
IBM VisualAge® for Java™, Version 3.5

Integrated Development Environment

���

Edition notice

This edition applies to Version 3.5 of IBM VisualAge for Java and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. The VisualAge for Java IDE . 1
What’s new in the VisualAge for Java IDE 1
Overview of the VisualAge for Java IDE 2
Development without files. 3
Incremental compilation 4
Workspace 4
Repository 6
Projects and other program elements 7
Resource files and directories 8
Extensions 9
Editions and versioning. 9

Editions and versioning. 9
Version control for project resource files 11
Scratch editions 13

Baselines, releasing, and reloading. 14
Unresolved problems 15
The Scrapbook 16
Create Servlet SmartGuide 17
VisualAge for Java for the Network Station™ . . . 17
Choosing the right debugger for your program . . 18
The IDE debugger 19

Chapter 2. Navigating the IDE 21
Browsing the workspace 21
Changing the IDE browsing style 22
Moving between windows 23
Searching for program elements 23

Searching for a program element in the
workspace 23
Searching the workspace by edition status,
owner, or developer 24
Searching for a program element in the
repository 25
Searching for declarations of and references to a
program element 26
Searching for text in a source pane 27

Accessing context-sensitive API help 28
Accessing tools and Enterprise Access Builders . . 28
Printing from the IDE 28

Printing program elements 28
Printing source code and other text 29
Printing the graph view of a class 30

Customizing the IDE 30
Setting IDE options 30
Customizing key bindings 30
Bookmarking program elements 32
Locking windows open 32
Cloning windows 32
Defining code assist macros 33

Creating programs and program elements 34
Creating a solution 34
Creating a project 35
Creating a package 35
Creating a sample applet or application 36
Creating an applet or application 37

Generating a customizable visual application . . 38
Creating servlets using the Create Servlet
SmartGuide 38
Creating a class 40
Generating method stubs 40
Creating an interface 41
Creating a method 42
Creating a field 42
Generating field accessor methods 42
Generating a serial universal identifier (UID) . . 43
Using the Quick Start window 43
Organizing your ideas in the Scrapbook 44
Experimenting with code fragments 45
Writing and formatting source code 46
Generating HTML documentation for classes . . 47
Adding projects and packages from the
repository to the workspace 49
Adding classes and methods from the repository
to the workspace 51
Importing files from the file system 52
Including resource files in a project 53
Loading external classes dynamically 54

Modifying program elements 55
Editing code in the Source View window . . . 55
Saving changes to code 56
Compiling code 57
Finding and fixing problems. 57
Versioning a program element 58
Creating an open edition 60
Copying or moving a program element 61
Renaming a program element 62
Comparing two program elements. 62
Comparing editions of a program element . . . 65
Merging editions of a class or interface 65

Managing your workspace 66
Adding a feature to your workspace 66
Replacing editions in the workspace (reloading) 67
Releasing a program element or resource file . . 68
Deleting program elements from the workspace 70
Saving the workspace 71
Providing a standard workspace 72
Creating a scratch edition. 73
Recovering the workspace 73
Reinstalling the workspace 75

Managing your repository 75
Backing up the repository 75
Purging program elements from the repository 76
Restoring program elements 77
Compacting a repository 78
Importing from another repository 79
Exporting to another repository. 80

Chapter 3. Running and debugging
programs 83
Setting the class path 83

© Copyright IBM Corp. 1997, 2000 iii

Running an applet from the IDE 84
Running an application from the IDE. 85
Making run-time changes to an applet 85
Debugging during the development cycle with the
IDE debugger 86
Opening the IDE debugger manually 87
Suspending, resuming, and terminating threads
(IDE debugger) 88
Setting breakpoints in source code (IDE debugger) 89
Configuring and setting conditions on breakpoints
(IDE debugger) 90
Setting breakpoints in external classes (IDE
debugger) 91
Selecting exceptions for the debugger to catch (IDE
debugger) 93
Clearing and disabling breakpoints (IDE debugger) 94
Inspecting and modifying variable values (IDE
debugger) 95
Stepping through methods (IDE debugger) 96
Modifying code while debugging (IDE debugger) . 97
Evaluating expressions in the IDE debugger . . . 98
Generating the class trace (IDE debugger) 99
Setting debugger options (IDE debugger) 100

Chapter 4. Exporting code 101
Exporting code 101

Exporting bytecode 102
Exporting source code 102
Exporting resource files 103
Exporting for debugging 103
Exporting to another repository 104
Deploying code 105
Deploying an applet on the Network Station 108
Deploying an application on the Network
Station 108

Chapter 5. IDE hints and tips 111
Applying IBM Service fixes with Fix Manager . . 111
Troubleshooting in the IDE 111
VisualAge for Java IDE symbols 113
Shortcut keys 115
Repository files 117
Applet Viewer 118
Code assist 119
Important files to back up 121

Notices 125

Programming interface information 127

Trademarks and service marks 129

iv IDE

Chapter 1. The VisualAge for Java IDE

What’s new in the VisualAge for Java IDE
Several usability and customization features have been added to the IDE for this
release.

Solutions
A solution is a container that holds a group of related projects. Grouping projects
into solutions allows you to import or export the projects in a single operation.
Solutions are created in the new Solutions browser in the Repository Explorer.

Inner classes
Inner classes and their methods now appear in the general hierarchy views in the
workbench browsers. Inner classes are indented from their owning class. You can
edit and save inner classes and their methods from the browsers.

Inner Classes and their methods are still part of the Class definition. As such, they
do not have an edition history.

Additional formatting options
Several new options have been added to the formatting page of the Options
notebook. These include:
v Insert new line before opening brace
v Insert new line in control statement
v Keep else if on the same line
v Maximum line length
v Compact assignment
v Clear all blank lines (clear all/preserve one)
v Indentation is represented by tab/space
v Amount of spaces representing a tabulation

Class Source View
Source view is the ability for the user to view a complete class, including all of its
methods. In this view, the user will be able to see and edit the class definition and
all of the methods of a class at a single time. If this file was imported from a file,
this view will retain the sorting that was present in the file.

Interface hierarchy view
You can see a hierarchy of interfaces from the Interface browser, similar to the
hierarchy view that is available for classes

Project Resource Management
Project resources are any files other than .class files that belong to a project, for
example, HTML, XML, or gifs. In past releases, project resource files were not
associated with a specific version of a project. In VisualAge for Java, version 3.5,
version control has been implemented for project resources. The resource files are
stored in the ide/project_resources/ProjectA directory until the project is
versioned. When the project is versioned, the project resources in the ProjectA
directory are moved to the ide/repository/repositoryname.pr/ProjectA/timestamp
directory. When you open a new edition of a project, the resources will move into
the working directory.

© Copyright IBM Corp. 1997, 2000 1

Project resources can be managed from the new Resources page in the Workbench
browser and from the Projects page in the Repository Explorer.

F1 Help improvements
To open the help browser for context sensitive help on a type or keyword, simply
highlight the text and press F1.

Improved searching and filtering

v You can now search the workbench and the results of a comparison using a
working set. A working set is a group of program elements. Working sets can be
defined from the search dialog boxes.

v In the class browser you can choose whether or not inner classes and classes
based on modifiers are displayed.

v You can select a working set of program elements in the All Problems page.
v You can choose to remove the warnings and list only problems in the All

Problems page.

Sort lines alphabetically
By selecting lines and pushing Alt + F8, you can put the lines in alphabetical
order.

Automatic generation of Serial UID
There is a new menu item that will generate the Serial UID for serializable objects.

Fix or Migrate
The Fix/Migrate tool repairs broken references to program elements, including
projects, packages, classes, and interfaces. Select a program element then Selected
> Reorganize > Fix/Migrate to launch the tool.

Extensions Support
An extension is a group of packages that implement an API that extends the Java
platform. Extension classes, like classes in the platform’s core API, can be found
and loaded by the Java virtual machine even though they are not in the class path.
You can specify that a project has an extension in the project’s properties dialog.

Java2 Samples
All of the IDE samples provided have been migrated to work on the Java 2
platform.

Overview of the VisualAge for Java IDE
VisualAge for Java is an integrated, visual environment that supports the complete
cycle of Java program development. You can create Java applets, which run in web
browsers, and standalone Java applications.

With VisualAge for Java, you can do the following tasks:
v build Java programs interactively
v run Java programs
v run fragments of Java code before you include them in classes
v debug Java programs, changing them as you run the code
v manage multiple editions of Java code
v import Java source and binary code from the file system
v export Java source and binary code to the file system

2 IDE

v build, modify, and use beans

What’s new in the VisualAge for Java IDE
Incremental compilation
Unresolved problems
Development without files
Projects and other program elements
Workspace

Development without files
As a programmer, you are probably familiar with developing programs in a
file-based environment. You write code in source files and compile and link them
into executable binary files. As you build the executable code, you must manage
files and file dependencies. This is an error-prone process that takes time away
from your primary task of programming.

By providing a development environment without files, VisualAge for Java
performs the tasks of managing and compiling code. Browsers let you view and
edit classes and methods individually. VisualAge for Java compiles Java source
code for you when you save it.

From within the IDE, you can import code from the file system into VisualAge for
Java. You can also export code to the file system if you want to work outside
VisualAge for Java.

Editing is integrated
The Workbench and browsers reflect an object model rather than a file-based
model. The object hierarchy of program elements (projects, packages, classes,
interfaces, and methods) provides a structure for the code. The Workbench and
browsers have a source pane with full editing capabilities that let you modify and
save source code.

Compilation occurs when you save source code
After you modify the source for a class or method, you save it, and VisualAge for
Java compiles the new code for you. VisualAge for Java keeps track of both the
source and its corresponding bytecodes. However, you never see .java or .class files
in the IDE.

VisualAge for Java compiles source code incrementally. That is, it compiles only
those parts of the source code that you change (and other code that is directly
dependent on it) and therefore significantly reduces the overall compilation time.

Unresolved problems
Projects and other program elements
Incremental compilation
Workspace
Repository
Editions and versioning

Importing files from the file system
Compiling code

Chapter 1. The VisualAge for Java IDE 3

Saving changes to code
Experimenting with code fragments
Exporting and publishing code

Incremental compilation
The VisualAge for Java IDE automatically compiles Java source code into Java
bytecode. When source code is imported into the workspace (from .java files) or
added from the repository, it is compiled and analyzed with respect to the existing
contents of the workspace. Any errors are flagged and listed in the Problems page
of program element browsers and the Workbench.

When you import Java bytecode classes (.class files), or add them from the
repository, they are similarly analyzed with respect to the existing contents of the
workspace, and errors are similarly flagged.

Other changes, such as deleting, moving, copying, or renaming program elements,
also initiate a compilation of affected program elements, to flag any new problems.

When you make a change to the source code for a method, field, or class, the
change and all affected code is compiled when you save the changes. If you
introduce an error, the IDE will warn you and give you the option of fixing the
problem immediately, or of adding the problem to the Problems page and fixing
later. If you choose to fix it immediately, the IDE’s code assist tool will suggest
possible solutions, if it can determine them.

Compiled code is stored in the workspace, but not in the repository (except for
those classes that were imported from bytecode files rather than source code
files). If you delete a class from the workspace, it deletes the bytecode, while the
source code is still stored in the repository. If you add it back to the workspace, it
will be recompiled before you can work with it again.

Unresolved problems
Projects and other program elements
Workspace

Importing files from the file system
Creating a class
Creating an interface
Adding classes and methods from the repository to the workspace
Copying or moving a program element
Deleting program elements from the workspace
Renaming a program element
Saving changes to code
Finding and fixing problems

Workspace
All activity in VisualAge for Java is organized around a workspace, which contains
the Java programs that you are developing. The workspace also contains all the
packages, classes, and interfaces that are found in the standard Java class libraries,
and other libraries that your classes may need.

4 IDE

In the team development environment, each VisualAge for Java client
has its own workspace.

The workspace differs from the repository in the following ways:
v Program elements must be added to the workspace before they can be modified.

Program elements that are in the repository can only be browsed.
v The workspace contains bytecode. The repository contains source code and

Visual Composition Editor information.
v You can have only one edition of any program element in the workspace at any

time. For performance reasons, your workspace should only contain the program
elements that you are currently working on. By contrast, the repository contains
every edition of every program element that you have ever developed, unless
you have compacted the repository.

v You use the Workbench window to view, manipulate, create, modify, and
manage program elements that are in the workspace. You use the Repository
Explorer window to view program elements that are in the repository, add them
to the workspace, and purge them from the repository.

v Changes to the workspace are not saved until you select Save Workspace from
the File pull-down menu, or until you exit the IDE. Changes to the source
repository are saved immediately, every time you save changes to a method,
class, or interface.

When you start the IDE, the workspace is connected to the repository. The first
time that you connect, VisualAge for Java builds pointers to the source code in the
repository for every program element that exists in the workspace.

When you change repositories, this set of pointers is recached. You
can not browse program elements that do not reside in the repository to which you
are currently connected. You can always run code that is in the workspace, but if
the connection to the repository is broken - for example by a server failure - then
you can not browse source code or save changes.

You can add program elements from the repository to the workspace, replace the
edition that is in the workspace with a different edition from the repository, or
delete program elements from the workspace. You can maintain different versions
of the workspace, customized for different projects or releases. See the list of topics
below, for links to related information.

Repository
Overview of the VisualAge for Java IDE

Browsing the workspace
Adding classes and methods from the repository to the workspace
Adding projects and packages from the repository to the workspace
Deleting program elements from the workspace
Replacing editions in the workspace (reloading)
Saving the workspace
Importing files from the file system
Recovering the workspace
Reinstalling the workspace

Chapter 1. The VisualAge for Java IDE 5

Important files to back up

Repository
In the VisualAge for Java IDE, the repository is a source control mechanism that
allows you to track changes made to program elements. When you start the IDE, it
connects to a repository. As you create and modify program elements in the
workspace, your changes are automatically stored in the repository. You can undo
changes by retrieving previous editions from the repository.

Unlike the workspace, the repository contains all editions of all program elements.
When you remove program elements from the workspace, they remain in the
repository. Over time, the repository will grow. You should periodically purge
program elements that are no longer required, and then compact the repository to
reduce its size.

In the team environment of VisualAge for Java, Enterprise Edition,
all team members’ editions are stored in a shared repository on a server.

The Repository Explorer is the visual interface to the repository. Here are some
examples of tasks that you can perform from the Repository Explorer window:
v Browse editions of projects, packages, classes, interfaces, and methods
v Create solutions
v Compare different editions of program elements
v Add program elements to the workspace
v Manage your resource files
v Change to another repository

Resource files, such as images and HTML files, are stored in the file system, not in
the repository. You can, however, open and manage your resource files in the
Repository Explorer. For more information, see the list of related topics at the end
of this file.

Workspace
Editions and versioning

Creating a solution
Adding projects and packages from the repository to the workspace
Searching for a program element in the repository
Comparing editions of a program element
Purging program elements from the repository
Backing up the repository
Compacting a repository
Exporting to another repository
Importing from another repository
Including resource files in a project

Repository files

6 IDE

Projects and other program elements
The starting point for development work in the VisualAge for Java IDE is a project.
Projects are units of organization used to group packages. They can be used, for
example, to group packages from a certain provider, to group packages related to
one application or customer, or to group frequently used classes that provide
interrelated function. You can use them as best suits your development situation.

Packages and classes have the same meaning as in other implementations of the
Java language. They are Java constructs. Projects contain packages, packages
contain classes and interfaces, and classes contain methods. We refer to these
constructs collectively as “program elements”.

In the IDE, the following symbols are used to represent the different program
elements:

Projects

Packages

Classes, applets or interfaces

Methods or fields

The Workbench organizes all the program elements that are in the workspace.
From the Workbench, you can view, create, modify, and manage program elements.
You can also open browsers and other windows that help you perform specialized
tasks on program elements.

The Repository Explorer organizes all the program elements that are in the
repository. With the Repository Explorer, you can view all editions of all projects,
packages, classes, interfaces, methods, and resource files that are in the repository.

In the Repository Explorer you can organize your projects into solutions. A
solution is a container that holds a group of projects. You can create solutions that
contain related projects that you want to import or export as a group, for example
a set of projects that you want to send to a particular customer.

The standard projects
The following projects are loaded into the workspace by default when you first
install the IDE:
v IBM Java Implementation
v Java class libraries
v Sun class libraries

Other projects that are shipped with VisualAge for Java are stored in the
repository, but not initially loaded into the workspace. You can add them as you
need them.

Every project, package, class, or interface has an owner who is
responsible for the quality of that program element and is authorized to release it.
Each edition of a class or interface also has a developer, who is the only person
who can version that program element.

Chapter 1. The VisualAge for Java IDE 7

Workspace
Repository
Editions and versioning

Creating a solution
Creating a project
Creating a package
Creating a class
Creating an interface
Deleting program elements from the workspace
Printing program elements
Searching for a program element in the workspace
Searching for a program element in the repository
Versioning a program element
Adding projects and packages from the repository to the workspace

VisualAge for Java IDE symbols

Resource files and directories
When you develop an application, you may use resource files that are not Java
source files or bytecode. For example, you might create HTML files, image files,
audio clips, or SQLJ source files.

You create resource files outside the development environment and store them in
the project resources directory. You also copy, edit, move, and back up resource
files outside the IDE. Within the IDE, you can view a project’s resource files by
selecting Open to > Resources from the project’s pop-up menu. You can also
delete, rename, or open resource files from the IDE.

Every time you create a project in the workspace, a project resources directory is
automatically created for that project. VisualAge for Java looks for resource files in
this directory when you run programs or applets in that project, and when you
export your code.

Every project in the workspace has its own subdirectory in
x:\IBMVJava\Ide\project_resources\project, where x:\IBMVJava is the directory
where VisualAge for Java is installed and project is the name of the project. This is
where project resources are stored before a project is versioned. When a project is
versioned, its resources are versioned as well. They are then stored in
x:\IBMVJava\Ide\repository\ivj.dat.pr\project\DateStamp. DateStamp is the time
and date the project was versioned. When you purge a version of a project from
the repository, its resources are deleted from the file system.

In a team development environment, when resources are versioned,
they are stored in the directory where the shared repository resides. For more
information, refer to the related information below.

Workspace

8 IDE

Repository
Version control for project resource files

Including resource files in a project
Exporting code

Extensions
Extensions are packages of Java classes and associated native code that are stored in
JAR files. Application developers can use extensions to extend the functionality of
the core platform without having to add the extension API to the class path.

Extensions are stored in one or more JAR files. They are usually written in the Java
programming language, but you can also implement them using platform-specific
native code. Extensions may include properties, localization catalogs, images,
serialized data, and other resources specific to the extension.

If you add an extension to a project, a directory called ext-resources
(x:\IBMVJava\Ide\project_resources\ext-resources) is created for that project. You
have to copy your extension files to this directory so they will be read by
VisualAge for Java when you run your application.

Repository

Adding an extension to a project
Including resource files in a project

Editions and versioning

Editions and versioning
In VisualAge for Java, whenever you work with any project, package, class, or
resource file you are actually working with a specific edition of that program
element. At any time, you can only have one edition of each program element in
the workspace. To see which editions are in the workspace, click the Show Edition

Names button.

Resource files do not appear in the workspace. To work with the resource files for
a particular project, from the project’s pop-up menu select Open to > Resources.

You will usually work with open and versioned editions;
occasionally, you may also create scratch editions of program elements to
experiment with. You will periodically release editions of classes and packages that
you have been working on, to provide a baseline for the team and to make your
changes easily available to them. Editions, releasing, and ownership are all
fundamental to managing application changes in the team environment. Editions
are discussed below; releasing and ownership are discussed as separate topics.

Open editions
Open editions are works in progress. Before you can make changes to an existing
project, package, or class, you must create an open edition of it. The Workspace

Chapter 1. The VisualAge for Java IDE 9

can only contain one edition of a program element. In the repository, however, you
can have multiple open editions of the same program element, with each one
implemented differently. For example, if you are adding features to an application
that you have customized for different industries, you might have multiple open
editions of a package with the same name stored in the repository.

Open editions appear in VisualAge for Java windows with a timestamp, in
parentheses, showing when they were created. Here is an example:
PackageA (3/28/98 4:21:15 PM)

Versioned editions
Versioned editions are editions that can not be changed. You version your open
editions for the following reasons:
v To keep a copy of a program element at some meaningful point, so you can

return to it at a later date. In the case of packages and projects, versioning
freezes a specific configuration of the contained program elements, which must
also be versioned.

v To make your changed classes available to other team members
who are browsing the repository.

v To release a class into its containing package, thereby updating the
team baseline. Classes must be versioned before they can be released.

Versioned editions appear in VisualAge for Java windows with version names, as
opposed to the timestamps that identify open editions. When you version an open
edition of a program element, VisualAge for Java can automatically assign a name
for you, or you can specify your own name. Here are some examples of versioned
editions:
PackageA 1.6.1
PackageB VersionBRel2
PackageC JS - Fixed print problems for CustomerX

Versioning does not prevent you from ever changing a program element again. To
make changes, create a new open edition of the program element. To revert to an
earlier version, replace the edition in the workspace with a different edition from
the repository, and create an open edition based on that.

You will probably version your classes frequently, whereas you may leave
packages and projects open for extended periods of time.

In the team development environment, version control is achieved by
means of releasing editions into a team baseline. Only program element owners
can release. See the list of related topics at the end of this document for links to
more information on ownership, baselines, or releasing.

Scratch editions
Scratch editions are editions that no other users of the shared repository can see.
Scratch editions appear in VisualAge for Java windows with < > around the
edition name:
PackageA <1.0>

Scratch editions are discussed separately.

Undefined editions
You may see a class or interface whose edition name is “undefined”:

10 IDE

ClassA Undefined

This means that someone has created a class or interface, but has never versioned
or released it. VisualAge for Java has reserved the new program element’s name in

the shared repository. Such editions are also marked with the undefined
symbol.

Tools for managing your editions
VisualAge for Java provides two tools for working with editions in a team
development environment:
v The Managing page of the Workbench window consolidates information about

all the editions that are in the workspace, and is a convenient place to perform
activities such as versioning and releasing.

v The Management Query tool helps you search for program elements in the
workspace by edition status. Open it by selecting Management Query from the
Workspace menu.

You can also view edition details, such as status and ownership, by selecting
Properties from a program element’s pop-up menu.

Projects and other program elements
Workspace
Repository
Version control for resource files

Creating an open edition
Versioning a program element
Replacing editions in the workspace (reloading)

Version control for project resource files
VisualAge for Java, Enterprise Edition, Version 3.5 includes two new functions for
resource files - versioning and releasing. Resource files are files that are not Java
source files or bytecode. For example, HTML files, image files, audio clips, or SQLJ
source files.

Versioning project resource files
Any project resource files contained in the project owner’s local project_resources
directory are automatically versioned when the owner versions the project. Since
only the owner can version the project, all other developers on the team must
provide a copy of their project resource files to the project owner if they want them
versioned. Team members can do this by individually releasing project resource
files, which the project owner can then access on the server.

Releasing project resource files
When a project owner versions a project, all the project resource files in the project
owner’s local project_resources directory are automatically released, updating the
project baseline. Therefore, the project owner should make sure that the project
resource files are correct when they version the project.

Project resource files can also be released individually by the members of the
development team. When released individually, they must be released into open
editions of the project. A team member may choose to explicitly release project

Chapter 1. The VisualAge for Java IDE 11

resource files while the team is working on an open edition, so that if anyone loads
or reloads the project, they will get the latest changes.

If you are working with an open edition of a project and release a resource file,
then modify it and re-release it, your previous edition of the file will automatically
be replaced.

Team members can add, delete, rename, or replace resource files in their
workspace but may only perform these same operations on released resources if
they are the project owner or the owner of the affected resources. For example, a
team member can create a local copy of a resource, but they cannot change the
released edition of it, unless assigned ownership of it.

For a team member to own a released edition of a resource, the project owner must
release the resource and then assign ownership to it.

You can assign ownership in the Resources page of the project browser or the
Workbench.

Resource files do not appear in the Repository Explorer until they have been
released.

Refer to the list of related tasks below for more information on performing these
tasks.

Released resources in the file system
When resources are released, they are are stored in a directory in the same location
as the shared repository. The name of the directory is the name of the repository
with the suffix ’.pr’. For example, if your repository is called ivj.dat, your
directory would be called ivj.dat.pr.

Note: Never delete files directly from the file system. You should always work in
VisualAge for Java to purge, copy or back up resource files.

For all platforms: Use caution when you are using clients and servers with
different file systems where one file system is case-sensitive and the other is not.
For example, if you have UNIX® clients and a PC server, and you have a resource
called TEST.TXT and a resource called test.txt and you release them both, one will
overwrite the other as they both cannot exist on the PC filesystem. Conversely, if
you have a PC client and a UNIX server and you have a project with the resources
TEST.TXT and test.txt, when you load those resources, one will overwrite the other
as they both cannot exist on the PC file system.

Loading a project with project resource files into your workspace
When users load an edition of a project into their workspace, they can view and
edit all the resources associated with a project.

If you replace an edition of a project in your workspace without releasing the
resources, any changes you make to them will be lost.

When users load an edition of a project into their workspace, all of the resources
associated with it are copied into the local project_resources directory for the
project (any old resources in this directory will be deleted first). When a project is
deleted from the workspace, the project resource files are deleted from the local
project_resources directory. If you load an edition of the project into the workspace

12 IDE

that was created in Version 2.0 or 3.0x of VisualAge for Java and does not have any
project resource files associated with it, the contents of the the project_resources
directory will remain untouched.

Resource files and directories
Version control for Java program elements
Baselines, releasing and reloading

Releasing a program element or resource file
Sharing resource files
Creating resource folders
Adding resources from the file system
Replacing a resource file with the released version
Changing the owner of a resource file or folder

Scratch editions
Scratch editions are private. Unlike open editions, you can not version them to
make them available to other developers on the team. You can create scratch
editions of projects or packages. You can not create a scratch edition of a class, but
you can create open editions of classes contained in scratch editions of packages.

You can not release into a scratch edition of a package or a project.

You might create a scratch edition for any of the following purposes:
v To learn how someone else’s code works. After you finish experimenting, delete

the scratch edition from your workspace or replace it with another edition from
the repository.

v To test a change that you think the owner should make. If you think your
change is good, talk to the class owner about integrating it into an edition that
can be versioned and released.

v To start development on a class when the containing package has been
versioned and the package owner is not available to create an open edition for
you. You can make your changes, test and debug them, and version your class
edition, but you can not release it until the package owner creates an open
edition of the package for you.

If you have configured your VisualAge for Java options to show edition names,
your scratch editions will be designated with < > around the program element’s
version name:
PackageA <1.0>
PackageB 1.2

In the example above, PackageA is a scratch edition that was created from a
versioned edition called 1.0. PackageB is not a scratch edition; it is a versioned
edition.

You do not explicitly create scratch editions. VisualAge for Java automatically
creates scratch editions from versioned editions, under the following circumstances:
v If you modify a class contained in a versioned edition of a package, and then

save your changes. A scratch edition of the package is created in the workspace.

Chapter 1. The VisualAge for Java IDE 13

v If you replace the edition of a class in a versioned package with another edition
of that class, a scratch edition of the package is created in the workspace.

v If you create a new open edition of a package, in a project that has been
versioned, a scratch edition of the project is created in the workspace.

Editions and versioning
Baselines, releasing, and reloading
Ownership and team roles - overview
Package groups

Creating a scratch edition
Creating an open edition
Versioning a program element
Releasing a program element
Replacing editions in the workspace (reloading)

Baselines, releasing, and reloading
Every edition of a containing program element has a specific configuration of
editions of the program elements that it contains. For example, MyPackage 1.1 may
contain MyClass 1.0 and YourClass 1.3, whereas MyPackage 1.2 may contain
Myclass 1.1 and YourClass 1.3.

As long as a project or package is an open edition, its configuration of package or
class editions can be changed. Program element owners change project or package
configurations by releasing different package or class editions into them, or by
deleting editions. Once a project or package is versioned, that particular
configuration of editions is frozen.

In the VisualAge for Java team development environment, these configurations are
called project or package baselines. Baselines determine which editions a team
developer has available to work with, after adding a project or package from the
shared repository or after replacing an edition in the workspace with another
edition (reloading). Baselines allow developers to get a common view of the current
state of the application, and to catch inconsistencies early.

A class owner can update a package baseline by releasing a class into the package.
A package or project owner can update a project baseline by releasing a package
into a project. Classes must be versioned before they can be released. Packages, on
the other hand, may be released while they are still open editions. Releasing one or
more open packages into a project has the effect of establishing a dynamic, or
rolling, baseline for the project. As long as the project contains an open edition of a
package, the project’s configuration of classes is immediately updated every time a
class is released into the contained package. The benefit of a rolling baseline is that
team members can resynchronize in one step, by reloading the project instead of
reloading individual packages or classes.

Since releasing affects every team member who reloads a baseline, changes should
be tested before they are released. Classes may be versioned every day, but they
should only be released when they are stable.

Periodically, project and package owners will preserve a baseline by versioning the
project or package. At that point, all contained packages and classes must also be
versioned. The result is a frozen configuration to which the team can return, if
necessary.

14 IDE

For more information on baselines, see the team development scenarios that are
listed as related topics, below.

Team development - overview
Ownership and team roles - overview
Editions and versioning
Team development scenarios - overview
Team development scenario - single package, multiple developers
Team development scenario - multiple packages, multiple developers
Sample life cycle of an application

Building a team baseline
Releasing a program element
Finding unreleased editions in the workspace
Replacing editions in the workspace (reloading)
Managing editions of program elements
Adding projects and packages from the repository to the workspace

Unresolved problems
VisualAge for Java compiles source code incrementally. If you save source code
that has a compiler error (also called an unresolved problem), VisualAge for Java
displays a warning message. As a result, you see errors immediately.

You can cancel the save operation. In some cases, you can also save the source
with the error. However, you cannot save the source in the following cases:
v a class or an interface has a Java syntax error
v a method has a Java syntax error inside its signature

When you fix an unresolved problem, VisualAge for Java fixes the problem
throughout the workspace. This means that many unresolved problems disappear
for you as you write code.

Even though a class contains unresolved problems, you may be able to run it. The
debugger may open and suspend the program during execution.

Unresolved problems occur for many reasons, for example:
v the source code includes a Java syntax error
v the source code refers to a field, method, class, interface or package that is not

declared (this could be as a result of deleting or renaming a method, field, class,
interface, or package)

v the source code refers to a class or an interface that is not visible
v you import code and do not have all the packages on which the code depends

If you save a class that contains an unresolved problem, the class is marked with

.

If you save a method that has an unresolved problem, the method is marked with

. If the class of the incorrect method has no unresolved problem of its own, it is

marked with .

Chapter 1. The VisualAge for Java IDE 15

VisualAge for Java maintains a list of all the classes and methods that have
unresolved problems and updates it when you save new or modified code. You
can view the entire list from the All Problems page of the Workbench, or you view
the list of problems in a single project by selecting Problems from any projects
pop-up menu. In the All Problems or Problems page, or anywhere where you can
select the class or method and see its source (except in a view of the repository)
you can modify the source to fix the problem.

Development without files
Incremental compilation

Creating a class
Creating a method
Creating an applet or application
Finding and fixing problems
Importing files from the file system
Saving changes to code
Debugging during the development cycle with the IDE debugger

The Scrapbook
The Scrapbook is a window that helps you organize, develop, and test ideas for
your Java programs. In the Scrapbook, you can experiment with Java code
fragments without specifying a containing class. The Scrapbook can have several
pages. Contents of the pages may be saved to files, but are not saved in the
repository.

The compilation context
The compilation context is the class you choose to contain the Java code fragment
when you compile and run it. When you evaluate code in the Scrapbook, it is
treated as though it were part of the compilation context, so the code inherits any
imports from the selected class. It can also refer to protected or private fields and
methods in the class and nonpublic classes in the same package.

Each Scrapbook page has its own compilation context, and does not interfere with
other pages, so you can do things such as test the client and server parts of a
program. The default compilation context is java.lang.Object.

Other uses for the scrapbook
The Scrapbook can open, read, and save to text-based files, including .java files,
from the file system. It supports a variety of formats and origins, including NT,
OS/2®, UNIX-based, Solaris, and Macintosh. You can run Java code that is in any
of these types of files.

You can import Java code from these files into a class, interface, or method in the
workspace.

The Scrapbook is also useful as a simple text editor for viewing and editing
text-based files within the file system, and for making notes to yourself.

Development without files

16 IDE

Organizing your ideas in the scrapbook
Experimenting with code fragments

Create Servlet SmartGuide
The Create Servlet SmartGuide allows you to create servlets and related Web
resources files (HTML and JSP pages). Together, they make up a Web application.
With the Create Servlet SmartGuide, you can import Java beans, and then generate
HTML, JSP pages, and servlet configuration files from the beans. Please note that
the Create Servlet SmartGuide supports JSP 1.0.

You can use the WebSphere™ Test Environment to test the generated servlets.

For details on the JSP/Servlet Development Environment and WebSphere Test
Environment, see the online documentation. Both of these features are available
with the VisualAge for Java, Professional and Enterprise Editions.

Creating servlets using the Create Servlet SmartGuide

VisualAge for Java for the Network Station™

VisualAge for Java provides a productive environment for developing applications
for the IBM Network Station. The VisualAge for Java IDE lets you develop, debug
and prototype your code before deploying it to a Network Station. Deploying the
code to the Network Station is as easy as exporting the compiled files to a shared
directory on the Network Station Manager and configuring the application.

The following figure shows the suggested configuration for application developers,
testers and users of the system.

The following are the key points of this application development scenario:
1. Developers have application development machines that support VisualAge for

Java.
2. Developers have Network Stations to test their developed code in the Network

Station environment.
3. Each tester or user of the system has a Network Station.

Chapter 1. The VisualAge for Java IDE 17

4. There is a single Network Station Manager that manages all of the network
stations and has a shared directory that is exported through its web server.

Deploying applets to the Network Station
Deploying applications to the Network Station

Choosing the right debugger for your program
VisualAge for Java comes with two debuggers:
v The IDE debugger, which is integrated in the IDE
v The Distributed Debugger, which must be installed as a separate component

from the VisualAge for Java, Enterprise Edition installation CD

The IDE debugger
Use the IDE debugger to debug applets and applications running in the IDE, and
code fragments in the Scrapbook. While the IDE debugger supports debugging
external classes that are loaded at run-time, It will not debug classes running on
other vendors’ virtual machines or those running remotely.

The IDE debugger can work with multiple running programs concurrently, which
can be useful, for example, when you are debugging client and server portions of
an application. With this debugger, you can interchange different editions of
methods and classes while the programs are running. The IDE debugger lets you
set regular or conditional breakpoints, and it supports the debugging of inner
classes.

The Distributed Debugger
This debugger debugs Java programs that you have exported to the file system. It
can debug Java bytecode or Java programs that have been compiled with the
AS/400® Feature, or with the High-Performance Compiler for Java for OS/390®.
The Distributed Debugger is not installed when you install VisualAge for Java. You
must install the debugger from the product CD by running setup and selecting
Install the Distributed Debugger from the installation screen.

The Distributed Debugger offers the following advantages:
v Remote debugging While running a Java program on Windows®, OS/2, AIX®,

OS/400®, or OS/390, you can debug it in the appropriate external debugger on a
Windows or OS/2 front end. In other words, while running the program on
one machine, you can debug it on another machine.

v Debugging optimized code The Distributed Debugger can debug Java programs
that have been compiled into platform-specific executables or DLLs. The
VisualAge for Java Accelerator for OS/390 and the AS/400 Feature all optimize
and compile Java source or bytecode for a specific platform. The optimized
executable code can be debugged by the debugger for that platform. This type
of debugging is especially useful when the optimized program exhibits
behavioral differences from the interpreted Java bytecode program.

Note: The Java source, bytecode, and debug information for the program must be
available to the Distributed Debugger. Accelerators that optimize Java programs
can generate debug information. The IDE can export debug information when it
exports classes to the file system.

See the related links to information on the debugger for information on platform
support, prerequisites to debugging, and debugger tasks.

18 IDE

The IDE debugger

Debugging during the development cycle with the IDE debugger
Exporting for debugging with the Distributed Debugger

The IDE debugger
The IDE debugger is integrated with the VisualAge for Java integrated
development environment. Use the IDE debugger to debug applets and
applications running in the IDE. In the debugger, you can view running threads,
suspend them, and inspect their visible variable values.

You can open the debugger manually or you can have it open automatically by
setting breakpoints or specifying caught exceptions. It will also open
automatically if an uncaught exception is thrown.

When a program is running, the debugger lists running threads. Suspend a thread
to view a list of methods that represent the current stack state. Select one of
these methods to inspect the visible variables in that stack frame.

While a thread is suspended you can do a number of things:
v View and modify visible variable values.
v Edit most methods’ source code.
v Step into, over, or to the return statement of a method.
v Drop to a selected stack frame.
v Replace most methods with another edition.
v Evaluate expressions.
v Resume running the thread.
v Terminate the thread.

The debugger can work with multiple running programs concurrently, which can
be useful, for example, when you are debugging client and server portions of an
application. In the Debugger window, threads are grouped by the program that
started them, for easy manipulation.

The IDE debugger lets you set regular or conditional breakpoints, and it supports
debugging inner classes. Also, it can optionally generate a class loading and
initialization trace.

Choosing the right debugger for your program

Debugging during the development cycle
Opening the debugger manually
Suspending, resuming, and terminating threads
Setting breakpoints in source code
Configuring and setting conditions on breakpoints
Setting breakpoints in external classes
Selecting exceptions for the debugger to catch
Clearing and disabling breakpoints

Chapter 1. The VisualAge for Java IDE 19

Inspecting and modifying variable values
Stepping through methods
Modifying code while debugging
Evaluating expressions in the debugger
Generating the class trace
Setting debugger options

20 IDE

Chapter 2. Navigating the IDE

Browsing the workspace
The VisualAge for Java IDE lets you view all the Java programming information
that you work with. It provides many ways of looking at the same information,
with a variety of focuses and views.

The most effective way to learn how to view code and other information in the
IDE is to experiment. The environment is complex and powerful, and if you
explore, you will find it has a large degree of flexibility.

The descriptions of the browsers in the online help usually assume that the layout
settings are set to the defaults that the product is shipped with. For example,
most discussions of panes assume you have selected horizontal orientation (in the
Window menu). Other settings that affect the appearance and behavior of
browsers can be changed in the Options dialog.

The Workbench
The Workbench is the main window into the workspace. You organize and perform
your work from the Workbench. It gives you a view of all the program elements
that are in the workspace and their unresolved problems.

From the Workbench, you can open other windows and browsers that help you
with your tasks.

Browsers
Browsers are specialized windows that help you with programming tasks. A
browser gives you a focused view of an individual program element that is in the
workspace and lets you work at a granularity that is finer than in the Workbench.
The tasks that you perform in a particular browser are similar to those in the
Workbench, except that they are focused on one program element (and, usually, the
program elements that it contains). You can open a browser on a project, package,
class, interface, or method.

Working in a browser focused on a particular program element has the following
advantages over working in the Workbench:
v It filters out other program elements in the workspace, so that you can see more

clearly the ones in which you are interested.
v You can examine multiple editions of the program elements.
v You can see a hierarchical tree or graph view of a specific class.
v You can see project resources.
v You can use the Visual Composition Editor from a class browser.
v You can get BeanInfo information from a class browser.
v You can see inner classes in the Class browser

To open a browser on a program element, select the element (in the Workbench or
another browser) and select Open from the pop-up menu. To open the browser to
a particular page, select the element, select Open To from the pop-up menu, and
select the page from the list presented.

© Copyright IBM Corp. 1997, 2000 21

To get help with each page, pane, toolbar button, and menu in the workbench and
browsers, go to the browser page in question and press F1.

Changing the default browsing style
By default, a new window is opened every time you select a program element to
browse. You have the option of changing the browsing style so that when you
open a browser on a program element, rather than opening a new window, the
IDE simply opens the browser in the current window. Then you can move back

and forth between “windows” by using the Back and Forward toolbar
buttons, similar to most Internet browser interfaces.

To change the browsing style, select Options from the Window menu. On the
General page, select the Current browser option for the Open an item in option.

Workspace
Development without files

Moving between windows
Changing the IDE browsing style
Searching for a program element in the workspace
Setting IDE options

Changing the IDE browsing style
You can select one of the following options for browsing the workspace:
1. When you open an item, a new window opens for the program element

browser, or
2. When you open an item, the browser opens in the current window, and you

access previous items’ browsers by using the Back and Forward
toolbar buttons.

To select the method that you prefer:
1. Select Options from the Window menu.
2. Go to the General page.
3. If you want to open a new window each time you open an item (Option 1,

above), select the New browser option for the Open an item in option.
4. If you want to open items in the current browser and use the Back and

Forward buttons (Option 2), select the Current browser option for the Open
an item in option.

Using the Back and Forward buttons
The Back and Forward buttons let you browse the workspace in a manner similar
to using an Internet browser. The IDE keeps track of where you were, and you
can return there by clicking the appropriate button.

Alternatively, right-click the Back or Forward button to view a pop-up list that
shows the button’s “memory.” Select one of the items to return to it.

Keep in mind that certain changes to a program element (for example, deleting it)
remove it from the list. When an item is deleted from the list, other items might
also be deleted, which means you will have to navigate to them some other way.

22 IDE

Browsing the workspace
Moving between windows

Moving between windows
There are two setup options for browsing the workspace:
1. When you open an item, a new window opens for the program element

browser, and
2. When you open an item, the browser opens in the current window, and you

access previous items’ browsers by using the Back and Forward
toolbar buttons.

To select the method you prefer:
1. Select Options from the Window menu.
2. Go to the General page.
3. If you want to open a new window each time you open an item (Option 1,

above), select the New browser option for the Open an item in option.
4. If you want to open items in the current browser and use the Back and

Forward buttons (Option 2), select the Current browser option for the Open
an item in option.

Notes for browsing with Option 1
When you have opened several tools and browsers, your desktop may be getting
crowded and difficult to manage. The IDE gives you several options for opening
browsers you recently closed and for bringing into focus windows you already
have open.

Opening a recently-closed browser
The File menu in any browser keeps a list of the most recently used browsers.
Select the desired browser from this list to reopen it.

Finding an out-of-focus window
Each IDE window that is opened is registered with the operating system so that
you can use the system menu to bring it into focus. For example, use the Taskbar
or Alt+Tab in Windows.

Alternatively, select Switch To from the Window menu of any IDE window. The
submenu lists all open IDE windows. Select the one you wish to bring into focus.

Browsing the Workspace
Changing the IDE browsing style

Searching for program elements

Searching for a program element in the workspace
To find a program element in the workspace, use the Go To tool. The Go To tool
finds and selects a program element within the current browser and page. It helps
you select a particular program element in a long list of elements. The Go To tool
can help you find declarations or references to a certain class, or to locate an
element in your browser.

Chapter 2. Navigating the IDE 23

The Go To tool

If you have a browser open on, for example, a particular project, running a Go To
search for a package that is not in the project will not find the package.
Therefore, if you want to search the entire workspace for the program element, run
the Go To search from the Projects page of the Workbench.
1. Start the Go To tool by selecting Go To from the Selected menu. In the

submenu, select the program element type (for example, Package, Project, or
Type) you want to go to. Only those program element types that the current
page can display are available.

2. In the Go To dialog, all the available program elements in the page are listed.
Select the one you want to go to from the list, or narrow down the list by
typing in part of the name. Use the following wildcard characters to help with
the search:

Wildcard Character Represents

* any string of characters

any single character

3. Click OK to go to the program element. Remember, you will remain in the
same browser and page that you were in before, but the searched-for program
element will be selected. If you want to open a browser for the element,
double-click on it.

If you do not find the program element in the workspace, find it by using the Go
To tool in the Repository Explorer, and then add it to the workspace.

Workspace
Repository

Searching for a program element in the repository
Searching for declarations of and references to a program element
Searching for text in a source pane
Browsing the workspace

Searching the workspace by edition status, owner, or
developer

You can use the management query tool to search the workspace using list of
commonly-asked search questions or using different combinations of the following
search criteria:
v Search by edition status (open, versioned, unreleased, scratch, or undefined)
v Search by kind of program element (type, package, or project)
v Search by scope (workspace or working set)
v Search by owner
v Search by developer

To open the Management Query window, select Management Query from the
Workspace menu.

To use a pre-defined search question:

24 IDE

1. Open the list of search questions by expanding the search option drop-down
list at the top of the window.

2. Select the question that you wish to have answered.

3. Click the Start Query button. The results of your query will appear in the
pane at side of the window.

To use the search tool:
1. Select Custom from the drop-down list of search options.
2. Use the Status, Scope, Owner, and Developer areas to specify your search

criteria.
To search by class developer, select Type from the Program element area.

3. Click the Start Query button. The results of your query will appear in the
pane at side of the window.

You can select items from the search results list and use their pop-up menus to
version, release, or create new editions of them, or perhaps to remove them from
the workspace. You can also edit the search results list and copy it to the system
clipboard.

Editions and versioning
Ownership and team roles - overview
Workspace

Managing editions of program elements
Finding unreleased editions in the workspace
Finding unversioned editions in the workspace
Viewing a program element’s owner
Viewing a class or interface’s developer
Searching for a program element in the workspace
Searching for a program element in the repository

Searching for a program element in the repository
To find a program element in the repository, use the Go To tool in the Repository
Explorer. The Go To tool finds and selects a particular program element in a long
list of elements.

To find a program element within the current page of the Repository Explorer:
1. Open the Repository Explorer by selecting Repository Explorer from a

Window menu.
2. Start the Go To tool by selecting Go To from the Names menu. In the

submenu, select the program element type (for example, Project, Package, or
Methods) you want to go to. Only those program element types that the
current page of the explorer can display are available.

3. In the Go To dialog, all the program elements in the page are listed. Select the
one you want to go to from the list, or narrow down the list by typing in part
of the name. Use the following wildcard characters to help with the search:

Wildcard Character Represents

* any string of characters

Chapter 2. Navigating the IDE 25

Wildcard Character Represents

any single character

4. Click OK to go to the program element. Remember, you will remain in the
Repository Explorer page that you were in before, but the searched-for program
element will be selected. If you want to open a shadow browser for the
element, double-click on it.

If you want to add the found element to the workspace:
1. Select the element.
2. Select the desired edition.
3. Select Add from the edition’s pop-up menu.

Note: You can add a class or method to the workspace only if its containing
package is already added.

Workspace
Repository

Searching for a program element in the workspace
Searching for declarations of and references to a program element
Searching for text in a source pane
Adding projects and packages from the repository to the workspace
Adding classes and methods from the repository to the workspace

Searching for declarations of and references to a program
element

To find declarations of or references to any program element in code in the
workspace, use the Search dialog. Launch the Search dialog box by clicking the

Searchbutton on the toolbar, or by selecting Search from the Workspace menu.

In the Search dialog box, specify the following criteria:
1. Search string - If a program element was selected in the browser before you

launched the search, its name will be inserted into this field by default. Use
the default name, or type over it to Indicate the name or part of the name of
the element you want to find. Use the asterisk (*) wildcard character to
represent any number of characters in the string.

2. Element - Indicate the type of program element you want to find. If you select
Type, for example, it searches classes and interfaces with the name pattern
given in the Search string field.

3. Scope - Indicate the scope of code searched. If you select Hierarchy, for
example, it searches the superclasses and subclasses of the selected class. If
you select Working Set option, you can limit the search to a defined group or
projects, packages or classes.

4. Usage - Indicate whether you want to search for references or declarations, or
both.

Click Start to start the search. The number of occurrences found are shown as the
search runs. Click Stop to halt the search and pass any results on to the Search
Results window. Click Cancel to cancel the search without reporting any found
occurrences.

26 IDE

The results of the search, if any occurrences were found, are added to the Search
Results window, which also lists the results of previous searches. The Search
Descriptions pane lists all the searches run in this session. If you select one of the
searches, the (number of) matches pane shows the list of elements in which the
declarations or references are made for the selected search. You can rearrange this

list by selecting the or button from the toolbar to list the methods by
method name or type name, respectively. If you select one of the elements, the
Source pane displays the program element’s source code, with the first declaration
or reference highlighted.

You can re-run the search from the Search Results window to update the list of
occurrences as the workspace changes.

Workspace
Repository
Projects and other program elements

Searching for a program element in the workspace
Searching for a program element in the repository
Searching for text in a source pane

Searching for text in a source pane
To find all occurrences of a string in a Source pane (or Comment pane, for projects
and packages):
1. Go to the pane in which you want to search for the string. You may select text

from the pane to be the search string.
2. To launch the Find/Replace dialog, type Ctrl+F, or select Find/Replace from

the pane’s pop-up menu.
3. In the Find/Replace dialog, type the search string in the Find what field (if it

has not been filled in already).
4. If you want to replace occurrences of the search string with another string,

enter a Replace with string.
5. Select Down or Up to indicate the direction of the search from the cursor’s

current position in the pane.
6. Select the Match case check box if you want the found string to match the case

given in the Find what field.
7. Select the Wrap search check box if you want the search to continue at the

beginning of the pane once it has reached the end (or vice versa, for backward
searches).

8. Click the appropriate buttons at the bottom of the pane to run the search.
Click Close when you are done.

Searching for a program element in the workspace
Searching for a program element in the repository
Searching for declarations of and references to a program element
Browsing the workspace

Chapter 2. Navigating the IDE 27

Accessing context-sensitive API help
To view the declaration of a given class, interface or class member:
1. Select it in a Source pane.
2. Select Open on Selection from the text’s pop-up menu, or press F1.

A browser will open on the type associated with the selected text. If you selected
a method, the method will be selected in the Members pane.

To access API reference help for a package, type, or member, select it in a Source
pane and select View Reference Help from the text’s pop-up menu. If the
selected text is documented in the VisualAge for Java online information, your
Web browser will open to the reference information for it. The online information
contains the Java 2 platform (J2SDK) API documentation, and public API
documentation for IBM tools and builders shipped with VisualAge for Java and
installed on your machine.

Accessing tools and Enterprise Access Builders
Browsing the workspace

Accessing tools and Enterprise Access Builders
VisualAge for Java Enterprise edition comes with several tools and enterprise
access builders (also called features). If you did a custom installation, you may
have opted not to install some of them. If you need a component you did not
install, you will have to run the install program again and update your
installation.

Adding features
To add a tool, builder, or other feature to your workspace:
1. Open the Quick Start window by selecting Quick Start from the File menu.
2. Select Features on the left side. Select Add Feature on the right side. Click

OK.
3. Select the feature(s) you want to add, then click OK.

The Java code for the features you selected will be added to the workspace.

Accessing tools and builders
If a feature is a tool or builder with a user interface, you can access it through the
Tools menu item in the Selected menu.

Using the Quick Start window
Adding a feature to your workspace

Printing from the IDE

Printing program elements
The contents of any project, package, type, or method are printable from the IDE.
To output the desired program elements to a printer:
1. Select the program element you want to print. You can select more than one,

provided they are all the same kind of element (for example, you could select

28 IDE

more than one package or more than one method). When an element is printed,
all of the elements it contains are also printed.

2. Select Document > Print from the element’s pop-up menu. If the element is a
method, the pop-up menu option is Print.

3. In the Print dialog box, select the options you want to use for printing the
element. The following options are available:

Program
element

Available options
(Select an option to print it.)

Projects

v Comment

v Package Listing

v Include Packages

Packages

v Comment

v Type Hierarchy

v Type Listing

v Include Types

Types
(Classes and
Interfaces)

v Hierarchy

v Definition

v Include Methods

Methods

v Entire Method

v Declaration Only

Selecting certain options disables others (for example, if you clear the Contents
of Packages check box, the options for packages, classes, and methods are
disabled). Click OK when you have selected the options you want.

4. Select the printer you want from the Printer Selection dialog box, and click OK.
The selected elements are output to the selected printer.

To change the default printer setting, select Print Setup from the Filemenu. Select
the desired default printer and click Setup to change its settings. Click OK to
make the selected printer the default.

Printing source code and other text
Printing the graph view of a class

Printing source code and other text
The source pane of any window and pages in the Scrapbook are printable. To print
the contents on one of these panes, select Print from the pane’s pop-up menu or
Print Text from the window’s Edit menu. Select the printer you want from the
Printer Selection dialog box, and click OK. The contents of the pane are output to
the printer.

To change the default printer setting, select Print Setup from the Filemenu. Select
the desired default printer and click Setup to change its settings. Click OK to
make the selected printer the default.

Chapter 2. Navigating the IDE 29

Printing program elements
Printing the graph view of a class

Printing the graph view of a class
The graph view of a class provides an alternative way of looking at a class and its
inheritance path. To print this view for a class:
1. In the Classes page of the Workbench or a class browser, select the class whose

graph you want to print.

2. Click the Graph Layout button from the title bar of the Classes pane. The
pane changes to show the graph view of the class.

3. Select Document, Print Graph from the pop-up menu.
4. Select the printer you want from the Printer Selection dialog box, and click OK.

The graph is output to the printer.

To change the default printer setting, select Print Setup from the Filemenu. Select
the desired default printer and click Setup to change its settings. Click OK to
make the selected printer the default.

Printing program elements
Printing source code and other text

Customizing the IDE

Setting IDE options
The VisualAge for Java IDE is a flexible work environment that you can adjust to
meet your needs and preferences. You can change the way the IDE appears and
functions by changing settings in the Options dialog.

To open the Options dialog, select Options from the Window menu. The Options
notebook contains settings for each of the customizable features. The settings are
initially set to default values, but you can change the defaults to suit your work
style or environment.

Press F1 within the dialog to get help with specific options in the Options dialog.

Bookmarking program elements
Cloning windows
Locking windows open

Customizing key bindings
Key bindings allow you to map editor commands to your choice of shortcut keys.
VisualAge for Java provides two standard sets of key bindings. You can choose to
use a standard set, modify a standard set, or create your own set of key bindings
in the Options notebook.

To open the Options notebook, select Options from the Window menu, which
appears on all IDE windows. The Options notebook contains settings for each of
the customizable features. Expand the General option and select Key Bindings.
The settings that appear on the Key Bindings pane are set to default VisualAge for

30 IDE

Java values. The other default profile is an Emacs standard that contains a subset
of Emacs functionality. To select this standard, open the Profile list and select
Emacs.

Whether you use a standard or a modified profile, you may find it helpful to keep
a list of key bindings near your keyboard. To print the list of key bindings, select
the desired profile in the Profile list and click Print Table.

Modifying a profile for key bindings
You may want to modify some of the key bindings from a selected profile to suit
your work style or environment. To modify key bindings:
1. Open the Options notebook, as described above.
2. In the Key Bindings pane, find the action that you want to modify in the

Action list and select its corresponding key sequence.
3. Enter a new sequence by pressing the keys on your keypad. If you add more

than one key sequence for an action, the sequences are separated with a
comma.

4. Click Apply to save your changes or Defaults to return to the original default
bindings for the current profile.

5. Click OK to close the window.

A warning dialog box opens if you try to set more than one action to a key
sequence.

To remove a key binding from an action:
1. Find the action the you want to modify in the Action list and select its

corresponding key sequence.
2. Press Delete.
3. Click Apply to save your changes or Defaults to return to the original default

bindings for the current profile.
4. Click OK to close the window.

Note that you can not rebind the Delete key alone to any action, but you can bind
an action to a combination of keys that include Delete, for example Ctrl+Delete.

Creating a new profile for key bindings
If you do not want to change a standard profile, for example if you are working on
a shared machine, you can create your own personal profile.
1. Click Add. A dialog opens.
2. Enter a name for your profile.
3. Select a base model for your profile.
4. Click OK. Your new profile will appear in the list of profiles.

Note that VisualAge for Java IDE menu accelerator keys, when they are available,
take precedence over the user-defined key bindings. For example, in the
Workbench, Alt+S is the menu accelerator key for the Selected menu; you could
choose to set Alt+S as the key binding for another action (for example undo), but
then you would have to press Esc, then S, to use that key binding for undo when
you are in the Workbench window. (The Esc key acts as a “sticky” substitute for
the Alt key.)

Chapter 2. Navigating the IDE 31

Bookmarking program elements
The Workbench lets you bookmark program elements, making it quick and easy to
return to a frequently-used project, package, class, interface, or member within the
Projects page. You can bookmark up to five program elements.

Bookmarking a program element
To bookmark a program element:
1. In the Workbench, select the Projects page.
2. Select the program element you want to bookmark.

3. Select the bookmark button , located in the top right-hand corner of the All
Projects pane. A bookmark number appears next to the bookmark button.

If you hold the mouse pointer over a bookmark number, hover help will show the
name of the program element associated with the number.

Moving to a bookmarked program element
To move to a bookmarked program element, click on the corresponding bookmark
number. The All Projects pane will expand the tree view to show the program
element, and the other panes will be populated with the appropriate information.

Removing a bookmark
To remove a bookmark from a program element, right-click on any bookmark
number. Select Remove Bookmark from the pop-up menu, then select the
bookmark that you would like to remove from the pop-up list.

Locking windows open
Locking a window helps prevent you from accidentally closing a window that you
want open. If you try to close a locked window, a dialog will prompt you to
confirm your intent, and will give you the option of removing the lock. The Log
window, for example, is locked by default, because it displays messages about the
IDE, which you would not see if the Log window was closed.

To lock a window open, select Lock Window from the Window menu; a
checkmark will appear beside the menu item.

To unlock a window, select Lock Window again; the checkmark will be removed,
and you can then close the window without receiving a warning.

Cloning windows
Cloning a window in the IDE creates an identical instance of the current window,
which you can then navigate in normally. This is useful if you are part way
through working with a particular program element, but need to do something in
the same browser and then return to your current location.

For example, if you are browsing a package, MyPackage, editing a class called
MyClass1, and you decide you need to quickly work with MyPackage.MyClass2,
and then return to MyClass1. Rather than lose your place (and perhaps
temporarily introduce errors) by exiting MyClass1, clone the package browser.
Then browse to MyClass2, make the needed changes, and close the clone. The
original browser will still be opened to MyClass1.

To clone a window, select Clone from its Window menu. You can clone the
Workbench, program element browsers, inspectors, and the Repository Explorer.

32 IDE

Browsing the Workspace

Defining code assist macros
Two code assist features help you write code quickly and without errors: keyword
completions and macros.

Defining keyword completions
To view the provided keyword completions:
1. Select Options from the Window menu.
2. Go to the Keyword completions page.
3. Select a keyword completion from the Name list. Its definition is displayed in

the Completion field.

The string in the Name list is what appears in the drop-down list when you
invoke code assist in a Source pane (Ctrl+Space). The Completion is what is
inserted in the source code when you select the name. The text “<|>” indicates
where the cursor will be placed.

To edit a keyword completion, select its name and edit the Completion text.

To create your own keyword completion:
1. Click Add.
2. Enter a keyword completion name. It must start with a keyword, and you

should make distinguishable from other keyword completions, so that when
you see it in a list, you can differentiate between it and other completions for
the same keyword.

3. In the Completion field, enter the actual text that you want inserted into code
whenever you select this keyword completion. If you want to specify where
the cursor will be left when you insert the keyword completion, use the text
“<|>”.

4. Exit the Options dialog.

To insert the keyword completion:
1. Go to a Source pane for a program element that you are editing.
2. Type the keyword and then type Ctrl+Space.
3. Select the keyword completion and press Enter.

Defining macros
Macros provide a way to quickly and easily insert any predefined text into source
code. To view the provided macros:
1. Select Options from the Window menu.
2. Go to the Macros page.
3. Select a macro from the Name list. Its definition is displayed in the Expansion

field.

Similar to keyword completions, the string in the Name list is what appears in the
drop-down list when you invoke code assist in a Source pane (Ctrl+Space). The
Expansion is what is inserted in the source code when you select the name. The
text “<|>” indicates where the cursor will be placed.

Two special macros are defined:
v timestamp inserts the current date and time.

Chapter 2. Navigating the IDE 33

v user inserts the current workspace owner name.

These can be used in other macros by putting <timestamp> or <user> in the
Expansion text of those macros.

To edit a macro, select its name and edit the Expansion text.

To create your own macro:
1. Click the Add button.
2. Enter a macro name. Hint: Start your macros with a number; this way all

macros will be grouped together when you invoke code assist.
3. In the Expansion field, enter the actual text that you want inserted into code

whenever you select this macro. If you want to specify where the cursor will
be left when you insert the macro, use the text “<|>”.

4. Close the Options dialog box.

To insert the macro:
1. Go to a Source pane for a program element that you are editing.
2. Type the start of the macro name and then type Ctrl+Space.
3. Select the macro and press Enter.

Code assist

Creating programs and program elements

Creating a solution
A solution is a container that holds projects. Solutions are stored in the repository
and are created in the Repository Explorer.

To create a solution:
1. In the Repository Explorer, select the Solutions tab.
2. From the Names menu, select New Solution.
3. Enter a name for the solution. Click OK. Your solution is added to the

Solutions pane.
4. To add projects to it, select the solution and edition, then select Add Project

from the Contents menu.
5. Select the projects and versions that you want to add to your solution. Click

OK.
6. The projects you selected appear in the Contents pane.
7. To remove a project from your solution, select the project and, from its pop-up

menu, select Delete.

Projects and other program elements

Browsing the workspace
Creating a field
Creating a method
Creating an interface

34 IDE

Creating an applet or application
Composing beans visually
Generating method stubs

Creating a project
A project is the top-most program element in the IDE hierarchy of program
elements. A project contains all the packages used for a particular work unit,
such as an entire application.

To create a new project:

1. Click the New Project button in the Workbench. The Add Project
SmartGuide will start up (This SmartGuide is also used for adding projects
from the repository to the workspace).

2. Select the radio button next to Create a new project named.
3. Provide a name for the project.
4. Click Finish.

The new project will appear in the Projects page of the Workbench. To add a
descriptive comment for the new project, select it, and fill in a description in the
Comment pane of the Projects page.

Once you have created a project, you can add other program elements (packages,
classes, methods, and so on).

In the team development environment, any member of the team can
create a project.

Projects and other program elements

Browsing the workspace
Creating a package
Creating a class
Creating an interface
Creating an applet or application
Adding projects and packages from the repository to the workspace

Creating a package
A package is Java language construct that groups classes. You can add a package
to any project in the workspace.

To create a new package:

1. Click the New Package button in the Workbench. The Add Package
SmartGuide will start up (This SmartGuide is also used for adding packages
from the repository to the workspace).

2. Follow the SmartGuide instructions to create the new package.

The new package will appear in the Projects and Packages pages of the
Workbench. To add a descriptive comment for the new package, select it, and fill
in a description in the Comment pane.

Chapter 2. Navigating the IDE 35

Once you have created a package you can add classes and interfaces to it.

In the team development environment, only the project owner can
add a package to a project.

Projects and other program elements

Creating a project
Browsing the workspace
Creating a class
Creating an interface
Creating a field
Creating a method
Adding projects and packages from the repository to the workspace

Creating a sample applet or application
You can use the Create Applet SmartGuide to create an applet or application to
your specifications, without writing any Java code. You can also use the
SmartGuide to create some sample code in the applet, which you can run to see
quick results.

The sample applet displays the words “Welcome to VisualAge” when run in the
applet viewer. If the applet is threaded, the words scroll across the window.

In the following paragraphs, the term “applet” refers to both applets and
applications, unless otherwise specified.

To create the sample applet:
1. Launch the Create Applet SmartGuide by clicking the Create Applet button

.
2. Enter names for the applet, project, and package.
3. Select the Applet, JApplet or Other radio button to specify the superclass (the

class the new one extends). If you selected Other, click Browse to select from
a list of all classes in the workspace.

4. Ensure both the Browse applet when finished check box and the Compose
the class visually check box are cleared.

5. Click Next.
6. To run the applet in an applet viewer, select the No radio button.
7. The applet will display text that is either static or scrolling, depending on

whether the applet runs on a thread. If you wish to create the scrolling
(threaded) version, select the Yes radio button.

8. Click Next. You do not need to set any event listeners, so click Next again.
9. Select the Write Example check box.

10. Click Finish.

The SmartGuide creates the applet in the project and package that you specified.

When you browse the package, the applet will have a symbol () next to it that
shows that it can be run.

36 IDE

To run the applet in the applet viewer, select Run > In applet viewer from the
applet’s pop-up menu. If you generated the main method, you can also run it as
an application by selecting Run > Run main from the pop-up menu.

Making Changes to the Generated Applet
If you double-click the applet in the Workbench, the Source pane shows the applet
declaration and its fields. You can change the default value of the fields to modify
the applet.

For example, change the font from TimesRoman to Helvetica, and the text string
from “Welcome to VisualAge” to “This is my applet.” Save your changes by
pressing Ctrl+S. Run the applet again to see the changes.

Creating an applet or application
Generating a customizable visual application
Running an applet from the IDE
Running an application from the IDE
Making run-time changes to an applet

Creating an applet or application
The Create Applet SmartGuide makes creating applets and applications a simple,
easy-to-follow process that does not involve writing a word of code. Except where
differences between applets and applications are specified, the term “applet” refers
to both applets and applications.
1. Select the package you want the applet to belong to. This will set some

defaults within the SmartGuide to make your work easier.

2. To launch the SmartGuide, click the New Applet button on the toolbar of
the Workbench or a browser. Follow the instructions in the SmartGuide to
create and customize the generated applet.

Example: “Generate an example applet”

Use the Create Application SmartGuide if you want to create a customizable visual

application. To launch the SmartGuide, click the Create Application button
on the toolbar of the Workbench or a browser. For more information, see
“Generating a customizable visual application.”

In the team development environment, you must be a member of the
package group in order to add an applet to an existing package. If you are creating
the package at the same time as the applet, then you must own the project that
contains the package.

Projects and other program elements
Visual composition

Generating a customizable visual application
Creating a class
Creating an interface
Adding methods to a type
Adding fields to a type

Chapter 2. Navigating the IDE 37

Running an applet from the IDE
Running an application from the IDE
Publishing code

Generating a customizable visual application
Many visual applications contain the same basic elements, such as a title bar,
toolbar, and menus. While you can add all of these elements to your application in
the visual composition editor, VisualAge for Java provides a SmartGuide that will
create an application that contains these and other basic elements defined by you.

To create and customize a visual application:

1. Click Create Application on the toolbar to open the Create Application
SmartGuide.

2. Fill in the Project and Package text fields to let VisualAge for Java know where
to generate your application.

3. Type a name for you application in the Class name field.
4. Select Create Swing based application or Create AWT based application.

5. Click Next.

In the Application Details page of the SmartGuide, type a title for your application
in the Title bar text field, then select from the available options to customize your
application. The following options are available:
v Menu bar Click Details to select which menu items you want to add.
v Tool bar Click Details to select the toolbar buttons.
v Status bar

v Center and pack frame on screen Aligns the frame and defines the size of any
child windows.

You can also choose to generate the following dialogs:
v Splash screen An image that appears while your application is loading.
v About dialog Information about your application, for example a contact name or

a copyright date.

After you select all the elements that you want for your application, clickFinish.
Your application is generated and opened in the Visual Composition Editor.

Creating servlets using the Create Servlet SmartGuide
Use the Create Servlet SmartGuide to create servlets and the related Web resources
files.

Launching the Create Servlet SmartGuide
To launch the Create Servlet SmartGuide:
1. In the IDE, select a project, package, or class.
2. Right-click, and select Add >Servlet. The Create Servlet SmartGuide opens.

Using the Create Servlet SmartGuide

1. Specify the project and package if the fields are not already filled in. Specify
the class and superclass.

2. Select Inherit from PageListServlet to generate a class that is extended from
the class or subclass of com.ibm.servlet.PageListServlet.
Attention: For this option to be available, you must add the WebSphere Test
Environment feature to your workspace. The WebSphere Test Environment

38 IDE

feature is available in both VisualAge for Java, Professional and Enterprise
Editions.
For information on the PageListServlet class, see the WebSphere Studio
documentation. For information on the WebSphere Test Environment, see the
online documentation.

3. Select Import Java bean to work with existing Java beans (for example, an
EAB Command or an EJB access bean).
For details on EAB Commands, see the Enterprise Access Builder online
documentation. For details on EJB access beans, see the EJB Development
Environment online documentation.

4. Select Use Single Thread Model to generate a servlet that runs in a single
thread model (i.e. the code generated will implement the
javax.servlet.SingleThreadModel interface).

5. Add the appropriate import statements, and indicate the interfaces as needed.
6. Click Next. When you select to import a Java bean, the Web Pages

Configuration (1 of 2) page of the SmartGuide opens. (If you do not select to
import a Java bean, then the Attributes page of the SmartGuide opens. See
step #11 below.)

7. On the Web Pages Configuration (1 of 2) page, specify the Java bean you want
to import, and specify the directories in which you want the HTML, JSP, and
servlet configuration file to be generated. To accept the default directories,
select Use Create Servlet SmartGuide default Web resources path.
Attention: If the WebSphere Test Environment is added to your workspace,
then the resource paths are as follows:
For the generated JSP and HTML files:
X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\web
For the generated servlets:
X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\servlets
Otherwise, the default paths are:
X:\IBMVJava\ide\project_resources\<project name>\<package name>\web
X:\IBMVJava\ide\project_resources\<project name>\<package name>\servlets
where X:\IBMVJava is the directory in which VisualAge for Java is installed.
Attention: The generated file names will resemble the following:
aaaInput.html, aaaResults.jsp and aaa.servlet.

8. To determine which scope to select for the generated JSP results page, see the
JSP specification available at the Sun site.

9. Click Next. The Web Pages Configuration (2 of 2) page of the SmartGuide
opens.

10. Click Add to select:
v which Java bean properties you want displayed on the input page (HTML

page),
v which Java bean properties you want displayed on the results or output

page (JSP page),
v and which Java bean action methods to call.

Attention: For input page properties, you can select from only primitive
types.
For results page properties, you can select from both simple and index
properties. However, for complex objects, you must hand-code the
toString() method of the Java bean. If you require an error handling page,
you must hand-code the logic yourself.
The SmartGuide does not support the index properties in the input page;

Chapter 2. Navigating the IDE 39

therefore, when using the index properties in the output page, proper
initialization of the index properties is required. Otherwise, you will
encounter the NullPointerException when running the JSP page.
Some methods may require input parameters. For such methods, a message
box will pop up, reminding you to provide the parameters by editing the
servlet. The line of code that calls the method is generated as comment line.

11. Click Next. The Attributes page of the SmartGuide opens.
12. When you have selected the modifiers, and the method stubs to be created,

click Finish to generate the servlet code, input page, and output page.

Create Servlet SmartGuide

Creating a class
The Create Class SmartGuide makes creating classes a simple, easy-to-follow
process that does not involve writing a word of code.

To create a new class:
1. Before you launch the SmartGuide, select the package you want the class to

belong to, and if applicable, the class within that package that the new class
will extend. This will set some defaults within the SmartGuide to make your
work easier.

2. To launch the SmartGuide, click the New Class button on the toolbar of
the Workbench or a browser. Follow the SmartGuide instructions to add the
new class to the workspace.

In the team development environment, you must be a member of the
package group in order to add a class to an existing package. If you are creating
the package at the same time as the class, then you must own the project that
contains the package.

Projects and other program elements
Visual composition

Browsing the workspace
Creating a field
Creating a method
Creating an interface
Creating an applet or application
Composing beans visually
Editing code in the Source View window
Generating method stubs

Generating method stubs
When you create a class with the Create Class SmartGuide, you can choose to
generate stubs for the following methods:
v Methods which this class must implement (from interfaces that it is

implementing, or abstract methods from a super class)
v Copy constructors that belong to its superclass
v equals, hashCode, finalize, main, and toString

40 IDE

To open the Create Class SmartGuide, click the New Class toolbar button .
After defining the class, select the appropriate options under Which method stubs
would you like to create? After generating the class (and method stubs) you just
have to implement the logic for the methods.

Generating method stubs after a class is created
If you have already created a class which needs to implement certain method, or
for which you need field accessors, you can generated stubs for the missing
methods automatically.

Implementing required methods
Required methods include:
v methods from interfaces which your class implements, and
v abstract methods inherited from a super class

To generate stubs for the required methods:

1. Select the class (which will have an problem symbol next to it).
2. From the class’ pop-up menu, select Generate > Required Methods.

Creating a class

Creating an interface
The Add Interface SmartGuide makes creating interfaces a simple, easy to follow
process that does not involve writing a word of code.

To create a new interface:
1. Before you launch the SmartGuide, select the package you want the interface to

belong to. This will set some defaults within the SmartGuide to make your
work easier.

2. To launch the SmartGuide, click the New Interface button on the toolbar
of the Workbench or a browser. Follow the SmartGuide instructions to add the
new interface to the workspace.

After defining the interface in the SmartGuide, you can edit and add to the
generated code in a browser.

In the team development environment, you must be a member of the
package group in order to add an interface to an existing package. If you are
creating the package at the same time as the interface, then you must own the
project that contains the package.

Projects and other program elements

Browsing the workspace
Creating a field
Creating a method
Creating a class
Creating an applet or application

Chapter 2. Navigating the IDE 41

Creating a method
To create a new method, constructor, or main() in a class or interface:
1. In the Workbench or a browser, select the class or interface to which you want

to add the method.

2. Click the New Method button in the toolbar or select Add Method from
the class’s pop-up menu. This will launch the Add Method SmartGuide.

3. Follow the SmartGuide instructions to create a new method.

When you exit the SmartGuide, the new method is created and compiled.

Projects and other program elements

Creating a class
Creating an interface
Adding classes and methods from the repository to the workspace
Creating a field
Editing code in the Source View window

Creating a field
To create a new field in a class or interface:
1. In the Workbench or a browser, select the class or interface to which you want

to add the field.

2. Click the New Field button in the toolbar, or select Add Field from the
class’s pop-up menu. This will launch the Add Field SmartGuide.

3. Follow the SmartGuide instructions to create the new field.

When you exit the SmartGuide, the field is created and compiled.

Projects and other program elements

Creating a class
Creating an interface
Creating a method
Editing code in the Source View window
Generating field accessor methods

Generating field accessor methods
When you add a field to a class with the Create Field SmartGuide, you can choose
to generate accessor (“get and set”) methods for the field.

To open the Create Field SmartGuide, click the New Field toolbar button .
After defining the field, select the Access with getter and setter methods check
box, and set the appropriate options.

You also can add accessors to existing fields by doing the following things:

42 IDE

1. In your Workspace, select a class that contains fields that you want to generate
accessors for.

2. From the Selected menu, select Generate > Accessors. A Generating accessors
dialog box opens.

3. Select the fields that you want to create getter and setter methods for.
4. Complete the rest of the options in the dialog box.
5. Click OK.

VisualAge for Java will generate the accessors.

Creating a field

Generating a serial universal identifier (UID)
You can generate a serialVersionUID for serializable classes by following these
steps:
1. In the Workbench, select a serialized class that you want to add a serial UID to.

A class is serializable if it implements the interface java.io.Serializable.
2. From the Selected menu, select Generate > Serial UID.
3. The serial UID is generated. It appears in the Source pane as a private field

called
serialVersionUID.

Creating a class

Using the Quick Start window
Several of the most frequent tasks you will perform in the IDE are collected in an
easy-to-access window called Quick Start. To open the Quick Start window,
selectQuick Start from any IDE window’s File menu, or press F2.

The list on the left-hand side shows the categories of Quick Start Tasks. Select one
to see the available tasks, displayed in the right-hand side. To start a task, select it
and click OK.

Basic tasks
The basic tasks for creating program elements launch the appropriate SmartGuide
to help you create applets, applications, classes, interfaces, projects, and packages.

The Experiment with Code task opens a page in the Scrapbook. The page
provides introductory instructions for learning what the Scrapbook can do. It
guides you through learning the basic steps to evaluating code and variable values
in the Scrapbook.

Team development tasks The team development tasks provide you
with easy access to projects in the repository. Also, a team administrator can
administer users. The Management Query option lets you search for program
elements based on status, owner, or developer.

Repository management tasks
The Compact Repository task lets you duplicate the current repository, leaving out
purged and opened editions.

Chapter 2. Navigating the IDE 43

You can use the Change Repository option to connect your
workspace to another repository (shared or local), or to recover if the server fails.

Features tasks
With the Add Feature and Delete Feature options, you can add to your workspace
projects that are provided with VisualAge for Java, but are installed as part of the
repository. These projects include IDE samples, Data Access Beans, and several
other features. A secondary window will appear to let you select which of these
features to add or remove.

Organizing your ideas in the scrapbook
Compacting a repository

Organizing your ideas in the Scrapbook
The Scrapbook window is a flexible text editor and test environment within the
IDE. It lets you open and work with text-based files from the file system. It also
lets you create your own notes to yourself, and it provides a test area for Java code
fragments.

A Scrapbook page can contain any text you want. You can open files, copy and
paste from other locations inside and outside the IDE, and write Java code or
free-form text. For this reason, it is a good place to keep a to-do list and
reminders to yourself, along with ideas for code. Contents of the pages are saved
to files, not to the repository.

Opening the Scrapbook
To open the Scrapbook, select Scrapbook from the Window menu of any IDE
window. Each time you start the Scrapbook, it will have only one blank page,
regardless of what files were open when you closed the Scrapbook; you must open
files you need again. For this reason, lock the Scrapbook open during a
development session so that you do not inadvertently close it.

Adding and removing pages
Using multiple pages in the Scrapbook is a good way to organize your ideas and
to provide separate testing contexts for different fragments.

To add an empty page, click the New Pagebutton on the Scrapbook toolbar.

To remove a page, select its tab, and then click the Delete Pagebutton . You
cannot delete a page if it is the only one left.

Opening a file
To open a text-based file in the file system, select Open from the Filemenu, or use
the shortcut key Ctrl+O. This creates a new Scrapbook page that contains the
specified file. The title of the page is the name of the file.

You can edit this file and save your changes back to the file system by selecting
Save from the File menu. When you are finished with the file, delete its page
from the Scrapbook. Removing the page that contains a file does not delete the
file from the file system; it removes it from the workspace.

44 IDE

Going to a specific line
To go to a specific line in a Scrapbook page, type Ctrl+G. In the Goto Line
Number dialog, enter a line number and click OK. The cursor will jump to the
specified line.

The Scrapbook
Workspace

Experimenting with code fragments
Locking windows open

Experimenting with code fragments
There may be times you have a fragment of Java code that you want to try out
before adding it to a class or project in the workspace. Along with being a good
place to keep notes and lists of ideas, the Scrapbook also provides a flexible
environment for testing and experimenting with any piece of Java code. Contents
of Scrapbook pages are saved to files, not to the repository.

To open the Scrapbook, select Scrapbook from the Window menu of any IDE
window.

There is an Experiment with Code page available from the Quick Start menu (File
> Quick Start > Basic). The page provides introductory instructions for learning
what the Scrapbook can do. It guides you through learning the basic steps to
evaluating code and variable values in the Scrapbook.

Running code fragments in the Scrapbook
To run a code fragment in the Scrapbook:
1. On a page in the Scrapbook, type in Java expressions and statements, or copy

and paste them from another source. Alternatively, open a file that contains
Java code.

2. Select all or part of the code on the page by highlighting it with the cursor.
Only the highlighted code will be run.

3. Select the Run button from the toolbar.

While the page is running the code fragment, its page symbol changes to indicate
that it is busy. No other code can be run from that page while it is busy.

Resetting a busy page
To stop a running code fragment:
1. Click the tab for a Scrapbook page that is running a code fragment.
2. Select Restart Page from the Page menu.

When a page is reset, all threads started from the page are terminated, and all
classes in the code are uninitialized. The compilation context and the text on the
page do not change.

Changing the compilation context
When the code fragment runs, the IDE assumes it belongs to a particular class and
package that exists within the workspace. This class provides a compilation context

Chapter 2. Navigating the IDE 45

for the fragment, which determines what other program elements are inherited by
and accessible to the fragment. Each Scrapbook page has one compilation context,
which is by default java.lang.Object.

To select another compilation context:
1. Click the tab for the Scrapbook page for which you want to change the context.
2. Select Run In from the Page menu in the Scrapbook.
3. Select a package and a class or interface from the lists.
4. Click OK.

The information line at the bottom of the Scrapbook page indicates the compilation
context for the page. All code fragments run from the page will use this
compilation context.

Going to a specific line
To go to a specific line in a Scrapbook page, type Ctrl+G. In the Goto Line
Number dialog, enter a line number and click OK. The cursor will jump to the
specified line.

Inspecting and debugging code fragments
Just as you can inspect variables for code in the workspace, you can also inspect
variable values in code fragments in the Scrapbook. To inspect a code fragment in
the scrapbook, select the code that you want to inspect, and then click the Inspect

button .

If the selected code returns a result that can be inspected, an Inspector window is
launched. If the selected code does not return a result that can be inspected, the
following message is displayed on the page:
No explicit return value.

Similarly, you can debug the code fragment by using the IDE debugger. To launch
the debugger, select the code you want to debug, and then click the Debug button

.

Example: Running code in the Scrapbook

The Scrapbook
Workspace

Using the Quick Start Window
Organizing your ideas in the Scrapbook
Debugging during the development cycle with the IDE debugger

VisualAge for Java IDE symbols

Writing and formatting source code
To create program elements such as classes, methods, and fields, use the VisualAge
for Java SmartGuides, which will generate the basic code for you. To fill in the
functionality of classes and methods, type in the source code in the Source panes

46 IDE

that most browser pages have. These Source panes are typical text editors, except
that they save your code not to files but to the containing program element in the
workspace and repository. The Workbench, program element browsers and
various other windows such as the Debugger browser, the Scrapbook, and the
Search Results window, have Source panes.

Formatting source code
On the Formatter page of the Options dialog (Options > Coding > Formatter), you
can set the Source panes to automatically give you new lines when you start a
compound statement or use and opening brace character.

On the Indentation page of Options dialog (Options > Coding > Indentation), you
can change the way that source is indented as you type it in.

If you want to apply these formatting settings to methods and class declaration
code that was written before you made the settings, or to code that you import
from the file system, select Format Code from the Edit menu. The changes will be
applied to the program element currently in the Source pane.

Warning: The Format Code action removes whitespace (blank lines) from
methods and class declarations.

Development without files
Projects and other program elements
The scrapbook

Browsing the workspace
Creating a class
Creating an interface
Creating a method
Printing source code and other text
Saving changes to code
Searching for declarations of and references to a program element
Searching for text in a source pane
Setting IDE options

Code assist

Generating HTML documentation for classes
The Sun J2SDK includes a tool called a Javadoc doclet, which generates HTML files
based on special comments in Java class files. VisualAge for Java uses the Javadoc
doclet to make it easy for you to generate online documentation for classes that
you create within the IDE.

Note: Documentation for the Java 2 platform (J2SDK), and some IBM Java Classes
is provided in the VisualAge for Java online information. Click on “Reference” in
the help banner frame to find links to this documentation.

Adding comments for Javadoc
When you create a program element in the IDE, a generic comment is generated

Chapter 2. Navigating the IDE 47

automatically for the element. You can customize the comment either in the Smart
Guide while you are creating the element, or by editing the comment in the Source
pane for the element.

The Javadoc doclet picks up comments that start with /** and end with */, and
that are placed immediately before a class, method, or field declaration. You can
use Javadoc tags, which start with @, within these delimiters format the comment
output. For example, the following code is a Javadoc-style comment and signature
for a method, getNameOfEmployee:
/** This method returns the name of the employee for the given employee number.
* @param employeeNumber an int indicating the employee number.
* @return a String containing the employee's name.
* @throws an exception if the employee number is out of range.
*/
public String getNameOfEmployee(int employeeNumber) throws Throwable {
/* code omitted */
}

Add comments of this nature to your own classes, interfaces, and methods. Most
Java language reference books, including the J2SDK documentation, contain
detailed information on the tags available for documenting classes with Javadoc.
Add regular HTML tags within the text of the comment to format the output text.

By default, HTML tags in Javadoc comments are displayed in pale gray font to
increase the readability of the surrounding text. To change the color of the font:
1. Select Options from the Window menu
2. Expand the Appearance node.
3. Select Source.
4. In the Colors list, select HTML Tags.
5. Click Change beside the foreground color and select a different color.

If the description of a class or its member changes, make the change in the source
rather than in the generated HTML files. Any changes you make to the HTML files
will be lost when you regenerate documentation.

Generating the HTML files
To generate HTML documentation for any class, package, or project:
1. Select the class, package, or project.
2. Select Document > Generate Javadoc from the element’s pop-up menu. The

Javadoc Smart Guide opens.
3. If you have already used the Smart Guide and have saved your Javadoc

settings, click Load Settings from File and select your saved file to implement
the same settings.

4. In the Directory for Javadoc output field, specify the directory for the
generated HTML files, if you do not want to use the default provided.

5. Select which methods you want to generate documentation for, based on access
level. Choose one of the following options:
v Public methods only
v Public and protected methods
v Public, protected, and default access methods
v All methods (includes private methods)

6. Select which doclet you want to use to generate the documentation.

48 IDE

7. Click Finish to generate the documentation using the default settings, or click
Next to customize your settings.

The generated HTML files link to graphics files in an images directory. If you
accepted the default directory for the generated HTML files, then the images are in
the right place. If you did not accept the default location, copy the images to the
location you specified by doing the following steps:
1. Create a directory called “images” in the directory you specified for the HTML

files.
2. If you installed VisualAge for Java in C:\IBMVJava (the default location), go to

C:\IBMVJava\ide\javadoc\images
3. Copy the files from this location to the new images directory.

You may find that some reference links between the HTML files are broken. Broken
links occur if you do not generate documentation for a complete set of classes.
Ensure the class path includes the path to the classes used by those for which you
are generating documentation.

Viewing the Generated Documentation
Open the generated files in an HTML browser. The files tree.html, packages.html,
and AllNames.html, if you generated them, are useful indexes to the contents of
the generated class documentation files. Each class also has its own .html file
containing the formatted documentation for its methods and fields. This .html file
is named after the class and the package that contains the class, in the format
package.class.html.

The output for the above example method and its Javadoc comment would appear
in an HTML file for the class that contains getNameOfEmployee. A linked index at
the top of the file lists all the members, followed by the documentation. The
documentation for the method looks similar to the following example:

getNameOfEmployee
public String getNameOfEmployee(int employeeNumber) throws Throwable

This method returns the name of the employee for the given employee
number.

Parameters:
employeeNumber - an int indicating the employee number.

Returns:
a String containing the employee’s name.

Throws:
an exception if the employee number is out of range.

Adding projects and packages from the repository to the
workspace

The workspace contains all the projects and packages with which you are working.
The repository contains all previous or updated editions, and editions that have

otherwise been moved from the workspace.

The repository also contains projects and packages that other users
have created.

Chapter 2. Navigating the IDE 49

Adding a project to the workspace
If you are in the Workbench, add a project from the repository to the workspace by
completing the following steps:

1. Click the New Project button . The Add Project SmartGuide will start up.
This SmartGuide is also used for creating a new project.

2. Select the radio button beside Add project(s) from the repository.
3. Select one or more of the available projects from the lists by enabling the

desired project and edition check boxes. You can add only one edition of a
given project.

4. Click Finish.

Alternatively, if you are currently using the Repository Explorer, add a project by
completing the following steps:
1. Select a project, and then one of its editions.
2. Choose Add to Workspace from the edition’s pop-up menu.

The project, including all packages and classes, and resource files contained in that
edition of the project, will be added to the Projects page of the Workbench. You
can browse it in the Project browser. The resource files are displayed in the
Resources page.

When you add a project to the workspace, the package and class
editions that get added are the editions most recently released into that edition of
the project. Anyone on the development team can add projects to their workspaces,
because this action does not alter the project edition’s configuration of package and
class editions in the repository.

Adding a package to the workspace
You can add a package from the repository to any project in the workspace, or to a
project that does not yet exist, provided that the package has not been added to
another project already. If you are in the Workbench, you can add a package from
the repository to the workspace by completing the following steps:

1. Click the New Package button in the Workbench. The Add Package
SmartGuide will start up. This SmartGuide is also used for creating a new
package.

2. Provide the name of a project to hold the package. If a project was selected in
the Workbench when you launched the SmartGuide, its name will be in the
Project name field by default. You can enter the name of an existing project or
the name for a new project. If you enter a project name that does not yet exist
in the workspace, the SmartGuide will create the project when it adds the
package.

3. Select the radio button beside Add package(s) from the repository.
4. Select one or more of the available packages from the lists by enabling the

desired package and edition check boxes. You can add only one edition of a
given package.

5. Click Finish.

Alternatively, if you are currently using the Repository Explorer, you can add a
package by completing the following steps:
1. Select a package, and then one of its editions.
2. Choose Add to Workspace from the edition’s pop-up menu.
3. Select or provide a name for a project to which the package will be added.

50 IDE

If you specified a new project, it will be created, and then the package will be
added to the specified package. You can browse the package in the Projects and
Packages pages of the Workbench, or in the project and package browsers.

When you add a package to the workspace, the class editions that
get added are the editions most recently released into that edition of the package.
The project to which you are adding the package can not be a versioned edition. If
the project is not an open edition, then a scratch edition of the project will be
created. Only the project owner can open an edition of the project and add a
package to it, since this action alters the project’s configuration of contained
packages and classes in the repository, which changes the team baseline.

Projects and other program elements
Editions and versioning

Browsing the workspace
Creating a project
Creating a package
Adding classes and methods from the repository to the workspace
Searching for a program element in the repository

Adding classes and methods from the repository to the
workspace

If you have deleted a class, interface, or method from the workspace, it still resides
within the repository, and you can add it back to the workspace if you find you
need it again. Because classes and methods rely heavily on their place in a
hierarchy for their definitions, you can add one back only to the program element
that previously contained it.

For example, if you deleted ClassA from Package1, then you can add ClassA back
to Package1, but not to Package2.

Adding a class back to a package
To add a class (or interface) from the repository to the workspace:
1. Select the package that contained the class before the the class was removed

from the workspace.
2. Select Add, Class from the package’s pop-up menu.
3. In the Create Class SmartGuide, select the Add from Repository radio button.
4. Select the classes you want to add back by enabling their checkboxes.
5. Click Finish.

The classes will be added and compiled.

To add a class back to a package, the package must be an open
edition and you must belong to the package group. If you add a class back to a
package, you become the owner of the class within that edition of the package.

Adding a method back to a class
To add a method from the repository to the workspace:
1. Select the class that contained the method before the method was removed

from the workspace.

Chapter 2. Navigating the IDE 51

2. Select Add, Method from the class’ pop-up menu.
3. In the Add Method SmartGuide, select Add from Repository.
4. Select the methods you want to add back by enabling their checkboxes.
5. Click OK.

The methods will be added and compiled.

Projects and other program elements
Editions and versioning

Creating a class
Creating an interface
Adding projects and packages from the repository to the workspace
Creating a method
Searching for a program element in the repository
Deleting program elements from the workspace

Importing files from the file system
To import Java source code files, bytecode files, and resource files from the file
system to the Workspace:
1. Start the Import SmartGuide by selecting Import from the File menu.
2. Select the Directory option (for regular files) or the JARfile option (for files

stored in JAR or zip files).
3. Follow the instructions in the remaining SmartGuide pages to select the files

and the target project.

Note: Because the Import SmartGuide can look into JAR and zip files, you do not
need to unzip them before importing files that are in them.

Imported Java code is compiled and unresolved problems that are introduced are
added to the All Problems page. Open editions of the classes and interfaces are
created in the VisualAge for Java repository, and added to your workspace. If you
select to automatically version program elements, then they will be versioned after
importing.

Resource files (any file imported that is not a .java or .class file) are copied into the
local resources directory for the project.

If you import only bytecode (compiled Java code in .class files), and not source
code, for a class or interface, then you will not be able to edit the source in the
workspace. These classes are indicated in the Workbench and other browser lists

by the bytecode file symbol .

If the containing package or project in your VisualAge for Java
workspace has been versioned, then a scratch edition of the package or project will
be created. To prevent this, create an open edition of each project or package before
importing.

Exporting code

52 IDE

Finding and fixing problems
Including resource files in a project
Importing from another repository

Including resource files in a project
When developing a program in Java, you sometimes need to use external resources
that are not part of the language. For example, it is quite common to use images
and audio clips in Java applets.

VisualAge for Java makes certain assumptions about where resource files are
located. For a project called ProjectX, it assumes that the resource files will be
found in a directory called IBMVJava\Ide\project_resources\ProjectX on the client
machine (where IBMVJava is the install directory for the product). All projects in
the workspace have a subdirectory of the project_resources directory, even if no
resources have been created for the project.

Viewing resource files inside the IDE
Right-click the project and select Open to > Resources. The Resources view
provides a view of the disk on which project resources are stored. The title bar
above the resources view shows the name of the directory that contains the
resources (for example, e:\IBMVJava\ide\project_resources\My Project). Expand
the directory tree to view the contents of the project resources directory.

From within the project resources view, you can delete, rename, or open project
resource files by using menu options in the Resource menu. Creating, editing,
copying, or moving resource files must be done outside the IDE in the file system.

Adding resource files to a project
When you create a resource file, import it with the Import SmartGuide. Select
Directory as the import source, select resource as the file type, and specify the
name of the target project. This will copy the resource file into a project’s resource
directory. From there, it will be accessible to classes in that project.

You can also add resources using the Resources page in the Project Browser. From
its pop-up menu select Add > Resources and select the resource files you want to
add to the browser. If you want to create folders to store the resources in select
Add > Folder.

Importing packages that have resource files
If you import a group of files from the file system, any non-.java, non-.class files
can be imported into the project resources directory. In the Import SmartGuide,
select the Resources option and click Details to select which resource files to
import.

Exporting resources
When you export a project to a JAR file, resource files are exported to the JAR file
along with the classes.

Running applets and applications that use resources
When you run an applet or application from within the IDE, the default
CLASSPATH contains the project resources directory so that it can find any
resource files that the program uses.

Chapter 2. Navigating the IDE 53

When you run an applet from within the IDE, the code base for the applet is
specified as the name of the resource directory. The URL of this directory will be
returned by the java.applet.Applet.getCodeBase() method.

Resource files and directories
Extensions

Using methods to get resources
Importing files from the file system
Exporting code
Adding an extension to a project

Loading external classes dynamically
The VisualAge for Java IDE lets you run code that refers to classes that are external
to the IDE (that is, they have not been imported to the workspace, but rather exist
only on the file system). These could be .class files or classes in a JAR or Zip file.

They could also be applets on an HTML page on a web server. The classes will
be loaded when the program that calls them runs. Use the
forName(“Package.ClassName”) method in java.lang.Class to load and link external
classes at run time.

To allow the workspace to compile and run code that uses external classes, you
must specify the file system path to the external classes or the JAR or Zip file that
contains them. This setting is done in one of the following places:
v The workspace class path - Select Options from the Window menu. Click the

Resources option. Add to the path by clicking Edit.
v The program’s class path - Select Properties from the applet or application’s

pop-up menu. Click the Class Path tab. Select the following checkboxes, as
appropriate:
– Include ’.’ (dot) in class path - Enabling this option includes the project’s

resource directory.
– Projects path - Click Compute Now to determine classes in other projects

that are referenced by this class. Enable this option to include the project
resources directories from these other projects in the class path. Click Edit to
add or remove other projects resource directories. These directories, if saved
to the repository, are stored as relative paths to the project codebase (see the
Applet or Program page of the class Properties notebook).

– Extra directories path - Enable this option to add more directories to the class
path. Click Edit to add or remove directories from the list. These directories
are stored in the repository as absolute paths, unless the directories you select
are subdirectories of the project_resources directory, in which case they are
saved relative to the project codebase.

The Complete class path field shows all the directories in the class path for the
program. All external classes referenced in the code must be found on this
path.

Warning: Class path settings for a program are saved in the
repository if you select the Save in repository (as default) checkbox in the
Properties notebook. However, the setting may include paths that are
workstation-specific (local drives that might not exist on team-members
workstations), or operating system-specific (file system notations are different on

54 IDE

different systems). Exercise caution when you click Defaults in the Properties
notebook, because this resets the class path setting to what is saved as default in
the repository; the resulting class path may be incompatible with your system.
Especially beware of paths in the Extra directories path field.

Debugging external classes
The debugger settings include a class source path, in which you can set the path to
source code for the external classes used by your application. This allows you to
step into methods in external classes when you debug. Set the debug source path
on the Debugging page of the Options dialog.

Development without files

Setting the class path
Importing files from the file system
Setting IDE options
Setting breakpoints in external classes
Setting debugger options

Modifying program elements

Editing code in the Source View window
The Source View window enables users to view a complete class, including all of
its methods. In this view, you can see and edit the class definition and all of the
methods of a class at one time. If the class was imported from the file system, the
Source View will retain the sorting and any spacing that was present before it was
imported.

The Source View contains a method and field tree that is dynamically updated; as
you create new methods and fields, they are listed in the window. Parse errors are
dynamically logged.

To edit code in the Source View window, follow these steps:
1. In the Workbench, select Open Source View from the class pop-up menu. To

view all the classes in a package, select Open Source View from the package
pop-up menu.

2. The Source View window opens. The fields and methods of the class are listed
in the Members pane. All the source code for the class is in the Source pane.
Any problems with the code are listed in the Problems pane.

3. To find the code for a particular method or field, double-click it in the
Members pane. The code will be highlighted in the Source pane.

4. To add an empty page, click the New Page button on the Scrapbook
toolbar. Enter code in the Source pane to create a new class.

5. To remove a page, select its tab, and then click the Delete Pagebutton .
6. To open a different type, select Page > Open Type and select a type the Open

Type window. Click OK.

7. When you have finished editing your code, select Edit > Save. If you want to
return to the original version of your code without saving your changes, select
Edit > Revert to Saved.

Chapter 2. Navigating the IDE 55

You can also access the Source View window by opening a class in the Class
browser and selecting the Source tab. You can only work with one class at a time
in this view.

Projects and other program elements
Visual composition

Browsing the workspace
Creating a field
Creating a method
Creating an interface
Creating an applet or application
Composing beans visually
Generating method stubs

Saving changes to code
When you have made changes to a program element’s source code by editing it in
a Source pane, save the changes by selecting Save or Save Replace from the Edit
menu.

The difference between Save and Save Replace matters when you have changed
the name of a type or method by editing the source code. Save saves all the
changes made since the last save to a new program element, leaving the old one
untouched. Save Replace saves the changes, including the name change, to the
existing program element. This may introduce problems if other program
elements make reference to the old name; references to a program element do not
change when you change its name.

You can change the shortcut keys for Save and Save and Replacein the Key
Bindings page of the Options dialog (Window > Options > General > Key
Bindings). On this page you can pick which action has shortcut key Ctrl+S and
which has Ctrl+Shift+S.

The IDE will remind you to save your changes if you select a new program
element or browser page to work with. For example, if you edit the source code
for MethodA, and then select MethodB from a browser pane, a dialog box will
prompt you to save your work.

Saving changes to a versioned edition creates an open edition of the program
element.

If you make some changes and then need to undo them before you save, select
Revert to Saved from the Edit menu.

When you save your changes, they are automatically compiled. Any problems
encountered by the compiler are added to the Problems page of the current
browser and the All Problems page of the Workbench.

Incremental compilation
Unresolved problems
Editions and versioning

56 IDE

Deleting program elements from the workspace
Compiling code
Finding and fixing problems
Creating an open edition
Versioning a program element
Saving the workspace
Backing up the repository

Compiling code
The VisualAge for Java IDE automatically compiles Java source code into bytecode
for you. The new bytecode is stored only in the workspace, not in the repository.

A new program element is compiled when you exit the SmartGuide that created it.
Changes you make to source code are incrementally compiled when you save or

when you browse to a different program element. Program elements affected by
the changes are also incrementally compiled. Note: You can move to different
browser pages, and can open other browsers, without causing the code to be
compiled.

Program elements from the repository or the file system are compiled when you
bring them into the workspace (except for .class files imported from the file
system, which are already bytecode, and are stored as bytecode in the repository).

If the compiler finds an error in a program element, it adds the error to the All
Problems page of the Workbench and to the Problems page of any browser that
contains the program element.

Workspace
Incremental compilation

Saving changes to code
Finding and fixing problems
Adding projects and packages from the repository to the workspace
Adding classes and methods from the repository to the workspace

Finding and fixing problems
VisualAge for Java automatically compiles every change you make to source code.
If it encounters an error while compiling, it warns you that it encountered a
problem, and gives you the option of fixing it before saving. If the compiler can
determine possible alternatives to the problem code, it presents these alternatives
to you in a list. You may select one of the alternatives to correct the problem.

If you save the element without fixing the problem, the IDE adds an entry to the
All Problems page of the Workbench and to the Problems page of any browser that
shows the program element with the problem.

Program elements that contain errors are marked with a red error symbol . If a
class contains a method with an error, the class is marked with a gray error symbol

.

Chapter 2. Navigating the IDE 57

To fix the problem, click the Problems tab to go to the Problems page, where all
elements with problems are listed in a tree view. The compiler error message is
listed next to the element that contains the problem.

When you select the problem element, the source code causing the problem is
highlighted in the Source pane. You can fix the problem on the Problems page, or
on any other Source pane.

When you fix the problem and save the code, the code is compiled and the entry
associated with it is removed from the Problems page. Use the up and down

buttons, and , in the Element pane title bar to move to the previous or next
problem element. The shortcut keys, Ctrl+N and Ctrl+P will also move the cursor
to the next or previous problem in the Problems page.

You can display the problems in a specific group of projects by opening the
pop-up menu for the All Problems pane and selecting Filter by Working Set. If
you have already specified a working set, select it and click OK. To create a
working set, click Add and select the projects and packages for which you want to
see problems. Give your working set a name and click OK.

If you try to run a class while it or its methods contain errors, the Debugger may
open and suspend the program. Once you have fixed all problems, and the class
runs, you may still experience run-time errors. Use the debugger to help determine
the source of this type of problem.

You cannot export to the file system a class that contains errors (you may export it
to another repository, though).

Incremental compilation
Choosing the right debugger for your program
The IDE debugger
Unresolved problems

Saving changes to code
Running an applet from the IDE
Running an application from the IDE

Versioning a program element
Periodically, you will version your open editions of program elements to save
copies of them at meaningful stages in their development. You will probably
version your classes quite frequently; whereas you may leave packages and
projects open for extended periods of time.

In the team development environment, versioning makes your
changes visible to other members of the team, when they explore the repository or
when they request a list of editions before replacing the one that is in the
workspace. See the table below for considerations related to versioning projects,
packages, and classes in the team environment.

To version an open edition:

58 IDE

1. In a browser or the Workbench window, select the program elements that you
want to version. (You can make multiple selections by holding down the Ctrl
key.)

2. From the program element pop-up menu, select Manage > Version. The
Versioning Selected Items SmartGuide appears.

3. Follow the instructions in the SmartGuide.

To verify that a program element has been versioned, use its pop-up menu to view
its properties. You can also see the new version names, instead of the timestamps
that mark open editions, in the Workbench and in browser title bars and status

lines. If you do not see timestamps or names, click the Show Edition Names
button.

If you have just versioned a package, and you or other team
members plan to continue changing classes or interfaces within that package, you
should create a new open editionimmediately after versioning the package.
Otherwise, each developer who changes a class will end up with a different scratch
edition of the package. If you want the team baseline to be updated whenever
class owners release changes, release the open edition of the package when you
create it.

The following considerations govern versioning:

Program element Considerations

Project

v Only the project owner can version an
open edition of the project.

v Ensure that your workspace contains the
latest editions of packages that make up
the project, as this is the configuration
that will be preserved by versioning. To
load the latest editions that have been
released by the package owners, select
Replace with > Released Contents from
the project’s pop-up menu.

v All contained program elements must be
versioned and released before the project
can be versioned:

– Open editions of packages and classes
that you do not own must be versioned
and released by their owners, before
you can version the project.

– VisualAge for Java will automatically
version all contained program elements
that you own, when you version the
project.

– VisualAge for Java will automatically
release all versioned packages and
classes, regardless of owner, when you
version the project.

Chapter 2. Navigating the IDE 59

Package

v Only the package owner can version an
open edition of the package.

v Ensure that your workspace contains the
latest editions of classes that make up the
project, as this is the configuration that
will be preserved by versioning. To load
the latest editions that have been released
by the class owners, select Replace with >
Released Contents from the package’s
pop-up menu.

v All contained class editions must be
versioned and released before the package
can be versioned:

– Open editions of classes that you do
not own must be versioned by their
developers, and released by their
owners, before you can version the
package.

– VisualAge for Java will automatically
version all contained classes that you
developed, and release versioned
classes that you own, when you
version the package.

Class or interface

v Only the class developer can version the
open edition of a class. (To see who the
developer is, check the class’s properties.)

Method

v Methods are automatically versioned
when the containing class is versioned.

Project resource files

v Only the project owner can version an
open edition of the project. Project
resource files are automatically versioned
when the project is versioned.

v To load the latest editions that have been
released by the project owner, select
Replace with > Released Resource from
the file’s pop-up menu.

Editions and versioning

Creating an open edition
Comparing editions of a program element
Replacing editions in the workspace (reloading)
Searching for a program element in the repository

Creating an open edition
To make changes to a program element, you must first create an open edition of it.
Versioned editions can not be changed.

60 IDE

To create an open edition of a project, package, class, or interface that has been
versioned, select Manage > Create Open Edition from the program element’s
pop-up menu.

In many cases, you can also create an open edition implicitly by opening a
versioned edition in a browser, making changes, and then saving your changes.

An open edition appears in VisualAge for Java windows with a timestamp that
shows when it was created. If you can not see the timestamp, click the Show

Edition Names button. Here is an example of an open edition:
PackageA (3/28/98 4:21:15 PM)

The following table summarizes considerations for creating open editions.

Program element Considerations

Project or Package

v In VisualAge for Java, Professional
Edition, an open edition is created
automatically when you change any
contained program element.

v Only the owner can create
an open edition of a project or package
that has been versioned.

v If you create an open
edition of a package and the containing
project is not already an open edition,
then a scratch edition of the project will
be created.

Class or Interface

v An open edition is automatically created if
you open the class, interface, or a
contained method in a browser, and save
changes to it.

v If you create an open
edition of a class and the containing
package is not already an open edition,
then a scratch edition of the package will
be created.

Method

v A new open edition is created every time
you save changes to the method.

Editions and versioning

Versioning a program element
Replacing editions in the workspace (reloading)

Copying or moving a program element
To copy or move a program element:
v Select the program element in any browser.

Chapter 2. Navigating the IDE 61

v Select Reorganize from the item’s pop-up menu.
v From the submenu, select Copy to create an identical element in a different

container; or select Move to move the element to a different container.
v In the Copy or Move dialog box, provide the name of the target container.

You can copy or move a package from one project to another project

You can copy or move a class from one package to another package.

You can copy or move a method or field from one class to another class.

Copying and moving program elements can introduce problems. The changes are
compiled immediately, and problems are added to the Problems page of browsers.

If the program element happens to be a visual composite, delete its generated
main() method, regenerate code for the composite, and save it.

Projects and other program elements

Renaming a program element

Renaming a program element
To rename a program element:
1. Select the program element in a browser.
2. From the element’s pop-up menu, select Reorganize > Rename.
3. Provide a new name.

The element’s name will be changed and it will be compiled. Renaming program
elements often introduces problems, since subclasses and method signatures that
use the class still look for the old name. Click the All Problems tab in the
Workbench to see the problems caused by renaming the program element.

You can rename a program element only in a scratch or open edition
of the element.

Projects and Other Program Elements

Copying or moving a program element
Creating an open edition

Finding and fixing problems
Searching for declarations of and references to a program element

Comparing two program elements
You can compare various combinations of program elements (projects, packages,
classes, interfaces, and methods) that are in the workspace and in the repository.
When you compare program elements, the results are displayed in a comparison
results window.

62 IDE

Comparing program elements that are both in the workspace
You can compare any two program elements in the workspace, provided they are
the same program element type (that is, you can compare two projects, but not a
project and a package). To compare two program elements that are both in the
workspace:
1. Select one program element.
2. Hold down the Ctrl key and select the other element.
3. Select Compare With > Each other from the elements’ pop-up menu.

Comparing program element editions with editions in the repository
You can also compare the following combinations of program elements:
v Two editions of the same project, package, class, interface, or method, one in the

workspace, the other in the repository.
v Two editions of the same project, package, class, interface, or method, both in

the repository.
v Two packages within the same project edition in the repository.
v Two classes within the same package edition in the repository.
v Two methods within the same class edition in the repository.

See “Comparing editions of a program element” for more information on working
with the Comparison Results window when two editions have been compared.

Working with comparison results

Note: The following information applies to comparing two program
elements that are both in the workspace. For information on comparing
editions of the same element, see “Comparing editions of a program
element.”

From the Comparison Results window, you can do the following tasks:
v View the differences and step through them.
v Ignore specific differences.
v Show or hide ignored differences.
v Modify program element source.
v Replace parts of one element with parts of the other element.

The Differences pane lists all the difference between the two program elements and
their contained elements, in a tree view. Beside each program element is a
description of what the difference is: changed source code, changed comment,
changed declaration, added element, or deleted element. The element on the right
is being compared to the element on the left, so “Added method” for example,
means that the class on the right contains a method that the class on the left does
not contain.

Stepping through differences
When you select an item in the Differences list, the source for the two program
elements that contain the difference is shown in the Source panes, with the
difference highlighted. To move to the next difference click the Next

Differencebutton . To return to the previous difference, click the Previous

Differencebutton .

Ignoring differences
There may be some differences you want excluded from the list of differences. To

Chapter 2. Navigating the IDE 63

have a difference ignored, select it and click the Ignore button . To show
ignored differences, click the Show Ignored Items button so that it is in the down

position . Ignore differences will have parentheses around them in the
Differences list. To hide the ignored differences, click the Show Ignored Items

button so that it is in the up position .

Modifying program element source
The Source panes in the Comparison Results window are the same as those
elsewhere; you can edit the code and save it. There is code assist support (type
Ctrl+Spacebar to get help with type and field names). To save changes, select
Savefrom the pane’s pop-up menu.

Merging the contents of the compared elements
You can change the source code of one of the program elements by merging into it
the contents of the other program element, either by replacing a single difference
in the code, or by replacing the entire program element. The following menu
actions help with merging differences:

Menu option What it does

Replace with Alternative (in Source pane
pop-up menus)

Select an item in the Differences list. If the
difference is changed source code or
declaration, the corresponding code will be
highlighted in each of the Source panes.
Then select this option in the Right-Hand
Source pane pop-up menu to replace the the
highlighted code with the highlighted code
in the Left-Hand Source pane.
Alternatively, select this option in the
Left-Hand Source pane pop-up menu to
replace the highlighted code with the
highlighted code in the Right-Hand Source
pane.

Load Left (in the Differences pane pop-up
menu)

Replaces the contents of the program
element in the Right-Hand Source pane with
the contents in the Left-Hand Source pane.
If there is no corresponding program
element in the Left-Hand Source pane, then
it deletes the program element in the
Right-Hand Source pane.

Load Right (in the Differences pane pop-up
menu)

Replaces the contents of the program
element in the Left-Hand Source pane with
the contents in the Right-Hand Source
pane. If there is no corresponding program
element in the Right-Hand Source pane,
then it deletes the program element in the
Left-Hand source pane.

These menu options are available only if the merge can be done.

Projects and other program elements

64 IDE

Comparing editions of a program element
Merging editions of a class or interface

Code assist

Comparing editions of a program element
All editions of all program elements are saved in the repository. The IDE provides
a browser for comparing the edition that is in the workspace with another edition
from the repository. You can also use the comparison browser to merge source
code from different editions into one edition.

To compare an edition in the workspace with another edition from the repository:
1. From any page of the Workbench window, select a project, package, class,

interface, or method.
2. From the program element’s pop-up menu, select Compare > Another Edition.

A list will appear, showing all the editions of that program element that reside
in the repository.

3. Select the edition with which you want to compare. A comparison results
window, similar to the following example, will appear. The title bar displays
the names of the two compared editions. The Differences pane lists the
program elements that contain differences.

4. Select a program element from the Differences pane. The source code for the
two compared editions of that program element will appear, side by side.
Differences between the two editions are highlighted in each source pane.

5. To move quickly through the list of program elements in the Differences pane,
select Next Difference or Previous Difference from the pop-up menu, or type
Ctrl+N and Ctrl+P.

You can also compare two editions that are in the repository:
1. Open the Repository Explorer window.
2. Hold down the Ctrl key to select the two editions that you want to compare.
3. Select Compare from the pop-up menu.

Repository
Workspace
Editions and versioning

Comparing two program elements
Merging editions of a class or interface
Browsing the workspace
Searching for a program element in the repository
Searching for a program element in the workspace

Merging editions of a class or interface
You can use the VisualAge for Java comparison browser to reconcile source code
differences between two editions of a class or interface.

In the team environment, a class developer or class owner may
compare editions to review changes made by other members of the team, and to

Chapter 2. Navigating the IDE 65

merge those changes into a single open edition. The person who does the
reconciliation would then version the merged edition, so the class owner can
release it.

For information on using the comparison browser, see the related topic on
comparing editions.

To update an open edition of a class or interface that is in the workspace, with
changes from another version in the repository, do the following steps:
1. From the Workbench window, select a class or interface and compare it to

another edition. The comparison results window will open.
2. As you select each method that is listed in the Differences pane, the two source

panes will show you where the editions do not match. The source pane marked
with an asterisk (*) contains the edition that is in the workspace. This is the
edition into which you must merge your changes, if you want to save the
results later.

3. To merge selected differences from one edition into another, as they are
highlighted, open the pop-up menu in the target source pane and select
Replace with Alternative. You will see the source code change.
To merge all source code differences from one edition into another, select Load
Right or Load Left from the method’s pop-up menu in the Differences pane.
Load Right will merge source from the edition shown on the right into the
edition shown on the left. Load Left will merge from left to right.

When you have removed all differences between two editions of a class or
interface, that program element will be removed from the Differences pane of the
comparison window.

Repository
Workspace
Editions and versioning

Comparing editions of a program element
Comparing two program elements
Browsing the workspace
Searching for a program element in the repository

Managing your workspace

Adding a feature to your workspace
Before you can use some of the tools in VisualAge for Java, you must add the
feature to your workspace. When you add the feature, the required projects are
loaded from the repository.

To add a feature:
1. Select File > Quick Start. The Quick Start dialog box opens.
2. In the left pane, select Features; then in the right pane, select Add

Feature.
3. Click OK. The Selection Required dialog window opens, listing the

features that are currently available in the repository.

66 IDE

4. Select the feature that you want and click OK, to add the projects for that
feature to the workspace.

If the feature that you want does not appear in the list, you may not have installed
the component yet. Refer to the VisualAge for Java README file for instructions
on installing additional components.

Projects and other program elements
Editions and versioning

Browsing the workspace
Creating a project
Creating a package
Adding classes and methods from the repository to the workspace
Searching for a program element in the repository

Replacing editions in the workspace (reloading)
The workspace contains only one edition of any program element at a time. The
repository contains all editions. At times, you will want to replace the edition in
the workspace with an earlier edition from the repository, for example to back out
code changes. At other times, you will want to replace it with a newer edition, to
catch up with changes that other team members have made. In all cases, the
edition that you replace will be removed from the workspace but it will continue
to exist in the repository.

Replacing the edition that is in the workspace is also called reloading. Reloading a
project or package also reloads the contained packages and classes. Reloading a
method removes all breakpoints from the method.

To reload a project, package, class, interface, or method, select Replace with from
the program element’s pop-up menu in the Workbench or a browser. A cascaded
menu shows you what replacement options are available. You can replace more
than one program element at a time by holding down the Ctrl key when you make
your selections.

To verify exactly what you have in the workspace after reloading, click the Show

Edition Names button.

In the team development environment, reload projects or packages to
synchronize with a team baseline. To do this, select Replace with > Released
Contents or Replace with > Released from the project or package’s pop-up menu
in the Workbench.

Choosing a specific edition to reload
To see the editions that are in the repository and replace the edition in the
workspace with one of them:
1. Select Replace With > Another Edition from the program element’s pop-up

menu. The Select Replacement for... window will appear, listing all of the
editions that are in the repository.

2. Select an edition from the list. The bottom pane of the Select Replacement for...
window will show the program source.

Chapter 2. Navigating the IDE 67

3. Click OK.

The edition that you selected will be loaded into the workspace.

Reloading a team baseline
To reload all of the classes for a package in the workspace, select Replace with >
Released Contents for the package. The class versions that have most recently
been released into that edition of the package will be loaded into the workspace.
Similarly, selecting Replace with > Released Contents for an edition of a project
will reload all contained package and class editions.

To reload one or more individual classes, select Replace with > Released Edition
from their pop-up menu.

Editions and versioning
Repository
Workspace

Searching for a program element in the repository
Creating an open edition
Versioning a program element

Releasing a program element or resource file
In VisualAge for Java, Enterprise Edition, you release a class, package or resource
file to update the team baseline. A baseline is the combination of class editions that
make up a specific edition of a package, or the combination of package editions
that make up a specific edition of a project.

Releasing is very important in the team development environment, because it
determines which editions get added to the workspace when a team member
performs any of the following actions:
v Adds a project or package to the workspace.
v Selects Replace with Released Edition for a package, class or resource file.
v Selects Replace with Released Contents for a project or package.

Resource files are automatically released when the project owner versions the
project. Resource files can also be released individually. You can also release entire
resource folders and all the resources contained in them. Team members can only
release project resource files or folder that they own.

If resources are released individually, a subdirectory is created for the open edition
of the project they are released into. Subdirectories for open editions are also
created below the projectname directory; they also have a Datestamp name,
which is when the project was created. (For example, if you created an open
edition of your project at 5:10 on June 9, 2000), then Datestamp would be
2000-06-09 17.10.00)

A new subdirectory is not created every time a resource is released into an open
edition; instead, the old version of the resource is replaced by the new one. After
you have released a resource file, you cannot re-release it until you have modified
it.

68 IDE

Once team members have released their resource files, the project owner can load
the latest copies of the them into their workspace, and then version the project,
setting a new baselines, making the newly updated resource files available to all
the team members.

To release packages and classes:
1. In a browser or the Workbench window, select the editions that you want to

release. (You can make multiple selections by holding down the Ctrl key.)
2. From the pop-up menu, select Manage > Release.

To release a resource file or resource file folder, follow these steps:
1. Select and double-click the project that contains the project resource files you

wish to work with. The project browser opens.
2. Click the Resources tab.
3. Select the resource or resource folder that you want to release and from its

pop-up menu select Release. When you release a folder, the files in it are not
automatically released. You must select them, as well as the folder, if you want
to release them.

Once you have released the editions, the unreleased (>) marker no longer appears
beside their names in the Managing page of the Workbench window. The open
edition of the containing project or package is updated with the newly released
edition of the class, package or project resource file. Team members who had
previously added the project or package to the workspace are not notified when the
baseline is changed. Inform the team when you release a class, package or project
resource file, so they can take the appropriate action to replace the edition in their
workspaces.

To determine the last released edition, select Properties from the program
element’s pop-up menu and then select the Info page of the Properties notebook.

The following considerations govern releasing:

Program element Consideration

Project

v Not applicable.

Package

v Both open and versioned editions of
packages can be released.

v The project into which you are releasing
must be an open edition.

v You must be the package owner or the
project owner.

v When you create a package, VisualAge for
Java automatically releases the initial open
edition of the package.

v When you version a project, VisualAge for
Java automatically releases any
unreleased packages that it contains,
irrespective of who owns the package.

Chapter 2. Navigating the IDE 69

Class

v Only versioned editions of classes can be
released.

v The package into which you are releasing
must be an open edition.

v You must be the class owner.

v When you version a package, VisualAge
for Java automatically versions and
releases the contained classes that you
own.

Method

v Methods are automatically released when
you save them.

Project resource files

v You must be the project owner or the
resource file owner

v When released manually, resources can
only be released into an open edition of a
project.

Version control for Java program elements
Baselines, releasing and reloading
Version control for resource files
Ownership and team roles - overview
Workspace

Finding unreleased editions in the workspace
Managing editions of program elements
Versioning a program element
Replacing editions in the workspace (reloading)
Searching the workspace by edition status, owner, or developer
Building a team baseline
Sharing resource files
Replacing a resource file with the released version

Deleting program elements from the workspace
To remove any program element from the workspace, select Delete from the
element’s pop-up menu in the Workbench or any browser. Deleting a program
element also deletes all its contained elements; for example, if you delete a
package, you also delete all the classes and interfaces in the package.

A message asks you to confirm your intent to delete the object, and reminds you
that deleting an element from the workspace does not remove it from the
repository. You can add the element back from the repository if you need it later.

Deleting a program element can introduce problems if, for example, classes
remaining in the workspace extend a class that you delete. These problems will
immediately be added to the Problems page for the appropriate program element.

In the team development environment, where all program elements
are stored in a shared repository, deleting a package or class from the workspace
also deletes that program element from the containing project or package. You

70 IDE

must own the package or class in order to delete it from the workspace. Anyone
on the team can delete projects from the workspace, as this does not alter the team
baseline.

Workspace
Repository

Adding projects and packages from the repository to the workspace
Adding types and methods from the repository to the workspace
Finding and fixing problems

Saving the workspace
Your source code changes are automatically saved in the repository every time you
save a method. By contrast, the following workspace information is only saved
when you select Save Workspace from the File pull-down menu, or when you exit
the IDE:
v A record of which specific editions of which program elements are in your

workspace
v IDE options that you have set
v Sizes, positions, contents, selections, and bookmarks of VisualAge for Java

windows
v Breakpoints that you have added to methods
v Contents of the Scrapbook
v Contents of the Log
v Contents of the Console

v The server and repository to which you are connected

v The name of the workspace owner

You should save the workspace when you have made significant changes to the
items listed above. You should also save your changed methods frequently. These
actions will ensure that your work can be recovered in the event of a system
failure.

See the topics listed below for links to information on backing up the workspace
and maintaining multiple versions of the workspace.

Workspace

Saving changes to code
Adding classes and methods from the repository to the workspace
Adding projects and packages from the repository to the workspace
Replacing editions in the workspace (reloading)
Setting IDE options
Recovering the workspace
Reinstalling the workspace

Important files to back up

Chapter 2. Navigating the IDE 71

Providing a standard workspace
In the team development environment, you may wish to provide a standard
workspace at the beginning of a project, to ensure that team members start with
the same editions of the same program elements. You can do this by copying the
workspace file, ide.icx.

The following procedure is an example of how you can copy the workspace from
one client (the source) to another (the target).
1. On the source client, connect to the shared repository.
2. Add the desired projects and packages from the repository to the workspace,

and delete projects and packages that are not desired. The result is your
standard workspace. See the comments about password validation, below.

3. Exit the IDE. The workspace is saved as the ide.icx file on the source client’s
workstation. The server and repository names are saved in the client’s ide.ini
file.

4. Using file system commands, copy the source client’s ide.icx and ide.ini files.
For example, you might call the copies team1.icx and team1.ini. You may wish
to store these on the server, in a directory to which the team has read-only
access.

5. On the target client workstation, preserve the existing ide.icx and ide.ini files
by renaming them, for example to icx.old and ini.old.

6. Copy team1.icx and team1.ini into the target client’s VisualAge for Java
program directory, naming them ide.icx and ide.ini.

7. Start the IDE on the target client. The workspace will connect to the shared
repository and will contain the desired projects and package editions. By
default, the workspace will be owned by the user who created the standard
workspace.

8. Change the workspace owner.

In an environment where password validation is enabled for VisualAge for Java, to
start the IDE on the target workstation you must provide the password of the user
who owned the standard workspace when it was saved. To handle this situation,
the administrator could create a dummy user who owns the standard workspace
but has no other privileges, and team members could first start the IDE with the
dummy user’s password and then change workspace owner.

Team client/server configuration
Workspace
Repository

Saving the workspace
Changing workspace owner
Adding users to the repository user list
Enabling password validation - overview
Connecting to a shared repository
Adding classes and methods from the repository to the workspace
Adding projects and packages from the repository to the workspace
Setting IDE options

Important files to back up

72 IDE

Creating a scratch edition
Scratch editions are private. They reside in the workspace; no one else can see
them in the shared repository. In the workspace, you can have scratch editions of
projects or packages, open editions of classes contained in scratch editions of
packages, and open editions of packages contained in scratch editions of projects.

If you have configured your VisualAge for Java options to show edition names,
your scratch editions will be designated with < > around the program element’s
version name:
PackageA <1.0>
PackageB 1.2

In the example above, PackageA is a scratch edition that was created from a
versioned edition called 1.0. PackageB is not a scratch edition; it is a versioned
edition.

You may use a scratch edition to experiment, for example to learn how someone
else’s code works, or to test a change that you think the program element’s owner
should make. You can version program elements that are contained in a scratch
edition, but you can not release them.

To create a scratch edition of a package, do one of these things:
v Modify a class contained in a versioned edition of a package, and then save

your changes. A scratch edition of the package will be created automatically.
v Replace the edition of a class in a versioned package with another edition of that

class. A scratch edition of the package will be created automatically.

To create a scratch edition of a project, do one of these things:
v Create a new open edition of a package that is a scratch edition. A scratch

edition of the project will be created automatically.
v Create a new open edition of a versioned package contained in a versioned

edition of a project. A scratch edition of the project will be created automatically.

To find all of your scratch editions at once, select the Management Query tool
from the Workspace menu, and specify Scratched as one of your search criteria.

Scratch editions
Editions and versioning
Baselines, releasing, and reloading
Ownership and team roles - overview
Workspace

Versioning a program element
Creating an open edition
Releasing a program element
Replacing editions in the workspace (reloading)
Searching the workspace by edition status, owner, or developer

Recovering the workspace
A server failure may prevent you from saving the workspace. You

may be able to reconnect after the server is started, without losing any work.

Chapter 2. Navigating the IDE 73

If VisualAge for Java terminates abnormally, for example because of a power
failure, the workspace is not saved. If something causes the workspace to become
corrupted, you can not save it. In either of these situations, you will not lose the
source code changes that you have saved; they are safely stored in the repository and
can be re-added to the workspace if necessary. You may lose some workspace
information, if you have made any of the following changes since the last time you
saved the workspace:
v Added, deleted, or replaced editions of program elements in the workspace
v Changed your IDE options
v Modified the contents of the Scrapbook
v Added breakpoints to methods

v Changed to another repository or changed workspace owner

To recover from a corrupted workspace error or from an IDE failure:
1. If the IDE is still open, save any important Scrapbook pages and then close all

VisualAge for Java windows. You will not be able to save the workspace.

2. If a server outage caused the client IDE to fail, confirm that the
server has been restarted.

3. Restart the IDE. VisualAge for Java will attempt to recover the workspace and
resynchronize it with the repository.

4. If the IDE starts successfully, the workspace might not display the open
editions that you created or methods that you saved since you last saved the
workspace. To retrieve these changes from the repository, re-add or replace the
editions in the workspace from the repository.

5. Select Save Workspace from the File menu in any window.

Failure to recover a corrupted workspace
When you try to restart the IDE, you may see a message indicating that VisualAge
for Java could not recover the workspace. If this happens, you must restore the
workspace file, ide.icx.

If you have a backup copy of the ide.icx file, restore that. If you do not have a
backup copy, you will have to reinstall the workspace that was provided with
VisualAge for Java. See the list of related tasks at the end of this topic.

Once you have restored the workspace file and restarted the IDE, you can retrieve
the work you had saved in the repository by re-adding or replacing your open
editions in the workspace, and you can reset your IDE options. When you have
recustomized the workspace, select File > Save Workspace.

Workspace
Repository

Reinstalling the workspace
Saving the workspace
Adding projects and packages from the repository to the workspace
Adding classes and methods from the repository to the workspace
Replacing editions in the workspace (reloading)
Setting IDE options

74 IDE

Important files to back up
Repository files

Reinstalling the workspace
To reinstall the original VisualAge for Java workspace file:
1. Delete the corrupted workspace file (ide.icx) from the VisualAge for Java

program subdirectory.
2. Run the VisualAge for Java installation program. If you accept the default

directory shown in the installation wizard and select the same components that
you chose when you originally installed the product, then only the ide.icx file
will be reinstalled.

3. Start the IDE. VisualAge for Java will connect the fresh workspace to the
existing source code repository.

4. Choose a new workspace owner by selecting your name from the
list of repository users.

5. As was the case when you first installed VisualAge for Java, the only projects
that you see in the Workbench are the standard class libraries. The IDE options
revert to their default settings. Re-add the editions of projects, packages, and
classes that you need from the repository, and reset the IDE options that you
prefer.

6. Select File > Save Workspace.

Your workspace should now be fully recovered and ready to use.

Workspace
Repository

Saving the workspace
Recovering the workspace
Adding projects and packages from the repository to the workspace
Adding classes and methods from the repository to the workspace
Replacing editions in the workspace (reloading)
Setting IDE options

Important files to back up
Repository files

Managing your repository

Backing up the repository
The following backup procedure is for a local repository, for example

on a VisualAge for Java team client or a standalone workstation. Administrators
who manage a shared repository on a team server should refer to the related task
on backing up a shared repository.

The repository is where all of your source code is stored. The repository file that is
provided with VisualAge for Java is called ivj.dat. This file should be backed up
regularly.

Chapter 2. Navigating the IDE 75

To back up the repository:
1. Exit the IDE. This action disconnects the workspace from the repository.
2. Using operating system commands or a backup utility, back up

\IBMVJava\Ide\repository\ivj.dat.

If your applications use resource files, such as audio clips or image files, it is
recommended that you back up those files up at the same time as the repository.

To restore the repository:
1. Exit the IDE.
2. Rename \IBMVJava\Ide\repository\ivj.dat, for example to obsolete.dat.
3. Copy your backup to \IBMVJava\Ide\repository\ivj.dat.

Repository
Resource files and directories

Including resource files in a project

Repository files
Important files to back up

Purging program elements from the repository
Purging marks projects or packages for deletion from the repository. Purged
program elements do not appear in the Repository Explorer window, but they exist
in the repository and can be restored until the repository is compacted. Purging
program elements does not free up disk space. It is a preliminary step to
compacting, which creates a smaller repository.

When you purge an edition of a package, you also purge the classes, interfaces, and
methods contained in that package. This provides the greatest benefits when the
repository is compacted later.

When you purge an edition of a project, you are only deleting information about
that project’s configuration of packages and project resource files. You do not purge
any contained program elements.

Program elements can only be purged by their owners or by the
repository administrator.

Purging program elements
To purge projects and packages:
1. Delete the program elements from your workspace, prior to purging them from

the repository.

2. Confirm that the projects and packages have been deleted from
all other team members’ workspaces.

3. From the Window menu, select Repository Explorer.
4. In the Repository Explorer window, select the Projects or Packages page,

according to what you want to purge.

76 IDE

5. Select the Project Name, Package Name, or Edition that you want to
purge. Selecting a project or package by name will purge all editions of that
program element. Hold down the Ctrl key to make multiple selections.

6. From the pop-up menu of the selected elements, select Purge. A message will
appear, asking you to confirm the purge operation.

7. Click OK.

The purged items will no longer appear in the Repository Explorer window. If you
try to load a project that contained a purged package edition, an error message
will indicate that the project could not be loaded because one of its packages “does
not exist in the repository”. (In fact, the package is still in the repository, and can
be restored until the repository is compacted.)

Repository

Searching for a program element in the repository
Compacting a repository
Restoring program elements
Backing up the repository

Repository files

Restoring program elements
Purging marks projects or packages for deletion from the repository. After a
program element is purged, it no longer appears in the Repository Explorer, but it
continues to exist in the repository until the repository is compacted to free up
disk space.

If the repository has not been compacted, purged program elements can be
restored, allowing you to browse and add them to the workspace once again. To
restore purged program elements, follow these steps:
1. From any Window menu, select Repository Explorer. The Repository Explorer

window will open.
2. Select the Projects or Packages page, depending on what you want to restore.
3. To restore all editions of a project or package, place the cursor in the Project

Names or Package Names pane. To restore selected editions of a project or
package, place the cursor in the Editions pane. Select Restore from the pop-up
menu. A list of restorable names or editions will appear.

4. Select the items you wish to restore to the current repository. Click OK.

The restored program elements will re-appear in the Repository Explorer.

Repository

Purging program elements from the repository
Searching for a program element in the repository
Compacting a repository

Chapter 2. Navigating the IDE 77

Repository files

Compacting a repository
Compacting reduces the size of the repository by eliminating the following
program elements:
v All open editions
v All purged editions
v Versioned editions of classes that are contained in open editions of packages

The compacted repository, which contains only versioned editions, can be as much
as 50% smaller than the original.

The procedure for compacting a repository depends on which edition of VisualAge
for Java you use. If you use “VisualAge for Java, Enterprise Edition (page 78),”
skip to the instructions that follow.

Compacting the repository in VisualAge for Java, Professional Edition
In VisualAge for Java, Professional Edition, compacting replaces the existing
repository with a smaller repository. To compact the repository:
1. As a precaution, back up the repository (ivj.dat file) before compacting it.
2. Version the open editions of projects, packages, and classes that you wish to

keep.
3. Purge any projects and packages that you wish to discard, (To minimize the

size of the new repository, purge obsolete package editions. Purging an edition
of a project removes information about the project but does not purge any of
the program elements that it contains.)

4. Open the Repository Explorer window.
5. Select Compact Repository from the Admin menu. You will be asked to

confirm that you wish to replace the repository.
6. Click Yes to proceed.

When the repository has been compacted, it will contain only versioned editions of
projects and packages, and versioned editions of program elements that they
contain.

Compacting a repository in VisualAge for Java, Enterprise Edition
In VisualAge for Java, Enterprise Edition, compacting copies from the existing
(source) repository to another (target) repository.

You must be the administrator to compact a repository.
1. Ask team members to purge any versioned editions that they wish to discard,

and to version any open editions that they wish to keep. (To minimize the size
of the new repository, purge obsolete package editions. Purging an edition of a
project removes information about the project but does not purge its contained
packages, classes, or methods.)

2. Connect to the source repository.
3. Open the Repository Explorer window.
4. Select Compact Repository from the Admin menu. You will be asked to

confirm that you wish to compact the repository.
5. Click Yes to continue. A dialog box will appear, asking you to select a new or

existing repository to compact into.

78 IDE

6. Select Use shared repository and accept the IP address or host name of the
server where the target repository will reside. If you are creating a new
repository, enter its name in the Repository name field; if you are compacting
into an existing repository click Browse and select it from the list of
repositories on that server. (You may wish to compact into an existing target
repository, if someone omitted to version necessary program elements before a
previous attempt to compact the source repository.)

7. Click OK to proceed with compacting the repository. Versioned projects and
packages, along with the versioned editions of their contained program
elements, will be copied to the target repository.

8. Once you have a new repository that contains all program elements required
by the team, instruct all developers to change to the new repository. To check
whether anyone is still using the old one, issue the emadmin list command.

Keep the old repository on the server for a few days, in case team members need
to reconnect to it in order to export additional program elements.

Users who do not own any projects, packages or classes are not copied when the
repository is compacted. After the compaction, the Administrator will have to
re-create them.

Repository

Versioning a program element
Purging program elements from the repository
Backing up the repository

Repository files

Importing from another repository
If you need solutions, projects, or packages that are in another repository, you can
import them into your current repository and then add them to your workspace.

You can only import versioned projects and packages. Imported program elements
retain their version names and comments.

Imported program elements retain their ownership settings. Owners,
class developers, and package group members who do not yet exist in the target
repository’s user list are added to it automatically. Program elements imported
from VisualAge for Java, Professional Edition, are owned by the repository
administrator.

Procedure
To import projects or packages from another repository:
1. In the Workbench window, select File > Import. The Import SmartGuide will

open.
2. Select Repository and click Next to go to the next page.
3. Continue following the instructions in the SmartGuide. After selecting

information about the repository location, projects, and packages, click Finish.

Chapter 2. Navigating the IDE 79

The Log window will record which program elements have been imported. You
can now browse the imported program elements from the Repository Explorer
window. If you want to make changes to them, you must add them from the
repository to your workspace.

Repository
Workspace

Searching for a program element in the repository
Exporting to another repository
Adding projects and packages from the repository to the workspace
Importing files from the file system

Repository files

Exporting to another repository
Exporting lets you copy solutions and versioned projects or packages to another
repository, for example to exchange program elements with another developer.
When you export your projects and packages, your project resource files are also
exported. If the repository you are exporting to is called “sample.dat”, then your
project resources are exported to a folder called “sample.dat.pr”.

You might export to promote your work to a test repository on
another server, to divide a shared repository in two, or to create a standalone
repository for working at home. For more information, see the related tasks on
changing repositories, dividing a repository, and working at a standalone
workstation.

To export projects or packages to another repository:
1. In the Workbench window, select at least one project or package, and then

select Export from the pop-up menu. The Import SmartGuide will open.
2. Select Repository and click Next to go to the next page of the SmartGuide.
3. Continue following the instructions in the SmartGuide. After selecting

information about the server, repository, projects, and packages, click Finish.

The Log window will record which program elements have been exported.
Another user of VisualAge for Java Version can now import from the repository
into which you have exported your program elements.

Developers who connect to the target repository can browse the
exported program elements in the Repository Explorer window and add the
exported program elements to their workspaces.

Exported program elements retain their ownership settings. Owners,
class developers, and package group members who do not yet exist in the target
repository’s user list are added to it automatically.

If you are creating a new repository for development purposes,
remember to export the base libraries on which your classes depend. If you forget
to include any program elements, you can export them into the same target
repository later. There are four base projects:

80 IDE

v IBM Java Implementation
v Java class libraries
v JFC class libraries
v Sun class libraries

Repository
Workspace

Backing up the repository
Searching for a program element in the repository
Importing from another repository
Exporting code
Exporting bytecode to the file system
Exporting source code to the file system

Repository files

Chapter 2. Navigating the IDE 81

82 IDE

Chapter 3. Running and debugging programs

Setting the class path
In VisualAge for Java, each runnable class is responsible for its own class path. The
class path is necessary when running a class in order for the class loader to
properly find the classes that your class references and the classes that they in turn
reference.

You can specify a workspace-level class path that every class uses when it is run
(similar to traditional CLASSPATH environment variables). This class path is also
needed to find resource files your classes use. The workspace class path is set from
the Resources page in the Options notebook.

In addition, each class must have a class path associated with it in order to run.
Typically the class path needs to include every project (directory) containing classes
the runnable class references or resources it uses. To set the class path for a class:
1. Select the class.
2. Select Properties from the class’s pop-up menu.
3. Click the Class Path tab in the Properties notebook.

Or:
1. Select the class.
2. From the class’s pop-up menu, select Run > Check Class Path.

Both of these methods open the class’s properties notebook to the Class Path page.

The class path tab contains the following three-part definition for the class path:
v Include dot (’.’) in class path This indicates whether or not the project your

class is in, is included in the class path. Typically this is enabled, but if you are
doing security testing you may want it disabled (classes in the project directory
will be found by class look-up but will not be considered system classes).

v Project Path This is the list of projects that you ultimately require or classes you
use require. It is computed by taking the transitive closure of all classes
referenced by your class and adding their projects. You can automatically have
this computed for you by clicking Compute Now. Alternatively, you can set it
manually by clicking Edit and providing the project paths. You might define the
project path manually if, for example, you want to use some of the project’s
resources even though your class does not reference any of its classes.

v Extra Directories In the event you have special directories containing resources
that are not in specific projects, you can add these to the extra directories path.

Typically you should avoid using this field. When using it ,
exercise care because if you specify a path such as c:\personal\mystuff, then
users who access your class path settings saved to the repository and do not
have that directory structure may experience run-time errors. Ideally you should
place any such directories under project_resources. This way the IDE can
compute a relative path, which all users who use the class may have.

The class path for your class is formed by concatenating these three settings plus
the workspace path.

© Copyright IBM Corp. 1997, 2000 83

Once you have configured your class path you can save it locally (for example, if
you are experimenting with a class) or you can save it into the repository. If you
do not save it to the repository, then the information is only in your workspace.

To save the class path settings to the repository, select the Save in repository (as
default) checkbox before clicking OK.

Once it is saved into the repository anyone else loading your class
can then pick up those settings as the default.

Important! When you export a project or package, the class path information
stored with the class in the repository is used. Any class path values stored only in
your workspace are not exported.

For any class, to retrieve the default class path settings that are saved in the
repository, click the Defaults button.

Debugging external classes
The debugger settings in the Options dialog include a class source path, in which
you can set the path to source code for the external classes used by your
application. This allows you to step into methods in external classes when you
debug. Set the debug source path on the Debugging page of the Options dialog.

Setting the class path for classes that use JFC
If you created a class and wrote code for it that uses JFC, then you must update
the class path for it to include the path to the JFC project directory. Otherwise,
the class will not run.

To update the class path:
1. Select the class in a browser.
2. From the class’s pop-up menu, select Run, Check Class Path. This will open

the class Properties notebook to the Class Path page.
3. Next to the Project Path field, click Compute Now. The JFC project path will

be added.
4. Select the Save to Repository (as default) check box.
5. Click OK.

Loading external classes dynamically
Setting IDE options

Running an applet from the IDE
You can run applet classes within the IDE. Executable classes, including applets,

are indicated with the Runnable symbol in browsers.

To run an applet in the IDE’s Applet Viewer, select Run > In Applet Viewer from

the class’s pop-up menu, or select the class and click the Run button in the
toolbar. This launches the applet in the Applet Viewer. Control the applet with
options in the Applet menu, such as Stop, Reload, Start, and Exit. If the applet
uses standard input and output, the Console window is launched.

84 IDE

Defaults for applet size and behavior are set in the applet’s Properties notebook.
To open the Properties notebook, select the applet, and select Properties from the
pop-up menu.

You can also select Run > In Applet View with to set the properties as you run
the applet.

Running an application from the IDE
Making run-time changes to an applet
Creating an applet or application
Creating a quick, basic sample applet or application
Experimenting with code fragments
Loading external classes dynamically

Applet Viewer

Running an application from the IDE
If a runnable class’s main method is implemented, you can run it as an application
from the IDE. Generating the main method is an option in the New Applet

SmartGuide. Runnable classes are indicated with the Runnable symbol in
browsers.

Command line arguments and system properties for an application can be set in
the class’s Properties notebook. To open the Properties notebook, select Properties
from the class’s pop-up menu. You can also open the Properties notebook by
selecting the class and selecting Run > Run main with from the pop-up menu. Go
to the Program page of the notebook to set arguments and properties.

To run an application from the IDE, select Run > Run main from the class’s

pop-up menu, or select the class and click the Run button in the toolbar.

If the application uses standard input and output, the Console window is
launched.

Running an applet from the IDE
Creating an applet or application
Creating a quick, basic sample applet or application
Experimenting with code fragments
Loading external classes dynamically

Making run-time changes to an applet
When you are running an applet in the IDE’s Applet Viewer, you can edit the
applet’s source code and then see the results of your changes immediately.

To make a change to a running applet:
1. While the applet is still running, open the Workbench or a browser and find

the program element you want to change. Select it to view its source code.
2. Change the source code as needed.

Chapter 3. Running and debugging programs 85

3. Save the changes by pressing Ctrl+S or Alt+S.
4. Go to the Applet Viewer. Select Reload from the Applet menu.

The applet will start running at the beginning, with the new change incorporated.

Incremental compilation

Running an applet from the IDE
Creating an applet or application
Creating a quick, basic sample applet or application
Saving changes to code
Debugging during the development cycle with the IDE debugger
Experimenting with code fragments

Applet Viewer

Debugging during the development cycle with the IDE debugger
The IDE debugger assists in debugging applets and applications running in the
IDE. It is a live debugger: it always shows the exact current state of running
programs.

The IDE debugger browser displays the following information:
v On the Debug page:

– All currently running threads, grouped by program
– When a running thread has been suspended:

- The methods in the thread
- The visible variables and their values for the methods
- The source code for the methods

v On the Breakpoints page:
– All methods in the workspace that have breakpoints set in them
– The source code for the methods

v On the Exceptions page:
– The exceptions that, when caught, will suspend the thread

From the debugger, you can launch Inspectors to look at and modify variable
values for suspended threads, Watches to evaluate expressions as you step through
a program, and an Evaluation window where you can evaluate an expression
during debugging.

You can open the debugger manually while a program is running to inspect
threads and variables. As well, the debugger will automatically open, with the
current thread suspended, for any of several reasons:
v A breakpoint in the code is encountered
v A conditional breakpoint that evaluates to true is encountered
v An exception is thrown and not caught
v An exception selected in the Exceptions page is caught
v A breakpoint in an external class is encountered

86 IDE

Once the debugger is open and a thread is suspended you can work with the
program in the following ways:
v Inspect visible variable values
v Modify most variable values
v Step through methods
v Modify source code for methods in the workspace
v Replace methods with other editions from the repository
v Modify, clear or disable breakpoints
v Evaluate expressions in the source pane or the Evaluation window
v Define expressions to watch as you step through programs

Using the debugger, you can optionally generate and view the class loading and
initialization trace.

Choosing the right debugger for your program
The IDE debugger

Opening the debugger manually
Suspending, resuming, and terminating threads
Setting breakpoints in source code
Configuring and setting conditions on breakpoints
Setting breakpoints in external classes
Selecting exceptions for the debugger to catch
Clearing and disabling breakpoints
Inspecting and modifying variable values
Stepping through methods
Modifying code while debugging
Evaluating expressions in the debugger
Watching an expression’s value as you step
Generating the class trace
Setting debugger options

Opening the IDE debugger manually
To open the IDE debugger browser, select Debug > Debugger from any Window

menu or click the Debugtoolbar button . This will open the Debugger browser
to the Debug page, which lists running threads, their states, and their methods’
visible variables.

If you click the Breakpoints tab, or if you selected Debug > Breakpoints from the
Window menu, then the Debugger browser opens to the Breakpoints page, which
summarizes all methods in the workspace that have breakpoints set.

If one or more program are running when you open the Debugger, then the
running threads are listed in the All Programs/Threads pane of the Debug page.
If you suspend the thread, you can look at the methods on the thread, and inspect
the methods’ visible variables.

If you leave the Debugger open and start a program, the new program’s threads
will be added to the All Programs/Threads pane.

Chapter 3. Running and debugging programs 87

The IDE debugger

Debugging during the development cycle
Suspending, resuming, and terminating threads
Setting breakpoints in source code
Inspecting and modifying variable values
Stepping through methods
Evaluating expressions in the debugger
Generating the class trace

Suspending, resuming, and terminating threads (IDE debugger)
When one or more programs are running, the Debug page in the Debugger
browser shows all running threads, grouped by program. You can suspend,
resume, and terminate the threads as needed.

Suspending a running thread
To examine a thread at any point while it is running, you must suspend it
manually. Then you can modify or step through its methods and inspect its
variables.

To suspend a thread manually:
1. Open the Debugger browser.
2. Select the thread in the All Programs/Threads pane in the Debug page.

3. Click the Suspend button in the toolbar.

Threads halted because of a breakpoint or uncaught exception are suspended
automatically.

Once a thread is suspended, expand it in the All Programs/Threads pane to view
its method stack. Select a method to inspect its visible variables or work with its
code. In the source pane, you can see how the current value of a variable is being
calculated by holding the mouse pointer (I-bar) over the variable in the source.
After about a second, a pop-up dialog will appear, showing the information.

Resuming running a thread
When a thread has been suspended, either by the manual method above, or
automatically when the Debugger opens for a break point or uncaught exception,
you can resume running the suspended thread. It will run until suspended
manually or automatically, or until the thread terminates.

To resume running a thread:
1. Select the suspended thread.

2. Click the Resume button on the toolbar.

The running is resumed at the point it left off, unless one of the following things
has been done while the thread was suspended:
v You replaced a method, in which case it starts again at the start of the method,

maintaining all changes to the state of the object that have been made.
v You stepped through code, in which case it starts again after the last step taken.

88 IDE

The program will continue running until it is suspended again or until it
terminates.

Note: You can not resume running after an uncaught exception.

Terminating a thread
When you terminate a thread, it is removed from the Debugger browser and
cannot be suspended or resumed. Often, terminating a thread will stop the
running of the program. To terminate a thread:
1. Select the thread in the All Programs/Threads pane of the Debug page.

2. Click the Terminate button on the toolbar.

The thread will terminate. To restart the thread, you must restart the program
from the beginning.

Alternative methods of suspending, resuming, and terminating
Besides using the toolbar buttons described above, you can select Suspend,
Resume, and Terminate menu options from the Selected menu or the pop-up
menu for a thread. Also, pressing F8 resumes a suspended thread.

The IDE debugger

Debugging during the development cycle
Opening the debugger manually
Setting breakpoints in source code
Inspecting and modifying variable values
Stepping through methods
Modifying code while debugging

Setting breakpoints in source code (IDE debugger)
A breakpoint is a signal to the IDE debugger to suspend a program thread that is
running the code that contains the breakpoint. When the IDE is running a
program and encounters a breakpoint, it suspends the thread (the program
temporarily stops running), and the Debugger browser opens so that you can see
the run-time stack for the thread.

Breakpoints can be set on any instruction in source code in the workspace. They
can be set at any time, including while code is being debugged; that is, you can
add a breakpoint to a method in a suspended thread’s stack without being
dropped to the top of the method.

To set a breakpoint in source code in the IDE:
1. Go to the Workbench or any browser that shows the source code for the place

in the program where you want to suspend the thread.
2. Place the cursor in the line.
3. From the Edit menu, select Breakpoint.

The Configure Breakpoints dialog opens.Fill in the fields as necessary and click
OK. For more information on performing this task, refer to the related information
at the end of this file.

Chapter 3. Running and debugging programs 89

A breakpoint symbol is placed in the margin of the Source pane next to the line
in which you placed the cursor. If you try to set a breakpoint at an invalid
location (for example, a comment line), the breakpoint will be set at the closest
valid location. If you try to set a breakpoint in a method in which breakpoints
cannot be used, a dialog will inform you that there are no valid locations in the
method to set a breakpoint.

Setting and clearing breakpoints by double-clicking
Now that you can see where the breakpoint symbol is placed (in the margin of
the Source pane next to the code), you can learn the short-cut to setting and
clearing breakpoints.

If you set a breakpoint by using the Breakpoint menu option in the Editmenu,
clear it by double-clicking on the symbol. You can likewise set a breakpoint by
double-clicking on the margin next to the desired line.

Example: “Running the Hanoi sample with a breakpoint set”

The breakpoints page in the Debugger browser
The Breakpoints page in the Debugger browser shows a summary of all
breakpoints that have been set in the workspace. To open this page, select Debug
> Breakpoints from the Window menu. The Methods pane lists all the methods
in the workspace that contain breakpoints, and the source pane shows the source
code for the method selected in the Methods pane. From this page, you can set
breakpoints in methods that already have a breakpoint, and you can remove
breakpoints. You can also disable breakpoints (which means that the breakpoints
remain set, but the IDE ignores them when running programs).

Other types of breakpoints
Breakpoints can be modified so that they only suspend the thread under certain
circumstances; these are called conditional breakpoints. You can configure the
breakpoint to perform an action or evaluation, which, if results in a true value, will
suspend the thread. Also, you can set breakpoints on methods in external classes
(classes that reside on the file system and that are called by programs running in
the IDE that have the external classes in their class path). See the related tasks
below for information on setting these breakpoints.

The IDE debugger

Debugging during the development cycle
Configuring and setting conditions on breakpoints
Setting breakpoints in external classes
Clearing and disabling breakpoints

Configuring and setting conditions on breakpoints (IDE debugger)
Conditional breakpoints are breakpoints that suspend code and open the debugger
only when certain conditions are met. For example, you can set a breakpoint to
suspend code only if a variable’s value falls in a particular range of values.

To set conditions on a breakpoint, right-click the breakpoint symbol , and select
Modifyfrom the pop-up menu.

90 IDE

In the dialog box that opens, select the On expression checkbox. Then you can
select a condition from the drop-down list, or you can type in your own condition.
(The drop-down list contains up to ten conditions that you have previously set on
breakpoints). If the condition is evaluated to a boolean value of true, then the
breakpoint suspends the code and opens the Debugger browser.

Example: Using a conditional breakpoint

Configuring the breakpoint to do something
You can also configure a breakpoint to run a Java statement and then return true or
false. For example, when the IDE encounters the breakpoint, you can output a
message and then evaluate the condition. The message will be generated regardless
of whether the condition is true or false.

The text entry field in the dialog box has code assist support; you can type the
start of a package or class name and press Ctrl+Spacebar to see a pop-up list of
available classes or methods. Select the desired one by continuing to type or by
using the arrow keys, and press Enter.

Example: Configuring a breakpoint to print a message

Other conditional breakpoint settings
You can also set a breakpoint to halt execution only when encountered from a
particular thread, or only on a particular iteration in a program.

Suppose you have two threads running, and both call a method, getAValue(), on
which you’ve set a breakpoint. When the first thread encounters the breakpoint,
go to the Breakpoints page and right click the breakpoint. Select Modify. Select
the In selected thread checkbox and select the desired program and thread.

Likewise, if you want to break on a particular iteration in a loop, select the On
iteration checkbox and input the desired iteration.

The effect of these three conditions (thread, expression, and iteration) are
cumulative. For example, if you have selected a thread ’A’ and iteration 3,
execution will break on the third iteration of the loop on thread ’A’, but will ignore
occurrences on other running threads.

The integrated debugger

Setting breakpoints in source code
Clearing and disabling breakpoints

Setting breakpoints in external classes (IDE debugger)
The VisualAge for Java IDE can run programs that dynamically load and run
external classes. External classes are classes that have not been imported into the
workspace, but rather reside in a .class file, Zip file, or JAR file on the file system.
The path to the file must be part of the class path for the program.

If you want to debug such a program, you have the option of setting breakpoints
on methods in the external classes.

Chapter 3. Running and debugging programs 91

To set a breakpoint on a method in an external class:
1. Select Debug > External .class file breakpoints from the Window menu, or

click the External Breakpoints toolbar button in the Debugger browser.
2. The External Method Breakpoints dialog shows a list of methods available for

setting breakpoints. Add methods to the list by clicking Add.
3. The Add External Methods dialog looks into .class and archive files and lets

you select methods within those files to add to the list of methods available for
setting breakpoints. To access methods in a .class file:
a. Click Directory.
b. Browse through the file system to the directory that contains the .class files

in which you want to set breakpoints.

To access methods in a .class file that has been archived:
a. Click Archive.
b. Select Zip Files (*.zip) or JARFiles (*.jar) in the Files of Type drop-down

list.
c. Browse to the archive file that contains the .class files in which you want to

set breakpoints.

Now, the dialog lists all the .class files in the selected directory or archive.
Select one to see the list of methods available for setting breakpoints.

4. If you want to add one of the listed methods to the list of methods available
for setting breakpoints, select its check box.

5. When you have selected all the methods you want, click OK. The list of
methods in the External Method Breakpoints list now shows the methods you
selected.

6. To set a breakpoint on one of these methods, select its check box. The
breakpoint is not enabled simply by the method being listed in this box; its
check box must be selected for the breakpoint to be set.

7. Click OK to exit the dialog.

Once the breakpoint is set, any thread that calls it will be suspended when the
method is entered. External breakpoints cannot be conditional and do not display
the breakpoint symbol in the source pane margin.

Putting source code on the debug source path
If the source code for the method is available on the file system, and if the path to
the source code is included either in the class path or in the debug source path (set
in the Debugger Options), you will be able to step into the method code. The
debugger looks for the source code first in the class path, and if it cannot find it
there, then in the debug source path.

If the source is not available (not on either the class path or the debug source
path), you will only be able to step over the method.

Clearing breakpoints on external methods
To clear a breakpoint from an external method, go to the Breakpoints page in the
Debugger browser. Select the external method from which you want to remove
the breakpoint. Double click on the breakpoint symbol next to the method
declaration in the Source pane.

92 IDE

The IDE debugger

Setting breakpoints in source code
Clearing and disabling breakpoints
Stepping through methods
Setting debugger options

Selecting exceptions for the debugger to catch (IDE debugger)
Usually, if an exception is thrown while a program is running, and the program
does not catch it, the IDE Debugger opens and the offending thread is suspended.
However, if the program does catch it, the debugger will not open, and the
program will continue. Even if the program outputs the stack trace when it
catches the exception, you might not be able to determine its origin.

To make debugging easier, the IDE debugger lets you effectively set breakpoints on
exceptions, so that any time an exception of a certain type is thrown, the debugger
suspends the thread that threw it and opens the Debugger browser. You can then
see where the exception is happening.

To select a type of exception to be caught by the debugger:
1. In the IDE debugger, go to the Exceptions page.
2. From the list of available exception types, select the types of exceptions you

want to set breakpoints on by selecting their check boxes.
3. Click OK.

Now when you run a program that throws an exception (of the type you selected),
the thread is suspended and the Debugger browser opens, regardless of whether
the program catches the exception.

Changing the display order of the exceptions and selecting groups
You can select how the exception types are listed by clicking buttons in the

toolbar: by exception type name , by package name , or by hierarchy

.

You can also select or deselect groups of exceptions: select all , deselect all

, the select the current exception and all that inherit from it , and deselect

the current exception and those that inherit from it .

Example: “Opening the debugger when an exception is thrown”

The IDE debugger

Setting breakpoints in source code

Chapter 3. Running and debugging programs 93

Clearing and disabling breakpoints (IDE debugger)
Once a breakpoint is set, you can remove it at any time, including while you are
debugging the code it is in. If you remove a breakpoint from a method while the
thread it is in is suspended, the debugger does not drop to the top of the method.

To see a summary of all breakpoints in the workspace, go to the Breakpoints page
of the Debugger browser by selecting Debug > Breakpoints from any
Windowmenu. Select a method in the list to see its source code and the
breakpoints.

Clearing breakpoints
To clear a breakpoint in source code or in an external class method, double-click on
its symbol in the margin of the Source pane. You can remove breakpoints from
any Source pane (not just the one in the Breakpoints page in the Debugger
browser).

However, if you are in the Breakpoints page, you can use the following toolbar
buttons to clear breakpoints:

Clears all breakpoints in the currently
selected method; removes the method from
the Breakpoints page.

Clears all breakpoints in the workspace.

Disabling breakpoints
Suppose you want to run a program that has breakpoints set throughout its code,
but you do not want the debugger to open during the running. You can disable the
breakpoints by clicking the Enable Breakpoints toolbar button so that is is in the

“up” position, as shown: . The IDE will ignore all the breakpoints it
encounters. (The debugger may still launch if an exception is thrown and not
caught.) All debugger symbols in the margin of Source panes will change colors
from blue to gray.

To re-enable all the breakpoints in the workspace, click the Enable Breakpoints

button so that it is in the “down” position, as shown: .

Clearing breakpoints on caught exceptions
To clear a breakpoint on a caught exception:
1. Select the Caught Exceptions page in the Debugger browser.
2. Remove a breakpoint on an exception by disabling its checkbox.
3. To remove breakpoints from all external methods or caught exceptions, click

the Deselect All button . To deselect an exception type and its subclasses,

click the Deselect Including Subclasses button .

The IDE debugger

94 IDE

Setting breakpoints in source code
Setting breakpoints in external classes
Selecting exceptions for the debugger to catch

Inspecting and modifying variable values (IDE debugger)
When a thread has been suspended, the Debugger browser displays all running
methods and the variables visible within them.

Select a method in the All Programs/Threads pane. The Visible Variables pane
shows the variables in use. You can change which variables are shown by
changing the selections in the Inspector menu. Variables that themselves contain
fields can be expanded to show the fields by clicking the plus symbol in the
tree.

When you select a variable in the Visible Variables pane, its current value (at the
exact point in the program where it was suspended) is shown in the Value pane.
If you select multiple variables, the values for each are shown in the Value pane.
To select multiple variables:
v Select one; hold down the Shift key; select another: the two variables, plus all

variables between them in the list are selected; or
v Select one; hold down the Ctrl key, select another: the two variables are

selected; their values are listed in the order you select them. Continue holding
down the Ctrl key and selecting.

Opening an inspector
To closely look at one variable that contains fields, select it in the Visible Variables

pane and click the Inspect button in the toolbar. An Inspector window will
open, showing the variable’s fields, and their values. This information is the same
as the information in the Debugger browser Visible Variables and Values panes,
and you can select and view the contents in the same ways.

Modifying variable values while the program is running
The values of variables can be modified while the thread is suspended. To modify
a variable’s value in the Value pane:
1. Select the variable in the Visible Variables pane .
2. Edit the value shown in the Value pane.
3. Select Save from the Value pane’s pop-up menu.

Alternatively, you can modify the value right in the source pane. For example, if
you have an integer variable called depth that has a current value of 4, and you
want to change its value to 6, do the following steps:
1. Anywhere in the source pane, type in depth=6.
2. Highlight depth=6.
3. Select Run from the Edit menu. This evaluates the expression and changes the

value of the variable.
4. To see that the value has changed, find an occurrence of depth in the Source

pane and hold the mouse pointer over it for about a second. A pop-up label
will appear with the text “depth=(int) 6”.

5. Delete the fragment, depth=6.

Chapter 3. Running and debugging programs 95

The change in variable value is immediately available to the running program.
When you resume running, the new value is used.

Example: Modifying a value while running a program

The IDE debugger

Debugging during the development cycle
Suspending, resuming, and terminating threads
Stepping through methods
Modifying code while debugging
Evaluating expressions in the debugger

Stepping through methods (IDE debugger)
When a running thread is suspended at a certain place in the program, the Source
pane in the Debug page indicates the point at which the execution stopped by
highlighting the corresponding code. You can move forward through the code,
step by step, in a variety of ways.

Toolbar
icon

Selected menu option Description

Step Into Steps into the current
statement, and if the
statement calls a method, it
adds the method to the stack
and stops execution on the
first line of the method.

If the method is in an
external class, but if source is
available on the Debugger
class path, then this works as
though the method were in
the workspace; if the source
is not available, the external
method will be stepped over.

Each time you click Step
Into, the debugger steps into
each method called, adding
and removing each to and
from the stack as they are
stepped through.

If you step into a statement
that does not call a method,
the effect is the same as
stepping over the statement.

96 IDE

Step Over Runs the current statement,
including all methods called
within the statement. Stops
before the next statement.

If you step over a method
that takes a significant
amount of time to run, the
string “/* Thread is
currently stepping*/” will
be inserted into the Source
pane. You may wait till it
returns or click the Resume

button to stop
debugging it.

Run To Return Runs the current method up
to the return statement, and
stops before returning to the
statement that called the
current method.

Resume Runs to next breakpoint,
until you manually suspend
thread, or to the end of the
program.

Note that execution may stop earlier than indicated above, if the debugger
encounters a breakpoint or an exception.

The IDE debugger

Debugging during the development cycle
Setting breakpoints in source code
Setting breakpoints in external classes
Suspending, resuming, and terminating threads
Modifying code while debugging
Setting debugger options

Modifying code while debugging (IDE debugger)
When a thread has been suspended, most of the methods on the stack can be
edited or replaced by another edition of the method (methods required by the
system or those in external classes may not be modified).

To edit a method on the stack:
1. Select it in the All Programs/Threads pane.
2. Edit its source code in the Source pane as required. The Source pane has

code-assist; type Ctrl+Spacebar to get help with method and field names.
3. Select Save from the Source pane’s pop-up menu.

To replace a method with another edition:
1. Select it in the All Programs/Thread pane.

Chapter 3. Running and debugging programs 97

2. Select Replace With > Previous Edition or Replace With > Another Edition
from the method’s pop-up menu.

3. If selecting with another edition, select the desired edition.

In either case, when you resume running the program, execution will drop to the
beginning of the method; any side effects of running the method before are not
undone.

The IDE debugger
Editions and versioning

Replacing editions in the workspace (reloading)
Saving changes to code
Debugging during the development cycle
Inspecting and modifying variable values
Suspending, resuming, and terminating threads
Stepping through methods

Evaluating expressions in the IDE debugger
When a thread is suspended in the debugger, you can view the source code for all
methods in the thread, and you can evaluate any expression in the source code to
see what its value is, given the current values of visible variables in the program.

Using an Inspector window
To evaluate an expression in the debugger and display the results in an Inspector
window:
1. In the Debug page of the Debugger browser, suspend a thread in a running

program.
2. In the All Programs/Threads pane, select a method in the suspended thread. Its

source code will be shown in the Source pane of the browser.
3. Select an expression that will evaluate to some value.

4. Click the Inspect button , or select Inspect from the selected code’s pop-up
menu.

An Inspector window will open to show the value of the expression, given the
current values of the program’s variables.

Displaying the value in-line
To evaluate an expression and display the result in the text of the Source pane:
1. In the Debug page of the Debugger browser, suspend a thread in a running

program.
2. In the All Programs/Threads pane, select a method in the suspended thread. Its

source code will be shown in the Source pane of the browser.
3. Select an expression that will evaluate to some value.
4. Select Display from the selected text’s pop-up menu.

The value of the expression, along with the value’s type, will be output as selected
text in the Source pane. Press the Delete key to remove the highlighted text.

98 IDE

Note: This technique can be used to evaluate expressions in the Scrapbook

as well. In the Scrapbook, the toolbar button displays the resulting
value in-line.

Evaluating expressions is useful, for example, for debugging if-statement and loop
conditions that are producing unexpected results.

Example: Evaluating a condition in the debugger

Evaluating an expression in the Evaluation window
Similarly to evaluating and expression in-line, you can copy an expression into the
debugger’s Evaluation window and evaluate it there. This way, messages (such as
an expression’s value) are inserted in the Evaluation window instead of the source
code pane.

To open the Evaluation window, click the Evaluation Area toolbar button .

Copy in the expression from the debugger source pane to the Evaluation window.
Select it and right-click. From the pop-up menu, select one of the following

options:
v Run (to run the selected code)
v Display (to display the results of running the selected code in the Evaluation

window)
v Inspect (to open an Inspector on the results of running the selected code)

The IDE debugger

Debugging during the development cycle
Inspecting and modifying variable values
Suspending, resuming, and terminating threads
Modifying code while debugging

Generating the class trace (IDE debugger)
The debugger will generate a trace of class loading and initialization, if you select
the Class Trace option. The class trace is useful for determining which classes
your program uses, and can help in debugging.

To turn the trace on:
1. Select Options from the Window menu.
2. Select the Debugging page.
3. Select the Trace class initialization for running programs checkbox.
4. Click OK.

Note: When this option is enabled, some processing time is required to compute
and store the trace. As a result, the program may run significantly more slowly
when this option is enabled.

To see the trace:

Chapter 3. Running and debugging programs 99

1. Open the Debugger browser by selecting Debug > Debugger from the Window
menu.

2. In the Workbench or a browser, start a program running.
3. While the program is running, select the program (not a thread) in the All

Programs/Threads pane.
4. The trace will be shown in the Source pane. Copy the contents to the

clipboard to save them.

As soon as the program terminates, the trace will disappear from the Source pane.
If your program runs quickly, you may want to add a breakpoint near the end of

the program’s code so that the program will stay in the debugger’s list of active
programs long enough for you to view the trace.

Example: “Generate the class trace for Hanoi”

The IDE debugger

Debugging during the development cycle
Setting breakpoints in source code
Setting debugger options

Setting debugger options (IDE debugger)
Debugger options are set in the IDE Options dialog. To open the dialog, select
Options in the Window menu. Expand the Coding branch of the tree view by
clicking on the plus symbol . Select the Debugging item.

For details about each setting on the Debugging page of the Options dialog, press
F1 when you are in the dialog.

Debugging during the development cycle
Suspending, resuming, and terminating threads
Configuring and setting conditions on breakpoints
Setting breakpoints in external classes
Generating the class trace

100 IDE

Chapter 4. Exporting code

Exporting code
Once you have finished developing, testing, and debugging your project within the
IDE, export it to the file system by using the Export SmartGuide. The following
options are available to you when you export:
v Export code to a directory in the file system.
v Export code to a JAR file.

v Export versioned packages and projects to another repository.

You cannot export code if it is not in the repository. As well, you must ensure that
the path you are exporting to allows exporting.

Exporting code to a directory
To export code to a directory in the file system:
1. Select the project, package, or type from which you want to export.
2. Select Export from the File menu.
3. In the Export SmartGuide, select the Directory radio button. Click Next.
4. Provide a target directory for the export. Exported projects will create

subdirectories of the target directory.
5. Select the types of code you want to export (bytecode, source code, or resource

files), and click Details to select the specific classes, interfaces, or resource files.
6. If you are exporting an applet and you want to generate an HTML file to

launch it, select the .html option and click Details to select the applets for
which you want the HTML launch file.

7. Select other options, if needed, and click Finish.

Exporting code to a JAR file
To export code to a JAR file:
1. Select the project, package, or type from which you want to export.
2. Select Export from the File menu.
3. In the Export SmartGuide, select the JAR file radio button. Click Next.
4. Provide a target JAR file name for the export. If you specify one that already

exists, it will be overwritten.
5. Select the types of code you want to export (bytecode, source code, resource

files, or beans), and click Details to select the specific classes, interfaces,
resource files, or beans.

6. If you are exporting an applet and you want to generate an HTML file to
launch it, select the .html option and click Details to select the applets for
which you want the HTML launch file.

7. Select other options, if needed, and click Finish.

Exporting bytecode
Exporting source code
Exporting resource files
Exporting for debugging

© Copyright IBM Corp. 1997, 2000 101

Exporting to another repository
Importing files from the file system
Including resource files in a project

Exporting bytecode
You can export bytecode for a class only if it has no unresolved problems
remaining.

To export bytecode for your classes to .class files in the file system:
1. In the Export SmartGuide, after you have selected the target directory or JAR

file for the export, select the .class check box.
2. Click the Details button.
3. Select classes and interfaces from the workspace by enabling their check boxes.

Click OK.
4. Select other export options, if needed.
5. Click Finish.

The bytecode will be exported to .class files in a subdirectory of the target
directory. The subdirectory is named after the package containing the class.
Periods in the package name become new subdirectories. For example, if you
export a class named Class1 in a package named My.Package to a target directory
c:\VAJava\ide\export, then the Class1.class file will be in
c:\VAJava\ide\export\My\Package.

If you intend to debug the exported code with an external debugger, you must
select the Include debug attributes in .class files option.

Exporting code
Exporting source code
Exporting resource files
Exporting for debugging
Exporting to another repository
Importing files from the file system
Finding and fixing problems

Exporting source code
You can export source code to a directory in the file system or to a JAR file. To
export source code for classes and interfaces:
1. In the Export SmartGuide, after you have selected the target directory or JAR

file for the export, select the .java check box.
2. Click the Details button.
3. Select classes and interfaces from the workspace by enabling their check boxes.

Click OK.
4. Select other export options, if needed.
5. Click Finish.

The source code will be exported to .java files in a subdirectory of the target
directory. The subdirectory is named after the package containing the class.
Periods in the package name become new subdirectories. For example, if you
export a class named Class1 in a package named My.Package to a target directory
c:\VAJava\ide\export, then the Class1.java file will be exported to
c:\VAJava\ide\export\My\Package.

102 IDE

Exporting code
Exporting bytecode
Exporting resource files
Exporting for debugging
Exporting to another repository
Importing files from the file system

Exporting resource files
When you export code to a directory or to a JAR file, you can optionally also
export resource files that the code uses.

To export resource files:
1. In the Export SmartGuide, after you have selected the target directory or JAR

file for the export, select the resources check box.
2. Click the Details button.
3. Select resource files from the project directories by enabling their check boxes.

Click OK.
4. Select other export options, if needed.
5. Click Finish.

The resource files will be copied to the target directory. The bytecode will be
exported to .class files in a subdirectory of the target directory. The subdirectory is
named after the package containing the class. Periods in the package name
become new subdirectories. For example, if you export a class named Class1 in a
package named My.Package to a target directory c:\IBMVJava\ide\export, then the
Class1.class file will be in c:\IBMVJava\ide\export\My\Package.

Exporting code
Including resource files in a project

Exporting for debugging
After you have developed and debugged a program in the IDE, export it to the
target system platform and test it there. If you want to debug the code on the
target system, you can use an external debugger to analyze the program.

VisualAge for Java, Enterprise Edition, comes with a Distributed
Debugger to help you debug your Java programs on specific platforms.

In order for an external debugger to work with the code, you must export source
code and bytecode, and you must select the Include debug attributes in .class files
option in the Export SmartGuide.

Choosing the right debugger for your program

Exporting code
Exporting bytecode
Exporting source code

Chapter 4. Exporting code 103

Exporting to another repository
Exporting lets you copy solutions and versioned projects or packages to another
repository, for example to exchange program elements with another developer.
When you export your projects and packages, your project resource files are also
exported. If the repository you are exporting to is called “sample.dat”, then your
project resources are exported to a folder called “sample.dat.pr”.

You might export to promote your work to a test repository on
another server, to divide a shared repository in two, or to create a standalone
repository for working at home. For more information, see the related tasks on
changing repositories, dividing a repository, and working at a standalone
workstation.

To export projects or packages to another repository:
1. In the Workbench window, select at least one project or package, and then

select Export from the pop-up menu. The Import SmartGuide will open.
2. Select Repository and click Next to go to the next page of the SmartGuide.
3. Continue following the instructions in the SmartGuide. After selecting

information about the server, repository, projects, and packages, click Finish.

The Log window will record which program elements have been exported.
Another user of VisualAge for Java Version can now import from the repository
into which you have exported your program elements.

Developers who connect to the target repository can browse the
exported program elements in the Repository Explorer window and add the
exported program elements to their workspaces.

Exported program elements retain their ownership settings. Owners,
class developers, and package group members who do not yet exist in the target
repository’s user list are added to it automatically.

If you are creating a new repository for development purposes,
remember to export the base libraries on which your classes depend. If you forget
to include any program elements, you can export them into the same target
repository later. There are four base projects:
v IBM Java Implementation
v Java class libraries
v JFC class libraries
v Sun class libraries

Repository
Workspace

Backing up the repository
Searching for a program element in the repository
Importing from another repository
Exporting code
Exporting bytecode to the file system
Exporting source code to the file system

104 IDE

Repository files

Deploying code
When you export and deploy an applet or application built with VisualAge for
Java, you also need to deploy the runtime for the features with which you created
the code, if any, and put the deployed runtime JAR or Zip on your class path.

In general, the JAR files are compressed and are for use when running applets off
of a server. The Zips are uncompressed and should be placed on the CLASSPATH
of the deployment machine for running applications locally.

Depending on which features you have installed, the following runtime libraries
are provided in the eab/runtime35 or runtime30 directory of your install image,
unless otherwise indicated

Feature
(E)=Enterprise
Edition only

Workspace
Project
Name

Runtimename (one of each .jar
and .zip unless otherwise
specified)

Supported Runtime
Platforms

Java-to-C++
(E)

IBM
Enterprise
CPP Access
Builder
Library

eab/runtime20/ivj2cpp.zip
ivjcpp30.zip

lib\ivjtjs20.dll

Access Builder
for SAP R/3
(E)

IBM Access
Builder for
SAP R/3
Libraries

ivjsap35.jar infobus.jar

eab/lib/libivjsij35.so
eab/lib/libivjsid35.so

eab\bin\ivjsij35.dll,
eab\bin\ivjsid35.dll,
eab\bin\\librfc32.dll

eab/linux/libivjsij35.so
eab/linux/libivjsid35.so

eab/solaris/libivjsij35.so,
eab/solaris/libivjsid35.so

eab/os390/libivjsij35.so,
os390/libivjsij35.x,
os390/libivjsid35.so,
os390/libivjsid35.x,
os390/librfc,
os390/librfc.x

eab/os400/ivjsij35.savf

Persistence
Builder (E)

VisualAge
Persistence,
VisualAge
Persistence
Common
Runtime

ivjpb35.jar
ivjpb35wsa35.jar

Chapter 4. Exporting code 105

ET/400 (E) IBM
Enterprise
Toolkit for
AS/400

as400ut.jar, jt400.jar,
jt400mri.zip

These Toolbox .jar runtime files
can also be found in the
eab\runtime30 directory

DATA400.JAR
JT400PROXY.JAR
JT400SERVLET.JAR
JUI400.JAR
UITOOLS.JAR
UTIL400.JAR
X4J400.JAR
JT400ACCESS.ZIP
UTILITIES.ZIP

Non visual also:

Domino™

Agent Runner
n/a IVJAgentRunner.jar and

AgentRunner.nsf (in
runtime35\domino\ar\)

EJB
Development
Environment
(E)

IBM EJB
Tools

If you plan to deploy your
enterprise beans to a
non-WebSphere production server,
and your enterprise beans employ
either associations or access beans
and you must also deploy the
following file:

ivjejb35.jar

106 IDE

e-Connectors
(E)

Common
Connector
Framework

ccf (in IBM Connectors/classes)
This is a prerequisite for all
e-Connector runtimes.

CICS®

Connectors
ctgclient (in IBM
Connectors/CICS/classes)

ctgserver (in IBM
Connectors/CICS/classes)

Encina
Connector

delconn (in IBM
Connectors/classes)

delight11 (in IBM
Connectors/classes)

Connector
SAP

ivjsap35.jar infobus.jar

eab/lib/libivjsij35.so
eab/lib/libivjsid35.so

eab\bin\ivjsij35.dll,
eab\bin\ivjsid35.dll,
eab\bin\\librfc32.dll

eab/linux/libivjsij35.so
eab/linux/libivjsid35.so

eab/solaris/libivjsij35.so,
eab/solaris/libivjsid35.so

eab/os390/libivjsij35.so,
os390/libivjsij35.x,
os390/libivjsid35.so,
os390/libivjsid35.x,
os390/librfc,
os390/librfc.x

eab/os400/ivjsij35.savf

Connector
IMS™ TOC

imstoc (in
IBM Connectors/classes)

Connector
MQSeries®

mqccf (in IBM Connectors/classes)

Connector
HOD

hod40connector, hod40converters
(in IBM Connectors/classes)

Enterprise
Access Builder
for
Transactions
(E)

IBM
Enterprise
Access
Builder
Library

eablib

Java Record
Framework (E)

IBM Java
Record
Library

recjava

SQLJ SQLJ
Runtime
Library

sqlj-runtime

Data Access
Beans

IBM Data
Access Beans

ivjdab

Chapter 4. Exporting code 107

XML Parser
for Java

IBM XML
Parser for
Java

xml4j2015.jar

The runtime directories also contain the unzipped form of most of the runtime
libraries so that your CLASSPATH need only contain the
IBMVJava/eab/runtime35 and runtime30 directories, as opposed to each runtime
Zip. This simplifies setting up for testing applications on your development
machine.

Warning: It is important that you test the deployment of your applications as
your end-users will see them, specifically without the unzipped runtimes on their
CLASSPATH. You can easily do this by removing the IBMVJava/eab/runtime35
directory (and other runtime directories you may have added) from your
CLASSPATH variable.

Runtimes for previous releases are provided in the IBMVJava/eab/runtime30
directory.

Deploying an application to debug it
If you want to debug an application that has been deployed, you must install the
appropriate debugger back-end on the target machine. See the online help for the
VisualAge for Java debugger you are using for more information.

Deploying an applet on the Network Station
Once you have tested your applet in the IDE, you are ready to deploy your
program as a applet on the Network Station. Deploying an applet for use by the
Network Station is no different than deploying an applet for any other browser.
See the related task Exporting and Publishing Code for more information.

VisualAge for Java for the Network Station

Exporting and publishing code
Deploying an application on the Network Station

Deploying an application on the Network Station
Once you have tested your application in the IDE, you are ready to deploy your
program as a stand-alone application on the Network Station.

Development considerations
One addition you may need for your developed code is to add System.exit(0) to
the windowClosed() method of the application class. Not having an explicit
System.exit(0) statement may mean that a Java application may not terminate
completely. Since the Network Station only allows a single Java application to
run, this may prevent you from running another application without logging off
and back on.

Deploy your code
When deploying your client program as a stand-alone application, deploy your

108 IDE

code to a directory on the Network Station Manager machine. This directory must
be in the list in the TFTP configuration utility to ensure that the Network Station
can get the code as it is required.

Configure the Network Station Manager
The application can be configured as a default for all users or for specific users. It
can also be configured to run as an Autostart application or as an application on
the menubar. If you configure it as an Autostart application, it will be run
whenever the user it is configured for logs on to the Network Station.

In either configuration case, the application or class name is specified in the
Network Station Manager administration utility with the full package and class
name. Arguments can be supplied and the classpath needs to be specified. The
classpath may not accept Zip or JAR files and may also require that the class paths
be separated by colons (:). If Zip and JAR files are not supported, unzip the JAR
and Zip files that you need from the eab\runtime directory in your VisualAge for
Java installation. Ensure that they are in a directory that is in the TFTP list for the
Network Manager.

Running the application
If the application is configured as Autostart then it will run as soon as you log on
to the Network Station. If it is configured as a menu item then launch it from the
menubar. To see any problems with loading classes or output from the program,
open the Console window by typing Shift+Alt+Home.

You may run only one application at a time.

VisualAge for Java for the Network Station

Deploying an applet on the Network Station

Chapter 4. Exporting code 109

110 IDE

Chapter 5. IDE hints and tips

Applying IBM Service fixes with Fix Manager
On occasion, IBM Service releases temporary fixes for VisualAge for Java. They
are downloadable from the VisualAge for Java website at
http://www.software.ibm.com/ad/vajava/ (follow the Support link).

Once you have downloaded a fix, store it on your machine according to the
instructions in the fix’s readme file. After downloading and storing the fix, you
must apply it to VisualAge for Java.

To apply a fix you have downloaded:
1. In the Workbench, from the Workspace menu, select Tools > Fix Manager.

The Fixes list in the Fix Manager window shows all fixes that you have
downloaded onto your hard drive. Those fixes that have already been applied
have an asterisk (*) beside them. Fixes that have been downloaded, but have
not yet been applied do not have the asterisk.

2. Select a fix that you want to apply, and click the >> button. It will be added
to the Fixes to Load list on the right-hand side. You can add more than one
fix to the Fixes to Load list.

3. Click OK. The fixes listed in the Fixes to Load list will be applied.

When you apply a fix, it remains on your hard drive so that if you have to replace
your workspace in the future, you do not lose the downloaded fixes; you simply
have to reapply them.

If you are working in a team environment and want to apply a fix to
only one developer’s copy of VisualAge for Java, you can do so. It is not necessary
to apply the fix for all of the team members. If you wish, you can create a backup
copy of the team repository for the team member who is applying the fix to work
with.

Troubleshooting in the IDE
If a Class that Uses JFC Will Not Run
If you created a class and wrote code for it that uses JFC, then you must update
the class path for it to include the path to the JFC project directory. Otherwise,
the class will not run.

To update the class path:
1. Select the class in a browser.
2. From the class’s pop-up menu, select Run, Check Class Path. This will open

the class Properties notebook to the Class Path page.
3. Next to the Project Path field, click Compute Now. The JFC project path will

be added.
4. Select the Save to Repository (as default) check box.
5. Click OK.

© Copyright IBM Corp. 1997, 2000 111

If a Browser Shows Incorrect Information
If an IDE browser is displaying incorrect or inconsistent information, follow these
suggestions:
v Refresh the browser. Select Refresh from the Window menu to refresh the

contents of the browser. Under normal circumstances, this action has no effect.
However, if there are internal inconsistencies, this action may correct the
problem.

v Close the browser and reopen it. This action may correct problems that are not
corrected by refreshing the browser.

v Reload the program element. To reload a program element that is behaving
suspiciously.
1. Select the program element.
2. Select Replace With > Another Edition from its pop-up menu.
3. From the list, select the edition that is already in the workspace (marked

with an asterisk,*).

Under normal circumstances, these steps have no effect; however, if there are
internal inconsistencies, they may correct the problem because they may trigger
the IDE to recompile the program element.

v Delete the project and add it back. If re-adding the program element does not
correct the situation, follow these steps to delete and add back the project that is
behaving suspiciously. Do not delete any of the standard class libraries that
come with VisualAge for Java.

1. In the Workbench, select the Show Edition Names toolbar button to see
edition names.

2. Select the project that you want to temporarily delete from the workspace.
3. Make a note of the edition name of the project.
4. Select Delete from the project’s pop-up menu. Deleting the project might add

unresolved problems, but you can ignore them.

5. Click the Add Projects toolbar button .
6. Choose to add projects from the repository.
7. Select the project that you deleted.
8. Select the edition that you noted in Step 3.
9. Select Finish to add the deleted project edition from the repository back to

the workspace.

This step forces the IDE to recompile the project’s packages, types, and methods.
It also clears any unresolved problems that VisualAge for Java reported when
you deleted the project.

If a Java Program Does Not Respond
To stop a program that does not respond:

1. Select the debug button () on any tool bar.
2. In the All Programs/Threads pane of the debugger, select all the threads that

were created for the program.
3. Select Terminate from the pop-up menu to terminate the threads.

If a Scrapbook Page Remains Busy
If a Scrapbook page remains busy, select Reset Page from the page’s pop-up men.

112 IDE

Browsing the Workspace
Replacing Editions in the Workspace (Reloading)
Suspending, Resuming, and Terminating Threads
Experimenting with Code Fragments

VisualAge for Java IDE symbols
When you move and hold the pointer over most symbols in the IDE, hover help
and the status line present information about them. The following symbols do not
display this help.

Program elements

solution

project

package

class

interface

applet

project resource file

project resource folder

Inner program elements

inner default field

inner protected field

inner private field

inner public field

inner default method

inner protected method

inner private method

inner public method

inner class

inner integer

Access modifiers for methods and fields

Chapter 5. IDE hints and tips 113

default method

private method

protected method

public method

default field

private field

protected field

public field

Other modifiers for classes, methods, and fields

abstract

final

native

static

synchronized

transient

volatile

Other symbols

executable class

only bytecode, not source code, exists in workspace (imported .class file).

class or method with unresolved problems

class with methods that have unresolved problems

class or method with compiler warnings

class with methods that have compiler warnings

code that the Visual Composition Editor generated

class that the Visual Composition Editor edited

thread

Scrapbook page symbols

The symbol on each page of the Scrapbook window changes according to the
status of the code in the page. The following symbols indicate the different states:

Page is not associated with a file

Same page, busy running code

114 IDE

File for the page has been modified and not saved

Same page, busy running code

File for the page has been saved

Same page, busy running code

Shortcut keys
You can rebind some of these shortcut keys in the Key Bindings page of the
Options dialog. To open the dialog, select Window > Options > General > Key
Bindings.

Code assist

Menu option Shortcut key

not applicable Ctrl+Spacebar (or Ctrl+L)

General (most windows and browsers)

Menu option Shortcut key

Quick Start F2

Undo Ctrl+Z

Redo Ctrl+Y

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Select All Ctrl+A

Format Code Ctrl+W

Find/Replace Ctrl+F

Search F4

Maximize Pane Ctrl+M

Save * Ctrl+S

Save Replace * Ctrl+Shift+S

Breakpoint Ctrl+B

Method Template Ctrl+T

* The shortcut keys for Save and Save Replace can be switched by changing the
save option on the Coding page of the Options dialog.

Scrapbook

Menu option Shortcut key

New Page Ctrl+N

Open Ctrl+O

Save Ctrl+S

Chapter 5. IDE hints and tips 115

Problems pages

Menu option Shortcut key

Next Problem Ctrl+N

Previous Problem Ctrl+P

Search results

Menu option Shortcut key

Next Match Ctrl+N

Previous Match Ctrl+P

Comparison results

Menu option Shortcut key

Next Difference Ctrl+N

Previous Difference Ctrl+P

Bean Info page

Menu option Shortcut key

Revert Ctrl+R

Save Ctrl+S

Visual Composition Editor

Menu option Shortcut key

Save Bean Ctrl+S

Debugger

Menu option Shortcut key

Run Ctrl+E

Revert to Saved Ctrl+R

Display Ctrl+D

Inspect Ctrl+Q

Step Into F5

Step Over F6

Run to Return F7

Resume F8

Run to Cursor F9

Inspectors

Menu option Shortcut key

116 IDE

Run Ctrl+E

Revert to Saved Ctrl+R

Display Ctrl+D

Inspect Ctrl+Q

Console and log windows

Menu option Shortcut key

Clear Ctrl+R

Repository files
Repository file names
In the file system, the name of the repository provided with VisualAge for Java is
ivj.dat. It is recommended that you use .dat as the file extension for any new
repositories that you create. To ensure that new repositories can be used on any
server operating system, adhere to the 8.3 file-naming convention.

EMSRV for NetWare supports long filenames only on NetWare where the
volume in question has the LONG or OS/2 namespace added. Long filename
support is required for the stored resource management feature used by VisualAge
for Java 3.5.

When using EMSRV for Windows NT® or 2000, long filenames may be
created and viewed on FAT, FAT32, and NTFS volumes.

When using EMSRV for OS/2, long filenames may be created and viewed
on HPFS volumes. Long filename support is required for the stored resource
management feature used by VisualAge for Java 3.5.

Shared repositories must be local to the server where the repository
server is running. You can not use EMSRV to manage remote repositories.

The EMSRV working directory
For ease of use, it is recommended that you store shared repositories in the EMSRV
working directory. This allows team members to connect to the shared repositories
without providing path information.

By default, the EMSRV working directory is the same
directory where the emsrv executable program is installed. You can change the
working directory by using the -W parameter of the emsrv command when you
start the repository server.

Repository size
It is not unusual to have repositories that are between 200 and 300 megabytes, or
larger.

The maximum repository size is 2 gigabytes.

The maximum repository size is 4 gigabytes.

Chapter 5. IDE hints and tips 117

The maximum repository size is 2 gigabytes for FAT drives, 4 gigabytes for
FAT32 drives, and 16 gigabytes for NTFS drives.

The maximum repository size is 16 gigabytes.

The maximum repository size is 2 gigabytes.

If your repository is approaching the maximum size, you should create a smaller
repository by compacting it.

Repository

Backing up the repository
Purging program elements from the repository
Compacting a repository
Exporting to another repository
Importing from another repository

Applet Viewer
The Applet Viewer displays applets running in the IDE. (Note: This is the applet
viewer shipped with the JDK). You can run multiple applets concurrently (in
multiple Applet Viewers), and can make run-time changes to them by altering the
code and reloading the applet. The Console window will display standard output
from the applet; the Console is also where you supply standard input for the
applet.

The Applet Viewer’s Applet menu has the following options:

Option Description

Restart Restarts the loaded applet from the
beginning.

Reload Reloads all code and resources associated
with the applet.

Stop Stops the running applet.

Save Saves the applet as a serialized object to a
file.

Start Starts the applet, starting at the point in the
code at which it was stopped.

Clone Opens another Applet Viewer on the same
applet.

Tag Displays the HTML tags for the applet.

Info Displays information on the applet and its
parameters.

Character
Encoding

Shows the type of character encoding that is
used for character conversion.

Print Print the applet

118 IDE

Properties Displays the Applet Viewer Properties,
where you can change the following
settings:

v Http proxy server

v Http proxy port

v Network Access

v Class Access

v Allow Unsigned Applets

Close Closes the applet viewer and reclaims
resources.

Quit Closes the applet viewer.

For more information about the Applet Viewer, please see the JDK documentation
on the world wide web.

Running an applet from the IDE
Making run-time changes to an applet

Code assist
Source panes, SmartGuides, and some other dialogs and browsers (for example,
the Configure Breakpoints dialog) contain code assist, a tool to help you find the
classes, methods, and fields you are looking for without having to refer to class
library reference information. Code assist is accessed by typing Ctrl+Spacebar.

Code assist is able to derive potential completion at the insertion point, providing
that up to this point the source is compilable. It will provide contextual inference,
including visible variables in regard to their scoping rules. Possible completions are
visible methods, fields, local variables, and types. Note that the latter will
automatically be qualified if required (for example, if they are not part of the same
package or are imported). In addition, code assist will automatically restrain type
completion to exception types in throws clauses or catch blocks.

When you type Ctrl+Spacebar, classes, methods, parameters, and types that could
be inserted in the code at the cursor are shown in a pop-up list, from which you
can select one. Code assist performs a visibility check and classes, methods, and
fields that are not visible are not displayed. If the code assist mechanism cannot
find a member that fits the current location of the cursor, the information line at
the bottom of the pane will indicate that no code assist is available for the current
context.

Code assist for types
To insert the name of a class or interface in your code, enter the first one or more
letters of the type name, and then type Ctrl+Spacebar. A pop-up list appears,
containing types that start with what you have entered. Enter more letters to
narrow down the list. Select an item to insert it into your code at the cursor. If
the type needs to be qualified, the qualification is also automatically inserted.

Example:
Create a test project and package. In the test package, create a class called
AssistTest. In the AssistTest class, create a method called assistMethod.

Chapter 5. IDE hints and tips 119

Suppose you want to declare a local Integer variable, i. In the body of the
assistMethod source, type the following letters:
In

Type Ctrl+Spacebar. The list of available types is long. To find “Integer,”
enter the letters “te”. Now, “Integer” will be near the top of the list. Select
it using the arrow keys and Enter.

Now, finish the declaration, so that the method looks like this:
public void assistMethod() {
Integer i;
}

Save the method by typing Ctrl+S. You will use this test method in the next
example.

Code assist for methods and fields
Code assist will also list the methods and fields available for an object or class.
Enter objectName., and optionally one or more letters from the start of the method
or field name, and then type Ctrl+Spacebar. The list of methods and fields for the
object will pop-up. Select one to insert it in the code.

Example:
In the assistMethod method you created in the previous example, below the
line that declares i, enter the following code (the period is important):
i = Integer.

Type Ctrl+Spacebar. A list of methods and fields in Integer will pop up.
Enter the letters “val”, until you find “valueOf(String) Integer”. The
parameter types (in this case “String”) and return type (“Integer”) are
shown.

Select “valueOf(String) Integer”, and it will be inserted into your code.
Enter a string such as “35” between the parentheses and end the line with a
semi-colon. The method source will now look like this:
public void assistMethod() {
Integer i;
i = Integer.valueOf(“35”);
}

If you request code assist for a method or field from a class that requires
qualification, the class must be qualified before you type Ctrl+Spacebar.
Otherwise, no code assist will be available. Generally, the code that appears
before the cursor must be compilable before you request code assist.

Example:
Suppose java.util.* is not in your class’ import statement. This means that
the class ResourceBundle must be qualified when you use it in your class. If
you type the following code, and then type Ctrl+Spacebar to get the list of
methods available, no list will be available:
public String newMethod () {
ResourceBundle a = ResourceBundle.

// place cursor after period
// and type Ctrl+Spacebar

120 IDE

However, if you type the following code, where the class qualification is
provided, code assist is available:
public String newMethod () {
ResourceBundle a = java.util.ResourceBundle.

// place cursor after period
// and type Ctrl+Spacebar

An easier way to produce a qualified name in this case (assuming you do not
want to add this class or package to the import list) is to place the cursor
before the period and type Ctrl+Spacebar. Select the class name from the list
and it will be fully qualified for you automatically. Then type the period and
Ctrl+Spacebar. The list of methods in ResourceBundle will now pop-up.

Code assist for method parameters
Code assist includes pop-up help for method parameters. For example when you
select “valueOf(String) Integer” from the pop-up list in an example, above, the
following text is inserted at the cursor:

valueOf()

The cursor is automatically placed between the parentheses, and the name of the
parameter (if source is available), and the pop-up label “String” appear to let you
know what type of parameter to add.

Keyword completions and macros
You can create your own code assist for Java keywords and any macro you want
to insert in Java source code. For information, see Defining code assist macros.

Code assist options
You can set the options for code assist in the Options dialog to automatically insert
a completion where there is only one completion listed.You can also choose which
key(s) (return, tab, or space) you would like to use to select an item in the
completion list . The Options dialog for code assist is available at Window >
Options > Coding > Code Assist.

Important to note:

v Code assist is case insensitive, except for the first letter of a Class name.
v Code assist will not provide assistance on empty statements or code declaring

inner classes.
v Limited code assist is available in a class definition.
v If typing Ctrl+Spacebar does not launch code assist on your system, try using

Ctrl+L.
v You can change the shortcut key for code assist on the Key Bindings page of the

Options dialog.

Important files to back up
As a VisualAge for Java developer or administrator, you should back up two files
on a regular basis:
v The source code repository (page 122)
v Resource files used by your applications (page 122)

You may wish to back up two additional files to avoid having to manually
reconstruct them after a system failure:
v The workspace (page 122)

Chapter 5. IDE hints and tips 121

v The VisualAge for Java initialization file (page 122)

Source code repository
The repository file, ivj.dat, is the most important file to back up. It contains all of
the source code that you have developed, except for editions that are purged prior
to compacting the repository. It also contains Visual Composition Editor
information and the bytecode for .class files imported from the file system.

There may be multiple repositories (.dat files) with different names
on the server. Clients may have their own local repositories as well. Make sure all
of these are being backed up regularly.

For links to more information about backing up repositories, see the list of related
topics at the end of this document.

Resource files
If your application uses resource files, such as audio clips or image files, they
should be backed up at the same time as the repository. See the list of related
topics at the end of this document for links to more information about resource
files and directories.

Workspace
The workspace file, ide.icx, contains the bytecode for the specific editions that you
have added from the repository. The workspace file is normally saved when you
exit the IDE. You can also save it from the File pull-down menu in any VisualAge
for Java window.

If the ide.icx file is corrupted or lost, you do not lose source code that you have
saved, as it is always stored in the repository. However, you would lose the
following information:
v A record of which specific editions of which program elements are in your

workspace
v IDE options that you have set
v Breakpoints that you have added to methods
v Contents of the Scrapbook and Console windows
v Bytecode

Each client has its own ide.icx file, which should be backed up at the
same time as the client’s ide.ini file.

Initialization file
The ide.ini file contains information about the server and repository

to which you were connected the last time that you exited the IDE or saved the
workspace. You should back up ide.ini at the same time as ide.icx.

Workspace
Repository

Saving the workspace
Backing up the repository
Including resource files in a project

122 IDE

Purging program elements from the repository
Recovering the workspace
Reinstalling the workspace

Repository files

Chapter 5. IDE hints and tips 123

124 IDE

Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1997, 2000 125

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. (c) Copyright IBM Corp. 1997, 2000. All rights reserved.

126 IDE

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

© Copyright IBM Corp. 1997, 2000 127

128 IDE

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:
v AIX
v AS/400
v DB2
v CICS
v CICS/ESA
v IBM
v IMS
v Language Environment
v MQSeries
v Network Station
v OS/2
v OS/390
v OS/400
v RS/6000
v S/390
v VisualAge
v VTAM
v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States, or other countries, or both.

Tivoli Enterprise Console and Tivoli Module Designer are trademarks of Tivoli
Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1997, 2000 129

	Contents
	Chapter 1. The VisualAge for Java IDE
	What's new in the VisualAge for Java IDE
	Overview of the VisualAge for Java IDE
	Development without files
	Incremental compilation
	Workspace
	Repository
	Projects and other program elements
	Resource files and directories
	Extensions
	Editions and versioning
	Editions and versioning
	Version control for project resource files
	Scratch editions

	Baselines, releasing, and reloading
	Unresolved problems
	The Scrapbook
	Create Servlet SmartGuide
	VisualAge for Java for the Network Station™
	Choosing the right debugger for your program
	The IDE debugger

	Chapter 2. Navigating the IDE
	Browsing the workspace
	Changing the IDE browsing style
	Moving between windows
	Searching for program elements
	Searching for a program element in the workspace
	Searching the workspace by edition status, owner, ordeveloper
	Searching for a program element in the repository
	Searching for declarations of and references to a programelement
	Searching for text in a source pane

	Accessing context-sensitive API help
	Accessing tools and Enterprise Access Builders
	Printing from the IDE
	Printing program elements
	Printing source code and other text
	Printing the graph view of a class

	Customizing the IDE
	Setting IDE options
	Customizing key bindings
	Bookmarking program elements
	Locking windows open
	Cloning windows
	Defining code assist macros

	Creating programs and program elements
	Creating a solution
	Creating a project
	Creating a package
	Creating a sample applet or application
	Creating an applet or application
	Generating a customizable visual application
	Creating servlets using the Create Servlet SmartGuide
	Creating a class
	Generating method stubs
	Creating an interface
	Creating a method
	Creating a field
	Generating field accessor methods
	Generating a serial universal identifier (UID)
	Using the Quick Start window
	Organizing your ideas in the Scrapbook
	Experimenting with code fragments
	Writing and formatting source code
	Generating HTML documentation for classes
	Adding projects and packages from the repository to theworkspace
	Adding classes and methods from the repository to theworkspace
	Importing files from the file system
	Including resource files in a project
	Loading external classes dynamically

	Modifying program elements
	Editing code in the Source View window
	Saving changes to code
	Compiling code
	Finding and fixing problems
	Versioning a program element
	Creating an open edition
	Copying or moving a program element
	Renaming a program element
	Comparing two program elements
	Comparing editions of a program element
	Merging editions of a class or interface

	Managing your workspace
	Adding a feature to your workspace
	Replacing editions in the workspace (reloading)
	Releasing a program element or resource file
	Deleting program elements from the workspace
	Saving the workspace
	Providing a standard workspace
	Creating a scratch edition
	Recovering the workspace
	Reinstalling the workspace

	Managing your repository
	Backing up the repository
	Purging program elements from the repository
	Restoring program elements
	Compacting a repository
	Importing from another repository
	Exporting to another repository

	Chapter 3. Running and debugging programs
	Setting the class path
	Running an applet from the IDE
	Running an application from the IDE
	Making run-time changes to an applet
	Debugging during the development cycle with the IDE debugger
	Opening the IDE debugger manually
	Suspending, resuming, and terminating threads (IDE debugger)
	Setting breakpoints in source code (IDE debugger)
	Configuring and setting conditions on breakpoints (IDE debugger)
	Setting breakpoints in external classes (IDE debugger)
	Selecting exceptions for the debugger to catch (IDE debugger)
	Clearing and disabling breakpoints (IDE debugger)
	Inspecting and modifying variable values (IDE debugger)
	Stepping through methods (IDE debugger)
	Modifying code while debugging (IDE debugger)
	Evaluating expressions in the IDE debugger
	Generating the class trace (IDE debugger)
	Setting debugger options (IDE debugger)

	Chapter 4. Exporting code
	Exporting code
	Exporting bytecode
	Exporting source code
	Exporting resource files
	Exporting for debugging
	Exporting to another repository
	Deploying code
	Deploying an applet on the Network Station
	Deploying an application on the Network Station

	Chapter 5. IDE hints and tips
	Applying IBM Service fixes with Fix Manager
	Troubleshooting in the IDE
	VisualAge for Java IDE symbols
	Shortcut keys
	Repository files
	Applet Viewer
	Code assist
	Important files to back up

	Notices
	Programming interface information
	Trademarks and service marks

