IBM VisualAge® for Java , Version 3.5

Data Access Beans

<|ll

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Edition notice

This edition applies to Version 3.5 of IBM VisualAge for Java and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. About Relational Database

Access
Connection Aliases and SQL Specrflcatlons
Parameterized SQL Statements

Select Bean .

Modify Bean

ProcedureCall Bean .

DBNavigator Bean

Selector Beans .

About the Create Database Apphcatron SmartGurde

Chapter 2. Accessing Relational Data

Adding a Select, Modify, or ProcedureCall bean to

the Visual Composition Editor surface .

Making an SQL specification

Making a new SQL specification

Defining a database access class .

Composing or editing an SQL specrfrcatron
Composing an SQL query visually. .
Composing an SQL INSERT, UPDATE, or
DELETE visually .
Composing an SQL procedure call vrsually .

Editing Select bean properties

Executing a Select bean

Editing Modify bean properties.

Executing a Modify bean .

Editing ProcedureCall bean propertres

Executing a ProcedureCall bean .

Specifying a connection and SQL statement

Specifying a connection alias

Defining or editing a connection alias

Displaying and navigating a result set

© Copyright IBM Corp. 1997, 2000

1
2
2
.3
.5
6
8
9
9

11

.12
.12
. 14
. 14
.15
.15

. 30
.32
. 39
.41
.42
. 43
. 43
. 45
. 46
. 47
. 49
. 55

Adding Selector beans to the Visual Composition
Editor .

Editing CellSelector bean propertres .

Editing RowSelector bean properties .

Editing ColumnSelector bean properties .

Editing CellRangeSelector bean propertres .
Using Selector Beans . S
Using Selector bean data access propertles .
Inserting, updating, or deleting data in a result set
Adding the DBNavigator bean to the Visual
Composition Editor surface . .
Starting the Create Database Apphcatlon
SmartGuide . .
Creating a database apphcatron wrth the Create
Database Application SmartGuide .

Chapter 3. Data Access Beans
Select (Database)

Modify (Database) . .
ProcedureCall (Database) .

CellSelector (Database)
ColumnSelector(Database)
RowSelector(Database)
CellRangeSelector(Database) .
DBNavigator (Database) .

Notices
Programming interface information

Trademarks and service marks

. 57
. 58
. 59
. 60
. 62
. 63
. 65

66

. 69
. 69

. 70

. 75
.75
.77
.77
.79
. 80
. 82
. 84
. 86

. 89

. 91

. 93

iii

1V Data Access Beans

Chapter 1. About Relational Database Access

VisualAge for Java supports access to relational databases through JDBC. You can
access relational data in an applet or application by using the Data Access beans
on the Visual Composition Editor beans palette.

The Data Access beans are a feature of Visual Age for Java. To use the Data Access
beans, you must first add the Data Access Beans feature to your workspace.

Three beans provide core function for accessing databases:
* Select Bean

* Modify Bean

¢ ProcedureCall Bean

Additional beans provide user interfaces to invoke methods on the core beans and
to help display output from the database:

* DBNavigator Bean

* CellSellector Bean

¢ RowSelector Bean

* ColumnSelector Bean

* CellRangeSellector Bean

All of the beans except for DBNavigator are non-visual.

The Select, Modify, and ProcedureCall beans have properties that contain
connection aliases and SQL specifications. These properties allow you to connect to
relational databases and access data. You can also use parameterized SQL
statements with the Select, Modify, and ProcedureCall beans.

Using Data Access Beans at Run Time

After you develop a program that contains the Data Access beans you can deploy
it for use. VisualAge for Java provides several files that are used with these
programs at run time. These files, which are in root/eab/runtime20, where root is
the VisualAge for Java root directory, contain the class files, in several formats, for
the classes in the IBM Data Access Beans project. The classpath should be modified
to contain one of these files when a program is deployed.

The files are:

* ivjdab.jar. A compressed JAR file for use in network programs

* ivjdab.zip. An uncompressed ZIP file for use in local programs

In addition, VisualAge for Java provides two run time directories. These directories
contain the same classes that are in the JAR or ZIP file. The directories are
automatically added to the classpath when VisualAge for Java is installed. This

allows programs that use Data Access beans to run on the machine in which
VisualAge for Java is installed without further modification to the classpath.

The directories are:
e com\ibm\db
* com\ibm\ivj\db\uibeans

© Copyright IBM Corp. 1997, 2000 1

RELATED TASKS
7 : . ’”

Connection aliases and SQL specifications
Parameterized SQL statements

Connection Aliases and SQL Specifications

To connect to a database and access data using a Select, Modify, or ProcedureCall
bean, you specify values for the following properties:

* Select bean - query property
* Modify bean - action property
* ProcedureCall bean - procedure property

Each of the properties has the following:

* Connection Alias - the database connection characteristics such as the URL for
the connection and the user ID and password passed with the connection
request.

* SQL Specification - an SQL statement and meta-data about the statement.
VisualAge for Java provides the SQL Assist SmartGuide to help you visually
compose an SQL specification or you can use the SQL editor to manually
compose an SQL statement. If you manaully compose the SQL statement you
may also need to manually add meta-data about it to the generated SQL
specification..

Connection aliases and SQL specifications are stored by name in database access
classes that VisualAge for Java generates for you. When you create a Select,
Modify, or ProcedureCall bean, you can use an exisitng connection alias and/or
SQL specification or create new ones. If you create a new one, you can store it in
an existing database access class or create a new database access class. Your bean
can use a connection alias from one database access class and an SQL specification
from another database access class or it can use one database access class for both.

If you create multiple Select, Modify, or ProcedureCall beans for your program, the
beans can share one connection alias and/or one SQL specification. If multiple
beans use the same connection alias, at run time they share the same physical
connection to the database and when one of the beans commits an update to the
database, all uncommitted updates made by the other beans are committed also.

RELATED CONCEPTS
Parameterized SQL Statements
Select Bean

Modify Bean

ProcedureCall Bean

RELATED TASKS
Accessing Relational Data

Parameterized SQL Statements

2 Data Access Beans

The Select, Modify and ProcedureCall beans support the use of parameterized SQL
statements. A parameterized SQL statement contains one or more parameters or
variables whose value can be changed as your program runs. For example, your
SQL statement might be "SELECT = FROM STAFF WHERE DEPT = :deptNo" Your
program can change the value for :deptNo each time the statement runs.

When you call a stored procedure, you can use parameters to supply input values.
If the stored procedure returns output values (instead of or in addition to result
sets), you must use parameters to obtain the output values. For example, your SQL
statement might be "CALL MYPROC (5, :inl, :outl)". Your program will always
use "5" as the first input value and can change the input value for ":inl" each time
the statement runs. It must get the output value of ":outl" from the stored
procedure after each run.

The Select, Modify, and ProcedureCall beans have methods to set and get the
values of parameters. Each parameter for these beans has a name and can be
accessed by name or number. For example, the statement above, "CALL MYPROC (5,
:inl, :outl)" has two paraneters. (Because your program cannot change the value
5, it is not a statement parameter.) The last parameter can be identified either with
the name "outl" or the number 2.

When you use the SQL Assist SmartGuide to compose your SQL statement,
VisualAge for Java generates two bound properties for each parameter; the
parameter in its specified data type and a string representation of the parameter. In
the Visual Composition Editor you can connect these properties to properties of
interface components to get and set parameter values. For example, a
property-to-property connection between the string representation of an output
parameter and the text property of a text field results in the value displayed in the
text field changing whenever the parameter value changes.

RELATED CONCEPTS

Connection Aliases and SQL Specifications
Select Bean

Modify Bean

ProcedureCall Bean

RELATED TASKS
Accessing Relational Data

Select Bean

The Select bean is a non-visual bean. Using the Select bean you can query a
relational database. You can also use the result set that is returned to insert, update
or delete a row the database.

The Select bean has a query property which specifies how to connect to a database
and defines an SQL statement. Other properties allow you to specify such things as
when rows are fetched, how many at a time, and whether a database lock should
be acquired and held for a row while it is the current row.

The Select bean provides a set of methods for relational database access. For
example it provides an execute method to execute the SQL statement, and an
updateRow method to update a row in the database based on data in the current
row of the result set. To access relational data using a Select bean, you connect an
interface component to the Select bean. For example, you can make an
event-to-method connection between the actionPerformed event for a button and
the execute method of the Select bean. When the button is selected, the SQL
statement specified in the query property executes.

When you execute an SQL statement using a Select bean, it returns a result set.
Unlike the native Java interface to relational data (JDBC), the Select bean maintains

Chapter 1. About Relational Database Access 3

4 Data Access Beans

rows of the result set in a memory cache where you can move back and forth
among the rows. You can control how many rows are in the cache at one time or
over time by setting Select bean properties that control memory management (page

When an SQL statement runs using a Select bean, the first row of the result set
becomes the current row. If you move to another row, that row becomes the
current row. Many of the Select bean methods operate on the current row of the
result set; other methods allow you to move among the rows.

You can display data in the result set by making a property-to-property connection
between the appropriate source property of the Select bean and an appropriate
target property of an interface component such as a JTable or text field. For
example, to display result set data in a tabular form, you can make a property-to
property connection between the this property of the Select bean and the model
property of the JTable.

You can also display result set data one row at a time. If you use the the SQL
Assist SmartGuide to compose your SQL statement, VisualAge for Java will
generate two bound properties for each data column in the result set. One property
is the data column in its specified data type, the other is a string representation of
the data column. Make a property-to-property connection between the String
representation of each data column in the result set and the text property of a text
field. The text fields will display the column values of the current row.

Inserting, updating and deleting data

The Select bean provides methods that you can use to insert, update, and delete
relational data. To perform these operations you must first use a Select bean to
retrieve a result set and position to the desired row. Any changes made to rows in
the cache are applied to the database as well:

* You can set new values for columns in the current row. When you leave the row,
the changes are automatically applied to the database.

* If you delete the current row, it is immediately deleted from the database.

* You can insert a row before or after the current row. Values you set in the new
row are automatically inserted into the database when you leave the new row.

There are various ways to use the methods for inserting, updating and deleting
data. For example, one way to implement updates in a program is to make an
event-to-code connection between an appropriate interface component, such as a
button, and a method. This method would obtain the new value from an interface
component such as a text field and then use a Select bean method to set the value
of the column in the current row of the result set to this new value. The method
would then use another Select bean method to update the row in the database
with these values.

Memory Management

You can control how many rows are in the memory cache at one time or over time
by setting expert properties of the Select bean. The properties determine:

¢ The maximum number of rows that can be fetched into the cache over time.

¢ The minimum number of rows to be fetched at one time. This is called packet
size. (Rows are fetched into or displaced from the cache in packets.

¢ The maximum number of packets allowed in the cache at one time. (Older
packets may be displaced as newer packets are fetched.)

¢ Whether the cache should be filled with as many rows as possible (given the
settings for the properties above) as soon as you run your query or have rows
added as you ask for them.

The maximum number of rows that will be in the cache at one time is the least of:
¢ The packet size times the maximum number of packets allowed in the cache.
* The maximum number of rows that can be fetched over time.

e All of the rows in the result set.

If memory management is not critical to your program, you need not be concerned
with these properties. By default, the cache size is not limited; rows are fetched
one at a time (a packet size of 1); and all of the rows in the result set are fetched
into the cache as soon as you run your query.

RELATED COMNCEPTS

Connection Aliases and SQL Specifications
Parameterized SQL Statements

Modify Bean

ProcedureCall Bean

Selector Beans

Navigator Bean

RELATED TASKS
Accessing Relational Data

Modify Bean

The Modify bean is a non-visual bean. Using the Modify bean you can insert,
update, delete rows in the database without first running a query.

The Modify bean has an action property which specifies how to connect to a
database and defines an SQL statement. Other properties allow you to get
information such as whether the SQL statement has been executed and how many
rows in the database were affected by it.

The Modify bean provides an execute method that executes the SQL statement and
methods to commit or roll back the changes to the database. To use the Modify
bean, you connect an interface component to it. For example, you can make an
event-to-method connection between the actionPerformed event for a button and
the execute method of the Modify bean. When the button is selected, the SQL
statement specified in the action property is executed.

The Modify bean is intended to run SQL INSERT, UPDATE and DELETE
statements. However, it can run any valid SQL statement, but it will not return a
result set. Use a Select or ProcedureCall bean to obtain result sets. Because the
Modify bean doesn’t return a result set, you cannot use the DBNavigator bean
with it.

RELATED COMNCEPTS

Connection Aliases and SQL Specifications
Parameterized SQL Statements

Select Bean

ProcedureCall Bean

Chapter 1. About Relational Database Access 5

RELATED TASKS
Accessing Relational Data

ProcedureCall Bean

6 Data Access Beans

The ProcedureCall bean is a non-visual bean. Using the ProcedureCall bean, you
can run a stored procedure. You can pass parameters as input, output or both and
you can access any result sets the stored procedure returns. You can also use any
result sets that are returned to insert, update, or delete rows in the database.

The ProcedureCall bean has a procedure property which specifies how to connect
to a database and defines an SQL statement. All of the properties you can specify
for a Select bean can also be specified for a ProcedureCall bean. In addition, the
ProcedureCall bean has properties that govern the handling of any result sets
returned by a stored procedure.

The ProcedureCall bean provides a set of methods for running stored procedures
and obtaining output from them. For example, the execute method executes the
SQL CALL statement. There are methods for setting input parameter values and
getting output parameter values. To run a stored procedure, you connect an
interface component to the ProcedureCall bean. For example, you can make an
event-to-method connection between the actionPerformed event for a button and
the execute method of the ProcedureCall bean. When the button is selected, the
SQL CALL statement specified in the procedure property executes.

When you run a stored procedure using the ProcedureCall bean, it may return
zero, one, or multiple result sets. Unlike the native Java interface to relational data
(JDBC), the ProcedureCall bean maintains result sets in a memory cache where you
can move back and forth between the result sets and the rows within the result
sets. You can control the number of result sets in the cache at one time and the
number of rows within each result set at one time or over time by setting
ProcedureCall properties that control memory management. (page B)

Once you have used a Procedure Call bean to run a stored procedure, if it returned
one or more result sets, you are always positioned on a result set, referred to as the
"current result set". If the current result set has one or more rows, you are also
positioned on a row, referred to as the "current row". Many of the Procedure Call
bean properties operate on the current row of the current result set. Initially the
current result set is the first one returned, and the current row is its first row. The
Procedure Call bean includes methods to move to a different row or a different
result set. For example, there are methods that move to the next row, the previous
row, the next result set, and the previous result set.

Values for parameters used as input to or output from the stored procedure can be
accessed via an interface component such as a text field using the bound
parameter properties of the Procedure Call bean that Visual Age for Java generates.

If the stored procedure returns one or more result sets, you can display data from
the current result set by making a property-to property connection between the
appropriate source property of the ProcedureCall bean and the appropriate target
property of an interface component such as a JTable or a text field. To display
result set data in tabular form make a property-to-property connection between the
this property of the ProcedureCall bean and the model property of the JTable. As
you move from one result set to another, the table will change accordingly.

You can also display result set data one row at a time. If the stored procedure
returns only one result set or all returned result sets have similar columns and you
use the SQL Assist SmartGuide to describe a result set, Visual Age for Java will
generate two bound properties for each data column in the result set. One property
is the data column in its specified data type, the other is a string representation of
the data column. Make a property-to-property connection between the string
representation of each data column in the result set and the text property of a text
field, and the text field displays the column values of the current row of the
current result set.

Inserting, updating and deleting data

The ProcedureCall bean provides methods that you can use to insert, update, and
delete relational data. To perform these operations, the ProcedureCall bean must
return one or more result sets and be positioned to the desired result set and the
desired row. Any changes made to rows in the cache are applied to the database as
well:

* You can set new values for columns in the current row. When you leave the row,
the changes are automatically applied to the database.

* If you delete the current row, it is immediately deleted from the database.

* You can insert a row before or after the current row. Values you set in the new
row are automatically inserted into the database when you leave the new row.

There are various ways to use the methods for inserting, updating and deleting
data. For example, one way to implement updates in a program is to make an
event-to-code connection between an appropriate interface component, such as a
button, and a method. This method would obtain the new value from an interface
component such as a text field and then use a ProcedureCall bean method to set
the value of the column in the current row of the current result set to this new
value. The method would then use another ProcedureCall bean method to update
the row in the database with these values.

Memory Management

By setting expert properties of the ProcedureCall bean, you can control how many
result sets are in the memory cache at one time, and for each result set, how many
rows are in the memory cache at one time or over time.

The properties for result sets determine:

* The maximum number of result sets allowed in the cache at one time. (Older
result sets may be displaced as newer ones are fetched.

* Whether the cache should be filled with as many result sets as possible (given
your setting for the property above) as soon as the stored procedure runs or
should have result sets fetched as you ask for them.

The properties for rows determine:

¢ The maximum number of rows that can be fetched into the cache over time for
each result set.

* The minimum number of rows to be fetched at one time. This is called packet
size. (Rows are fetched into or displaced from the cache in packets.

* The maximum number of packets allowed in the cache at one time for each
result set. (Older packets may be displaced as newer packets are fetched.)

* Whether the cache should be filled with as many rows as possible for each result
set (given the settings for the properties above) as soon as you run your the
stored procedure or have rows added as you ask for them.

Chapter 1. About Relational Database Access 7

The maximum number of rows that will be in the cache at one time is the least of:
* The packet size times the maximum number of packets allowed in the cache.
¢ The maximum number of rows that can be fetched over time.

e All of the rows in the result set.

If memory management is not critical to your program, you need not be concerned
with these properties. By default, the cache size is not limited; rows are fetched
one at a time (a packet size of 1); and all of the rows of all result sets are fetched
into the cache as soon as you run your store procedure.

Only the last result set fetched remains open to fetch additional rows. Therefore, if
you fetch all of the result sets as soon as the stored procedure runs, you probably
want to fetch all of the rows for each result set at that time. Otherwise, there may
be rows in result sets, other than the last one, which cannot be fetched.

RELATED COMNCEPTS

Connection Aliases and SQL Specifications
Parameterized SQL Statements

Select Bean

Modify Bean

Selector Beans

Navigator Bean

RELATED TASKS
Accessing Relational Data

DBNavigator Bean

8 Data Access Beans

The DBNavigator bean is a visual bean that is used with a non-visual Select or
ProcedureCall bean. The DBNavigator bean provides a set of buttons that run the
SQL statement for the associated bean; navigate rows in the result set, perform
other relational database operations, such as commit updates to the database.

The DBNavigator bean is customizable. You can specify which of the buttons in the
set you want displayed (however you cannot control the order of buttons in the
display). You do this by setting properties in the DBNavigator bean.

To use the DBNavigator bean you create a property-to-property connection
between the this property of the Select or ProcedureCall beans and the model
property of the DBNavigator bean. The this property refers to the whole object of
the non-visual bean. The model property specifies which non-visual bean the
DBNavigator bean will navigate.

RELATED CONCEPTS
Select Bean
ProcedureCall Bean

RELATED TASKS
Accessing Relational Data

Selector Beans

Selector beans are non-visual beans. They provide views of subsets of the data in a
result set. There are four Selector beans:

¢ CellSelector - provides a single value view of data.

¢ ColumnSelector - provides a column view of data.

¢ RowSelector - provides a row view of data.

* CellRangeSelector - provides a two-dimensional view of data.

All Selector beans will work with data presented in any implementation of the
Java TableModel interface such as the Select and ProcedureCall bean. All Selector
beans have properties you can use to define the subset of tabular data you wish to
work with. These properties can be modified at run-time in order to navigate
through the data.

The ColumnSelector and RowSelector implement the Java ComboBoxModel
interface and the CellRangeSelector implements the Java TableModel interface. This
allows the selectors to act as the model for other Java classes that use these
interfaces such as a JList or a JTable.

In addition, all Selector beans have data access properties that allow access to their
source data converted to a specified data type. There are properties for each of the
base Java data types and several common Java classes to support text strings,
dates, and times. These properties allow other beans to see the source data in a
form they understand, avoiding the need for them to use the Java TableModel
interface.

RELATED CONCEPTS
Select Bean
ProcedureCall Bean

RELATED TASKS
Using Selector Beans
Accessing Relational Data

About the Crea

te Database Application SmartGuide

The Create Database Application SmartGuide assists you in creating a database
application using the Select bean for data access. Once you define the query
property of the Select bean, the Create Database Application SmartGuide generates
a graphical user interface (GUI) to display the columns of the result returned from
a query.

In particular, you use the Create Database Application SmartGuide to create the
following components of a database application:

* A database connection

¢ An SQL statement

* A graphical user interface

The Create Database Application SmartGuide is installed when you add the Data
Access beans as a feature of Visual Age for Java. To use the Data Access beans, you
must first add the Data Access Beans feature to your workspace. To add the Data

Access beans, select File > Quick Start > Features > Add Features; then select
Data Access Beans 3.0 and click OK.

Chapter 1. About Relational Database Access 9

RELATED TASKS
Starting the Create Database Application SmartGuide
Creating a database application with the Create Database Application SmartGuide

10 Data Access Beans

Chapter 2. Accessing Relational Data

You can access relational data using Data Access beans. However, before you can
use the beans you must:

e Add the Data Access Beans feature to VisualAge for Java. You can do this using
the Quick Start window.

* Add the directory or JAR/ZIP file to the Workspace classpath, as appropriate for
the JDBC driver class you select for database connection. You can do this using
the Options window.

After you add the feature and set the classpath, you can access relational data by

using any of three Data Access beans to access relational data in different ways:

* The Select bean allows you to run a query and access the result set returned by
the query. You can insert, update, and delete rows in the result set without
writing separate SQL INSERT, UPDATE and DELETE statements. Using the
Select bean in the Visual Composition Editor may involve:

- f’Ar‘]ding a Select Maodify or ProcedureCall bean to the Visual anpneifinﬂ

7 173

* The Modify bean allows you to run SQL INSERT, UPDATE, or DELETE
statements without first running a query and retrieving its result set. Using a
Modify bean in the Visual Composition Editor may involve:

— Adding a Select, Modify, or ProcedureCall Bean to the Visual Composition
Editor Surface

- Editing Modify Bean Properties
- Executing a Modify Bean

¢ The ProcedureCall bean allows you to run a stored procedure passing values for
input parameters and receiving values for output parameters. If the stored
procedure returns one or more result sets, the ProcedureCall bean gives you
access to them and you can insert, update or delete rows within the result sets
without writing separate SQL INSERT, UPDATE and DELETE statements. Using
the ProcedureCall bean in the Visual Composition Editor may involve:

— Adding a Select, Modify, or ProcedureCall Bean to the Visual Composition
Editor Surface

- Editing ProcedureCall Bean Properties

— Executing a ProcedureCall Bean

— Displaying and Navigating a Result Set

— Inserting, Updating, or Deleting Data in a Result Set

Selector beans allow you to work with a subset of the result set returned by a
Select or ProcedureCall bean. As appropriate, the selector beans implement either

© Copyright IBM Corp. 1997, 2000 11

the Java ComboBoxModel or TableModel interface, so they can pass data directly
to user interfaces such as a JList or JTable. Using Selector Beans in the Visual
Composition Editor may involve:

* Adding Seletor Beans to the Visual Composition Editor Surface

* Using Selector Beans

RELATED TASKS
Using the Quick Start Window
Setting the Class Path

Adding a Select, Modify, or ProcedureCall bean to the Visual
Composition Editor surface

To use a Select, Modify or ProcedureCall bean, the Data Access Beans feature must
be added to VisualAge for Java.

These are nonvisual beans that you use to access data in a relational database. Start

by adding one of the beans to the Visual Composition Editor surface as follows:

1. From the category drop-down menu in the Visual Composition Editor, select
the Database category.

b

2. Select == for a Select bean, E&
ProcedureCall bean..

for a Modify bean, or §G for a

3. Move the mouse pointer to the location on the Visual Composition Editor
surface where you want to place the bean.

4. Press and hold mouse button 1. Without releasing the mouse button, move the
mouse pointer to position it precisely.

5. Release the mouse button. The bean is placed at the location of the mouse
pointer.

RELATED CONCEPTS

Beans Palette

RELATED TASKS

Adding a feature to VisualAge for Java
Composing beans visually

RELATED REFERENCES

Visual Composition Editor

4 ”

Modity
ProcedureCall

Making an SQL specification

12 Data Access Beans

You use a Select, Modify, or ProcedureCall bean to access relational data. Use the
SQL page of the data property editor to specify the SQL statement for the bean.
You can create a new SQL specification or select an existing SQL specification.
When you create an SQL specification, you have the option of composing it
manually in an SQL editor or you can use the SQL Assist SmartGuide, to help you
compose it.

When you create an SQL specification, you identify a database access class to hold
the SQL specification definition. Different Select beans can use the same SQL
specification. The same is true for Modify and ProcedureCall beans.

2] Query

Cannection

Database Access Class:

IdepSamp.Specs j ey,
SaL:
|Depcun3 Add..

Edit...

Remaye

S0L Staterment:

SELECT MOJO.DEPARTMENT.DERPTMG,
MOJO.DEPARTMENT DEPTMNAME FROM
MOJO.DEPARTMEMNT

Lk

8154 | Cancell

1. Select a database access class from the drop-down list in the Database Access
Class field. The list shows the database access classes that exist in the
workspace. The format of each item in the list is packagename.classname, where
packagename is the name of the package that contains the database access class,
and classname, is the name of the class.

To define a new database access class and add it to the Database Access Class
list, select New.

2. Select an SQL specification from the SQL list. The list identifies the SQL
specifications that are in the selected database access class. If you are editing a
Query property, only specifications of queries are shown, likewise for
Procedure properties and Action properties.

To add an SQL specification to the database access class, select Add.

To edit an SQL specification, select the SQL specification name in the SQL list
and then select Edit.

To remove an SQL specification from the SQL list, select it in the list and then
select Remove.

When you finish making the SQL specification, select OK.

To cancel making an SQL specification, select Cancel.

RELATED TASKS
v P 7

” . . e . 17

” . ey .. . 7

” 17

Chapter 2. Accessing Relational Data 13

Making a new SQL specification

Select Add in the SQL page of the data property editor to make a new SQL
specification for a Select, Modify, or ProcedureCall bean. This opens the New SQL
Specification window.

EC_,JNEW SOL Specification E3
SCL Mame: ||

@ e SOL Assist SmarGuide (recommended)

" Manually write SAL

1t | Cancell

* Specify a name for the SQL specification in the SQL Name field. The name must
be a valid Java method name. Although only SQL specification definitions of the
same type as this one appear in the list on the SQL page of the property editor,
the name you provide here must be unique within all of the definitions in the
database access class, including SQL specification definitions of other types as
well as connection alias definitions.

* Select either the Use SQLAssist SmartGuide radio button or the Manually
write SQL radio button.

Selecting the Use SQL Assist SmartGuide radio button is recommended. SQL
Assist is a SmartGuide that helps you visually compose an SQL statement.

Selecting the Manually write SQL radio button opens an SQL editor for you to
enter an SQL statement.

When you finish, select OK. This opens the SQL Assist SmartGuide or the SQL
editor, depending on the radio button selected.

To cancel making a new SQL specification, select Cancel.

RELATED TASKS

” . ey . . 7

Defining a database access class

14 Data Access Beans

Select New in the Connection page of the data property editor to define a new
database access class to contain a connection alias for a Select, Modify, or
ProcedureCall bean. Select New in the SQL page of the data property editor to
define a new database access class to contain an SQL specification for a Select,
Modify, or ProcedureCall bean. Selecting New opens the New Database Access
Class window.

EC_,J Hew Database Access Class E3

Package:

IdepSamp Browse. . |
Class Mame:

|specs

[o]24 | Cancell

1. Specify a package for the database access class in the Package field. Select
Browse to view a list of the packages available in the workspace.

2. Specify a class name for the database access class in the Class name field.

3. When you finish specifying a package and class name, select OK. This creates a
new database access class and adds it to the database access class list in the
Connection page and SQL page of the data property editor.

To cancel defining a new database access class, select Cancel.

Composing or editing an SQL specification

An SQL specification contains an SQL statement plus meta-data about the
statement. You can compose a new SQL specification or edit one that you already
composed.

You compose a new SQL statement by selecting Add in the SQL page of the data
property editor. This opens the New SQL Specification window. You have two
ways to compose the new SQL statement:

¢ Use the SQL Assist SmartGuide. The SQL Assist SmartGuide helps you build an
SQL statement and its meta-data visually.

* Use an SQL editor to enter the SQL statement manually. If you choose this
option, you may need to add meta-data information to the SQL specification
generated in your Database Access class.

You are prompted to specify one of these SQL composition approaches in the New
SQL Specification window.

You make a request to edit an SQL statement by selecting Edit in the SQL page of
a data property editor. This opens either the SQL Assist SmartGuide or the SQL
editor, depending on which one you used to initially compose the SQL statement.

RELATED TASKS
Composing an SQL INSERT, UPDATE, or DELETE visually
Composing an SQL procedure call visually

1

Making a new SQL specification

Composing an SQL query visually

Use the SQL Assist SmartGuide to visually compose an SQL query for a Select
bean.

Chapter 2. Accessing Relational Data 15

£ S0L Assist SmartGuide

TabIBS|Juin| condition 1| Columns| Sort| Mapping| saL|

Select an 5oL staterment type and tahlels).
Staterment type:

& Select ¢ Select Unigue

Select Tahle(s):

Table name |
v WMOJODEPARTMENT =1
[mMoJO EMPLOYEE &

Yiew schemais)... | Filter tableis)...

| Next =

Finish | Cancel|

Using the SQL Assist SmartGuide you can:

Specify the tables to be accessed in the SQL query. (Required.)
Join the tables. (Optional.)

Specify search conditions for the SQL query. (Optional.)
Specify the table columns to return in the result set. (Optional.)
Sort the result set. (Optional.)

Remap a result column to a different Java class. (Optional.)
Display the resulting SQL query. (Optional.)

You must first chose the statement type. Chose the Select Unique button if you
want to eliminate any duplicate rows in the result set. Chose the Select button if
you want the result set to contain all of the rows that meet your selection criteria,
including any duplicate rows.

When you display the SQL query, you can also run it as a test using the SQL Assist
SmartGuide. You can also copy the SQL query to the clipboard or save it.

RELATED TASKS

I’Qpnnifving the tables for an SOL statement’

G E ”

I’Q‘rr‘\pr*ifving search conditions” on page 21l

I’Q‘ppni{:ving result columns” on page 23

7 : 7

I'Rpmapping data to a different QQT data fvpp" onjpage 24

Ty . 7

Specifying the tables for an SQL statement
Use the Tables page of the SQLAssist SmartGuide to specify the tables that are
accessed in an SQL statement.

16 Data Access Beans

£ S0L Assist SmartGuide

TabIBS|Juin| condition 1| Columns| Sort| Mapping| saL |

Select an 5oL staterment type and tahle(s).
Staterment type:

& Select ¢ Select Unigue

Select Tahle(s):

Table name |
v WMOJODEPARTMENT =1
[mMoJO EMPLOYEE &

Yiew schemais)... | Filter tableis)...

| Mesd =

Finish | Cancel|

The Table name field lists the tables that you can access in the database identified
by the currently selected connection alias. By default, the tables listed are those
whose schema is the user ID specified for the database connection. If no tables in
the database have that schema, all the tables in the database are listed.

You can add or remove table names displayed in the list, by selecting View
schema(s). You can filter the table names displayed in the list by selecting Filter
table(s).

Selecting View schema(s) opens the Schema(s) to View window.

E; Schemals] to Yiew

Selectthe schemas you wish to view.

Available schemais): Selected schermar(s):
SYSCAT MOJD

SYSIBM

SYSETAT

Select all
Deselect all

(el Cancel

* You can select schemas from Available schema(s) and add them to Selected
schema(s) by clicking the Add button.

* You can remove schemas from Selected schema(s) using the Remove button.

* You can select or deselect all the schemas in both Available schema(s) and
Selected schema(s) using the Select all or Deselect all buttons.

Chapter 2. Accessing Relational Data 17

18 Data Access Beans

When you finish selecting schemas to view, select OK. This closes the Schema(s) to
View window.

Selecting Filter table(s) opens the Table Name Filter window.

EﬁTahle Name Filter | x|

Enter the table name filter to use helow:
[%

Table type
v ALIAS
[V SYSTEM TABLE
[v| TeBLE

v | viEw

oK | Cancell

You are then prompted to enter the following information for the filter:

* Filtering characters for the table name. The filtering characters are case-sensitive.
These characters limit the display to only table names beginning with those
characters. For example, if you enter EMD, only table names that begin with
EMP are listed, such as the EMPLOYEE table. The % character is a wildcard
character. Use it to position the filter. For example, specifying %ID requests the
display of all table names that end with the characters ID. The specification
N%ID requests the display of all tables names that begin with N and end with
ID.

* Table types. This determines the type of tables that will be displayed in the
Tables page. You can specify alias tables, system tables, user tables, or views by
checking the corresponding checkbox in the Table type field. You can check
multiple table types.

When you finish entering information that filters table names in the list, select OK.
This closes the Table Name Filter window.

Select a table for the SQL statement by checking the checkbox next to the table
name in the Table name list. You can select more than one table.

When you finish, select Next. This displays the Join page of the SQL Assist
SmartGuide. Use this page to specify table joins for the SQL statement. You can
also display any page in the SQL Assist SmartGuide by selecting its tab.

When you complete the specification of your SQL statement, select Finish. This
generates the code for the SQL statement and closes the SQL Assist SmartGuide.

To cancel visual composition of the SQL statement, select Cancel.

RELATED TASKS

Joining tables

Specifying search conditions

Specifying result columns

Sorting the result set

Remapping data to a different SQL data type
Displaying the SQL statement

Joining tables

Use the Join page of the SQLAssist SmartGuide to join tables in an SQL statement.
The join page displays the columns of each table selected in the Tables page.

£z SOL Assist SmartGuide

Tahles Join|oondition1| Calurnns| Sort| Mapping| saL|

Show how the tables are related by joining therm.

MOJO.DEPARTMEMNT
DEPTMO

MGRMNO
ADMRDERT

MOJO.EMPLOYEE

ﬂ Jain |

EMPMO
FIRSTHME
RIDIMIT
LASTMAME

DRKDEPT
HOMEMNO
HIREDATE
JOB

or”

JJJ
[D
[[ootons...

tables are equal.

Inner Join: Only include rovws where the joined fields from both J

J7]

Click ‘Join'to create a join.

= Back | Next =

Finish | Cancel|

Requesting a join

1. Select one of the displayed columns in a table. The informational area indicates

the status of the join.

2. Select a displayed column in another table. A line appears connecting the
columns to indicate the requested join. Notice that the information area is
updated. The information area also indicates if a requested join is invalid (for

instance, because of a mismatch in the data type of the columns). The control

buttons on the join page are also enabled.

Chapter 2. Accessing Relational Data

19

20 Data Access Beans

£ S0L Assist SmartGuide

Tahles Join|oondition1| Calurnns| Sort| Mapping| saL|

Show how the tables are related by joining therm.

MOJO.EMPLOYEE j j
EMPMNO
FIRSTHME
MIDINIT

Lnjain
Qptions...

LASTMAME

MOJO.DEPARTMEMNT

DER I / PHOMNEMND

MGRMO lilE‘EDATE -
4 | ¥

Inner Join: Only include rows where the joined fields from both J
tables are equal.

Joined MOJOEMPLOYEEWORKDEPT and 'MOJO.DEPARTMEM

= Back | Next =

Finish | Cancel|

By default, a join request is assumed to be an inner join. An inner join requests
only the rows where the values of the two columns match. You can also request
other types of joins by selecting Options. You can select:

* Left outer join. This is a request for an inner join and any additional rows in
the left table (as viewed in the Join page) that are not already included in the
inner join.

* Right outer join. This is a request for an inner join and any additional rows
in the right table (as viewed in the Join page) that are not already included
in the inner join.

Inner join is also an option. You can choose this if want to change a join type
from a left or right outer join.

3. Select Join. The color of the join line changes to red indicating that the join is
enabled.

Requesting additional joins
You can request additional joins in the same way as the initial join. You can join
other displayed columns in the same tables or in other tables. If you request

multiple joins, you can navigate between the joins by selecting > or <. The selected
join is indicated by a red join line.

Removing a join

To remove a join, select the joined columns or navigate to the pertinent join. Then
select Unjoin. The join line is removed.

When you finish the join
When you finish the join specification, select Next. This displays the Condition 1

page of the SQLAssist SmartGuide. Use this page to specify a search condition for
the SQL statement.

When you complete the specification of your SQL statement, select Finish. This
generates the code for the SQL statement and closes the SQLAssist SmartGuide.

To cancel the visual composition of the SQL statement, select Cancel.

RELATED TASKS

Specifying the tables for an SQL statement
Specifying search conditions

Specifying result columns

Sorting the result set

Remapping data to a different SQL data type
Displaying the SQL statement

Specifying search conditions

Use the Condition page of the SQLAssist SmartGuide to specify a search condition
for an SQL statement. You can specify multiple search conditions; you specify each
search condition in a separately numbered Condition page. The search conditions
supplement any joins specified in the Join page, that is, the joins and the search
conditions appear in the WHERE clause of the SQL statement.

£ S0L Assist SmartGuide

Tahles| Join Condition 1 |Cn|umns| sort| Mapping| saL |

Select a column, an operator, and enter the values you want to find.

Selected tableds): Operatat: Yalues:
010 DEPARTHE ~ | [EXEEURIaRS - | | -]
is not egual to 1

is after

is after or equal to
is before bl
is hefore or equal 1|

|
is between -
5 Find...

Intable WMOJO.DEPARTMEMT J ‘
find all rowes in column DEPTHO!

that

are exactly equal to ... J

Columns:

DEFTHAME ﬂ

[Distinct type

<Elack| Mext = | Finish | Cancel|

Specifying a search condition

1. Select the table for the search from the Selected table(s) drop-down list. The
list includes only the tables that are selected in the Tables page. The
information area displays the current description of the search condition.

2. Click the Distinct type checkbox if the condition involves a column with a
user-defined (distinct) type.

3. Select the column for the search from the Columns list. Notice that the
description of the search condition is updated. Also notice that name and data
type of the selected column is displayed.

4. Select an operator from the Operator list. The description of the search
condition is updated.

Chapter 2. Accessing Relational Data 21

22 Data Access Beans

5. Specify one or more values in the Values list. The description of the search
condition is updated. You can enter values. You can also select Find to find
appropriate values; this opens the Value Lookup window.

[{_,J\."alue Lookup for '‘DEPTHO"
Search for:
Maximurm hits: |25 = [T Case sensitive

Available values:

Find now | s valies | 8154 | Cancel |

Use the Value Lookup window to find appropriate values for a search
condition. You can look for values that include a specific character string or
you can display all the values in the column. The % character is a wildcard
character. For example, specifying A% searches for values that begin with the
character A. Specifying %1 searches for values that end with the character 1.
The specification A%]1 searches for values that begin with the character A and
end with the character 1.

Specify the character string in the Search for field and select Find now. Check
the Case sensitive checkbox if you want to search for the characters in upper
or lower case, exactly as entered in the Search for field.

Select a value from the Maximum hits list to control the number of values
returned for the search.

To display all the values in the column, select Find now; do not specify
anything in the Search for field.

Results are displayed in the Available values list up to a maximum number of
rows as specified by the Maximum hits value. Select an appropriate value or
values from the list, and select Use values. The selected values are added to the
Values list in the Condition page.

Select Close to close the Value Lookup window.

To cancel value lookup and remove any values selected from value from the
Available values list, select Cancel.

To remove the values from the Values list in the Condition page, select Clear.

You can also specify parameters in the Values list. If a parameter is specified,
its value is used in the search condition. A parameter is specified in the format
:parm, where parm is the parameter name. For example, :empid is a valid
specification for a parameter named empid.

Specifying additional search conditions

After you specify the first search condition, select Find on another column. This
displays a second search condition window (the tab for the window is labeled
Condition 2). Specify the second search condition as described in Specifying a
search condition (page R1).

Specify a third condition for the query by selecting Find on another column in the
Condition 2 page. Repeat the process until you specify all the search conditions for
the query.

Removing a search condition
Select the condition page for the condition. Then select Delete Condition.
When you finish specifying search conditions

When you complete the specification of your SQL statement, select Finish. This
generates the code for the SQL statement and closes the SQLAssist SmartGuide.

To cancel the visual composition of the SQL statement, select Cancel.

RELATED TASKS

Specifying the tables for an SQL statement
Joining tables

Specifying result columns

Sorting the result set

Remapping data to a different SQL data type
Displaying the SQL statement

Specifying result columns

Use the Columns page of the SQLAssist SmartGuide to specify the columns in the
result set. The column names will appear in the SELECT clause of the SQL
statement.

Chapter 2. Accessing Relational Data 23

x| SOL Assist SmartGuide

[V Qe | 1] i i

1. Select a table from the Selected table(s) drop-down list. The list includes only
the tables that are selected in the Tables page.

2. Select one or more columns from the Columns list. The list includes the
columns for the selected table. Use Select all to select all the columns in the
list. Use Deselect all to deselect all selected columns in the list.

3. Select Add to add the selected columns to the Columns to include list. The
selected columns are moved from the Columns list to the Columns to include
list.

To remove one or more columns from the Columns to include list, select the
columns and select Remove. The selected columns are moved from the
Columns to include list to the Columns list.

To change the order of columns in the Columns to include list, select the
columns whose position you would like to change and then select Move up or
Move down.

When you finish specifying the result columns, select Next. This displays the Sort
page of the SQLAssist SmartGuide. Use that page to sort the result set.

Select Back to display the Condition page of the SQLAssist SmartGuide. If
appropriate, you can then change the search conditions for the SQL statement.

You can also display any page in the SQL Assist SmartGuide by selecting its tab.

When you complete the specification of your SQL statement, select Finish. This
generates the code for the SQL statement and closes the SQLAssist SmartGuide.

24 Data Access Beans

To cancel the visual composition of the SQL statement, select Cancel.

RELATED TASKS

Specifying the tables for an SQL statement
Joining tables

Specifying search conditions

Sorting the result set

Remapping data to a different SQL data type
Displaying the SQL statement

Sorting the result set

Use the Sort page of the SQLAssist SmartGuide to specify the order of rows in the
result set. You specify the order by identifying a column to be used as a sort key.
You can specify multiple columns, each one is used as a separate sort key.The rows
of the result set are ordered by the value in the selected column, that is by the
value of the sort key. If you specify more than one sort key, the rows of the result
set are ordered by the value of the first sort key, then by the value of the second
sort key, and so on. The sorting specification will appear in the ORDER BY clause
of the SQL statement.

i SOL Assist SmartGuide

== [REOVE!

1. Select a table from the Selected table(s) drop-down list. The list includes only
the tables that are selected in the Tables page.

2. Select one or more columns from the Columns list. The list includes the
columns for the selected table. Use Select all to select all the columns in the
list. Use Deselect all to deselect all selected columns in the list.

Chapter 2. Accessing Relational Data 25

3. Select Add to add the selected columns to the Columns to sort on list. The
selected columns are removed from the Columns list.

To remove one or more columns from the Columns to sort on list, select the
columns and select Remove. You can navigate through the list by selecting
Move down or Move up. The selected columns are added to the Columns list.

4. Select a value from the Sort order list. If you select Ascending, the result set is
ordered in ascending order by values in the selected columns. If you select
Descending, the result set is ordered in descending order by values in the
selected columns.

When you finish specifying the result columns, select Next. This displays the
Mapping page of the SQLAssist SmartGuide. Use that page to cast the data type of
the result to another data type.

Select Back to display the Columns page of the SQLAssist SmartGuide. If
appropriate, you can then change the columns to be included in the result set.

You can also display any page in the SQL Assist SmartGuide by selecting its tab.

When you complete the specification of your SQL statement, select Finish. This
generates the code for the SQL statement and closes the SQLAssist SmartGuide.

To cancel the visual composition of the SQL statement, select Cancel.

RELATED TASKS

Specifying the tables for an SQL statement
Joining tables

Specifying search conditions

Specifying result columns

Remapping data to a different SQL data type
Displaying the SQL statement

Remapping data to a different SQL data type
By default, the data retrieved by an SQL statement maps to the following Java

26 Data Access Beans

classes:

SQL Type Java class

CHAR java.lang.String
VARCHAR java.lang.String
LONG VARCHAR java.lang.String
INTEGER java.lang.Integer
TINYINT java.lang.Integer
SMALLINT java.lang.Short
DECIMAL java.math.BigDecimal
NUMERIC java.math.BigDecimal
BIT java.math.Boolean
BIGINT java.lang.Long

REAL java.lang.Float
FLOAT java.lang.Double
DOUBLE java.lang.Double
BINARY java.lang.byte[]

SQL Type Java class
VARBINARY java.lang.byte[]
LONGVARBINARY java.lang.byte[]
DATE java.sql.Date

TIME java.sql.Time
TIMESTAMP java.sql.Timestamp

Use the Mapping page of the SQLAssist SmartGuide to remap the data retrieved
from a table column to a different SQL data type, and thus, to a different Java
class.

Tables| Join| Condition 1] Calumns| Sert Mapping|5@L|

Change the data type mapping far the SAL results {optional).
Available columns and data types to re-map:
Column i | Current data type Wap to new data type | |
TEST.DEPARTMENT DEPTHO CHARacter CHARacter = =l
TEST.DEPARTMENT.DEPTHAME WARCHAR VARCHAR j
TEST.DEPARTMENT.MGRMO CHARacter CHARacter j
TEST.DEPARTMENT ADMRDEFT CHARacter CHARacter j _
TEST.DEPARTMENT.LOCATION CHARacter CHARacter j
TEST.DEPARTMENT.CEFTHO CHARacter CHARacter j
TEST.DEPARTMENT.DEPTHAME WARCHAR VARCHAR j
TEST.DEPARTMENT.MGRMO CHARacter CHARacter j
TEST.DEPARTMENT ADMRDEFT CHARacter CHARacter j
TEST.DEPARTMENT.LOCATION CHARacter CHARacter j
TEST.EMPLOYEE.EMPMHO CHARacter CHARacter j
TEST.EMPLOYEE.FIRSTHME WARCHAR VARCHAR j
TEST.EMPLCYEE.MIDIMIT CHARacter CHARacter j
TEST.EMPLOYEE.LASTHAME WARCHAR VARCHAR ﬂ
TEST EMPLOYEE WORKDEPT CHARacter CHARacter =] o
T T T RAN S D Lk T h T Pt N P PO - — . 1

Llse defaults |

<Back | Nest= | Finish | cancel |

1. Select a column from the Column list. Current data type displays the SQL data
type for the column.

2. Select an SQL data type from the drop-down list in Map to new data type. The
data retrieved from the column will be mapped to the selected SQL data type.

To reset the mapping of all columns to their default SQL data types, select Use
Default.

When you finish specifying the result columns, select Next. This displays the SQL
page of the SQLAssist SmartGuide. Use that page to view the SQL statement. You
can also use the page to test or save the SQL statement.

Chapter 2. Accessing Relational Data 27

28 Data Access Beans

Select Back to display the Sort page of the SQLAssist SmartGuide. If appropriate,
you can then change the ordering of the result set.

You can also display any page in the SQL Assist SmartGuide by selecting its tab.

When you complete the specification of your SQL statement, select Finish. This
generates the code for the SQL statement and closes the SQLAssist SmartGuide.

To cancel the visual composition of the SQL statement, select Cancel.

RELATED TASKS

Specifying the tables for an SQL statement
Joining tables

Specifying search conditions

Specifying result columns

Sorting the result set

Displaying the SQL statement

Displaying the SQL statement
Use the SQL page of the SQL Assist SmartGuide to display the SQL statement for a
Select or Modify bean.

£ S0L Assist SmartGuide

Tablesl ..Ioinl Conditian 1| Cnlumnsl Sonl Mapping SQLl

Wiew the SQL staterment.

SELECT =]
MOJ0.DEPARTMENT. DEPTHQ,
MOJO. DEPARTMENT. DEPTNAME
FROM
MOJ0 DEPARTMENT

) o

v Schema qualified names

Copyto cliphoard Save SaL... Run Sal... |

{EIack| | Finish | Cancel|

After you display the SQL statement, you can copy it to the clipboard, run it as a
test from the SQL page, or save it to a file.

Schema qualified names

The schema qualified names checkbox allows you to include the schema name on
tables and columns by selecting it. At runtime, you can use the same database and
user ID you used to specify the statement, or another database and/or user ID. If
the Schema qualified names checkbox is selected, the tables must be defined on
the database where the statement executes, with the same schemas you specified. If

the checkbox is not selected, the tables must be defined on the database where the
statement executes, with a schema that matches the user ID you use to connect.

Copying the SQL statement

Select Copy to clipboard to copy the SQL statement to the clipboard. The copied
SQL statement is available for pasting into other windows such as the SQL Editor
window.

Testing the SQL statement

Select Run SQL to execute the SQL statement. The SQL statement is run against
the database specified in the currently selected connection alias for the Select bean.
The result set is displayed in a separate window if one is returned from executing
the SQL statement. .

| DEPTHO | DEPTHAME |MGRNO | ADMRDEPT | LOCATI
1 A00 SPIFFY COMPUTER DIV. 000010 A00 Al
2 A00 SPIFFY COMPUTER DIV. 000010 00
3 a00 SPIFFY COMPUTER DIV. 000010 00
4 BO1 PLANNING 000020 A00
5 COf INFORMATION CENTER 000030 A00
5 COf INFORMATION CENTER 000030 A00
7 co INFORMATION CENTER 000030 400
3 DI MANUFACTURING SYSTEMS 000060 DO
3 DI MANUFACTURING SYSTEMS 000060 DO =l
| | i
Copyto clipboard Save results.. Close |

From the SQL Execution Result Set window, you can:
* Copy the result set to the clipboard. Select Copy to clipboard.
* Save the result set to a file. Select Save results.

Saving the SQL statement

Select Save SQL to save the SQL statement in a file. (You can also save the SQL
statement from the SQL Execution Result Set window.) You are prompted for a file
name and a save location.

You can edit any part of the SQL statement by selecting the appropriate page in
the SQL Assist SmartGuide. Selecting Back displays the Mapping page. Use this
page to remap columns in the result set to different SQL data types.

If the specification of your SQL statement is complete, select Finish. This generates
the code for the SQL statement and closes the SQLAssist SmartGuide.

To cancel the visual composition of the SQL statement, select Cancel.

RELATED TASKS

Specifying the tables for an SQL statement
Joining tables

Specifying search conditions

Chapter 2. Accessing Relational Data 29

Specifying result columns
Sorting the result set
Remapping data to a different SQL data type

Composing an SQL INSERT, UPDATE, or DELETE visually

30 Data Access Beans

Use the SQLAssist SmartGuide to visually compose an SQL INSERT, UPDATE, or
DELETE for a Modify bean.

7 50L Assist SmartGuide

Tables | Insert]| saL |

Select an 5oL staterment type and tahlels).
Staterment type:

& Inset Update ¢ Delete

Select Tahle:

Tahle name

[MOJO.EMP_FHOTO

[MOJO.EMP_RESUME -

Wiew schemais).. Filter tableis)...

| Mest =

| Cancel |

Using the SQLAssist SmartGuide you can:

* Specify the table to be accessed in the SQL insert, update, or delete. (Required.)

* Specify the table columns and their new values for the SQL update or insert.
(Optional.)

* Specify search conditions for the SQL update or delete. (Optional.)

* Display the resulting SQL insert, update, or delete. (Optional.)

You must first chose the statement type. Chose the Insert button if you want insert
data into the database. Chose the Update button if you want to update rows in the
database. Chose the Delete button if you want to delete rows in the database.

When you display the SQL INSERT, UPDATE, or DELETE, you can also run it as a
test using the SQL Assist SmartGuide. You can also copy the SQL statement to the
clipboard or save it.

RELATED TASKS

Specifying the tables for an SQL statement

Specifying columns and their values for an SQL UPDATE or INSERT
Specifying search conditions

Displaying the SQL statement

Specifying columns and their values for an SQL UPDATE or

INSERT

Using the SQL Assist SmartGuide Insert/Update page, you can specify columns

and their values.

£ S0L Assist SmartGuide

Tahles Insert|5r;1|_|

Entervaluads) for the new row ta inser.

Available columns with valueds) to insert (+ designates a requir

Column
+ EMPMO

£ | Type =

+ FIRSTNME

+ MIDINIT

CHAR (Type 13(3) =

ull |

Intahle WMOJOEMPLOYEE', insert a row...

= Back | |

| Cancel |

To specify columns and values for an insert:

1. From the SQL Assist SmartGuide, click the Insert button and choose the table

where you want to insert.
2. Click Next. The Insert window displays.

3. Specify values for the columns that you want to insert in the Value list and

click Next. The SQL statement displays.

4. Click Finish to generate the INSERT SQL statement.

Chapter 2. Accessing Relational Data

31

7 50L Assist SmartGuide

Tables Update | Candition 1| saL|

Enter value(s]) for the rovw(s) to update.

Available columns with value(s) to update (+ designates a requ

Column /| Twpe = [¥alue
+ EMPMNO

WORKDEPT CHAR (Type 13(3) =
e SRR ~|
< | I
In tahle 'MOJO EMPLOYEE', update row(s)... J
I-
= Back | | | Cancel |

To specify columns and values for an update:

1. From the SQL Assist SmartGuide, click the Update button and choose the table
you want to update.

2. Click Next. The Update window displays.

3. Specify values for the columns that you want to update in the Value list and
click Next. You can specify conditions for the SQL statement.

4. Click Finish to generate the UPDATE SQL statement.

You can also specify parameters in the Value list. If a parameter is specified, its
value is used in the INSERT or UPDATE statement. A parameter is specified in the
format :parm, where parm is the parameter name. For example, :empid is a valid
specification for a parameter named empid.

To cancel visual composition of the SQL statement, select Cancel.

RELATED TASKS

Composing an SQL INSERT, UPDATE or DELETE

Specifying the tables for an SQL statement

Specifying columns and their values for an SQL UPDATE or INSERT
Specifying search conditions

Displaying the SQL statement

Composing an SQL procedure call visually

Use the SQL Assist SmartGuide for Stored Procedures to visually compose an SQL
stored procedure call for a ProcedureCall bean.

32 Data Access Beans

EC_,J SOL Assist SmartGuide for Stored Procedures E3

Frocedures | Parameters | Result 1

Select a stored procedure:

Parameters Remarks

MOJO.DEPTSPSY |{in DEPTRO varchar(B), ...

MOJD.STAFFSPSY (out NUMRES smallint, 0.

|2
Yiew schemais) |

Using the SQLAssist SmartGuide you can:

* Specify the stored procedure to execute. (Required.)

* Specify hard-coded values for input parameters to the stored procedure.
(Optional.)

* Describe any result sets returned by the stored procedure. (Optional.)

 Display the resulting SQL call statement. (Optional.)

RELATED TASKS

Specifying the stored procedure for an SQL CALL statement
Working with stored procedure parameters

Defining result sets returned by a stored procedure
Displaying the SQL statement

Specifying the stored procedure for an SQL CALL statement
Use the Procedures page of the SQL Assist SmartGuide for Stored Procedures to
specify the stored procedure that is executed in an SQL CALL statement.

[{_,J SOL Assizt SmartGuide for Stored Procedures

Procedures | Parameters | Result 1

Select a stored procedura:

Parameters Remarks
MOJD . DERTERSY | {in DEPTRO varchark
MOJO STAFFSPSY | (out NUMRES smallint, 0.

[>]
Yiew schemais) |

Chapter 2. Accessing Relational Data

33

34 Data Access Beans

Each stored procedure you can access in the database identified by the currently
selected connection alias is listed in a row of the table on this page.

¢ The Name field shows the schema-qualified name of the stored procedure.

* The Parameters field shows the procedure’s parameters, including their names,
SQL data types, and modes (in, out, inout).

* The Remarks field shows any remarks registered for the stored procedure.

By default, the stored procedures listed are those whose schema is the user ID
specified for the database connection. If no procedures in the database have that
schema, all the procedures in the database are listed.

You can add to or remove from the stored procedure names displayed in the list,
by selecting View schema(s).

Selecting View schema(s) opens the Schema(s) to View window.

@ Schemalz] to Yiew

Selectthe schemas you wish to wiew,

Available schemais): Selected schemaisy:
SYSCAT [ileN]s]

SYSIBM

SYSSTAT

Select all
Ceselect all

8154 Cancel

* You can select schemas from Available schema(s) and add them to Selected
schema(s) by clicking the Add button.

* You can remove schemas from Selected schema(s) using the Remove button.

* You can select or deselect all the schemas in both Available schema(s) and
Selected schema(s) using the Select all or Deselect all buttons.

When you finish selecting schemas to view, select OK. This closes the Schema(s) to
View window.

Select a stored procedure for the SQL CALL statement by clicking on the row for
that stored procedure. You can select only one stored procedure.

When you finish, select Next. This displays the Parameters page of the SQL Assist
SmartGuide for Stored Procedures. Use this page to work with the parameters for
the selected stored procedure. You can also display any page in the SQL Assist
SmartGuide for Stored Procedures by selecting its tab.

When you complete the specification of your SQL CALL statement, select Finish.
This generates the code for the SQL statement and closes the SQL Assist
SmartGuide for Stored Procedures.

Working with stored procedure parameters

Use the Parameters page of the SQLAssist SmartGuide for Stored Procedures to
examine the parameters registered for the stored procedure and to optionally
hard-code an input value for parameters whose mode is in or inout.

[{_,J SOL Assizt SmartGuide for Stored Procedures E3

Marme SOL type Inputvalue |
DEFTMO i varchar(B)

STATUS inout warchar{40007%

4

Each parameter registered for the stored procedure selected on the Procedures
page is described in a row of the table on this page.

* The Name field shows the name of the parameter.

¢ The Mode field shows whether the parameter is used for input, output, or both
input and output.

¢ The SQL type field shows the SQL data type of the parameter. The field also
shows the user-specifiable length and scale for SQL data types where this is
meaningful.

* The Input value field shows any input values you have hard-coded for
parameters whose mode is in or inout. If the mode of a parameter is out, the
value None appears in this field. If the mode of a parameter is in or inout and
you have not hard-coded a value, nothing appears in this field, and you will
specify the input value at run-time by setting a parameter on the CALL
statement.

VisualAge for Java generates a parameter in the CALL statement for each
parameter that does not have a hard-coded input value. The name of the
parameter is the same as the name that appears in the Name field.

To hard-code an input value for a parameter, enter the desired value in the Input
value field for that parameter. For a parameter whose mode is output, that field is
not editable. For a parameter whose mode is inout, the field is editable, but you
should generally not hard-code an input value. If you do, no parameter is
generated in your CALL statement, and you cannot obtain the output value after
the stored procedure executes.

When you finish working with parameters, select Next. This displays the first

Result page of the SQL Assist SmartGuide for Stored Procedures. Use this page to
describe the first result set if the stored procedure returns at least one result set.

Chapter 2. Accessing Relational Data 35

36 Data Access Beans

Select Back to display the Procedures page of the SQL Assist SmartGuide for
Stored Procedures. If appropriate, you can then change the stored procedure that is
executed.

You can also display any page in the SQL Assist SmartGuide for Stored Procedures
by selecting its tab.

When you complete the specification of your SQL CALL statement, select Finish.
This generates the code for the SQL statement and closes the SQL Assist
SmartGuide for Stored Procedures.

Defining result sets returned by a stored procedure
Use the Result page of the SQL Assist SmartGuide for Stored Procedures to definee

a result set returned by the stored procedure selected on the Procedures page. You
can define multiple result sets. You define each result set on a separately numbered
Result page.

E{_,JSIJL Aszsist SmartGuide for Stored Procedures E3

Procedures | Parameters Result

Cefinition of result set 1. Mot required ifno result setis returned by the store

Column Defined datatype Treat as datatype
EMPLOYEE.EMP... CHAR (Type 1) CHAR (Type 1)

EMPLOYEE.FIRS... WARCHAR (Type 12} MARCHAR (Type 12)
EMPLOYEE.MIDIL.. |CHAR (Type 1) CHAR (Type 1)
EMPLOYEE.LAST... WARCHAR (Type 12) VARCHAR (Type 12)

f -

Define this result set Remave this result setl Add another result setl

Defining a result set

For the current numbered Result page, if you have already defined this result set,
each of its columns is described in a row of the table on this page; if you have not
yet defined this result set, the table on this page is empty.

For each column:

* The Column field shows the name of the column, qualified by the table name.

e The Defined datatype field shows the SQL data type of the column in the
database.

* The Treat as datatype field shows the SQL data type to which you have mapped
the column. (By default, this is the same as Defined datatype.)

To define this result set for the first time, or to modify your previous definition of
this result set, select Define this result set. This opens the SQL Assist SmartGuide
to its Tables page. See "Defining a result set visually" for instructions on using the

SQL Assist SmartGuide to define a result set. After you have finished defining the
result set, your new definition will be shown in the table on this page.

If the stored procedure does not return any result sets, leave the table on the first
numbered Result page empty, and do not define any additional result sets.

Defining additional result sets

From the first Result page (the tab for the page is labeled Result 1) select Add
another result set. This displays a second Result page labeled Result 2. Define the
second result set as described in "Defining a result set (page Bd)."

Define a third result set by selecting Add another result set in the Result 2 page.
Repeat the process until you define all the result sets returned by the stored
procedure.

You need not complete the definition of one result set before adding another one.
You can return to the page for any result set and complete its definition at a later
time.

If the stored procedure returns multiple result sets, but their definitions are
identical, you only need to define one result set.

Removing a result set description

Select the Result page for the result set. Then select Remove this result set. The
Result page will be removed from the notebook and any Result pages that follow it
will be renumbered to reflect its removal.

When you finish defining a result set

When you finish defining one result set, select Next to display either the next
result set (if you have added another one) or the SQL page of the SQL Assist
SmartGuide for Stored Procedures. Use the SQL page to view the SQL CALL
statement.

Select Back to display either the previous result set (if this is not Result 1) or the
Parameters page of the SQL Assist SmartGuide for Stored Procedures.

You can also display any page in the SQL Assist SmartGuide for Stored Procedures
by selecting its tab.

When you complete the specification of your SQL CALL statement, select Finish.
This generates the code for the SQL statement and closes the SQL Assist
SmartGuide for Stored Procedures.

To cancel visual composition of the SQL CALL statement, select Cancel.

RELATED TASKS

Defining a result set visually

Specifying the stored procedure for an SQL CALL statement
Working with stored procedure parameters

Displaying the SQL statement for a ProcedureCall bean

Chapter 2. Accessing Relational Data 37

38 Data Access Beans

Displaying the SQL statement for a ProcedureCall bean
Use the SQL page of the SQL Assist SmartGuide for Stored Procedures to display
the SQL statement for a ProcedureCall bean.

[C_,J SOL Assist SmartGuide for Stored Procedures E3

Procedures | Parameters | Result1 SGL

Wiew the call statement:

CALL MOJO.DEPTSPSYDEPTHG, :STATUS)

¥ Scherna gualified name

Schema qualified name

The schema qualified name checkbox allows you to qualify the stored procedure
name with its schema name by selecting it. If you have described result sets that
the stored procedure returns, selecting this checkbox also causes table names in the
generated meta-data to be qualified with their schema names. At runtime, you can
use the same database and user ID you used to specify the CALL statement, or
another database and/or user ID. If the Schema qualified name checkbox is
selected, the stored procedure and tables must be defined on the database where
the statement executes, with the same schemas you specified. If the checkbox is not
selected, the stored procedure and tables must be defined on the database where
the statement executes, with a schema that matches the user ID you use to connect.

You can edit any part of the SQL specification by selecting the appropriate page in
the SQL Assist SmartGuide for Stored Procedures. Selecting Back displays the last
Result page. If appropriate, you can use this page to re-specify the result set.

If the specification of your SQL statement is complete, select Finish. This generates
the code for the SQL statement and closes the SQLAssist SmartGuide for Stored
Procedures.

To cancel the visual composition of the SQL CALL statement, select Cancel.

Composing an SQL statement manually

Use the SQL Editor to manually define an SQL statement for a Select, Modify, or
ProcedureCall bean. You also use the SQL Editor to edit an SQL statement that you
previously created using the SQL Editor. (An SQL statement created with the SQL
Assist SmartGuide is edited using the SQL Assist SmartGuide.) If you manually
define an SQL statement, you may need to add meta-data information to the SQL
specification generated in your database access class.

=
=
i Cancel |

As you compose your SQL statement, you can:

e Cut text from the SQL statement. Select the text in the SQL Editor and select the
Ctlr+X keys on the keyboard. This copies the selected text to the clipboard. The
cut text is available for pasting.

* Copy text from the SQL statement to the clipboard. Select the text in the SQL
Editor and select the Ctrl+C keys on the keyboard. The copied text is available
for pasting.

* Paste text from the clipboard into the SQL statement. Select the Ctlr+V keys on
the keyboard. This pastes the text at the position of the cursor.

* Delete text from the SQL statement. Select the text in the SQL Editor and select
the Delete or the Backspace key on the keyboard.

When you finish composing the SQL statement, select OK.

To cancel composing the SQL statement, select Cancel.

Editing Select bean properties

You specify and control the operation of the Select bean by opening the property
sheet for the Select bean and setting the value of the displayed properties. To open
the property sheet of a Select bean on the Visual Composition Editor surface:

1. Right click the Select bean. The bean menu displays.
2. Click Properties. The Properties sheet displays.

Chapter 2. Accessing Relational Data 39

40 Data Access Beans

Ec,:lnewclasﬂ - Properties

ISeIecH

' LX)

digtinct TyupesEr|Falze

fillCacheOnExe| True

forceSearchedl|Falze

lockR ows Falze

maximumPacke|0

mazimumBows |0

packetSize 1

query

read0nly Falze

timeout 0 B

validatelL 0Bz [Falze LI
beanMame =

Reset...

¥ Show expert features

You can control:

The name of the Select bean. Specify the name as the beanName property value.

Whether to enable inserts, updates, and deletes for result sets which contain
user-defined (distinct) types. Specify this in the distinctTypesEnabled property
value. Check the Show Expert Features checkbox to display this property.

Whether as many rows as possible should be fetched into the cache as soon as
you execute your query (given your settings for the above properties), or rows
should be fetched only as you ask for them. Specify this in the
fillCacheOnExecute property value. Check the Show Expert Features checkbox
to display this property.

Whether to force generation of searched rather than positioned SQL UPDATE
and DELETE statements for the result set returned by the statement. Specify this
in the forceSearchedUpdate. property value. Check the Show Expert Features
checkbox to display this property.

Whether to acquire and hold a database lock for a row while it is the current
row. Specify this in the lockRows property value. Check the Show Expert
Features checkbox to display this property.

The maximum number of packets allowed in the cache at one time. (Older

packets may be displaced as newer packets are fetched.) Specify this in the

maximumPacketsInCache property value. Check the Show Expert Features
checkbox to display this property.

The maximum number of rows you can fetch into the cache over time. Specify
this in the maximumRows property value. Check the Show Expert Features
checkbox to display this property.

The number of rows in a packet. Specify this in the packetSize property value.
Check the Show Expert Features checkbox to display this property.

The database connection characteristics and SQL statement. Specify these as a
composite value for the query property. See Specifying a Connection and SQL
Statement.

Whether the result set is updatable. Specify this in the readOnly property value.

The maximum number of seconds allowed for the statement to execute. Specify
this in the timeout property value. The default is 0, which means no maximum.
Check the Show Expert Features checkbox to display this property.

Whether to validate and, if necessary, re-fetch Clob and Blob objects before
returning them to you as column or parameter values.

RELATED TASKS
Specifying a connection and SQL statement

RELATED REFEREMNCES

4 7

Executing a Select bean

To access relational data using a Select bean, you connect an interface component
to the Select bean. For example, you can make an event-to-method connection
between the actionPerformed event for a button and the execute method of the
Select bean. When the button is selected, the SQL statement associated with the
Select bean is executed.

Alternatively, you can connect the DBNavigator bean to the Select bean. The

DBNavigator bean provides a set of buttons that includes an Execute button ’; .
The DBNavigator bean is a Swing component, and requires the Java Foundation
Classes (JFC) library. To use the DBNavigator bean, you create a
property-to-property connection between the this property of the Select bean and
the model property of the DBNavigator bean. The this property refers to the whole
object of the Select bean. The model property specifies which Select or
ProcedureCall bean the DBNavigator bean will navigate. When selected, the
Execute button in the DBNavigator bean invokes the execute method of the Select
bean, which executes the SQL statement.

If you have defined parameters in your SQL statement, you must set the
parameters before you invoke the execute method. If you used the SQL Assist
SmartGuide to compose the SQL statement, VisualAge for Java generates two
bound properties for each parameter you defined. One property is the parameter
in its specified data type. The other property is a String representation of the
parameter. So, for example, you can make a property-to-property connection
between the text property of a text field and the String representation of a
parameter. Because the text property is not bound, you must also specify in the
connection properties an event to trigger the propagation of the text value to the
parameter. Once you do this, code is generated to invoke the
setParameterFromString method whenever the event is fired.

When you execute an SQL statement using a Select bean, it returns a result set.
Unlike the native Java interface to relational data (JDBC), the Select bean maintains
rows of the result set in a memory cache where you can move back and forth
among the rows. The number of rows initially fetched when you execute is
controlled by the following properties of the Select bean:

* fillCacheOnExecute

* maximumRows

* packetSize, (Rows are fetched in groups called packets)

* maximumDPacketsInCache

If fillCacheOnExecute is set to false, one packet of rows is initially fetched. If
fillCacheOnExecute is set to true, the number of rows fetched is the least of: all of
the rows, the limit imposed by the maximumRows property, the limit imposed by

packetSize times maximumPacketsInCache. (If you use the default values for all of
these properties, all of the rows are fetched.)

If there are any rows in the result set, regardless of how many rows were initially
fetched, you are positioned on the first one.

Chapter 2. Accessing Relational Data 41

RELATED COMNCEPTS
7 : ”

RELATED TASKS

” e . 77

” . . n e . 77

page &9

Connecting beans

RELATED REFERENCES

I‘Chapfpr 3. Data Access Beans” on page 79

Editing Modify bean properties

42 Data Access Beans

You specify and control the operation of the Modify bean by opening the property
sheet for the Modify bean and setting the value of the displayed properties. To
open the property sheet of a Modify bean on the Visual Composition Editor
surface:

1. Right click the Modify bean. The bean menu displays.
2. Click Properties. The Properties sheet displays.

@DepaltmentExample -Pr... &2
| Modifyt =l

beanMame |Modifyl

tirneot 0

[

S0L & Connection specification —

[Show expert features

You can control:

* The database connection characteristics and SQL statement. Specify these as a
composite value for the action property. See "Specifying a connection and SQL
statement.”

* The name of the Modify bean. Specify the name as the beanName property
value.

* The maximum number of seconds allowed for the statement to execute. The
default value is 0, which means no maximum. Specify this in the timeout.
property value. Check the Show Expert Features checkbox to display this
property.

* Whether to validate and, if necessary, re-fetch Clob and Blob objects before
returning them to you as column or parameter values.

RELATED TASKS
Specifying a connection and SQL statement.
RELATED REFERENCES

Modify

Executing a Modify bean

To access relational data using a Modify bean, you connect an interface component
to the Modify bean. For example, you can make an event-to-method connection
between the actionPerformed event for a button and the execute method of the
Modify bean. When the button is selected, the SQL statement associated with the
Modify bean is executed.

If you have defined parameters in your SQL statement, you must set the
parameters before you invoke the execute method. If you used the SQL Assist
SmartGuide to compose the SQL statement, VisualAge for Java generates two
bound properties for each parameter you defined. One property is the parameter
in its specified data type. The other property is a String representation of the
parameter. So, for example, you can make a property-to-property connection
between the text property of a text field and the String representation of a
parameter. Because the text property is not bound, you must also specify in the
connection properties an event to trigger the propagation of the text value to the
parameter. Once you do this, code is generated to invoke the
setParameterFromString method whenever the event is fired.

The purpose of the Modify bean is to execute SQL INSERT, UPDATE, and DELETE
statements. After you execute, the value of the numAffectedRows property tells
you how many rows were inserted, updated, or deleted. It is possible to execute
other kinds of SQL statements using a Modify bean, but if the statement produces
a result set, the Modify bean does not give you access to it.

RELATED CONCEPTS

4 . ”

RELATED TASKS

% sp: s ol

Connecting beans

RELATED REFEREMNCES

I’Fhapfpr 3 Data Access Beans” on page 79

Editing ProcedureCall bean properties

You specify and control the operation of the ProcedureCall bean by opening the
property sheet for the ProcedureCall bean and setting the value of the displayed
properties. To open the property sheet of a ProcedureCall bean on the Visual
Composition Editor surface:

1. Right click the ProcedureCall bean. The bean menu displays.
2. Click Properties. The Properties sheet displays.

Chapter 2. Accessing Relational Data 43

44 Data Access Beans

@DepaltmentExample -Pr...

| ProceduraCall j

bearnMame ProcedursCalll .
diztinctT ypesE|Falze

fillCache0nE «|True
fillR ezultCache| T rue
forceSearchec|Falze
lockRows Falze
rnasimurnP ack|0
maximumB esu|0
masimumB o 0
packetSize |1
procedurs depd:Depoon
readOnly Falze

timeout I

LU

|beantdame

[V Show expert features

You can control:

The name of the ProcedureCall bean. Specify the name as the beanName
property value.

Whether to enable inserts, updates, and deletes for result sets which contain
which contain user-defined (distinct) types. Specify this in the
distinctTypesEnabled property value. Check the Show Expert Features
checkbox to display this property.

Whether as many rows as possible should be fetched into the cache as soon as
you execute your stored procedure or rows should be fetched only as you ask
for them. Specify this in the fillCacheOnExecute property value. Check the
Show Expert Features checkbox to display this property.

Whether as many result sets as possible should be fetched into the cache as soon
as you execute your stored procedure (given your settings for the above
properties), or result sets should be fetched only as you ask for them. Specify
this in the fillResultCacheOnExecute property value. Check the Show Expert
Features checkbox to display this property.

If you set this property to true, it is advisable to set the fillCacheOnExecute
property to true as well. Otherwise, there may be rows in the result sets, other
than the last result set, that can never be fetched.

Whether to force generation of searched rather than positioned SQL UPDATE
and DELETE statements for result sets returned by the stored procedure.
Specify this in the forceSearchedUpdate. property value. Check the Show
Expert Features checkbox to display this property.

Whether to acquire and hold a database lock for a row while it is the current
row. Specify this in the lockRows property value. Check the Show Expert
Features checkbox to display this property.

The maximum number of packets allowed in the cache at one time for each
result set. (Older packets may be displaced as newer packets are fetched.)
Specify this in the maximumPacketsInCache property value. Check the Show
Expert Features checkbox to display this property.

The maximum number of result sets allowed in the cache at one time. (Older
result sets may be displaced as newer ones are fetched.) Specify this in the
maximumResultsInCache property value. Check the Show Expert Features
checkbox to display this property.

¢ The maximum number of rows you can fetch into the cache over time. Specify
this in the maximumRows property value. Check the Show Expert Features
checkbox to display this property.

* The number of rows in a packet. Specify this in the packetSize property value.
Check the Show Expert Features checkbox to display this property.

* The database connection characteristics and SQL statement. Specify these as a
composite value for the procedure property. See Specifying a Connection and
SQL Statement.

* Whether the result set is updatable. Specify this in the readOnly property value.

¢ The maximum number of seconds allowed for the statement to execute. Specify
this in the timeout property value. The default is 0, which means no maximum.
Check the Show Expert Features checkbox to display this property.

RELATED TASKS
Specifying a connection and SQL statement.

RELATED REFERENCES

ProcedureCall

Executing a ProcedureCall bean

To access relational data using a ProcedureCall bean, you connect an interface
component to the ProcedureCall bean. For example, you can make an
event-to-method connection between the actionPerformed event for a button and
the execute method of the ProcedureCall bean. When the button is selected, the
SQL statement associated with the ProcedureCall bean is executed.

Alternatively, you can connect the DBNavigator bean to the ProcedureCall bean.
The DBNavigator bean provides a set of buttons that includes an Execute button

’; . The DBNavigator bean is a Swing component, and requires the Java
Foundation Classes (JFC) library. To use the DBNavigator bean, you create a
property-to-property connection between the this property of the ProcedureCall
bean and the model property of the DBNavigator bean. The this property refers to
the whole object of the ProcedureCall bean. The model property specifies which
Select or ProcedureCall bean the DBNavigator bean will navigate. When selected,
the Execute button in the DBNavigator bean invokes the execute method of the
ProcedureCall bean, which executes the SQL statement.

If you have defined input parameters in your SQL statement, you must set the
parameters before you invoke the execute method. Likewise, if you have defined
output parameters, you will want to get their values after you invoke the execute
method. If you used the SQL Assist SmartGuide to compose the SQL statement,
VisualAge for Java generates two bound properties for each (input or output)
parameter you defined. One property is the parameter in its specified data type.
The other property is a String representation of the parameter. So, for example, you
can make a property-to-property connection between the text property of a text
field and the String representation of a parameter. Because the generated property
is bound, when you make the connection, code is generated to invoke the
getParameterFromString method whenever the parameter value changes. This is
sufficent for an output parameter. For an input parameter, because the text
property is not bound, you must also specify in the connection properties an event
to trigger the propagation of the text value to the parameter. Once you do this,
code is generated to invoke the setParameterFromString method whenever the
event is fired.

Chapter 2. Accessing Relational Data 45

When you execute an SQL statement using a ProcedureCall bean, it may return no
result sets, one result set, or many result sets. Unlike the native Java interface to
relational data (JDBC), the ProcedureCall bean maintains rows of the

result sets in a memory cache where you can move back and forth both among
different result sets and among the

rows of each result set.. The number of result sets and the number of rows in each
that are initially fetched when you execute are controlled by the following
properties of the ProcedureCall bean:

* fillCacheOnExecute

¢ fillResultCacheOnExecute

* maximumResultsInCache

* maximumRows

* maximumPacketsInCache

* packetSize (Rows are fetched in groups called packets.)

If fillResultCacheOnExecute is set to false, one result set is initially fetched. If it is
set to true, the number of result sets fetched is the lesser of all result sets and the
limit imposed by maximum ResultsInCache.

If fillCacheOnExecute is set to false, one packet of rows is initially fetched. If it is
set to true, the number of rows fetched for each result set is the least of: all of the
rows, the limit imposed by the maximumRows property, the limit imposed by
packetSize times maximumPacketsInCache.

(If you use the default values for all of these properties, all of the rows in all of the
result sets are fetched.)

If there are any result sets, regardless of how many result sets were initially
fetched, you are positioned on the first one; and if the result set has any rows,
regardless of how many of its rows were fetched, you are positioned on the first
one.

For some database products, it may be necessary for you to fetch all of the result
sets returned by a stored procedure before getting the values of any output
parameters. The simplest way to accomplish this is to use the default values for
the fillResultCacheOnExecute and maximumResultsInCache properties. This way
all of your result sets will be immediately fetched into the cache.

RELATED COMNCEPTS
‘ . 7

RELATED TASKS
’) ol

’ . . . e . 77

page 6d

Connecting Beans

RELATED REFERENCES

I’Chapfer 3. Data Access Beans” on page 75

Specifying a connection and SQL statement

The query property of a Select bean, the action property of a Modify bean and the
procedure property of a ProcedureCall bean are three examples of what we
generically refer to as data properties. The two parts of a data property are:

46 Data Access Beans

Connection alias
Specifies database connection characteristics for the bean

SQL specification
Specifies an SQL statement for the bean
To edit a data property:

1. Open the property sheet for a Select, Modify or ProcedureCall bean by
double-clicking on the bean.

2. Select the query, action or procedure property value and click on the box in
the value field. The data property editor displays.

'E,:l Query

Connection

Datahase Access Class:

mypackage. myspecs j

Caonnections:

iz

RL or JMDI DataSource Mame:

]38 | Cancell

3. Create a connection alias or select an existing connection alias.

4. Create an SQL specification or select an existing SQL specification.

RELATED TASKS

I’qurifvin‘o; a connection alias’]

[/I I] SQI .E. N 77]2I

Specifying a connection alias
When you use a Select, Modify, or ProcedureCall bean to access relational data,
you must specify a connection alias for the bean. A connection alias specifies

database connection characteristics for the bean. You can create a new connection
alias or select an existing connection alias.

Use the Connection page of the data property editor to specify a connection alias.

When you create a connection alias, you identify a database access class to hold
the connection alias definition.

Chapter 2. Accessing Relational Data 47

48 Data Access Beans

Different Select, Modify or ProcedureCall beans can use the same connection alias,
and if so, they share the database connection associated with that connection alias
at runtime. If one bean commits updates to a database, it commits all uncommitted
updates made by any bean sharing the database connection.

Connection | 50

Database Access Class:

mypackage.myspecs j

Caonnections:

(i

RL or JMDI DataSource Mame:

6124 | Cancell

Select a database access class from the drop-down list in the Database Access
Class field. The list shows the database access classes that exist in the workspace.
The format of each item in the list is packagename.classname, where packagename is
the name of the package that contains the database access class, and classname, is
the name of the class.

To define a new database access class and add it to the Database Access Class list,
select New.
See Defining a Database Access Class.

Select a connection alias from the Connections list. The list identifies the
connection aliases that are in the selected database access class. Selecting a
connection alias from the list enables the SQL tab (select the SQL tab to make an
SQL specification for the bean).

To add a connection alias to the database access class, select Add.

To edit the definition of a connection alias, select the connection alias name in the
Connections list and then select Edit.

To remove a connection alias from the Connections list, select it in the list and
then select Remove.

When you finish specifying the connection alias, select OK.

To cancel specifying a connection alias, select Cancel.

RELATED TASKS

FDef; Tatal Tnss” 4

% . I . 7

Defining or editing a connection alias

A connection alias specifies the characteristics of a database connection for a Select,
Modify, or ProcedureCall bean. Select Add in the Connection page of the data
property editor to define a new connection alias. Select a connection alias from the
Connections list in the Connection page of the data property editor and select Edit
to edit the selected connection alias. Selecting Add or Edit opens the Connection
Alias Definition window. You can specify most of the information about a
connection on the Basic page of the Connection Alias Definition window.

* Specify a name for the connection alias in the Connection Name field. The name
must be a valid Java method name. Although the list on the Connection page of
the data property editor contains only connection alias definitions, the name you
provide here must be unique within all of the definitions in the database access
class, including other connection alias definitions and SQL specification
definitions.

* Click the radio button next to the source you want to obtain a connection
from. The Connection Alias Definition window will change depending on the
connection source you select. To obtain a connection from the DriverManager
object, your connection alias must contain all of the information needed to
connect to a database. To obtain a connection from a DataSource object, the
DataSource object itself must contain the information needed to connect, and
your connection alias only has to contain enough information to find the
DataSource object, which should have been previously registered in a JNDI
naming service.

Note: To use a DataSource object, you must be using a JDBC 2.0 driver.

If you select the default connection source, DriverManager:

Chapter 2. Accessing Relational Data 49

50 Data Access Beans

{»| Connection Alias Definition

o o

jdbcdbZsample
ComM.ibm.dbz jdbc.app.DB2Driver |_

FIE]

* Specify the URL for the database connection in the URL field. The URL

specification must be in the format jdbc:subprotocol:subname, where subprotocol
and subname identify the DataSource for the connection. The value of subprotocol
depends on the JDBC driver used. For example, for the DB2 application JDBC
driver, subprotocol is db2; for the Oracle thin driver, subprotocol is thin.

The value of subname depends on the subprotocol specification; the subname value
provides information to locate the database. For example, a full URL
specification for an application accessing a local database named sample through
the DB2 application JDBC driver is:

jdbc:db2:sample
Here, sample is the subname value.

By comparison, a full URL specification for an applet using the Sybase jConnect
driver to access a database named sample that is on a remote server named
myserv, through port number 88 on the internet is:

jdbc:sybase:Tds:myserver:88/sample

Here, the subname value includes the database server name, port number, and
database name.

* Select a JDBC driver class from the JDBC Driver Choices list. For example, the

DB2 application JDBC driver class is COM.ibm.db2.jdbc.app.DB2Driver. Select
Other driver to specify a JDBC driver class that is not in list; then specify the
JDBC driver class the JDBC Driver Input field.

The Workspace needs to have access to the JDBC driver class that you select. To
ensure access, you need to add the directory or Jar/Zip file, as appropriate for
the JDBC driver class, to the workspace classpath.

* Specify in the Connection Properties field, any properties to be passed in the
database connection request, other than the user ID and password. Specify the
properties in the following format: prop=value;prop=value;... where, prop is the
name of the property, and value is the value of the property.

In the following example, three properties are passed:
proxy=myserver;88;a=1;b=2

* Select the Auto-commit check box if you want database updates to be
automatically committed for each SQL statement. If you do not select the check
box, database updates are not automatically committed. This check box is
selected by default.

* Select the Prompt for logon ID password before connecting check box if you
want the user to be prompted for the user ID and password to be used in the
database connection request. Do not select the check box if you want the user ID
and password specified in the User ID and Password fields of the connection
alias definition to be used in the database connection request.

* Specify in the User ID field, the user ID for the database connection request.
This user ID is used if the Prompt for logon ID password before connecting
check box is not selected.

* Specify in the Password field, the password for the database connection request.
This password is used if the Prompt for logon ID password before connecting
check box is not selected.

If you select the alternate connection source, DataSource:

E(,:l Connection Aliaz Definition

Basic

Advancedl

Connection Narme; I

Obtain connection fram: " DriverManager
Initial Context Factory: | LI
Frovider URL: |
DataSource Mame: | LI

Database Mame:

Maintain DB2 DataSources |

[¥ Auto-comrmit

[Prampt for logon 1D and password befare connecting

Lser 1D: |

Fassword: |

=HECl | Ment= | B=iriE | Cancel | Test Connection |

* Select from the Initial Context Factory list the initial context factory for the
naming service you want to use. Four initial context factory values are provided
for you.

Chapter 2. Accessing Relational Data 51

52 Data Access Beans

COM.ibm.db2.jndi.DB2Initial ContextFactory
Select this value to use the DB2 naming service.

com.ibm.ejs.ns.jndi.CNInitial ContextFactory
Select this value to use the WebSphere " naming service.

Use value of java.naming.factory.initial property

Select this value if you have set the java.naming.factory.initial property in your
java environment to identify a default initial context factory, and you wish to use
that default.

Note: This property can not be set inside the VisualAge for Java environment.
However, you may still want to choose this option if the property is set in your
deployment environment.

Use other Initial Context Factory

Select this value to enter the name of a context factory not listed here. After
selecting this value, type the name of the context factory you want to use in the
Initial Context Factory field.

* Specify in the Provider URL field the URL of the machine where the naming
service should look for your DataSource if your DataSource is located on
another machine.

Select from the DataSource Name list, the name of the DataSource you want to
use. The DataSource Name list includes all DataSource objects found using the
initial context factory and provider URL you have specified. If you know that a
DataSource not listed here will be found in your deployment environment, you
can type that DataSource name into this field.

Click Maintain DB2 DataSources if you want to add, edit, or remove DB2
DataSource objects registered with a naming service. The Maintain DB2
DataSources window opens.

Since only DB2 DataSource objects can be maintained with this window, the
initial context factory for the naming service defaults to
COM.ibm.db2.jndi.DB2Initial ContextFactory. However, you can maintain DB2
DataSources registered with another naming service by typing in a different
initial context factory.

E(_,:lMaintain DB2 DataSources x|

Initial Context Factany: ICOM.ibr'n.I:Ib2.jnI:Ii.DElEInitiaICDntex‘tFal:tDW

DataSources:
Add..

Edit...

il

Remave

o

atabase Mame:

DBt

Cloze |

* Select from the list in the DataSources text box the DataSource you want to
maintain. To browse or edit more information on a listed DataSource, select the

DataSource name from the list, and click Edit to display the Edit DB2
DataSource window. The fields in this window are the same as those in the
Add DB2 DataSource window.. If you want to add a DataSource not already
listed, click Add to open the Add DB2 DataSource window.

;] Add DB2 DataSource [x]

DataSource Mame: |

Cescription: |

Datahase Mame: |

Server Mame: |

Port Mumber: |

6 | Cancell

In the Add DB2 DataSource window:

— Type the name of the DataSource in the DataSource Name field.
— Type a description of the DataSource in the Description field.

— Type the name of the database you want to connect to in the Database Name
field.

— Type the name of the machine where the DB2 server is located in the Server
Name field if you want to use the DB2 net driver
Com.ibm.db2.jdbc.net.DB2Driver to connect to a database not cataloged
locally. If you want to use the DB2 app driver
COM.ibm.db2.jdbc.app.DB2Driver to connect to a database cataloged locally,
leave the Server Name field empty.

— Type the port number of the DB2 server on the machine where it is located in
the Port Number field if you want to use the DB2 net driver. To use the DB2
app driver, leave the Port Number field empty. If the Server Name field
empty is empty, the Port Number field is ignored.

— Click OK. The Add DB2 DataSource window closes, and the Maintain DB2
DataSources window is displayed. You will see the name of the DataSource
you just added and the name of the database to which it connects in the
Maintain DB2 DataSources window.

Click Close. The Connection Alias Definition window is displayed.

Select the Auto-commit check box if you want database updates to be
automatically committed for each SQL statement. If you do not select the check
box, database updates are not automatically committed. This check box is
selected by default.

Select the Prompt for logon ID password before connecting check box if you
want the user to be prompted for the user ID and password to be used in the
database connection request. Do not select the check box if you want the user ID
and password specified in the User ID and Password fields of the connection
alias definition to be used in the database connection request.

Chapter 2. Accessing Relational Data 53

* Specify in the User ID field, the user ID for the database connection request.
This user ID is used if the Prompt for logon ID password before connecting
check box is not selected.

* Specify in the Password field, the password for the database connection request.
This password is used if the Prompt for logon ID password before connecting
check box is not selected.

Select Next to go to the Advanced page of the Connection Alias window. You can
also display the Advanced page by selecting its tab.

_»| Connection Alias Definition

* Select the Use WebSphere’s database connection pools check box if your
application is a servlet that will run in the WebSphere environment and you
want to use a connection from the WebSphere connection pool that matches all
of the characteristics you specified.

Note for new applications: WebSphere database connection pools have been
deprecated and will not be enhanced. Do not use this feature with new
applications.

* Click the Set transaction isolation level radio button to specify the level of
isolation between concurrent transactions. The higher the isolation level, the less
access one transaction will have to data that is operated on in another
transaction. You can set the transaction isolation level by selecting one of four
values:

TRANSACTION_READ_COMMITED
TRANSACTION_READ_UNCOMMITTED
TRANSACTION_REPEATABLE_READ

54 Data Access Beans

TRANSACTION_SERIALIZABLE
For information on the transaction isolation level values, refer to the javadoc in
java.sql.Connection

If you do not select the Set the transaction isolation level radio button, the default
transaction isolation level for your database will be used.

* Select Back to return to the Basic page of the Connection Alias Definition
window. You can also return to the basic page by selecting its tab.

* Click Test Connection to test the database connection using the specifications
made in the connection alias definition. This test is not sensitive to whether you
checked Use WebSphere’s database connection pools. The connection for the
test does not come from a connection pool.

* When you finish defining or editing a connection alias, click Finish. Clicking
Finish creates a new method for the connection alias in the database access class
and adds the connection alias to the Connections list in the Connection page of
the data property editor.

RELATED TASKS
Adding resources and paths to the class path

Displaying and navigating a result set

There are a variety of ways in which you may want to display the data in a result
set produced by a Select bean or ProcedureCall bean. You could use a set of text
fields to display all of the columns in a single row, allowing the user to step
through all of the rows one at a time. You could use a JTable to display all of the
rows and columns in a tabular form. Or you might want to use various interface
components to display only a subset of the result data, such as using a list box to
display the values of a single column in all of the rows. Convenient ways of
displaying such subsets are provided by a set of beans called Selectors

Row-wise Display and navigation of a result set

To display result set data one row at a time, you can make use of two bound
properties that VisualAge for Java generates for each data column in the result set
when you use the SQL Assist SmartGuide to compose your SQL statement. One
property is the data column in its specified data type, another is a String
representation of the data column. So, for example, you can make a
property-to-property connection between the String representation of a data
column in the result set and the text property of a text field. The text field will
display the value of the column in the current row of the current result set.

For a ProcedureCall bean, these bound properties are only generated if you use the
SQL Assist Smart Guide not only to compose the SQL procedure call statement,
but also to describe its result sets. The bound properties only appear in the Visual
Composition Editor as connectable features of the ProcedureCall if there is exactly
one result set described. (This is appropriate either if the stored procedure returns
only one result set, or if all of the result sets it returns have the same column
structure.)

Even if the bound properties do not appear as connectable features, you can still
listen for the events by making an event-to-code connection between the
propertyChange event of the ProcedureCall bean and a method. In the method you
can check for properties whose names match the syntax Resultn_columnName or
Resultn_columnName String, where n is the number of a result set and columnName

Chapter 2. Accessing Relational Data 55

56 Data Access Beans

is the name of a column. When one of these names is found, the method can get
the new column value from the ProcedureCall bean and set a property of a visual
component to display the value.

To display all of the rows in a result set, you will need to step through its rows.
You can accomplish this with the DBNavigator bean. Using the DBNavigator bean,
you can set the currentRow property of the associated Select or ProcedureCall bean
to:

* the first row in the result set

* the last row in the result set

* the next row in the result set

* the previous row in the result set

When the current row changes, the values of the bound column properties also
change to reflect the values of the new current row. Navigating through the result
set changes the value of the data displayed in any interface component connected
to the Select bean or ProcedureCall bean. The DBNavigator bean is designed
primarily for use with a Select bean or with a ProcedureCall bean that only returns
one result set. It does not allow you to change the currentResult property of an
associated ProcedureCall bean. If you need to do this, you must incorporate
components in your application for doing so, such as a button with an
event-to-method connection to the nextResult method of the ProcedureCall bean.

Tabular display and navigation of a result set

To display result set data in tabular form, you can make a property-to-property
connection between the this property of a Select bean or ProcedureCall bean and
the model property of a JTable. The JTable will display all of the columns in all of
the rows in the cache for the current result set.

Many of the Select bean and ProcedureCall bean methods are designed to operate
on the current row of the current result set. Since a JTable has its own row
selection mechanisms, you will probably wish to use these mechanisms instead of
an associated DBNavigator bean to set the currentRow property of a Select or
ProcedureCall bean. (However, you may still wish to use a DBNavigator without
its navigation buttons to perform operations such as executing the SQL statement,
inserting and deleting rows, and committing changes to the database.)

To use the JTable to set the currentRow property of a Select or ProcedureCall bean
you must make a property-to-property connection between the selectedRow
property of the JTable and the currentRow property of the Select bean or
ProcedureCall bean. Because the selectedRow property is not bound, you will also
need to specify, in the connection properties, an event such as mouseClicked, to
trigger the propagation of the selectedRow value to the currentRow value . This
will insure that whenever you select a new row in the JTable, the corresponding
row in the Select bean or ProcedureCall bean will become its current row. This is
necessary to insure that methods which operate on the current row (such as
UpdateRow and DeleteRow) function as expected.

In additon, if you will be using methods of the Select or ProcedureCall bean that
change its currentRow property, such as deleteRow, you need to cause the JTable to
reflect these changes. To do this, make an event-to-method connection between the
currentRow event of your Select bean or ProcedureCall bean and the
setRowSelectionInterval method of the JTable.

If you are using the maximumPacketsInCache property of your Select or
ProcedureCall bean to limit the number of rows in the cache, the values of
currentRow and currentRowInCache may be different. In this case, since the JTable
displays the rows in the cache, you should make all of the above connections to
the currentRowInCache property instead of the currentRow property.

If you associate a JTable with a ProcedureCall bean that has multiple result sets,
the JTable will always display the current result set. To change the currentResult
property of the ProcedureCall bean, you must incorporate components in your
application for doing so, such as a button with an event-to-method connection to
the nextResult method of the ProcedureCall bean.

RELATED CONCEPTS
s . ”

RELATED TASKS

Connecting beans

Editing Select bean properties

Editing ProcedureCall bean properties

Adding the DBNavigator bean to the Visual Composition Editor surface
Inserting, updating, or deleting data in a result set

Using Selector beans

RELATED REFEREMNCES

4 ”

ProcedureCall

Adding Selector beans to the Visual Composition Editor

To use Selector beans, the Data Access Beans feature must be added to VisualAge
for Java.

These are nonvisual beans that you use to navigate result sets returned by a Select
or ProcedureCall bean. Start by adding one of the beans to the Visual Composition
Editor surface as follows:

1. From the category drop-down menu in the Visual Composition Editor, select
the Database category.

2. Select Bn for a CellSelector, & for a RowSelector bean, DR for a

ColumnSelector bean, or % for a CellRangeSelector bean..

3. Move the mouse pointer to the location on the Visual Composition Editor
surface where you want to place the bean.

4. Press and hold mouse button 1. Without releasing the mouse button, move the
mouse pointer to position it precisely.

5. Release the mouse button. The bean is placed at the location of the mouse
pointer.

RELATED CONCEPTS

Beans Palette

RELATED TASKS

Adding a feature to VisualAge for Java
Composing beans Visually

Chapter 2. Accessing Relational Data 57

RELATED REFERENCES
Visual Composition Editor
CellSelector

RowSelector
ColumnSelector
CellRangeSelector

Editing CellSelector bean properties

58 Data Access Beans

You specify and control the operation of the CellSelector bean by opening the
property sheet for the CellSelector bean and setting the values for the displayed
properties. To open the property sheet of a CellSelector bean on the Visual
Composition Editor surface:

1.

Right click the CellSelector bean. The bean menu displays.

2. Click Properties. The Properties sheet displays.

@DepallmentExample -Pr_.

|Cell58|ectnl1 ﬂ

beanMame CellSelsctor]

columnM ame

columnMumbe|0

indesFromne|F alze

notificationT ve|Na notification

rowMumber (0

|beantd ame

[v Show expert features

LU

You can control:

The name of the CellSelector bean. Specify the name as the beanName property
value.

The name of the column to be selected from the source TableModel. The match
on column name is not case sensitive. Specify this in the columnName property
value. Check the Show Expert Features checkbox to display this property. If the
specified column name is blank or null, the selected column will be identified by
columnNumber.

The index of the column to be selected from the source TableModel. This column
index will only be used if the value of columnName is blank or null. Specify this
in the columnNumber property value.

Whether the row and column indexes are assumed to index from one. This
property should be set to true where the selection row and/or column
properties are connected to a bean property that indexes from one. If set to false,
indexing is from zero. Specify this in the indexFromOne property value. Check
the Show Expert Features checkbox to display this property.

Which data access property will be notified of changes by a propertyChange
event. Selectors are able to convert source data into a variety of data types, each
of which has a corresponding bound property. All of these properties are
theoretically altered when the selector data source or selection criteria are
changed. However, it would be very inefficient to generate propertyChange

events for all these properties. So the property of interest may be specified,
limiting property change events to a single property. By default, no property
change events are generated. Specify this in the notificationType property value.
Check the Show Expert Features checkbox to display this property.

* The index of the row to be selected from the source TableModel. Specify this in
the rowNumber property value.

RELATED CONCEPTS
Selector Beans

RELATED TASKS
Using Selector beans

RELATED REFEREMNCES

CellSelector

Editing RowSelector bean properties

You specify and control the operation of the RowSelector bean by opening the
property sheet for the RowSelector bean and setting the values for the displayed
properties. To open the property sheet of a RowSelector bean on the Visual
Composition Editor surface:

1. Right click the RowSelector bean. The bean menu displays.
2. Click Properties. The Properties sheet displays.

@DepallmentExample -Pr._.

|HDwSelector1 ﬂ

beanMame HowSelector]

indexFromOne|F alse

maxirnuniColur|No maximum
notificationT yg[Mo notification

rowiumber |0
gtartColumni L]0
vectorContent|M ative

LI

|beantdame

[V Show expert features

You can control:

* The name of the RowSelector bean. Specify the name as the beanName property
value.

* Whether the row and column indexes are assumed to index from one. This
property should be set to true where the selection row and/or column
properties are connected to a bean property that indexes from one. If set to false,
indexing is from zero. Specify this in the indexFromOne property value. Check
the Show Expert Features checkbox to display this property.

* The maximum number of columns to be selected. You can select
NO_MAXIMUM to indicate that the last column of the selection should be the
last column in the source TableModel. Specify this in the maximumColumns
property value.

Chapter 2. Accessing Relational Data 59

Which data access property will be notified of changes by a propertyChange
event. Selectors are able to convert source data into a variety of data types, each
of which has a corresponding bound property. All of these properties are
theoretically altered when the selector data source or selection criteria are
changed. However, it would be very inefficient to generate propertyChange
events for all these properties. So the property of interest may be specified,
limiting property change events to a single property. By default, no property
change events are generated. Specify this in the notificationType property value.
Check the Show Expert Features checkbox to display this property.

The index of the row to be selected from the source TableModel. Specify this in
the rowNumber property value.

The index of the column to start the selection from the source TableModel.
Specify this in the startColumnNumber property value.

The data type that should be used when populating vectors in response to a
vector property query. Some beans may require data to be fed to them in a
vector, and may further expect the elements in the vector to be of a specific type.
Where this is the case the notificationType property may be set to
Selector.VECTOR to cause propertyChange events to be generated for the vector
property. Specify this in the vectorContentType property value. Check the Show
Expert Features checkbox to display this property.

RELATED COMNCEPTS
Selector beans

RELATED TASKS
Using Selector beans

RELATED REFERENCES
RowsSelector

Editing ColumnSelector bean properties

You specify and control the operation of the CellSelector bean by opening the
property sheet for the ColumnSelector bean and setting the values for the
displayed properties. To open the property sheet of a ColumnSelector bean on the
Visual Composition Editor surface:

60 Data Access Beans

1.

Right click the ColumnSelector bean. The bean menu displays.

2. Click Properties. The Properties sheet displays.

@DepallmentExample -Pr_.

|EDIumnSe|ectm1 ﬂ

beanMame ColumnSelector

columni ame

columnMumbe|0
includeColumr|F alse
indexFromOne|F alse
maximumnBows| Mo maximum
natification T yg|Mo notification
startF oveM umt| 0
vectorContent [N ative

LU

[beanMame

v Show espert features

You can control:

The name of the ColumnSelector bean. Specify the name as the beanName
property value.

The name of the column to be selected from the source TableModel. The match
on column name is not case sensitive. Specify this in the columnName property
value. Check the Show Expert Features checkbox to display this property. If the
specified column name is blank or null, the selected column will be identified by
columnNumber.

The index of the column to be selected from the source TableModel. This column
index will only be used if the value of columnName is blank or null. Specify this
in the columnNumber property value.

Whether the column name is to be included as the first element of column data.
This only has effect when column data are retrieved as String values. Specify
this in the includeColumnName property value. Check the Show Expert
Features checkbox to display this property.

Whether the row and column indexes are assumed to index from one. This
property should be set to true where the selection row and/or column
properties are connected to a bean property that indexes from one. If set to false,
indexing is from zero. Specify this in the indexFromOne property value. Check
the Show Expert Features checkbox to display this property.

The maximum number of rows to be selected. You can select NO_MAXIMUM to
indicate that the last row of the selection should be the last row in the source
TableModel. Specify this in the maximumRows property value.

Which data access property will be notified of changes by a propertyChange
event. Selectors are able to convert source data into a variety of data types, each
of which has a corresponding bound property. All of these properties are
theoretically altered when the selector data source or selection criteria are
changed. However, it would be very inefficient to generate propertyChange
events for all these properties. So the property of interest may be specified,
limiting property change events to a single property. By default, no property
change events are generated. Specify this in the notificationType property value.
Check the Show Expert Features checkbox to display this property.

The index of the row to start the selection from the source TableModel. Specify
this in the startRowNumber property value.

The data type that should be used when populating vectors in response to a
vector property query. Some beans may require data to be fed to them in a

Chapter 2. Accessing Relational Data 61

vector, and may further expect the elements in the vector to be of a specific type.
Where this is the case the notificationType property may be set to

Selector. VECTOR to cause propertyChange events to be generated for the vector
property. Specify this in the vectorContentType property value. Check the Show
Expert Features checkbox to display this property.

RELATED COMNCEPTS
Selector Beans

RELATED TASKS
Using Selector beans

RELATED REFERENCES
ColumnSelector

Editing CellRangeSelector bean properties

62 Data Access Beans

You specify and control the operation of the CellRangeSelector bean by opening
the property sheet for the CellRangeSelector bean and setting the values for the
displayed properties. To open the property sheet of a CellRangeSelector bean on
the Visual Composition Editor surface:

1. Right click the CellRangeSelector bean. The bean menu displays.

2. Click Properties. The Properties sheet displays.

@DepallmentExample -Pr_.

| CellR angeSelector ﬂ

beanMame IRangeSelectarl
includeColumnr |F alze

indesFromne|F alze

ivertD ata Falze
masimurColur(Mo maximam
rnasimurmnB oMo maximam
notificationT ve|Na notification
startColurmnkiu|0
shartFowMumt|0
vectorContent [N ative

LU

|beanN afne

[v Show expert features

You can control:

* The name of the CellRangeSelector bean. Specify the name as the beanName
property value.

* Whether the column name is to be included as the first element of column data.
This only has effect when column data are retrieved as String values. Specify
this in the includeColumnName property value. Check the Show Expert
Features checkbox to display this property.

* Whether the row and column indexes are assumed to index from one. This
property should be set to true where the selection row and/or column
properties are connected to a bean property that indexes from one. If set to false,
indexing is from zero. Specify this in the indexFromOne property value. Check
the Show Expert Features checkbox to display this property.

* Whether the data values are to be inverted row against column during retrieval
from, or update to, the source TableModel. The default orientation is row biased.
Two dimensional arrays will have one first level dimension for each row, and
one second level dimension for each column. When data is inverted then this
arrangement will be reversed. Specify this in the invertData property value.
Check the Show Expert Features checkbox to display this property.

* The maximum number of columns to be selected. You can select
NO_MAXIMUM to indicate that the last column of the selection should be the
last column in the source TableModel. Specify this in the maximumColumns
property value.

¢ The maximum number of rows to be selected. You can select NO_MAXIMUM to
indicate that the last row of the selection should be the last row in the source
TableModel. Specify this in the maximumRows property value.

* Which data access property will be notified of changes by a propertyChange
event. Selectors are able to convert source data into a variety of data types, each
of which has a corresponding bound property. All of these properties are
theoretically altered when the selector data source or selection criteria are
changed. However, it would be very inefficient to generate propertyChange
events for all these properties. So the property of interest may be specified,
limiting property change events to a single property. By default, no property
change events are generated. Specify this in the notificationType property value.
Check the Show Expert Features checkbox to display this property.

e The index of the column to start the selection from the source TableModel.
Specify this in the startColumnNumber property value.

¢ The index of the row to start the selection from the source TableModel. Specify
this in the startRowNumber property value.

* The data type that should be used when populating vectors in response to a
vector property query. Some beans may require data to be fed to them in a
vector, and may further expect the elements in the vector to be of a specific type.
Where this is the case the notificationType property may be set to
Selector.VECTOR to cause propertyChange events to be generated for the vector
property. Specify this in the vectorContentType property value. Check the Show
Expert Features checkbox to display this property.

RELATED CONCEPTS
Selector beans

RELATED TASKS
Using Selector beans

RELATED REFEREMNCES

CellRangeSelector

Using Selector Beans

Selector beans operate on a Java TableModel. Used with the Select bean you can
query a database, receive a result set back and use the selector beans to process a
subset of the result set. The ColumnSelector and RowSelector beans implement the
ComboBoxModel which means they can extract data from a result set and pass it
to a user interface such as a JList. You can also use them to get data from a user
interface, put the data in a result set and then have a Select or ProcedureCall bean
update the database.

Chapter 2. Accessing Relational Data 63

64 Data Access Beans

Selector beans can also be used to work with arrays. For example, you could use
the RowSelector bean to extract a row from a result set, do data conversion on the
row, and pass the result as an array.

All selectors have properties that define the subset of TableModel data that they
are operating on. For a CellSelector these identify the row and column indices that
define the location of the cell within the source TableModel. For the other selectors,
similar properties define the start row and/or column indices, and the maximum
number of rows and/or columns to be selected.

The above properties are by default zero-based. That is, the first row or column is
deemed to be row or column zero. Many navigation Java beans have a value
property that is also zero-based, but in cases where a navigator value is one-based
the selectors have a boolean property that can switch them to one-based operation.

These properties may be set at design-time in a visual builder, and/or modified at
run-time by connecting them to visual Java beans that provide navigation, such a
JList.

Data Conversion

To provide the maximum opportunity for connecting selectors to other Java beans,
all selectors will attempt data conversion on request. For example, the source data
might be numeric, but held in a character representation as a string. In this
circumstance a selector will be able to return the value in any one of the numeric
Java types, and accept values for update with the same flexibility. Data conversion
will not always be possible, and numeric overflow might occur when converting
numbers to forms using less memory. However, in many cases conversion will
enable a connection that might not otherwise be possible.

Conversion is achieved using the data access properties which are available on all
selectors. These properties are named after the data type that they return and
accept, and have "getter" and "setter" methods. For example: int getInt() and
void setInt(int value);

Data Changes

If the source TableModel for a selector changes, the selector will usually notify its
listeners of the data change. But if rows are inserted or deleted prior to the rows

that have been selected, the selector will adjust its rowNumber/startRowNumber
property so that the rows selected remain the same.

There are a number of ways in which interested Java beans may be informed of
changes to data currently targeted by a selector:

* SelectorListener
All selectors support listeners implementing the SelectorListener interface. These
listeners will be notified whenever source data covered by the selector, or the
selection criteria for the selector, are modified.

On change notification, listeners may retrieve the updated data using any of the
available data accessors, provided that coercion between the source data type
and the data type of the accessor is possible.

* ListDataListener
RowSelector and ColumnSelector implement the ComboBoxModel interface and
support listeners implementing the ListDataListener interface. These listeners

will be notified whenever the source data covered by the selector, or the
selection criteria for the selector, are modified.

On change notification, data will normally be retrieved using the
ComboBoxModel services supported by these selectors.

* TableModelListener
CellRangeSelector implements the TableModel interface, and support listeners
implementing the TableModelListener interface. These listeners will be notified
whenever the source data covered by the selector, or the selection criteria for the
selector, are modified.

On change notification, data will normally be retrieved using the TableModel
services supported by this selector.

¢ PropertyChangeListener
All selectors have bound properties and support listeners implementing the
PropertyChangeListener interface. Property changes are notified for most selector
properties, including the data access properties.

If source data covered by the selector, or the selection criteria for the selector, are
modified, then in theory all the data access properties might be deemed to have
changed. In practice, notifying a property change event for all of that data access
properties would be counter productive, since most listeners will only be
interested in data of one type. However, some visual builders support the
explicit binding of named properties, and to support these it is necessary to
signal property change events. To allow for this without having to incur the
overhead of many property change notifications for every data change, the
NotificationType property may be customized to define which of the data access
properties on a selector will be notified as changed.

RELATED COMNCEPTS
Selector Beans

RELATED TASKS

Editing CellSelector Bean Properties
Editing ColumnSelector Bean Properties
Editing RowSelector Bean Properties
Editing CellRangeSelector Bean Properties
Using Selector Bean Data Access Properties

Using Selector bean data access properties

Selector bean data access properties allow you to retrieve values from the
underlying TableModel and perform automatic data conversion on the values.
Depending on the selector used, the value(s) are returned as a single value
(CellSelector), an 1-dimensional array of values (ColumnSelector and RowSelector),
or a 2-dimensional array of values(CellRangeSelector).

The data access properties that are available on the Connectable Features dialog for
all selectors are:

¢ BigDecimal - value(s) are java.math.BigDecimal data types
* Biglnteger - value(s) are java.math.BigInteger data types

* boolean - value(s) are boolean data types

* byte - value(s) are byte data types

* byte[] - value(s) are arrays of byte data type

* Date - value(s) are java.sql.Date data types

* double - value(s) are double data types

Chapter 2. Accessing Relational Data 65

* float - value(s) are float data types

* int - value(s) are int data types

* long - value(s) are long data types

* Object - value(s) are Object data types

* short - value(s) are short data types

 String - value(s) are String data types

* Time - value(s) are java.sql.Time data types

* Timestamp - value(s) are java.sql.Timestamp data types

* Vector - value(s) are Vector data types (not availabe for CellSelector)

* VectorOfVectors - value is a vector of Vector data types (CellRangeSelector only)

All of these properties are expert features. You must check the Show Expert
Features checkbox on the Connectable Features dialog to display them.

All of the data access properties are defined as bound properties. However, when
the underlying data is changed, propertyChange events will not automatically be
triggered for all of these properties. A propertyChange event will only be triggered
for at most one data access property for a selector. The notificationType property of
the selector controls which propertyChange event will be triggered. By default, this
property is set to Selector NONE which means no propertyChange event will be
triggered. If you want a propertyChange event to be triggered, you must set this
property to an appropriate value based on what propertyChange event you want
to be triggered. For example, if you have made a connection using the String data
access property, you would set the notificationType to String.

If you use the Vector data access property, you can control the data type of the
elements in the vector through the vectorContent property of a Selector.

RELATED COMNCEPTS
Selector Beans

RELATED TASKS
Using Selector beans

RELATED REFERENCES
CellSelector
RowSelector
ColumnSelector
CellRangeSelector

Inserting, updating, or deleting data in a result set

66 Data Access Beans

The Select and ProcedureCall beans provide methods that you can use to insert,
update, and delete rows in a result set. To perform these operations you must first
use a Select or ProcedureCall bean to retrieve one or more result sets. (A
ProcedureCall bean can retrieve more than one result set at a time while a Select
bean has only one result set.) You then apply the changes to the current row of the
current result set.

Inserting data

Inserting data via a Select or ProcedureCall bean is a 3-step process. You must:
1. Add a new empty row to the current result set.

2. Set one or more values in the empty row.

3. Move to another row or use the updateRow method to trigger insertion of the
new row into the database.

By coding a method

One way of accomplishing these tasks is to make an event-to-code connection
between an appropriate interface component, such as a button, and a method. For
example, you can make an event-to-code connection between the actionPerformed
event for a button and a method which executes methods of the Select or
ProcedureCall bean. In this method, include code that calls the newRow method to
add the empty row, the setColumnValue method to provide one or more values,
and the updateRow or any method that moves to a different row to trigger
insertion of the new row into the database.

Without coding a method

If you prefer not to write a method, you can use connections to a DBNavigator
bean and to an interface component where your data is displayed to accomplish
the same thing.

To use the DBNavigator bean, create a property-to-property connection between
the this property of the Select bean or ProcedureCall bean and the model property

of a DBNavigator bean. The DBNavigator bean has an Insert button E ‘ that adds
a new empty row to the current result set.

If your data is displayed in a JTable, when you enter a new value into a cell of the
table, the value is automatically set in the corresponding row and column of the
result set.

If your data is displayed one row at a time in other interface components, such as
text fields, which you have connected to the bound column properties of the Select
bean or ProcedureCall bean, you need to insure that any value you provide in the
interface component gets propagated to the corresponding row and column of the
result set. If the property of the interface component is bound, VisualAge for Java
generates code to do the propagation. However, many properties of interface
components, including the text property of a text field, are not bound. In this case,
you must specify in the connection properties, an event to trigger the propagation
of the updated value to the column property.

Finally, you can use the Next button > of the DBNavigator bean (or any other
button on the DBNavigator that moves to another row) to trigger insertion of the
new row into the database. If your data is displayed in a JTable and you are using
the row selection mechanisms of the JTable to control the current row of the result
set you can click on another row to trigger insertion of the new row. Or you can
make an event-to-method connection between another interface component, such
as a button, and the updateRow method of the Select bean or ProcedureCall bean.

Updating data

Updating data via a Select or ProcedureCall bean is a 2-step process. You must:

1. Set one or more values in the current row of the current result set.

Chapter 2. Accessing Relational Data 67

68 Data Access Beans

2. Move to another row or use the UpdateRow method to trigger the update of
the row in the database.

By coding a method

One way of accomplishing these tasks is to make an event-to-code connection
between an appropriate interface component, such as a button, and a method. For
example, you can make an event-to-code connection between the actionPerformed
event for a button and a method which executes methods of the Select bean or
ProcedureCall bean. In this method, include code that calls the setColumnValue
method to provide one or more values, and updateRow or any method that moves
to a different row to trigger the update of the row in the database.

Without coding a method

If you prefer not to write a method, you can use connections to a DBNavigator
bean and to an interface component where your data is displayed to accomplish
the same thing.

If your data is displayed in a JTable, when you enter a new value into any cell of
the table, the value is automatically set in the corresponding row and column of
the result set.

If your data is displayed one row at a time in other interface components, such as
text fields, which you have connected to the bound column properties of the Select
bean or ProcedureCall bean, you need to insure that any value you provide in the
interface component gets propagated to the corresponding row and column of the
result set. If the property of the interface component is bound, VisualAge for Java
generates code to do the propagation. However, many properties of interface
components, including the text property of a text field, are not bound. In this case,
you must specify in the connection properties, an event to trigger the propagation
of the updated value to the column property.

Once your values have been set, you can use the Next button > of an associated
DBNavigator bean (or any other button on the DBNavigator that moves to another
row) to trigger the update of the row in the database. If your data is displayed in a
JTable and you are using the row selection mechanisms of the JTable to control the
current row of the result set you can click on another row to trigger the update of
the new row in the database. Or you can make an event-to-method connection
between another interface component, such as a button, and the updateRow
method of the Select bean or ProcedureCall bean.

Deleting data

Deleting data via a Select or ProcedureCall bean is a 1-step process. You need only
use the deleteRow method to delete the current row from the database.

The Delete button IQ of an associated DBNavigator bean executes the deleteRow
method. If you are not using a DBNavigator with a Delete button, you can make
an event-to-method connection between another interface component, such as a
button, and the deleteRow method of the Select bean or ProcedureCall bean.

RELATED CONCEPTS

7 . ”

RELATED TASKS
’ cp: ol

Editing ProcedureCall bean properties

‘Adding the DBNa gator bean to the
Displaying and navigating a result set
Connecting beans

RELATED REFEREMNCES
q ”

Adding the DBNavigator bean to the Visual Composition Editor surface

The DBNavigator bean is a visual bean that you use with a non-visual Select or
ProcedureCall bean to access data in a relational database. The DBNavigator bean
provides a set of buttons that execute the SQL statement for the associated
non-visual bean; navigate rows of a result set, and perform other relational
database operations, such as commit updates to the database.

EAILL R B AR AR - =NRsaE)R

You add the DBNavigator bean to the Visual Composition Editor surface as
follows:

1. From the category drop-down menu in the Visual Composition Editor, select
the Database category.

2. Select M=

3. Move the mouse pointer to the location on the Visual Composition Editor
surface where you want to place the DBNavigator bean.

4. Press and hold mouse button 1. Without releasing the mouse button, move the
mouse pointer to position it precisely.

5. Release the mouse button. The DBNavigator bean is placed at the location of
the mouse pointer.

RELATED CONCEPTS

Beans Palette

RELATED TASKS
Composing beans visually

Starting the Create Database Application SmartGuide

Before you start the Create Database Application SmartGuide, you must add the
Data Access Beans feature to your workspace. To add the Data Access beans, select
File > Quick Start > Features > Add Features; then select Data Access Beans 3.0
and click OK.

You can start the Create Database Application SmartGuide in one of these ways:
* Select File > Quick Start > Basic > Create Database Application and click OK.

* In the Workbench window, right-click the project or package for which you want
to create a database application; then, select Tools > Create Database
Application.

Chapter 2. Accessing Relational Data 69

* In the Workbench window, select the project or package for which you want to
create a database application; then, select Selected > Tools > Create Database
Application from the Workbench menu.

If you choose to start the Create Database Application SmartGuide by using the
Quick Start window from the File menu, Visual Age for Java does not enter a
project name and package name in the SmartGuide. You must enter this
information yourself in the SmartGuide.

RELATED CONCEPTS
About the Create Database Application SmartGuide

RELATED TASKS
Creating a database application with the Create Database Application SmartGuide

Creating a database application with the Create Database Application

SmartGuide

70 Data Access Beans

Requirement: Before you can use the Create Database Application SmartGuide,
you must create a package for the data access class.

To create a database application with the Create Database Application SmartGuide,
perform these tasks:

1. Start the Create Database Application SmartGuide.

2. In the Create Database Application page, enter a project name, package name,
and class name for the application. If you started the SmartGuide from a
selected project or package in the Workbench window, the project name or
package name is already entered for you. Click Next. The Database Connection
and SQL Specification page appears.

Specify a database connection alias. (page kd)

Create an SQL specification. (page kd)

Create a GUI for the database application. (page k1)

ook w

Save your database application by selecting Bean > Save Bean in the Visual
Composition Editor window.

Specifying a database connection alias for a database application

1. In the Database Connection and SQL Specification page, click Edit. The Query
Editor appears.

2. In the Query Editor, select the Connection tab. Select an existing connection
alias and click OK.
or
Create a new connection alias by clicking Add. The Connection Alias Definition
window appears.
See Specifying a connection alias and Defining or editing a connection alias.

3. Once you have specified a database connection alias, click OK in the Query
Editor. the Database & SQL Specification windows appears.

Creating an SQL specification for a database application

1. In the Database & SQL Specification windows, Click Edit. The Query Editor
appears.

2. If you have more than one data access class, verify or select the data access
class in the Database Access Class field for the database connection alias. The

7.

data access class selected on the Connection page is not automatically
pre-selected in the SQL page of the Query Editor.

In the Query Editor, select the SQL tab. Select an existing SQL specification and
click OK.

or

Create an SQL specification by clicking Add. The New SQL Specification
window appears.

When creating an SQL specification, select Use SQL Assist SmartGuide in the
New SQL Specification window. Using the SQL Assist SmartGuide is the
recommended method for create an SQL specification. Click OK. The SQL
Assist SmartGuide appears.

See Composing an SQL query.

Once you have created your SQL statement, click OK in the Query Editor. The
Database Connection & SQL Specification page appears. The page shows the
names of the connection alias and the SQL specification that will be used to
initialize the query property of a Select bean.

Optional: Click Edit to return to the Query Editor and modify your SQL. When
you have finished editing your SQL statement, click OK in the Query Editor.
The Database Connection & SQL Specification page appears.

Click Next. The Database View Specification window appears.

Creating a GUI for a database application

1.

2.

In the Database View Specification window, define a user interface by selecting
the elements that you want to use for the database application.

EC_,J SmartGuide E3

Database View Specification

& Place navigation bar or top of the master-details view

" Place navigation bar on battorn of the master-details view
[Create a table or master view

% Place table an top of the details view

" Place table on bottom of the details view

" Place table on left of the details view

" Place table on right of the details view

[Create a details view

< Back I Ment » I Finizh | Cancel |

Click Next. The Details View Specification window appears. For the current
row, the details view displays the values for each column in separate text fields
and labels each text field with the name of the column.

Chapter 2. Accessing Relational Data 71

72 Data Access Beans

EC_,J SmartGuide E3

Details View Specification

Awailable fields Added fields

DEFPARTMENT.DEFTHO
DEPARTMENT.DEPTMNAME

b

<<

Up

Do

i

< Back | || =5 | Finish I Cancel |

3. Optional: In the Details View Specification window, select fields from the

Added fields list and click << to remove them from the database application
GUIL The fields are moved to the Available fields list. The fields in the
Available fields list will be part of your SQL query and will appear in the
JTable view. However, the fields will not appear in the Details view.

Note: If you did not use the SQL Assist SmartGuide to create your SQL
statement, the Added fields list is blank because the Create Database
Application SmartGuide does not have information about the columns in the
Select bean to generate the Details view.

. Optional: Select a field and click Up or Down to reorder the fields in your

GUL

. Click Finish. The database application appears in the Visual Composition

Editor of the IDE.

. Use the Visual Composition Editor to modify the generated database

application GUL

See Visual Composition Editor overview.

For information about updating, inserting, or deleting rows, see Inserting,
updating, or deleting data in a result set.

The Visual Composition Editor shows the method updateTableSelection() for

the Select class bean. This method synchronizes the selected row in the JTable
with the current row in the Select bean.

) TestI[11416/1999 2:49:28 PM] in test_package [Administrator]

E! Bean Ei Imlt Wﬂlkspaﬂ Wfindow Help

Swing ~ =
ﬁ
&
=S
= N
4 77 o
L DEPARTMENT.DEPTNO_$iing: DEPARTMENT.DEPTNAME_Swing:
) | /A |
fis) e
. V4
b
o B & e aeselesont]
Sebkct =
+ |a | ® |
T e e |

7. If you want your database application to update rows in a database table, add
events for the connection to each text field. Right-click a connection to a field
and select Properties. The Property-to-Property connection Properties window
appears. In the Target event field, select an event for the field. For example, the
actionPerformed event is triggered when a user presses Enter after typing a
new value in a text field.

The connections to a text property of a JText field are not a bound property.
Therefore, VisualAge for Java will not generate code to do the propagation. In
the connection properties, you must specify an event to trigger the propagation
of the updated value to the column property.

See Property-to-property connections.

RELATED CONCEPTS
About the Create Database Application SmartGuide

Chapter 2. Accessing Relational Data 73

74 Data Access Beans

Chapter 3. Data Access Beans

The following beans provide access to relational data:

Bean Description

['Select (Database)’] A non-visual bean used to query relational
data

Modify A non-visual bean used to modify relational
data

ProcedureCall A non-visual bean used to run a database
stored procedure

CellSelector A non-visual bean used to select a cell from
a TableModel

ColumnSelector A non-visual bean used to select a column
from a TableModel

RowSelector A non-visual bean used to select a row from
a TableModel

CellRangeSelector A non-visual bean used to select a range of
cells from a TableModel

‘ ” A visual bean that provides navigation
used with a Select or ProcedureCall bean

RELATED TASKS

4

Select (Database)

Use a Select bean

to access relational data.

Select Bean Properties

beanName

Specifies the name of the Select bean instance. It must follow standard
naming rules for beans. The default name is Selectn, where 7 is the number
of Select beans with default names; for example, the first default name is
Selectl.

distinctTypeEnabled

Whether to enable inserts, updates, and deletes for result sets which
contain user-defined (distinct) types. The default value is False.

fillCacheOnExecute

© Copyright IBM Corp. 1997, 2000

Specifies whether all the rows of the result set are fetched into memory
(cache) or only a subset of the result set. A value of True means that all the
rows of the result set are fetched, up to a maximum number of rows. The
maximum number of rows is the maximumRows value, or the product of
the packetSize value multiplied by the maximumPacketsInCache
value—whichever is smaller. Suppose a result set is 1000 rows,
fillCacheOnExecute is True, maximumRows is 100, packetSize is 10, and

75

76 Data Access Beans

maximumPacketsInCache is 50. Executing an SQL statement fetches 100
rows into the cache, that is, the value of maximumRows.

A False value means that only the number of rows in the result set needed
to satisfy the SQL statement are fetched into the cache. For example, if a
result set is 1000 rows, but the application only displays 10 rows, only 10
rows are fetched into the cache.

The default value is True.

forceSearched
Whether to force generation of searched rather than positioned SQL
UPDATE and DELETE statements for the result set returned by the
statement. The default value is False.

lockRows
Specifies whether a lock is immediately acquired for the row. A value of
True means a lock is immediately acquired for the current row. A False
value means a lock is not acquired for the row until an update request is
issued. The default value is False.

maximumPacketsInCache
Specifies the maximum number of packets allowed in the cache. A packet
is a set of rows. A value of 0 means that there is no maximum. The default
value is 0.

maximumRows
Specifies the maximum number of rows that can be fetched into the cache.
A value of 0 means that there is no maximum. The default value is 0.

packetSize
Specifies the number of rows in a packet. The default value is 1.

query Specifies the connection alias and SQL specification for the Select bean. See

I’Qmpmfmno a connection alias” on page 47 and I’_hd_a_k_]n_g_an_S_Q]_l
I;pem.ﬁ.ca.h.on_on_pa.gxﬂd for further information.

readOnly
Specifies whether updates to the data are allowed. A True value means that
updates are disallowed even if the database manager would permit them.
A False value means that updates are allowed, provided that the database
manager permits them. The default value is False.

timeout
The maximum number of seconds allowed for the statement to execute.
The default value is 0, which means no maximum.

validateLOBs
Specifies whether to check the validity of a Clob or Blob object before
returning the object to you as a column or parameter value. A commit or
rollback may cause LOB objects to become invalid. If a LOB is not valid,
it is re-fetched from the database and returned to you. If the attempt to
re-fetch the value fails, an exception is thrown.

Note: A re-fetched LOB may have different contents than the original LOB.

RELATED TASKS

7 . . ”

RELATED REFERENCES

4 : ”

ProcedureCall
Modify

Modify (Database)

Use the Modify bean g to run SQL INSERT, UPDATE, or DELETE statements
without first running a query and retrieving its result set.

Modify Bean Properties

action Specifies the connection alias and SQL specification for the Modify bean.

See Ithmano a cannection alias” on page 47 and LMak.m.g_anﬁQll
l;p.em.ﬁ.canon_on_pa.gﬁl.j for further information.

beanName
Specifies the name of the Modify bean instance. It must follow standard
naming rules for beans. The default name is Modifyn, where n is the
number of Modify beans with default names; for example, the first default
name is Modify1.

timeout
The maximum number of seconds allowed for the statement to execute.
The default value is 0, which means no maximum.

RELATED TASKS

4 : . ”

RELATED REFEREMNCES

% . ”

ProcedureCall

ProcedureCall (Database)

Use the ProcedureCall §G bean access relational data.

ProcedureCall Bean Properties

beanName
Specifies the name of the ProcedureCall bean instance. It must follow
standard naming rules for beans. The default name is ProcedureCalln,
where n is the number of ProcedureCall beans with default names; for
example, the first default name is ProcedureCalll.

distinctTypeEnabled
Whether to enable inserts, updates, and deletes for result sets which
contain user-defined (distinct) types. The default value is False.

fillCacheOnExecute
Specifies whether all the rows of the result set are fetched into memory
(cache) or only a subset of the result set. A value of True means that all the
rows of the result set are fetched, up to a maximum number of rows. The
maximum number of rows is the maximumRows value, or the product of
the packetSize value multiplied by the maximumPacketsInCache
value—whichever is smaller. Suppose a result set is 1000 rows,
fillCacheOnExecute is True, maximumRows is 100, packetSize is 10, and

Chapter 3. Data Access Beans 77

78 Data Access Beans

maximumPacketsInCache is 50. Executing an SQL statement fetches 100
rows into the cache, that is, the value of maximumRows.

A False value means that only the number of rows in the result set needed
to satisfy the SQL statement are fetched into the cache. For example, if a
result set is 1000 rows, but the application only displays 10 rows, only 10
rows are fetched into the cache.

The default value is True.

fillResultCacheOnExecute
Whether as many result sets as possible should be fetched into memory as
soon as you execute your stored procedure or result sets should be fetched
only as you ask for them. The default value is True.

forceSearched
Whether to force generation of searched rather than positioned SQL
UPDATE and DELETE statements for the result set returned by the
statement. The default value is False.

lockRows
Specifies whether a lock is immediately acquired for the row. A value of
True means a lock is immediately acquired for the current row. A False
value means a lock is not acquired for the row until an update request is
issued. The default value is False.

maximumPacketsInCache
Specifies the maximum number of packets allowed in the cache. A packet
is a set of rows. A value of 0 means that there is no maximum. The default
value is 0.

maximumRows
Specifies the maximum number of rows that can be fetched into the cache.
A value of 0 means that there is no maximum. The default value is 0.

packetSize
Specifies the number of rows in a packet. The default value is 1.

procedure

Specifies the connection alias and SQL specification for the ProcedureCall
bean. See I’anmfvmcr a_connection alias” on page 47 and |’_Ma.k.|.n.g_a.n_SQl|

Ispem.ﬁ.ca.tl.on_on_pa.gﬂz for further information.

readOnly
Specifies whether updates to the data are allowed. A True value means that
updates are disallowed even if the database manager would permit them.
A False value means that updates are allowed, provided that the database
manager permits them. The default value is False.

timeout
The maximum number of seconds allowed for the statement to execute.
The default value is 0, which means no maximum.

validateLOBs
Specifies whether to check the validity of a Clob or Blob object before
returning the object to you as a column or parameter value. A commit or
rollback may cause LOB objects to become invalid. If a LOB is not valid,
it is re-fetched from the database and returned to you. If the attempt to
re-fetch the value fails, an exception is thrown.

Note: A re-fetched LOB may have different contents than the original LOB.

RELATED TASKS
4 . : ’”

RELATED REFEREMCES

Z : ”
Select

Modify

CellSelector (Database)

Use the CellSelector Bn to view a cell in a TableModel such as a result set
returned by a Select or ProcedureCall bean.

CellSelector Properties

beanName
Specifies the name of the CellSelector bean instance. It must follow
standard naming rules for beans. The default name is CellSelectorrn, where
n is the number of CellSelector beans with default names; for example, the
first default name is CellSelectorl.

columnName
Specifies the name of the column selected from the source TabelModel. The
match on column name is not case sensitive. If the specified column name
is blank or null, the selected column will be identified by columnNumber.

columnNames
An array containing the names of the columns that are currently selected.

columnNumber
The index of the column to be selected from the source TableModel. This
column index will only be used if the value of columnName is null or
blank string.

indexFromOne
Whether the row and column indexes are assumed to index from one. This
property should be set to true where the selection row and/or column
properties are connected to a bean property that indexes from one. If set to
false, indexing is from zero. The default is false.

model The Java TableModel used as the source of the data for the selection.

notificationType
Specifies which data access property will be notified of changes by a
propertyChange event. Selectors are able to convert source data into a
variety of data types, each of which has a corresponding bound property.
All of these properties are theoretically altered when the selector data
source or selection criteria are changed. However, it would be very
inefficient to generate property change events for all these properties, so
the property of interest may be specified, limiting property change events
to a single property. By default, no property change events are generated.

rowNumber
The index of the row to be selected from the source TableModel.

The following are data access properties used by CellSelector bean for data
conversion.

Chapter 3. Data Access Beans 79

BigDecimal
Value of the cell as a java.math.BigDecimal data type.

BigInteger
Value of the cell as a java.math.BigInteger data type.

boolean
Value of the cell as a boolean data type.

byte Value of the cell as a byte data type.
byte[] Value of the cell as a byte array data type.
Date Value of the cell as a java.sql.Date data type.

double
Value of the cell as a double data type.

float Value of the cell as a float data type.
int Value of the cell as an int data type.
long Value of the cell as a long data type.

Object
Value of the cell as an Object data type.

short Value of the cell as a short data type.
String Value of the cell as a String data type.
Time Value of the cell as a java.sql.Time data type.

Timestamp
Value of the cell as a java.sql.Timestamp data type.

RELATED TASKS
Editing CellSelector Bean Properties
Using Selector Bean Data Access Properties

RELATED REFERENCES
CellRangeSelector
ColumnSelector
RowsSelector

ColumnSelector(Database)

Use the ColumnSelector bean Dﬁ to view a column in a TableModel such as a
results set returned by Select or ProcedureCall beans.

CellSelector Properties

beanName
Specifies the name of the ColumnSelector bean instance. It must follow
standard naming rules for beans. The default name is ColumnSelectorr,
where 7 is the number of ColumnSelector beans with default names; for
example, the first default name is ColumnSelectorl.

columnName
Specifies the name of the column selected from the source TabelModel. The
match on column name is not casr sensitive. If the specified column name
is blank or null, the selected column will be identified by columnNumber.

80 Data Access Beans

columnNames
An array containing the names of the columns that are currently selected.

columnNumber
The index of the column to be selected from the source TableModel. This
column index will only be used if the value of columnName is null or
blank string.

includeColumnName
Whether the column name is to be included as the first element of column
data. This only has effect when column data are retrieved as String values.
The default is false.

indexFromOne
Whether the row and column indexes are assumed to index from one. This
property should be set to true where the selection row and/or column
properties are connected to a bean property that indexes from one. If set to
false, indexing is from zero. The default is false.

maximumRow
The maximum number of rows to be selected. You can select
NO_MAXIMUM to indicate that the last row of the selection should be the
last row in the source TableModel. The default is NO_MAXIMUM.

model The Java TableModel used as the source of the data for the selection.

notificationType
Specifies which data access property will be notified of changes by a
propertyChange event. Selectors are able to convert source data into a
variety of data types, each of which has a corresponding bound property.
All of these properties are theoretically altered when the selector data
source or selection criteria are changed. However, it would be very
inefficient to generate property change events for all these properties, so
the property of interest may be specified, limiting property change events
to a single property.

startRowNumber
The index of the row to be selected from the source TableModel.

vectorContentType
The data type used to populate vectors in response to a vector property
query. Some beans may require data be fed to them in a vector, and may
further expect the elements in the vector to be of a specific type. Where
this is the case, the notificationType property may be set to
Selector. VECTOR to cause propertyChange events to be generated for the
vector property.

The following are data access properties used by ColumnSelector bean for data
conversion.

BigDecimal
A 1-dimensional array of java.math.BigDecimal data types.

BigInteger
A 1-dimensional array of java.math.BigInteger data types.

boolean
A 1-dimensional array of boolean data types.

byte A 1-dimensional array of byte data types.
byte[] A 1-dimensional array of byte array data types.

Chapter 3. Data Access Beans 81

Date A 1-dimensional array of java.sql.Date data types.

double
A 1-dimensional array of double data types.

float A 1-dimensional array of float data types.
int A 1-dimensional array of int data types.
long A 1-dimensional array of long data types.

Object
A 1-dimensional array of Object data types.

short A 1-dimensional array of short data types.
String A 1-dimensional array of String data types.
Time A 1-dimensional array of java.sql.Time data types.

Timestamp
A 1-dimensional array of java.sql.Timestamp data types.

Vector A 1-dimensional array of Vector data types. The data type of the elements
of the vector is controlled by the vectorContentType property.

RELATED TASKS
Editing ColumnSelector Bean Properties
Using Selector Bean Data Access Properties

RELATED REFERENCES
CellSelector
CellRangeSelector
RowsSelector

RowSelector(Database)

82

Data Access Beans

Use the RowSelector bean Bﬂ to view a row in a TableModel such as a result set
returned by a Select or ProcedureCall bean.

RowSelector Bean Properties

beanName
Specifies the name of the RowSelector bean instance. It must follow
standard naming rules for beans. The default name is RowSelectorn, where
n is the number of RowSelector beans with default names; for example, the
first default name is RowSelectorl.

columnNames
An array containing the names of the columns that are currently selected.

indexFromOne
Whether the row and column indexes are assumed to index from one. This
property should be set to true where the selection row and/or column
properties are connected to a bean property that indexes from one. If set to
false, indexing is from zero. The default is false.

maximumColumns
The maximum number of columns to be selected. You can select
NO_MAXIMUM to indicate that the last column of the selection should be
the last column in the source TableModel. The default is NO_MAXIMUM.

model The Java TableModel used as the source of the data for the selection.

notificationType
Specifies which data access property will be notified of changes by a
propertyChange event. Selectors are able to convert source data into a

variety of data types, each of which has a corresponding bound property.

All of these properties are theoretically altered when the selector data
source or selection criteria are changed. However, it would be very

inefficient to generate property change events for all these properties, so

the property of interest may be specified, limiting property change events
to a single property. By default, no property change events are generated.

rowNumber
The index of the row to be selected from the source TableModel.

startColumnNumber
The index of the column to be selected from the source TableModel.

vectorContentType
The data type used to populate vectors in response to a vector property

query. Some beans may require data be fed to them in a vector, and may

further expect the elements in the vector to be of a specific type. Where
this is the case, the notificationType property may be set to

Selector. VECTOR to cause propertyChange events to be generated for the

vector property.
The following are data access properties used by RowSelector bean for data
conversion.

BigDecimal
A 1-dimensional array of java.math.BigDecimal data types.

BigInteger
A 1-dimensional array of java.math.BigInteger data types.

boolean
A 1-dimensional array of boolean data types.

byte A 1-dimensional array of byte data types.
byte[] A 1-dimensional array of byte array data types.
Date A 1-dimensional array of java.sql.Date data types.

double
A 1-dimensional array of double data types.

float A 1-dimensional array of float data types.
int A 1-dimensional array of int data types.
long A 1-dimensional array of long data types.

Object
A 1-dimensional array of Object data types.

short A 1-dimensional array of short data types.
String A 1-dimensional array of String data types.
Time A 1-dimensional array of java.sql.Time data types.

Timestamp
A 1-dimensional array of java.sql.Timestamp data types.

Chapter 3. Data Access Beans

83

Vector A 1-dimensional array of Vector data types. The data type of the elements
of the vector is controlled by the vectorContentType property.

RELATED TASKS
Editing RowSelector Bean Properties
Using Selector Bean Data Access Properties

RELATED REFERENCES
CellSelector
CellRangeSelector
ColumnSelector

CellRangeSelector(Database)

84 Data Access Beans

Use the CellRangeSelector bean % to view a 2-dimensional array from a
TableModel such as a result set returned by a Select or ProcedureCall bean.

CellSelector Properties

beanName
Specifies the name of the CellRangeSelector bean instance. It must follow
standard naming rules for beans. The default name is CellRangeSelectorn,
where 7 is the number of CellRangeSelector beans with default names; for
example, the first default name is CellRangeSelectorl.

columnNames
An array containing the names of the columns that are currently selected.

includeColumnNames
Whether the column name is to be included as the first element of column
data. This only has effect when column data are retrieved as String values.
The default is false.

indexFromOne
Whether the row and column indexes are assumed to index from one. This
property should be set to true where the selection row and/or column
properties are connected to a bean property that indexes from one. If set to
false, indexing is from zero. The default is false.

invertData
Whether the data values are to be inverted row against column during
retrieval from, or update to, the source TableModel. The default orientation
is row biased. Two dimensional arrays will have one first level dimension
for each row, and one second level dimension for each column. When data
is inverted, then this arrangement will be reversed. The default is false.

maximumColumns
The maximum number of columns to be selected. You can select
NO_MAXIMUM to indicate that the last column of the selection should be
the last column in the source TableModel. The default is NO_MAXIMUM.

maximumRows
The maximum number of rows to be selected. You can select
NO_MAXIMUM to indicate that the last row of the selection should be the
last row in the source TableModel. The default is NO_MAXIMUM.

model The Java TableModel used as the source of the data for the selection.

notificationType

Specifies which data access property will be notified of changes by a
propertyChange event. Selectors are able to convert source data into a
variety of data types, each of which has a corresponding bound property.
All of these properties are theoretically altered when the selector data
source or selection criteria are changed. However, it would be very
inefficient to generate property change events for all these properties, so
the property of interest may be specified, limiting property change events
to a single property. By default, no property change events are generated.

startColumnNumber

The index of the column to start the selection from the source TableModel.

startRowNumber

The index of the row to start the selection from the source TableModel.

vectorContentType

The data type used to populate vectors in response to a vector property
query. Some beans may require data be fed to them in a vector, and may
further expect the elements in the vector to be of a specific type. Where
this is the case, the notificationType property may be set to

Selector. VECTOR to cause propertyChange events to be generated for the
vector property.

The following are data access properties used by the CellRangeSelector bean for
data conversion.

BigDecimal

A 2-dimensional array of java.math.BigDecimal data types.

BigInteger

A 2-dimensional array of java.math.BigInteger data types.

boolean

A 2-dimensional array of boolean data types.

byte A 2-dimensional array of byte data types.
byte[] A 2-dimensional array of byte array data types.
Date A 2-dimensional array of java.sql.Date data types.
double
A 2-dimensional array of double data types.
float A 2-dimensional array of float data types.
int A 2-dimensional array of int data types.
long A 2-dimensional array of long data types.
Object
A 2-dimensional array of Object data types.
short A 2-dimensional array of short data types.
String A 2-dimensional array of String data types.
Time A 2-dimensional array of java.sql.Time data types.
Timestamp

A 2-dimensional array of java.sql.Timestamp data types.

Chapter 3. Data Access Beans 85

Vector(]
A 1-dimensional array of Vector data types. The data type of the elements
of the vector is controlled by the vectorContentType property.

VectorOfVectors
A vector of Vector data types. The data type of the elements of the vector
is controlled by the vectorContentType property.

RELATED TASKS
Editing CellRangeSelector Bean Properties
Using Selector Bean Data Access Properties

RELATED REFERENCES
CellSelector
ColumnSelector
RowSelector

DBNavigator (Database)

Use the DBNavigator bean Ml¥ with a Select or ProcedureCall bean to access
relational data. The DBNavigator bean provides a set of Buttons (page kd) that
execute the SQL statement for the associated bean; perform other relational
database operations, such as commit updates to the database; and navigate rows in
the result set. The DBNavigator bean is a Swing component, and requires the Java
Foundation Classes (JFC) library.

DBNavigator Bean Properties

beanName
Specifies the name of the DBNavigator bean instance. It must follow
standard naming rules for beans. The default name is DBNavigatorn,
where n is the number of DBNavigator beans with default names; for
example, the first default name is DBNavigatorl.

model Used to associate the DBNavigator bean with the Select bean. The default
is a null value.

showCommit
Specifies if the Commit button is displayed.

A value of True means that the Commit button is displayed. A False value
means that the Commit button is not displayed. The default value is True.

showDelete
Specifies if the Delete button is displayed.

A value of True means that the Delete button is displayed. A False value
means that the Delete button is not displayed. The default value is True.

showExecute
Specifies if the Execute button is displayed.

A value of True means that the Execute button is displayed. A False value
means that the Execute button is not displayed. The default value is True.

showFirst
Specifies if the First button is displayed.

A value of True means that the First button is displayed. A False value
means that the First button is not displayed. The default value is True.

86 Data Access Beans

showInsert
Specifies if the Insert button is displayed.

A value of True means that the Insert button is displayed. A False value
means that the Insert button is not displayed. The default value is True.

showLast
Specifies if the Last button is displayed.

A value of True means that the Last button is displayed. A False value
means that the Last button is not displayed. The default value is True.

showNext
Specifies if the Next button is displayed.

A value of True means that the Next button is displayed. A False value
means that the Next button is not displayed. The default value is True.

showPrevious
Specifies if the Previous button is displayed.

A value of True means that the Previous button is displayed. A False value
means that the Previous button is not displayed. The default value is True.

showRefresh
Specifies if the Refresh button is displayed.

A value of True means that the Refresh button is displayed. A False value
means that the Refresh button is not displayed. The default value is True.

showRollback
Specifies if the Rollback button is displayed.

A value of True means that the Rollback button is displayed. A False value
means that the Rollback button is not displayed. The default value is True.

toolTipsEnabled
Specifies if tool tips are enabled for the buttons. Tool tips are short
descriptions of an interface element, such as a button.

A value of True means that tool tips are enabled for the buttons. A False
value means that tool tips are not enabled for the buttons. The default
value is True.

Buttons
The buttons that can be displayed with the DBNavigator bean are as follows:

]

Commit. Commits any uncommitted changes to the database made by the
associated Select bean or made by any other Select bean that shares the
connection alias with the associated Select bean.

El

Delete. Deletes the current row of the associated Select bean. If the control
that displays the data is connected to the bound column properties of the
Select bean, its display changes to reflect the deleted row.

Execute. Connects to the database, if necessary, using the connection

Chapter 3. Data Access Beans 87

88 Data Access Beans

i)

3|

specified in the connection alias for the associated Select bean, and
executes the SQL statement for the associated Select bean.

First. Sets the currentRow property of the associated Select bean to the first
row in the result set. If the control that displays the data is connected to
the bound column properties of the Select bean, its displays data from the
first row in the result set.

Insert. Inserts a new, blank row in the result set at the position specified by
the currentRow property of the associated Select bean. If the control that
displays the data is connected to the bound column properties of the Select
bean, it displays blanks.

Last. Sets the currentRow property of the associated Select bean to the last
row in the result set. If the control that displays the data is connected to
the bound column properties of the Select bean, it displays data from the
last row in the result set.

Next. Sets the currentRow property of the associated Select bean to the
next row in the result set. If the control that displays the data is connected
to the bound column properties of the Select bean, it displays data from
the next row in the result set.

Previous. Sets the currentRow property of the associated Select bean to the
previous row in the result set. If the control that displays the data is
connected to the bound column properties of the Select bean, it displays
data from the previous row in the result set.

Refresh. Retrieves the latest information from the database, using the SQL
statement for the associated Select Bean and the current database
connection. If the SQL statement is changed after its initial invocation, the
initial version of the query is executed.

Rollback. Rolls back any uncommitted changes to the database made by
the associated Select bean or made by any other Select bean that shares the
connection alias with the associated Select bean.

RELATED TASKS

7

RELATED REFERENCES

g

”

ProcedureCall

Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2000 89

90 Data Access Beans

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd.

1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1997, 2000. All rights reserved.

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

© Copyright IBM Corp. 1997, 2000

91

92 Data Access Beans

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

* AIX

* AS/400

* DB2

* CICS

» CICS/ESA

- IBM

* IMS

¢ Language Environment
* MQSeries

* Network Station
* 0S/2

+ 0S/390

« 05/400

* RS/6000

¢ 5/390

* VisualAge

* VTAM

¢ WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States, or other countries, or both.

Tivoli Enterprise Console and Tivoli Module Designer are trademarks of Tivoli
Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks

of Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1997, 2000 93

	Contents
	Chapter 1. About Relational Database Access
	Connection Aliases and SQL Specifications
	Parameterized SQL Statements
	Select Bean
	Modify Bean
	ProcedureCall Bean
	DBNavigator Bean
	Selector Beans
	About the Create Database Application SmartGuide

	Chapter 2. Accessing Relational Data
	Adding a Select, Modify, or ProcedureCall bean to the VisualComposition Editor surface
	Making an SQL specification
	Making a new SQL specification
	Defining a database access class
	Composing or editing an SQL specification
	Composing an SQL query visually
	Specifying the tables for an SQL statement
	Joining tables
	Specifying search conditions
	Specifying result columns
	Sorting the result set
	Remapping data to a different SQL data type
	Displaying the SQL statement

	Composing an SQL INSERT, UPDATE, or DELETE visually
	Specifying columns and their values for an SQL UPDATE orINSERT

	Composing an SQL procedure call visually
	Specifying the stored procedure for an SQL CALL statement
	Working with stored procedure parameters
	Defining result sets returned by a stored procedure
	Displaying the SQL statement for a ProcedureCall bean
	Composing an SQL statement manually

	Editing Select bean properties
	Executing a Select bean
	Editing Modify bean properties
	Executing a Modify bean
	Editing ProcedureCall bean properties
	Executing a ProcedureCall bean
	Specifying a connection and SQL statement
	Specifying a connection alias
	Defining or editing a connection alias
	Displaying and navigating a result set
	Adding Selector beans to the Visual Composition Editor
	Editing CellSelector bean properties
	Editing RowSelector bean properties
	Editing ColumnSelector bean properties
	Editing CellRangeSelector bean properties
	Using Selector Beans
	Using Selector bean data access properties
	Inserting, updating, or deleting data in a result set
	Adding the DBNavigator bean to the Visual Composition Editor surface
	Starting the Create Database Application SmartGuide
	Creating a database application with the Create Database ApplicationSmartGuide

	Chapter 3. Data Access Beans
	Select (Database)
	Modify (Database)
	ProcedureCall (Database)
	CellSelector (Database)
	ColumnSelector(Database)
	RowSelector(Database)
	CellRangeSelector(Database)
	DBNavigator (Database)

	Notices
	Programming interface information
	Trademarks and service marks

