
IBM VisualAge® for Java™, Version 3.5

XML Parser for Java

���

Edition notice

This edition applies to Version 3.5 of IBM VisualAge for Java and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. XML Parser for Java:
Overview 1
Limitations 3

Chapter 2. Working with the XML Parser 5
Constructing a parser 5

Creating a DOM parser 5
Creating a SAX parser 5
Using a parser factory 6
Explicitly instantiating a parser class 7
Extending a parser class 9

Using catalog files 10
Using namespaces 12
Using the revalidation API 12
Handling errors 14

Chapter 3. Samples 15
Before you start 15
SAXWriter and DOMWriter 15
SAXCount and DOMCount 17
TreeViewer 19
DOMFilter. 20

Notices 23

Programming interface information . . 25

Trademarks and service marks 27

© Copyright IBM Corp. 1998, 2000 iii

iv XML Parser for Java

Chapter 1. XML Parser for Java: Overview

The XML Parser for Java provides a way for your applications to work with XML
data on the Web. The XML Parser provides classes for parsing, generating,
manipulating, and validating XML documents. You can include the XML Parser in
Business-to-Business (B2B) and other applications that manage XML documents,
work with metacontent, interface with databases, and exchange messages and data.

The XML Parser is written entirely in Java, and conforms to the XML 1.0
Recommendation and associated standards, such as Document Object Model
(DOM) 1.0, Simple API for XML (SAX) 1.0, and the XML Namespaces
Recommendation.

DOM implementations
The Document Object Model is an application programmer’s interface to XML
data. XML parsers produce a DOM representation of the parsed XML. Your
application uses the methods defined by the DOM to access and manipulate the
parsed XML.

The IBM XML Parser provides two DOM implementations:
v Standard DOM: provides the standard DOM Level 1 API, and is highly tuned

for performance
v TX Compatibility DOM: provides a large number of features not provided by the

standard DOM API, and is not tuned for performance.

You choose the DOM implementation you need for your application when you
write your code. You cannot, however, use both DOM’s in the XML Parser at the
same time. In the XML Parser, the DOM API is implemented using the SAX API.

Modular design
The XML Parser has a modular architecture. This means that you can customize
the XML Parser in a variety of different ways, including the following:
v Construct different types of parsers using the classes provided, including:

– Validating and non-validating SAX parser
– Validating and non-validating DOM parser
– Validating and non-validating TXDOM parser

To see all the classes for the XML Parser, look in the VisualAge for Java IDE for
the IBM XML Parser for Java project and the com.ibm.xml.parsers package.

v Specify two catalog file formats: the SGML Open catalog, and the XCatalog
format.

v Replace the DTD-based validator with a validator based on some other method,
such as the Document Content Description (DCD), Schema for Object-Oriented
XML (SOX), or Document Definition Markup Language (DDML) proposals
under consideration by the World Wide Web Consortium (W3C).

Constructing a parser with only the features your application needs reduces the
number of class files or the size of the JAR file you need. For more information
about constructing the XML Parser, refer to the related tasks at the bottom of this
page.

© Copyright IBM Corp. 1998, 2000 1

Constructing a parser
You construct a parser by instantiating one of the classes in the
com.ibm.xml.parsers package. You can instantiate the classes in one of the
following ways:
v Using a parser factory
v Explicitly instantiating a parser class
v Extending a parser class

For more information about constructing a parser, refer to the related tasks at the
bottom of this page.

Samples
We provide the following sample programs in the IBM XML Parser for Java
Examples project. The sample programs demonstrate the features of the XML
Parser using the SAX and DOM APIs:
v SAXWriter and DOMWriter: parse a file, and print out the file in XML format.
v SAXCount and DOMCount: parse your input file, and output the total parse

time along with counts of elements, attributes, text characters, and white space
characters you can ignore. SAXCount and DOMCount also display any errors or
warnings that occurred during the parse.

v DOMFilter: searches for specific elements in your XML document.
v TreeViewer: displays the input XML file in a graphical tree-style interface. It also

highlights lines that have validation errors or are not well-formed.

To see the sample programs, you need to add the IBM XML Parser for Java
Examples feature to the VisualAge for Java workspace. Refer to the Samples
section for details.

Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

Package-com.ibm.xml.dom
Package-com.ibm.xml.framework
Package-com.ibm.xml.parser
Package-com.ibm.xml.parser.util
Package-com.ibm.xml.parsers
Package-com.ibm.xml.xpointer
Package-org.w3c.dom
Package-org.xml.sax.helpers
Package-org.xml.sax

2 XML Parser for Java

Limitations
The XML Parser has the following limitations:
v If there is an error in the encoding line, the XML Parser may report the location

of the error as location -1,-1.
v When parsing unparsed entities that refer to notations declared after the entity

reference, the XML Parser will report the error at the end of the DTD, not at the
point where the unparsed entity was declared.

v This release of the XML Parser does not yet provide the readDTDStream()
method in the TX Compatibility parser.

Overview

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

Chapter 1. XML Parser for Java: Overview 3

4 XML Parser for Java

Chapter 2. Working with the XML Parser

Constructing a parser

Creating a DOM parser
You can construct a parser in your application in one of the following ways:
v Using a parser factory
v Explicitly instantiating a parser class
v Extending a parser class

To create a DOM parser, use one of the methods listed above, and specify
com.ibm.xml.parsers.DOMParser to get a validating parser, or
com.ibm.xml.parsers.NonValidatingDOMParser to get a non-validating parser.

To access the DOM tree, your application can call the getDocument() method on
the parser.

For more information about constructing a parser, refer to the related tasks below.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

Creating a SAX parser
You can construct a parser in your application in one of the following ways:
v Using a parser factory
v Explicitly instantiating a parser class
v Extending a parser class

To create a SAX parser, use one of the methods listed above, and specify
com.ibm.xml.parsers.ValidatingSAXParser to get a validating parser, or
com.ibm.xml.parsers.SAXParser to get a non-validating parser.

Once your application creates the parser instance, it can use the standard SAX
methods to set the various handlers provided by SAX.

For more information about constructing a parser, refer to the related tasks below.

© Copyright IBM Corp. 1998, 2000 5

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

Using a parser factory
To construct a parser using a parser factory, call the makeParser () method of the
org.xml.sax.helpers.ParserFactory class, passing a string that has the fully qualified
name of the parser class that you are trying to instantiate. This method is useful if
your application will need to switch between different parser configurations.

The following code example uses this method to construct a DOMParser:

import org.xml.sax.Parser;
import org.xml.sax.helpers.ParserFactory;
import com.ibm.xml.parsers.DOMParser;
import org.w3c.dom.Document;
import org.xml.sax.SAXException;
import dom.DOMWriter;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
//Constructing parser using parser factory
public class example1 {

static public void main(String[] argv) {
String parserClass = “com.ibm.xml.parsers.DOMParser”;
String xmlFile = “file:///xml_document_to_parse”;
Parser parser = null;
try {

parser = ParserFactory.makeParser(parserClass);
parser.parse(xmlFile);

} catch (SAXException se) {
se.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

} catch (ClassNotFoundException ex){
ex.printStackTrace();

} catch (IllegalAccessException ex) {
ex.printStackTrace();

} catch (InstantiationException ex) {
ex.printStackTrace();

} catch (ClassCastException ex) {
ex.printStackTrace();

}
// The next lines are only for DOM Parsers

Document doc = ((DOMParser) parser).getDocument();
if (doc != null) {

try {

6 XML Parser for Java

(new dom.DOMWriter(false)).print(doc); // use print
// method from

dom.DOMWriter
} catch (UnsupportedEncodingException ex) {

ex.printStackTrace();
}

}
}

}

Once your application has the XML document object, it can call any method on the
document object that is defined by the DOM specification.

Running the code example in the Workbench
To run the code example in the Workbench, you need to do the following:
v Replace xml_document_to_parse with the name of the XML document you want

to parse. To use the sample XML document we supply, specify the following:
X:\IBMVJava\ide\project_resources\IBM XML Parser for Java
Examples\data\personal.xml

where X: is the drive where VisualAge for Java is installed.
v After you create the example1 class in the Workbench, specify the XML Parser in

the class path for the example1 class. To specify the class path, do the following:
1. In the Workbench, right-click the example1 class, and in the pop-up menu

click Properties.
2. In the Properties dialog box, click the Class Path tab.
3. Select the Project path check box, and click the Compute Now button. IBM

XML Parser for Java appears in the Project path text field.

Overview
Limitations

Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

Explicitly instantiating a parser class
Another way to instantiate a parser is to explicitly instantiate the parser class by
making a new object instance of it. This method is useful when you know exactly
which parser configuration you need, and you are sure that you will not need to
switch configurations.

The following code example uses this method to construct a DOMParser:

import com.ibm.xml.parsers.DOMParser;
import org.w3c.dom.Document;
import org.xml.sax.SAXException;

Chapter 2. Working with the XML Parser 7

import java.io.IOException;
import java.io.UnsupportedEncodingException;
//Constructing parser by instantiating parser object
//In this case from DOMParser
public class example2 {

static public void main(String[] argv) {
String xmlFile = “file:///xml_document_to_parse”;
DOMParser parser = new DOMParser();
try {

parser.parse(xmlFile);
} catch (SAXException se) {

se.printStackTrace();
} catch (IOException ioe) {

ioe.printStackTrace();
}

// The next lines are only for DOM Parsers
Document doc = ((DOMParser) parser).getDocument();
if (doc != null) {

try {
(new dom.DOMWriter(false)).print(doc); // use print

method from dom.DOMWriter
} catch (UnsupportedEncodingException ex) {

ex.printStackTrace();
}

}
}

}

Once your application has the XML document object, it can call any method on the
document object that is defined by the DOM specification.

Running the code example in the Workbench
To run the code example in the Workbench, you need to do the following:
v Replace xml_document_to_parse with the name of the XML document you want

to parse. To use the sample XML document we supply, specify the following:
X:\IBMVJava\ide\project_resources\IBM XML Parser for Java
Examples\data\personal.xml

where X: is the drive where VisualAge for Java is installed.
v After you create the example1 class in the Workbench, specify the XML Parser in

the class path for the example1 class. To specify the class path, do the following:
1. In the Workbench, right-click the example1 class, and in the pop-up menu

click Properties.
2. In the Properties dialog box, click the Class Path tab.
3. Select the Project path check box, and click the Compute Now button. IBM

XML Parser for Java appears in the Project path text field.

Overview
Limitations

Using a parser factory
Extending a parser class

8 XML Parser for Java

Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

Extending a parser class
You can also construct a parser by extending a parser class we supply.
Constructing a parser by extending or subclassing an existing parser class, such as
the DOMParser class, enables you to use inheritance to extend the parser or to
override its default behaviour.

The following code example uses this method to construct a DOMParser:

import com.ibm.xml.parsers.DOMParser;
import org.w3c.dom.Document;
import org.xml.sax.SAXException;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
//Constructing parser by instantiating parser object
//In this case from DOMParser
public class example3 extends DOMParser {

static public void main(String[] argv) {
String xmlFile = “file:///xml_document_to_parse”;
example3 parser = new example3();
try {

parser.parse(xmlFile);
} catch (SAXException se) {

se.printStackTrace();
} catch (IOException ioe) {

ioe.printStackTrace();
}

// The next lines are only for DOM Parsers
Document doc = ((DOMParser) parser).getDocument();
if (doc != null) {

try {
(new dom.DOMWriter(false)).print(doc); // use print

method from dom.DOMWriter
} catch (UnsupportedEncodingException ex) {

ex.printStackTrace();
}

}
}

}

Once your application has the XML document object, it can call any method on the
document object that is defined by the DOM specification.

Running the code example in the Workbench
To run the code example in the Workbench, you need to do the following:
v Replace xml_document_to_parse with the name of the XML document you want

to parse. To use the sample XML document we supply, specify the following:
X:\IBMVJava\ide\project_resources\IBM XML Parser for Java
Examples\data\personal.xml

Chapter 2. Working with the XML Parser 9

where X: is the drive where VisualAge for Java is installed.
v After you create the example1 class in the Workbench, specify the XML Parser in

the class path for the example1 class. To specify the class path, do the following:
1. In the Workbench, right-click the example1 class, and in the pop-up menu

click Properties.
2. In the Properties dialog box, click the Class Path tab.
3. Select the Project path check box, and click the Compute Now button. IBM

XML Parser for Java appears in the Project path text field.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

Using catalog files
The XML Parser supports the following catalog file formats:
v SGML Open catalog
v XCatalog

The following sections explain how to use these catalogs formats.

Using the SGML Open catalog format
To use the SGML Open catalog file format, set a TXCatalog instance as the XML
Parser’s EntityResolver. For example:

XMLParser parser = new DOMParser();
Catalog catalog = new TXCatalog(parser.getParserState());
parser.getEntityHandler().setEntityResolver(catalog);

Once the catalog is installed, catalog files that conform to the TXCatalog format
can be appended to the catalog by calling the loadCatalog () method on the parser
or the catalog instance. The following example loads the contents of two catalog
files:

parser.loadCatalog(new InputSource(“catalogs/cat1.xml”));
parser.loadCatalog(new
InputSource(“http://host/catalogs/cat2.xml”));

Using the XCatalog format
The current version of the XCatalog catalog supports the XCatalog proposal draft
0.2. XCatalog is an XML representation of the SGML Open Technical Resolution
TR9401:1997 catalog format. The current proposal supports public identifier maps,
system identifier aliases, and public identifier prefix delegates. To see the full

10 XML Parser for Java

specification of this catalog format, go to the SCatalog DTD at
http://www.ccil.org/xcowan/XML/XCatalog.html.

To use the XCatalog catalog, you must first have a catalog file in the XCatalog
format. When you write XCatalog catalog files, your file must conform to these
requirements:
v Use the XCatalog grammar.
v Specify the <!DOCTYPE> line with the PUBLIC specified as “-//DTD

XCatalog//EN” or make sure that the system identifier is able to locate the
XCatalog 0.2 DTD. XCatalog 0.2 DTD is included in the JAR file containing the
com.ibm.xml.internal.XCatalog class. For example:
<!DOCTYPE
XCatalog
PUBLIC “-//DTD XCatalog//EN”
“com/ibm/xml/internal/xcatalog.dtd”>

v The enclosing document root element is not optional. It must be specified.
v The Version attribute of the has been modified from ’#FIXED “1.0”’ to ’(0.1|0.2)

“0.2”’.

To use the XCatalog catalog in the XML Parser, set an XCatalog instance as the
XML Parser’s EntityResolver. For example:

XMLParser parser = new SAXParser();
Catalog catalog = new XCatalog(parser.getParserState());
parser.getEntityHandler().setEntityResolver(catalog);

Once they are installed, catalog files that conform to the XCatalog grammar can be
appended to the catalog by calling the loadCatalog () method on the parser or the
catalog instance. The following example loads the contents of two catalog files:

parser.loadCatalog(new InputSource(“catalogs/cat1.xml”));
parser.loadCatalog(new InputSource(“http://host/catalogs/cat2.xml”));

Limitations
The following are the current limitations of this XCatalog implementation:
v No error checking is done to avoid circular Delegate or Extend references.
v You cannot specify a combination of catalog files that reference each other.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using namespaces
Using the revalidation API
Handling errors

Chapter 2. Working with the XML Parser 11

Using namespaces
The easiest way to get namespace support is to use the TX compatibility classes
that provide an API for dealing with namespace information. There are no
standard API’s for namespace manipulation in the standard DOM and
SAX packages. The TX Compatibility classes provide additional, non-standard
API’s to work with namespaces.

The XML Namespace Recommendation does not currently specify the behavior of
validation in the presence of namespaces. The behavior of all validating parsers,
not just the IBM XML Parser, when namespaces are in use, is currently undefined.
Additionally, when using the standard DOM API, element names containing colons
(:) are treated as normal element names.

If you want to use namespace-like element names (for example, a:foo) with
validation, create a new DTD that contains fully-qualified names from all the
DTD’s in use. Since the colon character is treated as a normal element name
character, this merged DTD will allow you to do validation using these
namespace-like names.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using the revalidation API
Handling errors

Using the revalidation API
You can validate a document after it has been parsed and converted to a DOM tree
by using the RevalidatingDOMParser or the TXRevalidatingDOMParser classes.
The validate () method in these classes takes a DOM node as an argument, and
performs a validity check on the DOM tree rooted at that node, using the DTD of
the current document. Currently, the native DOM prevents the insertion of invalid
nodes, so this feature is not as useful for the native DOM.

The sample program below parses a document, inserts an illegal node into the TX
DOM, and then tries to re-validate the document:

import java.io.IOException;
import org.xml.sax.SAXException;
import org.w3c.dom.Document;
import org.w3c.dom.Node;
import com.ibm.xml.parsers.TXRevalidatingDOMParser;
import com.ibm.xml.parser.TXElement;
public class RevalidateSample {
public static void main(String args[]) {

12 XML Parser for Java

String xmlFile = “file:///d:/xml4j_2_0_15/data/personal.xml”;
TXRevalidatingDOMParser parser = new TXRevalidatingDOMParser();
try {

parser.parse(xmlFile);
}
catch (SAXException se) {
System.out.println(“SAX error: caught ”+se.getMessage());
se.printStackTrace();
}
catch (IOException ioe) {

System.out.println(“I/O Error: caught ”+ioe);
ioe.printStackTrace();

}
Document doc = parser.getDocument();
System.out.println(“Doing initial validation”);
Node pos = parser.validate(doc.getDocumentElement());
if (pos == null) { System.out.println(“ok.”); }
else {

System.out.println(“Invalid at ” + pos);
System.out.println(pos.getNodeName());

}
// Now insert dirty data
Node junk = new TXElement(“bar”);
Node corrupt = doc.getDocumentElement();
System.out.println(“Corrupting: ”+corrupt.getNodeName());
corrupt.insertBefore(junk,corrupt.getFirstChild().getNextSibling());
System.out.println(“Doing post-corruption validation”);
Node position = parser.validate(doc.getDocumentElement());
if (position == null) {

System.out.println(“ok.”);
}
else {

System.out.println(“Invalid at ” + position);
System.out.println(position.getNodeName());

}
}
}

The sample program should return the following result:

Doing initial validation
ok.
Corrupting: personnel
Doing post-corruption validation
Invalid at com.ibm.xml.parser.TXElement@f33ada64
bar

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class

Chapter 2. Working with the XML Parser 13

Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Handling errors

Handling errors
When you create an XML Parser instance, the default error handler does nothing.
This means that your program will fail silently when it encounters an error.

To handle errors, you should register an error handler with the XML Parser by
supplying a class that implements the org.xml.sax.ErrorHandler interface. This is
true regardless of whether your XML Parser is DOM-based or SAX-based.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API

14 XML Parser for Java

Chapter 3. Samples

Before you start
Before you can run the sample programs, you need to add the IBM XML Parser for
Java Examples feature to the VisualAge for Java workspace.

To add the feature to the workspace, do the following:
1. In the VisualAge for Java Workbench, click File > Quick Start. The Quick Start

window opens.
2. In the Quick Start window, click Features in the left column, click Add Feature

in the right column, and click OK.
3. In the Selection Required page, select IBM XML Parser for Java Examples, then

click OK. The feature is added to the workspace.

Once the feature is added to the workspace, you can run the sample programs.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

SAXWriter and DOMWriter
SAXWriter and DOMWriter parse your input file and print it out in XML format.
You can use a command line option to print in a canonical XML format, so you
can use the output to compare XML documents. SAXWriter and DOMWriter also
display any errors or warnings that occurred during the parse.

SAXWriter uses either the validating or non-validating SAX parser. DOMWriter
uses either the validating or non-validating DOM parser.

Source code
To see all the sample programs, look in the VisualAge for Java Workbench for the
IBM XML Parser for Java Examples project.

Running SAXWriter
To run SAXWriter, do the following:
1. In the VisualAge for Java Workbench, expand the IBM XML Parser for Java

Examples project.
2. Expand the sax package.

© Copyright IBM Corp. 1998, 2000 15

3. Right-click the SAXWriter class, and in the pop-up menu click Properties.
4. In the Properties dialog box, click the Program tab.
5. The Command line arguments field contains the name of the XML document

SAXWriter will parse:
data\personal.xml

You can leave the default name as is or specify a different XML document to
parse. You can also specify other command line options. Refer to Command
line options for SAXWriter (page 16) for details.

6. Click OK.
7. Right-click the SAXWriter class, and in the pop-up menu click Run > Run

main.
8. The Console window displays the output from the parser.

Command line options for SAXWriter
SAXWriter supports the following command line options:

-p parserName Specify the parser class to be used. The available parsers are:

v com.ibm.xml.parsers.SAXParser (default)

v com.ibm.xml.parsers.ValidatingSAXParser

-h Display the SAXWriter help information in the Console window. The
default is no help.

-c XMLdocument Output in canonical format. The default is normal format.

Running DOMWriter
To run DOMWriter, do the following:
1. In the VisualAge for Java Workbench, expand the IBM XML Parser for Java

Examples project.
2. Expand the dom package.
3. Right-click the DOMWriter class, and in the pop-up menu click Properties.
4. In the Properties dialog box, click the Program tab.
5. The Command line arguments field contains the name of the XML document

DOMWriter will parse:
data\personal.xml

You can leave the default name as is or specify a different XML document to
parse. You can also specify other command line options. Refer to Command
line options for DOMWriter (page 16) for details.

6. Click the OK.
7. Right-click the DOMWriter class, and in the pop-up menu click Run > Run

main.
8. The Console window displays the output from the parser.

Command line options for DOMWriter
DOMWriter supports the following command line options:

-p parserName Specify the parser class to be used. The available parsers are:

v dom.wrappers.DOMParser (default)

v dom.wrappers.NonValidatingDOMParser

v dom.wrappers.TXParser

16 XML Parser for Java

-h Display the DOMWriter help information in the Console window. The
default is no help.

-c XMLdocument Output in canonical format. The default is normal format.

-e encodingName Output using the specified encoding. The default is UTF8. Specifying
the -e option with no encoding name displays a list of valid encoding
names.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

SAXCount and DOMCount
SAXCount and DOMCount invoke the parser on an XML document and print out
interesting information about the document, such as the total parse time, along
with counts of elements, attributes, text characters, and ignorable whitespace
characters. SAXCount and DOMCount also display any errors or warnings that
occurred during the parse.

SAXCount uses either the validating or non-validating SAX parser. DOMCount
uses either the validating or non-validating DOM parser.

Source code
To see the sample programs, look in the VisualAge for Java IDE for the IBM XML
Parser for Java Examples project.

Running SAXCount
To run SAXCount, do the following:
1. In the VisualAge for Java Workbench, expand the IBM XML Parser for Java

Examples project.
2. Expand the sax package.
3. Right-click the SAXCount class, and in the pop-up menu click Properties.
4. In the Properties dialog box, click the Program tab.
5. The Command line arguments field contains the name of the XML document

SAXCount will parse:
data\personal.xml

You can leave the default name as is or specify a different XML document to
parse. You can also specify other command line options. Refer to Command
line options for SAXCount (page 18) for details.

6. Click OK.

Chapter 3. Samples 17

7. Right-click the SAXCount class, and in the pop-up menu click Run > Run
main.

8. The Console window displays the output from the parser.

Command line options for SAXCount
SAXCount supports the following command line options:

-p parserName Specify the parser class to be used. The available parsers are:

v com.ibm.xml.parsers.SAXParser (default)

v com.ibm.xml.parsers.ValidatingSAXParser

-h Print the SAXWriter help information in the Console window. The default
is no help.

Running DOMCount
To run DOMCount, do the following:
1. In the VisualAge for Java Workbench, expand the IBM XML Parser for Java

Examples project.
2. Expand the dom package.
3. Right-click the DOMCount class, and in the pop-up menu click Properties.
4. In the Properties dialog box, click the Program tab.
5. The Command line arguments field contains the name of the XML document

DOMCount will parse:
data\personal.xml

You can leave the default name as is or specify a different XML document to
parse. You can also specify other command line options. Refer to Command
line options for DOMCount (page 18) for details.

6. Click OK.
7. Right-click the DOMCount class, and in the pop-up menu click Run > Run

main.
8. The Console window displays the output from the parser.

Command line options for DOMCount
SAXCount supports the following command line options:

-p parserName Specify the parser class to be used. The available parsers are:

v dom.wrappers.DOMParser (default)

v dom.wrappers.NonValidatingDOMParser

v dom.wrappers.TXParser

-h Print the DOMWriter help information in the Console window. The
default is no help.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class

18 XML Parser for Java

Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

TreeViewer
TreeViewer displays the input file in a graphical tree-based interface. This sample
highlights the error handling capabilities of the parser, demonstrating how the
parser can recover from many types of common errors.

Source code
To see the sample programs, look in the VisualAge for Java IDE for the IBM XML
Parser for Java Examples project.

Running TreeViewer
To run TreeViewer, do the following:
1. In the VisualAge for Java Workbench, expand the IBM XML Parser for Java

Examples project.
2. Expand the ui package.
3. Right-click the TreeViewer class, and in the pop-up menu click Properties.
4. In the Properties dialog box, click the Program tab.
5. The Command line arguments field contains the name of the XML document

TreeViewer will parse:
data\personal.xml

You can leave the default name as is or specify a different XML document to
parse.

6. Click OK.
7. Right-click the TreeViewer class, and in the pop-up menu click Run > Run

main.
8. The graphical user interface displays a tree-view of the XML document in the

left pane, and a XML source-view in the right pane.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class
Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

Chapter 3. Samples 19

DOMFilter
DOMFilter parses an XML document, searching for specific elements by name, or
elements with specific attributes. It uses the getElementsByTagName() method to
traverse the DOM tree, looking for the elements or attributes that match your
specification.

Source code
To see the sample programs, look in the VisualAge for Java IDE for the IBM XML
Parser for Java Examples project.

Running DOMFilter
To run DOMFilter, do the following:
1. In the VisualAge for Java Workbench, expand the IBM XML Parser for Java

Examples project.
2. Expand the dom package.
3. Right-click the DOMFilter class, and in the pop-up menu click Properties.
4. In the Properties dialog box, click the Program tab.
5. The Command line arguments field contains the name of the XML document

DOMFilter will parse:
data\personal.xml

You can leave the default name as is or specify a different XML document to
parse. You can also specify other command line options. Refer to Command
line options for DOMFilter (page 20) for details.

6. Click OK.
7. Right-click the DOMFilter class, and in the pop-up menu click Run > Run

main.
8. The Console window displays the output from the parser.

Command line options for DOMFilter
DOMFilter supports the following command line options:

-p parserName Specify the parser class to be used. The available parsers are:

v dom.wrappers.DOMParser (default)

v dom.wrappers.NonValidatingDOMParser

v dom.wrappers.TXParser

-h Print the DOMWriter help information in the Console window. The
default is no help.

-e elementName Specify the name of the element for which to search. The default is to
match all elements.

-a attributeName Specify the name of the attribute for which to search. The default is to
match all attributes.

Overview
Limitations

Using a parser factory
Explicitly instantiating a parser class

20 XML Parser for Java

Extending a parser class
Creating a DOM parser
Creating a SAX parser
Using catalog files
Using namespaces
Using the revalidation API
Handling errors

Chapter 3. Samples 21

22 XML Parser for Java

Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2000 23

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.
The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1997, 2000. All rights reserved.

24 XML Parser for Java

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

© Copyright IBM Corp. 1998, 2000 25

26 XML Parser for Java

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:
v AIX
v AS/400
v DB2
v CICS
v CICS/ESA
v IBM
v IMS
v Language Environment
v MQSeries
v Network Station
v OS/2
v OS/390
v OS/400
v RS/6000
v S/390
v VisualAge
v VTAM
v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States, or other countries, or both.

Tivoli Enterprise Console and Tivoli Module Designer are trademarks of Tivoli
Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1998, 2000 27

	Contents
	Chapter 1. XML Parser for Java: Overview
	Limitations

	Chapter 2. Working with the XML Parser
	Constructing a parser
	Creating a DOM parser
	Creating a SAX parser
	Using a parser factory
	Explicitly instantiating a parser class
	Extending a parser class

	Using catalog files
	Using namespaces
	Using the revalidation API
	Handling errors

	Chapter 3. Samples
	Before you start
	SAXWriter and DOMWriter
	SAXCount and DOMCount
	TreeViewer
	DOMFilter

	Notices
	Programming interface information
	Trademarks and service marks

