PDFlib GmbH Miinchen, Germany

Version 4.0.1

ActiveX/COM edition

www.pdflib.com

http://www.pdflib.com

Copyright © 1997—2001 PDFlib GmbH and Thomas Merz. All rights reserved.

PDFlib GmbH
Tal 40, 80331 Miinchen, Germany
http://www.pdflib.com

phone +49 + 89 « 2916 46 87
fax +49 + 89 < 2916 46 86

If you have questions check the PDFlib mailing list and archive at http:/groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are trademarks of PDFlib GmbH. PDFlib licensees are granted the right to use
the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, and PostScript are trademarks of Adobe Systems Inc. AlX, IBM, 0S/390, WebSphere, iSeries,
and zSeries are trademarks or registered trademarks of International Business Machines Corporation.
ActiveX, Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation. Apple, Macintosh
and TrueType are trademarks of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Uni-
code, Inc. Unix is a trademark of The Open Group. Java and Solaris are a trademark of Sun Microsystems,
Inc. Other company product and service names may be trademarks or service marks of others.

PDFlib contains modified parts of the following third-party software:

PNG image reference library (libpng), Copyright © 1998, 1999, 2000 Glenn Randers-Pehrson

Zlib compression library, Copyright © 1995-1998 Jean-loup Gailly and Mark Adler

TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.

Author: Thomas Merz

Design and illustrations: Alessio Leonardi

Quality control (manual): Katja Karsunke, Petra Porst, York Karsunke, Rainer Schaaf
Quality control (software): a cast of thousands

http:/groups.yahoo.com/group/pdflib
http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

1.1
1.2
1.3
1.4

2.1

2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10

3.1

Contents

Introduction ;
PDFlib Programming 7

PDFlib Features 9

PDFlib Output and Compatibility 10

What’s new in PDFlib 4.0? 711

PDFlib Language Bindings ::

Overview of the PDFlib Language Bindings 12

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7

What's all the Fuss about Language Bindings? 12
Availability and Platforms 12

The »Hello world« Example 12

Error Handling 12

Version Control 13

Unicode Support 13

Summary of Language Bindings 14

ActiveX/COM Binding 14

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10

How does the ActiveX/COM Binding work? 14
Installing the PDFlib ActiveX Edition 15

Error Handling in ActiveX 17

Version Control in ActiveX 18

Unicode Support in ActiveX 18

Using PDFlib with Active Server Pages 18
Using PDFlib with Visual Basic 22

Using PDFlib with Windows Script Host 24
Using PDFlib with ColdFusion 25

Using PDFlib with Borland Delphi 26

CBinding 28

C++ Binding 28

Java Binding 28

Perl Binding 28
PHP Binding 28

Python Binding 28
RPG Binding 28
Tcl Binding 28

PDFlib Programming Concepts 2

General Programming Issues 29

3.1.1

The PDFlib Demo Stamp and Serial Numbers 29

Contents

3

3.2

33

3.4

35

41
4.2

43

4.4

3.1.2 PDFlib Program Structure 29
3.1.3 Generating PDF Documents directly in Memory 29
3.1.4 Error Handling 30

Page Descriptions 31

3.21 Coordinate Systems 31

3.2.2 Page and Coordinate Limits 33
3.2.3 Paths and Color 34

3.2.4 Templates 35

Text Handling 36

3.3.1 The PDF Core Fonts 36

3.3.2 8-Bit Encodings built into PDFlib 37

3.3.3 Custom Encoding and Code Page Files for 8-Bit Encodings 38
3.3.4 Hypertext Encoding 41

3.3.5 PostScript and TrueType Fonts 41

3.3.6 Resource Configuration and the UPR Resource File 45

3.3.7 CID Font Support for Japanese, Chinese, and Korean Text 48
3.3.8 Unicode Support 52

3.3.9 Text Metrics, Text Variations, and Text Box Formatting 54

Image Handling 58

3.41 Supported Image File Formats 58

3.4.2 Code Fragments for Common Image Tasks 59

3.4.3 Re-using Image Data 61

3.4.4 Memory Images and External Image References 62
3.4.5 Image Masks and Transparency 62

3.4.6 Multi-Page Image Files 64

PDF Import with PDI 65

3.5.1 PDIFeatures and Applications 65
3.5.2 Using PDI Functions with PDFlib 65
3.5.3 Acceptable PDF Documents 67

PDFlib API Reference &9

Data Types, Naming Conventions, and Scope 69

General Functions 70

4.21 Setup 70

4.2.2 Document and Page 71
4.2.3 Parameter Handling 73

Text Functions 74
4.31 FontHandling 74
4.3.2 Text Output 75

Graphics Functions 79

4.4.1 General Graphics State 79
4.4.2 Special Graphics State 81
4.4.3 Path Construction 84

4.4.4 Path Painting and Clipping 86

4 Contents

4.5
4.6
4.7

4.8

4.9

5.1
5.2

n @ >

Color Functions 88
Image Functions go

PDF Import Functions 95
4.71 Document and Page 95
4.7.2 Parameter Handling 96

Hypertext Functions 98

4.8.1 Document Open Action and Open Mode 98
4.8.2 Bookmarks 98

4.8.3 Document Information Fields 99

4.8.4 Page Transitions 99

4.8.5 File Attachments 100

4.8.6 Note Annotations 101

4.8.7 Links 101

4.8.8 Thumbnails 104

Page Size Formats 104

The PDFIib License 105

The »Aladdin Free Public License« 105

The Commercial PDFlib License 105

References 106

Shared Libraries and DLLs 107
PDFlib Quick Reference 108
Revision History 12

Index 113

Contents

)

6 Contents

1 Introduction

1.1 PDFlib Programming

What is PDFlib? PDFlib is a library which allows you to generate files in Adobe’s Porta-
ble Document Format (PDF). PDFlib acts as a backend to your own programs. While you
(the programmer) are responsible for retrieving or maintaining the data to be pro- —
cessed, PDFlib takes over the task of generating the PDF code which graphically repre-

sents your data. While you must still format and arrange your text and graphical ob- —
jects, PDFlib frees you from the internals and intricacies of PDF. PDFlib offers many

useful functions for creating text, graphics, images and hypertext elements in PDF files. -

How can | use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows, Mac OS, and EBCDIC-based systems such as IBM eServer iSeries 400 and
zSeries S/390. PDFlib itself is written in the C language, but it can be also accessed from
several other languages and programming environments which are called language

Fig. 1.1. The inner workings of PDFlib I

Actjyg X

1.1 PDFlib Programming 7

bindings. These language bindings cover all major Web application languages currently
in use. The Application Programming Interface (API) is easy to learn, and is identical for
all bindings. Currently the following bindings are supported:

» ActiveX/COM, providing access from Visual Basic, Active Server Pages with VBScript
or JScript, Allaire ColdFusion, Borland Delphi, Windows Script Host, and many other
environments

» ANSIC

» ANSI C++

» Java, including servlets

» PHP hypertext processor

» Perl

» Python

» Tcl

What can | use PDFlib for? PDFlib’s primary target is creating dynamic PDF within
your own software, on the World Wide Web. Similar to HTML pages dynamically gener-
ated on the Web server, you can use a PDFlib program for dynamically generating PDF
reflecting user input or some other dynamic data, e.g. data retrieved from the Web ser-
ver’s database. The PDFlib approach offers several advantages:
» PDFlib can be integrated directly in the application generating the data, eliminating
the convoluted creation path application-PostScript-Acrobat Distiller—-PDF.
» As an implication of this straightforward process, PDFlib is the fastest PDF-generat-
ing method, making it perfectly suited for the Web.
» PDFlib’s thread-safety as well as its robust memory and error handling support the
implementation of high-performance server applications.
» PDFlib is available for a variety of operating systems and development environ-
ments.

However, PDFlib is not restricted to dynamic PDF on the Web. Equally important are all
kinds of converters from X to PDF, where X represents any text or graphics file format.
Again, this replaces the sequence X-PostScript-PDF with simply X-PDF, which offers
many advantages for some common graphics file formats like TIFF, GIF, PNG or JPEG.
Using such a PDF converter, batch converting lots of text or graphics files is much easier
than using the Adobe Acrobat suite of programs.

Requirements for using PDFlib. PDFlib makes PDF generation possible without wading
through the 600+ page PDF specification. While PDFlib tries to hide technical PDF de-
tails from the user, a general understanding of PDF is useful. In order to make the best
use of PDFlib, application programmers should ideally be familiar with the basic graph-
ics model of PostScript (and therefore PDF). However, a reasonably experienced applica-
tion programmer who has dealt with any graphics API for screen display or printing
shouldn’t have much trouble adapting to the PDFlib API as described in this manual.

About this manual. This manual describes the API implemented in PDFlib. The func-
tion interfaces described in this manual are believed to remain unchanged during fu-
ture PDFlib development. This manual does not attempt to explain Acrobat features.
Please refer to the Acrobat product literature, and the material cited at the end of this
manual for further reference.

8 Chapter 1: Introduction (ActiveX edition)

1.2 PDFlib Features

Table 1.1lists the major PDFlib API features for generating PDF documents.

Table 1.1. PDFlib features for generating PDF

topic
PDF input
PDF output

Vector
graphics

Fonts

Hypertext

Internatio-
nalization

Unicode

Images

Pro-
gramming

features

> existing PDF documents can be imported with the optional PDF import library (PDI)
» PDF documents of arbitrary length, directly in memory (for Web servers) or on disk file
> arbitrary page size—each page may have a different size

» compression for text, vector graphics, image data, and file attachments

» compatibility modes for PDF 1.2, 1.3, and 1.4 (Acrobat 3, 4, and 5)

» common vector graphics primitives: lines, curves, arcs, rectangles, etc.

» vector paths for stroking, filling, and clipping

» grayscale, RGB, CMYK, and spot color for stroking and filling objects

» pattern fills and strokes

» efficiently re-use text or vector graphics with templates

» text output in different fonts; underlined, overlined, and strikeout text

» text column formatting

> built-in font metrics for PDF’s 14 base fonts

» TrueType and PostScript Type 1 (PFB and PFA file formats) font support with or without font em-
bedding; TrueType fonts can be pulled from the Windows host system

> support for AFM and PFM PostScript font metrics files

> library clients can retrieve character metrics for exact formatting

> on IBM eServer iSeries 400 and zSeries S/390: fetch encodings from the system
» page transition effects such as shades and mosaic

» nested bookmarks

> PDF links, launch links (other document types), and Web links

» document information: four standard fields (Title, Subject, Author, Keywords) plus unlimited
number of user-defined info fields (e.g., part number)

» file attachments and note annotations

» Unicode support (see below)

» support for a variety of encodings (both built-in and user-defined)
» CID font and CMap support for Chinese, Japanese, and Korean text
» support for the Euro character

» support for international standards and vendor-specific code pages

» Unicode support for hypertext features: bookmarks, contents and title of text annotations, doc-
ument information fields, attachment description, and author name

» Unicode code pages for TrueType and PostScript fonts

» Unicode encoding for Japanese, Chinese, and Korean text

» embed GIF (non-interlaced), PNG, TIFF, JPEG, or CCITT raster images

» Images constructed by the client directly in memory

> efficiently re-use image data, e.g., for repeated logos on each page

» transparent (masked) images

» language bindings for ActiveX/COM, C, C++, Java (including servlets), Perl, PHP, Python, Tcl
» transparent Unicode handling for ActiveX, Java, and Tcl

> thread-safe for deployment in multi-threaded server applications

» configurable error handler and memory management for C and C++

» exception handling integrated with the host language’s native exception handling

» available for a wide variety of systems, including ASCII- and EBCDIC-based platforms

1.2 PDFlib Features 9

1.3 PDFlib Output and Compatibility

PDFlib output. PDFlib generates binary PDF output. The PDF output will be com-
pressed with the Flate (also known as ZIP) compression algorithm. Compression can
also be deactivated. Compression applies to potentially large items, such as raster image
data and file attachments, as well as text and vector operators on page descriptions. The
compression speed/output size trade-off can be controlled with a PDFlib parameter.

Acrobat 4 features. Generally, we strive to produce PDF documents which may be
used with a wide variety of PDF consumers. PDFlib generates output compatible with
Acrobat 3 and higher.

However, certain features either require Acrobat 4, or don’t work in Acrobat Reader
but only the full Acrobat product. Table 1.2 lists those features. More details can be
found at the respective function descriptions.

Table 1.2. PDFlib features which require Acrobat 4
topic remarks
hypertext > file attachments are not recognized in Acrobat 3 (require full Acrobat 4)
» different icons for notes are not recognized in Acrobat 3
page size > Acrobat 4 extends the limits for acceptable PDF page sizes
Unicode » Unicode hypertext doesn’t work in Acrobat 3
font » the Euro symbol is not supported in Acrobat 3
> Unicode support for TrueType fonts doesn’t work in Acrobat 3
» CID fonts for Chinese, Japanese, and Korean require Acrobat 3J or Acrobat 4

color > the pattern color space is not supported in Acrobat 3 compatibility mode (although pat-
terns can be printed with Acrobat 3, they do not display on screen).

transparency » transparency information is ignored in Acrobat 3
JPEG images > Acrobat 3 supports only baseline JPEG images, but not the progressive flavor

external > Acrobat 4 (but not the free Acrobat Reader) support external image references via URL.
images Acrobat 3 is unable to display such referenced images.

Acrobat 3 compatibility mode. Basically, if you don’t use the above-mentioned Acro-
bat 4 features, the generated PDF files will be compatible to Acrobat 3 and 4. However,
due to a very subtle compatibility issue with certain output devices, PDFlib also offers a
strict Acrobat 3 compatibility mode. In order to understand the problem, we must dis-
tinguish between the actual Acrobat viewer version required by a certain PDF file, and
the very first line in the file which may read %PDF-1.2 or %PDF-1.3 for Acrobat 3 and Acro-
bat 4-generated files, respectively. It's important to know that Acrobat 3 viewers open
files starting with the %PDF-1.3 line without any problem, provided the file doesn’t use
any Acrobat 4 feature. This is the basis of PDFlib’s multi-version compatibility ap-
proach.

However, some PDF consumers other than Acrobat implement a much stricter way
of version control: they simply reject all files starting with the %PDF-1.3 line, regardless
of whether the actual content requires a PDF 1.2 or PDF 1.3 interpreter. For example,
some EfI RIPs for high-speed digital printing machines are known to (mis-)behave in
this manner. In order to work around this problem, PDFlib offers a strict Acrobat 3 com-
patibility mode in which a %PDF-1.2 header is emitted, and Acrobat 4 features are dis-
abled.

10 Chapter 1: Introduction (ActiveX edition)

Note again that it is not necessary to use PDFlib’s strict Acrobat 3 compatibility mode
only to make sure the PDF files can be read with Acrobat 3 - this will automatically be
the case if you refrain from using the above-mentioned Acrobat 4 features. The strict
mode is only required for those rare situations where you have to deal with one of those
broken PDF-enabled RIPs. —

Acrobat 5 compatibility. PDFlib accepts Acrobat 5 PDF files for import, and will gener- -
ate Acrobat 5 features in the future. Output compatibility may be set to PDF 1.4 (=Acro-
bat 5) if Acrobat 5 PDF files are to be imported into the generated document. The PDF
import library PDI fully supports PDF 1.4 (see Section 3.5.2, »Using PDI Functions with
PDFlib«).

1.4 What’s new in PDFlib 4.0? —

The following list gives a quick overview of new features in PDFlib 4.0 + PDIL:
» support for TrueType fonts on all platforms
» TrueType host font support on Windows (grab fonts directly from the system)
» Unicode-based code pages
» CMYK and spot color
» template feature
» pattern tiling
» fast pass-through mode for PNG images
» PHP language binding
» completely integrates all auxiliary libraries (zlib, libpng, libtiff) —
» separate PDF import library (PDI) for dealing with existing PDF documents
on IBM eServer iSeries 400 and zSeries S/390: fetch encodings from the system —_—
additional language binding for ILE-RPG

v

A\

1.4 What’s new in PDFlib 4.0? 11

2

2.1

2.1.1

Note

2.1.2

2.1.3

2.1.4

12

PDFlib Language Bindings

Overview of the PDFlib Language Bindings

What’s all the Fuss about Language Bindings?

While the C programming language has been one of the cornerstones of systems and
applications software development for decades, a whole slew of other languages have
been around for quite some time which are either related to new programming para-
digms (such as C++), open the door to powerful platform-independent scripting capabil-
ities (such as Perl], Tcl, and Python), promise a new quality in software portability (such
as Java), or provide the glue among many different technologies while being platform-
specific (such as ActiveX/COM).

This edition of the manual discusses only the PDFlib ActiveX editions. All other language bind-
ings are discussed in detail in a separate edition of the manual. Omitted sections of this manu-
al are not relevant for users of the PDFlib ActiveX edition.

Availability and Platforms

All PDFlib features are available on all platforms and in all language bindings (with a
few minor exceptions which are noted in the manual). Given the broad range of plat-
forms and languages (let alone different versions of both) supported by PDFlib, it
shouldn’t be much of a surprise that not all combinations of platforms, languages, and
versions thereof can be tested. However, we strive to make PDFlib work with the latest
available versions of the respective environments. Table 2.1 lists the language/platform
combinations we used for testing.

PDFlib on embedded systems. It shall be noted that PDFlib can also be used on embed-
ded systems, and has been ported to the Windows CE and EPOC environments as well as
custom embedded systems. For use with restricted environments certain features are
configurable in order to reduce PDFlib’s overall memory footprint. If you are interested
in details please contact us via sales@pdflib.com.

The »Hello world« Example

Being a well-known programming classic, the »Hello, world!« example will be used for
our examples. It uses PDFlib to generate a one-page PDF file with some text on the page.
In the following sections, the »Hello, world!« sample will be shown for all supported lan-
guage bindings. The code for all language samples is contained in the PDFlib distri-
bution. The distribution contains simple examples for text, vector, and image handling
as well as PDF import for all supported language bindings.

Error Handling

PDFlib provides a sophisticated means for dealing with different kinds of programming
and runtime errors. In order to allow for smooth integration to the respective language
environment, PDFlib’s error handling is integrated into the language’s native way of
dealing with exceptions. Basically, C and C++ clients can install custom code which is

Chapter 2: PDFlib Language Bindings (ActiveX edition)

2.1.5

2.1.6

Table 2.1. Tested language and platform combinations

Unix (Linux, Solaris,

IBM eServer iSeries

language HP-UX, AlX a.0.) Windows Mac OS (Classic) 400, zSeries 5/390
ActiveX/ - ASP (PWS, IIS 4 and 5) - -
comMm WSH (VBScript 5, JScript 5)
Visual Basic 6.0
Borland Delphi 5
Allaire ColdFusion 4.5
ANSI C gcc Microsoft Visual C++ 6.0 Metrowerks IBM c89
and other ANSI C Metrowerks CodeWarrior 5.3 CodeWarrior 5.3
compilers Borland C++ Builder 5
ANSI C++ gcc and other ANSI Microsoft Visual C++ 6.0 Metrowerks IBM c89
C++ compilers Metrowerks CodeWarrior 5.3 CodeWarrior 5.3
Java SunJDK 1.2.2and 1.3 SunJDK 1.1.8, 1.2.2, and 1.3 MRJ 2.2, JDK 1.1
IBM JDK 1.1.8 Inprise JBuilder 3.5 and 4 based on JDK 1.1.8
Inprise JBuilder 3.5 Allaire JRun 3.0
Kaffe OpenVM 1.0.5 Allaire ColdFusion 4.5
Perl Perl 5.005, 5.6 ActivePerl 5.005 and 5.6 MacPerl 5.2.0r4, -
based on Perl 5.004
PHP PHP 4.04 and 4.05 PHP 4.04 and 4.05 - -
Python Python 1.6 and 2.0 Python 1.6 and 2.0 Python 2.0 -
RPG = = = V3R7Mo and above
Tcl Tcl 8.3.2 and 8.4a2 Tcl 8.3.2 and 8.4a2 Tcl 8.3.2 -

called when an error occurs. Other language bindings use the existing exception ma-
chinery provided by all modern languages. More details on PDFlib’s exception handling
can be found in Section 3.1.4, »Error Handling«. The sections on error handling in this
chapter cover the language-specific details for the supported environments.

Version Control

Taking into account the rapid development cycles of software in general, and Internet-
related software in particular, it is important to allow for future improvements without
breaking existing clients. In order to achieve compatibility across multiple versions of
the library, PDFlib supports several version control schemes depending on the respec-
tive language. If the language supports a native versioning mechanism, PDFlib seam-
lessly integrates it so the client doesn’t have to worry about versioning issues except
making use of the language-supplied facilities. In other cases, when the language
doesn’t support a suitable versioning scheme, PDFlib supplies its own major, minor,
and revision version number at the interface level. These may be used by the client in
order to decide whether the given PDFlib implementation is acceptable, or should be re-
jected because a newer version is required.

Unicode Support

PDFlib supports Unicode for a variety of features (see Section 3.3.8, »Unicode Support«
for details). The language bindings, however, differ in their native support for Unicode.
If a given language binding supports Unicode strings, the respective PDFlib language
wrapper is aware of the fact, and automatically deals with Unicode strings in the correct
way.

2.1 Overview of the PDFlib Language Bindings 13

2.1.7 Summary of Language Bindings

For easy reference, Table 2.2 summarizes important features of the PDFlib language
bindings. More details can be found in the respective sections of this manual.

Table 2.2. Summary of the language bindings

custom Unicode version
language error handling conversion control thread-safe EBCDIC-safe
COM/ActiveX COM exceptions yes Class ID and ProgID yes (both- -
threading)
c client-supplied = manually yes yes
error handler
C++ client-supplied - manually yes yes
error handler
Java Java exceptions yes automatically yes yes
Perl Perl exceptions - via package - -
mechanism
PHP PHP warnings = manually yes =
Python Python exceptions — — manually - -
RPG = = manually yes yes
Tl Tcl exceptions yes (Tcl 8.2 via package yes -

and above) mechanism

2.2 ActiveX/COM Binding

2.2.1 How does the ActiveX/COM Binding work?

COM (Component Object Model)’, developed by Microsoft, is a powerful mechanism for
reusing software components regardless of the programming language on the client
side (the user of the component) or the server side (the actual implementation of a com-
ponent). In theory, COM is even a platform-independent binary standard which allows
clients to communicate with servers within the same process, on the same machine, or
a networked machine. In practice, however, COM is basically a standard for the Win-
dows environment (although attempts have been made to port COM to other plat-
forms).

ActiveX is built on Microsoft’s COM technology, and used primarily to develop inter-
active content for the World Wide Web, although it can be used in desktop and other ap-
plications. The reusable software components are called ActiveX controls (formerly
known as OLE controls or OCX). Although ActiveX burdens the developer with a variety
of specific technologies, terms, and troublesome issues (such as type libraries, registra-
tion, an assortment of threading models, historical jettison, to name but a few), ActiveX
users are rewarded with tight integration and almost universal usability (if you happen
to live in the Windows universe).

Since PDFlib is pure component-ware, the library naturally lends itself to an ActiveX
implementation for Windows deployment. The ActiveX implementation of PDFlib is
built as a wrapper DLL around the core PDFlib DLL. The wrapper DLL calls the PDFlib core
functions and is responsible for communicating with the underlying COM machinery,
registration and type library issues, COM exception handling, memory management,

1. See http://www.microsoft.com/com for more information about COM and ActiveX

14 Chapter 2: PDFlib Language Bindings (ActiveX edition)

http://www.microsoft.com/com

Note

2.2.2

and Unicode string conversions. This parallels other PDFlib bindings where we strive to
make a strict distinction between core functionality and the language wrapper. The
PDFlib ActiveX wrapper can technically be characterized as follows (don’t worry if you
are not familiar with all of these terms — they are not required for using PDFlib):

» PDFlib acts as a Win32 in-process ActiveX server component (also known as an auto-
mation server) without any user interface.

» PDFlib is a »both-threaded« component, i.e,, it is treated as both an apartment-
threaded as well as a free-threaded component. In addition, PDFlib aggregates a free-
threaded marshaler. In simple terms, clients can use the PDFlib object directly (in-
stead of going through a proxy/stub pair) which boosts performance.

» PDFlib is fully Unicode-aware.

» The PDFlib binary pdflib_com.dll is a self-registering DLL with a type library.

» PDFlib is stateless, i.e., method parameters are used instead of properties.

» PDFlib’s dual interface supports both early and late binding.

» PDFlib supports rich error information.

PDFlib is currently not MTS-aware (Microsoft Transaction Server).

Installing the PDFlib ActiveX Edition

PDFlib can be deployed in all environments that support ActiveX components. We will
demonstrate our examples in several specific environments:

» Visual Basic

» Active Server Pages (ASP) with JScript and VBScript

» Windows Script Host (WSH) with JScript and VBScript

» Allaire ColdFusion

» Borland Delphi

Active Server Pages and Windows Script Host both support JScript and VBScript. Since
the scripts are nearly identical, however, we do not demonstrate all combinations here.
In addition, there are many other ActiveX-aware development environments available
— Microsoft Visual C++, Borland C++ Builder, PowerBuilder, to name but a few. PDFlib
also works in Visual Basic for Applications (VBA).

Requirements for installing PDFlib. Installing PDFlib is an easy and straight-forward
process. Please note the following:
» PDFlib runs with all Windows versions. No specific operating system version or ser-
vice pack is required.
» If you install on an NTFS partition all PDFlib users must have read permission to the
installation directory, and execute permission to ...\PDFlib\bin\pdflib_com.dll.
» The installer must have write permission to the system registry. Administrator or
Power Users group privileges will usually be sufficient.

What the PDFlib ActiveX installer does. The installation program supplied for the
PDFlib ActiveX component automatically takes care of all issues related to using PDFlib
with ActiveX. For the sake of completeness, the following describes the runtime envi-
ronment required for using PDFlib (this is taken care of by the installation routine):
» The PDFlib ActiveX DLL pdflib_com.dll is copied to the installation directory.
» The PDFlib ActiveX DLL must be registered with the Windows registry. The installer
uses the self-registering PDFlib DLL to achieve the registration.

2.2 ActiveX/COM Binding 15

» If a licensed version of PDFlib is installed, the serial number is entered in the system.

While the Runtime installation option performs the above steps, the Full installation op-
tion additionally copies documentation and sample files to the installation directory.

Redistributing the PDFlib ActiveX component. Developers who obtained a redistribut-
able runtime license and wish to redistribute the PDFlib ActiveX component along with
their own product must either ship the complete PDFlib installation and run the PDFlib
installer as part of their product’s setup process, or do all of the following:

» Integrate the files of the PDFlib Runtime installation option in their own installation
(see also »Silent install« below). The list of files required by PDFlib can easily be deter-
mined by looking at the PDFlib installation directory, since this is the only place
where the PDFlib installer places any files. Shipping the supplied AFM files is only re-
quired if the core 14 fonts are intended to be used with encodings other than winansi,
or builtin in the case of the Symbol and ZapfDingbats fonts (see Section 3.3.1, »The
PDF Core Fonts).

» Take care of the necessary PDFlib registry keys. This can be accomplished by com-
pleting the entries in the supplied registration file template pdflib.reg, and using it
during the installation process of your own product.

» pdflib_com.dll must be called for self-registration (e.g., using the regsvr32 utility). If
you use InstallShield for building your installer this can most easily be accomplished
by setting the Self-Registered property to true for the InstallShield group which con-
tains pdflib_com.dll.

» Supply your serial number at runtime using PDFlib’s set_parameter() function, sup-
plying serial as first parameter, and the actual serial string as second parameter (see
also Section 3.1.1, »The PDFlib Demo Stamp and Serial Numbers«

OPDF.set_parameter("serial"”, "...your serial string...")

Silent install. When PDFlib must be redistributed as part of another software package,
or must be deployed on a large number of machines which are administered by tools
such as SMS, manually installing PDFlib on each machine may be cumbersome. In such
cases PDFlib can also be installed automatically without any user intervention.

The PDFlib installer has been created with InstallShield, and supports InstallShield’s
silent install feature. A normal (non-silent) installation receives the necessary input
from the user in dialog boxes. A silent installation, however, doesn’t prompt the user
for input. Instead, it gets its input from a special file called the InstallShield silent re-
sponse (.iss) file. A response file is a text file containing information similar to what a
user would enter as responses to dialog boxes when running a normal setup. The re-
sponse file can most easily be prepared by running an interactive installation once,
with the installer recording all responses.

Proceed as follows for a silent (non-interactive) installation of PDFlib:

» Use WinZip to unpack the PDFlib ActiveX installer files into a directory;

» Run setup -r from this directory, and fill out all dialog boxes with the exact entries
you wish to use later in the silent installation;

» Locate the response file setup.iss in your Windows directory, and copy it to the direc-
tory containing the installer files. You can adjust some of the values in the response
file with a text editor if required.

» To do a silent install run setup -s in the directory containing the installer files.

16 Chapter 2: PDFlib Language Bindings (ActiveX edition)

2.2.3

Deploying the PDFlib ActiveX on an ISP’s server. Installing software on a server hosted
by an Internet Service Provider (ISP) is usually more difficult than on a local machine,
since ISPs are often very reluctant when customers wish to install some new software.
PDFlib is very ISP-friendly since it doesn’t pollute neither the Windows directory nor
the registry:

» Only a single DLL is required, which may live in an arbitrary directory as long as it is
properly registered using the regsvr32 utility.

» By default only a few private registry entries are created which are located under the
HKEY_LOCAL_MACHINE\SOFTWARE\PDFlib registry hive. These entries can be manually
created if required (see above).

» If so desired, PDFlib may even be used without any private registry entries. The user
must compensate for the entries by using appropriate calls to the set_parameter()
function for setting the prefix, resourcefile, and serial parameters.

See the section »Redistributing the PDFlib ActiveX component« above for a list of files.

Error Handling in ActiveX

Error handling for the PDFlib Active component is done according to COM conventions:
when a PDFlib-internal exception occurs, a COM exception is raised and furnished with
the PDFlib error code and a clear-text description of the error. In addition the memory
allocated by the PDFlib object is released. Table 2.3 lists all COM errors thrown by PDFlib
along with the corresponding PDFlib exceptions. The COM exception may be caught
and handled in the PDFlib client in whichever way the client environment supports for
handling COM errors.

Table 2.3. COM error codes raised by PDFlib

PDFlib error name decimal hexadecimal explanation

value value
MemoryError -2147220991 &H80040201 not enough memory
IOError -2147220990 &H80040202 input/output error, e.g. disk full
RuntimeError -2147220989 &H80040203 wrong order of PDFlib function calls
IndexError -2147220988 &H80040204 array index error
TypeError -2147220987 &H80040205 argument type error
DivisionByZero -2147220986 &H80040206 division by zero
OverflowError -2147220985 &H80040207 arithmetic overflow
SyntaxError -2147220984 &H80040208 syntactical error
ValueError -2147220983 &H80040209 a value supplied as argument to PDFlib is

invalid

SystemError -2147220982 &H8004020A PDFlib internal error
NonfatalError -2147220981 &H80040208B a non-fatal problem was detected
UnknownError 2147220980 &H8004020C other error

The error codes used in COM are 32-bit values with the highest bit set, which makes
them look like very large negative numbers. PDFlib conforms to the COM conventions,
and returns error codes in the range which is reserved for application-defined errors.
More specifically, the error codes are constructed as follows:

COM error code = 8H80040000 + &H200 + (PDFlib error code)

2.2 ActiveX/COM Binding 17

(The first hexadecimal number is equal to Visual Basic’s vbObjectError constant, the sec-
ond is the Microsoft-suggested offset for component-specific errors.)

Table 2.3 lists all PDFlib error names along with the decimal and hexadecimal error
codes. A more detailed discussion of PDFlib’s exception mechanism can be found in Sec-
tion 3.1.4, »Error Handling«). Fortunately, ActiveX programmers need not deal with
these error numbers directly since the PDFlib_com type library provides symbolic con-
stants in the PDFlib_com.Errors class.

2.2.4 Version Control in ActiveX

Instead of simple major and minor version numbers, COM implements the concept of a
globally unique identifier (GUID) for a class ID which uniquely describes a particular
programming interface. Instead of messing around with different version numbers, a
new software release may decide whether or not to actually support a certain interface
identified via its GUID.

PDFlib_com, being an ActiveX component, makes use of the class ID mechanism. The
GUID for PDFlib_com is contained in its type library (which in turn is contained in pdflib_
com.dll), and in the Windows registry. Since PDFlib is registered under both the generic
program identifier (ProgID) PDFlib_com.PDF, as well as a version-specific ProgID, users
will rarely have to deal with the GUID directly.

2.2.5 Unicode Support in ActiveX

32-bit versions of ActiveX/COM support Unicode natively. The ActiveX language wrap-
per automatically converts all COM strings to Unicode or ISO Latin 1 (PDFDocEncoding),
as appropriate. ActiveX’s Unicode-awareness, however, may lead to subtle problems re-
garding 8-bit encodings (such as winansi) and Unicode characters in literal strings. More
details on this issue can be found in Section 3.3.8, »Unicode Support«. If you want to use
PDFlib’s unicode support with ActiveX you must enable unicode mode by setting the
nativeunicode parameter to true (see examples in the next sections).

2.2.6 Using PDFlib with Active Server Pages

Special considerations for Active Server Pages'. When using external files (such as im-
age files) ASP’s MapPath facility must be used in order to map path names on the local
disk to paths which can be used within ASP scripts. Take a look at the ASP samples sup-
plied with PDFlib, and the ASP documentation if you are not familiar with MapPath.
Don'’t use absolute path names in ASP scripts since these may not work without Map-
Path.

In order to access files on another machine from within PDFlib ASP scripts, don’t use
UNC path names since these won’t work in ASP. Instead, add a new virtual directory in
IIS. In the administration tool’s home directory tab use the option a share located on
another computer, and supply the UNC name. The remote directory will now be available
as a virtual directory in IIS.

The directory containing your ASP scripts must have execute permission, and also
write permission unless the in-core method for generating PDF is used (the supplied
ASP samples use in-core PDF generation).

1. Active Server Pages is a technology for executing server-side scripts in a variety of languages. It is available with Microsoft

Web servers, and several other server products. More information about ASP can be found at
http://msdn.microsoft.com/workshop/server/default.asp.

18 Chapter 2: PDFlib Language Bindings (ActiveX edition)

http://msdn.microsoft.com/workshop/server/default.asp

You can improve the performance of COM objects such as PDFlib_com on Active Ser-
ver Pages by instantiating the object outside the actual script code on the ASP page, ef-
fectively giving the object session scope instead of page scope. More specifically, instead
of using CreateObject (as shown in the example in the next section)

<%@ LANGUAGE = "JavaScript" %>

<%
var oPDF;
OPDF = Server.CreateObject("PDFlib_com.PDF");
if (oPDF.open_file("file.pdf") == -1)

use the OBJECT tag with the RUNAT, ID, and ProglD attributes to create the PDFlib_com
object:

<OBJECT RUNAT=Server ID=oPDF ProgID="PDFlib_com.PDF"> </OBJECT>

<%@ LANGUAGE = "JavaScript" %>
<%
if (oPDF.open_file("file.pdf") == -1)

You can boost performance even more by applying this technique to the global.asa file,
using the Scope=Application attribute, thereby giving the object application scope.
Additional ASP examples can be found in the PDFlib distribution.

The »Hello world« example for Active Server Pages (ASP) with JScript’. Unlike the
other examples we do not create a PDF output file in the ASP examples. Instead, we gen-
erate the PDF data in memory and directly send it to the client via HTTP. This technique
is much more appropriate for a Web server environment.

<%@ LANGUAGE = "JavaScript" %>
<%

var font;

var oPDF;

OPDF = Server.CreateObject("PDFlib_com.PDF");

if (oPDF == null) {
Response.write("Couldn't create PDFlib object!");
Response.end();

}

// Open new PDF file
OPDF.open_file("");

OPDF.set_info("Creator", "hello.js.asp");
oPDF.set_info("Author", "Thomas Merz");
OPDF.set_info("Title", "Hello, world (ActiveX/ASP/J]Script)!");

// start a new page
OPDF.begin_page(595, 842);

font = oPDF.findfont("Helvetica-Bold", "winansi", 0);

1. JScript is an extension of ECMAScript (see http://www.ecma.ch/stand/ecma-262.htm) which in turn is based on
Netscape’s JavaScript. For more information on JScript see http://msdn.microsoft.com/scripting/jscript/default.ntm.

2.2 ActiveX/COM Binding 19

http://www.ecma.ch/stand/ecma-262.htm
http://msdn.microsoft.com/scripting/jscript/default.htm

OPDF.setfont(font, 24);

OPDF.set_text_pos(50, 700);
OPDF. show("Hello, world!");
OPDF.continue_text("(says ActiveX/ASP/]Script)");

oPDF.end_page();
oPDF.close();

Response.Expires = 0;

Response.Buffer = true;

Response.ContentType = "application/pdf";

Response.Addheader("Content-Disposition”, "inline; filename=" +
"hello.js.asp.pdf");

Response.BinaryWrite(oPDF.get buffer());
Response.End();
%>

The »Hello world« example for Active Server Pages (ASP) with VBScript.

<%@ LANGUAGE = VBScript %>
<k
Option Explicit

Dim font
Dim oPDF
Dim buf

Set oPDF = Server.CreateObject("PDFlib_com.PDF")

if not isObject(oPDF) Then
Response.write "Couldn't create PDFlib object!"
Response.end

End If

' Open new PDF file
oPDF.open_file ""

OPDF.set_info "Creator", "hello.vbs.asp"
OPDF.set_info "Author", "Thomas Merz"
OPDF.set_info "Title", "Hello, world (Active X/ASP/VBScript)!"

start a new page
OPDF.begin_page 595, 842

font = oPDF.findfont("Helvetica-Bold", "winansi", 0)
oPDF.setfont font, 24

oPDF.set_text_pos 50, 700

oPDF.show "Hello, world!"

OPDF.continue_text "(says ActiveX/ASP/VBScript)"

OPDF.end_page
oPDF.close

20 Chapter 2: PDFlib Language Bindings (ActiveX edition)

Note

buf = oPDF.get_buffer()

Response.Expires = 0

Response.Buffer = true

Response.ContentType = "application/pdf"

Response.Addheader "Content-Disposition”, "inline; filename=" &
"hello.vbs.asp.pdf"

Response.Addheader "Content-Length", LenB(buf)

Response.BinaryWrite(buf)

Response.End()

Set oPDF = nothing

%>

Error handling in JScript. JScript 5.0" adds structured exception handling to the lan-
guage which looks similar to C++ or Java, with the difference that JScript exceptions can-
not be typed, and only a single clause can deal with an exception. Detecting an excep-
tion and acting upon it is achieved with a try ... catch clause:

try {
...some PDFlib instructions...

} catch (exc) {
Response.write("Error
Response.end();

" n, u

+ exc.number + + exc.description);

}

Due to some problem with JScript’s integer handling it’s impossible to directly compare excep-
tion numbers with hexadecimal values. Comparison with decimal values, however, works fine.

Error handling in VBScript. Unfortunately, VBScript doesn’t have any means for catch-
ing errors, but only for ignoring them. For this reason one has to periodically check the
ERR object in order to see whether something went wrong in one of the previous calls to
the ActiveX component. VBScript’s missing On Error GoTo clause has the major drawback
that the script code is either cluttered with calls to the error checking routine, or subse-
quent errors may happen between the first error and the next invocation of the error
checking routine:

On Error Resume Next
Err.Clear

...some PDFlib instructions...
CheckPDFError

...more PDFlib instructions...

Sub CheckPDFError ()
If Err.number <> 0 then
WScript.Echo "Error " & Hex(Err.number) & ": " & Err.description
Err.Clear
End If
end Sub

1. JScript 5.0 is available with Microsoft Internet Explorer 5.0 and Microsoft Internet Information Services 5.0

2.2 ActiveX/COM Binding 21

2.2.7

22

Unicode support in JScript. JScript supports Unicode internally. Unicode characters
can be written directly into string literals using a Unicode-aware text editor; entered
with an escape sequence such as

OPDF.set_parameter("nativeunicode", "true");
Unicodetext = "\u039B\u039F\u0393\u039F\u03A3";

or constructed from numerical values using the String.fromCharCode method:

Unicodetext = String.fromCharCode(0x39B, Ox39F, 0x393, O0x39F, O0x3A3);

Unicode support in VBScript. VBScript supports Unicode internally. Similar to Visual
Basic, Unicode strings can be constructed from numerical values using the ChrW func-
tion:

OPDF.set_parameter "nativeunicode", "true"
Unicodetext = ChrW(&H39B) & ChrW(&H39F) & ChrW(&H393) & ChrW(8H39F) & ChrW(&H3A3)

Using PDFlib with Visual Basic

Special considerations for Visual Basic'. When it comes to leveraging external ActiveX
components, Visual Basic supports both early (compile-time) and late (run-time) bind-
ing. Although both types of bindings are possible with PDFlib, early binding is heavily
recommended. It is achieved by performing the following steps:
» Create a reference from your VB project to PDFlib via Project, References..., and select
the PDFlib_com control.
» Declare object variables of type PDFlib_com.PDF instead of the generic type Object:

Dim oPDF As PDFlib_com.PDF
Set oPDF = CreateObject("PDFlib_com.PDF") ' or: Set oPDF = New PDFlib_com.PDF

Creating a reference and using early binding has several advantages:
» VB can check the code for spelling errors.
» IntelliSense (automatic statement completion) and context-sensitive help are avail-
able.
» The VB object browser shows all PDFlib methods along with their parameters and a
short description.
» VB programs run much faster with early binding than with late binding.

PDFlib programming in Visual Basic is straightforward, with one exception. Due to a Mi-
crosoft-confirmed bug (pardon: an »issue«) in Visual Basic 6 several PDFlib functions
cannot be used directly since VB erroneously overrides PDFlib method names with
some built-in methods of VB. For example, the following cannot be successfully com-
piled in VB 6:

oPDF.circle 10, 10, 30

In order to work around this problem, Microsoft technical support came up with the fol-
lowing suggestion:

OPDF.[circle] 10, 10, 30

1. Visual Basic is a commercial product of Microsoft. For more information see http://msdn.microsoft.com/vbasic/prodinfo.

Chapter 2: PDFlib Language Bindings (ActiveX edition)

http://msdn.microsoft.com/vbasic/prodinfo

Putting the critical method name in brackets seems to do the trick. From all PDFlib func-
tions only the following are affected by this problem:

circle
scale

The data type integer, as used in the PDFlib ActiveX component, is a signed 32-bit quan-
tity. In Visual Basic this corresponds to the /ong data type. Therefore, when the PDFlib
API reference calls for an int type argument, Visual Basic programmers should translate
this to long (although VB will correctly translate if int values are supplied).

The »Hello world« example in Visual Basic.

Attribute VB_Name = "hello"
Option Explicit

Sub main()
Dim ret As Long, font As Long
Dim oPDF As PDFlib_com.PDF

Set oPDF = New PDFlib_com.PDF

' Open new PDF file
ret = oPDF.open_file("hello_ax_vb.pdf")
If (ret = -1) Then
MsgBox "Couldn't open PDF file!"
End
End If

oPDF.set_info "Creator", "hello.bas"
oPDF.set_info "Author", "Thomas Merz"
OPDF.set_info "Title", "Hello, world (ActiveX/vB)!"

start a new page
OPDF.begin_page 595, 842

font = oPDF.findfont("Helvetica-Bold", "winansi", 0)
oPDF.setfont font, 24

oPDF.set_text_pos 50, 700
oPDF.show "Hello, world!"
OPDF.continue_text "(says ActiveX/VB)"

oPDF.end_page ' finish page
oPDF.close ' close PDF document

set oPDF = Nothing
End Sub

Error handling in Visual Basic. A Visual Basic program can detect when an error hap-
pens, and react upon the error. Catching Exceptions in Visual Basic is achieved with an
On Error GoTo clause:

Sub main()
Dim oPDF As PDFlib_com.PDF
On Error GoTo ErrExit

2.2 ActiveX/COM Binding 23

Note

2.2.8

24

...some PDFlib instructions...

End
ErrExit:
MsgBox Hex(Err.Number) & ": " & Err.Description
End Sub
You can disable error handling in VBScript with the undocumented On Error GoTo o statement

(i.e., using zero as address for the GoTo statement).

Unicode support in Visual Basic. Visual Basic supports Unicode internally. (VB’s pro-
gram editor, however, doesn’t seem to be fully Unicode-aware). Unicode strings can be
constructed from numerical values using the ChrW function:

oPDF.set_info "nativeunicode", "true"
Unicodetext = ChrW(&H39B) & ChrW(8H39F) & ChrW(&H393) & ChrW(&H39F) & ChrW(&H3A3)

Using PDFlib with Windows Script Host

Windows Script Host" supports JScript and VBScript, the details of which have already
been discussed in Section 2.2.6, »Using PDFlib with Active Server Pages«. For this reason,
we will only present the hello example for VBScript here.

The »Hello world« example for Windows Script Host (WSH) with VBScript.

' hello.vbs

' PDFlib client: hello example for ActiveX with Windows Script Host and VBS
' Requires the PDFlib ActiveX component

Option Explicit

On Error Resume Next

Dim font
Dim oPDF

Set oPDF = CreateObject("PDFlib_com.PDF")

' Open new PDF file

if (oPDF.open_file("hello_ax_vbs.pdf") = -1) then
WScript.Echo "Couldn't open PDF file!"
WScript.Quit(1)

end if

oPDF.set_info "Creator", "hello.asp"
OPDF.set_info "Author", "Thomas Merz"
OPDF.set_info "Title", "Hello, world (Active X/VBS)!"

start a new page
oPDF.begin_page 595, 842

font = oPDF.findfont("Helvetica-Bold", "winansi", 0)

1. WSH is available in command-line (cscript.exe) and windowing flavors (wscript.exe). WSH is included in Microsoft Inter-
net Explorer 5, Windows 98, and Windows 2000. For more information see http://msdn.microsoft.com/scripting.

Chapter 2: PDFlib Language Bindings (ActiveX edition)

http://msdn.microsoft.com/scripting/

2.2.9

Note

oPDF.setfont font, 24

oPDF.set_text_pos 50, 700

oPDF.show "Hello, world!"
OPDF.continue_text "(says ActiveX/VBS)"
oPDF.end_page

oPDF.close

set oPDF = Nothing

Using PDFlib with ColdFusion

Special considerations for ColdFusion'. Allaire ColdFusion for Windows (but not Cold-
Fusion Express) supports COM objects such as PDFlib via its CFOBJECT tag. After install-
ing (and thereby registering) the PDFlib ActiveX edition no further steps are required in
order to use PDFlib from ColdFusion. Since we couldn’t find any way to generate PDF in
memory and stream it to the client with ColdFusion the example below generates a
temporary PDF file instead. According to the ColdFusion documentation functions
without any parameters (e.g., save) should be called with an empty pair of parentheses.

PDFlib currently only supports the Windows version of ColdFusion.

The »Hello world« example for ColdFusion.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>PDFlib ColdFusion sample</title>
</head>

<body>
<CFOBJECT type="COM" name="oPDF" class="PDFlib_com.PDF" action="CREATE">

<CFSET tmp_file=GetTempFile("C:\\tmp\\", "hello_cfm.pdf")>
<CFSET res=oPDF.open_file(tmp_file)>
<CFIF res is -1>
Couldn't open PDF file!
<CFABORT/>
</CFIF>

<CFSET oPDF.set_info("Creator", "hello.cfm")>
<CFSET oPDF.set_info("Author", "Thomas Merz")>
<CFSET oPDF.set_info("Title", "Hello, world (ActiveX/ColdFusion)")>

<!--- start a new page --->

<CFSET oPDF.begin_page(595, 842)>

<CFSET font = oPDF.findfont("Helvetica-Bold", "winansi", 0)>
<CFSET oPDF.setfont(font, 24)>

<CFSET oPDF.set_text_pos(50, 700)>

<CFSET oPDF.show("Hello, world!")>

<CFSET oPDF.continue_text("(says ActiveX/ColdFusion)")>

<CFSET oPDF.end_page()>

1. See http://www.allaire.com/products/coldfusion

2.2 ActiveX/COM Binding 25

http://www.allaire.com/products/coldfusion

2.2.10

<CFSET oPDF.close()>
<CFCONTENT TYPE="application/pdf" FILE="#tmp_file#" DELETEFILE="yes">

</body>
</html>

Error handling in ColdFusion. ColdFusion supports structured exception handling
which can be used for dealing with PDFlib’s COM exceptions. The error message sup-
plied by PDFlib can be accessed via ColdFusion’s CFCATCH.detail variable. In order to
catch PDFlib exceptions from your ColdFusion code use the following basic structure:

<CFTRY>
...some PDFlib instructions...
<CFCATCH>
<CFOUTPUT>
PDFlib exception caught: #CFCATCH.detail#
<CFABORT/>
</CFOUTPUT>
</CFCATCH>
</CFTRY>

Unicode support in ColdFusion. Since we couldn’t find any Unicode support in Cold-
Fusion, PDFlib’s automatic Unicode conversion features are not available in ColdFusion.
ColdFusion developers must manually construct their Unicode strings according to Sec-
tion 3.3.8, »Unicode Support«.

Using PDFlib with Borland Delphi

Special considerations for Borland Delphi'. In order to use PDFlib with Delphi 5 you
must reference the PDFlib type library in your project as follows: In Project, Import Type
Library..., choose PDFlib from the list (or use Add... to select the pdflib_com.dll on disk if
PDFlib is missing from the list), pick an arbitrary entry in Palette page, and Install.... This
must only be done once for each Delphi installation, not once for each project.

The »Hello world« example for Borland Delphi.

unit hello;
interface

uses Windows, Classes, Forms, Dialogs, ExtCtrls, Controls, StdCtrls,
PDF1ib_com_TLB, OleServer;

type
TForm1 = class(TForm)
Paneli: TPanel;
InsertBtn: TButton;
pdf: TPDF;
procedure InsertBtnClick(Sender: TObject);
end;

var
Formi: TFormi,;

1. See http://www.borland.com/delphi

26 Chapter 2: PDFlib Language Bindings (ActiveX edition)

http://www.borland.com/delphi

implementation
{$R *.DFM}

procedure TFormi.InsertBtnClick(Sender: TObject);
var
f: Integer;
begin
if pdf.open_file('hello_delphi.pdf') = -1 then begin
ShowMessage('Couldn”t open hello_delphi.pdf!"');
Exit;
end;

pdf.set_info('Creator', 'hello.pas');
pdf.set_info('Author', 'Rainer Schaaf');
pdf.set_info('Title', 'Hello World (Delphi)');

pdf.begin_page(595,842);
f := pdf.findfont('Helvetica-Bold', ‘host', 0);

pdf.setfont(f, 18.0);
pdf.set_text pos(50, 700);
pdf.show('Hello World');
pdf.continue_text('(says Delphi)');
pdf.end_page;
pdf.close;

end;

end.

Error handling in Borland Delphi. Delphi supports structured exception handling
which can be used for dealing with exceptions thrown from OLE objects such as PDFlib.
In order to catch PDFlib exceptions from your Delphi code use the following basic struc-
ture:

uses SysUtils;

try
...some PDFlib instructions...
except
On E: Exception do begin
ShowMessage (E.Message);
end;
end;

Unicode support in Borland Delphi. Delphi supports Unicode natively with its Wide-
String data type. If you want to leverage PDFlib’s Unicode support from Delphi you must
use your strings of type WideString:

unicodetext: WideString;

pdf.set_parameter('nativeunicode', 'true');
unicodetext := #$039B;

2.2 ActiveX/COM Binding 27

2.3 CBinding

(This section is not included in this edition of the PDFlib manual.)

2.4 C++ Binding

(This section is not included in this edition of the PDFlib manual.)

2.5 Java Binding

(This section is not included in this edition of the PDFlib manual.)

2.6 Perl Binding

(This section is not included in this edition of the PDFlib manual.)

2.7 PHP Binding

(This section is not included in this edition of the PDFlib manual.)

2.8 Python Binding

(This section is not included in this edition of the PDFlib manual.)

2.9 RPG Binding

(This section is not included in this edition of the PDFlib manual.)

2.10 Tcl Binding

(This section is not included in this edition of the PDFlib manual.)

28 Chapter 2: PDFlib Language Bindings (ActiveX edition)

3

3.1

3.1.1

3.1.2

3.1.3

PDFlib Programming Concepts

General Programming Issues

The PDFlib Demo Stamp and Serial Numbers

All binary PDFlib and PDI versions supplied by PDFlib GmbH can be used as fully func-
tional evaluation versions regardless of whether or not you obtained a commercial li-
cense. However, unlicensed versions will display a www.pdflib.com demo stamp (the
»nagger«) cross all generated pages. Companies which are seriously interested in PDFlib
licensing and wish to get rid of the nagger during the evaluation phase or for prototype
demos can submit their company and project details to sales@pdflib.com, and request a
temporary serial string.

Once you purchased a PDFlib or PDI serial string you must apply it in order to get rid
of the demo stamp. This can be achieved by supplying the serial at runtime:

"

OPDF.set_parameter("serial”, "...your serial string...")

The serial string must be set only once, immediately after instantiating the PDFlib ob-
ject (i.e., after PDF_new() or equivalent call). PDFlib and PDI serial strings are platform-
specific, and must be purchased for a particular platform.

Users of the ActiveX edition can supply the serial string when they install PDFlib/PDI
using the supplied installer. In this case the above function call is not required (see also
Section 2.2.2, »Installing the PDFlib ActiveX Edition).

Note that PDFlib and PDI are different products, and require different serial strings
although they are delivered in a single package. PDI serials will also be valid for PDFlib,
but not the other way round. Also, PDFlib and PDI serial strings are platform-dependent,
and can only be used on the platform for which they have been purchased.

PDFlib Program Structure

PDFlib applications must obey certain structural rules which are very easy to under-
stand. Writing applications according to these restrictions is straightforward. For exam-
ple, you don’t have to think about opening a page first before closing it. Since the PDFlib
APl is very closely modelled after the document/page paradigm, generating documents
the »natural« way usually leads to well-formed PDFlib client programs.

PDFlib enforces correct ordering of function calls with a strict scoping system (see
Section 4.1, »Data Types, Naming Conventions, and Scope«). The function descriptions
document the allowed scope for a particular functions. Calling a function from a differ-
ent scope will immediately trigger a PDFlib exception. PDFlib will also throw an excep-
tion if bad parameters are supplied by a library client.

Generating PDF Documents directly in Memory

In addition to generating PDF documents on a file, PDFlib can also be instructed to gen-
erate the PDF directly in memory (in-core). This technique offers performance benefits
since no disk-based I70 is involved, and the PDF document can, for example, directly be

3.1 General Programming Issues

.29

streamed via HTTP. Webmasters will be especially happy to hear that their server will
not be cluttered with temporary PDF files.

You may, at your option, periodically collect partial data (e.g., every time a page has
been finished), or fetch the complete PDF document in one big chunk at the end (after
close()). Interleaving production and consumption of the PDF data has several advan-
tages. Firstly, since not all data must be kept in memory, the memory requirements are
reduced. Secondly, such a scheme can boost performance since the first chunk of data
can be transmitted over a slow link while the next chunk is still being generated. How-
ever, the total length of the generated data will only be known when the complete docu-
ment is finished.

The active in-core PDF generation interface. In order to generate PDF data in memory,
simply supply an empty filename to open_file(), and retrieve the data with get_buffer():

OPDF.open_file ("")
...create document...
oPDF.close

' Fetch the buffer with the PDF and write to a file
' This is rather pointless in VB but useful in ASP
Open "file.pdf" For Binary Access Write As #1

Put #1, , oPDF.get buffer

Close #1

Set oPDF = Nothing

Note Fetching PDF data from a buffer requires binary access, and may not be usable from all envi-
ronments due to restrictions of the respective development environment.

3.1.4 Error Handling

Errors of a certain kind are called exceptions in many languages for good reasons — they
are mere exceptions, and are not expected to occur very often during the lifetime of a
program. The general strategy, then, is to use conventional error reporting mechanisms
(read: special function return codes) for function calls which may go wrong often times,
and use a special exception mechanism for those rare occasions which don’t warrant
cluttering the code with conditionals. This is exactly the path that PDFlib goes: Some
operations can be expected to go wrong rather frequently, for example:

» Trying to open an output file for which one doesn’t have permission

» Using a font for which metrics information cannot be found

» Trying to open a corrupt image file

» Trying to import an encrypted PDF file

PDFlib signals such errors by returning a special value (usually —1) as documented in
the API reference. Other events may be considered harmful, but will occur rather infre-
quently, e.g.
» running out of virtual memory
» scope violations (e.g., closing a document before opening it)
» supplying wrong parameters to PDFlib API functions (e.g., trying to draw a circle with
a negative radius)

If the library detects such an exceptional situation, a COM exception is thrown instead
of passing special return values to the caller.

30 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

3.2

3.2.1

Note

PDFlib exceptions fall into one of several categories as shown in Table 2.3. The error
handler will receive the type of PDFlib error along with a descriptive message.

Non-fatal error messages (warnings) generally indicate some problem in your PDFlib
code which you should investigate more closely. However, processing may continue in
case of non-fatal errors. For this reason, you can suppress warnings using the following
function call:

OPDF.set_parameter "warning", "false"

The suggested strategy is to enable warnings during the development cycle (and closely
examine possible warnings), and disable warnings in a production system.

Page Descriptions

Coordinate Systems

PDF’s default coordinate system is used within PDFlib. The default coordinate system
(or default user space in PDF lingo) has the origin in the lower left corner of the page,
and uses the DTP point as unit:

1 pt=11inch / 72 = 25.4 mm / 72 = 0.3528 mm

The first coordinate increases to the right, the second coordinate increases upward.
PDFlib client programs may change the default user space by rotating, scaling, translat-
ing, or skewing, resulting in new user coordinates. The respective functions for these
transformations are rotate(), scale(), translate(), and skew(). If the user space has been
transformed, all coordinates in graphics and text functions must be supplied according
to the new coordinate system. The coordinate system is reset to the default coordinate
system at the start of each page.

In order to assist PDFlib users in working with PDF’s coordinate system, the PDFlib
distribution contains the PDF file grid.pdf which visualizes the coordinates for several
common page sizes. Printing the appropriately sized page on transparent material (take
care to use suitable material since cheap overhead transparencies do not withstand
heat, and may ruin your laser printer!) may provide a useful tool for preparing PDFlib
development.

Don’t be mislead by PDF printouts which seem to experience wrong page dimen-
sions. These may be wrong because of some common reasons:

» The Fit to Page (or Shrink oversized pages to paper size) option has been checked in

Acrobat’s print dialog, resulting in scaled print output.

» Non-PostScript printer drivers are not always able to retain the exact size of page ob-
jects.

Hypertext functions, such as those for creating text annotations, links, and file annotations are
not affected by user space transformations, and always use the default coordinate system in-
stead.

Using metric coordinates. Metric coordinates can easily be used by scaling the coor-
dinate system. The scaling factor is derived from the definition of the DTP point given
above:

OPDF.[scale] 28.3465, 28.3465

3.2 Page Descriptions 31

After this call PDFlib will interpret all coordinates (except for hypertext features, see
above) in centimeters since 72/2.54 = 28.3465.

Rotating objects. It is important to understand that object cannot be modified once
they have been drawn on the page. Although there are PDFlib functions for rotating,
translating, scaling, and skewing the coordinate system, these do not affect existing ob-
jects on the page but only future objects.

The following example generates some horizontal text, and rotates the coordinate sys-
tem in order to show vertical text. The save/restore nesting makes it easy to continue
with vertical text in the original coordinate system after the vertical text is done:

oPDF.set_text pos 50, 600
oPDF.show "This is horizontal text"

textx = oPDF.get_value("textx", 0) ' determine text position
texty = oPDF.get_value("texty", 0) ' determine text position
OPDF.save
oPDF.translate textx, texty ' move origin to end of text
oPDF.rotate 90 ' rotate coordinates
OPDF.set_text_pos 18, 0 ' provide for distance from horizontal text

oPDF.show "vertical text"
oPDF.restore

OPDF.continue_text "horizontal text continues”

Using top-down coordinates. Unlike PDF’s bottom-up coordinate system some graph-
ics environments use top-down coordinates which may be preferred by some develop-
ers. Such a coordinate system can easily be established using PDFlib’s transformation
functions. However, since the transformations will also affect text output additional
calls are required in order to avoid text being displayed in a mirrored sense. In order to
set up a coordinate system with the origin in the top left corner of the page and the y co-
ordinate pointing downwards while maintaining the usual text direction (text stands
upright on the page) use the following code sequence:

oPDF.begin_page Width, Height set up the page dimensions

oPDF.translate 0, Height ' move the coordinate origin
OPDF.[Scale] 1, -1 ' reflect at the horiz. axis
font = oPDF.findfont("Helvetica-Bold", "host", 0) ' sample text

OPDF.setfont font, -18 ' make the text point upwards

OPDF.set_value "horizscaling", -100 compensate for the mirroring

oPDF.set_text_pos 50, 100 ' now use top-down coordinates
oPDF.show "Hello world!"

In order to format text into a text box with the upper right corner at (x, y), width w, and
height h use the following idiom (this is required because the function adds h to the
starting y position):

c = show_boxed(text, x, y-h, w, h, "justify", "")

Similarly, the following idiom can be used in order to correctly place images when using
top-down coordinates:

32 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

3.2.2

Place the image in the lower left corner of the page

OPDF.save
oPDF.translate 0, Height ' temporarily translate origin to lower left corner
oPDF.scale 1, -1
oPDF.place_image lImage, 0, 0, 1

OPDF.restore

Page and Coordinate Limits

Page sizes. Although PDF and PDFlib don’t impose any restrictions on the usable page
size, Acrobat implementations suffer from architectural limits regarding the page size.
Note that other PDF interpreters may well be able to deal with larger or smaller docu-
ment formats. If run in Acrobat 3 compatibility mode PDFlib will throw a RuntimeError
exception if the Acrobat 3 limits are exceeded; if run in Acrobat 4 (the default) or 5 com-
patibility mode and the Acrobat 4 limits are exceeded, PDFlib will only issue a non-fatal
warning message. Common standard page size dimensions can be found in Table 3.1.

Table 3.1. Minimum and maximum page size of several PDF consumers

PDF viewer minimum page size maximum page size
Acrobat 3 1"=72pt=254cm 45" =3240 pt =114.3cm
Acrobat 4 and 5 1/24" = 3 pt = 0.106 cm 200" = 14400 pt = 508 cm

Different page size boxes. While many PDFlib developers only specify the width and
height of a page, some advanced applications (especially for prepress work) may want
to specify one or more of PDF’s additional box entries. PDFlib supports all of the box en-
tries of Acrobat 4/PDF 1.3. The following entries, which may be useful in certain environ-
ments can be specified by PDFlib clients (definitions taken from the PDF reference):

» MediaBox: this is used to specify the width and height of a page.

» CropBox: the region to which the page contents are to be clipped;

» TrimBox: the intended dimensions of the finished page after trimming;

» ArtBox: extent of the page’s meaningful content;

» BleedBox: the region to which the page contents are to be clipped when output in a

production environment.

PDFlib will not use any of these values apart from recording it in the output file. By de-
fault PDFlib generates a MediaBox according to the specified width and height of the
page, but does not generate any of the other entries.

Number of pages in a document. There is no intrinsic limit in PDFlib regarding the
number of generated pages in a document. While previous versions of PDFlib generated
output which resulted in bad Acrobat performance when navigating large files, PDFlib 4
introduces an improvement in the generated PDF structures which significantly accel-
erates document navigation in Acrobat even for documents with hundreds of thou-
sands of pages.

Output accuracy and coordinate range. PDFlib’s numerical output accuracy has been
carefully chosen to match the requirements of PDF and the supported environments,
while at the same timing minimizing output file size. As detailed in Table 3.2 PDFlib’s
accuracy depends on the absolute value of coordinates. While most developers may

3.2 Page Descriptions 33

safely ignore this issue, demanding applications should take care in their scaling opera-
tions in order to not exceed PDF’s built-in coordinate limits.

Table 3.2. Output accuracy and coordinate range

absolute value output

0...0.000015 o

0.000015 ... 32767.999999 rounded to four decimal digits, configurable for up to six digits
32768...237-1 rounded to next integer

>= 23" an exception of type ValueError will be raised

3.2.3 Paths and Color

Graphics paths. A path is a shape made of an arbitrary number of straight lines, rect-
angles, or curves. A path may consist of several disconnected sections, called subpaths.
There are several operations which can be applied to a path (see Section 4.4.4, »Path
Painting and Clipping«):

» Stroking draws a line along the path, using client-supplied parameters for drawing.

» Filling paints the entire region enclosed by the path, using client-supplied parame-
ters for filling.

» Clipping reduces the imageable area for subsequent drawing operations by replacing
the current clipping area (which is the page size by default) with the intersection of
the current clipping area and the path.

» Merely terminating the path results in an invisible path, which will nevertheless be
present in the PDF file. This will only rarely be required.

It is an error to construct a path without applying one of the above operations on it.
PDFlib’s scoping system ensures that clients obey to this restriction. These rules may
easily be summarized as »don’t change the appearance within a path description«.

Merely constructing a path doesn’t result in anything showing up on the page; you
must either fill or stroke the path in order to get visible results:

oPDF.moveto 100, 100
oPDF.lineto 200, 100
oPDF.stroke

Most graphics functions make use of the concept of a current point, which can be
thought of as the location of the pen used for drawing.

Color. PDFlib clients may specify the colors used for filling and stroking the interior of
paths and text characters. Colors may be specified in one of several color spaces:

» gray values between o=black and 1=white;

» RGB triples, i.e,, three values between o and 1 specifying the percentage of red, green,
and blue; (0, 0, 0)=black, (1, 1, 1)=white;

» four CMYK values between o=no color and 1=full color, representing cyan, magenta,
yellow, and black values; (o, 0, 0, 0)=white, (0, 0, 0, 1)=black. Note that this is different
from the RGB specification.

» spot color: an arbitrarily named color with an alternate representation in one of the
other color spaces above; this is generally used for preparing documents which are
intended to be printed on an offset printing machine with one or more custom col-

34 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

3.2.4

Note

ors. The tint value (percentage) ranges from o=no color to 1=maximum intensity of
the spot color.

» pattern: tiling with an object composed of arbitrary text, vector, or image graphics
(patterns are not supported in Acrobat 3 compatibility mode since they don’t show
up on screen with Acrobat 3).

The default value for stroke and fill color is black, i.e. (o, o, 0) in the RGB color space.

Templates

Templates in PDF. PDFlib supports a PDF feature with the technical name form
XObjects. However, since this term conflicts with interactive forms we refer to this fea-
ture as templates. A PDFlib template can be thought of as an off-page buffer into which
text, vector, and image operations are redirected (instead of acting on a regular page).
After the template is finished it can be used much like a raster image, and placed an ar-
bitrary number of times on arbitrary pages. Like images, templates can be subjected to
geometrical transformations such as scaling or skewing. When a template is used on
multiple pages (or multiply on the same page), the actual PDF operators for construct-
ing the template are only included once in the PDF file, thereby saving PDF output file
size. Templates suggest themselves for elements which appear repeatedly on several
pages, such as a constant background, a company logo, or graphical elements emitted
by CAD and geographical mapping software. Other typical examples for template usage
include crop and registration marks or custom Asian glyphs.

PDF templates are an efficient means for saving space in a PDF file. However, this advantage is
usually not retained when printing template-based PDF files to a PostScript printer. Depending
on the number of templates used, you should be prepared for print jobs which are significantly
larger than the corresponding PDF files.

Using templates with PDFlib. Templates can only be defined outside of a page descrip-
tion, and can be used within a page description. However, templates may also contain
other templates. Obviously, using a template within its own definition is not possible
Referring to an already defined template on a page is achieved with the place_image()
function just like images are placed on the page (see Section 3.4.2, »Code Fragments for
Common Image Tasks«). The general template idiom in PDFlib looks as follows:

' define the template

1Template = oPDF.begin_template(template width, template_height);
...place marks on the template using text, vector, and image functions...
OPDF.end_template

oPDF.begin_page page_width, page height

' use the template

oPDF.place_image 1Template, 0.0, 0.0, 1.0
...more page marking operations...
oPDF.end_page

OPDF.close_image 1Template

All text, graphics, and color functions can be used on a template. However, the follow-
ing functions must not be used while constructing a template:

3.2 Page Descriptions 35

» The functions in Section 4.6, »Image Functions«, except place_image() and close_
image(). This is not a big restriction since images can be opened outside of a tem-
plate definition, and freely be used within a template (but not opened).

» The functions in Section 4.8, »Hypertext Functions«. Hypertext elements must al-
ways be defined on the page where they should appear in the document, and cannot
be generated as part of a template.

Note You can apply all image manipulation algorithms in Section 3.4.2, »Code Fragments for Com-
mon Image Tasks« to templates, too. Simply substitute the template width for get_value
("imagewidth", image), similar for template and image height.

Templates and the graphics state. When a template is placed on a page, it will inherit
all graphics state parameters from the page unless these are explicitly set within the
template definition. For example, if a page description sets the current color to red and
places a template which doesn’t explicitly set the current color, text and vector ele-
ments on the template will be drawn in red color, too. This behavior can be used to
change the color of templates, but may also be undesirable for some applications. You
have the following choices in this situation:

» Templates which will always be drawn in the same color should specify all required
graphics state parameters within the template definition.

» Templates which will be recolored (more precisely: which shall inherit graphics state
parameters from the surrounding page) should not set any graphics state parameter.
Using such context-dependent templates requires appropriate setup on the sur-
rounding page.

» If the behavior of a template is not known (especially when the template consists of
an imported PDF page of unknown origin) all affected graphics state parameters
should be reset to their defaults. Since it is usually not known which parameters are
used within an imported PDF page, using initgraphics() is the easiest way to assure
correct behavior. Note that this function also resets the current transformation ma-
trix.

In a similar fashion, some property of the graphics state may be modified after placing a
template or imported PDI page. It is safer to explicitly set the color etc. after placing a
template or PDI page, or to bracket the template or page with save()/restore().

Template support in third-party software. Templates (form XObjects) are an integral
part of the PDF specification, and can be perfectly viewed and printed with Acrobat.
However, since this type of PDF construct is rarely generated by Acrobat Distiller, not all
PDF consumers are prepared to deal with it. For example, not even Acrobat 4’s touch-up
tool can be used for manipulating templates (this has been fixed in Acrobat 5). Similar-
ly, the PitStop 4.5 PDF editor can only move templates, but cannot access individual ele-
ments within a template. On the other hand, Adobe Illustrator g fully supports tem-
plates.

3.3 Text Handling

3.3.1 The PDF Core Fonts

PDF viewers support a core set of 14 fonts which need not be embedded in any PDF file.
Even when a font isn’t embedded in the PDF file, PDF and therefore PDFlib need to know

36 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

3.3.2

Note

Note

about the width of individual characters. For this reason, metrics information for the
core fonts is already built into the PDFlib binary. However, the builtin metrics informa-
tion is only available for the native host encoding (see below). Using another encoding
than the host encoding requires metrics information files. Metrics files for the PDF core
fonts are included in the PDFlib distribution in order to make it possible to use encod-
ings other than the host encoding. The core fonts are the following:

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,
Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,
Times-Roman, Times-Bold, Times-Italic, Times-Boldltalic,

Symbol, ZapfDingbats

8-Bit Encodings built into PDFlib

PDF supports flexible text encodings (the mapping of numerical code values to charac-
ter glyphs) for 8-bit text fonts. PDFlib includes provisions for supporting diverse encod-
ing vectors for dealing with text. The builtin encoding vectors are referred to via sym-
bolic names. Table 3.3 lists the symbolic encoding names supported internally by
PDFlib. Additional encodings are available in external encoding files distributed with
PDFlib (see below), or can be defined by the user (see Section 3.3.3, »Custom Encoding
and Code Page Files for 8-Bit Encodings«). All supported encodings can be arbitrarily
mixed in one document. You may even use different encodings for a single font, al-
though the need to do so will only rarely arise.

Not all encodings can be used with a given font. The user is responsible for making sure that
the font contains all characters required by a particular encoding. This can even be problematic
with Acrobat’s core fonts.

Table 3.3. Builtin character encodings supported by PDFlib

encoding description

winansi Windows code page 1252, a superset of 1SO 8859-1

macroman Mac Roman encoding, i.e., the default Macintosh character set

ebcdic EBCDIC code page 1047 as used on IBM AS/400 and 5/390 systems

builtin Original encoding used by non-text (symbol) or non-Latin text fonts

host macroman on the Mac, ebcdic on EBCDIC-based systems, and winansi on all others

The winansi encoding. This encoding reflects the Windows ANSI character set, more
specifically code page 1252 including the three characters which Microsoft added for
Windows 98 and Windows 2000 (Euro, Zcaron, and zcaron). The winansi encoding is a su-
perset of ISO 8859-1 (Latin-1) and can therefore also be used on Unix systems.

Most PostScript fonts do not yet contain the three additional Windows characters. They are
supported by the core fonts in Acrobat 4, however.

The macroman encoding. This encoding reflects the MacOS character set, albeit with
the old currency symbol at position 219, and not the Euro character as redefined by Ap-
ple (this incompatibility is dictated by the PDF specification). Also, this encoding does
not include the Apple glyph and the mathematical symbols as defined in the MacOS
character set.

3.3 Text Handling 37

The ebcdic encoding. This encoding relates to the EBCDIC (Extended Binary Coded
Decimal Interchange Code) defined by IBM and used on the IBM AS/400, S/390, and other
midrange and mainframe systems. More specifically, PDFlib’s ebcdic encoding uses the
EBCDIC code page 1047. As with all other PDFlib encodings, ebcdic encoding is always
available for generating PDF output, and not only on native EBCDIC machines. The dif-
ference, however, is that on those machines the built-in metrics for the core fonts are
sorted according to ebcdic encoding, and that host encoding (see below) also relates to
ebcdic encoding.

The builtin encoding. The encoding name builtin doesn’t describe a particular charac-
ter ordering but rather means »take this font as it is, and don’t mess around with the
character set«. This concept is sometimes called a »font specific« encoding and is very
important when it comes to non-text fonts (such as logo and symbol fonts), or non-
Latin text fonts (such as Greek and Cyrillic). Such fonts cannot be reencoded using one
of the supported encodings since their character names don’t match those in these en-
codings. Therefore, builtin must be used for all symbolic or non-text fonts, such as Sym-
bol and ZapfDingbats. Non-text fonts can be recognized by the following entry in their
AFM file:

EncodingScheme FontSpecific

Text fonts can be reencoded (adjusted to a certain code page or character set), while
symbolic fonts can’t, and must use builtin encoding instead.

Note Unfortunately, many typographers and font vendors didn’t fully grasp the concept of font spe-
cific encodings (this may be due to less-than-perfect production tools). For this reason, there
are many Latin text fonts labeled as FontSpecific encoding, and many symbol fonts incorrectly
labeled as text fonts.

The host encoding. Like builtin, the host encoding plays a special role since it doesn’t
refer to some fixed character set. Instead, host encoding will be mapped to macroman on
the Mac, ebcdic on EBCDIC-based systems, and winansi on all others. The host encoding is
primarily useful as a vehicle for writing platform-independent test programs (like those
contained in the PDFlib distribution) or other encoding-wise simple applications. As-
suming that PDFlib client programs are always encoded in the host’s native encoding,
such programs will always generate PDF text output with the »correct« encoding. Con-
trary to all other aspects of PDFlib, the concept of a host encoding is inherently non-por-
table. For this reason host encoding is not recommended for production use.

3.3.3 Custom Encoding and Code Page Files for 8-Bit Encodings

In addition to a number of predefined encodings (see Section 3.3.2, »8-Bit Encodings
built into PDFlib«) PDFlib supports user-defined 8-bit encodings in order to make
PDFlib’s font handling even more flexible. User-defined encodings are the way to go if
you want to deal with some character set which is not internally available in PDFlib,
such as EBCDIC character sets different from the one supported internally in PDFlib. In
addition to encoding tables defined by PostScript glyph names PDFlib also accepts code
page tables which describe a mapping from Unicode to a set of up to 256 characters.
These characters can be accessed with 8-bit character codes.

38 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

The following tasks must be done before a user-defined encoding can be leveraged in
a PDFlib program:

» Generate a description of the encoding in a simple text format.

» Configure the encoding in the PDFlib resource file (see Section 3.3.6, »Resource Con-
figuration and the UPR Resource File«) or via set_parameter().

» Provide a font (metrics and possibly outline file) that supports all characters used in
the encoding. Of course, the characters in the font must use the correct PostScript
glyph names as defined in the encoding table.

The encoding file simply lists glyph names and numbers line by line. As an example, the
following excerpt shows the encoding definition for the ISO 8859-2 (Latin 2) character
set:

% Encoding definition for PDFlib
% IS0 8859-2 (Latin-2)

space 32 % 0x20
exclam 33 % 0x21
quotedbl 34 % 0x22
...more glyph assignments...

yacute 253 % OXFD
tcommaaccent 254 % OXFE
dotaccent 255 % OxFF

The next example shows a snippet from a Unicode code page for the same ISO 8859-2
character set:

% Code page definition for PDFlib
% ISO 8859-2 (Latin-2)

0x0020 32 % 0x20
0x0021 33 % 0x21
0x0022 34 % 0x22
...more glyph assignments...

0X00FD 253 % OxFD
0x0163 254 % OxXFE
0x02D9 255 % OxXFF

More formally, the contents of an encoding or code page file are governed by the follow-
ing rules:

» Comments are introduced by a percent "%’ character, and terminated by the end of
the line.

» The first entry in each line is either a PostScript character name or a hexadecimal
Unicode value composed of a ox prefix and four hex digits (upper or lower case). This
is followed by whitespace and a hexadecimal or decimal character code in the deci-
mal range 0-255. Only Unicode values in the Adobe Glyph List (AGL) are allowed (see
below).

» Character codes which are not mentioned in the encoding file are assumed to be un-
defined. Alternatively, a Unicode value of oxoooo or the character name .notdef can
be used for unencoded characters.

As a naming convention we refer to name-based tables as encoding files (*.enc), and Uni-
code-based tables as code page files (*.cpg), although actually PDFlib treats both kinds in
the same way (and doesn’t care about file names). In fact, PDFlib will automatically con-
vert between name-based encoding files and Unicode-based code page files whenever it
is necessary. This conversion is based on Adobe’s standard list of PostScript glyph

3.3 Text Handling 39

names (the Adobe Glyph List, or AGL'), which is built into PDFlib. Encoding files are re-
quired for PostScript fonts with non-standard glyph names, while code pages are more
convenient when dealing with Unicode-based TrueType fonts.

The relationship between the name of the encoding file and the name of the actual
encoding (to be used with findfont()) is specified in PDFlib’s resource file or via set_
parameter() (see Section 3.3.6, »Resource Configuration and the UPR Resource Filex).

Distributed encoding files. The PDFlib distribution contains several encoding and
code page files (see Table 3.4) which may be useful if you need to use one of the supplied
encodings directly, or want to use it as a starting point for writing your own encoding
files. In order to use these, the PDFlib resource configuration file and font metrics files
must be accessible (see Section 3.3.6, »Resource Configuration and the UPR Resource
File«).

Table 3.4. Additional external character encodings distributed with PDFlib
encoding description

is08859-2 Latin-2 supports the Slavic languages of Central Europe which use the Latin alphabet. Acrobat 4’s
core fonts do not contain all characters for ISO 8859-2.

is08859-3 Latin-3 covers Esperanto and Maltese.
is08859-4 Latin-4 covers Estonian, the Baltic languages, Greenlandic, and Lappish.

is08859-5 1SO 8859-5 (Cyrillic) covers Bulgarian, Russian, and Serbian. Acrobat 4 does not correctly
implement TrueType handling for Cyrillic characters.

is08859-6 1SO 8859-6 covers Arabic, but not Persian or Pakistani/Urdu.

is08859-7 1SO 8859-7 covers modern Greek

is08859-8 1SO 8859-8 covers Hebrew and Yiddish.

is08859-9 Latin-5 (yes, that's 5, not 9!) supports Danish, Dutch, English, Finnish, French, German, Irish,
Italian, Norwegian, Portuguese, Spanish, Swedish, and Turkish. In addition, this PDFlib encoding
contains the characters 130-159 (&H82—&HgF) as defined in the Windows code page 1254

(Turkish). Acrobat 4’s core fonts do not contain the following characters for ISO 8859-9: Gbreve,
gbreve, Idotaccent, Scommaaccent, scommaaccent.

is0o8859-10 Latin-6 is a variation of Latin-4 and covers the Nordic area.

is08859-15 Latin-g: this character set is a variation of Latin-1 which adds the Euro character as well as some
missing French and Finnish characters. Latin-g is sometimes also dubbed Latin-o, although this is
not the official name.

cp1250 Windows code page 1250 (Central European). Acrobat 4’s core fonts do not contain all characters
for code page 1250.

cpi1251 Windows code page 1251 (Cyrillic). Acrobat 4 does not correctly implement TrueType handling for
Cyrillic characters.

cp1253 Windows code page 1253 (Greek)

cp1254 Windows code page 1254 (Turkish)

cp1255 Windows code page 1255 (Hebrew)

cp1256 Windows code page 1256 (Arabic)

cpi1257 Windows code page 1257 (Baltic)

cp1258 Windows code page 1258 (Viet Nam)

1. The AGL can be found at http://partners.adobe.com/asn/developer/type/qlyphlist.txt

40 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

http://partners.adobe.com/asn/developer/type/glyphlist.txt

3.3.4

3:3:5

Finding PostScript character names. In order to write a custom encoding file or find
fonts which can be used with one of the supplied encodings you will have to find infor-
mation about the exact definition of the character set to be defined by the encoding, as
well as the exact glyph names used in the font files. You must also ensure that a chosen
font provides all necessary characters for the encoding. For example, the core fonts sup-
plied with Acrobat 4 do not support ISO 8859-2 (Latin 2) nor Windows code page 1250. If
you happen to have the FontLab' font editor (by the way, a great tool for dealing with all
kinds of font and encoding issues), you may use it to find out about the encodings sup-
ported by a given font (look for »code pages« in the FontLab documentation).?

For the convenience of PDFlib users, the PostScript program print_glyphs.ps in the dis-
tribution fileset can be used to find the names of all characters contained in a PostScript
font. In order to use it, enter the name of the font at the end of the PostScript file and
send it (along with the font) to a PostScript Level 2 or 3 printer, or view it with a Level-2-
compatible PostScript viewer such as Ghostscript3. The program will print all characters
in the font, sorted alphabetically by glyph name.

If a font does not contain a character required for a custom encoding, it will be miss-
ing in the PDF document.

Hypertext Encoding

PDF supports two methods for encoding hypertext elements such as bookmarks, anno-
tations, and document information fields. Up to Acrobat 3, all hypertext strings had to
be encoded with a special 8-bit encoding called PDFDocEncoding (PDFDocEncoding can
not be used for text used on page descriptions). Starting with Acrobat 4, Unicode strings
can be used for all hypertext elements. For more information on Unicode see Section
3.3.8, »Unicode Support.

PDFDocEncoding (see Figure 3.1) is a superset of ISO 8859-1 (Latin 1) and therefore
contains all ASCII characters in the lower part. Although PDFDocEncoding and the Win-
dows code page 1252 are quite similar, they differ substantially in the character range
128-160 (&H80-&HAO0).

Many clients will be able to directly use PDFDocEncoding. However, since the Mac
encoding substantially differs from PDFDocEncoding, it is necessary to convert Mac
strings to PDFDocEncoding when it comes to hypertext elements, and non-ASCII special
characters are to be used. Mac special characters must be converted to Unicode before
they can be used in hypertext elements. This conversion must be performed by the
client.

PostScript and TrueType Fonts

Font embedding in PDF. PDF supports fonts outside the set of 14 core fonts in several
ways. PDFlib is capable of embedding font descriptions into the generated PDF output.
Alternatively, a font descriptor consisting of the character metrics and some general in-
formation about the font (without the actual character outline data) can be embedded.

1. See http://www.fontlab.com

2. Useful raw material for writing encoding tables for a variety of standards and vendor-specific character sets can be found
at ftp://ftp.unicode.org/Public/MAPPINGS; Information about the glyph names used in PostScript fonts can be found at
http://partners.adobe.com/asn/developer/typeforum/unicodegn.html (although font vendors are not required to follow
these glyph naming recommendations).

3. See http://www.cs.wisc.edu/~ghost

3.3 Text Handling 41

http://www.fontlab.com
ftp://ftp.unicode.org/Public/MAPPINGS
http://partners.adobe.com/asn/developer/typeforum/unicodegn.html
http://www.cs.wisc.edu/~ghost

42

0123 456 78 9 ABCDTEF

000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017
1 ©oomoom oo oo
020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037
2 PR S % e ™ () o+, -/
040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057
3 01 2 3 456 789 : ; < =>27?
060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077
4 @ A B CDEUVF GH I JKIL MN O
100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117
5 O RS TUVWXY Z [\ 1 N
120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137
6 , abcdef ghidjk1mno
140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157
7 p gr tuvwxywz{ | } ~
160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177
8 - t . — = f /<y = %, o
200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217
9 * , ™ fi l & S Y zZ 11t e & 2
220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237
A ; ¢ £ x ¥ | § © & « ™ ®
240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257
o e .
B + 2 3 q . . 1 o > % 1/2 % ¢
260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277
o 2e 262 263 5 A - B S S
C A A A A A K E E E I I I
300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317
D p N O O O O x U U U U Y b B
320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337
0w ” 0 sl as
E a &8 a & a ® ¢ & é& é& & 1 i 1 1
340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357
F n o o6) + @ U 00 Uv by
360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

Fig. 3.1. The PDFDocEncoding character set as defined in PDF 1.3 with hex and octal codes.
Note the Euro character at position hexadecimal Ao = octal 240.

If a font is not embedded in a PDF document, Acrobat will take it from the target system
if available, or construct a substitute font according to the font descriptor in the PDF.
Table 3.5 lists different situations with respect to font usage, each of which poses differ-
ent requirements on the necessary font and metrics files.

When a font with font-specific encoding (a symbol font) is used, but not embedded in
the PDF output, the resulting PDF will be unusable unless the font in question is already
natively installed on the target system (since Acrobat can only simulate Latin text
fonts). Such PDF files are inherently nonportable, although they may be of use in con-
trolled environments, such as intra-corporate document exchange.

PostScript fonts. PDFlib supports the following formats for PostScript metrics and
outline data on all platforms:

» The platform-independent AFM (Adobe Font Metrics) and the Windows-specific PFM
(Printer Font Metrics) format for metrics information. Since PFM files do not describe
the full character metrics but only the glyphs used in Windows (code page 1252), they
can only be used for the winansi or builtin encodings, while AFM-based font metrics
can be rearranged to any encoding supported by the font.

Chapter 3: PDFlib Programming Concepts (ActiveX edition)

Note

Table 3.5. Different font usage situations and required metrics and outline files

font outline file
font usage font metrics file required? required?
One of the 14 core fonts with PDFlib’s host encoding™? no no
One of the 14 core fonts with an encoding other than yes (AFM files supplied with no
PDFlib’s host encoding® the PDFlib distribution)
Non-core PostScript fonts without embedding yes no
Non-core PostScript fonts with embedding yes yes
Additional font/encoding combinations for which the no yes, if embedding is
metrics have been compiled into PDFlib (see below) requested
TrueType fonts with or without embedding no yes
Standard CID fonts? no no
Non-standard CID fonts (not supported) (not supported)

1. See Section 3.3.1, »The PDF Core Fonts« for a list of core fonts.
2. See Section 3.3.2, »8-Bit Encodings built into PDFlib« for the definition of PDFlib’s host encoding.
3. See Section 3.3.7, »CID Font Support for Japanese, Chinese, and Korean Text« for more information on CID fonts.

» The platform-independent PFA (Printer Font ASCII) and the Windows-specific PFB
(Printer Font Binary) format for font outline information in the PostScript Type 1 for-
mat, (sometimes also called »ATM fonts«). PostScript Type 3 fonts are not supported.

If you can get hold of a PostScript font file, but not the corresponding metrics file, you
can try to generate the missing metrics using one of several freely available utilities. For
example, the T1lib package' contains the typerafm utility for generating AFM metrics
from PFA or PFB font files.

PostScript font names. It is important to use the exact (case-sensitive) PostScript font
name whenever a font is referenced in PDFlib. There are several possibilities to find a
PostScript font’s exact name:

» Open the font outline file (*pfa or *pfb), and look for the string after the entry
/FontName. Omit the leading / character from this entry, and use the remainder as
the font name.

» If you have ATM (Adobe Type Manager) installed, you can double-click the font (*pfb)
or metrics (*.pfm) file, and will see a font sample along with the PostScript name of
the font.

» Open the AFM metrics file and look for the string after the entry FontName.

The PostScript font name may differ substantially from the Windows font menu name, e.g.
»AvantGarde-Demi« (PostScript name) vs. »AvantGarde, Bold« (Windows font menu name).
Also, the font name as given in any Windows .inf file is not relevant for use with PDF.

Performance notes for PostScript fonts. It is important to be aware of the impact of
font handling issues on PDFlib’s performance. Generally, the font metrics (either in-
core or on file) are accessed whenever a certain font/encoding combination is used for
the first time. Subsequent requests for the same combination will be satisfied from
PDFlib’s internal font cache without any further performance penalty. Regarding font
handling performance, the following observations may be useful:

1. See http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/rmz/t1lib/tilib.ntm]

3.3 Text Handling 43

http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/rmz/t1lib/t1lib.html

Note

44

» Due to their small size and binary nature, PFM metrics files can be read much faster
than the text-based AFM metrics files. However, they cannot be used for arbitrary
encodings.

» AFM files contain much useful information about many aspects of font usage, and
can be used for arbitrary encodings. However, although only the bare character met-
rics are required for PDFlib, the complete AFM file must be parsed in a time-consum-
ing manner. For performance-critical applications it might be worthwhile to strip
the unneeded data (e.g., the kerning information) from the AFM file.

TrueType fonts. PDFlib supports TrueType and OpenType fonts on all platforms. The
TrueType font file must be supplied in Windows TTF format (Macintosh resource for-
mat is not supported). OpenType fonts are only supported if they contain TrueType
outlines (as opposed to OpenType fonts which contain PostScript outlines, also known
as CFF fonts). Contrary to PostScript fonts, TrueType fonts do not require any additional
metrics file since the metrics information can be extracted from the font file itself.
PDFlib currently supports the following flavors of TrueType fonts:

» Standard latin text fonts with the Windows character set (in TrueType lingo: cmap
table with platform id 3, encoding id 1). These must be used with PDFlib encoding
winansi. Note that most (but not all) TrueType fonts for Windows can also be used
with PDFlib encoding macroman since they contain the necessary Mac information
(cmap table with platform id 1, encoding id o) in addition to the Windows informa-
tion.

» Unicode-compatible TrueType fonts. These can be used with any PDFlib encoding as
long as the font actually contains the characters required by that encoding. You can
check which code pages are supported by a particular font with the »font properties
extension« mentioned below.

» Symbol fonts with a custom character set (in TrueType lingo: cmap table with plat-
form id 3, encoding id o). These must be used with PDFlib encoding builtin.

The above distinction between text and symbol fonts may seem obvious, but in practise
it may be hard to find the appropriate category for a given font. For various reasons,
text fonts may be coded as TrueType symbol fonts, and vice versa. In case of an encoding
mismatch PDFlib tries to help, and supplies encoding suggestions in the message which
is part of a PDFlib exception.

TrueType host fonts. Inaddition to accessing font files which have been configured via
PDFlib’s resource and parameter machinery (see Section 3.3.6, »Resource Configuration

and the UPR Resource File«) TrueType fonts can also be fetched directly from the operat-
ing system. We refer to such fonts as host fonts. Instead of fiddling with font and config-
uration files simply install the font in the operating system (read: drop it into the fonts

directory), and PDFlib will happily use it.

Host font support is restricted to TrueType fonts. Host fonts will not be used for embedding one
of the core fonts.

TrueType font names. It is important to specify the exact (case-sensitive) TrueType
font name whenever a font is referenced in PDFlib. This must be the Windows name of
the font as it is exposed at the user interface. You can easily find this name by double-
clicking the TrueType font file in Windows, and taking note of the full font name which
will be displayed in the first line of the resulting window (without the TrueType or Open-

Chapter 3: PDFlib Programming Concepts (ActiveX edition)

Note

Note

3.3.6

Note

Type term in parentheses, of course). Do not use the entry in the second line after the
label Typeface name! Also, some fonts may have parts of their name localized according
to the respective Windows version in use. For example, the common font name portion
Bold may appear as the translated word Fett on a German system, and must also be used
in translated form in PDFlib.

In the generated PDF the name of a TrueType font may differ from the name used in
PDFlib (or Windows). This is normal, and results from the fact that PDF uses the Post-
Script name of a TrueType font, which differ from its genuine TrueType name (e.g.,
TimesNewRomanPSMT vs. Times New Roman).

If you want to examine TrueType fonts in more detail take a look at Microsoft’s free
»font properties extension«' which will display many entries of the font’s TrueType ta-
bles in human-readable form.

Contrary to PostScript fonts, TrueType font names may contain blank characters (and often do).

Legal aspects of font embedding. It'simportant to note that mere possession of a font
file may not justify embedding the font in PDF, even for holders of a legal font license.
Many font vendors restrict embedding of their fonts. Some type foundries completely
forbid PDF font embedding, others offer special online or embedding licenses for their
fonts, while still others allow font embedding provided the fonts are subsetted. Please
check the legal implications of font embedding before attempting to embed fonts with
PDFlib. PDFlib will honour embedding restrictions which may be specified in a True-
Type font. If the embedding flag in a TrueType font is set to no embedding? PDFlib will
honor the font vendor’s request, and reject any attempt at embedding the font.

PDFlib currently doesn’t implement font subsetting.

Resource Configuration and the UPR Resource File

In order to make PDFlib’s font and encoding handling platform-independent and cus-
tomizable, a configuration file can be supplied for describing the available fonts along
with the names of their outline and metrics files, and the names of additional encoding
files. In addition to the static configuration file, dynamic configuration can be accom-
plished at runtime by adding resources with set_parameter(). For the configuration file
we dug out a simple text format called Unix PostScript Resource (UPR) which came to life
in the era of Display PostScript and is still in use on several systems. However, we will
take the liberty of extending the original UPR format for our purposes. The UPR file for-
mat as used by PDFlib will be described below.3 There is a utility called makepsres (often
distributed as part of the X Window System) which can be used to automatically gener-
ate UPR files from PostScript font outline and metrics files.

As an alternative to configuring fonts in UPR files or via set_parameter() you can make use of
PDFlib host font feature in certain situations (see Section 3.3.5, »PostScript and TrueType
Fonts«)

1. See http://www.microsoft.com/typography/property/property.htm

2. More specifically: if the fsType flag in the OS/2 table of the font has a value of 2.

3. The complete specification can be found in the book »Programming the Display PostScript System with X« (Appendix A),
available at http://partners.adobe.com/asn/developer/PDFS/TN/DPS.refmanuals.TK.pdf

3.3 Text Handling 45

http://partners.adobe.com/asn/developer/PDFS/TN/DPS.refmanuals.TK.pdf
http://www.microsoft.com/typography/property/property.htm

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:

» Lines can have a maximum of 255 characters.

» Abackslash’\’ escapes any character, including newline characters. This may be used
to extend lines. Windows directory names must be separated by double backslashes
"\\V" or a single forward slash /.

» The period character’.’ serves as a section terminator, and must therefore be es-
caped when used at the start of any other line.

» All entries are case-sensitive.

» Comment lines may be introduced with a percent %’ character, and terminated by
the end of the line.

» Whitespace is ignored everywhere.

UPR files consist of the following components:
» A magic line for identifying the file. It has the following form:

PS-Resources-1.0

» A section listing all types of resource categories described in the file. Each line de-
scribes one resource category. The list is terminated by a line with a single period
character. Available resource categories are described below. This section exists for
compatibility only, and is ignored by PDFlib.

Note Some PDFlib editions support a directory prefix entry in the UPR file. Do not use the directory
prefix for the PDFlib ActiveX component since it substitutes the UPR prefix mechanism with
Windows registry entries, and expects all files in the PDFlib fonts directory by default. If you
want to access resources in other directories use double equal signs as described below.

» A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted), an equal sign, and the corresponding relative or ab-
solute file name for the resource. Relative file names will be interpreted relative to
PDFlib’s fonts directory. Using a double equal sign forces the file name to be inter-
preted absolute, i.e., the prefix is not used.

Supported resource categories. The resource categories supported by PDFlib are listed
in Table 3.6. Other resource categories may be present in the UPR file for compatibility
with Display PostScript installations, but they will silently be ignored.

Table 3.6. Resource categories supported in PDFlib

resource category name explanation

FontAFM PostScript font metrics file in AFM format

FontPFM PostScript font metrics file in PFM format

FontOutline PostScript, TrueType or OpenType font outline file
Encoding text file containing an 8-bit encoding or code page table

46 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

Redundant resource entries should be avoided. For example, do not include multiple
entries for a certain font’s metrics data. Also, the font name as configured in the UPR file
should exactly match the actual font name in order to avoid confusion (although
PDFlib does not enforce this restriction).

Sample UPR file. The following listing gives an example of a UPR configuration file as
used by PDFlib. It describes the 14 PDF core fonts’ metrics, plus metrics and outline files
for some additional fonts, plus a custom encoding:

PS-Resources-1.0
FontAFM

FontPFM
FontOutline
Encoding

FontAFM

Code-128=Code_128.afm

Courier=Courier.afm
Courier-Bold=Courier-Bold.afm
Courier-BoldOblique=Courier-BoldOblique.afm
Courier-Oblique=Courier-Oblique.afm
Helvetica=Helvetica.afm
Helvetica-Bold=Helvetica-Bold.afm
Helvetica-BoldOblique=Helvetica-BoldOblique.afm
Helvetica-Oblique=Helvetica-Oblique.afm
Symbol=Symbol.afm

Times-Bold=Times-Bold.afm
Times-BoldItalic=Times-BoldItalic.afm
Times-Italic=Times-Italic.afm
Times-Roman=Times-Roman.afm
ZapfDingbats=ZapfDingbats.afm

FontPFM

Foobar-Bold=foobb__ .pfm

% Example for an absolute path name with the prefix not applied (two equal signs)
Mistral==c:/psfonts/pfm/mist____ .pfm

FontOutline
Code-128=Code_128.pfa
ArialMT=Arial.ttf

Encoding
1508859-2=1508859-2.enc
Cp1250=cp1250.cpg

Searching for the UPR resource file. If only the built-in resources are to be used (PDF
core fonts with host encoding), a UPR configuration file is not required, since PDFlib
contains all necessary resources.
If other resources are to be used, PDFlib will search several places for a resource file.
The process is configurable and consists of the following steps:
» The PDFlib ActiveX component checks a registry entry to find the file pdfiib.upr in the
fonts subdirectory of the PDFlib installation directory.If this file can’t be opened, an
IOError is raised.

3.3 Text Handling 47

» Ifaresource file can be opened during any of the above steps, but a required resource
category cannot be found, a SystemError is raised.

Setting resources without a UPR file. In addition to using a UPR file for the configura-

tion, it is also possible to directly configure individual resources within the source code

via the set_parameter()) function. This function takes a category name and a correspond-
ing resource entry as it would appear in the respective section of this category in a UPR

resource file, for example:

OPDF.set_parameter "FontAFM", "Foobar-Bold=foobb .afm"
OPDF.set_parameter "FontOutline", "Foobar-Bold=foobb _ .pfa"

Similar to UPR files, if two equal signs are present, the file name will be interpreted ab-
solute. If only a single one equal sign is present, the directory prefix will be used if one
has been configured.

3.3.7 CID Font Support for Japanese, Chinese, and Korean Text

CJK support in Acrobat and PDF'. While Japanese font support was already available
in Acrobat 3], Acrobat 4 added full support for CID (Character ID) fonts for Japanese, Chi-
nese, and Korean (CJK) text even in the non-Japanese versions of the full Acrobat pack-
age as well as the free Acrobat Reader. In order to use CJK documents in Acrobat you
must do one of the following:

» Use a localized CJK version of Acrobat.

» If you use any non-CJK version of the full Acrobat product, select the Acrobat install-
er’s option »Asian Language Support« (Windows) or »Language Kit« (Mac). The re-
quired support files (fonts and encodings) will be installed from the Acrobat product
CD-ROM.

» If you use Acrobat Reader, install one of the Asian Font Packs which are available on
the Acrobat 4 product CD-ROM, or on the Web.?

CJK encodings and fonts. Historically, a wide variety of CJK encoding schemes has
been developed by diverse standards bodies, companies, and other organizations. For-
tunately enough, all prevalent encodings are supported by Acrobat and PDF by default.
Acrobat 4 supports a wealth of different encoding schemes for CJK fonts. Since the con-
cept of an encoding is much more complicated for CJK text than for Latin text, simple
encoding vectors with 256 entries no longer suffice. Instead, PostScript and PDF use the
concept of character collections and character maps (CMaps) for organizing the charac-
ters in a font. Conceptually, CMaps can be thought of as large encodings for CJK fonts.
Acrobat 4 supports a set of standard fonts for CJK text. These fonts are supplied with
the Acrobat installation (or the Asian FontPack), and therefore don’t have to be embed-
ded in the PDF file (this parallels the use of the 14 core fonts for Latin text). These fonts
contain all characters required for common encodings, and support both horizontal
and vertical writing modes. The standard fonts and CMaps are documented in Table 3.7.
As can be seen from the table, the default CMaps support most CJK encodings used on
Mac, Windows, and Unix systems, as well as several other vendor-specific encodings. In
1. This is a good opportunity to praise Ken Lunde’s seminal tome »CJIKV information processing — Chinese, Japanese, Korean
& Vietnamese Computing« (O'Reilly 1999, ISBN 1-56592-224-7), as well as his work at Adobe since he’s one of the driving

forces behind CIK support in PostScript and PDF.
2. See http://www.adobe.com/prodindex/acrobat/cjkfontpack.html

48 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

http://www.adobe.com/prodindex/acrobat/cjkfontpack.html

particular, the major Japanese encoding schemes Shift-JIS, EUC, ISO 2022, and Unicode
(UCS-2) are supported. Tables with all supported characters are available from Adobe';
CMap descriptions can be found in Table 3.8.

Table 3.7. Acrobat’s standard fonts for Japanese, Chinese, and Korean text

locale font name font samples supported CMaps (encodings)

Simplified ~ STSong-Light Ig# GB-EUC-H, GB-EUC-V, GBpc-EUC-H, GBpc-EUC-V,

Chinese m GBK-EUC-H, GBK-EUC-V, UniGB-UCS2-H, UniGB-UCS2-V

Traditional ~ MHei-Medium I:Fl Y Bspc-H, Bspc-V, ETen-Bs-H, ETen-Bs-V, ETenms-Bs-H,

Chinese 9 ETenms-B5-V, CNS-EUC-H, CNS-EUC-V, UniCNS-UCS2-H,
MSung-Light Ha 3 UniCNS-UCS2-V

Japanese HeiseiKakuGo-Ws5 E ZFE':E 83pv-RKSJ-H, goms-RKSJ-H, goms-RKSJ-V, gomsp-RKSJ-H,
BB 9omsp-RKSI-V, gopv-RKSJ-H, Add-RKSJ-H, Add-RKSJ-V,

HeiseiMin-W3 EI %g- EUC-H, EUC-V, Ext-RKSJ-H, Ext-RKSJ-V, H, V, UniJIS-UCS2-H,
UniJIS-UCS2-V, UniJIS-UCS2-HW-H, UniJIS-UCS2-HW-V
Korean HYGoThic-Medium 3|_ i § KSC-EUC-H, KSC-EUC-V, KSCms-UHC-H, KSCms-UHC-V,
HYSMyeongJo- — 1 KSCms-UHC-HW-H, KSCms-UHC-HW-V, KSCpc-EUC-H,
Medium =]_:,J_ UniKS-UCS2-H, UniKS-UCS2-V
R |

CJK font support in PDFlib. Having realized the similarity between core fonts/encod-
ing vector on the one hand, and CJK standard fonts/CMaps on the other hand, it won’t
be much of a surprise that both Latin and CJK fonts can be selected with the same PDFlib
interface, using the CMap name in lieu of the encoding name, and taking into account
that a given CJK font supports only a certain set of CMaps (see Table 3.7). For wide char-
acters to work with the PDFlib ActiveX edition the nativeunicode parameter must be set
to true. The HeiseiKakuGo sample in Table 3.7 has been generated with the following
code:

OPDF.set_parameter "nativeunicode", "true"

font = oPDF.findfont("HeiseiKakuGo-W5", "Ext-RKSJ-H", 0)
oPDF.setfont font, 24

OPDF.set_text_pos x, y

OPDF.show ChrW(8H93FA) & ChrW(&H967B) & ChrW(8H8CEA)

These instructions locate one of the Japanese standard fonts, choosing a Shift-JIS-com-
patible CMap (Ext-RKSJ) encoding and horizontal writing mode (H). The fontname para-
meter must be the exact name of the font (strictly speaking, the value of the /C/DFont-
Name entry in the corresponding CID PostScript font file), without any encoding or
writing mode suffixes. The encoding parameter is the name of one of the supported
CMaps (the choice depends on the font) and will also indicate the writing mode (see
below). PDFlib supports all of Acrobat’s default CMaps, and will complain when it de-
tects a mismatch between the requested font and the CMap. For example, asking PDFlib
to use a Korean font with a Japanese encoding will result in an exception of type
ValueError.

Although CID font embedding is technically possible in PDF 1.3, it is not practical due
to the size of typical CID fonts, and due to the fact that most CJK font licenses do not

1. See http://partners.adobe.com/asn/developer/typeforum/cidfonts.html for a wealth of resources related to CID fonts,
including tables with all supported glyphs (search for »character collection«).

3.3 Text Handling 49

http://partners.adobe.com/asn/developer/typeforum/cidfonts.html

Table 3.8. Predefined CMaps for Japanese, Chinese, and Korean text (from the PDF Reference)

locale
Simplified
Chinese

Traditional
Chinese

Japanese

Korean

supported CMaps

GB-EUC-H
GB-EUC-V
GBpc-EUC-H
GBpc-EUC-V
GBK-EUC-H
GBK-EUC-V
UniGB-UCS2-H
UniGB-UCS2-V
Bspc-H

Bspc-V
ETen-Bs-H
ETen-Bs-V
ETenms-Bs-H
ETenms-Bs-V
CNS-EUC-H
CNS-EUC-V
UniCNS-UCS2-H
UniCNS-UCS2-V

83pv-RKSJ-H

goms-RKSJ-H
9oms-RKSJ-V
9omsp-RKSJ-H
9omsp-RKSJ-V
9opv-RKSJ-H

Add-RKSJ-H
Add-RKSJ-V
EUC-H
EUC-V
Ext-RKSJ-H
Ext-RKSJ-V
H

v

UniJIS-UCS2-H
UniJIS-UCS2-V

UniJIS-UCS2-HW-H
UniJIS-UCS2-HW-V

KSC-EUC-H
KSC-EUC-V
KSCms-UHC-H
KSCms-UHC-V

KSCms-UHC-HW-H
KSCms-UHC-HW-V

KSCpc-EUC-H

UniKS-UCS2-H
UniKS-UCS2-V

description

Microsoft Code Page 936 (IfCharSet 0x86), GB 2312-80 character set, EUC-
CN encoding

Macintosh, GB 2312-80o character set, EUC-CN encoding, Script Manager
code 2

Microsoft Code Page 936 (IfCharSet 0x86), GBK character set, GBK
encoding

Unicode (UCS-2) encoding for the Adobe-GB1 character collection
Macintosh, Big Five character set, Big Five encoding, Script Manager code 2

Microsoft Code Page 950 (IfCharSet 0x88), Big Five character set with ETen
extensions

Same as ETen-Bs-H, but replaces half-width Latin characters with
proportional forms

CNS 11643-1992 character set, EUC-TW encoding
Unicode (UCS-2) encoding for the Adobe-CNS1 character collection

Macintosh, JIS X 0208 character set with KanjiTalké extensions, Shift-JIS
encoding, Script Manager code 1

Microsoft Code Page 932 (IfCharSet 0x80), JIS X 0208 character set with
NEC and IBM extensions

Same as goms-RKSJ-H, but replaces half-width Latin characters with
proportional forms

Macintosh, JIS X 0208 character set with KanjiTalky extensions, Shift-JIS
encoding, Script Manager code 1

JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS encoding
JIS X 0208 character set, EUC-JP encoding

JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS encoding
JIS X 0208 character set, ISO-2022-JP encoding

Unicode (UCS-2) encoding for the Adobe-Japan1 character collection

Same as UniJIS-UCS2-H, but replaces proportional Latin characters with
half-width forms

KS X 1001:1992 character set, EUC-KR encoding

Microsoft Code Page 949 (IfCharSet 0x81), KS X 1001:1992 character set
plus 8822 additional hangul, Unified Hangul Code (UHC) encoding

Same as KSCms-UHC-H, but replaces proportional Latin characters with
half-width forms

Macintosh, KS X 1001:1992 character set with Mac OS KH extensions, Script
Manager Code 3

Unicode (UCS-2) encoding for the Adobe-Korea1 character collection

50 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

Note

Note

permit embedding. For this reason the embed parameter is not used for CID fonts, and
must be o.

PDFlib doesn’t require any font-specific metrics information for CID fonts, and
doesn’t make any attempt to decode the client-supplied text strings, or verify whether
they are correctly encoded with respect to the underlying CMap. For this reason the fol-
lowing features are currently not supported for CID fonts:

» calculating the extent of text with stringwidth()

» box formatting with show_boxed()

» activating underline/overline/strikeout mode

» retrieving the textx/texty position
Also, all characters in CJK fonts are considered to have the same width, including Latin
characters. The character width is equal to the font size. If you want Latin characters
which have a smaller width than the CJK characters you must switch to a Latin 8-bit font
such as Courier or Helvetica.

PDFlib currently only supports the standard CID fonts supplied with Acrobat (see Table 3.7). Nei-
ther custom CID fonts nor Japanese, Chinese, or Korean TrueType fonts can be used. However,
you can simulate bold fonts by rendering »filled and stroked« text (rendering mode 2, see text-
rendering parameter).

Horizontal and vertical writing mode. PDFlib supports both horizontal and vertical
writing modes. The mode is selected along with the encoding by choosing the appropri-
ate CMap name. CMaps with names ending in -H select horizontal writing mode, while
the -V suffix selects vertical writing mode.

Some PDFlib functions change their semantics according to the writing mode. For example,
continue_text() should not be used in vertical writing mode, and the character spacing must
be negative in order to spread characters apart in vertical writing mode. The details are dis-
cussed in the respective function descriptions.

CJK text encoding in PDFlib. The client is responsible for supplying text such that its
encoding matches the encoding requested for the CID font. PDFlib does not check
whether the supplied text conforms to the requested encoding. For multi-byte encod-
ings, the high-order byte of a character must appear first.

PDFlib language bindings which are natively Unicode-aware (this includes ActiveX/
COM)automatically convert Unicode strings supplied to the library. For this reason only
Unicode-compatible CMaps should be used with these language bindings when the
nativeunicode parameter is set to true (see also Section 3.3.8, »Unicode Support«).

Printing PDF documents with CJK text. Printing CJK documents gives rise to a number
of issues which are outside the scope of this manual. However, we will supply some use-
ful hints for the convenience of PDFlib users. If you have trouble printing CJK docu-
ments with Acrobat, consider one or more of the following:

» Printing CID fonts does not work on all PostScript printers. Native CID font support
has only been integrated in PostScript version 2015, i.e. PostScript Level 1 and early
Level 2 printers do not natively support CID fonts (unless the printer is equipped
with the Type o font extensions). However, for early Level 2 devices the printer driver
is supposed to take care of this by downloading an appropriate set of compatibility
routines to pre-2015 Level 2 printers.

3.3 Text Handling 51

3.3.8

52

» Due to the large number of characters CID fonts consume very much printer memo-
ry (disk files for CID fonts typically are 5-10 MB in size). Not all printers have enough
memory for printing such fonts. For example, in our testing we found that we had to
upgrade a Level 3 laser printer from 16 MB to 48 MB RAM in order to reliably print
PDF documents with CID fonts.

» Non-Japanese PostScript printers do not have any Japanese fonts installed. For this
reason, you must check Download Asian Fonts in Acrobat’s print dialog.

» If you can’t successfully print using downloaded fonts, check Print as Image in Acro-
bat’s print dialog. This instructs Acrobat to send a bitmapped version of the page to
the printer (300 dpi, though).

Unicode Support

Starting with version 4, Acrobat supports the Unicode standard,
almost identical to ISO 10646". This is a large character set which
covers all current and many ancient languages and scripts in
the world, and has significant support in many applications and

operating systems. PDFlib supports the Unicode standard for
the following features:
» bookmarks (see Figure 3.2)
» contents and title of note annotations (see Figure 3.2)
» standard and user-defined document information field contents (but not user-
defined field names - the PDF specification unfortunately doesn’t allow this)
» description and author of file attachments
» CJK text on page descriptions, provided a Unicode-compatible encoding is used (see
Section 3.3.7, »CID Font Support for Japanese, Chinese, and Korean Text«)
» 8-bit code pages for TrueType and PostScript fonts

Before delving into the Unicode implementation, however, you should be aware of the
following restrictions regarding Unicode support in Acrobat:
» Acrobat 4 does not display all characters from the Adobe Glyph List correctly (this
has been fixed in Acrobat 5). This bug affects, for example, Cyrillic characters
» The usability of Unicode-enhanced PDF documents heavily depends on the Unicode
support available on the target system. Unfortunately, most systems today are far
from being fully Unicode-enabled in their default configurations. Although Win-
dows NT and MacOS support Unicode internally, availability of appropriate Unicode
fonts is still an issue.
» Acrobat on Windows is unable to handle more than one script in a single annotation.
This seems to be related to an OS-specific issue (restrictions of the text edit widget
used in Acrobat’s implementation of the annotation feature).

Unicode code pages for PostScript and TrueType fonts. PDFlib supports Unicode for
page descriptions for characters within the Adobe Glyph List (AGL). While text strings
still must contain 8-bit characters, an arbitrary set of up to 256 characters can be select-
ed using a Unicode-based code page definition file. This kind of Unicode support is
available for Unicode-based TrueType fonts and PostScript with glyph names in the
AGL. For details on code pages and AGL see Section 3.3.3, »Custom Encoding and Code
Page Files for 8-Bit Encodings«.

1. See http://www.unicode.org for more information about the Unicode standard

Chapter 3: PDFlib Programming Concepts (ActiveX edition)

http://www.unicode.org

Thurnbnails 1 Annotations 1 Signatures 1 Bookmarks
E-[Ju+0100

-] 0x0100: AaA3AACECGT e
-] 0x0110: PdEeEeEeEeESGyGy
-] 0x0120: GgGgHhHhIililili
-] 0x0130; ii..JjKK.LILILL.
-] 0x0140; .LINNNnNn...0000
-] 0x0150: OBOORIRIRI5§5s5s
-] 0x0160: SETTUTHUUUUUUDE
-] 0%0170: Giluuwwinirézz 7.
&[] U+0200
-] U+0300
-] 0x0380; ... REHLO. YT
-] 0x0390: iABT AEZHOIKAMNZO
-] 0x03A0: MP.ITYOXPOIYaii
-] 0x03B0: liaPydegnBikApvo
-] 0x03C0: TPCOTUPEPWIbHGD.
-] U+0400
-] 0x0400: EBIESHIPY.......
-] 0x0410: ABBM AEX3MAKIIMHON
-] 0x0420; PCTYOXUYIIIbL L3104
j 0=0430: a0Er A e MAKNTMHON
j 0x0440: pcTypXUHLIL bbILI0A
-] 0x0450; .ghiesiinwhii

Greek annotation

Russian annotation

NoOOPYTA

Fig. 3.2. Unicode bookmarks (left) and Unicode text annotations (right)

Unicode encoding for CID fonts. PDF allows Unicode-encoded text on document pages
(as opposed to hypertext as discussed above). Unfortunately, this holds only true for
CID fonts, but not regular Type 1 PostScript fonts. In order to place Unicode-conforming
Chinese, Japanese, or Korean text on a page, a Unicode-compatible CMap must be used.
These are easily identified by the Uni prefix in their name (see Table 3.8). These CMaps,
however, only support the characters required for the respective locale, but not other
Unicode characters.

Unicode encoding for hypertext elements. Users of the PDFlib ActiveX edition can di-
rectly supply Unicode text to the Unicode-enabled hypertext functions (bookmarks, an-
notations, etc.) when the nativeunicode parameter is set to true. For example, the follow-
ing snippet (in hexadecimal notation) creates a bookmark with the Greek string
»NOlOZ« (see Figure 3.2):

OPDF.set_parameter "nativeunicode", "true"
bookmark = oPDF.add bookmark(ChrW(8H39B) & ChrW(&H39F) & ChrW(&H393) & ChrW(8H39F) &
Chrl(&H3A3), 0, 0)

Wrong Unicode character assignments on Windows. The following PDFlib language
bindings are Unicode-aware, and can automatically convert Unicode strings to the for-
mat expected by PDFlib:

» ActiveX/COM

» Java

» Tcl (requires Tcl 8.2 or above)

However, in order to avoid the character conversion problem described below, Unicode
support is disabled by default in these bindings. It can be activated by setting the PDFlib
parameter nativeunicode to true (see also Section 4.3.2, »Text Output«):

3.3 Text Handling 53

OPDF.set_parameter "nativeunicode", "true"

Native Unicode mode means that the wrapper code will internally distinguish the fol-
lowing cases, and apply the appropriate conversion:

» 8-bit strings, i.e., strings which contain only characters from U+oooo to U+ooFF are
interpreted as PDFDocEncoding (for hypertext) or 8-bit characters according to the
current encoding (for page descriptions).

» Unicode strings for hypertext functions will be encoded according to the PDF refer-
ence.

» Unicode strings for page descriptions will be supplied without any conversion. This
requires a Unicode-compatible CMap to be selected (see Table 3.7).

The developer generally need not care about the encoding specifics detailed above, but
can simply use Unicode text as supported by the environment. (More details on Uni-
code usage from within the supported languages can be found in the manual section
for the respective binding in Chapter 2). However, there’s a subtle issue related to literal
Unicode characters embedded in ActiveX, Java, or Tcl source code which we will try to
explain with a small example.

COM'’s native support for Unicode strings is just fine for PDF’s hypertext elements,
but can be dangerous with respect to page descriptions and non-Unicode-compliant 8-
bit encodings. For example, while most characters in the Windows code page 1252 are
compatible with Unicode, not all are (more specifically, the range &H80-&HgF). Consid-
er the following attempt to show the endash character with PDFlib:

' Literal character 8H96 = Alt-150 in the code. Works only if nativeunicode = false
OPDF.show("-");

If this snippet is used on a Windows system with code page 1252 and nativeunicode ==
true, the literal endash character (&H9g6 in code page 1252) will be translated to the corre-
sponding Unicode character (&H2013 in this example), which is unsuited for an 8-bit
PDF encoding such as winansi. In order to prevent this problem in native Unicode mode
rewrite the above code snippet as follows:

' Safe way of selecting characters outside Latin-1 if nativeunicode = true
OPDF.show ChrW(&H96)

This will pass the intended character code &Hg6 to PDFlib, which will correctly interpret
it according to the chosen encoding vector.

3.3.9 Text Metrics, Text Variations, and Text Box Formatting

Font and character metrics. PDFlib uses the character and font metrics system used by
PostScript and PDF which shall be briefly discussed here.

The font size which must be specified by PDFlib users is the minimum distance be-
tween adjacent text lines which is required to avoid overlapping character parts. The
font size is generally larger than individual characters in a font, since it spans ascender
and descender, plus possibly additional space between lines.

The leading (line spacing) specifies the vertical distance between the baselines of ad-
jacent lines of text. By default it is set to the value of the font size. The capheight is the
height of capital letters such as T or H in most Latin fonts. The ascender is the height of
lowercase letters such as for d in most Latin fonts. The descender is the distance from the

54 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

Note

baseline to the bottom of lowercase letters such as j or p in most Latin fonts. The de-
scender is usually negative. The values of capheight, ascender, and descender are mea-
sured as a fraction of the font size, and must be multiplied with the required font size
before being used.

The values of capheight, ascender, and descender for a specific font are supplied in
the font metrics file, and can be queried from PDFlib as follows:

font = oPDF.findfont("Times-Roman", "winansi", 0)
oPDF.setfont font, fontsize

capheight = oPDF.get value("capheight", font) * fontsize
ascender = oPDF.get_value("ascender", font) * fontsize
descender = oPDF.get value("descender"”, font) * fontsize

The position and size of superscript and subscript cannot be queried from PDFlib since this in-
formation is not contained in AFM metrics files.

CPI calculations. While most fonts have varying character widths, so-called mono-
spaced fonts use the same widths for all characters. In order to relate PDF font metrics to
the characters per inch (CPI) measurements often used in high-speed print environ-
ments, some calculation examples for the mono-spaced Courier font may be helpful. In
Courier, all characters have a width of 600 units with respect to the full character cell of
1000 units per point (this value can be retrieved from the corresponding AFM metrics
file). For example, with 12 point text all characters will have an absolute width of

12 points * 600/1000 = 7.2 points

with an optimal line spacing of 12 points. Since there are 72 points to an inch, exactly 10
characters of Courier 12 point will fit in an inch. In other words, 12 point Courier is a 10
cpi font. For 10 point text, the character width is 6 points, resulting in a 72/6 =12 cpi
font. Similarly, 8 point Courier results in 15 cpi.

Underline, overline, and strikeout text. PDFlib can be instructed to put lines below,
above, or in the middle of text. The stroke width of the bar and its distance from the
baseline are calculated based on the font’s metrics information. In addition, the current
values of the horizontal scaling factor and the text matrix are taken into account when
calculating the width of the bar. set_parameter() can be used to switch the underline,
overline, and strikeout feature on or off as follows:

OPDF.set_parameter "underline", "true" ' enable underlines

ﬁl\ Fig. 3.3. Font and character metrics

. ascender
font size capheight
baseline
descender

3.3 Text Handling 55

Note

56

The current stroke color is used for drawing the bars. The current linecap and dash pa-
rameters are ignored, however. Aesthetics alert: in most fonts underlining will touch
descenders, and overlining will touch diacritical marks atop ascenders.

The underline, overline, and strikeout features are not supported for CID fonts.

Text rendering modes. PDFlib supports several rendering modes which affect the ap-
pearance of text. This includes outline text and the ability to use text as a clipping path.
Text can also be rendered invisibly which may be useful for placing text on scanned im-
ages in order to make the text accessible to searching and indexing, while at the same
time assuring it will not be visible directly. The rendering modes are described in Table
3.9. They can be set with set_value().

Table 3.9. Values for the text rendering mode

value explanation value explanation

o fill text 4 fill text and add it to the clipping path

1 stroke text (outline) 5 stroke text and add it to the clipping path

2 fill and stroke text 6 fill and stroke text and add it to the clipping path
3 invisible text 7 add text to the clipping path

OPDF.set_value "textrendering", 1 set stroked text rendering (outline text)

Text color. Text will usually be display in the current fill color, which can be set using
set_color(). However, if a rendering mode other than o has been selected, both stroke
and fill color may affect the text depending on the selected rendering mode.

Text box formatting. While PDFlib offers the stringwidth() function for performing
text width calculations, many clients need easy access to text box formatting and justi-
fying, e.g. to fit a certain amount of text into a given column. Although PDFlib offers
such features, you shouldn’t think of PDFlib as a full-featured text and graphics layout
engine. The show_boxed() function is an easy-to-use method for text box formatting
with a number of formatting options. Text may be laid out in a rectangular box either
left-aligned, right-aligned, centered, or fully justified. The first line of text starts at a
baseline with a vertical position which equals the top edge of the supplied box minus
the leading. The bottom edge of the box serves as the last baseline used. For this reason,
descenders of the last text line may appear outside the specified box (see Figure 3.4).

This function justifies by adjusting the inter-word spacing (the last line will be left-
aligned only). Obviously, this requires that the text contains spaces (PDFlib will not in-
sert spaces if the text doesn’t contain any). Advanced text processing features such as
hyphenation are not available — PDFlib simply breaks text lines at existing whitespace
characters. Text is never clipped at the boundaries of the box.

Supplying a feature parameter of blind can be useful to determine whether a string
fits in a given box, without actually producing any output.

ASCII newline characters (oxoA) in the supplied text are recognized, and force a new
paragraph. CR/NL combinations are treated like a single newline character. Other for-
matting characters (especially tab characters) are not supported.

The following is a small example of using show_boxed(). It uses rect() to draw an ad-
ditional border around the box which may be helpful in debugging:

Chapter 3: PDFlib Programming Concepts (ActiveX edition)

In an attempt to reproduce sounds more accurately, pinyin
spellings often differ markedly from the older ones, and
personal names are usually spelled without apostrophes or
hyphens; an apostrophe is sometimes used, however, to —
avoid ambiguity when syllables are run together (as in
Chang’an to distinguish it from Chan’gan) —

Fig. 3.4. Top: Text box formatting: the bottom edge will serve as the last base- L arg —_—
line, not as a clipping border. Right: text box formatting doesn’t work if only a .

single word fits on a line. In the situation in the figure to the right, show_ Machi nery

boxed() will not actually format any text. -

Text = "In an attempt to reproduce sounds more accurately, pinyin spellings often ...
fontsize = 13

font = oPDF.findfont("Helvetica", "host", 0)
oPDF.setfont font, fontsize I

50
650
357
6 * fontsize

> =< X

c = oPDF.show_boxed(Text, x, y, w, h, "justify", "")
If (c > 0) Then —
' Not all characters could be placed in the box; act appropriately here

End If
oPDF.rect x, y, w, h
OPDF.stroke I

The following requirements and restrictions of show_boxed() shall be noted: -

» Contiguous blanks in the text should be avoided.

» Due to restrictions in PDF's word spacing support, the space character must be avail-
able at code position &Hz2o0 in the encoding. Although this is the case for most com-
mon encodings, it implies that justification will not work with EBCDIC encoding.

» The simplistic formatting algorithm may fail for unsuitable combinations of long
words and narrow columns. In particular, if only a single word fits in a column,
show_boxed() will not format any text at all, but leave the column empty (see Figure
3.4).

» Since the bottom part of the box is used as a baseline, descenders in the last line may
extend beyond the box area.

» Using show_boxed() with top-down coordinates isn’t exactly intuitive. Please review —
the information in Section 3.2.1, »Coordinate Systems«.

» It’s currently not possible to feed the text in multiple portions into the box format- —_—
ting routine. However, you can retrieve the text position after calling show_boxed()
with the textx and texty parameters. S

» The font within the text box can’t be changed.

» Text box formatting is not supported for CID fonts.

3.3 Text Handling 57

3.4 Image Handling

3.4.1 Supported Image File Formats

Embedding raster images in the generated PDF is an important feature of PDFlib. PDFlib
currently deals with the image file formats described below. For most formats PDFlib
passes the compressed image data unchanged to the PDF output since PDF internally
supports most compression schemes used in image file formats. This technique (called
pass-through mode in the descriptions below) results in very fast image import, since de-
compressing the image data and subsequent recompression are not necessary. How-
ever, PDFlib cannot check the integrity of the compressed image data in this mode. In-
complete or corrupt image data may result in error or warning messages when using
the PDF document in Acrobat (e.g., »Read less image data than expected«).

If an image file can’t be imported successfully and you need to know more details
about the reason set the imagewarning parameter to true (see Section 4.6, »Image Func-
tions« for more details):

OPDF.set_parameter "imagewarning", "true" ' enable image warnings

PNG images. PDFlib supports all flavors of PNG images (Portable Network Graphics).!
PNG images are handled in pass-through mode in most cases. PNG images which make
use of interlacing, contain an alpha channel (which will be lost anyway, see below), or
have 16 bit color depth will have to be uncompressed, which takes significantly longer
than pass-through mode. If a PNG image contains transparency information, the trans-
parency is retained in the generated PDF (see Section 3.4.5, »Image Masks and Transpar-
ency«). Alpha channels are not supported by PDFlib.

JPEG images. JPEG images are always handled in pass-through mode. PDFlib supports
the following flavors of JPEG images:
» The »baseline« JPEG flavor which accounts for the vast majority of JPEG images.
» Progressive JPEG compression which is supported since Acrobat 4/PDF 1.3.If run in
Acrobat 3 compatibility mode PDFlib will refuse to import progressive JPEGs.

PDFlib applies a workaround which is necessary to correctly process Photoshop-gener-
ated CMYK JPEG files.

GIFimages. GIFimages are always handled in pass-through mode (PDFlib does not use
LZW decompression). PDFlib supports the following flavors of GIF images:

» Due to restrictions in the compression schemes supported by the PDF file format,
the entry in the GIF file called »LZW minimum code size« must have a value of 8 bits.
Unfortunately, there is no easy way to determine this value for a certain GIF file. An
image which contains more than 128 distinct color values will always qualify (e.g., a
full 8-bit color palette with 256 entries). Images with a smaller number of distinct
colors may also work, but it is difficult to tell in advance because graphics programs
may use 8 bits or less as LZW minimum code size in this case, and PDFlib may there-
fore reject the image. The following trick which works in Adobe Photoshop and simi-
lar image processing software is known to result in GIF images which are accepted by
PDFlib: load the GIF image, and change the image color mode from »indexed« to
»RGB«. Now change the image color mode back to »indexed«, choosing a color pal-

1. See http://www.w3.org/Graphics/PNG and http://www.libpng.org/pub/png

58 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

http://www.w3.org/Graphics/PNG
http://www.libpng.org/pub/png

Note

Note

3.4.2

ette with more than 128 entries, for example the Mac or Windows system palette, or
the Web palette.

» The image must not be interlaced.

> Only the first image of a multi-frame (animated) GIF image will be imported.

For other GIF image flavors conversion to the PNG graphics format is recommended.

In a particular test case PDFlib converted a GIF image to a PDF file which displays just fine, but
results in a PostScript error when printed to a PostScript Level 2 or 3 printer. Since the problem
does not occur with Ghostscript, we consider this a bug in the PostScript interpreter. You can
work around the problem by selecting PostScript Level 1 output in Acrobat’s print dialog.

TIFF images. PDFlib will handle most TIFF images in pass-through mode. PDFlib sup-
ports the following flavors of TIFF images:

» compression schemes: uncompressed, CCITT (group 3, group 4, and RLE), ZIP (=Flate),
LZW, and PackBits (=RunLength) are handled in pass-through mode; other compres-
sion schemes are handled by uncompressing.

» color depth: black and white, grayscale, RGB, and CMYK images; any alpha channel
which may be present in the file is ignored.

» TIFF files containing more than one image (see Section 3.4.6, »Multi-Page Image
Files«)

» Color depth must be 1, 2, 4, or 8 bits per color sample (this is a requirement of PDF)

Multi-strip TIFF images are converted to multiple images in the PDF file which will visu-
ally exactly represent the original image, but can be individually selected with Acrobat’s
image selection tool. Some TIFF features (e.g., CIE color space, JPEG compression) and
certain combinations of features (e.g., LZW compression and alpha channel, LZW com-
pression and tiling) are not supported.

Converting certain flavors of CCITT group 3 compressed TIFF images with PDFlib may trigger
the message »Read less image data than expected« in Acrobat 4. Since the problem does not
exist in Ghostscript or Acrobat 5, and the image displays just fine despite the error message, we
consider this a bug in Acrobat 4. You may be able to work around it by choosing a different TIFF
compression scheme.

CCITT images. Raw Group 3 or Group 4 fax compressed image data are always handled
in pass-through mode. Note that this format actually means raw CCITT-compressed im-
age data, not TIFF files using CCITT compression. Raw CCITT compressed image files are
usually not supported in end-user applications, but can only be generated with fax-
related software.

Raw data. Uncompressed (raw) image data may be useful for some special applica-
tions, e.g., constructing a color ramp directly in memory. The nature of the image is de-
duced from the number of color components: 1 component implies a grayscale image, 3
components an RGB image, and 4 components a CMYK image.

Code Fragments for Common Image Tasks

Embedding raster images with PDFlib is easy to accomplish. First, the image file has to
be opened with a PDFlib function which does a brief analysis of the image parameters.
The open_image_file() function returns a handle which serves as an image descriptor.

3.4 Image Handling 59

This handle can be used in a call to place_image(), along with positioning and scaling pa-
rameters:

1Image = oPDF.open_image_file("jpeg", "image.jpg", "", 0)
If (1Image = -1) Then
MsgBox "Couldn't read image."

End

Else
oPDF.place_image lImage, 0, 0, 1
OPDF.close_image lImage

End If

The call to close_image() may or may not be required, depending on whether the same
image will be used again in the same document (see Section 3.4.3, »Re-using Image Da-
ta«).

Scaling and dpi calculations. PDFlib never changes the number of pixels in an import-
ed image. Scaling either blows up or shrinks image pixels, but doesn’t do any downsam-
pling. A scaling factor of 1 results in a pixel size of 1 unit in user coordinates. In other
words, the image will be imported at 72 dpi if the user coordinate system hasn’t been
scaled (since there are 72 default units to an inch).

Resolution (dpi) values which may be contained in the original image file are ig-
nored by PDFlib, but may be queried via the resx and resy parameters; the user is respon-
sible for scaling the coordinate system appropriately (beware of non-square pixels). The
following algorithm may be used to import an image at the resolution given in the file
(or at 72 dpi if the image file doesn’t contain any dpi value), and place it on the full page:

query the dpi values which may be present in the image file
dpi_x = oPDF.get_value("resx", lImage)
dpi_y = oPDF.get value("resy", lImage)
' calculate scaling factors from the dpi values, see description of resx/resy
If (dpi_x > 0 And dpi_y > 0) Then ' resx and resy are specified in the file
scale x = 72# / dpi_x
scale_y = 72# / dpi_y

Else

If (dpi_x < 0 And dpi_y < 0) Then ' only the ratio of resx and resy is known
scale x = 1#
scale.y = dpi_y / dpi x

Else ' no information about resx and resy available
scale x = 1#
scale y = 1#

End If

End If

create a new page such that the scaled image exactly fits, and place the image

OPDF.begin_page oPDF.get_value("imagewidth", lImage) * scale x, _
OPDF.get_value("imageheight", 1Image) * scale_y

OPDF.[Scale] scale x, scale_y

OPDF.place_image lImage, O#, O#, 1#

oPDF.close_image lImage

oPDF.end_page

In order to ignore any dpi value present in the image, and use a fixed dpi value instead
(e.g. 300) replace the first two lines in the above code fragment with

60 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

dpi_x
dpi_y

300
300 ' or whatever you like

Forcing printed image size. In order to place an image on a PDF page such that it re-
sults in a specified target width and height (as opposed to specifying the resolution val-
ues as in the previous algorithm) with a lower left corner at (x, y) (all coordinates in
points) the following algorithm may be used:

scale_x = lWidth / oPDF.get_value("imagewidth", lImage)
scale_y = lHeight / oPDF.get_value("imageheight", 1lImage)

oPDF.save

' scale the coordinate system to match the image size to the given rectangle
OPDF.[Scale] scale x, scale_y

in the positioning coordinates we must compensate for the above scaling

oPDF.place_image lImage, x / scale x, y / scale_y, 1 —
oPDF.close_image lImage

OPDF.restore

Non-proportional image scaling. Since in most cases images will be scaled proportion-
ally (i.e., using the same scaling factor in both dimensions), place_image() supports only
a single scaling parameters which is applied to both dimensions. Non-proportional scal-
ing can easily be achieved by scaling the coordinate system, bracketed with save/restore
in order to not disturb other graphics operations. The following sequence will place an

image, scaled to 50 percent horizontally and 75 percent vertically: —

oPDF.save ' save the original coordinate system

OPDF.[Scale] 0.5, 0.75 ' scale the coordinates, and therefore the image -
OPDF.place_image lImage, O#, O#, 1#

oPDF.restore ' restore the original coordinate system

Remember that the x and y positions supplied to place_image() will also be subject to
the scale() call, and must be adjusted by dividing by the scaling factors.

A code fragment for placing images in a top-down coordinate system can be found in
Section 3.2.1, »Coordinate Systems«.

3.4.3 Re-using Image Data

It should be emphasized that PDFlib supports an important PDF optimization tech-
nique for using repeated raster images.

Consider a layout with a constant logo or background on several pages. In this situa-
tion it is possible to include the image data only once in the PDF, and generate only a
reference on each of the pages where the image is used. Simply open the image file and
call place_image() every time you want to place the logo or background on a particular
page. You can place the image on multiple pages, or use different scaling factors for dif-
ferent occurrences of the same image (as long as the image hasn’t been closed). Depend-
ing on the image’s size and the number of occurrences, this technique can result in
enormous space savings. B—

3.4 Image Handling 61

3.4.4

3:-4.5

62

Memory Images and External Image References

While the majority of image data for use with PDFlib will be pulled from some disk file
on the local file system, other image data sources are also supported. For performance
reasons supplying existing image data directly in memory may be preferable over
opening a disk file. PDFlib supports in-core image data for certain image file formats.

PDFlib also supports an experimental feature which isn’t recommended for general-
use PDF files, but may offer advantages in certain environments. While almost all PDF
documents are completely self-contained (the only exception being non-embedded
fonts), it is also possible to store only a reference to some external data source in the
PDF file instead of the actual image data, and rely on Acrobat to fetch the required im-
age data when needed. This mechanism works similar to the well-known image refer-
ences in HTML documents. Usable external image sources include data files in the local
file system, and URLs. It is important to note that while file references work in Acrobat 3
and 4, URL references only work in Acrobat 4 or above (full product). PDF documents
which include image URLs are neither usable in Acrobat 3 nor Acrobat Reader 4!

The open_image() interface can be used for both in-memory image data and external
references.

Image Masks and Transparency

Transparency in PDF. Transparency has been missing from PostScript and PDF for
quite a long time. Only with PDF 1.3 (and PostScript 3) Adobe integrated some limited
support for transparency into languages and applications. While image masks (painting
solid color through a bitmap mask) are an old feature of both PostScript and PDF, Acro-
bat 4 added the feature of masking particular pixels of an image. This offers the follow-
ing opportunities:

» Masking by position: an image may carry the intrinsic information »print the fore-
ground only, but not the background«. This is often used in catalog images.

» Masking by color value: pixels of a certain color (or from a color range - but not arbi-
trary sets of colors) are not painted, but the previously painted part of the page
shines through instead. In TV and video technology this is also known as bluescreen-
ing, and is most often used for combining the weather man and the map into one
image.

It is important to note that PDF supports binary transparency only: there is no alpha
channel or variable opacity (»blend this image with the background«) but only a binary
decision (»print either the image pixel, or the background pixel«). Binary transparency
may be considered »poor man’s alpha channel«. Another important restriction is that
in PDF the mask is always attached to the image; it's not possible to use an image first
with a mask, and the same image a second time without a mask, or with a different
mask.

Viewing and printing PDF files with transparency. Equally important as PDF’s intrinsic
limitations with respect to transparency are the practical limitations when it comes to
using PDF files with transparency in the viewer application. The following restrictions
should be noted:
» Transparency only works in PDF 1.3/Acrobat 4 and above - older viewers will com-
pletely ignore transparency information, and display or print the whole image
(overpainting the background).

Chapter 3: PDFlib Programming Concepts (ActiveX edition)

» Printing transparent images to PostScript Level 1 or 2 doesn't work, even with Acro-
bat 4 (since transparency support only appeared in PostScript 3, and can’t easily be
emulated). Acrobat prints the base image without the mask.

» If an image is masked by position Acrobat 4 viewers will only honour the clipping up
to a certain image size, and display the whole image otherwise. It appears from ex-
perimentation that the following limit applies to Acrobat 4 (Acrobat 5 is not affected
by this limit):

width x height x components < 1024 K

Images above this limit are displayed without applying the mask. The limit in a typi-
cal PostScript 3 printer seems to be lower, resulting in PostScript errors when trying
to print PDF documents with large masked images.

Transparency support in PDFlib. PDFlib supports both masking by position and by col-
or value (only single color values, but no ranges). Transparency information can be ap-
plied implicitly or explicitly. Masked images are not supported in Acrobat 3 compatibil-
ity mode.

In the implicit case, the transparency information from an external image file is re-
spected, provided the image file format supports transparency or an alpha channel (this
is not the case for all image file formats). Transparency information is detected in the
following image file formats:

» GIF image files may contain a single transparent color value which is respected by
PDFlib.

» PNG image files may contain several flavors of transparency information, or a full al-
pha channel. PDFlib tries to preserve as much as possible from this information: sin-
gle transparent color values are retained; if multiple color values with an attached
alpha value are given, only the first one with an alpha value below 50 percent is
used; a full alpha channel is ignored.

The explicit case requires two steps, both of which involve image operations. First, an
image must be prepared for later use as a binary transparency mask. This is accom-
plished by using the standard image file function with an additional parameter:

1Mask = oPDF.open_image_file("png", MaskFileName, "mask", 0)

In order to be usable as a mask, an image must have only a single color component and
abit depth of 1, i.e,, only plain bitmaps are suitable as a mask. Only PNG and in-memory
images are supported for constructing a mask. Pixel values of o in the mask will result
in the corresponding area of the image being painted, while pixel values of 1 result in
the background shining through.

In the second step this mask is applied to another image which itself is acquired
through one of the usual image functions:
1Image = oPDF.open_image file(type, FileName, "masked", 1Mask)
If (1Image <> -1) Then

OPDF.place_image lImage, O#, O#, 1#
Else

End If

3.4 Image Handling 63

Note

3.4.6

64

Note the different use of the optional string parameter for open_image_file(): mask for
defining a mask, and masked for applying a mask to another image. The integer parame-
ter is unused in the first step, and carries the mask descriptor in the second step.

The image and the mask may have different pixel dimensions; the mask will auto-
matically be scaled to the image’s size.

PDFlib doesn’t make any provisions for painting solid color through a mask (like
PostScript’s imagemask operator), since this is a special case of the general masking
mechanism. You can achieve this effect by applying the required mask to an auxiliary
image constructed in memory with open_image() (a solid rectangle of the requested
color).

Multi-strip TIFF images are converted to multiple PDF images, which would be masked individ-
ually by PDFlib. Since this is usually not intended, this kind of images should be avoided as
mask target. Also, it is important to not mix the implicit and explicit cases, i.e., don’t use imag-
es with transparent color values as mask.

Ignoring transparency. Sometimes it is desirable to ignore any transparency informa-
tion which may be contained in an image file. For example, Acrobat’s anti-aliasing fea-
ture (also known as »smoothing«) isn’t used for 1-bit images which contain black and
transparent as their only colors. For this reason imported images with fine detail (e.g.,
rasterized text) may look ugly when the transparency information is retained in the
generated PDF. In order to solve this problem, PDFlib’s automatic transparency support
can be disabled with the ignoremask parameter when opening the file:

1Image = oPDF.open_image file("gif", FileName, "ignoremask", 0)

Multi-Page Image Files

PDFlib supports TIFF files which contain more than one image, also known as multi-
page files. In order to use multi-page TIFFs, the call to open_image_file() additional
string and numerical parameters are used:

1Image = oPDF.open_image file("tiff", FileName, "page", 1)

The page parameter indicates that a multi-image file is to be used, and is only supported
for TIFF images. The last parameter specifies the number of the image to use. The first
image is numbered 1. This parameter may be increased until open_image_file() returns -
1, signalling that no more images are available in the file.

A code fragment similar to the following can be used to convert all images in a multi-
image TIFF file to a multi-page PDF file:

Frame = 1
Do
1Image = oPDF.open_image file("tiff", FileName, "page", Frame)
If (lImage = -1) Then Exit Endif
OPDF.begin_page 1Width, lHeight
oPDF.place_image lImage, 0, 0, 1
oPDF.close_image lImage
oPDF.end_page
Frame = Frame + 1
Loop

Chapter 3: PDFlib Programming Concepts (ActiveX edition)

3-5

PDF Import with PDI

Note All functions described in this section require the additional PDF import library (PDI) which is

3.5.1

3.5.2

not part of the PDFlib source code distribution. Although PDI is integrated into the ActiveX edi-
tion of PDFlib, PDFlib licensees must purchase an additional license key for PDI. Please visit our
Web site for more information on obtaining PDI.

PDI Features and Applications

When the optional PDI (PDF import) library is attached to PDFlib, pages from existing
PDF documents can be processed with all supported language bindings. The PDI prod-
uct contains a parser for the PDF file format, and prepares pages from existing PDF doc-
uments for easy use with PDFlib. Conceptually, imported PDF pages are treated similar-
ly to imported raster images such as TIFF or PNG: you open a PDF document, choose a
page to import, and place it on an output page, applying any of PDFlib’s transformation
functions for translating, scaling, rotating, or skewing the imported page. Imported
pages can easily be combined with new content by using any of PDFlib’s text or graphics
functions after placing the imported PDF page on the output page (think of the import-
ed page as the background for new content). Using PDFlib and PDI you can easily accom-
plish the following tasks:

» place a PDF background page and populate it with dynamic data (e.g., mail merge,
personalized PDF documents on the Web, form filling)
overlay two or more pages from multiple PDF documents (e.g., add stationary to ex-
isting documents in order to simulate preprinted paper stock)
place PDF ads in existing documents
clip the visible area of a PDF page in order to get rid of unwanted elements (e.g., crop
marks), or scale pages
» impose multiple pages on a single sheet for printing
add some text (e.g., headers, footers, stamps, page numbers) or images (e.g., company
logo) to existing PDF pages
copy all pages from an input document to the output document, and place barcodes
on the pages

v

A\

A\

v

A\

Using PDI Functions with PDFlib

General considerations. It isimportant to understand that PDI will only import the ac-
tual page contents, but not any hypertext features (such as sound, movies, embedded
files, hypertext links, form fields, bookmarks, thumbnails, and notes) which may be
present in the imported PDF document. These hypertext features can be generated with
the corresponding PDFlib functions. Similarly, you can not re-use individual elements
of imported pages with other PDFlib functions. For example, re-using fonts from im-
ported documents for some other content is not possible. Instead, all required fonts
must be configured in PDFlib. If multiple imported pages contain embedded font data
for the same font, PDI will not remove any duplicate font data. On the other hand, if
fonts are missing from some imported PDF, they will also be missing from the generat-
ed PDF output file.

PDFlib uses the template feature for placing imported PDF pages on the output page.
Since some third-party PDF software does not correctly support the template feature,

3.5 PDF Import with PDI 65

restrictions in certain environments other than Acrobat may apply (see Section 3.2.4,
»Templates«).

PDFlib-generated output which contains imported pages from other PDF documents
can be processed with PDFlib/PDI again. However, due to restrictions in PostScript
printing the nesting level should not exceed 10.

Code fragments for importing PDF pages. Dealing with pages from existing PDF docu-
ments is possible with a very simple code structure. The following code snippet opens a
page from an existing document, and copies the page contents to a new page in the out-
put PDF document (which must have been opened before):

Dim doc, page, pageno;

Dim sheetwidth, sheetheight;
Dim filename

pageno = 1

doc = oPDF.open pdi(filename, "", 0)

If (doc = -1) Then
MsgBox "Couldn't open input file!"
End

End If

page = oPDF.open_pdi_page(doc, pageno, "")

if (page = -1) Then
MsgBox "Couldn't open page in input file!"
End

End If

sheetwidth = oPDF.get_pdi_value("width", doc, page, 0)
sheetheight = oPDF.get_pdi_value("height", doc, page, 0)

OPDF.begin_page sheetwidth, sheetheight
oPDF.place pdi page page, 0, 0, 1, 1
oPDF.close_pdi_page page

...add more content to the page using PDFlib functions...

oPDF.end_page

The PDFlib distribution contains PDI examples for all supported language bindings
which demonstrate various applications of PDI features:

» The personalization demo pulls a page from an existing PDF document, and places
additional text on the page.

» The quick reference demo extracts several pages from an existing PDF document,
scales down the pages, and places multiple pages on an output sheet.

» The imposition demo (which is only available in C code) is a generalization of the
quick reference demo. It processes an arbitrary number of PDF documents, and plac-
es n x m pages on an output sheet. In addition, lines are drawn around the scaled-
down pages.

66 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

Dimensions of imported PDF pages. Imported PDF pages are regarded similarly to im-
ported raster images, and can be placed on the output page using place_pdi_page(). PDI
will import the page exactly as it is displayed in Acrobat, in particular:
» cropping will be retained (in technical terms: if a CropBox is present, PDI favors the
CropBox over the MediaBox; see Section 3.2.2, »Page and Coordinate Limits«); —
» rotation which has been applied to the page will be retained.

Many important properties, such as the page size of an imported PDF page and the
number of pages in a document, can be queried via PDFlib’s parameter mechanism. The
relevant parameters are listed in Table 4.15 and Table 4.15. These properties can be useful
in making decisions about the placement of imported PDF pages on the output page.
The algorithms presented in Section 3.4.2, »Code Fragments for Common Image Tasks«
for images can be used for scaling imported PDF pages as well.

Imported PDF pages and the graphics state. PDFlib treats imported PDF pages as tem-

plates. For this reason the comments in Section 3.2.4, »Templates« also apply to import- EE—
ed PDF pages which are placed on the output page. In particular, imported pages may

change their appearance if the surrounding page changes some graphics state parame- e
ter which the imported page doesn’t explicitly set. You can use initgraphics() to avoid

this behavior. —_—

Dealing with Acrobat 5/PDF 1.4 files. PDI is fully compatible to PDF 1.4 files generated

with Acrobat 5. However, you should be aware of the following: Imported PDF docu-
ments must not have a higher PDF version number than the generated PDF output.
Since the default output mode in PDFlib 4 is Acrobat 4/PDF 1.3, imported PDF 1.4 files
will be rejected by default. You can modify this behavior by changing PDFlib’s PDF out-
put version as follows:

OPDF.set_parameter "compatibility", "1.4" —_—

This will result in Acrobat 5/PDF 1.4 compatible output, which in turn allows you to also
import files according to PDF 1.4.

3.5.3 Acceptable PDF Documents

Generally, PDI will happily process all kinds of PDF documents which can be opened E—
with Acrobat, regardless of PDF version number or features used within the file. How-
ever, in rare cases a PDF document or a particular page of a document may be rejected —_—
by PDI. The following kinds of PDF documents can not be imported with PDI:
» PDF documents which use a higher PDF version number than the PDF output docu- —
ment that is currently being generated. The reason is that PDFlib can no longer make
sure that the output will actually conform to the requested PDF version after a PDF S
with a higher version number has been imported. Solution: set the version of the
output PDF to the required level using the compatibility parameter. -
» Files with a damaged cross-reference table. You can identify such files by Acrobat’s
warning message File is damaged but is being repaired. Solution: open and resave the
file with Acrobat.
» Encrypted PDF documents (i.e., any security settings applied). Solution: remove all
security settings in Acrobat and resave the document. Obviously, you will need the
document’s password to do so.

3.5 PDF Import with PDI 67

» Since PDFlib/PDI do not contain any implementation of the LZW algorithm, certain
PDF pages which use LZW compression (more specifically, LZW-compressed pages
with multiple content streams) will be rejected (unsupported filter). Solution: resave
the document in Acrobat 4.0 or above, with the Optimize button checked. Note that
Acrobat 4.0 and above will never generate this kind of offended file, but only Acrobat
3 under certain circumstances. For this reason you are unlikely to run into this re-
striction. If you have a large number of such files which must be converted you
should look into Acrobat’s batch optimization feature.

Depending on the pdiwarning parameter, unacceptable PDF files will simply result in an
error return value, or a nonfatal exception with a detailed explanation.

68 Chapter 3: PDFlib Programming Concepts (ActiveX edition)

4

4.1

PDFlib APl Reference

The API reference documents all supported PDFlib functions.

Data Types, Naming Conventions, and Scope

PDFlib data types. In general all ActiveX-aware development environments have ac-
cess to PDFlib routines in the same way. In some cases you should be aware of different
data types used for PDFlib function parameters. In particular, the data types used for
strings and binary data may differ slightly. Table 4.1 lists useful information about
these data types.

Table 4.1. Data types in the language bindings

development environment string data type binary data type
ActiveX in general BSTR (string) variant of type VT_ARRAY | VT _Uh'
Delphi String (for 8-bit encodings) or OleVariant

WideString (for Unicode)

1. In other words, a variant array of unsigned bytes.

Function scopes. Most PDFlib functions are subject to certain ordering and nesting
constraints which are derived from their contribution to the generated document. Most
of these constraints are rather obvious. For example, you must begin a page before you
can close it. In the same spirit, the functions for opening a PDF document and closing it
must always be paired. PDFlib uses a strict scoping system for defining and verifying
the correct ordering of functions used by client programs. The function descriptions
reference these scopes; the scope definitions can be found in Table 4.2. Figure 4.1 depicts
the relationship of scopes. PDFlib will throw an exception if a function is called outside
the allowed scope.

Table 4.2. Function scope definitions
scope name definition

path started by one of moveto(), circle(), arc(), arcn(), or rect()
terminated by any of the functions in Section 4.4.4, »Path Painting and Clipping«

page between begin_page() and end_page(), but outside of path scope

template between begin_template() and end_template(), but outside of path scope
pattern between begin_pattern() and end_pattern(), but outside of path scope
document between open_file() and close(), but outside of page, template, and pattern scope

object scopeAnytime during the lifetime of the PDFlib object, but outside of document

4.1 Data Types, Naming Conventions, and Scope 69

Fig. 4.1.
Relationship of scopes

null (o,bject

mcument page page page page
template pattern

@

-
document | page page page page
template pattern

@

4.2 General Functions

4.2.1 Setup

Table 4.3 lists relevant parameters and values for this section.

Table 4.3. Parameters and values for the setup functions

function

set_parameter

set_parameter

set_parameter

set_parameter

set_parameter

key
compatibility

prefix

resourcefile

serial

warning

explanation

Set PDFlib’s compatibility mode to one of the strings »1.2«, »1.3«, or »1.4« for
Acrobat 3, 4, or 5. The default is »1.3«. This parameter must be set before the first
call to open_*(). Setting compatibility to »1.2« will make Acrobat 4 features
unavailable. Strict Acrobat 3 compatibility mode is not required for generating
Acrobat 3 compatible files, but only under very specific circumstances related to
PDF-enabled RIPs (see Section 1.3, »PDFlib Output and Compatibility«).

Resource file name prefix as used in a UPR file (see Section 3.3.6, »Resource

Configuration and the UPR Resource File«). The prefix can only be set once. It
contains a slash character plus a path name, which in turn may start with a slash.

Relative or absolute file name of the PDFlib UPR resource file. The resource file will
be loaded at the next attempt to access resources. The resource file name can only
be set once. This call should occur before the first page.

Set the PDFlib and/or PDI serial string (see Section 2.2.2, »Installing the PDFlib
ActiveX Edition«). The serial string can only be set once before the first call to
begin_page()

Enable or suppress warnings (nonfatal exceptions). Possible values are true and
false, default value is true.

70 Chapter 4: PDFlib API Reference (ActiveX edition)

4.2.2

Returns

Details

Scope

Returns

Table 4.3. Parameters and values for the setup functions

function key explanation
set_value compress Set the compression parameter to a value from o—9. This parameter does not
affect precompressed image data which is handled in pass-through mode.
o no compression
1 best speed
6 default value
9 best compression
get_value major Return the major, minor, or revision number of PDFlib, respectively.
minor
revision

get_parameter version

Return the full PDFlib version string in the format <major>.<minor>.<revision>,
possibly suffixed with additional qualifiers such as beta, rc, etc.

Document and Page

Table 4.4 lists relevant parameters and values for this section.

Table 4.4. Parameters and values for the document and page functions

function key explanation

set_value pagewidth Change the page size dimensions of the current page. These parameters must
pageheight only be used within a page description.

set_value CropBox, Change one of the box parameters of the current page. These parameters must
BleedBox, only be used within a page description. The parameter name must be followed by
ArtBox, a slash '/’ character and one of llx, Ily, urx, ury, for example: CropBox/lIx (see
TrimBox Section 3.2.2, »Page and Coordinate Limits« for details)

Function open_file(filename As String) As Long

Create a new PDF file using the supplied file name.

filename Name of the PDF output file to be generated. If filename is empty the PDF
document will be generated in memory instead of on file. The result must be fetched by
the client with the get_buffer() function. open_file() will always succeed in this case, and
never return the -1 error value.

-1 on error, and 1 otherwise.

This function creates a new PDF file using the supplied filename. PDFlib will attempt to
open a file with the given name, and close the file when the PDF document is finished.

object; this function starts document scope if the file could successfully be opened, and
must always be paired with a matching close() call.

Function get_buffer()

Get the contents of the PDF output buffer. The result must be used by the client before
calling any other PDFlib function.

A buffer full of binary PDF data for consumption by the client.The returned buffer can
be used until the end of the surrounding object scope.

4.2 General Functions 71

Details

Scope

Details

Scope

Scope

Params

Details

72

Fetch the full or partial buffer containing the generated PDF data. If this function is
called between page descriptions, it will return the PDF data generated so far. If it is
called after close() it returns the remainder of the PDF document. If there is only a single
call to this function which happens after close() the returned buffer is guaranteed to
contain the complete PDF document in a contiguous buffer.

Since PDF output contains binary characters, client software must be prepared to ac-
cept non-printable characters including null values.

object, document (in other words: after end_page() and before begin_page(), or after
close() and before delete(). This function can only be used if an empty filename has been
supplied to open_file().

Sub close()

Close the generated PDF file, and release all document-related resources.

This function finishes the generated PDF document, free all document-related resourc-
es, and close the output file if the PDF document has been opened with open _file(). This
function must be called when the client is done generating pages, regardless of the
method used to open the PDF document.

When the document was generated in memory (as opposed to on file), the document
buffer will still be kept after this function is called (so that it can be fetched with get
buffer()), and will be freed in the next call to open(), or when the PDFlib object goes out
of scope.

document; this function terminates document scope, and must always be paired with a
matching call open() functions.

Sub begin_page(width As Single, height As Single)

Add a new page to the document.

width, height The width and height parameters are the dimensions of the new page in
points. Acrobat’s page size limits are documented in Section 3.2.1, »Coordinate Sys-
tems«. Alist of commonly used page formats can be found in Table 4.24 in Section 4.9,
»Page Size Formats«. The page size can be changed after calling begin_page() with the
pagewidth and pageheight parameters. In order to produce landscape pages use width >
height. PDFlib uses width and height to construct the page’s MediaBox. You can use sev-
eral parameters to set other box entries in the PDF (see Table 4.3).

document; this function starts page scope, and must always be paired with a matching
end_page() call.

pagewidth, pageheight, CropBox, BleedBox, ArtBox, TrimBox

Sub end_page()

Finish the page.

This function must be used to finish a page description.

Chapter 4: PDFlib API Reference (ActiveX edition)

Scope

4.2.3

Returns
Scope

See also

Scope

Returns

Scope

See also

page; this function terminates page scope, and must always be paired with a matching
begin_page() call.

Parameter Handling

PDFlib maintains a number of internal parameters which are used for controlling
PDFlib’s operation and the appearance of the PDF output. Four functions are available
for setting and retrieving both numerical and string parameters. All parameters (both
keys and values) are case-sensitive. The descriptions of available parameters can be
found in the respective sections.

Function get_value(key As String, modifier As Single) As Single

Get the value of some PDFlib parameter with numerical type.
key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be o.

The numerical value of the parameter.
Depends on key.
get_pdi value()

Sub set_value(key As String, value As Single)

Set the value of some PDFlib parameter with numerical type.
key The name of the parameter to be set.
value The new value of the parameter to be set.

Depends on key.

Function get_parameter(key As String, modifier As Single) As String

Get the contents of some PDFlib parameter with string type.
key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be o.

The string value of the parameter. The returned string can be used until the end of the
surrounding document scope.

Depends on key.

get_pdi_parameter()

4.2 General Functions 73

Sub set_parameter(key As String, value As String)

Set some PDFlib parameter with string type.
key The name of the parameter to be set.
value The new value of the parameter to be set.

Scope Depends on key.

4.3 Text Functions

4.3.1 Font Handling

Table 4.5 lists relevant parameters and values for this section.

Table 4.5. Parameters and values for the font functions (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter FontAFM The corresponding resource file line as it would appear for the respective category
FontPFM in a UPR file (see Section 3.3.6, »Resource Configuration and the UPR Resource

FontOutline File«). Multiple calls add new entries to the internal list. (See also prefix and
Encoding resourcefile in Table 4.3)

get_value font Return the identifier of the current font which must have been set with setfont().
Scope: page, pattern, template.

get_parameter fontname The name of the current font which must have been previously set with setfont().
Scope: page, pattern, template.

get_parameter fontencoding The name of the encoding or CMap used with the current font. A font must have
been previously set with setfont(). Scope: page, pattern, template.

get_value fontsize Return the size of the current font which must have been previously set with
setfont(). Scope: page, pattern, template.

get_value capheight Return metrics information for the font identified by the modifier. See Section
ascender 3.3.9, »Text Metrics, Text Variations, and Text Box Formatting« for more details.
descender The values are measured in fractions of the font size, and must therefore be
multiplied by the desired font size.

set_parameter fontwarning If set to false, findfont() returns -1 if the font/encoding combination cannot be
loaded (instead of throwing an exception). Default is true.

Function findfont(fontname As String, encoding As String, embed As Long) As Long

Search for a font, and prepare it for later use.
fontname The name of the font as configured in PDFlib.

encoding For 8-bit fonts, encoding is one of builtin, macroman, winansi, ebcdic, or host
(see Section 3.3.2, »8-Bit Encodings built into PDFlib«), or the name of an external PDFlib-
supplied or user-defined encoding (see Section 3.3.3, »Custom Encoding and Code Page
Files for 8-Bit Encodings«). Note that in order to use arbitrary encodings, you will need
metrics information for the font (see Section 3.3.5, »PostScript and TrueType Fonts«).
Alternatively, encoding can be the name of one of the built-in CMaps if fontname de-
scribes a CID font (see Section 3.3.7, »CID Font Support for Japanese, Chinese, and Korean

74 Chapter 4: PDFlib APl Reference (ActiveX edition)

Returns

Details

Scope

Params

Details

Scope

Params

4.3.2
Note

Text«). In this case metrics information is not required. Case is significant for both
fontname and encoding.

embed If o (zero), only general font information (a font descriptor) is included in the
PDF output. If 1, the font outline file must be available in addition to the metrics infor-
mation, and the actual font definition will be embedded in the PDF output. However,
the font file will only be checked when this function is called, but not yet used, since
font embedding is done at the end of the generated PDF file. The embed parameter must
be o for CID fonts.

A font handle for later use with setfont(). The behavior of this function changes when
the fontwarning parameter is set to true. In this case findfont() returns an error code of -1
if the requested font/encoding combination cannot be loaded, and does not throw an
exception. However, exceptions will still be thrown when bad parameters are passed.

The returned number - the font handle — doesn’t have any significance to the user
other than serving as an argument to setfont() and related functions. In particular, re-
questing the same font/encoding combination in different documents may result in
different font handles.

This function prepares a font for later use with setfont(). The metrics will be loaded from
memory or from an external metrics file. If the requested font/encoding combination
cannot be used due to configuration problem (e.g., a font, metrics, or encoding file could
not be found, or a mismatch was detected), an exception of type RuntimeError will be
raised. Otherwise, the value returned by this function can be used as font argument to
other font-related functions.

CID fonts are not supported in Acrobat 3 compatibility mode.

document, page, pattern, template

See Table 4.5.

Sub setfont(font As Long, fontsize As Single)

Set the current font in the given size.
font Afont handle returned by findfont().
fontsize Size of the font, measured in units of the current user coordinate system.

The font must be set on each page before drawing any text. Font settings will not be re-
tained across pages. The current font can be changed an arbitrary number of times per

page.
page, pattern, template

See Table 4.5.

Text Output

All text supplied to the functions in this section must match the encoding selected with
findfont(). This applies to 8-bit text as well as Unicode or other encodings selected via a CMap.

Table 4.5 lists relevant parameters and values for this section. The scope for all parame-
ters is page, pattern, and template unless otherwise noted.

4.3 Text Functions 75

Table 4.6. Parameters and values for the text functions (see Section 4.2.3, »Parameter Handling«)

function

set_value
get_value

set_value
get_value

set_value
get_value

set_value
get_value

set_value
get_value

set_value
get_value

get_value

set_parameter
get_parameter

set_parameter

key
leading

textrise

horizscaling

textrendering

charspacing

wordspacing

textx
texty
underline
overline
strikeout

native-
unicode

explanation

Set or get the leading, which is the distance between baselines of adjacent lines of
text. The leading is used for continue_text() and set to the value of the font size
when a new font is selected using setfont(). Setting the leading equal to the font
size results in dense line spacing. However, ascenders and descenders of adjacent
lines will generally not overlap.

Set or get the text rise parameter. The text rise specifies the distance between the
desired text position and the default baseline. Positive values of text rise move the
baseline up. The text rise always relates to the vertical coordinate. This may be
useful for superscripts and subscripts. The text rise is set to the default value of o
at the beginning of each page.

Set or get the horizontal text scaling to the given percentage, which must be
greater than o. Text scaling shrinks or expands the text by a given percentage. The
text scaling is set to the default of 100 at the beginning of each page. Text scaling
always relates to the horizontal coordinate.

Set or get the current text rendering mode to one of the values given in Table 3.9.
The text rendering parameter is set to the default of o (= solid fill) at the
beginning of each page.

Setor get the character spacing, i.e., the shift of the current point after placing the
individual characters in a string. The spacing is given in text space units. It is reset
to the default of o at the beginning of each page. In order to spread the characters
apart use positive values for horizontal writing mode, and negative values for
vertical writing mode.

Set or get the word spacing, i.e., the shift of the current point after placing
individual words in a text line. In other words, the current point is moved
horizontally after each ASCII space character (&Hz20). Since fonts with multi-byte
encodings don’t have an ASCI| space character they are not affected by the word
spacing. The spacing value is given in text space units. It is reset to the default of o
at the beginning of each page.

Get the x or y coordinate, respectively, of the current text position. These
parameters are currently not supported for CID fonts.

Set or get the current underline, overline, and strikeout modes, which are retained
until they are explicitly changed. Theses modes can be set independently from
each other, and are reset to false at the beginning of each page (see Section 3.3.9,
»Text Metrics, Text Variations, and Text Box Formatting«).

true underline/overline/strikeout text (does not work for CID fonts)

false do not underline/overline/strikeout text

If true, enable native Unicode text processing for language bindings with Unicode
support; disable if false. Default value is false (see Section 3.3.8, »Unicode
Support«). Scope: any.

Sub show(text As String)

Print text in the current font and size at the current position.

text The text to be printed.

Details Both font (via setfont()) and current text position (via set_text_pos() or some text out-
put function) must have been set before. The current point is moved to the end of the

printed text.

Scope page, pattern,

template

76 Chapter 4: PDFlib API Reference (ActiveX edition)

Params

Details

Scope

Params

Details

Scope

Params

See Table 4.6.

Sub show_xy(text As String, x As Single, y As Single)

Print text in the current font at position (x, y).
text The text to be printed.
x,y The position in the user coordinate system where the text will be printed.

The font must have been set before with setfont(). The current point is moved to the end
of the printed text.

page, pattern, template
See Table 4.6.

Sub continue_text(text As String)

Print text at the next line.

text The text to be printed.

The positioning of text and the spacing between lines is determined by the /eading pa-
rameter and the most recent call to show_xy() or set_text_pos(). This function can also
be used after show_boxed() if that function has been called with mode = left or justify.
The current point is moved to the end of the printed text.

page, pattern, template; this function should not be used in vertical writing mode.

See Table 4.6.

Function show_boxed(text As String, x As Single, y As Single, width As Single,
height As Single, mode As String, feature As String) As Long

Format text into a text box according to the requested formatting mode.
text The text to be formatted into the box.

x,y The coordinates of a corner of the text box or the coordinates of the alignment
point if width = o and height = o.

width, height The size of the text box, or o for single-line formatting.

mode mode selects the horizontal alignment mode. If width = o0 and height = o, mode
can attain one of the values left, right, or center, and the text will be formatted according
to the chosen alignment with respect to the point (x, y), with y denoting the position of
the baseline. In this mode, this function does not check whether the submitted parame-
ters result in some text being clipped at the page edges, nor does it apply any line-wrap-
ping. It returns the value o in this case.

If width or height is different from o, mode can attain one of the values left, right,
center, justify, or fulljustify. The supplied text will be formatted into a text box defined by
the lower left corner (x, y) (but see the description of top-down coordinates in Section
3.2.1, »Coordinate Systems«) and the supplied width and height. If the text doesn’t fit into

4.3 Text Functions 77

Returns

Details

Scope
Params

See also

Details

Scope

Params

aline, a simple line-breaking algorithm is used to break the text into the next available
line, using existing space characters for possible line-breaks. While the left, right, and
center modes align the text on the respective line, justify aligns the text on both left and
right margins. According to common practice the very last line in the box will only be
left-aligned in justify mode, while in fulljustify mode all lines (including the last one if it
contains at least one space character) will be left- and right-aligned. fulljustify is useful if
the text is to be continued in another column.

feature If the feature parameter is blind, all calculations are performed (with the excep-
tion of the internal textx and texty coordinates, which are not updated), but no text out-
put is actually generated. This can be used for size calculations and possibly trying dif-
ferent font sizes for fitting some amount of text into a given box by varying the font
size. Otherwise feature must be empty.

The number of characters which could not be processed since the text didn’t completely
fit into the column. If the text did actually fit, it returns o. Since no formatting is per-
formed if width = o and height = o, the function always returns o in this case.

The current font must have been set before calling this function. The current values of
font, font size, horizontal spacing, and leading are used for the text.

page, pattern, template; this function cannot be used with CID fonts or ebcdic encoding.
See Table 4.6.

Restrictions of this functions are listed in Section 3.3.9, »Text Metrics, Text Variations,
and Text Box Formatting«.

Function stringwidth(text As String, font As Long, size As Single) As Single

Return the width of text in an arbitrary font.

text The text for which the width will be queried.

font A font handle returned by findfont().

size Text size, measured in units of the user coordinate system.

This function returns the width of text in an arbitrary font and size which has been se-
lected with findfont(). The width calculation takes the current values of the following
text parameters into account: horizontal scaling, character spacing, and word spacing.

page, pattern, template, path, document; this function cannot be used with CID fonts. If
the current font is a CID font, it returns o regardless of the text and size arguments.

See Table 4.6.

Sub set_text_pos(x As Single, y As Single)

Set the text output position.

x,y The current text position to be set.

78 Chapter 4: PDFlib APl Reference (ActiveX edition)

Details

Scope

Params

The text position is set to the default value of (o, 0) at the beginning of each page. The
current point for graphics output and the current text position are maintained sepa-
rately.

page, pattern, template
See Table 4.6.

4.4 Graphics Functions

4.4.1 General Graphics State

Note None of the the general graphics state functions must be used during path scope (see Section

Details

Scope

Details

Scope

Details

Scope

3.2, »Page Descriptions«).

Sub setdash(b As Single, w As Single)

Set the current dash pattern.

b, w The number of alternating black and white units. b and w must be non-negative
numbers.

In order to produce a solid line, set b = w = 0. The dash parameter is set to solid at the be-
ginning of each page.

page, pattern, template

Sub setpolydash(darray)

Set a more complicated dash pattern defined by an array.

darray An array which contains alternating values for black and white dash lengths.
The array values must be non-negative, and not all zero.

In order to produce a solid line, choose an empty array. The array length must be less
than or equal to 8; otherwise the array will be truncated. The dash parameter is set to a
solid line at the beginning of each page.

page, pattern, template

Sub setflat(flatness As Single)

Set the flatness parameter.

flatness Describes the maximum distance (in device pixels) between the path and an
approximation constructed from straight line segments.

The flatness parameter is set to the default value of o at the beginning of each page,
which means that the device’s default flatness is used.

page, pattern, template

4.4 Graphics Functions 79

Sub setlinejoin(linejoin As Long)

Set the linejoin parameter.
linejoin Specifies the shape at the corners of paths that are stroked, see Table 4.7.
Details The linejoin parameter is set to the default value of o at the beginning of each page.
Scope page, pattern, template

Table 4.7. Values of the linejoin parameter
value description (from the PDF reference) examples

o Miter joins: the outer edges of the strokes for the two segments are
continued until they meet. If the extension projects too far, as
determined by the miter limit, a bevel join is used instead.

1 Round joins: a circular arc with a diameter equal to the line width
is drawn around the point where the segments meet and filled in,
producing a rounded corner.

2 Bevel joins: the two path segments are drawn with butt end caps
(see the discussion of linecap parameter), and the resulting notch
beyond the ends of the segments is filled in with a triangle.

>>>

Sub setlinecap(linecap As Long)

Set the linecap parameter.
linecap Controls the shape at the end of a path with respect to stroking, see Table 4.8.
Details The linecap parameter is set to the default value of o at the beginning of each page.
Scope page, pattern, template
Table 4.8. Values of the linecap parameter

value description (from the PDF reference) examples

o Butt end caps: the stroke is squared off at the endpoint of the path.

1 Round end caps: a semicircular arc with a diameter equal to the
line width is drawn around the endpoint and filled in.

2 Projecting square end caps: the stroke extends beyond the end of
the line by a distance which is half the line width and is squared

off

1|

80 Chapter 4: PDFlib API Reference (ActiveX edition)

Details

Scope

Details

Scope

Details

Scope

4.4.2

Sub setmiterlimit(miter As Single)

Set the miter limit.
miter A value greater than or equal to 1.

If the linejoin parameter is set to o (miter join), two line
segments joining at a small angle will result in a sharp
spike. This spike will be replaced by a straight end (i.e., the
miter join will be changed to a bevel join) when the ratio of Line width
the miter length and the line width exceeds the miter lim-
it. The miter limit is set to the default value of 10 at the beginning of each page. This cor-
responds to an angle of roughly 11.5 degrees.

page, pattern, template

Sub setlinewidth(width As Single)

Set the current line width.
width The line width in units of the current user coordinate system.
The width parameter is set to the default value of 1 at the beginning of each page.

page, pattern, template

Sub initgraphics

Reset all color and graphics state parameters to their defaults.

The color, linewidth, linecap, linejoin, miterlimit, dash parameter, and the current
transformation matrix (but not the text state parameters) are reset to their respective
defaults.

This function may be useful in situations where the program flow doesn’t allow for
easy use of save()/restore(), or for preparing the graphics state for a subsequent tem-
plate or imported PDF.

page, pattern, template

Special Graphics State

All graphics state parameters are restored to their default values at the beginning of a
page. The default values are documented in the respective function descriptions. Func-
tions related to the text state are listed in Section 4.3, »Text Functions«.

All transformation functions (translate(), scale(), rotate(), skew(), concat(), setmatrix(),
and initgraphics()) change the coordinate system used for drawing subsequent objects.
They do not affect existing objects on the page at all.

4.4 Graphics Functions

81

Details

Scope

Params

Details

Scope

Scope

Sub save()

Save the current graphics state.

The graphics state contains parameters that control all types of graphics objects. Saving
the graphics state is not required by PDF; it is only necessary if the application wishes to
return to some specific graphics state later (e.g., a custom coordinate system) without
setting all relevant parameters explicitly again. The following items are subject to save/
restore:

» graphics parameters: clipping path, coordinate system, current point, flatness, line

cap style, dash pattern, line join style, line width, miter limit;
» color parameters: fill and stroke colors;
» some PDFlib parameters, see list below.

Pairs of save() and restore() may be nested. Although the PDF specification doesn’t limit
the nesting level of save/restore pairs, applications must keep the nesting level below
10 in order to avoid printing problems caused by restrictions in the PostScript output
produced by PDF viewers, and to allow for additional save levels required by PDFlib in-
ternally.

page, pattern, template; must always be paired with a matching restore() call. save() and
restore() calls must be balanced on each page, pattern, and template.

The following parameters are subject to save/restore: charspacing, wordspacing,
horizscaling, leading, font, fontsize, textrendering, textrise;

The following parameters are not subject to save/restore: fillrule, underline, overline,
strikeout.

Sub restore()

Restore the most recently saved graphics state.

The corresponding graphics state must have been saved on the same page, pattern, or
template.

page, pattern, template; must always be paired with a matching save() call. save() and
restore() calls must be balanced on each page, pattern, and template.

Sub translate(tx As Single, ty As Single)

Translate the origin of the coordinate system.

tx,ty The new origin of the coordinate system is the point (tx, ty), measured in the old
coordinate system.

page, pattern, template

Sub scale(sx As Single, sy As Single)

Scale the coordinate system.

sx, sy Scaling factors in x and y direction.

82 Chapter 4: PDFlib APl Reference (ActiveX edition)

Details

Scope

Details

Scope

Details

Scope

Details

Scope

This function scales the coordinate system by sx and sy. It may also be used for achiev-
ing a reflection (mirroring) by using a negative scaling factor. One unit in the x direction
in the new coordinate system equals sx units in the x direction in the old coordinate sys-
tem; analogous for y coordinates.

Visual Basic users please observe Section 2.2.7, »Using PDFlib with Visual Basic«, and
use the notation oPDF.[scale].

page, pattern, template

Sub rotate(phi As Single)

Rotate the user coordinate system.
phi The rotation angle in degrees.

Angles are measured counterclockwise from the positive x axis of the current coordi-
nate system. The new coordinate axes result from rotating the old coordinate axes by
phi degrees.

page, pattern, template

Sub skew(alpha As Single, beta As Single)

Skew the coordinate system.
alpha, beta Skewing angles in x and y direction in degrees.

Skewing (or shearing) distorts the coordinate system by the given angles in x and y di-
rection. alpha is measured counterclockwise from the positive x axis of the current coor-
dinate system, beta is measured clockwise from the positive y axes. Both angles must be
in the range 360° < alpha, beta < 360°, and must be different from -270°, -90°, 90°, and
270°.

page, pattern, template

Sub concat(a As Single, b As Single, c As Single, d As Single, e As Single, f As Single)

Concatenate a matrix to the current transformation matrix.

a,b,c,d,e, f Elements of a transformation matrix. The six floating point values make
up a matrix in the same way as in PostScript and PDF (see references). In order to avoid
degenerate transformations, a*d must not be equal to b*c.

This function concatenates a matrix to the current transformation matrix (CTM) for
text and graphics. It allows for the most general form of transformations. Unless you
are familiar with the use of transformation matrices, the use of translate(), scale(),
rotate(), and skew() is suggested instead of this function. The CTM is reset to the identity
matrix [1, 0, 0, 1, 0, 0] at the beginning of each page.

page, pattern, template

4.4 Graphics Functions

83

Details

Scope

4.4.3

Note

Details

Scope

Params

Details

Scope

Params

84

Sub setmatrix(a As Single, b As Single, c As Single, d As Single, e As Single, f As Single)

Explicitly set the current transformation matrix.
a,b,c,d,e, f Seeconcat().

This function is similar to concat(). However, it disposes of the current transformation
matrix, and completely replaces it with a new matrix.

page, pattern, template

Path Construction

Table 4.9 lists relevant parameters and values for this section.

Table 4.9. Parameters and values for the path segment functions (see Section 4.2.3, »Parameter Handling«)

function key explanation
get_value currentx The x or y coordinate, respectively, of the current point.
currenty

Make sure to call one of the functions in Section 4.4.4, »Path Painting and Clipping« after us-
ing the functions in this section, or the constructed path will have no effect, and subsequent
operations may raise a PDFlib exception.

Sub moveto(x As Single, y As Single)

Set the current point.
X,y The coordinates of the new current point.

The current point is set to the default value of undefined at the beginning of each page.
The current points for graphics and the current text position are maintained separately.

page, pattern, template, path; this function starts path scope.

currentx, currenty

Sub lineto(x As Single, y As Single)

Draw a line from the current point to another point.
x,y The coordinates of the second endpoint of the line.

This function adds a straight line from the current point to (x, y) to the current path. The
current point must be set before using this function. The point (x, y) becomes the new
current point.

The line will be centered around the »ideal« line, i.e. half of the linewidth (as deter-
mined by the value of the linewidth parameter) will be painted on each side of the line
connecting both endpoints. The behavior at the endpoints is determined by the value of
the linecap parameter.

path

currentx, currenty

Chapter 4: PDFlib API Reference (ActiveX edition)

Details

Scope

Params

Details

Scope

Params

Details

Scope

Params

Sub curveto(x1 As Single, y1 As Single, x2 As Single, y2 As Single, x3 As Single, y3 As Single)

Draw a Bézier curve from the current point, using three more control points.
X1, y1, X2, y2, x3,y3 The coordinates of three control points.

A Bézier curve is added to the current path from the current point to (x3, y3), using (x1, y1)
and (x2, y2) as control points. The current point must be set before using this function.
The endpoint of the curve becomes the new current point.

path

currentx, currenty

Sub circle(x As Single, y As Single, r As Single)

Draw a circle.
x,y The coordinates of the center of the circle.
r The radius of the circle.

This function adds a circle to the current path as a complete subpath. The point (x +r, y)
becomes the new current point. The resulting shape will be circular in user coordinates.
If the coordinate system has been scaled differently in x and y directions, the resulting
curve will be elliptical.

Visual Basic users please observe Section 2.2.7, »Using PDFlib with Visual Basic«, and
use the notation oPDF.[circle].

page, pattern, template, path; this function starts path scope.

currentx, currenty

Sub arc(x As Single, y As Single, r As Single, alpha As Single, beta As Single)

Draw a counterclockwise circular arc segment.

x,y The coordinates of the center of the circular arc segment.

r The radius of the circular arc segment. r must be nonnegative.

alpha, beta The start and end angles of the circular arc segment in degrees.

This function adds a counterclockwise circular arc segment to the current path, extend-
ing from alpha to beta degrees. For both functions, angles are measured counterclock-
wise from the positive x axis of the current coordinate system. If there is a current point
an additional straight line is drawn from the current point to the starting point of the
arc. The endpoint of the arc becomes the new current point.

The arc segment will be circular in user coordinates. If the coordinate system has
been scaled differently in x and y directions the resulting curve will be elliptical.

page, pattern, template, path; this function starts path scope.

currentx, currenty

4.4 Graphics Functions

8s

Details

Details

Scope

Params

Details

Scope

Params

Sub arcn(x As Single, y As Single, r As Single, alpha As Single, beta As Single)

Like PDF_arc(), but draws a clockwise circular arc segment.

Except for the drawing direction, this function behave exactly like PDF _arc(). In particu-
lar, the angles are still measured counterclockwise from the positive x axis.

Sub rect(x As Single, y As Single, width As Single, height As Single)

Draw a rectangle.
x,y The coordinates of the lower left corner of the rectangle.
width, height The size of the rectangle.

This function adds a rectangle to the current path as a complete subpath. Setting the
current point is not required before using this function. The point (x, y) becomes the
new current point. The lines will be centered around the »ideal« line, i.e. half of the line-
width (as determined by the value of the linewidth parameter) will be painted on each
side of the line connecting the respective endpoints.

page, pattern, template, path; this function starts path scope.

currentx, currenty

Sub closepath()

Close the current path.

This function closes the current subpath, i.e., adds a line from the current point to the
starting point of the subpath.

path

currentx, currenty

4.4.4 Path Painting and Clipping

Table 4.10 lists relevant parameters and values for this section.

Table 4.10. Parameters and values for the path painting and clipping functions (see Section 4.2.3,
»Parameter Handling«)

function key explanation

set_parameter fillrule Set the current fill rule to winding or evenodd. The fill rule is used by PDF
viewers to determine the interior of shapes for the purpose of filling or
clipping. Since both algorithms yield the same result for simple shapes,
most applications won’t have to change the fill rule. The fill rule is reset to
the default of winding at the beginning of each page.

Note All functions in this section clear the path, and leave the current point undefined. Subsequent

drawing operations must explicitly set the current point (e.g., using moveto()) after one of
these functions has been called.

86 Chapter 4: PDFlib API Reference (ActiveX edition)

Details

Scope

Details

Scope

Details

Scope

Params

Details

Scope

Params

Details

Scope

Params

Sub stroke()

Stroke the path and clear it.

This function strokes (draws) the current path with the current line width and the cur-
rent stroke color.

path; this function terminates path scope.

Sub closepath_stroke()

Close the path, and stroke it.

This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and strokes the complete current path with the
current line width and the current stroke color.

path; this function terminates path scope.

Sub fill()

Fill the interior of the path with the current fill color.

This function fills the interior of the current path with the current fill color. The interior
of the path is determined by one of two algorithms (see setfillrule()). Open paths are im-
plicitly closed before being filled.

path; this function terminates path scope.

fillrule

Sub fill_stroke()

Fill and stroke the path with the current fill and stroke color.

This function fills and strokes the current path with the current fill and stroke color, re-
spectively.

path; this function terminates path scope.

fillrule

Sub closepath_fill_stroke()

Close the path, fill, and stroke it.

This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and fills and strokes the complete current path.

path; this function terminates path scope.

fillrule

4.4 Graphics Functions

87

Details

Scope

Details

Scope

Sub clip()

Use the current path as clipping path.

This function uses the intersection of the current path and the current clipping path as
the clipping path for subsequent operations. The clipping path is set to the default val-
ue of the page size at the beginning of each page. The clipping path is subject to save()/
restore(). It can only be enlarged by means of save()/restore().

path; this function terminates path scope.

Sub endpath()

End the current path without filling or stroking it.

This function doesn’t have any visible effect on the page and will only rarely be useful.
It generates an invisible path on the page.

path; this function terminates path scope.

4.5 Color Functions

Details

Sub setcolor(type As String, colorspace as String, c1 As Single, c2 As Single, c3 As Single, c4
As Single)

Set the current color space and color.

type One of stroke, fill, or both to specify that the color is set for filling, stroking, or both
filling and stroking.

colorspace One of gray, rgb, cmyk, spot, or pattern to specify the color space.

c1,c2,c3,c4 Color components for the chosen color space:
» If the colorspace is gray, c1 specifies a gray value;
» If the colorspace is rgb, ci, c2, c3 specify red, green, and blue values;
» If the colorspace is cmyk, c1, c2, ¢3, ¢4 specify cyan, magenta, yellow, and black values;
» If colorspace is spot, c1 specifies a spot color handle returned by makespotcolor(), and
c2 specifies a tint value between o and 1;
» If colorspace is pattern, c1 specifies a pattern handle returned by begin_pattern().

All color values for the gray, rgb, and cmyk color spaces and the tint value for the spot col-
or space must be numbers in the inclusive range o-1. Unused parameters should be set
too.

Grayscale, RGB values and spot color tints are interpreted according to additive color
mixture, i.e., 0 means no color and 1 means full intensity. Therefore, a gray value of o
and RGB values with (1, g, b) = (0, 0, 0) mean black; a gray value of 1 and RGB values with
(r g, b) = (1,1, 1) mean white. CMYK values, however, are interpreted according to subtrac-
tive color mixture, i.e., (c, m, y, k) = (0, 0, 0, o) means white and (¢, m, y, k) = (o, 0, 0, 1) means
black. Color values in the range o-255 must be scaled to the range o-1 by dividing by 255.

88 Chapter 4: PDFlib API Reference (ActiveX edition)

Scope

Returns

Details

Scope

Returns

Details

Scope

The fill and stroke color values for the gray, rgb, and cmyk color spaces are set to a de-
fault value of black at the beginning of each page. There are no defaults for spot and pat-
tern colors.

page, pattern (only if the pattern’s paint type is 1), template; a pattern color can not be used
within its own definition.

Function makespotcolor(spotname As String) As Long

Make a named spot color from the current fill color.

spotname An arbitrary name for the spot color to be defined. This name may contain
arbitrary characters, but is restricted to a maximum length of 126 bytes.

A color handle which can be used in subsequent calls to setcolor() throughout the docu-
ment. Spot color handles can be reused across all pages, but not across documents.
There is no limit for the number of spot colors in a document.

If spotname has already been used in a previous call to makespotcolor*(), the return value
will be the same as in the earlier call, and will not reflect the current color.

The special spot color name All can be used to apply color to all color separations,
which is useful for painting registration marks. A spot color name of None will produce
no visible output on any color separation.

page, pattern, template; the current fill color must not be a spot color or pattern;

Function begin_pattern(width As Single, height As Single, xstep As Single, ystep As Single,
painttype As Long) As Long

Start a pattern definition.
width, height The dimensions of the pattern’s bounding box in points.

xstep, ystep The offsets when repeatedly placing the pattern to stroke or fill some ob-
ject. Most applications will set these to the pattern width and height, respectively.

painttype If painttype is 1 the pattern must contain its own color specification which
will be applied when the pattern is used; if painttype is 2 the pattern must not contain
any color specification but instead the current fill or stroke color will be applied when
the pattern is used for filling or stroking.

A pattern handle that can be used in subsequent calls to setcolor() throughout the docu-
ment.

Hypertext functions and functions for opening images must not be used during a pat-
tern definition, but all text, graphics, and color functions (with the exception of the pat-
tern which is in the process of being defined) can be used.

document; this function starts pattern scope, and must always be paired with a matching
end_pattern() call.

4.5 Color Functions

89

Scope

Sub end_pattern(pattern As Long)

Finish a pattern definition.

pattern; this function terminates pattern scope, and must always be paired with a
matching begin_pattern() call.

Sub setgray_fill(g As Single)
Sub setgray_stroke(g As Single)
Sub setgray(g As Single)

Deprecated, use setcolor(type, "gray”, g, o, o, o) with a type parameter of fill, stroke, or both
instead.

Sub setrgbcolor_fill(red As Single, green As Single, blue As Single)
Sub setrgbcolor_stroke(red As Single, green As Single, blue As Single)
Sub setrgbcolor(red As Single, green As Single, blue As Single)

Deprecated, use setcolor(type, "rgb", red, green, blue, o) with a type parameter of fill,
stroke, or both instead.

Image Functions

The functions for opening images described below can be called within or outside of
page descriptions. Opening images outside a begin_page() / end_page() context actually
offers slight output size advantages.

Table 4.1 lists relevant parameters and values for this section.

Table 4.11. Parameters and values for the image functions (see Section 4.2.3, »Parameter Handling«)

function key explanation

get_value imagewidth Get the width or height, respectively, of an image in pixels. The modifier is the
imageheight integer handle of the selected image.

get_value resx Get the horizontal or vertical resolution of an image, respectively. The modifier is
resy the integer handle of the selected image.

If the value is positive, the return value is the image resolution in pixels per inch
(dpi). If the return value is negative, it can be used to find the aspect ratio of non-
square pixels, but doesn’t have any absolute meaning. If the return value is zero,
the resolution of the image is unknown.

set_parameter image- This parameter can be used in order to obtain more detailed information about
warning why an image couldn’t be opened successfully with open_image_file() or open_
carT():
true Raise a Nonfatal exception when the image function fails. The message
supplied with the exception may be useful in debugging.
false Do not raise an exception when the image function fails.

Instead, the function returns -1 on error. This is the default.

90 Chapter 4: PDFlib API Reference (ActiveX edition)

Returns

Details

Scope

Params

Function open_image_file(type As String, filename As String, stringparam As String,
intparam As Long) As Long

Open an image file.

type Specifies the format type of the image: png, gif, jpeg, or tiff (see Section 3.4.1, »Sup-
ported Image File Formats«). Case is significant for all parameters.

filename The name of the image file to be opened.

stringparam, intparam The stringparam and intparam parameters are used for addi-
tional image attributes according to Table 4.12. If stringparam is unused, it must be an
empty string, and intparam must be o.

An image handle which can be used in subsequent image-related calls. The return value
must be checked for -1which signals an error. In order to get more detailed information
about the nature of an image-related problem (wrong image file name, unsupported
format, bad image data, etc.), set the imagewarning parameter to true (see Table 4.11). The
returned image handle can not be reused across multiple PDF documents.

This function opens and analyzes a raster graphics file in one of the supported file for-
mats as determined by the type parameter. PDFlib will open the image file with the giv-
en name, process the contents, and close it before returning from this call. Although im-
ages can be placed multiply within a document (see place_image()), the actual image file
will not be kept open after this call.

document, page; must always be paired with a matching close_image() call.
imagewidth, imageheight, resx, resy, imagewarning

Table 4.12. The stringparam and intparam parameters of open_image_file()
stringparam explanation and possible intparam values

mask Create a mask from this image. The returned image handle may be used in subsequent calls for
opening another image and can be supplied for the »masked« parameter. The intparam
parameter is ignored in this case, and must be o.

masked Use the image descriptor given in intparam as a mask for this image. The intparam parameter is
an image handle which has been retrieved with a previous call to open_image() with the »mask«
parameter, and has not yet been closed.

ignoremask Ignore any transparency information which may be present in the image file.

invert Invert black and white for 1-bit TIFF images. This is mainly intended as a workaround for certain
TIFF images which are interpreted differently by different applications.

page Extract the image with the number given in intparam from a multi-page file. The first image has
the number 1. This is only supported for multi-image TIFF files.

Function open_CCITT(filename As String, width As Long, height As Long, BitReverse As
Long, K As Long, Blackls1 As Long) As Long

Open araw CCITT image.
filename The name of the CCITT file to be opened.

width, height The dimensions of the image in pixels.

4.6 Image Functions 91

Returns

Details

Scope

Params

Returns

Details

92

BitReverse If1,do a bitwise reversal of all bytes in the compressed data.

K CCITT compression parameter for encoding scheme selection.
» -1indicates G4 encoding;
» o indicates one-dimensional G3 encoding (G3-1D);
» 1indicates mixed one- and two-dimensional encoding (G3, 2-D) as supported by PDF.

Blackls1 If this parameter has the value 1, 1-bits are interpreted as black and o-bits as
white. Most CCITT images don't use such a black-and-white reversal, i.e., most images
use Blackls1 = o.

An image handle which may be used in subsequent image-related calls if not -1. Since
PDFlib is unable to analyze CCITT images, all relevant image parameters have to be
passed to open_CCITT() by the client.

This function opens an image file with raw CCITT G3 or G4 compressed bitmap data
(this is different from a TIFF file which contains CCITT-compressed image data!).

document, page; must always be paired with a matching close_image() call.

imagewidth, imageheight, resx, resy, imagewarning

Function open_image(type As String, source As String, data, length As Long, width As Long,
height As Long, components As Long, bpc As Long, params As String) As Long

Use image data from a variety of data sources.

type Specifies the kind of image data or compression: jpeg, ccitt, or raw (see Section
3.4.1, »Supported Image File Formats«).

source, data, length The source parameter denotes where the image data comes from,
and can attain the values fileref, url, or memory (see Section 3.4.4, »Memory Images and
External Image References«). The relationship among the source, data, and length pa-
rameters is explained in Table 4.13.

width, height The dimensions of the image in pixels.

components The number of color components must be 1, 3, or 4 corresponding to
grayscale, RGB, or CMYK image data.

bpc The number of bits per component must be 1, 2, 4, or 8.

params If components = 1 and bpc = 1, params may be mask in order to use this image as
an image mask. Alternatively, additional CCITT parameters can be supplied (see below).

An image handle which may be used in subsequent image-related calls if not -1

This versatile interface can be used to work with image data in several formats and from
several data sources. Unlike open_image_file() which analyzes an image file, the user
must supply the length, width, height, components, and bpc parameters. open_image()
does not analyze the image data, and the user is responsible for supplying parameters
which actually match the image properties. Otherwise corrupt PDF output may be gen-
erated, and Acrobat may respond with the Image in Form, Type 3 font or pattern too big er-
ror message.

Chapter 4: PDFlib API Reference (ActiveX edition)

Scope

Params

Details

Table 4.13. Values of the source, data, and length parameters of open_image()

source data length
fileref’ string® with a platform-independent file name (see [1]) unused, should be o
url’ string® with an image URL conforming to RFC 17383. The URL will not be unused, should be o

resolved by PDFlib, but by Acrobat when the PDF is opened (see Section
3.4.4, »Memory Images and External Image References«). This
experimental feature is not recommended for production use.

memory Binary bytes containing image data; the image data is compressed length of
according to the type parameter. Exactly »length« bytes must be supplied. (compressed)image
data in bytes.

1. Not supported in Acrobat 3 compatibility mode.
2. data is not a string but an array of bytes, which makes it a little bit clumsy to pass filenames or URLs.
3. The URL must not contain any additional parameter, query string, access scheme, network login, or fragment identifier.

If type is raw, length must be equal to [width x components x bpc/ 8] x height bytes,
with the bracketed term adjusted upwards to the next integer, and this exact amount of
data must be supplied. The image samples are expected in the standard PostScript/PDF
ordering, i.e., top to bottom and left to right (assuming no coordinate transformations
have been applied). Even if bpc is not 8, each pixel row begins on a byte boundary, and
color values must be packed from left to right within a byte. Image samples are always
interleaved, i.e., all color values for the first pixel are supplied first, followed by all color
values for the second pixel, and so on.

If type is ccitt, CCITT-compressed image data is expected. In this case, params is exam-
ined. For CCITT images two parameters as described for open CCITT() can be supplied in
the params string as follows:

/K -1 /BlackIsi true

Supported values for /K are -1, 0, or 1, the default value is 0. Supported values for /Blackis1
are true and false; the default value is false. The default values will be used if an empty
params string is supplied. BitReverse cannot be supplied in this string. Instead, a special
notion is used: if length is negative, the image data will be reversed.

If params is not used, it must be empty. The client is responsible for the memory
pointed to by the data argument. The memory may be freed by the client immediately
after this call.

Don’t use Photoshop-generated CMYK JPEG images with this function since these
will appear in the PDF with inverted colors.

document, page; must always be paired with a matching close_image() call.

imagewidth, imageheight, resx, resy, imagewarning

Sub close_image(image As Long)

Close an image.
image A valid image handle retrieved with one of the open_image*() functions.

This function only affects PDFlib’s associated internal image structure. If the image has
been opened from file, the actual image file is not affected by this call since it has al-

ready been closed at the end of the corresponding open _image*() call. An image handle
cannot be used any more after it has been closed with this function, since it breaks PD-

4.6 Image Functions 93

Scope

Details

Scope

See also

Returns

Details

Scope

Params

Scope

Flib’s internal association with the image. This function must not be called for image
handles which have been opened with open_pdi_page() (use PDF close_pdi_page() in-
stead).

document, page; must always be paired with a matching call to one of the open_image_
file(), open_CCITT(), open_image() functions.

Sub place_image(image As Long, x As Single, y As Single, scale As Single)

Place an image or template, with the lower left corner at (x, y), and scale it.

image A valid image handle retrieved with one of the open_image*() or begin_
template() functions.

x,¥ The coordinates in the user coordinate system where the lower left corner of the
placed image will be located.

scale The scaling factor which will be applied to the image in x and y direction.

See Section 3.4.2, »Code Fragments for Common Image Tasks« for more information on
scaling and dpi calculations, including non-uniform scaling (different scaling factors in
x and y dimensions).

page, pattern, template; this function can be called an arbitrary number of times on
arbitrary pages, as long as the image handle has not been closed with close_image().

initgraphics() may be useful for initializing the graphics state before placing templates.

Function begin_template(width As Long, height As Long) As Long

Start a template definition.
width, height The dimensions of the template’s bounding box in points.

An image handle which can be used in subsequent image-related calls. There is no error
return.

Hypertext functions and functions for opening images must not be used during a
template definition, but all text, graphics, and color functions can be used.

document; this function starts template scope, and must always be paired with a
matching end_template() call.

imagewidth, imageheight

Sub end_template()

Finish a template definition.

template; this function terminates template scope, and must always be paired with a
matching begin_template() call.

94 Chapter 4: PDFlib API Reference (ActiveX edition)

4.7 PDF Import Functions

4.71

Returns

Details

Scope

Params

Details

Scope

Params

Returns

Document and Page

Function open_pdi(filename As String, stringparam As String, intparam As Long) As Long

Open an existing PDF document and prepare it for later use.

filename The name of the PDF file.

stringparam, intparam Reserved for later use; must currently be or empty and o, re-
spectively.

A document descriptor which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1indicates that the PDF
document couldn’t be opened. An arbitrary number of PDF documents can be opened
simultaneously. The return value can be used until the end of the enclosing document
scope.

In order to get more detailed information about the nature of a PDF-related problem
(wrong PDF file name, unsupported format, bad PDF data, etc.), set the pdiwarning pa-
rameter to true.

document, page

See Table 4.15 and Table 4.14.

Sub close_pdi(doc As Long)

Close all open PDI page handles, and close the input PDF document.
doc Avalid PDF document handle retrieved with open_pdi().

This function closes a PDF import document, and releases all resources related to the
document. All document pages which may be open are implicitly closed. The document
handle must not be used after this call.

document, page

See Table 4.14 and Table 4.15.

Function open_pdi_page(doc As Long, pagenumber As Long, pagelabel As String) As Long

Prepare a page for later use with place_pdi_page().

doc Avalid PDF document handle retrieved with open_pdi().

pagenumber The number of the page to be opened. The first page has page number 1.
pagelabel Reserved; must currently be NULL or empty.

A page descriptor which can be used for placing pages with place_image(). A return val-
ue of -1 indicates that the page couldn’t be opened. The return value can be used until
the end of the enclosing document scope.

4.7 PDF Import Functions 95

. Details

Scope
—— Params

See also

Details

Scope

Params

I Details

Scope

Params

4.7.2

In order to get more detailed information about a problem related to PDF import (un-
supported format, bad PDF data, etc.), set the pdiwarning parameter to true.

An arbitrary number of pages can be opened simultaneously. If the same page is
opened multiply, different handles will be returned, and each handle must be closed ex-
actly once. Opening the same page more than once is not recommended because the ac-
tual page data will be copied to the output document more than once.

document, page

See Table 4.14 and Table 4.15.
place_pdi_page()

Sub close_pdi_page(page As Long)

Close the page handle, and free all page-related resources.
page Avalid PDF page handle (not a page number!) retrieved with open_pdi_page().

This function closes the page associated with the page handle in the PDF document
identified by doc, and releases all related resources. page must not be used after this call.

document, page

See Table 4.14 and Table 4.15.

Sub place_pdi_page(page As Long, x As Single, y As Single, sx As Single, sy As Single)

Place a PDF page with the lower left corner at (x, y), and scale it.

page Avalid PDF page handle (not a page number!) retrieved with open_pdi_page().
The page handle must not have been closed.

X,y The coordinates in the user coordinate system where the lower left corner of the
placed page will be located.

sx, sy The horizontal and vertical scaling factors which will be applied to the page.

This function is similar to place_image(), but operates on imported PDF pages instead.
Another difference is that place_image() provides only a single scaling factor, while this
function provides separate scaling factors in x and y direction.

page, pattern, template

See Table 4.14 and Table 4.15.

Parameter Handling

Function get_pdi_value(key As String, doc As Long, page As Long, index As Long) As Single

Get some PDI document parameter with numerical type.
key Specifies the name of the parameter to be retrieved, see Table 4.15 and Table 4.14.

doc A valid PDF document handle retrieved with open_pdi().

96 Chapter 4: PDFlib API Reference (ActiveX edition)

Scope

Details

Scope

page Avalid PDF page handle (not a page number!) retrieved with open_pdi_page().
For keys which are not page-related page must be -1.

index Currently unused, must be o.

any

Function get_pdi_parameter(
key As String, doc As Long, page As Long, index As Long) As String

Get some PDI document parameter with string type.
key Specifies the name of the parameter to be retrieved, see Table 4.14 and Table 4.15.
doc Avalid PDF document handle retrieved with open_pdi().

page Avalid PDF page handle (not a page number!) retrieved with open_pdi_page().
For keys which are not page-related page must be -1.

index Currently unused, must be o.

This function gets some string parameter related to an imported PDF documented, in
some cases further specified by page and index. Table 4.16 lists relevant parameter com-
binations.

any

Table 4.14. Page-related parameters and values for PDF import

function key explanation

get_pdi _value width Get the width or height, respectively, of an imported page in
height default units. Cropping and rotation will be taken into account.

get_pdi_value /Rotate page rotation in degrees (o, 90, 180, or 270)

Table 4.15. Document-related parameters and values for PDF import (the page parameter must be -1)

function key explanation

get_parameter pdi Returns the string true, if the PDI library is attached (and not
restricted to demo mode), and false otherwise.

get_pdi_value /Root/Pages/Count total number of pages in the imported document

get_pdi_parameter filename name of the PDF file

get_pdi _value version PDF version number multiplied by 10, e.g. 13 for PDF 1.3

set_parameter pdiwarning This parameter can be used to obtain more detailed information
about why a PDF or page couldn’t be opened:
true Raise a nonfatal exception when the PDI function

fails. The information string supplied with the exception

may be useful in debugging import-related problems.
false Do not raise an exception when the PDI function fails.

Instead, the function returns -1 on error. This is default.

4.7 PDF Import Functions 97

4.81

Table 4.15. Document-related parameters and values for PDF import (the page parameter must be -1)

function key explanation

set_parameter pdistrict This parameter can be used to control PDI’s behavior with respect
to damaged PDF files:
true Raise a nonfatal exception for non-conforming PDFs

unless the warning parameter is set to false.
false Accept certain kinds of damaged PDFs. This is the
default.

Hypertext Functions

Document Open Action and Open Mode

Table 4.16 lists relevant parameters and values for this section. These parameters can be
set at an arbitrary time before calling close().

Table 4.16. Parameters for document open action and open mode (see Section 4.2.3, »Parameter

Handling«)
function key

set_parameter openaction

set_parameter openmode

Bookmarks

explanation

Set the open action, i.e., the zoom factor for the first page of the document.
Possible values are retain, fitpage, fitwidth, fitheight, fitbbox (see Table 4.23). The
default is retain. This parameter can be set once at an arbitrary time before
close().

Set the appearance when the document is opened. The default value is bookmarks
if the document contains any bookmarks, and otherwise none:

none Neither bookmarks nor thumbnails are visible

bookmarks Open the document with bookmarks visible.

thumbnails Open document with thumbnails visible

fullscreen Open the document in fullscreen mode.

Table 4.17 lists relevant parameters for this section.

Table 4.17. Parameters for bookmarks (see Section 4.2.3, »Parameter Handling«)

function key

set_parameter bookmark-
dest

explanation

Set the target zoom for subsequently generated bookmark. Possible values are
retain, fitpage, fitwidth, fitheight, fitbbox (see Table 4.23). This parameter can be
changed an arbitrary number of times. The default is retain.

Note Adding bookmarks sets the open mode (see Section 4.8.1, »Document Open Action and Open
Mode«) to bookmarks unless another mode has explicitly been set.

Function add_bookmark(text As String, parent As Long, open As Long) As Long

Add a nested bookmark under parent, or a new top-level bookmark.

text Contains the text of the bookmark. It may be encoded with PDFDocEncoding or
Unicode. The maximum length of text is 255 characters (PDFDocEncoding), or 126 Unicode
characters. However, a practical limit of 32 characters for text is advised.

98 Chapter 4: PDFlib API Reference (ActiveX edition)

Returns
Details

Scope

Params

4.8.3

Scope

4.8.4

parent If parent contains a valid bookmark handle returned by a previous call to add_
bookmark(), a new bookmark will be generated which is a subordinate of the given par-
ent. In this way, arbitrarily nested bookmarks can be generated. If parent = 0 a new top-
level bookmark will be generated.

open If o, child bookmarks will not be visible. If open =1, all children will be folded out.
The bookmark target will be viewed at the current bookmark zoom factor which can be
set via the bookmarkdest parameter (see Table 4.17).

An identifier for the bookmark just generated. This identifier may be used as the parent
parameter in subsequent calls.

This function adds a PDF bookmark with the supplied text that points to the current
page. The zoom factor can be controlled with the bookmarkdest parameter.

page

openmode, bookmarkdest

Document Information Fields

Sub set_info(key As String, value As String)

Fill document information field key with value.

key The key parameter must be encoded with PDFDocEncoding. key may be any of the
five standard information field names, or an arbitrarily named custom field (see Table
4.18). There is no limit for the number of custom fields. Regarding the use and semantics
of custom document information fields, PDFlib users are encouraged to take a look at
the Dublin Core Metadata element set.!

Table 4.18. Values for the document information field key

key explanation

Subject Subject of the document

Title Title of the document

Creator Creator of the document

Author Author of the document

Keywords Keywords describing the contents of the document

any name other than User-defined field. PDFlib supports an arbitrary number of fields. Names consist of

CreationDate and Producer printable characters except the following: blank’ %, (,), <, >, [,], {, }, /, and #.

value The string to which the key parameter will be set. It can be encoded with PDF-
DocEncoding or Unicode. Acrobat imposes a maximum length of value of 255 bytes.

document, page

Page Transitions

PDF files may specify a page transition in order to achieve special effects which may be
useful for presentations or »slide shows«. In Acrobat, these effects cannot be set docu-

1. See http://purl.org/DC

4.8 Hypertext Functions 99

http://purl.org/DC

ment-specific or on a page-by-page basis, but only for the full screen mode. PDFlib, how-
ever, allows setting the page transition mode and duration for each page separately. Ta-
ble 4.19 lists relevant parameters and values for this section.

Table 4.19. Parameters and values for page transitions (see Section 4.2.3, »Parameter Handling«)
function key explanation

set_parameter transition Set the page transition effect for the current and subsequent pages until the
transition is changed again. The transition types below are supported. type may
also be empty to reset the transition effect. Default: replace.

split Two lines sweeping across the screen reveal the page
blinds Multiple lines sweeping across the screen reveal the page
box A box reveals the page

wipe Assingle line sweeping across the screen reveals the page

dissolve The old page dissolves to reveal the page
glitter The dissolve effect moves from one screen edge to another
replace The old page is simply replaced by the new page (default)

set_value duration Set the page display duration in seconds for the current page. Default: one second.

4.8.5 File Attachments

Sub attach_file(llx As Single, lly As Single, urx As Single, ury As Single, filename As String,
description As String, author As String, mimetype As String, icon As String)

Add a file attachment annotation.

lIx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the an-
notation rectangle in default user space coordinates.

filename The name of the file which will be attached to the PDF document.

description A string with some explanation of the attachment. It may be encoded in
PDFDocEncoding or Unicode.

author A string with the author’s name or function. It may be encoded in PDFDoc-
Encoding or Unicode.

mimetype The MIME type of the file. It will be used by Acrobat for launching the ap-
propriate program when the file attachment annotation is activated.

icon Controls the display of the unopened file attachment in Acrobat (see Table 4.20).

Table 4.20. Icon names for file attachments

icon name icon appearance icon name icon appearance

graph I| pushpin —H
paperclip g tag 1..

Details This function adds a file attachment annotation at the specified rectangle. PDF file at-
tachments are only supported in Acrobat 4, and are therefore not supported in PDFlib’s
Acrobat 3 compatibility mode. Moreover, Acrobat Reader is unable to deal with file at-

100 Chapter 4: PDFlib APl Reference (ActiveX edition)

Scope

tachments and will display a question mark instead. File attachments only work in the
full Acrobat software.

page

4.8.6 Note Annotations

Details

Scope

Sub add_note(llx As Single, lly As Single, urx As Single, ury As Single, contents As String,
title As String, icon As String, open As Long)

Add a note annotation.

lix, lly, urx, ury xand y coordinates of the lower left and upper right corners of the
note rectangle in default user space coordinates.

contents Text content of the note. It may be encoded with PDFDocEncoding or Uni-
code. The maximum length of contents is 65535 bytes.

title Heading text of the note. It may be encoded with PDFDocEncoding or Unicode.
The maximum length of title is 255 characters (PDFDocEncoding), or 126 Unicode charac-
ters. However, a practical limit of 32 characters for title is advised.

icon Controls the display of the unopened note attachment in Acrobat (see Table 4.21).

open The annotation will be displayed in open state if open = 1, and closed if open = o.

This function adds a note annotation at the specified rectangle. Different note icons are
only available in Acrobat 4, and are not supported in Acrobat 3 compatibility mode (the
icon parameter must be empty in this case). Acrobat 3 viewers (and apparently Unix
versions of Acrobat 4) will display the »note« type icon regardless of the supplied icon
parameter.

page

Table 4.21. Icon names for note annotations

icon name icon appearance icon name icon appearance

comment newparagraph

note

insert ‘ key

help e
paragraph .

4.8.7 Links

Table 4.22 lists relevant parameters for this section.

Note PDF doesn’t support links with shapes other than rectangles.

4.8 Hypertext Functions

101

Table 4.22. Parameters for links (see Section 4.2.3, »Parameter Handling«)
function key explanation

set_parameter base Set the document’s base URL. This is useful when a document with relative Web
links to other documents is moved to a different location. Setting the base URL to
the »old« location makes sure that relative links will still work.

Sub add_pdflink(lx As Single, lly As Single, urx As Single, ury As Single, filename As String,
page As Long, dest As String)

Add a file link annotation (to a PDF target).

lix, lly, urx, ury xandy coordinates of the lower left and upper right corners of the link
rectangle in default user space coordinates.

filename The name of the target PDF file.
page The physical page number of the target page.
dest The destination zoom. It can attain one of the values specified in Table 4.23.

Scope page

Sub add_locallink(lIx As Single, lly As Single, urx As Single, ury As Single, page As Long, dest
As String)

Add a link annotation to a target within the current PDF file.

lix, lly, urx, ury xand y coordinates of the lower left and upper right corners of the link
rectangle in default user space coordinates.

page The physical page number of the target page. This may be a previously generat-
ed page, or a page in the same document that will be generated later (after the current
page). However, the application must make sure that the target page will actually be
generated; PDFlib will issue a warning message otherwise.

dest Specifies the destination zoom, which is one of the values specified in Table 4.23.
Scope page

Table 4.23. Values for the dest parameter of add_pdflink() and add_locallink(). The same values are also
used for the openaction (see Section 4.8.1, »Document Open Action and Open Mode«) and bookmarkdest
parameters (see Section 4.8.2, »Bookmarks«).

dest explanation

retain Retain the zoom factor which was in effect when the link was activated.

fitpage Fit the complete page to the window.

fitwidth Fit the page width to the window.

fitheight Fit the page height to the window.

fitbbox Fit the page’s bounding box (the smallest rectangle enclosing all objects) to the window.

102 Chapter 4: PDFlib API Reference (ActiveX edition)

Scope

Scope

Details

Scope

Details

Scope

Sub add_launchlink(llx As Single, lly As Single, urx As Single, ury As Single, filename As
String)

Add a launch annotation (to a target of arbitrary file type).

lix, lly, urx, ury xand y coordinates of the lower left and upper right corners of the link
rectangle in default user space coordinates.

filename The name of the file which will be launched upon clicking the link.

page

Sub add_weblink(lIx As Single, lly As Single, urx As Single, ury As Single, url As String)

Add a weblink annotation to a target URL on the Web.

lIx, lly, urx, ury xand y coordinates of the lower left and upper right corners of the link
rectangle in default user space coordinates.

url A Uniform Resource Identifier encoded in 7-bit ASCII specifying the link target. It
can point to an arbitrary (Web or local) resource.

page

Sub set_border_style(style As String, width As Single)

Set the border style for all kinds of annotations.
style Specifies the annotation border style, and must be one of solid or dashed.

width Specifies the annotation border width in points. If width = o the annotation bor-
ders will be invisible.

The settings made by this function are used for all annotations until a new style is set.
At the beginning of a document the annotation border style is set to a default of a solid
line with a width of 1.

document, page

Sub set_border_color(red As Single, green As Single, blue As Single)

Set the border color for all kinds of annotations.
red, green, blue The RGB color values for annotation borders.

The settings made by this function are used for all annotations until a new color is set.
At the beginning of a document the annotation border color is set to black (o, o, 0).

document, page

Sub set_border_dash(b As Single, w As Single)

Set the border dash style for all kinds of annotations.

b, w Specify the border dash style (see setdash()).

4.8 Hypertext Functions

103

Details

Scope

4.8.8

Details

Scope

Params

4.9

104

At the beginning of a document the annotation border dash style is set to a default of
(3, 3)- However, this default will only be used when the border style is explicitly set to
dashed.

document, page

Thumbnails

Sub add_thumbnail(image As Long)

Add an existing image as thumbnail for the current page.

image Avalid image handle retrieved with one of the open_image*() functions, but
not a handle to a PDF page or template.

This function adds the supplied image as thumbnail image for the current page. A
thumbnail image must adhere to the following restrictions:
» The image must be no larger than 106 x 106 pixels.
» The image must use the grayscale, RGB, or indexed RGB color space.
» Multi-strip TIFF images can not be used as thumbnails because thumbnails must be
constructed from a single PDF image object, and multi-strip TIFF images result in
multiple PDF image objects (see Section 3.4.1, »Supported Image File Formats«).

This function doesn’t generate thumbnail images for pages, but only offers a hook for
adding existing images as thumbnails. The actual thumbnail images must be generated
by the client or some other application. The client must ensure that color, height/width
ratio, and actual contents of a thumbnail match the corresponding page contents.

Since Acrobat 5 (including the free Reader) generates thumbnails on the fly, and
thumbnails increase the overall file size of the generated PDF, it is recommended not to
add thumbnails, but rely on client-side thumbnail generation instead.

page; must only be called once per page. Not all pages must have thumbnails attached
to them.

openmode

Page Size Formats

For the convenience of PDFlib users, Table 4.24 lists common standard page sizes".

Table 4.24. Common standard page size dimensions in points

page format width height page format width height
Ao 2380 3368 A6 297 421

A1 1684 2380 Bs 501 709
A2 1190 1684 letter 612 792

A3 842 1190 legal 612 1008
Agq 595 842 ledger 1224 792

As 421 595 1X17 792 1224

1. More information about ISO, Japanese, and U.S. standard formats can be found at the following URLSs:
http://www.twics.com/~eds/papersize.html, http://www.cl.cam.ac.uk/~mgkz5s/iso-paper.html|

Chapter 4: PDFlib API Reference (ActiveX edition)

http://www.twics.com/~eds/papersize.html
http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

5

5.1

The PDFlib License

PDFlib is available under two separate licensing terms which are substantially different,
and meet the needs of different developer groups. Please take the time to read the short
summaries below in order to decide which one applies to your development.

The »Aladdin Free Public License«

(This section is omitted from this edition of the manual since it does not apply.)

The Commercial PDFlib License

Different licensing options are available for PDFlib use on one or more servers, and for
redistributing PDFlib with your own products. We also offer maintenance and support
contracts. Licensing details and the PDFlib purchase order form can be found in the
PDFlib distribution. Please contact us if you are interested in obtaining a commercial
PDFlib license, or have any questions:

PDFlib GmbH

Tal 40, 80331 Miinchen, Germany

http://www.pdflib.com

phone +49 + 89 + 291646 87

fax +49 89« 2916 46 86

Licensing contact: sales@pdflib.com

Support for PDFlib licensees: support@pdflib.com (include your license number)
For other inquiries check our mailing list at http://www.egroups.com/group/pdflib.

5.1 The »Aladdin Free Public License«

105

mailto:sales@pdflib.com
mailto:support@pdflib.com
http://www.egroups.com/group/pdflib
http://www.pdflib.com

6 References

[1] Adobe Systems Incorporated: PDF Reference, Second Edition: Version 1.3. Published
by Addison-Wesley 2000, ISBN 0-201-61588-6; also available as PDF from
http://partners.adobe.com/asn/developer/technotes.html

[2] Adobe Systems Incorporated: PostScript Language Reference Manual, third edition.
Published by Addison-Wesley 1999, ISBN 0-201-37922-8; also available as PDF from
http://partners.adobe.com/asn/developer/technotes.html

[3] The following book by the principal author of PDFlib is available in English, German,
and Japanese editions. It describes all aspects of integrating PDF in the Web:

English edition: Thomas Merz, Web Publishing with Acrobat/PDF.
With CD-ROM. Springer-Verlag Heidelberg Berlin New York 1998
ISBN 3-540-63762-1, orders@springer.de

(out of print)

German edition: Thomas Merz, Mit PDF ins Web.

Integration, Formulare, Sicherheit, E-Books.

Zweite Auflage. Mit CD-ROM. ISBN 3-935320-00-0, PDFlib Edition 2001
PDFlib GmbH, 80331 Miinchen, Tal 40, fax +49 + 89 » 29 16 46 86
http://www.pdflib.com, books@pdflib.com

Japanese edition: Tokyo Denki Daigaku 1999, ISBN 4-501-53020-0
http://plazag.mbn.or.jp/~unit

F
Thomas Merz

Mit PDF ins Web

. mmmem ‘Pormilare; Sicherheit, E- anoks—/

'f /5!—2%'71‘037‘_&)0)

Acrobat/PDF

- PDEIn . dpunk.verieg

106 Chapter 6: References (ActiveX edition)

mailto:orders@springer.de
mailto:orders@springer.de
http://plaza4.mbn.or.jp/~unit
http://www.pdflib.com
http://partners.adobe.com/asn/developer/technotes.html
http://partners.adobe.com/asn/developer/technotes.html
mailto:books@pdflib.com

A Shared Libraries and DLLs

(This section is not included in this edition of the PDFlib manual.)

A Shared Libraries and DLLs 107

B PDFlib Quick Reference

General Functions

Function prototype page
Function open_file(filename As String) As Long 71
Function get_buffer() 71
Sub close() 72
Sub begin_page(width As Single, height As Single) 72
Subend_page() 72
Function get_value(key As String, modifier As Single) As Single 73
Sub set_value(key As String, value As Single) 73
Function get_parameter(key As String, modifier As Single) As String 73
Sub set_parameter(key As String, value As String) 74

Text Functions

Function prototype page
Function findfont(fontname As String, encoding As String, embed As Long) As Long 74
Sub setfont(font As Long, fontsize As Single) 75
Sub show(text As String) 76
Sub show_xy(text As String, x As Single, y As Single) 77
Sub continue_text(text As String) 77
Function show_boxed(text As String, x As Single, y As Single, width As Single, height As Single, mode As

String, feature As String) As Long 77
Function stringwidth(text As String, font As Long, size As Single) As Single 78
Sub set_text_pos(x As Single, y As Single) 78

Graphics Functions

Function prototype page
Sub setdash(b As Single, w As Single) 79
Sub setpolydash(darray) 79
Sub setflat(flatness As Single) 79
Sub setlinejoin(linejoin As Long) 8o
Sub setlinecap(linecap As Long) 8o
Sub setmiterlimit(miter As Single) 81
Sub setlinewidth(width As Single) 81
Sub save() 82
Sub restore() 82
Sub translate(tx As Single, ty As Single) 82
Sub scale(sx As Single, sy As Single) 82
Sub rotate(phi As Single) 83
Sub skew(alpha As Single, beta As Single) 83
Sub concat(a As Single, b As Single, c As Single, d As Single, e As Single, f As Single) 83

108 Chapter B: PDFlib Quick Reference (ActiveX edition)

Function prototype page

Sub moveto(x As Single, y As Single) 84
Sub lineto(x As Single, y As Single) 84
Sub curveto(x1 As Single, y1 As Single, x2 As Single, y2 As Single, x3 As Single, y3 As Single) 85
Sub circle(x As Single, y As Single, r As Single) 85
Sub arc(x As Single, y As Single, r As Single, alpha As Single, beta As Single) 85
Sub arcn(x As Single, y As Single, r As Single, alpha As Single, beta As Single) 86
Sub rect(x As Single, y As Single, width As Single, height As Single) 86
Sub closepath() 86
Sub stroke() 87
Sub closepath_stroke() 87
Subfill() 87
Sub fill_stroke() 87
Sub closepath_fill_stroke() 87
Sub clip() 88
Sub endpath() 88

Color Functions

Function prototype page
Sub setcolor(type As String, colorspace as String, c1 As Single, c2 As Single, c3 As Single, c4 As Single) 88
Function makespotcolor(spotname As String) As Long 89
Function begin_pattern(width As Single, height As Single, xstep As Single, ystep As Single, painttype As

Long) As Long 89
Sub end_pattern(pattern As Long) 90

Image Functions

Function prototype page
Function open_image_file(type As String, filename As String, stringparam As String, intparam As Long)
As Long 91
Function open_CCITT(filename As String, width As Long, height As Long, BitReverse As Long, K As Long,
Blacklis1 As Long) As Long 91
Function open_image(type As String, source As String, data, length As Long, width As Long, height As
Long, components As Long, bpc As Long, params As String) As Long 92
Sub close_image(image As Long) 93
Sub place_image(image As Long, x As Single, y As Single, scale As Single) 94
Function begin_template(width As Long, height As Long) As Long 94
Subend_template() 94

B PDFlib Quick Reference

109

PDF Import (PDI) Functions

Function prototype page
Function open_pdi(filename As String, stringparam As String, intparam As Long) As Long 95
Sub close_pdi(doc As Long) 95
Function open_pdi_page(doc As Long, pagenumber As Long, pagelabel As String) As Long 95
Sub close_pdi_page(page As Long) 96
Sub place_pdi_page(page As Long, x As Single, y As Single, sx As Single, sy As Single) 96
Function get_pdi_value(key As String, doc As Long, page As Long, index As Long) As Single 96

Function get_pdi_parameter(key As String, doc As Long, page As Long, index As Long) As String 97

Hypertext Functions

Function prototype page
Function add_bookmark(text As String, parent As Long, open As Long) As Long 98
Sub set_info(key As String, value As String) 99
Sub attach_file(llx As Single, Ily As Single, urx As Single, ury As Single, filename As String, description As
String, author As String, mimetype As String, icon As String) 100
Sub add_note(llx As Single, Ily As Single, urx As Single, ury As Single, contents As String, title As String,
icon As String, open As Long) 101
Sub add_pdflink(lix As Single, lly As Single, urx As Single, ury As Single, filename As String, page As Long,
dest As String) 102
Sub add_locallink(lIx As Single, lly As Single, urx As Single, ury As Single, page As Long, dest As String)102
Sub add_launchlink(lix As Single, lly As Single, urx As Single, ury As Single, filename As String) 103
Sub add_weblink(lix As Single, Ily As Single, urx As Single, ury As Single, url As String) 103
Sub set_border_style(style As String, width As Single) 103
Sub set_border_color(red As Single, green As Single, blue As Single) 103
Sub set_border_dash(b As Single, w As Single) 103
Sub add_thumbnail(image As Long) 104

Parameters and Values

category function keys

setup set_parameter prefix, resourcefile, compatibility, serial, warning
set_value compress, floatdigits
get_value major, minor, revision

get_parameter version

document set_value pagewidth, pageheight
CropBox, BleedBox, ArtBox, TrimBox: these must be followed by a slash '/’
character and one of llx, lly, urx, ury, for example: CropBox/lIx

font set_parameter FontAFM, FontPFM, FontOutline, Encoding, fontwarning
text set_value leading, textrise, horizscaling, textrendering, charspacing, wordspacing
get_value leading, textrise, horizscaling, textrendering, charspacing, wordspacing,

textx, texty, font, fontsize, capheight, ascender, descender
set_parameter underline, overline, strikeout, nativeunicode

get_parameter underline, overline, strikeout, fontname, fontencoding

110 Chapter B: PDFlib Quick Reference (ActiveX edition)

category

graphics

image

PDI

hypertext

function keys

set_parameter fillrule

get_value currentx, currenty

get_value imagewidth, imageheight, resx, resy
set_parameter imagewarning

get_parameter pdi

set_parameter pdiwarning, pdistrict

get_pdi_value /Root/Pages/Count, /Rotate, version, width, height

get pdi_ filename
parameter

set_parameter openaction, openmode, bookmarkdest, transition, base

set_value duration

B PDFlib Quick Reference

11

C Revision History

Version information on PDFlib can be found in the source distribution.

Revision history of this manual

Date Changes

May 17, 2001 » Minor changes for PDFlib 4.0.1

April 1, 2001 » Documents PDI and other features of PDFlib 4.0.0
February 5, 2001 » Documents the template and CMYK features in PDFlib 3.5.0

December 22,2000 > ColdFusion documentation and additions for PDFlib 3.03; separate ActiveX edi-
tion of the manual

August 8, 2000 » Delphi documentation and minor additions for PDFlib 3.02
July 1, 2000 » Additions and clarifications for PDFlib 3.01
Feb. 20, 2000 » Changes for PDFlib 3.0
Aug. 2,1999 » Minor changes and additions for PDFlib 2.01
June 29,1999 » Separate sections for the individual language bindings
> Extensions for PDFlib 2.0
Feb.1,1999 » Minor changes for PDFlib 1.0 (not publicly released)
Aug. 10,1998 » Extensions for PDFlib 0.7 (only for a single customer)
July 8,1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6
Feb. 25,1998 > Slightly expanded the manual to cover PDFlib 0.5
Sept. 22,1997 > First public release of PDFlib 0.4 and this manual

112 Chapter C: Revision History (ActiveX edition)

Index

0-9
16-bit encoding 52
8-bit encodings 37, 52

A

Acrobat 3 compatibility 10
Acrobat 4 compatibility 10
Acrobat 5 compatibility 11
Active Server Pages 18

special considerations 18
ActiveX binding

error handling 17

general 14

redistribution 16

register the DLL 16

Unicode support 18

version control 18
add_bookmark() 98
add_launchlink() 103
add_locallink() 102
add_note() 101
add_pdflink() 102
add_thumbnail() 104
add_weblink() 103
Adobe Font Metrics (AFM) 42
Adobe Glyph List (AGL) 40, 52
AFM (Adobe Font Metrics) 42
AGL (Adobe Glyph List) 40, 52
Aladdin free public license 105
All spot color name 89
Allaire ColdFusion: see ColdFusion
alpha channel 62
annotations 52, 101

API (Application Programming Interface)

reference 69
arc() 85
arcn() 86
ArtBox 33, 71, 110
AS/q400 37
ascender 54
ascender parameter 74
Asian FontPack 48
attach_file() 100
attachments 52, 100
Author field 99
automation 15
availability of PDFlib 12

B

base parameter 102
baseline compression 58
begin_page() 72
begin_pattern() 89
begin_template() 94
Bézier curve 85
bindings 12
BitReverse 92
Blackis1 92
BleedBox 33, 71, 110
blind mode 56, 78
bold CIK text 51
bookmarkdest parameter 98
bookmarks 52, 98

hide 98
Borland Delphi: see Delphi
builtin encoding 37, 38

C

C binding 28
C++ binding 28
capheight 54
capheight parameter 74
categories of resources 46
CCITT 59, 91
character ID (CID) 48
character metrics 54
character names 41
character sets 37, 52
characters per inch 55
charspacing parameter 76
Chinese 48, 50
CID fonts 48
circle() 85

Problems with VB 23
CJK (Chinese, Japanese, Korean) 48
clip 34
clip() 88
close() 72
close_image() 93
close_pdi() 95
close_pdi_page() 96
closepath() 86
closepath_fill_stroke() 87
closepath_stroke() 87
CMaps 48, 50
code page

8-bit 38

Index 113

- 114

IBM 1047 38
Microsoft Windows 1250-1258 40
Microsoft Windows 1252 37
Unicode-based 52
ColdFusion 25
error handling 26
special considerations 25
Unicode support 26
color 34
color functions 88
COM (Component Object Model): see ActiveX
binding
commercial license 105
compatibility
Acrobat4 10
Acrobat Reader 10
compatibility parameter 70
compress parameter 71
concat() 83
continue_text() 77
coordinate range 33
coordinate system 31, 81
metric 31
top-down 32
core fonts 36
CPI (characters per inch) 55
Creator field 99
CropBox 33, 71, 110
current point 34
currentx and currenty parameter 84
curveto() 85
custom encoding 38

D

default coordinate system 31
default zoom 98
Delphi 26
error handling 27
special considerations 26
Unicode support 27
demo stamp 29
descender 54
descender parameter 74
descriptor 41
DLL (dynamic link library) 17, 107
document and page functions 71
document information fields 52, 99
document open action 98
downsampling 60
dpi calculations 60
Dublin Core 99
duration parameter 100

EBCDIC 14, 38
ebcdic encoding 37, 38
embedded systems 12

Index

embedding fonts 41
encoding 37, 52

CIK 51

custom 38

for hypertext 41

Unicode 53
Encoding parameter 74
end_page() 72
end_pattern() go
end_template() 94
endpath() 88
error handling 12, 30

in ActiveX 17

in ColdFusion 26

in Delphi 27

in JScript 21

in VBScript 21

in Visual Basic 23
Errors class 18
Euro character 37, 42
evaluation stamp 29
exception: see error handling
external image references 62

F

features of PDFlib 9
file attachments 52, 100
filename parameter 97
fill 34
fill() 87
fill_stroke() 87
fillrule parameter 86
findfont() 74
font metrics 54
font parameter 74
FontAFM parameter 74
fontencoding parameter 74
fontname parameter 74
FontOutline parameter 74
FontPFM parameter 74
fonts
AFM files 42
Asian fontpack 48
CID fonts 48
CIK fonts 48
descriptor 41
embedding 41
general 36
glyph names 41
legal aspects of embedding 45
monospaced 55
OpenType 44
PDF core set 36
PFA files 43
PFB files 43
PFM files 42
PostScript 42, 43
resource configuration 45

TrueType 44

type1 43

type3 43

Unicode support 52
fontsize parameter 74
FontSpecific encoding 38
fontwarning parameter 74
form XObjects 35

G

general graphics state 79
get_buffer() 30, 71
get_parameter() 73
get_pdi_parameter() 96, 97
GIF 58, 91

global.asa 19

graphics functions 79
graphics state 79, 81
grid.pdf 31

GUID 18

H

hello world example

for ASP/IScript 19

for ASP/VBScript 20

general 12

in ColdFusion 25

in Delphi 26

in VBScript 24

in Visual Basic 23
horizontal writing mode 48, 51
horizscaling parameter 76
host encoding 37, 38
host fonts 44
hypertext

encoding 41

functions 98

icons
for file attachments 100
for notes 101
ignoremask 64, 91
image data, re-using 61
image file formats 58
image functions 9o
image mask 62
image references 62
image scaling 59, 60

imagewarning parameter 58, 9o
imagewidth and imageheight parameters 9o

import functions for PDF 95
inch 31

in-core PDF generation 29
initgraphics() 81

installation, silent for ActiveX 16

InstallShield 16

Internet Service Provider 17
invert 91

invisible text 56

1SO 10646 52

ISO 8859-1 37,41

ISO 8859-2to-15 40

1SO 8859-2 39

J

Japanese 48, 50
Java binding 28
JPEG 10, 58, 91, 93
JScript 19
error handling 21
Unicode support 22

K

K parameter for CCITT images 92

Keywords field 99
Korean 48, 50

L

landscape mode 72
language bindings: see bindings
Latin 1 encoding 37, 41
Latin 2 encoding 39
leading 54

leading parameter 76
licensing conditions 105
licensing PDFlib and PDI 29
line spacing 54

lineto() 84

links 101

LZW compression 58, 68

M

macroman encoding 37
major parameter 71
makepsres utility 45
makespotcolor() 89
mask 63, 91

masked 63, 91

masking images 62
MediaBox 33

memory images 62

memory, generating PDF documents in 29

metadata 99

metric coordinates 31

metrics 54

Microsoft Transaction Server 15
millimeters 31

minor parameter 71

mirroring 83

monospaced fonts 55

moveto() 84

Index

5

MTS 15
multi-page image files 64

N

nagger 29

nativeunicode parameter 54, 76
None spot color name 89
non-proportional image scaling 61
note annotations 52, 101

(0

open_CCITT() 91
open_file() 71
open_image() 92
open_image_file() 91
open_pdi() 95
open_pdi_page() 95
openaction parameter 98
openmode parameter 98
OpenType fonts 44
outline text 56

output accuracy 33
overline parameter 55, 76

P

page 64
page descriptions 31
page parameter 91
page size formats 104
limitations in Acrobat 33
page transitions 99
pagewidth and pageheight parameters 71
parameter
ascender 74
base 102
bookmarkdest 98
capheight 74
charspacing 76
compatibility 70
compress 71
currentx and currenty 84
descender 74
duration 100
Encoding 74
filename 97
fillrule 86
font 74
FontAFM 74
fontencoding 74
fontname 74
FontOutline 74
FontPFM 74
fontsize 74
fontwarning 74
horizscaling 76
imagewarning 58, 9o

116 | Index

imagewidth and imageheight 9o
leading 76
major 71
minor 71
nativeunicode 54, 76
openaction 98
openmode 98
overline 55, 76
pageheight and pagewidth 71
pdi 97
pdistrict 98
pdiwarning 97
prefix 70
resourcefile 70
resx and resy 9o
revision 71
serial 70
strikeout 55, 76
textrendering 51, 56, 76
textrise 76
textx and texty 57, 76
transition 100
underline 55, 76
version 71, 97
warning 31, 70
width and height 97
wordspacing 76
parameter handling functions 73
path 34
painting and clipping 86
pattern color space 35
PDF import functions 95
PDF import library (PDI) 65
PDFDocEncoding 41
PDFlib
features 9
program structure 29
thread-safety 9, 14
PDI 65
pdi parameter 97
pdistrict parameter 98
pdiwarning parameter 97
Perl binding 28
PFA (Printer Font ASCII) 43
PFB (Printer Font Binary) 43
PFM (Printer Font Metrics) 42
Photoshop 93
PHP binding 28
place_image() 94
place_pdi_page() 96
platforms 12
PNG 58, 63, 91
Portable Document Format Reference Manual
106
PostScript fonts 42, 43
PostScript Language Reference Manual 106
prefix parameter 70
print_glyphs.ps 41

Printer Font ASCII (PFA) 43
Printer Font Binary (PFB) 43
Printer Font Metrics (PFM) 42
ProgiD 18

program structure 29
Python binding 28

R

raster images
functions 9o
general 58

raw image data 59, 92

rect() 86

redistributing the ActiveX component 16

references 106

reflection 83

register the PDFlib ActiveX DLL 16
registry 18

regsvr32 17

resource category 46
resourcefile parameter 70
restore() 82

resx and resy parameter 9o
revision parameter 71

RGB color 34

rotate() 83

rotating objects 32

RPG binding 28

S

5/390 37
save() 82
scale() 82

problems with VB 23
scaling images 59, 60
scope definitions 69
separation color space 34
serial parameter 70
serial string 29
set_border_color() 103
set_border_dash() 103
set_border_style() 103
set_info() 99
set_text pos() 78
set_value() 73
setcolor() 88
setdash() 79
setflat() 79
setfont() 75
setgray() 9o
setgray _fill() 9o
setgray_stroke() 9o
setlinecap() 8o
setlinejoin() 8o
setlinewidth() 81
setmatrix() 84

setmiterlimit() 81
setpolydash() 79
setrgbcolor() go
setrgbcolor fill() 9o
setrgbcolor_stroke() 9o
setup functions 70

shared libraries 107
show() 76

show_boxed() 56, 77
show_xy() 77

silent install 16

skew() 83

special graphics state 81
spot color (separation color space) 34
standard page sizes 104
strikeout parameter 55, 76
stringwidth() 56, 78
stroke 34

stroke() 87

structure of PDFlib programs 29
Subject field 99

subpath 34

subscript 55, 76
superscript 55, 76

Symbol font 38

T

T1lib 43
Tcl binding 28
templates 35
text box formatting 54
text functions 74
text handling 36
text metrics 54
text rendering modes 56
text variations 54
textrendering parameter 51, 56, 76
textrise parameter 76
textx and texty parameter 51, 57, 76
threading model 15
thread-safety 9, 14
thumbnails 98, 104
TIFF 59, 91

multi-page 64
tiling 35
Title field 99
top-down coordinates 32
transition parameter 100
translate() 82
transparency 62

problems with 64
TrimBox 33, 71, 110
TrueType fonts 44
TTF (TrueType font) 44
type 1 fonts 43
type 3 fonts 43

Index 117

118

U

UNC 18
underline parameter 55, 76
Unicode 14, 52
in ActiveX 18
in ColdFusion 26
in Delphi 27
inJScript 22
in VBscript 22
in Visual Basic 24
problems with language bindings 53
units 31
UPR (Unix PostScript Resource) 45
file format 46
file searching 47
URL 62, 103
user space 31

Vv

value: see parameter
VBA 15
vbObjectError 18
VBScript 20, 24
error handling 21
Unicode support 22
version control
general 13
inActiveX 18

Index

version parameter 71, 97
vertical writing mode 48, 51
virtual directory 18
Visual Basic 22
error handling 23
special considerations 22
Unicode support 24
Visual Basic for Applications 15
Visual Basic Scripting Edition: see VBScript

w

warning 33, 102

warning parameter 31, 70
weblink 103

width and height parameters 97
winansi encoding 37

Windows registry 18

Windows Script Host (WSH) 24
wordspacing parameter 76
writing modes 48, 51

X

XObjects 35

Z

ZapfDingbats font 38
zoom factor 98

	Contents
	1 Introduction
	1.1 PDFlib Programming
	1.2 PDFlib Features
	1.3 PDFlib Output and Compatibility
	1.4 What’s new in PDFlib 4.0?

	2 PDFlib Language Bindings
	2.1 Overview of the PDFlib Language Bindings
	2.1.1 What’s all the Fuss about Language Bindings?
	2.1.2 Availability and Platforms
	2.1.3 The »Hello world« Example
	2.1.4 Error Handling
	2.1.5 Version Control
	2.1.6 Unicode Support
	2.1.7 Summary of Language Bindings

	2.2 ActiveX/COM Binding
	2.2.1 How does the ActiveX/COM Binding work?
	2.2.2 Installing the PDFlib ActiveX Edition
	2.2.3 Error Handling in ActiveX
	2.2.4 Version Control in ActiveX
	2.2.5 Unicode Support in ActiveX
	2.2.6 Using PDFlib with Active Server Pages
	2.2.7 Using PDFlib with Visual Basic
	2.2.8 Using PDFlib with Windows Script Host
	2.2.9 Using PDFlib with ColdFusion
	2.2.10 Using PDFlib with Borland Delphi

	2.3 C Binding
	2.4 C++ Binding
	2.5 Java Binding
	2.6 Perl Binding
	2.7 PHP Binding
	2.8 Python Binding
	2.9 RPG Binding
	2.10 Tcl Binding

	3 PDFlib Programming Concepts
	3.1 General Programming Issues
	3.1.1 The PDFlib Demo Stamp and Serial Numbers
	3.1.2 PDFlib Program Structure
	3.1.3 Generating PDF Documents directly in Memory
	3.1.4 Error Handling

	3.2 Page Descriptions
	3.2.1 Coordinate Systems
	3.2.2 Page and Coordinate Limits
	3.2.3 Paths and Color
	3.2.4 Templates

	3.3 Text Handling
	3.3.1 The PDF Core Fonts
	3.3.2 8-Bit Encodings built into PDFlib
	3.3.3 Custom Encoding and Code Page Files for 8-Bit Encodings
	3.3.4 Hypertext Encoding
	3.3.5 PostScript and TrueType Fonts
	3.3.6 Resource Configuration and the UPR Resource File
	3.3.7 CID Font Support for Japanese, Chinese, and Korean Text
	3.3.8 Unicode Support
	3.3.9 Text Metrics, Text Variations, and Text Box Formatting

	3.4 Image Handling
	3.4.1 Supported Image File Formats
	3.4.2 Code Fragments for Common Image Tasks
	3.4.3 Re-using Image Data
	3.4.4 Memory Images and External Image References
	3.4.5 Image Masks and Transparency
	3.4.6 Multi-Page Image Files

	3.5 PDF Import with PDI
	3.5.1 PDI Features and Applications
	3.5.2 Using PDI Functions with PDFlib
	3.5.3 Acceptable PDF Documents

	4 PDFlib API Reference
	4.1 Data Types, Naming Conventions, and Scope
	4.2 General Functions
	4.2.1 Setup
	4.2.2 Document and Page
	4.2.3 Parameter Handling

	4.3 Text Functions
	4.3.1 Font Handling
	4.3.2 Text Output

	4.4 Graphics Functions
	4.4.1 General Graphics State
	4.4.2 Special Graphics State
	4.4.3 Path Construction
	4.4.4 Path Painting and Clipping

	4.5 Color Functions
	4.6 Image Functions
	4.7 PDF Import Functions
	4.7.1 Document and Page
	4.7.2 Parameter Handling

	4.8 Hypertext Functions
	4.8.1 Document Open Action and Open Mode
	4.8.2 Bookmarks
	4.8.3 Document Information Fields
	4.8.4 Page Transitions
	4.8.5 File Attachments
	4.8.6 Note Annotations
	4.8.7 Links
	4.8.8 Thumbnails

	4.9 Page Size Formats

	5 The PDFlib License
	5.1 The »Aladdin Free Public License«
	5.2 The Commercial PDFlib License

	6 References
	A Shared Libraries and DLLs
	B PDFlib Quick Reference
	General Functions
	Text Functions
	Graphics Functions
	Color Functions
	Image Functions
	PDF Import (PDI) Functions
	Hypertext Functions
	Parameters and Values

	C Revision History
	Index

