
IBM VisualAge® for Java™, Version 3.5

JSP/Servlet Development Environment

���

Edition notice

This edition applies to Version 3.5 of IBM VisualAge for Java and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. JSP and servlets 1
JSP/Servlet Development Environment 2

JavaServer Pages 2
JSP Execution Monitor 4

Setting up the environment 4
Loading the required features. 4
Configuring DB2 to work with data-enabled JSP
applications. 5
Migrating between JSP 1.0 and JSP 0.91 support . 6

Using the JSP Execution Monitor 6
Loading generated servlet externally 10
Enabling JSP source debugging 11
Retrieving syntax error information 11

Debugging JSP-generated servlet code in VisualAge
for Java. 13
Working around problems 14

Chapter 2. Samples that implement JSP
and servlet technology - overview . . . 19

Sample: Signs of the Zodiac 20
Sample: Servlet Engine Configuration 21
Sample: Find the Leap Years. 22

Chapter 3. JSP/Servlet Development
Environment reference 25
JSP 0.91 programming reference 25
JSP 1.0 programming reference 35
Generated servlet file names. 42

Notices 45

Programming interface information . . 47

Trademarks and service marks 49

© Copyright IBM Corp. 1998, 2000 iii

iv JSP/Servlet Development Environment

Chapter 1. JSP and servlets

A servlet is a Java program that plugs into a Web server. A Web server can be
extended to host servlets through a servlet engine. Servlets make it easy to expand
from client/single-server applications to multi-tier applications. Servlets allow
businesses to connect databases to the Web.

Servlets greatly improve portability. Because servlets are written in Java, they are
portable across platforms; they do not have to be recompiled for different
operating systems. The servlet interface is a standard, so servlets can be moved
from one servlet engine to another, as long as the servlets do not use vendor
extensions. However, even if vendor extensions are used, the servlet engine will
support a variety of Web servers, which means that the servlet will not be locked
into a single platform. Consequently, programmers can develop on an operating
system that has good tool support, such as Windows NT, and then deploy on an
operating system with good scalability, such as AIX.

You can develop, debug, and deploy servlets within the VisualAge for Java
Integrated Development Environment (IDE). In the IDE, you can set breakpoints
within servlet objects, and step through code to make changes that are dynamically
folded into the running servlet on a running server, without having to restart each
time.

Although a servlet can be a completely self-contained program, the task of
generating dynamic content should be split into the following two parts, to ease
server-side programming:
v The business logic (content generation), which governs the relationship between

input, processing, and output
v The presentation logic (content presentation, or graphic design rules), which

determines how information is presented to the user

In this scenario, business logic can be handled by Java beans, and presentation
logic can be handled by JavaServer Pages, while the servlet handles the HTTP
protocol. With JavaServer Pages technology, you can efficiently separate the
business logic of an application from its presentation logic.

VisualAge for Java provides the WebSphere Test Environment (WTE), which
contains the WebSphere Application Server Advanced Edition run-time
environment. This unit test environment allows you to efficiently develop your
servlets and JSP files for WebSphere. Important! The WTE encompasses the JSP
file, servlet, and EJB run times and unit testing environment; it does not contain
the entire WebSphere Advanced run time.

The WebSphere Application Server is IBM’s Java servlet-based Web application
server that helps you deploy and manage Web applications. WebSphere
Application Server is a Web server plug-in based on a server-side Java
programming model that uses servlets, EJB beans, and JavaServer Pages
technology.

VisualAge for Java also provides the Create Servlet SmartGuide, which you can
use to develop servlets and their related Web resources quickly.

© Copyright IBM Corp. 1998, 2000 1

JavaServer Pages
JSP Execution Monitor
WebSphere Test Environment

Using the JSP Execution Monitor
Retrieving syntax error information
Loading generated servlet externally
Debugging JSP-generated code in VisualAge for Java
Working around problems
Samples that implement JSP and servlet technology - overview
Sample: Signs of the Zodiac
Sample: Servlet Engine Configuration
Sample: Find the Leap Years

JSP debug flow

JSP/Servlet Development Environment

JavaServer Pages
JavaServer Pages (JSP), a server-side scripting technology, allows you to embed
Java code within static Web pages (HTML documents), and execute the Java code
when the page is served. By separating presentation logic (content presentation)
from business logic (content generation), the JavaServer Pages technology makes it
easy for both the Java programmer and the Web page designer to create HTML
pages with dynamic content.

With JavaServer Pages, you can easily access reusable components. JSP technology
allows you to use all the Java APIs available to any Java applet or application,
such as Java beans, enterprise beans (EJB beans), and servlets.

2 JSP/Servlet Development Environment

The scripted HTML file has a .jsp extension, so that the server can identify it as a
JSP file. Before the JSP page is served, the JSP syntax is parsed and processed into
an object on the server side. The resulting object generates dynamic HTML content
and sends it back to the client.

A JSP file can be directly requested as a URL, called by a servlet, or called from
within an HTML page. In all three cases, the servlet engine compiles the JSP into a
servlet and runs it. The compilation is performed the first time the JSP file is
requested, and each time the JSP source changes. Being able to compile on demand
means that you can deploy new versions of JSP files into a running Web
application. As well, performance is improved because you do not have to
compile, load, and run a servlet each time a request is made to the server.

In VisualAge for Java, Version 3.5, both JSP 0.91 and JSP 1.0 are supported. The
default settings support JSP 1.0. For instructions on changing the settings to use
JSP 0.91, see “Migrating between JSP 0.91 and JSP 1.0 support.”

JSP beans
One of the most powerful features of JavaServer Pages is that you can access Java
beans and EJB beans from within a .jsp file. Java beans can be class files, serialized
beans, beans that are dynamically generated by a servlet, or a servlet itself.

You can do any of the following:
v Create a bean from a serialized file or a class file
v Refer to a bean from an HTTP session
v Pass a bean from the servlet to the JSP page

You can access reusable server-side components simply by declaring the
components in the .jsp file. Bean properties can then be accessed inside the file.

Use the bean tag to declare a bean inside a .jsp file. Use JSP syntax and HTML
template syntax to access the bean.

Dynamic content generation
Dynamic content generation works in the following way:
1. The user fills in an HTML form, and clicks Submit. This will post the request to

a Java servlet.
2. The servlet reads the input parameters and passes the parameters to Java beans

that perform the business logic.
3. Based on the outcome of the business logic and the user profile, the servlet

calls a JSP page to present the results.
4. The JSP page extracts the results from the Java beans and merges them with the

HTML page. The dynamically generated HTML page is returned to the user.

You can easily create JSP files by using WebSphere Studio tools, and text editors.

JSP and servlets
JSP Execution Monitor

Loading the required features
Configuring DB2 to work with data-enabled samples
Migrating between JSP 0.91 and JSP 1.0 support

Chapter 1. JSP and servlets 3

Using the JSP Execution Monitor
Retrieving syntax error information
Loading generated servlet externally
Debugging JSP-generated code in VisualAge for Java
Working around problems
Samples that implement JSP and servlet technology - overview

JSP 1.0 programming reference
JSP 0.91 programming reference

JSP Execution Monitor
The JSP Execution Monitor allows you to monitor the execution of JSP source, the
JSP-generated Java source, and the HTML output. With the JSP Execution Monitor,
you can efficiently monitor JSP run-time errors. The JSP Execution Monitor
displays the mapping between the JSP and its associated Java source code, and
allows you to insert breakpoints in the JSP source.

If you find an error in a JSP page, you can also modify the JSP source in a text
editor, and then run the JSP source in the JSP Execution Monitor. To load the
updated version of the JSP source into the JSP Execution Monitor, you simply have
to refresh your Web browser.

The JSP Execution Monitor highlights the location of syntax errors in both the JSP
and JSP-generated Java source.

JavaServer Pages
JSP and servlets

Migrating between JSP 0.91 and JSP 1.0 support
Using the JSP Execution Monitor
Retrieving syntax error information
Loading generated servlet externally
Debugging JSP-generated code in VisualAge for Java
Working around problems
Samples that implement JSP and servlet technology - overview

JSP debug flow

Setting up the environment

Loading the required features
To work with JavaServer Pages technology in VisualAge for Java, you must first
load the necessary features from the repository into the workspace.

To perform a feature install, select File > Quick Start > Features > Add Features.
Then, select WebSphere Test Environment. Click OK. This automatically loads the
following projects into your IDE workspace:

4 JSP/Servlet Development Environment

v IBM WebSphere Test Environment
v IBM JSP Examples

The IBM WebSphere Test Environment feature contains the WebSphere integration
components, the Servlet API classes, and the JSP Execution Monitor.

JavaServer Pages
JSP and servlets

Configuring DB2 to work with data-enabled samples
Migrating between JSP 0.91 and JSP 1.0 support

Configuring DB2 to work with data-enabled JSP applications
To work with any data-enabled JSP applications, you must have DB2 installed. You
need the DB2 Universal Database Personal Edition only. This edition provides a
local DB2 server.

Note: You can also work with data-enabled JSP applications using the DB2
Connect Personal Edition. If you choose to use the DB2 Connect Personal Edition
only (without installing DB2 Universal Database Personal Edition), then you must
be able to connect to a remote DB2 server.

If you have installed the DB2 Universal Database Personal Edition and you now
want to install the DB2 Software Developer’s Kit (SDK), ensure that the DB2
database server and the DB2 administration server are not running.

When you have installed the DB2 SDK, you are given three options for rebooting.
Select the following option:

Reboot only. (Manually start the Client Configuration Manager at a later
time.)

To stop the DB2 database and administration servers, do the following:
1. On the Windows desktop, select Start > Programs > DB2 for Windows NT/95

> Command Window.
2. From the command line, issue the following two commands:

db2stop
db2admin stop
These commands stop the servers.
If you are running Windows« 95 and you receive a message that says you are
not authorized to perform this action, then log out of Windows 95 and log on
using another user ID and password.

JavaServer Pages
JSP and servlets

Loading the required features
Migrating between JSP 0.91 and JSP 1.0 support

Chapter 1. JSP and servlets 5

Migrating between JSP 1.0 and JSP 0.91 support
In VisualAge for Java, Version 3.5, both JSP 0.91 and JSP 1.0 are supported. The
default settings support JSP 1.0. You can change the settings to support JSP 0.91 by
revising the following properties file:

X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\servlets\default_app.webapp

where X:\IBMVJava is the VisualAge for Java installation directory. In this file,
change the following:

...<description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code><init-parameter>...

back to:
...<description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code><init-parameter>...

Save the file.

If you want to switch back to JSP 1.0 support, then change the following:
...<description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code><init-parameter>...

to:
...<description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code><init-parameter>...

JavaServer Pages
JSP and servlets

Loading the required features
Configuring DB2 to work with data-enabled samples
Working around problems

JSP 0.91 programming reference
JSP 1.0 programming reference

Using the JSP Execution Monitor
Use the JSP Execution Monitor to monitor the execution of JSP source,
JSP-generated Java source, and HTML output.

Working with JSP files in a team environment
When working with JSP files in a team environment with a shared repository, the
workspace owner must also be the owner of the project that contains the generated
JSP-generated servlets and class files. See “Debugging JSP-generated code in
VisualAge for Java.”

Launching the JSP Execution Monitor
To launch the JSP Execution Monitor, do the following:

6 JSP/Servlet Development Environment

1. From the Workspace menu, select Tools > WebSphere Test Environment. The
WebSphere Test Environment Control Center dialog opens.

2. Select JSP Execution Monitor Options. In the JSP Execution Monitor window,
complete the following:
a. The default internal port number for the use of the JSP Execution Monitor is

8082. If port number 8082 is already in use, change the port number in the
JSP Execution Monitor internal port number field. The port number must be
between 1024 and 66536. Note: If the JSP Execution Monitor is running, you
will not be able to change the port number.

b. By default, the JSP Execution Monitor mode is disabled. You must select
Enable monitoring JSP execution to enable the JSP Execution Monitor
when a JSP file gets loaded.

c. By default, the Retrieve syntax error information option is disabled.
Selecting Retrieve syntax error information allows you to know exactly
where a syntax error occurs in the code source.
For more details, see Retrieving syntax error information.

d. When you have selected your options, click Apply. (In this case, ensure that
at least the Enable monitoring JSP execution option is selected, so that you
can familiarize yourself with the JSP Execution Monitor window.)

3. In the WebSphere Test Environment Control Center, select Servers > Servlet
Engine to specify the JSP settings.
a. By default, the Load generated servlet externally option is disabled.

Selecting Load generated servlet externally allows you to load a generated
servlet, so that the servlet does not get imported into the IDE.
When you select to load the generated servlet externally, you also have the
option of selecting to halt the loading at the beginning of the service
method. Select halt at the beginning of the service method if you want see
the execution of the generated servlet in the IDE debugger. De-select this
option if you want to be able to set breakpoints in a specific line of the
generated code.
For more details, see Loading generated servlet externally.

b. By default, the Enable JSP source debugging option is disabled. Selecting
Enable JSP source debugging allows you to debug JSP source using the
IDE debugger. You can select this option only when the Load generated
servlet externally option is selected.
For more details, see Enabling JSP source debugging.

4. Launch the WebSphere Test Environment Servlet Engine. In the WebSphere Test
Environment Control Center, select Servlet Engine. In the Servlet Engine
window, click Start the Servlet Engine. Check the status line messages in the
Control Center to ensure that the Servlet Engine is running in VisualAge for
Java.
Once you have the WebSphere Test Environment running in VisualAge for Java,
you can serve JSP files and HTML files from the designated document root. See
“Starting, stopping, and configuring WTE services.”

5. Then, launch a JSP file in the Web browser, using the default WebSphere
port:8080.

The JSP Execution Monitor window has four panes:
1. The JSP File List pane lists all the JSP files that you have launched in your

browser.
2. The JSP Source pane displays the JSP source code.
3. The Java Source pane displays the JSP-generated Java source code.

Chapter 1. JSP and servlets 7

4. The Generated HTML Source pane displays the run-time generated HTML
source code.

Monitoring the execution of JSP source
Each time you load a JSP file in your browser, the file name is displayed in the JSP
File List pane. When the JSP file has completed loading in the JSP Execution
Monitor, click the file name in the JSP File List pane to display the JSP source code
in the JSP Execution Monitor. In the JSP Source pane, you can step through the JSP
source by clicking the Step

button in the tool bar at the top of the screen, or by selecting Action > Step. Click
the Step

button to step through each significant block of JSP code in the JSP source.

The Generated Java Source pane displays the generated Java code of the
highlighted block of JSP code in the JSP Source pane. The Java source that is
highlighted in the Generated Java Source pane is the currently executed JSP source
as indicated in the JSP Source pane. The Generated HTML Source pane displays
the generated HTML code of the highlighted block of JSP code in the JSP Source
pane.

You can also set breakpoints in the JSP source code by double-clicking in the left
margin (dark gray area) of the JSP Source pane. After you set your breakpoints,
click the Run

8 JSP/Servlet Development Environment

button, or select Action > Run, to execute the JSP source code up to the set
breakpoint. Double-click a breakpoint again to remove it. You cannot set a
breakpoint on an empty line. If you want to execute the JSP source code to the end
without stepping through or highlighting each significant block of JSP code, click
the Fast Forward

button, or select Action > Fast Forward.

When you select Run or Fast Forward, the other push buttons are still enabled.
Therefore, when you select Run or Fast Forward while the JSP code is running,
you can select Step to pause the program at any point. Also, while in the Run
mode, you can switch to the Fast Forward mode, and vice versa.

When the code has been fully executed, the Step, Run, Fast Forward, and
Terminate buttons (along with Step, Run, and Terminate in the Action drop-down
menu) are no longer available. Select File > Exit to close the JSP Execution
Monitor.

You can click Terminate

to complete code execution.

To maximize, minimize, or detach a pane, click the pane in order to select it, and
then select the appropriate item from the View menu.

Disabling the JSP Execution Monitor
If you want to simply run the JSP source without monitoring the execution of the
source itself, then you must disable the JSP Execution Monitor. Deselect Enable
monitoring JSP execution in the JSP Execution Monitor Options page of the
WebSphere Test Environment Control Center. See the file “Starting, stopping, and
configuring WTE services” in the online help.

When the JSP Execution Monitor is disabled, you can debug the generated servlet
in the IDE. You will find the generated servlet under the JSP Page Compile
Generated Code project in your workspace. See “Debugging JSP-generated code in
VisualAge for Java.”

JSP Execution Monitor
JavaServer Pages
JSP and servlets

Starting, stopping, and configuring WTE services
Retrieving syntax error information
Loading generated servlet externally
Loading the required features
Configuring DB2 to work with data-enabled samples
Migrating between JSP 0.91 and JSP 1.0 support
Debugging JSP-generated code in VisualAge for Java
Working around problems
Samples that implement JSP and servlet technology - overview

Chapter 1. JSP and servlets 9

JSP debug flow
Generated servlet file names

Loading generated servlet externally
In VisualAge for Java, Version 3.0, each time a JSP file is compiled, the generated
servlet always gets imported into the IDE. This occurs so that you can debug the
generated servlet using the IDE debugger. However, the size of the repository
increases significantly when JSP files are frequently changed and launched
(because the servlet is getting recompiled each time). To prevent the unnecessary
size increase in the repository, we have added an option that allows you to load
the generated servlet externally. This way, the generated servlet does not get
imported into the IDE.

If you select the Load generated servlet externally option in the Servlet Engine
page of the WebSphere Test Environment Control Center, and then request a JSP
file, then the pagecompiler will check to see if the generated servlet already exists
in the workspace. If the servlet class exists, then a different file naming convention
for the generated servlet class will be used, so that the server will not pick up a
previous version of the generated servlet.

The generated servlet is compiled into a class file when the Load generated servlet
externally option is enabled. Consequently, the generated servlet will not be
imported into the IDE.

When the Load generated servlet externally feature is enabled, the Retrieve syntax
error information option is also enabled.

To enable the Load generated servlet externally feature, complete the following:
1. Under the Workspace menu in the IDE workbench, select Workspace > Tools >

WebSphere Test Environment. The WebSphere Test Environment Control
Center opens.

2. Select JSP Execution Monitor Options.
3. By default, the Load generated servlet externally option is disabled. Selecting

Loading generated servlet externally allows you to load a generated servlet, so
that the servlet does not get imported into the IDE.
When you select to load the generated servlet externally, you also have the
option of selecting to halt the loading at the beginning of the service method.

4. Select halt at the beginning of the service method if you want to see the
execution of the generated servlet in the IDE debugger.

For a detailed description on debugging external .class files in the IDE debugger,
please refer to the VisualAge for Java Integrated Debugger online documentation.

Debugging the generated servlet class file
The default JSP cache directory is automatically added to the Servlet Engine
classpath. This allows you to debug the generated servlet class files using the IDE
debugger.
v For JSP 0.91, the default JSP cache directory is

X:\IBMVJava\Ide\project_resources\IBM WebSphere Test
Environment\temp\default_app

v For JSP 1.0, the default JSP cache directory is
X:\IBMVJava\Ide\project_resources\IBM WebSphere Test
Environment\temp\JSP1_0\default_app

10 JSP/Servlet Development Environment

We recommend that you accept the above default directory settings. However, if
you want to modify the directory settings, you must do so in the
default_app.webapp file. The default_app.webapp file is located in

X:\IBMVJava\Ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\servlets

In all of the above cases, X:\IBMVJava is the directory in which you installed
VisualAge for Java.

Each generated servlet class file contains a number extension in the file name; the
number extension changes each time the servlet is recompiled. For example, with
only the load generated servlet externally option selected, a JSP file called
simple.jsp will have a generated servlet name called _simple_xjsp_2079706272.java
where 2079706272 is a random number.

JSP Execution Monitor
JavaServer Pages
JSP and servlets

Using the JSP Execution Monitor
Retrieving syntax error information
Debugging JSP-generated code in VisualAge for Java
Working around problems

Enabling JSP source debugging
Use the WebSphere Test Environment Control Center to enable the JSP source
debugging feature. The JSP Execution Monitor’s Enable JSP source debugging
feature allows you to debug JSP source using the IDE debugger.

When you select to enable JSP source debugging, and then load a JSP file in your
browser, the JSP source is displayed in the IDE debugger window. You can then
debug the JSP source by setting breakpoints in the source.

For detailed instructions on debugging in the IDE, see the VisualAge for Java
online help.

JSP and servlets
JavaServer Pages
JSP Execution Monitor

Using the JSP Execution Monitor
Loading generated servlet externally
Retrieving syntax error information

Retrieving syntax error information
The JSP Execution Monitor’s syntax error checking feature allows you to know
exactly where a syntax error occurs in the code source.

Chapter 1. JSP and servlets 11

To set the JSP Execution Monitor to retrieve syntax error information, complete the
following:
1. Under the Workspace menu in the IDE workbench, select Workspace > Tools >

WebSphere Test Environment. The WebSphere Test Environment Control
Center opens.

2. Select JSP Execution Monitor Options.
3. By default, the JSP Execution Monitor is not set to display the exact syntax

error when an error occurs. Select Retrieve syntax error information if you
want to know not only that a syntax error exists, but also where that syntax
error occurs in the code source.
If the JSP Execution Monitor is not enabled, then the syntax errors are
displayed only in the browser. When you enable the JSP Execution Monitor, the
syntax errors will be visually mapped back to the JSP source and displayed in
the JSP Execution Monitor.
If you do not set this feature and syntax errors exist in the JSP file being
loaded, then the JSP Execution Monitor will not launch even if the JSP
Execution Monitor is enabled. Instead, the browser will display a compile error
message, “Error getting compiled page”.
Click Apply to save.

4. The JSP Execution Monitor will list the error message in the status line located
at the bottom of the JSP Execution Monitor window. The error will be listed as
a JSP or Generated Java syntax error. If the error is a JSP syntax error, the
generated Java source will not be displayed in the JSP Execution Monitor (a JSP
source containing a syntax error cannot properly generate Java source). If the
error is a Java syntax error, the JSP Execution Monitor will display both the JSP
source and the JSP-generated Java source. The syntax error will be highlighted
in both the JSP source and the Java source.
JSP syntax errors that have not been picked up by the pagecompiler
preprocessor will be displayed as Generated Java syntax errors.
To step from one syntax error to another, click the Previous Problem

or Next Problem

buttons, or select Problems > Previous Problem or Problems> Next Problem.

Clear the Retrieve syntax error information check box once you have fixed all the
syntax errors. This will result in faster compile time, and will allow you to focus
on run-time errors.

Debugging JSP source
In general, when working with a JSP file, complete the following steps for
debugging JSP source efficiently:
1. In the JSP Execution Monitor Option dialog box, clear both the Enable

monitoring JSP execution and Retrieve syntax error information check boxes.
When you load the file, and the browser displays “Error getting compiled
page”, it means that a syntax error exists in the JSP file.

2. Then, select both Enable monitoring JSP execution and Retrieve syntax error
information.

3. Reload the JSP file in your browser in order to display the syntax error in the
JSP Execution Monitor.

4. Modify the JSP file, correcting the syntax errors.

12 JSP/Servlet Development Environment

5. Reload the JSP file in your browser.
6. Repeat these steps until no syntax error remains in the JSP file.

If you run the JSP file to completion and discover that the dynamic content of the
results is not correct, then select Enable monitoring JSP execution and deselect
Retrieve syntax error information. Then, reload the JSP file in the browser in order
to run the JSP file in the JSP Execution Monitor.

See “Using the JSP Execution Monitor.”

JSP Execution Monitor
JavaServer Pages
JSP and servlets

Using the JSP Execution Monitor
Loading generated servlet externally
Debugging JSP-generated code in VisualAge for Java
Working around problems

Debugging JSP-generated servlet code in VisualAge for Java
Because VisualAge for Java can run servers in the IDE, VisualAge for Java allows
you to debug servlets in the IDE using the VisualAge for Java debugger. In the
IDE, you can set breakpoints in a servlet, just as you can for applets. You can
debug JSP-generated code in the IDE by setting breakpoints in the code source.
You can cut and paste the changes that you made to the JSP-generated code (Java
code) back into the JSP source.

When you run the servlet from a browser, the breakpoints halt the servlet code,
and a Debugger window opens, which allows you to step through and edit the
code. When you resume running the servlet, your code changes are immediately
reflected in any output to the browser. This allows you to do real-time debugging
of the servlet code while running your application.

When JSP-generated code is imported into the IDE, the following occurs:
1. The JSP source is fed to a page compiler, which creates an executable object (for

example, a Java HTTP servlet).
2. VisualAge for Java then imports the generated servlet code into the following

default directory:
X:\IBMVJava\IDE\project_resources\IBM WebSphere Test
Environment\temp\default_app
where X:\IBMVJava is the directory in which VisualAge for Java is installed.
You can run and debug the servlet by using your browser to call the JSP file
that created the servlet.

Attention: For JSP 0.91, if the JSP Execution Monitor is disabled, then you will find
the generated code in the class _sourcename_xjsp under the pagecompile package in
the JSP Page Compile Generated Code project. If the JSP Execution Monitor is
enabled, then you will find the generated code in the class _sourcename_xjsp_debug
under the pagecompile package in the JSP Page Compile Generated Code project.

The generated code in the class _sourcename_xjsp_debug contains extra internal
debug information. When working with the business logic of a JSP source, we

Chapter 1. JSP and servlets 13

recommend that you disable the JSP Execution Monitor and work with the
generated code in the class _sourcename_xjsp. This code does not contain extra
internal debug information.

JSP ’Hello World’ sample
Use the following JSP sample to walk through the steps of debugging
JSP-generated code in VisualAge for Java. The sample performs some arithmetic
operations, contains a loop, and has a number of places where you can set
breakpoints, and examine field and object values.
<html>
<body>
<h2>This is a JavaServer Pages (JSP) example using a 'Scriplet' in which you can step
through the generated Java code in VisualAge for Java, Version 3.0</h2>

<% int sum = 0;%>
<% int number = 123;%>
<% int counter = 1;%>
<% int loops = 20;%>
<% out.println(“Total number of loops to process: ” + loops);%>
<% // try setting a breakpoint in the for loop below and step through the debugger %>
<% for (; counter < loops; counter++) {%>
<% out.println(“Hello World from VisualAge for Java, Version 3.0”);%>
<% out.println(“Current loop number is: ” + counter);%>
<% sum = number + counter;%>
<% out.println(“” + counter + “ + the number ” + number + “ is = ” + sum);%>
<% }%>
<h3>That was dynamic output from a JavaServer Page</h3>
</body>
</html>

For detailed instructions on debugging in the IDE, see the VisualAge for Java
online help.

JavaServer Pages
JSP and servlets

Using the JSP Execution Monitor
Loading generated servlet externally
Working around problems
Samples that implement JSP and servlet technology - overview

Working around problems
This topic contains information on troubleshooting problems that you might
encounter while working with JavaServer Pages in VisualAge for Java. Use the
following list to identify a specific problem, then see the associated section that
addresses the problem, following the list.
v “I cannot run an external servlet inside VisualAge for Java”, or “I am having

problems running a JSP file that calls a servlet.”
See Running external servlets inside VisualAge for Java (page 15).

v “I am getting a Page Compile error message each time I load a JSP file in my
browser.”
See Resolving case-sensitivity issue (page 15).

14 JSP/Servlet Development Environment

v “I am not able to serve anything — HTML files, JSP files, and servlets — from
my browser.”
See Serving files from browser (page 16).

v “I have detached the entire JSP Execution Monitor pane.”
See Restoring the entire JSP Execution Monitor pane (page 16).

v “I have altered the browser preferences for a detached JSP Execution Monitor
pane, and now I have lost the VisualAge for Java, Version 3.0 look and feel.”
See Restoring the VisualAge for Java, Version 3.0 look and feel to the JSP
Execution Monitor (page 16).

v “The debugger opens when I load a JSP file.”
See Preventing the debugger from opening (page 16).

v “I cannot execute multiple JSP files at a time in the JSP Execution Monitor.”
See Executing multiple JSP files at one time (page 16).

v “I cannot reload an older version of a JSP file.”
See Reverting to an older version of a JSP file (page 17).

v “I cannot use the JSP Execution Monitor to step into script tag.”
See Debugging code inside a script tag (page 17).

v “I cannot re-detach a pane in the JSP Execution Monitor.”
See Re-detaching a pane in the JSP Execution Monitor (page 17).

v “I have removed all panes from the JSP Execution Monitor, and now have
problems detaching into a new window.”
See Detaching into new window (page 17).

Running external servlets inside VisualAge for Java
To run an external servlet inside VisualAge for Java, you must first copy the
servlet’s class files into the following directory:

X:\IBMVJava\IDE\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\servlets\

where X:\IBMVJava is the directory in which VisualAge for Java is installed.

After you have copied the files, start the Servlet Engine from the WebSphere Test
Environment Control Center.

Similarly, to run a Java bean contained in a JSP file, you must first copy the bean
into the same directory.

To debug the code, complete the above steps, and import the Java bean or servlet
code into the VisualAge for Java IDE.

Resolving case-sensitivity issue
When loading a JSP file in your browser, the URL that you qualify must match the
file structure of your document root. Because the WebSphere Application Server
page compiler creates case-sensitive package names, you must use consistent case
when specifying URLs of JSP files. Although case-sensitivity is not an issue on
Windows NT, Java itself is case sensitive, so when the page compiler creates a
package name from the directory specified in the URL, the case of the file names is
relevant in VisualAge for Java.

For example, if the JSP subdirectory name in your document root directory is in
uppercase, enter the following URL when loading the JSP samples:

http://localhost:8080/JSP/index.html

Chapter 1. JSP and servlets 15

However, if the ’JSP subdirectory’ name in your document root directory is in
lowercase, enter the following URL when loading the JSP samples:

http://localhost:8080/jsp/index.html

Note: On Windows NT, if the first letter of a directory/file name appears in
uppercase, then it means that the rest of the file name is also ’hard-coded’ as
uppercase.

Serving files from browser
If you are not able to serve any files - HTML, JSP, or servlets - from your browser,
then shut down Servlet Engine and then restart it (using the WebSphere Control
Center). When you have restarted Servlet Engine, try launching your files again.
See the file “Starting, stopping, and configuring WTE services” in the online help.

Restoring the entire JSP Execution Monitor pane
In the JSP Execution Monitor, if you double-click the main tab labeled JSP Source,
the entire JSP Execution Monitor window will be detached. To restore the window,
close the detached window by clicking the close x button in the top right-hand
corner of the window.

Restoring the VisualAge for Java, Version 3.0 look and feel to the JSP Execution
Monitor
When you detach a JSP Execution Monitor pane into a new window, you have the
option of changing browser preferences by selecting File > Preferences. Once you
are in the Browser Preferences dialog, you have the option of changing the
appearance fields (by selecting General > Appearance). Under Appearance, in the
Family entry field, select Visual Age 3.0, if it is not already selected. In the
Platform entry field, select Windows, if it is not already selected. These settings
will allow you to restore the VisualAge for Java, Version 3.0 look and feel to the
JSP Execution Monitor.

If you changed any of the preferences in the detached pane and you want to
restore the JSP Execution Monitor to its original look and feel, do the following:
1. Reverse the changes while working with the same settings that you had

previously set (for example, if you previously set the Family to be Granite, you
must reverse the changes with the Family set as Granite).

2. Then, in the detached pane, select File > Preferences > General > Appearance,
and select Visual Age 3.0 in the Family entry field, and then select Windows in
the Platform entry field.

Preventing the debugger from opening
In the JSP Execution Monitor Option dialog, you have the option of enabling or
disabling Retrieve syntax error information. If you disable Retrieve syntax error
information, the debugger window will open when you launch a JSP file that
implements an interface that does not exist in VisualAge for Java. When Retrieve
syntax error information is disabled, the compile-time error is not detected. An
attempt to load the class will fail, which will result in the debugger window
opening.

To prevent the debugger from opening, enable Retrieve syntax error information.
Then, when you launch the JSP file, the error will be reported as expected.

16 JSP/Servlet Development Environment

Executing multiple JSP files at one time
You can run multiple JSP files at a time in the JSP Execution Monitor. However,
when you are in the process of executing one JSP file, and you go to run a second
JSP file, the previous JSP file will stop executing while you execute the subsequent
JSP file. To continue executing the previous JSP file, you must go back to it by
clicking that file in the JSP File List pane. When the file is displayed in the JSP
Execution Monitor, click the Run button to continue executing the previous JSP
file.

Reverting to an older version of a JSP file
The WebSphere Application Server will recompile a JSP file only when the file’s
time stamp is later than the file in the cache. If you make a backup copy of a JSP
file, and later need to revert to this backup copy, you must update the JSP file’s
last modified time to the present time.

To update the file’s last modified time to the present time, edit the file and resave
it.

Debugging code inside a script tag
The JSP Execution Monitor does not allow you to step into script tag.

To debug the code contained within a script tag, simply set breakpoints in the code
in the IDE debugger.

Re-detaching a pane in the JSP Execution Monitor
When you detach a pane in the JSP Execution Monitor window (for example, the
HtmlView pane), and then close it, you will not be able to detach the pane a
second time.

To work around this problem, you must shut down, and restart the JSP Execution
Monitor.

Detaching into new window
When you remove all of the panes from the JSP Execution Monitor so that the
window is empty, and then select Detach into new window, the last pane you
removed will disappear and cannot be replaced.

To work around this problem, you must shut down, and restart the JSP Execution
Monitor.

JavaServer Pages
JSP Execution Monitor
JSP and servlets

Migrating between JSP 0.91 and JSP 1.0 support
Using the JSP Execution Monitor
Debugging JSP-generated code in VisualAge for Java

Chapter 1. JSP and servlets 17

18 JSP/Servlet Development Environment

Chapter 2. Samples that implement JSP and servlet
technology - overview

The following three samples provide a hands-on introduction to JavaServer Pages
and servlet technology:
v Signs of the Zodiac Sample This servlet samples determines the zodiac sign for

the inputted date. An HTTP servlet is used to generate dynamic output content
based on input from the HTML page. Use this sample to familiarize yourself
with debugging servlets using VisualAge for Java.

v Servlet Engine Configuration Sample This servlet sample displays servlet
engine configuration information, such as supported transports, virtual hosts,
system properties, and so forth. Use this sample to familiarize yourself with the
environment variables.

v Find the Leap Years Sample This JSP/servlet sample determines the next 10
leap years from and including the Start Year. A JSP file is used to generate
dynamic content, so that the application logic is separated from the Web page
design. Use this sample to familiarize yourself with using the Create Servlet
SmartGuide and the JSP Execution Monitor.
Attention: This sample was written using JSP 1.0. If you are using JSP 0.91, you
can modify the method performTask() in the servlet class
com.ibm.ivj.wte.samples.leapyear.LeapYear to call LeapYearResults091.jsp instead
of LeapYearResults.jsp.

To work with JavaServer Pages technology in VisualAge for Java, you must first
load the necessary features from the repository into the workspace. To perform a
feature install, select File > Quick Start > Features > Add Features. Then, select
WebSphere Test Environment. Click OK. This automatically loads the following
projects into your IDE workspace:
v IBM WebSphere Test Environment
v IBM JSP Samples

The IBM WebSphere Test Environment feature contains the WebSphere integration
components, the Servlet API classes, and the JSP Execution Monitor.

You can now begin to work with the Signs of the Zodiac, Servlet Engine
Configuration, and Find the Leap Years samples.

JavaServer Pages
JSP Execution Monitor
JSP and servlets

Sample: Signs of the Zodiac
Sample: Servlet Engine Configuration
Sample: Find the Leap Years
Loading the required features
Configuring DB2 to work with data-enabled samples
Migrating between JSP 0.91 and JSP 1.0 support
Using the JSP Execution Monitor
Debugging JSP-generated code in VisualAge for Java

© Copyright IBM Corp. 1998, 2000 19

Sample: Signs of the Zodiac
The Signs of the Zodiac sample determines the zodiac sign for the inputted date.
An HTTP servlet is used to generate dynamic output content based on input from
the HTML page. Use this sample to familiarize yourself with debugging servlets
using VisualAge for Java.

To access the samples index page, titled VisualAge for Java Servlet & JSP Samples,
already installed on your hard drive, do the following:
1. Launch VisualAge for Java.
2. Launch the WebSphere Test Environment Servlet Engine. In the WebSphere Test

Environment Control Center, select Servlet Engine. In the Servlet Engine
window, click Start the Servlet Engine. Check the status line messages in the
Control Center to ensure that the Servlet Engine is running in VisualAge for
Java.
Once you have the WebSphere Test Environment running in VisualAge for Java,
you can serve JSP files and HTML files from the designated document root. See
“Starting, stopping, and configuring WTE services.”

3. Start your Web browser.
4. Load the JSP Samples index page in your Web browser, by entering the

following URL:
http://localhost:8080/JSP/index.html
This page contains links to three JSP samples, including the Signs of the Zodiac
servlet sample.

5. Click Look Up Your Sign.
6. Select a Day and Month, and click Look Up Your Sign. The browser displays

the appropriate zodiac sign as generated by the servlet.

To debug the servlet:
1. In the Workbench, expand the LookupSign class (it is located in the IBM JSP

Examples project under the com.ibm.ivj.wte.samples.signs package).
2. Set a breakpoint in the doGet method at the following line:

response.setContentType(“text/html”);

3. Reload the servlet (following the instructions above).
4. The Debugger will automatically launch, running the servlet to the set

breakpoint.
5. Step through the servlet, and examine the variables.
6. You can also modify the code, while debugging it. For example, remove the

comment tags from the following lines:
// Calendar cal=Calendar.getInstance();
// cal.setTime(new Date());
// out.println(“<H2>The sign for today is ” +
getSign(cal.get(Calendar.MONTH)+1, cal.get(Calendar.DAY_OF_MONTH)) +
“</H2><P>”);

7. Save the changes.
8. The servlet will be rerun.
9. Click the Step Over button to execute the newly revised lines.

10. The sign for today’s date is now displayed in the browser.
11. Click the Resume button to resume the execution of the servlet.

20 JSP/Servlet Development Environment

JavaServer Pages
JSP Execution Monitor
JSP and servlets

Samples that implement JSP and servlet technology - overview
Sample: Servlet Engine Configuration
Sample: Find the Leap Years
Loading the required features
Using the JSP Execution Monitor
Debugging JSP-generated code in VisualAge for Java

Sample: Servlet Engine Configuration
The Servlet Engine Configuration servlet sample displays servlet engine
configuration information, such as supported transports, virtual hosts, system
properties, and so forth. Use this sample to familiarize yourself with the
environment variables.

To access the samples index page, titled VisualAge for Java Servlet & JSP Samples,
already installed on your hard drive, do the following:
1. Launch VisualAge for Java.
2. Launch the WebSphere Test Environment Servlet Engine. In the WebSphere Test

Environment Control Center, select Servlet Engine. In the Servlet Engine
window, click Start the Servlet Engine. Check the status line messages in the
Control Center to ensure that the Servlet Engine is running in VisualAge for
Java.
Once you have the WebSphere Test Environment running in VisualAge for Java,
you can serve JSP files and HTML files from the designated document root. See
“Starting, stopping, and configuring WebSphere Test Environment services” in
the online help.

3. Start your Web browser.
4. Load the JSP Samples index page in your Web browser, by entering the

following URL:
http://localhost:8080/JSP/index.html
This page contains links to three JSP samples, including the Servlet Engine
Configuration servlet sample.

5. Click Display the Servlet Engine Configuration Information.
6. The servlet engine configuration information is now displayed in your browser.

Take a look at the pages to familiarize yourself with the environment variables.

JavaServer Pages
JSP Execution Monitor
JSP and servlets

Samples that implement JSP and servlet technology - overview
Sample: Signs of the Zodiac
Sample: Find the Leap Years
Loading the required features
Using the JSP Execution Monitor
Debugging JSP-generated code in VisualAge for Java

Chapter 2. Samples that implement JSP and servlet technology - overview 21

Sample: Find the Leap Years
The Find the Leap Years JSP/servlet sample determines the next 10 leap years from
and including the inputted Start Year. A JSP file is used to generate dynamic
content, so that the application logic is separated from the Web page design. Use
this sample to familiarize yourself with using the Create Servlet SmartGuide and
the JSP Execution Monitor.
Note: This sample was written using JSP 1.0. If you are using JSP 0.91, you can
modify the LeapYear.java servlet to call LeapYearResults091.jsp instead of
LeapYearResults.jsp.

To access the index page for the IBM WebSphere JSP Execution Monitor Samples,
do the following:
1. Launch VisualAge for Java.
2. Launch the WebSphere Test Environment Servlet Engine. In the WebSphere Test

Environment Control Center, select Servlet Engine. In the Servlet Engine
window, click Start the Servlet Engine. Check the status line messages in the
Control Center to ensure that the Servlet Engine is running in VisualAge for
Java.
Once you have the WebSphere Test Environment running in VisualAge for Java,
you can serve JSP files and HTML files from the designated document root. See
“Starting, stopping, and configuring WTE services.”

3. Start your Web browser.
4. Load the JSP Samples index page in your Web browser, by entering the

following URL:
http://localhost:8080/JSP/index.html
This page contains links to three JSP samples, including the Find the Leap
Years JSP/servlet sample.

5. Click Find the Leap Years.
6. Enter a year, and click Submit. The next 10 leap years are now displayed by

LeapYearResults.jsp.

To recreate the servlet using the Create Servlet SmartGuide (note that the Create
Servlet SmartGuide only generates JSP 1.0 files):
1. In the Workbench, create a new project called Servlet Sample.
2. In this project, create a package called servlet.sample.
3. Copy and paste the Java bean LeapYearBean.java from the package

com.ibm.ivj.wte.samples.leapyear into the servlet.sample package.
4. Click the Create Servlet button to launch the Create Servlet SmartGuide.
5. Using the SmartGuide, do the following:

a. In the Project field, enter Servlet Sample.
b. In the Package field, enter servlet.sample.
c. In the Class name field, enter LeapYear.
d. In the Superclass field, ensure that javax.servlet.http.HttpServlet is entered.
e. Select Import Java bean.
f. Click Next.
g. Select the Java bean, and complete the following:

1) In the Java bean class field, select Browse to specify LeapYearBean.
2) In the Java bean name field, ensure that leapYearBean is specified.
3) For Scope, select request.

h. Click Next.

22 JSP/Servlet Development Environment

i. Click Add to add fields to the input page. Select (int)startYear.
j. Highlight the (int)startYear field, and click Properties.
k. Change the caption to Start Year.
l. Change the size and the maximum length to 4, and click OK.
m. Click Add to add fields to the results page. Select (int)startYear and

(int[])leapYears.
n. Highlight the (int)startYear field, and click Properties.
o. Change the caption to Start Year, and click OK.
p. Highlight the (int[])leapYears field, and click Properties. Change the

caption to Leap Years, and click OK.
q. Click Add to add methods. Select void findLeapYears().
r. Click Next.
s. Click Finish.
t. The LeapYearInput.html, LeapYear.java, and LeapYearResults.jsp files are

successfully generated. The servlet (.java file) is located in the IDE under
the package servlet.sample, and the HTML and JSP files are located in the
following directory:
X:\IBMVJava\IDE\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\web\
where X:\IBMVJava is the directory in which VisualAge for Java is
installed.

To monitor the execution of the JSP source:
1. To step through the JSP source, use the WebSphere Test Environment Control

Center to enable the JSP Execution Monitor (by default, the JSP Execution
Monitor mode is disabled). To launch the WebSphere Test Environment Control
Center, select Workspace > Tools > WebSphere Test Environment.
a. Select JSP Execution Monitor Options.
b. In the JSP debug settings window, select Enable monitoring JSP execution

and then click Apply to enable the JSP Execution Monitor when a JSP file
gets loaded. Click Cancel to return to the previous mode. Select No when
prompted to save, and then select the JSP Execution Monitor Options page
again.
For further details, see “Using the JSP Execution Monitor.”

2. Go back to the JSP Samples index page, and reload the Find the Leap Years
sample (following the steps above). This time, the JSP Execution Monitor will
launch, displaying the source.

Attention: When the JSP Execution Monitor is enabled, you will find the generated
code in the package pagecompile._JSP_debug._xxx_debug under the project JSP
Page Compile Generated Code on your Project workspace. If the JSP Execution
Monitor is disabled, you will find the generated code in the package
pagecompile._JSP._xxx.

The generated code in the package pagecompile._JSP_debug._xxx_debug contains
extra internal debug information. When working with the business logic of a JSP
source, we recommend that you disable the JSP Execution Monitor, and work with
the generated code in the package pagecompile._JSP._xxx. This code does not
contain extra internal debug information.

See “Debugging JSP-generated code in VisualAge for Java.”

Chapter 2. Samples that implement JSP and servlet technology - overview 23

JavaServer Pages
JSP Execution Monitor
JSP and servlets

Samples that implement JSP and servlet technology - overview
Sample: Signs of the Zodiac
Sample: Servlet Engine Configuration
Loading the required features
Migrating between JSP 0.91 and JSP 1.0 support
Using the JSP Execution Monitor
Debugging JSP-generated code in VisualAge for Java

24 JSP/Servlet Development Environment

Chapter 3. JSP/Servlet Development Environment reference

JSP 0.91 programming reference
JSP tags for variable data
The JSP tags for variable data are IBM extensions to JSP 0.91. These tags enable
you to put variable fields on your HTML page and have your servlets and
JavaBeans dynamically replace the variables with values from a database when the
JSP is returned to the browser.

The JSP tags for variable data are:
v <INSERT> tags for embedding variables in a JSP
v <REPEAT> tags for repeating a block of HTML tagging that contains the

<INSERT> tags and the HTML tags for formatting content

Attention: The Application Server Version 1.x supported an additional tag,
<REPEATGROUP> for repeating a block of HTML tagging for data that is
already logically grouped in the database. Because this release does not
support the <REPEATGROUP> tag, remove that tag from any JSP files that
you want to use on the Application Server Version 3.0.

These tags are designed to pass intact through HTML authoring tools. Each tag has
a corresponding end tag. Each tag is case-insensitive, but some of the tag attributes
are case-sensitive.

The <INSERT> tag is the base tag for specifying variable fields. The general syntax
is:
<insert requestparm=pvalue requestattr=avalue bean=name

property=property_name(optional_index).subproperty_name(optional_index)
default=value_when_null>

</insert>

where:
v requestparm The parameter to access within the request object. This attribute is

case-sensitive and cannot be used with the bean and property attributes.
v requestattr The attribute to access within the request object. The attribute would

have been set using the setAttribute method. This attribute is case-sensitive and
cannot be used with the bean and property attributes.

v bean The name of the JavaBean declared by a <BEAN> tag within the JSP file.
See “Accessing JavaBeans” for an explanation of the <BEAN> tag. The value of
this attribute is case-sensitive.
When the bean attribute is specified but the property attribute is not specified,
the entire bean is used in the substitution. For example, if the bean is type String
and the property is not specified, the value of the string is substituted.

v property The property of the bean to access for substitution. The value of the
attribute is case-sensitive and is the locale-independent name of the property.
This attribute cannot be used with the requestparm and requestattr attributes.

v default An optional string to display when the value of the bean property is
null. If the string contains more than one word, the string must be enclosed
within a pair of double quotes (such as “HelpDesk number”). The value of this
attribute is case-sensitive. If a value is not specified, an empty string is
substituted when the value of the property is null.

© Copyright IBM Corp. 1998, 2000 25

Some examples are:
<insert bean=userProfile property=username></insert>
<insert requestparm=company default=“IBM Corporation”></insert>
<insert requestattr=ceo default=“Company CEO”></insert>
<insert bean=userProfile property=lastconnectiondate.month></insert>

In most cases, the value of the property attribute will be just the property name.
However, you access a property of a property (sub-property) by specifying the full
form of the property attribute. The full form also gives you the option to specify
an index for indexed properties. The optional index can be a constant (such as 2)
or an index like the one described in the <REPEAT> tag section. Some examples of
using the full form of the property attribute:
<insert bean=staffQuery property=address(currentAddressIndex)></insert>
<insert bean=shoppingCart property=items(4).price></insert>
<insert bean=fooBean property=foo(2).bat(3).boo.far></insert>

The alternate syntax for the <INSERT> tag
The HTML standard does not permit embedding HTML tags within HTML tags.
Consequently, you cannot embed the <INSERT> tag within another HTML tag, for
example, the anchor tag (<A>). Instead, use the alternate syntax.

To use the alternate syntax:
1. Use the <INSERT> and </INSERT> tags to enclose the HTML tag in which

substitution is to take place.
2. Specify the bean and property attributes:

v To specify the bean and property attributes, use the form:
$(bean=b property=p default=d
where b, p, and d are values as described for the <INSERT> tag.
v To specify the requestparm attribute, use the form
$(requestparm=r default=d)
where r and d are values as described for the <INSERT> tag.
v To specify the requestattr attribute, use the form
$(requestattr=r default=d)
where r and d are values as described for the <INSERT> tag.

Some examples of the alternate syntax are:
<insert>

</insert>

<insert>
<a href=“http://www.myserver.com/map/showmap.cgi?country=$(requestparm=country
default=usa)&city$(requestparm=city default=”Research Triangle Park“)
&email=$(bean=userInfo property=email)>Show map of city

</insert>

<REPEAT> tag
Use the <REPEAT> tag to iterate over a database query results set. The <REPEAT>
tag iterates from the start value to the end value until one of the following
conditions is met:
v The end value is reached.
v An ArrayIndexOutofBoundsException is thrown.

The output of a <REPEAT> block is buffered until the block completes. If an
exception is thrown before a block completes, no output is written for that block.

The syntax of the <REPEAT> tag is:

26 JSP/Servlet Development Environment

<repeat index=name start=starting_index end=ending_index>
</repeat>

where:
v index An optional name used to identify the index of this repeat block. The

value is case-sensitive and its scope is the JSP file.
v start An optional starting index value for this repeat block. The default is 0.
v end An optional ending index value for this repeat block. The maximum value

is 2,147,483,647. If the value of the end attribute is less than the value of the start
attribute, the end attribute is ignored.

The results set and the associated bean
The <REPEAT> tag iterates over a results set. The results set is contained within a
JavaBean. The bean can be a static bean (for example, a bean created by using the
IBM WebSphere Studio database wizard) or a dynamically generated bean (for
example, a bean generated by the <DBQUERY> tag). The following table is a
graphic representation of the contents of a bean, myBean:

col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:
v The column names in the database table become the property names of the bean.

The section <DBQUERY> tag describes a technique for mapping the column
names to different property names.

v The bean properties are indexed. For example, myBean.get(Col1(row2)) returns
May.

v The query results are in the rows. The <REPEAT> tag iterates over the rows
(beginning at the start row).

The following table compares using the <REPEAT> tag to iterate over static bean
versus a dynamically generated bean:

Static Bean Example <DBQUERY> Bean Example

Chapter 3. JSP/Servlet Development Environment reference 27

myBean.class

// Code to get a connection
// Code to get the data

Select * from myTable;
// Code to close the connection

JSP file

<repeat index=abc>
<insert bean=”myBean“

property=”col1(abc)“>
</insert>

</repeat>

Notes:

v The bean (myBean.class) is a static bean.

v The method to access the bean properties
is myBean.get(property(index)).

v You can omit the property index, in which
case the index of the enclosing <REPEAT>
tag is used. You can also omit the index
on the <REPEAT> tag.

v The <REPEAT> tag iterates over the bean
properties row by row, beginning with the
start row.

JSP file

<dbconnect id=”conn“
userid=”alice“passwd=”test“
url=”jdbc:db2:sample“
driver=”COM.ibm.db2.jdbc.app.DB2Driver“
</dbconnect>
<dbquery id=”dynamic“ connection=”conn“ >

Select * from myTable;
</dbquery>
<repeat index=abc>

<insert bean=”dynamic“
property=”col1(abc)“>

</insert>
</repeat>

Notes:

v The bean (dynamic) is generated by the
<DBQUERY> tag and does not exist until
the tag is executed.

v The method to access the bean properties
is dynamic.getValue(”property“, index).

v You can omit the property index, in which
case the index of the enclosing <REPEAT>
tag is used. You can also omit the index
on the <REPEAT> tag.

v The <REPEAT> tag iterates over the bean
properties row by row, beginning with the
start row.

Implicit and explicit indexing
Examples 1, 2, and 3 show how to use the <REPEAT> tag. The examples produce
the same output if all indexed properties have 300 or fewer elements. If there are
more than 300 elements, Examples 1 and 2 will display all elements, while
Example 3 will show only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index.
The bean with the smallest number of indexed properties restricts the number of
times the loop will repeat.
<table>
<repeat>

<tr><td><insert bean=serviceLocationsQuery property=city></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery property=address></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery property=telephone></insert></tr></td>

</repeat>
</table>

Example 2 shows indexing, starting index, and ending index:
<table>
<repeat index=myIndex start=0 end=2147483647>

<tr><td><insert bean=serviceLocationsQuery property=city(myIndex)></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery property=address(myIndex)></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery property=telephone(myIndex)></insert></tr></td>

</repeat>
</table>

The JSP compiler for the Application Server Version 3 is designed to prevent the
ArrayIndexOutofBoundsException with explicit indexing. Consequently, you do
not need to place JSP variable data syntax before the <INSERT> tag to check the
validity of the index.

28 JSP/Servlet Development Environment

Example 3 shows explicit indexing and ending index with implicit starting index.
Although the index attribute is specified, the indexed property city can still be
implicitly indexed because the (myIndex) is not required.
<table>
<repeat index=myIndex end=299>

<tr><td><insert bean=serviceLocationsQuery property=city></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery property=address(myIndex)></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery property=telephone(myIndex)></insert></tr></td>

</repeat>
</table>

Nesting <REPEAT> tags
You can nest <REPEAT> blocks. Each block is separately indexed. This capability is
useful for interleaving properties on two beans, or properties that have
sub-properties. In the example, two <REPEAT> blocks are nested to display the list
of songs on each compact disc in the user’s shopping cart.
<repeat index=cdindex>

<h1><insert bean=shoppingCart property=cds.title></insert></h1>
<table>
<repeat>

<tr><td><insert bean=shoppingCart property=cds(cdindex).playlist></insert>
</td></tr>

</table>
</repeat>

</repeat>

JSP tags for database access
The Application Server Version 3 extends JSP 0.91 support by providing a set of
tags for database access. These HTML-like tags make it simple to add a database
connection to a Web page and then use that connection to query or update the
database. The user ID and password for the database connection can be provided
by the user at request-time or hardcoded within the JSP file.

The scope of all of the tags is the Web page (the JSP) in which they are embedded.
Therefore, identifiers and other tag data can be accessed only within the page.

<DBCONNECT> tag
Use the <DBCONNECT> tag to specify information needed to make a connection
to a JDBC or an ODBC database. However, the <DBCONNECT> tag does not
establish the connection. Instead, the <DBQUERY> and <DBMODIFY> tags are
used to reference a <DBCONNECT> tag in the same JSP file and establish the
connection.

The <DBCONNECT> tag syntax is:
<dbconnect id=”connection_id“

userid=”db_user“ passwd=”user_password“
url=”jdbc:subprotocol:database“
driver=”database_driver_name“
jndiname=”JNDI_context/logical_name“
xmlref=”configuration_file“>

</dbconnect>

where:
v id A required identifier for this tag. The scope is the JSP file. This identifier is

referenced by the connection attribute of the <DBQUERY> tag.
v userid An optional attribute that specifies a valid user ID for the database to be

accessed. If specified, this attribute and its value are added to the request object.

Chapter 3. JSP/Servlet Development Environment reference 29

Although the userid attribute is optional, the userid must be provided. See
<USERID> and <PASSWD> for an alternative to hardcoding this information in
the JSP file.

v passwd An optional attribute that specifies the user password for the userid.
(This attribute is not optional if the userid attribute is specified.) If specified, this
attribute and its value are added to the request object.
Although the passwd attribute is optional, the password must be provided. See
<USERID> and <PASSWD> for an alternative to hardcoding this attribute in the
JSP file.

v url and driver To establish a database connection, the URL and driver must be
provided. If these attributes are not specified in the <DBCONNECT> tag, the
xmlref attribute or the jndiname attribute must be specified.
The Application Server Version 3.0 supports connection to JDBC databases and
ODBC databases. When connecting to an ODBC database, you can use the Sun
JDBC-to-ODBC bridge driver included in the Java Development Kit (JDK) or
another vendor’s ODBC driver.
The url attribute specifies the location of the database. The driver attribute
specifies the name of the driver to be used to establish the database connection.
For a connection to a JDBC database, the URL consists of the following
colon-separated elements: jdbc, the sub-protocol name, and the name of the
database table to be accessed. An example for a connection to the Sample
database included with IBM DB2 is:
url=”jdbc:db2:sample“
driver=”COM.ibm.db2.jdbc.app.DB2Driver“
If the database is an ODBC database, you can use an ODBC driver or the the
Sun JDBC-to-ODBC bridge included with the JDK. If you want to use an ODBC
driver, refer to the driver documentation for instructions on specifying the
database location (the url attribute) and the driver name.
In the case of the bridge, the url syntax is jdbc:odbc:database. An example is:
url=”jdbc:odbc:autos“
driver=”sun.jdbc.odbc.JdbcOdbcDriver“

Note: To enable the Application Server to access the ODBC database, use the
ODBC Data Source Administrator to add the ODBC data source to the System
DSN configuration. To access the ODBC Administrator, click the ODBC icon on
the Windows NT Control Panel.
Note: If your JSP accesses a different JDBC or ODBC database than the one the
Application Server uses for its repository, ensure that you add the JDBC or
ODBC driver for the other database to the Application Server’s classpath.

v jndiname An optional attribute that identifies a valid context in the Application
Server JNDI naming context and the logical name of the data source in that
context. The context is configured by the Web administrator via the WebSphere
Administrative Console.
If the jndiname is specified, the JSP processor ignores the driver and url
attributes on the <DBCONNECT> tag or in the file specified by the xmlref tag.

v xmlref A file (in XML format) that contains the URL, driver, user ID, password
information needed for a connection. This mechanism provides Web
administrators an alternative method for specifying the user ID and password. It
is an alternative to hardcoding the information in a <DBCONNECT> tag or
reading the information from the request object parameters. This is useful when
third-party vendors develop your JSP files and when you need to make quick
changes or test an application with a different data source.

30 JSP/Servlet Development Environment

When the JSP compiler processes the <DBCONNECT> tag, it reads all of the
specified tag attributes. If any of the required attributes are missing, the
compiler checks for an xmlref attribute. If the attribute is specified, the compiler
reads the configuration file.
The xmlref takes precedence over the <DBCONNECT> tag. For example, if the
<DBCONNECT> tag and the xmlref file include values for the URL and the the
driver, the values in the xmlref file are used.
The configuration file can have any filename and extension that is valid for the
operating system. Place the file in the same directory as the JSP that contains the
referring <DBCONNECT> tag. An example of a configuration file is:
<?xml version=”1.0“ ?>
<db-info>
<url>jdbc:odbc:autos</url>
<user-id>smith</user-id>
<dbDriver>sun.jdbc.odbc.JdbcOdbcDriver</dbDriver>
<password>v598m</password>
<jndiName>jdbc/demo/sample</jndiName>

</db-info>

All of the elements shown in the example XML file need to be specified.
However, an empty element (such as <url></url>) is valid.

When the JSP file is compiled into a servlet, the Java processor adds the Java
coding for the <DBCONNECT> tag to the servlet’s service() method, which means
a new database connection is created for each request for the JSP.

<USERID> and <PASSWD> tags
Instead of hardcoding the user ID and password in the <DBCONNECT> tag, you
can use the <USERID> and <PASSWD> tags to accept user input for the values
and then add that data to the request object where it can be accessed by a JSP
(such as the Employee.jsp example) that requests the database connection.

The <USERID> and <PASSWD> tags must be used within a <DBCONNECT> tag.
The syntax of the <USERID> and <PASSWD> tags is:

<dbconnect id=”connection_id“
<userid><insert

requestparm=”userid“></insert></userid>
<passwd><insert

requestparm=”passwd“></insert></passwd>
url=”protocol:database_name:database_table“
driver=”JDBC_driver_name“>

</dbconnect>

where:
v <INSERT> This tag is a JSP tag for including variable data. See ”JSP tags for

variable data.“
v userid This tag is a reference to the request parameter that contains the userid.

The parameter must have already been added to the request object that was
passed to this JSP file. The attribute and its value can be set in the request object
using an HTML form or a URL query string to pass the user-specified request
parameters.

v passwd This tag is a reference to the request parameter that contains the
password. The parameter must have already been added to the request object
that was passed to this JSP. The attribute and its value can be set in the request
object using an HTML form or a URL query string to pass user-specified values.

Chapter 3. JSP/Servlet Development Environment reference 31

<DBQUERY> tag
Use the <DBQUERY> tag to establish a connection to a database, submit database
queries, and return the results set.

The <DBQUERY> tag:
v References a <DBCONNECT> tag in the same JSP file and uses the information

provided by that tag to determine the database URL and driver. The user ID and
password are also obtained from the <DBCONNECT> tag if those values are
provided in the <DBCONNECT> tag.

v Establishes a new connection
v Retrieves and caches data in the results object
v Closes the connection (releases the connection resource)

The <DBQUERY> tag syntax is:

<!— SELECT commands and (optional) JSP syntax can be placed within the
DBQUERY tag. —>
<!— Any other syntax, including HTML comments, are not valid. —>
<dbquery id=”query_id“ connection=”connection_id“ limit=”value“ >
</dbquery>

where:
v id The identifier of this query. The scope is the JSP file. This identifier is used to

reference the query, for example, from the <INSERT> tag to display query
results.
The id becomes the name of a bean that contains the results set. The bean
properties are dynamic and the property names are the names of the columns in
the results set. If you want different column names, use the SQL keyword for
specifying an alias on the SELECT command. In the following example, the
database table contains columns named FNAME and LNAME, but the SELECT
statement uses the AS keyword to map those column names to FirstName and
LastName in the results set:
Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME=’Jim’

v connection The identifier of a <DBCONNECT> tag in this JSP file. That
<DBCONNECT> tag provides the database URL, driver name, and (optionally)
the user ID and password for the connection.

v limit An optional attribute that constrains the maximum number of records
returned by a query. If the attribute is not specified, no limit is used and the
effective limit is determined by the number of records and the system caching
capability.

v SELECT command and JSP syntax Because the <DBQUERY> tag must return a
results set, the only valid SQL command is SELECT. Refer to your database
documentation for information about the SELECT command. See other sections
of this document for a description of JSP syntax for variable data and inline Java
code.

In the following example, a database is queried for data about employees in a
specified department. The department is specified using the <INSERT> tag to
embed a variable data field. The value of that field is based on user input.

<dbquery id=”empqs“ connection=”conn“ >
select * from Employee where WORKDEPT=’<INSERT
requestparm=”WORKDEPT“></INSERT>’
</dbquery>

32 JSP/Servlet Development Environment

<DBMODIFY> tag
Use the <DBMODIFY> tag to establish a connection to a database and then add
records to a database table.

The <DBMODIFY> tag:
v References a <DBCONNECT> tag in the same JSP file and uses the information

provided by that tag to determine the database URL and driver. The user ID and
password are also obtained from the <DBCONNECT> tag if those values are
provided in the <DBCONNECT> tag.

v Establishes a new connection.
v Updates a table in the database.
v Closes the connection (releases the connection resource).

The <DBMODIFY> tag syntax is:

<!— Any valid database update commands can be placed within the DBMODIFY
tag. —>
<!— Any other syntax, including HTML comments, are not valid. —>
<dbmodify connection=”connection_id“ >
</dbmodify>

where:
v connection The identifier of a <DBCONNECT> tag in this JSP file. That

<DBCONNECT> tag provides the database URL, driver name, and (optionally)
the user ID and password for the connection.

v Database commands Refer to your database documentation for valid database
commands.

In the following example, a new employee record is added to a database. The
values of the fields are based on user input from this JSP and referenced in the
database commands using <INSERT> tags.
<dbmodify connection=”conn“ >
insert into EMPLOYEE

(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)
values

('<INSERT requestparm=”EMPNO“></INSERT>',
'<INSERT requestparm=”FIRSTNME“></INSERT>',
'<INSERT requestparm=”MIDINIT“></INSERT>',
'<INSERT requestparm=”LASTNAME“></INSERT>',
'<INSERT requestparm=”WORKDEPT“></INSERT>',
<INSERT requestparm=”EDLEVEL“></INSERT>)

</dbmodify>

Displaying query results
To display the query results, use the <REPEAT> and <INSERT> tags. The
<REPEAT> tag loops through each of the rows in the query results. The <INSERT>
tag uses the query results object (for the <DBQUERY> tag whose identifier is
specified by the <INSERT> bean attribute) and the appropriate column name
(specified by the <INSERT> property attribute) to retrieve the value. An example
is:
<repeat>
<tr>

<td><INSERT bean=”empqs“ property=”EMPNO“></INSERT>
<INSERT bean=”empqs“ property=”FIRSTNME“></INSERT>
<INSERT bean=”empqs“ property=”WORKDEPT“></INSERT>

Chapter 3. JSP/Servlet Development Environment reference 33

<INSERT bean=”empqs“ property=”EDLEVEL“></INSERT>
</td>

</tr>
</repeat>

JSP 0.91 APIs and migration
Two interfaces support the JSP 0.91 technology. These APIs provide a way to
separate content generation (business logic) from the presentation of the content
(HTML formatting). This separation enables servlets to generate content and store
the content (for example, in a bean) in the request object. The servlet that
generated the context generates a response by passing the request object to a JSP
file that contains the HTML formatting. The <BEAN> tag provides access to the
business logic.

The interfaces that supported JSP 0.91 for the Application Server Version 3 are:
v javax.servlet.http.HttpServletRequest.setAttribute()

Supports setting attributes in the request object. For the Application Server
Version 2, this interface was
com.sun.server.http.HttpServiceRequest.setAttribute().

v javax.servlet.http.RequestDispatcher.forward()
Supports forwarding a response object to another servlet or JSP. For the
Application Server Version 2, this interface was
com.sun.server.http.HttpServiceResponse.callPage().

Migrating JSP 0.91 files to the Application Server Version 3
There are two options for migration. Perform one of the following migrations:

Migrate to JSP 1.0: It is recommended that you migrate JSPs developed under the
Application Server Version 2 and develop new JSPs to conform to the JSP 1.0
Specification. Refer to the Sun JSP 1.0 Specification for details.

Migrate servlets or JSPs that use HttpServiceRequest and HttpServiceResponse:
If your servlets or JSPs developed under the Application Server Version 2 cast to
methods of com.sun.server.http.HttpServiceRequest or
com.sun.server.http.HttpServiceResponse, you must perform one of the following
migration steps:
v Migrate HttpServiceRequest.setAttribute() to HttpServletRequest.setAttribute()

and migrate HttpServiceResponse.callPage() to RequestDispatcher.
v Recompile your JSPs developed under the Application Server Version 2 before

you use them with the Application Server Version 3. Recompiling is necessary
because HttpServiceRequest and HttpServiceResponse are provided as interfaces
(instead of classes) that are implemented by the Version 3 servlet engine.
Note: If you do not recompile your servlets or JSPs, the Java Virtual Machine
(JVM) will crash on Windows NT systems due to a bug in the JDK.

Please refer to Sun’s JSP specification for more details:

http://java.sun.com/products/jsp/download.html

JSP and servlets
JavaServer Pages

Migrating between JSP 0.91 and JSP 1.0 support

34 JSP/Servlet Development Environment

JSP 1.0 programming reference

JSP 1.0 programming reference
IBM extensions and additions to JSP 1.0 syntax
The following sections describe the IBM extensions and additions to JSP 1.0
provided in the WebSphere Application Server Version 3. Refer to the Sun JSP 1.0
Specification for details about the base APIs.

JSP 1.0 syntax for variable data
The variable data syntax enables you to put variable fields in your JSP and have
your servlets and JavaBeans dynamically replace the variables with values from a
database when the JSP is returned to the browser.

The JSP tags for variable data are:
v <tsx:getProperty> syntax for getting the value of a bean to display in a JSP
v <tsx:repeat> syntax for repeating a block of HTML tagging that contains the

<tsx:getProperty> syntax and the HTML tags for formatting content

<tsx:getProperty>
The <tsx:getProperty> is an IBM extension of the Sun JSP 1.0 <jsp:getProperty>
tag. The IBM extension implements all of the <jsp:getProperty> function and adds
the ability to introspect a database bean that was created using the IBM extension
<tsx:dbquery> or <tsx:dbmodify>.

The <tsx:getProperty> syntax is:
<tsx:getProperty name=“bean_name”

property=“property_name” />

where:
v name The name of the JavaBean declared by the id attribute of a <tsx:dbquery>

syntax within the JSP file. See <tsx;dbquery> for an explanation. The value of
this attribute is case-sensitive.

v property The property of the bean to access for substitution. The value of the
attribute is case-sensitive and is the locale-independent name of the property.

Some examples are:
<tsx:getProperty name=“userProfile” property=“username” />
<tsx:getProperty name=“request” property=request.getParameter(“corporation”) />

In most cases, the value of the property attribute will be just the property name.
However, to access the request bean or access a property of a property
(sub-property), you specify the full form of the property attribute. The full form
also gives you the option to specify an index for indexed properties. The optional
index can be a constant (such as 2) or an index like the one described in the
<tsx:repeat> section. Some examples of using the full form of the property
attribute:
<tsx:getProperty name=“staffQuery” property=address(currentAddressIndex) />
<tsx:getProperty name=“shoppingCart” property=items(4).price />
<tsx:getProperty name=“fooBean” property=foo(2).bat(3).boo.far />

Chapter 3. JSP/Servlet Development Environment reference 35

<tsx:repeat>
Use the <tsx:repeat> syntax to iterate over a database query results set. The
<tsx:repeat> syntax iterates from the start value to the end value until one of the
following conditions is met:
v The end value is reached.
v An ArrayIndexOutofBoundsException is thrown.

The output of a <tsx:repeat> block is buffered until the block completes. If an
exception is thrown before a block completes, no output is written for that block.

The <tsx:repeat> syntax is:
<tsx:repeat index=name start=starting_index end=ending_index>
</tsx:repeat>

where:
v index An optional name used to identify the index of this repeat block. The

value is case-sensitive and its scope is the JSP file.
v start An optional starting index value for this repeat block. The default is 0.
v end An optional ending index value for this repeat block. The maximum value

is 2,147,483,647. If the value of the end attribute is less than the value of the start
attribute, the end attribute is ignored.

The results set and the associated bean
The <tsx:repeat> iterates over a results set. The results set is contained within a
JavaBean. The bean can be a static bean (for example, a bean created by using the
IBM WebSphere Studio database wizard) or a dynamically generated bean (for
example, a bean generated by the <tsx:dbquery> syntax). The following table is a
graphic representation of the contents of a bean, myBean:

col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:
v The column names in the database table become the property names of the bean.

The section <tsx:dbquery> describes a technique for mapping the column names
to different property names.

v The bean properties are indexed. For example, myBean.get(Col1(row2)) returns
May.

v The query results are in the rows. The <tsx:repeat> iterates over the rows
(beginning at the start row).

The following table compares using the <tsx:repeat> to iterate over static bean
versus a dynamically generated bean:

Static Bean Example <tsx:repeat> Bean Example

36 JSP/Servlet Development Environment

myBean.class

// Code to get a connection
// Code to get the data

Select * from myTable;
// Code to close the connection

JSP file

<tsx:repeat index=abc>
<tsx:getPropery name=“myBean”

property=“col1(abc)” />
</tsx:repeat>

Notes:

v The bean (myBean.class) is a static bean.

v The method to access the bean properties
is myBean.get(property(index)).

v You can omit the property index, in which
case the index of the enclosing
<tsx:repeat> is used. You can also omit
the index on the <tsx:repeat>.

v The <tsx:repeat> iterates over the bean
properties row by row, beginning with the
start row.

JSP file

<tsx:dbconnect id=“conn”
userid=“alice”passwd=“test”
url=“jdbc:db2:sample”
driver=“COM.ibm.db2.jdbc.app.DB2Driver”
</tsx:dbconnect >
<tsx:dbquery id=“dynamic” connection

=“conn” >
Select * from myTable;

</tsx:dbquery>
<tsx:repeat index=abc>

<tsx:getProperty name=“dynamic”
property=“col1(abc)” />

</tsx:repeat>

Notes:

v The bean (dynamic) is generated by the
<tsx:dbquery> and does not exist until the
syntax is executed.

v The method to access the bean properties
is dynamic.getValue(“property”, index).

v You can omit the property index, in which
case the index of the enclosing
<tsx:repeat> is used. You can also omit
the index on the <tsx:repeat>.

v The <tsx:repeat> syntax iterates over the
bean properties row by row, beginning
with the start row.

Implicit and explicit indexing
Examples 1, 2, and 3 show how to use the <tsx:repeat>. The examples produce the
same output if all indexed properties have 300 or fewer elements. If there are more
than 300 elements, Examples 1 and 2 will display all elements, while Example 3
will show only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index.
The bean with the smallest number of indexed properties restricts the number of
times the loop will repeat.
<table>
<tsx:repeat>

<tr><td><tsx:getProperty name=“serviceLocationsQuery” property=“city” /></tr></td>
<tr><td><tsx:getProperty name=“serviceLocationsQuery” property=“address” /></tr></td>
<tr><td><tsx:getProperty name=“serviceLocationsQuery” property=“telephone” /></tr></td>

</tsx:repeat>
</table>

Example 2 shows indexing, starting index, and ending index:
<table>
<tsx:repeat index=myIndex start=0 end=2147483647>

<tr><td><tsx:getProperty name=“serviceLocationsQuery” property=city(myIndex) /></tr></td>
<tr><td><tsx:getProperty name=“serviceLocationsQuery” property=address(myIndex) /></tr></td>
<tr><td><tsx:getProperty name=“serviceLocationsQuery” property=telephone(myIndex) /></tr></td>

</tsx:repeat>
</table>

Example 3 shows explicit indexing and ending index with implicit starting index.
Although the index attribute is specified, the indexed property city can still be
implicitly indexed because the (myIndex) is not required.

Chapter 3. JSP/Servlet Development Environment reference 37

<table>
<tsx:repeat index=myIndex end=299>

<tr><td><tsx:getProperty name=“serviceLocationsQuery” property=“city” /t></tr></td>
<tr><td><tsx:getProperty name=“serviceLocationsQuery” property=“address(myIndex)” /></tr></td>
<tr><td><tsx:getProperty name=“serviceLocationsQuery” property=“telephone(myIndex)” /></tr></td>

</tsx:repeat>
</table>

Nesting <tsx:repeat> blocks
You can nest <tsx:repeat> blocks. Each block is separately indexed. This capability
is useful for interleaving properties on two beans, or properties that have
sub-properties. In the example, two <tsx:repeat> blocks are nested to display the
list of songs on each compact disc in the user’s shopping cart.
<tsx:repeat index=cdindex>

<h1><tsx:getProperty name=“shoppingCart” property=cds.title /></h1>
<table>
<tsx:repeat>

<tr><td><tsx:getProperty name=“shoppingCart” property=cds(cdindex).playlist />
</td></tr>

</table>
</tsx:repeat>

</tsx:repeat>

JSP syntax for database access
The Application Server Version 3 extends JSP 1.0 support by providing syntax for
database access. The syntax makes it simple to add a database connection to a Web
page and then use that connection to query or update the database. The user ID
and password for the database connection can be provided by the user at
request-time or hardcoded within the JSP file.

The scope of all of the syntax is the JSP file in which they are embedded.
Therefore, identifiers and other tag data can be accessed only within the page.

<tsx:dbconnect>
Use the <tsx:dbconnect> syntax to specify information needed to make a
connection to a JDBC or an ODBC database. The <tsx:dbconnect> syntax does not
establish the connection. Instead, the <tsx:dbquery> and <tsx:dbmodify> syntax are
used to reference a <tsx:dbconnect> in the same JSP file and establish the
connection.

The <tsx:dbconnect> syntax is:
<tsx:dbconnect id=“connection_id”

userid=“db_user” passwd=“user_password”
url=“jdbc:subprotocol:database”
driver=“database_driver_name”

</tsx:dbconnect>

where:
v id A required identifier. The scope is the JSP file. This identifier is referenced by

the connection attribute of a <tsx:dbquery> tag.
v userid An optional attribute that specifies a valid user ID for the database to be

accessed. If specified, this attribute and its value are added to the request object.
Although the userid attribute is optional, the userid must be provided. See
<tsx:userid> and <tsx:passwd> for an alternative to hardcoding this information
in the JSP file.

v passwd An optional attribute that specifies the user password for the userid
attribute. (This attribute is not optional if the userid attribute is specified.) If
specified, this attribute and its value are added to the request object.

38 JSP/Servlet Development Environment

Although the passwd attribute is optional, the password must be provided. See
<tsx:userid> and <tsx:passwd> for an alternative to hardcoding this attribute in the
JSP file.
v url and driver To establish a database connection, the URL and driver must be

provided.
The Application Server Version 3 supports connection to JDBC databases and
ODBC databases. When connecting to an ODBC database, you can use the Sun
JDBC-to-ODBC bridge driver included in the Java Development Kit (JDK) or
another vendor’s ODBC driver.
The url attribute specifies the location of the database. The driver attribute
specifies the name of the driver to be used to establish the database connection.
For a connection to a JDBC database, the URL consists of the following
colon-separated elements: jdbc, the sub-protocol name, and the name of the
database table to be accessed. An example for a connection to the Sample
database included with IBM DB2 is:
url=“jdbc:db2:sample”
driver=“COM.ibm.db2.jdbc.app.DB2Driver”

If the database is an ODBC database, you can use an ODBC driver or the the
Sun JDBC-to-ODBC bridge included with the JDK. If you want to use an ODBC
driver, refer to the driver documentation for instructions on specifying the
database location (the url attribute) and the driver name.
In the case of the bridge, the url syntax is jdbc:odbc:database. An example is:
url=“jdbc:odbc:autos”
driver=“sun.jdbc.odbc.JdbcOdbcDriver”

Note: To enable the Application Server to access the ODBC database, use the
ODBC Data Source Administrator to add the ODBC data source to the System
DSN configuration. To access the ODBC Administrator, click the ODBC icon on
the Windows NT Control Panel.
All of the elements shown in the example XML file need to be specified.
However, an empty element (such as <url></url>) is valid.

When the JSP file is compiled into a servlet, the Java processor adds the Java
coding for the <tsx:dbconnect> syntax to the servlet’s service() method, which
means a new database connection is created for each request for the JSP.

<tsx:userid> and <tsx:passwd>
Instead of hardcoding the user ID and password in the <tsx:dbconnect>, you can
use the <tsx:userid> and <tsx:passwd> to accept user input for the values and then
add that data to the request object where it can be accessed by a JSP (such as the
JSP10Employee.jsp example) that requests the database connection.

The <tsx:userid> and <tsx:passwd> must be used within a <tsx:dbconnect> tag.
The <tsx:userid> and <tsx:passwd> syntax is:
<tsx:dbconnect id=“connection_id”

<userid><tsx:getProperty name=“request”
property=request.getParameter(“userid”) />
</userid>

<passwd><tsx:getProperty name=“request”
property=request.getParameter(“passwd”) />
</passwd>

url=“protocol:database_name:database_table”
driver=“JDBC_driver_name”>

</tsx:dbconnect>

where:
v <tsx:getProperty> This syntax is a mechanism for embedding variable data. See

“JSP syntax for variable data.”

Chapter 3. JSP/Servlet Development Environment reference 39

v userid This is a reference to the request parameter that contains the userid. The
parameter must have already been added to the request object that was passed
to this JSP file. The attribute and its value can be set in the request object using
an HTML form or a URL query string to pass the user-specified request
parameters.

v passwd This is a reference to the request parameter that contains the password.
The parameter must have already been added to the request object that was
passed to this JSP. The attribute and its value can be set in the request object
using an HTML form or a URL query string to pass user-specified values.

<tsx:dbquery>
Use the <tsx:dbquery> syntax to establish a connection to a database, submit
database queries, and return the results set.

The <tsx:dbquery>:
v References a <tsx:dbconnect> in the same JSP file and uses the information it

provides to determine the database URL and driver. The user ID and password
are also obtained from the <tsx:dbconnect> if those values are provided in the
<tsx:dbconnect>.

v Establishes a new connection
v Retrieves and caches data in the results object
v Closes the connection (releases the connection resource)

The <tsx:dbquery> syntax is:
<%— SELECT commands and (optional) JSP syntax can be placed within the tsx:dbquery. —%>
<%— Any other syntax, including HTML comments, are not valid. —%>
<tsx:dbquery id=“query_id” connection=“connection_id” limit=“value” >
</tsx:dbquery>

where:
v id The identifier of this query. The scope is the JSP file. This identifier is used to

reference the query, for example, from the <tsx:getProperty> to display query
results.
The id becomes the name of a bean that contains the results set. The bean
properties are dynamic and the property names are the names of the columns in
the results set. If you want different column names, use the SQL keyword for
specifying an alias on the SELECT command. In the following example, the
database table contains columns named FNAME and LNAME, but the SELECT
statement uses the AS keyword to map those column names to FirstName and
LastName in the results set:
Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME=’Jim’

v connection The identifier of a <tsx:dbconnect> in this JSP file. That
<tsx:dbconnect> provides the database URL, driver name, and (optionally) the
user ID and password for the connection.

v limit An optional attribute that constrains the maximum number of records
returned by a query. If the attribute is not specified, no limit is used and the
effective limit is determined by the number of records and the system caching
capability.

v SELECT command and JSP syntax Because the <tsx:dbquery> must return a
results set, the only valid SQL command is SELECT. Refer to your database
documentation for information about the SELECT command. See other sections
of this document for a description of JSP syntax for variable data and inline Java
code.

40 JSP/Servlet Development Environment

In the following example, a database is queried for data about employees in a
specified department. The department is specified using the <tsx:getProperty> to
embed a variable data field. The value of that field is based on user input.
<tsx:dbquery id=“empqs” connection=“conn” >
select * from Employee where WORKDEPT='<tsx:getProperty name=“request”

property=request.getParameter(“WORKDEPT”) />'
</tsx:dbquery>

<tsx:dbmodify>
Use the <tsx:dbmodify> syntax to establish a connection to a database and then
add records to a database table.

The <tsx:dbmodify>:
v References a <tsx:dbconnect> in the same JSP file and uses the information

provided by that to determine the database URL and driver. The user ID and
password are also obtained from the <tsx:dbconnect> if those values are
provided in the <tsx:dbconnect>.

v Establishes a new connection.
v Updates a table in the database.
v Closes the connection (releases the connection resource).

The <tsx:dbmodify> syntax is:
<%— Any valid database update commands can be placed within the tsx:dbmodify. —%>
<%— Any other syntax, including HTML comments, are not valid. —%>
<tsx:dbmodify connection=“connection_id” >
</tsx:dbmodify>

where:
v connection The identifier of a <tsx:dbconnect> in this JSP file. That

<tsx:dbconnect> provides the database URL, driver name, and (optionally) the
user ID and password for the connection.

v Database commands Refer to your database documentation for valid database
commands.

In the following example, a new employee record is added to a database. The
values of the fields are based on user input from this JSP and referenced in the
database commands using <tsx:getProperty>.
<tsx:dbmodify connection=“conn” >
insert into EMPLOYEE

(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)
values
('<tsx:getProperty name=“request” property=request.getParameter(“EMPNO”) />',
'<tsx:getProperty name=“request” property=request.getParameter(“FIRSTNME”) />',
'<tsx:getProperty name=“request” property=request.getParameter(“MIDINIT”) />',
'<tsx:getProperty name=“request” property=request.getParameter(“LASTNAME”) />',
'<tsx:getProperty name=“request” property=request.getParameter(“WORKDEPT”) />',
<tsx:getProperty name=“request” property=request.getParameter(“EDLEVEL”) />)
</tsx:dbmodify>

Displaying query results
To display the query results, use the <tsx:repeat> and <tsx:getProperty> syntax.
The <tsx:repeat> loops through each of the rows in the query results. The
<tsx:getProperty> uses the query results object (for the <tsx:dbquery> syntax
whose identifier is specified by the <tsx:getProperty> bean attribute) and the
appropriate column name (specified by the <tsx:getProperty> property attribute) to
retrieve the value. An example is:

Chapter 3. JSP/Servlet Development Environment reference 41

<tsx:repeat>
<tr>

<td><tsx:getProperty name=“empqs” property=“EMPNO” />
<tsx:getProperty name=“empqs” property=“FIRSTNME” />
<tsx:getProperty name=“empqs” property=“WORKDEPT” />
<tsx:getProperty name=“empqs” property=“EDLEVEL” />
</td>

</tr>
</tsx:repeat>

Please refer to Sun’s JSP specification for more details:

http://java.sun.com/products/jsp/download.html

JSP and servlets
JavaServer Pages

Migrating between JSP 0.91 and JSP 1.0 support

JSP 0.91 programming reference

Generated servlet file names
The generated servlet code resides under the pagecompile package in the JSP Page
Compile Generated Code project. The file names of the generated servlets differ
according to the state of the JSP Execution Monitor. The following chart
summarizes the various scenarios.

JSP Execution Monitor
enabled

JSP Execution Monitor
disabled

JSP source debugging feature
enabled

_<JSP file
name>_xjsp_debug_jspsrc_
<random number>.java

_<JSP file
name>_xjsp_jspsrc_<random
number>.java

Load generated servlet
externally feature disabled

_<JSP file
name>_xjsp_debug.java

_<JSP file name>_xjsp.java

Load generated servlet
externally feature enabled

_<JSP file
name>_xjsp_debug_<random
number>.java

_<JSP file
name>_xjsp_<random
number>.java

where
v <JSP file name> is the JSP file name without the path and the ’.jsp’ extension.
v <random number> is a randomly generated number.

JSP Execution Monitor

42 JSP/Servlet Development Environment

Debugging JSP-generated servlet code
Using the JSP Execution Monitor
Enabling JSP source debugging
Loading generated servlet externally

JSP debug flow

Chapter 3. JSP/Servlet Development Environment reference 43

44 JSP/Servlet Development Environment

Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2000 45

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.
The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1997, 2000. All rights reserved.

46 JSP/Servlet Development Environment

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

© Copyright IBM Corp. 1998, 2000 47

48 JSP/Servlet Development Environment

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:
v AIX
v AS/400
v DB2
v CICS
v CICS/ESA
v IBM
v IMS
v Language Environment
v MQSeries
v Network Station
v OS/2
v OS/390
v OS/400
v RS/6000
v S/390
v VisualAge
v VTAM
v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States, or other countries, or both.

Tivoli Enterprise Console and Tivoli Module Designer are trademarks of Tivoli
Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1998, 2000 49

	Contents
	Chapter 1. JSP and servlets
	JSP/Servlet Development Environment
	JavaServer Pages
	JSP Execution Monitor

	Setting up the environment
	Loading the required features
	Configuring DB2 to work with data-enabled JSP applications
	Migrating between JSP 1.0 and JSP 0.91 support

	Using the JSP Execution Monitor
	Loading generated servlet externally
	Enabling JSP source debugging
	Retrieving syntax error information

	Debugging JSP-generated servlet code in VisualAge for Java
	Working around problems

	Chapter 2. Samples that implement JSP and servlettechnology - overview
	Sample: Signs of the Zodiac
	Sample: Servlet Engine Configuration
	Sample: Find the Leap Years

	Chapter 3. JSP/Servlet Development Environment reference
	JSP 0.91 programming reference
	JSP 1.0 programming reference
	Generated servlet file names

	Notices
	Programming interface information
	Trademarks and service marks

