
IBM VisualAge® for Java™, Version 3.5

WebSphere Test Environment

���

Edition notice

This edition applies to Version 3.5 of IBM VisualAge for Java and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. WebSphere Test Environment
- overview 1
DataSources 2
Differences between WebSphere Test Environment
and WebSphere Application Server 3

Chapter 2. Using the WebSphere Test
Environment 5
Starting, stopping, and configuring WebSphere Test
Environment services 5
Configuring Web applications 7

Configuring the default Web application 7

Creating and configuring a new Web application 15
Creating and configuring DataSources 20

Creating and configuring DataSources using the
WTE Control Center 20
Creating DataSources programmatically 20

Notices 23

Programming interface information . . 25

Trademarks and service marks 27

© Copyright IBM Corp. 1998, 2000 iii

iv WebSphere Test Environment

Chapter 1. WebSphere Test Environment - overview

VisualAge for Java provides the WebSphere Test Environment (WTE), which
contains the WebSphere Application Server, Advanced Edition run-time
environment. Although the WTE encompasses the JSP file, servlet, and EJB run
times and unit testing environment, it does not contain the entire WebSphere
Advanced run time.

Attention: A Java-enabled Web server is packaged with the IBM WebSphere
Application Server. The WebSphere Application Server is IBM’s Java servlet-based
Web application server that helps you deploy and manage Web applications. It is a
Web server plug-in based on a server-side Java programming model that uses
servlets, JavaServer Pages (JSP) files, and enterprise beans.

The WTE allows you to efficiently develop your servlets and JSP files for
WebSphere. Each time you change a method in a servlet, VisualAge for Java
incrementally compiles only the modified method (not the entire class), and
hotlinks the method into the running program.

A Web application may consist of HTML and JSP files, servlets, and EJB beans. To
better organize your project, you may want to create multiple Web applications
(for example, you could separate HTML files into different directories).

With the WTE Servlet Engine, you can run multiple Web applications, each having
its own document root, and configure various parts of the Web application (for
example, the servlet class path and the document root). Please note that you cannot
run multiple Web applications using the same JSP engine.

When the WebSphere Test Environment is launched, three configuration files are
used:
v default.servlet_engine
v <webgroup name>.webapp (default_app.webapp)
v session.xml

You can configure these files to suit your Web application development needs. See
“Configuring the default Web application.”

We have provided the WebSphere Test Environment Control Center as a central
place for you to start, stop, and configure WebSphere Test Environment services.
The WebSphere Test Environment Control Center provides a central location for
you to start, stop, and configure WebSphere Test Environment services. It allows
you to do the following:
v Start, stop, and restart the Servlet Engine, configure JSP settings, and change the

Servlet Engine classpath.
v Configure and enable the JSP Execution Monitor.
v Configure, start, and stop the Persistent Name Server.
v Add, remove, and update the DataSource objects.

© Copyright IBM Corp. 1998, 2000 1

Differences between WTE and WAS
JSP and servlets
JavaServer Pages
DataSources

Starting, stopping, and configuring WTE services
Configuring the default Web application
Creating and configuring a new Web application
Creating and configuring DataSources using the WTE Control Center
Creating DataSources programmatically

DataSources
DataSource objects, as defined in the JDBC 2.0 Standard Extension specification,
allow you to manage a pool of connections to a database. A DataSource object is a
feature provided by the WebSphere Application Server, Advanced Edition, Version
3.0 and higher.

You can create DataSources using the WebSphere Test Environment Control Center,
or create them programmatically.

Using connection pools provide you with the following advantages:
v It saves you time. Creating connections is expensive; a DataSource object creates

a connection as soon as it is instantiated.
v It simplifies resource allocation. Resources are only allocated from the

DataSource objects, and not at arbitrary places in the code.
v It simplifies connection calls. To get a connection in JDBC 1.0, you would need

to call Class.forname() on the class name of the database driver, before making
DriverManager calls.

DataSource objects work as follows:
1. When a servlet, or other client, wants to use a connection, it looks up a

DataSource by name from a JNDI server.
2. The DataSource object then returns a connection to the client.
3. If the DataSource object has no more connections, it may ask the database

manager for more connections (as long as it has not exceeded the maximum
number of connections).

4. When the client has finished with the connection, it closes the connection.
5. The DataSource object then returns the connection to the available pool.

For details on DataSource objects and their use in the WebSphere Application
Server, please refer to the WebSphere Application Server online documentation.

WebSphere Test Environment - overview

Creating and configuring DataSources using the WTE Control Center
Creating DataSources programmatically

2 WebSphere Test Environment

Differences between WebSphere Test Environment and WebSphere
Application Server

The WebSphere Test Environment is a subset of the WebSphere Application Server
(WAS), Advanced Edition. This means that although the WTE encompasses the JSP
file, servlet, and EJB run times and unit testing environment, it does not contain
the entire WebSphere Advanced run time. It is important that you note the
differences between the WebSphere Test Environment and the WebSphere
Application Server.

The WebSphere Test Environment offers the following:
v A lightweight run-time environment that loads quickly
v Standalone all-in-one unit testing
v No dependency on WAS installation or availability
v No dependency on an external database unless entity bean support is required
v Ability to debug live server-side code using the IDE debugger
v Support for configuring multiple Web applications

As a subset of the WebSphere Advanced Server, the WTE does not offer certain
features that are offered by WAS (these are the most important features to note):
v Secure Socket Layer (SSL) and secure HTTP (HTTPS)
v HTTP-style username/password authentication challenge
v WebSphere Systems Administration server and services
v XML Configuration Tool, which produces XML grammar introduced in WAS

3.02 and the export XML configuration. Older XML grammar is used in the WTE
configuration.

v WAS personalization APIs
v Security context/API on enterprise beans
v Security APIs on servlet sessions or other security classes typically involved in

SignOn, Authentication, or Authorization
v JETACE tool
v Support for running multiple Web applications in addition to the default Web

application

WebSphere Test Environment - overview

Starting, stopping, and configuring WTE services

Chapter 1. WebSphere Test Environment - overview 3

4 WebSphere Test Environment

Chapter 2. Using the WebSphere Test Environment

Starting, stopping, and configuring WebSphere Test Environment
services

Use the WebSphere Test Environment Control Center to start, stop, and configure
WebSphere Test Environment services. See “WebSphere Test Environment -
overview.”

To launch the WebSphere Test Environment Control Center, select Workspace >
Tools > WebSphere Test Environment.

Starting, stopping, and restarting the Servlet Engine
Use the WebSphere Test Environment Servlet Engine to run multiple Web
applications, each having its own document root. The WTE Servlet Engine also
allows you to configure various parts of the Web application (for example, the
servlet class path and the document root). See “WebSphere Test Environment -
overview.” Please note that you cannot run multiple Web applications using the
same JSP engine.

Important! When stopping and restarting the Servlet Engine, you must make sure
that code running in the Servlet Engine (for example, a servlet) is not also running
in the IDE debugger. Otherwise, the Servlet Engine will fail to stop or restart,
thereby causing the Servlet Engine to die.

When serving servlets or Java bean classes that reside in the workspace, be sure to
edit the classpath in order to add the project that contains the servlets and Java
beans. To edit the classpath, click the Edit classpath button. After the classpath has
been modified, you must restart the Servlet Engine for the changes to take place.
The Control Center will automatically add to the classpath the minimium classpath
that is required to run the Servlet Engine.

Launch the WebSphere Test Environment Servlet Engine from the WebSphere Test
Environment Control Center.
1. Select Servers > Servlet Engine.
2. In the Servlet Engine window, click Start the Servlet Engine. Check the status

line messages in the Control Center to ensure that the Servlet Engine is running
in VisualAge for Java. Also, check the Console window for the Servlet Engine
trace messages; they will be displayed under the following process:
com.ibm.ivj.control.WebControlCenter.main() ->
com.ibm.ivj.control.node.ServletEngineRunner.main()

Once you have the WebSphere Test Environment running in VisualAge for Java,
you can serve JSP and HTML files from the designated document root.

Attention: The default document root is set for you during the installation process.
We recommend that you store your JSP and HTML files in the default directory:

X:\IBMVJava\IDE\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\web\

where X:\IBMVJava is the directory in which VisualAge for Java is installed.

© Copyright IBM Corp. 1998, 2000 5

For details on changing the server root, see “Configuring the default Web
application.”

Configuring, starting, and stopping the Persistent Name Server
Use the Persistent Name Server to get an EJB bean or DataSource object.
1. Select Servers > Persistent Name Server.
2. In the Persistent Name Server window, click Start Name server. Check the

status line messages in the Control Center to ensure that the Persistent Name
Server is running in VisualAge for Java. Also, check the Console window for
the Persistent Name Server trace messages; they will be displayed under the
following process:
com.ibm.ivj.control.WebControlCenter.main() ->
com.ibm.ivj.control.node.NameServerRunner.main()

To stop the Persistent Name Server, click Stop Name server.

Configuring and enabling the JSP Execution Monitor
Use the JSP Execution Monitor to monitor the execution of JSP source, the
JSP-generated Java source, and the HTML output. See “JSP Execution Monitor.”
1. Select JSP Execution Monitor Options.
2. In the JSP Execution Monitor Options page, select how you want the JSP

Execution Monitor to be configured. See “Using the JSP Execution Monitor.”

Adding, removing, and modifying DataSource objects
Use DataSource objects to manage a collection of connections to a database. See
“DataSources.”
1. Select DataSource Configuration.
2. In the DataSource window, select Add to add a DataSource object from the

DataSource list. To update a DataSource, simply add a DataSource with the
same name as an existing DataSource; you will then be prompted to replace the
DataSource.

Click Remove to remove a DataSource object from the DataSource list.

For details, see “Creating and configuring DataSources using the WebSphere Test
Environment Control Center.”

Tip: When you close the Control Center, both the Servlet Engine and the Persistent
Name Server are shut down. (To disable the warning dialog box, select Don’t
show again. You can re-enable the warning dialog box by deleting the file:

X:\IBMVJava\ide\tools\com-ibm-ivj-ui-webcontrolcenter\com\ibm\ivj
\control\showExitDlg.status

from the file system.) To return to the saved settings, switch to another node. Select
No when prompted to save the unsaved settings. Then, switch back to the current
node.

WebSphere Test Environment - overview
Differences between WTE and WAS
JSP Execution Monitor
DataSources

6 WebSphere Test Environment

Configuring the default Web application
Creating and configuring a new Web application
Using the JSP Execution Monitor
Creating and configuring DataSources using the WTE Control Center
Creating DataSources programmatically

Configuring Web applications

Configuring the default Web application
When the WebSphere Test Environment is launched, three configuration files are
used:
v X:\IBMVJava\ide\project_resources\IBM WebSphere Test

Environment\properties\default.servlet_engine

v X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\servlets\default_app.webapp

v X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\properties\session.xml

Note: X:\IBMVJava is the directory in which you installed VisualAge for Java.

Together, these files make up the default Web application. You can configure the
default Web application to suit your needs. Note that you must clear the JSP cache
files after changing the document root.

Warning! Configuring the default Web application is for advanced users only.
Faulty configuration may result in the Servlet Engine not launching successfully.

The following section describes the WebSphere XML tags for the three
configuration files. Wherever necessary, the tag is specified with a value, or an
empty value, and is followed by a description of the tag’s meaning and usage.

default.servlet_engine
The default.servlet_engine file is the main configuration file for the Servlet Engine.

<?xml version=″1.0″?>

<websphere-servlet-engine name=″servletEngine″>
Symbolic, user defined name.

<active-transport>http</active-transport>
The WTE supports the http transport only; the http transport must be
the active transport.

<transport>

<name>http</name>

<code>com.ibm.servlet.engine.http_transport.HttpTransport</code>
Class that implements the transport support. The HttpTransport,
which is used in the WTE, provides the embedded transport to
support direct HTTP clients to the servlet engine.

<arg name=″port″ value=″80″/>
The TCP/IP port used by the http transport.

Chapter 2. Using the WebSphere Test Environment 7

<arg name=″maxConcurrency″ value=″50″/>
The maximum number of request threads in the Servlet Engine. The
value controls the maximum number of concurrent requests that can
be processed by the Servlet Engine. In the WTE, the value should be
small (2 to 5).

<arg name=″server_root″ value=″$server_root$″/>
WTE server root.

</transport>
<websphere-servlet-host name=″default_host″>

This tag defines a virtual host in the Servlet Engine. The name is
symbolic and defined by the user. You can have multiple
websphere-servlet-host tags in the document. The default is set to
″Host for VisualAge for Java WebSphere Unit Test Environment“. To use
the Servlet Engine directly, the name must be changed to
″default_host″.

<websphere-webgroup name=″default_app″>
This tag defines Web application deployment bindings within the
Servlet Engine. Each Web group must have a corresponding .webapp
file whose name matches the above defined Web group name. You
can have multiple Web groups within the document. However, to use
more than one of them, you must run ServletEngine directly.

<description>Default WebGroup</description>
A description of the group.

<document-root>C:\mydocroot</document-root>
The document root of the Web application. This is a single directory
path, and is not a list of directories. This value controls where the
Servlet Engine looks to locate static content(FileServlet) and JSP files
(JSPServlet/PageCompileServlet). The default document root for the
default_app is set to $approot$/web.
Note that you must clear the JSP cache files after changing the
document root.

<classpath>$approot$/servlets$psep$$server_root$/servlets</classpath>
This is a list of directories and JAR files that contain the servlet
classes and dependent classes for the Web application. The classes
loaded by this path are reloadable. Each Web application has it own
classpath.

<root-uri>/</root-uri>
This is the prefixed path that all resources within the Web application
must begin with. It is a single path that cannot contain a protocol,
host, or port, and must not end in / or *. See Resource below for
information on how the root uri is used in building the URL that the
user enters into the browser.

8 WebSphere Test Environment

<auto-reload enabled=″true″ polling-interval=″3000″/>
Controls whether classes within a Web application are reloaded when
a change is detected. The polling-interval, specified in milliseconds,
controls how often the Servlet Engine checks for class file changes.

<shared-context>false</shared-context>
Controls whether the ServletContext attributes are shared in a
distributed cluster. You should only use this in a clustered
environment, so set it to false in the WebSphere Test Environment.

</websphere-webgroup>

<mime type=″application/postscript″>
Defines a mime type -> extension mapping for this virtual host. The
document can contain many mime elements.

<ext>PS</ext>
You can provide many extensions for each type, but each type must
have at least one extension.

<ext>ai</ext>

<ext>eps</ext>

<ext>ps</ext>

</mime>

</websphere-servlet-host>

<hostname-binding hostname=″localhost″ servlethost=″default_host″/>
This element binds a particular DNS name (what the user enters into
the browser) to a particular logical virtual host configuration. The
hostname includes both the name and port for the host. If the port is
not specified, port 80 is implied when using the Servlet Engine
approach (it is 8080 when using SERunner).

The ″localhost″ hostname adds the default DNS name and IP address
of the host machine to the hostname bindings. If the user machine is
known on the network by other names, you should add them to the
hostname bindings. You can have many host name bindings in the
document. By default, the servlethost is set to ″Host for VisualAge for
Java WebSphere Unit Test Environment″. To use the Servlet Engine
directly, the servlethost must be changed to ″default_host″.

</websphere-servlet-engine>

<webgroup name>.webapp (default_app.webapp)
Each Web group defined in the default.servlet_engine file has its own .webapp file.
The .webapp file loads from the classpath of the Web application (this is defined in
the Web group tag). By default, the .webapp file resides in the <install
root>/hosts/<virtual host name>/servlets directory.

<?xml version=″1.0″?>

Chapter 2. Using the WebSphere Test Environment 9

<webapp>
<name>default</name>

Symbolic, user-defined name of the Web application.

<description>default application</description>
Description of the Web application.

<error-page>/ErrorReporter</error-page>
Relative URI of a servlet, JSP, or HTML page that gets called in
response to an error during the processing of a servlet. See the
ErrorReporter below for an example.

<servlet>
Defines a servlet within a Web application. You can have many
servlet elements in the document. The following snoop servlet shows
an example of a user servlet.

<name>snoop</name>
The name by which the servlet instance is known.

<description>snoop servlet</description>
A description of the servlet.

<code>SnoopServlet</code>
The Java class name or bean name of the servlet.

<servlet-path>/servlet/snoop</servlet-path>
A Web path relative to the root uri of the containing web application.
This becomes part of the url that the user enters in the browser to
execute this servlet.

<servlet-path>/servlet/snoop.html</servlet-path>
Another relative web path to the same servlet instance. Any servlet
can have 1->N servlet paths. The servlet path is essentially the
aliasing function provided in the Version 2.0 product.

<init-parameter>
An initialization parameter for the servlet. You can add as many init
parameters as you want to each servlet.

<name>param1</name>
Name of the parameter.

<value>test-value1</value>
Value of the parameter.

10 WebSphere Test Environment

</init-parameter>

<autostart>false</autostart>
If true, the servlet loads and initializes when the servlet engine starts.

</servlet>

<servlet>

<name>ErrorReporter</name>
Special Servlet: Provides a default error handler for the Web
application. This is optional and can be replaced with a user-defined
error handler.

<description>Default error reporter servlet</description>

<code>com.ibm.servlet.engine.webapp.DefaultErrorReporter</code>

<servlet-path>/ErrorReporter</servlet-path>

<autostart>true</autostart>

</servlet>

<servlet>

<name>invoker</name>
Special Servlet: Provides the ″load by class name″ function used in
the WebSphere Test Environment. This servlet is optional. It allows
the user to execute the servlet by entering /servlet/<Java class
name>.

Note that /servlet is simply an example of the servlet path to this
servlet. You may want to use a different or additional path.

<description>Auto-registration servlet</description>

<code>com.ibm.servlet.engine.webapp.InvokerServlet</code>

<servlet-path>/servlet</servlet-path>

<autostart>true</autostart>

</servlet>

<servlet>

<name>jsp</name>
Special Servlet: Provides JSP 0.91 support to the Web application. The
user can specify either this servlet, or the JSP 1.0 servlet below, to
control JSP function within the Web application.

<description>JSP 0.91 or JSP 1.0 support servlet</description>
Servlet description.

<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code>
Use this servlet or JSP 0.91 support in the WTE.

Chapter 2. Using the WebSphere Test Environment 11

<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
Use this servlet for JSP 1.0 support in the WTE.

See the VisualAge for Java JSP/Servlet Development Environment
documentation for how to migrate between JSP 0.91 and 1.0 support.
You cannot specify both servlets at the same time.

<init-parameter>

<name>workingDir</name>

<value>$server_root$/temp/default_app</value>
The default directory where the JSP 0.91 Page Compiler generates its
code.

</init-parameter>

<init-parameter>

<name>jspemEnabled</name>

<value>true</value>
Enables and disables the JSP Execution Monitor support by default.

</init-parameter>

<init-parameter>

<name>scratchdir</name>

<value>$server_root$/temp/JSP1_0/default_app</value>
The directory where the JSP 1.0 Page Compiler generates its code by
default.

</init-parameter>

<init-parameter>

<name>keepgenerated</name>

<value>true</value>

</init-parameter>

<autostart>true</autostart>

<servlet-path>*.jsp</servlet-path>

</servlet>

</webapp>

session.xml
The session.xml file controls the session management functions in the Servlet
Engine.

12 WebSphere Test Environment

<?xml version=″1.0″?>

<session>

<sessions-enabled>true</sessions-enabled>
Enables and disables session support.

<session-manager-name>Session Manager</session-manager-name>
Symbolic name for the session manager.

<session-data>

<url-rewriting-enabled>false</url-rewriting-enabled>
Enables and disables URL rewriting.

<protocol-switch-rewrite-enabled>false</protocol-switch-rewrite-enabled>
Enables and disables protocol switch rewriting.

<cookie-data>
Controls the cookie parameters.

<enabled>true</enabled>
Enables and disables cookie support.

<name>sessionid</name>
Name of the session cookie.

<comment>WebSphere Session Support</comment>
Cookie comment.

<domain></domain>
Cookie domain.

<maximum></maximum>
Cookie maximum.

<path>/</path>
Cookie path.

<secure>false</secure>
Enables and disables secure cookie support.

</cookie-data>

<timeout>1800</timeout>
Specifies the session timeout in seconds.

Chapter 2. Using the WebSphere Test Environment 13

<size>1000</size>
Specifies the maximum number of active sessions.

<enable-overflow>true</enable-overflow>
Specifies how to handle session management overflows.

<enable-measurements>true</enable-measurements>
Enables and disables EPM performance data collection.

</session-data>

The following tags in the session.xml file are not configurable by the user in the
WebSphere Test Environment. These tags must be left with their default values.

<session-store>
Controls how sessions are stored. By default, an in-memory session is
used.

Note that a persistent session is used in a cluster and not in the WTE.

<persistent-store>false</persistent-store>
Enables and disables a persistent session.

<persistence-type>directodb</persistence-type>
Sets the persistence method (directodb, ejb).

<persistence-database>db2</persistence-database>
Sets the persistence database.

<persistence-multirowschema>false</persistence-multirowschema>
Sets the database schema used for a session.

<persistence-cache>true</persistence-cache>
Enables and disables session caching.

<persistence-asyncupdate>false</persistence-asyncupdate>
Enables and disables asynchronous session to db updates.

<persistence-connectionsize>50</persistence-connectionsize>
Sets the number of connections to the session database.

<persistence-datasource-name>jdbc/db2/sample</persistence-datasource-name>
Sets the database name used by session.

14 WebSphere Test Environment

</session-store> <db2-info>
Database information for DB2.

<driver>COM.ibm.db2.jdbc.app.DB2Driver</driver>

<tablename>sessions</tablename>

<url>jdbc:db2:was</url>

<owner></owner>

<userid></userid>

<password></password>

<native-access>false</native-access>

</db2-info>

<oracle-info>
Database information for Oracle.

<driver>oracle.jdbc.driver.OracleDriver</driver>

<tablename>sessions</tablename>

<url>jdbc:oracle:oci8:@</url>

<owner>scott</owner>

<userid>scott</userid>

<password>tiger</password>

</oracle-info>

</session>

WebSphere Test Environment - overview

Starting, stopping, and configuring WTE services
Creating and configuring a new Web application

Creating and configuring a new Web application
You can create a new Web application in addition to using the default
configurations as provided in the default.servlet_engine and *.webapp files (see
“Creating the default Web application”).

When you have added the IBM WebSphere Test Environment feature to your
workspace, complete the following steps to set up and use the Servlet Engine
directly. The following scenario describes how to configure the desired behavior.
The scenario references a Java source file, ServletEngineConfigDumper.java, which
is available with the WebSphere Application Server.

Complete the following:

Chapter 2. Using the WebSphere Test Environment 15

1. Create a new Web application, called config_app. This new Web application
should contain the same servlets as provided with the default_app Web
application, along with an additional servlet. The config_app Web application
will configure the new servlet.
a. Create the config_app Web application directory:

X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\config_app
where X:\IBMVJava is the directory in which VisualAge for Java is
installed.

b. Create the config_app Web application’s web and servlets directories that
map to the servlet files indicated above:
X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\config_app\web
X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\config_app\servlets

2. Modify the default.servlet_engine file as follows (the example below
demonstrates how to set up a root-uri for the config_app Web application; the
root-uri is configured to /configuration/testing):
<?xml version=″1.0″?>
<websphere-servlet-engine name=“servletEngine”>

<active-transport>http</active-transport>
<transport>

<name>http</name>
<code>com.ibm.servlet.engine.http_transport.HttpTransport</code>

<arg name=″port″ value=″8080″/>
<arg name=“maxConcurrency” value=″50″/>
<arg name=“server_root” value=“$server_root$”/>

</transport>
<websphere-servlet-host name=“default_host”>
<websphere-webgroup name=“default_app”>

<description>Default WebGroup</description>
<document-root>$approot$/web</document-root>

<classpath>$approot$/servlets$psep$$server_root$/servlets</classpath>
<root-uri>/</root-uri>
<auto-reload enabled=″true″ polling-interval=″3000″/>
<shared-context>false</shared-context>

</websphere-webgroup>
<!— The following section specifies an additional, distinctly configured Web
application called config_app. For this new Web application, we have
configured a different document root and servlet path from the default_app
Web application —>
<websphere-webgroup name=″config_app″>

<description>Testing WebGroup Application</description>
<document-root>$approot$/web</document-root>
<classpath>$approot$/servlets</classpath>

<!— The following section demonstrates how to configure a different virtual
path (in this case, /configuration/testing), so that the servlet gets invoked
when the URL http://localhost:8080/configuration/testing is called. —>

See the config_app.webapp where an additonal servlet alias is specified
which also invokes the “application”

—>
<root-uri>/configuration/testing</root-uri>

<auto-reload enabled=″true″ polling-interval=″3000″/>
<shared-context>false</shared-context>

</websphere-webgroup>

16 WebSphere Test Environment

<!— Specify any additional, global MIME types here if required —>
...
<mime type=″application/octet-stream″>

<ext>bin</ext>
<ext>class</ext>

</mime>
...
</websphere-servlet-host>
<!—include the hostname and the port —>
<hostname-binding hostname=localhost:8080“ servlethost=”default_host“/>
<hostname-binding hostname=”127.0.0.1:8080“ servlethost=”default_host“/>
</websphere-servlet-engine>

3. Create a config_app.webapp file, saving it in the following directory:
X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\config_app\servlets

4. Copy and paste the WebSphere ServletEngineConfigDumper servlet into the
same directory:
X:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment\hosts\default_host\config_app\servlets
This servlet is available from the WebSphere examples directory of the
WebSphere Application Server.

5. Create an index.html page to be used as your home page. Place this file in
your document root. Also in the document root directory, copy and paste the
error.jsp file (available from the default_app document root,
..\default_app\web) to handle error messages. The following
config_app.webapp example demonstrates how to configure a servlet alias
and servlet path (your config_app.webapp file should resemble the following):
<?xml version=″1.0″?>
<webapp>

<name>config_app</name>
<description>Servlet Engine configuration testing

application</description>
<error-page>/ErrorReporter</error-page>
<servlet>

<name>ErrorReporter</name>
<description>Default error reporter servlet</description>
<code>com.ibm.servlet.engine.webapp.DefaultErrorReporter</code>
<servlet-path>/ErrorReporter</servlet-path>
<autostart>true</autostart>

</servlet>
<servlet>

<name>invoker</name>
<description>Auto-registration servlet</description>
<code>com.ibm.servlet.engine.webapp.InvokerServlet</code>
<servlet-path>/servlet</servlet-path>
<autostart>true</autostart>

</servlet>
<servlet>

<name>jsp</name>
<description>JSP support servlet</description>

<!— VisualAge for Java JSP 0.91 support servlet

<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code>
—>

<!— VisualAge for Java JSP 1.0 support servlet

Chapter 2. Using the WebSphere Test Environment 17

<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
—>

<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
<init-parameter>

<name>workingDir</name>
<!— Keep it simple, and use the WTE \temp directory as the

page compile working directory —>
<value>$server_root$/temp</value>

</init-parameter>
<init-parameter>

<name>jspemEnabled</name>
<value>true</value>

</init-parameter>
<init-parameter>

<name>scratchdir</name>
<!— Keep it simple, and use the WTE \temp directory as the

scratch directory for the page compiled code —>
<value>$server_root$/temp</value>

</init-parameter>
<init-parameter>

<name>keepgenerated</name>
<value>true</value>

</init-parameter>
<autostart>true</autostart>
<servlet-path>*.jsp</servlet-path>

</servlet>
<servlet>

<name>file</name>
<description>File serving servlet</description>
<code>com.ibm.servlet.engine.webapp.SimpleFileServlet</code>
<servlet-path>/</servlet-path>
<autostart>true</autostart>

</servlet>
<!— Adding this servlet to the config_app Web application for

demonstration purposes —>
<servlet>

<name>A Servlet Engine Configuration Tester</name>
<description>Servlet Engine configuration test servlet</description>
<code>ServletEngineConfigDumper</code>

<!— Here is where you would apply a servlet alias, if desired. For this
example, the servlet can also be called by ”/mydumper“ —>

<servlet-path>/configDump</servlet-path>
<autostart>true</autostart>
<!— This section demonstrates how to provide init parameters to this

servlet or to any other servlet —>
<init-parameter>

<name>param1</name>
<value>some_init_value1</value>

</init-parameter>
<init-parameter>

<name>param2</name>
<value>some_init_value2</value>

</init-parameter>
</servlet>

</webapp>

18 WebSphere Test Environment

6. Inside the IDE, create a project to contain the ServletEngineConfigDumper
servlet source. Add this project class path to the workspace class path for
com.ibm.servlet.engine.ServletEngine by using the Properties dialog for this
class (right-click the class, and select Properties). Import the
ServletEngineConfigDumper .java source to this project so that you can later
debug it.

7. Locate the com.ibm.servlet.engine.ServletEngine class in your VisualAge for
Java directory, and set the following single command line parameter, making
sure to include the quotation marks (use your installation path):
-serverRoot ”c:\IBMVJava\ide\project_resources\IBM WebSphere Test
Environment″

8. Instead of applying the workspace projects class path for ServletEngine, add
the following class path entries (you may use either forward slashes (Unix
style) or backward slashes (NT style)):
../IBM WebSphere Test Environment/lib/ns.jar;
../IBM WebSphere Test Environment/lib/ibmwebas.jar;
../IBM WebSphere Test Environment/lib/servlet.jar;
../JFC class libraries/;
../IBM Persistence EJB Library/;
../IBM JSP Examples/;
../Servlet API Classes/;
../IBM Data Access Beans/;
../IBM XML Parser for Java/;
../JSP Page Compile Generated Code/;
../IBM WebSphere Test Environment/;
../IBM WebSphere Test Environment/properties/;
../IBM IDE Utility local implementation/;
../IBM IDE Utility class libraries/;

9. Ensure that the active transport specified in default.servlet_engine is HTTP
(HTTP is the only supported transport protocol):
<active-transport>http</active-transport>

<transport>
<name>http</name>
<code>com.ibm.servlet.engine.http_transport.HttpTransport</code>
<arg name=″port″ value=″8080″/>
<arg name=″maxConcurrency″ value=″50″/>
<arg name=“server_root” value=“$server_root$”/>

</transport>
10. Run the main method of the com.ibm.servlet.debug.ServletEngine class. Check

the Console window to ensure that the Servlet Engine process is running.

WebSphere Test Environment - overview
DataSources

Starting, stopping, and configuring WTE services
Configuring the default Web application

Chapter 2. Using the WebSphere Test Environment 19

Creating and configuring DataSources

Creating and configuring DataSources using the WTE Control
Center

Use DataSource objects for your connection pooling. See “DataSources.”

Through the WebSphere Test Environment Control Center, you can create and
configure DataSources efficiently:
1. Launch the WebSphere Test Environment Control Center.
2. Select Persistent Name Server. In the Persistent Name Server window, click

Start Persistent Name Server.
3. Select DataSource.
4. In the DataSource window, click Add. The Add DataSource dialog opens.
5. In the DataSource name field, enter a name for the DataSource object that you

want to create.
6. In the Database driver field, select the driver class name of the database that

you want to connect to.
7. In the Database URL field, specify the URL of the database that you want to

connnect to.
8. In the Database type field, select the field of the database that you want to

connect to.
9. In the Description field, enter a description of the DataSource object. Note that

this is optional.
10. It is recommended that you accept the defaults for the remaining fields.
11. Click Add to create the DataSource object, and to bind it into the Persistent

Name Server context. To update a DataSource, simply add a DataSource with
the same name as an existing DataSource; you will then be prompted to
replace the DataSource.

For details on creating DataSources manually using the DataSource factory API, see
“Creating DataSources programmatically.”

WebSphere Test Environment - overview
DataSources

Starting, stopping, and configuring WTE services
Creating DataSources programmatically

Creating DataSources programmatically
Use DataSource objects for your connection pooling. See “DataSources.”

You can create DataSource objects programmatically using the new DataSource
factory API. Once the DataSource object is defined and bound, you obtain the
context from the Persistent Name Server in VisualAge for Java, and then perform
the lookup.

Creating DataSources manually involves the following:
1. Get an initial context.

20 WebSphere Test Environment

2. Create and object.
3. Bind the DataSource to the context.

Getting an initial context
When you create a DataSource object, you give it a set of parameters (name,
database URL, and database driver class) that uniquely identify it. To make the
DataSource persistent, you must bind it to a context, which will store the
description of the DataSource in the administration repository.

Note: In VisualAge for Java, the administration repository is the database
identified in the properties of the Persistent Name Server.

Creating an object and binding the DataSources to the context
In VisualAge for Java, you can create DataSources using the DataSourceFactory
class.

Warning! To create and bind a DataSource in the WebSphere Application Server,
use the WebSphere Administration Console. Do not use the DataSourceFactory
class to create a DataSource in the WebSphere Administration repository.

When you have created and bound a DataSource to the context, you can refer to it
until it is unbound.

The following code snippet was adapted from CreateDataSourceServlet.java. This
servlet accepts parameters, using them to create a DataSource.

First, you need to get the initial context:

//Get the initial context
Hashtable parms = new Hashtable();
parms.put(Context.INITIAL_CONTEXT_FACTORY ,

“com.ibm.ejs.ns.jndi.CNInitialContextFactory ”);
parms.put(Context.PROVIDER_URL , “iiop:///”);
try {

ctx = new InitialContext(parms);
} catch (Exception e) {
}

Second, create the DataSource object. The parameters for creating a DataSource
object are as follows:
v Name An arbitrary name identifying the DataSource.
v Database URL The real database URL used to uniquely identify the database,

for example, jdbc:db2:sample, or jdbc:db2://myserver:sample.
v Database driver classname

v Database driver type: JDBC or JTA Using JTA (Java Transaction API) indicates
that the driver can handle two-phase commits. For DB2, version 6.1, specify JTA.
For DB2, version 5.2, specify JDBC.

v Description An arbitrary description of the DataSource object.

These parameters are set in an Attributes object, which is passed as an argument to
one of the DataSourceFactory create methods. The following code snippet assumes
that the Attributes oejcts, attr, has been initialized:

DataSourceFactory factory = new DataSourceFactory();
DataSource dataSource = null;

Chapter 2. Using the WebSphere Test Environment 21

if (dsType.equals(“JTA ”))
dataSource = factory.createJTADataSource(attr);

else
dataSource = factory.createJDBCDataSource(attr);

Third, bind the DataSource object to the context (this causes the JNDI bind()
method to be called):

try {
factory.bindDataSource(dataSource , ctx);

} catch (javax.naming.NamingException ne) {
}

For details on creating DataSource objects using the WebSphere Test Environment
Control Center, see “Creating and configuring DataSources using the WebSphere
Test Environment Control Center.”

WebSphere Test Environment - overview
DataSources

Starting, stopping, and configuring WTE services
Creating and configuring DataSources using the WTE Control Center

22 WebSphere Test Environment

Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2000 23

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.
The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1997, 2000. All rights reserved.

24 WebSphere Test Environment

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

© Copyright IBM Corp. 1998, 2000 25

26 WebSphere Test Environment

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:
v AIX
v AS/400
v DB2
v CICS
v CICS/ESA
v IBM
v IMS
v Language Environment
v MQSeries
v Network Station
v OS/2
v OS/390
v OS/400
v RS/6000
v S/390
v VisualAge
v VTAM
v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States, or other countries, or both.

Tivoli Enterprise Console and Tivoli Module Designer are trademarks of Tivoli
Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1998, 2000 27

	Contents
	Chapter 1. WebSphere Test Environment - overview
	DataSources
	Differences between WebSphere Test Environment and WebSphereApplication Server

	Chapter 2. Using the WebSphere Test Environment
	Starting, stopping, and configuring WebSphere Test Environmentservices
	Configuring Web applications
	Configuring the default Web application
	Creating and configuring a new Web application

	Creating and configuring DataSources
	Creating and configuring DataSources using the WTE ControlCenter
	Creating DataSources programmatically

	Notices
	Programming interface information
	Trademarks and service marks

