Quick Start

Borlan_d®
Kylix" 2

Delphi” for Linux®

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

CoPYRIGHT © 2001 Borland Software Corporation. All rights reserved. All Borland brand and product names are
trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. Al
other marks are the property of their respective owners.

Printed in the U.S.A.

HDE7020WW21000 2E2R1001
0001020304987 65432 1
PDF

Contents

Chapter 1
Introduction 1-1
WhatisKylix? 11
Requirements. 1-2
Installation 1-2
The Kylixinstaller 1-2
Root versus non-rootinstall. 1-2
Installing Kylix 1-3
Registering Kylix. 1-4
Starting Kylix. 1-4
Finding information. 1-4
OnlineHelp. 1-5
Printed documentation 1-6
Developer support services and
Website 1-6
Uninstalling Kylix 1-7
Typographic conventions 1-7
Chapter 2
A tour of the desktop 2-1
TheIDE 2-1
Themenuandtoolbars 2-2
The Component palette, Form Designer,
and Object Inspector. 2-3
The Object Repository. 2-4
The Codeeditor 2-5
Code Insighttools 2-6
Class completion 2-7
Formcode. 2-8
The Code Explorer. 2-8
The Project Manager. 2-9
The Project Browser 2-10
To-dolists 2-10
Chapter 3
Programming with Kylix 3-1
Creatingaproject 3-1
Designing the user interface 3-1
Placing componentsona form 3-2
Setting component properties. 3-2
Writingcode 3-4
Writing event handlers. 3-4
Using CLX classes 3-4
Adding datamodules 3-5
Compiling and debugging projects 3-6

iii

Deploying applications. 3-7
Internationalizing applications 3-7
Typesof projects. 3-8
Database applications. 3-8
Web server applications 3-9
Webservices 3-9
Shared objects 3-10
Custom components 3-10
Chapter 4
Creating a text editor—a tutorial 41
Starting a new application. 4-1
Setting property values. 4-2
Adding components to the form 4-3
Adding support for a menu and a toolbar4-5
Adding actions to the action list. 4-7
Adding standard actions to the
actionlist. 4-9
Adding images to the image list. 4-10
Addingamenu 4-12
Clearing the textarea 4-15
Addingatoolbar 4-15
Writing eventhandlers. 4-16
Creating an event handler for the
Newcommand. 4-17
Creating an event handler for the
Opencommand 4-19
Creating an event handler for the
Savecommand. 4-20
Creating an event handler for the
Save Ascommand. 4-21
Creating an event handler for the
Exitcommand 4-22
Creating an Aboutbox 4-23
Completing your application 4-25
Chapter 5
Creating a database application—

a tutorial 5-1
Overview of database architecture 5-1
Creatinganew project 5-2
Setting up data access components. 5-2

Setting up the database connection 5-3
Setting up the unidirectional dataset 5-4
Setting up the provider, client dataset,

and datasource 5-5

Designing the user interface
Creating the grid and navigationbar
Adding support for a menu
Adding a menu
Adding a button

Displaying a title and an image

Writing an event handler
Writing the Update Now! command

event handler
Writing the Exit command event

handler.
Writing the FormClose event handler . . .

Chapter 6
Customizing the desktop

Organizing your work area
Arranging menus and toolbars
Docking tool windows
Saving desktop layouts

5-11
5-11
5-12
5-12

5-13

.5-13

6-1
6-1
6-1

6-4

iv

Customizing the Component palette 6-5
Arranging the Component palette. 6-5
Creating component templates 6-6
Installing component packages 6-7

Setting projectoptions 6-8
Setting default project options. 6-8

Specifying project and form templates

asthedefault. 6-9
Adding templates to the Object
Repository 6-9

Setting tool preferences. 6-10
Customizing the Form Designer. 6-10
Customizing the Code editor 6-11
Customizing the Code Explorer 6-11

Printing Help topics 6-12
Printingtoafile. 6-12
Printing directly toa printer 6-12

Index -1

Introduction

This Quick Start provides an overview of the Kylix development environment to get
you started using the product right away. It also tells you where to look for details
about the tools and features available in Kylix.

This chapter describes how to install, register, and start Kylix, as well as how to find
information. Chapter 2, “A tour of the desktop,” describes the main tools on the Kylix
desktop, or integrated desktop environment (IDE). Chapter 3, “Programming with
Kylix,” explains how you use some of these tools to create an application or shared
object. Chapter 4, “Creating a text editor—a tutorial,” takes you step by step through
a text editor tutorial. Chapter 5, “Creating a database application—a tutorial,” takes
you step by step through a database application tutorial. Chapter 6, “Customizing
the desktop,” describes how you can customize the Kylix IDE for your development
needs.

What is Kylix?

Kylix is an object-oriented, visual programming environment for rapid application
development (RAD). Using Kylix, you can create highly efficient 32-bit Linux
applications for Intel architecture with a minimum of manual coding. Kylix provides
all the tools you need to develop, test, debug, and deploy applications, including a
large library of reusable components, a suite of design tools, application templates,
and programming wizards. These tools simplify prototyping and shorten
development time.

Kylix has three editions: Enterprise, Professional, and Open Edition. The particular
features and components available to you depend on which edition of Kylix you
have. To see what tools are available to you, refer to the feature list on

http:/ /www.borland.com /kylix.

Introduction 1-1

Requirements

Requirements

The following software must be installed to run Kylix:

¢ Linux kernel version 2.2 or higher.

¢ libgtk.so version 1.2 or higher (required for graphical installation only).
¢ libjpeg version 6.2 (libjpeg.s0.62) or higher.

¢ an X11R6-compatible terminal server, such as XFree86.

Installation

Warning Do not use a package manager, such as RPM, kpackage, or gnorpm, to install or
uninstall Kylix. Always use the install and uninstall programs provided by Borland.

Kylix must be installed on a file system that supports symbolic links, such as Linux's
ext2. Do not install Kylix on FAT, FAT32, SMB (including Samba), or Novell file
systems.

The Kylix installer

Kylix will install equally well on RPM and non-RPM systems. Although the Kylix
installer will update the RPM package database to reflect the installed software, the
installer can also work independently of RPM.

If the installation system has RPM, and Kylix is installed by the root user, several
Kylix packages are added to the installed packages list. Uninstalling Kylix removes
these packages. All package names begin with "kylix_." If your system does not have
RPM, or if you install Kylix as a user other than root, the installer simply installs
Kylix without adding entries to the RPM database.

Root versus non-root install

Kylix can be installed by any user who can provide the necessary disk space. If you
do not have the password for the root account on your machine, you will have to
install Kylix using a non-root account. If you have the root password, you need to
decide whether to install Kylix as root or as another user.

The advantages of installing as a root user

e If the installation program has full access to the system, it can automatically
resolve some installation problems, such as missing library links.

¢ All files are placed in standard, central locations, so that any user can run Kylix.
Users can share CLX objects, using the Kylix Object Repository.

e If your system uses the RPM Package Manager, the installer adds a set of Kylix
entries to the RPM database. This allows dependencies between Kylix and other
software to be maintained automatically.

1-2 Quick Start

Note

Installation

The advantages of installing as a standard user

* You own all Kylix files, and do not have to take any additional steps to work with
the demo projects, modify the Object Repository, etc.

¢ If you omit some install options, and decide to add them later, the installer will
automatically configure your .borland/delphi60rc file to make these options
available. With a root install, the only way to update this file is to delete it, so that
Kylix will regenerate it. Unfortunately, deleting this file causes all your IDE option
changes to be lost.

Installing Kylix

To install Kylix, follow these steps:

1 Login as superuser (this step is optional if you do not need Kylix to be accessible
by all users).

e If you are using X Windows, open a terminal window.

2 Insert the CD-ROM in the drive, and mount the CD-ROM file system (some
systems only allow the root user to mount the CD-ROM).

3 Change your working directory to the CD-ROM mount point.

4 Run the Kylix installer, setup.sh. If your CD-ROM file system is not configured to
support executables, you will need to use the shell command "sh setup.sh.”

The default installation location for Kylix is always beneath the home directory of
the installing user. But Kylix should never be installed in /root (which is the home
directory of the root user, and as such will be the default location when installing
as root). That directory is not normally accessible to other users, and running Kylix
as root is not recommended. When installing Kylix as root, always specify another
installation location, such as /usr/local/kylix2.

5 Follow the installer prompts.

For example, on a system configured to mount the CD-ROM device at /mt/cdron,
the following shell commands mount the CD-ROM file system and run the
installer:

mount /mnt/cdrom
cd /mnt/cdrom
./setup.sh

Your system may use a mount point other than /mnt/cdrom. Substitute that mount
point in the example above.

If run under X Windows and with the correct version of 1ibgtk.so, the Kylix installer
opens an X Windows dialog box. Otherwise, the Kylix installer uses a series of text
console prompts. In either case, you will be prompted to specify an Install Path and a
Link Path.

Introduction 1-3

Registering Kylix

Note Even if you install Kylix as root, always run Kylix as an ordinary user. Installing

Kylix as an ordinary user is acceptable, but only the installing user will be able to run
Kylix in a non-root install.

For more information...

For more completed information on installing Kylix, see http:/ /www.borland.com/
techpubs/kylix.

Registering Kylix

This product must be activated with a serial number and authorization key. After
activating Kylix, you must also register the product.

The Registration dialog box, which appears on first use after activation, offers three
registration methods: online (direct registration through a secure connection), by
telephone, or through a Web form.

Each of the registration options is driven by wizards, with Help provided where
necessary.

For more information...

For more complete information on registering Kylix, see http:/ /www .borland.com/
techpubs/kylix.

Starting Kylix

You can start Kylix in the following ways:

¢ From a shell window, simply type startkylix. This will work if the link path you
chose during installation was a directory that is in your path.

e Enter {install path}/startkylix. For example, if your install path is /usr/local/
kylix2, enter: /usr/local/kylix2/bin/startkylix.

¢ Launch Kylix from the Application Starter menu in either Gnome or KDE.

Finding information

You can find information on Kylix in the following ways, described in this chapter:

* Online Help
¢ Printed documentation
¢ Borland developer support services and Web site

1-4 Quick Start

Finding information

Online Help

The online Help system provides detailed information about user interface features,
programming tasks, language implementation, and the components in the Borland
Component Library for Cross Platform (CLX).

To view the table of contents, choose Help | Kylix Help and click the Contents tab. To
find information on CLX objects or any other topic, click the Index or Find tab and
enter your request.

F1Help

The Help system provides extensive documentation on CLX and other parts of Kylix.
You can get context-sensitive Help on any part of the development environment,
including menu items, dialog boxes, toolbars, and components by selecting the item

and pressing F1.

= = Gl DIET
Memal: Thietno =1 Press F1onaproperty or aie et skt tprion e |
Properties | Everts | event name in the Object 1 e o s | zoam
A ~1| Inspector to display CLX
g alClient TControl.Font
alignment | tal efl.Justify Help. ontrol.ron
manchars [akLef akTop TCaontrol See alsn Example
COEEEME | BEElEmat] Contrals the aftributes of text written on or in the contral,
Color clBase
property Font: TFont;
EConstraints | (TSizeConstr: L
Cursor |crDefault _?“?r'pmt" font, specy TFont abject. Te modiy a for,
© change to a new font, specify a new TFont object. To modify a font,
CEEHIED e change the value of the Charset, Color, Height, Name, Pitch, Size, or Style
Enabled | True VA of the TFont ohject.
mFont (TFont) “ =]
Height 182
HelpCantext |0
HelpFile
Helpkeywar |
All shown
= 2|
- o | O i Otioctond Component rsrerence [N
In the Code editor, press type File Edit Bookpark Options Help |
F1on alanguage keyword TForml = Clae i fopics| Back| Print| ivmes| oneon| Zoom
or CLX element. :J‘M%
F Ib Ib StatusBarl: TMemO
or any Xl or_ Y ImagelListl: Hierarchy Froperties Methods — Events Using Themo See also
function, F1 brings up the o
Actionlistl: Thiemo is awrapper for a multiline edit control
man page for that FileNew: TAc e '
function. : . Unit
FileOpen: TR\ oo s
FileSave: TA e
FileSavehs: Deseription
FileExit: Ta Use Thdemo to put a standard multiline edit control on a form. Multiline edit
Llebxits: boxes allow the user to enter more than one line of text. They are
KK | appropriate for representing lengthy information.
1z 3 Insert Thdemo implements the generic behavior introduced in TCustomiviemo,
Thiemo publishes many of the properties inherited from TCustomiemo,
but does not introduce any new behavior,

Introduction

1-5

Finding information

-

—
0 Press Flona
component on a form.

B Kylix Object and Component. Reference SE
File Edit Bookmark Options Help

Help Topics M&‘mt el e ﬂl
TButton

Hierarchy Properies Methods Events Using TButton See also

Description

Use TButton to put a standard push button on a form, TButton
introduces several properties to control its behavior in a dialog box
setting. Users choose button controls to initiate actions.

¥

Pressing the Help button in any dialog box also displays context-sensitive online
documentation.

Error messages from the compiler and linker appear in a special window below the
Code editor. To get Help with compilation errors, select a message from the list and
press F1.

For more information...

To configure your Help system to print Kylix Help topics, see “Printing Help topics”
on page 6-12.

Printed documentation

This Quick Start is an introduction to Kylix. To order additional printed
documentation, such as the Developer’s Guide, refer to http:/ /shop.borland.com.

Developer support services and Web site

Borland also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support, refer to
http:/ /www .borland.com/devsupport/.

From the Web site, you can access many newsgroups where Kylix developers
exchange information, tips, and techniques. The site also includes a list of books
about Kylix.

1-6 Quick Start

Uninstalling Kylix

Uninstalling Kylix

To uninstall Kylix run the uninstall program in the Kylix installation directory as the
same user who installed Kylix. For instance, if Kylix was installed in /usr/local by the
root user, execute /usr/local/kylix2/uninstall as the root user. Uninstalling removes
files that were copied to your hard drive during installation, but does not restore
previously existing configuration files that were modified by the installer.

Typographic conventions

This manual uses the typefaces described below to indicate special text.

Table 1.1 Typographic conventions

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Italicized words in text represent Kylix identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit
a menu.”

Introduction 1-7

1-8 Quick Start

A tour of the desktop

This chapter explains how to start Kylix and gives you a quick tour of the main parts
and tools of the desktop, or integrated development environment (IDE).

The IDE

When you first start Kylix, you'll see some of the major tools in the IDE. In Kylix, the
IDE includes the menus, toolbars, Component palette, Object Inspector, Code editor,
Code Explorer, Project Manager, and many other tools. The particular features and
components available to you will depend on which edition of Kylix you've

purchased.

o T The menus and toolbars
File Edit Search View Project Bun Component Tools Help H‘ <Nane> <] & 5‘/‘ access a host of t.00|.S to help
DE-E 0 3 ﬂ“‘ & /| standard | agemonal| Common Coniols| Diatogs | abExpress | Data Access | Data Contras] intemet] nay <[+ you write an appllcatlon.
GBI 0. -nss |k OF famdar e B =D

] - e & X The Component palette

Formi: TForm1 - —#ﬂ uni | - contains ready-made

Properties | Events] o E.léan;:r\::/cmslal unit Unitl; ;‘ COmpOnemS to add to your
Action B - .

ActveConir = cases project.

e enaro || chsees | R
AutoScroll | True % OConfrols 277 : : : : = = = = : : : : . .

ol () 3 G The Code editor displays
& QForms . .

Borisisiyl |Tosbisable -8 GGraphics code to view and edit.

Caption Forml L8 sysutiis T : : : : : : : : : : : :

ClientHeight| 340 — L Types

ClientWidth 564

Hen i [eoranrt] e The Form Designer
e ———— contains a blank form on
Encbie | True S SR which to start designing the

i =srey] e R R T T I user interface for your
Hegnt | a4z - application. An application

Alenewn can include many forms.

thhggge: Lg}zg?,tgggﬁg The Code Explorer shows you the classes, variables, and
and select event handlers. routines in your unit and lets you navigate quickly.

A tour of the desktop 2-1

The menu and toolbars

Kylix’s development model is based on two-way tools. This means that you can move
back and forth between visual design tools and text-based code editing. For example,
after using the Form Designer to arrange buttons and other elements in a graphical
interface, you can immediately view the form file that contains the textual
description of your form. You can also manually edit any code generated by Kylix
without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can design
graphical interfaces, browse through class libraries, write code, compile, test, debug,
and manage projects without leaving the IDE.

To learn about organizing and configuring the IDE, see Chapter 6, “Customizing the
desktop.”

The menu and toolbars

The main window, which occupies the top of the screen, contains the menu, toolbars,
and Component palette.

B et —————
File Edit Search Wiew Project Run Component Tools Help ” <None> +|! 51',@,| Main window

DE-H @ 2 g“‘ & || standart | agaitional] Common Controls | Dialogs| dbExpress | Data Access| Data Controls | Intemet| Indy Clients | ndy Servers|n o[| in its default
=1 fAamEmx o G E g \] arrangement.

Kylix’s toolbars provide quick access to frequently used operations and commands.
All toolbar operations are duplicated in the drop-down menus.

Standard toolbar View toolbar Desktops toolbar
Remove
Open file from View Toggle Name of saved ~ Save current
Nlew Sa\lle project project unit form/unit deskto|p layout deskto|p
| |
e =
|/ | I i | |
Open Saveall Addfileto View New Set debug
project form form deskiop
Debug toolbar
List of projects ~ Trace
youcan run into To find out what a button does, point to it for a moment until a
| tooltip appears.
“ ol s T You can use the right-click menu to hide any toolbar. To

display a toolbar if it's not showing, choose ViewlToolbars and

. \
Run Pause Step check the one you want.

over

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

2-2 Quick Start

The Component palette, Form Designer, and Object Inspector
The toolbars are also customizable. You can add commands you want to them or

move them to different locations. For more information, see “Arranging menus and
toolbars” on page 6-1 and “Saving desktop layouts” on page 6-4.

For more information...
If you need help on any menu option, point to it and press F1.

The Component palette, Form Designer, and Object Inspector

The Component palette, Form Designer, and Object Inspector work together to help
you design a user interface for your application.

The Component palette includes tabbed pages with groups of icons representing visual
and nonvisual CLX components you use to design your interface. The pages divide
the components into various functional groups. For example, the Dialogs page
includes common dialog boxes to use for file operations such as opening and saving
files.

Component palette pages, grouped by function

Standard I.&qdditional] Cammon Cuntro\s] Dialogs] dbExpressI Data Access] Data Controls] Intemet] Incly Clientsl Indy Servers] Indy Misc]
i CIE & AWE wr o B &=L &
| |

Components

Each component has specific attributes—properties, events, and methods—that
enable you to control your application.

After you place components on the form, or Form Designer, you can arrange
components the way they should look on your user interface. For the components
you place on the form, use the Object Inspector to set design-time properties, create
event handlers, and filter visible properties and events, making the connection

A tour of the desktop 2-3

The Object Repository

between your application’s visual appearance and the code that makes your
application run. See “Placing components on a form” on page 3-2.

PR After you place components on a form, the Object Inspector dynamically
changes the set of properties it displays, based on the component selected.

Froperties I Events |

e ol Form1

-0 X

Action =)
mAnchars [akLeft,akTop]
Bitmap |(None) s
Cancel |False I Checknd = Butiont E
Caption Button1
Colar clButton
mConstraints | (TSizeConstra
Cursor crhefault
Default Falze
Draghode | dmbdanual
Enabled True [
mFant (TFon =]
Height 25
HelpContext 0 |
All shown

For more information...

See “Designing the user interface” on page 3-1, or “Component palette” and “Object
Inspector” in the Help index.

The Object Repository

The Object Repository—also known as the New Items dialog box—contains forms,
dialog boxes, data modules, wizards, shared object files, sample applications, and
other items that can simplify development. Choose File | New to display the New
Items dialog box when you begin a project. Check the Repository to see if it contains
an object that resembles one you want to create.

The Repository’s tabbed pages include = ER
Ob]eCtS I|ke fOI’mS, frames, Units, and % MNew 1 Projectl] Forma} D\alogs} F‘mjacls} Data Modules] WebSnap} WebServices 1
wizards to create specialized items. B O

WAdEENEg Component Console ... Data Mod... Form Frame
When you're creating an item based on o= S0 SN = =
one from the Object Repository, you package 3.
can copy, inherit, or use the item:
Copy (the default) creates a copy of &
the item in your project. Inherit means ol Serv
changes to the object in the Repository
are inherited by the one in your project.
Use means changes to the object in
your project are inherited by the object - - -
in the Repository.

oK Cancel Help

2-4 Quick Start

The Code editor

To edit or remove objects from the Object Repository, either choose Tools | Repository
or right-click the New Items dialog box and choose Properties.

B ovectroposoy [
Pages: Ohjects
You can add, remove, or o Zmm
rename tabbed pages from P asapege. | B 0wl oon
the Object Repository. eanap (0 Master Dol efa
WekServices B (FEEp
[Object Repository]
Rename Page.
Edit Object.
Click the arrows to change Oelots Otject
the order in which a tabbed
page appears in the New > @ Y ————
ltems dialog box.
oK Cancel ‘ Help |

To add project and form templates to the Object Repository, see “Adding templates
to the Object Repository” on page 6-9.

For more information...

See “Object Repository” in the Help index. The objects available to you depends on
which edition of Kylix you purchased.

The Code editor

As you design the user interface for your application, Kylix generates the underlying
Object Pascal code. When you select and modify the properties of forms and
components, your changes are automatically reflected in the source files. You can

add code to your source files directly using the built-in Code editor, which is a full-
featured ASCII editor.

%”:l_ WE Components added to
the form are reflected

in the code.

Lo

W

=

unit Unitl;

interface

B 3¢
uses

SyeUtile, Types, Classes, ''!Lakel

Generated oStdctrls;
code. type I CheckBon 1 = Buftont E
TForml = class (TForm)

Buttonl: TButton;
CheckBox1l: TCheckBox;
Labell: TLabel;

private
{ Private declarations }

public

{ Public declarations }

TR

The Code editor provides various aids to help you view and write code, including
the Code Insight tools and class completion.

A tour of the desktop 2-5

The Code editor
For more information...

See “Code editor” in the Help index. To customize your code editing environment,
see “Customizing the Code editor” on page 6-11.

Code Insight tools

The Code Insight tools displays the following context-sensitive pop-up windows.

Table2.1 Code Insight tools

Tool How it works

Code completion Type a class name followed by a dot (.) to display a list of
properties, methods, and events appropriate to the class, select
one, and press Enter. In the interface section of your code you
can select more than one item. Type the beginning of an
assignment statement and press Ctrl+space to display a list of
valid values for the variable. Type a procedure, function, or
method name to bring up a list of arguments.

Code parameters Type a method name and an open parenthesis to display the
syntax for the method’s arguments.

Tooltip expression evaluation =~ While your program has paused during debugging, point to any
variable to display its current value.

Tooltip symbol insight While editing code, point to any identifier to display its
declaration.
Code templates Press Ctrl+J to see a list of common programming statements that

you can insert into your code. You can create your own
templates in addition to the ones supplied with Kylix.

= - [

Uniti | -
procedure TForml.ButtonlClick[Sender: TObject); = With code Comp|eﬁon’ when
begin .

ationl. you type the dot in Buttonl .
end; CONSTUGT_ GIEale IOCE QUG IAHET, | o Kylix d|$p|3y5 a list of
ona. [inion UsoPightT oL elignment e properties, methods, and
: ropery - Action Toasicacton events for the class. As you
bropery _BiDiMode :TEiDhiose . type, the list automatically

filters to the selection that
pertains to that class. Select an
item on the list and press Enter
to add it to your code.

< o

[% 48 [Modifisd [Insert

To turn these tools on or off, choose Tools | Editor Options and click the Code Insight
tab. Check or uncheck the tools in the Automatic features section.

Code browsing

While passing the mouse over the name of any class, variable, property, method, or
other identifier, the pop-up menu called tooltip symbol insight displays where the

2-6 Quick Start

The Code editor

identifier is declared. Press Ctrland the cursor turns into a hand, the identifier turns
blue and is underlined, and you can click to jump to the definition of the identifier.

The Code editor has forward and back buttons like the ones on Web browsers. As
you jump to these definitions, the Code editor keeps track of where you've been in
the code. You can click the drop-down arrows next to the Forward and Back buttons
to move forward and backward through a history of these references.

SR CockDispaypas ___ [ENEIS

C\u:kDmp\ay]

TForml = classtT(hrcularFmrm)%

type

Timerl: TTimelype C TC class(TShap -G pas (8)]
Imagel: TImage; /A Image to hold the face of the clock.
procedure FormPaint (Sender: TObject);
procedure TimerlTimer [Sender: TObject):
procedure FormCrgate (Sender: TObject):

private
J/ Need some vapiables to hold the time inbformation
FHours: Word;

Press Ctrland click or right-click and
click Find Declaration to jump to the
definition of the identifier.

The Code editor maintains a list of
the definitions you jumped to.

Click the back arrow to return to the
last place you were working in your
code. Then click the forward button
arrow to move forward again.

FMins: Word;

WA -

RAare- =

T

15 23

(BN jusriocalikylix2 fdemosiclockiCircular Forms. pas

(Rt ClackDisplay CircularFomms |

umit CircularForms; Jusrflozalkyl<e/demas/clockClockDisplay.pas e

The tooltip symbol insight
popup menu displays

interface

declaration information for uses Ot, Types, Classes, QForme, OGraphics, OControls, €
any identifier when you —
pass the mouse ype
. TCircularForm = class (TShapedForm)
over it. protected
procedure DrawMask [ACanvas: TCanvas); override;
end;
implementation
/S Override DrawMask to create a circular form. _'Ll
‘ 3

[8 1 | |Read only | 4

You can also move between the declaration of a procedure and its implementation by
pressing Ctri+Shift+T or Ctrl+Shift+l..

Class completion

Class completion generates skeleton code for classes. Place the cursor anywhere
within a class declaration; then press Ctri+Shift+C, or right-click and select Complete
Class at Cursor. Kylix automatically adds private read and write specifiers to the
declarations for any properties that require them, then creates skeleton code for all
the class’s methods. You can also use class completion to fill in class declarations for
methods you've already implemented.

To configure class completion, choose Tools | Environment Options and click the
Explorer tab.

For more information...
See “Code Insight” and “class completion” in the Help index.

A tour of the desktop 2-7

The Code Explorer

Form code

Forms are a very visible part of most Kylix projects—they are where you design the
user interface of an application. Normally, you design forms using Kylix’s visual
tools, and Kylix stores the forms in form files. Form files (.xfm) describe each
component in your form, including the values of all persistent properties. To view
and edit a form file in the Code editor, right-click the form and select View as Text.
To return to the graphic view of your form, right-click and choose View as Form.

T — — — D X
" Laven . .
PR 077 | Use View As Text
- [T checkBoxl _: Buront l Edit Forml: TForml = to view a text
connn o S I description of the
P b b e form’s attributes
: B - in the Code
Align - |ht = 361 N
Size. 2 |lion = 'Forml' editor.
Scalg... o |r = clBackground
Tah Qrder... : |[1gPerInch = 75
Creation Order... (i |Height = 15
Flip Children i Width = 7
Add to Repository. S let Labell: TLabel _ILI
T — »
E Text DFM

You can save form files in either text (the default) or binary format. Use the
Environment Options dialog box to designate which format to use for newly created
forms.

For more information...
See “form files” in the Help index.

The Code Explorer

When you open Kylix, the Code Explorer is docked to the left of the Code editor
window, depending on whether the Code Explorer is available in the edition of Kylix
you have. The Code Explorer displays the table of contents as a tree diagram for the
source code open in the Code editor, listing the types, classes, properties, methods,
global variables, and routines defined in your unit. It also shows the other units listed
in the uses clause.

You can use the Code Explorer to navigate in the Code editor. For example, if you
double-click a method in the Code Explorer, a cursor jumps to the definition in the
class declaration in the interface part of the unit in the Code editor.

2-8 Quick Start

The Project Manager

B ERES
A unitt | uni -
- e it | itz | =
Select an item in the Code ! TForml = elass (TForm) |

Explorer and the cursor moves to
that item’s implementation in the
Code editor.

Press Ctrl+Shift+E to move the
cursor back and forth between
the last place you were in the
Code Explorer and the Code
editor.

To search for a class, property,
method, variable, or routine, just
type the first letter of its name.

. &3 Published

- CheckBox
‘Yariables/Constal
© L@ Forml

Uses

Classes
GControls
QDialogs
GForms
QGraphics
QS Clrls
-8 SysUtils

L8 Types

Buttonl: TButton;
CheckBoxl: TCheckBox;
private

{ Private declarations }

public

{ Public declarations]}

end;

var
Forml: TForml;

implementation

1] (BCET _’ILI

|11 5 [Modifed [Insert

To configure how the Code Explorer displays its contents, choose Tools |
Environment Options and click the Explorer tab. See “Customizing the Code
Explorer” on page 6-11.

For more information...
See “Code Explorer” in the Help index.

The Project Manager

When you first start Kylix, it automatically opens a new project, as shown on

page 2-1. A project includes several files that make up the application or shared
object you are going to develop. You can view and organize these files—such as
form, unit, resource, object, and library files—in a project management tool called the
Project Manager. To display the Project Manager, choose View | Project Manager.

& x

New FBhiime) Gipae

0
Projectl -

Files | Path

=% ProjeciGroup1
£ Projectl
= & Unitt
LB Unitl pas
..... =l Formt

‘homeskgallag
fhameskgallag
‘homeskgallag
fhameskgallag
‘homeskgallag

You can use the Project Manager to combine and display information on related
projects into a single project group. By organizing related projects into a group, such as
multiple executables, you can compile them at the same time. To change project
options, such as compiling a project, see “Setting project options” on page 6-8.

For more information...
See “Project Manager” in the Help index.

A tour of the desktop 2-9

The Project Browser

The Project Browser

The Project Browser examines a project in detail. The Browser displays classes, units,
and global symbols (types, properties, methods, variables, and routines) your project
declares or uses in a tree diagram. Choose View | Browser to display the Project

Browser.

The Project Browser has two
resizeable panes: the
Inspector pane (on the left)
and the Details pane. The
Inspector pane has three tabs

for globals, classes, and units.

Explaring Global

IGIobaIsI Classes I Units

=% TDataModule?
. =3 Published
. @0 Inherited

w3 TDataModule?

Scopel Inheritance References I

Globals displays classes,
types, properties, methods,
variables, and routines. © @3 Inherited

Classes displays classesina || (3 variables/Constants
hierarchical diagram. - DataModulez

Units displays units, identifiers (@ Farm
declared in each unit, and the
other units that use and are
used by each unit.

2w} TFormi O Unit2 pas(3)
. @3 Published - Unit2 pas(19)

By default, the Project Browser displays the symbols from units in the current project
only. You can change the scope to display all symbols available in Kylix. Choose
Tools | Environment Options, and on the Explorer page, check All symbols (CLX
included).

For more information...
See “Project Browser” in the Help index.

To-do lists

To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items
directly in the source code. Choose View | To-Do list to add or view information
associated with a project.

2-10 Quick Start

The Project Browser

! Category
_ - Right-click on a to-do list to
O E] Add buttons ta library 2 Joerg ul display commands that let you
& Fix bug #3658 2 Paul QA sort and filter the list.
Add Crl+4,
Edit Fz
Click here when you're | Delete Del , |
done with an item. .
ld Action ltem
Filter b Status
il—l - - + Show Completed Items Type
|3 items (0 hidden) |3 items X 5 =
+ Show ToolTips when Clipped Priority
Copy As » Module
+Dockahle e
Category

For more information...

See “to-do lists” in the Help index.

A tour of the desktop 2-11

2-12 Quick Start

Programming with Kylix

This chapter provides an overview of software development with Kylix, including
creating a project, designing the user interface, writing code, and compiling,
debugging, deploying, and internationalizing programs. The last section includes the
different types of projects you can develop.

Creating a project

A project is a collection of files that are either created at design time or generated
when you compile the project source code. When you first start Kylix, a new project
opens. It automatically generates a project file (Projectl.dpr), unit file (Unitl.pas),
and resource file (Unitl.xfm), among others.

If a project is already open but you want to open a new one, choose either File | New
Application or File| New and double-click the Application icon. File | New opens the
Object Repository, which provides additional forms, frames, and modules as well as
predesigned templates such as dialog boxes to add to your project. To learn more
about the Object Repository, see “The Object Repository” on page 2-4.

When you start a project, you have to know what you want to develop, such as an
application or shared object. To read about what types of projects you can develop
with Kylix, see “Types of projects” on page 3-8.

For more information...
See “projects” in the Help index.

Designing the user interface

With Kylix, you first design a user interface (UI) by selecting components from the
Component palette and placing them on the main form.

Programming with Kylix 3-1

Designing the user interface

Placing components on a form

To place components on a form, either double-click the component or click the
component once and then click the form where you want the component to appear.

= Kyliz - Projectl o

” <MNong= <] 5‘,|
O -3 @2 2 gHJ & || Standard |Addnmna\] Commaon Controls D\alugs] dbExpress | Data Pn:cess] Data Cumruls] Imemel] Incty Cllemsl na|
a0 -nlsw|r EFE AR wr o 88=EL] &

!

Click a component on the Component palette.

File Edit Search YMiew Project Run Component Tools Help

Select the component and drag it to wherever you want on the form.

Then click where you want to place it on the form.

Miew

& Project Manager ci+AF1T | Or choose a

% Object Inspector F11 Component . .X
To-Do List : |
Alignment Palette fI'IOr;Il T)n iical ey

o= Browser shirecuies | 20nabetica :

list. : SR fadit
=8 Code Explarer s B o - D I :
%i SRy Wi, Companents Foococasnaoonasnsosaasnsosaas
Debug YWindows
Desktops

Search by name:

e

3 Toagle Form/Unit
(3 Units
& Farms...

3 Tye ity

@ Frames
ThActionList
g TEevel

TEitBtn |

A

Nesw Edit Window

&

Toolbars

For more information...
See “Component palette” in the Help index.

Setting component properties

After you place components on a form, set their properties and code their event
handlers. Setting a component’s properties changes the way a component appears

3-2 Quick Start

Designing the user interface

and behaves in your application. When a component is selected on a form, its
properties and events are displayed in the Object Inspector.

g x|

Button1: TButtan
Froperties I Events |

Action =)
mAnchars [akLeft,akTop]
Bitmag (Mone)
Cancel False
Caption Button1
Colar clButton
mConstraints | (TSizeConstra
Cursor crhefault
Default Falze
Draghode | dmbdanual
Enabled True [
mFant (TFon =]
Neight 25
HelpContext 0
| &Il shown

Or use this drop-down
list to select an object.
Here, Button1 is
selected, and its
properties are displayed.

Selecta property
and change its
value in the right
column.

Click an ellipsis to open
a dialog box where you
can change the
properties of a helper
object.

You can also click a plus sign to open a detail list.

You can select a component, or object, on the form by
clicking on it.

Labell

™ CheckBox1

" .
= Buttonl E

Many properties have simple values—such as names of colors, True or False, and
integers. For Boolean properties, you can double-click the word to toggle between
True and False. Some properties have associated property editors to set more complex
values. When you click on such a property value, you'll see an ellipsis. For some

properties, such as size, enter a value.

TR ETTIOTT

Click on the down
arrow to select from a
list of valid values.

Fosian |poUesigned Double-click here to

Scaled |True e:‘—}_ change the value from

ShowHint |False True to False.

Calay [eiTeal e Click any ellipsis to
clBlack :II display a property
citaroon editor for that property.
clGreen
clOlive J/
ClNaVy | ClHanisu | e
ElPurple Font | TFonty =]

=] Hairht |75

& Select Font 5
Eant Font style Size
3 |Norma\ 12
Century schoolbook | J Oblique 9
Chancery | Bold 10
Charter Bold Obligue "
Clean
Gathic | 14
a 16 LI
— Effects - Sample
I~ Strikeout
™ Underline faBbidze
Script
[westem (150 &853-1) =
Cancel

é

When more than one component is selected in the form, the Object Inspector displays
all properties that are shared among the selected components.

For more information...
See “Object Inspector” in the Help index.

Programming with Kylix

3-3

Writing code

Writing code

An integral part of any application is the code behind each component. While Kylix’s
RAD environment provides most of the building blocks for you, such as prepackaged
visual and nonvisual components, you will usually need to write event handlers and
perhaps some of your own classes. To help you with this task, you can choose from
Kylix’s CLX class library of nearly 750 objects. To view and edit your source code, see
“The Code editor” on page 2-5.

Writing event handlers

Your code may need to respond to events that might occur to a component at
runtime. An event is a link between an occurrence in the system, such as clicking a
button, and a piece of code that responds to that occurrence. The responding code is
an event handler. This code modifies property values and calls methods.

To view predefined event handlers for a component on your form, select the
component and, on the Object Inspector, click the Events tab.

Object Inspector

[Butont: Teution]~ Here, Button1 is selected and its type is displayed: TButton.

Fropetes Events | <—| Click the Events tab in the Object Inspector to see the

events that the Button component can handle.
onclick - |~
CnContextP N
OnDragDrap L Select an existing event |~ EET———e
onbragove handler from the drop- Lot
©OnEndDrag down ||St o e 1
OnEnter) e SR
OnEsit Or double-click in the T checkam | x Butort
BB value column, and Kylix
g”fyimss generates skeleton code
el for a new event handler.
nidouseDo:

2nkAgusehd
Onhdousellp
OnStatDrag -
OnStateChal =]

all shown

For more information...

See “events” in the Help index.

Using CLX classes

Kylix comes with a class library made up of objects, some of which are also
components or controls, that you use when writing code. This class hierarchy, called
the Borland Component Library for Cross Platform (CLX), includes objects that are
visible at runtime—such as edit controls, buttons, and other user interface
elements—as well as nonvisual controls like datasets and timers.

3-4 Quick Start

Writing code
The diagram below shows some of the principal classes that make up CLX.
TObject

| |
Exception TPersistent TStreLm TStyle

TCoI’ection TComponent TColllectionItem

|
|
TDiaIIog TField TConltroI THandIeCclmponent

| | | Most vi o
Terephiccontol TWidgetControl ool
TCust0||'nControI TFrameéontrol
|
TFoIrm

Objects descended from TComponent have properties and methods that allow them to
be installed on the Component palette and added to Kylix forms. Because CLX
components are hooked into the IDE, you can use tools like the Form Designer to
develop applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a CLX button control,
you don’t have to write code to handle generated events when the button is clicked;
you are responsible only for the application logic that executes in response to the
click itself.

Most editions of Kylix come with complete CLX source code. In addition to
supplementing the online documentation, CLX source code provides invaluable
examples of Object Pascal programming techniques.

For more information...

See “Kylix Object and Component Reference” in the Help contents. See
http:/ /www.borland.com/kylix for open source and licensing options on CLX.

Adding data modules

A data module is a type of form that contains nonvisual components only. Nonvisual
components can be placed on ordinary forms alongside visual components. But if
you plan on reusing groups of database and system objects, or if you want to isolate
the parts of your application that handle database connectivity and business rules,
data modules provide a convenient organizational tool.

To create a data module, choose File | New and in the Object Repository, double-click
the Data Module icon. Kylix opens an empty data module, which displays an
additional unit file for the module in the Code editor, and adds the module to the

Programming with Kylix 3-5

Compiling and debugging projects

current project as a new unit. Add nonvisual components to a data module in the
same way as you would to a form.

=l Datatodule? o
Click a nonvisual component from
P =5 the Component palette and click in
»y T the data module to place the

Timerl DataSourcel component.

| | ol

When you reopen an existing data module, Kylix displays its components.

For more information...
See “data modules” in the Help index.

Compiling and debugging projects

After you have written your code, you will need to compile and debug your project.
With Kylix, you can either compile your project first and then separately debug it, or
you can compile and debug in one step using the integrated debugger. To compile
your program with debug information, choose Project | Options, click the Compiler
tab, and make sure Debug information is checked.

Kylix uses an integrated debugger so that you can control program execution, watch
variables, and modify data values. You can step through your code line by line,
examining the state of the program at each breakpoint. To use the integrated
debugger, choose Tools | Debugger Options, click the General tab, and make sure
Integrated debugging is checked.

You can begin a debugging session in the IDE by clicking the Run button on the
Debug toolbar, choosing Run | Run, or pressing F9.

RS . G
<< Aftach to Pracess.
i3 Parameters
Run button i L Ok i
& Trace Into F7 .
gl Trace o Next Source Line ShifisF? Choose any of the debugging
I3 Run to Cursor F4 commands from the Run
& Fur Wil Heur SHili6 menu. Some commands are
I% ot also available on the toolbar.
Fragrari Feset Cli =2
& Iricpect.
Evaluate/Modify CHrl+F7
o Add Watch... Ctrl+F5
Add Breakpoint »

With the integrated debugger, many debugging windows are available, including
Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and

3-6 Quick Start

Deploying applications

Event Log. Display them by choosing View | Debug Windows. Not all debugger
views are available in all editions of Kylix.

Button: [process nat accessible]

‘ Bpplication Run: [process not accessible]

Breakpoint List
Filenamesaddress | LinefLength Caondition Action Paszs Cou
B Unitl.pas 2 Break i

To learn how to combine debugging windows for more convenient use, see “Docking
tool windows” on page 6-2.

Once you set up your desktop as you like it for debugging, you can save the settings
as the debugging or runtime desktop. This desktop layout will be used whenever
you are debugging any application. For details, see “Saving desktop layouts” on
page 6-4.

For more information...
See “debugging” and “integrated debugger” in the Help index.

Deploying applications

You can make your application available for others to install and run by deploying it.
To deploy an application, create an installation package that includes not just the
required files, such as the executables, but also any supporting files, such as shared
object files, initialization files, package files, and helper applications.

For more information...
See “deploying” in the Help index.

Internationalizing applications

Kylix offers several features for internationalizing and localizing applications for
different locales. The IDE and CLX provides support for input method editors (IMEs)
and extended character sets. Once your application is internationalized, you can
create localized versions for the different foreign markets into which you want to
distribute it.

Kylix provides a tool called resbind that extracts the Borland resources from your
application and creates a shared object file that contains the resources. You can then
dynamically link the resources at runtime or let the application check the
environment variable on the local system on which it is running. To get the
maximum benefit from these features, start thinking about localization requirements
as early as possible in the development process.

Programming with Kylix 3-7

Types of projects

For more information...
See “international applications” in the Help index.

Types of projects

All editions of Kylix support general-purpose Linux programming for writing a
variety of GUI applications, shared objects, packages, and other programs. Some
editions support server applications such as distributed applications, database
applications, and Web-based applications. To see what tools your edition supports,
refer to the feature matrix on http:/ /www .borland.com /kylix.

For more information...

See Chapter 5, “Building applications and shared objects,” in the Developer’s Guide.

Database applications

For use in database applications, Kylix uses a new data access technology, dbExpress.
dbExpress is a collection of drivers that applications use to access data in databases.
Kylix has drivers for several SQL databases, including DB2, Informix, InterBase,
MySQL, and Oracle.

To access the data, you can add dbExpress components to data modules or forms.
These components include a connection component, which controls information you
need to connect to a database, and dataset components, which represent the data
fetched from the server. To use dbExpress and database components, click the
Component palette dbExpress and Data Access pages. Certain database connectivity
and application tools are not available in all editions of Kylix.

For more information...

See Part II, “Developing database applications,” in the Developer’s Guide and
“database applications” in the Help index.

Client/server applications

To build multi-tiered, client/server database applications, you can use DataSnap.
DataSnap defines the protocols and components that allow data-aware application
servers and client applications to communicate. For the application server, you add a
dataset and a dataset provider to a SOAP data module. The SOAP data module acts
as a Web module in a Web services application to dispatch messages between client
applications and the provider.

To build an application server, choose File | New and click the WebServices page in
the New Items dialog box. Double-click the icon for the SOAP Services Data Module.
To establish a connection with the server, click the Component palette WebServices
page and select the SoapConnection component.

3-8 Quick Start

Types of projects

For more information...
See “Using a multi-tiered architecture” in the Developer’s Guide.

Web server applications

Web server applications extend the functionality and capability of existing Web
servers. A Web server application receives HTTP request messages from the Web
server, performs any actions requested in those messages, and formulates responses
that it passes back to the Web server. Many operations that you can perform with a
Kylix application can be incorporated into a Web server application.

Kylix includes two different technologies, depending on which edition of Kylix you
have. To create a Web server application with WebBroker, choose File | New and
double-click the Web Server Application icon. You can add WebBroker components
to your Web module from the Internet Component palette page.

To develop a Web server application using WebSnap, choose File | New, click the
WebSnap page, and double-click the Web Server Application icon. You can add
WebSnap components from the WebSnap Component palette page. WebSnap adds
to the WebBroker functionality with adapters, additional dispatchers, additional
page producers, session support, and Web page modules.

ESal New WehSnap Application - X

Server Type

@ iCGl Stand-alone executable! TO Create a Web server
application using

WebSnap, you can
choose from two different
Web servers.

Application Module Compongnts | Choose whether you

= Bage Moduls / want a data module or a
Compongnts... X
© Data Module Q page module, which

Application Module Options diSP|ayS YOUI' HTML page

as you work.
Page Options.

Caching |Cache Instance j

Ok Cancel ‘ Help ‘

C Apache Shared Module (DLL)

Page Name: ‘WEbAppMudulez

For more information...
See Part III, “Writing Internet applications,” in the in the Developer’s Guide and “Web
server applications” in the Help index.

Web services

A Web service, such as an inventory tracking program, is an application that can be
accessed over the Internet. Web services include well-defined interfaces that expose the
service provided. The server implementation allows the client to use one or more
communications methods and encoding schemes. Kylix’s BizSnap components are

Programming with Kylix 3-9

Types of projects

designed to work with the HTTP and XML-based SOAP (Simple Object Access
Protocol) protocols. With these components, you can write both servers that implement
Web services and clients that call on those services.

To build a server using a wizard, choose File | New, click the WebServices page in the
New Items dialog box, and double-click the Soap Server Application icon. To access
components for the client, click the Component palette WebServices page.

For more information...
See “Using Web services” in the Developer’s Guide.

Shared objects

Shared objects are compiled modules containing routines that can be called by
applications and by other shared objects. A shared object contains code or resources
typically used by more than one application.

For more information...
See “shared objects” in the Help index.

Custom components

The components that come with Kylix are preinstalled on the Component palette and
offer a range of functionality that should be sufficient for most of your development
needs. You could program with Kylix for years without installing a new component,
but you may sometimes want to solve special problems or display particular kinds of
behavior that require custom components. Custom components promote code reuse
and consistency across applications.

You can either install custom components from third-party vendors or create your
own. To create a new component, choose Component | New Component to display
the New Component wizard. To install components provided by a third party, see
“Installing component packages” on page 6-7.

For more information...

See Part IV, “Creating custom components,” in the Developer’s Guide and
“components, creating” in the Help index.

3-10 Quick Start

Creating a text editor—a tutorial

This tutorial takes you through the creation of a text editor complete with menus, a
toolbar, and a status bar.

Note This tutorial is for all editions of Kylix.

Starting a new application

Before beginning a new application, create a directory to hold the source files:
1 Create a directory called TextEditor in your home directory.

2 Begin a new project by choosing File | New Application or use the default project
that is already open when you started Kylix.

Each application is represented by a project. When you start Kylix, it creates a
blank project by default, and automatically creates the following files:

* Project1.dpr: a source-code file associated with the project. This is called a project
file.

o Unitl.pas: a source-code file associated with the main project form. This is called
a unit file.

¢ Unitl.xfm: a resource file that stores information about the main project form.
This is called a form file.

Each form has its own unit (Unit1.pas) and form (Unitl.xfm) files. If you create a
second form, a second unit (Unit2.pas) and form (Unit2.xfm) file are automatically
created.

3 Choose File | Save All to save your files to disk. When the Save dialog box appears:
* Navigate to your TextEditor folder.

* Save Unitl using the default name Unit1.pas.

Creating a text editor—a tutorial 4-1

Setting property values

¢ Save the project using the name TextEditor.dpr. (The executable will be named
the same as the project name without an extension.)

Later, you can resave your work by choosing File | Save AllL

When you save your project, Kylix creates additional files in your project
directory. These files include TextEditor.kof, which is the Kylix Options file,
TextEditor.conf, which is the configuration file, and TextEditor.res, which is the
resource file. You don’t need to worry about these files but don’t delete them.

When you open a new project, Kylix displays the project’s main form, named
Form1 by default. You'll create the user interface and other parts of your
application by placing components on this form.

~ 4 I

You can run the form anytime by
pressing F9.

Without any components on it,
the runtime view of the form
looks similar to the design-time
view, complete with Minimize,
Maximize, and Close buttons,
and a Control menu.

Run the form now by pressing F9, even though there are no components on it.
To return to the design-time view of Form1, either:

¢ Click the X in the upper right corner of the title bar of your application
(the runtime view of the form);

¢ Click the Exit application button '~ in the upper left corner of the title bar;
* Choose Run | Program Reset; or

e Choose View | Forms, select Form1, and click OK.

Setting property values

Next to the form, you’ll see the Object Inspector, which you can use to set property
values for the form and components you place on it. When you set properties, Kylix
maintains your source code for you. The values you set in the Object Inspector are
called design-time settings.

You can change the caption of Form1 right away:

¢ Find the form’s Caption property in the Object Inspector and type Text Editor
Tutorial replacing the default caption Forml. Notice that the caption in the heading
of the form changes as you type.

4-2 Quick Start

Adding components to the form

Adding components to the form

Before you start adding components to the form, you need to think about the best
way to create the user interface (UI) for your application. The Ul is what allows the
user of your application to interact with it and should be designed for ease of use.

Kylix includes many components that represent parts of an application. For example,
there are components (also called objects) on the Component palette that make it easy
to program menus, toolbars, dialog boxes, and many other visual and nonvisual
program elements.

The text editor application requires an editing area, a status bar for displaying
information such as the name of the file being edited, menus, and perhaps a toolbar
with icons for easy access to commands. The beauty of designing the interface using
Kylix is that you can experiment with different components and see the results right
away. This way, you can quickly prototype an application interface.

To start designing the text editor, add a Memo and a StatusBar component to the form:

1 To create a text area, first add a Memo component. To find the Memo component,
on the Standard tab of the Component palette, point to an icon on the palette for a
moment; Kylix displays a Help tooltip showing the name of the component.

=+ R © <

File Edit Search View Project Run Component Tools Help |” <Mones - ‘ ﬂll,ﬁ,‘

-3 @7 = g“J & | || Standard]Additmna\' Camman Cnntrnlsl D\alngsl dbExpress | Data Ac:ess] Data Cnntmls' Internet] Indly CIiems' In <]
paalo|r -mess EF 8 amEer o @=1EH
Mema =

When you find the Memo component, either:

* Select the component on the palette and click on the form where you want to
place the component; or

* Double-click it to place it in the middle of the form.

S0 Text Editor Tutorial - B X

!Mamm—

Creating a text editor—a tutorial 4-3

Adding components to the form

Each Kylix component is a class; placing a component on a form creates an instance
of that class. Once the component is on the form, Kylix generates the code
necessary to construct an instance of the object when your application is running.

2 Set the Align property of Memol to alClient.

To do this, click Memol1 to select it on the form, then choose the Align property in
the Object Inspector. Select alClient from the drop-down list.

ObjECLnshector Select the Memo1 component on the
IMemm: ThMemn _I form.
Properties IEventsI Look for the Align property in the Object
i Cliert [2]4] Inspector. Click the down arrow to
o el display the property’s drop-down list.
alignment play p perty p
menchors S —<—SelectalClient.
BackgraundgalCustom
Borderstyle |3ILeft
Color alMone
@ Constraints |2/niaht
Cursor alTop |
|.0.II shown

The Memo component now fills the entire form so you have a large text editing
area. By choosing the alClient value for the Align property, the size of the Memo
control will vary to fill whatever size window is displayed even if the form is

resized.
7 3 Double-click the StatusBar component on the Common Controls tab of the
Component palette. This adds a status bar to the bottom of the form.
4 Next you want to create a place on the status bar to display the path and file name
of the file being edited by your text editor. The easiest way is to provide one status
panel.

¢ Change the SimpleText property to untitled.txt. If the file being edited is not yet
saved, the name will be untitled.txt.

* Set Simple Panel to True.

Sl Text Editor Tutorial E
hemoil

< Editing area

< Status bar

untitied. b4 . A

¢ Click the ellipse of the Panels property to open the Editing StatusBar1.Panels
dialog box. You can stretch the dialog box to make it larger.

4-4 Quick Start

Adding support for a menu and a toolbar

¢ Right-click the dialog box and click Add to add a panel to the status bar.

. Text Editor Tutorial - F X

Memal

It Editing StatusBarl.Panels o

RS

| ¥

untitied t

The Panels property is a zero-based
array so that you can access each

panel you create based on its unique
index value. By default, the first panel

has a value of 0.

Each time you click Add, you add an
additional panel to the status bar.

o] oo

¥R Lelele

4+ ffake U

¥ e How
SEECt Al

| v Toolaar

il Editing StatusBarl.Panels -

JES I—

NS

e
(6] gL}
i AR

[

—— Right-click here to display a
context menu. Click Add to
create a panel on the status bar
that can hold persistent text.

B X

ata| ¢ *

0 - TStatusPanel

Tip You can also access the Editing StatusBarl.Panels dialog box by double-clicking
the status bar.

5 Click the X in the upper right corner to close the Editing StatusBar1.Panels dialog

box.

Now the main editing area of the user interface for the text editor is set up.

Adding support for a menu and a toolbar

For the application to do anything, it needs a menu, commands, and, for

convenience, a toolbar. Though you can code the commands separately, Kylix
provides an action list to help centralize the code.

Creating a text editor—a tutorial 4-5

Adding support for a menu and a toolbar

Following are the kinds of actions our sample text editor application needs:

Table 41 Planning Text Editor commands
Command Menu On Toolbar? Description

New File Yes Creates a new file.

Open File Yes Opens an existing file for editing.

Save File Yes Stores the current file to disk.

Save As File No Stores a file using a new name (also lets you store a new file
using a specified name).

Exit File Yes Quits the editor program.

Cut Edit Yes Deletes text and stores it in the clipboard.

Copy Edit Yes Copies text and stores it in the clipboard.

Paste Edit Yes Inserts text from the clipboard.

About Help No Displays information about the application in a box.

You can also centralize images to use for your toolbar and menus in an image list.
To add an ActionList and an ImageList component to your form:

== 1 On the Standard tab of the Component palette, double-click the ActionList
EZK; component to drop it onto the form.

=3 2 Onthe Common Controls tab, double-click the ImageList component to drop it

— onto your form. It drops on top of the ActionList component so drag it to another
location on the form. Both the ActionList and ImageList components are nonvisual,
so it doesn’t matter where you put them on the form. They won’t appear at
runtime.

Your form should now resemble the following figure.

Bl Text Editor Tutorial < F X
Memol To display the captions for
the components you place
on a form, choose Toolsl
- Environment Options and
jf click Show component
ActionListl ImageListl Captions.

Because the ActionListand
ImageList components are
nonvisual, you cannot see
them when the application
is running.

ntitled <t ~

4-6 Quick Start

Tip

Adding support for a menu and a toolbar

Adding actions to the action list

Next we’ll add the actions to the action list.

By convention, we’ll name actions that are connected to menu items with the name of
the top-level menu and the item name. For example, the FileExit action refers to the
Exit command on the File menu.

1 Double-click the ActionList icon.

The Editing Form1.ActionListl dialog box appears. This is also called the Action

List editor.

2 Right-click on the Action List editor and choose New Action.

o Editing Form1.ActionList]
ia - 3 | &+

Categaries: Actions:

-0 X

(Mo Categary)

| Mew Action

Mew Standard Action

Ctrl+Ins

4 ove Eitl U
* Ivlove Do G
Cut Ctrl+x
Copy Ctrl+C
Paste Ctrl+V
%A Delete De]

EElEC Al

v Toolbar

v Panel Descriptions

Right-click on the Action
List editor and choose

New Action to create an
action for the action list.

3 In the Object Inspector, set the following properties for the action:

o After Caption, type &New. Note that typing an ampersand before one of the letters

makes that letter a shortcut to accessing the command.

o After Category, type File (this organizes the File commands in one place).
* After Hint, type Create file (this will be the Help tooltip).

o After Imagelndex, type 0 (this will associate image number 0 in your ImageList

with this action).

Creating a text editor—a tutorial 4-7

Adding support for a menu and a toolbar

¢ After Name, type FileNew (for the File | New command) and press Enter to save

the change.
With the new action Oh)eCHITERER SN BN Editing Form1 . ActionListi D
selected in the Action |Fileniew: Tacien 3 ERCIEE
i i i Propert
List editor, change its roperties |Evems| — sctons

Froperiies in the ObjeCt Captian Bhlew (Mo Category)
nspector. Category |File

Captionis used in the cheseed, e

menu, Category is the HinContmd|D

type of action, Hintis a Helpkeyworn

Help tooltip, Imagelndex HelpType _|ntieyward

lets you refer to a Hint Create file

graphic in the ImageList, Imageindex |0

and Name is what it's Name |FileNewd

A ShortCut (Mane)
called in the code. Tag g

Yisible True

All shown

4 Right-click on the Action List editor and choose New Action.
5 In the Object Inspector, set the following properties:

After Caption, type &Open.

Make sure Category says File.

After Hint, type Open file.

After Imagelndex, type 1.

After Name, enter FileOpen (for the File | Open command).

6 Right-click on the Action List editor and choose New Action.
7 In the Object Inspector, set the following properties:

After Caption, type &Save.

Make sure Category says File.

After Hint, type Save file.

After Imagelndex, type 2.

After Name, enter FileSave (for the File | Save command).

8 Right-click on the Action List editor and choose New Action.
9 In the Object Inspector, set the following properties:

After Caption, type Save &as.

Make sure Category says File.

After Hint, type Save file as.

No Imagelndex is needed. Leave the default value.

After Name, enter FileSavels (for the File | Save As command).

10 Right-click on the Action List editor and choose New Action.

11 In the Object Inspector, set the following properties:

After Caption, type E&xit.

Make sure Category says File.

After Hint, type Exit application.

After Imagelndex, type 3.

After Name, enter FileExit (for the File | Exit command).

4-8 Quick Start

Note

Adding support for a menu and a toolbar

12 Right-click on the Action List editor and choose New Action to create a Help |
About command.

13 In the Object Inspector, set the following properties:

After Caption, type &About.

After Category, type Help.

No Imagelndex is needed. Leave the default value.

After Name, enter Helpibout (for the Help | About command).

Keep the Action List editor on the screen.

Adding standard actions to the action list

Kylix provides several standard actions that are often used when developing
applications. Next we’ll add the standard actions (cut, copy, and paste) to the action
list.

The Action List editor should still be displayed. If it’s not, double-click the ActionList
icon on the form.

To add standard actions to the action list:
1 Right-click on the Action List editor and choose New Standard Action.

The Standard Actions dialog box appears.
Right-click on the Action List editor and

! = TER
choose New Standard Action.
i Action L |Categ0ry - lLI
13 New Action Ins TAction (Mo Catego Cancel |
— TDataSetCancel Dataset
e ndard Action... Ctrl+lns The aVaiIabIe TDataSetDelete Dataset Help |
N TDataSetEdit Dataset
Standard aCt|OnS TDatasetFirst Dataset
are then TOataSetingert Datasat
i TDataSellast Dataset
Cut Crl+X d!sEIayed.dTobl TDataSetNext Dataset
e ChisC pick one, double- TDataSelFost Datasat
- click an action. TDataSetPrior Dataset
Paste Ctrl+V/ TDataSetRefrash Dataset
TEditCopy Edit
Edit
Select Al TEditDelete Edit
TEAitD s eta Edit hd
v Toolbar 4 | >
v Panel Descriptions

* Double-click TEditCut. The action is created in the Editing Form1.ActionList1
dialog box along with a new category called Edit. Select EditCutl.

¢ In the Object Inspector, set the Imagelndex property to 4.
The other properties are set automatically.
2 Right-click on the Action List editor and choose New Standard Action.
¢ Double-click TEditCopy.
¢ In the Object Inspector, set the Imagelndex property to 5.

Creating a text editor—a tutorial 4-9

Adding support for a menu and a toolbar

3 Right-click on the Action List editor and choose New Standard Action.
* Double-click TEditPaste.
¢ In the Object Inspector, set the Imagelndex property to 6.

4 Now you've got all the actions that you'll need for the menus and toolbar. If you
click the category All Actions, you can see all the actions in the list:

el Editing Form1.ActionListl 0O X
3 - ¥a | + ¥

Categories: Actions:

(Mo Category) FileNew

Edit FileOpen

File FileSave

Help

FileSaveas
EditCut1
EditCopy1
EditPastel
FileExit
Helpabout

5 Click the X to close the Action List editor.
6 With the ActionList component still selected on the form, set its Images property to

ImageListl.
Object Inspectar x| Bl Text Editor Tutorial o T
- Memol
IActlonLlsﬂ : TActionList -
Properties Events] -
e -
ImagES ImagELlsﬂ j ActionList] ImageListl
MName ActionListl
Tag i
All shown untitle d <t A

Click the down arrow next to the Images property. Select ImageList1. This
associates the images that you'll add to the image list with the actions in the
action list.

Adding images to the image list

Previously, you added an ImageList object to your form. In this section, you'll add
images to that list for use on the toolbar and on menus. Following are the images to
use for each command:

4-10 Quick Start

Command
File | New
File | Open
File | Save
File | Exit
Edit| Cut
Edit | Copy
Edit| Paste

Adding support for a menu and a toolbar

Icon image name
Filenew.bmp
Fileopen.bmp
Filesave.bmp
Doorshut.bmp
Cut.bmp
Copy.bmp
Paste.bmp

Imagelndex property
0

1
2
3
4
5
6

To add the images to the image list:

1 Double-click the ImageList object on the form to display the Image List editor.

2 Click the Add button and navigate to the Buttons directory provided with the
product. The default location is {install directory}/images/buttons. For example,
if Kylix is installed in your /usr/local/kylix2 directory, look in /usr/local/
kylix2 /images/buttons.

3 Double-click fileopen.bmp.

4 When a message asks if you want to separate the bitmap into two separate ones,
click Yes each time. Each of the icons includes an active and a grayed out version
of the image. You'll see both images. Delete the grayed out (second) image.

* Click Add. Double-click filenew.bmp. Delete the grayed out image.

¢ Click Add. Double-click filesave.bmp. Delete the grayed out image.

¢ Click Add. Double-click doorshut.bmp. Delete the grayed out image.

¢ Click Add. Double-click cut.bmp. Delete the grayed out image.

¢ Click Add. Double-click copy.bmp. Delete the grayed out image.

¢ Click Add. Double-click paste.bmp. Delete the grayed out image.

8 Form .ImageList! ImageList

— Selected Image

2

Transparent Calar: Options — 0K

IcITea\ 'I ' Crap
Fill Color: © Stretch
ppl
2L | [ciTeal o | e Center Py

Cancel

d

Help
— Images

= B B

1} 1 2 3 4 3 [}

Add.. Delete Clear Expaort..

Creating a text editor—a tutorial 4-11

Adding a menu

5 Click OK to close the Image List editor.

You've added 7 images to the image list and they’re numbered 0-6 consistent with
the ImageIndex numbers on each of the actions.

Note If you get them out of order, you can drag and drop them into their correct
positions in the Image List editor.

6 To see the associated icons on the action list, double-click the ActionList object
then select the All Actions category.

Bl Editing Form1.ActionList1 - B X

a-f|r ¢

Categaries Actions

(1o Categon) E?:ege“’ When you display the Action List editor

i e oren now, you'll see the icons associated with

e ERFilesave th ti

—— FileSavess € actions.

(Al Actions) . .

[- [BllFieext We didn’t select icons for one of the
HelpAbout commands because it will not be on the
BEEditcun toolbar
EBEditcopy :
[EREditrastal

When you're done close the Action List editor. Now you're ready to add the menu
and toolbar.

Adding a menu

In this section, you'll add a main menu bar with three drop-down menus—File, Edit,
and Help—and you’ll add menu items to each one using the actions in the action list.

1 From the Standard tab of the Component palette, drop a MainMenu component
onto the form. It doesn’t matter where you place it.

2 Set the main menu’s Images property to ImageListl so you can add the bitmaps to
the menu items.

3 Double-click the main menu component to display the Menu Designer.

R 2l Form1.MainMenul E[ER

4-12 Quick Start

Adding a menu

4 In the Object Inspector, after Caption, type &File, and press Enter to set the first top-
level menu item.

Ohject Inspector

T
IFiIe1: Thienultem < l Eile 7
Froperties IEvents] When you type _

&File and focus on
the Menu Designer,

Action -

AutoHotkeys maParent :
Bitmap ! the top-level File
T command appears

! ready for you to add
Checked

the first menu item.

Enahbled True
Groupindes |0
HelpContext |0 =

All shown

5 In the Menu Designer, select the File item you just created. You'll notice an empty
item under it: select the empty item. In the Object Inspector, choose the Action
property. The Actions from the action list are all listed there. Select FilelNew.

Obie — =
INew‘I: Thenultem vl Eile f
Properties | Events | When you select bew
= i FileNew from the
{wiilulg} HeMew 1= . .
AutoHotkeys [EditCopyl 2] ﬁcnﬁn property list,
AutoLineRed{EditCutl the New command
iR EditPaste] appears with the
Break FileE it correct Caption

il e

Caption and Imagelndex.
Checked FileOpen [—
Defaul FileSave
Enshled Ileavehs
Grouplndex |0
HelpContext |0 |
[0 shown &

¢ Select the item under New and set its Action property to FileOpen.
¢ Select the item under Open and set its Action property to FileSave.
¢ Select the item under Save and set its Action property to FileSaveas.

¢ Select the item under Save As, type a hyphen after its Caption property, and
press Enter. This creates a separator bar on the menu.

¢ Select the item under the separator bar and set its Action property to FileExit.
6 Next create the Edit menu:

¢ Select the item to the right of the File command, set its Caption property to &Edit,
and press Enter.

¢ The focus is now on the item under Edit; set its Action property to EditCutl.

¢ Select the item under Cut and set its Action property to EditCopyl.

Creating a text editor—a tutorial 4-13

Adding a menu

¢ Select the item under Copy and set its Action property to EditPastel.

= =
IPaste1: TMenultem - l Eile Bt {
B cu Cirl+X
Froperties
R IEventsI Copy Chi+C
Actian EditPastel = |« u.
autoHotkeys|maParent
Eitmap (Mone)

Caption &Paste
Checked False
Enabled True
Groupindes |0
HelpContext |0 =

|.0.II shown

7 Next create the Help menu:

¢ Select the item to the right of the Edit command, set its Caption property to
&Help, and press Enter.

¢ Select the item under Help and set its Action property to HelpAbout.
8 Click the X to close the Menu Designer.
9 Choose File | Save to save changes in your project.
10 Press F9to compile and run the project.

Note You can also run the project by clicking the Run button on the Debug toolbar or
choosing Run | Run.

Bl Text Editor Tutorial o (w5
Eile Edit Help

Memot

When you press F9to run your
project, the application interface
appears. The menus, text area,
and status bar all appear on the
form.

ntitled bd

When you run your project, Kylix opens the program in a window like the one
you designed on the runtime form. The menus all work although most of the

commands are grayed out. The images appear next to menu items with which we
associated icons.

Though your program already has a great deal of functionality, there’s still more
to do to activate the commands. And we want to add a toolbar to provide easy
access to the commands.

11 To return to design mode, click X in the upper right corner.

Note If you lose the form, click View | Forms, select Form1, and click OK.

4-14 Quick Start

Adding a toolbar

Clearing the text area

When you ran your program, the name Memol appeared in the text area. You can
remove that text using the String List Editor. If you don’t clear the text now, the text
should be removed when initializing the main form in the last step.

To clear the text area:
1 On the main form, click the Mermo component.

2 In the Object Inspector, next to the Lines property, double-click the value
(TStrings) to display the String List editor.

3 Select and delete the text you want to remove in the String List editor, and click
OK.

4 Save your changes and trying running the program again.

The text editing area is now cleared when the main form is displayed.

Adding a toolbar

Since you've set up actions in an action list, you can add some of the same actions
that were used on the menus onto a toolbar.

O 1 On the Common Controls tab of the Component palette, double-click the ToolBar
component to add it to the form.

A blank toolbar is added under the main menu. With the toolbar still selected,
change the following properties in the Object Inspector:

* Set the toolbar’s Indent property to 4. (This indents the icons 4 pixels from the
left of the toolbar.)

® Set its Images property to ImageListl.
e Set ShowHint to True. (Tip: Double-click False to change it to True.)

2 Add buttons and separators to the toolbar:

¢ With the toolbar selected, right-click and choose New Button four times.
¢ Right-click and choose New Separator.
¢ Right-click and choose New Button three more times.

Creating a text editor—a tutorial 4-15

Writing event handlers

Note Don’t worry if the icons aren’t correct yet. The correct icons will be selected when
you assign actions to the buttons.
B TextEuitor Tutoran SIS
B[R R | <—— The toolbar object is added
MMW pemre under the menus by default.
=
Eait , - To add buttons or separators,
ActionList! ImageList1 . .
Contal ’ select the toolbar, right-click,
#lign to Grid and choose New Button or
Heved o lnfaried invenut New Separator. Then assign
?"E" actions from the action list.
;ca\g
Tah Order
ntitled bk Creation Order...

Flip Childran »
Add 1o Repositary

Miewr as Text

Text DFM

3 Assign actions from the action list to the first set of buttons.

Select the first button and set its Action property to FileExit.
Select the second button and set its Action property to FileNew.
Select the third button and set its Action property to FileOpen.
Select the fourth button and set its Action property to FileSave.

4 Assign actions to the second set of buttons.

¢ Select the first button and set its Action property to EditCutl.
* Select the second button and set its Action property to EditCopyl.
¢ Select the third button and set its Action property to EditPastel.

5 Press F9to compile and run the project.

Your text editor already has lots of functionality. You can type in the text area.
Check out the toolbar. If you select text in the text area, the Cut, Copy, and Paste
buttons should work.

6 Click the X in the upper right corner to close the application and return to the
design-time view.

Writing event handlers

Up to this point, you've developed your application without writing a single line of
code. By using the Object Inspector to set property values at design time, you've
taken full advantage of Kylix’s RAD environment. In this section, you'll write
procedures called event handlers that respond to user input while the application is
running. You'll connect the event handlers to the items on the menus and toolbar, so
that when an item is selected your application executes the code in the handler.

You can create a skeleton handler, or an event handler without any code, in the Code
editor. To create a skeleton handler, either double-click the component on the form or
click the space to the right of an event in the Object Inspector. The skeleton handler is
an empty event handler that includes the procedure name and a begin and end
statement.

4-16 Quick Start

Tip

Writing event handlers

Because all the menu items and toolbar actions are consolidated in the action list, you

can create the event handlers from there.

For more information about events and event handlers, see “Developing the
application user interface” in the Developer’s Guide or online Help.

Creating an event handler for the New command

To create an event handler for the New command:

1 Choose View | Units and select Unitl to display the code associated with Form1.

2 You need to declare a file name that will be used in the event handler. Add a
custom property for the file name to make it globally accessible. Early in the
Unitl.pas file, locate the public declarations section for the class TForm1 and on

the line after { Public declarations }, type:
FileName: String;

Your screen should look like this:

private

{ Private declarations }
public
{ Public declarations }

FileMame: String;

var
Forml: TForml;

implementation

4

n

|19 2z [Modified [Insert

3 Press F12to go back to the main form.

This line defines FileName
as a string which is globally
accessible from any other
methods.

F12is a toggle which takes you back and forth from a form to the associated code.

4 Double-click the ActionList icon on the form to display the Action List editor.
5 In the Action List editor, select the File category and then double-click the FileNew

action.

Creating a text editor—a tutorial

4-17

Writing event handlers

The Code editor opens with the cursor inside the event handler.

First, double-click the Action List object to display

the Action List editor.
BN Editing Form1.Action LSS 0 X
3-fa e ®
Categories: Actions \\
N EF &l
it -

File Mainhdenul ActionList! ImageList

£ -+ . <

unin] e

Al] |l [=
. . lprocedure TForml.FileNewExscute [Sender: TObject) ;
Then, double-click the action to begin
create an empty event handler — J
where you can specify what will end:
happen when users execute the B
command. end.

| 36 4 [Modified [Insert

6 Right where the cursor is positioned in the Code editor (between begin and end),
type the following lines:

Memol.Clear;
FileName := 'untitled.txt';
StatusBarl.Panels[0].Text := FileName;

Your event handler should look like this when you're done:

2+ M
Umnl =

|

pProcedure TForml.FileNewExecute (Sender: TObject): This line clears the text area

begin /’ X
Memol . Clear: when you create a new file.

FileName := 'untitled.txb'; This line calls the new file
StatusBarl.Panels [0] .Text := FileMame; “untitled.txt.”
end;

— This line puts the file name
into the status bar.

end.
ET s

| 38 4 [Modiied [Insert

Save your work and that’s it for the File | New command.

Tip You can resize the code portion of the window to reduce horizontal scrolling.

4-18 Quick Start

Writing event handlers

Creating an event handler for the Open command

When you open a file, a File Open dialog box is automatically displayed. To attach it
to the Open command, drop a TOpenDialog object on the main editor form. Then you
can write the event handler for the command.

To create an Open dialog box and an event handler for the Open command:

1
2

Locate the main form (select View | Forms and choose Form1 to quickly find it).

On the Dialogs tab on the Component palette, double-click an OpenDialog
component to add it to the form. This is a nonvisual component, so it doesn’t
matter where you place it. Kylix names it OpenDialog1 by default. (When
OpenDialog1’s Execute method is called, it invokes a standard dialog box for
opening files.)

In the Object Inspector, set the following properties of OpenDialog1:
* Set DefaultExt to txt.

* Double-click the text area next to Filter to display the String List editor. In the
first line, type Text files (*.txt).“Text files” is the filter name and “(*.txt)” is
the filter. On the second line, type 211 files (*).Click OK.

Bl String List editor - m X

2 lines

Text files (*.t<t) . . .
Al fles () Use the String List editor to

define filters for the
OpenDialog and SaveDialog
components.

oK I Cance\l Help |

o After Title, type Open File.

The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.

In the Action List editor, double-click the FileOpen action.
The Code editor opens with the cursor inside the event handler.

Right where the cursor is positioned in the Code editor (between begin and end),
type the following lines:

if OpenDialogl.Execute then
begin
Memol.Lines.LoadFromFile (OpenDialogl.FileName);
FileName := OpenDialogl.FileName;
StatusBarl.Panels[0].Text := FileName;
end;

Creating a text editor—a tutorial 4-19

Writing event handlers

Your FileOpen event handler should look like this when you're done:

T
Unitt] PR
=
procedure TForml.FileCpenExecute (Sender: TObject);
begin é/’//////,,///”/////”’/
if CpenDialogl.Execute then
begin
Memol.Lines.LoadFromFiletOpenDialogl.FileName);éf//
FileName := OpenDialogl.FileName; < |

4

StatusBarl.Panelas[0] .Text := FileNams:;
end; §;\\\\\\\\\
end;

n

| 36 4 [Modified [Insert

This line defines what
happens when the Open
command is executed.

This line inserts the text from
the specified file.

This line sets the file name to
the one in the Open dialog
box.

This line puts the file name
into the status bar.

That’s it for the File | Open command and the Open dialog box.

Creating an event handler for the Save command

To create an event handler for the Save command:

1 The Action List editor should still be displayed. If it's not, double-click the
ActionList icon on the form.

2 On

the Action List editor, double-click the FileSave action.

The Code editor opens with the cursor inside the event handler.

3 Right where the cursor is positioned in the Code editor (between begin and end),
type the following lines:

if (FileName = 'untitled.txt') then
FileSaveAsExecute (nil)

else

Memol.Lines.SaveToFile (FileName) ;

This code tells the text editor to display the SaveAs dialog box if the file isn’t
named yet so the user can assign a name to it. Otherwise, save the file using its
current name. The SaveAs dialog box is defined in the event handler for the Save
As command on page 4-21. FileSaveAsExecute is the automatically generated
name for the Save As command.

4-20 Quick Start

Your event handler should look like this when you're done:

Writing event handlers

S
um1| PR
=
procedure TForml.FileSaveExecute (Sender: TObject):
begin
if (FileMame = 'untitled.txt') then
FileSaveAsExecute(nil)
else
Memol.Lines, SaveToFile (FileNames) ;
end; J
end.,

4

n

36 4 [Modified [Insert

That’s it for the File | Save command.

This line states that if the
file is untitled, the File Save
As dialog box appears.

Otherwise, the file is saved
with the current file name.

Creating an event handler for the Save As command

To create an event handler for the Save As command:

1 From the Dialogs tab of the Component palette, drop a SaveDialog component onto
the form. This is a nonvisual component, so it doesn’t matter where you place it.

Kylix names it SaveDialog1 by default. (When SaveDialog’s Execute method is
called, it invokes a standard dialog box for saving files.)

2 In the Object Inspector, set the following properties of SaveDialog1:

Set DefaultExt to txt.

Double-click the text area next to Filter to display the String List editor. In the
Editor, specify filters for file types as in the Open dialog box. In the first line,
type Text files (*.txt);in the second line, type 211 files (*).Click OK.

Make sure Title is set to Save As.

Note The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.

3 In the Action List editor, double-click the FileSaveAs action.

The Code editor opens with the cursor inside the event handler.

4 Right where the cursor is positioned in the Code editor, type the following lines:

SaveDialogl.FileName := FileName;
SaveDialogl.InitialDir := ExtractFilePath(Filename);

if SaveDialogl.Execute then

begin

Memol.Lines.SaveToFile (SaveDialogl.FileName);
FileName := SaveDialogl.FileName;
StatusBarl.Panels[0].Text := FileName;

end;

Creating a text editor—a tutorial 4-21

Writing event handlers

Your FileSaveAs event handler should look like this when you're done:

£ I - | <| This sets the SaveAs dialog

unitt | - box’s FileName property to
X - X — the main form’s FileName
pro:.:edure TForml.FileSaveAsExecute (W property value.
begin
SavelDialogl.FileName := FileName; The default directory is set
Savelialogl.Initiallir := ExtractFilePathiFileName) & tothe last one accessed.
if ZaveDialogl.Execute then This line saves the text to
begin / ™ the specified file.
Memol.Linea.SaveToFile (SaveDialogl.FileName) ; This sets the main form’s
FileName := SaveDialogl.FileName; FileName to the name
StatusBarl.Panels [0]Text := FileName; J specified in the SaveAs
end; dialog box.
5 en?’ =i~ This puts the file name in
the text panel of the status
| ag: 27 [Modified [Insert bar.

That’s it for the File | SaveAs command.

Creating an event handler for the Exit command

To create an event handler for the Exit command:

1 The Action List editor should still be displayed. If it's not, double-click the
ActionList icon on the form.

2 On the Action List editor, double-click the FileExit action.
The Code editor opens with the cursor inside the event handler.
3 Right where the cursor is positioned in the Code editor, type the following line:
Close;

This calls the close method of the main form. That’s all you need to do for the File |
Exit command.

4 Choose File | Save All to save your project.

To see what it looks like so far, run the application by pressing F9.

T |
File Edit Help
CeEE

The running application looks
a lot like the main form in
design mode. Notice that the
nonvisual objects aren't
there.

ntitled <t

4-22 Quick Start

Creating an About box

Most of the buttons and toolbar buttons work but we’re not finished yet.
5 To return to design mode, close the text editor application by clicking the X.

If you receive any error messages, click them to locate the error. Make sure you've
followed the steps as described in the tutorial.

Creating an About box

Many applications include an About box which displays information on the product
such as the name, version, logos, and may include other legal information including
copyright information.

You've already set up a Help About command on the action list.

To create an About box:

1 Choose File | New to display the New Items dialog box and click the Forms tab.
2 On the Forms tab, double-click About Box.

e New Iltems -0 OX

New] Project] Forms]Diamgs} Projects 1 Data Maodules 1 WehSnap] WebServices]

PIgEde Duallisth... Master De.. Tahbedp..

@ Copy " Inherit " Use

0K Cancel | Help |

A new form is created that simplifies creation of an About box.

3 Select the following TLabel items on the About box and in the Object Inspector,
change their Caption properties:

¢ Change Product Name to Text Editor.
e Add 1.0 after Version.
* Add the year after Copyright.

4 Select the form itself and in the Object Inspector, change its Caption property to
About Text Editor.

Creating a text editor—a tutorial 4-23

Creating an About box

Tip The easiest way to select the form is to click the grid portion.
— ¥ S B X

Text Editor 2o The Object Repository
Version 1.0 o contains a standard About

: i box that you can modify as

% Copyright 2001 oo you like to describe your

: c application

- | Comments 200

5 Save the About box form by choosing File | Save As and saving it as About.pas.

6 In the Kylix Code editor, you should have two files displayed: Unitl and About.
Click the Unitl tab to display Unitl.pas.

Add the new About unit to the uses section of Unitl by typing the word About at
the end of the list of included units in the uses clause.
Click the tab to display a file associated with a unit. If you open

other files while working on a project, additional tabs appear on the
Code editor.

n

< E X
unit | apout]

-
junit Unitl; j
interface

uses

Syaltils, Types, Classes, QGraphics, QControls, QForma, QDialc
QExtCtrls, ﬁiomctrls, OStdCtrle, OMenus, OTypes, QStdActns, OA

OImgList,
type
TForml = class (TRorm) =
KIS _'l_I
1 [Insert

When you create a new form for your application, you need to add it to
the uses clause of the main form. Here we’re adding the About box.
8 On the action list, double-click the HelpAbout action to create an event handler.

9 Right where the cursor is positioned in the Code editor, type the following line:
AboutBox. ShowModal;

This code opens the About box when the user clicks Help | About. ShowModal

opens the form in a modal state, a runtime state when the user can’t do anything
until the form is closed.

4-24 Quick Start

Completing your application

Completing your application

The application is almost complete. However, we still have to specify some items on
the main form. To complete the application:

1
2

5

Locate the main form (press F12 to quickly find it).

Check that focus is on the form itself, not any of its components. The top list box
on the Object Inspector should say Form1: TForm1. (If it doesn’t, select Form1
from the drop-down list.)

Check here to make sure focus is on the

main form. If it's not, select Form1 from the
drop-down list.

Ohbject Inspectar . —
Farm1: TFarm1 M

Pmpemes'Evenm]

Onactivate o
OniClick
OonClose
OniCloseGiug
OnContextPd Double-click here to create an event handler
onCreate |FormCreate = [|(<——— for the form’s OnCreate event.

OnDhIClick
OnDeactivat
OnDestroy
OnDragDrop
OnDragOve =

|AII shown

In the Events tab, double-click OnCreate and choose FormCreate from the drop-
down list to create an event handler that describes what happens when the form is
created (that is, when you open the application).

Right where the cursor is positioned in the Code editor, type the following lines:
FileName := 'untitled.txt';
StatusBarl.Panels[0].Text := FileName;
Memol.Clear;

This code initializes the application by setting the value of FileName to
untitled.txt, putting the file name into the status bar, and clearing out the text
editing area.

Press F9 to run the application.

You can test the text editor now to make sure it works. If errors occur, double-click
the error message and you’ll go right to the place in the code where the error
occurred.

You’'re done!

Creating a text editor—a tutorial 4-25

4-26 Quick Start

Creating a database application—
a tutorial

This tutorial helps you create a database application with which you view and
update a sample employee database.

Note This tutorial is written for the Kylix Enterprise and Professional editions, which
include the database components. In addition, you must have InterBase installed to
successfully complete this tutorial.

Overview of database architecture

The architecture of a database application may seem complicated at first, but the use
of multiple components simplifies the development and maintenance of actual
database applications.

Database applications include three main parts: the user interface, a set of data access
components, and the database itself. In this tutorial, you will create a dbExpress
database application. Other database applications have a similar architecture.

The user interface includes data-aware controls such as a grid so that users can edit
and post data to the database. The data access components include the data source,
the client dataset, the data provider, a unidirectional dataset, and a connection
component. The data source acts as a conduit between the user interface and a client
dataset. The client dataset is the heart of the application as it contains a set of records
from the underlying database which are buffered in memory. The provider transfers
the data between the client dataset and the unidirectional dataset, which fetches data
directly from the database. Finally, the connection component establishes a

Creating a database application—a tutorial 5-1

Creating a new project

connection to the database. Each type of unidirectional dataset uses a different type
of connection component.

Database application

Data module

>||Datasource L 5 client dataset

Connection . |Unidirectional
component i dataset

v

Note For more information on database development, see “Designing database
applications” in the Developer’s Guide or online Help.

Provider

Creating a new project

Before you begin the tutorial, create a folder to hold the source files. Then open and
save a new project.

1 Create a folder called Tutorial to hold the project files you'll create while working
through this tutorial.

2 Use the default project already created when you start Kylix or begin a new project
by choosing File | New Application.

3 Choose File | Save All to save your files to disk. When the Save As dialog box
appears, navigate to your Tutorial folder and save each file using its default name.

Later on, you can save your work at any time by choosing File | Save All. If you
decide not to complete the tutorial in one sitting, you can open the saved version
by choosing File | Reopen and selecting the tutorial from the list.

Setting up data access components

Data access components are components that represent data (datasets), and the
components that connect these datasets to other parts of your application. Each of

5-2 Quick Start

Tip

[xI=X1

'tu-ljgll

Tip

Setting up data access components

these data access components point to the next lower component. For example, the
data source points to the client dataset, the client dataset points to the provider, and
so forth. Therefore, when you set up your data access components, you add the
components in the order that they are pointed fo.

In the following sections, you'll add the database components to create the database
connection, unidirectional dataset, provider, client dataset, and data source.
Afterwards, you'll create the user interface for the application. These components are
located on the dbExpress, Data Access, and Data Controls pages of the Component
palette.

It is a good idea to isolate your user interface in its own form and house the data
access components in a data module. However, to make things simpler for this
tutorial, you'll place the user interface and all the components on the same form.

Setting up the database connection

The dbExpress page contains a set of components that provide fast access to SQL
database servers.

You need to add a connection component so that you can connect to a database. The
type of connection component you use depends on what type of dataset component
you use. In this tutorial you will use the TSQLConnection and TSQLDataSet
components.

To add a dbExpress connection component:

1 Click the dbExpress page on the Component palette and double-click the
TSQLConnection component to place it on the form. To find the TSQLConnection
component, point at an icon on the palette for a moment; a Help hint shows the
name of the component. The component is called SQLConnectionl by default.

The TSQLConnection component is nonvisual, so it doesn’t matter where you put
it. However, for this tutorial, line up all the nonvisual components at the top of the
form.

To display the captions for the components you place on a form, choose Tools |
Environment Options and click Show component captions.

2 In the Object Inspector, set its ConnectionName property to IBLocal (it’s on the drop-
down list).

3 Set the LoginPrompt property to False. (By setting this property to False, you won’t
be prompted to log on every time you access the database.)

4 Double-click the TSQLConnection component to display the Connection editor.

You use the Connection editor to select a connection configuration for the
TSQLConnection component or edit the connections stored in the dbxconnections
file.

5 In the Connection editor, specify the pathname of the database file called
employee.gdb on your system. In this tutorial you will connect to a sample

Creating a database application—a tutorial 5-3

Setting up data access components

I8

8

InterBase database, employee.gdb, that is provided with Kylix. By default, the
InterBase installation places employee.gdb in /opt/interbase/examples.

- CH %
+l=] 2] vls]
Driver Name Connection Settings
I[AH] j Key [value
You can choose from Cannection Name s‘ri\;Zr_NamE ‘N1TERBASE
several database BEZConnection e L
dr|VerS to connect to Iy SGELConnection Databhase amples/employee.gdb|
your database and OracleConnection ErrarResourceFile | /DbxIbEmmsy
then edit the Interbase Translsol: ReadCommited
connection settings. LocaleCode 0x0000
Password masterkey
You can add, delete, RoleMame RaleMame
rename, and test ServerCharSet
your connections. SALDialect 1
User_Name sysdba
‘WaitOnlLocks True
oK Cancel | Help |

Check the User_Name and Password fields for acceptable values. If you have not
altered the default values, you do not need to change the fields. If database access
is administered by someone else, you may need to get a username and password

to access the database.

When you are done checking and editing the fields, click OK to close the
Connection editor and save your changes.

These changes are written to the dbxconnections file and the selected connection is
assigned as the value of the SQL Connection component’s ConnectionName

property.
Choose File | Save All to save your project.

Setting up the unidirectional dataset

A basic database application uses a dataset to access information from the database.
In dbExpress applications, you use a unidirectional dataset. A unidirectional dataset
reads data from the database but doesn’t update data.

To add the unidirectional dataset:

1
2

From the dbExpress page, drop TSQLDataSet at the top of the form.

In the Object Inspector, set its SQLConnection property to SQLConnectionl (the
database connection created previously).

Set the CommandText property to “Select * from sales” to specify the command
that the dataset executes. You can either type the Select statement in the Object
Inspector or click the ellipsis to the right of CommandText to display the
CommandText editor, where you can build your own query statement.

Set Active to True to open the dataset.

5 Choose File | Save All to save the project.

5-4 Quick Start

Designing the user interface

Setting up the provider, client dataset, and data source

The Data Access page contains components that can be used with any data access
mechanism, not just dbExpress.

Provider components are the way that client datasets obtain their data from other
datasets. The provider receives data requests from a client dataset, fetches data,
packages it, and returns the data to the client dataset. In dbExpress, the provider
receives updates from a client dataset and applies them to the database server.

To add the provider:

il 1 From the Data Access page, drop a TDataSetProvider component at the top of the
HiEE| form.

2 In the Object Inspector, set the provider’s DataSet property to SQLDataSet1.

The client dataset buffers its data in memory. It also caches updates to be sent to the
database. You can use client datasets to supply the data for data-aware controls on
the user interface using the data source component.

To add the client dataset:

i==1. 1 From the Data Access page, drop a TClientDataSet component to the right of the
TDataSetProvider component.

Bt

2 Set the ProviderName property to DataSetProviderl.
3 Set the Active property to True to allow data to be passed to your application.

A data source connects the client dataset with data-aware controls. Each data-aware
control must be associated with a data source component to have data to display and
manipulate. Similarly, all datasets must be associated with a data source component
for their data to be displayed and manipulated in data-aware controls on a form.

To add the data source:

7=}+| 1 From the Data Access page, drop a TDataSource component to the right of the
+ TClientDataSet component.

2 Set the data source’s DataSet property to ClientDataSetl.
3 Choose File | Save All to save the project.

So far you have added the nonvisual database infrastructure to your application.
Next you need to design the user interface.

Designing the user interface

Now you need to add visual controls to the application so your users can view the
data, edit it, and save it. The Data Controls page provides a set of data-aware controls
that work with data in a database and build a user interface. You'll display the
database in a grid and add a few commands and a navigation bar.

Creating a database application—a tutorial 5-5

Designing the user interface

Creating the grid and navigation bar

To create the interface for the application:

E 1

@ 5

You can start by adding a grid to the form. From the Data Controls page, drop a
TDBGrid component onto the form.

Set DBGrid’s properties to anchor the grid. Click the + next to Anchors in the Object
Inspector to display akLeft, akTop, akRight, and akBottom; set them all to True. The
easiest way to do this is to double-click False next to each property in the Object
Inspector.

Align the grid with the bottom of the form by setting the Align property to
alBottom. You can also enlarge the size of the grid by dragging it or setting its
Height property to 400.

Set the grid’s DataSource property to DataSourcel. When you do this, the grid is
populated with data from the employee database. If the grid doesn’t display data,
make sure you’ve correctly set the properties of all the objects on the form, as
explained in previous instructions.

So far your application should look like this:
—= JEIX

SGLConnection? . SGLDataSet! - DataSetProvider]. ClientDataSetl. DataSourced

PO_NUMBER|CUST_NO |SALES_REP|ORDER_STATUS|ORDER_DATE SHIP_DATE
#|vIzF3004 1z 11 shipped 10/15/1932 01/16/1333
7VEZJ1DD3 10 B1 shipped 07/26/1932 08/04/1392
7V‘332D63D 1001 127 open 12/12/1993
7V‘33242DD 1001 72 shipped 08/09/1933 08/03/1333
7V‘332432D 1001 127 shipped 0&/16/1933 08/16/1333
7V‘3333DD5 1002 11 shipped 02/03/1933 03/03/1393
7V‘3333DDE 1002 11 shipped 04/27/1933 05/02/1393
7V‘33351DD 1002 11 waiting 12/27/1993 01/01/1334
7\/‘3345138 1003 127 shipped 09/09/1933 03/20/1393
7V‘33452DD 1003 11 shipped 114111933 12/02/1333
7V‘334EZDD 1003 11 waiting 12/31/1993
7VESETDDZ 1014 134 shipped 09/20/1933 03/21/1393
7V83CDTZD 1006 72 shipped 05/22/1993 05/31/1393
7V83CDESD 1006 72 shipped 08/09/1933 03/02/1393
7V83FDDZD 1009 B1 shipped 10/10/1933 11111713393
7V83FZD3D 1z 134 open 12/12/1993
7V‘33F2D51 1z 134 waiting 12/18/1993
7V83F3DEB 1z 134 shipped 0&/27/1933 03/08/1393

: o]

The DBGrid control displays data at design time, while you are working in the
IDE. This allows you to verify that you've connected to the database correctly. You
cannot, however, edit the data at design time; to edit the data in the table, you'll
have to run the application.

From the Data Controls page, drop a TDBNavigator control onto the form. A
database navigator is a tool for moving through the data in a dataset (using next
and previous arrows, for example) and performing operations on the data.

5-6 Quick Start

Tip

Designing the user interface
Set the navigator bar’s DataSource property to DataSourcel so the navigator is
looking at the data in the client dataset.

Set the navigator bar’s ShowHint property to True. (Setting ShowHint to True allows
Help hints to appear when the cursor is positioned over each of the items on the
navigator bar at runtime.)

Choose File | Save All to save the project.

Press F9to compile and run the project. You can also run the project by clicking the
Run button on the Debug toolbar, or by choosing Run from the Run menu.

S Projectt - B X
I B S R
FO_MUMBER|CUST_NO _[SALES_REF|ORDER_STATUS[ORDER_DATE SHIP_DATE Ds
2 1012 11 shipped 10/15/1992 014161993 [ii
821003 1010 &1 shipped 0772611552 06041592 il
| |vaazoan 1001 127 apen 12121993 128
| |vaszazao 1001 72 shipped 05/05/1393 08091993 08
| |vaszaazn 1001 127 shipped 161 671 553 0641641993 il
| |vaaaanns 1002 171 shipped 02031993 03/03/1993
| |vazazons 1002 171 shipped 14/2741393 050241993 05
| |vazasion 1002 11 walting 1242741583 0140141894 1
| |vasas1as 1003 127 shipped 09091993 09/201993 106
| |vazaszao 1003 171 shipped 1141141393 120241993 12
| |vazaszon 1003 11 walting 1243141583 1
| |vaagi00z 1014 134 shipped 09201993 09/21/1993 09
| |vascorzo 1006 72 shipped 0342241393 053141993 04
| |vascoasn 1006 72 shipped 18051 953 08/02/1993
| |vaaronzn 1009 61 shipped 10¢10¢1993 1141141993 1
| |vasFzoan 1012 134 apen 1241241393
| |vasFzost 1012 134 walting 12161553 3
:vaaFauaa 1012 134 shipped 08271993 09/08/1993
4 DI

When you run your project, the program opens in a window like the one you
designed on the form. You can test the navigation bar with the employee database.
For example, you can move from record to record using the arrow commands, add
records using the + command, and delete records using the = command.

If you should encounter an error while testing an early version of your
application, choose Run | Program Reset to return to the design-time view.

Adding support for a menu

Though your program already has a great deal of functionality, it still lacks many
features usually found in GUI applications. For example, most applications
implement menus and buttons to make them easy to use.

In this section, you'll add an action list. While you can create menus, toolbars, and
buttons without using action lists, action lists simplify development and
maintenance by centralizing responses to user commands.

Creating a database application—a tutorial 5-7

Designing the user interface

Note

1 If the application is still running, click the X in the upper right corner to close the

application and return to the design-time view of the form.

From the Common Controls page of the Component palette, drop an ImageList
component onto the form. Line this up next to the other nonvisual components.
The ImageList will contain icons that represent standard actions like cut and paste.

From the Standard page of the Component palette, drop an ActionList component
onto the form. Set the action list’s Images property to ImageList1.

Double-click the action list to display the Action List editor.

5 Right-click the Action List editor and choose New Standard Action. The Standard

Actions list box appears.

Sl Editing Form1.ActionList] |[EEEESS ‘“W B X

-6« & Right-click in the |
| ed?tor and choose | |Acten T [cateqory 2] =
eoe = Seiions NeW Standard TDataSetPrior Dataset ﬂl
(Mo Category) d ! Dataset
/ Action to display e Help
the Standard

Actions list box.

Select the actions
you want and click
OK. Press Ctrlto
select multiple
actions.

TEditSelectall Edit

THelpCaontents Help =

|| 3

Select the following actions: TEditCopy, TEditCut, and TEditPaste. (Use the Ctrl key
to select multiple items.) Then click OK.

These standard actions appear in the Action List editor with default images
already associated with them.

Bl Editing Formil.ActionList] IR

ta-%a|+ ¥

Categories: Actions:

(Mo Category) [4 Editcun You've added three standard
DEditCapy1 k— actions that come with the
I EditPaste product. You'll use these on a

menu.

To change the associated images, see “Adding images to the image list” on
page 4-10 of the text editor tutorial.

Right-click the Action List editor and choose New Action to add another action
(not provided by default). Actionl is added by default. In the Object Inspector, set
its Caption property to Update Now!

This same action will be used on a menu and a button. Later on, you'll add an
event handler so it will update the database.

Click (No Category), right-click and choose New Action to add another action.
Action?2 is added. Set its Caption property to E&xit.

5-8 Quick Start

Designing the user interface

9 Click the X (in the upper right corner) to close the Action List editor.

You've added three standard actions plus two other actions that you'll connect to

event handlers later.

10 Choose File | Save All to save the project.

Adding a menu

In this section, you'll add a main menu bar with two drop-down menus—File and
Edit—and you’ll add menu items to each one using the actions in the action list.

1 From the Standard page of the Component palette, drop a TMainMenu component
onto the form. Drag it next to the other nonvisual components.

2 Set the main menu’s Images property to ImageListl to associate the image list with
the menu items.

3 Double-click the TMainMenu component to display the Menu Designer.

Sl Form1.MainMenul

4 Type &File to set the Caption property of the first top-level menu item and press

Enter.

Ohject Inspectar

[Fite1: Tenuitem

Properties l Even[s]

Action

AutoHotkeys

maFarent

Bitmap

{Mone)

Caption
Checked

]

False

Enabled

True

Grouplndes

]

HelpCortext

1]

HelpKeywor

HelpType

htkeyward

Hint

Imagelndex

-1

Mame

Filel

Radigltem

False

ShortCut

(Mone)

Tag

]

Wisihle

True

[&1l shown

When you type
&File and press
Enter, the top-level
File command
appears ready for
you to add the first
menu item.

The ampersand
before a character
activates an
accelerator key.

Bl Form1.MainMenul E(mE ¢

5 Select the blank menu item below the File menu. Set the blank menu item’s Action
property to Action2. An Exit menu item appears under the File menu.

Creating a database application—a tutorial 5-9

Designing the user interface

6 Click the second top-level menu item (to the right of File). Set its Caption property
to &Edit and press Enter. Select the blank menu item that appears under the Edit
menu.

7 In the Object Inspector, set the Action property to EditCutl and press Enter. The
item’s caption is automatically set to Cut and a default cut bitmap appears on the
menu.

8 Select the next blank menu item (under Cut) and set its Action property to EditCopyl
(a default copy bitmap appears on the menu).

9 Select the next blank menu item (under Copy) and set its Action property to
EditPastel (a default paste bitmap appears on the menu).

10 Select the next blank menu item (under Paste) and set its Caption property to a
hyphen (-) to create a divider line in the menu. Press Enter.

11 Select the next blank menu item (under the divider line) and set its Action property
to Actionl. The menu item displays Update Now!

12 Click the X to close the Menu Designer.
13 Choose File | Save All to save the project.

14 Press F9 or Run on the toolbar to run your program and see how it looks.

=2 Project1 E(mE ¢
Eile Edit
I
i 1 3 S S
ER[CUST_NG [SALES_REP|ORDER_STATUS|ORDER_DATE
1mz 11 shipped 10151992
V921003 1010 51 shipped 07/26/1392
| |vaszosan 1001 127 open 1241241393
| |vaazazno 1001 72 shipped 06/09/1993
| |vazzaazo 1001 127 shipped 08416/1393
| |vasasnos 1002 11 shipped 02/03/1393
| |vaaaanns 1002 11 shipped 04/27/1993
| |vazasino 1002 11 walting 1242741393
| |vazasiaa 1003 127 shipped 09/09/1393
| |vasaszno 1003 11 shipped 1141141993
| |vazaszao 1003 11 walting 124311393
| |vasei002 1014 134 shipped 09/20/1393
| |vaacoizo 1006 72 shipped 03422/1993
| |vazcoaso 1006 72 shipped 08/03/1393
| |vasFaonzn 1003 &1 shipped 1041041393
| |vaarzoan 1012 134 apen 12121993
EEES 1012 134 walting 12416/1393 I
| |vesFaoas 1012 134 shipped DB/27/1393 Hx

Many of the commands on the Edit menu and the navigation bar are operational at
this time. Copy and Cut are grayed on the Edit menu until you select some text in the
database. You can use the navigation bar to move from record to record in the
database, insert a record, or delete a record. The Update command does not work yet.

Close the application when you're ready to continue.

5-10 Quick Start

Displaying a title and an image

Adding a button

This section describes how to add an Update Now button to the application. This
button is used to apply any edits that a user makes to the database, such as editing
records, adding new records, or deleting records.

To add a button:

1 From the Standard page of the Component palette, drop a TButton onto the form.
(Select the component then click the form next to the navigation bar.)

2 Set the button’s Action property to Actionl.

The button’s caption changes to Update Now! When you run the application, it
will be grayed out until an event handler is added to make it work.

Displaying a title and an image

A

=

You can add a company title and an image to make your application look more
professional:

1 From the Standard page of the Component palette, drop a TLabel component onto
the form. Kylix names this Labell by default.

2 In the Object Inspector, change the label’s Caption property to lorld Corp or another
company name.

3 Change the company name’s font by clicking the Font property. Click the ellipsis
that appears on the right and in the Font dialog box, change the font to Helvetica
Bold, 16-point type. Click OK.

Dijec nipeco 3 X
Labell: TLahel hd
Eant Font style Size
Properiies | Everts| You can change the [Helvetica [atope] ol 15
mAnchors | [akLef,akTop A fom of the label Courier [adobe]] [rormal 5 -
Autosize|True using the Font Helvetica [adohe] Obligue E]
Bitmap | (None) property in the New cariury schoolkook fadobe] 1?
BorderStyle |hshone Object Inspector. Tis:nes [aE:Inhe]] I "
Captian Warld Carn . .
2 Bl Click the ellipsis to Avanigade 14
il s g displ dard Courier [bitstream] =l =
ECanstraints |(TSizeConstr Isplay a standar
Cursar crDefault font dlalog box. N Effects ~ Sample
Draghode |dmianual I~ Strikeout
Enahled |True B UGG aaBbii
FocusContrg
= Font m | = Script
[alshown |westem (130 8853-1) =
A

4 Position the label in the upper right corner.

5 From the Additional Component palette page, drop a TImage component next to
the label. Kylix names the component Imagel by default.

Creating a database application—a tutorial 5-11

Writing an event handler
6 To add an image to the Imagel component, click the Picture property. Click the
ellipsis to display the Picture editor.

7 In the Picture editor, choose Load and navigate to the icons directory provided
with the product. The default location is {install directory}/images/icons. For
example, if Kylix is installed in your /usr/local /kylix2 directory, look in /usr/
local/kylix2/images/icons.

8 Double-click earth.ico. Click OK to load the picture and to close the Picture editor.

9 Size the default image area to the size of the picture. Place the image next to the

label.
B Form K You can set the size of
File Edit the Image1 component
Dol |l L i
mp g i g g ot hesaool e
'SQLCDnneclmm SQLDalaSeﬂ DalaSetF'rowden CllentDalaSeﬂ DataSourcsn ImageL\sﬂ Aclanlsn p
: : : i b ways: drag the edge of
e \w% I Image1, or change the
L orld Cor . ;
R P Width and Height
::::::__‘__::::::: properties in the Object
..H|4|>|H|+|—|A|./|x|('[.. UpdateNow!l.l.. Sl l i |nSpeCt0I‘.
PO_NUMBER[CUST_NO _[SALES_REP[ORDER_STATUS[ORDER_DATE -]
[¥|vazFanng 101z 11 shipped 10151392 [
| |vazu1o0a 1010 81 shipped 07/26/1992 [
| |vaszosa0 1001 127 open 124121993 :
| |vaszazon 1001 72 shipped 0840941 993 i
V3324320 1001 127 shipped 08/16/1993 [l
[linz22n0c 1nns PR Annzanns P .L[

10 To align the text and the image, select both objects on the form, right-click, and
choose Align. In the Alignment dialog box, under Vertical, click Bottoms.

11 Choose File | Save All to save the project.
12 Press F9 to compile and run your application.

13 Close the application when you're ready to continue.

Writing an event handler

Most components on the Component palette have events, and most components
have a default event. A common default event is OnClick, which gets called whenever
a component, such as TButton, is clicked. If you select a component on a form and
click the Object Inspector’s Events tab, you'll see a list of the component’s events.

For more information about events and event handlers, see “Developing the
application user interface” in the Developer’s Guide or online Help.

Writing the Update Now! command event handler

First, you'll write the event handler for the Update Now! command and button:
1 Double-click the ActionList component to display the Action List editor.
2 Select (No Category) to see Actionl and Action2.

5-12 Quick Start

Note

Writing an event handler

3 Double-click Actionl. In the Code editor, the following skeleton event handler
appears:

procedure TForml.ActionlExecute(Sender: TObject);
begin

end;
Right where the cursor is positioned (between begin and end), type:

if ClientDataSetl.State in [dsEdit, dsInsert] then ClientDataSetl.Post;
ClientDataSetl.ApplyUpdates(-1);

This event handler first checks to see what state the database is in. When you move
off a changed record, it is automatically posted. But if you don’t move off a changed
record, the database remains in edit or insert mode. The if statement posts any data
that may have been changed but was not passed to the client dataset. The next
statement applies updates held in the client dataset to the database.

Changes to the data are not automatically posted to the database when using
dbExpress. You need to call the ApplyUpdates method to write all updated, inserted,
and deleted records from the client dataset to the database.

Writing the Exit command event handler

Next, you'll write the event handler for the Exit command:

1 Double-click the ActionList component to display the Action List editor if it is not
already displayed.

2 Click (No Category) so you see Action2.

3 Double-click Action2. The Code editor displays the following skeleton event
handler:

procedure TForml.Action2Execute(Sender: TObject);
begin

end;
Right where the cursor is positioned (between begin and end), type:
Close;

This event handler will close the application when the File | Exit command on the
menu is used.

4 Close the Action List editor.
5 Choose File | Save All to save the project.

Writing the FormClose event handler

Finally, you'll write another event handler that is invoked when the application is
closed. The application can be closed either by using File | Exit or by clicking the X in
the upper right corner. Either way, the program checks to make sure that there are no

Creating a database application—a tutorial 5-13

Writing an event handler

pending updates to the database and displays a message window asking the user
what to do if changes are pending.

You could place this code in the Exit event handler but any pending database
changes would be lost if users chose to exit your application using the X.

1 Click the main form to select it (rather than any specific object on it).
2 Select the Events tab in the Object Inspector to see the form events.

3 Double-click OnClose (or type FormClose next to the OnClose event and click it). A
skeleton FormClose event handler is written and displayed in the Code editor
after the other event handlers:

procedure TForml.FormClose(Sender: TObject; var Action: TCloseAction);
begin

end;

Right where the cursor is positioned (between begin and end), type:

Action := caFree;
if ClientDataSetl.State in [dsEdit, dsInsert] then
ClientDataSetl.Post;
if ClientDataSetl.ChangeCount> 0 then
begin
Option := Application.MessageBox ('You have pending updates. Do you want to write them
to the database?', 'Pending Updates', [smbYes, smbNo, smbCancell],
smsWarning, smbYes);
case Option of
smbYes: ClientDataSetl.ApplyUpdates(-1);
smbCancel: Action := caNone;
end;
end;

This event handler checks the state of the database. If changes are pending, they
are posted to the client dataset where the change count is increased. Then before
closing the application, a message box is displayed that asks how to handle the
changes. The reply options are Yes, No, or Cancel. Replying Yes applies updates to
the database; No closes the application without changing the database; and Cancel
cancels the exit but does not cancel the changes to the database and leaves the
application still running.

4 You need to declare the variable used within the procedure. On a line between
procedure and begin type:

var
Option: TMessageButton;

5-14 Quick Start

Writing an event handler

5 Check that the whole procedure looks like this:

procedure TForml.FormClose(Sender: TObject; var Action: TCloseAction);
var
Option: TMessageButton;
begin
Action := caFree;
if ClientDataSetl.State in [dsEdit, dsInsert] then
ClientDataSetl.Post;
if ClientDataSetl.ChangeCount> 0 then
begin
Option := Application.MessageBox ('You have pending updates. Do you want to write them
to the database?', 'Pending Updates', [smbYes, smbNo, smbCancel]
smsWarning, smbYes);
case Option of
smbYes: ClientDataSetl.ApplyUpdates(-1);
smbCancel: Action := caNone;
end;
end;
end;

6 To finish up, choose File | Save All to save the project. Then press F9 to run the
application.

Tip Fix any errors that occur by double-clicking the error message to go to the code in
question or by pressing F1 for Help on the message.

That’s it! You can try out the application to see how it works. When you want to exit
the program, you can use the fully functional File | Exit command.

Creating a database application—a tutorial 5-15

5-16 Quick Start

Customizing the desktop

This chapter explains some of the ways you can customize the tools in Kylix’s IDE.

Organizing your work area

The IDE provides many tools to support development, so you'll want to reorganize
your work area for maximum convenience, including rearranging your menus and
toolbars, combining tool windows, and saving a new way your desktop looks.

Arranging menus and toolbars

In the main window, you can reorganize the menu, toolbars, and Component palette
by clicking the grabber on the left-hand side of each one and dragging it to another
location.

You can move toolbars and menus within the main window. Drag the grabber
(the double bar on the left) of an individual toolbar to move it.

50274 Kylix - Project] + 5 | Main window

File Edit Search Wiew Project Run Component Tools Help “ <Mone= - @| organized
nS-RAas 33 |@ . -ns5|esan differently.
Standard IAddiliunall Comton Comrolsl D\alogs] dbExpress | Data Accessl Data Comrolsl Imemetl Indy Chemsl Incy Serverﬂ_>|
&k FE S AREDr ¢ @ =0]

Customizing the desktop 6-1

Organizing your work area

You can separate parts from the main window and place them elsewhere on the
screen or remove them from the desktop altogether. This is useful if you have a dual
monitor setup.

BB i propct R
” File Edit Search View Project Run Component Tools ﬂelp| Drag the grabberof an
| [= B individual toolbar to
o T 3| @) [Nones || & @ | moveit

Camponent Palette

Standard IAddmunall Cormmon Controls | Dialogs | dbExpress | Data Access | Data Contrals | Intemet | Indy Clian <] »

P AR wr 6 Bl = 3

You can add or delete tools from the toolbars by choosing View | Toolbars |
Customize.

= X

Toolbars Commands |Optmns|

Categoties: Cammanids
| SeeEiy From the Commands
v Breakpoints
8, Call Stack page, select any _
o Wattches command and drag it
o Threads onto any toolbar.
22 Modules .
ScPU On the Options page,
t”ﬁa't aretles click Show tooltips to
D make sure the hints for

All Commands components and

To add command huttons, drag and drop commands onto a toolbar, To toolbar icons appear.

remove command buttans, drag them off of a Toolbar.

Close Help

For more information...
See “toolbars, customizing” in the Help index.

Docking tool windows

You can open and close individual tool windows and arrange them on the desktop as
you wish. Many windows can also be docked to one another for easy management.
Docking—which means attaching windows to each other so that they move
together—helps you use screen space efficiently while maintaining fast access to
tools.

From the View menu, you can bring up any tool window and then dock it directly to
another. For example, when you first open Kylix in its default configuration, the

6-2 Quick Start

Organizing your work area

Code Explorer is docked to the left of the Code editor. You can add the Project
Manager to the first two to create three docked windows.

Here the Code Explorer and Project Manager
are docked to the Code editor.

B

PE:
= A unip -
, Project! urit Unitl; 2
You can combine,or —————— ’
“dock” windows with
either grabbers, ason / ntertace
the left, or tabs, as on :
page 6-4. = L uses .
% EE':HFG‘S Syeltila, Types, Classes, PGraphics, QContrc
type

i-#F Classes
-3 QControls
-% GDialogs
¥ QForms

-3 QGraphics =
q | »

KIS

TForml = class |(TForm)
Buttonl: TButton;

CheckBoxl: TCheckBox;

Labell: TLabel;
private

{ Private declarations }
public

{ Public declarations }
end -

'n

| 3 43 [Modified | Insent

To dock a window, click its title bar

and drag it over the other window. When the

drag outline narrows into a rectangle and it snaps into a corner, release the mouse.

The two windows snap together.

£ + . - <

e TForml
To get docked windows with .3 variaples/Const
grabbers, release the -0 Uses
mouse when the drag
outline snaps to the
window’s corner.
N — |

Unml -

unit Unitl;
interface

uses

SyeUtils, Types, Claseses, DGraphics, O
type
TForml = class= (TForm!
Buttonl: TButton;
CheckBoxl: TCheckBox;

private

J Drdtrata Aa~iaratinne

7

o

I

| B 46 Modified

[Insert

Customizing the desktop 6-3

Organizing your work area

You can also dock tools to form a tabbed window.

2 DR
Unitd | - -
{2 vaniables/Constants unit Unitl; 21l To get docked windows that are
-3 Uses tabbed, release the mouse before

interface the drag outline snaps to the other

window’s corner.
uses
SyeUtils, Types, Classes, (QOGraphics,
type
5 (=

aileﬂl - -

Exploring Unitl.pas Project Manager'

Project! = & .
Meny HEl

. - interface
Sl | Files Path
B 46 [Modified [Insert

unit Unitl; =

E8 ProjectGroupl fhomerkgallag
] Projecti fhomerkgallag uses
25 Unitt fhomeskgallag SyeUtils, Types, Classes,
E] unitt pas /homeskpallag
- Farmi fhomedkgallag type

TForml = class [TForm)
Buttonl: TButton:
CheckBoxl: TCheckBox;

private
{ Private (‘TP(“TH?‘R#";HT‘IR—"j

K|

| & 46 [Modified [Insert

To undock a window, double-click its grabber or double-click its tab.

To turn off automatic docking, press the Ctrl key while moving windows around the
screen.

For more information...
See “docking” in the Help index.

Saving desktop layouts

You can customize and save your desktop layout. The Desktops toolbar in the IDE
includes a pick list of the available desktop layouts and two icons to make it easy to
customize the desktop.

Save current
desktop

e
| |

Named desktop getfebug
settings are listed here esktop

Arrange the desktop as you want including displaying, sizing, and docking
particular windows, and placing them where you want on the screen. On the

6-4 Quick Start

Customizing the Component palette

Desktops toolbar, click the Save current desktop icon or choose View | Desktops |
Save Desktop, and enter a name for your new layout.

= X
Enter a name for the
Save current desktop as deSktOp |ay0ut you
| = want to save and click

OK.

For more information...
See “desktop layout” in the Help index.

Customizing the Component palette

In its default configuration, the Component palette displays many useful CLX objects
organized functionally onto tabbed pages. You can customize the Component palette
by:

¢ Hiding or rearranging components.

¢ Adding, removing, rearranging, or renaming pages.

¢ Creating component templates and adding them to the palette.

¢ Installing new components.

Arranging the Component palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use
the Palette Properties dialog box. You can open this dialog box in several ways:

¢ Choose Component | Configure Palette.
¢ Choose Tools | Environment Options and click the Palette tab.

Customizing the desktop 6-5

Customizing the Component palette

¢ Right-click the Component palette and choose Properties.

Bl Palette Properties - X
Palette l

Pages:

Components

ard] MName Package
onal
Common Controls
Dialogs —
Data Access = TMainMenu delstdso
dbExprass z You can rearrange the palett
Data Controls ﬁ& TPopuphenu dclstd.so canre a ge epae e
Internet and add new pages.
Indy Clients A TLabel delstd.so
Indy Servers
Indy Misc [abI| TEdIt delstd.so
InternetExpress —]
webSnap 5 Thlemo delstd.so
E’lﬁ]ﬁsew'ws Lot} TBution dclstd.so
X | TCheckBax delstd.so
@ TRadioButton dclstd so
= .|

Add... Delete | Rename.. | | MoveDgwn‘

Ok Cancel | Help |

For more information...
Click the Help button in the Palette Properties dialog box.

Creating component templates

Component templates are groups of components that you add to a form in a single
operation. Templates allow you to configure components on one form, then save
their arrangement, default properties, and event handlers on the Component palette
to reuse on other forms.

To create a component template, simply arrange one or more components on a form
and set their properties in the Object Inspector, and select all of the components by
dragging the mouse over them. Then choose Component | Create Component
Template. When the Component Template Information dialog box opens, select a
name for the template, the palette page on which you want it to appear, and an icon
to represent the template on the palette.

After placing a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

6-6 Quick Start

Customizing the Component palette

— = T

RSO | =i CLllliIiliiiiiiiiiiiiiiiiiininiiiinin
I=| ChieckB oy Bt

RSl Component Template Information - X

Component name: ITChEEkEDKTEmpIalE

Palette page: ITE’"P‘HIES j

Palette Icon x Change... | I
oK | Cancel | Help | Gonconconconsc

For more information...
See “templates, component” in the Help index.

Installing component packages

Whether you write custom components or obtain them from a vendor, the
components must be compiled into a package before you can install them on the
Component palette.

A package is a special shared object containing code that can be shared among Kylix
applications, the IDE, or both. Runtime packages provide functionality when a user
runs an application. Design-time packages are used to install components in the IDE.

If a third-party vendor’s components are already compiled into a package, either
follow the vendor’s instructions or choose Component | Install Packages.

Bl Project Options - X
Packages}

These components come preinstalled

e g — : — in Kylix. When you install new
< R Databce Comporaris > i components from third-party vendors,
W] Borland dbExpress Database Components their package appears in this list.
Wi Borland Editar Emacs Enhancements
Borland Internet ¢ t i
s mace] Click Components to see what
& Bndand S3mnla Heln Viswer Backane =l components the package contains.
Jusrilocalikylixe/hinddelsoap 50,6

Add Remave ‘ Components ‘

Runtime packages

[Build with runtime packages

[

" Default oK Cancel Help

For more information...
See “installing components” and “packages” in the Help index.

Customizing the desktop 6-7

Setting project options

Using frames

A frame (TFrame), like a form, is a container for components that you want to reuse.
A frame is more like a customized component than a form. Frames can be saved on
the Component palette for easy reuse and they can be nested within forms, other
frames, or other container objects. After a frame is created and saved, it continues to
function as a unit and to inherit changes from the components (including other
frames) it contains. When a frame is embedded in another frame or form, it continues
to inherit changes made to the frame from which it derives.

To open a new frame, choose File | New Frame.

— <O X

You can add whatever visual

Name: | or nonvisual components
you need to the frame. A new

adress: | unit is automatically added to
the Code editor.

: O.K
For more information...

See “frames” and “TFrame” in the Help index.

Setting project options

If you need to manage project directories and to specify form, application, compiler,
and linker options for your project, choose Project | Options. When you make
changes in the Project Options dialog box, your changes affect only the current
project; but you can also save your selections as the default settings for new projects.

Setting default project options

To save your selections as the default settings for all new projects, in the lower-left
corner of the Project Options dialog box, check Default. Checking Default writes the
current settings from the dialog box to the options file defproj.kof. To restore Kylix’s
original default settings, delete or rename the defproj.kof file, which is located in
{home directory}/.borland.

For more information...
See “Project Options dialog box” in the Help index.

6-8 Quick Start

Specifying project and form templates as the default

Specifying project and form templates as the default

When you choose File | New Application, a new project opens in the IDE. Kylix
creates a standard new application with an empty form, unless you specify a project
template as your default project. Kylix does not come with predesigned project
templates, but you can save your own project as a template in the Object Repository
on the Projects page by choosing Project | Add to Repository (see “Adding templates
to the Object Repository” below).

To specify your project template as the default, choose Tools | Repository. In the
Object Repository dialog box, under Pages, select Projects. If you've saved a project
as a template on the Projects page, it appears in the Objects list. Select the template
name, check New Project, and click OK.

- : . .
e - The Object Repository’s pages
Objects contain project templates only,
MO Appicaion form templates only, or a
i Page combination of both.
essonices Delete Page To set a project template as the
(Rt default, select an item in the
Obijects list and check New
Edit Object PrO]eCt.
Delsta tject To set a form template as the
default, select an item in the
- Objects list and check New Form
W New Project
SIS : or Main Form.
oK Cancel ‘ Help |

Once you've specified a project template as the default, Kylix opens it automatically
whenever you choose File | New Application.

In the same way that you specify a default project, you can specify a default main form
and a default new form from a list of existing form templates in the Object Repository.
The default main form is the form created when you open a new application. The
default new form is the form created when you choose File | New Form to add an
additional form to an open project. If you haven’t specified a default form, Kylix uses
a blank form.

You can always override your default project or forms by choosing File | New and
selecting a different template from the New Items dialog box.

For more information...

See “templates, adding to Object Repository,
“forms, specifying default” in the Help index.

i

projects, specifying default,” and

Adding templates to the Object Repository

You can add your own objects to the Object Repository as templates to reuse and share
with other developers over a network. Reusing objects lets you build families of

Customizing the desktop 6-9

Setting tool preferences
applications with common user interfaces and functionality that reduces
development time and improves quality.

For example, to add a project to the Repository as a template, first save the project
and choose Project | Add To Repository. Complete the Add to Repository dialog box.

— X
Title
[Project Enter a title, description,
Sosartion and author. In the Page list
el box, choose Projects so that
IGenerlc farm with check box and button . o
your project will appear on
Page Author the Repository’s Projects
[Projects 7] [&C Company tabbed page.
Select an icon to represent this project:
=
He Browse |

Ok | Cancel | Help |

The next time you open the New Items dialog box, your project template will appear
on the Projects page (or the page to which you had saved it). To make your template
the default every time you open Kylix, see “Specifying project and form templates as
the default” on page 6-9.

For more information...
See “templates, adding to the Object Repository” in the Help index.

Setting tool preferences

You can control many aspects of the appearance and behavior of the IDE, such as the
Form Designer, Object Inspector, and Component palette. These settings affect not
just the current project, but projects that you open and compile later. To change
global IDE settings for all projects, choose Tools | Environment Options.

For more information...

See “Environment Options dialog box” in the Help index, or click on the Help button
on any page in the Environment Options dialog box.

Customizing the Form Designer

The Preferences page of the Environment Options dialog box has settings that affect
the Form Designer. For example, you can enable or disable the “snap to grid” feature,
which aligns components with the nearest grid line; you can also display or hide the
names, or captions, of nonvisual components you place on your form.

For more information...
In the Environment Options dialog box, click the Help button on the Preferences
page.

6-10 Quick Start

Setting tool preferences

Customizing the Code editor

One tool you may want to customize right away is the Code editor. Several pages in
the Tools | Editor Options dialog box have settings for how you edit your code. For
example, you can choose keystroke mappings, fonts, margin widths, colors, syntax
highlighting, tabs, and indentation styles.

You can also configure the Code Insight tools that you can use within the editor on
the Code Insight page of Editor Options. To learn about these tools, see “Code Insight
tools” on page 2-6.

For more information...

In the Editor Options dialog box, click the Help button on the General, Display, Key
Mappings, Color, and Code Insight pages.

Customizing the Code Explorer

When you start Kylix, the Code Explorer (described in “The Code Explorer” on
page 2-8) opens automatically (unless the Code Explorer is not in the edition of Kylix
you purchased). If you don’t want Code Explorer to open automatically, choose
Tools | Environment Options, click the Explorer tab, and uncheck Automatically
show Explorer.

You can change the way the Code Explorer’s contents are grouped by right-clicking
in the Code Explorer, choosing Properties, and, under Explorer categories, checking
and unchecking the check boxes. If a category is checked, elements in that category
are grouped under a single node. If a category is unchecked, each element in that
category is displayed independently on the diagram’s trunk. For example, if you
uncheck the Published category, the Published category folder disappears but not the
items in it.

1 Wariables/Canstants
i Uses
3 Wirtuals

[Einish incomplete praperties

— X
Preferences | Library | Palette Erplorer | Environment Variabies |
Explorer options. Explorer categories:
i iummaﬂcamy show Explorer : ;n“v':t:md
M Highlight incomplete class items =h =
X ; ETr et i1 Progeries each type of source element
alphabetically orin the order — = e = il in the Code Explorer, check
in which they are declared # s v Imeraces Exol i
in the source file. e pmm——— E Praceduies an explorer category.

Initial browser view:
1 Statics

@ Classes ¢ Unfts ¢ Globals @1 Inharfed

4 Infraduced

Browsser scope

& Project symbols only

C Al symbals (CLX Ineluded)

oK Cancel Help

For more information...
See “Code Explorer, Environment options” in the Help index.

Customizing the desktop 6-11

Printing Help topics

Printing Help topics

This section covers printing Kylix Help topics and configuring Kylix to work with
your printer. You can print a Kylix Help topic in two ways. You can either print a
topic to a PostScript file and then to a printer, or you can configure your system to
print directly to a printer.

Note Your Linux machine must be configured to print. If your Linux machine is not
already configured, edit the /etc/printcap file. To configure this file, check either
your distribution-specific documentation, the Printing-HOWTO file, or the Printing-
Usage-HOWTO file at http:/ /www .linuxdoc.org.

Printing to a file

By default, the Kylix Help system is configured to print to a PostScript file. You can
print a Help topic to a PostScript file and then print that file to a printer by doing the
following:

1 Choose Help, select a Help menu item below Kylix Help, and click Print. The
Topics dialog box appears.

2 Select the topic you want to print and click OK.

The Help system produces a PostScript file in the user’s home directory. After a
topic prints to file, a message box appears, stating that Output is in /home/
username/ xprinter.out.

3 If you now want to print the file to your printer and your printer supports
PostScript, from a shell, go to your home directory and type lpr xprinter.out.

If your printer does not support PostScript, you can still print the xprinter.out file
using a utility such as Ghostview.

Note When printing to a file, Kylix overwrites the existing xprinter.out file, assuming it
already exists. If you want to print multiple topics to files before sending them to
the printer, be sure to rename the xprinter.out file after printing each topic.

Printing directly to a printer

You can also configure your Help system so that you always print directly to the
printer instead of to a file first.

6-12 Quick Start

Printing Help topics

1 Open the Help system by choosing Help and selecting a Help menu topic below

File Edit Search View Project Bun Component Tools Help |||<N0ne> - | B 5,
OE-d @5 =2 ﬂ“l | | Standard IAddmunall o Kyl Help |:DI’
BEDI0[FmEE s s A® arpanent i

& Object Pascal Refarence Guide
& Programming with Kylix

J

5p x| A Uniti | €* Developing Database Applications
Forml- TFom ~w§ TForm1 & Creating Custom Components =
ormi: Trom =1 Wariables/Constal un
Properties |Evgmgl =0 Uses @ Writing Distributed Applications
Action [~ in About
ActiveContr

2 Once in the Help system, choose File | Printer Setup.

[=I[3l]
File | Edit Bookmark Options Help
‘ Open. .. P_rintl pS; M
Print.,,.
Printer Setup... _X Help
_ Exit -

CLx help is a reference for all the ohjects, components, global routines,
types, and variables that make up the cross—platform component library
[CL¥). The individual entries for objects, components, routines, types, and
variables include the unit in which each is declared. These units are located
in the sub—directories of the Delphi Source directory.

The Printer Setup dialog box appears.

3 To add a specific printer to your system, check the Printer Specific check box and
click the Install button.

Printer Setup

Output. Format.: ‘ -+ Printer Specific “* Generic (File Only) ‘ P%&

File Mame: IEXPl“inter.ﬂut EPSF — |
Orientation:

Scale : |§1.00
A Portrait

~ Landscape Copies: Iil

Apply | Save | Reset | Cancel |

4 From the Printer Installation dialog box, click Add Printer. The Add Printer dialog
box appears.

wl Install‘“l

5 Below the Printer Devices column, select your printer from the list. If your printer
supports PostScript printing but is not listed, select the Generic PostScript Printer.

Customizing the desktop 6-13

Printing Help topics

6 Under the Current Port Definitions column, select local=1p -t$XPDOCNAME.

Note Depending on which print service software is included with your Linux
distribution, you may need to change the command syntax under Current Port
Definitions. For instance, Red Hat version 7.0 and higher uses LPRng (which
supports the above syntax), while earlier versions of Red Hat include a version of
lpr that requires you to change the port definition to local=lpr -TSXPDOCNAME.

Tip To determine the correct syntax, check the man page for Ip and lpr on your
system.

Add Printer
Printer Devices Current Port Definitions
GCC BLP IIS

GCC Business LaserPrinter
GCC Business LaserPrinter —
Ceneric P -ipt Printer
Gestether GLPBOO-Scout

HF Color LazerJet PCL Cartridge
HP Color LaserlJet PS

HF Designlet B5OC HPGL-Z/RTL

HF DezignJet BHOC PoztScript

HF Designlet 750C HPGL-2Z/RTL i

=

Add Selected | Define Mew Port... | Dizmiss |

7 Once you select the correct printer device and port definition, click Add Selected
and then Dismiss. This connects the print command to the correct printer.

8 Click Dismiss again.

9 In the Printer Setup dialog box, click Options to open the Options dialog box.

Printer Mame:|Generic PostScript Printer on local

Resolution: |300dpi
Page Size: Letter

Paper tray: |Upper

Ok | Cancel |

10 In the Printer Name field, select the newly configured local printer and click OK.

11 In the Printer Setup dialog box, click Apply.
You are now ready to print directly to a printer.

12 Choose Help, select a Help menu item below Kylix Help, and click Print. The
Topics dialog box appears.

13 Select the topic you want to print and click OK.

6-14 Quick Start

A

About box, adding 4-23
actions, adding to an application 4-7, 4-9
adding
components to a form 4-3, 4-12
items to Object Repository 2-4
applications
client/server 3-8
compiling and debugging 3-6, 4-14
creating 3-1
database 3-8, 5-1
deploying 3-7
designing user interface 3-1
internationalizing 3-7
Web server 3-9
Web services 3-9

bitmaps, adding to an application 4-10
BizSnap 3-9

C

character sets, extended 3-7
class completion 2-7
classes, using CLX 3-4
client/server applications, creating 3-8
CLX
class library 3-4 to 3-5
components 2-3
code
help in writing 2-6
using the Code editor 2-5
viewing and editing 2-5
writing 3-4, 4-16 to 4-23, 5-12 to 5-15
Code editor
combining with other windows 6-2
customizing 6-11
using 2-5 to 2-6
Code Explorer
customizing 6-11
using 2-8
Code Insight tools 2-6
combining windows (docking) 6-2
compiling programs 3-6, 4-14, 5-7
Component Library for Cross Platform (CLX)
defined 3-4
diagram 3-5

Index

Component palette

adding custom components 3-10

adding pages 6-5

customizing 6-5 to 6-7

defined 2-3

using 3-2
component templates, creating 6-6
components

adding to a form 3-2,4-3

adding to Component palette 6-5

arranging on the Component palette 6-5

CLX class library 3-5

creating 3-10

customizing 3-1, 6-6

installing 3-1, 6-7

setting properties 3-2, 4-2
context menus, accessing 2-2
customizing

Code editor 6-11

Code Explorer 6-11

Component palette 2-2

Form Designer 6-10

IDE 6-1 to 6-11

D

data modules 2-4, 3-5
database applications
accessing 5-3 to 5-4
creating 5-1 to 5-15
overview 3-8, 5-1
database drivers 3-8
database tutorial 5-1 to 5-15
DataSnap 3-8
dbExpress 3-8, 5-1
debugging programs 3-6
default
project and form templates 6-9
project options 6-8
deploying programs 3-7
design-time view 4-2
desktop
layouts, saving 6-4
organizing 6-1 to 6-5
developer support 1-6
dialog boxes, templates for 2-4
distributed applications 3-8
docking windows 6-2 to 6-4
documentation, ordering 1-6
dpr files 4-1

Index

11

E

Editor Options dialog box 2-6, 6-11

Environment Options dialog box 2-7, 6-10

error messages 4-23, 4-25

event handlers
creating 4-16 to 4-23, 5-12 to 5-15
defined 3-4

events 4-16,5-12

Events page (Object Inspector) 3-4, 5-12

executables 3-7

F

files
configuration 4-2
form 2-8,4-1
project 4-1
saving 4-1
types 4-1,4-2
unit 4-1
Form Designer
customizing 6-10
defined 2-1
using 2-3
form files
defined 4-1
viewing code 2-8
forms
adding components to 3-1, 4-3
closing 4-2
in Object Repository 2-4
main 4-2, 6-9
specifying as default 6-9
frames 6-8

G

global symbols 2-10
GUIs, creating 3-1

H

Help system
accessing 1-5 to 1-6
printing 6-12

Help tooltips 4-3

IDE
customizing 6-1 to 6-11
defined 1-1
organizing 6-1
tour of 2-1
images, adding to an application 4-10

I-2 Quick Start

initialization files, deploying programs 3-7

input method editors (IMEs) 3-7
Installing 1-3
installing
custom components 6-7
Kylix 1-2 to 1-4
integrated debugger 3-6

integrated development environment (IDE)

customizing 6-1 to 6-11
tour of 2-1
internationalizing applications 3-7

K

keystroke mappings 6-11
Kylix
customizing 6-1 to 6-11
installing 1-2
overview 1-1
printing Help topics 6-12
programming 3-1
registering 1-4
starting 1-4
uninstalling 1-7

L

localizing applications 3-7

M

menus
adding to an application 4-12
context 2-2
in Kylix 2-2
organizing 2-2to 2-3, 6-1
messages, error 4-23,4-25
modules, data 3-5
multi-tier applications, creating 3-8

N

New Items dialog box
saving templates to 6-9, 6-10
using 2-4,4-23

newsgroups 1-6

o)

Object Inspector 3-4
defined 2-3
using 3-2, 3-4, 4-2
Object Repository
adding templates to 2-5, 6-9
defined 2-4
using 2-4 to 2-5, 3-1

objects
adding to a form 4-4
defined 3-4, 4-3
online Help
accessing 1-5 to 1-6
printing 6-12
options
Code editor 6-11
Code Explorer 6-11
default project 6-8

P

packages
defined 6-7
installing component 6-7
.pas files 4-1
printing Kylix Help 6-12
programming with Kylix, overview 3-1
programs
adding data modules 3-5
compiling and debugging 3-6, 4-14
database 3-8
deploying 3-7
internationalizing 3-7
Web server applications 3-9
Web services 3-9
writing code 3-4
Project Browser 2-10
project groups 2-9
Project Manager 2-9
Project Options dialog box 6-8
projects
adding items to 2-4, 2-5
adding templates 6-9
creating 3-1
custom components 3-10
default files 4-1
managing 2-9
saving 4-1
setting options as default 6-8
shared objects 3-10
specifying as default 6-9
types 3-8 to 3-10
properties, setting 3-2, 4-2, 4-7

R

registering Kylix 1-4
requirements, system 1-2

resbind, localizing 3-7

resource files (.res) 4-2

right-click menus 2-2

Run button 5-7

running applications 3-6, 4-14, 5-7

S

saving
desktop layouts 6-4
projects 4-1
setting properties 3-2,4-2,4-7
shared objects 3-10
source code
CLX 3-5
files 4-1
help in writing 2-6

standard actions, adding to an application 4-9

starting Kylix 1-4
support services 1-6
system requirements 1-2

T

technical support 1-6
templates
adding to Repository 2-5, 6-9
specifying as default 6-9
text editor tutorial 4-1 to 4-25
to-do lists 2-10
toolbars

adding and deleting components from 6-2

adding to an application 4-15
organizing 6-1
using 2-2 to 2-3
tooltips, viewing 4-3
tutorials
database 5-1 to 5-15
text editor 4-1 to 4-25
typographic conventions 1-7

U

uninstalling Kylix 1-7
unit files 4-1
user interface, designing 3-1, 4-3

w

Web server applications 3-9
Web services 3-9

Web site, Borland 1-6
WebSnap 3-9

windows, docking 6-2

wizards (Object Repository) 2-4
writing code, overview 3-4

X

xfm files 2-8, 4-1

Index

I3

I-4 Quick Start

	Quick Start
	Contents
	Ch 1: Introduction
	What is Kylix?
	Requirements
	Installation
	The Kylix installer
	Root versus non-root install
	Installing Kylix

	Registering Kylix
	Starting Kylix
	Finding information
	Online Help
	Printed documentation
	Developer support services and Web site

	Uninstalling Kylix
	Typographic conventions

	Ch 2: A tour of the desktop
	The IDE
	The menu and toolbars
	The Component palette, Form Designer, and Object Inspector
	The Object Repository
	The Code editor
	Code Insight tools
	Class completion
	Form code

	The Code Explorer
	The Project Manager
	The Project Browser
	To-do lists

	Ch 3: Programming with Kylix
	Creating a project
	Designing the user interface
	Placing components on a form
	Setting component properties

	Writing code
	Writing event handlers
	Using CLX classes
	Adding data modules

	Compiling and debugging projects
	Deploying applications
	Internationalizing applications
	Types of projects
	Database applications
	Web server applications
	Web services
	Shared objects
	Custom components

	Ch 4: Creating a text editor—a tutorial
	Starting a new application
	Setting property values
	Adding components to the form
	Adding support for a menu and a toolbar
	Adding actions to the action list
	Adding standard actions to the action list
	Adding images to the image list

	Adding a menu
	Clearing the text area

	Adding a toolbar
	Writing event handlers
	Creating an event handler for the New command
	Creating an event handler for the Open command
	Creating an event handler for the Save command
	Creating an event handler for the Save As command
	Creating an event handler for the Exit command

	Creating an About box
	Completing your application

	Ch 5: Creating a database application— a tutorial
	Overview of database architecture
	Creating a new project
	Setting up data access components
	Setting up the database connection
	Setting up the unidirectional dataset
	Setting up the provider, client dataset, and data source

	Designing the user interface
	Creating the grid and navigation bar
	Adding support for a menu
	Adding a menu
	Adding a button

	Displaying a title and an image
	Writing an event handler
	Writing the Update Now! command event handler
	Writing the Exit command event handler
	Writing the FormClose event handler

	Ch 6: Customizing the desktop
	Organizing your work area
	Arranging menus and toolbars
	Docking tool windows
	Saving desktop layouts

	Customizing the Component palette
	Arranging the Component palette
	Creating component templates
	Installing component packages

	Setting project options
	Setting default project options

	Specifying project and form templates as the default
	Adding templates to the Object Repository

	Setting tool preferences
	Customizing the Form Designer
	Customizing the Code editor
	Customizing the Code Explorer

	Printing Help topics
	Printing to a file
	Printing directly to a printer

	Index

