
IBM VisualAge® for Java™, Version 3.5

SQLJ Tool

���

Edition notice

This edition applies to Version 3.5 of IBM VisualAge for Java and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. Database access using SQLJ 1

Chapter 2. Before you begin 3
Setting up SQLJ 3

Chapter 3. Component tasks 5
Creating an SQLJ file 5
Importing and translating an SQLJ file. 5
Translating an imported SQLJ file 6
Editing an SQLJ file 7
Keeping your SQLJ file and Java code synchronized 7
Setting SQLJ translation options 7

Creating an SQLJ debug class file 8
Customizing an SQLJ profile 9
Changing the SQLJ translator class 9

Appendix. SQLJ properties file 11

Notices 13

Programming interface information . . 17

Trademarks and service marks 19

© Copyright IBM Corp. 1999, 2000 iii

iv SQLJ Tool

Chapter 1. Database access using SQLJ

SQLJ is a standard way to embed SQL statements in Java programs. SQLJ is less
complex and more concise than JDBC. You can use both JDBC and SQLJ
statements in the same source code.

The SQLJ standard has three components: embedded SQLJ, a translator, and a
runtime environment. The translator translates SQLJ files that contain embedded
SQLJ to produce .java files and profiles that use the runtime environment to
perform SQL operations. The runtime environment usually performs the SQL
operations in JDBC, and uses the profile to obtain details about database
connections.

VisualAge for Java provides an SQLJ Tool that implements the SQLJ standard,
enabling you to simplify database access. The translator component is integrated
into the IDE, enabling you to import, translate, and edit SQLJ files. The runtime
environment is an installable feature that is added to your workspace. The original
.sqlj source files are maintained in your project resources directory, as are the
profiles. You must set up the SQLJ Tool before you can use it for the first time.

You can find general SQLJ information at the Web Site http://www.sqlj.org. For
information on SQLJ syntax, contact your database vendor. The IBM DB2® SQLJ
Web page at http://www.software.ibm.com/data/db2/java/sqlj/ provides a link
to the DB2 Application Programming Guide and Reference for Java,which includes
reference documentation for SQLJ statements.

Embedded SQLJ
You write SQLJ programs using SQL statements preceded with the #sql
token. These SQL statements are static; that is, they are predefined and do not
change at run time. The counterpart to static SQL is dynamic SQL, a call interface
for passing strings to a database as SQL commands. No analysis or checking of
those strings is done until the database receives them at execution time. A dynamic
SQL API for Java, called JDBC, has been specified by JavaSoft.

SQLJ programs are made up of SQLJ files which are Java source files that mix
standard Java code with #sql statements. Each SQLJ file must have a .sqlj
extension.

You cannot add embedded SQLJ statements into your source code in a Source pane
in VisualAge for Java. To start using the SQLJ Tool, you must create a .sqlj file with
a text editor, and then import and translate the file.

SQLJ translator
The SQLJ translator replaces SQLJ statements in an SQLJ file with calls to the SQLJ
runtime environment, creating .java files and profiles. Java programs containing
embedded SQL can be subjected to static analysis of SQL statements for the
purposes of syntax checking, type checking, and schema validation.

The VisualAge for Java SQLJ tool copies your SQLJ file into a project’s resource
directory before translating it. The SQLJ tool then translates the SQLJ statements,
producing Java source code and profiles. The translated source code is then
imported into the project.

© Copyright IBM Corp. 1999, 2000 1

SQLJ runtime environment
The SQLJ runtime environment implements SQL operations in real time. The
implementation is typically done through JDBC, but this is not mandatory. The
runtime environment refers to the profiles generated by the translator for details
about the connections to a database schema.

The runtime environment is an installable feature in VisualAge for Java. The
runtime environment must be added to your workspace before you can
successfully compile and execute translated SQLJ code. The VisualAge for Java
SQLJ Tool uses JDBC in the runtime environment to implement SQL operations in
real time.

SQLJ profiles
In addition to .java files, the SQLJ translator generates profiles. These files provide
details about the embedded SQL operations in the SQLJ source code, including
types and modes of data being accessed. Typically, one profile is generated per
connection context class. A connection context class usually corresponds to a single
database schema. The profiles are used by the runtime environment to provide
details about the database schema.

Profiles must be customized to make use of vendor-specific features. The main
advantages to customization are vender-supported datatypes and syntax, and
vendor optimizations.

The VisualAge for Java SQLJ Tool creates profiles in your project resources
directory. These binary files have a .ser extension.

Resource files and directories

Setting up SQLJ
Creating an SQLJ file
Importing and translating an SQLJ file
Translating an imported SQLJ file
Editing an SQLJ file
Keeping your SQLJ file and Java code synchronized
Creating an SQLJ Debug class file
Customizing an SQLJ profile
Changing the SQLJ translator class
Resource files and directories

2 SQLJ Tool

Chapter 2. Before you begin

Setting up SQLJ
To set up SQLJ for your project:
1. Add the SQLJ Runtime Library feature to your workspace.
2. Add the SQLJ Runtime Library project to your project’s Class Path. See the

related task in the list of links below.
3. (Optional) Enable online semantics checking.

Once you have set up SQLJ for your project, you need to create a new .sqlj file or
import and translate an existing .sqlj file.

Adding the SQLJ Runtime Library feature
Before you can use SQLJ in your project, you need to add the SQL Runtime
Library feature to your workspace. You can import and translate SQLJ files without
the SQLJ Runtime Library feature, however you will not be able to compile the
files.

To add the SQLJ Runtime Library feature:
1. In the Workbench, or a browser, select File > Quick Start, then select Features.
2. Select Add Feature, and click OK.
3. Select SQLJ Runtime Library, and click OK.

Enabling online semantics checking
When an SQLJ file is translated, you can have the SQLJ translator validate your
SQL statements by comparing them to your database. This ensures your SQL
statements can be performed on your database.

To enable online semantics checking:
1. In the Workbench, or a browser, select Workspace > Tools > SQLJ > Properties.
2. Select Perform online semantic checking.
3. Type the name of the JDBC driver that you use to connect to your database in

the JDBC Driver field. For example, the DB2 driver is
COM.ibm.db2.jdbc.app.DB2Driver.

4. Type the URL of your database in the Default URL field. For example, the DB2
sample database URL is jdbc.db2.sample.

5. Type the user ID and password to connect to the database in the User and
Password fields.

6. Click OK.

To enable online semantics checking for DB2, do the above procedure, typing
COM.ibm.db2.jdbc.app.DB2Driver in the JDBC Driver field. Then append the
directory x:\\sqllib\\java\\db2java.zip to the additionalclasspath option of the
SQLJTranslatorSupportToolProperties file, where x:\\sqllib is the directory where
you installed DB2.

Database access using SQLJ

© Copyright IBM Corp. 1999, 2000 3

Setting the Class Path
Creating an SQLJ file
Importing and translating an SQLJ file
Translating an imported SQLJ file
Editing an SQLJ file
Setting SQLJ translation options

SQLJTranslatorSupportToolProperties file

4 SQLJ Tool

Chapter 3. Component tasks

Creating an SQLJ file
Once you have set up SQLJ, you need to create a new SQLJ file. You cannot add
#sqlj statements directly to your source code in a Source pane. You have to create
a new .sqlj file on your file system with a text editor.

To create an SQLJ file:
1. In a text editor, create a new file.
2. Add your Java source code and SQLJ statements.
3. Save your file with a .sqlj extension, and exit the editor.

Once you have completed creating a new .sqlj file, you need to import the file into
your project and translate the file.

For information on SQLJ syntax, contact your database vendor. The IBM DB2 SQLJ
Web page at http://www.software.ibm.com/data/db2/java/sqlj/ provides a link
to the DB2 Application Programming Guide and Reference for Java,which includes
reference documentation for SQLJ statements.

Database access using SQLJ

Setting up SQLJ
Importing and translating an SQLJ file
Translating an imported SQLJ file
Editing an SQLJ file
Keeping your SQLJ file and Java code synchronized

Importing and translating an SQLJ file
Once you have created an SQLJ file, you need to import your SQLJ file into a
project and translate the file, before you can use it. Importing an SQLJ file places it
in your project resources directory. Translating the SQLJ file creates at least one
Java class and at least one profile. The Java class file is imported into your project,
and the profile is placed in the project resources directory.

Before importing and translating your SQLJ file, you must have already set up
your workspace with the SQLJ Runtime Library feature, and you must have
created a .sqlj file with a text editor. You cannot add embedded SQLJ statements
to your code in a Source pane .

To import an SQLJ file:
1. Select Workspace > Tools > SQLJ > Import. If this is the first time you are

importing an SQLJ file, the SQLJ Properties window is displayed.
2. Type a project name in the Project Name field, or click Browse to select a

project.
3. Type an SQLJ file name in the SQLJ file name field, or click Browse to select a

file.

© Copyright IBM Corp. 1999, 2000 5

4. Select Perform translation to translate the SQL file after importing.
5. Click Ok to import the SQLJ file into the project.

Import status messages are displayed in the Console.

To ensure you are working with only one copy of your .sqlj file, you should
remove the original file from your file system. Edit the imported .sqlj file from the
Resources page of your Project browser.

Database access with SQLJ

Setting up SQLJ
Creating an SQLJ file
Setting SQLJ translation options
Translating an imported SQLJ file
Editing an SQLJ file
Keeping your SQLJ file and Java code synchronized

Translating an imported SQLJ file
Once you have imported an SQLJ file into your project, you can translate it from
the Resources page of the Project browser. Normally you translate SQLJ files
when you import them, however you are not required to do so. Also, each time
you edit an imported SQLJ file you need to translate it to ensure that the SQLJ file
in your project resources directory and the source code in your project are
synchronized.

To translate an imported SQLJ file:
1. In the Workbench, right click on your project and select Open.
2. Select the Resources tab.
3. Right click the .sqlj file you want to translate, and select Tools > SQLJ >

Translate.

Translation status messages are displayed in the Console.

Database access using SQLJ
Resource files and directories

Setting up SQLJ
Creating an SQLJ file
Importing and translating an SQLJ file
Editing an SQLJ file
Keeping your SQLJ file and Java code synchronized
Setting SQLJ translation options

6 SQLJ Tool

Editing an SQLJ file
Once you have imported your SQLJ file into a project, you will probably want to
edit it to reflect changes in your database, and to fix problems in your
code. Rather than importing a new SQLJ file, you can edit the file directly from
the Resources page of the Project browser.

To edit an SQLJ file:
1. In the Workbench, right-click your project and select Open.
2. Select the Resources tab.
3. From the .sqlj file’s pop-up menu, select Tools > SQLJ > Edit.
4. Edit the file, save it, and exit the editor.
5. From the .sqlj file’s pop-up menu, select Tools > SQLJ > Translate.

The last step ensures that you are working with the latest source code in your
project. You should translate your .sqlj file every time you edit it.

Database access using SQLJ

Setting up SQLJ
Creating an SQLJ file
Importing and translating an SQLJ file
Keeping your SQLJ file and Java code synchronized

Keeping your SQLJ file and Java code synchronized
When you edit your SQLJ file from the Resource page of the Project browser, it is
not automatically translated into Java code for you. Keeping your SQLJ files and
Java code synchronized is a manual process.

To synchronize your SQLJ file with your Java code, right-click the SQLJ file in the
Resources page of the Project browser and select Tools > SQLJ > Translate.

You should synchronize your SQLJ file with your Java source every time you edit
your SQLJ file.

Database access using SQLJ

Setting up SQLJ
Importing and translating an SQLJ file
Editing an SQLJ file

Setting SQLJ translation options
You use the SQLJ Properties window to specify options that you want to use
during the translation of your SQLJ file. You can specify:
v the file encoding type
v the option to check your SQL against a database

Chapter 3. Component tasks 7

To view the SQLJ Properties window, from the Workbench or browser, select
Workspace > Tools > SQLJ > Properties.

Encoding type
The Encoding field specifies the NLS encoding to be used on the source code
produced by the translator.

Semantics checking
When your SQLJ file is translated, you can check the validity of your SQL
semantics against your database. Selecting Perform online semantics checking will
let the SQLJ translator perform this validity check against your database.

Database access using SQLJ

Setting up SQLJ
Importing and translating an SQLJ file
Translating an imported SQLJ file

Creating an SQLJ debug class file
For debugging purposes, you can create a .class file that refers to the original .sqlj
file, rather than to the intermediate Java source code. When you use the
stand-alone debugger on this .class file, the debugger will display the .sqlj source
file.

To create an SQLJ debug class file:
1. In the Workbench, from your project’s pop-up menu select Open.
2. Select the Resources tab.
3. From the .sqlj file’s pop-up menu, select Tools > SQLJ > Create SQLJ Debug

Class File.
4. Click OK, and select Window > Refresh to view the .class file in the Resources

page.

The .class file will have the same name as your .sqlj file, and is located in your
project resources directory.

Database access using SQLJ
Resource files and directories

Setting up SQLJ
Debugging during the development cycle with the integrated debugger
Setting breakpoints in external classes

8 SQLJ Tool

Customizing an SQLJ profile
When an SQLJ file is translated, a profile is created in your project resources
directory that contains information about the SQL statements that you want to
execute. To use database vendor-specific features in your SQL statements, you need
to customize the profile. Your database vendor will provide you with an
application to customize your profile.

Database access using SQLJ
Resource files and directories

Setting up SQLJ

Changing the SQLJ translator class
You can use a different SQLJ translator class than the one provided with the SQLJ
Tool. Your database vendor may provide an updated SQLJ translator class. To
change the SQLJ translator class, you need to update the
SQLJTranslatorSupportToolProperties file. This file tells the SQLJ Tool where to
find the translator classes.

To change the SQLJ translator class:
1. Open the file x:\IBMVJava\ide\tools\com-ibm-ivj-

sqlj\SQLJTranslatorSupportToolProperties.properties in a text editor, where
x:\IBMVJava is the directory where VisualAge for Java is installed.

2. Append the directory or file name of your database vendor’s translator class to
the additionalclasspath option.

3. Change the value of the translatorclassname option to the name specified by
your database vendor.

4. Change the value of the translatormethodname option to the value specified by
your database vendor.

5. Save your changes and close the text editor.

Contact your vendor for the SQLJ translator class and method names.

After updating the SQLJTranslatorSupportToolProperties.properties file to use the
DB2 translator, the file looks like the following.
additionalclasspath = x:\\sqllib\\java\\sqlj.zip
translatorclassname = sqlj.tools.Sqlj
translatormethodname = statusMain

The directory x:\\sqllib is where you have installed DB2.

Database access using SQLJ

Setting up SQLJ
Importing and translating an SQLJ file
Translating an imported SQLJ file

Chapter 3. Component tasks 9

SQLJTranslatorSupportToolProperties file

10 SQLJ Tool

Appendix. SQLJ properties file

The SQLJTranslatorSupportToolProperties.properties file contains SQLJ Tool options
that are changed infrequently. Modify this file to specify the translator and profile
customizer classes that your database uses. The file is provided with default
options.

Options you can modify are:
v additional class path (additionalclasspath)
v translator class name (translatorclassname)
v translator method name (translatormethodname)

The file is located in the x:\IBMVJava\ide\tools\com-ibm-ivj-sqlj directory, where
x:\IBMVJava is the directory where you have installed VisualAge for Java.

Additional class path
The additional class path option is used to append another classpath to the
existing classpath when the translation is performed. This allows the translator to
find the location of a translator class. When adding files or directories to the
additionalclasspath option, the files and directories are separated by semicolons.

For example, to use the DB2 Java classes, the additionalclasspath option would
look like
additionalclasspath=lib\\sqlj-translator.zip;x:\\sqllib\\java\\db2java.zip

where x:\\sqllib is the directory where you installed DB2. For other databases,
you would replace x:\\sqllib\\java\\db2java.zip with the classpath specified by
your database vendor.

The lib\\sqlj-translator.zip path specifies the location of the default translator
class files. Do not replace this entry unless your database vendor instructs you to
do so.

Translator class name
The translatorclassname option specifies the class used to perform the translation
of your SQLJ files, and the optional semantic check. The default entry is:
translatorclassname=sqlj.tools.Sqlj

Translator method name
The translatormethodname option specifies the method within the translator class
that is called to translate an SQLJ file into its component class and profile
files. The default entry is:
translatormethodname=statusMain

The method must be declared public static and have only one argument of type
String[].

Default SQLJTranslatorSupportToolProperties.properties file
The SQLJTranslatorSupportToolProperties.properties file that comes with the SQLJ
Tool looks like the following.

© Copyright IBM Corp. 1999, 2000 11

additionalclasspath = lib\\sqlj-translator.zip
translatorclassname = sqlj.tools.Sqlj
translatormethodname = statusMain

Database access using SQLJ

Setting up SQLJ
Changing the SQLJ translator class

12 SQLJ Tool

Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1999, 2000 13

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

14 SQLJ Tool

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1997, 2000. All rights reserved.

Notices 15

16 SQLJ Tool

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

© Copyright IBM Corp. 1999, 2000 17

18 SQLJ Tool

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:
v AIX
v AS/400
v DB2
v CICS
v CICS/ESA
v IBM
v IMS
v Language Environment
v MQSeries
v Network Station
v OS/2
v OS/390
v OS/400
v RS/6000
v S/390
v VisualAge
v VTAM
v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States, or other countries, or both.

Tivoli Enterprise Console and Tivoli Module Designer are trademarks of Tivoli
Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1999, 2000 19

	Contents
	Chapter 1. Database access using SQLJ
	Chapter 2. Before you begin
	Setting up SQLJ

	Chapter 3. Component tasks
	Creating an SQLJ file
	Importing and translating an SQLJ file
	Translating an imported SQLJ file
	Editing an SQLJ file
	Keeping your SQLJ file and Java code synchronized
	Setting SQLJ translation options
	Creating an SQLJ debug class file
	Customizing an SQLJ profile
	Changing the SQLJ translator class

	Appendix. SQLJ properties file
	Notices
	Programming interface information
	Trademarks and service marks

