
IBM VisualAge® for Java™, Version 3.5

Getting Started

���

Edition Notice

This edition applies to Version 3.5 of IBM VisualAge for Java and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. Preface 1
About this book 1
Related information 1

PDF index 2
Web resources 4

Chapter 2. Introduction 7
About VisualAge for Java 7
Program development 8
Database access 9
Access to transaction servers 9
Access to application servers 9
Optimization and debugging 10
Team development 10
Other tools 10
What’s new in VisualAge for Java, Version 3.5 . . . 11
Installing VisualAge for Java 14
Migrating from earlier releases of VisualAge for Java 14

Chapter 3. Developing a simple applet 15
Starting VisualAge for Java 15
Exploring the IDE 16
About the To-Do List applet 19
Creating the To-Do List applet 19
Constructing the applet in the Visual Composition
Editor 20
Adding beans to the To-Do List applet 22
Sizing and aligning visual beans 25
Connecting the To-Do List beans 26
Saving and testing the To-Do List applet. 30

Chapter 4. Adding state checking to
the To-Do List applet. 31
Finding a program element in the Workbench . . . 31
Versioning the To-Do List applet 32
Enabling state checking of the To-Do List applet . . 33
Working with your source code. 35

Chapter 5. Enhancing the To-Do List
applet 37
Searching the workspace 38
Importing the required classes 38
Adding a static variable required by the new
methods 39
Adding a method for reading files. 39
Adding another method for writing files 41
Adding buttons to the To-Do List applet. 43
Connecting the Open To-Do File button 44
Testing the Open To-Do File button 45
Connecting the Save To-Do File button 46
Saving and testing the enhanced To-Do List applet 47

Chapter 6. Managing the To-Do List
applet edition 49

Versioning the applet 50
Updating the To-Do List code again 50
Adding a counter to the To-Do List applet 51
Adding counter labels to the To-Do List applet . . 51
Connecting the To-Do List counter labels 52
Returning to a previous edition of the To-Do List. . 53
Debugging 54

Chapter 7. Continuing applet coding in
a team 59
Setting up the server for the To-Do List team . . . 59

Starting and stopping the server 60
Connecting a client to the todoserv server . . . 61

Creating the To-Do List repository 62
Adding the To-Do List team repository to the
server 63
Connecting to the To-Do List team repository . . 64
Adding users to the To-Do List team repository 65

Owning To-Do List code 67
Assigning team roles for the To-Do List project 68
Opening a project edition of the To-Do List . . . 70
Creating a scratch edition of the To-Do List
package 71
Opening a package edition of the To-Do List . . 73

Sharing code 74
Changing a To-Do List class available to the team 75
Changing the same To-Do List class 76
Merging code. 77

Setting a new baseline 80
Releasing the To-Do List classes 81
Releasing the To-Do List package 82
Versioning the To-Do List project 82

Team programming. 83
Client/server view of the To-Do List project . . . 84
The To-Do List team roles 84
The To-Do List team development cycle 87

Chapter 8. Interface to external version
control systems 89

Chapter 9. Server-oriented
programming 91
JSP/Servlet Development Environment 91
Servlet SmartGuide 92
Enterprise JavaBeans 93

The Enterprise JavaBeans component model . . 94
The EJB Development Environment 94

Chapter 10. XML Development 97
XML Generator 97
XML Parser for Java 97
XMI Toolkit 98

© Copyright IBM Corp. 1997, 2000 iii

Chapter 11. Optimizing Java code for
target performances 101
Enterprise Toolkits. 101
The Enterprise Toolkit for AS/400 (ET/400) . . . 103

ET/400 properties 105
ET/400 and code exportation 105
Compiling, running and debugging an ET/400
application 105
ET/400 SmartGuides 106
AS/400 Toolbox for Java 106

The Enterprise Toolkit for OS/390 (ET/390) . . . 107
Host environment setup for the ET/390 . . . 109
ET/390 properties 110
Export and bind Java files with the ET/390 . . 110
Running, debugging, and analyzing ET/390
applications 110

Chapter 12. Accessing non-Java
resources 113
Access Builders 113
Enterprise Access Builder for Transactions 113

Records 116
Commands 117
Navigators 117
Business objects 118
Mappers 118
Setting the run-time context and deployment 119

C++ Access Builder 119
Access Builder for SAP R/3 121
IDL Development Environment 123
Enterprise Access Builder for Persistence
(Persistence Builder) 124

Index 127

Notices 129

Programming interface information 133

Trademarks and service marks 135

iv Getting Started

Chapter 1. Preface

About this book
This document provides you with information about the following topics:
v Developing Java applications in a stand-alone and team environment
v Optimizing and debugging your Java applications for specific platforms
v Developing Java applications that access existing data and applications
v Creating server-oriented applications and applications that are available through

the Internet

This book will familiarize you with the VisualAge for Java components and the
tasks that you can perform with them. You will learn how to develop an
application using the Visual Composition Editor. We also guide you through the
steps involved in preparing to work in a team environment.

Java fundaments are not covered in this book, and a basic knowledge of Java is
necessary to to understand this book. You can find Java tutorials in the Education
section of IBM’s Developer Works Web site at
http://www.ibm.com/developer/java/ and in the Documentation/Training section
of the Sun Web site: http://java.sun.com/

Who should read this book

This document is aimed at developers who want to perform the following tasks:
v Develop Java applications in an integrated visual environment
v Work in a team environment or manage a project in a team environment
v Want to optimize application performance of their Java applications for one or

more specific operating system
v Access existing enterprise applications and data outside their Java applications
v Develop server-oriented, multi-tier applications

Information from this book can also be found in the Getting Started section of the
online help.

Related information

For more detailed information and tutorials and samples for components, refer to
the online help that is available from the Help menu of any window in VisualAge
for Java. For information about the various search options available, click “Search
options” which is next to the search field.

The online help is organized into several categories, all of which are directly
accessible both from the home page of the help and from any of the content pages:
v Topics lets you view the help topics organized by type of information (concepts,

tasks, reference materials, samples):
v Components contains the same information as Topics, organized by product

features

© Copyright IBM Corp. 1997, 2000 1

v PDF Documents. Some of the online help has been grouped into PDF
documents which you can view and print using Adobe Acrobat Reader
(available from http://www.adobe.com/)

v Web Resources contains links to Java-related resources that are available on the
Internet.

README files and release notes
Release notes are component-specific and contain information about component
prerequisites, limitations and known problems. They also contain general hints and
tips about the component. Please refer to the README file if you want
information about general product limitations and known problems.

Installation and Migration guide
Information on how to install VisualAge for Java and migrate from a previous
version of VisualAge for Java can be found in the Installation and Migration guide,
which is on the product CD directory. Please refer to the README file for the
exact location of the guide.

How to find updates to software and documentation
Updates can be found on the the VisualAge Developer Domain (VADD) Web site
http://www.ibm.com/software/vadd. This Web site offers information about tools,
education, hints, and tips, along with easy access to support and product updates
for VisualAge for Java.

As well, you can access VisualAge for Java scenario-based documentation from
this web site. The scenario documentation describes how two or more Visual for
Java features or products can used together to develop a Web-based, end-to-end,
client/server application that meets a business need; for example: using ET/390 to
develop a client application that can access CICS® over IIOP.

The product home page for VisualAge for Java is at
http://www.ibm.com/software/ad/vajava

PDF index
The PDF files listed below have been prepared directly from the HTML online help
documentation for VisualAge for Java, Version 3.5. For this reason, the PDF
documents resemble a collection of online help topics rather than a printed book.
These PDF documents are provided to help you print a collection of online help
topics.

You can view or print the following PDF files using the Adobe Acrobat Reader,
which is available from http://www.adobe.com.

Getting started
This book (getstart.pdf) provides a tutorial on the VisualAge for Java IDE and
Visual Composition Editor. It is the same book that is packaged with the VisualAge
for Java software.

Developing programs

v Integrated Development Environment basics (ide.pdf) is a VisualAge for Java
IDE primer.

v Visual Composition (jvbpdf.pdf) provides instructions on how to do visual
programming with the beans shipped in VisualAge for Java.

v Distributed Debugger (debugwks.pdf) describes how to debug programs on
Windows®.

2 Getting Started

Working in a team environment

v Team Programming (team.pdf) decribes information to develop
and manage Java programs in a team environment.

v Interface to external version control systems (scci.pdf) describes how to connect
to source code in an external source code management system.

Accessing relational data

v Data Access Beans (dataacc.pdf) describes how to access relational data through
beans that support SQL.

v SQLJ Tool (sqlj.pdf) describes how to access databases using embedded SQL in
your Java source code.

v DB2® Stored Procedure Builder (stproc.pdf) provides instructions to create stored
procedures for implementation on a database server.

Developing EJB components
EJB Development Environment (ejb.pdf) describes how to develop and test
Enterprise JavaBeans™ components.

Adding persistence
Building Applications with Persistence Support (pbinfo.pdf) describes how to add
scalable persistence support to object models.

Developing servlets

v JSP/Servlet Development Environment (jsp.pdf) describes how to use JavaServer
Pages technology and servlets for Web development.

v Servlet Builder (sbinfo.pdf) describes how to create servlets with visual design
tools.

Accessing transaction systems

v Enterprise Access Builder for Transactions (eab.pdf) describes how to access
transaction systems (for example, CICS, IMS™, or MQSeries).

v The Record Framework (recframe.pdf) describes a framework for record data
conversion used by the Enterprise Access Builder

v IMS Connector for Java (imstoc.pdf) describes how to create Java application
programs or servlets that access IMS transactions using the IMS TCP/IP OTMA
Connection Connector for Java.

Accessing SAP R/3 systems
Connector and Access Builder for SAP R/3 (sap.pdf) describes how to create Java
programs that access SAP R/3 systems.

Targeting programs for AS/400®

v ET/400 (et400.pdf) describes how to optimize Java code for high performance on
AS/400.

v AS/400 Debugging (dbg400.pdf) describes how to debug programs targeted for
AS/400.

Targeting programs for OS/390®

v ET/390 (et390.pdf) describes information for optimizing Java code for high
performance on OS/390.

v Performance Analyzer for OS/390 (pa390.pdf) Programs describes how to
analyze the performance of Java programs running on OS/390.

Chapter 1. Preface 3

v OS/390 Debugging (debug390.pdf) describes how to debug programs targeted
for OS/390.

Doing CORBA development
IDL Development Environment (idl.pdf) describes how to manage IDL source code
and generated Java code.

Accessing Domino databases

v Domino AgentRunner (notes.pdf) describes how to build, run and debug
Domino agents in VisualAge for Java.

v Domino Access Builder (domino.pdf) describes how to create
beans to access databases or services on Lotus® Domino servers.

Accessing C++ services
C++ Access Builder (j2cpp.pdf) describes how to create Java code that accesses C++
programs.

Accessing tool integrator APIs

v Remote Access to Tool API (remacc.pdf) describes how to allow client
applications to access the Tool Integrator APIs from outside the IDE, using the
HTTP protocol.

v Tool Integrators for ISVs (toolint.pdf) describes how to Integrate file-based code
with the IDE and programmatically manipulate code within the IDE (advanced
topic).

Developing XML

v XML Generator (xmlgen.pdf) describes how to edit a DTD and generate sample
XML documents based on that DTD.

v XML for Java parser (xml4j.pdf) describes how to use a Java parser to read and
write XML data.

v XML toolkit (xmi.pdf) describes how to visually model Java constructs.

Web resources
The VisualAge for Java online information provides information about the various
components that make up VisualAge for Java. The World Wide Web contains
resources that complement and extend the online information. This page provides
links to those Web resources. You must have a connection to the World Wide Web
to access these links.

The Web sites listed on this page were available at the time of writing. With each
release of the online information, we will check to ensure the links are still current.
Between releases, however, the links to these sites could change.

IBM resources

v VisualAge Developer Domain. This is the premier IBM site for Java developers
using VisualAge products. You will find links to downloads, demos, tutorials,
samples, documentation, and more.
– Library. The Library page in the VisualAge Developer Domain site contains

links to technical articles, tutorials, white papers, books, magazines, IBM
Redbooks, and FAQs about a wide range of Java programming topics.

v VisualAge for Java. This is the primary site for information about the VisualAge
for Java products, including the Entry, Professional, and Enterprise Editions. You
will find links to downloads, case studies, events, education, and support
(including FAQs).

4 Getting Started

v Web Application Servers. This site provides information about the WebSphere™

family of products, including WebSphere Studio and WebSphere Application
Server, which can help you develop and manage high-performance Web sites.

v VisualAge Partner Catalog. This site provides a rich collection of partner
solutions for VisualAge products, including palette components (such as
JavaBeans, parts, and widgets), applications, applets, and complementary tools.

v Java Technology Zone. This is IBM’s site for Java resources such as news, code,
tools, support programs, education, and events.

v jCentral. This is a webcrawler and search engine designed specifically to help
you locate Java applets, beans, source code, newsgroup articles, and more.

v IBM Software. This is IBM’s home page for software. It provides general
information about IBM software and has links to various software products,
including VisualAge for Java.

Non-IBM resources

v Java Technology Home Page (java.sun.com). This site is where Sun
Microsystems provides the latest information about Java technology, including
downloads, documentation, specifications, and development kits.

v Java Users Group. This site provides links to user groups all over the world
where you can talk about Java development.

v Java Newsgroups. This site provides links to comp.java.lang newsgroups where
you can discuss various Java topics.

v FreewareJava.com. This site provides links to free Java resources on the Web,
including applets, tutorials, references, articles, and more.

v Java Directory. Developer.com’s Java Directory provides links to free source
code, and numerous sources of information about Java.

v VisualAge Bookstore. This site provides an extensive collection of VisualAge
books, training, and Web resources, including IBM Redbooks.

v Java magazines. The following online magazines cover the world of Java
development, and include news, technical articles, how-tos, and product
reviews:
– Servlet Central
– Java Developers Journal
– JavaPro
– Java Report Online
– JavaWorld
– Focus on Java
– Dr. Dobb’s Journal

Reader comments

IBM welcomes your comments about the VisualAge for Java online information.
You can send your comments using any one of the following methods:
v Electronically to the network ID listed below. Be sure to include your entire

network address if you want a reply.
– Internet: torrcf@ca.ibm.com
– IBMLink: toribm(torrcf)

v By FAX using one of the following numbers:
– United States and Canada: 416-448-6161
– Other countries: (+1)-416-448-6161

v By mail to the following address:

Chapter 1. Preface 5

IBM Canada Ltd. Laboratory
Information Development
2G/KB7/1150/TOR
1150 Eglinton Avenure East
North York, Ontario, Canada
M3C 1H7

6 Getting Started

Chapter 2. Introduction

About VisualAge for Java
VisualAge for Java is an integrated visual environment that supports the complete
cycle of Java program development. VisualAge for Java gives you everything you
need to perform the development tasks described below.

Rapid application development
You can use VisualAge for Java’s visual programming features to quickly develop
Java applets and applications. In the Visual Composition Editor, you point and
click to:
v Design the user interface for your program
v Specify the behavior of the user interface elements
v Define the relationship between the user interface and the rest of your program

VisualAge for Java generates the Java code to implement what you design in the
Visual Composition Editor. In many cases you can design and run complete
programs without writing any Java code.

VisualAge for Java also gives you SmartGuides (wizards) to lead you quickly
through many tasks such as creating new applets, packages, or classes.

Incremental compilation
The VisualAge for Java Integrated Development Environment (IDE) automatically
compiles Java source code into Java bytecode. When source code is imported into
the workspace (from .java files) or added from the repository, it is compiled and
analyzed with respect to the existing contents of the workspace.

When you change, delete, move, copy, or rename program elements, the affected
code is automatically recompiled to flag any problems.

If you introduce an error, the IDE warns you and gives you the option of fixing the
problem immediately, or of adding the problem to the All Problems page and
fixing it later.

Repository-based development
VisualAge for Java has a sophisticated code management system that makes it easy
for you to maintain multiple editions of programs. When you want to freeze the
state of your code at any point, you can version an edition. This marks the
particular edition as read-only and enables you to give it a name. This gives you a
way to preserve snapshots of significant checkpoints in a development cycle.

Create industrial-strength Java programs
With VisualAge for Java you can develop very robust code. Specifically, you can:
v Build, modify, and use JavaBeans
v Browse your code at the level of project, package, class, or method
v Use the integrated visual debugger to examine and update code while it is

running
v Use the distributed debugger to debug Java applications that are developed

outside the IDE

© Copyright IBM Corp. 1997, 2000 7

v Write applications that comply with Sun Microsystems Enterprise
JavaBeans (EJB) specifications

Program development
The Integrated Development Environment (IDE) is a set of windows that provide
access to development tools. These windows include the Workbench, Repository
Explorer, Log, Console, and Debugger. You can use the IDE to create Java applets,
which run in web browsers, and standalone Java applications.

The Visual Composition Editor can be used to create graphical user interfaces
from prefabricated beans, and to define relationships (called connections) between
beans. This process of creating object-oriented programs by manipulating graphical
representations of components is called visual programming.

TheJSP/Servlet Development Environment enables you to develop, run, and test
JSP files and servlets.

The WebSphere Test Environment (installed with the JSP/Servlet Development
Environment) provides server run-time support for locally testing and debugging
JSP files and servlets. JSP files and servlets that run successfully in the WebSphere
Test Environment will also run successfully in a WebSphere Application Server
production environment.

The Create Servlet SmartGuide enables you to create servlets. When you are
developing servlets with the SmartGuide you can use JSP files that inherit from the
PageListServlet class. As well, you can also work with existing beans such as an
EAB Command or an EJB access bean.

The XMI Toolkit provides an integration bridge between VisualAge
for Java and the Rational Rose modeling tool. It enables you to generate VisualAge
for Java code from Rational Rose models, and generate Rational Rose models from
VisualAge for Java code. This facilitates the rapid transformation of business
models.

The XML Generator is a Java program you can use to edit a DTD
and generate sample XML documents based on that DTD. Creating sample
documents helps you check to see if the DTD is working properly, and get an idea
of what kind of XML documents are generated by the DTD.

The XML Parser for Java is a high performance, modular XML parser written in
100% Java. This parser makes it easy to give an application the ability to read and
write XML data. A single JAR file provides classes for parsing, generating,
manipulating, and validating XML documents.

The EJB Development Environment enables you to develop beans
that implement Sun Microsystems’ Enterprise JavaBeans (EJB) programming
specifications. The EJB Development Environment provides all of the necessary
run-time support for the IBM WebSphere Application Server. A new incremental
consistency checker ensures that enterprise beans conform to the EJB programming
specification and indicates whether changes are needed to fix inconsistencies.

The IDL Development Environment provides an integrated interface
definition language (IDL) and Java development environment that works with a

8 Getting Started

user-specified IDL-to-Java compiler. You can work with both your IDL source and
the generated Java code in one convenient browser page.

The Persistence Builder enables you to map objects and relationships
between objects to information stored in relational databases. It also provides
linkages to the mapping between Enterprise JavaBeans and relational data.

The C++ Access Builder provides access from Java applets or
stand-alone Java applications to services written in C++. You can use it to generate
beans and C++ wrappers that let your Java programs access C++.

Database access
Data Access Beans are beans provided with VisualAge for Java for developing
programs that access relational databases.

The DB2 Stored Procedure Builder enables you to write Java programs that
include stored procedures that run on a DB2 server.

SQLJ support provides you with a standard way to embed SQL statements in Java
programs. The SQLJ standard has three components: embedded SQLJ, a translator,
and a run time environment.

Access to transaction servers

The Enterprise Access Builder for Transactions (EAB) helps
developers to quickly and easily extend existing applications to e-business. It
consists of frameworks and tools which allow you to access the function and data
assets of your existing transaction-based systems. It provides a standard access
builder interface for connectors that adhere to IBM’s Common Connector
Framework (CCF). Connectors are provided for CICS (both ECI and EPI), Encina
DE-Light, IMS TOC, MQSeries®, Host-on-Demand (HOD), and SAP R/3.

Access to application servers

The Domino AgentRunner helps you build, run, and debug Domino
agents in the VisualAge for Java IDE.

The Domino Access Builder provides beans and SmartGuides
(wizards) that allow you to create Java applications that access databases and
services located on a Domino server or on a Notes™ client. The generic beans
include wrapper classes for databases, forms, views, and other Domino design
elements.

The Access Builder for SAP R/3 is a complete toolkit for creating
Java applications, applets, and beans that access an SAP R/3 system. The Access
Builder for SAP R/3 helps you to retrieve complete meta-information within the
R/3 system, keep it locally for multiple R/3 systems, access without an R/3
connection, and search for business objects. It includes a connector for SAP R/3
that generates EJB proxies for business objects.

Chapter 2. Introduction 9

Optimization and debugging
The Distributed Debugger is a client/server application that enables you to detect
and diagnose errors in your programs. You can also use it to debug Java
applications that are developed outside the IDE. You can use the distributed
debugger to debug applications that execute on the following platforms: Windows
NT®, OS/2®, AIX®, AS/400, Solaris, and OS/390.

The Integrated Debugger enables you to debug applets and applications running
in the IDE. In the debugger, you can view running threads, suspend them, and
inspect their visible variable values.

The Enterprise Toolkit for AS/400 (ET/400) allows you to develop
applications in Java for the AS/400 platform. You can use ET/400 to export Java
class and source files to the AS/400, and compile Java code optimized for the
AS/400, and to run and debug AS/400 Java applications from the VisualAge for
Java IDE.

The Enterprise Toolkit for OS/390 (ET/390) enables you to code Java
programs at your workstation, then export your code to run in a remote OS/390
Java Virtual Machine (JVM). You can also use ET/390 to bind Java bytecode into
optimized code that runs in the OS/390 shell or CICS/ESA® environment. And
you can debug your Java applications running on the OS/390 system from the
IDE.

ET/390 also includes a Performance Analyzer to help you improve the
performance of your Java programs. The Performance Analyzer traces function
calls and returns, and collects timing data and call counts for each function called.
The Performance Analyzer has two components: the host component, which you
use to create a trace of your Java program’s execution in the OS/390 UNIX®

environment, and the workstation component, which you use to analyze the trace
file that you created on the host.

Team development

Team Programming support. VisualAge for Java provides an
integrated team development environment that is based on a shared source code
repository.

External Version Control enables you to connect to external source code
management (SCM) providers such as ClearCase, PVCS Version Manager,
TeamConnection™, and SourceSafe from VisualAge for Java.With this tool, you can
add classes to your SCM provider, check classes in and out of the SCM system,
and import the most recently checked-in version of a class from the SCM system.

Other tools

The Tool Integrator API enables you to integrate your own tools into
the VisualAge for Java IDE. From a single class execution in your tool, you can use
the API to perform such IDE functions as browsing the workspace, importing and
exporting files, or launching the IDE browsers.

The Remote Access to Tool API provides a way for client
applications to access Tool Integrator APIs from outside the VisualAge for Java

10 Getting Started

IDE. Remote Access provides an HTTP daemon that supports tool servlets. A
servlet is code you write that invokes the methods of the Tool Integrator API to
perform a particular task.

Tivoli® Connection helps you create business-critical distributed Java
applications that can be managed by Tivoli’s enterprise management software.
Tivoli Connection allows you to generate Tivoli events and to interface to the Tivoli
Enterprise Console™. Tivoli provides an application management solution that
covers the life cycle of an application, from deployment to monitoring and
administration.

What’s new in VisualAge for Java, Version 3.5

New features
The following features have been added since Version 3.0. For more information
about each feature, refer to the list of component summaries in this Getting Started
guide.

v XMI Toolkit

v XML Generator
v XML Parser for Java
v Servlet SmartGuide
v External Version Control

Enhancements to existing features
VisualAge for Java, Version 3.5, also offers enhancements to the following
components:

Integrated Development Environment
There are many new and enhanced functions in the Integrated Development
Environment (IDE). A new Solutions Browser has been added. A Solution is a
grouping of projects. Solutions themselves do not appear in the Workbench, they
are a way of organizing your work.

Inner classes and their methods will now appear in the general hierarchy views in
the Workbench browsers. Search offers new filtering capabilities, and several new
code formatting options, such as setting a maximum line length, and automatically
removing blank lines are now available.

You can now version project resources, and configure breakpoints as soon as you
set them. A new view in the Workbench, Class Source View, enables you to view a
complete class, including all of its methods. In this view, you can see and edit the
class definition and all of the methods of a class at the same time.

If your classes contain obsolete class or package references due to renaming, you
can repair breakage with the Fix/Migrate SmartGuide. You will find this tool
especially useful as you move classes to the J2SDK v 1.2.2. You must use this tool
for repairing visual composites, even if you make corrections by hand.

JDK
The JDK has been updated to J2SDK v1.2.2. Please refer to the Documentation
release notes (Getting Started Guide section) for the PTF level.

Chapter 2. Introduction 11

Team Development
EMSRV is now supported on Red Hat Linux and Windows 2000. You can now
version and release your project resource files.

Websphere Test Environment
The WebSphere Test Environment Control Center provides a central location for
you to start, stop, and configure WebSphere Test Environment services:
v JSP Execution Monitor, which helps you to monitor the execution of JSP source,

along with the generated Java servlets and HTML source.
v Persistent Name Server, which you can use to work with EJB beans or

DataSource objects.
v Websphere Test Environment Servlet Engine, which enables you to run

multiple Web applications
v DataSource objects. You can use DataSource objects to manage a collection of

connections to a database.

EJB Development Environment
The EJB Development Environment now supports Sybase data stores. As well,
support for deployment of enterprise beans to Component Broker has been
expanded.

The EJB test client has a new user interface and it now dynamically adapts to EJB
interfaces. You no longer need to generate the test client code.

Server support has been added for Sybase and DB2/390 databases.

The name server function has been moved from the EJB Server Configuration
browser to the new WebSphere Test Environment Control Centre.

Enterprise Toolkit for AS/400
The following AS/400-specific beans have been added to the Enterprise Toolkit for
AS/400.

DFU beans
These beans extend the support of code to access AS/400 database files.
You can use them to map GUI forms, tables, and lists to AS/400 databases,
and manipulate database records.

Object List beans
These beans provide a method for accessing AS/400 object names, and
allow you to set listing properties for selecting the desired type of object
list.

JFormatted beans
The JFormatted beans include a set of utility classes that extend the
support of code to convert AS/400 fields and attributes and to provide
editcode, editword, formatting, and verification capabilities.

The following new classes are offered with the AS/400 toolbox:
v Program Call Markup Language (PCML) classes efficiently call AS/400 programs.

You can call a program by writing a PCML script and then loading and
deploying it from a Java program.

v Security classes make secured connections with the AS/400 and verify the
identity of a user working on the AS/400 system.

v HTML classes quickly create HTML forms and tables.

12 Getting Started

v Servlet classes assist in retrieving and formatting data for use in Java servlets.

Distributed Debugger for AS/400

You can now debug and trace servlets, JSP files, and EJBs.

Enterprise Toolkit for ET/390

New functionality has been added to the ET/390 Performance Analyzer.
v Statistics have been added to the node list in the Dynamic Call Graph diagram.

You can sort these statistics.
v Users now have more flexibility when pruning the Dynamic Call Graph diagram

- the Show and Highlight options are now always enabled
v Percentage values now have two decimal places which improves their

preciseness

Enterprise Access Builder
Several new visual tools and modifications to existing ones have been added to the
Enterprise Access Builder. They extend its range of functions and usability.

3270 Importer
This tool imports 3270 terminal source code and outputs both record type
and record classes, all in one operation. Formerly, several steps were
needed. You can rename fields to more user friendly names and suppress
the generation of get and set methods to reduce the generated code size.

Record Type Editor terminal pane
This pane displays a terminal view of the fields you are editing, showing
where a field maps to a position on the screen.

IMS support in COBOL importer
Support for IMS conversational transactions have been added to the
COBOL importer. Using this COBOL importer, other EAB tools, and the
IMS TOC Connector, you can quickly build applications to access IMS
conversational transactions.

Create Business Object SmartGuide
This visual tool lets you quickly create an EAB Business Object, which
formerly had to be hand coded. Since Procedural Adaptor Objects extend
EAB Business Objects, this tool will also allow you to quickly create PAOs
for Component Broker applications accessing data and applications
through CCF connectors.

Test Client
Prior to this tester, Commands and navigators could only be tested by
writing an application to execute them. Now they can be tested anytime
after they have been created. This tester lets you check that the returned
values are what you expect, before you have done extensive development.

IMS Connector for Java
IMS Connector for Java now supports IMS conversations, allowing you to build
Web applications that access IMS conversational transactions over the internet.
Included are programming models and samples that guide you through the steps
of creating the dynamic, client-to-program-to-client interactions of an IMS
conversation. New Java classes have been added to support easy use of this
feature.

Chapter 2. Introduction 13

Access Builder for SAP R/3
Support for OS/390 and Linux as deployment platforms have been added for the
Access Builder and Connector for SAP R/3.

Persistence Builder
The Persistence Builder feature now supports Sybase data stores.

Installing VisualAge for Java

Instructions for installing VisualAge for Java can be found in the Installation and
Migration guide, which is on the product CD. Please refer to the README file for
the exact location of the guide.

When you install VisualAge for Java you can either perform a complete installation
or a custom installation that lets you select which non-core components you want
to install. In VisualAge for Java, a component is any tool with a distinct function.
Some components, such as the IDE and the Visual Composition Editor, are always
installed. Other components, such as the JSP Development Environment, are
optionally installed.

You can also select to perform a ″Custom by Scenario″ installation.
Custom by Scenario installations lets you customize the installation of VisualAge
for Java based on different application scenarios. For example, you might want to
develop applications that access relational data, or Web applications that run on a
server. For each of these scenarios, you need to use different VisualAge for Java
components. Instead of deciding which components to install for the applications
you want to develop, all you need to do is select the application scenario.

Loading features into the workspace
After you have installed VisualAge for Java, you will have to load certain features,
such as Data Access Beans, into the workspace before you can use them. A feature
is one or more projects that relate to a particular sample or component of
VisualAge for Java.

To load features into the workspace, follow these steps:
1. In the Workbench, select File > Quick Start. The Quick Start window opens.
2. Select Features > Add Feature.
3. Select the component you want to load into the workspace. You can also select

to load other features such as libraries and samples into the workspace from
this window.

To remove a feature from the workspace (that you have added using Add Feature),
select Delete Feature.

Migrating from earlier releases of VisualAge for Java

Refer to Installation and Migration guide, which is on the product CD, for general
instructions for migrating your data from a previous version of VisualAge for Java,
and also for instructions on migrating applications from previous versions of
VisualAge for Java.

Please refer to the README file for the exact location of the guide.

14 Getting Started

Chapter 3. Developing a simple applet

Starting VisualAge for Java

If you have not already installed VisualAge for Java, refer to the Installation and
Migration guide, which is on the product CD. Please refer to the README file for
the exact location of the guide.

To start VisualAge for Java on Windows 98, 2000, and Windows NT, select Start >
Programs > IBM VisualAge for Java for Windows > IBM VisualAge for Java. For
UNIX, run the command vajide.

When you first start VisualAge for Java, Enterprise Edition, you will
be prompted to choose an owner for your workspace and a network name for the
user called Administrator. For the purposes of this tutorial, you can select
Administrator as your workspace owner. For a network name, use the name that
identifies your computer to your network.

The VisualAge for Java Welcome window opens:

Select Go to the Workbench and click OK.

In the Enterprise Edition, the current workspace owner is shown on
the title bar of the Workbench.

© Copyright IBM Corp. 1997, 2000 15

Exploring the IDE
VisualAge for Java is an integrated, visual environment that supports the complete
cycle of Java program development. You can create Java applets, which run in Web
browsers, and stand-alone Java applications.

Workspace and repository
All activity in VisualAge for Java is organized around a single workspace, which
contains the source code for the Java programs that you are currently working on.

All code that you write and save in the workspace is also stored in a repository.
Within the VisualAge for Java environment, you do not manipulate files. Instead,
VisualAge for Java manages your code in a database of structured objects, that is, a
repository.

All code that you create in VisualAge for Java is automatically stored in the
repository. The repository also contains other packages provided by IBM, which
you can add to the workspace if you need to use them.

In VisualAge for Java, you manage the changes that you make to a program
element by creating editions of the program element. The workspace contains at
most one edition of any program element, that is, the edition you are currently
working on The repository, on the other hand, contains all editions of all program
elements.

Working with program elements in the workspacefrom the Workbench. It gives
you a view of all the program elements that are in the workspace and their
unresolved problems.

From the Workbench, you can open other windows and browsers that help you
with your tasks.

As shown in the diagram below, VisualAge for Java depicts code to you as a
hierarchy of program elements, which you can expand and collapse by clicking the
plus (+) and minus (-) symbols:

project

package

class or interface

public, default, protected, private methods

16 Getting Started

The Workbench toolbar, which is located below the menu bar, provides you with
easy access to the tasks you perform most frequently in the Workbench. Place your
mouse pointer over each icon on the toolbar. A label will appear that identifies the
tool.

In the IDE, you browse a program element by opening it. To open a program
element, you can select Open from the Selected menu or from the program
element’s pop-up menu. To access a program elements’ pop-up menu, select it and
right-click. You can also open a program element by double-clicking it. This
behavior can be changed in the Options window. You can access the Options
window by selecting Window > Options in any window.

Follow these steps to become more familiar with the Workbench:
1. In the Projects pane, expand Java class libraries. Then double-click any

package, for example java.awt. The package browser opens.
2. Similarly, double-click any class in the package. The class browser opens.
3. Look at the Source pane for the class that you have opened. You can edit the

source code directly in this pane.
4. Look at the Status area (the bar at the bottom of the window). This contains the

name of the selected program element.
5. Look at the All Problems page. This page displays all the classes and methods

in the workspace that have unresolved problems in them.

6. Look at the Managing page. This page lets you change
ownership of program elements and version and release them.

Exploring the source code repository
The Repository Explorer is your visual interface to the repository.

To open the Repository Explorer, select Window > Repository Explorer from the
menu bar.

Chapter 3. Developing a simple applet 17

The repository includes all editions of all program elements, including those that
are currently in your workspace.

Within the Repository Explorer, you can open or compare program elements that
are stored in the repository. You do not need to swap editions in and out of the
workspace to view them or compare them.

By comparing different editions, you can see:
v What changes have been made as a result of code generation
v Precisely how an edition with errors differs from a bug-free edition

Refer to the online help for more information about the Repository Explorer.

Quick Start window
Several of the tasks you will most frequently perform in the IDE are listed in the
Quick Start window. The Basic section lets you launch the appropriate SmartGuide
(wizard) to create applets, classes, interfaces, projects, and packages, and to
experiment with code.

Team Development provides you with easy access to projects in the
repository. Also, a team administrator can administer users. With Repository
Management, you can use the Change Repository option to connect your
workspace to another repository (shared or local), or to recover if the server fails.

To learn more about what you can do with the Quick Start window, press F1 in the
window.

18 Getting Started

About the To-Do List applet
Overview
You will create a To-Do List applet which consists of a composite bean that is made
up of several other beans. The applet has a text field bean (JTextField) for entering
a To-Do item and a list bean (JList) for displaying the To-Do List items. There are
also two button beans (JButton) for adding and removing items from the list.

The user interface for the completed To-Do List applet appears as follows:

When you have completed your applet, you will type an item into the To-Do Item
field and select Add. This adds the item to the To-Do List. If you select an item
from the To-Do List and select Remove, the item is removed from the To-Do List.

Creating the To-Do List applet

In addition to the applet, you will a project and a package to contain your work.

You will manipulate your new applet in the Visual Composition Editor. That is,
you will visually manipulate JavaBeans components (beans). Beans are represented
as classes and interfaces when you examine your applet in the Workbench.

Creating a project, package, and an applet
Follow these steps to create the To-Do List project, package and applet:
1. To open the SmartGuide, from the Workbench File menu, select Quick Start.

The Quick Start window opens.
2. Select Basic > Create Applet.
3. Click OK. The Create Applet SmartGuide opens.
4. In the Project field, type the project name, My ToDoList Project.
5. In the Package field, type the package name, todolist.
6. In the Applet name field, type the applet name, ToDoList.

Tip: Give your applets (and all other classes) names that begin with a capital
letter. Class names are case-sensitive, and cannot contain spaces. If a class name
consists of multiple words, do not type spaces between the words, but instead
capitalize the first letter of each word (for example, ToDoList).

Chapter 3. Developing a simple applet 19

7. Select the JApplet radio button. Make sure that Compose the class visually
check box is selected.

8. Click Next. Select the Yes, create an applet which can be run by itself or in an
applet viewer radio button.

9. Click Finish.

VisualAge for Java creates a project, a package, and an applet, then opens the
Visual Composition Editor for the applet.

Constructing the applet in the Visual Composition Editor

The Visual Composition Editor enables you to develop programs by visually
arranging and connecting beans. This process of creating object-oriented programs
by manipulating graphical representations of components is called visual
programming. You can create connections to link events, such as clicking a button,
with code that you create.

Beans and connections
In VisualAge for Java, beans are the components that you manipulate when you
program visually. These beans are Java classes that adhere to the JavaBeans
specification. In the Visual Composition Editor, you select beans from a palette,
specify their characteristics, and make connections between them. Beans can
contain other beans and connections to beans.

You use two types of beans within the Visual Composition Editor:
v A visual bean can be seen in your program at run time. Visual beans, such as

windows, buttons, and text fields, make up the graphical user interface (GUI) of
a program.

v A nonvisual bean does not appear in your program at run time. A nonvisual
bean typically represents an object that encapsulates data and implements
behavior within a program.

A bean’s public interface determines how it can interact with other beans. The
public interface of a bean consists of the following features:

v Events are signals that indicate something has happened. Opening a
window or changing the value of a property, for example, will trigger an event.

v Methods are operations that a bean can perform. Methods can be triggered
by connections from other beans.

v Properties are data that can be accessed by other beans. This data can
represent any logical property of a bean, such as the balance of an account, the
size of a shipment, or the label of a button.
Properties can be read, written, or both. Properties can have the following
characteristics:
– A bound property triggers the propertyChange event when its value is changed.
– A constrained property allows other beans to determine whether the value of

the property can be changed (triggers the vetoableChange event).
– An indexed property is an array, so it exposes additional methods to address

individual elements.
– A hidden property is not visible to humans. It is for use by bean-aware tools

only.
– An expert property should only be manipulated by expert users.

20 Getting Started

– A normal property is one that is neither hidden nor expert.

A bean exposes a feature when it makes that feature available to other beans.

Beans can contain other beans as well as connections between beans. You can think
of the beans that you construct in the Visual Composition Editor as composite beans
because they contain other beans. The composite beans you build make up your
program.

VisualAge for Java also includes support for JavaBeans components. JavaBeans
components (or, more simply, beans) are Java objects that behave according to the
JavaBeans specification. Beans are reusable software components that you can
manipulate in a development environment like VisualAge for Java. The method
signatures and class definition of a bean follow a pattern that permits
environments like VisualAge for Java to determine their properties and behavior.
This ability for a “beans-aware” environment to determine the characteristics of a
bean is called introspection.

In the Visual Composition Editor, connections define how beans interact with each
other. You can make connections between beans and between other connections. A
connection has a source and a target. The point at which you start the connection
is called the source; the point at which you end the connection is called the target.

The Visual Composition Editor
When the Visual Composition Editor opens, you can begin constructing your
To-Do List applet. The To-Do List applet consists of a that contains several visual
beans.

The Visual Composition Editor window includes several components: the beans
palette along the left side, the status area along the bottom, the toolbar along the top,
and the free-form surface where you lay out the beans. In the picture below, three
beans are on the surface: a check box bean and two radio button beans.

Chapter 3. Developing a simple applet 21

Beans palette Free-form surface

Toolbar
As in the Workbench window, the Visual Composition Editor toolbar provides easy
access to the tools commonly used while manipulating beans (The Tools menu also
provides access to these tools).

Take a minute to move your mouse pointer over each icon on the toolbar. A label
will appear that identifies the icon.

Most of the tools in the toolbar act on the beans that are currently selected in the
free-form surface. If no beans are selected for a tool to act on, the tool is
unavailable.

Beans palette
The beans palette, located on the left side of the Visual Composition Editor,
contains the set of ready-made beans that you use most frequently. The beans
palette organizes the beans into categories.

Select Bean > Modify Palette. The Modify Palette window, which you can use to
perform tasks such as adding categories and beans to the palette opens. You can
also use this window to change the size of the bean icons, delete a bean or
category from the palette, reorder beansand resize the palette.

Take a moment to view all the categories in the palette by scrolling down. Use the
arrows at the top and bottom of the palette to scroll up and down within the
palette.

The status bar at the bottom of the Visual Composition Editor indicates the
category and bean currently selected in the beans palette, or the bean or connection
currently selected on the free-form surface.

You can also identify a bean by placing the mouse pointer over the icon for the
bean. A label will appear that identifies the icon.

Free-form surface
The free-form surface, located on the right side of the Visual Composition Editor, is
the area where you create your program.

Regardless of the type of bean, every bean has a pop-up menu that contains
options you can use to modify or work with that bean.

Adding beans to the To-Do List applet
When the Visual Composition Editor opens for the new To-Do List applet, the
default JApplet bean is represented as a gray rectangle on the free-form surface. To
build the rest of the user interface, you must add several other visual beans.

As you add beans to the applet, you may find that the default JApplet bean is too
small to accommodate all the other beans. If this happens, you can resize the
JApplet bean by selecting it and dragging one of the selection handles.

Although this bean uses a <null> layout manager, it could be built using one of
the layout managers, such as GridBagLayout. You can also convert from <null> to
any other supported layout manager. To learn more about layout managers, refer
to the online help.

22 Getting Started

Tip: If you want to delete a bean, you can do so by selecting it and pressing the
Delete key, or by selecting the bean, right-clicking it and selecting Delete from its
pop-up menu.

Adding a text field and a label
You will add a JTextField bean that is used to enter the To-Do List items, and a
JLabel bean to identify the field. These beans are in the Swing category of the
beans palette. For more information about Swing, go to the Sun website
www.java.sun.com

Tip: As you work with the palette, you may find the icons too small. To make
them larger, right-click on any gray area on the palette and select Show Large
Icons from the pop-up pane.

To add a text field and a label, follow these steps:

1. From the beans palette, select the JTextField bean . The status area at the
bottom of the Visual Composition Editor displays Category: Swing Bean:
JTextField, reflecting the current selection in the beans palette. If you cannot
find this bean, check that the word Swing appears at the top of the beans
palette. Click the arrow next to it to view a list of other bean categories.

2. Drag the mouse pointer over the JApplet bean (the rectangle on the free-form
surface). The pointer changes to a crosshair, indicating that it is now loaded
with the bean you selected. Click where you want to drop the JTextField.
Tip: If you accidentally picked the wrong bean and have not dropped the bean

into the JApplet yet, select the correct bean, or select the Selection tool from
the beans palette to unload the mouse pointer.
After you have added the JTextField bean to the JApplet, you can change its
position by dragging it with the mouse, as follows:
v In Windows, click and hold down the left mouse button.
v In the UNIX platforms, select the bean and hold down the middle mouse

button. If you are using a mouse with only two buttons, you must hold
down both mouse buttons.

3. Make the bean larger by by dragging a side of the rectangle using the left
mouse button.

4. Next, add a label for your text entry field. Select the JLabel bean and drop
it just above the JTextField.
At this point, do not worry about the beans’ exact positions. Later you will
learn how to automatically match sizes and align beans.

Undoing changes in the Visual Composition Editor
If you make a change in the Visual Composition Editor and then decide that you
do not want to keep that change, select Undo from the Edit menu to restore your
work to its previous state. You can undo as many operations as you want, all the
way back to when you opened the Visual Composition Editor for the current bean.

If you undo an operation, then decide that you did not want to undo it, select
Redo from the Edit menu. Redo will restore the view to the state it was in before
the last Undo. As soon as you close the Visual Composition Editor for your bean,
you lose any ability to undo or redo changes.

Changing the text of a label and adding another label
Change the text of JLabel to To-Do Item by editing the text as follows:

Chapter 3. Developing a simple applet 23

1. In the free-form surface, select the JLabel bean. Select Properties from the
toolbar.

2. In the Properties window, scroll down, select text, and type To-Do Item to
replace JLabel1. The label now contains the new text. You may need to stretch
the label to see it.

3. You can add another label below the JTextField by copying JLabel1. To copy a
bean:
a. Select the bean.
b. Select Edit > Copy.
c. Select Edit > Paste. The pointer changes to a crosshair, indicating that it is

now loaded with the bean you selected.
d. Click below the JTextField to add the new label.

4. Change the text for the new label to To-Do List by editing it as you did for
JLabel1.

Tip: You can also copy a bean using the Ctrl key. Position the mouse pointer over
the JLabel bean, hold down the Ctrl key, and drag the copy of the bean to below
the JTextField bean.

Adding a scroll pane for your list
Add a scroll pane so that your list of items can be scrolled.

1. Scroll down and select the JScrollPane bean.
2. Add the JScrollPane bean below the To-Do List field.

Adding a list
To create the list in which the To-Do items are displayed, you need to add a JList
by following these steps:

1. Select the JList bean and place it inside the scroll pane. The JList bean
adjusts to fill the JScrollPane.

2. In the Properties window, change the selectionMode property to
SINGLE_SELECTION. This simplifies the code needed to handle selection
within the list.

3. You should save your work periodically. To save your work, from the Bean
menu select Save Bean.

Adding buttons
To add and remove items from the To-Do list, you need to add two buttons:
1. To add more than one instance of a bean at a time, press and hold the Ctrl key

before selecting the bean.

2. Select the JButton bean and add a button to the right of the text field.
Notice that the mouse pointer remains a crosshair, indicating that it is still
loaded with the JButton bean. To add another JButton, click below JButton1.

3. Select the Selection tool from the beans palette to unload the mouse
pointer.

4. As you did with the Label beans, change the text on JButton1 to Add. Also in
the property sheet, name the bean AddButton in the beanName field

5. Change the text on JButton2 to Remove. Also in the property sheet, name the
bean RemoveButton.

6. Save your work. Select Bean > Save Bean.

24 Getting Started

You have just created your first user interface using VisualAge for Java. The
free-form surface of the Visual Composition Editor should look something like this:

Next, you need to size and align the beans within the To-Do List applet.

Sizing and aligning visual beans

Since this bean does not use a layout manager (a class which controls how your
beans are laid out), you need to clean up the appearance of your user interface by
using the sizing and aligning tools from the toolbar on the Visual Composition
Editor. The toolbar provides several different tools for sizing and aligning beans.
The best way to learn about them is to experiment with them.

The following steps explain how to match the size of two beans, align the beans
with other beans, and evenly distribute the beans within another bean.

Sizing, aligning, and distributing beans
The order in which you size, align, and distribute the beans is not always
important. Usually, you start with the upper left corner and work your way
through all the beans in the window.

To size the list so it matches the width of the text field, do the following:

1. Select the Beans List from the toolbar.
2. From the list, select JScrollPane1.

Remember, you want to size the container for the list, which is the scroll pane.
You are using the Beans List to do this because the JList bean almost
completely overlays the JScrollPane bean, which makes it difficult to select from
the free-form surface.

3. Hold down the Ctrl key to select multiple items and, in the free-form surface,
select the text field.

4. Select the Match Width tool from the toolbar.
Because the text field was selected last, it becomes the anchor bean for the
match width operation. The width of the list is changed to match the width of
the text field.

Note: The anchor bean has solid selection handles. The other selected items have
outlined selection handles.

Chapter 3. Developing a simple applet 25

To size and align the Add button and the Remove button, do the following:
1. Resize the Remove button to an appropriate size for the applet.
2. Select the Add button, hold down the Ctrl key and select the Remove button.

Then, select the Match Width tool from the toolbar.
3. Because the buttons remain selected, you can now align their left edges by

selecting the Align Left tool from the toolbar.

To align the left side of the text field, list, and labels, do the following:
1. Move the label for the text field (the one that says To-Do Item) to where you

want it in the applet.
2. Select the scroll pane (making certain it is the scroll pane, not the list), the text

field and their associated labels, making sure to select the label of the text field
last.
By selecting the text field label last, you make it the anchor bean for the
alignment operation.

3. Select the Align Left tool from the toolbar.
4. Because the text field, list, and labels are still selected, you can evenly distribute

them in the window by selecting the Distribute Vertically tool from the
toolbar.

5. Save your work. Note that the entire applet that you are creating is a bean.
When you select Bean and then Save Bean from the menu, you are saving the
entire applet.

You have now completely finished the user interface of your To-Do List applet. If
you want to learn more about sizing, aligning, and distributing visual beans, refer
to the online help for the Visual Composition Editor (VCE) .

Connecting the To-Do List beans

Now that you have added the visual beans to create the user interface, the next
step is connecting them.

Event-to-method and parameter-from-property connections
The To-Do List applet is supposed to add the text entered in the text field to the
list when the Add push button is selected. In this example, you will extend your
list to include a model called DefaultListModel. The Java Foundation Classes, also
known as Swing, separate data from the view of the data. The actual list items are
stored in the list model; an event-to-method connection sends the model’s data to
the list in the applet.

Selecting a push button signals an actionPerformed(java.awt.event.ActionEvent)
event and adding an item to the list model is performed by the
addElement(java.lang.Object) method. Therefore, the event-to-method connection
for adding an item to the list model is between the AddButton’s
actionPerformed(java.awt.event.ActionEvent) event and the DefaultListModel’s
addElement(java.lang.Object) method.

Simply adding this event-to-method connection does not actually cause anything to
be added to the list model because its addElement(java.lang.Object) method

26 Getting Started

requires a parameter that specifies what object is to be added to the list. You will
specify the parameter by creating a parameter-from-property connection. The
contents of the text field is provided as the parameter to the
addElement(java.lang.Object) method of the list model.

Adding a list model and making your connections

1. Select the Choose Bean tool from the palette.
2. Select Class as the Bean Type from the Choose Bean window. Using Browse

with a pattern of de, select the DefaultListModel class. Click OK and place the
DefaultListModel bean on the free-form surface, below the applet (the gray
area). By default, the new bean is named DefaultListModel1.

3. Now you can begin your connections to move items into your list. Select the
Add push button and select Connect > actionPerformed from its pop-up menu.
The mouse pointer changes, indicating that you are in the process of making a
connection. If you accidentally started the wrong connection, press the Esc key
to cancel.

4. To complete the connection, click on DefaultListModel1 and select Connectable
Features. Select addElement(java.lang.Object) from the window that opens. A
dashed line appears, which means that more information is necessary. In this
case, the value of the parameter for the addElement(java.lang.Object) method is
missing.

5. To make the parameter-from-property connection that specifies what to add to
the list, follow these steps:
v Click on the dashed event-to-method connection line and select Connect >

obj from its pop-up menu.
v Click on the text field, then select textfrom its pop-up menu.

Chapter 3. Developing a simple applet 27

6. Finally, you must get the To-Do items from DefaultListModel1 to the list in the
applet, so that users can see them in the applet. This is a connection that sends
data from a source (the model) to a view (the list). Right-click on
DefaultListModel1 and select Connect > this from its pop-up menu. Click on
the list and select model from the pop-up menu. A purple line appears,
indicating a property-to-property connection, as shown below.

7. Save your work.

Event-to-code connection
Event-to-code programming enables you to associate a handwritten method with
an event. In the first applet you created, you did not need to write any methods
because VisualAge for Java generated them based on your visual elements and
connections. However, sometimes additional logic is required.

For this example, you will use an event-to-code connection to activate the Remove
push button. An event-to-code connection enables us to specify several behaviors
in one method. We could accomplish this without writing code by hand, but in this
case, writing the code by hand is more efficient.
1. Click on the Remove push button and select Connect > actionPerformed from

its pop-up menu.
2. Right-click on an empty area of the free-form surface. In the pop-up menu that

opens, select Event to Code. The Event-to-Code Connection window appears.

28 Getting Started

By default, VisualAge for Java creates a new method stub called
removeButton_ActionPerformed (you renamed the button beans so you could
know at a glance which methods belong to which button). This method is
scoped to the composite bean class (ToDoList).

3. Copy the following code over the method stub. You can copy and paste this
section from the online version of Getting Started:
public void removeButton_ActionPerformed(java.awt.event.ActionEvent actionEvent) {

// Grab selected item
Object itemToBeRemoved = getJList1().getSelectedValue();
// Remove item from model
getDefaultListModel1().removeElement(itemToBeRemoved);
// Echo item to text field
getJTextField1().setText(itemToBeRemoved.toString());
// Refresh list from model
getJList1().setModel(getDefaultListModel1());
return;

}

This method calls get methods generated by VisualAge for Java to access the
beans embedded in ToDoList.

4. Select OK to close the window and save the new method.

Your connections should now look like this:

With the user interface complete and the behavior of the applet defined by the
connections between the visual beans, you are now ready to test your work.

There are three other types of connections:

Property-to-property
Property-to property connections link two data values together.

Parameter-from-code
Parameter-from-code connections call code whenever a specified event
occurs.

Parameter-from-method
Parameter-from-method connections use the result ofmethod as a
parameter to a connection.

For more information about connections, refer to the online help.

Chapter 3. Developing a simple applet 29

Saving and testing the To-Do List applet

You have already saved parts of your applet as you have been working. When you
save changes to a bean, you replace the old specification of the bean with a new
one. When you do this, VisualAge for Java uses the new specification of the bean
for all new uses of it. It is good practice to save your changes to a bean
periodically as you are working with it and when you have finished editing it.

Saving your visual bean
In the Visual Composition Editor, to save your bean, select Bean > Save Bean.

A message box appears saying that your bean is being saved and that run-time code
is being generated. This generated run-time code is what is used to create your
bean when you run your application.

Testing the applet
Now that your work is saved, you can test your To-Do List applet.
1. To begin testing your applet from within the Visual Composition Editor, select

Run from the toolbar. The Applet Viewer starts with your applet in it.
2. When the To-Do List applet appears, experiment with it to ensure that it

behaves the way you expect it to. For the To-Do List applet, you need to ensure
you can add typed items to the list and remove selected items from the list.

Note: As you design your applet, the Swing beans are presented with Sun’s Metal
look. For example, a JButton will look like a Metal JButton as opposed to a
Windows JButton. You can add your own code to have your beans rendered in a
different system’s look and feel at run time. For example, you could add code to
have your beans have a Windows look and feel. Adding this kind of code is not
covered in this document.

Close the applet window when you have completed your testing.

At any time, you may return to the Visual Composition Editor and make changes,
save the changes, then test the applet again.

Your To-Do List applet is now finished.

Saving your workspace
Before you continue, save your workspace. When you save your workspace, you
are saving the current state of all the code that you are working on and the state of
any windows that you currently have open. To save your workspace, select File >
Save Workspace.

30 Getting Started

Chapter 4. Adding state checking to the To-Do List applet

To keep the applet as simple as possible, we did not include any kind of state
checking. The Add and Remove push buttons are always available. This is not the
ideal behavior for the applet. For example, a user should only be able to select the
Remove push button if there is an item selected in the to-do list.

This section leads you through the steps to add state checking to your applet. You
will review what you learned when you created the To-Do List applet and to learn
a bit more about how the Visual Composition Editor works. This section only deals
with the Remove push button, but if you want to experiment, you can try to add
the same kind of state checking for the Add push button.

Before we update the applet to include state checking, we’ll go through the steps
to find your applet and to create a versioned edition of it.

Note: This section assumes that you have completed the steps described in
Creating the To-Do List applet. You should now have a completed, working To-Do
List applet. If you have not done so already, please complete the steps to create the
basic To-Do List applet.

Finding a program element in the Workbench

Before you can add state checking to your To-Do List applet, you may need to find
it. When you created it in the Visual Composition Editor, you may not have kept
track of where VisualAge for Java put the code that it generated to implement the
applet.

VisualAge for Java gives you powerful search capabilities for finding program
elements. Here is quick way to find your To-Do List applet:
1. In the Workbench window, select the Projects page.
2. From the Selected menu, select Go To > Type. The GoTo Type window

appears:

© Copyright IBM Corp. 1997, 2000 31

3. Enter the name of your To-Do List applet (for example, ToDoList) in the Pattern
field. As you enter the name, the Type Names list changes to include only the
types (that is, the classes and interfaces) that match what you have entered so
far.

4. Select your To-Do List applet from the Type Names list. If packages are listed
in Package Names, it means that more than one package has a class with the
name you specified. Select the package in which you created the To-Do List
applet and click OK.

5. The list of projects is updated. The project and package that contain your
applet are expanded, and the class for your applet is selected.

Now you have found the class for your applet, you are ready to version it.

Tip: You could also search for the To-Do List applet using the Open Type dialog.
You can access it by selecting Workspace > Open Type Browser, and following
steps 3 to 5 above.

If you want to search for a program element that is not a type (for example, a a
project or a package, you can search for it in the Workbench. For example, in
program element panes, if you type a letter, VisualAge for Java selects the first
displayed program element that begins with that letter. If you type the same letter
again, the next program element that begins with that letter is selected.

Versioning the To-Do List applet
When you version an edition of a program element, you give it a name and
explicitly save its current state. When you make more changes to the code and
save these changes, a new edition is created based on the versioned edition. If you
decide you want to undo your changes or try a different set of changes, you can
simply return to the versioned edition.

Before you make any changes to your To-Do List applet class, version it so you can
return to it if necessary. To version the class for your applet:

32 Getting Started

1. In the Workbench window, ensure that the class for your applet is selected.
From its pop-up menu, select Manage > Version. The Versioning Selected Items
SmartGuide opens.

2. Ensure that the Automatic radio button is selected and click OK. If Show

Edition Names is selected in the toolbar, a version name appears next to
the class.

The next time you modify this class and save it, VisualAge for Java creates a new
edition based on the code in this versioned edition. If you run into problems while
you are making updates to your applet, you can return to the previous edition of
the To-Do List applet that you versioned.

Editions are managed by a team of developers in the Enterprise
edition. Only owners of editions can version them. Also, versioning is often
followed by releasing. For more information on the team development
environment, refer to the team programming section of this document.

Enabling state checking of the To-Do List applet
Now that you have versioned an edition of your applet, you are ready to add state
checking.

Desired behavior of the Remove push button
Currently, the Remove push button is always enabled, even if no items are in the
list. Here is how the Remove push button should work:
v When the applet starts, the Remove push button should be disabled.
v When an item is selected in the To-Do List, the Remove push button should be

enabled.
v When a selected item in the To-Do List has been deleted, the Remove push

button should be disabled.

To get the desired behavior for the Remove button, you will do the following
tasks:
v Open the To-Do List applet in the Visual Composition Editor .
v Set the properties of the Remove push button so it is disabled when the applet

first starts.
v Add an event-to-code connection to enable the push button when an item is

selected in the To-Do List.

Opening your To-Do List applet in the Visual Composition Editor
First, open your To-Do List applet class in the Visual Composition Editor:
1. Right-click the ToDoList class in the Workbench.
2. From the pop-up menu, select Open To > Visual Composition.

3. The free-form surface should look like this:

Chapter 4. Adding state checking to the To-Do List applet 33

Setting the properties of the Remove push button
Now set the properties of the Remove push button so it is disabled when the
applet starts:
1. From the Remove push button’s pop-up menu, select Properties. The Properties

window opens.

2. Select the field to the right of enabled. Select False from the drop-down list in
this field and close the Properties window. The Remove push button should
now appear disabled:

Adding a connection to enable and disable the Remove push button
Next, add the connection that enables the Remove push button when an item is
selected in the To-Do List:
1. Select the JList bean.
2. From its pop-up menu select Connect > Connectable Features. A connection

window opens.
3. Select the Event radio button. Select listSelectionEvents. Click OK. The mouse

pointer changes to indicate that you are in the process of making a connection.
4. Complete the connection by clicking on the free-form surface and selecting

Event to Code.

34 Getting Started

The Event-to-Code Connection window appears. By default, VisualAge for Java
creates a new method stub called jList1_ListSelectionEvents().

5. Copy the following code over the method stub:
public void jList1_ListSelectionEvents() {

if (getJList1().getSelectedIndex() < 0)
getRemoveButton().setEnabled(false);

else
getRemoveButton().setEnabled(true);

return;
}

This method calls the getSelectedIndex() method of JList1. If the method
returns -1, no items are selected in the list, and the enabled property of
RemoveButton is set to false. Otherwise, enabled is set to true.

6. Click OKto close the window. Your To-Do List should now look like this:

Saving and testing your changes
Before you continue, save your work and test it:
1. To save the current state of your work in the Visual Composition Editor, select

Bean > Save Bean.

2. To test the changes you made, select Run from the toolbar. The Applet
Viewer appears with your applet.

3. Experiment with the applet to ensure that the behavior of the Remove push
button is correct. Ensure that the Remove push button is disabled when the
applet starts and then becomes enabled as soon as an item is selected in the
To-Do List.

You have successfully added state checking to your To-Do List applet. Now that
you have a new level of your code working, create another versioned edition of it
by following the steps in “Versioning the To-Do List applet” on page 32.

Working with your source code
Now that you have create your applet and added state checking to it, take a
moment to look at the code that VisualAge for Java has automatically created by
following these steps:
1. In the Workbench, select the ToDoList class.
2. Expand it by clicking the plus (+) sign.

Chapter 4. Adding state checking to the To-Do List applet 35

3. Select main. This method (which was automatically created by VisualAge for
Java), enables you to run your applet as an application. The Java source code is
displayed in the Source pane of the Workbench window.

4. Select other methods and fields to examine their code.

You can edit the code for these methods and fields directly in the Source pane of
the Workbench. The IDE automatically format how your code appears when you
type it in the Source pane. To set code formatter options, including indentation and
new-line controls, follow these steps:
1. In any window select Window > Options. The Options dialog opens.
2. Expand the Coding item by clicking the + sign.
3. Select Formatter to select when you want a new line of code to start.
4. Select Indentation to select an indentation style for your code.

These specifications are automatically applied to all new code. If you have
imported code from the file system, or if you change the formatting options, you
can apply the options to code in a source code pane’s pop-up menu. Press F1 in
the Options dialog to learn more about these options.

You can print the contents of any projects, packages, types (classes/interfaces), or
methods in the Integrated Development Environment (IDE). When you print a
program element, you can select to print the contents of the program elements it
contains. For example, when you print a package, you can also print the classes in
the package.

To print the To-Do List project, follow these steps:
1. In the Workbench, select the My ToDoList project. From its pop-up menu,

select Document > Print. The Print dialog box opens:

2. By default, all the options under Projects, Packages, and Types are selected,
and Entire Method is selected under Methods. You can clear any of these
options.

3. Click OK to start printing. If no default printer has been selected, a message
appears asking you to select one.

36 Getting Started

Chapter 5. Enhancing the To-Do List applet

In the previous section, you added state checking to your simple To-Do List applet.
This section leads you through the steps of modifying your simple To-Do List
applet so that it can save To-Do lists to named files and open files containing
To-Do lists.

As you modify your applet, you will learn about:
v Creating new methods
v Adding business logic code in the Visual Composition Editor
v Updating the user interface
v Running code as an applet or an application

Note: This section assumes that you have completed the steps described in
“Adding state checking to your applet.” You should now have a completed,
working To-Do List applet with simple state checking. If you have not done so
already, please complete the steps to add state checking to your To-Do List applet.

Before jumping into the modifications that you will be making to your applet to
create the updated To-Do List program, review how the finished program will
work.

Here is what the To-Do List program will look like:

Like your existing applet, the updated To-Do List program adds the text in the
To-Do Item field to To-Do List when you select the Add button. When you select
the Remove button, the program removes the selected item from the To-Do list.

What about the new buttons? Here is an overview of their behavior:
v When you select Open To-Do File, the program loads the contents of a list file

into the To-Do List program.
v When you select Save To-Do File, the contents of the To-Do List are copied into

the list file.

© Copyright IBM Corp. 1997, 2000 37

In addition to the differences in interface and behavior, there is one other
important difference between the To-Do List applet and the To-Do List program.
Because it needs access to the file system to read and write files, the To-Do List
program must be run as an application rather than an applet. Java applets are not
allowed to access the file system.

Important: If you run this as an applet, do not attempt to save or open the To-Do
List file. If you do, the applet will not save or open the file properly. If you run
this sample from main(), the save function works properly.

Running the To-Do List from main():
1. From the Project page of the Workbench, right-click the ToDoList class and
select Run.
2. Select Run main. You may need to resize the window to view the applet
properly.

Searching the workspace

You can use the Search dialog to perform powerful searches of the workspace. This
search mechanism searches the workspace (or a part of it) for program elements or
text. You cannot use the Search dialog to search directly for projects or packages,
but you can search for the program elements (classes, interfaces etc.) in them. It
can find declarations of and references to program elements.

To search for the ToDoList class:

1. Click the Search button on the Workbench’s toolbar. The Search dialog
opens. If you selected text or a program element before launching the search,
the Search string field will contain what was selected.

2. Type ToDoList in the Search string field.
3. If it is not already selected, select the Type radio button.
4. Click Start.
5. The Search Results window opens. The ToDoList class will be listed in your

search results matches.

You can edit the code for the ToDoList class in the source pane of the Search
Results window. For more information about the Search dialog, refer to the online
help.

Importing the required classes
The new methods require two classes to be imported: com.sun.javax.swing.* and
java.io.* To import these additional classes:
1. From the Workbench, select the ToDoList class.
2. In the Source pane, add these statements beneath the existing import

statements for the java.applet.* and java.awt.* classes:
import javax.swing.*;
import java.io.*;

38 Getting Started

Adding a static variable required by the new methods
The new methods require a static variable to hold the name of the file in which the
to-do list will be saved. Add this variable as follows:
1. From the Workbench, select the ToDoList class.
2. In the Source pane, add this statement beneath the fields defined for the class:

static String FILE_NAME = “todo.lst”;

Save your changes by right-clicking in the Source pane and selecting Save.

Tip: You can search for references to a selected type or one of its fields. From the
ToDoList class’ pop-up menu select References To > This Type to search for
references to the selected type. Select References to > Field to search for references
to one of its fields.

For methods, the References To pop-up menu option has sub-options that search
the workspace for references to the selected method, methods it calls, fields it
accesses, or types it references. The Declarations Of sub-options search for
declarations of these same program elements. Results of the search are displayed in
the Search Results window.

Adding a method for reading files

Now you are ready to create a method called readToDoFile(). This method reads
the contents of a list file line by line and adds each line to the DefaultListModel1
instance.
1. Right-click the ToDoList class in the Workbench.
2. From the pop-up menu, select Add > Method.

3. When the Create Method SmartGuide appears, enter the following method
name:
void readToDoFile()

4. Select Finish to generate the method.
5. Select the new method and add the code to implement it. If you are viewing

this document in a browser, you can select the following code, copy it, and
paste it into the Source pane. The finished method should look like this:
public void readToDoFile() {

FileReader fileInStream;
BufferedReader dataInStream;
String result;
try {
// read the file and fill the list
fileInStream = new FileReader(FILE_NAME);
dataInStream = new BufferedReader(fileInStream);
// clear the existing entries from the list
getDefaultListModel1().removeAllElements();
// for each line in the file create an item in the list
while ((result = dataInStream.readLine()) != null) {

if (result.length() != 0)
getDefaultListModel1().addElement(result);

}
fileInStream.close();
dataInStream.close();
} catch (Throwable exc) {

handleException(exc);
}
return;

}

Chapter 5. Enhancing the To-Do List applet 39

Tip: You can access context-sensitive help for Java keywords while you are
entering the source code. For example, when you type the line:
try {

highlight try and select View Reference Help from its pop-up menu.The Java
keyword help file for try, which contains information about what the keyword
does and when to use it, opens.

You can also access API reference help for a package, type, or member. For
example, when you type the line:
String result;

highlight String by double-clicking it, and select View Reference Help from its
pop-up menu.

6. Select Edit > Save to save your changes and recompile.

Before continuing with the next task, review the code in this method:
1. At the beginning of the method, there are declarations of the fields that are

used to manipulate the file and its contents.
FileReader fileInStream;
BufferedReader dataInStream;
String result;

2. Next, statements associate the file with a FileReader and associate the
FileReader with a BufferedReader. Using a BufferedReader makes it possible to
read the file a line at a time. You defined the static FILE_NAME variable
previously.
try {

// read the file and fill the list
fileInStream = new FileReader(FILE_NAME);
dataInStream = new BufferedReader(fileInStream);

3. Next, we clear the list. Then, a loop reads the file one line at a time into the
String result. If result is not a zero-length String, it adds the value of result
to the list model.
// clear the existing entries from the list
getDefaultListModel1().removeAllElements();
// for each line in the file create an item in the list
while ((result = dataInStream.readLine()) != null) {

if (result.length() != 0)
getDefaultListModel1().addElement(result);

}

4. At the end of the try block, statements close the streams associated with the
file.
fileInStream.close();
dataInStream.close();}

5. The catch block passes any exceptions to handleException(). VisualAge for Java
generates this method for all visually composed classes. The comment
delimiters have been removed.
catch (Throwable exc) {

handleException(exc);
}

}
...
handleException(Throwable exc) {

40 Getting Started

/* Uncomment the following lines to print uncaught exceptions to stdout */
System.out.println(“--------- UNCAUGHT EXCEPTION ---------”);
exception.printStackTrace(System.out);
}

Adding another method for writing files
You have one more method to add to the ToDoList class: writeToDoFile(). This
method writes the contents of the list model line by line into a list file.
1. Right-click the ToDoList class in the Workbench.
2. From the pop-up menu, select Add > Method. When the Create Method

SmartGuide appears, enter the following in the method name:
void writeToDoFile()

3. Select Finish to generate the method.
4. Select the new writeToDoFile() method and add the code to implement it. If

you are viewing this document in a browser, you can select the following code,
copy it, and paste it into the Source pane. The finished method should look like
this:
public void writeToDoFile() {

FileWriter fileOutStream;
PrintWriter dataOutStream;
// carriage return and line feed constant
String crlf = System.getProperties().getProperty(“line.separator”);
// write the file from the list
try {
fileOutStream = new FileWriter(FILE_NAME);
dataOutStream = new PrintWriter(fileOutStream);
// for every item in the list, write a line to the output file
for (int i = 0; i < getDefaultListModel1().size(); i++)
dataOutStream.write(getDefaultListModel1().getElementAt(i) + crlf);
fileOutStream.close();
dataOutStream.close();
} catch (Throwable exc) {

handleException(exc);
}
return;

}

5. Select Save from the Edit menu to save your changes and recompile.

This code is similar to that for readToDoFile(). Before continuing with the next
step, review the loop that actually writes lines to the file:
// for every item in the list, write a line to the output file
for (int i = 0; i < getDefaultListModel1().size(); i++)

dataOutStream.write(getDefaultListModel1().getElementAt(i) + crlf);

This loop goes through each item in the list model. Each item is appended with
crlf (a String consisting of the line separator characters) and written to the file.
The line separator characters force each item to be written on a separate line in the
file.

Testing the code using the Scrapbook
Before continuing, pause and consider the line separator for a moment. Suppose
you have never seen this before and you want to see how it works. You can use
the Scrapbook window to test out a code fragment that exercises this part of your
class.

To test the line separator code:
1. Select Window > Scrapbook. The Scrapbook window opens.

Chapter 5. Enhancing the To-Do List applet 41

2. Enter the following code into a page in the Scrapbook window:
String crlf = System.getProperties().getProperty(“line.separator”);
System.out.println(“Here is one line.”+crlf+“And here's another line.”);

Tip: When you are entering the code, you can use code assist to help you. Press
Ctrl+Spacebar in the source code pane or Scrapbook. Code assist is available in
any window that contains source code.

Code assist shows you a list of classes, methods, and types that could be
inserted in the code at the cursor. For example, when you type String, press
Ctrl+Spacebar after you have typed St and a pop-up list of options will appear.
Scroll down to String and double-click it to select it.

To access code assist for methods and fields, you can enter the name of a
object, a period(.), and a few letters from the start of a method or field, then
press Ctrl+Spacebar. For example, type String crlf = System.get and then press
Ctrl+ Spacebar. A list of methods, including getProperties appears. Double-click
getProperties to select it.

If pressing Ctrl+Spacebar does not launch code assist on your system, try using
Ctrl+L. For more information about using and customizing code assist, refer to
the online help.

3. Select both lines of code and select Run from the Scrapbook window
toolbar.

4. Select Window > Console. The Console window displays standard output.
Notice that the line separator splits the output so that it appears on separate
lines.
It also gives you an area for entering input to standard input.If more than one
thread is waiting for input from standard in, you can select which thread gets
the input.
The Console window should look like this:

This simple example demonstrates how you can use the Scrapbook window to try
out a piece of code quickly and conveniently.

42 Getting Started

You can clone the Console window. Cloning a window in the IDE creates a
duplicate instance of the current window. To clone it, select Window > Clone. For
more information, refer to the online help.

Adding buttons to the To-Do List applet
You have completed all of the steps that added logic to the To-Do List class. Now
you are ready to make modifications to the user interface of the To-Do List applet.
Your current To-Do List applet should look like this:

You need to add two new buttons to this user interface:
v An Open To-Do File push button to trigger opening a file to read into the To-Do

list
v A Save To-Do File push button to trigger saving the contents of the To-Do list to

a file

To add these two push buttons:
1. Right-click the ToDoList class in the Workbench. From the pop-up menu, select

Open To > Visual Compositon.

2. The free-form surface appears. It should look like this:

3. Select a JButton bean and add a push button under the existing Remove push
button. Name it ReadButton. You may need to move your Add and Remove
push buttons or lengthen the free-form surface to make space for your new
push button.

Chapter 5. Enhancing the To-Do List applet 43

4. Select the push button you just added and change its text to Open To-Do File.
To change the text:
v Open the Properties window for the ReadButton.
v Change the value of text to Open To-Do File.

5. Follow the same procedure to add another push button below ReadButton.
Name it SaveButton. Change the text of this push button to Save To-Do File.

6. Size the new push buttons to match the width of the existing buttons:
v Select the Open To-Do File push button. Hold down the Ctrl key and select

the remaining buttons so that all four buttons are selected. The last bean
selected has solid selection handles, indicating that it is the anchor bean. The
anchor bean is the bean that acts as the guide for resizing or the bean that
the other selected beans match.

v Select Match Width from the toolbar.
7. Align the two new push buttons with the existing buttons:

v Select Save To-Do File push button. Hold down the Ctrl key and select the
other three push buttons. The Add push button should be your anchor bean.

v Select Align Left from the toolbar.
8. Distribute evenly all the four push buttons. Since you have all the push buttons

already selected, click Distribute Vertically on the toolbar.

You have added the two new push buttons for the To-Do List program. Now you
are ready to associate them with an action.

Connecting the Open To-Do File button
Now that you have added all the new beans to the free-form surface, you are
ready to begin connecting them.

The To-Do List applet should call the readToDoFile() method when a user selects
the Open To-Do File button. To implement this, you must connect the Open
To-Do File to the readToDoFile() method.
1. Select the Open To-Do File button. Select Connect > actionPerformed from its

pop-up menu.
2. Click on the free-form surface and select Event to Code.

44 Getting Started

3. In the Event to Code window, select readToDoFile() from the Method list and
then click OK. The free-form surface should look like this:

4. Save your current work in the Visual Composition Editor by selecting Bean >
Save Bean. VisualAge for Java generates code to implement the connections
you just specified.

You have now implemented the Open To-Do File button. Now you are ready to
test the work you have done so far on the To-Do List program.

Testing the Open To-Do File button
Now that you have made all the connections for the Open To-Do File button, you
are ready to test the work you have done so far.

To test the current state of the To-Do List program:
1. Prepare a simple text file to use for testing. Use the Scrapbook window to

create a file called todo.lst with the following lines in it:
Get a mortgage
Buy home
Buy 2nd car
Renovate home
Ask for a raise

Save the file in the c:\IBMVJava\IDE\project_resources\My ToDoList Project
directory, where c:\IBMVJava is your VisualAge for Java installation directory.

2. Right-click the ToDoList class in the Workbench. From the pop-up menu, select
Run > Run main. The To-Do List program appears.
Important: You must run the file using Run > Run main. Do not click the Run

icon, because this will run the program as an applet, and the applet will
not save or open the file properly.

3. Select the Open To-Do File button. The To-Do List in your program should
now be loaded with the items from the todo.lst file:

Chapter 5. Enhancing the To-Do List applet 45

Now that you have tested your current progress on the To-Do List program, you
are ready to complete the program by making the connections from the Save
To-Do File button.

Connecting the Save To-Do File button
You are now ready to make the final connection from the Save To-Do File push
button.

The To-Do List applet should call the writeToDoFile() method when a user selects
the Save To-Do File push button. To implement this, you must connect the the
Save To-Do File push button to the writeToDoFile() method.
1. Select the Save To-Do File button. From its pop-up menu, select Connect >

actionPerformed.
2. Click on the free-form surface. From the pop-up menu that opens, select Event

to Code.
3. In the Event to Code window, select writeToDoFile(). Click OK. The free-form

surface should look like this:

Now that you have completed the connection from the Save To-Do File button,
your To-Do File program is complete. You are ready to test it.

46 Getting Started

Saving and testing the enhanced To-Do List applet
To save and test your completed To-Do List program:
1. Select Bean > Save Bean to save your changes. VisualAge for Java generates

the code to implement all the work you have done in the Visual Composition
Editor since the last time you saved.

2. Right-click the ToDoList class in the Workbench. From the pop-up menu, select
Run > Run main.
Important: You must run the file using Run > Run main. Do NOT click the

Run push button because this will run the program as an applet, and the
applet will not properly save or open the file.

3. Try creating and saving a new To-Do file:
v Add the following items to the To-Do List. For each item, enter the item in

the To-Do Item field and select Add:
Get paint
Get wallpaper
Spouse says OK?
Start painting
Start wallpapering

v Select Save To-Do File.
4. Close the program, then rerun it.
5. Select Open To-Do File. The list that you entered previously should appear in

the window.

You have now completed a Java program that combines a user interface created in
the Visual Composition Editor with nonvisual code that you created directly.

Chapter 5. Enhancing the To-Do List applet 47

48 Getting Started

Chapter 6. Managing the To-Do List applet edition

You have just reached a milestone in the development of your program, and you
are ready to start coding some new features. Maybe you just want to explore a
different implementation of a method that already works, but you are not sure if
changes or additions will introduce new problems. This is a good time to create a
versioned edition of your code.

With VisualAge for Java, you can manage multiple editions of program elements.
You have already seen some of the concepts for managing editions. This section
briefly reviews these concepts and shows you how to use the edition management
features of VisualAge for Java.

Editions are managed by a team of developers. For information, refer
to the team programming section of this document.

As you have been saving your program elements, VisualAge for Java has been
keeping track of your code. In fact, the code on which you are working is saved in
an edition. An edition is a “cut” or “snapshot” of a particular program element.

To see more information about the edition you are working on, from the

Workbench window’s toolbar click the Show Edition Names button. Each
program element includes either an alphanumeric name or a time stamp beside it;
this is the edition information (described below in more detail). You can also see
edition details from the Source pane. For example, select your ToDoList class and
move the mouse pointer over the applet icon in the Source pane’s title bar. The
hover-help window displays the edition information. The same information is also
displayed in the status area below the Source pane.

An edition of a program element keeps track of all code within that program
element, and all the other program elements that it contains. For example, an
edition of a package includes classes and interfaces and the methods within these
classes and interfaces.

At any time, the workspace contains only one edition of a given program element:
the edition that you are currently working on. VisualAge for Java also includes a
source code repository, which contains all editions of the same program element.
The workspace is the center of activity in the VisualAge for Java programming
environment. The repository is not a development environment, but you can
browse and retrieve its contents as needed. You can save as many editions of a
program element as you wish. All editions are stored and are accessible from the
repository.

There are two fundamental types of editions:

Open edition.
An open edition of a program element can be modified. You can bring this
edition into the workspace, making it the current edition, and change it as
required. Open editions are marked by time stamps. For example, (7/9/98
8:44:52 AM) is an open edition.

Versioned edition.
A versioned edition of a program element cannot be changed. When you

© Copyright IBM Corp. 1997, 2000 49

version an edition, you establish a frozen (read-only) code base to which
you can revert any time. Versioned editions are designated by
alphanumeric names (for example, 1.0).

The edition that is in the workspace may be a versioned edition, although any
changes you make and save automatically create a new open edition.

Every time you save a program element, your code is incrementally compiled, and
the open edition is updated in both the workspace and the repository.

Versioning the applet

You can version a project, a package, or a class. When you version one of these
program elements, all program elements contained within it are also versioned. For
example, if you version a package, all classes that are part of that package are also
versioned.

Create a versioned edition of your code:
1. Select the package in which you created your To-Do List applet. From the

pop-up menu, select Manage > Version. The Versioning Selected Items
SmartGuide opens.

2. Ensure the Automatic radio button is selected and then select OK.

In the Workbench hierarchy, notice that the time stamp beside the package name
has been replaced with the new version number. This versioned edition is now
permanently stored in the repository.

Updating the To-Do List code again
Now that you have a versioned edition of your program in the repository, you can
change your program elements in the workspace with the assurance that you can
always revert to the versioned edition.

Because a versioned edition cannot be modified, you will need to create a new
open edition from the versioned edition before you can continue changing the
program element. If the edition in the workspace is the versioned edition, a new
edition is automatically created for you if you make changes to the program
element and then save it. For example:
1. Select your ToDoList class in the Workbench, and type a new comment in the

Source pane.
2. From the pop-up menu in the Source pane, select Save.

50 Getting Started

Notice that the edition name changes from the versioned edition name to a time
stamp. Because the workspace can only hold one edition of a program element at
any given time, the new edition replaces the versioned edition. (Of course, a copy
of the versioned edition can always be retrieved from the repository.)

You can replace an edition that is in the workspace with another edition from the
repository. Note that the current edition is always marked by an asterisk (by
default) to the left of the edition name when you browse an edition list in the
repository.

Follow these steps to browse the Repository Explorer and view your versioned
edition of the ToDoList class:
1. In the Workbench, select Window > Repository Explorer.
2. Click the Projects tab. In the Project Names column, select My ToDoList

Project.
3. In the Editions column, select the current edition, which will be marked by an

asterisk , and then select the todolist package in the Package
column.

4. The versioned copy of the ToDoList class you just created will appear in the
Types column.

Adding a counter to the To-Do List applet

Now add a counter to the To-Do List applet, which will reflect the number of
items in the To-Do list at any given time. To add this feature, you need to change
the applet as follows:
1. Add labels for the counter name and the counter itself.
2. Connect the Add, Remove, and Open To-Do File push buttons to the counter

label.

When modified, the running applet will look like this:

Adding counter labels to the To-Do List applet
To add the two labels using the Visual Composition Editor:
1. Right-click the ToDoList class in the Workbench.

Chapter 6. Managing the To-Do List applet edition 51

2. From the pop-up menu, select Open To > Visual Composition. This opens the
ToDoList class in the Visual Composition Editor.

3. To make it easier to create the new connections, hide the existing connections

by selecting Hide Connections from the toolbar:
4. Select a JLabel bean from the palette.
5. Click beneath the list to add the label. You may wish to select the scroll pane,

the text field and the labels and move them slightly up to make room for the
new label.

6. Modify the text of the JLabel bean to Item Counter:

7. Add another JLabel bean to the right of the JLabel bean you just added.
8. Double-click on this new JLabel bean to open its Properties window. Select the

value field to the right of the horizontalAlignment field. From its pull-down
menu, select RIGHT, which right-justifies the value. In the text field, change
the value to 0, which is the initial value of the counter. Close the Properties
window.

The visual beans have been added. The free-form surface should look like this:

Now you are ready to add the connections.

Note: All of the other connections you made are still there, they are just hidden
now because you selected Hide Connections from the toolbar. The new
connections that you make in the next step will not be hidden.

From the Bean menu, select Save Bean. The changes you’ve made are reflected in
this open edition, both in the workspace and in the repository.

Connecting the To-Do List counter labels
To connect the Add push button to the counter:
1. Select the Add push button and from its pop-up menu select Connect >

actionPerformed.
2. Position the mouse over the counter and click.
3. From the pop-up menu, select text. A dashed green line now appears,

indicating an incomplete connection.

52 Getting Started

4. Select the connection and select Connect > value from its pop-up menu.
5. Position the mouse over the DefaultListModel bean and click.
6. From the pop-up menu, select Connectable Features to bring up the End

connection to (DefaultListModel1) window.
7. From the Property list, select size and then click OK. This provides the count

of the list of items as input for setting the counter string. The connection is
now complete.

8. Connect the Remove and Open To-Do File push buttons in the same manner.
You’re simply updating the count of items in the list whenever an action is
taken that may modify the count. In this applet, any of the top three buttons
have this potential.
Now the free-form surface should look like this:

9. Select Bean > Save Bean. Right-click the ToDoList class in the Workbench.
From the pop-up menu, select Run > Run main.

Important: You must run the file using Run > Run main. Do NOT click the

Run button because this will run the program as an applet, and the
applet will not save or open files properly.

10. Test the To-Do List applet to make sure the counter works by adding and
removing items from the To-Do List.

Returning to a previous edition of the To-Do List

Your program now contains a counter. It works fine, but after thinking about it for
a while, you decide that you want to keep the interface as clean as possible - no
bells and whistles. So, now you want to take out the counter code. Of course, you
could just delete the labels and connections you’ve added, but you might
inadvertently delete one of the other program elements or connections. Do not
worry: Remember, you versioned the previous edition!

Follow these steps to replace the current edition with a previous edition from the
repository:
1. Select the ToDoList class in the Workbench.
2. From its pop-up menu, select Replace With > Another Edition.

Chapter 6. Managing the To-Do List applet edition 53

3. From the Select replacement for ToDoList window, select the edition that you
previously versioned and select OK.
(Because you want to replace the current edition with the previous edition, you
could have also selected Replace With and then Previous Edition from the
pop-up menu.)

The edition information beside the class name now indicates the version number,
not the time stamp of the open edition you had been working on.

If you change your mind again and decide that the counter should stay, you can
always add it back; the edition that contained the counter is still in the repository.

Debugging
Now that you have finished developing your applet, you can debug it with the
IDE integrated debugger. You can use the integrated debugger to debug applets and
applications running in the IDE.

Opening the debugger
You can open the debugger manually by selecting Window > Debug > Debugger.
If a program is running, you can suspend its thread and view its stack and
variable values. The debugger will also open automatically, with the current thread
suspended, for any of several reasons:
v A breakpoint in the code is encountered.
v A conditional breakpoint that evaluates to true is encountered.
v An exception is thrown and not caught.
v An exception selected in the Caught Exceptions dialog is thrown.
v A breakpoint in an external class is encountered.

Setting breakpoints
When a program is running in the IDE and encounters a breakpoint, the running
thread is suspended and the Debugger browser is opened so that you can work
with the method stack and inspect variable values. In the IDE, you can set
breakpoints in any text pane that is displaying source. Suppose that you want to
set a breakpoint in the writeToDoFile() method in the ToDoList class from the
To-Do List program.

To set this breakpoint:
1. Select the ToDoList class in the Workbench. Expand the class to show its

methods.
2. Select the writeToDoFile() method. The source for the method is shown in the

Source pane.
3. Place the cursor in the following line and select Edit > Breakpoint:

dataOutStream.write(getDefaultListModel1().getElementAt(i) + crlf);

Click OK to close the Configuring: Breakpoint window.
4. A breakpoint indicator appears in the margin of the Source pane beside this

line:

54 Getting Started

You can also set a breakpoint on a line that does not already have a breakpoint by
following these steps:
1. Move the cursor to the line.
2. Right-click and select Breakpoint from the pop-up menu.

If you wanted to make this a conditional breakpoint (one that suspends the thread
under only certain conditions), you could do so by right-clicking the breakpoint
indicator, selecting Modify, and entering the expression in the field. See the online
help for more information on configuring breakpoints.

Removing breakpoints
To remove a breakpoint in a source pane, double-click the breakpoint indicator.
You can also remove a breakpoint by following these steps:
1. Select the breakpoint.
2. Select Clear from its pop-up menu.

Try removing the breakpoint you just set. Now reset it. You will be using this
breakpoint in the next section to examine the features of the Debugger browser.

Using the Debugger browser
The Debugger browser opens automatically when the program you are executing
reaches an active breakpoint or has an unhandled exception.

Now that you have set a breakpoint, run the To-Do List program to see what
happens:
1. In the Workbench, make sure that breakpoints are enabled:

v From the Window menu, select Debug and then Breakpoints.

v Ensure that the Global Enable Breakpoints button on the toolbar is in the
down (enabled) position. If not, click it.

v Close the Debugger window.
2. Right-click the ToDoList class in the Workbench. From the pop-up menu, select

Run > Run main.
Important: You must run the file using Run > Run main. Do not click the Run

button because this will run the program as an applet, and the applet will
not save or open the file properly.

3. When the To-Do List program appears, add at least three items to the To-Do
List and then select Save To-Do File. The Debugger browser window opens. It
should look like this:

Chapter 6. Managing the To-Do List applet edition 55

The thread that you are debugging is selected in the All Programs/Threads list.
The list of methods below the thread is the current stack. When you select a
method in the stack the Variable pane shows its visible variables. The Source
pane shows the source where the breakpoint is set.

4. Select the Resume button on the toolbar to continue execution of the
program. Because this breakpoint is inside a loop that writes each item to the
file, the thread is suspended again and the Debugger window displays it.

5. Examine some of the variables in the Variable list. For example, to see the value
of the loop counter variable i, select i from the Variable pane (it is at the
bottom of the list). Its value appears in the Value pane:

This value of the loop counter is exactly what you would expect, because the
loop has been run once.

6. Now disable this breakpoint:
v Select the Breakpoints tab in the Debugger browser. The Breakpoints page

appears:

56 Getting Started

v The Breakpoints page lists all the breakpoints that you have set in the
workspace. The Methods pane lists all the methods in which you have set
breakpoints. The Source pane displays the source for the method that is
selected in the Methods pane.

v To disable your breakpoints, click the Global Enable Breakpoints button
on the toolbar so that it is in the up (disabled) position. The breakpoint
indicator changes colors to show that it is disabled. Note that it is not
removed, but it will be ignored when the program resumes.

v Select the Debug tab to return to the Debug page.
7. Now select Resume from the toolbar to continue execution of the program. In

the To-Do List program, first remove the values you added in step 3, then add
the following values to the To-Do List and then select Save To-Do File to save
them to a file:
item A
item B
item C
last item

8. Remove all the items from the To-Do list. Now select Open To-Do File and
open the file you just saved. The To-Do List should look like this:
item A
item B
item C
last item

Before you continue, return to the Breakpoints page and enable your breakpoints
again by clicking the Global Enable Breakpoints button into the down position.

Chapter 6. Managing the To-Do List applet edition 57

More tasks you can perform with the integrated debugger
The debugger has many other features that you will find helpful for debugging
your programs. To learn more about the following tasks, as well as others, see the
online help.

Setting external and caught exception breakpoints
Besides setting breakpoints in code in the workspace, you can also set breakpoints
on methods in external classes (classes that reside outside the workspace, in the file
system, and that are loaded at run time). You can also specify exception types that
will break execution if they are thrown, even if your code catches and handles
them.

Stepping through code
When a running thread has been suspended, you can step through code line by
line or method by method, in a variety of ways. This is a controlled way of
checking variable values at each point in your program.

Using inspectors to view and modify variables
You can open an inspector window to look closely at a particular variable in a
suspended thread. The inspector lets you view and modify variable values and
evaluate expressions.

58 Getting Started

Chapter 7. Continuing applet coding in a team

Earlier you created a To-Do List program. Now, a team of six developers will
develop a more complicated version of it. See “Team programming” on page 83 for
the structure of the To-Do List team.

Team programming is only available with the Enterprise Edition of VisualAge for
Java.

Each team member’s responsibilities are determined by assigning ownership of
program elements. See “The To-Do List team roles” on page 84 for how the
ownership of objects in the team repository maps to the roles of the To-Do List
team members.

The team works together on the To-Do List program. See the “The To-Do List team
development cycle” on page 87 for how the team works together to develop a
product.

The To-Do List team held their first meeting this week. Tasha volunteered to set up
the server that will contain the shared repository, and to be the repository
administrator. Tasha has decided that the server will be called todoserv and that
the team will use a new repository called todoteam.dat for their project.

Setting up the server for the To-Do List team

Before the team can share source code, you must set up the server, start the server,
and configure the client workstations to connect to the server.

Each VisualAge for Java team server has the following components:
v At least one shared repository
v A program called EMSRV, which manages the client connections to the shared

repository

For detailed information about setting up the team server, refer to the “Server
setup and administration file” (emsrv70.htm) which is on the product CD. Refer to
the README in the root directory of the CD for the exact location of the Server
setup and administration file.

To set up the repository server, follow these steps:
1. Confirm that your server has an active connection to your TCP/IP network.

(You will need to know the host name or IP address of your server later, when
you configure the client workstations.) The host name of Tasha’s server is
todoserv.

2. If you have not already done so, install the VisualAge for Java server software
from the product CD. The server installation program will install the EMSRV
program in the directory that you specify, and it will create a repository called
ivj.dat in the same directory. (You will create a second repository later)
Instructions on installing the server software can be found in the Installation
and Migration guide on the product CD. Please refer to the README file for
the exact location of the guide.

© Copyright IBM Corp. 1997, 2000 59

Starting and stopping the server

After the VisualAge for Java server has been installed, you can start the EMSRV
program, which will manage the client connections.
1. The user who starts and stops the EMSRV repository server is called the

EMSRV user. In Windows NT, the EMSRV user must belong to the
Administrators user group and must have the NT advanced user right, “Act as
part of the operating system”. The EMSRV user requires access to the following
files:
v The shared repositories that EMSRV manages on the server
v The EMSRV log file (automatically created and owned by the EMSRV user)
v The passwd.dat file, if you are using it for password validation

Tasha has decided that she will start the server with her own user ID. She is
already a member of the Administrators group in Windows NT and she has
added the required authorizations. To start the server, use the emsrv command.
In this exercise, you will only use the basic options to start the server:

EMSRV -u userid -p password-W working directory

where userid is the EMSRV user’s ID, password is the EMSRV user’s password,
and working directory is the server directory where the ivj.dat repository file
resides.

The following example shows the command that Tasha enters to start the
server. Her password is abc123, and she has installed the VisualAge for Java
server files in a directory called javasrv. The messages confirm that the server
has started successfully.

At this point, you should start the EMSRV program on your own server, with a
user ID that has the required authorization. The “Server setup and
administration” file (emsrv70.htm) on the product CD provides detail
instructions on the following items:
v Authorizing the EMSRV user
v The EMSRV command

60 Getting Started

v Starting EMSRV as a Windows NT service

Refer to the README in the root directory of the CD for the exact location of
the Server setup and administration file.

Should you need to stop the repository server, the command to issue is emadmin
stop. Issuing this command will stop EMSRV after prompting you for the EMSRV
user’s password, as shown below.

If you have stopped EMSRV, restart it before you continue with the next section.

Connecting a client to the todoserv server
Now that the server is up and running, Tasha would like to connect from her
workstation to the ivj.dat repository on the todoserv team server that she just set
up.

Note that when you connect to a server, you must know its host name. Once you
connect to that server, VisualAge for Java will show you a list of the repositories
available.

In the following steps, it is assumed that you have already been using the
VisualAge for Java IDE on your workstation. You have probably been working
with a local repository on your own hard drive.

To connect your workspace to the server’s repository, do the following:
1. Verify that you have an active TCP/IP connection on the same network as your

server. Tasha does this by entering ping todoserv from a command prompt.
She receives a reply from the server, so she knows her network connection is
good.

2. From the Workbench window of the IDE, select Window > Repository
Explorer. The Repository Explorer window opens.

3. Select Admin > Change Repository.
4. Select Use shared repository. Enter the host name or IP address of your server

in the EMSRV server address field. Enter ivj.dat in the Repository name field.
Click OK.

Chapter 7. Continuing applet coding in a team 61

The previous picture shows the information that Tasha provides to connect to
the ivj.dat repository on the todoserv server. Because she specified a working
directory when she started the server, EMSRV will automatically locate ivj.dat
in that directory. Otherwise, Tasha could click Browse to find the repository on
the server now.

5. If you are the first person who has ever connected to this repository on this
server, you will be prompted to provide a network name for Administrator.
Administrator is the only VisualAge for Java user who can add other users to
the repository.
If you choose to enable password validation later, VisualAge for Java will use
Administrator’s network name to validate the administrator’s login. Tasha
plans to enable password protection later, so she enters her Windows NT user
ID. In these sections, you will work without password validation, so it does not
really matter what you enter as Administrator’s network name.
For more information refer to the “Server setup and administration” file
(emsrv70.htm), which is on the product CD. Refer to the README in the root
directory of the CD for the exact location of the Server setup and
administration file.

6. A progress indicator confirms that VisualAge for Java is connecting your
workspace to the ivj.dat repository on the server. When the connection is
complete, the Repository Explorer window shows you the projects that are in
the ivj.dat repository on the server.

Creating the To-Do List repository
In order to create a new repository for her team and set up VisualAge for Java user
IDs for them, Tasha will have to work as the repository administrator. Tasha knows
how VisualAge for Java projects are organized, and which responsibilities have
been assigned to each developer on the team.
1. In the following picture, Tasha’s name appears in the title bar of the Repository

Explorer window. She is the current workspace owner. That is why her name
appears in the window’s title bar.

62 Getting Started

If you do not see Administrator’s name in the title bar of your VisualAge for
Java windows, you will need to change to Administrator before you can
continue with this section. In the Repository Explorer window, select
Workspace > Change Workspace Owner. A window containing a list of users
for this repository opens. Select Administrator from the list and click OK.
Administrator’s name should now appear in the window’s title bar.

Adding the To-Do List team repository to the server

Tasha promised her team that she would create another repository, called
todoteam.dat, just for them. She will do this using a process called compacting,
which copies the existing repository. (Specifically, compacting copies versioned
elements from the existing repository, but does not copy open or purged elements.)

If you have several large software projects, you might choose to give each one a
repository and let each team manage its own repository. However, if you have only
a few small projects, continue using only ivj.dat.

In this section, you will learn how to create a new repository called todoteam.dat.
You will use this repository as you work on the team development scenarios in
this tutorial. Once you have finished all of the team sections, you can delete the
todoteam.dat file.

Also in this section, you will add users to the todoteam repository. Creating
repositories and adding users to repositories are two functions that only
Administrator can do. You will learn more about the role of the Administrator
later.

Creating a new repository
To create a repository, follow these steps:
1. Connect to the ivj.dat repository on your server as shown in an earlier section.
2. Confirm that Administrator is the current owner of your workspace.
3. Switch to the Repository Explorer window.

Chapter 7. Continuing applet coding in a team 63

4. Select Admin > Compact Repository.
5. When warned that only versioned elements will be copied to the new

repository, click Yes to continue.
6. As when you first connected to the server, you need to specify the host name

of the server where the new repository will be created. Tasha enters todoserv;
you must enter the name of your own server. You also need to enter the name
of the repository that you want to create, todoteam.dat.

7. Click OK to start the process of repository creation. When prompted to confirm
that you wish to create a new repository, click Yes. It may take a few minutes
for the new repository to be created.

Because you have created the new repository by compacting an existing one,
todoteam.dat will contain copies of all versioned elements from ivj.dat. For
information about other ways to create a repository, refer to the online help.

Connecting to the To-Do List team repository

Before you can use the new repository, you must connect to it by following these
steps:
1. From the Repository Explorer window’s Admin menu, select Change

Repository.

2. Click Browse to see a list of repositories (.dat files) in the working directory for
your server.

3. Select todoteam.dat from the list. If prompted, select Administrator as the
workspace owner.

Verifying which repository you are connected to
If, at any time, you want to confirm which repository you are connected to, you
can do so in the Properties window.

To view information about the repository you are connected to, perform the
following steps:
1. In the Repository Explorer select Admin > Properties. The repository status

appears in the Properties window. The repository name is qualified by the
server name. In the picture below, ivo2 is the server name and todoteam.dat is
the name of the repository. Luc’s name appear in the Workspace Owner field.
When you open the Properties window, the name of the server and repository
you are connected to will appear in the repository field, and the name of the

64 Getting Started

user who owns the workspace will appear in the Workspace Owner field.

2. Click OK to close the Properties window.

Adding users to the To-Do List team repository

Tasha has to do one more thing before the team can use the repository. She needs
to add a list of users who will be working with the todoteam.dat repository.
Specifically, she needs to add: Monica, Tasha, Luc, Margaret, Sam, and Susan.

Like Tasha, you will create a list of users for the todoteam repository before you
can continue with this section.
1. Select Admin > Users. The User Administration window opens, showing the

repository users. Because this is a new repository, Administrator is the only
user. You will create the others.

2. To add Monica as a user, click New. Enter the same information you see in the
picture below.

Chapter 7. Continuing applet coding in a team 65

The Unique Name is the name that VisualAge for Java actually uses to identify
the user. The Full Name is the name that VisualAge for Java displays in
windows and lists. The Network Login Name is used for password protection,
which you will not be doing in this section. For information on password
protection, refer to the online help or the “Server setup and administration” file
(emsrv70.htm) on the product CD. Refer to the README in the root directory
of the CD for the exact location of the Server setup and administration file.
Click Save. Monica is added to the user list.

3. Add Tasha, Luc, Margaret, Sam, and Susan in the same way.
4. Click Close when you have finished adding the six members of the team.
5. Now that you have finished setting up the users for the new repository, you

should work under your own name instead of the Administrator’s. In the team
environment, Administrator should only perform repository administration tasks, not
programming.

To identify yourself to the server as Tasha, from any menu bar of any VisualAge
for Java window, select Workspace > Change Workspace Owner. Select Tasha
from the list of users.

Server ready for team development
The To-Do List team server has been set up and started. The To-Do List team
repository, todoteam.dat, has been created. The users of that repository are:
Monica, Tasha, Luc, Margaret, Sam, Susan, and Administrator. In the following
sections, you will be connecting to the repository as these various users, so you
should verify now that you can connect as any one of them.

You are now ready to begin team development with the setup shown in the
following picture.

For detailed information about setting up the team server, refer to the “Server
setup and administration” file (emsrv70.htm), which is on the product CD. Refer to
the README in the root directory of the CD for the exact location of the Server
setup and administration file.

66 Getting Started

Owning To-Do List code

During the To-Do List team’s second meeting, Tasha informed them that the server
had been set up, but two things needed to be done before coding could begin.
Owners needed to be assigned to program elements, and these owners would have
to open editions of the program elements for the rest of the team.

The To-Do List team members are assigned various roles. Monica is the project
owner, Tasha is the package owner and Luc owns the classes. All of the team
members except Monica become package group members.

Project and package owners have three main responsibilities:
1. They create open editions of program elements to allow the team to make

changes to them.
2. They release their editions to update the team baseline.
3. They version their editions to preserve a team baseline.

As shown in the next diagram, Monica opens an edition of the To-Do List project.
The project can only be opened by the project owner. Similarly, Tasha opens the
package. When Monica and Tasha open the project and package editions, everyone
can use them. If Monica and Tasha do not open editions, then the team members
can only work with private editions called scratch editions. VisualAge for Java
enables owners of the code to decide when they want their code open or closed for
public development.

Since Java development is iterative, opening editions and versioning projects will
usually happen several times during the development cycle, as the team sets new
baselines.

Chapter 7. Continuing applet coding in a team 67

Assigning team roles for the To-Do List project

Now, working as Administrator, you will add a project from the shared repository
to your workspace, assign ownership of various program elements, and add
members to a package group.

The To-Do List project is found in the IBM Java Examples project. To assign
ownership of the project and its contents, follow these steps:
1. Connect to the todoteam.dat repository as Administrator.
2. If the IBM Java Examples project is not already in your workspace, add it

from the shared repository now. Select the Projects tab in the Workbench.
From the Selected menu, select Add > Project. Select Add projects from the
repository. Select IBM Java Examples from the available project names pane
and the latest edition from the available editions pane. Click Finish. The
project is added to your workspace.

3. In the Workbench window, click the Managing tab. The Managing page
provides a management view of the project. The code, the owners of the code,
and the package group members are displayed.

4. In the Projects pane of the Managing page, click IBM Java Examples. The
Project Owner pane shows who currently owns the project: Administrator.
You will change the owner to Monica.

5. Select Projects > Manage > Change Owner.

68 Getting Started

6. The Change Owner window opens. Select Monica from the list. Click OK.
Monica is now the project owner.

7. Before you can make Tasha the owner of the com.ibm.ivj.examples.vc.todolist
package, she must be a package group member. Select
com.ibm.ivj.examples.vc.todolist from the Packages pane. Select Packages >
Manage > Add User to Group.

8. The Add Users window opens, listing the repository users who are not yet
members of the package group. Hold down the Ctrl key to select Luc,
Margaret, Sam, Susan, and Tasha from the list. Click OK. The package group
members now appear in the Package Group Members pane.

9. Administrator is the current package owner, as indicated by a right angle
bracket (>). To change the package owner to Tasha, select her name in the
Group Members pane, and then select Set as Owner from the pop-up menu.
The package ownership marker (>) now appears next to Tasha’s name. Make
sure that you select Set as Owner, not Set as Workspace Owner.

10. Next, you will change the class owner of ToDoList to Luc. Select ToDoList
from the Types pane. From the pop-up menu, select Manage and then Change
Owner The Change Owner window opens. Select Luc from the list and click
OK.

The team roles have now all been assigned. As the new package owner, only Tasha
can add and delete package group members now. She should immediately remove
Administrator from the group, so that no one accidentally creates a class or makes
code changes while working as Administrator.
1. Change the workspace owner to Tasha.
2. Select Administrator from the Package Group Members pane, then select

Remove from the pop-up menu.

The Managing page of the Workbench should now appear as follows:

Chapter 7. Continuing applet coding in a team 69

Opening a project edition of the To-Do List

Scratch editions are private editions. Only their creator can use them. In the
diagram below, Margaret and Sam have their own private editions of the ToDoList
package. Scratch editions allow developers to experiment with code without
affecting the mainstream development of the project. Open editions, created by the
owners of program elements, are the ones used to develop the project.

To open an edition in a standalone environment, you simply open an edition
yourself. In a team environment, you are dependent on the owners of the project
and package to open editions.

70 Getting Started

As Monica, open an edition of the To-Do List project by following these steps:
1. Change the workspace owner to Monica.
2. Click the Projects tab in the Workbench window. Select IBM Java Examples.

Select Selected > Manage > Create Open Edition.

3. An open edition of the project is created. To verify this, click the Managing tab.
In the Projects pane, IBM Java Examples is followed by a date and time in
parentheses, indicating that it is an open edition.

Creating a scratch edition of the To-Do List package

The next step in the process should be for Tasha, the package owner, to open an
edition of the To-Do List package. Before she does that, however, we are going to
look at what would happen if a team member decided to start working with the
To-Do List class before Tasha had opened the To-Do List package.

Margaret has decided she wants to start working with the To-Do List class and
experiment with changing the color of the To-Do Item text field. She decides to

Chapter 7. Continuing applet coding in a team 71

start working with the class before Tasha has opened an edition of the To-Do List
package. VisualAge for Java creates a scratch edition of the To-Do List package for
her.

A scratch edition, being private, is not visible to other users. If you have
configured your VisualAge for Java options to show edition names, your scratch
editions will be designated with < > around the program element’s version name.

Scratch editions can be used for various purposes such as to privately experiment
with code, or to start development on a class before the owner has opened the
containing package.

In this section, you will be Margaret. Follow these steps to create the situation of a
developer working on a class before the package owner opens the edition:
1. Change the workspace owner to Margaret.
2. Click the Managing tab in the Workbench window. Select ToDoList from the

Types pane and double-click it.
3. Change the text in the To-Do Item text field to magenta. Right-click the To-Do

Item text field. Select Properties. Scroll down and select Foreground. In the

right column, click More . In the Foreground window, select magenta. Click
OK. The foreground color changes to magenta. Close the Properties window.

4. Save the bean by selecting Bean > Save Bean. When asked to confirm if a new
edition should be created, click Yes. Close the Visual Composition Editor.

5. Look at the Log window. The Log window displays messages and warnings.
A message confirms you have created a scratch edition of the ToDoList package.

The Log window can also display other kinds of messages and warnings.
Information about compilation errors, inconsistencies between the workspace
and the repository, and which program elements have imported and exported
are also displayed in the Log window.
The Log window is locked by default. If you try to close it, a dialog will
prompt you confirm your intent, and will give you the option of removing the
lock. To lock a window select Lock Window from its Window menu. Select it
again to unlock the window.

6. Try to version the package. Select ToDoList from the Types pane in the
Workbench window. Select Types > Manage > Version. In the Versioning
Selected Items window, click OK.

7. A messages states that none of the classes in the package be released.

72 Getting Started

You will work with releasing editions later, but the essence of this message is
that Margaret can not make her class available to others on the team because
the package that contains it is a scratch edition. Changes can only be released
into an open edition. Because Tasha (the package owner) has not yet created an
open edition of the package, not even Luc (the class owner) can release new
versions of the ToDoList class into the package. Margaret is now working
privately with a scratch edition; she cannot create a public version for others to
work with.
Click OK to clear the warning message.

8. From the Workbench window, click the Managing tab and look at the ToDoList
package in the Packages pane. The version name is surrounded by angle
brackets <>, which indicate that this is still a scratch edition of the package.
Only the scratch edition owner (in this case, Margaret), can use the scratch
edition.

Opening a package edition of the To-Do List
As Tasha, create an open edition of the To-Do List package so that class owners
can release their changes. Follow these steps:
1. Change the workspace owner to Tasha. From the Workbench window, select

todolist from the Packages pane. Select Packages > Manage > Create Open
Edition.

2. An open edition of the ToDoList package is created in the Packages pane. It is
followed by a date and time in brackets, indicating an open edition.

Chapter 7. Continuing applet coding in a team 73

Tasha and the To-Do List team are now ready to start developing their project.

Sharing code

All the To- Do List team members now have access to the todoteam.dat repository,
and project and package editions have been opened. They can begin coding
together. Margaret has been assigned the task of changing the text in the To-Do
Item box to blue. Sam has been assigned the task of changing the Add push button
text.

Once the server has been set up and everyone has access to the repository,
development of code can begin. First, project and package editions must be opened
by their respective owners. Thereafter, day-to-day development is similar to
working standalone. Developers open editions, make changes to the editions, and
then version them. VisualAge for Java tracks who made the changes so that later,
when the code is completed and ready for use, the class owner can merge all the
changes into a final version of the class.

In the To-Do List team, the coding is mainly done by Margaret and Sam, although
Tasha, Luc, and Susan are occasionally involved. Daily development as a team is
shown below.

74 Getting Started

To learn about daily team development, you will connect as Margaret first and
make the change that she was assigned (change the item text to blue). You will
then connect as Sam and make the change that he was assigned (change the Add
push button text).

Changing a To-Do List class available to the team
Change the To-Do List class code as Margaret by following these steps:
1. Connect as Margaret to the todoteam.dat repository. Previously, Margaret

versioned her own (scratch) edition of the class, but now she should use the
original version. From the Workbench window, click the Managing tab. Select
the IBM Java Examples project, the todolist package, and the ToDoList class.
Select Types > Replace With > Another Edition.

2. A window containing a list of editions opens. Select the original version. Click
OK.

3. Open the ToDoList class in the Visual Composition Editor by double-clicking it.
4. Change the text in the To-Do Item box to blue. Right-click the To-Do Item text

field. Select Properties. Scroll down and select foreground. In the right column,

click More . In the Foreground window, select blue. Click OK. The
foreground color changes to blue. Close the Properties window.

5. Test the change. Click Run. When asked to confirm that you wish to
create a new edition, click Yes. Test the applet by entering text in the To-Do
Item text field. It should appear in blue. Close the applet. Close the Visual
Composition Editor.

6. Version Margaret’s open edition. Select ToDoList from the Types pane in the
Workbench window. Select Types > Manage > Version.

Chapter 7. Continuing applet coding in a team 75

7. Margaret’s version should be distinctly named. In the Versioning Select Items
window, select the One Name radio button. Type Marg in the text field. Clear
the Release selected items check box (only the class owner, Luc, can release
this class). Click OK.

8. A message indicates that you have chosen not to release the classes. Click OK.

By versioning her edition of the class, Margaret has made it available to other
members of the team. When they open the Repository Explorer window on their
workstations, they will be able to browse the Marg version. And, if they select
ToDoList from the Types pane of the Workbench window, and then select Replace
With > Another Edition from its pop-up menu, they will be able to load the Marg
version into their workspaces.

Changing the same To-Do List class
Now a second developer named Sam changes the To-Do List class. Develop the
To-Do List class code as Sam by following these steps:

76 Getting Started

1. Change the workspace owner to Sam. Sam began his code changes at the same
time as Margaret. Like her, he also began with the original version. In the
Workbench window, click the Managing tab. Select the IBM Java Examples
project, the todolist package, and the ToDoList class. Select Types > Replace
With > Another Edition.

2. A window containing a list of editions opens. Select the original version (the
version that predates Margaret’s change). Click OK. The original version is
loaded into the workspace.

3. Open the ToDoList class in the Visual Composition Editor by double-clicking it.
4. Change the Add push button text. Right-click the Add push button. Select

Properties. Scroll down and select text. Change Add to Add Item. Close the
Properties window.

5. Test the change. Click Run. A warning appears asking if a new edition
should be created. Click Yes. The Add push button text should be Add Item.
Close the applet. Close the Visual Composition Editor.

6. Version Sam’s changes. Select ToDoList from the Types pane in the Workbench
window. Select Types > Manage >Version.

7. Sam’s version should be distinctly named. In the Versioning Select Items
window, select the One Name radio button. Type Sam in the text field. Deselect
Release selected items. Click OK. A message indicates that you have chosen
not to release the classes. Click OK.

8. To verify that everyone on the team can see either Margaret’s or Sam’s code,
change workspace owner to Susan and select Types > Open To > Editions.
Both Margaret’s and Sam’s editions appear.

In the next section, you will see how Luc (the owner of the To-Do List class)
consolidates Margaret’s and Sam’s changes.

Merging code

Luc, the class owner, has decided to merge together everyone’s changes to the To-
Do List class. Luc will take the original version of the To-Do List class and merge
Margaret and Sam’s changes into it.

Chapter 7. Continuing applet coding in a team 77

Margaret changed the Item text to blue and Sam changed the text of the Add push
button. The following diagram shows the final code that Luc, the class owner,
should have after merging their work.

In this section, you will learn how to merge the different editions of a class created
by different developers into one versioned edition.

To merge code from several developers at the class level, follow these steps:
1. Change the workspace owner to the class owner, Luc.
2. From the Workbench window, click the Managing tab. In the Types pane,

select the ToDoList class. Select Types > Replace With > Another Edition.
You should see a list of versions that are available in the repository, including
Marg and Sam.

3. Select the original version (the version that predates Margaret and Sam’s
changes). Click OK. This action will load the original To-Do List into your
workspace. Using this as your base, you will create a new open edition and
merge in the other developers’ changes.

4. From the Managing page of the Workbench, select ToDoList in the Types
pane. Select Types > Manage > Create Open Edition.

5. First, Luc will merge Margaret’s code. Select ToDoList from the Types pane.
Select Types > Compare With > Another Edition.

6. A window containing a list of editions, including Sam and Marg, opens. Select
Marg from the list. Click OK.

7. A comparison window opens. Select the ToDoList class name. Margaret’s code
is on the right and Luc’s open edition (the original code) is on the left. The
“Source changed” identifier under the Differences column indicates where the
code has changed.

78 Getting Started

8. Select Differences > Load Right, which merges Margaret’s code (shown on
the right) into the open edition (shown on the left).

9. Continue merging all methods that say “Source changed”. Ignore (do not
load) any class differences such as Declaration changed. To select multiple
methods, hold down the Shift key while you are selecting the methods. Close
the Comparing window.

10. Run the applet by clicking Run. Test that the text in the Item text field is
blue.

Chapter 7. Continuing applet coding in a team 79

11. Next, Luc will merge Sam’s code into the open edition. In the Managing page
of the Workbench window, in the Types pane, select your open edition of
ToDoList. (This edition now includes Margaret’s changes). From the pop-up
menu, select Compare With > Another Edition. Select Sam from the list of
editions in the repository. Click OK. The comparison window now has Sam’s
code on the right.

12. Using Load Right, merge only Sam’s getAddButton() method into your open
edition. Do not merge the getTextField1 method. Margaret’s code changed the
text to blue, and if you merge Sam’s code, you will return the Item text to
black. While merging code, you must know which changes you want and do
not want. Close the Comparing window.

13. Finally, run the applet to see that text in the Item text field is blue (Margaret’s
change) and that the Add push button text is Add Item. (Sam’s change). You
should always test changes before you release them into the team baseline.

Now that you have merged Margaret and Sam’s changes and tested them, you are
ready to set a new baseline.

Setting a new baseline

Periodically, after class owners have tested their changes, the team will decide to
set a new baseline. Setting a baseline is like synchronizing the code.

After a baseline has been set, the team opens a new edition of the project and
continues developing. code. Eventually, the baseline becomes the finished product.
In this section, you will learn how to set a new baseline by releasing the classes,
releasing the packages, creating a new version of the project, and opening a new
edition of the project.

So that you can practice going through a complete development cycle, in this
section you will set a baseline at the project level. Setting a baseline can also be
done at the package level. Refer to the online help for more information on setting
a baseline at the package level.

80 Getting Started

Setting a baseline at the project level
The diagram below shows the process for setting a baseline at the project level.
The process works in the reverse direction of starting a project - it starts at the the
class level and proceeds to the package and project levels. Once Monica versions
the project, the baseline is reset by opening a new project and package edition,
which all of the team members reload.

Releasing the To-Do List classes

Luc will now version and release the class that he just merged:
1. Confirm that the workspace owner is still Luc. If not, change the workspace

owner to Luc.

Chapter 7. Continuing applet coding in a team 81

2. From the Managing page of the Workbench, select the open edition of the
ToDoList class, which now contains Margaret’s and Sam’s changes. Select
Types > Manage > Version.

3. In the Versioning Selected Items window, select Automatic to change the To-Do
List version to 3.0.0. This time, select Release selected items so the class will be
released to the package level. Click OK.

4. Look at the Types pane of the Workbench window. The unreleased marker (>)
should not appear beside the class name.

When Luc releases a version of the class, he is updating the team baseline at the
package level. Team members can synchronize with all the classes that have been
released into a package, by selecting Replace With > Released Contents for that
package in the Workbench. This action refreshes their workspaces with the most
recently released class versions.

Releasing the To-Do List package
Next, the package owner releases the package. To release a package, follow these
steps:
1. Change the workspace owner to Tasha. Only the package owner, Tasha, or the

project owner, Monica, can release the package.
2. Select com.ibm.ivj.examples.vc.todolist from the Packages pane. Select

Packages > Manage > Version.

3. In the Versioning Selected Items window, select Automatic. Select Release
selected items to release the package to the project level. Click OK.

4. Look at the Packages pane of the Workbench window. There should not be an
unreleased marker (>) beside the package’s name.

Every time Tasha releases her package, she is updating the team baseline at the
project level. Team members can update their workspaces with all of the latest
packages and classes for that project, by selecting Replace With > Released
Contents for the project.

Versioning the To-Do List project

Finally, the project owner creates a new version of the project, to preserve the team
baseline at a particular point in the development cycle.
1. Change the workspace owner to Monica. Only the project owner, Monica, can

version the project.

82 Getting Started

2. On the Managing page of the Workbench, select IBM Java Examples from the
Projects pane. Select Projects > Manage > Version.

3. In the Version Selected Items window, select Automatic. Note that there is no
Release check box for projects. Click OK.

4. The Managing page of the Workbench should now show that the project,
package and class are at the new level.

The team can revert to this version of the project at any time by reloading the
project. To reload, they would select Replace With > Previous Edition or Replace
With > Another Edition from the project’s menu in the Workbench.

Preparing for new development
In Owning To-Do List code, you started your project by opening editions of the
To-Do List project and package. You can do this again, but use the latest version of
the To-Do List project as your base. New editions of the project and packages must
be opened. If they are not, the team members can only work with scratch (private)
editions that they cannot share with each other and that they cannot release into
the team baseline.

After Monica creates a new open edition of the project, Tasha would load that
edition into her workspace and create an open edition of her package within that
project edition. The rest of the team would then reload the project and start
working with the code again. They are now working from a baseline that includes
the changes that Margaret and Sam made.

Team programming

Developing code in a team is different from working alone. It involves shared
responsibility for developing code and shared access to the files containing the
code. It requires working in a client/server configuration - many clients are
connected to one server that contains shared code.

The team development model that is provided with VisualAge for Java, Enterprise
is particularly suited for object-oriented programming by small groups of
developers who develop classes in parallel.

With this Getting Started guide, you can create a To-Do List program in a
standalone environment. Then a team of six developers will develop a more
complicated version of it. The figure below shows the structure of the To-Do List
team.

Chapter 7. Continuing applet coding in a team 83

Teams are collaborative, but team members are not equals and each have different
responsibilities. In our example, Monica has the highest responsibility and her
position has the broadest scope. She is concerned with the overall design of the
code, but not the low-level implementation of it.

As team leader, Tasha is closer to the actual code development than Monica. She
knows about the specific functions of each component, as well who is working on
it.

Luc is a senior developer with two developers, Margaret and Sam, reporting to
him. Luc is involved in the design of the code, makes key decisions about its
implementation, and also does a lot of coding.

Margaret and Sam have a narrower scope of work. They actually develop the code
for the components. Susan, like them, is focused on a specific task: testing.

In your environment, you may distribute roles similar to these across a very small
team that may have only two or three people or a very large team that may consist
or twenty or more people.

Client/server view of the To-Do List project

You already know that VisualAge for Java stores editions of all program elements
in a source code repository. By contrast, your workspace contains the source code
for the program you are currently working on.

In the team development environment, the repository is a shared file that resides
on a file server and stores all the code for all developers on the team. Team
members can access the repository from their own computers, which are set up as
clients to the server.

In the team development environment, each VisualAge for Java client has its own
workspace. For example, Margaret and Sam each have their own individual
workspaces, which can contain both code from the shared repository, as well as
their own personal code.

To connect to a shared repository, your workspace must have an owner. The owner
can be any of the team members, as long as they have been added to the repository
user list. The workspace owner’s privileges determine what you can do with
program elements in the shared repository.

The To-Do List team roles

Each team member’s responsibilities are determined by assigning ownership of
program elements. The following diagram shows how ownership of objects in the
team repository maps to the roles of the To-Do List team members.

84 Getting Started

The scope of each person’s ownership closely matches his or her level of
responsibility in the team. Luc owns two classes; Tasha owns the package
containing all classes; and Monica owns the project containing the packages.

The four main roles for developers are:

Class developer
Anyone who opens an edition of an existing class

Class owner
Can open, edit, release or delete a class

Package owner
Can open, version and release as package, and add and delete users from
the package group

Project owner
Can open and version a project, and create and delete packages in the
project

There is also another, specialized role, that of the Administrator. The repository
administrator can perform the following tasks:
v Add new users to repositories
v Change or delete existing users
v Compact repositories
v Change ownership of existing projects
v Purge open editions and versions of projects and packages

Several of these tasks are described in this guide. The person who performs these
server administration tasks may also be a member of your development team. In
this case, that person should connect to the repository with a different user name
when developing code. The Administrator ID should only be used to perform
administration functions.

You cannot delete Administrator from the repository, and you cannot change the
unique name for that user. If you wish, you can change the repository
administrator’s full name.

Chapter 7. Continuing applet coding in a team 85

Scope and responsibilities of ownership
In the team development environment, every project, package, and class has an
owner.

The diagram below shows the scope of ownership in our To-Do List example.

Change control is based on ownership. Different team members can work with the
same program element at the same time, and their changes will automatically be
saved in the shared repository. Owners, however, control the mainstream of
development; only they can release the program element that they own.

For example, more than one developer is allowed to change a class, but the class
owner must review these changes, decide which are acceptable, and determine
what version of the class will be released to the containing package. Margaret and
Sam can develop methods, but their methods do not automatically become part of
the ToDoFile class. Luc, the class owner, must approve of the changes and then
release the class.

Releasing is like advancing stable code to a higher level. Releasing typically occurs
after stable code has been developed, reviewed, and tested. When all the classes in
a package have been released, Tasha, as package owner, has the authority to
release the package. Similarly, when the To-Do List package has been released,
Monica can create a new version of the To-Do List project. Monica’s new version
could be thought of as a new baseline (see “Setting a new baseline” on page 80 for
more information).

After a class is released to a package, all members of the team see that version of
the class when they load the updated version of the package from the repository
into their workspace.

Group membership
In VisualAge for Java, Enterprise Edition, each edition of a package has a group of
developers who are assigned to work with classes in that package. These
developers are the package group for that edition.

86 Getting Started

Margaret, Sam, and Susan (along with Tasha and Luc) are package group members
of the To- Do List package. Group members can own, create, and change classes in
the package. Since Margaret and Sam are group members, they can change classes
in the package. Group membership enables Susan to access and test all the classes
in the To- Do List packages.

Monica is not a package group member, even though the To- Do List package is in
her project. Monica does need to be a package group member because she does not
code or test, and is not involved in the day-to-day development of the code.

The package owner is the only person who can add or delete users to or from the
package group. Different editions of packages can have different package group
members.

The To-Do List team development cycle

The following diagram shows how the team works together to develop a product.
Monica begins the cycle by opening an edition of the project. Then Tasha opens an
edition at the package level. Opening an edition is like kicking off a project. It
simply means that the group can now develop the shared code. That development
takes place iteratively, as indicated by the wheel that shows the developers (Luc,
Sam, and Margaret) making changes, making a version of their class with the
changes, and then opening a new edition of the class.

When the classes are tested, Luc releases them and Tasha releases the package.
Monica then versions the To-Do List project. This synchronizes the code.
Everyone’s changes have been captured. In iterative development, this point is
called “Setting a new baseline” on page 80. The diagram shows that baseline at a
project level, but you can also set baselines at the package level.

Chapter 7. Continuing applet coding in a team 87

You may set a new baseline at several stages during the development of an
application. In the preceding example, Monica’s version leads to the start of further
development.

Accommodating growth of the team
The team model is scalable; it accommodates the growth of a team. If you are
developing a very complex product, you may have you have may have many
class, package, and project owners.

Conversely, very small teams can also work effectively in the VisualAge for Java
team environment. One person might combine the roles of project owner, package
owner, and class owner. The other developers would be package group members.

88 Getting Started

Chapter 8. Interface to external version control systems

The version control interface enables VisualAge for Java users to connect to source
code in an external source code management (SCM) system. An SCM system
enables developers to manage their source code, and they offer features such as
versioning and exclusive locks for editing.

The interface from VisualAge for Java to external version control systems uses
Microsoft’s Source Code Control (SCC) API. It supports the following SCM
systems:
v ClearCase for Windows NT, from Rational Software Corporation
v PVCS Version Manager, from MERANT (formerly INTERSOLV)
v VisualAge TeamConnection from IBM Corporation
v Visual SourceSafe from Microsoft®

For a list of the supported versions of these SCM systems, refer to the release
notes.

VisualAge for Java projects can be associated with a specific file group in a SCM
provider’s repository. An example of this is an SCCI project or a Team Connection
release. Associating a VisualAge for Java project with an SCM file group is called
“adding a project to version control”.

Adding projects to version control provides you with a convenient way for you to
access an SCM provider without leaving the VisualAge for Java IDE. After you
have added a project to version control, you can use it to perform tasks such as
checking classes in and out of your SCM system, and importing the most recently
checked-in version of a class from the SCM system, all without leaving the IDE.
You can also use the Version Control interface to add new classes created in
VisualAge for Java to your SCM system.

External SCM system versus VisualAge for Java team development
VisualAge for Java, Enterprise Edition, provides a team development environment
that offers version control and a shared repository management. The shared
repository offers excellent support for day-to-day team programming activities.

You may, however, wish to install the interfaces to external version control systems
as a complementary feature for any of the following reasons:
v You already use another SCM provider as your standard for application

development.
v Your build process relies on external SCM providers
v You have established practices for archiving applications on a particular

enterprise server, for example for disaster recovery purposes.
v The repository in VisualAge for Java manages Java objects only; you may wish

to manage all of your development artifacts with a single provider, or to
integrate multiple programming languages across your environment.

The VisualAge for Java online help discusses the interface in more detail.

© Copyright IBM Corp. 1997, 2000 89

90 Getting Started

Chapter 9. Server-oriented programming

This section looks at the development of Java applications specifically designed for
servers. Unlike small, standalone applications that can run on a single computer,
large applications usually involve a client/server model or a multi-tier model that
has a single client and several servers.

Server-oriented programming also results from the industry move to the
development of software components. For example, an enterprise bean is a
component that resides on a server and provides services to other components.
Together, the interacting components comprise complex, server-oriented
(sometimes referred to as server-side) applications.

The following server-oriented programming tools are examined in this section:

The JSP/Servlet Development Environment enables you to develop, run, and test
JavaServer Pages (JSP) files and servlets.

The Create Servlet SmartGuide enables you to create servlets, which are Java
programs that plug into Web servers. You can use them to perform tasks such as
connecting databases to the Web, and expanding from client/single-server
applications to multi-tier applications.

The Enterprise JavaBeans (EJB) Development Environment enables
you to develop EJB components that provide server-side services such as database
transactions. An enterprise bean is unlike a typical Java bean because it is
non-visual and resides on a server. It is transaction-aware, meaning it is used to
provide transactions, including complex distributed transactions with relational
databases. One practical use of enterprise beans in a large application is to create
persistent objects (objects that exist beyond the current session).

The EJB Development Environment is available only with the Enterprise Edition of
VisualAge for Java.

JSP/Servlet Development Environment

JavaServer Pages (JSP), a server-side scripting technology, allows you to embed
Java code within static Web pages (HTML documents), and execute the Java code
when the page is served. By separating presentation logic (content presentation)
from business logic (content generation), the JavaServer Pages technology makes it
easy for both the Java programmer and the Web page designer to create HTML
pages with dynamic content.

A Java servlet is a Java program that runs on a Web server. Servlets are highly
extensible and flexible, making it easy to expand from client/single-server
applications to multi-tier applications. For example, you might write a servlet that
connects a web client to an existing database on a host.

You can develop, debug, and deploy servlets within the VisualAge for Java IDE. In
the IDE, you can set breakpoints within servlet objects, and step through code to
make changes that are dynamically folded into the running servlet on a running
server, without having to restart each time.

© Copyright IBM Corp. 1997, 2000 91

When JSP-generated servlet code is imported into the VisualAge for Java IDE, the
following occurs:
1. The JSP source is fed to a page compiler, which creates an executable object (for

example, a Java HTTP servlet).
2. VisualAge for Java then imports the generated servlet code. You can run and

debug the servlet by using your browser to call the JSP page that created the
servlet.

Note: You can select not to have the generated servlet code imported into the IDE.
You may want to do this to help decrease the amount of space that is taken up in
the repository by the servlet code.

A JSP file can be directly requested as a URL, called by a servlet, or called from
within an HTML page. In all three cases, the servlet engine compiles the JSP into a
servlet and runs it. The compilation is performed the first time the JSP is
requested, and each time the JSP source changes. This dynamic compilation allows
you to deploy new versions of JSP files inside a running Web application. As well,
performance is improved because you do not have to compile, load, and run a
servlet each time a request is made to the server.

ViusalAge for Java also includes the following tools to help you with JSP
development:
v JSP Execution Monitor, which helps you to monitor the execution of JSP source,

along with the generated Java servlets and HTML source. This tool allows you
to view the generated Java code, the original JSP source code, and the HTML
output as it is generated. The JSP Execution Monitor also highlights the location
of syntax errors in both the JSP and JSP-generated Java source.

v Persistent Name Server, which you can use to work with EJB beans or
DataSource objects.

v Websphere Test Environment Servlet Engine, which enables you to run
multiple Web applications, each having its own document root. You can also use
it to configure various parts of the Web application.

v DataSource objects. You can use DataSource objects to manage a collection of
connections to a database. Using connection pools helps you save time, simplify
resource allocation, and simplify connection calls.

These tools are all part of the WebSphere Test Environment Control Center, which
provides a central location for you to start, stop, and configure WebSphere Test
Environment services.

The VisualAge for Java online help discusses the JSP/Servlet Development
Environment in more detail and provides samples. You can also refer to the online
help for more information about the WebSphere Test Environment Center.

Servlet SmartGuide

The Servlet SmartGuide is a wizard that enables you to create servlets and related
Web resource files (HTML and JSP pages). Together, they make up a Web
application. You can use the SmartGuide to import Java beans, and then generate
HTML, JavaServer pages, and servlet configuration files from the beans.

Servlets are Java programs that run on Web servers. They enable businesses to
perform tasks such as connecting databases to the Web, and expanding from

92 Getting Started

client/single-server applications to multi-tier applications. To learn more about
servlets, refer to the online help for the JSP/Servlet Development Environment
online help.

When you develop servlets with the SmartGuide, you can use JavaServer pages
files that inherit from the PageListServlet class.

When you create servlets with the SmartGuide, you can select which fields you
want displayed on the input page, which fields you want displayed on the results
or output page (JSP page), and which action methods to call when the server logic
runs. As well, you can specify which modifiers you want to use and what method
stubs you want to create.

You can use the tools in the WebSphere Test Environment Centre to test the
servlets generated by the Servlet SmartGuide. For more information about these
features, refer to the online help.

Enterprise JavaBeans

This section looks at the server-oriented programming aspects of VisualAge for
Java. To understand server-oriented programming, you need to understand the
evolution of the multi-tier client/server model.

Evolution of the multi-tier model
For many years, client/server systems have used workstations to provide
easy-to-use, graphical applications. Traditional client/server applications contained
all the presentation, business, and data manipulation logic at the client. This “fat
client” scenario evolved into a two-tier system in which a “thin client” contained
the presentation logic but the business logic became part of the server. An
application is easier to manage and better optimized for performance if the
application code remains on a server.

Today, a three-tiered model has evolved as the most efficient one for an application
of distributed objects, with one server containing the application logic and another
server or servers containing software services needed by the application logic, such
as databases.

Moving business and data manipulation logic to servers means applications can
take advantage of high-end, multithreaded and multiprocessor systems. Many
concurrent users can be supported. Also server components can share resources
such as processes, threads, and database connections. Data can be partitioned and
replicated, enhancing reliability. Components can be distributed across servers,
making applications scalable.

Chapter 9. Server-oriented programming 93

The Enterprise JavaBeans component model
The Enterprise JavaBeans component model is a new model for developing and
deploying applications suited for the multi-tier model. It describes a server
framework for distributed Java components. Let’s contrast it with JavaBeans. A
standard Java bean, such as a button, is a reusable software component that is
manipulated visually with a builder tool. The JavaBeans architecture is usually
regarded as a component model for the client. But for enterprise requirements, the
JavaBeans architecture does not offer life-cycle management; that is, the ability to
guarantee that objects persist through time. It does not have infrastructure APIs for
services like transactions management and security. You could, of course, code
these services into each bean but it would require redundant work for each bean
and create a non-portable solution.

The Enterprise JavaBeans model supplies this missing framework; it makes
multi-tier, server-oriented component development a reality. Designed for
distributed, enterprise computing, this model has five elements:
v The server which provides transaction management and security.
v The container in which the enterprise beans will execute.
v A home interface that lists the methods for locating, creating, and removing

instances of EJB beans.
v A remote interface that lists the business methods in the EJB class.
v An interface to databases and back-end systems.

At run time, the model looks as follows:

There are two types of EJB beans: session beans and entity beans. Session beans do
not have a persistent state. In other words, session beans do not outlive their
process. Entity beans have a persistent state, and their state exists beyond the
current process.

The EJB Development Environment

The EJB Development Environment of IBM VisualAge for Java is a specialized
environment that you can use to develop and test enterprise beans for use in your
Enterprise applications. Enterprise beans are specialized non-visual beans that are
deployed in EJB containers and run on an EJB server. They can be customized by
changing their deployment descriptors and assembled with other beans to create
applications. EJB containers manage classes of EJB objects. Specifically, an EJB

94 Getting Started

container manages the life cycle of an EJB object, coordinates distributed
transactions, and implements object security.

An EJB server, as defined by the Sun Microsystems EJB specifications, provides a
run-time environment that supports the execution of applications that use
enterprise beans. The EJB container manages and coordinates the allocation of
resources at the server used by the enterprise beans. The EJB Development
Environment provides an implementation of Sun’s EJB server that enables you to
test enterprise beans before installing them on a production EJB server.

Enterprise beans provide several benefits for application developers:
v Enterprise beans make it possible to build distributed applications by combining

components developed using tools from different vendors.
v Enterprise beans make it easy to write applications. Application developers do

not have to deal with low-level details of transaction and state management,
multithreading, resource pooling, and other complex low-level APIs. However,
an expert programmer can gain direct access to the low-level APIs.

v Enterprise beans can be developed once and then deployed on multiple
platforms without recompilation or source code modification.

v The EJB architecture is compatible with other Java APIs. It provides
interoperability between enterprise beans and non-Java applications.

v Enterprise beans are compatible with CORBA.

The EJB Development Environment consists of multiple tools that can be
categorized into the following groups:
v Tools for creating enterprise beans and associated components, such as access

(adapter) beans and associations
v Tools for generating deployed code for a WebSphere EJB server
v Tools for testing enterprise beans before you install them on a production EJB

server

All of the EJB Development Environment tools are accessible from the EJB page of
the Workbench. The EJB page is the heart of the EJB Development Environment.
This is where your EJB groups and individual enterprise beans reside, and it is
where you accomplish almost all of your EJB development activities.

For more information on the EJB Development Environment, see the online help. It
contains tutorials you can use to learn how to work in the EJB Development
Environment.

Chapter 9. Server-oriented programming 95

96 Getting Started

Chapter 10. XML Development

XML Generator

Creating test cases for Extended Markup Language (XML) applications by hand
from Document Type Descriptions (DTDs) can be tedious. The XML Generator is a
Java program that you can use to edit a DTD and generate sample XML
documents based on that DTD. You can use the sample documents to check that
the DTD is working properly, to see what kind of XML documents are generated
by the DTD, and to test applications designed to use those documents.

When you use the generator, you can set constraints to limit the size or customize
the appearance of the output XML. For example, you can can limit the depth of the
generated tree, limit the number of IDs an IDREFs attribute can contain, or choose
whether or not implied attributes should appear. You can also indicate which
entities should appear within PCDATA using a configuration file.

By setting constraints, you can generate random test cases for batch testing of your
XML applications.

There are many situations you could use the XML Generator in. For example,
suppose you are developing an application which processes MathML documents
(MathML is very large). You have a number of valid test cases, but you recognize
that these test cases may not cover many of the possible forms which may be
allowed by the DTD. You could decide to run XMLGenerator to generate some
number of random sample documents. Generating random samples gives broader
coverage than is likely given contrived or real examples. The more samples you
generate, the more complete the coverage.

The VisualAge for Java online help discusses the XML Generator in more detail.

XML Parser for Java

IBM’s XML for Java parser is a high-performance, modular XML parser written in
Java. The parser provides a way for Java applications to read and write XML data.
A single JAR file provides classes for parsing, generating, manipulating, and
validating XML documents.

The XML Parser for Java conforms to the XML 1.0 Recommendation and associated
standards. The parser has a modular architecture so that you can customize it with
only the features your application needs

The XML generation and validation capabilities of the parser enable you to do the
following:
v Build XML-aware servers
v Create applications that will use XML as their data format
v Create XML editors that validate dynamically
v Ensure the integrity of e-business data expressed in XML
v Build internationalized XML applications

© Copyright IBM Corp. 1997, 2000 97

A sample application that would use the XML parser is a business application that
accesses a database that stores its data in XML format. The application would
retrieve XML documents and run them through the XML parser. The XML parser
would output an XML object. The business application would then invoke methods
on the XML object to retrieve or manipulate the XML data.

XMI Toolkit

Visual models (diagrams) help developers to recognize and analyze potential
problems. If, for example, you are part of a team of developers building an
application that allows customers to do transactions over the Internet, you might
decide to create a visual model to help in the planning and architecting of the
application. Models help to identify requirements, design cleaner applications, and
encourage documentation at the earliest stages of development. Models also help
break down complex problems; having a visual plan helps you to build complex
applications more easily.

However, when you have created a model, it is beneficial to have the means of
moving directly from the model to the code itself. Although you have a visual plan
laid out before you, it will not help the end-user unless the plan develops into a
real application. For this reason, it is important to have the means of moving easily
from model to source code, from plan to application.

VisualAge for Java supports visual modeling by providing a tool, the XMI Toolkit,
that allows you to roundtrip information from Rational Rose to VisualAge for Java
and back to Rational Rose. Rational Rose, a visual modeling tool, allows you to
perform analysis and design. Using Rational Rose, you can visually design and
model Java constructs (for example, packages, classes, inheritance, interfaces, and
so forth), and therefore plan ahead in building your Java application.

The XMI standard
The XMI Toolkit uses the XML Metadata Interchange (XMI) technology to perform
conversions between object-oriented analysis models developed in Rational Rose
and VisualAge for Java.

XMI specifies an open information interchange model that allows developers to
exchange programming data over the Internet in a standardized way.

XMI is an accepted industry standard that combines the benefits of the Web-based
XML standard for defining, validating, and sharing document formats on the Web
with the benefits of the object-oriented Unified Modeling Language (UML). UML
itself is a specification of the Object Management Group (OMG) that provides
application developers with a common language for specifying, visualizing,
constructing, and documenting distributed objects and business models.

By using an industry standard for storing and sharing object programming
information, development teams using tools from multiple vendors can collaborate
on applications. The XMI standard allows developers to leverage the Web to
exchange object-oriented data among tools, applications, and repositories, and to
create secure, distributed applications built in a team development environment.

Using XMI Toolkit
A typical scenario would be as follows:
1. Develop an object-oriented analysis model for your application using Rational

Rose.

98 Getting Started

2. Use the XMI Toolkit to generate Java code from the Rose model.
3. Update and modify the generated Java source in VisualAge for Java’s IDE.
4. Generate a new version of your model to reflect the changes that were made in

VisualAge for Java.

The diagram below shows the steps involved in the conversion process between a
Rose model and the generated Java source. The broken line in the upper portion of
the diagram shows how you can conceptually envision the conversion process
between a Rose analysis model and the corresponding Java source files in a Java
project. The solid lines in the lower portion of the diagram provide a more detailed
flow of how the XMI conversion is actually carried out.

The steps are as follows:
1. The Rose model is converted into one or more XMI files that contain the UML

XMI representation of the model’s structure. The UML XMI files are packaged
into a single file named uml.zip. This file is written to the same directory where
the corresponding Rose .mdl file is stored.

2. The XMI Toolkit then maps the UML XMI representation into an equivalent
representation in Java XMI. The corresponding Java XMI files are stored in a
single file named java.zip. This file is written to the top level directory (″project
directory″) under which the Java project source files are to be written.

3. Finally, the XMI Toolkit generates the Java source files corresponding to the
representation in Java XMI.

The process also works in reverse. If you have already implemented an application
in Java, you can use the XMI Toolkit to derive a corresponding Rose model. You
can then work with the generated model file to document or enhance the
application’s design.

The XMI Toolkit user interface
The XMI Toolkit user interface consists of two components:
v The XMI Toolkit Browser
v The XMI Toolkit SmartGuide

You can use the XMI Toolkit Browser to examine the XMI conversion mapping
between a Rose model and a Java project. The XMI Toolkit Browser displays the
UML XMI representation of your Rose model in the uml.zip file corresponding to
the model, and it displays the Java XMI representation of the Java project in the
java.zip file corresponding to the project. The XMI Toolkit Browser can also be

Chapter 10. XML Development 99

used to show differences between successive versions of the UML XMI
representation of a Rose model, or the Java XMI representation of a Java project.

The XMI Toolkit SmartGuide is launched from the XMI Toolkit Browser whenever
you initiate an XMI conversion between a Rose model and Java project. Use the
XMI Toolkit SmartGuide to organize and specify the details of the conversion you
want to perform.

The VisualAge for Java online help discusses the XMI Toolkit in more detail.

100 Getting Started

Chapter 11. Optimizing Java code for target performances

Enterprise Toolkits

VisualAge for Java, Enterprise Edition, provides Enterprise Toolkits that compile
Java bytecode into code that is optimized for a particular target execution platform.
The code that you develop with each toolkit can be debugged using the
Distributed Debugger. Toolkits are available for OS/390 and AS/400 platforms.

Advantages of using an Enterprise Toolkit
Many people choose the Java language because it is platform-independent; that is,
you can code and test an application once and run it anywhere. However, platform
independence has a price: the bytecode that is produced is interpreted code, so it
usually runs more slowly than compiled code. In small programs the performance
difference will be negligible, but in large, computationally-intensive programs the
difference may be significant. The Enterprise Toolkits provided with VisualAge for
Java resolve this problem by generating compiled code that is optimized for the
target platforms where the application will run.

Using a toolkit to boost performance involves a trade-off, as shown below.

Compiled code usually runs faster than bytecode, but it is platform-specific. If you
process your application through a toolkit, but do not make any other changes to
the code, you will have increased the speed at which your code runs, but still
retained platform-independence. If you change your code to suit a particular target
platform, after using a toolkit, however, you will no longer have
platform-independent code.

When to use an Enterprise Toolkit
You should consider using an Enterprise Toolkit if you have a large, complex, or
computationally-intensive application that will run on OS/390 or AS/400, and has
one more of these characteristics:
v Performance is critical to your application.
v Your application is used repetitively. With compiled code, your application is not

continually recompiled before execution, as it would be with a just-in-time
compiler.

v Your application requires access to AS/400 databases or programs.

Enterprise Toolkits installation
The toolkits are optionally installed when you install VisualAge for Java, Enterprise

© Copyright IBM Corp. 1997, 2000 101

Edition. After installation, add each toolkit to the workspace before you can use it.
For example, to add the Enterprise Toolkit for AS/400, in the Workbench, select
File > Quick Start > Features > Add Feature > IBM Enterprise Toolkit for
AS/400.

In the case of the Enterprise Toolkits for AS/400 and OS/390, some additional
environment configuration is required on the AS/400 and OS/390, respectively. See
the AS/400 and OS/390 README files, respectively, for more information.

Enterprise Toolkit startup
Each Enterprise Toolkit is started from the Workbench window. Select the project,
package, or class that you want to work with and from the pop-up menu, select
Tools > Enterprise Toolkit.

In the example below the Enterprise Toolkit for AS/400 has been selected, so you
can see its functions (Export, Compile, Run, and Debug) and SmartGuides (Create
Subfile, Create Program Call, and Convert Display file). You can select any of these
functions or SmartGuides to start using the toolkit.

102 Getting Started

The Enterprise Toolkit for AS/400 (ET/400)

The native compiler and Java Developer Kit for AS/400 that are provided with
OS/400® allow you to compile Java bytecode into classes that are optimized for the
AS/400. By contrast, the Enterprise Toolkit for AS/400 (ET/400) that is provided
with VisualAge for Java allows you to deploy your Java programs to the AS/400
from the IDE. In addition, ET/400 provides you with tools for accessing AS/400
resources from your Java client applications.

You can use ET/400 for tasks such as exporting Java class and source files to the
AS/400 (source files are required to debug AS/400 Java applications from
VisualAge for Java), and compiling Java code optimized for the AS/400. As well,
you can use ET/400 to run Java code as interpreted bytecode in the AS/400 Java
Virtual Machine (JVM), or as compiled programs, and to run and debug AS/400
Java applications from the VisualAge for Java IDE. ET/400 also provides you with
two SmartGuides (wizards) that you can use to convert an existing display file
object into Java code and call any AS/400 program object. ET/400 also provides a
set of beans which can be opened in the Visual Composition Editor and used for
accessing and formatting your AS/400 data.

You must install the Distributed Debugger before you can debug ET/400
applications. You use the Distributed Debugger to debug Java programs that you
have exported to the file system, whereas you use the IDE debugger to debug
applets and applications running in the IDE. With the Distributed Debugger, you
can perform remote debugging (that is, you can run a program on one machine,
and debug it on another machine) and debug optimized code.

The Enterprise Toolkit for AS/400 has four main functions:

Export Sends your code to the AS/400.

Compile
Compiles your code.

Run Run your code as a native AS/400 program, or as interpreted bytecode in
the AS/400’s Java Virtual Machine (JVM).

Debug
Starts the Distributed Debugger tool so that you can debug code. You
cannot debug applications unless you have installed the Distributed
Debugger. For instructions on installing the Distributed Debugger, refer to
the Installation and Migration guide, which can be found on the product
CD. For instructions on using the Distributed Debugger, see the online
help.

ET/400 also has two SmartGuides that you can use to work with AS/400
resources:

Create Program Call
Creates a Java class which will call any AS/400 program object

Convert Display File
Converts an AS/400 display file into Java code.

Chapter 11. Optimizing Java code for target performances 103

ET/400 also has the following AS/400-specific beans:

DFU beans
The DFU beans, FormManager, ListManager, and RecordIOManager are a
set of classes that extend the support of code to access one or more AS/400
database files. These beans allow you to map GUI forms, tables, and lists
to AS/400 databases and manipulate (retrieve, add, update, and delete)
database records.

Object List beans
The Object List beans, ET400List and AS400eList, provide a method for
accessing AS/400 object names. These beans allow you to set listing
properties for selecting the desired type of object list. Object list types
include a list of libraries, a list of files within a library, or a list of user IDs
on the system. The property settings can be used to access many different
type of object lists.

JFormatted beans
The JFormatted beans include a set of utility classes that extend the
support of code to convert AS/400 fields and attributes. Included in this
set of beans are the following: JFormattedTextField, JFormattedLabel,
JFormattedComboBox, DefaultFieldModel, AS400FieldModel,
JFormattedTable, JFormattedTableColumn,
JFormattedTextFieldCellEditorRenderer,
JFormattedComboBoxCellEditorRenderer, and
JFormattedLabelCellRenderer.

The VisualAge for Java online help discusses ET/400 in more detail and provides
samples.

104 Getting Started

ET/400 properties
Before you can export, compile and run your code, you must set the properties for
these functions in the Properties window. For example, you can set the
optimization level for compiling, or select what type of files you want to export.

In ET/400, properties are inherited in a hierarchical manner. For example, if you
set compiler options for a project and then you compile a class in that project, by
default the class is compiled with the options that you set at the project level. To
override this default, you would explicitly set compiler options at the class level.

To access the Properties window, select a project, package or class, then, from its
pop-up menu, select Tools > ET/400 > Properties. You can find out more about the
properties options by pressing F1 in the Properties window.

ET/400 and code exportation
You can export your code when you want to send Java files from the VisualAge for
Java workspace to the AS/400. You can export source code (.java files) or bytecode
(.class files); source code is necessary if you wish to use the Distributed Debugger.
You can export entire projects or specific packages, classes, and interfaces. You can
also export a GUI application, run it on the AS/400, and display it on an AS/400
client or a Network Station™.

The Enterprise Toolkit for AS/400 supports the standard Java interfaces. For
example, an application targeted for AS/400 can use the Java Native Interface
(JNI). Your applications can interoperate with AS/400 applications written in other
languages such as C++. Similarly, an application can use Java Database Connection
(JDBC) to access a database on the AS/400.

You must set the export properties in the Properties window before you can export
your code. To export your code, select a project or package or class (all classes
contained in the selected program element or elements will be exported), then,
from its pop-up menu, select Tools > ET/400 > Export.

The files are exported to the workstation and then to the AS/400 Integrated File
System. The exported code is still in the workspace and the repository.

Compiling, running and debugging an ET/400 application
When you compile your code, you are creating an AS/400 Java program from a
Java class file. Before you can compile your code, you must export class files to an
AS/400 Integrated File System directory and set your compilation properties in the
Properties window.

If you decide to optimize your code, you will be creating an application for use
outside the Java Virtual Machine (JVM). By contrast, an interpreted compile creates
an application to be run in the JVM on the AS/400.

To compile your code, select a project or package or class, (all classes contained in
the selected program element or elements will be compiled) then, from its pop-up
menu, select Tools > ET/400 > Compile.

Run a compiled application
You can run your compiled application from the VisualAge for Java IDE. Before
you can do this, you must export your code and set your run properties in the
Properties window.

Chapter 11. Optimizing Java code for target performances 105

You can run applets, database, or Remote Method Invocation (RMI) applications.
Standard input/output, that is, STDIN, STDOUT and STDERR, is routed from the
AS/400 to the console.

To run your code, select a project or package or class, (if a package or project is
selected, only the first class will be run.) then, from its pop-up menu, select Tools
> ET/400 > Run.

Debug an application
The Distributed Debugger is a client/server application that enables you to detect
and diagnose errors in your programs. This client/server design allows you to
debug programs running on AS/400 systems accessible through a network
connection. The debugger server, also known as a debug engine, runs on the
AS/400 system where the program you want to debug runs. The debugger allows
you to step through and analyze your code as it runs.

The Distributed Debugger debugs the Java application remotely, as it runs on the
AS/400, from your VisualAge for Java workstation. The debugger allows you to
step through and analyze the code as it runs on the AS/400. To use the debugger,
you must export your source code, not just your class files.

To debug your code, select a project or package or class, then, from its pop-up
menu, select Tools > ET/400 > Debug. You must install the Distributed Debugger
before you can debug applications.

ET/400 SmartGuides
Create Program Call SmartGuide
The Create Program Call SmartGuide generates a Java class to call an AS/400
program. The program can be in any of the programming languages that are
supported by the AS/400, such as ILE RPG, ILE C, or OPM COBOL. Through the
Java class, you can pass arguments to the called program.

To create a program call, select a project or package or class, then, from its pop-up
menu, select Tools > ET/400 > Create Program Call. The SmartGuide opens.

Convert Display File SmartGuide
This Convert Display File SmartGuide takes an existing Data Description
Specifications (DDS) display file from an AS/400 and converts it to Java Swing
code; that is, it converts it to a Display File bean with a graphical user interface.

To convert a display file, select a project or package or class, then, from its pop-up
menu, select Tools > ET/400 > Convert Display File. The SmartGuide opens.

AS/400 Toolbox for Java

The AS/400 Toolbox for Java is a set of classes that provide access to AS/400 data
and resources. Using these classes, you can access databases through the Java
Database Connection (JDBC) driver, read physical and logical file records,
manipulate AS/400 print resources, use files in the integrated file system, run
AS/400 commands, access keyed or sequential data queues, and retrieve AS/400
messages.

There are several types of classes offered in the toolbox:
v Access classes provide access to resources on the AS/400. For example, the JDBC

classes provide access to relational databases on the AS/400.

106 Getting Started

v Graphical User Interface (GUI) components allow graphical manipulation of the
resources. For example, the SQLStatementButton creates a button to execute an
SQL statement.

v Program Call Markup Language (PCML) classes efficiently call AS/400 programs.
You can call a program by writing a PCML script and then loading and
deploying it from a Java program.

v Security classes make secured connections with the AS/400 and verify the
identity of a user working on the AS/400 system.

v HTML classes quickly create HTML forms and tables.
v Servlet classes assist in retrieving and formatting data for use in Java servlets.

Many of these classes are themselves beans, and can therefore be visually
manipulated through the Visual Composition Editor.

The AS/400 Toolbox for Java online help lists the specific classes in the access and
GUI classes that are JavaBeans, and provides samples for writing applications with
the AS/400 Toolbox classes. The AS/400 Toolbox help is accessible from the menu
bar of the Workbench window. Select Help > Tools > AS/400 Toolbox for Java.

The Enterprise Toolkit for OS/390 (ET/390)

The Enterprise Toolkit for OS/390 (ET/390) provides support for developing
OS/390 applications. Once you develop your Java bytecode using the IDE, you use
ET/390 to export the bytecode to OS/390, and to invoke the binding process that
creates optimized object code that runs in the OS/390 shell or CICS environment.
The optimized code can be in the form of Java executable programs or dynamic
link libraries (DLLs).

ET/390 also includes a Performance Analyzer to fine-tune your compiled Java
application. The Performance Analyzer can help you understand and improve the
performance of your Java programs. The Performance Analyzer traces function
calls and returns, and collects timing data and call counts for each function called.

Chapter 11. Optimizing Java code for target performances 107

You must install the Distributed Debugger before you can debug ET/390
applications. You use the Distributed Debugger to debug Java programs that you
have exported to the file system, whereas you use the IDE debugger to debug
applets and applications running in the IDE. With the Distributed Debugger, you
can perform remote debugging (that is, you can run a program on one machine,
and debug it on another machine) and debug optimized code.

A sample ET/390 application would be a client/server application that invokes a
CICS transaction to retrieve customer data stored on an OS/390 system. In this
scenario, the client part runs on a workstation, and the server part runs on
OS/390. The client code displays the user interface. The server part contains the
code that invokes the CICS transaction.

A programmer would develop the server Java code on his workstation, then use
the export and bind functions of ET/390 to create the executable that will run on
the OS/390 system. The programmer would export the bytecode package that
contains the server code to OS/390 and invoke the binding process. During the
binding process, the OS/390 high-performance compiler compiles the Java
bytecode into optimized object code, and binds it into executables or DLLs.

During run-time, the user enters a customer name in the user interface displayed
by the client. The client invokes the server code which in turn invokes the CICS
transaction to retrieve the customer data.

The Enterprise Toolkit for OS/390 has four main functions:

Export and bind
Sends your selected code to the OS/390 operating system and creates an
executable file or DLL

Run Runs your code on the OS/390 operating system.

Debug
Starts the Distributed Debugger. You cannot debug applications unless you
have installed the Distributed Debugger. For instructions on installing the
Distributed Debugger on Windows, refer to the Installation and Migration
guide.

Analyze Trace
Starts the Performance Analyzer, which you can use to analyze the
performance of your compiled Java application.

108 Getting Started

Host environment setup for the ET/390
After you install ET/390, you need to set up the host environment before you can
build and run Java applications:
v Ensure the correct daemons and server processes are running on the host.
v Ensure that the ET/390 Java Install Data file on OS/390 contains the correct

information. This file provides the host session’s ET/390 Java installation
information to VisualAge for Java, and is usually prepared by the system
programmer.

Defining host sessions
Before using ET/390 to bind and run your OS/390 Java applications, you have to
provide the OS/390 host session’s information to VisualAge for Java. When you
define the host session, ET/390 downloads a copy of the ET/390 Java Install Data
file to the workstation and permanently saves a copy of it for your ET/390
development work.

You must define the hosts that you wish to work with before you can select them.

To define the host session options select Workspace > Tools > ET/390 > Host
Sessions. This option can only be reached from the Workspace menu because you
are setting hosts for the entire workspace, not for just one project, package or class.

Storing host logon data
Before using ET/390 to bind and run your OS/390 Java applications, you have to
provide OS/390 logon information. You can select to store host logon data, such as
the userid and password, to be used when you log on to a selected host.

To define the host session options select Workspace > Tools > ET/390 > Logon
Data. This option can only be reached from the Workspace menu because you are
setting logon data for the entire workspace, not for just one project, package or
class.

Chapter 11. Optimizing Java code for target performances 109

ET/390 properties
Before you can export, bind, run, or debug your code, you must set the properties
for these functions in the Properties window.

Every project, package, and class in the IDE can have its own set of ET/390
properties. You can use ET/390 Properties window to set bytecode binder options,
run-time options, OS/390 environment variables, and Java command options. For
example, you may want to automatically export your source code to the host
system whenever you perform a bind action. Or, you may want to request trace
information for use with the Performance Analyzer.

To access the Properties window, select a project, package or class, then, from its
pop-up menu, select Tools > ET/390 > Properties.

Export and bind Java files with the ET/390
Exporting sends Java files from the workspace to the OS/390 operating system.
You can export source code (.java files) or bytecode (.class files), either of which
can be used to bind your application into executable files or DLLs. You can also
export code to run in the OS/390 JVM. You can export entire projects or specific
packages, classes and interfaces.

The Enterprise Toolkit for OS/390 supports the standard Java interfaces. For
example, an application targeted for OS/390 can use the Java Native Interface
(JNI). Your applications can interoperate with OS/390 applications written in other
languages like C++. Similarly, an application can use Java Database Connection
(JDBC) to access a database on OS/390.

Binding is the action that creates the executables or DLLs from the class that you
exported; that is, it creates an application for use outside the Java Virtual Machine.
Bind options are set in the Properties window. If you have development and
production environments, you can specify options for each.

To export and bind your code, select a project or package, then, from its pop-up
menu, select Tools > ET/390 > Export and bind.

Running, debugging, and analyzing ET/390 applications
You can also run your OS/390 applications from the VisualAge for Java IDE,
whether in the form of executable files or DLLs.. Like bind options, run-time
options are set in the Properties windows.

There are two Run functions: Run executable and Run main.

You should select Run executable if you want to run your application on the host
machine. To do this, select a project or package (this option is not available with a
class), then, from its pop-up menu, select Tools > ET/390 > Run executable.

You should select Run main if you want to run your application on your own
workstation. To do this, select a project or package (this option is not available
with a class), then, from its pop-up menu, select Tools > ET/390 > Run main.

Debug an OS/390 application
The Distributed Debugger is a client/server application that enables you to detect
and diagnose errors in your programs. This client/server design allows you to
debug programs running on OS/390 systems accessible through a network

110 Getting Started

connection. The debugger server, also known as a debug engine, runs on the
OS/390 system where the program you want to debug runs. The debugger allows
you to step through and analyze your code as it runs.

To debug your code, select a project or package or class, then, from its pop-up
menu, select Tools > ET/390 > Debug. You must have installed the Distributed
Debugger before you can debug applications.

Analyze trace
The Performance Analyzer traces function calls and returns, and collects timing
data on call counts for each function called. It has two components - the host
component and the workstation component.

The host component creates a trace of your Java program’s execution in the
OS/390 UNIX environment. The trace file is written to HFS or a sequential data
set. The workstation component allows you to analyze the trace file that you have
created on the host. VisualAge for Java provides graphical and textual diagrams to
assist you with the analysis of the trace data.

To start the Performance Analyzer select a project or package or class, then, from
its pop-up menu, select Tools > ET/390 > Analyze Trace.

Chapter 11. Optimizing Java code for target performances 111

112 Getting Started

Chapter 12. Accessing non-Java resources

Access Builders

VisualAge for Java, Enterprise Edition, provides Access Builders that you can use to
access enterprise servers, data, and programs that are outside your Java programs.
Access Builders offer a consistent programming interface for accessing multiple
systems from a single Java application. They generate JavaBeans, which you can
use in the Visual Composition Editor to connect to your user interfaces.

Access Builders are only available with the Enterprise Edition of VisualAge for
Java.

VisualAge for Java, Enterprise Edition, Version 3.5 includes the following Access
Builders:

Enterprise Access Builder for Transactions
Provides frameworks and tools that allow you to create Java applications
that access existing host applications and data.

C++ Access Builder
Generates beans and C++ wrapper classes that let your Java programs
access C++ DLLs.

Access Builder for SAP R/3
Creates Java applications, applets, and beans capable of accessing SAP
business objects and data.

IDL Development Environment
Provides an environment for working with definitions written in the
Interface Definition Language (IDL). It lets you manage and version IDL
files like a VisualAge for Java project, and it can be configured to work
with an IDL-to-Java compiler to facilitate compiler invocation and
import IDL-to-Java compiler generated Java code.

Persistence Builder
Provides scalable persistence support for object models (Object models,
represented by class hierarchies, are said to be persistent when instances
created from these classes can be stored to an external data store such as a
relational database).

Enterprise Access Builder for Transactions

The Enterprise Access Builder for Transactions (EAB) can be used to create Java
applications that access existing applications, data and resources. EAB lets you
migrate to object-oriented technology while making full use of your traditional
(non object-oriented) programs.

For example, you can use EAB to build a Java application that accesses existing
CICS or MQSeries transactions.

The applications that you create using the Enterprise Access Builder can be
exported to other development environments, such as Component Broker’s Object
Builder, or the WebSphere environment.

© Copyright IBM Corp. 1997, 2000 113

The application mining cycle
The application mining cycle consists of three actions: listing what resources would
help you build your current application, finding those resources, and applying
your knowledge using EAB connectors to access those resources.

Listing your resources involves listing resources critical to your business that you
want to reuse to save you development time and limit the actual code produced.
To find suitable resources you would examine resources such as applications,
data, and servers to see how you can reuse them. Applying your knowledge
involves reusing and further developing existing applications using connectors.

EAB Connectors
Connectors connect your application to existing resources; for example, a set of
CICS customer records. The Common Connector Framework (CCF) is a set of
interfaces and classes that provide a consistent means of connecting to and
interacting with enterprise resources. Implementations of the CCF framework
create a specific connector. For example, IBM has created a CICS Connector which
accesses CICS records.

At run time the connectors are transparent to the users of your application. In the
following diagram, a user gets customer information from a Java application
developed with the CICS Connector. It displays a CICS customer record based on
the corporation requested by the user.

114 Getting Started

All connectors follow a common process and use the same visual builder tools. The
common process and the same tools mean that whether you want to access CICS
records, an Encina server, or MQSeries messaging software, you follow the same
path and use the same tools when working with connectors.

The following is a list of the connectors provided in the Enterprise Access Builder:
v CICS Connector - lets you develop applications that can access CICS

transactions.
v Encina Connector - lets you develop applications that can make requests to a

Distributed Computing Environment (DCE) or Encina server.
v MQSeries Connector - lets you develop applications that can access MQSeries

messaging software on MQSeries servers.
v IMS Connector - lets you develop applications that can access IMS transactions.
v Host-on-Demand (HOD) Connector - lets you develop applications to access

3270, 5250, CICS and VT hosts from the Internet.
v SAP Connector - lets you develop applications to access the Business Object

Repository in SAP R/3.

EAB components to build applications
The Enterprise Access Builder is based on the following constructs.

Enterprise Access Builder
construct

Function

Records Are used as input and output for Commands.

Commands Send input data from Java applications to host applications for processing, and receive
output data afterwards.

Navigators Encapsulate a sequence of Commands for cases of complex interactions.

Business Objects Represent entities in the Java application that have associated properties.

Mappers Define the relationship between commands or navigators and the business objects by
mapping record properties within commands or navigators to the business objects.

Chapter 12. Accessing non-Java resources 115

Applications that use connectors follow a common process and use the same EAB
constructs. The following diagram shows the steps involved in creating a Java
application using connectors and EAB.

Records
The first step in creating a Java application using an EAB connector is to create a
record bean. Record beans are generated from record types. A dynamic record type
is a representation of the field content of a record in an application. A field can be
another dynamic record type, an array, or a simple field. You can use the
SmartGuide corresponding to your source to parse a local copy of a source file and
generate a dynamic record type.

116 Getting Started

Dynamic record types can be modified in the Record Editor. Once you have
defined the fields of your record type, you can use the Create Record from Record
Type SmartGuide to generate a record bean or class. Record beans define the fields
in the server application that a Java client application will interact with. They can
be used as input or output to a Command.

Record beans represent the fields in the server application that a Java client
application will interact with. They can be used as input or output to a Command.
The input and output data used by the Command is a Java class called a record.
The record is a class within the Record Java Framework.

Refer to the VisualAge for Java online help and samples for more information
about creating Records in the Enterprise Access Builder.

Commands
The second step in creating a Java application with EAB is to create a Command or
a Navigator (A Navigator is a set of Commands).

A Command provides a single interaction between a Java application and a host
system. When executed, a Command wraps a single interaction with a host system,
as follows:
1. It takes input data and sends the data via a connector to the host system. A

connector is a link to another system.
2. It then sets, as its output, the data returned by the host system.

The Command itself is a composite bean that follows a specific construction
pattern.

You construct a Command using a SmartGuide. In a Command’s creation, you
provide the following information:

Information What it does

Input Data The input data is required by the Command to perform the execution.

Output Data The output data is the result of the Command’s execution.

Connection
Information

This information specifies which set of classes will be used to communicate with the host
system. A connection specification and an interaction specification define how a Command
communicates with a host system. Use the ConnectionSpec interface to specify the connection
to the host system. Use the InteractionSpec interface to specify to the Command which
program to call through the connection derived from ConnectionSpec.

The input of a Command is defined by a record bean. The output of a Command
is also defined by a record bean, though there may be multiple output record
beans, which are defined as candidates. A Command can show an entire record
bean in its interface, or only selected record bean properties.

Refer to the EAB online help and samples for more information about creating
Commands.

Navigators
A Navigator consists of multiple interactions with a host system. Externally, a
Navigator appears like a Command. However, a Navigator consists of Commands
and other Navigators strung together to form a more complex interaction with the
host system. When you execute a Navigator, the Navigator provides its input to
the Commands and Navigators that compose it. Each Command in the Navigator

Chapter 12. Accessing non-Java resources 117

is executed in the order specified by the Navigator. After the final interaction is
complete, the output of the individual Commands and Navigators is available as
the output of the Navigator.

You can specify connection information for a Navigator to override the connection
information that you supplied with the Command.

You can construct a Navigator in the Visual Composition Editor. Refer to the EAB
samples and online help for more information about creating Navigators.

Business objects
The next step in creating a Java application is to create one or more business
objects. Business objects can be incorporated within your application just like any
other set of objects, and provide an object-oriented abstraction of the data you are
accessing.

A BusinessObject is derived from the com.ibm.ivj.eab.businessobject.BusinessObject
class. A BusinessObject can also have a key which is derived from the
com.ibm.ivj.eab.businessobject.BusinessObjectKey class. You can use them in your
application to access your Commands and Navigators.

A business object makes core logic portable to other execution environments. You
can use a business object to map many different host interactions with many
different host resources. A business object can also contain any number of Java
properties. There are two types of business objects: managed and unmanaged.

You can use the new Business Object SmartGuide to create business objects.

Refer to the EAB online help and samples for more information about creating
business objects.

Mappers
The next step in creating a Java application with EAB is to create a mapper. To
exchange data between a business object and a record used in the construction of a
Command or Navigator, the Enterprise Access Builder uses objects called mappers.

A mapper is a class that maps the properties of one bean, such as a record, to or
from the properties of another bean, such as a business object. A mapper allows
the input record of a Command to get and set data automatically to and from a
business object. The data can be set before, during, and after a communication
interaction with the host application. You can also map from a record object to a
business object or to multiple business objects. You create a mapper for each record
that you need to access.

For example, you may have a business object called Customer and a Navigator
that contains several Commands. Customer contains a property called address,
used to store each customer’s address. During the execution of the navigation, one
of the Commands results in an output record containing a field called address. A
mapper between the Customer business object and the output record of this
Command (mapping the address field in the output record to the address property
of the Customer business object) would cause the address property of the
Customer business object to be set to the output record address just prior to this
Command’s completion. In this case, the mapping happens from the record object
to the business object.

118 Getting Started

In the following diagram, the properties of the CustomerInfo record are mapped to
the properties of the CustomerData business object. The mapper itself works in a
similar way to this diagram. Using arrow icons, you connect a property from a
record bean to a business object.

VisualAge for Java provides a Mapper Editor to map between a business object
and records used in a Command or Navigator.

Lastly, you write your application using the business objects created earlier to
interact with the resources you defined. After you have built your application, you
also need to consider setting the run-time context and deploying it.

Refer to the EAB online help and samples for more information about creating
Mappers.

Setting the run-time context and deployment
After you have built your application, you also need to consider setting the
run-time context and deployment. When you deploy an an application, you are
exporting it (along with any supporting run-time JAR files) to another machine.
For example, you could deploy an application to a web application server (such as
WebSphere) where users could access it over the Internet.

The run-time context refers to connector-related items at run-time. For example,
managing the number of connections to a server at run-time in an application with
many concurrent users is a critical design consideration. In such cases, you can
override the default run-time context settings. Refer to the online help for more
information about setting the run-time context and deploying your your completed
application.

C++ Access Builder

VisualAge for Java, Enterprise Edition, includes a C++ Access Builder that enables
your Java applets and applications to access C++ shared libraries.

The advantages of accessing C++ code from a Java client program include:
v You do not need to rewrite your existing C++ code in Java.
v You can take a phased approach to porting your C++ applications
v You can code features that are not currently available in the Java language.

It can also be used if, for certain server applications, the performance benefits of
binary code outweigh the platform independence offered by interpreted Java code.
(In this case, another alternative would be to use the high-performance Java
compiler that is included with VisualAge for Java, Enterprise Edition).

Chapter 12. Accessing non-Java resources 119

For example, you can use the C++ Access Builder to build Java clients that can
locally access the services of a C++ server.

Generating the C++ wrapper and stub beans
The C++ Access Builder creates a bridge between Java and C++ by creating:
v A C++ wrapper for each accessible class in your C++ shared library
v A JavaBeans stub class that corresponds to each C++ wrapper
v A makefile that you can use to compile both the generated C++ source and Java

source

To construct the C++ wrapper, you need to provide two essential pieces of
information to the C++ Access Builder:
v A base name, used to specify the name of the shared library and other files used

to build the library
v Header files, which contain definitions of all C++ classes that you wish to access

from Java. For example:
class Rect: public Shape

{
public:
Rect(double width, double length);
virtual double area();

private:
double _width;
double _length;
};

The name of the shared library is not required. In fact, the shared library does not
even need to exist; the generated makefile includes commands to create the shared
library based on the header file information.

The VisualAge for Java online help discusses the C++ Access Builder in more
detail and provides samples.

120 Getting Started

Access Builder for SAP R/3

The Access Builder for SAP R/3 creates Java applications, applets, and JavaBeans
capable of accessing an SAP system. Using the SAP Business Objects technology,
which includes a Business Application Programming Interface (BAPI), applications
can be quickly created in Java to access business data.

You begin using VisualAge for Java to create proxy beans which are derived from
SAP business objects. Then you or your customers use the beans to access the
business data in SAP, as shown in the diagram below.

As shown at the top of the picture, the SAP system usually resides on its own
server. It includes a Business Object Repository (BOR) plus the actual business data
from a corporation. In the Business Object Repository are objects with associated
methods typically used in business. Interfaces are already defined for them.
Collectively, these interfaces are referred to as the Business Application
Programming Interface (BAPI). In the diagram, the SalesOrder business object is
shown along with its CreateFromData, GetList, and GetStatus methods.

Using the Access Builder, as shown in the center of the diagram, a Hockey
Equipment Sales Form is created. This form is a proxy bean; specifically, it is a
business object proxy bean. In the Hockey Equipment Sales Form are listed the

Chapter 12. Accessing non-Java resources 121

items sold by the corporation: hockey sticks, helmets and goalie pads. The sales
form is now ready to be used by the customers.

At the bottom of the diagram, the Hockey Equipment Sales Form is accessed by
customers using the World Wide Web. The sales form passes their requests back to
the SAP system, updating the business data controlled by SAP accordingly.

The online help discusses the Access Builder for SAP R/3 in more detail and
provides samples.

Using SAP business objects and BAPIs
You use the Access Builder tool to browse meta information about SAP business
objects and BAPIs of the SAP R/3 system. You can read the full reference of SAP
business objects and BAPIs, disconnected from R/3, with any Web browser.

The Access Builder allows you to do these things:
v Retrieve complete meta information from the Business Object Repository (BOR)

within R/3
v Keep meta information of multiple R/3 systems
v Access meta information locally without R/3 connection

The Access Builder for SAP R/3 generates proxy beans for SAP business objects,
their BAPIs, and RFC modules. You can use these beans to design your application
visually or to code an application or applet.

You will use the Access Builder to:
v Generate HTML documentation for specific SAP business objects and RFC

modules
v Generate proxy beans for SAP business objects
v Generate proxy beans for RFC modules

Accessing the SAP system
The Common R/3 Access Interface defines a middleware-independent layer. You
can leverage different ways to communicate with R/3 in your application without
recoding. All generated beans are based on this interface and provide you with the
same flexibility. The Access Builder for SAP R/3 includes an actual layer via Java
Native Interface (JNI). This communication layer is best suited for the development
environment, but can also be used for server-side Java or Java applications that are
installed on fat clients.
You can also use another communication layer: CORBA/IIOP. This communication
layer is often used for Internet/intranet environments with client-side Java.

The R/3 Access Classes build the basic run-time access to R/3 Business Objects
and BAPIs. They are used by all other components of the Access Builder package
and by the generated JavaBeans. You can use them, to dynamically access SAP
Business Objects and BAPIs.

Logging on to an SAP system
To implement the SAP logon, you integrate the Logon bean into your application.
You can take the following approaches:
v Include the user interface of an SAP Logon in your application
v Visually customize the logon panel with your default values using the Visual

Composition Editor of VisualAge for Java
v Set the national language of the logon panel to your local needs

122 Getting Started

The online help shows you specifically how to log on through the VisualAge for
Java interface.

IDL Development Environment

The Interface Definition Language (IDL) is a language-independent way of
defining interoperable objects. Some IDL-to-Java compilers can use IDL source files
as
input to generate Java bindings that can be used in Java programs. When properly
used with a compatible ORB run-time, a Java program can be made to
communicate with other ORB-compliant objects, regardless of the compiler
technology with which the object was created. For example, a Java program may
be able to communicate with an object that is written to the Common Object
Request Broker Architecture (CORBA) specification.

VisualAge for Java, Enterprise Edition, includes an IDL Development Environment
that works with an IDL-to-Java code generation tool, commonly known as an
IDL-to-Java compiler. Using the IDL Development Environment, you can build
support for the construction of CORBA-compliant applications over the Internet
Inter-ORB Protocol (IIOP).

In the IDL Development Environment, you can work with your IDL source as well
as the generated Java code in one convenient browser page. You can also leverage
the built-in team and versioning capabilities of VisualAge for Java to help you
maintain both your IDL source code and generated Java code.

You can accomplish a wide range of tasks to help you with your development
activities:
v Importing directories and IDL files as IDL groups and IDL objects
v Creating new IDL groups and IDL objects or adding existing IDL groups and

IDL objects from the repository
v Editing IDL source code
v Defining your own choice of an IDL-to-Java compiler
v Setting compile options and generating Java source code from IDL source code
v Managing versions, releases, and editions of IDL groups and IDL objects in a

team development environment
v Exporting IDL groups and IDL objects as directories and IDL files

Using the IDL Development Environment, a Java ORB, and an
IDL-to-Java compiler, you can build a variety of distributed
client/server applications. For example, you can create IDL objects that enable Java
programs to communicate with distributed CORBA applications, such as those
commonly found in the finance industry.

A Java Object Request Broker (ORB) is a CORBA-compliant ORB that is
implemented in Java. When used with IDL-to-Java tools, it enables you to develop
Java applications that work with other CORBA-compliant objects. A Java ORB and
an IDL-to-Java compiler is found in the IBM JDK. Visigenic and Iona also provide
Java ORBs and IDL-to-Java compilers that you can use with the IDL Development
Environment.

Typically, you would follow these steps to use VisualAge for Java’s IDL
Development Environment:

Chapter 12. Accessing non-Java resources 123

1. Set up the development environment to work with your choice of a Java ORB
and IDL-to-Java compiler

2. Select or create a project for your IDL development work
3. Create the IDL groups and IDL objects to contain your IDL source code
4. Edit the source code of your IDL objects (if required)
5. Generate your Java code
6. Version your IDL groups and IDL objects
7. Version related packages and the project (as needed)
8. Use the generated Java classes to build your distributed application in the IDE

Refer to the online help for an IDL Development Environment tutorial.

Enterprise Access Builder for Persistence (Persistence Builder)

Persistence Builder provides a framework for building robust, scalable persistence
support for object models. Object models, represented by class hierarchies, are said
to be persistent when instances created from these classes can be stored in an
external data store such as a relational database. As well as support for persisting
objects, the Persistence Builder feature of Visual Age for Java includes additional
frameworks to support transacting objects, enforcing object integrity through
associations, and visual programming with a special set of palette beans.

Though object models for applications are often reused, the translation between
object-oriented and non-object-oriented representations of business models has
been a costly development task. Given that the majority of databases in use today
are not object-oriented, the task of mapping objects to relational database tables
and data from various existing sources has been the missing piece in object
persistence standards. Persistence Builder supplies this missing piece by providing
the following services:
v Automated code-generation services for underlying frameworks
v Import and export facilities for working with database schemas
v Debug and monitoring tools for performance tuning where desired
v Beans to assist visual programming and the building of a GUI to support the

transactional semantics of a nested transaction application

These Persistence Builder services manage the following elements:
v Business objects. Business objects are typically the objects in your application

domain that you want to persist in a data store, such as a bank application’s
Customer and Account objects.

v Associations. In Persistence Builder, an association is a relationship that exists
between two persistent business objects. There are three main types of
association: one-to-one, one-to-many, and many-to-many. A primary function of
Persistence Builder is to maintain the integrity of objects in the run-time
workspace and the corresponding persistent data store through the support of
atomic transactions. For example, a Customer object could have a one-to-many
relationship with a collection of Account objects such that each Customer knows
its set of Accounts, and each Account knows its Customer. The transactions
necessary to manage this association are transparent to you.

v Transactions. Transactions represent paths of code execution. For example, a
bank application might have a transaction that updates a customer account. The
code activity necessary to manipulate the persistent objects would take place in
the transaction.

124 Getting Started

Benefits of using Persistence Builder

v Minimal intrusion to object and database design. Close coupling between the
object and database models is no longer necessary when you use Persistence
Builder. Object models only need to represent their application domain, not the
database design. This enables you to maintain an object-centric view of
persistence rather than a data-centric view of data stores. The number of
persistence constructs required in the application code is very low, keeping the
persistence application model relatively lightweight. Separating objects and
database concepts is done by employing meta-information. The loose connection
between object model and database is preserved through mapping schemes.
Persistence Builder supports this meta-information layer through UML object
models, mapping models, and data models (schemas). Persistence Builder is
integrated with the visual aspects of programming as well, such that existing
view components can work with the framework.

v High performance. System performance depends on many factors: server load,
network throughput, client application response time, and more. Database access
can be optimized according to these performance factors.
To optimize the number of database round trips and the path length to data,
Persistence Builder’s cache and preload framework enables you to define your
working set of data for any task. This working set determines the amount of
data that will be retrieved for a given task.
When the set of objects you want to retrieve is very large, performance
degradation occurs when instantiating the objects all at once. A cache framework
prevents this problem by keeping objects in their native format as long as
possible.
The set of data required to perform a task is often known ahead of time, or can
be derived from application hints. Minimizing the number of database round
trips is achieved by retrieving as much data as possible. The preload framework
enables you to tune performance in this manner. One example of this would be
joining the relational tables that form a composition tree.

v Advanced transaction support. The transaction framework enables you to
support multiple users executing concurrent and nested transactions that update
the same objects. You can manage multiple versions of objects in your
workspace and determine appropriate policies for handling collisions and
commits to the database.The transaction framework treats the application and
database memory spaces as if they were one memory space, synchronizing them
and managing collisions.

v Advanced query support. The underlying query model is expressed in object
terms rather than in native database-specific terms. Several Persistence Builder
mapping strategies encourage this loose coupling.
Persistence Builder produces SQL statements customized for your object model.
The SQL statements are consumed by service classes that manage your data. The
query generator supports:
– Equi-joins for loading chains of objects (no branches)
– Unions and set differences for loading complex composition trees
– Left-outer-joins for loading trees that allow missing leaves

v Association support. Associations between persistent objects are implemented
using first-class link objects that are hidden behind generated accessors. Links
automatically manage:
– Object referential integrity
– Database key referential integrity
– Persistent state of the relationship (lazy retrieval)

Chapter 12. Accessing non-Java resources 125

v Seamless support for various database paradigms. Large, commercial
applications typically need to access data from multiple data stores. The
relational and procedure-call generation embedded in the framework provides
the linkages between the object model and the data store. These linkages are
established through generated service classes and include generated queries or
data access statements. All JDBC 1.1x-compliant drivers are supported.
Table definitions can be read from an existing database schema.
For each business object class, there is a set of pluggable data access services.
There can be more than one services set per business object class. For example, a
business object can have both a relational service set and a procedure call service
set. Information sent during activation of the data store determines which
service set a business object class uses.

For more detailed information on Persistence Builder and samples, see the online
help.

126 Getting Started

Index

A
Access Builder

C++ 119
Enterprise 113
IDL 123
overview 113
Persistence 124
SAP R/3 121

adding
buttons 24
counters 51
features 14
labels 23
lists 24
methods 39
scroll panes 24
state checking 31
text fields 23

aligning beans 25
API reference information 40
applets

creating 19
searching for 31
state checking 31
testing 30
versioning 50

AS/400
Enterprise Toolkit 103
toolbox 106

B
baseline, setting a 80
beans

aligning 25
button 24
connecting 26
distributing 25
label 23
list 24
overview 20
saving 30
scroll pane 24
sizing 25
text field 23

C
C++ Access Builder 119
code assist 42
code formatting 36
components

overview 8
connecting beans 26
Console window 42
creating

applets 19
packages 19
projects 19

current information 2

D
Development Environment

Enterprise JavaBeans 93
IDL 123

distributing beans 25

E
editions

return to previous 53
standalone environment 49
team programming 70

EJB Development Environment 94
EMSRV 59
enhanced features 11
Enterprise Access Builder 113

Connectors 114
Enterprise JavaBeans

overview 93
Enterprise Toolkit

advantages 101
AS/400 103
AS/400 toolbox 106
installation 102
OS/390 107
overview 101
starting 101

I
IDL Development Environment

overview 123
Installation and Migration guide 2
installing VisualAge for Java 14
Interface to external version control

systems 89

J
Java language, online help for 40
JSP/Servlet Development

Environment 91

L
list of components 8
load components into the workspace 14

M
merging code

team programming 77
methods

adding 39
migrating VisualAge for Java 14

N
new features 11

O
online help 1
optimizing code performance 101
OS/390

Enterprise Toolkit 107

P
packages

creating 19
Persistence Builder 124
printing program elements 36
projects

creating 19

Q
Quick Start window 18

R
releasing code

team programming 81
Repository Explorer 17

S
SAP R/3 Access Builder 121
saving beans 30
searching

for applets 31
for declarations of a method 39
for references to a method 39
for references to a type 39
in the Workbench 32
Search dialog 38

server, setting up 59
server-oriented programming

Enterprise JavaBeans 93
overview 91

Servlet SmartGuide 92
sizing beans 25
standard input 42
standard output 42
starting Visual for Java 15

T
team programming

adding a repository to server 63
adding users to a repository 65
applet coding 59
assigning team roles 68
client/server project view 84
connecting to a repository 64
merging code 77
opening editions 70
overview 83
ownership of code 67

© Copyright IBM Corp. 1997, 2000 127

team programming (continued)
public and private editions 70
releasing code 81
repository administrator 85
roles and responsibilities 84
scratch editions 71
setting a new baseline 80
setting up EMSRV 59
setting up the server 59
sharing code 74
starting a project 67
starting or stopping EMSRV 60
team development cycle 87
versioning code 82

testing

applets 30

toolbox

Enterprise Toolkit 106

V
versioning code

standalone environment 50
team programming 82

Visual Composition Editor(VCE) 20

W
Web pages 2

Workbench window 16

workspace 16

X
XMI Toolkit 98

XML for Java parser 97

XML Generator 97

128 Getting Started

Notices

Note to U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1997, 2000 129

incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

130 Getting Started

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1997, 2000. All rights reserved.

Notices 131

132 Getting Started

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

© Copyright IBM Corp. 1997, 2000 133

134 Getting Started

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:
v AIX
v AS/400
v DB2
v CICS
v CICS/ESA
v IBM
v IMS
v Language Environment
v MQSeries
v Network Station
v OS/2
v OS/390
v OS/400
v RS/6000
v S/390
v VisualAge
v VTAM
v WebSphere

Lotus, Lotus Notes and Domino are trademarks or registered trademarks of Lotus
Development Corporation in the United States, or other countries, or both.

Tivoli Enterprise Console and Tivoli Module Designer are trademarks of Tivoli
Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1997, 2000 135

	Contents
	Chapter 1. Preface
	About this book
	Related information
	PDF index
	Web resources

	Chapter 2. Introduction
	About VisualAge for Java
	Program development
	Database access
	Access to transaction servers
	Access to application servers
	Optimization and debugging
	Team development
	Other tools
	What's new in VisualAge for Java, Version 3.5
	Installing VisualAge for Java
	Migrating from earlier releases of VisualAge for Java

	Chapter 3. Developing a simple applet
	Starting VisualAge for Java
	Exploring the IDE
	About the To-Do List applet
	Creating the To-Do List applet
	Constructing the applet in the Visual Composition Editor
	Adding beans to the To-Do List applet
	Sizing and aligning visual beans
	Connecting the To-Do List beans
	Saving and testing the To-Do List applet

	Chapter 4. Adding state checking to the To-Do List applet
	Finding a program element in the Workbench
	Versioning the To-Do List applet
	Enabling state checking of the To-Do List applet
	Working with your source code

	Chapter 5. Enhancing the To-Do List applet
	Searching the workspace
	Importing the required classes
	Adding a static variable required by the new methods
	Adding a method for reading files
	Adding another method for writing files
	Adding buttons to the To-Do List applet
	Connecting the Open To-Do File button
	Testing the Open To-Do File button
	Connecting the Save To-Do File button
	Saving and testing the enhanced To-Do List applet

	Chapter 6. Managing the To-Do List applet edition
	Versioning the applet
	Updating the To-Do List code again
	Adding a counter to the To-Do List applet
	Adding counter labels to the To-Do List applet
	Connecting the To-Do List counter labels
	Returning to a previous edition of the To-Do List
	Debugging

	Chapter 7. Continuing applet coding in a team
	Setting up the server for the To-Do List team
	Starting and stopping the server
	Connecting a client to the todoserv server

	Creating the To-Do List repository
	Adding the To-Do List team repository to the server
	Connecting to the To-Do List team repository
	Adding users to the To-Do List team repository

	Owning To-Do List code
	Assigning team roles for the To-Do List project
	Opening a project edition of the To-Do List
	Creating a scratch edition of the To-Do List package
	Opening a package edition of the To-Do List

	Sharing code
	Changing a To-Do List class available to the team
	Changing the same To-Do List class
	Merging code

	Setting a new baseline
	Releasing the To-Do List classes
	Releasing the To-Do List package
	Versioning the To-Do List project

	Team programming
	Client/server view of the To-Do List project
	The To-Do List team roles
	The To-Do List team development cycle

	Chapter 8. Interface to external version control systems
	Chapter 9. Server-oriented programming
	JSP/Servlet Development Environment
	Servlet SmartGuide
	Enterprise JavaBeans
	The Enterprise JavaBeans component model
	The EJB Development Environment

	Chapter 10. XML Development
	XML Generator
	XML Parser for Java
	XMI Toolkit

	Chapter 11. Optimizing Java code for target performances
	Enterprise Toolkits
	The Enterprise Toolkit for AS/400 (ET/400)
	ET/400 properties
	ET/400 and code exportation
	Compiling, running and debugging an ET/400 application
	ET/400 SmartGuides
	AS/400 Toolbox for Java

	The Enterprise Toolkit for OS/390 (ET/390)
	Host environment setup for the ET/390
	ET/390 properties
	Export and bind Java files with the ET/390
	Running, debugging, and analyzing ET/390 applications

	Chapter 12. Accessing non-Java resources
	Access Builders
	Enterprise Access Builder for Transactions
	Records
	Commands
	Navigators
	Business objects
	Mappers
	Setting the run-time context and deployment

	C++ Access Builder
	Access Builder for SAP R/3
	IDL Development Environment
	Enterprise Access Builder for Persistence (Persistence Builder)

	Index
	Notices
	Programming interface information
	Trademarks and service marks

