersands, slashes, or
other characters reserved for URLs in database, layout, or field
names. If a space is part of a database, layout, field name, or field
value, the plus sign (“+”) or the symbols “%20” should be used to
represent a space. In addition, when a parameter is used, no spaces
are used within the brackets (e.g., [field:job,raw]). The “url” para-
meter must be used with any database fields so the returned data
is encoded for use in a URL (e.g., [field:fieldname,url]). Also,
carriage returns cannot be used in the final embedded URL.

Sending Email within an [inline: ...]

An [inline: ...] tag can also be used to send an email message
without interacting with a FileMaker Pro database. Inline actions
are processed on a post-Lasso reply page. The syntax appears as
follows:

[inline: emailhost="mail.domain.com", emailto="recipient@domain.com",
emailformat="email.txt", emailsubject="insertsubject",
emailfrom="sender@domain.com", nothing]

[/inline]

110 CHAPTER 12: EMAIL

Email Format File

An email message is formatted according to a format file. In addi-
tion to hard-coded text, as with other format files, email format
files can contain Lasso substitution tags to display field values
(e.g., [field: FieldName]). All Lasso format tags can be used in the
email format file.

When a message is sent, Lasso will replace any field references
with the data retrieved from the FileMaker Pro database.

A sample email format file follows:
The following record has been added to your Lasso Database:

Last Name: [field: last name]

First Name: [field: first name]

Social Security Number: [field: social security number]
Employee Number: [field: employee number]

Hire Date: [field: hire date]

Group: [field: group]

Shift; [field: shift]

Email Address: [field: email]

Home Page: [field:home page]

Sending Email Without a Database

It is possible to send an email message containing the data entered
into a submission form, without interacting with a database.

In the example form below, notice the use of the -nothing action
along with two email tags to be provided by the user.

Sample Submission Form

<html>

<head>

<title>Email Page</title>

</head>

<body>

Email Page

<p>

<form action="action.lasso?-nothing" method="post">

<input type="hidden" name="-response" value="send.html"> (the response can
be any other file)

<input type="hidden" name="-emailhost" value="mail.host.com">
<input type="hidden" name="-emailto" value="receiver@receiverdomain.com">
<input type="hidden" name="-emailformat" value="email.txt">

CHAPTER 12: EmaIL 111

Subject:

<input type="text" size=30 name="-emailsubject"><p>

Your Email Address:

<input type="text" size=30 name="-emailfrom"><p>

Make a choice:

<select name="field1">
<option>
<option>1st choice
<option>2nd choice
<option>3rd choice

</select><p>

Check your values:

<input type="checkbox" name="field2" value="value1">value1
<input type="checkbox" name="field2" value="value2">value2
<input type="checkbox" name="field2" value="value3">value3
<input type="checkbox" name="field2" value="value4">value4<p>

Comments:

<textarea name="field3" rows=4 cols=40 wrap=soft></textarea>

<p><input type="Submit" name="-nothing" value="Send Email">

</form>

</body>
</html>

In the above example, the -emailsubject and -emailfrom values are
entered by the user on the form.
Sample Email Format File

To include information submitted by the user on the previous
form in an outgoing email message, a [form_param: ...] tag must
be placed within the email format file.

Here are the details of the form that was submitted [server_date] at
[server_time]:

1) [form_param:field1]
2) [form_param:field2]
3) [form_param:field3]

When the message is submitted, no action occurs on any database,
but the email message is sent using the contents of the submitted
form.

112 CHAPTER 12: EMAIL

Note that the -required tag cannot be used for the -emailsubject
and -emailfrom text entries, since the input is to a Lasso
command, not a field. To have the input fields be required, either
use a JavaScript, or create an [inline: ...] tag on the reply page.
Instead of the email occurring on the form page, it occurs on the
reply using values provided by [form_param: ...] tags.

Sample Using an Inline

To send an email within an inline without any interaction with a
database, simply submit a form using the -nothing action and then
use [form_param: ...] tags on the reply page to retrieve the field
values. For example:

<form action="action.lasso?-nothing" method="post">
<input type="hidden" name="-response" value="send.htm|">
(the response can be any other file)

Your Email Address:

<input type="text" size=30 name="field1" value=""><p>
Subject;

<input type="text" size=30 name="field2" value=""><p>

Message:

<textarea name="field3" rows=4 cols=40 wrap=soft></textarea>
<p><input type="Submit" name="nothing" value="Send Email">
<[form>

The response file “send.html” would contain the following inline:

[inline: emailhost="mail.domain.com", emailfrom="sender@domain.com”,
emailformat="email.txt", emailto=form_param:"field1",
emailsubject=form_param:"field2", "field1"=form_param:"field1",
"field2"=form_param:"field2", "field3"=form_param:"field3",nothing]
[/inline]

The email can be sent since emailhost, emailfrom, and email-
format have hard-coded values. The other two required fields use
the form parameters from the previous form submission.

Consequently, each field within the specified email format file
needs to be set to the previous form parameter
("field1"=form_param:"field1", "field2"=form_param:"field2",
"field3"=form_param:"field3"). When the email message is
processed, a new action results and the form parameters are lost.

Conditional statements can operate with inlines to send email
only if all required email tag values are provided.

CHAPTER 12: EmAIL

Database Substitutions for Email
Tags

Several of the email notification tags can take database field value
substitutions rather than just hard-coded values. With this capa-
bility, it is possible to have an email message sent a person
submitting the form or to some other address taken from a
FileMaker Pro database field. Keep in mind that all fields must
have a value for the message to be successfully sent, so make sure a
value is added to each tag.

The tags that can take substitutions are: -emailfrom, -emailformat,
and -emailsubject. These tags can be assigned field values from all
records in the found set, and can appear several times in a single
email message. It is also possible to provide a mixture of field
substitution values and hard-coded values.

<input type=hidden name="-emailfrom" value="admin@domain.com">
<input type=hidden name="-emailto" value="field: FieldName">

If the -emailhost, -emailfrom, -emailformat, or -emailsubject tags
are set to a field for database substitution, the field value is
obtained from the first record in the found set. Each of these tags
may appear only once in a single message.

If the fields are square-bracketed ([field: FieldName]), the field
value substitution occurs when Lasso first processes the format file.
If the fields are not bracketed (field: FieldName), the substitution
occurs after the form is submitted.

If square brackets are used to surround the “field” tag, the value
used will be the current value for that field in the database, when
the form was initially processed by Lasso. The syntax in this case is
as follows:

<input type=hidden name="-emailto" value="[field: FieldName]">

Without square brackets for the field reference, Lasso will substi-
tute field values after the Lasso action occurs. For example, on an
add action:

<input type=hidden name="-emailto" value="field: email address">

First, the record will be added. Then, Lasso will gather field values
to be substituted from the newly added record (or the specified
record on a search) and process the message.

Fields are also not bracketed when a value is entered into the same
form that is the source of the value. Text needs to be specified if

113

114 CHAPTER 12: EMAIL

the values aren’t already present in the database or if the visitor
needs an option to change the necessary values. For example:

<input type="hidden" name="-emailsubject" value="field:email_subject">
Subject:<input type=text size=40 name="email_subject"
value="Sent from Lasso">

An email action can be initiated when a search is completed, but
the -recid tags will be required in order to identify the record on
which to perform the field substitution. With an embedded URL, a
search could be embedded as:

<a href="Lasso.acgi?-database=name&-layout=name&
-response=path-to-file/response.html&-recid=[recid_value]&
-emailhost=mail.senderdomain.com&-emailfrom=field:name-of-field&
-emailto=field:name-of-field&-emailsubject=Email%20Delivered%20
by%20 Lasso&-emailformat=PathtoFile/Email_Format.txt&-search">
Send Email

Only one field substitution can be specified as the value for an
email tag. You cannot specify a field and additional text (or several
fields) for one email tag. For example, the following syntax will
not result in a field substitution:

<input type="hidden" name="-emailsubject" value="text goes here, field:id">

The subject line will appear as “text goes here, field:id” instead of
including values from the database.

Checking Email Addresses

Lasso will not send email if a database substitution field is blank.
For example, if an email field is on an “add” form and the email
tags are set to send a message to the person entering the form,
Lasso will log an error and fail to send an email message if the
user does not enter an email address.

If you wish to send an email message to visitors who are to provide
an email address on a form, make the email address field a required
field in the FileMaker Pro database and have an error page alert the
user to include the email address. An incorrectly entered email
address will result in bad mail messages. You can compensate for
this using Lasso “string” commands to parse the submitted value
and error check, or use a JavaScript routine.

There are situations when you may want to check the email
address and perform a second action on the reply page. For
example, if a message should be sent to an alternate address if no
email is entered, use a conditional statement on a reply page as
follows:

<input type=hidden name="-emailhost" value="mail.senderdomain.com">
<input type=hidden name="-emailfrom" value="sender@senderdomain.com">

[if: email==""]

<input type=hidden name="-emailto" value="administrator@receiverdomain.com">
<input type=hidden name="-emailsubject" value="Record added without Email
Address">

<input type=hidden name="-emailformat"
value="path_to_file/Email_Format1.txt">

[else]
<input type=hidden name="-emailto" value="[field: email]">
<input type=hidden name="-emailsubject" value="Email Delivered by Lasso">
<input type=hidden name="-emailformat"
value="path_to_file/Email_Format2.txt">
[/if]
With this construction, no email message will be sent if the
address does not exist in the database.

Sending Email from a Format File:
An Example

What follows is an example template that can be used for Lasso
format files with embedded email commands. This template is
included within FM Link. This requires several fields to be added
to a database to accept email related values, in this case:
“email_subject,” “email_to_field,” “email_message,” “email_time,”
and “email_date.”

nou

<html>

<head>

<title>Lasso — Send Mail Template</title>
</head>

<body bgcolor=#ffffd9>

<center>

<table width=550><tr>

<td>Send Email</td>

<td align=right>
Go Back</td></tr></table>

<hr width=550>

<form action="go.lasso?-update&-database=YourDBName&
-layout=YourLayoutName&-response=insertpath/Detail. html&
-recid=[recid_value]" method="post">

<input type="hidden" name="email_date" value="[server_date]">
<input type="hidden" name="email_time" value="[server_time]">

CHAPTER 12: EmAIL

115

116 CHAPTER 12: EMAIL

<table width=550><tr>
<td><input type="hidden" name="-emailhost"
value="mail.senderdomain.com"></td>
<td></td>
<ftr><tr>
<td><input type="hidden" name="-emailfrom" value="sender@
receiverdomain.com"></td><td>
<input type="hidden" name="-emailto" value="field:email_to_field">
<input type="hidden" name="-emailsubject" value="field:email_subject"></td>
<ftr><tr>
<td><input type="hidden" name="-emailformat"
value="insertpath/Email_Message.txt"></td>
<td></td>
<ftr>

<tr>
<td>-emailto:</td><td>
<input type=text size=40 name="email_to_field"

value="[field:email_to_field]"></td>
<Jtr><tr>
<td>-emailsubject:</td><td>
<input type=text size=40 name="email_subject" value="Subject: Sent from
Lasso"></td>
<ftr>
<tr>
<td valign=top>Message:</td><td valign=top>
<textarea name="email_message" rows=4 cols=60 wrap=soft></textarea>
</td>
<Jtr>
<tr>
<td>FIELD1:</td><td>[field:"fieldname"]</td>
<Jtr><tr>
<td>FIELD2:</td><td>[field:"fieldname2"]</td>
<Jtr><tr>
<td>FIELD3:</td><td>[field:"fieldname3"]</td>
<Jtr><tr>
<td>FIELD4:</td><td>[field:"fieldname4"|</td>
<Jtr><tr>
<td>FIELD5:</td><td>[field:"fieldname5"]</td>
<Jtr><tr>
<td valign=top>FIELD6:</td><td valign=top>[field:"fieldname6",break]
</td>
<[tr>

</table>

<hr width=550>

<p>Select button to send email message:
<input type="Submit" name="-update" value="Send">

<[form>
[include:"insertpath/footer.txt"]
<[center>

</body>

</html>

FM Link also contains an email format file template as follows:

Email sent from Lasso on [field:"email_date"],
at [field:"email_time"][If:field:"email_message"==""][else]

[field:"email_message"|[/if][If:(field:"fieldname1"=="")|(field:"fieldname2"=="")|
(field:"fieldname3"="")|(field:"fieldname4"="")|(field:"fieldname5"="")|
(field:"fieldname6"="")][else]

The record has the following details: [If:field:"fieldname1"==""][else]
FIELD1: [field:"fieldname1" raw][/if][If:field:"fieldname2"==""][else]
FIELD2: [field:"fieldname2" raw][/if][If:field:"fieldname3"==""][else]
FIELD3: [field:"fieldname3",raw][/if][If:field:"fieldname4"==""][else]
FIELD4: [field:"fieldname4" raw][/if][If:field:"fieldname5"==""][else]
FIELDS: [field:"fieldname5" raw][/if][If:field:"fieldname6"==""][else]
FIELDG: [field:"fieldname6",raw][fif]

[/i]
This template uses a series of [if: ...] conditional statements to
remove field labels for fields that have no values. This produces a

cleaner result for your email message. See CHAPTER 14: CONDITIONAL
STATEMENTS for more details.

If a form simply needs to forward email, the form can be
submitted using a -nothing action. Lasso will process the page and
send the email specified by the email tags without interacting with
any FileMaker Pro database.

Sending a Conditional Email
Response: An Example

An [inline: ...] tag can also be used to send a customized email
message to a specific recipient depending upon the form data
submitted. To use different email format files for different recipi-
ents, multiple [inline: ...] tags are needed (one for each message to
be sent). Each of the values can be hard-coded with literal text; use

CHAPTER 12: EmAIL

117

118 CHAPTER 12: EMAIL

field values returned from the previous record (i.e.,
“-emailsubject=field:insert-fieldname”), or values entered on the
previous form but not entered into a database (i.e., “emailsub-
ject=form_param:insert-fieldname”).

If messages are to be set based upon variables, use the [if: ...] tag
along with the [set_var: ...] tag. This allows variables to be used
within an inline statement. For example:

[if: field:"group"=="sales"]
[set_var: "efmt"="sales_mail.txt"]
[set_var: "message"="Message from Sales"]
[set_var: "efrom"="sales@domain.com"]
[else: if: field:"group"=="marketing"]
[set_var: "efmt"="marketing_mail.txt"]
[set_var: "message"="Message from Marketing"]
[set_var: "efrom"="marketing@domain.com"]
[else]
<P>No Mail Sent
[/f]
[inline: emailhost="mail.domain.com", emailto=(field:"email",raw),
emailformat=var:"efmt", emailsubject=var:"message", emailfrom=var:"efrom",
nothing]
[/inline]

Note that the “raw” parameter is used to prevent the value from
being HTML-encoded by default.

Chapter 13: Includes and
Inlines

The [include: ...] Tag

The [include: ...] tag is used to embed a static HTML or text file
into a Lasso format file. The tag is used in the following form:

[include: "relative-path-to-file/filename”]

When Lasso parses the file containing an [include: ...] tag, the
contents of the “included” file are merged with the main file at the
inserted location. The included file can contain Lasso substitution
tags. With pre-planning and intelligent use of the [include: ...] tag,
one can significantly ease multi-page Web site administration. For
example, a single [include: ...] file may set a global “footer” or
“navigation bar” across all pages in a Web site.

The [inline: ...] Tag

The [inline: ...] tag provides the ability to process multiple Lasso
actions within a single format file. In essence, the embedded
[inline: ...] functions as a “format file within a format file.” The
[inline: ...] container tag can appear in any post-Lasso format file.
The syntax is as follows:

[inline: database="db_name", layout="Layout_name",
insert name="value", action]
...HTML and Lasso tags go here
[/inline]

A database name and layout name are required. An action is
usually specified, although if left blank, the nothing action is used.

All other Lasso tag and HTML elements can also be used.

Nested Inlines

It is possible to pass values from a nesting [inline: ...] to a nested
[inline: ...] as long as the reference to the passed value is
contained within the inline statement in the nested inline’s
opening tag (first tag in the [inline: ...]...[/inline] container tag
pair). If the value or reference is placed anywhere else, it will not
be available, and will not display.

120 CHAPTER 13: INCLUDES AND INLINES

For example, an “Employees” database has the fields “first name,”
“last name,” and “EmployeelD”; and another database,
“EmpSalary,” has the fields “EmployeelD, " and “salary”. The first
[inline: ...] appears as follows:

<l-- start inline #1 -->
[inline: database="Employees", layout="Summary", first name="Horatio",
search]
[record]
[field: "first name"], [field: "last name"); [field: "EmployeelD"]

The second inline appears as follows:

<l-- start inline #2 -->
[inline: database="EmpSalary", layout="salary",
EmployeelD=field:"EmployeelD", search]

The value from inline #1 is used for "field: EmployeelD" in inline
#2. The example continues as follows:

[field: "salary"] <!-- value from inline #2 -->
[field: “first name"] <!-- values from inline #1 are not available,
so this will be blank -->
[/inline] <!-- end inline #2 -->
[field:"first name"] <!-- values from inline #1 are now accessible again -->
[Irecord]
[/inline] <!-- end inline #1 -->

Note that when using multiple inlines, or when nesting
[inline: ...] tags, more memory should be allocated to Lasso in
order to store data for multiple results.

Executing a FileMaker Pro Script

The following syntax executes a FileMaker Pro script within an
inline:

[inline: database="employees", doscript.post="TheScript", scripts]
... [/inline]

The [inline_result] Tag

The [inline_result] tag is used within an [inline: ...]container
primarily to test the results while error checking.

The [inline_result] tag can also operate as a test within a condi-
tional statement. [inline_result] represents a standard set of coded
response values. When included within the [inline: ...],
[inline_result] is substituted with text to indicate the success of the

CHAPTER 13: INCLUDES AND INLINES 121

inline operation. The [inline_result] tag can take one parameter
(the keyword “code”) as follows:

[inline_result, code]

“Code” presents the numerical value of the result as opposed to
text.

For example, if the [inline: ...] operation was not successful
because the proper database was not open, [inline_result] would
display “errAENoSuchObject” while the tag [inline_result, code]
would display “-1728.”

What follows are the possible [inline_result] response values:

Numerical Textual Description
0 noErr Operation was successful.
609 connectioninvalid FileMaker is not running.
-1712 errAETimeout The Apple Event timed out
before a reply was sent.
-1728 errAENoSuchObject The object was not found.
Make sure the database and
layout exist.
-17005 errAEBadListltem Operation involving a list
item failed.
-800 errRequiredFieldMissing Value missing for required
field for Add.
-801 errRepeatingRelatedField Adding repeating related
fields is not supported.
-702 errTooMuchData Too much data was given
to the CGl.
-10011 errAEInTransaction Another transaction is in
progress.
-108 memFullErr Not enough memory to
complete operation.
N/A invalidUsername An invalid username was supplied
for a protected database.
N/A invalidPassword An invalid password was supplied
for a protected database.
N/A noPermission User does not have permission to
complete this operation.
N/A fieldRestriction Afield restriction (such as

“exactsearch,” “exactupdate,”
or “exactdelete”) is in place.

122 CHAPTER 13: INCLUDES AND INLINES

The [post_inline: ...] Tag

The [post_inline: ...] tag allows one to execute an inline operation
after the processed page is returned to the user.

This tag is comprised of one required attribute (“post_response”),
several optional attributes, and any number of parameters. The
syntax is as follows:

[post_inline: post_response="YourFileName.html", attribute="value",
name="value"]

The required “post_response” attribute must specify the path to
the file Lasso will process.

The following attributes are optional:

¢ set_hours — Specifies the number of hours to wait before
executing the specified operation.

¢ set_minutes — Specifies the number of minutes to wait before
executing the specified operation.

e set_day — Specifies the day to execute the operation
(Mon, Tue, Wed, Thu, Fri, Sat, Sun).

¢ set_month — Specifies the month to execute the operation
(1 through 12).

¢ set time — Specifies the hour of the day to execute the
operation (1 through 24).

¢ set_week — Specifies the week of the month to execute the
operation (1 through 4).

Values set in an inline are passed to the post-response page. The
[form_param: ...] tag can be used to display them.

An inline process can be carried out at the interval or time speci-
fied in the post inline tag. If no time is indicated, the action will
occur as soon as Lasso is idle.

A post-inline can be used on a page that is part of a set of format
files. This is useful if you want some action to occur but you do
not want it to hold up the delivery of the response file to the user.
In this case the [post_inline: ...] tag defers the activity until the
current action is completed.

CHAPTER 13: INCLUDES AND INLINES 123

The [post_inline: ...] tag can execute in a file by itself. For
example, to send an email each night at midnight, create a new

format file named “midnight.lasso” which contains the following
code:

[post_inline: "/path_to_file/send_message.lasso",set_time=24]

Save it to the “Lasso Startup Items” folder. Create another file
named “send_message.lasso” which contains the five required
email tags.

Chapter 14: Conditional
Statements

The [if: ...] Tag

Conditional statements can add flexibility to your Lasso integrated
database project by customizing Web pages according to current
values or conditions. The Lasso container tags [if: ...] [else] and
[/if] are referred to as the conditional statement tags, and control
HTML output on post-Lasso format files (files processed and
returned by Lasso). They control the returned Web page by
displaying specified text, HTML, or Lasso tags if a condition holds
true. In addition, the [while] tag can be used to repeatedly display
specified text or re-evaluate the expression as long as the resulting
condition is valid.

When a conditional statement is evaluated, it has either a true or
false result. When a Lasso action is submitted, the conditional tags
direct Lasso to check a comparison expression, and if the condi-
tion is “true” the text (or tags) between [if: ...] and [else], or [if:
...] and [/if], are returned. If the condition evaluates to false, then
the text (or tags) which follows the [else] or [else: if: ...] are refer-
enced, and the remainder of the page after the ending [/if] tag is
processed. If neither [else] tags were used, then nothing appears
when the first condition is false (but the remainder of the page is
processed).

An example:

[if: field:"cards"=="21"]
Blackjack!
[else]
Deal Again
[/if]
If the returned field value is equal to 21 then “Blackjack!” is
displayed. If not, then the result is “Deal Again.”

Any Lasso substitution tag can be used within the [if: ...] expres-
sions, not just literal text. There are several Lasso tags that enhance
the power of conditional statements. For example, the number of
repetitions within several types of repeating tags can be tested and
HTML elements or Lasso generated values returned in a specified

126 CHAPTER 14: CONDITIONAL STATEMENTS

pattern. This is especially useful if you want to put records in rows
of a table.

Another example of the usefulness of the conditional tag is the
ability to specify the content of an error response page based on
the previous action of the user. To do so, check the last action
taken using the [lasso_action] tag and have the page processed
based on what that action was. Also, the [nfound] tag can be used
on a hitlist page to return the details of a single record when a
single record is found. The condition would need to surround the
entire page with an [include: ...] tag for the detail page between
[if: nfound=="1"] and [else| and the usual hitlist page elements
from <HTML> to </HTML> located between the [else] and [/if]
tags. The detail page is returned if one record is returned, and the
hitlist page if there are no more. There are many more possibilities
beyond these few examples.

Note: Lasso will report whether a conditional statement is badly
formed within the reply file itself. The error message will be in red
and describe what was wrong with the syntax used.

Components of the [if: ...] Tag

The [if: ...] tag encloses a conditional expression that is made up
of one or more conditional statements and evaluated as a whole.
Each conditional statement consists of two comparison fields that
appear on either side of an operator. Multiple comparisons can be
concatenated together within one conditional by using “and” and
“or” logical operators within the expression. In other words, the
expression can test a series of conditions as a whole, and result in
“true” if either all expressions are true (and), or one of the expres-
sions is true (or). Also, conditional [if: ...]...[else]...[/if] state-
ments can be nested to evaluate a series of conditions.

There are three elements that make up a conditional expression:

1. The comparison fields that appear on either side of a compar-
ison pair.

2. The operator that determines how to compare those values.

3. An optional concatenation symbol (“and” (&) or “or” (]))
which is used to create multiple condition expressions.

Each element used to construct the [if: ...]...[else]...[/if] tag is
explained below. The general form of the tag is:

[if: (comparison-value) operator (comparison-value))]
...HTML if condition is true...

CHAPTER 14: CONDITIONAL STATEMENTS

[else]
...HTML if condition is false...

[/f]

Note: The [/if] tag cannot be referenced as [endif] as was possible
in previous versions of Lasso.

Comparison Values

The “comparison value” used within the [if: ...] expressions can
either be a hard-coded literal value, a value returned from a
FileMaker Pro field, or a Lasso substitution tag. Comparison values
are not case-sensitive and can include spaces within text values.

Literal Value

The literal value is a specific text or number to be used for the
comparison. Here’s an example of a hard-coded literal value used
in a comparison:

[if: field:"Employee Number" <= "10"]
Wow! This guy must have founder’s stock!
[else]
Oh, well. Missed the boat.
[/if]
String or literal values should use quotes to designate the start and
end of the comparison value. Also, if specifying blank or nothing,
use two quotes with no space (""). It is highly recommended that
quotes be used to denote the comparison value, but it is not
required. Quotes allow Lasso to evaluate a comparison more
quickly since they denote that the text is a value or string literal
and not a Lasso tag (Lasso checks unquoted text against a list to
see if it is a tag). If specifying a literal value without quotes, Lasso
treats everything from the end of the operator to the closing right
square bracket (minus leading and trailing spaces) as the compar-
ison value. To use an actual quote in the string literal, use a back-
slash as an escape. For example, the following will check if the
value is “I said “something””:

[If: field:"quote"=="] said \"something\""]

Note: The use of quotes surrounding literal values was introduced
with Lasso 2.0.

Field Values

Field values can be substituted into the conditional statement. If a
field name is specified, this field must be one that is located on
the layout (and database) specified on the previous format file or

127

128 CHAPTER 14: CONDITIONAL STATEMENTS

embedded URL that invoked the file where the conditional tags
are located. To specify a field, use the “field” tag, followed by a
colon, and then the name of the field in quotes, as follows:

[if: field:"Salary" > field:"Expenses"]
The following is also correct:
[if: field:"Salary"> field:"Expenses"]

In order for a field value to be substituted into the conditional
statement, the field name must be preceded with “field:” and then
the name of the field. This is true for fields on either side of the
“name=value” pair. Don’t use brackets (“[|”) to enclose the field
tag and field name. Using quotes to enclose the literal name of the
field is optional, however, it allows Lasso to more quickly locate
the field.

Here's an example showing a comparison between two field values
(Assets and Liabilities):

[if: field:"Assets"> field: "Liabilities"]

 Nice going, dude. You're solvent.

[else] Time to cut up those credit cards.

[/f]
A conditional statement can be useful if you want to check if a
guest has left an empty field. For example:

[if: field:"fieldName"==""]
The field is blank
[else]
Do something here
[/if]
The field value is retrieved as a result of the Lasso action that
called up the page where your conditional tags are placed. Thus, in
order for a field value to be evaluated, a record in a specific data-
base must have been located by Lasso.

Other Lasso Tags

Lasso substitution tags can be used since they are substituted with
a value when returned. For example, [nfound], or [client_id] can
be used. Lasso tags are never surrounded by quotes. For example:

[if: token_value=="test"]
....do this

[else]
....do that

[f]

CHAPTER 14: CONDITIONAL STATEMENTS

Or:
[if: nfound=="1"]
[if: field:"identifier"=="john"]
...display detail 2 of form
(can use [include: "path/detail_john.htmI"])
[else]
...display detail 1 of form
(can use [include: "path/detail.htmI"])
[/if]
[else]
...display hitlist form
[/if]
Or:

[if: cookie:"userid" == field:"guest"]
...update form...
[else]
...add form...
[/f]
Using conditional statements with sub-container tags is especially
useful for determining specific results within the associated
container tag. Each conditional statement applies only to the tag it
is contained within. For example, within [repeating:-...]...
[/repeating] tags the comparison to the “repeat value” applies only
to the field specified by the [repeating: ...] tag, i.e.:

[repeating: "Field1"]
[if: repeat_value=="yes"]
This HTML will appear when the
value of Field1 is "yes".
[/if]
[repeating]

When the [if: ...] tag is used within portals, fields within the portal
must be specified with the full relationship name and field name,
and be separated by colons as follows:

[if: field:"relationshipname::fieldname"=="value"]
[else]
<I-- Do something here -->

[if]

129

130 CHAPTER 14: CONDITIONAL STATEMENTS

Operators

The operator determines how the comparison is made. The opera-
tors supported by Lasso include:

Operator Meaning

== equal to

I= not equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to
>> contains

Note that a double equals symbol (“==") must be used for the
“equal to” operator. Single equals signs should not be used as was
the case with previous versions of Lasso.

Some examples:
[if:string1 >> string2]
is true if stringl contains string2.
[if: "field:company_name" >> "world"]
would be true for:

Blueworld
World webs inc
huge worldnet Co.

and false for:

test inc.
blueplanet

The following example shows how to apply special HTML format-
ting to select values.

[if:field:"title" == "president"]
[field:"title"] [field:"name"]
[else]
[field:"title"] [field:"name"]
[/f]
would return a result similar to:
Manager Tom Wheating
President Bill Doerrfeld

Vice-President Al Gore
Retired Bob Dole

CHAPTER 14: CONDITIONAL STATEMENTS

Concatenation Symbols for Multiple Comparisons

Multiple comparisons can be achieved within a comparison
expression. Logical operators are used to concatenate several
conditions together so each condition is evaluated separately and
then compared between one another. Multiple conditional state-
ments are concatenated together using double ampersand charac-
ters “&&" for “and” and double pipe characters “||” for “or.”
Comparisons are evaluated first (<, >, =, etc.) and then the
concatenated comparison is evaluated as a whole. Parentheses can
be used to separate the order of the comparisons, with the most-
nested parentheses evaluated first.

Using the “or” logical operator, the entire expression evaluates to
“true” when any one of the comparisons is true. For example, the
following expression would be “true”:

[if: true || false]
...display this
[/if]
Using the “and” logical operator, the entire expression evaluates to

“true” when all comparisons are true. For example, the following
expressions are both “true”:

[if: true && true]

...display this

[/if]

[if: true && (true || false)]
...display this

[/if]

“True” and “false” simply represent the result of a condition.

Here is how a more complex expression would use concatenated
symbols:

[if: value1 < value2 && (value3 == value4 || value5 > value1)]
...display this
[/if]
Here is another example:

[if: (client_ip=="196.46.198.222" && server_day == "Sat") |
client_ip=="259.204.68.2"]

It's Kyle!
[else]

It's not Kyle!

[f]

131

132 CHAPTER 14: CONDITIONAL STATEMENTS

Within this expression, the first IP address and day of the week are
compared. The comparison is true if either the result of that is
true, or the second IP address comparison is true. Without the
parentheses, the result would not be the same since the first IP
address would result in a true result, no matter what day it was.

Using multiple conditional statements avoids using nested [if: ...]
statements. For example, the following would check to see if
someone was accessing your site on the weekend (on Saturday or
Sunday):

[if: (server_day == "Sat") | (server_day == "Sun")]
weekend text

i
The [while: ...] Tag

The [while: ...] tag is a looping tag that repeats as long as a certain
condition is true. It is a cross between the [if: ...] and [loop: ...]
tags. The conditional statement follows the same specifications
used with the [if: ...] tag. The basic form of the tag is:

[while: (comparison-value) operator (comparison-value)]
...HTML if condition is true...
[/while]

Whatever is found between the [while: ...]...[/while] container tag
will be repeated as long as the condition evaluates to “true.”

The [loop_count] tag is a useful sub-container tag to use with the
[while: ...] tag. It allows the current loop value to be compared so
the [while: ...] operation will repeat a specified number of times.

<p>Loop while loop_count <="20"

[while : loop_count <="20"]
[loop_count],

[/while]

Conditional Statements Based on Repetition

Conditional statements can test for the number of repetitions
within a [record], [repeating: ...] or [portal: ...] container. The
result of this test can then be used to apply specific HTML format-
ting or modify specific Lasso-returned values. For example:

[record]
...blah...
[if: repetition=="2"]

CHAPTER 14: CONDITIONAL STATEMENTS

...blah blah...
[/

[record]

The above will insert “...blah blah...” for every other record. If the
test was repetition== “3” then “...blah blah...” would be printed
for every third record, and so on.

When either of the [record], [repeating: ...] or [portal: ...] tags are
nested within one another, the tag that the repeating value applies
to is in the following order of precedence: [repeating: ...],

[portal: ...], [record].

The [repetition: ...] tag is useful when it is necessary to end the
rows of a table at a specified point. Using [repetition], it is
possible to put records in rows of a table and to change the look
of every other row as follows:

<table>
<tr><td>Name</td>
<td>Rank</td>
<td>Serial Number</td></tr>
[record]
<tr><td>[field:"name"]</td>
<td>[field:"rank"]</td>
<td>[field:"serial"]</td></tr>
[if: repetition=="2"]
<tr bgcolor="#dddddd">
<td>[field:"name"]</td>
<td>[field:"rank"]</td>
<td>[field:"serial"]</td></tr>
[/i]
[frecord]
</table>

The following puts each repeating value in a cell of a table going
across the row and starts a new table row after every fifth repeti-
tion:

<table><tr>
[value_list:"typeclient"]
<td><input type=radio name="typeclient" value="[list_value]" [checked]>
[list_value]</td>
[if: repetition=="5"]</tr><tr>
[/if]
[Ivalue_list]
<ftr></table>

133

134 CHAPTER 14: CONDITIONAL STATEMENTS

The following syntax shows how to put each value of a radio
button selection list into its own cell and begin a new row of the
table at every fifth repetition:

<table><tr>

[value_list:"choice1"]<td>

<input type=radio name="choice1" value="[list_value]" [checked]>
[list_value]</td>

[if: repetition=="5"]</tr>

<tr>[/if]

[Ivalue_list]

<ftr>

</table>

In the above example, each radio button selection will be sepa-
rated into its own cell, the row will end after 5 checkboxes, and
start again in a new row. The same technique can apply to
checkbox selection lists as follows:

<table><tr>

[value_list:"qualifications"]

<td>

<input type="checkbox" name="qualifications" value="[list_value]"[checked]>
[list_value]</td>[if: repetition=="5"]

<ftr>

<tr>

[ifl[ivalue_list]</tr>

</table>

<input type="hidden" name="qualifications" value="">Unselect Al

In the above example, each checkbox will be separated into its
own cell, the row will end after five checkboxes, and start again in
a new row.

Comparisons to Value Lists

When using conditional tags within [value_list: ...] tags, additional
options are available. The [list_value] tag can be used on either
side of the comparison operator to substitute the items from the
current value list. Furthermore, the HTML attribute “checked”
(which is used with radio buttons or checkboxes) or “selected”
(used with pop-up lists or scrolling lists) can be used to determine
if the list value is selected in the database. The Lasso tag [checked]
will return the text “checked” whenever a list value item has been
selected for the current record.

When creating a comparison for a field formatted with a value list,
the comparison is made to the value list item rather than to the

CHAPTER 14: CONDITIONAL STATEMENTS 135

field itself. In other words, one constructs the [if: ...] tag within
the [value_list: ...]...[/value_list] container and makes the compar-
ison to the [list_value]. Comparisons can be made only to the
field specified by the [value_list: ...] tag. For example:

[value_list:"temperature"]
[if: list_value == "123"]
--- This is the item 123 ---
[/if]

[Ivalue_list]

Note that in the following, the Lasso tag [checked] is not quoted,
but the text “checked” is:

Select a shift:

[value_list: "shift"]

<tr><td>
<input type=radio name="shift" value="[list_value]" [checked]>
</td><td>
[if: list_value=="1"]
This is shift 1.
[/if]
[if: list_value=="2"]
This is shift 2.
[/if]
[if: list_value=="3"]
This is shift 3.
[/if]
</td><td>

[if: checked == "
This is the currently assigned shift.
[else]
(/]
</td></tr>
[Ivalue_list]

The [selected] tag achieves the same results, as follows:
Select a group:

<select name="group">
[value_list:"group"]
<option value="[list_value]"[if: selected ==""]
selected]/if[>[list_value]
[Ivalue_list]
</select>

136 CHAPTER 14: CONDITIONAL STATEMENTS

However, in this case the syntax may be specified as follows:

<select name="group">
[value_list:"group"]
<option value="[list_value]"[selected]>[list_value]
[Ivalue_list]

</select>

When dynamically returning a value list from the database, it is
not possible to specify that the list value is different than what is
displayed, for example:

<option value"one-thing">value item returned by Lasso from database

When Lasso gathers the listed items, the value is always exactly
how the list is defined in the FileMaker Pro database. However,
using conditional statements you could compare the list value, and
based on that change the list items that are displayed:

<select name="field1">
[value_list:"field1"]
<option value="[list_value]">[If: [list_valug]=="some item on list"]
Display something else [else] [list_value][/if]
[Ivalue_list]
</select>

To check multiple list items, you need to check each item on the
list. For example:

<select name="field2">
[value_list:"field2"]
<option value="[list_value]">
[If: list_value=="1st item on list"] Display Something other than first
[else: If: list_value=="2nd item on list"] Display Something other than
second
[else: If: list_value=="3rd item on list"] Display Something other than

third
[else: If: list_value=="4th item on list"] Display Something other than
fourth
[else] [list_value]
[/if]
[Ivalue_list]
</select>

The use of conditional statements within the [value_list: ...] tag is
just one example of using conditional statements within container
tags, other examples can be found in other chapters of this
manual.

CHAPTER 14: CONDITIONAL STATEMENTS

Using an [inline: ...] with Conditional Statements

The following is an example use of how to combine the

[inline: ...] tag with conditional statements. Place this code in any
file processed by Lasso (a post-Lasso form, or a suffix-mapped file
that is set in the Web server to use Lasso), to get a table listing all
the employees whose first names begin with “Erik.” This can even
be placed on a hitlist page that is searching a different database.

[inline: database="Employees", layout="Summary", "First Name"="Erik",
search]
current action is: [lasso_action]
<table>
[record]
<tr>
<td>[field: "First Name"]</td>
<td>[field: "Last Name"]</td>
<ftr>
[frecord]
</table>
[if: inline_result:code =="0"]

searched with no problems

[else]
problem connecting to DB: [inline_result] [inline_result,code]
[/if]

[finline]

The following is another example which shows how to use an
[inline: ...] to send an email whenever someone from outside your
domain views a page:

<html>

<head>

<title>Text</title>

</head>

<body>

[if: client_ip !="202.230.55.*"]
[inline: emailhost="domain.com",emailfrom="zero@domain.com",
emailto="john@domain.com",emailsubject="This is the subject",
emailformat="/Stranger.html", nothing]
An email was sent, notifying us of your presence.<p>
[/inline]

[/if]

</body>

</html>

Note that specifying the -nothing action is not necessary.

137

Chapter 15: Logging Lasso
Activity

There are several ways to keep track of activities resulting from
Lasso actions. It is possible to record details of this activity into a
log, or to display the activity in the active log window. Log infor-
mation can be saved to either a target text file or specified fields
within a database (when combined with an inline routine).

In addition, Lasso also automatically creates an error log file. A
Lasso error log is created automatically with all editions of Lasso
(CGI, Plug-in and Server). The file is called “Lasso Errorlog” by
default. If deleted, or renamed, a new one will be created. The
error log file is always saved at the root level of the Web serving
folder. This location cannot be changed. Lasso will record the
numeric error code and any associated error text, as well as the
date and time that the error occurred. There is no way to
customize the Lasso error log.

The [log: ...] Container Tag

The [log: ...] tag allows for information relating to the current
Lasso action to be written to a text file or displayed in the server
(or Lasso.acgi) log window. Logging activity occurs when Lasso has
idle time. There are two parameters available: the actual path to a
text file, and “window.”

Path Parameter

If a path is indicated, the values specified between the

[log: ...]...[/log] container are appended to the end of the targeted
file. It is not possible to overwrite the contents of this file. The file
path must be indicated from the root level of the Web serving
folder.

For example:
[log: "/path/to/logfile"] the log text [/log]

Several separate logs can track different activities with each writing
to a different file or all writing to the same file. Simply add addi-
tional log tags to a format file. Do not nest these tags.

If a path and file is not specified, a default log file will be created
at the root level of the server and titled “Lasso.log.”

140 CHAPTER 15:

LOGGING LAssoO AcCTIVITY

Window Keyword

The [log: ...] tag can take the “window” keyword as a parameter
instead of a file and path specification. “Window” instructs Lasso
to output the text or tags between the opening and closing [log:
...] tags to the Lasso log window instead of a file.

For example:

[log: window] [server_date,short],[server_time,short],[cookie:id]
[/log]

For the Lasso Plug-in, the text is displayed within the server log
window. This information is useful for troubleshooting.
Content of Log

Lasso will log whatever is between the opening and closing

[log: ...] tags. For example, tabs or commas can be used to create a
delimited file. Any Lasso substitution tag can be used within the
log tags, including fields from the specified database and layout. If
each log entry is to appear on its own line in the log file, use a line
break at the end of the line as follows:

[log]the log text with a line break at the end
[/log]

Any line breaks in the HTML are put in the log file and are not
ignored as is common with HTML, thus:

[log]test[/log]
is:

testtesttesttesttesttesttesttesttesttest
And:

[log]test

[/log]
is:

test

test

test

CHAPTER 15: LOGGING LAsso AcTiviTy 141

One example is to use the [log: ...] tag on a no-results error file to
report the activity that led to no records being found. The
following syntax would include the date, time, name of the data-
base, what field was searched on and how, and the name of the
visitor (if Lasso Security is employed to log someone into the site):

[log: “/logs/noresult.log"Ino result:[server_date,short],
[server_time,short],[database_name], [search_args][loop_count]:
[search_field] [search_op] [search_value], [/search_args],[client_username]

[/log]

Note that there should be a line break after the last item to be
logged so that each log event will appear on a separate line. The
file created by this example will appear as:

no result:5/16/97,12:25 PM,Employees, 1) job equals carpet, TomR

no result:5/18/97,11:05 PM,Employees, 1) name equals Jesus, 2) job equals
haberdasher,John

no result:5/18/97,11:15 PM,Employees, 1) name begins with snellergish,Pete

no result:5/22/97,00:11 PM,Employees, 1) Job begins with snake, TomR

Multiple log tags can be used to have Lasso log to both a text file
and to the log window.

Activity Log Using [inline: ...]

To log activity to a database, use the [inline: ...] tag. The inline
activity occurs as the page is processed and this secondary and
separate action can be hidden from the actual purpose of the
returned page. Using the [if: ...] conditional tag, you can set the
[inline: ...] to add values to the log database whenever a certain
condition is met. In effect, specialized logs could be created to
track specific activities with log information stored in various
targeted databases. For example, you could log whenever someone
performs a search as follows:

[inline: database="EmpLog", layout="List","User IP"=client_ip,"Num
Hits"=nFound,"First Name Term"=form_param:"First Name","Last Name
Term"=form_param: "Last Name", "Group Term"=form_param:"Group", "Shift
Term"=form_param:"Shift","TheDate"=server_date,"TheTime"=server_time,
add] [/inline]

142 CHAPTER 15:

LOGGING LAssoO AcCTIVITY

This will add the IP address of the searcher, the number of hits
found, search criteria, and a date/time stamp. The search criteria is
obtained using the [form_param]| tag which allows for the previ-
ously entered values to be captured. When the page is processed
the fields that are contained in the inline tag are added to the
database. In the above example, the “EmpLog” database would
contain records with field data as follows:

User IP: 102.34.56.21
Num Hits: 15

First Name Term: John
Last Name Term: Doorey
Group Term: fixtures
Shift Term: night
TheDate: 5/5/97
TheTime: 21:23:31

Each entry would appear as a new record in the database (the field
names are on the left, sample values on the right).

Since there is no text between the [inline: ...]...[/inline] container,
nothing displays on the returned page. Text could be placed there
to indicate that the logging occurred or to display values from the
specified database and layout.

Chapter 16: HTTP Content
and Controls

The [referrer] Tag

Lasso provides a link to the document’s referrer using the [referrer]
tag. The referrer is passed to Lasso from the browser and is the
URL of the page the user visited just prior to the currently viewed
page. The referrer can serve as a “back” link in a format file, but
only when available. Here is the syntax:

[referrer]insert Link Text Here[/referrer]

When processed, Lasso automatically substitutes a referrer link in
the format:

Insert Link Text Here

Since the referrer uses the URL of the previous page, it cannot be
used to return to pages created by a “post” action. However, it will
work if the previous page was generated by Lasso actions and
commands.

Time/Date Stamping

e [server_day] — Displays the day of the week. Optional para-
meters are “short” and “long”; the default is “short.” The short
form is a three-letter abbreviation in all capital letters (MON,
TUE, etc.). The long form is in mixed case (Monday, Tuesday,
etc.).

e [server_date] — Displays the current date. This tag takes one
of three optional parameters (the default is “short”):

short: 1/1/97 (month/day/year)
abbrev: Wed, Jan 1, 1997
long: Wednesday, January 1, 1997

e [server_time]| — Displays the current time. This tag takes
optional parameters “short” and “long”; the default is “short.”
Long includes seconds, short does not.

144 CHAPTER 16: HTTP CONTENT AND CONTROLS

Client Content

Several substitution tags take advantage of information gathered
from a visitor's browser. These may be used to simply display
information about visitors, or used in conjunction with condi-
tional expressions to dynamically route visitors (see CHAPTER 14:
CONDITIONAL STATEMENTS). Browser Content tags include the
following:

¢ [client_addr] — Displays the client’s domain name if domain
name lookups are enabled in the Web server. Displays the
client’s IP address if domain name lookups are disabled.

¢ [client_ip] — Displays the client’s IP address.

¢ [client_type] — Displays the client’s browser type.
[client_type] is also known as the “user agent” and is a some-
what arbitrary text string of up to 256 characters sent by the
browser in the HTTP request header. In theory, client type can
be used to determine what sort of browser the person
accessing your Web site is using.

¢ [client_username] — Displays the username (from HTTP
basic authentication).

¢ [client_password] — Displays the password (from HTTP
basic authentication).
Client Domain Within [if: ...] Tag

The domain name of the user (as presented by the browser in the
incoming HTTP request) can be used within [if: ...] tags in the
following manner:

¢ Only the equals operator (“==") can be used to compare
domain names.

¢ Only hard-coded literal values can be used, not fields.

¢ Domain names on the right side of the equals operator may
take an asterisk as a wildcard character for the leading
portions of the domain name.

e There must not be any blank spaces in domain names on the
right side of the equals operator.

¢ Multiple domain names may appear on the right side of the
equals operator, separated by commas.

CHAPTER 16: HTTP CONTENT AND CONTROLS

Some examples:

[if: client_addr=="harry.blueworld.com"]
Hi, Harry!
[/if]
[if: client_addr=="*blueworld.com"]
Welcome, Blue Person!
[/if]
[if: client_addr=="*.edu"]
Be sure to ask about educational discounts!
[/if]

[if: client_addr=="santa.claus.com, easter.bunny.com"]

[/f]

Get reall

[if: client_addr=="*.everyware.com, *.macweb.com"]
QOur wives are prettier, our kids are smarter, our plug-in is faster.

[f]

If DNS lookups are disabled in the Web server, the [client_addr] as
reported by the browser is a numeric IP address and not a domain
name. Therefore, all conditional statements using [client_addr] as

a domain name (rather then the IP address) within the [if: ...] tags

will fail (will evaluate to false).

Client IP Address Within [if: ...] Tag

The IP address of the user (as presented by the browser in the
incoming HTTP request) can be used within [if: ...] tags in the
following manner:

¢ Only the equals operator (“==") can be used to compare IP
addresses.

e Only hard-coded literal values can be used, not fields.

e IP addresses on the right side of the equals operator may take
an asterisk as a wildcard character for trailing portions of the
address.

e P addresses on the right side of the equals operator must not

contain any blank spaces.

e Multiple IP addresses may appear on the right side of the

equals operator, separated by commas.

Some examples:

[if: client_ip==168.191.97.167]

[if]

Hi, Harry!

145

146 CHAPTER 16: HTTP CONTENT AND CONTROLS

[if: client_ip==168.191.%]

Welcome, Person Whose IP Address Starts with 168.191!
[/if]
[if: client_ip=="207.107.95.*", "206.24.108.*"]

Prettier, smarter, faster.

[if]

Header

An HTTP header can be produced by Lasso using the
[header]...[/header| container in a response file. Any text found
within the [header]...[/header] container will become the actual
HTTP header for the response file. Several examples using the
[header]...[/header]| container are included below.

The rules governing the use of the [header]...[/header] container
are as follows:

¢ The [header]...[/header] container may appear anywhere in a
Lasso format file.

e Any Lasso tags may be used within the [header]...[/header]
container.

e The literal string “HTTP” (all uppercase, no quotes) must
appear somewhere within the [header]...[/header]| container.
All text preceding the HTTP string will be removed from the
header.

e Lasso tags that modify the HTTP header (currently [set_cookie:
...] and [content_type: ...]) must appear within or after the
[header]...[/header] container in the format file.

e All carriage returns (CR) within the [header]...[/header]
container will be replaced with a CR/LF (carriage return/line
feed) pair. As HTTP headers are always terminated by two
carriage return/line feed (CR/LF) pairs, Lasso will not allow
consecutive CR/LFs anywhere within the [header]...[/header]
container. However, two CR/LF pairs are always required
before the ending [/header] tag. Lasso always insures that
there are exactly two CR/LF pairs to mark the end of the
header.

e No spaces can be used at the start of the header line.

Header Construction

A HTTP header must follow the Hypertext Transfer Protocol
(HTTP) standard maintained by the World Wide Web Consortium

CHAPTER 16: HTTP CONTENT AND CoONTROLS 147

(W3C). The WC3 guidelines for object headers specifies that
several lines must be included. The first line being the status line:

<http_version> <status_code> <reason_line>

The numeric values for various status codes to HTTP requests can
be found at:

http://www.w3.org/Protocols/rfc2068/rfc2068

For example, to redirect an HTTP request, the status code “302” is
used as follows:

HTTP/1.0 302 FOUND

The next few lines must contain one or more HTTP directives. For
example, an HTTP redirect request is specified as follows:

HTTP/1.0 302 FOUND<CrLf>

URI: Location: http://www.domain.com/path-to-file/Add_Reply.htmi<CrLf>
Server: Lasso/2.5

<CrLf>

<CrLf>

The symbols “<CrLf>" indicate the presence of a carriage return
and line feed. The redirect URL can be specified by either “URI”
(Uniform Resource Identifier) or “Location,” or both, to provide
greater compatibility with a variety of browsers (having both is
optional). The “Server” line is optional, although other HTTP
requests may require it.

Submit Without Reloading or Redirecting the Page

Using the [header]...[/header| container, a form can be submitted
to a database without changes on the browser side. The form will
remain as is. No reloading or redirecting will occur. the response
page should include the following:

[header]

HTTP/1.0 204 FOUND
Server: Lasso0/2.5
<CrLf>

<CrLf>

[/header]

This may be useful if you have an update form for a long list of
records and you want to update each without searching for the list
all over again. Of course, the contents of the updated records will
not change until the record is found again.

148 CHAPTER 16: HTTP CONTENT AND CONTROLS

Counting the Number of Times a Link is Selected

The following example extends the functionality of the “Rotating
Banners” example included in CHAPTER 9: GRAPHICS AND
MurriMEDIA. This example allows for images to be randomly
displayed. Additionally, when an image is selected, the user is
taken to the URL associated with that image. The number of times
an image link is selected is also recorded.

In the example, “FieldName1l” is the field that stores the banner
graphics. “FieldName2” is a field that stores the URL for an image.

The first action of selecting a link, actually submits a form using a
“nothing” action. In other words, the image is used as a submit
button as follows:

[inline: database="YourDBName", layout="YourLayoutName", random]
<form action="action.lasso?-response=process.lasso" method="post">

<input type="hidden" value="[field:"FieldName2",raw]" name="-token">
<input type="hidden" value="FieldName3" name="[recid_value]">

<input type="Image" src="[field:"FieldName1",raw]" name="-nothing">

</form>
[/inline]

The processed file “process.lasso” contains an inline to record that
the link was selected. The header tag is then used to redirect as
follows:

[inline: update, database=YourDBName, layout=YourLayoutName,
visitcount=(math-add:field:"visitcount",1),
recid=form_param:"FieldName3"][/inline]
[header]

HTTP/1.0 302 FOUND

Location: http://[token_value]

URI: http://[token_value]

Server: Lasso/2.5

<CrLf>

<CrLf>

[’header]

Substitute “YourDBName” and “YourLayoutName” for actual
values. “visitcount” is the field that collects the data on how many
times the image was linked to. Note that the record ID is passed
using a form parameter (form_param:"FieldName3").

CHAPTER 16: HTTP CONTENT AND CONTROLS

Timeout

The -timeout tag sets the time that Lasso will wait for a response
from FileMaker Pro. The value is measured in seconds and can be
a minimum of 10 and a maximum of 300 seconds (5 minutes).
This parameter is optional. If the tag is not used, the default is 60
seconds.

The timeout setting controls only the time Lasso will wait for a
response from FileMaker Pro. The Web server also will have a
timeout setting that applies to Lasso or any other CGI. For
example, for WebSTAR, the default CGI timeout is one minute.
The Web server’s CGI timeout may need to be increased if Lasso’s
timeout is increased. The -timeout tag is specified as follows:

<input type="hidden" name="-timeout" value=120>

In the example above, the timeout value is set to 120 seconds.

Content Type

The [content_type] tag allows the user to override the default
content type of “text/html.” The [content_type]| tag must be the
first entry in the format file, otherwise it is ignored by Lasso. For
instance, if you wanted to have the document returned from Lasso
be processed by the client’s browser as an SGML document rather
than a standard HTML document, specifying the following:

[content_type: text/sgml]

The [content_type] tag is ignored if it appears within a format file
that is included in another format file via the [include] tag.

PIXO Support

PIXO (“Plug-In Cross-Over”) is a “standardized” way for Web
server plug-ins to communicate and cooperate for better perfor-
mance and advanced integration.

PIXO allows plug-ins loaded into the same server to call each
other without the overhead of Apple Events or TCP/IP.

Lasso supports the PIXO standard by allowing other Web server
plug-ins to send text to Lasso for processing. Lasso currently
cannot send text to other plug-ins. The Lasso Plug-in's PIXO
service name is “Lasso_Plug-in_PIXO.”

149

Chapter 17: Retrieving
Values

The [form_param: ...] Tag

The [form_param: ...] tag allows values entered into a form to be
retrieved on the response file. These values can either be displayed
or inserted into HTML. For example, the [form_param: ...] tag can
be used to auto-populate “add,” “search,” or “update” forms or
inline operations, without the values being saved into a database.

The form parameter value is retrieved by specifying the name of
the field the value was associated with in the previous Lasso
action. The source of the value is either a field in a form or the
value that was paired to a field in an embedded URL or inline
action. The format is as follows:

[form_param: "FieldName"]

The value “FieldName” is any “field” used in the previous format
file. It can be the actual name of a field, or any made-up name if
the data is not submitted to a database.

The [form_param: ...] tag can be used in any response form, but is
most useful in a “No Results” page. In this case, including the
previous search parameters allows the user to modify, as opposed
to re-type, the search parameters.

Examples of how to format the various types of field inputs are
shown below.
Use of the [form_param: ...] Tag

To use a form parameter value from the data entered into a field
called “userid,” use one of the following on the reply page.

Within a form:
<input type="text" size=30 name="name" value="[form_param:"userid"]">
As an embedded URL:

<a href="action.lasso?-search&-database=employees&
-layout=main&-response=detail.htm|&-op=eq&name=[form_param:"userid"]">
Search

152 CHAPTER 17: RETRIEVING VALUES

In an inline:

[inline: search, database="employees", layout="main", operator="eq",
"name"=form_param:"userid"]

name = [field:"name"]
[/inline]

The [form_param: ...] tag can be used to populate values in a pop-
up selection list as follows:

FIELD: <select name="fieldname3" size=1>

<option value="" [If:form_param:"fieldname3"==
—- Select Here —[else]>[/if]
[If:form_param:"fieldname3"==""][else]

<option value="[form_param:"fieldname3"]" selected>
[form_param:"fieldname3"][/if]

<option>pop-up1

<option>pop-up2

<option>pop-up3

<option>pop-up4
</select>

|selected>

An [if: ...] conditional statement can be utilized to eliminate
unwanted repetitions of the values in the selection list.

Count Keyword and Number Parameter

When multiple occurrences of a field (repeating fields, etc.) are
submitted, the [form_param: ...] tag will return all fields’ values
concatenated together.

In such cases, the “count” keyword can be used to return the
number of values the specified [form_param: ...] has. Sample
syntax:

[form_param: "YourFieldName", count]

Specific values can be retrieved using a number parameter. For
example, the number 2, formatted as “[form_param:
"paramName", 2],” would return the second value associated with
the field.

Additionally, the [loop: ...] tag can be used to retrieve all of the
form parameters associated with a field:

[loop: (form_param: "YourFieldName", count)]
[form_param: "YourFieldName", loop_count]

[loop]

In the above example, “YourFieldName” is the name of the field
that is the source of the count keyword.

CHAPTER 17: RETRIEVING VALUES 153

Updating Multiple Records

The following is an example of the usefulness of the number para-
meter used with the [form_param: ...] tag. In this example,
multiple records appearing on a hitlist (or found set of records)
can be updated by calling up a hitlist and submitting all records
on one form to a page which then processes the individual
updates. The response page that processes the actual updates, uses
the [form_param: ...] tag, [loop: ...]...[/loop] tag, and [inline: ...]
operations to update each individual record.

To accomplish this, set up a hitlist as follows:

<form method="post" action="action.lasso?-nothing&
-response=process.ixt">
[record]

<input type="hidden" name="CurrentRecordNumber"
value="[recid_value]">

<input type="text" name="YourFieldName1"
value="[field:"YourFieldName1"]" size=30>

<input type="text" name="YourFieldName2"
value="[field:"YourFieldName2"]" size=30>
[frecord]
<[form>

The -nothing action sends the form submission to the page to be
processed, in this case, it is titled “process.txt.” The actual names of
the fields to be updated in your database should be substituted for
“YourFieldNamel” and “YourFieldName2.”

In order to direct the update to the correct record, the record ID
must also be passed as a form parameter. In the above example,
the value “CurrentRecordNumber” serves as a token, though it is
not a Lasso tag and has no meaning. It simply allows the record ID
value to be retrieved using a [form_param: ...] tag. Note that the
-token tag cannot be used in this case, since there are multiple
record ID values and there can be only one token set with any one
Lasso action.

The [loop: ...] tag is used to individually process each instance of a
form parameter value as it is substituted into an inline operation.
The response page “process.txt” would process the series of record
updates as follows:

[loop: (form_param:"CurrentRecordNumber",count)]
[inline:
database="YourDBName",
layout="YourLayoutName",

154 CHAPTER 17: RETRIEVING VALUES

recid=(form_param:"CurrentRecordNumber",loop_count),
"YourFieldName1"=(form_param:"YourFieldName1",loop_count),
"YourFieldName2"=(form_param:"YourFieldName2",loop_count),
update]
[/inline]
[loop]

The loop tag loops for the number of form parameters submitted

(the number of records on the first page of the form). Each inline
then submits the data to the database. There can be as many fields
used as needed, with each appearing in the following format:

"YourFieldName2"=(form_param:"YourFieldName2",loop_count)

Values Paired with a Lasso Tag

As Lasso processes a response format file, the values associated
with the current action can be substituted into the format file.
These are generally values that were paired to the various Lasso
command tags. Lasso will simply display the appropriate values,
making them available to other fields, or allowing the values to be
used with other Lasso tags.

For example, the substitution value can be placed as a value in a
form:

<input type="hidden" name="field" value="[database_name]">
Or substituted into an embedded URL:

<a href="action.lasso?-search&-database=[database_name,url]&
-layout=[layout_name,url]&-response=detail.html&-recid=recid_value">
Link to Accomplish the Same Search

Or within a conditional statement. For example, the [lasso_action]
tag can be compared to the names of various actions, as follows:

[if: lasso_action=="search"] display one thing
[else] ...display another

[if]

In this manner, a returned HTML file can be dynamically altered
depending on the previous search action.

Retrieving FileMaker Pro Database
Info

The following tags gather information about the structure of
FileMaker Pro databases. These tags are part of the Lasso

CHAPTER 17: RETRIEVING VALUES

“Database_Info_Tags.mod” module. In order to use these tags,
“Database_Info_Tags.mod” must reside in the “Lasso Modules”
folder when Lasso is launched. Note: As there is a potential secu-
rity risk using these tags in certain server configurations, the
“Database_Info_Tags.mod” module is not installed by default.

Display Database Name

The [db_name: ...]...[/db_names] container and its corresponding
[db_names] sub-container retrieve the names of all open data-
bases.

Display All Layout Names

The [layout_name: ...]...[/layout_names] container and its corre-
sponding [layout_names]| sub-container retrieve the names of all
layouts.

Display Field Name

The [field_name: ...] tag is used to display the number of fields in
a specified database, a database field’s name, type, or accessibility
(security privileges). The first parameter to this tag must be either a
number or the keyword “count.”

If “count” is specified, the total number of fields in the current
layout will be returned. The syntax is as follows:

[field_name: count]

If there are ten fields in the specified layout, then the result is the
number 10. Note that no actual field name is indicated.

A number is used to indicate the specific field in a layout in the
“top to bottom” order it appears. For example, to retrieve the
name of the first field in a layout, use the following:

[field_name: 1]

If used, a second parameter must be either the keyword “type” or
“protection.” The keyword “type” outputs either “text,” “number,”
“image,” “date/time,” “boolean,” or “unknown,” depending on the
type of data stored in the field. For example:

[field_name: 1, type]

The keyword “protection” will output “none” if the field is modifi-
able, or “read only” if the data cannot be modified (via an add or
update).

[field_name: 1, protection]

155

156 CHAPTER 17: RETRIEVING VALUES

The [loop: ...] tag can be used with the [field_name: ...] tag to
return a list of every field in the database. For example, to display
all fields in a layout and have them available in a search or add
form, use the following:

[loop: field_name:count]<p>{field_name: loop_count]

<input type="text" name="[field_name: loop_count]" value="" size="60">
[loop]

Hiding Non-Modifiable Fields

One needs to be aware that certain FileMaker Pro fields cannot be
updated. This includes calculation, summary, auto-entered, vali-
dated, or fields that are not checked as “allow entry into field” in
the “Field Format” dialog in FileMaker Pro. To accommodate this,
one can either always reference layouts that contain modifiable
fields, or use conditional statements to hide certain fields. For
example:

[if: (field_name: 1, type)=="text"]
Or:

[if: (field_name: 1, protection)=="none"]

Loop

The [loop: ...]...[/loop] container instructs Lasso to display the
text between the opening and closing tags a specified number of
times. This number can be a literal value or the result of another
Lasso tag. The [loop: ...] tag has limited functionality when used
on its own; however, it can add looping functionality to other
Lasso tags.

Here is an example of how the [loop: ...] tag could be used to list
all the field names in a specified layout:

[loop: field_name:count]<p>{field_name: loop_count]

<input type="text" name="[field_name: loop_count]" value="" size="60">
[loop]

A loop can also be used to return all values for a certain field (if
the field is repeating or has multiple values entered by a check box
selection list). The following code:

[form_param: "group", count]<p>
[loop: (form_param: "group", count)]
[form_param: "group", loop_count]

[lloop]

CHAPTER 17: RETRIEVING VALUES 157

Returns the following result:
sales
printing
engineering

Loop Count

The [loop_count] tag outputs a number which represents the
current repetition of items within containers such as [record],
[value_list: ...], [loop: ...], [repeating: ...], [search_args],
[sort_args], or [portal: ...]. For example, the first record in a portal
would have a loop count of 1, the second 2, the third 3, and so
on. Examples of how the [loop_count] tag is used follow.

[loop: "10"]
This is loop # [loop_count].
[loop]

Show all repeating values in a numbered list as follows:

[repeating:"YourFieldName"]
[loop_count]) [repeat_value]<br clear=all>
[/repeating]

Number the rows in a portal as follows:

[portal:"jobs"]
ROW #: [loop_count][field:"Jobs::Contacts"]

[/portal]|
The [loop_count] can be used in conditional statements. For
example:
[loop: "10"]
[if: loop_count=="5"] This is the fifth time in the loop out of 10
[loop]

The following will display the first five repetitions of a repeating
field:

[repeating: "test"]
[if: loop_count <= "5"]
<input type="text" size=30 name="test" value="[repeat_value]">

[/f]
[Irepeating]

The [loop_count] tag can also be used to place a comma after all
[list_value] items, except the first, as follows:

[value_list: "Jobs"]
[if: checked !=""[if: loop_count != "1"], [/if][list_value][/if]
[fvalue_list]

158 CHAPTER 17: RETRIEVING VALUES

Not all instances of a field in a search form are displayed by the
[search_args| and [sort_args] containers. Only coupled search argu-
ments are returned. For example, using the database “Employees,”
a hitlist reply format file may contain the following syntax
(outside of the [record] container):

no result:[database_name], [search_args] [loop_count]) [search_field]
[search_op] [search_value], [/search_args]

If the search form has 12 possible field entries and only the first, fourth
and eighth were used in a search, the result would be as follows:

no result: Employees, 1) First Name begins with joanna, 4) Email begins with
feelin, 8) Comments contains groovy

Lasso Process

The [lasso_process: ...] tag can be used to instruct Lasso to process
any enclosed tags, and display the result. The [lasso_process: ...]
tag is especially useful when Lasso tags contained in a field are
returned to a format file. For example, if you had a field named
“result” containing tags, the following syntax could be used to
process all tags contained in the field:

[lasso_process: field: result]

The result is the same as if the contents of the field were part of
the original format file when it was processed.

HTML Comment

The [html_comment] container inserts the HTML comment tags.
[html_comment] Date is [server_date] [/html_comment]

Returns the following result:
<l-- Date is 11/21/97 -->

The [html_comment] container is particularly useful when
working with JavaScript as it relies heavily on commented code.

Tags with Multiple Values
These container and substitution tags may contain multiple values:

[sort_args]...[/sort_args] — Substitutes the sort options used in
the previous search. The [sort_field] and [sort_order] tags display
values for each instance of the sort parameters used in the
previous search and are only valid within the
[sort_args]...[/sort_args] container. All HTML between [sort_args]
and [/sort_args] is repeated for every field included in the search.

Chapter 18: Variables,
Tokens, and Cookies

At times it is necessary to store and retrieve specific values that are
not saved in a FileMaker Pro database. These values may be
needed for tracking visitors to a site or providing customized
responses based on current selections. Lasso provides three pairs of
tags for this purpose: [set_var: ...] and [var: ...]; [token] and
[token_value]; and [set_cookie: ...] and [cookie: ...]. All set a value
and then allow the current value of the item to be retrieved via a
substitution tag. Each approach handles information differently.

e Variables are used to set and retrieve values within the same
processed format file.

¢ Tokens are used to set and retrieve a single value passed from
format file to format file.

¢ Cookies are used to maintain a persistent value in the client’s
browser.

Unlike variables, token and cookie values are not available on the
same processed format file from which they are set. Tokens can
only have one value at a time, whereas multiple variable or cookie
values can exist concurrently. In addition, variables and tokens are
not stored in memory or a file, while a cookie is the only type of
value that Lasso can set and retrieve from a location that is not a
FileMaker Pro field.

Setting and retrieving values is mandatory for maintaining “state”
or for tracking the identity of users to your Web site. Tracking users
is required for e-commerce solutions and all situations where secu-
rity is a concern. Note: As the concept of setting and retrieving a
value pertains to security, it is important to note how Lasso
Security compares with other methods for tracking users.

e Lasso Security is used to maintain a permanent value.

Declaring Variables

The value of a variable can only be used within the same
processed file on which it is set. The [set_var: ...] tag sets the value
of the named variable. Any number of variables can be created
with one [set_var: ...] tag by pairing the name of the variable with

160 CHAPTER 18: VARIABLES, TOKENS, AND COOKIES

the value it is being set to. Each pair of variables is separated by a
comma, with the name of the variable appearing to the left. The
basic format of the tag is as follows:

[set_var: "var1"="SomeValue", "var2"="SomeOtherValue"]

The [var: ...] tag retrieves the indicated variable for display or for
use within another Lasso tag. If the specified variable has not been
set, nothing will output.

Variables are quite useful for extracting the values of sub-
containers or other values within container tags, in order to use
these values outside of the container. Here are several examples
where variables are of great benefit:

1. To retrieve a value that is a result of an inline action. For
example:

[inline: search, database="Primary", layout="main", operator="eq",
"Name"=field:"userid"]

[set_var: field:"Name"]
[/inline]

The value that results from the inline action can thus be used
outside of the [inline: ...]...[/inline] container.

2. Evaluate a conditional statement once and then use the result
repeatedly throughout the processed file. For example:

[if: var: "Open" >> field: "Category"]
[set_var: "Open"="True"|

[else]
[set_var: "Open"="False"]

[if]

3. Set a variable to the value of a sub-container tag to allow this
value to be used outside of the container tag. For example:

[repeating: "CD"]
[if: loop_count == "1"]
[set_var: "1stRepeat"=repeat_value]
[if: loop_count == "2"]
[set_var: "2ndRepeat"=repeat_value]
[/f]
[repeating]
The first and second repeating values can then be used

throughout the same format file, using [var: "1stRepeat"] and
[var: "2ndRepeat"].

CHAPTER 18: VARIABLES, TOKENS, AND COOKIES 161

Using Variables With Conditional Statements

A conditional statement can be used to determine the value used
for a certain variable, and then, allow that variable to be used else-
where without having to check the condition again. The following
example illustrates how variables can ease the processing of
multiple actions on a reply page. Variables come in handy since
two conditions are being checked: the action that called the page;
and the name of the field to be used in an inline. This method
reduces the number of files generated and simplifies creation and
administration of a Web site.

First, a variable is set according to the type of action returned on
the page. Nothing is displayed at this point. The syntax is as
follows:

[If: lasso_action=="add"]
[set_var: "textaction="Added"|
[else: If: lasso_action"=="update"]
[set_var: "textaction"="Updated"]
[else: If: lasso_action"=="delete"]
[set_var: "textaction"="Deleted"|
[else]
[set_var: "textaction"="search"]
[/if]
Second, a conditional statement is used to determine the name of
the database used in the previous action:

[if: lasso_action=="search"]
[include: "Detail.txt"]
[else]
[If: database_name=="Jobs"]

<h2 align=center>Job [var: "textaction"]</h2>
<[font><hr>
[set_var:"fieldval"=field:"Jobname"]
[else: if: database_name=="Tasks"]

<h2 align=center>Task [var: "textaction"]</h2>
<[font><hr>
[set_var:"fieldval"=field:"Task Name"]
[else]
ERROR

[if]

162 CHAPTER 18: VARIABLES, TOKENS, AND COOKIES

[inline: search, database="Primary", layout="main", operator="eq",
"Name"=var:"fieldval"]
[include: "Detail.txt"]

[/inline]

[/f]
In the above example, two different fields were used in two related
databases (“Jobs” and “Tasks”). If an action is completed in one of
the databases, the file will determine how to show the detail for
the entire main record (from the “Primary” database). The inline
cannot contain a conditional statement to determine which field
to specify. Thus, another variable is used to set the name of the
field used in the inline. The first condition uses the included file as
is, since the file can be correctly called by a search action.

In the next example, a variable is used to resort a found set of
records according to new sort options. This is illustrated in the
provided Employees example in the “Hitlist2.html” format file. A
variable is used here to capture the first field used in a sort, as
follows:

[sort_args][if: loop_count == "1"]
[set_var: "sortedfield"=sort_field]
[set_var: "sortedby"=sort_order]
[/if][/sort_args]

This variable is later used to pre-select the last selection in the sort
field as well as sort by pop-up list selections. This allows one to
place the value of the first sort field as the selected item, so that it
appears as selected. The variables can be displayed as follows:

<p>The variable "Sorted Field" contains [var: "sortedfield"]
<p>The variable "Sorted By" contains [var: "sortedby"]

The variables can also appear within a pop-up list to show the
selections made the last time the displayed list was sorted. For
example:

Sort by :

<select name="-sortfield">
[if: var:"sortedfield"==""]
<option value="" selected>- Select -
<option>unsorted
[else: if: var:"sortedfield"=="unsorted"]
<option selected>unsorted
[else]
<option value="[var: sortedfield]" selected>[var: "sortedfield"]
<option>unsorted

CHAPTER 18: VARIABLES, TOKENS, AND COOKIES

[/if]
<option>First Name
<option>Last Name
<option>Employee Number
<option>Hire Date
<option>Group
<option>Shift

</selected>

<select name="-sortorder">
[if: var:"sortedby"=="descending"]
<option>ascending
<option selected>descending
<option>custom
[else: if: var:"sortedby"=="custom"]
<option>ascending
<option>descending
<option selected>custom
[else]
<option selected>ascending
<option>descending
<option>custom
[/if]

</select>

Tokens

A token is used to pass a value from one format file to the next
without being saved in a database. This is accomplished by pairing
a -token tag with a value and then allowing this to be included in
the “name=value” pairs that make up a post or search argument. A
new token is set using the -token command tag. The token is
retrieved on a reply page using the [token_value] tag. If the token
was set on the first page, the value of that token will be substituted
wherever [token_value] appears. To pass the token value to subse-
quent format files, the token needs to be reset.

What are tokens used for? A token (like a cookie) can facilitate the
creation of shopping cart applications, as for example, when it is
necessary to utilize a customer ID or order ID on every form
throughout a shopping session in order to keep track of what a
user orders. A token can also carry a value that is used in an [if: ...]
tag in the reply page to direct a conditional response.

163

164 CHAPTER 18: VARIABLES, TOKENS, AND COOKIES

Set Token

A token is typically set to either the contents of a FileMaker Pro
field, an entered value, or to the record ID (to keep track of a
particular record in the FileMaker Pro database). It could also be a
literal value, though a token is limited to 255 characters. The
syntax for setting a token to be included with a form submission
is:

<input type=hidden name="-token" value="some value">

For example:
<input type=hidden name="-token" value="[recid_value]">

When using a field value it would take the following form:
<input type=hidden name="-token" value="[field:"YourFieldName"]">

When the token is to be entered on a form using a standard input
field, the following is used:

<input type="text" name="-token" size=30>
It can also be selected from a pop-up as follows:

<select name="-token" size=1>
<option>token value1
<option>token value2
<option>token value3
</select>

Tokens can also be set with a Lasso call in a link. For example:

<a href="action.lasso?-database=Products.fp3&-layout=Layout1&
-token=[recid_value]&[response]=productlist.html&-show">Browse our
products

The token must be set before the [token_value] can be displayed
on the response file.
Display Token with [token_value]

Lasso will substitute the value for the token into a format file
whenever the [token_value]| tag appears. The token value is
displayed on the response file by simply placing the tag as you
would any field returned by Lasso:

Display Token: [token_value]
The token can be inserted into a FileMaker Pro field as follows:

<input type=hidden name="YourFieldName" value="[token_value]">

CHAPTER 18: VARIABLES, TOKENS, AND COOKIES

The [token_value] tag takes the optional parameters “raw” and
“url” which perform the same functions as with the [field: ...] tag.
This is demonstrated as follows:

<input type=hidden name="-token" value="[token_value,raw]">

To pass the token, it must be set on each subsequent format file
which calls a Lasso action, except that Lasso will automatically
copy the value into URLs automatically created with the
[detail_link: ...], [next], and [prev] tags.

Using Tokens

The following represents how to pass record IDs via a token. In
this example, the token is set to the current record ID when any
action is submitted:

<input type=hidden name="-token" value="[recid_value]">

To continue to pass this value to another file, the token needs to
be set again using:

<input type="hidden" name="-token" value="[token_value]">
Or within an embedded URL as:

<a href="action.lasso?-database=Products.fp3&-layout=Layout1&
-token=[token_value]&[response]=productlist.htm|&-show">
Browse our products

If the value of the token is needed within an inline statement on
the directly returned response format file, it needs to be set again.
The following syntax is used to set a token within an inline:

[inline: database="YourDBName", layout="YourLayoutName",
token=token_value, search]

Here is the token value: [token_value]
[/inline]

If a token should continue to be passed from file to file, then it
must be set on each file or retrieved. The token can be changed on
new files by setting it to a new value.

Multiple Tokens

Lasso can only set one token with any Lasso action. However, it is
possible to pass multiple tokens in an indirect way by concate-
nating several values and setting the token to this value. The
concatenated value should include a delimiter so the tokens can
be extracted on the reply page using the [string_getfield: ...] tag.

165

166 CHAPTER 18: VARIABLES, TOKENS, AND COOKIES

For example, on a form you can take some values (literal, field,
calculated, and so on) and set it to a token as follows:

<input type="hidden" name="[token]" value="[string_concatenate: "value1","#",
"value2", "#", token_value]"

Note that a pound sign is used as a delimiter.

On the reply page, the first value (“valuel”) can be retrieved using:
[string_getfield: token_value, field_number=1, delimiter="#"]

The second value can be retrieved using:
[string_getfield: token_value, field_number=2, delimiter="#"]

The third value can be retrieved using:
[string_getfield: token_value, field_number=3, delimiter="#"]

Note: The [string_getfield: ...] tags require the “String_Tags.mod”
module to be installed in the “Lasso Modules” folder.

Cookies

Cookies allow data to be saved in the browser settings of the
computer accessing your Web page, and for that data to be
retrieved within the same session or at a later time. That is, if the
cookie hasn't been purged from the user’'s computer. Lasso has the
ability to set HTTP cookie values using the [set_cookie: ...] tag in
any Lasso format file. The cookie value is retrieved using the
[cookie: ...] tag.

Netscape defines cookies as follows:

“Cookies are a general mechanism which server side connec-
tions (such as CGI scripts) can use to both store and retrieve
information on the client side of the connection. The addi-
tion of a simple, persistent, client-side state significantly

extends the capabilities of Web-based client/server applica-
tions.”

For more details about cookies, refer to Netscape’s description at:
http://home.netscape.com/newsref/std/cookie_spec.html

Note: Cookies cannot always be relied upon as some browsers
provide an option to not save cookies.

Setting an HTTP Cookie

Setting a cookie saves a piece of data relevant to the visitor to the
Web site which can be recalled for subsequent visits. The compo-
nents for setting a cookie are as follows:

CHAPTER 18: VARIABLES, TOKENS, AND COOKIES 167

[set_cookie: "cookie_name"="cookie_value", expires="minutes_from_now",
path="path_name", domain="domain_name",secure]

For example:
[set_cookie: "Login"=field:"userlog",expires=20000]

The “cookie_name” and “cookie_value” parameters are required
and must appear first in the parameter list immediately following
the [set_cookie: ...] tag:

e cookie_name — The cookie name must be less than 1024
characters. It can be either a literal or a field value. Specify a
field value as follows:

field: "YourFieldName"

Netscape prohibits the use of the semi-colon, comma, or
space characters in cookie names. However, Lasso performs
URL-style encoding and decoding of cookie names, so these
characters may be used.

e cookie_value — This is the data value for the cookie, and
must be less than 1024 characters. It can be either a literal or a
field value. Record IDs can be used by specifying [recid_value]
for the cookie value.

The following parameters are optional and may appear in any
order. Here's a description of each parameter for the
[set_cookie: ...] tag:

e expires — Determines the number of minutes in the future
until the cookie will expire. If not set, the cookie will expire at
the end of the user’s browser session (when they quit their
browser). “minutes” must be less than 10 digits (less than 1
billion). A value of 0 (zero) or a negative number may be
used to have cookies expire immediately.

e path — This sets the path attribute for the cookie.
“path_name” must be less than 256 characters. If not speci-
fied, the path defaults to the path of the active URL (at the
time when the format file with the [set_cookie: ...| tag is
processed). The cookie can only be returned to a Lasso
response page when the domain name and path match that
stored when the cookie was originally set. To set the path to
the root level of the Web server indicate a slash as the path to
the cookie:

[set_cookie: UserName=field:name,path="/", expires=10000]

168 CHAPTER 18: VARIABLES, TOKENS, AND COOKIES

¢ domain — This sets the domain name attribute for the
cookie. “domain_name” must be less than 256 characters. If
not set, the domain defaults to the domain of the server.

e secure — With “secure” specified, the cookie is transmitted
only over secure communications channels using the HTTPS
(HTTP over SSL) protocol.

The total number of characters between the opening and closing
square brackets of the [set_cookie: ...] tag must be less than 2048.

Displaying a Cookie Value

After a cookie is set it is returned in every subsequent request in
which the “path_name” and “domain_name” match those speci-
fied in the [set_cookie: ...] tag. The cookie data value may be
displayed in a Lasso format file via the [cookie: ...] command:

[cookie: "YourCookieName"]

The “cookie_name” is the same name specified in the
[set_cookie: ...] tag.

The [cookie: ...] tag accepts the optional “url” parameter to
perform URL-encoding:

[cookie: "YourCookieName",url]
Cookies may be used in conditional [if: ...] tags. For example:

[if: cookie: cookie_name operator comparison_value]
...HTML if condition is true...

[else]
...HTML if condition is false...

[if]

The “cookie_name” is the same name specified in the

[set_cookie: ...] tag. The “operator” may be any of the standard
operators supported by the [if: ...] tag. The “comparison_value”
can be either a hard-coded literal value or a field name in the form
“field: field name” (without the quotes and no square brackets).
The “operator” determines how the comparison is made and is
used in the short form.

Tip: When testing cookies in a format file, it is helpful to turn on
the cookie alert in the browser. You can then easily see when they
are added.

Chapter 19: Math and
String Tags

Math Tags

The math tags perform calculations on numeric values returned to
a format file. The following guidelines apply:

e Each value must be a number, or any Lasso tag that is substi-
tuted as a number.

e FEach value is separated by a comma.

¢ Quotes can be placed around each literal value, but are not
necessary as only numeric values apply.

¢ In all math tags, except the [math-round: ...] tag, parameters
specified as whole numbers always output a whole number.
For example, when using [math-div: ...] to divide 5 by 2, the
output is 3 (2.5 rounded up), but when dividing 5 by 2.0 the
output is 2.5. Additionally, the precision of the output (the
number of digits after the decimal point) is inherited from the
parameters themselves. For example, when adding 1, 1.0 and
1, the output will be 3.0, but when adding 1, 1.00 and 1.000,
the output will be 3.000.

In order to use these tags, the “Math_Tags.mod” file must reside in
the “Lasso Modules” folder when Lasso is launched.

The math tags include the following:
[math-add: ...] — Adds a list of values. For example:
[math-add: 2, 2, 14, 3] outputs to 21 (it is equivalent to: 2 + 2 + 14 + 3).

[math-add: field:"price", 6.3] outputs to 26.3, if the current value of the field
“price” is 20.

[math-sub: ...] — Subtracts a list of values. The specified values
are subtracted in the order in which they appear. For example:

[math-sub: 20, 1] outputs to 19, and [math-sub: 5, 3, 20, 1] outputs to -19.
[math-mult: ...] — Multiplies a list of values. For example:

[math-mult: 5, 5, 14, 2] outputs to 700 (it is equivalent to: 5* 5 * 14 * 2).

170 CHAPTER 19: MATH AND STRING TAGS

[math-div: ...] — Divides a list of values. The specified values are
divided in the order in which they appear in the string. For
example:

[math-div: 25, 5, 2] outputs to 3
[math-div: 25, 5, 2.0] outputs to 2.5

[math-mod: ...] — Divides two values and outputs the division
remainder. The remainder is also referred to as the modulo. For
example:

[math-mod: 29.50, 5] outputs to 4.5 (equivalent to: 29.50/ 5 = with a remainder
of 4.5)

[math-round: ...] — Rounds a value to the nearest value. Only
one value can be evaluated with one [math-round] tag. A number
parameter can be used to specify the precision of the rounded
result. The number of decimal places to be used is indicated by the
tenth power, i.e, 100, 10, 1, .01, .001, and so on. For example:

[math-round: 1345.75, 1] outputs to 1346 (equivalent to: 1345.75 rounded to
the nearest 1)

Nesting Math Tags

Complicated expressions can be created by nesting math tags
within parentheses. For example:

[math-sub: (math-add: 2, (math-div: (math-mult: 2, 6), 4)), 2]

Lasso will output the number 3 (this is equivalentto: 2 +2 * 6 / 4 - 2).

Creating a Page Counter

In this example the [math-add: ...] tag is used to increment a field
by one, every time the record is displayed on a detail page. This
example is demonstrated in the provided “Employees” database
example. The value for the number field “visitcount” is returned to
the [math-add: ...] tag, incremented by 1. An inline then adds the
value back to the database as follows:

[if: lasso_action=="search"|
[inline: update, database=database_name, layout=layout_name,
visitcount=(math-add:(field:"visitcount"), 1), recid=recid_value]
This record has been visited [math-add: (field:"visitcount"), 1] times.
[/inline][/if]

Note that a conditional statement is used to ensure that the inline
operation occurs only when the last action is search.

CHAPTER 19: MATH AND STRING TAGS

String Tags

The Lasso “String_Tags.mod” module provides many text parsing
and manipulation capabilities. In order to use these tags, the
“String_Tags.mod” file must be reside in the “Lasso Modules”
folder when Lasso is launched.

The string tags include the following:

[string_concatenate: ...] — Concatenates any number of
unnamed string parameters.

[string_concatenate: "StringText", "MoreStringText"]

[string_countfields: ...] — Returns the total number of fields in
all of the specified text strings together.

[string_countfields: delimiter="DelimiterText", "StringText", ...]

[string_extract: ...] — Extracts a specified range of characters from
the source string.

[string_extract: start_position=#, end_position=#, "StringText"]

[string_findposition: ...] — Returns the numeric position of the
beginning of specified text.

[string_findposition: find="FindText", "StringText"]
[string_getfield: ...] — Returns the text value of a field.
[string_getfield: field_number=#, delimiter="DelimiterText", "StringText"]

[string_insert: ...] — Inserts the specified string into the source
string at a specified position.

[string_insert: position=#, text="InsertText", "StringText"]

[string_length: ...] — Totals the number of characters of a speci-
fied string.

[string_length: "StringText"]

[string_lowercase: ...] — Concatenates all specified text and
returns it in lowercase.

[string_lowercase: "StringText"]

[string_remove: ...] — Removes a specified range of characters
from the source string.

[string_remove: start_position=# end_position=#, "StringText"]

171

172 CHAPTER 19: MATH AND STRING TAGS

[string_removeleading: ...] — Removes all occurrences of a speci-
fied pattern which are found at the beginning of specified para-
meter strings.

[string_removeleading: pattern="PatternText", "StringText", ...]

[string_removetrailing: ...] — Removes all occurrences of a speci-
fied pattern which is found at the end of the parameter strings.

[string_removetrailing: pattern="PatternText", "StringText", ...]

[string_replace: ...] — Replaces specified text with specified
replacement text.

[string_replace: find="FindText", replace="ReplaceText", "StringText"]

[string_uppercase: ...] — Concatenates all specified text and
returns it in uppercase.

[string_uppercase: "StringText"]

Chapter 20: Sending
Apple Events

Lasso offers the ability to send Apple Events to other applications
(including the Finder) from a processed format file. This enables
one to control/automate processes independent of FileMaker Pro.
For example, one may send Apple Events to MacAuthorize for
credit card authentication.

Apple Events are configured and sent using the [event: ...] tag. See
CHAPTER 3: INSTALLATION AND SETUP for information on how to
enable and disable [event: ...] tag.

Note: Due to potential security concerns with certain configura-
tions, the [event: ...] tag is not installed by default.

There are several parameters needed to send an Apple Event. The
[event: ...] tag is constructed as follows:

[event: class="CLas", id="ThID", target="TargetApp", wait_reply=true]
event_string
[fevent]

Here is one example that instructs the application “UserLand
Frontier” to beep once, then display the message “Hello, World!":

[event: class="misc", id="dosc", target="LAND", wait_reply=false]
"---"“speaker.beep(); msg("Hello, World!")"
[fevent]

Note that some of the quotes shown within the event string are
curly quotes (option-[and shift-option-|), as required by Apple
Events:

[event: class="misc", id="dosc", target="LAND", wait_reply=false]
"---"fspeaker.beep(); msg("Hello, World!")”
[fevent]

Event Tag Parameters

The [event: ...] tag takes the following parameters:

e class — Every Apple Event has a class. Apple Events are
grouped by their class. Several different Apple Events may
have the same class.

¢ id — Each type of Apple Event will have a unique ID.

174 CHAPTER 20: SENDING APPLE EVENTS

e target — This parameter specifies the entity to which the
event will be sent. The target application is specified with
either the creator code of the application or the exact name as
it appears under the application menu.

e wait_reply — Instructs Lasso to either wait for the reply from
the target application (=true), or proceed processing immedi-
ately after sending the event (=false). If Lasso does not wait for
the reply, whatever data the target application may have
returned will not be available for use later.

e event_string — Is the text of the event. The text between the
[event: ...]...[/event] tags specifies exactly which parameters
should be included in the event. “----" signifies the direct

object of the event. Any Lasso tags can be used with the

“event_string.”

The “event_string” lets Lasso send events of great complexity,
including complex object descriptors, using only text. This text
should follow the format as specified by the AEGizmos Apple
Event utility library. This format was chosen as it clearly speci-
fies a manner in which the full power of Apple Events,
including complex object descriptors, may be utilized within
the confines of text.

Here is an example of an event used to ask FileMaker Pro for
the name of the first database:

[event: class="core", id="getd", target="FileMaker Pro", wait_reply=true]
"----":0bj {form:prop, want:type(prop), seld:type(pnam),
from:obj {form:indx, want:type(cDB), seld:long(1),
from:"null"()} }

[/event]

If this example appears difficult, that’s because it is! This
complexity is unavoidable when dealing with data structures
like Apple Events. All the standard Lasso tags can be used
within the “event_string.” Here is an example of how
FileMaker Pro is queried for the number of records in the
database that was just searched:

[event: class="core", id="getd", target="FileMaker Pro", wait_reply=true]
"----":0bj {form:name, want:type(cDB), seld:"[database_name]",
from:"null"()} , kocl:type(crow)

[/event]

CHAPTER 20: SENDING APPLE EVENTS 175

Post-Apple Event Tags

After the event is sent, there are three tags that can be inserted in
the page, or used within [if: ...] conditional statements:

¢ |event_resultcode] — This determines the result of the event.
0 (zero) indicates the event was sent successfully. A value
other than 0 is the actual code returned from the Apple Event
manager function which generated the error. This tag is avail-
able even if “wait_reply=false.” This will indicate that the
event was sent successfully.

¢ |event_errorstring] — If an error occurs, most applications
will provide a description of what went wrong. These errors
are reported using the [event_errorstring] tag. This tag is avail-
able if “wait_reply=true” and [event_resultcode] is not 0
(zero). The description of the error is provided by the target
application. Some target applications will not supply this vari-
able, in which case it will evaluate to a blank string.

¢ |[event_result] — This tag inserts the result of the event into
the page. This is available only if “wait_reply=true.”

If another event is sent, these tag values are overwritten with
the new values for the new event. If these tags are used before
an event is sent, they will evaluate to blank values.

[event_result] can be coerced into a string with a variable
number of parameters. Parameters are available only if
“wait_reply=true.” The parameters should be either a number
or an Apple Event keyword. If the Apple Event result is a list
or a record, these parameters are used to extract a specified list
item by name, or record item by key. For example:

[event_result, 2, 5]
...will extract the fifth item of the second list.

If the result was an AERecord, then the item with the “form”
key should be extracted:

[event_result, "form"]
And...
[event_result, 1, 3, 7, 2]

...would extract item two from the seventh item of the third
list of the first item of the reply list.

Chapter 21: Java-Enabling
FileMaker Pro

Java Overview

Java is a fairly new programming language which has received a lot
of interest recently. It was designed to be fully object oriented, i.e.,
modern. It is also totally cross-platform, which means one can
compile a Java program and be able to run it unmodified on any
computer platform for which there is a Java run-time or “Virtual
Machine.” It is mainly for this reason that Java has become the
method of choice for creating and distributing online applications
through the World Wide Web. All that is required to view standard
Java applets, or mini-applications, over the Web is a Java-enabled
Web browser. Many Web sites today are combining common
HTML with Java applets to create richer and more compelling
experiences for visitors. It is not uncommon to visit sites with
scrolling Java banners, interactive Java image maps or chat rooms
created completely in Java.

Java offers many advantages to the site designer over straight
HTML. It allows one to create much more sophisticated interfaces
than possible with static HTML. With Java, one does not have to
be limited to the standard buttons and text fields provided by
HTML. One can create sliders, active image buttons or other
controls which can fit the intended purpose better than the
common radio, check box or push buttons. Interfaces can be
created which can quickly change from displaying the information
in a tabular format to displaying it as a bar chart with the click of
the button. The user would not have to wait for the page with the
new view to reload or for images to be created by CGIs on the
server side. Interfaces such as this would be extremely difficult or
impossible to develop using static HTML.

The site designer may experience some problems as they Java-
enable their site. Sites which utilize many Java applets may force
their users to sit through long wait times as the applets are down-
loaded. Java also may require the Web browser to consume more
memory and may also require faster, higher-end computers to run
certain applets than static pages using common HTML. This may
limit the number of potential viewers of the site to those with
more powerful computers (or more patience). Also, not every

178 CHAPTER 21:

JAVA-ENABLING FILEMAKER PRO

browser supports Java. This prevents those not using the more
popular Java-enabled browsers from fully experiencing a site which
is Java enhanced.

Java applets are generally much more complicated to create than
HTML files. A site designer can quickly create an HTML-based site
using nothing more than a text editor. To create Java applets,
however, requires that the code be compiled into class files using
either a commercial Java development environment or the stan-
dard Java Development Kit distributed by Sun Microsystems. Either
way, this process can be more time consuming than creating
common HTML pages and requires that the applet creator learn
the Java language and the standard Java class library before s/he
can truly begin creating Java-based sites. Because of the steeper
learning curve involved with Java, many site designers will be
forced to outsource their applet creation, which can lead to greater
expense.

There are many compelling advantages for the programmer to use
Java over languages such as C or C++. If C++ programmers want to
create cross-platform applications, they are forced to use a cross-
platform framework or to completely recreate their work for any
additional platforms they wish to support. This process can be very
time consuming and often the platform specific versions contain
inconsistencies or code differences which can lead to support costs
and lost stability. Java does not have these problems because it has
a “compile once, run everywhere” philosophy. The programmer
can write the Java application once, compile it and expect it to run
on any platform which supports a Java Virtual Machine.

Java has many of the built-in features which are required for
modern applications, yet are not included in the standard C or
C++ language libraries. For instance, Java has built-in functionality
to display common image formats such as GIF or JPEG. It also has
integrated support for multi-threading and synchronizing critical
sections of code. It also has TCP and UDP networking classes
which make Java an Internet-savvy language. These classes make it
trivial to retrieve a file from a Web site or to download a file from
an FTP server. This functionality makes Java the language of choice
for distributed network applications. Java also has a robust security
model which prevents applets from reading files from the user’s
hard drive or sending data to servers other than the one the applet
has come from. This can give users a sense of security when using
applications which originate and communicate via the Internet.

CHAPTER 21: JAVA-ENABLING FILEMAKER PRO

Despite its advantages, Java is generally slower than an application
compiled with C or C++. This means it is not suited for high
performance applications which are graphically or computation-
ally intensive. JIT or “Just In Time” Java compilers help somewhat
by dynamically re-compiling the Java applications into native
machine code as they run. This makes the Java applications much
faster than the non-JIT versions. Java's cross-platform standard also
comes with a dark side. Because Java code is the same for every
platform, a Java application cannot take advantage of any special
functionality supported by regular applications of that platform.
For instance, Drag-and-Drop, supported by many Macintosh appli-
cations, is not available to Java applets or applications because it is
not supported in the same way on other platforms.

Lasso and Java

Lasso supports serving information from FileMaker Pro databases
to Java applets. This means the applet creator can utilize the power
of Lasso and FileMaker Pro to create sophisticated solutions which
are not confined by the limitations of HTML. Applets can utilize
multiple databases simultaneously and can present the informa-
tion in ways not possible with HTML. Applet programmers can
take advantage of this new feature by utilizing the LassoProxy
classes. The LassoProxy classes are a set of Java source files which
can be compiled with Java applets. The classes know how to
formulate Lasso requests, send them to the server where Lasso is
running, and make the results available for the applet to use. By
using this API, applets can perform any of the database activities
possible with HTML forms. They can perform finds, updates
deletes and can create new records in FileMaker Pro databases.

The LassoProxy classes communicate with Lasso using standard
HTTP. They formulate a request string based on the parameters the
applet programmer selects, and then the classes send the request
to the server. Lasso then returns the response, but instead of
returning it as HTML as it would normally, it sends only the data
and lets the applet choose how to display it. Applets can elect to
receive only certain fields from the database, making the response
very compact and efficient.

There are three Java classes programmers can use to communicate
with Lasso:

® lassoRequest
e LassoProxy

e LassoResponse

179

180 CHAPTER 21:

JAVA-ENABLING FILEMAKER PRO

The first class, LassoRequest, is used to set up the action Lasso will
take. Using just a few of the classes’ methods, the programmer can
specify the database, layout and fields used for the request.

The following Java snippets show how to set up a request to
perform a search:

1. Create a new Lasso Request object.

¢ LassoRequest
request = new LassoRequest();

2. Assign the database name and layout name to be used in the
search.

e request.setDatabaseName(“MyDatabase”);
e request.setLayoutName(“MyLayout”);

3. Specify the action to be taken.
e request.setAction(LassoRequest. SEARCH);

4. Add the fields to be searched and the values to be searched for
along with the search operators to be used for each field.

e request.addField(“Field_One”, “searchvalue”,
LassoRequest. EQUALS);

e request.addField(“Field_Two”, “anothervalue”,
e LassoRequest. BEGINS_WITH);

The search request is now completely set up and is ready to be
processed. Additional options are available to the programmer
such as setting the maximum number of records to be returned,
setting the logical operator (AND or OR) on a global or field level,
specifying a timeout or sort criteria. All of these operations can be
performed with ease using only a few additional lines of code.

When a request is ready to be processed, the second class,
LassoProxy, is required. The LassoProxy class takes a LassoRequest
object, sends the request data to the server where Lasso is running,
and receives the response from the server. The LassoProxy object
then converts the response data into a LassoReponse object which
the programmer can use to retrieve the search results. All of this
processing happens behind the scenes. The programmer only
needs to use one of the LassoProxy classes methods to process the
entire request.

CHAPTER 21: JAVA-ENABLING FILEMAKER PrRO 181

To process the request object created earlier, the following steps are
required:

1. Create a LassoProxy object.

The LassoProxy object requires a URL object to be created. The
getDocumentBase() method returns a URL object representing
the server the applet was downloaded and run from.

e LassoProxy
proxy = new LassoProxy(getDocumentbase());

2. Have the LassoProxy object process the request.

This will return a LassoResponse object. Here, the LassoProxy
object is passed the LassoRequest object (called “request”).
Within the LassoRequest object is the search requested created
earlier.

e LassoResponse
response = proxy.processRequest(request);

Now that the request has been sent to Lasso and the results have
been returned, the programmer can use the LassoResponse class to
retrieve this information. The information which the programmer
has access to includes:

1. a result code indicating if the request was successfully
processed

2. the number of records returned
3. the total number of records in the database

4. the names, types and value lists (if any) for each of the fields
on the specified layout and the data

5. record IDs for the returned records

All of this information can be retrieved using the various methods
belonging to the response object. Below are some examples of
how the data can be retrieved.

All examples assume a LassoResponse object called “response” was
created earlier.

1. Retrieve the names of all the fields in the previously specified
database. The names are returned as an array of strings.
Standard Java code can be used to further process this array as

182 CHAPTER 21:

JAVA-ENABLING FILEMAKER PRO

required. This snippet will print the number of fields and their
names to the standard output.

String names = response.fieldNames);
System.out.printin("There are " + names.length +
" fields in the database:");

for (inti = 0; i < names.length; ++i)
System.out.printin("\t" + namesi));

. Retrieve the types of data the fields can hold.

Each field in the database is defined to hold a particular type
of data.

Some hold text, some hold dates or times and some can hold
pictures. The following snippet prints the type of each field to
the standard output.

for (inti = 0; i < response.numFields(); ++i)
{
System.out.print("Field " + response.fieldNames()[i] +
"isa");
switch(response.field Type(i))
{
case LassoResponse.CHAR:
System.out.printin("CHAR");
break;
case LassoResponse.SHORT_INTEGER:
System.out.printin("SHORT_INTEGER");
break;
case LassoResponse.INTEGER:
System.out.printin("INTEGER");
break;
case LassoResponse.SHORT_FLOAT:
System.out.printin("SHORT_FLOAT");
break;
case LassoResponse.FLOAT:
System.out.printin("FLOAT");
break;
case LassoResponse.IMAGE:
System.out.printin("IMAGE");
break;
case LassoResponse.DATE_TIME:
System.out.printin("DATE_TIME");
break;

CHAPTER 21: JAVA-ENABLING FILEMAKER PRO

case LassoResponse.BOOLEAN:
System.out.printin("BOOLEAN");
break;

default:
System.out.printin("strange type");
break;

}
}

3. Retrieve the data from the returned records.

The following snippet will print the data in each field for each
of the returned records to the standard output.

System.out.printin("Here is the returned data:");
Il'loop for each record
for (int recordNum = 0; recordNum < response.numRecords(); ++recordNum)
{
System.out.printin("\tRecord number " + recordNum + ":");
I loop for each field
for (int fieldNum = 0; fieldNum < response.numFields(); ++fieldNum)
{
System.out.printin("\t\tField name: " +
response.fieldNames()[fieldNum]);
Il'loop for each value the field may contain
for (int valueNum = 0;
valueNum < response.fieldData(recordNum, fieldNum).length;
++valueNum)
{
System.out.printin("t\t\t" +
response.fieldValue(recordNum,
fieldNum,
valueNum));

}
}
}

4. More examples.

More examples can be found distributed with Lasso. These
examples show how to retrieve information about databases
and how to search, add, update and delete records using the
LassoProxy API.

183

184 CHAPTER 21:

JAVA-ENABLING FILEMAKER PRO

The LassoProxy API Reference

Here are the classes in the LassoProxy API, the public methods
supported by each, and a short description of how each one func-
tions:

class LassoRequest
LassoRequest(String lassoName)
/I Construct a LassoRequest object and set the Lasso name.
/I This is the name used to reference the Lasso application running on
the server.
/I For example: action.lasso or Lasso.acgi
LassoRequest()
/I Construct a LassoRequest object using the default Lasso
name: action.lasso
void resetAll()
Il Resets the LassoRequest object to its initial state
I Removes all search fields, sort fields and sort orders,
Il the database and layout name and sets the action to SEARCH
void resetSearch()
Il Same effect as resetAll(), but does not remove the database or layout
name
void resetSort()
Il Removes all the sort fields and sort orders
int numSearchFields()
/I Returns the number of search fields that have been added to the request
void setDatabaseName(String name)
Il Sets the name of the database the request will operate on
void setLayoutName(String name)
Il Sets the name of the layout the request will operate on
String databaseName()
Il Returns the name of the database the request will operate on String
layoutName()
/I Returns the name of the layout the request will operate on void
setAction(int value) throws lllegalArgumentException
Il Sets the action for this request
Il Possible values are:
I
Il LassoRequest.SEARCH
Il LassoRequest.ADD
Il LassoRequest.UPDATE
Il LassoRequest.DELETE
Il LassoRequest.FIELD_INFO
/I LassoRequest.FIND_ALL
Il LassoRequest.RANDOM

CHAPTER 21: JAVA-ENABLING FILEMAKER PrRO 185

Il
/I The default action is SEARCH
int action()
/I Returns the action for this request
void setMaxRecords(int value)
/I Set the maximum number of records which will be retrieved at once
Il The default value is 50
/I To retrieve all the records at a time, specify LassoRequest.ALL
int maxRecords()
/I Returns the maximum number of records which will be retrieved
Il at a time
void setRecordID(int value)
/I Set the id of the record this request will operate on
/I This is required when the action is set to UPDATE or DELETE
int recordID()
Il Returns the record ID for this request
void setSkipRecords(int value)
/I Set the number of records Lasso will skip when retrieving the
I results. This is used to retrieve a certain number of records at a time.
int skipRecords()
Il Returns the skip records value for the request
void setLogicalOperator(int value)
Il Set the global operator for the request
/I This is only used when the action is set to SEARCH
/I Possible values are:
/I LassoRequest.AND
Il LassoRequest.OR
Il
Il The default value is LassoRequest. AND
int logicalOperator()
/I Returns the global logical operator for this request
void setTimeout(int value)
/I Set the maximum number of seconds Lasso will wait
I/ for a response from the database
int timeout()
/I Returns the timeout value for the request
void addReturnField(String fieldName)
Il Specify a field which will be returned in the response.
/I By default, all fields will be returned.
Il Applets can use this method to limit the amount of data
/I returned to only that with which are concerned.
void addField(String fieldname, String value)
/I Add a field value by name
/I This is used when the action is SEARCH or UPDATE
/I When the action is SEARCH, this specifies a field to be searched

186 CHAPTER 21:

JAVA-ENABLING FILEMAKER PRO

/I and the value to be searched for. The default field operator,
BEGINS_WITH is used.
/I When the action is UPDATE, this method specifies a fields new value.
Il To specify multiple valueS for a field (a field with a value list for
instance),
/I call this method once for each value to be added.
void addField(String fieldName, String value, int fieldOperator)
/I Add a search field with a specific field operator
/I Possible value for the field operator are:
/I LassoRequest. EQUALS
/I LassoRequest.NOT_EQUALS
Il LassoRequest. CONTAINS
/I LassoRequest.BEGINS_WITH
/I LassoRequest. ENDS_WITH
/I LassoRequest. GREATER_THAN
/I LassoRequest. GREATER_THAN_EQUALS
/I LassoRequest.LESS_THAN
/I LassoRequest.LESS_THAN_EQUALS
void startOperator(int op)
I Specify the beginning of a logical grouping of search fields.
Il Fields added after calling this will be searched using the specified
operator.
Il For instance, one can specify several fields to be searched as OR
Il and several other fields to be searched as AND
Il These two groups can in turn be combined together as OR
void endOperator()
I Specify the end of a logical grouping of fields.
I/ Search fields added after calling this will resume being grouped under the
I previous logical operator (or the global logical operator, which defaults
to AND)
boolean validFieldOperator(int fieldOperator)
Il Returns that the operator specified is valid
boolean validSortOrder(int order)
/I Returns that the specified sort order is valid
String toString()
Il Returns the parameter string which can be submitted to Lasso
Il This method is used by the LassoProxy class and programmers
Il will probably never need to access this. However, this method is
/I made public for those with special needs.
class LassoProxy
LassoProxy(URL baseURL, String lassoName)
Il Constructs a LassoProxy object and specifies the URL to which
requests will be submitted
Il Also specifies the Lasso name, e.g., "action.lasso" or "Lasso.acgi"
LassoProxy(URL baseURL)

CHAPTER 21: JAVA-ENABLING FILEMAKER PrRO 187

Il Constructs a LassoProxy object which used the default
Lasso name: "action.lasso"
String[] databaseNames()
/I Returns an array of all the databases open of the server
String[] layoutNames(String databaseName)
Il Returns an array of all the layouts in the specified database
Image getJPEG(LassoRequest request, String fieldName,
int bitsPerPixel, int imageQuality)
Il Retrieves an image from the database in JPEG format.
Il The LassoRequest object must have the database name, layout name
/I 'and the record ID set accordingly. fieldName specifies the field in the
Il database where the image resides. bitsPerPixel is either 16 or 32 and
Il imageQuality is a value from 0 through 4 and signifies the image
Il compression level to use. 4 is the highest quality, but results in larger
images.
Image getGIF(LassoRequest request, String fieldName, int bitsPerPixel,
boolean interlace)
1/ Works identically to getJPEG(), but returns the image in GIF format.
I/ bitsPerPixel can be from 1 through 8. Images can be optionally interlaced.
String getLasso()
Il Returns the currently used Lasso name.
LassoResponse processRequest(LassoRequest request) throws
IOException
Il Attempts to process the request defined by the request object.
Il Returns a LassoResponse object containing the resulting data.
class LassoResponse
LassoResponse(String responseString)
Il Constructs a response given a response string.
/I This is used only by the LassoProxy class.
/I Do not call this method without a properly formatted response string.
String[][] recordData(int index)
Il Returns all the fields and their values
String]] fieldData(int recordNum, int fieldNum)
Il Returns the value for the specified field in the specified record
String fieldValue(int recordNum, int fieldNum, int valueNum)
Il Returns a particular value from the specified field
int numFound()
/I Returns the number of records which were found as a
I/ result of the previously processed request
int numRecords()
I/ Returns the number of records which were retrieve as a result of
I/ the previously processed request int numTotal()
/I Returns the total number of records in the targeted database
int recordID(int index)
/I Returns the record ID of the record specified by index

188 CHAPTER 21:

JAVA-ENABLING FILEMAKER PRO

Il Indexes are zero based
int numFields()
Il Returns the number of fields on the target layout in the target database
Stringf] fieldNames()
Il Returns an array of field names for the layout and database
String fieldName(int index)
Il Returns the name of the specified field
boolean fieldRepeats(int index)
Il Returns true if the specified field is a repeating field
Il false otherwise
int repeatSize(int index)
/I Returns the maximum number of repeat values for the specified field
boolean fieldNullsOK(int index)
Il Returns true if the field can be empty
Il false otherwise
String(] fieldvalue_list(int index)
Il Returns the value list attached to the specified field
int resultCode()
Il Returns the result code generated by Lasso when it processed the
request
I/ Possible values and their explanations can be found in the
Il LassoResponse.java source file.
int fieldindex(String name) throws FieldNotFoundException
Il Returns the index of a field by name.
Il This index can be used to retrieve information about the field
/l'in any of the methods which require a field index I.E.
fieldNullsOK()
boolean hasvalue_list(String fieldName)
Il Returns true if the specified field has a value list
attached to it
Il false otherwise
int fieldType(int index)
Il Returns the type of the specified field.
I/ Possible values are:
Il LassoRequest. BOOLEAN
Il LassoRequest.CHAR
Il LassoRequest.SHORT_INTEGER
Il LassoRequest.INTEGER
/I LassoRequest.SHORT_FLOAT
/I LassoRequest.FLOAT
/I LassoRequest.IMAGE
Il LassoRequest.DATE_TIME
String toString()
/I Returns the original response string used to create the
LassoResponse object

Appendix A: Tips and
Techniques

The following section provides some tips and techniques for
utilizing Lasso and improving Lasso and FileMaker Pro database
integration solutions.

Use of Frames with Lasso

When creating HTML frame files, it is easiest to set up only one
fixed frame to display a unified header for all pages, and then link
from one frame directly to the next. It is possible, however, to link
from one frame to another to complete a Lasso action. The trick is
to specify the name of the target frame in the “form” tag. The
format used would be (in this case with the Plug-in):

<form action="action.lasso" method="post" target="name-of-target-frame">

This tip was submitted by Rodney Capron, of Argent Media Group,
Ltd. on June 12, 1997, and is used with his permission.

Here is a sample set of files that starts at the frameset file that indi-
cates multiple frame sources to be loaded, in this case there are
two frame sources:

<html>
<head>
<title>Our Homespun Site</title>
</head>
<frameset rows="110,*" border="1">
<frame src="navbar.lasso" name="nav bar" scrolling="no"
noresize marginwidth="0" marginheight="0">
<frame src="whatsnew.lasso" name="Main Content"
marginwidth="10"
marginheight="10"">
<[frameset>
<noframes>
<body>
Viewing this page requires a browser capable of displaying frames.
</body>
</noframes>
</html>

190 APPENDIX A: TIPS AND TECHNIQUES

The first page that is loaded into one of the specified frames is a
“navigational bar” file. In this case an [inline: ...] is used to refer-
ence the FileMaker database and show a form that has a value list.
When the page is loaded, Lasso creates a pop-up selection list
using the inline information, and this can then be used on the
search form in which it appears. The “navigational bar” file is as
follows:

<html>

<head>

<title>Our Homespun Site</title>

</head>

<body bgcolor="#ffff" background="images/image.gif">

[inline:database="software_submissions" layout="whatsnew" display="yes",

search,sortfield="submission date",sortorder="descending"]

<center><table border="0" cellspacing="3" cellpadding="2"
width="555">

<tr> <td colspan="4">

Welcome to the software archives, below are the most

recent additions and updates to our site. You can use our software category

selector in the top frame to go any category of the software

archives.</td>

<ftr>

</table>

<table border="1" cellspacing="3" cellpadding="2" width="565">

<tr> <td bgcolor="#003194" colspan="5" width="547">

New Software And

Recent Updates!

Click on the name field to see a detailed

record.

j2There are [field: record number] software

packages available for download.

</td>

</tr>

<fr height="29">

<th bgcolor="#c0c0ff" width="114" height="29">

Author Name </th>

<th bgcolor="#c0c0ff" width="130" height="29">

Software Title/Version </th>

<th bgcolor="#c0c0ff" width="69" height="29">

Submission Date</th>

<th width="90" height="29" bgcolor="#c0c0ff">

Software Category</th>

<th width="108" height="29" bgcolor="#c0cO0ff">

Download File</th>

APPENDIX A: TiPs AND TECHNIQUES 191

</tr> [record]
<tr> <td bgcolor="#e6e6e6" width="114">
[field: name]
</td>
<td bgcolor="#e6e6e6" width="130">

[field: application title.version]</td>
<td bgcolor="t#e6e6e6" width="69">
[field: submission date]</td>
<td width="90" bgcolor="#e6e6e6">
[field: software category]</td>
<td width="108" bgcolor="#e6e6e6">
Download Zip File </td>
</tr>[/record]
</table>
<[center>
[/inline]
</body>
</html>

The first content page appears within a lower frame. When a
product search is submitted, this page will be updated to display
the product list. The file would show as follows:

<html>
<head>
<title>Our Homespun Site</title>
</head>
<body bgcolor="#ffffff">
<center><table border="0" cellpadding="0" cellspacing="0"
width="623">
<tr> <td width="301" rowspan="2">
</td>
<td width="314" colspan="2" valign="top">
<img src="images/buttons.gif" width="303" height="48" border="0"
usemap="#buttons">
<map name="puttons">
<area coords="208,29,297,44" shape="rect" href="advertising.html"
target="Main Content">
<area coords="94,29,203,44" shape="rect" href="beta.html" target= "Main
Content">
<area coords="2,27,86,44" shape="rect" href="partner.html" target= "Main
Content">
<area coords="210,5,299,22" shape="rect" href="submit_news.html"
target="Main Content">

192 APPENDIX A: TIPS AND TECHNIQUES

<area coords="96,5,203,24" shape="rect" href="submit_software.html"
target="Main Content">
<area coords="2,4,88,24" shape="rect" href="contactus.html" target= "Main
Content">
</map></td></tr>
<fr height="27"> <td width="127" height="27">
<img src="images/selector.gif" width="124" height="25"
align="absmiddle"></td>
<td width="185" height="27" valign="bottom">
<form action="action.lasso" target="Main Content">
<input type="hidden" name="-database" value="software_submissions">
<input type="hidden" name="-layout" value="whatsnew">
<input type="hidden" name="-response" value="hitlist format2.html">
[inline:database=software_submissions,layout=whatsnew, show]
<select name="software category" size="1"> [option: software category]
</select>[/inline]
<ftd></tr>
<tr>
<td colspan="3" width="617">
<img src="images/navbar.gif" width="615" height="17" border="0"
usemap="#navbar">

<map name="navbar">

<area shape="rect" coords="2, 1, 79, 16" href="whatsnew.lasso" target="Main
Content">

<area shape="rect" coords="85, 1, 169, 15" href="action.lasso? -
database=software_submissions&
-layout=detail&-response=software.html&-show" target="Main Content">
<area shape="rect" coords="175, 2, 259, 15" href="accessories.html"
target="Main Content">

<area shape="rect" coords="266, 1, 350, 15" href="http://www.us.fag.com"
target="_top">

<area shape="rect" coords="355, 1, 439, 15" href="related.htm!"
target="Main Content">

<area shape="rect" coords="446, 1, 528, 14"
href="https://www.flash.net:442/home/k/e/kenw/secure/secform1.htm"
target="Main Content">

<area shape="rect" coords="536, 1, 612, 14" href="news.lasso"
target="Main Content">

</map> </td>

<ftr>

</table>

</center>

<input type="submit" name="-search" value="search for software">
</form>

</body>

</html>

APPENDIX A: TIPS AND TECHNIQUES

From here, other pages can be set up to deliver a typical series of
Lasso pages, to add, search, update, or delete records, and so on.

Hiding Lasso Format Files Using Frames

HTML “frames” are also useful for hiding the HTML source of
returned format files by restricting the HTML of the format file to
the target frames. This prevents someone from being able to create
a URL to display the raw HTML page in order to view field, data-
base, or file location information. To make these pages even more
secure, have the first accessed page processed by Lasso before the
page is returned to the client browser. This is accomplished by
using Lasso as an action through various methods, see Surrix
MAPPING in CHAPTER 6: LAssO SERVER for more details.

Submitting the Form Without a Lasso Action

Do not specify database activity with the form on the search page.
Rather, design this form as a means to capture information from
the user and “pass” it to the next page. This can be accomplished
by not specifying a Lasso -database, -layout, or -search action.
Instead, remove all of your hidden fields except the -response field
and change every occurrence of -search to -nothing.

Using Frames to Pass Arguments

The following page is a frameset. One of the frames specifies a
request to Lasso such as:

<frame src="action.lasso?[database]=example.fp3..." name="hitlist">

Build into the <frame src> an embedded URL (see CHAPTER 4:
LAsso METHODOLOGY). Recapture the original submitted data with
the [form_param: ...] tag. As an example, one “name=value” pair
within the URL could be:

...&Name=[form_param:Name]&...

Lasso 2.0 and earlier cannot retrieve the value of operator, so to
allow a user to select an operator for a field, rename the operator-
field from [op] to some unique name such as “Nameop,” then
retrieve that value in the frameset with:

...&-operator=[form_param:Nameop]&...
The embedded URL will end with the search action:

...&-search" name="hitlist">

193

194 APPENDIX A: TIPS AND TECHNIQUES

Testing Without a Network
Connection

When developing Lasso format files it is imperative to have a Mac
OS Web server and a FileMaker Pro database. This doesn’t neces-
sarily mean an Internet connection is required to test the format
files. To test or design a Lasso solution without an Internet
network connection, an “internal” Internet can be created. A Mac
OS Web server is needed, but there are several options for free or
inexpensive Web servers to use for development purposes.

To set up the testing environment without a network:

Using Open Transport

1. Open the TCP/IP control panel found in the Control Panels
folder/ System Folder.

2. Under “File” on the menu, select “Configurations.”

3. The current settings are already saved so it isn’t necessary to
save them.

4. Duplicate the settings and then rename, e.g., “no network.”
5. Make the new settings active, by selecting “Make Active.”
6. Set up the new configuration:

e Connect Via: AppleTalk (MaclIP)

¢ Configure: Manually

¢ IP Address: Any IP, including the actual one, for example,
“10.10.10.10” since it is easy to remember.

e MaclIP server zone: <Current AppleTalk Zone>
e Ignore other settings.

7. Close TCP/IP. When the control panel is closed the “no
network” settings are saved.

8. Launch your Web server application. If it is already open,
restart your Web server.

9. Launch your Web browser and enter the URL as:
http://10.10.10.10/filename.html

APPENDIX A: TIPS AND TECHNIQUES

After testing the format files in the no-network environment, the
previous settings can be restored by opening the TCP/IP control
panel and making the original “Default” settings active. To restore,
do the same for the no-network settings. With Open Transport, use
a “hosts” file to map the “10.10.10.10” address to some domain
name.

Optimizing Performance

The response time of Lasso depends on many factors that are
specific to each Lasso solution. Nevertheless, there are some steps
that can be taken to optimize the return of data from the
FileMaker Pro database. The following guidelines will assist with
understanding how to maintain top performance.

Database as Single-User — The best access to data in a FileMaker
Pro database is when that database is open in single-user mode on
the Web server, and located on a drive that is directly attached to
the Web server (not from a shared volume).

Limiting Fields on Layouts — Specifying all of the format files to
use a single layout that contains all of the fields which might
possibly be used is an inefficient way to set up the FileMaker Pro
Web database and is not recommended. When searching the data-
base, Lasso retrieves all of the data from all of the fields in the
found set on the specified layout, regardless of whether or not the
fields are referenced in the format file (this is due to the way
FileMaker Pro makes this information available).

Create Layouts Specific to the Action — If the fields on the layout
are limited to only those used by the format file, Lasso performs
more efficiently. For an even greater boost in performance, create
layouts that contain only fields pertinent to the Lasso action.

Sorts — On large databases, sorting can dramatically affect perfor-
mance. This is a FileMaker Pro imposed limitation. If sluggish
performance is reported with a Lasso solution, it may be due to
lengthy sorts. Make sure to manually index all fields used by Lasso
for searching and sorting. If using calculation fields, periodically
re-index the fields as records are added, perhaps through a “main-
tenance script.”

Contains Searching — On large databases, performing “contains”
type searching can dramatically impact performance. This is a
FileMaker Pro imposed limitation due to the way data is indexed.
Other search operators do not affect performance when searching
databases of any size.

195

196 APPENDIX A: TIPS AND TECHNIQUES

Encoding Large Text Fields — Character encoding can impose
performance hits with large text fields. Thus, if possible, return
fields as raw. For example: Our tests show display of 64k
(FileMaker Pro maximum limit) of text in15 seconds with char-
acter encoding on (default and/or “URL” type options) and at 1
second with it off (set to “raw”). Unless the features of encoded
text are necessary, set large text fields to “raw” for optimum perfor-
mance. Keep in mind that HTML encoding of special characters
will result in those characters not being displayed properly by the
browser. Fields that were created from selection lists can always be
returned “raw” since their values will be predetermined (that is, if
no special characters are used as value list items).

Limiting Records Returned — Limiting the number of records
returned (by setting the -maxRecords value) can increase the
performance of the Lasso/FileMaker Pro Web database solution.
Users can retrieve additional sets of records by using the [next] and
[prev] commands.

Reduce the Number of Calculation Fields Used — Make sure all
calculations used for searching are stored and not calculated when
needed. If a lot of records are being added, fields need to be re-
indexed periodically. If the database is closed they should be re-
indexed when re-opened. If a database has numerous records, the
timed difference between indexed and non-indexed fields will be
apparent after the database is re-opened.

Conditional Statements — Using conditional statements within
something that loops (record, portal, repeating, loop or while)
will slow Lasso response time.

Serving Pages from Other Platforms

Lasso cannot process format files stored on other servers. However,
if using the strategy of serving an entire Web site from a server on
another platform (e.g., Windows NT or UNIX), create a static
HTML form and place it on that server. When the form is
submitted it would be processed by the Mac server if the form
action is specified as follows:

<form action="http://Mac-server.domain/Lasso.acgi" method="post">

The Mac OS server address is denoted by “Mac-server.domain.”
The response needs to be a page served by the Mac and is not
possible to transfer data for display on the UNIX or NT page. Of
course, in this scenario Lasso can't be used to auto-populate value
lists on the add form, or be able to do updates to a record, unless
the updating was done on the Mac server.

APPENDIX A: TIPS AND TECHNIQUES

FileMaker Pro Server

Lasso can work with a single-user database, as a host of a multi-
user database, or as a guest to a multi-user database. In all cases,
the client version of FileMaker Pro needs to be open on the Web
server, with the database served by Lasso open as either “host” or
“guest.” If the database to be used with Lasso needs to also be
available on a local network, FileMaker Pro Server is the best
option for sharing the FileMaker Pro databases. FileMaker Pro
Server speeds the access to the database and is much preferred to
sharing the database by having it open as “multi-user” and shared
directly from another “client” version of FileMaker Pro.

FileMaker Pro Server serves as the host of a shared database and
speeds its network functions by making the database multi-
threaded and supplementing the performance of CPU intensive
tasks such as sorting. FileMaker Pro Server understands only a very
few Apple Events, so it doesn't allows Lasso (or any other product)
to interact with it directly. The database must still be opened by
the client version of FileMaker Pro, even if this has to be on the
same computer.

FileMaker Pro Server can either be run on a dedicated computer or
on the same computer as the Mac OS Web server application.
Lasso, FileMaker Pro, FileMaker Pro Server, and the Web server
software can all exist on the same machine. As one might expect,
the performance of all applications will be diminished when
competing for CPU resources. Also, by having the Lasso-served
database open as a “guest” further diminishes Lasso’s performance.

Alternatively, the Web server and FileMaker Pro Server can run on
separate computers on the same network. The FileMaker Pro Server
has the served database open as “host.” The second computer
would house the Web server software and a copy of FileMaker Pro
(“client”) with the Lasso served databases opened as “guest.” This
may also slow the server due to network slowdowns as data is
transferred between host and guest.

The best situation is to have the FileMaker Pro database opened as
single-user with no guests on the same machine as the Web server
and Lasso. If this is not an option for a particular situation,
analyze the solution’s particular needs to determine which setup is
best. There are many factors that affect this decision, but all
usually involve a trade-off between the speed of the Web served
database and the availability of that data through a local area
network.

197

198 APPENDIX A: TIPS AND TECHNIQUES

Multiple Servers

Most Lasso integrated database solutions can easily be served on a
single Mac OS Web server. In situations where it is better to focus
all database activity on one server, Blue World highly recommends
the Lasso Server version. However, if the load on the Web database
is still too high, try to spread Lasso and the database over multiple
servers. How this is accomplished depends on whether the data-
base contains a dataset that must be kept together (i.e., a contacts
database), or if it can be duplicated into identical copies (e.g., a
catalog).

If the solution doesn’t depend on having all of the records in the
databases together in the same database, then have the DNS server
share the load by switching round-robin to multiple identical
servers (with a copy of your FileMaker database open on each). In
other words, the DNS server would route a new visitor to the next
server in the sequence. Of course, if the structure of one database
was updated this would also have to be done for all databases.
This can be handled by having one master database with only
sample records to make changes to. When it comes time to update
the databases, create a clone of the master and import the data
from the other servers. On the other hand, if collecting informa-
tion, the data could be collected on the separate servers and later
imported to one final source database.

Alternatively, if the data must stay together and be made available
as one dataset, a FileMaker Pro Server could be utilized to share
the main database over the network. Each Web server would need
to open a copy of the database as “guest” with FileMaker Pro
(“client”). The DNS server still needs to share the load by
switching the various servers in a round robin fashion. Refer to
OPTIMIZING PERFORMANCE in APPENDIX A: TiPs AND TECHNIQUES for
details on more efficiently utilizing the database to minimize the
impact of networking the database.

As mentioned in the previous section in regards FileMaker Pro
Server, shared access to the database is slowed due to network
latency as data is transferred between host and guest. Nevertheless,
if the situation requires it, this approach makes it possible to
network the database to multiple servers to maintain a dataset. The
trade-offs need to be weighed for every specific situation. It just
might be that the best option is to use one computer to carry out
all functions, and maximize the ability of the Web serving
computer to handle the load by purchasing more RAM, improving
your bandwidth, getting a computer with a higher MHz rating and
SO on.

APPENDIX A: TIPS AND TECHNIQUES

Using Lasso as the Default Action
for All Pages

If Lasso is set to process all files that end with the extension
“html” then the Lasso application will serve as a pre-processor.
That is, Lasso will check every client request before it gets to the
Web server application. This would be useful for setting cookies,
recording the referring URL, running conditional statements, etc.

To set up Lasso as an action for all files ending in “html,” or any
other suffix, configure the Web server application to process these
files with the Lasso application. For example, with WebSTAR an
action is created using the “WebSTAR Admin” application. To
accomplish this, launch the WebSTAR Admin application, then
under the “Configure” menu, open “Suffix Mapping.” Find the suffix
“html” and set the action to “LASSO_PLUGIN" (or to the
Lasso.acgi). Set the type, creator, and MIME type to “*” and click the
“REPLACE” then “UPDATE” buttons. For more information about
setting an action see SUFFIX MAPPING in CHAPTER 6: LASSO SERVER.

In the HTML, wrap each page in a conditional. That is, surround
all of the HTML on the page within an [if:] statement.

For example:

[if: cookie:cookie_name=blah]
[inline: ...use this inline to add a record for each user ...]
<html>...
Your normal html page goes here.
...</html>
[else]
[include: "/path_to_file/form.html"]
[if]
The [if: ...] should force them to fill out your form and the
[inline: ...] will log their activity to a database. It is possible then
to log each request to one database and then view those records
through a portal in a database related by the user’s IP address.

Creating Sub-Summary Headers
Within a Search

When outputting search results, a sub-summary header is some-
times needed to categorize the returned information in a report
format. The following describes how to create subsummary
headers after completing a Lasso search.

199

200 APPENDIX A: TIPS AND TECHNIQUES

An example of search results with subsummary headers would be:
Human Resources Department

Jane Doe
Bob Smith
John Doe

Accounting Department

Mike Alpha
John Beta
Lucy Ceta

Legal Department

Allen Delta
Jose Orteca

Two related databases are needed to provide search results with
subsummary headers. In the above example, the main database,
called departments, would contain records with the employee
name and their department. The supporting, related, database
would contain records of the departments. set up a relationship in
the department database to relate it to the employee database by
the department field. For this example, the relationship name will
be “Employee Link.” Create a layout in the department database
that contains a portal showing the employees listed in that depart-
ment along with any other information to show for each employee
in the list. This layout should contain all of the fields involved in
the search or the returned results.

Create a search page to search the departments database. The data-
base name specified on the search page for -database will be the
departments database, and -layout will be the layout with the
portal. The portal containing the related records can be searched,
but make sure the field being searched is within the portal and
that the related field is specified by using “relationship::field-
name.” Make sure the portal is given a scroll bar on the layout.
Check that the search is possible by doing a find directly in the
portal found in the departments database. Keep in mind that only
related values may be searched and searching cannot occur on all
of the records in the related database.

Create the results page using Lasso’s portal code. For the above
example, the Lasso code in the results page would look like this:

[record]
<h3>[field: "department"]
</h3> <dI> [portal: "Employee Link"]

APPENDIX A: TIPS AND TECHNIQUES

<dd> [field: "Employee Link::name"]
[/portal]

<[dI>

[Irecord]

“Department” is the name of a field in the departments database.
Employee Link is the name of the relation from the departments
database to the employee database. “Name” is the name of a field
in the employee database. It is shown on a portal within the layout
specified in the search document in the department database. See
CHAPTER 10: REPEATING FIELDS AND RELATED FiELDS for more informa-
tion about using Lasso to display values within portals.

This tip was submitted by Diana Oswald (diana@acmetech.com)
and is used with her permission.

Another option for creating a sub-summary display is to use the
[inline: ...] tag.

Backing up a FileMaker Pro
Database

There are different methods for remotely backing up a database
without downloading the entire actual database. Here are a few
suggestions.

First create a format file called “File.txt” formatted as follows:
[record][field: "field1"],[field: "field2"][field: "field3"]
[record]

To include any fields that should be returned, specify every field or
just a few important ones. No HTML codes are necessary on this
file.

Use the following link to have all (or some) fields returned as
comma separated text:

<a href="action.lasso?-database=database&-layout=search&
-response=file.txt&-findall">DownloadDatabase

To download the database, hold the mouse button on this link
and choose “save as” to avoid loading in the browser window. If
this particular database is protected by Lasso Security, you'll be
prompted for a username and password. The data will be returned
with each field separated by a comma and a return placed at the
end of each record.

201

202 APPENDIX A: TIPS AND TECHNIQUES

This tip was submitted by Mark Sassman (asap@iquest.net) on
May 14, 1997 and is used with his permission.

Another method is to create a script in FileMaker Pro that finds all
records and saves a copy of the database to a specified location.
The files can then be transferred via FIP from that location. The
database doesn't need to be closed to accomplish this, but the
Script may bring FileMaker Pro to the front, so make sure the Web
Server is returned to the front as soon as possible by using an
AppleScript, as described in CHAPTER 11: EXECUTING FILEMAKER PRO
SCRIPTS.

Select Field to Search on from Pop-
up List

It is possible with Lasso to first type in a value into a text entry
field, pick the field to search on from a selection list, and then
have the search occur on that selected field. The following tip uses
the [form_param: ...] tag to return values to an inline, which is
where the actual search occurs. To do so, first create a “search”
format file, which is used to gather the field and values to use on
the actual search that automatically occurs on the following
format file. The action in this case is -nothing since you don't actu-
ally want to interact with the database at this point:

<form action="action.lasso?-response=filename&-nothing" method="post">

The database and layout do not need to be specified. However, if
“filename” is the file to be used for the response, you should indi-
cate the relative path to the file.

Then, add an input (there can be several of these):

<select name="Searchfieldname">
<option>Field1
<option>Field2

</select>

<input type="text" name="SearchValue">

A submit button is then created to allow the user to initiate the
“search”:

<input type="submit" name="-nothing" value="Search">
In the above code:

“Searchfieldname” — Is any text, it does not matter what the
name is, it is a temporary holder for the name of the field.

APPENDIX A: TIPS AND TECHNIQUES

“SearchValue” — Again, this is any text, it does not matter what
the name is, it is a temporary holder for the value that you want to
use in the real search.

“Field1” — Is the actual real name of the field that is in your
FileMaker Pro data; the same applies to “Field2,” and there can be
as many as you would like.

The search actually occurs on the next format file (specified by the
-response tag on the first file). This format file contains an inline
tag that would appear as:

[inline: database="dbname", layout="layoutname",
form_param:"SearchFieldname"=form_param:"SearchValue", search]

The field to display for the result is: [form_param:"SearchFieldname"]

[/inline]

The “[form_param: ...] tag simply retrieves the values entered into
the previous form, thus enabling them to be used again in the
search that is processed in the inline on the response format file.
In other words, the [form_param: ...] tag is used within the inline
to return the search parameters from the last search, in this case
“Searchfieldname” (the name of the field to search in, which was
selected from the previous pop-up list), and “SearchValue” (the
value to be searched, which was entered temporarily into a text
entry field). The “dbname” and “layoutname” are the actual names
for your database and layout.

The result appears since the field with the result (found within the
[inline] ... [/inline] container) is also identified as being the same
field the search is occurring on, that is, the value entered into
“Searchfieldname.” Several fields can be displayed in a similar
manner. Note that this process can be extended for use with other
types of selection lists such as checkboxes.

Miscellaneous Tips

Case Sensitivity

In general, case doesn’t matter when dealing with database or
layout names. But, case does matter when specifying values from
value lists. Selection list options must be spelled exactly, with the
same capitalization, on the format file as they appear in the
FileMaker Pro database. As a rule, make sure the case of values
specified in Lasso format files matches that found in the FileMaker

203

204 APPENDIX A: TIPS AND TECHNIQUES

Pro value list. This is not an issue, however, when auto-populating
value lists using the “post-Lasso” method and is one big advantage
of utilizing this feature.

Auto Refresh With New Data

nou

With Lasso, field data may be returned on an “add,” “update,” or
“delete” reply page. In addition, it is possible to automatically link
to another format file by using the [header] tag.

Value Range Searching

There are two ways to search for field values that lie within a range
of values.

1. Create two inputs for the same field in your HTML search
format file. Add a search operator to look for values greater than,
or after, the first field, then add a second search operator for the
less than, or before, operator. Values that are equal to the value
requested may also be included.

Date<select name="-operator">
<option value="gte"> from
<option value="gt"> after
</select>
<input type="text" name="Date" size=10>
<select name="-operator">
<option value="lte"> to
<option value="It"> before
</select>
<input type="text" name="Date" size=10>

Optionally, the operators for “less than” or “greater than” can be
hard-coded by using the “hidden” field parameter.

Date<input type=hidden name="-operator" value="gte">
<input type="text" name="Date" size=10>
<input type=hidden name="-operator" value="[te">
<input type="text" name="Date" size=10>

2. The second option is to separate the range values with three
periods “...” in the form:

XXIXXIXX. . XXIXX/XX

The symbol “...” (three periods) is the same optional operator for
range searching that is used with the find command in FileMaker
Pro. This second approach may only work with date range
searching.

APPENDIX A: TIPS AND TECHNIQUES

Value range searches will not work with the default “begins with”
operator, but requires the use of the “gte” operator as follows:

<input type="hidden" name=-operator value="gte">

Tips on Rebooting After a Crash

Although Mac OS Web servers are reliable, no Web server is
perfect. If perchance the system crashes, upon reboot, make sure to
refuse connections to the Web server (set within the Web server)
while FileMaker reconstructs the databases. Unfortunately, this can
be a lengthy process, depending upon the size of the databases. By
refusing connections after a reboot, this will ensure that Lasso.acgi
is not called BEFORE the Lasso Security databases have a chance to
relaunch. In addition, if using the Lasso Server or the Plug-in
version, and using Lasso Security, precautions should be taken to
not start the server until the Lasso Security databases have had a
chance to open.

Open Shared Network Database on Web Server

The following is a description of how to open a shared or
networked database that uses password restrictions without
encountering a dialog. This technique is useful when the database
needs to be opened automatically on a server so it is available to
Lasso after a server crash. In this case, the shared FileMaker data-
base is protected with passwords for certain users and the master
password cannot be automatically entered. When the server is
restarted the password needs to be entered manually when the
database opens.

Here are several options for accomplishing this:

1. Set up a limited access password for the database that allows
browse, print, and export; and if adds are allowed, then also
include create records. Have this password auto-entered when
the database is opened by modifying the Document
Preferences to “Try Default password.”

2. Have a “dummy” database reside on the server and open the
shared database over the network via a script. Here is how to
accomplish this second option:

a. Create the dummy database with one or no fields (none
are needed unless you want this to be a log that records
the date and time of the restart by auto-entering these
values into a new record).

205

206 APPENDIX A: TIPS AND TECHNIQUES

b. Create a script, i.e., “Open Network Database” with the
following two steps:

Step 1 — “Open,” select the shared database using
Specify File” and then click on Hosts button to locate
the shared database on the network

Step 2 — “Close” (nothing selected, this is to close
the dummy database)

c. Use the Access Privileges/ Define Passwords command to
create a password. This must be the SAME PASSWORD as
the master password in the shared network database.

d. Open Preferences and then go to the pull down for
“Document” select “Try Default password” and enter the
password created above.

e. Select “Perform Script” and then enter the name of the
script, i.e., “Open Network Database”

f. Place this file in the startup items of the Mac OS Web
server computer.

If the file is shared using FileMaker Pro Server on the same
computer (that is the Mac OS Web server computer) then add
a time delay of 30 seconds in the “Open Network Database”
script using the “Pause/Resume Script/ and the “Specify”
button to set the duration of the pause.

As long as the master passwords are the same in each one, use
this dummy database to open several networked databases
with the same script.

3. A third option was submitted by Eric Westlund
(ewest@hatcher.com) on the Lasso Talk mailing list. He
suggested:

“Write a small AppleScript that launches FileMaker Pro
and opens the databases using a limited password on
startup such as...

tell application "FileMaker Pro"
activate
open alias "hd:Web DBs:guestbook" with password "password"
open alias "hd:Web DBs:Lasso Security" with password ™"

end tell

APPENDIX A: TiPs AND TECHNIQUES 207

Note: Unfortunately, this technique won't help if the database
was damaged after the crash and needs to be recovered,
though this could be added with some additional FileMaker
scripting.

Addendum

See APPENDIX E: SurPORT to find additional sources of Lasso tips.

Appendix B: Character
Sets and Translation

The I1SO Latin-1 and Mac OS
Character Sets

The ASCII character set defines a universal set of characters for all
Roman-based languages by assigning characters a numerical code.
The most basic set of characters that are recognized by all
computer systems have been assigned a decimal value from 0 to
127.

The Mac OS uses a standard character set known as “Standard
Roman,” while the Internet uses “ISO Latin-1" (for Western
Europe) for the HTML character set. Both Mac Standard Roman
and ISO Latin-1 use the ASCII character definitions for characters
in the range 0 to 127, and so these characters are the same in
both.

Mac Standard Roman and ISO Latin-1 use different character sets
for characters above 127. Generally, these special characters are in
the range 128-255 in the ASCII character set. Some of these are the
same, and some characters defined in one set are not defined in
the other.

HTTP and HTML Character Encoding

The HTML and HTTP Internet standards require that certain
special characters and all non-ASCII extended characters be
encoded. The non-ASCII extended characters are those with a
numerical value in the range 128-255. Character encoding is the
process of replacing an extended character in an HTML document
with a “character reference” or “entity reference.”

The HTML standard reserves certain characters that must be
encoded if included in an HTML document. The special characters
are right angle bracket (>), left angle bracket (<), quote ("), and
ampersand (&). The following character reference is used to
display these special characters:

&#nnn;

In this format, “nnn” is the numerical code for the character.

210 APPENDIX B: CHARACTER SETS AND TRANSLATION

The HTTP standard requires that all reserved characters with
special meaning, as well as certain “unsafe” characters, be encoded
if they are to be used in an Internet URL or email address. The
reserved characters are:

7 @ = &
The unsafe characters are:

><# % PV~ 0] 0 e
The following character reference is used to display these special
characters:

%nn

In this format, “nn” is the hexadecimal value that represents the
character in the ISO Latin-1 scheme.

Lasso Character Translation

Lasso correctly displays many of the special characters used by
Macintosh computers by performing translation between the ISO
Latin-1 and the Macintosh Standard Roman numeric representa-
tions. In other words, Lasso performs HTML encoding of all values
from the FileMaker Pro database when substituting values in an
HTML format file. For example, when displaying the contents of a
field using the [field: ...] tag, Lasso does not translate or encode
characters in the HTML portion of your Lasso format files (that is,
everything that is not returned by Lasso from FileMaker Pro).

Mac Standard Roman characters that are not defined in I1SO Latin-
1 (for example, the bullet generated by option-8) are translated to
an asterisk. The exception is smart quotes on the Mac (which
doesn’t exist in ISO Latin-1), which Lasso translates to regular
quotes.

Any Standard Roman characters that appear within FileMaker Pro
database fields are automatically translated and encoded by Lasso
when data is returned to a Web browser. Thus, any language that
uses the Standard Roman character set will be displayed correctly
by the Web browser. The following languages use the standard
Roman character set:

English French German
Italian Dutch Swedish
Spanish Danish Portuguese
Norwegian Finnish Icelandic
Maltese Turkish Lithuanian

Estonian Latvian Croatian

APPENDIX B: CHARACTER SETS AND TRANSLATION

There are character sets that this release of Lasso will not translate
properly, since they define a different set of characters for the
ASCII values 128-255; for example, the Macintosh character sets
used by Central European and Cyrillic languages. There are also
other HTML character sets besides ISO Latin-1 (such as ISO Latin-
2) that contain characters Lasso cannot translate.

Not all versions of Lasso support languages that use two-byte char-
acter sets, as do Japanese, Chinese, and Korean (Roman languages
use one-byte character sets). A separate version of Lasso that is
specifically designed for 2-byte languages is required. Information
regarding versions of Lasso that work with two-byte character sets
is available at the Lasso Web site.

Field Encoding

Exchanging information between the world’s multitude of
languages and computer systems presents a translation challenge.
The Macintosh uses the “Macintosh Standard Roman,” character
set, while the World Wide Web’s HTML uses ISO Latin-1. Lasso,
therefore, must translate (or “encode”) to the correct language for
each medium. Lasso, by default, HTML-encodes field values. For

" _n

example, “<” will be encoded as a “<” string.

Disabling Character Encoding

If your FileMaker Pro field data includes HTML tags, you'll want to
prevent certain characters from being encoded. In addition,
including field data as part of a URL requires additional efforts to
prevent other characters from being encoded. Because of this,
several keywords can be used by Lasso substitution tags to control
how the data from FileMaker Pro fields is encoded. These
keywords include “raw,” “url,” break,” and “smart.”

The keywords are applied in the following manner:
[field:"Field Name",break]

Or:
[token_value,url]

Or:
[field:"Relationship Name::Field Name",smari]

Keywords are used with repeating fields slightly differently, as
follows:

[repeating:"FieldName"] [repeat_value,url] [/repeating]

Note that “url” cannot be used with [repeating: ...].

211

212 APPENDIX B: CHARACTER SETS AND TRANSLATION

You cannot specify multiple “smart,” “url,” “break,” or “raw”
keywords for the same field. A space between the colon and field
name is ignored.

Although some browsers will recognize extended characters prop-
erly in their raw form, others require extended characters to be
encoded according to the HTML character encoding scheme.
Similarly, with extended characters in URLs it is important that
these special characters are encoded so that the Web server can
direct the request properly. If you use raw values, be aware that
some Web browsers may have problems displaying the characters
properly.

Using the “raw” keyword will speed up Lasso’s performance,
particularly with very large text fields. Character encoding can
dramatically affect performance on large text fields. For example,
our tests showed display of 64k of text in around 15 seconds with
character encoding on (default and “URL” type), and in 1 second
with it off (set to “raw”). 64k is also the FileMaker Pro maximum
limit for any given field.

Using the Raw Keyword to Disable Character Encoding

The HTML standard reserves certain characters that must be
encoded if included in an HTML document. When the “raw”
keyword is used with a Lasso field command, characters are not
altered (e.g., encoded) when Lasso returns field values from the
FileMaker Pro database.

To ensure that special characters in field values are interpreted as
HTML tags, turn off HTML character encoding for the specified
field. The field data will then return exactly as it exists in the
FileMaker Pro database field. This is accomplished by adding the
“raw” keyword to the [field: ...] tag:

[field:"FieldName",raw]

However, if HTML coding is turned off in this manner, extended
non-ASCII characters won't be encoded. This may produce unde-
sirable results depending on the browser. Therefore, avoid using
extended characters in fields which will have HTML character
encoding turned off.

APPENDIX B: CHARACTER SETS AND TRANSLATION

Using the URL Keyword to Encode with the HTTP Standard

When the “url” keyword is used with a Lasso field command, char-
acters are encoded according to the HTTP standard, rather then the
HTML standard. This is accomplished by adding the “url” keyword
to the [field: ...] tag:

If you are going to use field values in URLs (for example, inside an
anchor or image tag), instruct Lasso to perform URL encoding
rather that HTML encoding. For example, if a field value is
returned with an embedded URL, use the “url” keyword to encode
spaces or HTTP reserved characters (unless these will not be
present, such as in a field that is defined to be a “number” field in
FileMaker Pro). The reserved characters are:

7@ = &
The unsafe characters are:

SRR S AR B I

Using the Break Keyword to Include Returns

The “break” keyword can be used with the [field: ...] tag to trans-
late all carriage return characters to HTML
 tags. It is used in
the format:

[field:"FieldName",break]

Lasso performs HTML character encoding (default behavior) when
the “break” keyword is specified. The “break” keyword cannot be
used in conjunction with the “raw” or “url” keywords to the

[field: ...] tag.

Using the Smart Keyword for Extended Character Encoding

Smart encoding will encode non-ASCII or special character enti-
ties, but will not convert the characters “<” and “>.” With the
“smart” keyword, special characters can transfer from FileMaker
Pro database fields along with characters used for HTML coding.
Thus, dynamic HTML can be utilized on the returned format file,
along with extended non-ASCII characters. The “smart” keyword is

used in a manner similar to “url,” “break,” or “raw.” For example:

[field:"FieldName",smart]

213

214 APPENDIX B: CHARACTER SETS AND TRANSLATION

Global Encoding and Decoding

Unlike field encoding, global encoding and decoding applies to
literal text strings, substitution tags and sub-container tags. The
following tags are components of the “Encoding Tags.mod”
module. They can contain multiple parameters, such as literal
strings or substitution tags. Each parameter is surrounded by
quotes and separated by commas.

The [encode_url: ...] substitution tag concatenates all specified text
together and then URL-encodes that text string.

For example, the following code:
[encode_url: "this is some text ", "some more text"]

Outputs the following result:
this%20is%20some%20text%20some%20more%20text

Lasso substitution tags can also be included. For example:
[encode_url: "http://", client_ip, field:file_path]

Outputs the following result:
http%3a%2f%2f202.252.25.63employees %2fdetail.html

The [decode_url: ...] tag concatenates all specified text together
and removes any URL encoding from the text string. This tag can
be used to reverse the effect of the [encode_url: ...] tag.

For example, the following code:

[decode_url: This%20is%20%3cb%3eth%e9%20string%3c%2fb%3e%d]
Outputs the following result:

This is thé string

The [encode_breaks: ...] substitution tag concatenates all specified
text together and then applies “Break” encoding. Break encoding
translates all carriage return characters into HTML
 tags.

For example, the following code:

[encode_breaks: "This is", " ", "thé string
2 B encoded..."]

Outputs the following result:
This is thé string
 2 B encoded...

The [encode_raw: ...| substitution tag concatenates all specified
text together and then applies “Raw” encoding. Raw encoding

APPENDIX B: CHARACTER SETS AND TRANSLATION 215

translates the Mac standard character set to ISO Latin-1, but does
not convert HTML entities.

For example, the following code:
[encode_raw: "This is", " ", "thé string"]
Outputs the following result:
This is thé string

The [encode_html: ...] substitution tag concatenates all specified
text together and then HTML encodes that text string. HTML
encoding translates all extended characters, including angle
brackets, into their HTML entities.

For example, the following code:

[encode_html: "This is", " ", "thé string 2 B encoded..."
Outputs the following result:

This is <b8#62;thé string 2 B encoded...

The [encode_smart: ...]| substitution tag concatenates all specified
text together and then applies “Smart” encoding. Smart encoding
encodes extended characters into their HTML entities, but does not
convert angled brackets, allowing embedded HTML to pass
through.

For example, the following code:

[encode_smart: "This is", " ", "thé string 2 B encoded..."]
Outputs the following result:

This is thé string 2 B encoded...

Appendix C:
Troubleshooting

Refer to these guidelines when confronted with problems using
Lasso. If you still have difficulties after reviewing these guidelines,
please follow the procedures for receiving technical support.
Oftentimes, the answer to the problem is found by searching the
archives of the Lasso Talk email discussion forum.

When troubleshooting a Lasso integration project, it becomes
extremely helpful to look not only at the HTML of the format files
in their raw form, but also to view the source of the file returned
by Lasso. To do so, use the “View Source” command in the Web
browser to see how the file has changed after Lasso has processed
1t.

Receiving “No records found”
Message

The best approach when you come across this type of situation is
to make a copy of your add form and either delete or comment
out all fields except for one. This one field should be a plain text
field that has no restrictions, validations, or auto-entered values.
Next go to the FileMaker Pro layout your format file is referencing
and make sure this field is there with “allow entry into field”
checked in the Field Format dialog. Make sure to include the basic
elements for an add form:

<form action="action.lasso?-add" method="post">

<input type="hidden" name="-database" value="YourDBName">

<input type="hidden" name="-layout" value="YourLayoutName">

<input type="hidden" name="-response" value="insertpath/Add_Reply.html">
<input type="text" size=30 name="InsertYourFieldName">

<p><input type="Submit" name="-add" value="Add Record">

<input type="hidden" name="" value="">

<[form>

Test to see if you can add one record and that the field value was
submitted. If it was not, check the database, field, layout, and
response names to make sure they are exact. If a field has any
extended characters such as slashes or periods in the name, change
it to something simpler. Make sure that the database and layout
are not the same.

218 APPENDIX C: TROUBLESHOOTING

Next, add another field that is a text field and check it for restric-
tions as with the first. Test the add form again by entering data for
the two fields. Check to see that a record was added with the two
fields completed.

Add a third field and test. Keep repeating this process until you
discover the field that is not being entered. Then check that field
out on the FileMaker database. Retype the name in Define Fields
and where it is specified on your format file. By following this
procedure, I find the problem more times than not.

If the form you are checking is a search form you can follow a
similar process as is described above. For the search, also check if a
field is defined as a date or time type field. If so, then an operator
must be specified as either “equals,” “greater than,” or “less than,”
the default operator “begins with” cannot be used with date or
time fields. In addition, check the sortfield tag and make sure that
it specify valid field names. The field you are sorting on must be
defined in the database, though it does not need to be on the
layout specified for the action. Other search parameters are OK
since they use a default value if an incorrect value is specified.

Lasso Does Not Seem to Operate
At All

If Lasso quits unexpectedly upon launching and does not get as far
as the serial number/test drive dialog, first check that the required
System extensions have been installed. Consult CHAPTER 2:
INTRODUCTION for specific information on these extensions. Also,
try to allocate more memory to Lasso.

e If more memory does not solve the problem, make sure the
Mac OS Web server is running and check that all referenced
FileMaker Pro databases were opened before Lasso was
launched. All databases should be open with a “master pass-
word,” so that there are no restrictions to entering data into a
field. Make sure the format files are being opened via the
server, not directly from the hard drive (e.g., use http://your-
server-name/path-to-file/file.html)

¢ Confirm that the correct version of Lasso is specified in the
form action. And, if using the CGI, check that the path loca-
tion to Lasso is correct. For more details, see CHAPTER 4: LASSO
METHODOLOGY.

¢ Confirm that the path to the various format files is correct, as
discussed in CHAPTER 4: LASSO METHODOLOGY.

APPENDIX C: TROUBLESHOOTING 219

Nothing is Added to the FileMaker
Pro Database

If attempting to complete an add or update and Lasso is unable to
complete the action, check the following:

¢ If the “Lasso_Security.fp3” database was open before Lasso
was launched (or if, using the Plug-in, it was opened before
the Web server was launched), then Lasso Security is enabled.
Close the security databases and restart Lasso with security
disabled. Then, try the files again to see if the problem is
related to a security issue.

e If you are getting an error message, note the error number and
message displayed. Some error messages are generic; however,
others could provide some specific information that will help
resolve the problem. Refer to APPENDIX D: ERROR CODEs for a
list of the known error codes and suggestions for correcting
the problem for each error.

¢ Confirm that the layout specified in your Lasso format file is
available in the FileMaker Pro database and that all of the
fields in the Lasso format files (both the form and the reply)
fulfill the requirements discussed for each action below.

e Add — For adds, the most important recommendation, and
the one to try first, is to open the FileMaker Pro database and
switch to browse mode. Go to the layout specified in the
format file. Try to create a new record and then add data to
each field using the FileMaker Pro interface directly. Click
outside of the fields to save the record. Try adding the same
data that was added via the Web form. The FileMaker Pro
database layout must contain all the fields specified in the
“add” format file, AND all fields specified in the format file
specified by the -response command tag. If a field is specified
that is not on the layout, the “add” will occur but the data
that was entered for the missing field is lost.

¢ Update — Troubleshoot in a manner similar to “add”
routines. Also, check that the record ID has been specified in
the form, in addition to the database, layout, and response
file. The -recid is indicated on your HTML form with the
following tags:

<input type="hidden" name="-recid" value="[recid_value]">

e Open the FileMaker Pro database and switch to layout
mode. Select “Field Format” (from the “Format” menu), and

220 APPENDIX C: TROUBLESHOOTING

confirm that the option is checked to “Allow entry into field”
(found at the bottom in the “Behavior” section). Make sure
each is formatted according to its expected behavior. For
example, fields using selection lists should be associated with
a value list.

¢ While still in layout mode, make sure that there are no “unde-
fined” fields in the layout. These would show as fields that are
not assigned to any specific field and are blank where
normally one would see the field name. An undefined field
can accidentally be created if a layout is copied from one data-
base and pasted into a database which doesn’t have the same
field definitions.

e Check that all database, layout, file, field, and other names or
files are spelled correctly. Try to remove occurrences of any
extended or reserved characters from these names (i.e., slashes,
under scores, ampersands and so on, as is mentioned in
APPENDIX B: CHARACTER SETS AND TRANSLATION). Although Lasso
is not case-sensitive for many of these elements, try to copy
them following the capitalization used. Drag names from FM
Link for accuracy. Confirm that there are no trailing or stray
spaces, or null characters (that is, ASCII character 0 [zero],
which is sometimes created when pasting info copied from
another application). Retype the entire file names in the
Finder or in the define fields dialog box, or at least retype the
first or last letter by dragging the letter to one side or the other
and retyping that letter. As a last resort, try changing the name
to something entirely different.

e If the difficulty is with an embedded URL, make sure that
special symbols used in the text string have been encoded (as
is described in APPENDIX B: CHARACTER SETS AND TRANSLATION).
Especially check that all ampersands used before a field name
are encoded (not necessary before a Lasso tag). If this isn't the
case, you may run into problems when the “&” completes an
HTML character reference. For example, if a field named “copy
material” is used in an embedded URL string after the “&”
symbol, it would appear on the HTML as

...© material=[field:editor]&...

and be translated by the browser as the copyright symbol (©).
Although it is missing the ending semi-colon (;) for the
proper character reference (which uses the pattern &nnn;),
some browsers (notably Netscape Navigator) will translate it

anyway.

APPENDIX C: TROUBLESHOOTING

o If there are value lists, check to see if they are causing the
problem by trying the action without the value list.

e As a last resort, try to reduce the number of fields to only
those necessary for an -add or -search. Try creating a simpli-
fied version of the format file to add to or search one or just a
few fields, and create a FileMaker database layout specifically
for this test (don’t forget to change the format file to reflect
the change).

¢ If you have gone through all of these steps and still cannot get
a Lasso response, it may be possible that the database is
damaged. Refer to FILEMAKER PRO DATABASE 1S DAMAGED for
more information.

Lasso Does Not Add Information to
a Specific Field

It appears that although the -add or -update action occurs, Lasso
fails to add information to a specific field. If it is attempted to add
to a field that is not on the layout specified by the layout
command, no error will be displayed, but the data is lost.

Solution: Make sure that the FileMaker Pro layouts specified with
the -layout command include all fields used in the specified
format file. Confirm that there are no spaces either before or after
the field name. In addition, check that data can be entered into the
field on the specified FileMaker Pro layout. Open the “Format
Fields” option for the various fields and make sure that “Allow
entry into field” is selected. If this doesn't work, try to create a
layout in FileMaker Pro that has all fields on it (when you go to
“New Layout” choose “Single page form”) and then specify that
layout in the format file.

Unexpected Search Results

A search returns records when no values have been entered into
fields, the expected behavior being a “No Records Found” error.
Or, records are returned that should not have been.

Solution: If there are problems with a search, try to search directly
within the FileMaker Pro interface to check the results. The
FileMaker Pro database layout must contain all fields that are
returned in the hitlist format file. Lasso will read all the fields in
the specified layout with the layout tag on the search page; there-
fore, don't include any fields that are not used for the search para-

221

222 APPENDIX C: TROUBLESHOOTING

meters or hitlist page (these can be shown on a subsequent detail
page by changing the layout referenced in the hitlist page for the
[detail_link: ...] tag).

One other reason for unexpected results could be due to having
the last HTML “input” being set to a field instead of the submit
action. This is a problem with certain browsers. To solve this, add a
hidden action at the end of the form. The hidden action is
formatted as follows:

<input type="hidden" name="-search">

This occurs because some browsers will incorrectly add a “return”
to the last field in the form (if the last item is a text field), rather
then an action request.

Another option is to always include the action in the HTML form
that specifies Lasso. This is accomplished as follows:

<form action="action.lasso?-search" method="post">
For more details see CHAPTER 4: LASSO METHODOLOGY.

Another problem has been noted in which Internet Explorer 2.0
incorrectly inserts a space into the value of a form element which
contains no value. This is a problem only when the “equals” oper-
ator is used on that field. In other words, in order for a selection
list to not have any items selected for a search, a null value
(value="") is used so that no value can be selected for that field.
Internet Explorer 2.0 will send a space, so the search will seek
records that have a space in that field. The solution is to use the
“begins with” operator.

Searching Appears to be Case-
Sensitive

If you are having trouble with searching in which the search para-
meters seem to be case-sensitive, check how the fields are stored in
the FileMaker Pro index. If the fields are defined to be stored as
ASCII, searching will be case-sensitive.

Solution: From within the “Define Fields” window, select
“Options,” then select the button in the lower left labeled “Storage
options” and change the indexing language to anything other than
ASCIL. The searching should now be non-case-sensitive.

APPENDIX C: TROUBLESHOOTING 223

Pop-up List Does Not Work Properly

There are times when the FileMaker Pro layout gets “confused”
about the values associated with a particular field, especially if a
lot of changes to the layout have occurred, lists are redefined, or
changes made to which field a value list is associated with.

Also, while field names are not case-sensitive, value list names are
case-sensitive. If value list names do not match exactly (including
case), then data will not be entered correctly. This does not apply
on “post-Lasso” format files (using [value_list: ...]...[option: ...]...
[/value_list] or [value_list: ...]...[list_value]...[/value_list]) because
their values are dynamically generated.

Solution: If the value list is hard-coded (not returned by Lasso
from the database) and the value list is specified in FileMaker Pro,
make sure that the names on the list match the items in the
FileMaker Pro database EXACTLY. Better yet, if you're not returning
the value list with Lasso then it isn’t necessary to format the field
as having a value list on the FileMaker Pro layout. Values can be
entered into a standard FileMaker Pro field using any HTML selec-
tion list (such as a pop-up).

Try duplicating the layout being used, rename it, and specify the
new layout in the add format file. Or, recreate any fields with selec-
tions lists on the layout in FileMaker Pro. Drag the field from the
left side layout bar in FileMaker Pro and make sure it is associated
with the correct value list. Do not create this field by copying
another field or option-dragging another field and then changing
the associated value list.

Only the First Option in a Pop-Up
List is Displayed

There is an obscure oddity that may occur when the first field in
the tab order of a layout has a value list. In other words, a layout
in FileMaker Pro has the first item in the tab order as a field
formatted to use a value list. When Lasso attempts to create a pop-
up list using this field on a Lasso response page, it is unable to
show more than the first value on the list.

Solution: Format the first field of the tab order as a “standard”
field.

224 APPENDIX C: TROUBLESHOOTING

FileMaker Pro Database is Damaged

At times it is necessary to repair a FileMaker Pro database that was
damaged as the result of the file being closed incorrectly, but is not
damaged enough that FileMaker Pro gives the error alert that the
database file must be recovered. It may also be necessary if a data-
base was received as an email attachment. If changes were recently
made and fields formatted with selection lists do not behave prop-
erly, or if the database is returning records incorrectly from a find
or sorting in an unexpected order, then you may want to try to
repair it. In addition, it may be a good routine maintenance prac-
tice. According to a Claris Tech Info document:

“...most databases are good candidates for a routine
compression. Saving a compressed copy rewrites the
entire database, fitting as much data into each block as is
possible. This procedure not only reclaims unused space
in the file, it also rebuilds the file’s structure.”

Solution: If the FileMaker database is slightly corrupted it needs to
be rebuilt. To repair a slightly damaged database and rebuild the
database file follow these steps: save a clone of the database,
recover the clone, open the recovered clone and save a compressed
copy. Then repeat these steps one or two more times on the new
compressed copy. Use the final, last, doubly cloned and recovered
copy as the new database and import any existing records in from
the original. This routine should force FileMaker Pro to truly
rebuild the database structure.

Add Results in Failed Search

One of the most common problems with Lasso troubleshooting is
when an -add or -update results in a failed search. Previous to Lasso
2.0, if any Lasso request was submitted without an action, Lasso
would default to the -search action. If Lasso Security was not initial-
ized and not present, a failed action would result in the alert “No
records found” with the parameters of a search listed, as if a search
action was attempted and failed. If Lasso Security was enabled, the
error resulted in a security violation, which was confusing when the
security appeared to be set up correctly. With Lasso 2.0 the default
action was changed to -nothing so the error would appear to be a
response file called up without any action performed. For example,
the response page does not display field values.

Both of these problems can occur when a complete “search argu-
ment” detailing the Lasso action is truncated and is not completely
delivered for proper processing. The search argument is any

APPENDIX C: TROUBLESHOOTING 225

request for a Lasso action, including -add, -search, -update, -delete,
-scripts, and so on. The reason behind the lost action is not clear;
however, the usual reason is that some element of the form, or the
embedded URL, is not correct.

Solution: First make sure one can completely fill out a form or
complete the action directly within the FileMaker database. Then,
go through the elements of the form or embedded URL to check
how the fields, database, and layout are specified (as mentioned
under earlier troubleshooting topics).

If that does not work, try the following :

¢ Eliminate the layout tag in the Lasso format file (or embedded
URL).

e Turn off “multi-user” network access (if on).

e Duplicate the layout being used, rename it, and specify the
new layout in the add format file.

¢ These problems may also be linked to a flaw in the FileMaker
Pro database. See FILEMAKER PRO DATABASE IS DAMAGED.

e Place the action at the start of the sequence of tags; for
example, when dealing with an embedded URL, try moving
the action as follows:

<a href="Lasso.acgi?-search&-database=Employees&-layout=Detail&
-response=Detail+Format.html&-op=cn&First+Name=Michael&-maxRecords=5&
-skiprecords=10&-sortfield=Last+Name"> Search

Or, on a form, place the action within the “form” HTML tag,
within the “action” attribute, as follows:

<form
action="../Lasso.acgi?-search&-database=Employeesé&-layout=summary"
method="post">

...rest of the HTML form
<fform>

Or, for the Plug-in:

<form
action="action.lasso?-search&-database=Employees&-layout=summary">
...rest of the HTML form
<fform>

226 APPENDIX C: TROUBLESHOOTING

FM Link Does Not Show Tags

After launching FM Link and selecting the “Lasso tags” tab nothing
appears.

Solution: Make sure that the FM Link application and “Lasso
Tags” document are located in the same folder and that the “Lasso
Tags” name has not been changed. The “Lasso tags” file should
only be altered using extreme care. If changes were made, try rein-
stalling a fresh copy of the “Lasso Tags” file that is distributed in
the same folder as FM Link. In order for FM Link to parse this
document correctly, each command needs to be structured in the
following sequence:

1. NAME

return (no text or spaces)
2. HTML CODE

return (no text or spaces)
3. DESCRIPTION/HELP
return (no text or spaces)
return (no text or spaces)

If a “#” is placed at the start of a line, that line is ignored. To start
a new line without throwing off the sequence, put a single space at
the start of the line (before any returns or text). For the latest copy
visit the Blue World Web site (http://www.blueworld.com).

You may also try allocating more memory to the FM Link applica-
tion.

FM Link Does Not Show FileMaker
Pro Database

After launching FM Link, nothing appears when selecting the
various tabs to show FileMaker Pro database information.

Solution: Make sure that the FileMaker Pro database is open
before opening FM Link. Make sure to start at the “Databases” tab
and double-click the name to show the layouts, and then the
layouts to show the fields. If you need to update the list, do so at
the database tab and click through the sequence again. If you close
a database while FM Link is open the database will not be avail-
able, and FM Link may not work. Although the fields are still
showing, it is necessary to open the database and update the list to
have the fields show properly.

APPENDIX C: TROUBLESHOOTING

Form Submission Fails After
Updating to New Version

After updating to a newer version of Lasso, actions such as -add,
-update, or -search fail to successfully add or find data in the
FileMaker Pro database. In versions of Lasso prior to 1.1, a
different syntax was used to specify the database and layout. These
early versions allowed for database and layout values to be speci-
fied on the reply/response page using the now obsolete [database:
name-of-database| and [layout: name-of-layout] tags. This
approach will no longer work with versions of Lasso greater than
1.1.

Solution: To correct, simply add the database and layout
commands tags to the originating form or embedded URL. The
database and layout are always specified as hidden inputs on the
form that specifies the action. The syntax used would appear as:

<input type="hidden" name="-database" value="YourDBName">
<input type="hidden" name="-layout" value="YourLayoutName">

In addition, delete the now obsolete [database: name-of-database]
and [layout: name-of-layout] tags from the response forms.

Portal Does Not Display Related
Fields

When you are having trouble returning related information
contained within a portal check the following:

¢ The relationship name and all related fields should not have
any trailing space or special character in their name (not the
field data).

¢ All related fields within the portal should be completely
within the first row that shows as a blank white space in
FileMaker Pro’s layout view.

e If you specify that a related field is within a portal, do not also
include it outside the portal on the FileMaker Pro layout. And
vise versa.

e Try to enter values into all fields within the portal to make
sure that data can be entered. Also check that none are auto-
entered by the related database, or are calculation fields.

227

Appendix D: Error Codes

If Lasso does not appear to be working as one might expect, check
the log window to see if any errors have been reported. The log is
visible when Lasso is running. When reporting any errors for Lasso
support, copy these error messages from the log window (the error
code number plus its error text constitute the full error reference).
Note that the Lasso Plug-in will display error messages in the log
window of whichever Web server is being used.

Error code messages are returned for known errors. Unknown
errors are reported as “An unexpected error occurred.” The
following are some of the known errors you may encounter along
with possible solutions.

Error Code: -1 Couldn’t Find Format File

Description: Lasso is unable to perform an action. This will occur
if an earlier version of Lasso is on the server, but more recent Lasso
tags are used, in particular the -response tag. -response is synony-
mous with either [filename]| or [format], and all will work with
version 1.1 of Lasso. [filename] or [format] were used with Lasso
Lite and/or earlier versions of Lasso. -response is the preferred
command tag and future versions of Lasso may not support [file-
name] or [format].

Solution: Update Lasso on the server.

Error Code: -1 Out of memory!

Description: Lasso has used up its normal memory allocation and
is running on reserve memory.

Solution: Quit and restart Lasso. Contact Blue World technical
support and report the error. Try to allocate more memory to the
Lasso.acgi, or to the Web server if using the Lasso Plug-in.

230 APPENDIX D: ERROR CODES

Error Code: -2 Out of memory! Click anywhere to quit...

Description: This is a fatal error caused by the complete exhaus-
tion of Lasso’s reserve memory.

Solution: Click the mouse button to cause Lasso to quit. Restart
Lasso. Try to allocate more memory to the Lasso.acgi, or to the
Web server if using the Lasso Plug-in. Contact Blue World technical
support and report the error.

Error Code: -35 Could not find format file

Description: The format file specified by a -response or
-deletereply command could not be found. This error usually
occurs if the format file is located on a shared volume but is not
available.

Solution: Make sure that the volume is mounted. For example, set
up AppleShare to mount the volume automatically when the
computer is restarted.

Error Code: -39 Could not find format file

Description: Lasso fails to return a format file after an action. A
format file is specified by a -response or deletereply command.
Lasso will try three times before reporting error -43 when opening
format files.

Solution: Make sure the path to the file is specified properly.
Check that the exact spelling of the file name has been used.
Check that there are no stray spaces after the name, try to copy and
paste the name directly from the file into your HTML form. Also,
in certain instances a very full and fragmented drive may make it
difficult for the format file to be found on the drive. Clear files on
the drive if there is less than 10MB of space left on the drive. Also
try to defragment the drive using a drive utility (such as Norton
Speed Diske.

Error Code: -43 Could not find format file

Description: This is very similar to a -35 error; refer to that error
for more information.

APPENDIX D: ERROR CODES 231

Error Code: -49 File is open

Description: Format file is open and cannot be referenced by
Lasso.

Solution: Make sure the file is not open by another application.

Error Code: -50 No valid action in input form

Description: Lasso did not find an action command in the input
data received with the request. Action tags are: -show, -search,
-add, -update, -delete, -scripts, -random, and -duplicate. (Other
action tags may be defined in the future).

Solution: Make sure one of the action tags appears in your HTML
form or in the URL if you”re hard-coding a Lasso request. This
error can also appear when using the CGI and more than 24K
bytes of data is sent with a request. This can happen if the user
enters a large amount of data in a text area field in an HTML form.

Error Code: -50 Format File not found

Description: The return format file is not displayed. Usually this
occurs when a hitlist link is selected, that is, when specific record
details are requested from a hitlist. It also occurs when a link is
used that has embedded Lasso commands. The [detail_link: ...]
tag is used as follows:

<a href="[detail_link: layout=detail, format=
"path_to_file/Detail%20Format.html"]"> [field: "Field Name"]

<a href="Lasso.acgi?-database=database name&-layout=layout name&
-response=name.html&-operator=eq&Insert Field Name=value_in_Field&
-sortfield=Insert Field Name&-search"> Search

Solution: Spaces that are used in file names must be encoded with
either a plus sign or by “%20.” For more information see

APPENDIX B: CHARACTER SETS AND TRANSLATION. It is also good practice
to name all of your files, databases, layouts, and field names
without spaces or special symbols.

Check whether the embedded URL or [detail_link: ...] tag contains
any encoded spaces. The encoded character for a space (%20) will

232 APPENDIX D: ERROR CODES

prevent any URL from operating if placed incorrectly. For example,
the following embedded URL will not work correctly until the
spaces are encoded as follows:

<a href="Lasso.acgi?-database=database%20name&-layout=layout%20name&
-response=name.html&-op=eq&Insert%20Field%20Name=value_in_Field&
-sortfield=Insert%20Field%20Nameé&-search"> Search

On the other hand, an embedded link will not work correctly if an
HTML authoring program has encoded all of the spaces and
changed this to:

<a href="[detail_link:%20layout=detail, %20format=path_to_file/Detail%20Format.
html]">
[field: "Field Name"]

Error Code: -50 Object not found

Description: There is a peculiarity when the search form contains
only one text input field. In this case, the user can hit the “Enter”
key rather than click on the submit button. In this case, the -search
parameter associated with the submit button doesn't get sent to
Lasso, since the submit button serves to send the action. In other
words, if the action is specified through the submit button then
the action is not sent unless the button is selected.

Solution: The solution in this case is to add a hidden action at the
end of the form:

<input type="hidden" name="-search">

The value can be anything, or blank. This will insure that the
-search parameter is sent if the user presses the “Enter” key. If the
user clicks the submit button the -search parameter will get sent
twice, but that won't hurt anything.

Another option is to always include the action in the HTML form
that specifies Lasso. This is accomplished as follows:

<form action="action.lasso?-search" method="post">
For more details see CHAPTER 4: LASSO METHODOLOGY.

Again, this is only needed if the search form contains only a single
text input field. The form can contain any number of pop-up
(other selections lists) or text area fields. If there are more text
inputs, pressing the Enter key won't cause the form to be
submitted.

APPENDIX D: ERROR CODES 233

Error Code: -108 Not enough memory for request

Description: Lasso did not have enough memory available to
finish processing the request.

Solution: This error is most likely to occur when a very large
amount of data is returned from FileMaker Pro as the result of a
search request. Check to make sure the layout specified in your
search request contains only the fields needed to conduct the
search and format the results (Lasso retrieves data for ALL fields in
a layout, even if some fields aren’t used in the format file). Try
reducing the maximum number of records the user is allowed to
return as the result of a search. Finally, increase Lasso’s memory
partition in the Get Info box.

Error Code: -120 Could not find format file

Description: The directory (folder) specified in the path in a
-response or -deletereply command could not be found.

Solution: Check the spelling of all directories (folders) in the
path. Make sure the path is specified properly.

Error Code: -192 Could not get SIZE -1 resource

Description: The Lasso.acgi application file is corrupted.

Solution: Reinstall Lasso.acgi from the backup, or download and
reinstall a new copy from Blue World’s Web site.

Error Code: -700 Could not find email format file

Description: The format file specified by an -emailformat
command could not be found.

Solution: Check the spelling of the file name. Make sure the path
to the file is specified properly.

234 APPENDIX D: ERROR CODES

Error Code: -701 All email tags must be assigned a value

Description: In order for an email notification to be sent, all five
of the email parameters (-emailhost, -emailfrom, -emailto, -email-
subject, and -emailformat) must be specified.

Solution: Make sure you've specified values for all five parameters
in your HTML form. Make sure the parameter names are spelled
correctly.

Error Code: -1701 Unexpected error code

Description: Incorrect syntax for a routine; in particular, the
repeating fields routine.

Solution: See CHAPTER 10: REPEATING FIELDS AND RELATED FIELDS for
details on what might trigger this error.

Error Code: -1701 Could not get Error String!

Description: FileMaker Pro may be running out of memory, or an
incompatible version of the Object Support Library System exten-
sion may be in use.

Solution: Quit FileMaker Pro and find the application in the
Finder. Use the “Get Info” command to assign more memory to
the application. Also, check the version of “ObjSupportLib” and
refer to CHAPTER 2: INTRODUCTION.

Error Code: -1712 Apple Event timed out

Description: Usually this is seen when a FileMaker Pro script fails
to execute. In this case the Apple Event that interacts with the
Finder is unable to make FileMaker Pro the frontmost application.
FileMaker Pro must come to the front in order for the script to
run.

Solution: Check that the “Finder Scripting Extensions” is installed
and loaded when the system is started. It is required for the -scripts
tag to work. Also check to see if some other extension is
preventing FileMaker from activating and becoming the frontmost
application while the script is being executed.

APPENDIX D: ERROR CODES

Error Code: -5550 or -5551 Unexpected Gestalt error

Description: The Lasso.acgi application file is corrupted.

Solution: Reinstall Lasso.acgi from your backup, or download and
reinstall a new copy from Blue World's Web site.

Error Code: -10004 Security violation

Description: A security error occurs after an “add” or “search”
form is submitted. This error pertains to passwords that need to be
set in the FileMaker Pro database and not those set through Lasso
Security.

Solution: Make sure the database served by Lasso has been
opened with a password that allows changes to be made to the
database. At a minimum, a password is needed that permits
“Browse” “Print,” and “Export” for searching the database. To
allow records to be added, permission to “Create Records” is also
needed. In addition, check whether the password is assigned to a
“Group” that controls access to fields or layouts. The password
used to open the database for Lasso needs to have at least read-
only access to all fields and layouts in the database.

Error Code: -10005 Read Access Denied

Description: This error is with passwords set in the FileMaker Pro
database and not those set by Lasso Security. This error occurs
whenever trying to access a database that has been opened with a
password that does not have read access permission for all fields
and layouts.

Solution: Open the FileMaker database and select “Access
Privileges” in the Edit menu, then “Define Groups.” If no groups
have been established, select the password used to open the data-
base for use with Lasso. Check that permissions have been
assigned for at least read-only access to all fields and layouts in the
database.

Error Code: -10006 Write access denied

Solution: Make sure the fields referenced in the Lasso format file
match FileMaker Pro field names EXACTLY. Case sensitivity DOES
NOT apply unless specifying value lists.

235

Appendix E: Support

Technical Support

¢ Registered users receive free telephone and email support
during normal business hours for 45 days from date of orig-
inal purchase. Free support does not apply to upgrades.

e Extended support and program upgrades are subject to charge.
Extended support is billed at $25 per quarter hour via autho-
rized credit card.

To help facilitate accurate and timely technical assistance, the
following information is required:

¢ Type and configuration of computer (e.g., Performa 5215, 16
MB RAM, 1.2 GB hard drive)

e Version of Mac OS
¢ Version and edition of Lasso
¢ Version of FileMaker Pro
¢ Excerpts from error log window indicating errors
¢ List of other software running on the system if even remotely
applicable to problems you're experiencing (include version
numbers).
Contact Information
Lasso Web Site: http://www.blueworld.com/Lasso/
Email Address: support@blueworld.com
FAX: 425-646-0236
Phone: 425-646-0288 (9 am-5 pm PST)

Address:
Blue World Communications, Inc.
10900 NE 8th Street, Suite 1525
Bellevue, WA 98004 U.S.A.

238 APPENDIX E: SUPPORT

Lasso Talk

To stay informed about the evolving capabilities of Lasso, please
join the Lasso Talk email discussion group. This forum is
frequented by hundreds of Lasso users who exchange tips and
techniques on how to better use Lasso. Email discussion forums
can often be the best way to receive timely support and tips for
better use of your software. Likewise, searching for answers in
Web-based archives for an email discussion list often yields quick
answers. Note: Posting a message to Lasso Talk does not ensure a
response from Blue World.

To subscribe, send an email message to Lasso@blueworld.com
with SUBSCRIBE in the subject line (text in the body is ignored).

The searchable archives for Lasso Talk are available at:

http://www2.blueworld.com/lists/Lasso/search.html

Documentation Updates

At Blue World Communications we value the importance of
quality and up-to-date documentation. Announcements on new
versions of the documentation will be made on the Lasso Talk
email list.

If you find any errors or have suggestions as to how we may better
improve our documentation, please contact us at:

documentation@blueworld.com.

To ensure you have the most current version of the documenta-
tion, please periodically check the online version of the Lasso
documentation at:

http://www.blueworld.com/Lasso/User_Guide/

There may be periodic minor updates to the documentation which
are not announced.

The Lasso Web site, including all of the online documentation, is
also searchable via the following URL:

http://www.blueworld.com/lasso/lsearch/search.lasso

Appendix F: Usage Rights

Lasso is Copyright 1996-1997, Blue World Communications, Inc.

This manual and the Lasso software are copyrighted by Blue World
Communications, Inc. None of the software may be copied or
modified, in whole or in part, for distribution to or use by others.
Information in this document is subject to change without notice.

Please Do Not Make lllegal Copies of This Software

The software you are using was produced through the blood, sweat, and
tears of many people: designers, artists, programmers, distributors,
retailers, and other dedicated workers. The costs of developing this and
other software programs are recovered through software sales. The unau-
thorized duplication of software raises the cost for all legitimate users.

This software is protected by federal copyright law. Your cooperation in
upholding the law will insure continued low-cost upgrades and new soft-
ware. Copying software for any reason other than to make a backup is a
violation of federal laws. Individuals who make illegal copies of software
may be subject of civil and criminal penalties.

Software Publishers Association
11011 Connecticut Ave., NW, Suite 901
Washington, DC 20036

Lasso License Agreement

PLEASE READ THIS LICENSE CAREFULLY BEFORE INSTALLING OR USING
Lasso® SOFTWARE. BY DOWNLOADING, INSTALLING, AND/OR USING THE
SOFIWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS
LICENSE. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE, YOU
ARE NOT AUTHORIZED TO DOWNLOAD, INSTALL, AND/OR USE THIS
SOFTWARE.

1. License. The Lasso application software accompanying this License,
whether on disk, in read only memory, or on any other media or
networked storage device (the “Lasso Software”) and related documenta-
tion (the “data”) are licensed to you by Blue World Communications (the
“Author”).You own the disk on which the Lasso Software and data are
recorded but the Author and/or the Author’s Licenser(s) retain title to the
Lasso Software and related documentation.

This License allows you to install and use a single copy of the Lasso
Software and data on a single computer and make one copy of the Lasso
Software and data in machine-readable form for backup purposes only.
You must reproduce on such copy the Author’s copyright notice and any
other proprietary legends that were on the original copy of the Lasso

240 APPENDIX F: USAGE RIGHTS

Software and related documentation. You may transfer all your license
rights in the Lasso Software and related documentation, the backup copy
of the Lasso Software and related documentation, and copy of this License
to another party, provided the other party reads and agrees to accept the
terms and conditions of this License and a transfer of ownership letter,
listing contact information for both parties, is sent to the Author.

. Restrictions. The Lasso Software and related documentation contains

copyrighted material, trade secrets and other proprietary material and in
order to protect them you may not decompose, reverse engineer, disas-
semble or otherwise reduce the Lasso Software to a human-perceivable
form without the Author’s written permission.

. Termination. This License is effective until terminated. You may terminate

this License at any time by destroying the Lasso Software and related
documentation and all copies thereof. This License will terminate imme-
diately without notice from the Author if you fail to comply with any
provision of this License. Upon termination you must destroy the Lasso
Software, and related documentation and all copies thereof.

. Disclaimer of Warranty on Lasso Software. You expressly acknowledge and

agree that use of the Lasso Software and related documentation is at your
sole risk. The Lasso Software and related documentation are provided AS
IS and without warranty of any kind and the Author EXPRESSLY
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
AUTHOR DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED
IN THE LASSO SOFTWARE WILL MEET YOUR REQUIREMENTS, OR
THAT THE OPERATION OF THE LASSO SOFTWARE WILL BE UNINTER-
RUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE LASSO SOFT-
WARE WILL BE CORRECTED.

FURTHERMORE, THE AUTHOR DOES NOT WARRANT OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE
USE OF THE LASSO SOFTWARE AND DATA OR RELATED DOCUMEN-
TATION IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY,
OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE
GIVEN BY THE AUTHOR OR A REPRESENTATIVE AUTHORIZED BY THE
AUTHOR SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE
SCOPE OF THIS WARRANTY. SHOULD THE LASSO SOFTWARE PROVE
DEFECTIVE, YOU (AND NOT THE AUTHOR OR A REPRESENTATIVE
AUTHORIZED BY THE AUTHOR) ASSUME THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION. SOME JURISDIC-
TIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,
SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

. Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING

NEGLIGENCE, SHALL THE AUTHOR BE LIABLE FOR ANY INCIDENTAL,
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE
USE OR INABILITY TO USE THE LASSO SOFTWARE OR RELATED
DOCUMENTATION AND DATA, EVEN IF THE AUTHOR OR AN AUTHO-
RIZED REPRESENTATIVE OF THE AUTHOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT

APPENDIX F: USAGE RIGHTS

ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCI-
DENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION
OR EXCLUSION MAY NOT APPLY TO YOU. In no event shall The
Author’s total liability to you for all damages, losses, and causes of action
(whether in contract, tort (including negligence) or otherwise) exceed the
amount paid by you for the Lasso® Software and data.

Complete Agreement. This License constitutes the entire agreement between
the parties with respect to the use of the Lasso Software, related documentation
and data, and supersedes all prior or contemporaneous understandings or
agreements, written or oral, regarding such subject matter. No amendment to
or modification of this License will be binding unless in writing and signed by
the Author or a duly authorized representative of the Author.

clip2gif Disclaimer
GIF image encoding Copyright® 1989 by Jef Poskanzer.

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation. This software is
provided “as is” without express or implied warranty.

The Graphics Interchange Format® is the Copyright property of
CompuServe Incorporated. GIF(sm) is a Service Mark property of
CompuServe Incorporated.

clip2gif is a freeware product. As such it is not supported by its
author (see legal terms in the clip2gif distribution). Because we do
not have access to the source code, Blue World Communications,
Inc. cannot support use of clip2gif with Lasso. BLUE WORLD
COMMUNICATIONS, INC. DOES NOT PROVIDE ANY
WARRANTY FOR USE OF CLIP2GIF WITH LASSO. YOU ASSUME
ALL LIABILITY FOR RISK OF USE OF CLIP2GIF WITH LASSO. If
you have any doubts about this, do not use clip2gif to serve
FileMaker Pro pictures with Lasso.

241

Appendix G: LDML 2.5

Quick Reference Chart

Tag Tag Name Tag Type
-add Add Record Action
-adderror Add Error Reply Command
[begnum] Beginning Number Substitution
[checked)] Checked Sub-Container
[client_addr] Client Domain Address Substitution
[client_ip] Client IP Address Substitution
[client_password] Client Password Substitution
[client_type] Client Browser Type Substitution
[client_username] Client Username Substitution
[content_type: ...] Content Type Substitution
[cookie: ...] Display Cookie Substitution
-database Specify Database Command
[database_name] Display Database Name Substitution
[db_name] Display Open Database Sub-Container
[db_names] Display All Open Databases Container
[decode_url: ...] Decode URL Substitution
-delete Delete Record Action
-deletereply Delete Reply Command
[detail_link: ...] Detail Link Substitution
-doscript.post FMP Script Post-Lasso Command
-doscript.post.back FMP Script Post-Lasso in Background Command
-doscript.pre FMP Script Pre-Lasso Command
-doscript.pre.back FMP Script Pre-Lasso in Background Command
-doscript.presort FMP Script Pre-Sort Command
-doscript.presort.back FMP Script Pre-Sort in Background Command
-duplicate Duplicate Record Action
-duplicatereply Duplicate Reply Command
[else] Else Sub-Container
[else: if: ...] Else If Sub-Container
-emailbcc Email BCC Command
-emailcc Email CC Command
-emailformat Email Format Command
-emailfrom Email From Command
-emailhost Email Host Command
-emailsubject Email Subject Command
-emailto Email To Command
[encode_breaks: ...] Encode Breaks Substitution
[encode_html: ...] Encode HTML Substitution
[encode_raw: ...] Encode Raw Substitution
[encode_smart: ...] Encode Smart Substitution
[encode_url: ...] Encode URL Substitution
[endnum] Ending Number Substitution

244 APPENDIX G: LDML 2.5 Quick REFERENCE CHART

Tag Tag Name Tag Type
[event: ...] Apple Event Container
[event_errorstring] Event Error String Sub-Container

[event_result]
[event_resultcode]
[field: ...]
[field_name: ...]
-findall
[form_param: ...]
[header]
[html_comment]
[if: ...]

-image

[image: ...]
[include: ...]
[inline: ...]
[inline_result]
[lasso_action]
[lasso_process: ...]
-lassopassword
-lassousername
[lay_name]
[lay_names: ...]
-layout
[layout_name]
[list_value]

flog: ..]
-logicalop
[logicalop_value]
[loop: ...]
[loop_count]
[math-add: ...]
[math-div: ...]
[math-mod: ...]
[math-mult: ...]
[math-round: ...]
[math-sub: ...]
-maxrecords
[maxrecords_value]
[next]

[next_url]
[nfound]
-noresults
-nothing
[nshown]
-opbegin
-opend
-operator
[option: ...]

Event Result

Event Result Code
Field

Display Field Name
Find All Records

Form Parameter Value
HTTP Header

HTML Comment
Conditional Statement
Image Action

Image

Include a File

Inline

Inline Result

Display Lasso Action
Lasso Process

Submit Password
Submit Username
Display Database Layout
Display All Layout Names
Specify Layout
Display Layout Name
Display List Values
Log Activity

Logical Operator
Display Logical Operator
Loop

Loop Count

Math-Add

Math-Divide
Math-Modulo
Math-Multiply
Math-Round Result
Math-Subtract
Maximum Records

Display Maximum Records Value

Next Record Group
Display Next URL
Number Records Found
No Results Reply
Nothing

Number Record Shown
Begin Logical Operator
End Logical Operator
Operator

Options in Selection List

Sub-Container
Sub-Container
Substitution
Substitution
Action
Substitution
Container
Container
Container
Action
Substitution
Substitution
Container
Substitution
Substitution
Substitution
Command
Command
Sub-Container
Container
Command
Substitution
Sub-Container
Container
Command
Substitution
Container
Sub-Container
Substitution
Substitution
Substitution
Substitution
Substitution
Substitution
Command
Substitution
Container
Substitution
Substitution
Command
Action
Substitution
Command
Command
Command
Substitution

APPENDIX G: LDML 2.5 Quick REFERENCE CHART 245

Tag Tag Name Tag Type
[portal: ...] Portal Container
[post_inline: ...] Post-Inline Substitution
[prev] Previous Record Group Container
[prev_url] Display Previous URL Substitution
-random Find Random Record Action
-recid Record ID Command
[recid_value] Record ID Value Substitution
[record] Record Display Container
[referrer] Referrer Container
[referrer_url] Display Referrer URL Substitution
[repeat_value] Display Repeat Value Sub-Container
[repeating: ...] Repeating Fields Container
[repetition] Repetition Sub-Container
-regfieldmissing Required Field Missing Command
-required Required Field Command
-response Response Command
[response_file_path] Display Response File Name Substitution
-scripts Execute FileMaker Pro Script Action
-search Search Action
[search_args] Display Search Arguments Container

[search_field]
[search_op]
[search_value]
[selected]
[server_date]
[server_day]
[server_time]
[set_cookie: ...]
[set_var: ...]
-show
-skiprecords
[skiprecords_value]
[sort_args]
[sort_field]
[sort_order]
-sortfield
-sortorder

[string_concatenate: ...]

[string_countfields: ...]
[string_extract: ...]
[string_findposition: ...]
[string_geftfield: ...]
[string_insert: ...]
[string_length: ...]
[string_lowercase: ...]
[string_remove: ...]

[string_removeleading: ...]
[string_removetrailing: ...]

[string_replace: ...]
[string_uppercase: ...]

Display Field Searched
Display Search Operator
Display Search Value
Selected

Display Current Date
Display Current Day
Display Server Time
Set a Cookie Value

Set a Variable

Show Record

Skip Returned Records
Display Skip Records Value
Display Sort Parameters
Display Sort Field
Display Sort Order

Sort Field

Sort Order

String Concatenate
String Count Fields
String Extract

String Find Position
String Get Field

String Insert

String Length

String Lower Case
String Remove

String Remove Leading
String Remove Trailing
String Replace

String Upper Case

Sub-Container
Sub-Container
Sub-Container
Sub-Container
Substitution
Substitution
Substitution
Substitution
Substitution
Action
Command
Substitution
Container
Sub-Container
Sub-Container
Command
Command
Substitution
Substitution
Substitution
Substitution
Substitution
Substitution
Substitution
Substitution
Substitution
Substitution
Substitution
Substitution
Substitution

246 APPENDIX G: LDML 2.5 Quick REFERENCE CHART

Tag Tag Name Tag Type
-timeout Timeout Command
-token Set Token Command
[token_value] Display Token Value Substitution
[total_records] Display Total Records Substitution
-update Update Record Action
[value_list: ...] Value Lists Container
[var: ...] Retrieve a Variable Substitution
[while: ...] While Container

Appendix H: Index

!= (not equal to) 130

%20 109

+ (plus sign) 109

< (less than) 130

<= (less than or equal to) 130

== (equal to) 130

> (greater than) 130

>= (greater than or equal to)
130

>> (contains) 130

A

Absolute Location 25
Action Tags 19
action.lasso 36

Active 60

Activity Log 141

-add 19, 36

Add Carriage Returns 30
-adderror 36, 71

Add Error 17

Add Record Error Template 39
Add Record Error 39

Add Record Reply 37

Add Record Template 34
Add Record Template 37
Add Records 34

Add Reply 17

Add 17

Admin 70

AEGizmos 174

AERecord 175

AIFF 97

“All Databases” Keyword 67
“All Users” Keyword 67-68
Ampersand 26, 131

AND 44, 83

AND-Type Search 83
Apple Event Tags Module 13
Apple Events 173
AppleScript 5

Applet 178

AppleTalk 8, 22, 25

ASCII Indexing 76

ASCII 80, 209

Authentication 65, 69
Auto-Entered Fields 27

Backward Compatibility
12-13

Banners Rotating, 94

BBEdit 13
Plug-in 14

Begins With 79, 81

[begnum] 46

bgsound 97

bit-depth 91

 (HTML break) 101

“break” Keyword 21, 101, 211,
213

Browse 30, 79

bw 44, 81

ot

Calculation Fields 27

Case Sensitivity 20

CDML 1, 12, 14

Character Sets 209

[checked] 53

checked 3

Claris 12

class 173

CLF (Common Log Format)
2,63

[client_addr] 144

[client_ip] 144

[client_password] 72, 144

[client_type] 144

[client_username] 72, 144

Client Content 144

clip2gif 5, 91-92

cn 44, 81

Code 121

Command Tags 19

Common Log Format (CLF)
63

Compile 178

Concatenation 131

APPENDIX H:

INDEX 247

248 APPENDIX H:

INDEX

Concurrent 7
Conditional Email 117
Configuration 60
Configuring Security 65
connectionInvalid 121
Connections 8
Container Tags 19-20
Contains 81
[content_type: ...] 149
Converting 15

[cookie: ...] 166, 168
Cookies 159, 166
cookie_name 167
cookie_value 167
“count” Keyword 21, 152
CPU 8

CR/LF 146
CurrentRecordNumber 153
Cusick 27

Custom Security 74

D

Dash 20

-database 19, 36

Database-Level Security 69

Databases Folder 9

Database Info Tags Module
12, 155

Database_Violation.html 75

Date 82, 143

Day 143

[db_name: ...] 155

[db_names] 155

[decode_uil: ...] 214

Decoded 17

Decoding Global, 214

Default, default.html 60

-delete 53

Delete Record 50

-deletereply 53, 71

Delete Reply Template 55

Delete Reply 18, 55

[detail_link: ...] 38

Detail Links 75

Detail 18

DNS Lookups 145

domain 168

DontSearch 71

DontShow 71

-doscript 70

-doscript.post 105

-doscript.post.back 105

-doscript.pre 106

-doscript.pre.back 106
-doscript.presort 106

Drag Menu 29

-duplicate 53

Duplicate Record 50
-duplicatereply 53, 71
Duplicate Reply Template 57
Duplicate Reply 18, 56
Duplicates 80

E-Commerce 159
Editing Format Files 19
Editions 6
-emailbcc 107
-emailcc 107
-emailformat 71, 107
-emailfrom 107
-emailhost 107
-emailsubject 107
-emailto 19, 107
Email 107
Email, Conditional, 117
Email, Message Template, 32
Embed 21, 97
Embedded Searches 88
Embedded URL 26
EmpLog Database 142
Employees Example 58
Employees Folder 9
Employees_Related.fp3 103
[encode_breaks: ...] 214
[encode_html: ...] 215
[encode_raw: ...] 214
[encode_url: ...] 214
Encoded 17, 29
Encoding Keywords 21
Encoding Tags Module 12
Encoding

Field 211

Global 214

HTML 209

HTTP 209
[endnum] 46
Ends With 81
eq 44, 81
Equals 81
errAEBadListItem 121
errAEInTransaction 121
errAENoSuchObject 121
errAETimeout 121
Error Check 114
Error File 60

Error Handling 3

error.html 60
errRepeatingRelatedField 121
errRequiredFieldMissing 121
errTooMuchData 121
[event: ...] 173
[event_errorstring] 175
[event_resultcode] 175
[event_result] 175
event_string 174

ew 44, 81

ExactDelete 71

ExactSearch 71

ExactUpdate 71

expires 167
F
[field: ...] 38

[field_name: ...] 155
Field Encoding 211
Field Indexing 79
Field-Level Operators 83-84
Field-Level Security 70
fieldRestriction 121
Fields Tab 30
Field_Violation 75
FileMaker Pro 5, 7-8, 12, 14,
103
Layout 84, 99
Scripts 105
Server 8, 16
Setup 15
-findall 44, 70, 86
Find All 86
FM Link 7, 29
FMP Scripts 105
FMP4 Module 12
Footer 119

[form_param: ...] 87, 111, 151

Form Action Statement 26
Form Elements 21

Format Files 14, 17, 59
Frontier UserLand, 173

G

GIF 59, 91, 178,

Conversion 92
Global Administrator 68
Global Decoding 214
Global Encoding 214
Global Operator 44
Graphics 91

Greater Than or Equal to 81
gt 44, 81
gte 44, 81

H

[header] 78, 146
Hidden Input Fields 86
Hitlist 79
Hits 7
Host 16
[htm]l_comment] 158
HTML Authoring Tools 29
HTML 17
Encoding 209
Static, 119
HTTP
Encoding 209
Header 20, 146
Request 144
HTTP/1.0 78
HTTP/1.1 61
HTTPS 168

id 173

[if: ...] 102, 125

[image: ...] 91

[include: ...] 119

Include Field Labels 30

Include Tag Modules 12

Includes 17, 119

Index as ASCII 76

index.html 60

Indexing 79

Inheritance 169

[inline: ...] 119

[inline_result] 120

Inlines 17, 73, 119
Nested 119

Input Fields, Hidden, 86

Installation 9

Interlaced 93

invalidPassword 121

invalidUsername 121

IP Address 144

IP Number 63

IP Secondary Address 64

ISO Latin-1 209

J

Java 177
JavaScript 112, 114

APPENDIX H:

INDEX 249

250 APPENDIX H:

INDEX

JIT 179
JPEG 59, 91, 178

K

Keep Alive 2, 61
Keywords 21, 211

L

Languages, Roman-Based, 209
-lassopassword 72
-lassousername 72
[lasso_process: ...] 158
Lasso CGI 6-7, 9

Lasso Error.log 139

Lasso Modules 12

Lasso Plug-in 6-7, 10
Lasso Security Databases 6
Lasso Security 9, 65
Lasso Server 6-7, 11, 59
Lasso Startup Items 9, 13, 123
Lasso Style 63

Lasso Tag Converter 7, 14
Lasso Tags Module 12
Lasso Tags 21

Lasso.acgi 6, 9

Lasso.log 139
LassoCommonCode 6, 9
LassoProxy 179-180, 184
LassoRequest 180
LassoResponse 180
Lasso_Fields.fp3 65
Lasso_Security.fp3 65
Lasso_Users.fp3 65
-layout 36

[layout_name: ...] 155
[layout_names] 155
LDML 2, 14, 17, 20 29
Less Than or Equal to 81
Less Than 81

[list_value: ...] 134
list_value 3

Literal String Value 21
Literal Text 29

Literal Value 127

[log: ...] 139

Log Tag Module 12

Log Window 63

Logging Enabled 60
Logging 139

-logicalop 44
[logicalop_value] 87
Logical Operator 83

It 44, 81

Ite 44, 81

[loop: ...] 156
[loop_count] 132, 157

M

MacAuthorize 173
MacTCP 7
[math-add: ...] 169
[math-div: ...] 170
[math-mod: ...] 170
[math-mult: ...] 169
[math-round: ...] 170
[math-sub: ...] 169
Math Tags Module 12, 169
Math Tags 169
Max Connections 60
-maxrecords 44, 86
Maximum Records 86
Maximum 79
mem€FullErr 121
Memory 5, 65, 92
Methodology 17
Microsoft Internet Explorer
61, 97
MIME Handling 2
MIME Type 59, 62
Mode 32
Modules 6
Multi-Threaded 8, 105
Multi-User 16
Multihoming 59, 63
Multimedia 91
Multiple Sorts 85

N

Name 21

Name=Value Pairs 22, 26

neq 81

Nested Inlines 119

Nesting 170

Netscape Navigator 61

Network Connection 39

[next] 46

[nfound] 46

[nshown] 46

No Access 61

No Records Found 79

-noresults 44, 71

No Results Error 18

No Search Results Template
47

No Search Results 47
noaccess.html 61

noErr 121

Non-Interlaced 93
Non-Relative Response Tag 12
noPermission 121

Not Equals 81

NOT 83

-nothing 153

o

ObjectSupportLib 5
Old If Tag Module 13
On-the-Fly 22
One-to-Many 100
One-to-One 100

-op 81

-opbegin 83

-opend 83

-operator 44, 81
Open Transport 6, 64
Operator 79

[option: ...] 53
Option-Drag 30

OR 44, 83

OR-Type Search 83

P

Page Counter 170
Parameters 21
Parentheses 3

Parse 114

Password 16, 65, 68
Path Parameter 139
path 167

Paths 24
Permissions 68

PICT 91

Pipe 131

PIXO 149

Plug-in Architecture 1
Plus Sign (“+") 109
Port 60

[portal: ...] 100
Portals 27, 100-101
Ports 7

Post 32

[post_inline: ...] 122
Post-Lasso vs Pre-Lasso 22
Post-Lasso 17, 31
Post.Back 32
post_response 122

Power Macintosh 5

Pre 32

Pre-Lasso vs Post-Lasso 22
Pre-Lasso 17, 31

Pre-Sort 32

Pre-Sort.Back 32

Pre.Back 32

[prev] 46

Processed Items 62

Q

Query 79
QuickTime 5, 97
Quid Pro Quo 77

R

RAM 5, 65, 92

-random 44

Range Search 71, 80

“raw” Keyword 21, 211-212

Realm 2, 59

Realm-Based Security 65, 77

-recid 53

[record] 46

Record Detail Template 48

Record Detail 48

record ID 38, 103, 164

Record-Level Security 70

[referrer] 143

Related Data 100

Related Fields 99

Relationships
One-to-Many 100
One-to-One 100

Relative Paths 1

Remote Administration 9

Remote Security 73

[repeating: ...] 99

Repeating Fields 99

[repetition] 102

Repetition 132

-reqfieldmissing 71

-required 90

Required Field 89

Required Tags 107

-response 18-19, 25, 36, 71

Response Field 1

Response 79

ResponseField 19, 71

Roman-Based Languages 209

Root Level 24

Rotating Banners 94

APPENDIX H:

INDEX 251

252 APPENDIX H:

INDEX

S

Sample Database 33
-scripts 70, 105
Scripts 32
-search 19
[search_args] 84, 158
[search_field] 87
[search_op] 87
[search_value] 87
Search Operators 44, 80-81
Search Parameters 79, 87
Search Records Template 40
Search Records 40
Search Results Template 45
Search Results 18, 45
Search 18
Searches, Embedded, 88
Searching 79
“secure” Keyword 168
Security Folder 9
Security Violation 74
Security 9, 12-13, 65, 159
Custom 74
[selected] 135
Sending Email (see Email)
Serial Number 8
[server_date] 143
[server_day] 143
[server_time] 143
Set Token 164
Setup 9
[set_cookie: ...] 166-167
set_day 122
set_hours 122
set_minutes 122
set_month 122
set_time 122
set_week 122
[set_var: ...] 159
SGML 149
-show 19, 70
Simultaneous 8
Site Root 61
-skiprecords 97
“smart” Keyword 21, 211, 213
-sortfield 44, 84
[sort_args] 158
Sort Field 84
Sorted 79
-sortorder 84
Sorts
Ascending 85
Custom 85

Descending 85
Multiple 85
Sounds 97
Square Brackets 20, 22
SSL 168
SSL-Encryption 66
Standard Roman 209
StarNine Technologies 5
Static HTML 119
Status(CurrentRecord) 103
Stop Servers 60
Storage Options 76
string_concatenate: ...] 171
string_countfields: ...] 171
string_extract: ...] 171
string_findposition: ...] 171
string_getfield: ...] 165, 171
string_insert: ...] 171
string_length: ...] 171
string_lowercase: ...] 171
string_remove: ...] 171
string_removeleading: ...]
172
[string_removetrailing: ...]|
172
string_replace: ...] 172
string_uppercase: ...] 172
String Tags Module 12, 171
Sub-Container Tags 19-20
Substitution Tags 19-20
Suffixes File
“fmt” 67
“fp3” 67
“las” 25
“lasso” 13, 25, 59
Suffix Mapping 61
Summary Fields 27
Sun Microsystems 178

T

Tag Name 21

Tags Within Tags 21
“target” Keyword 174
TCP Buffer Size 60
TCP/IP 149, 178
Templates 32

Text Editor 29, 33
Time 82, 143
-timeout 149
Timeout 60, 149
-token 164
[token_value] 164
Tokens 104, 159, 163

[total_records] 46
Translation 209
Tutorial 29, 32
Type 21

U

ubDP 178
Update Record Template 50
Update Record 50
Update Reply Template 53
Update Reply 18, 53
Update 17
Upgrading 13

Security Databases 15
“url” Keyword 21, 211, 213
URL 38
Usage Rights 8
User Agent 144
UserLand Frontier 173
Username 65, 68
UTF Encoding 2

v

[value_list: ...] 53, 102, 1134
Value 21

Variables 159

Violation, Security 74

w

W3C 147
wait_reply 174
WAV 97
Web Companion 1, 12
Web Server 5
Web Traffic 7
WebSTAR 5
API 5
[while: ...] 132
Wildcard 71
“window” Keyword 140

APPENDIX H:

INDEX 253

APPENDIX H: INDEX 255

