IBM VisualAge® for Java , Version 3.5

Visual Composition

<|ll

Note!
Before using this information and the product it supports, be sure to read the general

information under ENotices” an page 251,

Edition notice

This edition applies to Version 3.5 of IBM VisualAge for Java and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Visual programming
fundamentals

Chapter 2. How classes and beans are
related

Chapter 3. Visual, nonvisual, and
composite beans.

Chapter 4. Visual Composition Editor
overview
Free-form surface .
Beans palette
Selection tool .
Choose bean tool .
Visual composition hints and tlps
Property sheets .
Tabbing order
Torn-off properties . .
Layout managers in visual composntlon
BorderLayout manager
BoxLayout manager
CardLayout manager .
FlowLayout manager .
GridLayout manager
GridBagLayout manager .
Null layout
Dropping beans into the Iayout

Chapter 5. Bean design for visual
composition

Chapter 6. Use of visual beans created
in other tools .

Chapter 7. Bean interfaces and

Beaninfo . . .
Promotion of bean features .
Default promoted feature names
Feature naming guidelines

Chapter 8. Connections

The source and target of a connection
Property-to-property connections .
Event-to-property connections .
Event-to-method connections

Code connections

Parameter connections.

Chapter 9. Generated code .

Code generated from visually composed beans
Generated feature code

© Copyright IBM Corp. 1997, 2000

SREIEEEIEI
= © © © oo N

.13
.13
.14
.15
.15
.15
. 16
. 16
. 16
.17
.17

. 19

.21

. 23
.23
.24
.24

. 25
. 25
. 26
.27
.27
.27
. 28

.31
.31
. 33

Generated BeanlInfo descriptor code (an advanced
topic)

. 34

How generated code coeX|sts W|th user- ertten code 35

Chapter 10. Example of generated
feature code

Chapter 11. Example of code generated
from visual composite .

Chapter 12. Bean morphing.
Chapter 13. Quick form.

Chapter 14. Object serialization in
VisualAge

Chapter 15. Internationalization in
VisualAge

Chapter 16. Using visual composites
from previous releases of VisualAge.

Chapter 17. Visual bean basics
Editing bean properties
Opening the property sheet for a bean
Setting properties typed as interface
implementers.
Using code strings in bean propertles
Changing bean colors .
Changing bean fonts
Changing bean size and posmon
Specifying icons .
Editing bean labels .
Displaying bean pop-up menus.
Working in the Beans List
Renaming beans and connections .

Chapter 18. Advanced visual bean

tasks

Setting the tabblng order

Promoting bean features .

Tearing off properties .

Setting a layout manager durlng V|sual composmon

Setting layout properties during visual composition
GridBaglLayout constraints
Achieving the resize behavior you want
Creating a GUI using GrldBagLayout

Morphing beans .

Changing look and feel in Swmg based comp05|tes

Chapter 19. Composing beans visually

. 37

. 39

. 43

. 45

. 47

. 49

. 51

. 53
. 53
. 53

. 54
. 54
. 55
. 55
. 55
. 56
. 56
. 56
. 57
. 58

. 59
. 59
. 59

. 59
60
60

. 60
. 61
. 61
. 65

65

67

Embedding beans in a composite bean 67
Adding beans from the palette67
Adding beans not on the palette68
Unloading the mouse pointer69

Editing beans within a composite beans. 69

Saving a bean . . . N 1)

Running and testing beans P 1)

Chapter 20. Arranging beans V|sually 71

Selecting and deselecting beans.11
Positioning beans72
Resizing visual beans . . . T 2
Resizing beans by draggmg oo T3
Matching bean sizes using the tool bar T3
Moving beans73
Copyingbeans74
Deleting beans15
Undoing and redoing changes in the Vlsual
Composition Editor.75

Chapter 21. Creating GUI Iayouts with

quick forms A
Sharing quick forms78
Registering quick forms79
Chapter 22. Connecting beans 81
Connecting features to other features.81
Connecting featurestocode82
Connecting from connection results82
Supplying parameter values for incomplete

connections 83

Supplying a parameter value usmg a connectlon 83
Supplying a parameter value using a

parameter-from-code connection 83
Supplying a parameter value using a constant . 83
Specifying values for parameters by default . . 84
Editing connection properties84

Chapter 23. Manipulating connections 85

Showing and hiding connections85
Deleting connections85
Selecting and deselecting connectlons85
Selecting a single connection.85
Selecting multiple connections86
Deselecting connections86
Reordering connections86
Changing the connection name86
Changing the source and target of connectlons . .86
Moving either end of a connection to a different
bean. . . . 87
Moving elther end of a connectlon to a dlfferent
feature - V4
Reversing the dlrectlon of a connectlon P - V4
Changing the shape of a connection87

Chapter 24. Managing the beans palette 89

Adding a category to the palette89
Adding a bean to the palette9
Deleting a bean or category from the palette Lo .92

iV Visual Composition

Chapter 25. Using VisualAge beans in

visual composition93
Composinganapplet93
JApplettasks.95
Composing awindow.9
Dialog and JDialogtasks96
Adding a paneorpanel97
JScrollPane and ScrollPane tasks97
JSplitPane tasks98
JTabbedPane tasks98
JEditorPane tasks99
JOptionPane tasks99
Adding a table or tree view 101
JTable, table model, and TabIeCqumn tasks .. 101
JTree and tree model tasks 102
Adding a text component102
Adding a list or slider component 105
JList and List bean tasks. 106
JComboBox or Choice bean tasks. 107
JScroll and Scroll bean tasks 108
JProgressBar and JSlider bean tasks 108
Adding a button component 109
Adding a menu or tool bar. . . . 111

Dynamically creating and accessing a bean |nstance 114

Chapter 26. Setting general properties

forbeans117
Chapter 27. Enabling custom edit

support for your bean. 119
Chapter 28. Property editor examples 121
Tag-based editor for the Person bean 122
Text-based editor for the Person bean 123
Custom editor for the Personbean 124
Paintable editor for the Person bean. 126

Chapter 29. Separating strings for
translation. 129
Separating strings through property sheets ... 129

Chapter 30. Incorporating user-written

code into visual composites. 131

Assembling a bean from generated and

user-written code . . . L. L1
Modifying generated feature code B X

Adapting user-written classes for use as beans . . 131

Chapter 31. Defining bean interfaces

for visual composition 133
Creating and modifying a Beanlnfo class 133
Adding property features134
Adding method features. 136
Adding event features . . . L. 137
Promoting features of embedded beans 139
Specifying expert features 139
Specifying hidden features 140
Specifying preferred features 140

Setting enumeration constants for a property .

Chapter 32. Repairing class or
package references.

Chapter 33. Fix/migrate guidelines for
class or package references .

Chapter 34. Beans for visual
composition .

User interface beans .

Factory and variable beans .

Chapter 35. Applet beans
JApplet (Swing)
Applet (AWT) .

Chapter 36. Window beans
JDialog (Swing).

Dialog (AWT)

FileDialog (AWT) .

JFrame (Swing).

Frame (AWT) .
JinternalFrame (Swing) .
JWindow (Swing) .

Window (AWT)

Chapter 37. Pane and panel beans
JDesktopPane (Swing)
JEditorPane (Swing) .
JOptionPane (Swing) .
JPanel (Swing) .
Panel (AWT)
JScrollPane (Swing)
ScrollPane (AWT) .
JSplitPane (Swing).
JTabbedPane (Swing) .
JTextPane (Swing) .

Chapter 38. Table and tree beans .
JTable (Swing) .

JTree (Swing) .

TableColumn (Swing).

Chapter 39. Text beans
JLabel (Swing) .

Label (AWT). .
JPasswordField (Swmg)
JTextArea (Swing) .

TextArea (AWT)

JTextField (Swing) .

TextField (AWT)

Chapter 40. List and slider beans.
JComboBox (Swing) .

Choice (AWT) .

JList (Swing)

List (AWT)

. 140

. 143

. 145

. 147
. 147
. 148

. 149
. 149
. 149

. 151
. 151
. 152
. 152
. 153
. 153
. 154
. 154
. 154

157

. 157
. 158
. 158
. 158
. 158
. 159
. 159
. 159
. 159
. 160

. 161
. 161
. 161
. 161

. 163
. 163
. 163
. 164
. 164
. 164
. 164
. 165

. 167
. 167
. 168
. 168

JProgressBar (Swing)168
JScrollBar (Swing)168
Scrollbar (AWT)169
JSlider (Swing)169
Chapter 41. Button beans 171
JButton (Swing)1711
Button (AWT)11
JCheckBox (Swing)172
Checkbox (AWT)172
JRadioButton (Swing). 172
CheckboxGroup (AWT)172
JToggleButton (Swing)173

Chapter 42. Menu and tool bar beans 175

JMenuBar (Swing).175
MenuBar (AWT)176
JMenu (Swing)176
Menu (AWT)176
JPopupMenu (Swing).176
PopupMenu (AWT) 177
JMenultem (Swing)177
Menultem (AWT) P v 4
JCheckBoxMenultem (Swmg) R Y
CheckboxMenultem (AWT).177
JRadioButtonMenultem (Swing) 178
JSeparator (Swing).178
MenuSeparator (AWT)178
JToolBar (Swing)178
JToolBarButton179
JToolBarSeparator179

Chapter 43. Factory and variable

beans.181
Factory181
Variable181

Chapter 44. Visual Composition Editor 183
Status area—Visual Composition Editor 183
The tool bar in visual composition 183

Chapter 45. The menu bar in visual

composition.187
Bean87
Tools188
Run188
Properties188
Beans List188
Show Connections.189
Hide Connections.189
Alignleft.189
Align Center189
AlignRight189
AlignTop189
Align Middle189
Align Bottom19
Distribute Horizontally190
Distribute Vertically190
Match Width19

Contents V

Match Height

Chapter 46. Keys .
Window keys
Accelerator keys

Help keys

Chapter 47. Pop-up menus for the

Visual Composition Editor.

Add Bean from Project .

Browse Connections .

Change Bean Name

Change Connection Name .

Change type.

Connect .

Connectable Features

Delete .

Event to Code .

Layout
Distribute .
Horizontally in boundlng box .
Horizontally in surface .
Vertically in bounding box .
Vertically in surface

Layout Options.

Modify Palette .

Morph Into .

Open .

Parameter from Code

Promote bean feature.

Quick Form .

Refresh Palette .

Refresh Interface

Reorder Connections From

Restore shape

Set Tabbing .

Show Large Icons .

Switch to.

Tear-off property .

Chapter 48. Modify Palette window
Bean type

Class name or file name.

Palette list

Chapter 49. Choose Bean window
Bean type

Class name .

Name .

Chapter 50. Promote Features window
Promote name .

>> Promote .
<< Remove .

Chapter 51. Reorder Connections
window .

Chapter 52. Quick Form SmartGuide

VI Visual Composition

. 190

. 191
. 191
. 192
. 192

. 193
. 193
. 193
. 194
. 194
. 194
. 194
. 195
. 195
. 195
. 195
. 195
. 195
. 196
. 196
. 196
. 196
. 196
. 197
. 197
. 197
. 197
. 197
. 197
. 197
. 197
. 197
. 198
. 198
. 198
. 198

201

. 201
. 201
. 202

. 203
. 203
. 203
. 204

205

. 205
. 205
. 205

. 207

209

Quick Form window .
Quick Form Layout window
Save Quick Form window .

Chapter 53. Quick Form Manager
window .

Chapter 54. Register chk Form
window .

Chapter 55. Connection windows .
Method

Property .

Event .

Details

Chapter 56. Property-To- Property
Connection window

Source property

Target property.

Source event.

Target event .

Chapter 57. Event-To-Method
Connection window

Pass event data.

Event .

Method

Show expert features

Set parameters .

Chapter 58. Constant Parameter Value
properties window

Chapter 59. Event-to-Code Connection

window .
Method class
Event .
Methods .
Code pane

Pass event data.

Chapter 60. Parameter-from-Code
Connection window

Chapter 61. Morph Into
Chapter 62. Resolve Class References

Chapter 63. String Externalization
Editor.

Chapter 64. Externalizing:
Package.Class .

Chapter 65. BeanlInfo page.

. 209
. 209
. 210

. 211

. 213

. 215
. 215
. 216
. 216
. 216

. 217
. 217
. 218
. 218
. 218

. 219
. 219
. 220
. 220
. 220
. 220

. 221

. 223
. 223
. 223
. 223
. 223
. 224

. 225

. 227

229

. 231

. 233

. 235

Features pane—BeanInfo page.
Definitions pane—BeanlInfo page .
Information pane—Beaninfo page
Source pane—BeanInfo page
Status area—BeanInfo page.

Chapter 66. BeanInfo page menus
Features—BeanlInfo page

Show—BeanInfo page

Sort—BeanlInfo page .
Definitions—BeanInfo page.
Information—BeanInfo page

Chapter 67. BeanlInfo page tools
Tool bar—BeanInfo page

BeanlInfo class generator.

BeanlInfo Class SmartGuide.

. 236
. 237
. 237
. 238
. 238

. 239
. 239
. 240
. 240
. 240
. 242

. 243
. 243
. 244
. 244

Bean Icon Information SmartGuide .

Bean Information SmartGuide .

New Property Feature SmartGuide .

New Event Listener SmartGuide .
Event Listener Methods SmartGuide

New Event Set Feature SmartGuide .

New Method Feature SmartGuide
Parameter SmartGuide

Add Available Features .

Delete Features. .
Class Qualification Dlalog .

Notices .

Programming |nterface mformatlon .

Trademarks and service marks
Reader comments .

. 245
. 245
. 246
. 247
. 247
. 248
. 248
. 249
. 249
. 249
. 250

. 251

Contents

. 253
. 253
. 253

Vii

Viil Visual Composition

Chapter 1. Visual programming fundamentals

VisualAge® for Java™ includes a state-of-the-art object-oriented visual composition
editor for assembling program elements visually from JavaBeans components.

Obiject-oriented programming facilitates development of complex software systems
by breaking them up into a number of much smaller, simpler program elements
called objects. Objects work together by sending each other messages, that is, by
requesting behavior that is implemented by the target object. Taken as a group,
these behaviors comprise a class interface.

Using an object-oriented approach for complex systems provides the following

benefits:

* Individual classes are much easier to create and understand.

» Systems are much easier to maintain and enhance. Object implementations can
be modified individually without modifying the rest of the system, as long as
the objects continue to respond appropriately to messages sent to them by other
objects.

Despite these benefits, implementing large systems can still be expensive. One way
to reduce the cost is to reuse object implementations. Many companies would
prefer to buy reliable reusable classes, creating classes only for functions specific to
their business. This vision of constructing custom software using standard building
blocks has been called construction from parts. The building blocks themselves have
popularly been called parts or components.

However, reuse is hard to achieve when the class interfaces are too specific to the
application for which they were originally developed. To promote wider reuse,
class interface conventions called component models have been defined, such as
ActiveX, OpenDoc, and JavaBeans.

JavaBeans is the standard component model for the Java language and is the
component model used by VisualAge. JavaBeans includes the following definitions:

An event model. Event models specify how a component sends messages to
other objects without knowing the exact methods that the other object
implements. This enables a component to be reused with a range of objects that
have different interfaces

Events, properties, and methods. JavaBeans defines a component interface in
terms of the events it can signal, the property values that can be read and set,
and the methods it implements. This definition provides more structure to the
interface of a component compared with a simple class interface, facilitating the
use of tools such as the VisualAge Visual Composition Editor.

Introspection. Introspection refers to the ability to discover programmatically
the component interface for instances of a particular component class. The
reason to provide introspection is that it enables the use of programs such as
the Visual Composition Editor that can work with component instances at run
time without having the details of these components programmed into them.

The Visual Composition Editor enables you to create programs graphically from
existing beans. Beans are simply Java classes that comply with the JavaBeans
specification. JavaBeans is the component model supported and used throughout
VisualAge, so this documentation will refer to VisualAge components as beans.

© Copyright IBM Corp. 1997, 2000 1

2 Visual Composition

VisualAge provides user interface beans based on Java classes in the Abstract
Windowing Toolkit (AWT) and Swing packages. The Visual Composition Editor is
also extensible. It allows you to work with beans you create yourself, and it allows
you to include beans imported into the environment from other sources. You can
even create your own beans graphically using the Visual Composition Editor and
then reuse these beans again within another program being created with the Visual
Composition Editor.

To build a program with the Visual Composition Editor, you draw a picture using
a canvas and palette of icons representing reusable beans. This picture specifies the
set of beans that implements the function of the larger program (or bean) you are
creating. For beans like user interface controls, the position of the controls relative
to each other in the picture specifies how the controls will appear in the final
program. For beans such as database components, the position of the bean in the
picture generally has no significance.

The Visual Composition Editor provides a very sophisticated connection capability
to specify how components of the picture will interact to implement functions of
the program. Using connections, much of the behavior of an application can be
specified graphically. Connections also allow you to integrate custom code written
in the Java language.

See the lavaBeans home pags for links to detailed information on JavaBeans and
BeanlInfo.

RELATED COMNCEPTS

http://www.java.sun.com/

Chapter 2. How classes and beans are related

VisualAge beans are Java classes that conform to the JavaBeans component
architecture. Composite beans are made up of embedded beans. We use the term
bean to refer to both a class and its instances, as follows:

* When we refer to beans on a palette or to beans that you create by writing code,
we mean bean classes.

* When we refer to beans on the free-form surface or to beans that are connected,
we mean bean instances. Sometimes, beans represent instances that have not yet
been created.

During visual composition, you interact with bean interfaces. The most useful bean
interfaces contain the following features:

Access to data, or properties. A complete property interface includes methods to
return the value of the property, to set the value of the property, and to notify
other beans when the value of the property changes. The interface for a
property does not have to be complete. For example, a property might be
read-only, in which case the interface would not support the ability to set the
value of a property. A property can be any of the following:

— An actual data object stored within the bean, such as the street in an address
bean

— A computed data, such as the sum of all numbers in an array or the profit
that is computed by subtracting dealer cost from the retail price

Access to the behavior of a bean, or methods. These represent tasks you can ask
a bean to perform, such as open a window or add an object to a collection of
objects.

Event notification. By signaling events, a bean can notify other beans that its
state has changed. For example, a push button can signal an event to notify
other objects when it is clicked, or a window can signal an event when it is
opened, or a bank account can signal an event when the balance becomes
negative.

Events can also be signaled when the value of a bean property changes, such as
when money is deposited into or withdrawn from a bank account. In this case,
the balance property is said to be bound to an event.

RELATED COMNMCEPTS

RELATED REFEREMNCES

FChanter 43 Ead | T T

© Copyright IBM Corp. 1997, 2000 3

4 vVisual Composition

Chapter 3. Visual, nonvisual, and composite beans

You can use many kinds of beans to construct program elements. All beans exist as
either primitives or composites. Primitive beans are the basic building blocks from

which composites are constructed. You must construct new primitive beans using a
programming language because there are no similar beans to use in building them.
Primitive beans can be either visual or nonvisual.

Visual beans are elements of the program that the user can see at run time. The
development-time representations of visual beans in the Visual Composition
Editor closely match their runtime visual forms. Users can edit these beans in
the Visual Composition Editor in their visual runtime forms. Examples include
windows, entry fields, and push buttons. In general, visual beans are subclasses
of java.awt.Component.

Nonvisual beans are elements of the program that are not necessarily seen by
the user at run time. On the Visual Composition Editor’s free-form surface,
users can manipulate these beans only as icons. Examples include business
logic, database queries, and communication access protocol beans.

Beans that have a visual representation at run time but do not support visual
editing are treated as nonvisual. Examples of this kind of nonvisual bean
include message boxes and file selection dialogs.

Composite beans can contain both visual and nonvisual components. In general,

composite beans are based on one of these classes, but you are by no means

limited to these:

* Applet or JApplet, for Web applets

» Frame or JFrame, for GUI applications

* Panel or JPanel, for reusable GUI surfaces embedded in either applets or
applications

RELATED COMNMCEPTS

RELATED TASKS

I‘ I

© Copyright IBM Corp. 1997, 2000 5

6 Visual Composition

Chapter 4. Visual Composition Editor overview

Visual composition is the creation of object-oriented program elements by
manipulating graphical representations of components. VisualAge provides a
powerful tool, the Visual Composition Editor, that enables you to visually construct
applications, applets, and reusable beans.

In the Visual Composition Editor, you select and place beans to create graphical
user interfaces (GUIs). These GUIs can include VisualAge beans, imported beans,
and beans you create yourself. By following a few guidelines, you can design
versatile beans that you can reuse in many compositions. VisualAge also enables
you to use nonvisual beans to perform the business logic and data access.

Development using visual composition can include the following steps:

1. Design your program elements. Determine what you can compose visually and
what you must write by hand.

2. Create nonvisual beans.

3. Using the Visual Composition Editor, enhance these classes by dropping beans
and setting initial values for properties. Extend the behavior of VisualAge
beans by writing code.

4. For business logic, add code to the appropriate class stubs.

5. Connect beans to define the program element’s behavior and flow.

6. Save your work. VisualAge generates and compiles the code for visually

¥

composed beans. Click on Run in the Visual Composition Editor to try out

the finished product.
RELATED CONCEPTS

RELATED REFEREMNCES

FChantor 42 Visoal C on Ediior %

© Copyright IBM Corp. 1997, 2000 7

../../ide/tasks/ticaddpp.htm

Free-form surface

The free-form surface is the large open area in the Visual Composition Editor. It is
like a blank sheet of paper or a work area where you can add, manipulate, and
connect the beans that you use to create your composite bean.

Some of the functions you can perform on the free-form surface include:

* Add visual beans.

* Add nonvisual beans to build the application logic for a composite bean.
* Delete beans.

» Connect beans to define behavior.

You cannot edit on the free-form surface if the bean you are attempting to edit
meets any of the following conditions:

* The class is in a system package.

* An exception occurred during the creation of the bean.

* The class is a Java AWT lightweight component.

RELATED COMNMCEPTS

FChanter 4 Vil ¢ fon Edii — 3

RELATED TASKS

RELATED REFEREMNCES

FChanior 44 ieual C on Ediior %

Beans palette

8 Visual Composition

The beans palette, located on the left side of the Visual Composition Editor, provides
building blocks you can use to construct a program element. It consists of
categories in a drop-down list, each one containing groups of beans.

You can add a bean to your program element by first selecting the category, then a
bean, and then dropping it on the free-form surface, a container bean, or the beans
list.

To add multiple instances of the same bean, enable Sticky by holding Ctrl while
selecting the bean. Select a new bean or the Selection tool to disable Sticky.

The status area displays the name of the selected category and bean.

The beans palette initially contains the following:

» Categories (including AWT, Swing, and Other) and the option to load Available
installed features to the workspace.

» Beans provided with VisualAge

* A pop-up menu

../../ide/tasks/ticaddpp.htm

You can modify the palette by resizing it, changing the icon size, adding categories,

adding separators, adding beans you have constructed yourself or beans supplied

by a vendor, or removing separators, categories, or beans. In addition, the

Available feature on the category menu loads installed features to the workspace.

This may include the addition of categories and beans to the palette. Modifying the

beans palette can increase your productivity in the following ways:

* By reducing the time and effort required to place beans that you have created
and that you use often in the Visual Composition Editor.

* By reducing the time and effort required to place vendor beans or beans from
another project.

» By eliminating the need for manually placing beans through the Choose Bean
tool, which requires that you use the exact class hame of the bean.

When you add a new bean to the palette, the entire visual or nonvisual bean is

represented with the default puzzle icon unless you designate another icon in
the Beanlnfo Class. Once you add beans to the palette, you can place them in the
free-form surface Visual Composition Editor in the same way you place beans that
VisualAge provides.

Selection tool

Click on [:3 to unload the mouse pointer and return it to the selection pointer.
The loaded mouse pointer appears as a crosshair and carries a bean that can be
added to the free-form surface, the beans list, or an existing container bean. When
unloaded, the mouse pointer reverts to an arrow that you use to select and
perform actions on beans. If the mouse pointer is not loaded, this tool is not
enabled.

Choose bean tool

) -
Click on to retrieve a bean that is not on the palette and drop it on the beans
list, free-form surface, or an existing container bean.

RELATED TASKS

RELATED REFEREMNCES

Visual composition hints and tips

When you place beans in the Visual Composition Editor, remember the following:

Avoid overlaying beans. It is not good interface design for one bean to overlay
another bean. Completely or partially overlaying a bean can result in focus
problems, causing users to see but be unable to select the bean.

Embed composite beans into other composites. By embedding composite beans
into other composites, you minimize the confusing spider effect of connection lines.
For example, you can create a composite bean that consists of a panel on which
you have placed buttons and check boxes, and make connections. When you

Chapter 4. Visual Composition Editor overview 9

10 visual Composition

embed this bean in your main interface, you cannot see the connection lines. You
place and work with the composite as one bean—not as a panel and separate
buttons and check boxes.

If you need to edit the composite or its internal connections, you simply select
Open from the pop-up menu and the Visual Composition Editor for the composite
appears, as described in EEditi ithi i z

Avoid changing the composite’s superclass manually. This action creates a
discrepency between the visual metadata and the class definition that may result in
faulty generated code. In extreme cases, you could lose the visual metadata
altogether.

Common problems

Property-to-property connection does not work. At least one of the end-point
properties might not be bound to an event. Open the properties window for the
connection; check the Source Event and Target Event lists. If either reads <none>,
the corresponding end point is unbound; choose an event from the list. For
JTextField’s text property, a good choice is the KeyTyped event.

Recent changes to a bean interface are not reflected in an open Visual
Composition Editor. The Visual Composition Editor reflects feature lists that were
current at the time you opened it. To update the feature lists in an open Visual
Composition Editor, select Refresh Interface from the pop-up menu of the
free-form surface.

After export and import of a class to another repository, the visual composition

information is missing. To fix this, you must have access to the repository from

which the class was originally exported. You have two options:

* Re-export the class to a repository (.dat) file and import it into the new
repository.

* In the original repository, generate a metadata method and then re-export the
class to a source-code (.java) file.
First, set the correct option: From the Window menu, select Options, Visual
composition, and then Code generation. Then select Generate meta data
method.
Then open the composite in the Visual Composition Editor and select
Re-generate Code from the Bean menu. Save the bean and export it. Then
import it into the new repos

RELATED COMNCEPTS

FChanter 4 Visual Composiion Ediior ousriear - 3

RELATED TASKS

FChanior 17 ol hean basice” =

RELATED REFEREMNCES

Property sheets

The bean property sheet provides options for changing the initial appearance and
state of beans. You can open the property sheet from the pop-up menu of a
selected bean either in the Visual Composition Editor or Beans List window. You

E2

The left column of the bean property sheet contains a list of properties and the

can also select Properties from the Tools menu or click on on the tool bar.

right column contains the editable values. An expansion icon |# to the left of the
property indicates that the property has more editable values. For example, when
you expand the constraints, sizing properties, such as x, y, width, and height,
appear for editing. When you select the value column of a property, you are
provided with an editing option. For example, if you want to modify the property
for a label, select the value field for label and enter the new label in the entry field.
If you want to change the background color for the same bean, a small button

appears when you select the value column for background. When you click on
this button, a dialog window appears with color options. You can use the Reset
button to change any property sheet setting back to the default.

You can specify the type of property editor to associate with the property by
setting the propertyEditor field in the Beanlnfo. For more information, see
"Enabling Custom Edit Support for Your Bean.”

Once you open a property sheet, you can modify properties for most beans in the
Visual Composition Editor. To edit another bean select it in the Visual Composition
Editor or from within the property sheet by selecting the bean from the drop-down
list at the top of the property sheet. If you open a property sheet after selecting
multiple beans, the property sheet provides editing options for only the common
values of the selected beans. For example, you can use this feature to set the left

Chapter 4. Visual Composition Editor overview 11

and top inset of several beans in a GridBagLayout at once.

@T alDa - Properties

JList1 |
= coretrainks wlDv0w221 k120
X 0
— 0
width prd
height 120
enabled True
fart Dialog, plain, 12
cgord |
selectedindex -1
selectiond ode MULTIPLE_INTERVAL_S
toodTipT ext
vizible Tiue
vigiblaR owCount 8

|haar‘Harns
™ Show expert features

RELATED CONCEPTS

F T C o Edl low on page
FChapter 2 How classes and heans are related” on_pane 3

o WV o] I ™ C |

RELATED TASKS

FChanior 17 ol hean basice” =

FChanter 26_Seffing general properfies for heans” on page 103
RELATED REFEREMCES
I‘:: I||a|otE| 4. .Ilsual :unluocs_ltlcl_n Edl'm' 28 E_tge’1’83 V

12 Visual Composition

../../ide/tasks/ticaddpp.htm

Tabbing order

The tabbing order is the order in which the input focus moves from bean to bean
as the user presses the Tab key. The initial tabbing order is determined by the
order in which you drop the beans. The first bean in the tabbing order receives the
initial input focus. For example, if the first bean in the tabbing order is a button,
that button receives the initial input focus when the application starts.

The tabbing order can be set or displayed only for beans that are placed within a
composite bean. For example, if you place a row of buttons in a frame window,
you can set the tabbing order for the buttons.

If the tabbing order includes each entry field in which a user can type, the user can
move the input focus from one entry field to another. Arrow keys only move the
cursor within an entry field; only the Tab key, backtab key, and mouse can change
the input focus from one entry field to another. Read-only fields do not need to be
included in the tabbing order.

Because the order in which beans are placed on a composite bean determines the
tabbing order, you will probably need to change the order as you add or rearrange
beans.

For example, drop three buttons and then rearrange them so that Button3 is
between Buttonl and Button2. The tabbing order of these buttons is Buttonl,
Button2, Button3, even though Button3 is now between Buttonl and Button2. You
must change the order to have the focus move from Buttonl to Button3 to Button2.

The color of the tab tags reflects information about the beans that you use. Yellow
tab tags represent simple beans, such as entry fields and buttons. Blue tab tags
represent composite beans and container beans.

RELATED COMNMCEPTS

¢ H H (1]

RELATED TASKS

FChanter 17 Vol hoon basiee =

RELATED REFEREMNCES

Torn-off properties

You tear off a property to gain access to the encapsulated features of a bean. This
can be necessary when a property is in itself a bean and you want to connect to
one of its features. The torn-off property is not actually a separate bean but a
variable that represents the property itself or points to it.

Chapter 4. Visual Composition Editor overview 13

../../ide/tasks/ticaddpp.htm

For example, in an address book application you might tear off properties as
follows:

* You might have a Person bean that contains both homeAddress and
workAddress properties, both of which, in turn, could contain street, city, and
state properties.

» Tearing off a homeAddress or workAddress property makes the nested street,
city, and state properties directly accessible. Now that the nested properties are
directly accessible, you can make connections to and from them, as well as to
their associated events and methods.

RELATED COMNMCEPTS

FChanior 4 il C on Edil — 3

RELATED TASKS

. H H ET]

RELATED REFEREMNCES

FChantor 44 isualC ion Editor e

Layout managers in visual composition

14 visual Composition

Many container components support the use of layout managers. A layout manager
is a class that implements the java.awt.LayoutManager or
java.awt.LayoutManager?2 interface.

You assign a layout manager to the container. In most layouts, you can then define
properties for the layout that govern the specifics of the sizing and resizing
behavior for the components.

In addition to those provided, you can create custom layout managers for use with
your beans. Custom layout managers must inhereit from Object class and
implement a LayoutManager interface. If you choose to implement
LayoutManager2, you must implement public final static java.lang.Class
getConstraintsClass() in your layout manager class and supply a property editor
for the type. Your custom layout managers appear at the bottom of the list of
available layout managers in the property sheet. For examples of using layout
managers, see the com.ibm.ivj.examples.vc.customLayoutManager classes shipped
in the IBM Java Examples project.

Visual composition makes it easy to try different layouts. If you prefer to lay beans
out individually, you can use the null layout setting (that is, no layout) and the
Visual Composition Editor alignment tools. For layout manager details, see the
Java API documentation. For examples of using layout managers, see the
com.ibm.ivj.examples.vc.layoutmanagers classes shipped in the IBM Java Examples
project.

Alignment tools are disabled for all but null layout.

../../ide/tasks/ticaddpp.htm

Consider waiting to set layout properties until you have settled on a layout
manager. Many values are lost when you switch layouts or move the component to
another container on the free-form surface.

VisualAge supports the use of the following layout managers in container beans:

]

BorderLayout manager

BorderLayout arranges components along each edge of the container (North,
South, East, and West), and one component in the center. Beans placed in
BorderLayout assume the shape and size necessary to conform to the new layout.

VisualAge provides placement assistance by drawing an outline of the regions in
the layout when you drag the bean. When you release the mouse button,
VisualAge places the bean within the outline under the crosshair.

If you drop beans in the a layout and then switch the layout to Border, the order in
which you dropped the beans determines their location. The first bean dropped
fills the center, the second bean spans the top of the container bean, the third spans
the bottom, the fourth fills the left side, and the fifth fills the right. If you use more
than 5 components, changing the container layout to border could result in
overlaid components. You can use the beans list to perform tasks on the covered
components.

From the property sheet, you can specify the spacing between adjacent
components.

BoxLayout manager

BoxLayout arranges components vertically or horizontally without wrapping. You
can nest multiple panels with different combinations of horizontal and vertical
BoxLayout to achieve an effect similar to GridBagLayout, without the complexity.
If you are using the vertical alignment, BoxLayout attempts to make all
components the same width. With horizontal alignment, BoxLayout attempts to
match component height.

VisualAge provides placement assistance by drawing a bold horizontal or vertical
bar in the layout when you drag the bean. When you release the mouse button,
VisualAge places the bean near the line under the crosshair.

From the property sheet, you can specify whether the components are arranged
vertically or horizontally.

CardLayout manager

CardLayout arranges components in a linear depth sequence similar to a deck of
cards, notebook, or tabbed dialog box. Each component is called a card.

VisualAge provides placement assistance by drawing an outline of the container
when you drag the bean. When you release the mouse button, VisualAge places

Chapter 4. Visual Composition Editor overview 15

the bean within the outlined container under the crosshair. VisualAge adds beans
to the top of the card deck, making the first bean you dropped the bottom card.
You can use Switch To on the pop-up menu to move through the deck, or perform
tasks on the covered cards from within the beans list.

From the property sheet, you can specify the size of the verticle and horizontal
frame around each component.

FlowLayout manager

FlowLayout arranges components in horizontal wrapping lines.

VisualAge provides placement assistance by drawing a bold verticle bar in the
layout when you drag the bean. When you release the mouse button, VisualAge
places the bean to the right of the vertical bar under the crosshair.

From the property sheet, you can specify the spacing between adjacent components
and the starting alignment from center, left, or right.

GridLayout manager

GridLayout arranges components in a table, all cells having the same size.

VisualAge provides placement assistance by drawing a bold verticle bar in the
layout when you drag the bean. When you release the mouse button, VisualAge
places the bean to the right of the vertical bar under the crosshair.

From the property sheet, you can specify the spacing between adjacent
components, and the number of rows and columns.

GridBagLayout manager

16 visual Composition

GridBagLayout enables you to arrange components in a highly complex grid. As
you add or move beans, the free space shuffles so that beans are centered on the
interface, while retaining your arrangement. Grid cells are not necessarily identical
in size and components can span multiple cells. You can customize grid sizing
behavior down to each individual component.

Resize behavior in GridBagLayout is tied to the weightX, weightY, and fill
constraints of components within the layout. By default, the component properties
are set without resize behavior. If you place components in any layout and then
change the layout to GridBag, the component constraints are set to maintain the
look created in the original layout.

VisualAge provides placement assistance by drawing a bold grid that is based on
the beans dropped so far. VisualAge attempts to place the bean as indicated by the
pointer. If the pointed-to cell is empty, all borders of the cell are highlighted. If the
pointer rests on a row or column boundary, a new row or column is inserted. New
rows appear below the pointer; new columns appear to the right.

You do not specify additional layout properties for a container that uses
GridBagLayout. However, you can specify constraints for the components within
the container.

Null layout

Null layout means that no layout manager is assigned. Without a layout manager,
resizing the container at run time does not affect the size and position of the
components.

VisualAge provides placement assistance by drawing an outline of the container.
When you release the mouse, VisualAge places the bean within the container
under the crosshair.

You can customize components within the null layout by means of dragging the
beans, using tool bar options, or through the constraints option in Properties.

Dropping beans into the layout

To access the layout interface directly, drop a Variable bean on the free-form
surface to the right of the container. Change the type of the Variable bean to that of
the class implementing the layout manager interface (for example, CardLayout).
Connect the layout property of the container bean to the this property of the
Variable bean. Then connect to features of the Variable bean.

If you use a layout that allows for a bean to completely cover another bean, the
beans list enables you to easily perform tasks on the covered components. To
modify bean placement on the Visual Composition Editor from within the beans
list, open the Properties for the bean and modify the Constraints.

RELATED COMNMCEPTS

< A H ET]

RELATED TASKS

Fhanter 17 Visual bean basics” =

Chapter 4. Visual Composition Editor overview 17

../../ide/tasks/ticaddpp.htm

18 visual Composition

Chapter 5. Bean design for visual composition

Designing a good bean is very similar to designing a good class: it must be usable.
In fact, making a bean usable for visual composition improves its use in
handcoding as well. Consider the following:

Implement a null constructor.

Keep your bean small. Minimize dependencies on other beans and classes.
Implement the java.io.Serializable interface.

For visual beans, subclass from java.awt.Component or one of its subclasses.

Make important functions available through settable properties. If necessary,
provide a custom editor to make setting properties easier. Avoid dependencies
upon the order in which properties are set.

Mark interface features in Beanlnfo to optimize clarity:

Set preferred to true for those features that most people will use.

Set expert to true for those properties that most people will never use.

Set hidden to true for those properties that must not be used in connections.
Set Design time property to false for those properties that you do not want
surfaced in the bean’s property sheet.

To take advantage of reflection, follow standard design patterns for methods,
events, and properties. Do not use the same set method names for different
properties. Provide a Beaninfo class with meaningful display names and
descriptions.

Set up bound properties where appropriate. However, be careful not to overdo
it, because property events are multicast through PropertyChangeEvent, which
can affect performance.

Have your bean signal events for significant state changes. Use unique event
classes instead of a single event class with a flag in eventData.

Provide .gif files so that the bean can be represented in the Visual Composition
Editor. Include both 16x16 and 32x32 versions, with transparent backgrounds.

To minimize the number of connections during visual composition, specify
several methods with a small number of parameters rather than a single method
with many parameters.

RELATED CONCEPTS

RELATED TASKS

E . o ——]

© Copyright IBM Corp. 1997, 2000 19

20 Visual Composition

Chapter 6. Use of visual beans created in other tools

VisualAge can generate visual composites from GUI beans created outside the
VisualAge development environment. This can save you editing time if the bean
contains a large number of visual components. VisualAge constructs the composite
by querying an instance of your GUI bean about its contents. This is what you can
expect from this reverse-engineering process:

VisualAge constructs only those controls that ultimately inherit from
java.awt.Component.

Each component must have a null constructor; VisualAge writes over the null
constructor of the class being edited to make it consistent with that for other
visual components. Be sure that all visuals embedded within a component also
have null constructors.

VisualAge also generates its own names for visual components, so any
handwritten code referring to the previous component names must be updated
with the new names. If you want VisualAge to use the hames you assigned in
the original bean, explicitly set the name of each component using the
setName() method before you proceed with reverse-engineering. An example
follows:
if (myBean == null) {

myBean = new JTextField();

myBean.setName ("myBean") ;
}
VisualAge writes over methods and fields whose names collide with those it
typically generates. This most commonly occurs with get and set accessor

methods. For a complete list, read [‘Chapter 9 Generated cade” on page 31,

Layout and property settings for visual components are preserved whenever
possible. Custom layout managers are not supported.

No attempt is made to construct connections from method calls, but you can
draw new connections as soon as VisualAge has constructed the composite. In
most cases, you will have to draw event connections to get the bean to behave
as it did before the reverse-engineering.

Embedded composites are constructed as primitives. Reverse-engineer the
embedded composites first.

Serialized instances are constructed from the class, not from a serialization file.
As with nonserialized components, VisualAge sets properties from Beanlnfo
queries.

When VisualAge does not have enough information to set a property, the
property is not set. (One example of this is the icon property of the JButton bean
and other Swing components.)

Undo is not supported for reverse-engineering visual composites. If you are not
satisfied with the results, close the class browser without saving the newly
engineered composite. In any case, version the bean before you reverse-engineer it.

To proceed with reverse-engineering, open the bean in the Visual Composition
Editor. From the Bean menu, select Construct Visuals from Source.

RELATED COMNMCEPTS

FChanter 3 sl L and e heane 3

© Copyright IBM Corp. 1997, 2000 21

22 Visual Composition

Chapter 7. Bean interfaces and Beanlnfo

The bean interface defines the property, event, and method features of your bean.
These features can be used in visual composition when your bean is added to
another bean. A Beaninfo class describes the bean and features that you add to the
bean. Other features are inherited from the superclass of your bean unless you
choose not to inherit features.

You can define a bean interface in the following ways:

* In the Workbench window, create a new bean class based on a class with
features you need. By default, the new bean inherits the features of the class it
extends. You can control feature inheritance by setting the Inherit Beanlnfo of
bean superclass option in the Visual Composition pane of the Options window.
Open the Options window from the Window menu of the Workbench.

* In the Beanlnfo page, add new features to a bean. You can add features to
extend the inherited feature set, to override inherited features, or both. When
you add a feature to a bean, VisualAge generates code that describes the feature
in the BeanlInfo class for the bean.

* In the Visual Composition Editor, promote features of embedded beans to the
interface of a composite bean. When you promote a feature of an embedded
bean, VisualAge generates code that describes the promoted feature in the
Beanlnfo class for the composite bean.

When you create a new bean, it does not initially have a BeanlInfo class. VisualAge
creates a Beanlnfo class when you add or promote the first feature that is not
inherited, or when you explicitly direct VisualAge to create a BeanInfo class. You
can create a Beanlnfo class in the BeanInfo page.

RELATED COMNMCEFPTS
tPromation of bean features’

I‘(‘halnfnr 9_Generated code” on page 31l

RELATED TASKS

Febanter 31 Definine henn interfaces Tor el T R

Promotion of bean features

When you create a composite bean, you might want some features of beans that
are embedded within it to appear in the interface of the composite bean. For
example, suppose you create a composite bean named ButtonSet containing a set
of buttons that you want to reuse. When you add the ButtonSet composite bean to
another composite, you want to be able to connect to each of the buttons.

To add features of embedded beans to the interface of a composite bean, you must
promote them to the composite’s interface. To add an entire embedded bean as a
property of the composite bean, promote the this property of the embedded bean.

When you promote a feature of an embedded bean, VisualAge generates code that
describes the promoted feature in the BeanlInfo class for the composite bean. After

© Copyright IBM Corp. 1997, 2000 23

the feature is promoted, you can manage the feature in the Beanlnfo page the
same as you manage features that you add there.

When you add a bean with promoted features to another bean, you can use the
promoted features the same as you use other features of the bean. If you add a
bean that has an embedded bean as a property, you can tear off the property as a
Variable. Then, you can access the features of the embedded bean referenced by the
Variable.

RELATED COMNCEPTS

tDefault promoted feature names’

RELATED TASKS

. [T

Default promoted feature names

When you promote a feature of an embedded bean in the Promote Features
window, you can use a default feature name produced by VisualAge. If you do not
want to use the default feature name, you can change the name.

The default feature name is a combination of the name of the embedded bean and
the name of the feature you are promoting. This identifies the bean that
implements the feature, which is helpful if the composite bean contains more than
one bean with the same feature. Then, when you connect to the feature, you can
tell which embedded bean it belongs to.

For example, if you promote the enabled property for a bean named YesButton, the
default composite bean feature name is yesButtonEnabled).

RELATED COMNMCEPTS

RELATED TASKS

. 7

Feature naming guidelines

24 Visual Composition

When you add or promote a feature, use these naming guidelines:

» Begin the feature name with a lowercase character. Features represent methods,
which typically have names that begin with a lowercase character. By contrast,
class names typically begin with an uppercase character.

¢ Do not use blanks in the feature name.
RELATED COMNCEPTS

RELATED TASKS

. H it

Chapter 8. Connections

When you make a connection in the Visual Composition Editor, you define the
interaction between components. For example, if you want a data value to change
when an event occurs, you would make an event-to-property connection. The
following table summarizes the types of connections that the Visual Composition
Editor provides. The return value is supplied by the connection’s normalResult
event.

Table 1. Connection Type Summary

Does
connection
have a return

If you want to... Use this connection type Color value?

Cause one data value property-to-property Dark blue No

to change another

Change a data value event-to-method Dark green Yes

whenever an event

occurs

Call a public behavior event-to-method Dark green Yes

whenever an event

occurs

Call a behavior event-to-code Dark green Yes

whenever an event

occurs

Supply a value to a parameter-from-property, Violet No

parameter parameter-from-code, or

parameter-from-method

The source and target of a connection

A connection is directional; it has a source and a target. The direction in which you
draw the connection determines the source and target. The bean on which the
connection begins is the source; the bean on which it ends is the target.

Often, it does not matter which bean you choose as the source or target, but there
are connections where direction is important.

* In an event connection, the event is always the source.

» For property-to-property connections, if only one of the properties has a public
set method, VisualAge makes that property the target. This is done so that the
property that has the public set method can be initialized at run time.

* When you make property-to-property connections, the order in which you
choose the source and target is important. The source and target property values
may be different when the bean is first initialized. If they are, VisualAge resolves
the difference by changing the value of the target to match that of the source if
the properties are bound. Thereafter, if both properties have public set methods,
the connection updates either property if the other changes.

© Copyright IBM Corp. 1997, 2000 25

The target of a connection can have a return value. If it does, you can treat the
return value as a feature of the connection and use it as the source of another
connection. This return value appears in the connection menu for the connection as

normalResult.

Property-to-property connections

26 Visual Composition

A property-to-property connection links two property values together. This causes the
value of one property to change when the value of the other changes, except as
noted in the table below. A connection of this type appears as a bidirectional dark

.

blue line

and the hollow dot indicates the source.

with dots at either end. The solid dot indicates the target,

When your bean is constructed at run time, the target property is set to the value
of the source property. These connections never take parameters.

For indexed properties, VisualAge generates two get/set method pairs—one for the
array and one for accessing elements within the array. When you connect indexed
properties, VisualAge uses the accessors for the entire array. If you want to access
an individual element, make a method connection to the specific accessor.

To achieve the behavior that you anticipate, you must know something about the
properties you are connecting. The following table shows the results of connecting
properties of different types.

Table 2. Behavioral Considerations for Connections

TARGET HAS...

SOURCE HAS...

Set method and
Event

Event only

Set method only

Set method and event

Source and target
values are fully
synchronized.

This connection is not
valid.

The source initializes
the target. The target
updates whenever the
source’s value
changes.

Event only

The source
initializes the
target. The target
updates whenever
the source’s value
changes.

This connection is not
valid.

The source initializes
the target. The target
updates whenever the
source’s value
changes.

Set method only

The source
initializes the
target only. The
source updates
whenever the
target’s value
changes.

This connection is not
valid.

The source initializes
the target. No further
updates occur.

A bound property is a property that fires an event when its value changes. For
example, when a deposit or withdrawal event occurs from a bank account, the
balance property is said to be bound to the event.

Properties in a property-to-property connection do not synchronize if:

* The property is not bound and has no associated event.

» At least one property is constrained, or prevented from changing under certain
conditions, and a change is vetoed.

* The event to which the properties are bound is asynchronous. See the bean
information for details on selecting another event.

Because most of the properties in this version of AWT are not bound, the source
initializes the target when constructed and performs no further updates. If you
want the property values to synchronize when an event occurs, you must associate
an event with the property. You can do this by opening the property sheet for that
connection and selecting an event from the source or target event fields. For
example, the text property in AWT components is unbound. You can force this
property to fire by selecting the textChanged event from the event field.

Event-to-property connections

An event-to-property connection updates the target property whenever the source
event occurs. An event-to-property connection appears as a unidirectional dark

green arrow with the arrowhead pointing to the target.

The property must have a public set method known to VisualAge; otherwise, you
cannot make the connection. If you open properties on a connection of this type,
the target of the connection appears as a method with the same name as that of the
target property.

Event-to-method connections

An event-to-method connection calls the specified method of the target object
whenever the source event occurs. An event-to-method connection appears as a

unidirectional dark green arrow

the target.

with the arrowhead pointing to

Often much of an application’s behavior can be specified visually by causing a
method of one bean to be invoked whenever an event is signalled by another bean.
For example, you might invoke the dispose method on a Frame bean when the
actionPerformed event is signalled by a button (this happens when the user clicks
the button).

A connection with a dashed line requires parameters. You can provide parameters
through a parameter connection, by passing event data (an option in the
connection window), or through a return value. For more information, see the Task
information on connections.

To access behavior that is not part of the bean interface, use code connections.

Code connections

A code connection calls code of the composite bean whenever the source event
occurs. This type of connection appears as a unidirectional dark green arrow

with the arrowhead pointing to a moveable text box on the
free-form surface.

Chapter 8. Connections 27

If you want processing to occur when a bean in your composition signals an event,
but no available bean has a public method to accomplish that process, you can
write and connect to a custom private method of the class you are editing. These
methods are called code to distinguish them from the public methods for the
composite class that you create and publish as bean methods. Technically, your
code does not need to be private, and it is not different from other Java methods.

Note: You might notice that in VisualAge for Java, the word method is used in two
subtly different ways. In the Java language, method refers to a callable
function of any class. In the JavaBeans component model, method refers to a
subset of the Java class methods that are exported as bean features. The set
of JavaBeans method features is often the same as the set of Java public
methods. However, the bean provider may further restrict the set of Java
methods that show up as JavaBeans features.

You can use a code connection for the bean you are developing to connect to:
* Private methods

* Public methods

* Protected methods

» Package-private methods

* Public methods of any of its embedded beans

You cannot, however, connect to private or protected methods of embedded beans.

You might want to create a code connection to:

* Reduced the number of connections in a bean.

» Encapsulate repeated tasks that are specific to the bean being developed.

» Keep an operation internal to the class, such as a composite bean performing a
calculation the user does not need to be aware of whenever a value changes.

Parameter connections

28 Visual Composition

In most cases, when a connection needs a parameter, the connection line appears

dashed. =~~~ Rl parameter connection supplies an input value to the
target of a connection by passing either the value from a property or the return
value from a method. In a parameter-from-method or a parameter-from-code
connection, the connection appears as a unidirectional violet arrow

- 2
with the arrowhead pointing from the parameter of the
original connection to the method or code providing the value. In a
parameter-from-property connection, the connection appears as a bidirectional
violet line with dots at either end. The solid dot indicates the target, and the
hollow dot indicates the source.

The original connection is always the source of a parameter connection; the source
feature is the parameter itself. If you select the parameter as the target, VisualAge
reverses the direction of the parameter connection automatically.

If the target of the original connection takes parameters and the same event
provides parameters by default, the connection line might appear solid. This is true
even if the target takes one input parameter and you have not otherwise provided
one. VisualAge can use any of the following means to supply parameters with
values:

 If the parameter is connected to a property, the connection calls the get method
for the property to get the value for the property and return it to the parameter.

» If the parameter is connected to a method, the connection code calls the method
and passes the return value for the method to the parameter.

» |If the source of the original connection passes event data in the connection code,
VisualAge applies it to the parameter. If several values are required, event data
is applied to the first parameter only.

» If you specify a constant parameter value in the original connection, VisualAge
passes it in the connection code.

RELATED COMNMCEPTS

RELATED TASKS

RELATED REFEREMNCES

« H H 7

3 H H (1]

3 H H (1]

Chapter 8. Connections 29

30 Visual Composition

Chapter 9. Generated code

With the Visual Composition Editor, you lay out beans graphically and specify
their interaction using a high-level connection model. When you save your
composition, VisualAge generates Java code that maps this graphical representation
to the JavaBeans component model and to the APIs for the beans themselves. The
resulting generated code is best understood if you are familiar with the JavaBeans
component model; in fact, it is quite similar to code that an expert JavaBeans
programmer would have written by hand. If you are interested in understanding
more about the code generated by VisualAge, read the lavaBeans specificatiod first;
then read the rest of this section and look at the code generated by VisualAge for
different visual compositions.

Some items are generated only once; others are regenerated every time the product
detects a relevant change. Some items are generated only if you have indicated to
VisualAge that you want certain capabilities present in your bean. Methods that
are regenerated whenever the product detects a relevant change are indicated by

o

to the right of the method signature.

Note: The code resides in the VisualAge repository, not as code files in your
working directory. To get a copy of your code or compiled class in a file,
you must export the class.

Code generated from visually composed beans

When you compose your bean visually, VisualAge generates much of the user
interface code for you. The connections you make between beans are often
sufficient to define behavior at run time. If not, you can extend it by adding your
own code.

In addition to other items generated for all classes, VisualAge generates code for a
composite bean when you save the bean, select Re-generate Code from the Bean

menu of the Visual Composition Editor, or click on i Run.

Code generated for beans

» A field declaration for each embedded bean, which takes its name from the
name given to the bean when it was dropped in the Visual Composition Editor.
This field is declared as private. To minimize potential collisions between
handwritten and generated code, all generated field names start with ivj.

* A private get method for each embedded bean, which takes its name from the
name given to the bean when it was dropped in the Visual Composition Editor.
Because Variable and Factory beans represent instances that do not exist at
initialization, VisualAge generates public get and set methods for them so that
they can be set at run time. Serialized instances are restored in the get method
through a call to Beans.instantiate(); other instances are created in the get
method in a new expression if they do not already exist.

Note: Take care when renaming embedded beans or torn-off properties.
Otherwise, VisualAge might generate an accessor method that overrides
an inherited method or overwrites a user-written method.

© Copyright IBM Corp. 1997, 2000 31

http://www.java.sun.com/beans/docs/index.html

* For each promoted feature, a public get and set method. If the promoted
feature’s name is the same as that of the bean in which the feature resides,
VisualAge generates the bean’s get and set methods as public instead of private.

» If at least one hidden-state bean is used, a serialized-object file (.sos) that takes
its name from that of the composite class (for example, ivjiMyComposite.sos).
VisualAge also generates a getSOSByteArrayCache() method, which reads a byte
stream from the serialized-object file into an instance variable for deserializing.

» If you choose to externalize strings, a field for each resource bundle used,
declared as static private.

Code generated for connections
» For each method or code connection, a private method.

» For each property-to-property connection where both end points are writable,
two methods are generated. Parameter-from-property connections appear in
code as secondary calls within the original connection.

The name of the connection method depends on the type of connection you

draw. By default, the naming convention is connFtoFx, where F represents the

type of feature being connected and x is an index number to ensure uniqueness.

This translates into the following possible combinations:

— connEtoM1 (the first event-to-method connection drawn)

— connEtoS1 (the first event-to-code connection drawn)

— connPfromML1 (the first parameter-from-method connection drawn)

— connPtoPlsetTarget (the first property-to-property connection drawn, setting
the target from the source)

— connPtoP1lsetSource (the first property-to-property connection drawn, setting
the source from the target)

When you rename a connection, VisualAge deletes the obsolete connection
method and generates a new method whose name is compatible with the
connection’s new name.

* An initConnections() method, which contains a call to every notifier required for
event connections in the composite bean. This method is not generated if there
are no connections in the composite.

» For each event set connected to within the composite, the code that is generated
depends upon the code generation option set:

— If Do not use any inner classes is selected, VisualAge generates the
appropriate listener methods in the composite class.

— If Use one inner class for all events is selected, VisualAge generates the
appropriate listener methods in a single inner class, IvjEventHandler,
regardless of the number of event sets used. This appears in the declaration
for the outer class.

— If Use an inner class for each event is selected, VisualAge generates the
appropriate listener methods in an anonymous inner class for each event set
used. These appear in the initConnections() method.

Code generated for the composite as a whole

* For applets, an init() method. This method calls initConnections(), if it exists.

» For nonapplets, an initialize() method. This method calls the initConnections()
method, if it exists.

Several constructors may also be generated. The constructor with no arguments
calls the superclass contructor and the initialize() method.

VisualAge also generates the following methods if they do not exist:
* main(java.lang.String []. If you copy, rename, or move the bean, you must delete
this generated method, regenerate code for the composite, and save the bean.

32 Visual Composition

» getBuilderDat(), which contains visual layout information for restoring the
free-form surface if the bean is exported and then imported into another
VisualAge Java development environment. This method is generated only if the
Generate meta data method option has been set in the Workbench.

» handleException(java.lang.Throwable), a stub method for debugging that gets
called in the init(), initialize(), and set () methods.

* For applets, getAppletinfo().

Generated feature code

The term feature refers to an element of the bean interface. Features can be
properties, methods, or events. To add features to the interface, use SmartGuides
available from the BeanlInfo page.

The following items are generated for each feature added from the BeanlInfo page.
» For each property, VisualAge generates the following:

A field declared as private

If the property is readable, a get() method

If the property is writable, a set() method

If the property is indexed, two additional methods for you to access
individual elements

» If at least one property is bound, the propertyChange event and associated
program elements are generated:

propertyChange, a field of type java.beans.PropertyChangeSupport, declared
as protected transient
addPropertyChangeL.istener(java.beans.PropertyChangeListener), a public
method

firePropertyChange(java.lang.String, java.lang.Object, java.lang.Object), a
public method
removePropertyChangeListener(java.beans.PropertyChangelL.istener), a public
method

» If at least one property is constrained, the vetoableChange event and associated
program elements are generated:

vetoablePropertyChange, a field of type java.beans.VetoableChangeSupport,
declared as protected transient
addVetoableChangeListener(java.beans.VetoableChangeListener), a public
method

fireVetoableChange(java.lang.String, java.lang.Object, java.lang.Object), a
public method
removeVetoableChangeListener(java.beans.VetoableChangeListener), a public
method

» For each event set, VisualAge generates the following items:

A listener field, declared as protected transient
Public addListener and removeListener methods

» For each new listener interface, VisualAge generates the following items.
VisualAge gives you the opportunity to specify your own names for these items
before they are created.

An event class in the same package as the class being edited

A listener interface in the same package

A multicaster class in the same package

An event feature in the class being edited

Public addListener and removeListener methods in the class being edited

Chapter 9. Generated code 33

In addition, VisualAge creates a Beanlnfo class when you add the first feature.
After that, VisualAge updates the Beanlnfo class to reflect each feature changed
from the Beanlnfo page.

Generated BeanlInfo descriptor code (an advanced topic)

34 Visual Composition

BeanInfo code defines the public interface of your bean in a standard way.
Specifying BeanInfo code enables your bean to be used with any development tool,
including VisualAge, that supports the JavaBeans specification. With BeanInfo code
available, enabled tools can query an instance of your bean for information about
its interface, regardless of underlying implementation.

VisualAge generates Beaninfo class code as needed to capture the interface details
you specify on the BeanlInfo page for your bean. If a BeanInfo class does not exist
for the bean, VisualAge uses the process of reflection, matching interface features
against Java design templates, to create the class. If a Beanlnfo class does exist,
VisualAge generates BeanInfo code only for interface elements defined as bean
features (properties, methods created from the Beanlnfo page, and events). For

more information about reflection, see the lavaBeans specificatior.

The following items are generated when you add features to the bean from the
BeanlInfo page:

» A classNameBeanlInfo class in the same package. This type of class normally
contains several list and descriptor methods, which enabled tools call to get
information about the bean. A list of the most commonly generated methods
follows:

— getBeanClass(), which returns a instance of java.lang.Class that corresponds
to the bean.

— getBeanClassName(), which returns a String whose value is the full name of
the bean.

— getEventSetDescriptors(), which returns an array of descriptors corresponding
to the event sets implemented in the bean.

— getMethodDescriptors(), which returns an array of descriptors corresponding
to the method features implemented in the bean.

— getPropertyDescriptors(), which returns an array of descriptors corresponding
to the properties implemented in the bean.

— findMethod(Class, String, int), used to locate a descriptor method that is
requested by name but not found.

— getAdditionalBeanInfo(), generated only if you opted to inherit Beanlnfo
from the bean’s superclass. (This is set from the Visual Composition page of
the Options notebook.)

» getBeanDescriptor(), which returns general information about the bean:
— If you marked the bean as expert, this method calls setExpert(true).
— If you marked the bean as hidden, this method calls setHidden(true).
— If you require all instances of the bean to be serialized, this method calls
setValue("hidden-state”, new Boolean (true)).

* For each method feature in the bean being browsed, a public
methodNameMethodDescriptor method in the associated Beanlnfo class. This
descriptor method determines how information about the method is revealed: its
true name, its display name, and a description of the bean. If you created the
bean in VisualAge, the descriptor method reflects selections you made through
the New Method Feature SmartGuide.

» handleException(java.lang.Throwable), a stub method for use in debugging.

» For each property, a public propertyNamePropertyDescriptor method in the
associated Beanlnfo class:

http://www.java.sun.com/beans/docs/index.html

— If you opted to bind the property to an event, this method calls
setBound(true).

— If you marked the property as expert, this method calls setExpert(true).

— If you marked the property as preferred, this method calls
setValue("preferred”, new Boolean (true)).

— If you marked the property as design-time to keep it from appearing in the
property sheet at run time, this method calls
setValue("ivjDesignTimeProperty”, new Boolean(false)).

 If at least one property is bound, the following methods:
addPropertyChangeListenerMethodDescriptor(), a public method in the
associated Beanlnfo class
removePropertyChangeListenerMethodDescriptor(), a public method in the
associated Beaninfo class

» For each event set, public event descriptor methods in the associated Beanlnfo
class (for example, actionEventSetDescriptor() and
actionactionPerformed_javaawteventActionEventMethodEventSetDescriptor())

» For each new listener, a public event descriptor method in the associated
Beanlnfo class (for example, stringModifiedEventSetDescriptor(),
stringModifiedSignalModification_CodeGenStringModifiedEventMethodEventDescriptor(),
and stringModifiedSignalModification_javalangObjectMethodEventDescriptor()).

How generated code coexists with user-written code

Generated code falls into the following categories:

Items generated only if they do not exist. These include
main(java.lang.String[]), handleException(java.lang.Throwable), and
getAppletinfo(). You can write your own versions or modify generated
versions; VisualAge preserves your code.

Items regenerated around handwritten changes. Most code of interest falls into
this category. These methods contain the reminder comment WARNING: THIS

METHOD WILL BE REGENERATED. and are indicated by & to the right of each
method signature. The rest of this section describes how VisualAge handles this
type of generated code.

In general, VisualAge preserves handwritten changes to basic class declarations, as
follows:

» package and import statements associated with the class.
» Access and keyword modifiers for the class.
* Interfaces implemented completely by hand.

» Uniquely named fields, as long as their names do not start with ivj. Because
VisualAge uses ivj to mark generated fields, handwritten fields starting with ivj
will be deleted the next time VisualAge generates code for the class. VisualAge
does not preserve updates to access modifiers (private, public, protected) in
generated fields.

* Uniquely named methods, including exceptions. VisualAge preserves updates to
access modifiers (private, public, protected) in generated methods if the updates
render access less restrictive.

* Handwritten comments in generated methods.
You can add lines of code in designated areas of generated methods. VisualAge

indicates these areas in the generated code with comment lines similar to the
following:

Chapter 9. Generated code 35

//user code begin {1}
//user code end

If a generated method does not include comment lines like these, any code you
add will be overwritten the next time the bean is saved.

RELATED COMNCEPTS

RELATED TASKS

RELATED REFEREMNCES

36 Visual Composition

Chapter 10. Example of generated feature code

Suppose you define simpleString, the most basic property useful for visual

composition: readable, writable, and bound to an event. VisualAge generates the

following items:

 fieldSimpleString, a private field of type java.lang.String

» propertyChange, a field of type java.beans.PropertyChangeSupport declared as
protected transient

» getSimpleString() and setSimpleString(java.lang.String) methods

» add- and removePropertyChangeL.istener(java.beans.PropertyChangeListener)
methods

« firePropertyChange(java.lang.String, java.lang.Object, java.lang.Object)

If simpleString is also indexed, fieldSimpleString is a private field of type
java.lang.String[]. Accordingly, setSimpleString() takes java.lang.String[] as a
parameter.

VisualAge also generates the following methods to access individual elements of
the array. Unlike the previous accessors, these methods are exposed in BeanlInfo:
» getSimpleString(int)

» setSimpleString(int, java.lang.String)

Suppose you define an existing event set, action, for use in your class using default

values in the New Event Set SmartGuide. VisualAge generates the following items:

» aActionListener, a field of type java.awt.event.ActionListener declared as
protected transient

» add- and removeActionListener(java.awt.event.ActionListener) methods

 fireActionPerformed(java.awt.event.ActionEvent)

Suppose you define stringModified, a new listener event specifically for your class.

VisualAge generates the following items:

» StringModifiedListener, an interface.

» StringModifiedEvent and StringModifiedEventMulticaster classes.

» aStringModifiedListener, a field of type StringModifiedListener declared as
protected transient in the class being edited.

* add- and removeStringModifiedListener(StringModifiedListener) methods in the
class being edited.

« fireStringModification(StringModifiedEvent) in the class being edited.

* A listener method stub in the class being edited, for example,
signalStringModification(StringModifiedEvent e). You must enter a name for this
stub yourself.

RELATED COMNMCEPTS

RELATED TASKS
I 5 finina 1 - ; ; Al — %

RELATED REFEREMNCES

© Copyright IBM Corp. 1997, 2000 37

38 Visual Composition

Chapter 11. Example of code generated from visual composite

Maothing here yet
k™ o

2llo, F“". Y/

hhystring

This simple Hello World! applet contains the following beans:

A JApplet bean, HelloWorld, to which a JPanel bean has been added by default.
This JPanel bean is called JAppletContentPane.

Two JTextField beans, FirstWordArea and SecondWordArea.

A JLabel bean, MyHello.

A JButton bean, SplitButton.

A Variable bean of type java.lang.String, called MyString.

All the finished applet does at run time is split the text value of the JLabel bean
into two substrings and copy each substring to an entry field.

Suppose the composite is saved after the beans have been dropped and edited for
initial content. VisualAge generates field declarations and accessor methods as
follows:

iviFirstWordArea; getFirstWordArea(). The initial contents of FirstWordArea
("Nothing”) are set through the bean’s text property. This generates the
appropriate setter code in getFirstWordArea().

iviSecondWordArea; getSecondWordArea(). The initial contents of
SecondWordArea ("here yet") are set through the bean’s text property. This
generates the appropriate setter code in getSecondWordArea().
iviJAppletContentPane; getJAppletContentPane().

iviMyHello; getMyHello().

ivjSplitButton; getSplitButton().

iviMyString; getMyString() and setMyString(java.lang.String).

VisualAge also generates the following applet methods:

main(java.lang.String)

© Copyright IBM Corp. 1997, 2000 39

40 visual Composition

* init()

» getAppletinfo()

» getBuilderData(), if you opted to generate meta data
» handleException(Throwable exception)

The first connection, connPtoP1, links the text property of MyHello to the this

property of MyString. When you save the composite, VisualAge generates these

additional methods:

* connPtoP1SetSource()

* connPtoP1SetTarget()

* ivjConnPtoP1Aligning, a validation flag used to filter method calls to
synchronize the two property values

* initConnections(), which calls connPtoP1SetTarget() to initialize the String
variable.

Connections from the actionPerformed event of SplitButton to the text property of
each TextField bean (connEtoM1 and connEtoM2) reset the text displayed in each
entry field. By default, no event data is passed to the target of the connection, so
each connection requires input for the new value of text. Parameter connections
(connPfromM1 and connPfromM2) pass in these values: the value property of each
push button connection is connected to the substring(int, int) method of MyString.
The exact character indexes are provided as connection properties of connPfromM1
and connPfromM2.

Now when you save the composite, VisualAge generates these additional methods:

* connEtoM1(java.awt.event.ActionEvent), which calls
getFirstWordArea().setText(getMyString().substring(0, 5)) (changing "Nothing” to
"Hello")

» connEtoM2(java.awt.event.ActionEvent), which calls
getSecondWordArea().setText(getMyString().substring(7,12)) (changing "here yet”
to "World")

What is generated to handle the events that trigger the connections depends upon
how you have the code generation option set. Suppose we had chosen Use one
inner class for all events. In this case, the following is generated:

» IvjeventHandler, an inner listener class that listens for both action and
propertyChange events

* ivjEventHandler, a field of type IvijEventHandler in the outer class

Suppose you then separate all text into a resource bundle:

» If you opt for a new list bundle, VisualAge generates a resource class for you in
the package you specify.

» If you opt for a new property file, VisualAge generates a resource field
declaration for you.

In addition, the get methods are regenerated to retrieve the appropriate resources
instead of using hardcoded text. With the use of a property file, the call for setting
MyHello to "Hello, World!” looks something like this:

ivjMyHello.setText (resmyhello.getString("rHelloString"));

resmyhello is the resource field generated by VisualAge.
RELATED CONCEPTS

RELATED TASKS

RELATED REFEREMNCES

Chapter 11. Example of code generated from visual composite 41

42 Visual Composition

Chapter 12. Bean morphing

In the Visual Composition Editor, morphing enables you to change the class or type
of a component without significantly reworking property or connection settings.
This capability can be very helpful in tasks like the following:

» Changing AWT components to Swing components

» Repairing breakage caused by renaming a class or moving it to a different
package

* Changing class beans to Variables (or the reverse)
However, you cannot change the superclass of a composite through morphing.

If renaming or moving a class has introduced a referencing error into a composite,
VisualAge alerts you when you attempt to open the composite. If you know that a
class has been moved or renamed and you already have the composite open, you
can select Resolve Class References from the Bean menu. In either situation,
VisualAge searches the repository for a like-named class and presents the first
candidate it finds. You can choose to proceed with the candidate VisualAge
suggests, ignore the problem for now, or specify an alternative class.

In situations other than breakage, you change the class or type of a component by
selecting Morph Into from the bean’s pop-up menu. In this case, you must specify
the name of the replacement class or bean type.

Common property settings and connection endpoints are preserved in the new
component. To determine feature commonality, VisualAge compares both name
and type; both must match. For example, suppose you change a component from a
TextField to a JTextField bean. The background color for the original TextField bean
happens to be gray. The gray setting is propagated into the new JTextField bean.

Conversely, VisualAge discards property settings that cannot be used in the new
class. This includes torn-off properties but does not include promoted properties.
You must delete obsoleted promotions manually from the Beanlnfo page of the

class browser.

Connection endpoints are handled similarly. Connections to features that are no
longer valid in the new class remain until code is regenerated for the composite. To
delete such connections instead, select Delete invalid connections before you click
on OK to start the morphing process. Because components vary in their use of
like-named features, make sure that the updated composite behaves as you expect
it to.

RELATED TASKS

RELATED REFEREMNCES

‘Chapter 62 Resolve Class References” on page 229

© Copyright IBM Corp. 1997, 2000 43

44 visual Composition

Chapter 13. Quick form

A quick form represents a way for you to very quickly lay out a GUI panel that
corresponds to the properties of a model bean. You specify the visual bean to use
for each property; VisualAge drops the beans and connects them to the model
bean.

-
——

Befindedlez e __:__—_—:ﬁ E‘I
A=

-

= SomeMNams

-~

Lt o e

-

In this simple case, a NameEntry composite has been created that corresponds to
the relevant properties of a Name bean. The NameEntry composite is based on a
JPanel bean, so the composite initially consists of just the superclass bean. From
there, the quick-form process works as follows:

* You drop a Name bean (SomeName). In this case, SomeName is a variable, for a
reason that will be discussed later in this topic.

* You specify a quick form for SomeName, including where you want the beans
dropped, the properties to be included, the components to be used, layout, and
labeling. Default values exist for all of these parameters.

* When you click on Finish, VisualAge drops the beans and draws the
appropriate connections.

By default, VisualAge uses text fields (TextField or JTextField) for String properties
like a first or last name. If you prefer, you could use labels to create a read-only
display composite, as follows:

H (Falji} Fir st M aam
"‘—\—-_.________ [
Ehiille name: | I -—__;E_Ir

e
—

Lasi nar lasitami® EameManme

By default, VisualAge sets up certain visual beans for use as quick-form
components for the base data types. To use something other than the default
components, you can create and then register your own quick form for a particular

© Copyright IBM Corp. 1997, 2000 45

46 Visual Composition

data type. Make sure that the target property in the visual bean is writeable and
that the target property is compatible with the data type for which you are
registering the quick form.

For example, suppose you want to use your own JComboBox-based bean for an int
property. As part of registering this as a quick form, you tell VisualAge which
property and event of the JComboBox-based bean to use when making the
connection (for example, the selectedindex property and its corresponding event).
Later, when you actually use the quick-form process, you can select your quick
form from the list of quick-form components registered for a property of type int.

You can also register composites as quick forms for use with properties that have
an object type. For example, you could register both of the previous composites for
reuse with any property of type Name. This would enable you to select one of
these composites when laying out a GUI for a Person bean with a hame property.
Now the reason for including SomeName as a variable makes sense: You promote
the this property of the variable and specify it as the target property during
registration with Name.

Quick forms can be shared between workstations. For more information, see the
task topic listed at the end of this topic.

RELATED COMNCEPTS

RELATED TASKS

FChantor 2L Creating CUL e oot ook forme onoacezd

RELATED REFEREMNCES

FChapter 52_Ouick Eorm SmartGuide” >0d

Chapter 14. Object serialization in VisualAge

Obiject serialization is a means that the Java language provides to save state
information about a class instance between runs of a program element.

» Serializable classes support the java.io.Serializable interface, which provides a
protocol for writing self-contained instance state information to a binary file.

» Externalizable classes support the java.io.Externalizable interface, which provides
a protocol for writing identity information about an instance to a binary file.
This protocol is not complete; it depends on other state information being
preserved within the class itself.

To experiment with serialization, start with examples:

* The com.ibm.ivj.examples.vc.propertyeditors package of the IBM Java Examples
project contains one simple serializable class, called Name. To have VisualAge
write a serialization file for you, run the main method of the NameWriter class.

* The Sun BDK Examples project shipped with VisualAge includes additional
examples of both serializable and externalizable classes. The sunw.demo.buttons
package contains a serializable class (ExplicitButton), an externalizable class
(ExternalizableButton), and sample classes (OrangeButtonWriter and
BlueButtonWriter, respectively) that can be used to save a sample instance.

Marking a class serializable does not require that it be serialized. It simply gives
you the flexibility to do so. For more information about object serialization issues

in general, see Sun’s Object Serialization sitd and the lavaReans specification.

VisualAge supports two different aspects of serialization:

» Direct consumption of serialization (.ser) files within the IDE. Wherever
serialized beans are supported, you can enter the name of an .ser file instead of
a class name. This includes adding the serialized bean to the beans palette and
dropping it into a composite. You can add serialization files to the beans palette
in the Visual Composition Editor just as you would bean classes present in your
workspace. Once a serialized bean has been dropped, you interact with it as you
would any other type of bean.

Before using a serialized bean, make sure that all classes referenced by the
serialized bean exist in your workspace. Otherwise, VisualAge cannot deserialize
the bean.

» Enforcement of required serialization. You can require that all instances of a
serializable bean be saved and restored through serialization by setting its
Hidden-state attribute to true in its associated BeaniInfo class. VisualAge writes
all hidden-state beans found within a class to a single serialized-object file (.sos)
associated with the class.

VisualAge also uses serialization internally to preserve property settings, so it is
important that property values be serializable. By default, primitive types, arrays,
strings, and any bean that inherits from java.awt.Component are serializable.

RELATED COMNMCEPTS

RELATED TASKS

© Copyright IBM Corp. 1997, 2000 47

http://java.sun.com/products/jdk/1.1/docs/guide/serialization/index.html
http://www.java.sun.com/beans/docs/index.html

RELATED REFEREMNCES

FChanter 49 Choos B o >3

48 Visual Composition

Chapter 15. Internationalization in VisualAge

VisualAge supports two means of text separation by locale: list bundles and
property files. A list bundle is a persistent form of java.util.ListResourceBundle. A
property file is a persistent form of java.util.PropertyResourceBundle.

Both types of resource bundle contain key-value pairs.
ListResourceBundle.getContents() returns an array of key-value pairs. The
key-value pairs stored as static strings in a property file are used to initialize the
corresponding bean when it is loaded. Each resource bundle contains values for
one (or a default) locale. The name of the bundle can be keyed by locale so that
the virtual machine loads the appropriate resources for the current locale setting.

VisualAge supports the creation, editing, and use of resource bundles for all text
found in a class. You can separate String property values as you set them from the
Visual Composition Editor, or you can separate all text at once from the
Workbench.

You can use your own resource bundles, or you can create them using VisualAge.
You can edit existing resource bundles by hand or from within VisualAge. Multiple
resource sources can be referenced within a single bean. VisualAge generates the
appropriate code the next time you save the bean.

VisualAge does not separate text located in user code fields. To take advantage of
programmatic string separation, move the user code into a separate method and
call the method from within the user code block.

RELATED TASKS

© Copyright IBM Corp. 1997, 2000 49

50 visual Composition

Chapter 16. Using visual composites from previous releases
of VisualAge

Changes to code generation from Version 2.0

* Generation of the main() method has changed. Because VisualAge does not
regenerate this method if it already exists, you must delete the previously
generated method and regenerate code for your composite.

» Generation of code to handle events has changed, leaving many generated
methods in your class that are no longer called. To give you the opportunity to
retrieve any code you might have added to these methods by hand, VisualAge
does not delete these methods automatically. After retrieving any handwritten
code that you want to keep, delete these obsolete methods and regenerate code
for your composite.

* By default, VisualAge now generates some code using inner classes. Be sure to
read about these changes, starting with the topic "Generated code.”

Change to icon property setting from Version 2.0

Different code is now generated for visual beans that have their icon property set.
To ensure that the proper code is generated for your visual composite, open the
property sheet for each bean that specifies an icon and reselect the icon. Click on
OK and save the bean.

Migrating visual composites to the Java 2 SDK

VisualAge provides a migration utility to repair classes based on JDK 1.1.7 that
have been imported into this version of the product. You can also use this utility to
repair breakage caused by the renaming of packages or classes. You must use this
utility for visual composites; use with other classes is optional.

RELATED COMNMCEPTS

I‘(‘halnhnr 9_Generated code” on page 31|

RELATED TASKS

© Copyright IBM Corp. 1997, 2000 51

52 vVisual Composition

Chapter 17. Visual bean basics

If you are just getting started, read the following concept topics:

You can perform the following tasks to modify your beans:

Editing bean properties

The property sheet for a bean provides a way to display and set initial property
values for the bean. Changes made to values in the property sheet are applied
immediately.

You can edit the properties for a single bean or select several beans and open a
property sheet for them. When you change a property on the property sheet, the
change affects all the selected beans.

If you modify a setting and change your mind, click on the Reset button; a
secondary window appears, listing the properties you have modified. Select the
box next to each property you want to reset, click on OK, and VisualAge returns
the value to the default setting.

Some of the tasks you can perform include:

Opening the property sheet for a bean

To change the properties for a single bean, follow these steps:

1. From either the free-form surface or the Beans List window, place the pointer
over the bean and double-click the left mouse button. The property sheet for
the bean appears.

2. When you have chosen the property you want to modify, select the value field
to the right of the property name.

3. Make the appropriate changes from the provided options. Options for
modifying the properties depend upon the bean and may include selecting a
button, entering information into the field, selecting from a drop-down list, or
proceeding to other dialog boxes.

To change the properties for multiple beans (multiple selection), follow these steps:

1. Select the beans with properties you want to change.
2. Move the mouse pointer over one of the selected beans.

© Copyright IBM Corp. 1997, 2000 53

3. Click the right mouse button.
4. Select Properties from the pop-up menu. A property sheet for the selected
beans appears and displays the common properties for the selected beans.

Once you open a property sheet, you can modify properties for most beans in the
Visual Composition Editor. To open the properties on another bean select it in the
Visual Composition Editor. To select if from within the property sheet:

1. Open the drop-down list at the top of the property sheet.

2. Select the bean you want to modify.

3. Modify the properties.

Note:

If a common property is not visible on the property sheet, select the Show
expert features check box.

To enable national language support for your composite, be sure to read

Setting properties typed as interface implementers

Some bean properties, such as border and model, are typed as interface
implementers rather than as classes, so you use the interface editor to set them.

When you select the value field for such a property, a small button, :I which
indicates a secondary window, appears to the right. Click on the button; the
interface editor for that property appears.

In the interface editor, set the property one of the following ways:

» Enter a code string for VisualAge to use in code generated to initialize the
property. To enter your own code string, select Code String and type your code
in the entry field.

» Specify an implementer for the interface. To see a list of available
implementers, select Bean Implementing Interface. From the drop-down list,
select the desired implementer for that property and modify any values listed.

Using code strings in bean properties

54 visual Composition

VisualAge enables you to set some bean properties using code strings. Curly
braces, { }, in the value column of a bean property sheet indicate that you can type
Java code directly into the property field.

For example, you can use code strings to dynamically instantiate a dialog window

when the user clicks on a button.

1. Create and save a dialog window named MyDialog.

2. Create the main user interface bean and drop a Factory bean with the type
MynDialog.

3. Connect the actionPerformed event of a button to the MyDialog method of the
factory.

4. Open the Event-to-Method Connection window and click on the Set
parameters button.

5. Enter new java.awt.Frame in the value field of the parent property.

This string directs VisualAge to create a new instance of MyDialog when the
button is clicked.

6. Connect the actionPerformed event of the button to the Show() method of the
Factory, to make the dialog visible.

Changing bean colors

Visual beans have color properties for the foreground and background. To change
a color property of a bean in its property sheet, do the following:
1. Select either the foreground or background property. A small selection button

appears in the value column.

2. Click on j to open the Colors property window.
3. Select either the Basic, System, or RGB checkbox.
» Basic—Select either a color box or the color name. The selected color appears
in the preview window.
» System—Select the standard system object color.
+ RGB—Manipulate the sliders to create the desired color.
* Click on OK to accept the changes and return to the property sheet.

When you change bean colors, select colors that are available across various
platforms.

For an example, open the background property in the property sheet for any of the
com.ibm.ivj.examples shipped in the IBM Java Examples project.

Note: If you are setting the background property of a Swing bean, be sure the
opaque property of the bean is set to true.

Changing bean fonts
To change the font of a bean in its property sheet, do the following:

1. Select the font property. A small selection button L1 appears in the value
column.

2. Click on j to open the Fonts property window.
3. Modify any of the following font values:
* Name
+ Style
» Size
4. Preview the font changes in the preview window.
5. Click on OK to apply the changes and return to the property sheet.

When you change bean fonts, select fonts that are available across various
platforms.

For an example, open the font property in the property sheet for any
com.ibm.ivj.examples.vc. class shipped in the IBM Java Examples project.

Changing bean size and position

If a bean is embedded in a container that does not use a layout manager (null
layout), you can change the x and y coordinates, the width, and the height using
the bean property sheet. To modify the size and position features, do the following:

1. Click on the expansion icon |# to the left of the constraints property.

2. Select the value field for the property you want to modify and enter the new
property value.

3. Press Enter to apply the value.

Chapter 17. Visual bean basics 55

Note: If you specify a non-null layout for the container, the bean position and
sizing constraints are affected by that layout manager.

When you open the bean property sheet using multiple selection, some size and
position constraints may appear stippled rather than solid because the values for
the field are not common to all the selected beans. Once you modify the constraint,
however, all the selected beans have the same value and the constraint appears
solid.

For an example of the different layout managers, see the
COM.ibm.ivj.examples.vc.layoutmanagers.LayoutManagers class shipped in the
IBM Java Examples project.

Specifying icons

Some visual beans, such as JLabel and JButton, have icon properties. You can
assign an icon to these beans through the property sheet.

To add an icon to a visual bean:

1. Place the icon in the project_resources path under your project subdirectory.
2. Open the bean property sheet.

3. Select the Icon value field.

4. Click on L1 to open the Icon Editor.

5. To add an icon from a graphics file, select File and enter the fully qualified
path and file name in the name field, or select Browse and select the file
through the file locator.

6. To add an icon from a URL, select URL and enter the fully qualified path and
file name in the name field.

7. Press Enter to view the icon in the preview pane.

8. Click on OK to accept the icon.

Note: When you export your bean using the export SmartGuide, assure that the
icon file is specified as a resource.

Editing bean labels

Some visual beans, such as buttons and menus, contain text strings. You can edit
these labels through the property sheet.

To edit the text of a label:

1. Open the bean property sheet.
2. Select the label value field.

3. Enter the new label name.

Displaying bean pop-up menus

56 Visual Composition

To see a menu of operations you can perform on a bean, right-click on the bean.
The pop-up menu for the bean appears. Choices on the pop-up menu allow you to
delete the bean, rename it, and perform other operations (which vary, depending
on the bean).

To display a pop-up menu for multiple beans:

» Select the beans.

* Place the mouse pointer over any of the selected beans.
* Click the right mouse button.

Note: When you open a pop-up menu for multiple selected beans, one menu
displays the choices common to all selected beans. Operations performed
from that pop-up menu affect all selected beans.

Working in the Beans List

The Beans List window displays an ordered list of the beans and connections on
the free-form surface. The beans are initially listed in the order in which they were
dropped, which also reflects the tabbing order. If you change the order of beans
that have tabbing set, the Visual Composition Editor reflects the updated tabbing
order.

To view the beans list, select Beans List from the tool bar or click on *—) from
the Tools menu.

You can perform the following tasks within the beans list:

* Drop a bean from the palette directly onto the beans list.

» Select a bean or connection.

* Reorder a bean or connection by dragging.

» Change the tabbing order.

* Move a bean to a different composite by dragging.

* Make connections between beans on the beans list.

» Perform any tasks on the bean or connection pop-up menu for an item in the
beans list.

@Td[la Heans List
= [®PTaDa :l‘
=l GJTaDa
H JJ.-i‘-.ppletEm'\tentPane
An] JLabell
I T extField?
= ;.:HJS-:rnIIF'anal
-
—] JLabel?
~+ __|JPanen
=i i?l:nrmctinm
=+ connktoM1
&+ connPtoP1

—— &% connPtoP2

f of

Chapter 17. Visual bean basics 57

Renaming beans and connections

58 Visual Composition

The Visual Composition Editor assigns default names to distinguish beans and
connections when you generate the code to build your program element. For
example, for each bean, VisualAge generates a get method that you should use to
access the bean within user methods or code. In addition to use in generated
methods for beans and connections, the names for selected beans and connections
appear in the information area at the bottom of the Visual Composition Editor.

The Visual Composition Editor assigns bean names based on the bean palette name
or the name you specify when you use the Choose Bean tool. For example,
VisualAge names the first button bean that you drop Buttonl, the second Button2,
the third Button3, and so forth. When you select this bean, the information area at
the bottom of the Visual Composition Editor displays the message Buttonl
selected.

The Visual Composition Editor assigns connection names based on the type of
connection. For example, the first property-to-property connection is named
connPtoP1, the second is connPtoP2, etc. All other connection types receive their
names similarly. For example, an event-to-code connection is hamed connEtoC1, an
event-to-method is named connEtoM1, etc.

To assign bean or connection names that are more descriptive or meaningful to

your program element, follow these steps:

1. Move the mouse pointer over the bean or connection that you want to rename.

2. Right-click and the pop-up menu appears.

3. Select Change Bean Name or Change Connection Name. The Name Change
Request or Connection Name Change Request window appears.

4. Type a new name in the entry field.

5. Click on OK. The Visual Composition Editor changes the name.

To view the changes outside the Visual Composition Editor, you must regenerate
the code.

You can also rename beans in the property sheet and you can change bean or
connection names from the pop-up menu in the Beans List.

Note: When you name a bean, take into account that VisualAge uses the name of
the bean in generating get methods. For example, if you name a torn-off
property font, the generated method getFont() overrides the inherited
method.

RELATED COMNCEPTS

FChanter 4 Visnal = Ed — 3

RELATED TASKS

RELATED REFEREMNCES

Chapter 18. Advanced visual bean tasks

You can perform the following advanced tasks to modify your beans:

Setting the tabbing order

The tabbing order specifies how the input focus moves from bean to bean as the
user presses the Tab key.

Open the pop-up menu for the composite bean.

Select Set tabbing and then Show tab tags and numbered tab tags appear.
Place the mouse pointer over the tab tag you want to change.

Press and hold down the left mouse button.

Drag the tab tag to its new position.

Release the left mouse button.

Repeat until the numbered tags reflect the desired tabbing order.

NogsrdwhE

You can also change the tabbing order by moving the beans in the Beans List.

Promoting bean features

If you want to connect to the features of a bean that is embedded within a
composite, you must promote bean features. To promote the bean features:

Open the pop-up menu for the composite bean.

Select Promote bean feature.

Select the type of feature: Method, Property, or Event.

From the list box, select the feature you want to promote and >> is enabled.
Click on >>. The feature appears in the Promoted features list.

Repeat for the other features you wish to promote.

If you wish to rename the feature, double-click and modify the name listed in
the Promote Name list.

If you wish to remove the feature from the Promoted features list, click on <<.
9. Click on OK.

NogopwhE

©

When you promote features, VisualAge performs the following tasks:
* Saves the composite bean

» Generates the code for the composite bean

* Creates a Beanlnfo Class, if one doesn’t already exist

* Adds a new connection between the embedded bean and the composite, where
appropriate (for all but promoted methods)

When you embed this bean within another bean, the features that you promoted
are listed under the type in the Connectable Features window. Connect the
promoted feature of each bean to effect the change you desire.

Tearing off properties

If you want to gain access to an encapsulated feature of a bean, you must tear off
the property. To tear off a property:

© Copyright IBM Corp. 1997, 2000 59

1. Select Tear off property from the pop-up menu of the bean with the property
you want to access. Another menu appears listing all of the properties of the
bean.

2. Select the property you want to tear off. The mouse pointer is now loaded with
a variable bean representing or pointing to the property you selected.

3. Place the new bean on the free-form surface, as you would any other nonvisual
bean. The torn-off property now appears as a variable bean connected to the
original bean by a property-to-property connection.

Setting a layout manager during visual composition

You can assign a layout manager before or after dropping components on your
container bean. However, if you change the layout manager after dropping
components, it may affect bean placement.

To set a layout manager in a container bean, follow these steps:
1. Open the property sheet for the container bean.

2. From the value column, select the cell for the layout property.
3. From the Layout Manager drop-down list, select a layout.

Setting layout properties during visual composition

The complexity of this task depends on which layout manager you choose for your
container bean and how much custom behavior your bean requires. Default
behavior exists to some extent for all layouts. To set layout properties for the
components of the container bean, follow these steps:

1. Open the property sheet for the component bean.

2. If one exists, click on the expansion icon [# 0 the left of the constraints
property.

3. Select the value field for the property you want to modify and enter the new
property value.

4. Press Enter to apply the value.

Consider waiting to set layout properties until you have settled on a layout
manager. Many values are lost when you switch layouts or move the component to
another container.

GridBagLayout constraints

60 Visual Composition

GridBagLayout is a powerful tool for layout, however, because of its many choices,
it can become confusing. Once you have selected GridBaglLayout for your user
interface, adjust the constraints from the property sheet or the m
from the pop-up to affect the placement and resize behavior of beans within the
layout.

Constraint Specifies...

Anchor Where within the cell (North, South, etc.) to place a component
that is smaller than the cell.

Fill How to size the component (Vertical, Horizontal, Both, or None)
when the cell is larger than the component’s requested size.

gridX, gridY The column (gridX) and row (gridY) where your component
resides. If gridwidth or gridHeight is >1, gridX and gridY are the
starting row and column. The default places a new component to
the right or below the previously added component.

Constraint Specifies...

gridwidth, gridHeight | The number of cells the component should use in a row
(gridwidth) or column (gridHeight).

insets The component’s external padding, the minimum amount of space
between the component and the edges of its cell.

ipadX, ipadY The component’s internal padding within the layout, or how much
to add to the width and/or height of the component.

weightX, weightY How to redistribute space for resizing behavior. You should specify
a weight for at least one component in a row (weightX) and
column (weightY) to prevent all the components from clumping
together in the center of their container. The distribution of extra
space is calculated as a proportional fraction of the total weightX
in a row and weightY in a column.

Achieving the resize behavior you want

Unlike in other layout managers, in GridBag you set constraints on individual
components within the layout and not on the layout itself. Also unlike other layout
managers, GridBag enables you to set constraints so that the size of the
components adjusts as you resize the runtime program.

Resize behavior in GridBaglLayout is tied to the weightX, weightY, and fill
contstraints of components within the layout. By default, the component properties
are set without resize behavior. If you place components in any layout and then
change the layout to GridBag, the component constraints are set to maintain the
look created in the original layout.

To set constraints so that components increase and decrease as you resize the

runtime program, you must:

1. Apply a weightX, such as 1.0, to a component in a row.

2. Apply a weightY, such as 1.0, to a component in a column.

3. Apply the appropriate fill value for each component in the container you wish
to resize. For example, if you want the component to resize only in the
horizontal direction, select the horizontal fill for that component.

4. If the calculated inset padding is not appropriate, adjust the inset values.

You can perform these adjustments from the constraints on the property sheet or
from Layout Options on the component pop-up menu.

Creating a GUI using GridBaglLayout
Follow these steps to create a To Do List GUI using GridBagLayout:

Chapter 18. Advanced visual bean tasks 61

62 Visual Composition

Add Remowe

. To set up the applet:

From your package in the IDE add an applet with JApplet as the superclass.
Open the Visual Composition Editor to the JApplet bean. The applet contains
a JAppletContentPane bean, on which you work.

Select J from the tool bar, and place the Beans List window in a visible
but out of the way location.

Select g from the tool bar, and place the Properties window in a visible
but out of the way location.

Note: These windows are necessary for modifying properties and accessing
covered components throughout this process.

Select the JApplet bean.

From the Properties window, open the layout drop-down, and select

GridBagLayout.

. To place beans in the GridBagLayout:

Select a JLabel bean from the palette and drop it on the JAppletContentPane.
Because GridBaglLayout distributes extra space around the beans in the
layout, the JLabel bean falls to the center of the pane. You change this
behavior, later in the procedure, by setting the weightX/weightY constraints
property on one of the components in the layout.

Select a JTextField bean.

Hold down the left mouse button and move the pointer to the right of the
JLabel bean. The dark line between the pointer and the JLabel bean indicates
target emphasis. Release the mouse button while the emphasis line is on the
right side of the JLabel bean and a JTextField bean appears to the right of the
JLabel bean.

Note: Beans dropped in GridBaglLayout appear in their preferred size. The

preferred size, which is different for every component, is usually
dependent on one of the component’s property settings. For example,
the preferred size of a JLabel bean is the size of the text within the
label. If the component is a container, like a JPanel or a JScrollPane
bean, the preferred size usually reflects the preferred size of the
contents of the component.

» Select another JLabel bean and position it so that target emphasis is on top of

JLabell.

» Select a JScrollPane bean and position it so that target emphasis is under

JLabell.

» Select a JList bean and place it on the JScrollPane bean in the beans list.
Because the preferred size of the JScrollPane is small, it is easier to add the
JList bean directly onto the JScrollPane that is in the Beans List window.
When you drop the bean, the preferred sizes of the JScrollPane and JList

align.

3. To adjust property values within the Properties window, select the bean and
then adjust the property value:

Bean... Property... Change Value to... What You See..

JTextFieldl columns 5 TextField width
increase

JLabell text To Do Item: Change in text

JLabel2 text To Do List Change in text

JLabel2 font Name=serif, Size=18 |Change in font style
and size

JLabel2 horizontalAlignment | center Label placement is

centered

4. To adjust the constraints properties within the Properties window, select the
bean and then open the constraints tree-view and adjust the property value :

Note: Because the JScrollPane bean, not the JList bean, is the component that is
sitting in the GridBagLayout, you modify its constraints. Because the
JList bean completely covers the JScrollPane bean, you must select the
pane from either the Beans List window or the Properties window. If
you select the JList bean instead, you cannot adjust the component width
within the layout manager.

Bean... Constraint... Change Value To... What You See..

JScrollPanel gridwidth 2 Pane covers two cells
width

JScrollPanel fill both Pane fills the cell
vertically and
horizontally

JScrollPanel weightX 1 Column containing

the JScrollpane
expands to fill the
extra horizontal
space in the JApplet

Chapter 18. Advanced visual bean tasks

63

64 Visual Composition

JScrollPanel

weightY

Row containing the
JScrollpane expands
to fill the extra
vertical space in the
JApplet

bottom=5, right=5

JScrollPanel insets left=15, bottom=5, Padding on the left,
right=15 bottom, and right of
the pane
JLabel2 gridwidth 2 Label covers two
cells width
JLabel2 insets top=15 Padding on the top
of the label
JTextFieldl fill horizontal Textfield fills cell
horizontally
JTextFieldl insets top=15, bottom=5, Padding around top,
right=15 bottom and right side
of the TextField
JLabell ipadX 10 Internal padding
between text and
component border
JLabell insets top=15, left=15, Padding around all

sides of label

Note: Setting the weightX and weightY on the JScrollPane bean ensures that
the GUI resizes proportionately. Setting the ipadX on JLabell, ensures
that the label resizes proportionately. This is especially helpful when
translating your GUI into other languages.

5. To add the button panel:
» Select a JPanel bean and position it so that target emphasis is under

JScrollPanel.

» Because JPanel defaults to null layout, it has no constraints and is not visible.
From the Beans List window, select JPanell and change the layout to
GridLayout in the Properties window.

* Place two JButton beans on JPanell in the Beans List window.

6. To adjust the properties and constraints properties for JPanell and its contents:

Bean... Property... Change Value To... What You See...

JPanell constraints—anchor | EAST Panel placement
moves to the lower
right corner

JPanell constraints—insets bottom=15, right=15 |Padding around the
right and bottom of
the panel

JPanell layout—hgap 5 Space between the
buttons

JButtonl text Add Button label changes

JButton?2 text Remove Button label changes

Morphing beans

Morphing allows you to perform the following tasks:

» Change AWT components to Swing components (or the reverse)

* Repair breakage caused by renaming a class or moving it to a different package
* Change class beans to variables (or the reverse)

To morph a bean:

1. Select the bean you want to morph.

2. Open the bean pop-up and select Morph Into.

3. Select the bean type and use Browse to select the class.
4. Click on OK.

Changing look

and feel in Swing-based composites

To preserve cross-platform portability, Swing components use the Metal look and
feel. You can change the appearance of these components during visual
composition through the use of a .properties file.

1. Create the file swing.properties in your favorite text editor. An example
follows:

swing.defaultlaf=com.sun.java.swing.plaf.windows.WindowsLookAndFeel

You must enter the swing.defaultlaf constant exactly as shown, but you can
specify any valid look-and-feel class after the equals sign.

2. Save the file in the program\lib directory of your VisualAge installation.
VisualAge scans the program\lib directory for the existence of this file every

time a new Visual Composition Editor is opened. Consequently, any that are
already open at the time you save the file will not be affected.

If you get the following message after changing look and feel, a problem exists
with the look-and-feel class:

ClassName cannot be composed during creation. Please resolve
any problems that may exist.

In this case, check for one of the following problems:
» A typographical error in the swing.properties file prevents the IDE from finding
the proper class.

» The class cannot be found anywhere in the class path, either because the class
path is not set properly or because the class is not currently loaded in the
specified package.

* The class is not supported in the current operating environment.

To determine whether a given look-and-feel class is supported in the current
environment, try it out in the Scrapbook window. Enter code like the the following
and inspect it:

javax.swing.LookAndFeel 1f =
new com.sun.java.swing.plaf.windows.WindowsLookAndFeel();
1f.isSupportedLookAndFeel ()

If the inspection returns false, the class is not supported.
RELATED CONCEPTS

Chapter 18. Advanced visual bean tasks 65

E TRV I

RELATED TASKS

RELATED REFEREMNMCES

13 = 77
WMMW‘:I - IR TN — R %

66 Visual Composition

Chapter 19. Composing beans visually

Visually composing beans means using the Visual Composition Editor to place and
connect individual and composite beans in a graphical user interface (GUI). More
specifically, visually developing a user interface bean includes:

Designing the user interface.

Choosing a layout for the bean.

Dropping visual and nonvisual beans on the free-form surface or the beans list.
Changing properties and manipulating the beans.

Making connections to determine the behavior of the beans.

Manipulating connections.

Running, which includes saving, generating code, and compiling the class.
Making changes.

©ONoOOA~WNE

When you edit the bean that represents the overall structure of your application
(usually its main user interface view), you graphically build your application. By
making connections between beans, you build your program’s business logic.

Embedding beans in a composite bean

A composite bean is a bean that contains other beans. The beans you add are
referred to as embedded beans. You can embed primitive or composite beans into
your composite bean.

You can add beans that appear on the beans palette, as well as beans that do not
appear on the palette. Beans that do not appear on the palette may include
composite beans you created, such as a panel with several buttons.

Note: If you use a layout that allows a bean to completely cover another bean, the

t‘Beans | ist” on page 188 enables you to easily perform tasks on the covered

components.

Adding beans from the palette

To add a bean from the palette to the Visual Composition Editor surface, follow

these steps:

1. From the category menu button, select the category containing the bean you
want.

2. Select the bean you want. The mouse pointer becomes a crosshair, indicating
that the mouse pointer is loaded with the bean you selected.

3. Move the crosshair to the location where you want to place the bean.

4. Press and hold mouse button 1. An outline of the selected bean appears under
the crosshair. Without releasing the mouse button, move the crosshair to
position it precisely.

5. Release the mouse button. The bean you selected is placed at the location of the
crosshair, and the mouse pointer returns to normal.

Note: If you specify a non-null layout for the container, the bean placement is
affected by that layout manager.

To add a bean from the palette to the beans list, follow these steps:
1. Select the category containing the bean you want.
2. Select the bean you want.

© Copyright IBM Corp. 1997, 2000 67

3. From the Beans List window, click on the composite bean that you want to
place the bean within. The bean you selected is added to the beans list and the
composite bean.

Note: The layout you specified for the container affects the placement for the bean.
To modify bean placement on the Visual Composition Editor from within
the Beans List window, open the Properties for the bean and modify the
Constraints.

To add multiple instances of the same bean, enable Sticky by holding Ctrl while
selecting the bean. Selecting a new bean or the Selection tool disables Sticky.

If the bean you want to add is not on the beans palette, you can add it with the
Choose Bean tool from the beans palette.

Adding beans not on the palette

68 Visual Composition

You can add a bean as a class, a serialized bean, or a variable. When you add a bean
as a class, the default constructor for the class is used when the program runs. This
means that a real object is created, not a variable that points to a real object
defined elsewhere. For more about serialized beans, see t‘Chapter 14_Qbject

gerialization in \isualAge” on page 47,

Before you try to add a serialized bean, make sure its serialization file (.ser) is
somewhere in the classpath for your workspace.

To place a bean on the Visual Composition Editor:

1. From the beans palette, select the Choose Bean tool; the Choose Bean window
appears.

2. Enter the fully qualified class name in the Class name field. The Browse button
is especially helpful in locating the Class name when several of the same name
exist in multiple packages.

3. Type a name for the bean in the Name field. This name appears in the
information area at the bottom of the Visual Composition Editor when you
select the placed bean; it represents the bean in generated bean code.

The Name field is optional. If you leave it blank, VisualAge generates a default
name based on the class.

4. To close the Choose Bean window after loading the mouse pointer with the
bean, click OK.

To enable the OK push button, you must enter the fully qualified name,
package, and class in the Class name field.

5. Move the crosshair to the desired location on either the Visual Composition
Editor surface or the beans list, and click mouse button 1.

If you are dropping a bean that uses a graphic resource, place the graphic resource
file in the directory where your program element is located. For example, if your
program element is called MyProject.MyPackage.MyApp, place your graphic resource
file in x:\..\ide\project_resources\MyProject\MyPackage\MyApp (where X is the
drive where VisualAge is installed). If you have not exported your program
element or created subdirectories in the project_resources directory, you may need
to create the subdirectories manually.

Unloading the mouse pointer

R

To unload the mouse pointer at any time, from the beans palette, click the
Selection tool.

Editing beans within a composite beans

VisualAge enables you to edit a composite bean or nonvisual bean that is
embedded within another composite bean.

To modify the bean, open the bean pop-up menu and select Open. The Visual
Composition Editor appears for that bean. If you add features to the embedded
bean from the Beaninfo page, select Refresh Interface when you return to the
original Visual Composition Editor.

Saving a bean

Saving a bean that you have constructed includes generating the source code. To
save the bean and generate the source code:

1. Select Bean from the menu bar.

2. Select Save Bean.

¥

Note: Clicking on
source code.

from the tool bar also saves the bean and generates the

Running and testing beans

When you select ;*: Run from the tool bar, VisualAge performs the following
actions on your visually composed bean:

» Saves the bean

» Generates code

» Compiles the class

* Runs the compiled bean in an applet window

RELATED COMNMCEPTS

LLa,yoJ.u_managecs_m_\asl‘ - ual_ _cmnpcls_ltlcn : _|:;g" 7

RELATED TASKS

RELATED REFEREMNCES

‘Beans | ist” on page 184

Chapter 19. Composing beans visually 69

70 Visual Composition

Chapter 20. Arranging beans visually

Once you have placed beans on the free-form surface, you can make the following
changes to achieve the look and function you want:

. For . I

Selecting and deselecting beans

To select a single bean, click on the bean. If you previously selected other beans,
they are deselected automatically.

To select multiple beans, do one of the following:

+ In Windows®: Hold down Ctrl or Shift and click on each additional bean you
want to select.

* In Windows: To select all the beans within a container, select the container bean
and then, from the File menu, select Select All.

* In UNIX® platforms: Hold down the left mouse button and move the mouse
pointer over each bean you want to select. After you select the beans, release the
mouse button.

You can select beans or connections, but not both together. However, if you delete
a bean with connections, the Visual Composition Editor deletes the connections
and the bean.

When you select a bean in the Visual Composition Editor, selection handles |
appear on the corners and between the corner handles. If you select more than one
bean, the last bean selected has solid selection handles, indicating that it is the
anchor bean and the other selected beans have hollow selection handles. The
anchor bean is the guide by which the other beans are manipulated. For example,
if you want to match the widths of two beans, the anchor bean is used as the
guideline width.

To change the anchor bean, hold down Shift and click on a selected bean.
Note: You can also select and modify beans, one at a time, in the beans list.

To deselect a bean after you have selected it, click anywhere on the Visual
Composition Editor.

To deselect multiple but not all selected beans, follow these steps:
1. Hold down the Ctrl key.
2. Click and release the left mouse button on all the beans you want to deselect.

You can deselect all selected beans by clicking anywhere but on a selected bean.

© Copyright IBM Corp. 1997, 2000 71

Positioning beans

Positioning a bean refers to aligning or spacing. For beans in a null layout, the tool
bar and the Tools pull-down menu provide options for aligning beans.

The anchor bean, indicated by solid selection handles, is the bean that serves as the
alignment reference. To align beans with one another, select the ones you want to
modify and select the anchor bean last. You can also change the anchor bean by
holding Shift and clicking on the new anchor bean.

To align beans:
1. Click on all the beans you want to align, and then select the bean you want the

others to match.
2. Click on one of the following alignment tools from the tool bar:

Align Left

Align Top

* Align Center

Align Middle

;“ Align Right
@ Align Bottom

The pop-up menu provides options for spacing within the bounding box, an
unseen box that contains the selected beans. You can also manage the placement of
parts by using a layout manager.

To space beans within the bounding box:

1. Click on all the beans you want to evenly space. You must select a minimum of
three beans.

2. From the pop-up menu of one of the selected beans, select Layout then
Distribute, and then either Horizontally in bounding box or Vertically in
bounding box.

Note: If you specify a non-null layout for the container, the bean alignment and
spacing are controlled by that layout manager and not the alignment tools.

Resizing visual beans

72 Visual Composition

You can change the size of a visual bean in the Visual Composition Editor using
any of the following techniques:

» Dragging the selection handles

* Matching by multiple selection

* Changing Constraints properties

* In a non-null layout manager, resetting layout constraints

Beans that cannot be resized, such as variables, menus, and tear-off properties have
reversed background color, but no selection handles. Beans using non-null layouts
cannot be resized, but have selection handles.

Note: If you specify a non-null layout for the container, the bean sizing is affected
by that layout manager.

Resizing beans by dragging

To change the size of a visual bean in a container using a null layout, follow these
steps:

1. Select the bean by clicking on it. To size several beans at once, select all the
beans you want to size.

2. Place the mouse pointer over one of the handles and hold the left mouse
button.

3. While holding down the left mouse button, drag the handle to a new location.
As you move the mouse, the outline of the bean dynamically changes size.
When it is the size you want, release the mouse button. The bean remains at
the chosen size.

Note: Pressing the Esc key before releasing the mouse button cancels resizing
without making changes.

To size a bean in only one direction, press and hold the Shift key while resizing the
bean. Holding down the Shift key prevents one dimension of the bean from
changing when you resize the other dimension. For example, to change the width
of a bean but prevent its height from changing, hold down the Shift key while
changing the width.

Matching bean sizes using the tool bar

1. Select all the beans you want to size, making sure the last bean you select, the
anchor, is the size you want the others to match. You can change the anchor by
holding down Shift and clicking the new anchor.

2. Select one of the following from the tool bar or the Tools pull-down menu:

th

Match Width

I" Match Height

The size of the selected beans changes to match the size of the anchor bean.

Moving beans

To move a bean in the Visual Composition Editor, follow these steps:
1. Place the mouse pointer over the bean you want to move.

2. Hold down the appropriate mouse button and move the mouse pointer to the
new location.
* In Windows: Hold down the left mouse button.
* In UNIX platforms: Hold down the middle mouse button.

3. Release the mouse button. The bean appears in its new location with a solid
border around it, indicating it is selected.

Chapter 20. Arranging beans visually 73

If the bean you are dragging is one of several that you selected, all selected beans
move together. Pressing the Esc key before releasing the mouse button cancels the
move without making changes.

You can reorder or reparent a bean in the beans list. To reorder, select a bean in the
beans list and drag it to a new position within its composite bean. This action does
not change the position of the bean in the Visual Composition Editor (except as
noted below), but reorders the list, which affects the tabbing order. To reparent a
bean, select and drag it to a different composite bean in the beans list. This action
does change the position of the bean in the Visual Composition Editor. You cannot,
however, select multiple beans on the beans list.

To modify bean placement on the Visual Composition Editor from within the
Beans List window without reparenting, open the Properties for the bean and
modify the Constraints.

Note: If you use BoxLayout, FlowLayout, or GridLayout managers, you can move
beans on the Visual Composition Editor surface by reordering them in the
beans list.

Moving a composite bean requires special handling. For information, see Ecaad

Copying beans

74 Visual Composition

To copy beans using the clipboard:

1. Select all the beans you want to copy.

2. From the Edit pull-down menu, select Copy. A copy of each selected bean is
placed on the clipboard.

3. From the Edit pull-down menu, select Paste. The mouse pointer turns into a
crosshair, indicating that it is loaded with the copied beans.

If you decide against pasting the beans, unload the mouse pointer by clicking

on the % Selection tool.

4. Position the mouse pointer where you want the beans to be copied.

5. Click the left mouse button. Copies of the beans appear at the position of the
crosshair.

As long as you do not copy another item to the clipboard, you can continue
pasting these beans.

Note: When you copy or cut and paste beans, the Visual Composition Editor
preserves the bean names but not the connections.

When you copy or cut and paste two or more beans, they retain their positions
relative to each other.

To copy beans by dragging:

1. Select all the beans you want to copy. If you only want to copy one bean, you
do not have to select it.

2. Position the mouse pointer over one of the beans you want to copy.

3. Hold down both the Ctrl key and the appropriate mouse button.
* In Windows: Hold down the left mouse button.
* In UNIX platforms: Hold down the middle mouse button.

4. Move the mouse pointer to a new position. To help you with positioning, an
outline of the bean appears. When you are copying multiple beans, the outlines
of the selected beans move together as a group.

5. When the beans you are copying are in the desired position, release the mouse
button and Ctrl key. The copied beans appear where you positioned the
outline.

Note: Pressing the Esc key before releasing the mouse button cancels copying
without making changes.

Copying a composite bean requires special handling. For information, see ECodd

Deleting beans

To delete beans, select them and press Delete or select Delete from the pop-up
menu.

When you delete a connected bean, the connections between that bean and other
beans are also deleted. However, when you select Edit and then Undo, you restore
the deleted bean and any connections that were removed.

Undoing and redoing changes in the Visual Composition Editor

If you undo an operation that you decide you had right in the first place, select
Redo from the Edit pull-down menu. Redo restores the bean to the state before the
last Undo, including any connections that were deleted.

Undo and Redo affect operations you perform on the free-form surface and beans
palette in the Visual Composition Editor. They do not affect any of the functions in
the File pull-down menu.

Use Undo to reverse any or all of the changes you made to the Reorder
Connections list.

RELATED COMNMCEPTS

T o 3

RELATED TASKS

E | i |

RELATED REFEREMNCES

Chapter 20. Arranging beans visually 75

76 Visual Composition

Chapter 21. Creating GUI layouts with quick forms

To create a layout with quick form from a model bean, do the following:

1.

10.

11.

Right-click on the bean and select Quick form from the pop-up menu that
appears. The Quick Form SmartGuide opens.

From the Select a parent for the quick form list, select where you want
VisualAge to drop the quick-form components.

Specify which quick form to use, as follows:

* If a quick form is already registered for this type of bean, the Use an
existing registered quick form radio button is preselected. Select one from
the list.

» If the component that you want to use already exists but is not registered
for this type, register the quick form by clicking Manage Quick Forms. The
Quick Form Manager window opens. (For additional instructions, refer to
the task topic listed at the end of this topic.)

» Otherwise, click on Create a new quick form.

Below the Registered quick forms list, click on the check boxes that control
which registered quick forms appear in the list.

From the properties list, click on the name of any property that you do not
want included in the quick form. The check boxes for some properties might
initially be deselected; this means that no quick forms (default or otherwise)
are registered for those property types.

For each property that you do want to include, make a selection from the
Registered quick forms list.

At this point, you have a choice to make, as follows:

» To accept the default layout without saving the quick form, click on Finish.
VisualAge drops the beans and draws the connections in the composite that
you are editing. You are done!

» Otherwise, click on Next to continue with this procedure.

The Quick Form Layout page opens. As you edit layout settings in this
window, the Preview pane shows you how they will affect the finished
quick form.

To configure how many properties are laid out in each row, select a value
from the Number of columns per row list.

Select a layout style, as follows:

» To use GridBagLayout, click on GridBag into panel. In this case, VisualAge
drops a panel into the parent of the quick form, sets the panel to GridBag
layout, and drops the individual quick-form components into the panel.

* If the parent of the quick form is empty and set to <null> or
GridBagLayout, you can choose Free flow into parent. In this case,
VisualAge drops the individual quick-form components directly into the
parent.

To reorder an item in the Properties to quick form list, select a property and
click on the Up or Down buttons.

Make minor adjustments in the Property quick form details group box, as
follows:

© Copyright IBM Corp. 1997, 2000 77

12.

13.
14.
15.
16.
17.

18.

* To include a label for the quick-form component (for example, a label to
accompany a text field), make sure that the Include label check box is
selected.

» Set alignment for the label: Select the Top or Left radio button.
» Edit the text for the label as appropriate.

 If the quick-form component for a particular property must span multiple
columns, select an appropriate value from the Columns to span list.

At this point, you have a choice to make, as follows:

» To create the quick form without saving it as a separate class, click on
Finish. VisualAge drops the beans and draws the connections in the
composite that you are editing. You are done!

» To save and register the quick form for reuse, click on Next. Continue with
the rest of this procedure.

If you save quick forms as separate classes, you can transfer quick form
registrations to other workstations without repeating the registration
process on the target machines. For more information, read the task topic
listed at the end of this procedure.

Click on Save quick form.

Specify a project, package, and quick-form class.
Give the quick form a name.

Provide a one-line description of the quick form.

If you do not wish to register the quick form now, make sure that Register
quick form is not selected. If you wish, you can register the quick form
separately.

Click on Finish.
RELATED CONCEPTS

RELATED TASKS

ESharing quick forms’

RELATED REFEREMNCES

FChapter 52 Ouick Eorm SmartGuide” >3

Sharing quick forms

78 Visual Composition

If you have saved quick forms as separate classes, you can transfer quick form
registrations to other workstations without repeating the registration process on
each target machine. Follow these steps:

Transferring registrations when either workstation has a stand-alone VisualAge
installation

1.

3.

Copy the ide\program\quickForm.properties file from the source to the target
workstation. (Make sure you put the file in the correct place.)

Export the appropriate quick-form classes from the source installation as
repositories.

Import the repository files into the target installation.

Transferring registrations when the workstations share a repository

1.

Copy the ide\program\quickForm.properties file from the source to the target
workstation. (Make sure you put the file in the correct place.)

2. Load the appropriate quick-form classes into the workspace of the target
installation.

RELATED COMNMCEPTS

RELATED TASKS

€ H H H E1]

FRegistering ook formsl

RELATED REFEREMNCES

Registering quick forms

You can register quick forms for reuse with any property of a specific type. To
register a quick form at the same time that you create it, follow the instructions in
tChapter 21. Creating GUI layouts with quick forms” on page 77. This topic tells
you how to register quick forms at any other time, from the Quick Form Manager
window.

Opening the Quick Form Manager window from the workspace options
1. From the Window menu, select Options.

2. From the expandable list on the left, select Visual Composition and then Quick
Form Manager. The Quick Form Manager window opens.

Opening the Quick Form Manager window from the Quick Form SmartGuide

1. From the Quick Form SmartGuide of the Visual Composition Editor, select
Manage Quick Forms. The Quick Form Manager window opens.

Registering quick forms from the Quick Form Manager window
1. Click on Register New. The Register Quick Form window opens.
2. Give the quick form a name.

3. Select a type to register the quick form against. (Use the Browse button as
necessary.)

4. Select a visual bean to represent the quick form. This visual bean can be a
single component or a visual composite.

5. Select a target property for the visual bean. VisualAge connects to this
property when it drops the quick-form bean.

6. Select a target event for the visual bean. If the property you selected in the
previous step is bound, the property’s bound event is automatically filled in
for you.

7. As you prefer, provide a one-line description of the quick form.

8. To include a label with the quick-form bean, make sure the Include label
check box is selected.

9. Click on OK to close the window.
10. In the Options window, click on OK to apply the change.

Deleting a registration

In the Quick Form Manager window, select the type, select the quick form, and
click on Unregister.

RELATED COMNMCEPTS

Chapter 21. Creating GUI layouts with quick forms 79

RELATED TASKS

RELATED REFEREMNCES

80 Visual Composition

Chapter 22. Connecting beans

In VisualAge, you draw connections between beans to define their interaction. This
involves using the mouse to select a feature of the source bean and connect it to
the feature of the target bean. The type of feature at the source—property or
event—and the type of feature at the target—property, method, or
code—determines the type of connection. For example, if the source is an event
and the target is a method, the connection is an event-to-method.

If you decide to change the connection behavior of the bean, you can edit or
reorder the existing connections without redrawing them.

Note: You can also perform connections within the Beans List window.

Connecting features to other features

To connect two features, follow these steps. The term source refers to the where the
connection begins and the term target refers to where the connection ends.

1.

© Copyright IBM Corp. 1997

Select the source bean, right-click, and select Connect from the pop-up menu.

In most cases, a cascade menu appears that displays the names of the most
commonly used (or preferred) features. If additional features exist that are
appropriate for the connection type, Connectable Features also appears on the
menu. Selecting Connectable Features opens a connection window with an
expanded list of features, sorted alphabetically and by feature type.

» If a connection window appears instead of the cascade menu, this means that
preferred features have not been assigned for the bean.

» If the Connectable Features selection does not appear on the menu, this
means the menu contains all available features, not just the preferred ones,
and there are no more from which to select.

Select a feature by doing one of the following:
 If the feature appears in the preferred list, select it.

 If the feature does not appear in the list but the Connectable Features
selection is available, select Connectable Features and then select the feature
from the expanded list in the connection window.

* If the feature does not appear in either the preferred or expanded list, you
may be able to edit the bean to add the feature you need.

If, at this point, you decide not to complete the connection, do one of the
following:

» If a pop-up menu appears, move the mouse pointer away from the
connection menu and click.

* If a window showing all the features appears, click on Cancel.

The menu or window closes without completing the connection.

Place the mouse pointer over the target bean. As you move the mouse, a
dashed line trails from the mouse pointer back to the source bean.

Click the left mouse button. As with the source bean, either a pop-up menu or
connection window appears.

Select the target feature as before.

, 2000 81

When you complete the connection, a colored connection line appears. The color
indicates the connection type, based on the features you selected as end points.

You make connections within the beans list in the same manner as in the Visual
Composition Editor. You cannot, however, start a connection on the Visual
Composition Editor and complete it in the beans list or vice versa. You may want
to draw connections on the beans list instead of the Visual Composition Editor if
you use a layout that allows for a bean to completely cover another bean.

Note: If you are using an unbound property in a property-to-property connection,
open properties on the connection and select an event to associate with the
property. When the event is triggered, the properties values align.

Connecting features to code

The source for a code connection must be either an event or a bound property (a
property that fires an event when its value changes). Connect to a code as follows:
1. Open the pop-up menu for the source bean.

2. Select Event to Code and the Event-to-Code Connection window appears.

3. Select an Event from the Event drop-down menu.

4. If you have already written the code, select it from the Method drop-down.
Otherwise, leave <new method> visible in the Method field.

Modify the code in the code window as appropriate. This window operates the
same as the code window for creating methods in the IDE.

o

Note: You can use code assist in this source pane. For information on this tool,
refer to Getting Started.

6. If you want the event to pass its parameters to the new method, select Pass
event data at the bottom of the panel.

7. If the code takes input parameters and you want to specify them as constants,
save the code by opening the code pane pop-up and selecting Save. When the
code is saved, click Set parameters and enter the constants you want.

8. Click on OK.

The connection window closes and VisualAge draws a green connection arrow
from the source bean to a moveable text box on the free-form surface. If the
connection arrow is dashed, you must supply values for the input parameters
of the code.

You can also create a code connection by selecting a source event and targeting
an Event-to-Code Connection on the free-form surface.

Connecting from connection results

82 Visual Composition

An exception is any user, logic, or system error detected by a function that does not
deal with the error itself but passes the error on to a handling routine, called an
exception handler. In VisualAge®, you can catch exceptions by connecting exception
events to either methods or code.

An exception is a feature of a connection, not a bean. It appears as
exceptionOccurred on the connection’s connection menu.

You can also pass the return value from the target of a connection. This return
value displays as the normalResult event of the connection. You can connect the
normalResult event to a feature of the same bean or another bean. For example,
you can connect the exceptionOccurred to a method that brings up a prompter
with an error message.

Supplying parameter values for incomplete connections

Connections sometimes require parameters, or input arguments. If a connection
requires parameters that have not been specified explicitly or by default, it appears
as a dashed arrow, indicating that it is incomplete. When you have made all the

necessary parameter connections, the connection line becomes solid, indicating that
the connection is complete.

You can create parameter from method and parameter from code connections.
When the primary connection calls for a value parameter, it calls the method or
code, which passes the return value as the parameter.

Supplying a parameter value using a connection

You can complete a connection that requires a parameter, by drawing another
connection to the broken connection line. Start a new connection using as the
source, the dashed connection line that requires the parameter and as the target,
select the feature that provides the value.

For example, if you have a button that copies the text from TextField2 to
TextFieldl, make the following connections:
1. Connect the button’s actionPerformed event to the text property of TextFieldl.

2.

From the broken connection line, connect the value property to the text
property of TextField2.

Supplying a parameter value using a parameter-from-code
connection

You can complete a connection that requires a parameter, by using the
parameter-from-code option on the pop-up for that connection.

For example, if you have a button that copies the text from JTextField2 to
JTextFieldl, do the following:

1.

2.

3.

Connect the button’s actionPerformed event to the setText property of
JTextFieldl.

From the broken connection line, open the pop-up and select the
parameter-from-code option.

From the source pane of the parameter-from-code connection window, replace
return null; with the following:

return getJTextField2().getText();

This return value for the method, provides the value for the parameter.

Supplying a parameter value using a constant

When connections need parameters with constant input values, provide these
values through the properties window of the incomplete connection, as follows:

1.

Open properties for the incomplete connection by selecting Properties from the
pop-up menu or by double-clicking the connection line. The properties window
of the incomplete connection appears.

Select Set parameters. The Constant Parameter Value Properties window
appears showing the parameters for which you can set constant values.

Enter the constant parameter values you want to use.

Do one of the following:
* To apply and save the values and close the window, click on OK.

Chapter 22. Connecting beans 83

» To close properties without saving any of the parameter values you just
entered, click Cancel.

Specifying values for parameters by default

In most connections other than event-to-code, data is not passed by default from
the source of a connection to the target. However, you can set VisualAge so that it
always passes the available event data. In that case, the initial connection line may
not appear dashed.

To set the connection to always pass event data, follow these steps:
1. Open the properties for the connection.
2. Select the Pass event data check box.

Note: The source of the connection determines the event data that is passed.

The event-to-code dialog defaults the Pass event data check box to false only if
either of the following is not true:

* The event passes a parameter and the code accepts a method.
* The event parameter matches the type of the parameter accepted in the code.

Editing connection properties

84 visual Composition

Connection properties enable you to change a connection without redrawing it.
Through the properties window, you can do the following:

* Change the source or target feature, depending on the connection type

» Reverse the direction of a property-to-property connection

» Specify an input parameter as a constant

* Delete the connection

To open properties for a connection from either the free-form surface or the Beans
List window, move the mouse pointer over the connection and do one of the
following:

* Double-click the left mouse button.

» Right-click and select Properties from the connection’s pop-up menu.

RELATED COMNCEPTS

. H E1]

RELATED TASKS

RELATED REFEREMNCES

. ET]

. H H 'T]

Chapter 23. Manipulating connections

Once you have made connections to and from beans on the free-form surface, you
can modify them as follows:

» Display or hide the connection lines

* Delete the connection

* Reorder the connections from a bean

* Change the connection name

» Change the source and target of the connection without starting over

Showing and hiding connections

[2]

You can show and hide connections by using the Show Connections and

@ Hide Connections tools. They can be found on the tool bar or as selections
on the Tools menu. These tools show or hide all connections that have the selected
bean or beans as their end points. If no beans are selected, these tools show and
hide all connections in the composite bean.

If you hide connections, the Visual Composition Editor is refreshed faster and is
less cluttered, making it easier for you to work.

You can also show and hide connections from the pop-up menu by selecting the
Browse Connections cascade menu. The choices in this menu affect only
connections going to and from the bean whose pop-up menu you opened.

Deleting connections

To delete a connection, do one of the following:

» Select the connection and press the Delete key.

* From the connection’s pop-up menu, select Delete.

» From the connection’s properties window, click Delete.

Selecting and deselecting connections
You select connections in the same way that you select beans. When you select a

connection, boxes called selection handles ll appear on it to show that it is selected.

When first drawn, a connection contains three selection handles: one at each end

and one in the middle. You can use selection handles to change either of the

following:

* The end points of the connection.

* The shape of the connection line, by dragging the middle box to another
location. This helps you distinguish among several connection lines that are
close together.

Selecting a single connection

1. Move the mouse pointer over the connection you want to select.
2. Click the left moue button and the connection is selected.

© Copyright IBM Corp. 1997, 2000 85

Selecting multiple connections

To select multiple connections, do one of the following:

* In Windows: Hold down Ctrl or Shift and click on each connection you want to
select.

* In UNIX platforms: Hold down the left mouse button and move the mouse
pointer over each connection you want to select. After you select the
connections, release the mouse button.

Deselecting connections

To deselect a connection without selecting another bean or connection, follow these
steps:

1. Move the mouse pointer over the connection line.

2. Hold down the Ctrl key.

3. Click the left mouse button.

Reordering connections

If you make several connections from the same bean, they run in the order in

which you made the connections. To ensure the correct flow of control when you

generate the source code, you might need to reorder the connections. If so, do the

following:

1. Select the source bean.

2. From the source bean pop-up menu, select Reorder Connections From. The
Reorder Connections window appears, showing a list of your connections.

3. With the mouse pointer over the connection you want to reorder, press and
hold the appropriate mouse button:
* In Windows: Left mouse button
* In UNIX platforms: Rightmost mouse button

4. Drag the connection to the place in the list where you want the connection to
occur.

Note: Parameter connections must always follow the connections they supply.
5. Release the mouse button.

6. Repeat these steps until the connections are listed in the order in which you
want them to occur.

7. Close the window.

Changing the connection name

You can change the name of a connection to make identification easier. To change
the connection name:

1. Open the pop-up for the connection.

2. Select Change Connection Name.

3. Modify the connection name.

The connection nhame changes in the Visual Composition Editor and, after you save
the bean, in the source code.

Changing the source and target of connections

You can change the end points of a connection without redrawing it, either by
dragging the connection or by changing its properties.

86 Visual Composition

You can change the source of any connection. In most cases, you can also change
the target. However, you cannot change the target to a type that is not allowed.
For example, you cannot change a target to an event because an event can only be
the source of a connection.

Moving either end of a connection to a different bean
1. Select the connection.
2. Move the mouse pointer over the appropriate selection handle at the end of the
connection.
3. Press and hold down the left mouse button.
4. Move the mouse pointer to the new bean or connection.
5. Release the mouse button.

If you change the target of a feature-to-method connection to a bean that does not
support the target method, the connection menu appears, and you can select a new
target feature.

Moving either end of a connection to a different feature
1. Open properties for the connection. The Properties window for that connection
type appears.
2. Select new end points from the lists shown.
3. Click on OK.

Reversing the direction of a connection

The direction of property-to-property connections determines which end point is
initialized first. The target property is initialized first based on the value of the
source. Only property-to-property connections can be reversed. To do this, open
properties for the connection and click on Reverse.

Changing the shape of a connection

To help you distinguish among several connection lines that are close together, you

can change the shape of connections. To do this, follow these steps:

» Select the connection line you want to change.

» Place the mouse pointer over the middle selection handle of the connection line.

» Click and hold down the left mouse button and drag the connection line to the
desired shape.

* Release the mouse button and the new line is set with two new midpoint
handles.

You can change the connection back to its original shape by selecting Restore
Shape from the pop-up window.

RELATED COMNMCEPTS
RELATED TASKS

RELATED REFEREMNCES

Chapter 23. Manipulating connections 87

88 Visual Composition

Chapter 24. Managing the beans palette

You can modify the beans palette at any time from the Visual Composition Editor
and in any of the following ways:
* Add a bean

* Add a category

* Add a grouping separator line
* Change icon size

* Refresh the palette

* Remove a bean

* Remove a category

* Reorder beans

* Resize the palette

To resize the palette, drag the sizing handle on the right side of the palette. If you
choose not to resize the palette and some of the beans are not visible, you can
access the beans by using the scroll buttons that appear at the top and bottom of
the palette.

To change the icon size on the palette and the Beans List, open the palette pop-up
and select Show Large Icons. This is a toggle option with the default set to small
icons (16x16). The large icons are 32x32.

To reorder the beans within a category, or move a bean to another category:
1. From the palette pop-up or the Bean pull-down, select Modify Palette.

2. From the Palette list, drag the bean to the position or category you desire.
3. Click on OK.

If you have a category with many beans, you can group common beans using

separators. To add a grouping separator to a category:

1. Select the category.

2. Select Add Separator and VisualAge adds a separator to the end of the
category.

3. Select the new separator line and drag it to the desired location.

To remove a separator line, select the separator and then click Remove.

You may need to refresh the palette to view the following changes:
» Changing the icon that represents a bean

* Adding new beans

* Loading installed features manually at the package or class level

To refresh the palette, select Refresh Palette from the palette pop-up.

Adding a category to the palette

1. From the palette pop-up, select Modify Palette, and the Modify Palette
window appears.

2. From the Palette group box, select New Category and a new category item
appears highlighted in the list.

3. Enter the name for your new category in the highlighted region.

4. Click on OK.

© Copyright IBM Corp. 1997, 2000 89

tos] Moty Pradetibe E

i D Falete
- i TR
o s & Fludior Flmsrosme Cshapory
=] JCheckBos
. _ e |
| BLL sl — & JRadolulio =
Bitman I [
— &= T emdFisid _Iﬂ
F

Calngoay:. Swng Kl |

: | Fisstose Origial Jnens |

E e e riamie ol e clains

RELATED CONCEPTS

RELATED TASKS

RELATED REFEREMNCES

Adding a bean to the palette

90 Visual Composition

To add beans to any category on the beans palette:

1.

2.

From the palette pop-up, select Modify Palette, and the Modify Palette

window appears.

Select the bean type.

* If you selected the Class bean type, enter the class name in the entry field or
select Browse to locate the class.

* |If you selected the Serialized bean type, enter the file name in the entry field
or select Browse to locate the serialized object file to add.

Under Palette, select a category for the new bean.

Select Add to Category and click on OK. The Visual Composition Editor adds

the bean to the category on the beans palette.

To add beans from a project to any category on the beans palette:

1.

o w

From the palette pop-up, select Add Bean from Project, and the Modify Palette
window appears.

From the Available beans pane, open the project in the drop-down list and
select the project that contains the beans you want to add to the palette.

Select the beans, by selecting the check boxes.

Under Palette, select a category for the new beans.

Select Add to Category and click on OK. The Visual Composition Editor adds
the beans to the category on the beans palette.

1es] Modity Paleate

- m ‘|
oL v i meamples watle s framesntd £ S

o i L Examples. vt Framesor: B e

el i, re, b drobl e g Py amebeatil: ¢ & || Othes Femmn e |

o o r, mearmes. e c frameasik |
o i, sesmpbes. avte s framevetk £ Add Sepasiot
morrL o o ks vt s Sramesenl:
L o e, Barmpes. avet e g Framewecrl

[= T PR TR T .
T i Fe, R aimElas. e Framamasil | = J "
1] | hl

Add i Frastove Origina Bnans |

Coafacct Hhen clmroms mndon seqiskzed obscts o mod bo the palshs.

[] cowd |

You can also add class or serialized files from .jar files to the palette by following
the import SmartGuide from the File menu. The Modify Palette window that
appears contains an Available beans list, where you select the beans you want to
add to the category you select, or create, in the Palette list.

e o, buttan: D uaBuion
I

[e odweiridsproject_mssounces o AT Flesrimmas Cshagany

[Amehsbividswinhidshprojec!_moourcer 3 Othem P |

LT I— ﬂ'l | _IJ
A bz Catago | Fisstose Origial Jnsns |

Seleci e clatey ol periakzed chescts o pod b the paletts

[] coes |

Note: If you designate an icon for the bean in the Information pane of the

Beanlnfo class, it is used for the palette entry. Otherwise, a default icon is
used.

RELATED COMNMCEPTS

RELATED TASKS

RELATED REFEREMNCES

Chapter 24. Managing the beans palette 91

Deleting a bean or category from the palette

92 visual Composition

To remove a bean from the beans palette:

1.

2.

3.
4.

From the Bean menu, select Modify Palette and the Modify Palette window
appears.

In the Palette tree view, expand the category that contains the part you wish to
remove.

Select Remove and a confirmation dialog appears.

Select Yes and then click on OK. The selected bean is removed from the beans
palette.

To remove a category from the beans palette:

1.

2.
3.

From the Bean menu, select Modify Palette and the Modify Palette window
appears.

In the list box, select the category that you wish to remove.

Select Remove and then click on OK. The selected category is removed from
the beans palette.

RELATED COMNMCEPTS

RELATED TASKS

RELATED REFEREMNCES

Chapter 25. Using VisualAge beans in visual composition

You can use VisualAge beans, property settings and connections to compose a
wide variety of Java program elements. VisualAge provides a set of user interface
beans that you can use to compose an applet or application. The product also
provides Factory and Variable beans that you can use to create and access bean
instances.

RELATED COMNMCEPTS

RELATED TASKS

I‘Compasing an applet']

RELATED REFEREMNCES

Composing an applet

Applets are generally small, specialized programs that are downloaded and run
within a Java-enabled web browser. Applets operate within constraints that
provide security from remote system intrusion.

You can compose and test an applet in the Visual Composition Editor. To run an
applet in a web page, export the applet class and edit the web page source file to
include the applet.

VisualAge provides applet beans from the javax.swing package, as well as others.

Bean Description

[Applet (Swing) or Applet (AWT) | A program that can run in a compatible web browser

Changing Applet or JApplet properties

Use the bean property sheet to change default property settings. To open the
property sheet for a JApplet, select the JApplet bean from the Beans List.

Arranging beans in an applet
Use either of the following methods:

» Assign a layout manager to control size and position of beans within the applet
or applet content pane.

© Copyright IBM Corp. 1997, 2000 93

94 visual Composition

* Use a null layout (no layout manager) and the visual composition alignment
tools to control size and position of beans.

Accessing the applet context

The applet context represents the environment in which an applet is running. It
provides methods that perform the following:

* Get an image from a URL

* Get an audio clip from a URL

* Find other applets within the document

» Show a document at another URL

To access these applet context methods, tear off the appletContext property of the
Applet or JApplet bean.

Accessing the document or applet URL for an Applet or JApplet bean

To get the URL of the HTML file where the applet is running, connect to the
documentBase property or the getDocumentBase() method. To get the URL of the
applet, connect to the codeBase property or the getCodeBase() method.

Providing information about the applet for an Applet or JApplet bean

To define information about the applet, from the Members page, edit the
getAppletinfo() method. To get the applet information for an About dialog,
connect to the appletinfo property or the getAppletinfo() method.

Exporting an applet class

Do the following to export the applet:

1. From the Workbench window, select the applet class.

2. From the File menu, select Export and The SmartGuide — Export window
appears.

Adding an applet in an HTML file

Specify the applet in your web page source file at the location where you want the
applet to run. If VisualAge generated an HTML file when you exported the applet,
you must edit the source to specify attributes for the <applet> tag.

Use the <applet> tag to identify the applet class and to specify the dimensions of
the bounding rectangle in which the applet is to run. The following example
specifies an applet named MyApplet that runs in a 100 by 80 pixel rectangle.

<applet code="MyApplet.class" width=100 height=80></applet>

Bean—ssecific tasks

For attributes that you can specify in the Applet tag, refer to books that document
HTML.

For examples, see the BookmarkList class in the
com.ibm.ivj.examples.vc.swing.bookmarklist and
com.ibm.ivj.examples.vc.bookmarklist packages. These examples are shipped in the
IBM Java Examples project.

RELATED TASKS

RELATED REFEREMNCES

JApplet tasks

Accessing a JApplet bean in the Visual Composition Editor

JApplet beans contain a default content pane that completely covers the base bean.
With the exception of a JMenuBar bean, you add visual beans to the content pane.
You can access the covered JApplet bean in the Beans List.

Resizing or moving a JApplet bean in the Visual Composition Editor

JApplet beans (like Swing window beans) contain a default content pane that
completely covers the base bean. With the exception of a JMenuBar bean, you add
visual beans to the content pane. To select the JApplet bean and not the content
pane, which is necessary for moving or resizing, select the JApplet bean in the
Beans List.

Replacing the content pane for a JApplet bean

To replace the default content pane, delete it and add another container
component. When you delete the content pane, a warning appears indicating that
the content pane is missing. If you save the bean without specifying a new content
pane, the Visual Composition Editor adds a JPanel bean.

Composing a window

Window beans are the primary visual context for other user interface components.
VisualAge provides window beans from both the javax.swingpackage.

You can compose and test a window in the Visual Composition Editor. You can use
window beans to create new composite beans. You can also add window beans as
secondary windows. A FileDialog, which represents a system file dialog, cannot be
composed as a primary window bean.

Bean Description

[Dialog (Swing) or Dialog (AWT) | A custom dialog, typically a secondary window
[Erame (Swing) or Erame (Dialog) | A desktop window with title bar, sizing borders, and

sizing buttons

linternalErame (Swing) A frame that is a child of another Swing component
DWindow (Swing) or Mindawl A window without a title bar, sizing borders, and
m sizing buttons

Accessing a Swing window bean

Swing window beans (JDialog, JFrame, and JWindow) contain a default content
pane that completely covers the base bean. With the exception of a JMenuBar bean,
you add visual beans to the content pane. You can access the covered Swing
window bean in the Beans List.

Chapter 25. Using VisualAge beans in visual composition 95

Replacing the content pane for a Swing window bean

To replace the default content pane, delete it and add another container
component. When you delete the content pane, a warning appears indicating that
the content pane is missing. If you save the bean without specifying a new content
pane, the Visual Composition Editor adds a JPanel bean.

Arranging beans in a window

Use either of the following methods:

» Assign a layout manager to control size and position of beans within the applet
or applet content pane.

* Use a null layout (no layout manager) and the visual composition alignment
tools to control size and position of beans.

Basic connections

* Opening a window—Connect an event, such as the actionPerformed event of a
button or menu item, to the show method for the window.

* Closing a window—Connect an event, such as the actionPerformed event of a
button or menu item, to the dispose method for the window.

Bean—specific tasks

+ [Dialog and IDialag taskd

For examples, see the Customerinfo class in the
com.ibm.ivj.examples.vc.customerinfo package. These examples are shipped in the
IBM Java Examples project.

RELATED TASKS

t‘Dialog and IDialog tasks’]

RELATED REFEREMNCES

Fohantor 3 Windo: hoans =

Dialog and JDialog tasks

96 Visual Composition

Obtaining information from a closed dialog

Connect the normalResult of the show() connection to the target property for the
information. Then, connect the dialog property that contains the information to the
appropriate parameter of the normalResult-to-target connection.

For example, to open a dialog that prompts the user for a text field name and

returns it to a label in the primary window, do the following:

1. Connect an event in the primary window to the show() method of the dialog.

2. Connect the normalResult of the show() connection to the text property of the
label in the primary window.

3. Connect the text property of the dialog text field to the value parameter of the
normalResult-to-text connection.

RELATED TASKS

RELATED REFEREMNCES

Fohantor 35 Windour boans =

Adding a pane or panel

A pane or panel is contained by another pane, panel, window, or applet and is
itself a container for other components. VisualAge provides pane and panel beans
from the javax.swing package.

You can add a pane or panel bean as an embedded container for other
components. You can also create a bean as a subclass of one of these beans to
define a reusable component. This is particularly useful for panels.

Bean Description

[DesktopPane (Swing) A pane for a desktop within another Swing container
[EditorPane (Swing) A pane for editing defined text types, such as HTML
lQptionPane (Swing) A simple dialog pane

[Panel (Swing) or Banel (AWT) A composition surface for user interface components
IScrollPane (Swing) or ScrollPand | A scrollable view for another component

[SplitPane (Swing) A split view for other components
[TabbedPane (Swing) A tabbed view for other components
[TextPane (Swing) A pane for editing text with visible styles and

embedded objects

Bean—specific tasks

+ lIScrollPane and ScrollPane taskd
« [ISplitPane taskd

+ lTabhbedPane taskd

+ lIEditorPane tasks

+ llOptionPane taskd

For examples, see the Customerinfo, AddressView, and CustomerView classes in
the com.ibm.ivj.examples.vc.customerinfo package, and the DirectoryExplorer class
in the com.ibm.ivj.examples.vc.swing.directoryexplorer package. The AddressView
and CustomerView classes subclass a Panel as a reusable bean. The
showMessageBox() method of the Customerinfo class uses a JOptionPane bean.
The DirectoryExplorer class uses a JSplitPane bean. These examples are shipped in
the IBM Java Examples project.

RELATED TASKS

FChantor 17 Visual beon basic” =

RELATED REFEREMNCES

JScrollPane and ScrollPane tasks
Displaying scroll bars

Select a scroll bar policy in the pane’s property sheet. For a JScrollPane bean, set
horizontal and vertical scroll bar policies with the horizontalScrollBarPolicy and
verticalScrollBarPolicy properties. For a ScrollPane bean, set a policy for both scroll
bars with the scrollBarDisplayPolicy property. Select one of the following choices to
specify when to display the scroll bar or scroll bars:

Chapter 25. Using VisualAge beans in visual composition 97

Property Value Description

ALWAYS or SCROLLBARS_ALWAYS Display, regardless of the size of the scroll
pane or the component it contains.

AS_NEEDED or Display, only when the scroll pane is smaller
SCROLLBARS_AS_NEEDED than the component it contains. For a
JScrollPane bean, also specify a preferred
size property.

NEVER or SCROLLBARS_NEVER Never display, regardless of the size of the
scroll pane or the component it contains.

Enabling scrolling for a null layout

If the panel that you embedded in a scroll pane uses a null layout, you must set its
preferredSize property to support scrolling. Set this property so that the panel is
larger than the scroll pane.

Scrolling a JScrollPane bean in the Visual Composition Editor

You can manipulate the scroll bars in a JScrollPane bean during composition by
clicking the pointer on either size of the scroll box (thumb), but not by dragging.

JSplitPane tasks

Defining the component orientation in a JSplitPane bean

Set the orientation property in the pane’s property sheet to arrange components
within the split pane. The default setting, HORIZONTAL, arranges components on
the left and right. To arrange components on the top and bottom, select
VERTICAL.

Adding components to a JSplitPane bean

You can only add two components to a split pane: one component on each half.
Select the component you want to add and drag it to the split pane. Before you
release the mouse button, an outline appears around the target pane. When you
release it, the first component appears to fill the split pane. However, the target
outline appears when you move the loaded pointer over the empty side of the split
pane.

Defining the divider for a JSplitPane bean

Set the dividerLocation property to specify the initial divider position. This is only
affective if you have two components in to the split pane. Set the dividerWidth
property to specify the initial width of the divider. Set the oneTouchExpandable
property to True to enable the user to adjust the width of the divider.

JTabbedPane tasks

98 Visual Composition

Composing the first tab page of a JTabbedPane bean

A JTabbedPane bean contains a default JPanel bean, named Page. You can
customize this page by changing the tab and adding the components you want.
You can change the default JPanel bean and add another container component. To
avoid background paint problems when you delete a page, set the opaque
property of the JTabbedPane bean to True.

Adding a tab page to a JTabbedPane bean

Drop the component you want onto the tab region of the pane tab page. If you
drop the component on a tab, VisualAge inserts a tab containing the new
component after the tab you dropped the component on. If you drop the
component after the last tab in the tab region, VisualAge inserts the new
component as the last tab page.

Switching the composition focus to a tab page component

You can use the following methods to work with a tab page component:

» Select the tab and then, select the tab page component to shift the focus from the
tabbed pane to the tab page component.

» Select the tab page component in the Beans List window.

Defining the tab for a JTabbedPane page

Define the tab in the property sheet as follows:

Property Description
tabTitle Text for the tab
tabPlacement Move tab from default position
tablcon Specify an icon for the tab
tabDisabledlcon Specify an icon for the disabled state
tabTip Provide tool tip text for the tab
tabBackground and tabForeground Change tab colors
tabEnabled Set the initial state of the tab

Composing minor tabs in a JTabbedPane bean

Add a JTabbedPane bean as a tab component in the primary tabbed pane. Then,
define tab placement for the minor tabs on a different edge of the nested tabbed
pane.

JEditorPane tasks

Defining initial properties of a JEditorPane bean

Define initial properties in the pane’s property sheet, including the following:
» Specify the text content type for the contentType property. For example, you can
specify one of the following:
— text/plain—uses the DefaultEditorKit
- text/html—uses the HTMLEditorKit
— text/rtf—uses the RTFEditorKit
— application/rtf—uses the RTFEditorKit

* Enter any initial text for the text property.

» For HTML, you can specify a document page instead of initial text. Specify the
URL as a quoted string for the page property.

JOptionPane tasks

Customizing a JOptionPane dialog

Chapter 25. Using VisualAge beans in visual composition 99

100 visual Composition

For standard dialogs, you can call one of the JOptionPane static methods without
adding a JOptionPane bean. These methods are described in the task on opening a
standard JOptionPane dialog. If you want to customize a dialog, add a
JOptionPane bean as follows:

1. Add a JDialog or JinternalFrame bean as the frame for the option pane.

2. Delete the content pane of the frame bean.

3. Add the JOptionPane bean as the content pane for the frame bean.

Customize properties in the pane’s property sheet, including the following:

Property Possible Values

messageType ERROR_MESSAGE
INFORMATION_MESSAGE
PLAIN_MESSAGE
QUESTION_MESSAGE
WARNING_MESSAGE

optionType DEFAULT_OPTION
OK_CANCEL_OPTION
YES_NO_OPTION
YES_NO_CANCEL_OPTION

Opening a standard JOptionPane dialog

The JOptionPane class provides a set of static methods for standard dialogs. These
methods have several signatures, enabling you to specify certain dialog
characteristics. Call any of these methods by creating an event-to-code connection
and specifying the method as the target.

Fora ... Use ...

Confirmation dialog showConfirmDialog()
Input dialog showlnputDialog()
Message dialog showMessageDialog()

The code should process any selected options or requested input. Depending on
the dialog type, the user can select the option and have the corresponding option
returned from the dialog.

Opening and closing a customized JOptionPane dialog

If you add a JOptionPane bean for customization, process the dialog as follows:

1. To open the pane’s frame to display the dialog—Connect an event to the
frame’s show() method.

2. To close the pane’s frame when the user selects a close dialog—Connect the
pane’s propertyChange event to the frame’s setVisible() method. Then, set the
connection parameter to False.

3. To retrieve an option or input value—Connect the pane’s propertyChange event
to a property. Then connect the parameter for the event-to-property connection
to one of the following option pane properties:

» value—the selected option
* inputValue—the requested input value

Adding a table or tree view

A table or tree provides a view of objects from a data model that organizes objects
in a tabular or expandable tree format. VisualAge provides table and tree beans in
the javax.swing and javax.swing.table packages.

Bean Description
W A table view of objects from a table data model
m A tree view of objects from a tree data model

Bean-specific tasks

+ [Tree and tree taskd

For examples, see the DirectoryExplorer class in the
com.ibm.ivj.examples.vc.swing.directoryexplorer package and the Amortization
class in the com.ibm.ivj.examples.vc.swing.mortgageamortizer package. These
examples are shipped in the IBM Java Examples project.

RELATED TASKS

RELATED REFEREMNCES

JTable, table model, and TableColumn tasks

For best results with JTable, drop it into the composite through the beans list.
VisualAge for Java automatically embeds the JTable instance in a JScrollPane
instance.

Defining a table data model
Create a data model class as a subclass of the AbstractTableModel class. The

AbstractTableModel provides most of the TableModel interface, but you need to
implement the following methods:

getColumnCount() This method returns 0 by default. Return the number
of columns in the data array.

getRowCount() This method returns 0 by default. Return the number
of rows in the data array.

getValueAt(int, int) This method returns null by default. Return the data
array object at the row and column specified by the
arguments.

You must provide column names and row data. In the Members page, create a
field of column names as an array of Strings with an initial value of names.
Populate the data model with data that is either fixed or dynamically derived. You
can create a field for row data as a two-dimensional array of Objects, or as a
Vector.

To use a data model class as the data model for a JTable bean in the Visual

Composition Editor, do the following:
1. Add the class to the free-form surface.

Chapter 25. Using VisualAge beans in visual composition 101

2. Connect the data model’s this property to the table’s model property
Defining table columns

By default, a table uses all columns for each row in the data model. To display

data in a subset of columns or reorder the columns,

1. For each column you want to use, add a TableColumn bean.

2. Map the table column to the data model column from the TableColumn’s
property sheet, by specifying the 0-based index of the model column for the
modellndex property.

3. Customize the column heading by setting the headerValue property.

Getting a selection from a table

To get the... Make a connection from the table’s...
Selected row selectedRow property

Selected column selectedColumn property

Contents of a selected cell 1. getValueAt() method to the target

property or parameter.

2. Connect the selectedRow property to the
first parameter of the getValueAt()
connection.

3. Connect the selectedColumn property to
the second parameter.

JTree and tree model tasks
Defining a tree data model

Create a data model class as a subclass of the DefaultTreeModel class. Define the
tree nodes in the data model class.

To use a data model class as the data model for a JTree bean in the Visual
Composition Editor, do the following:

1. Add the class to the free-form surface.

2. Connect the data model’s this property to the tree’s model property.

Adding a text component

Text components are available for simple text and for enhanced text and editing
panes. You can add a text bean to enable text input or provide a label.

Bean Description

UL ahel (Swing) or lLabel (AWT) A label, usually to identify another component
IPasswordField (Swing) A text field for sensitive data

[TextArea (Swing) or lextAred A multiline text area

[TextEield (Swing) or [CextEield A single-line text field

Adding a label graphic

102 visual Composition

You can add a graphic to a JLabel bean. Select a graphic file for the icon property
in the label’s property sheet. Use the horizontalTextPosition property to specify a
LEFT, CENTER, or RIGHT position of text relative to the graphic. The default
choice is RIGHT. Set the iconTextGap property to specify the space between the
icon and label text.

Defining keyboard access to an input field

For Swing text input components, you can define keyboard shortcuts to place the
focus in the input field or area.

» To define an accelerator for a text field, specify the accelerator character,
enclosed in single quotes, for the focusAccelerator property in the text
component’s property sheet. If you define tool tip text for the text field, the
accelerator is displayed with the tool tip text. For example, if you specify a as
the focusAccelerator value, alt+A appears after tool tip text when the user
moves the mouse pointer over the text field.

» To define a label mnemonic for a text field, in the displayedMnemonic property
of the JLabel’s property sheet, specify the mnemonic character enclosed in single
quotation marks.

Aligning text

Select an alignment choice for the horizontalAlignment or alignment property in
the text component’s property sheet. The alignment options are LEFT, CENTER,
and RIGHT.

Selecting initial text

To select the initial text, set the selectionStart and selectionEnd properties in the
text component’s property sheet. These values are offsets from the beginning of the
text, which is at offset 0. To select all text without determining the initial text
length, specify selection from offset 0 to an offset that you consider to be larger
than the initial text length.

Defining a minimum size for layout managers

Some layout managers use a minimum size for placement of components. To
specify a minimum width for a text area, enter the width, in characters, for the
columns property in the text component’s property sheet. To specify a minimum
height for a text area, enter the number of rows for the rows property.

Hiding input text

To hide input text, either use a JPasswordField bean or, from the text component’s
property sheet, specify an echo character for the echoChar property.

Preventing text modification in a text area

To prevent any input in a text area, set the editable property to False in the text
component’s property sheet.

Making a text area scrollable

Chapter 25. Using VisualAge beans in visual composition 103

104 visual Composition

An AWT TextArea implements scrolling, duplicating the capability of a ScrollPane
bean. A JTextArea bean does not implement scrolling itself, but can become
scrollable by placing it in a JScrollPane bean and using its scrolling capability.

Defining tool tip text for a text component

For Swing components, you can specify tool tip text, also known as fly-over text or
hover help. Enter text for the toolTipText property in the component’s property
sheet.

Defining initial availability

By default, the component is enabled for user interaction. To initially disable the
component, set the enabled property to False in the component’s property sheet.

Synchronizing text

If you need to synchronize user input between two text components, do the

following:

1. Connect their text properties.

2. Open the connection properties.

3. Associate each end of the connection with the
keyReleased(java.awt.event.KeyEvent) event.

If you need to synchronize text that you set by connection from another source,
make connections to both text components.

Disabling a text component

To disable a text component when an event occurs, connect the event to the
component’s enabled property and set the connection parameter value to False.

Enabling a text component

To enable a text component when an event occurs, connect the event to the
component’s enabled property and set the connection parameter value to True.

For examples, see the LayoutManagers class in the
com.ibm.ivj.examples.vc.swing.layoutmanagers and
com.ibm.ivj.examples.vc.layoutmanagers packages and the Amortization class in
the com.ibm.ivj.examples.vc.swing.mortgageamortizer and
com.ibm.ivj.examples.vc.mortgageamortizer packages. These examples are shipped
in the IBM Java Examples project.

RELATED TASKS

FCbanter 17 Vol hoon basiee =

RELATED REFEREMNCES

Adding a list or slider component

List components provide a list of items for the user to select. Slider components
show a range of selection values or show progress for the duration of an operation.
VisualAge provides list and slider beans from the javax.swing package.

You can add a list or slider bean to enable the user to select an item or value.

Bean Description

ICamhoRax (Swing) or Chaicd A selectable list with an entry field

OList (Swing) or List (AWT) A selectable list of choices
[ProgressBar (Swing) A progress indicator

[ScrallRar (Swing) or Scrallbatt A scrolling component

[Slider (Swing) A selection component for a range of values

Obtaining the selected choice or value

Connect a property representing the selection to a target property. Then, open
properties for the connection and select a source event that indicates when the

selection changes.

Bean Source property Source event

JComboBox selectedltem itemStateChanged

Choice selectedltem itemStateChanged

JList selectedValue or valueChanged
selectedValues

List selectedltem or selectedltems | itemStateChanged

JProgressBar value stateChanged

JSlider value stateChanged

JScrollBar value adjustmentValueChanged

ScrollBar value adjustmentValueChanged

To get the value of the selected choice, connect the Choice selectedltem property to
the value target. To get the index of the selected choice, connect the Choice
selectedIndex property to the value target.

Calling a method when the value changes

To call a method when the value changes, connect a source event that indicates
when the selection changes to the method.

Bean—specific tasks

For examples, see the BookmarkList class in the
com.ibm.ivj.examples.vc.swing.bookmarklist and
com.ibm.ivj.examples.vc.bookmarklist packages, the ToDolList class in the

Chapter 25. Using VisualAge beans in visual composition 105

com.ibm.ivj.examples.vc.todolist package, and the Amortization class in the
com.ibm.ivj.examples.vc.mortgageamortizer package. These examples are shipped
in the IBM Java Examples project.

RELATED TASKS

FChanter 17 Visual bean basics” =

RELATED REFEREMNCES

FChantor 40 List and slider heans” T3

JList and List bean tasks

106 vVisual Composition

Making a JList bean scrollable

An AWT List implements scrolling, duplicating the capability of a ScrollPane bean.
A JList bean does not implement scrolling itself, but uses the scrolling capability of
a JScrollPane bean in which it is placed. If you want a JList bean to be scrollable,
drop it in a JScrollPane bean.

Defining the selection mode for a JList or List bean

You can define a list to allow either a single selection or multiple selections. With
single selection, the previous selection is deselected when the user selects another
choice. Multiple selection differs between JList and List beans.

* The JList bean supports two modes of multiple selection. Select one of the
following choices for the selectionMode property in the JList bean’s property
sheet:

— SINGLE_SELECTION—allows only one choice to be selected at a time

— SINGLE_INTERVAL_SELECTION—allows a range of choices to be selected

— MULTIPLE_INTERVAL_SELECTION—allows multiple choices to be selected,
individually or in ranges

* The List bean supports only one mode of multiple selection. Select one of the
following choices for the multipleMode property in the List bean’s property
sheet:

— False—allows only one choice to be selected at a time
— True—allows multiple choices to be individually selected

Defining choices

You can specify choices using an initialization method. For a JList bean, you can
alternatively define the list in a ListModel. Add the list model class to the
free-form surface. Then, connect the list model’s this property to the JList’s model

property.

To specify the choices using an initialization method, follow these steps:

1. After adding the bean, note its name. If you select the bean, its name appears
in the Visual Composition Editor status area.

2. Save your composite bean.

3. On the Members page, add a method to initialize the choices. The method
signature should look like this:

void initializeChoices(choiceType myChoices);

Specify the appropriate class for the choiceType:
+ javax.swing.JList
» java.awt.List

4. Enter code in the initialization method to add choices. For a List bean, use the
addltem method:
myChoices.addItem("East");
myChoices.addItem("West");

myChoices.addItem("South");
myChoices.addItem("North");

For a JList bean, use the setListData() method:

String[] data = {"East", "West", "South", "North"};
myChoices.setListData(data);

5. Modify the get method for the bean you are initializing, for example,
getJList1(). In user code block 1, add code to call the initialization method you
just created. The method call should look like this:

initializeChoices(instanceName);

Specify the instance name for the bean as the instanceName argument for the
method call. The default instance name is something like ivjJListl, or ivjListl.

Obtaining the selected index or indexes for a JList or List bean

Connect the selectedindex or selectedindexes property to the value target. Then,
open properties for the connection and select a source event that indicates when
the selection changes.

JComboBox or Choice bean tasks
Getting the value that a user enters in a JComboBox bean

If you set the editable property of a JComboBox bean to True, the user can enter a

value instead of selecting a choice from the list. To get an entered value, do the

following:

1. Tear off the editor property of the JComboBox bean.

2. Tear off the editorComponent property of the torn-off editor property.

3. Connect the keyReleased event of the torn-off editorComponent property to the
property that is to receive the entered value.

4. Connect the value parameter of the previous connection to the item property of
the torn-off editor property.

Defining choices for a JComboBox or a Choice bean
You can specify choices using an initialization method.

To specify the choices using an initialization method, follow these steps:

1. After adding the bean, note its name. If you select the bean, its name appears
in the Visual Composition Editor status area.

2. Save your composite bean.

3. On the Members page, add a method to initialize the choices. The method
signature should look like this:

void initializeChoices(choiceType myChoices);

Specify the appropriate class for the choiceType:
* com.sun.java.swing.JComboBox
* java.awt.Choice

4. Enter code in the initialization method to add choices. Use the addItem()
method:

Chapter 25. Using VisualAge beans in visual composition 107

myChoices.addItem("East");
myChoices.addItem("West");
myChoices.addItem("South");
myChoices.addItem("North");

5. Modify the get method for the bean you are initializing, for example,
getlComboBox1(). In user code block 1, add code to call the initialization
method you just created. The method call should look like this:

initializeChoices(instanceName);
Specify the instance name for the bean as the instanceName argument for the
method call. The default instance name is something like ivjJComboBox1 or
ivjChoicel.
Allowing text entry in a JComboBox bean
Set the editable property to True in the property sheet.
Obtaining the selected index or indexes for a JComboBox or Choice bean.
Connect the selectedindex or selectedIndexes property to the value target. Then,

open properties for the connection and select a source event that indicates when
the selection changes.

JScroll and Scroll bean tasks

Defining the orientation of a JScrollBar or ScrollBar bean

Select a choice for the orientation property in the property sheet. The orientation
choices are VERTICAL and HORIZONTAL.

Defining the value range for a JScrollBar or ScrollBar bean
Set the minimum and maximum properties in the property sheet.
Defining the initial value of a JScrollBar or ScrollBar bean

Set value property in the property sheet. The initial value determines the initial
progress, selection, or scrolling position in the value range.

Defining scrolling increments for a JScrollBar or ScrollBar bean

To define the value change when the user clicks on a scroll arrow, set the
unitincrement property in the ScrollBar property sheet. To define the value change
when the user clicks in the scroll bar range away from the scroll box, set the
blockincrement property.

JProgressBar and JSlider bean tasks

108 visual Composition

Defining the orientation of a JProgressBar or JSlider bean

Select a choice for the orientation property in the property sheet. The orientation
choices are VERTICAL and HORIZONTAL.

Defining the value range for a JProgressBar or JSlider bean

Set the minimum and maximum properties in the property sheet.

Defining the initial value of a JProgressBar or JSlider bean

Set value property in the property sheet. The initial value determines the initial
progress, selection, or scrolling position in the value range.

Defining tick marks or values for a JSlider bean

To define the value increment between tick marks, set the majorTickSpacing and
minorTickSpacing properties in the JSlider property sheet. To automatically adjust
a user selection to the closest tick mark, set the snapToTicks property to True. To
show the tick marks, set the paintTicks property to True. To show the tick values,
set the paintLabels property to True. To reverse the minimum and maximum ends
of the slider, set the inverted property to True.

Setting the value of a JProgressBar bean
Connect the value to the JProgressBar bean’s value property. Then, open properties

for the connection and select a source event that indicates when the selection
changes.

Adding a button component

VisualAge provides button beans from the javax.swing and java.awt packages.

You can add a button bean to enable the user to perform an action or select a state.

Bean Description

[Button (Swing) or Button (AWT) | A push button, generally used to perform a function
ICheckBox (Swing)or ICheckbax A setting button that is checked when selected

[RadioButton (Swing) or A radio button or group for mutually exclusive
CheckboxGroup (AWT) settings
IToggleButton (Swing) A two-state push button that appears to be pushed in

when selected

Adding or customizing graphic images for Swing buttons

You can add or replace images for Swing buttons, such as JButton beans and
JCheckBox beans. Specify the graphic file for one or more image properties in the
component’s property sheet.

Property Represents...
icon unselected button
pressedicon pressed button
selectedlcon selected button
disabledlcon unselected disabled button
disabledSelectedlcon selected disabled button
rollovericon unselected rollover button
rolloverSelectedicon selected rollover button

Defining the initial state of a toggle component

Chapter 25. Using VisualAge beans in visual composition 109

110 visual Composition

Set the selection or state property in the component’s property sheet. For initial
selection, set the property value to True. Otherwise, the value should be False. If
the component is one of a group of mutually exclusive choices, only one member
of the group should be initially selected.

If applicable, assign a toggle component to a group of mutually exclusive choices.
Only one member of the group can be selected at a time.

Adding a group of JToggleButton or JRadioButton beans

Use a ButtonGroup bean to define a group of buttons:

1. Add the buttons for the group.

2. Add a ButtonGroup bean to the free-form surface.

3. Save the composite bean.

4. On the Members page, add user code in the get method of each button to add
the button to the button group. For example, to add JRadioButtonl to
ButtonGroupl, add this code to the getJRadioButton1() method:

getButtonGroupl.add(ivjJRadioButtonl);
Adding a group of Checkbox beans as radio buttons

Use a CheckboxGroup bean to define a group of radio buttons:
1. Add the Checkbox beans for the group.
2. Add a CheckboxGroup bean to the free-form surface.

3. In the property sheet of each Checkbox bean, specify the get method of the
CheckboxGroup for the property. For example, to add Checkbox to
CheckboxGroupl, specify getCheckboxGroupl() for the checkboxGroup

property.
Calling a method when a button is selected

Connect the button’s actionPerformed(java.awt.event.ActionEvent) event to the
method on the target bean.

Obtaining the selected choice from a group

From the group’s popup menu, tear off the property that represents the selected
choice. For a ButtonGroup bean, tear off the selection property. For a
CheckboxGroup bean, tear off the selectedCheckbox property. After tearing off the
property, you can make connections to features of the Variable that represents the
selected choice property.

Disabling a button

Connect a related event to the button’s enabled property and set the connection
parameter value to False.

Enabling a button

Connect a related event to the button’s enabled property and set the connection
parameter value to True.

For examples, see the ToDoL.ist class in the com.ibm.ivj.examples.vc.todolist
package, and the JRadioButtonPanel and RadioButtonPanel classes in the
com.ibm.ivj.examples.vc.utilitybeans package. These examples are shipped in the
IBM Java Examples project.

RELATED TASKS

Fohanter 17 Vieal heon Tasies =

3 H H L1

RELATED REFEREMNCES

Adding a menu or tool bar

You can add a menu for a window, for a window component, or for another menu.
Define a menu with menu choices that call a method or select a setting.

Define a tool bar with buttons and other components that call a method. Tool bars
most commonly contain buttons with graphical images for functions such as
clipboard and file operations. A JToolBar bean can contain other components,
however, such as a JComboBox bean with font choices. The JToolBarButton bean is
provided as a convenient means of adding a JButton bean that is tailored for a tool
bar. The JToolBarSeparator bean represents a method call to add separation
between other components in the JToolBar bean.

Bean Description

IMenu (Swing) or Menu (AWT) A cascade menu for another menu

IMenuBar (Swing) or IMenuBRat A menu bar for a window

IPapupMenu (Swing) or A pop-up menu for window components
BopupMenu (AWT)

W A graphical set of tool choices

[ToolRarRuttan A button for a tool bar

[TaolRarSeparatod A visual separator between components in a tool bar

Adding a menu bar to a window

Drop a menu bar bean on the window. The menu bar appears in the window.
Additionally, a cascade menu is added on the free-form surface and connected to a
new menu label on the menu bar.

Adding a menu to a menu bar

Drop a menu bean on the menu bar. A menu is added on the free-form surface and
connected to a new menu label on the menu bar. If you have already dropped the
menu bean on the free-form surface, drag it to the menu bar and drop it to make
the connection.

Adding a cascade menu to another menu

Drop a menu bean on the base menu you want to cascade from. A menu is added
on the free-form surface and connected to a new menu item on the base menu. If

Chapter 25. Using VisualAge beans in visual composition 111

you have already dropped the new menu bean on the free-form surface, drag it to
the base menu and drop it to make the connection.

Adding a pop-up menu

Drop a pop-up menu bean on the free-form surface. To show the menu when the
user clicks the pop-up mouse button on a window component, connect the mouse
event for the composite bean to a code that displays the menu.

The following example code determines whether the pop-up mouse button has

been clicked, gets the window component, and shows the pop-up menu:

protected void genericPopupDisplay(java.awt.event.MouseEvent e, java.awt.PopupMenu p) {
if ((e.isPopupTrigger())) {
e.getComponent().add(p);
p.show(e.getComponent (), e.getX(), e.getY());

} E]
Adding a tool bar

You can add a JToolBar bean to the content pane of a Swing applet or window.
Before you add the tool bar, you should define the layout property of the content
pane as a border layout. Add the tool bar to one of the border regions (North,
South, East, or West). By default, a tool bar is detachable because the floatable
property is set to True. If you want a floatable tool bar to be attachable to any side
of the content pane, do not add any other components to the four border regions.

When you add a JToolBar bean, a JToolBarButton bean is added with it. The
JToolBarButton bean is actually a JButton bean that is tailored for a tool bar.
Change properties of the JToolBarButton bean, such as the icon, to serve your
purpose.

Adding an action to a menu or tool bar

You can define a subclass of AbstractAction that can be used in one or more Swing
menus and tool bars. For example, you can define an action for a clipboard
operation and add it to menus and tool bars. You must implement the
actionPerformed() method of the subclass. Add the AbstractAction subclass to the
free-form surface. Save the bean. Then, edit the get() method for the menu or tool
bar to add the AbstractAction subclass.

Enable or disable the menu. When a menu is disabled, the user cannot open it. By
default, a menu is initially enabled.

Disabling a menu when an event occurs

Connect the event to the menu’s enabled property. Then, set the connection
parameter value to False.

Enabling a menu when an event occurs

Connect the event to the menu’s enabled property. Then, set the connection
parameter value to True.

112 visual Composition

Bean Description

ICheckBaxMenultem (Swing) or A menu choice that toggles a setting on and off

IMenultem (Swing) or Menultemd | A menu choice that calls a method

IRadioButtonMenultem (Swing) A menu choice that provides one of a set of mutually

exclusive setting values

ISeparator (Swing) or A horizontal line that separates groups of related
MenuSeparatar (AWT) choices

Adding a choice to a menu

Drop one of the menu choice beans within a menu at the location you want. Before
you release the mouse button, a horizontal cursor line indicates where the choice
will be placed.

Moving a menu choice

Drag the menu choice and drop it at a new location, either in the same menu or in
another menu. Before you release the mouse button, a horizontal cursor line
indicates where the choice will be placed.

Adding a separator to a menu

Drop a separator bean within a menu at the location you want. Before you release
the mouse button, a horizontal cursor line indicates where the separator will be
placed.

Adding a component to a tool bar

Drop a component bean on a JToolBar at the location you want. Before you release
the mouse button, a cursor line indicates where the choice will be placed.

Moving a component on a tool bar

Drag the component and drop it at a new location. Before you release the mouse
button, a cursor line indicates where the choice will be placed.

Adding a separator to a tool bar

Drop a JToolBarSeparator bean on a JToolBar bean at the location you want. Before
you release the mouse button, a cursor line indicates where the separator will be
placed.

Defining text for a menu choice

Enter the text in the value field of the label property in the property sheet.
Defining a keyboard shortcut for a menu choice

Set the shortcut property in the property sheet for the menu choice. Select the Shift

check box if you want to use the Shift key. Select a unique key choice for the menu
item.

Chapter 25. Using VisualAge beans in visual composition 113

Calling a method from a menu choice

Connect the actionPerformed(java.awt.event.ActionEvent) event of the menu choice
to the method on the target bean. The method is called when the user selects the
menu choice.

Defining the initial state of a check box menu choice

Set the state property of the menu choice in its property sheet. If the property
value is True, the initial setting is on. Otherwise, the initial setting is off

Note: This property setting does not affect the appearance of a check box menu
item in the Visual Composition Editor.

Updating a setting for a check box menu choice

Connect the state property of the menu choice to the property on the target bean.
The property is set when the user toggles the menu choice.

Disabling a menu choice when an event occurs

Connect the event to the menu choice’s enabled property. Then, set the connection
parameter value to False.

Enabling a menu choice when an event occurs

Connect the event to the menu choice’s enabled property. Then, set the connection
parameter value to True.

For examples, see the PopupMenuExample class in the
com.ibm.ivj.examples.vc.popupmenuexample package, the Amortization class in the
com.ibm.ivj.examples.vc.mortgageamortizer package, and the DirectoryExplorer
class in the com.ibm.ivj.examples.vc.swing.directoryexplorer package. These
examples are shipped in the IBM Java Examples project.

RELATED TASKS

FChantor 17 Visual beonbasice™ =3

RELATED REFEREMNCES

Dynamically creating and accessing a bean instance

114 visual Composition

VisualAge provides beans that enable you to dynamically create and reference
bean instances visually. A Factory bean creates new instances of a bean type, based
on a connection from an event to a constructor for the Factory bean’s type. A
Variable bean refers to any instance of the Variable bean’s type that you assign to it
using a connection. With either a Factory or a Variable bean, you specify the bean
type that it can create or reference.

A Factory bean’s type specifies the type of bean instance, or object, that it creates.
A Variable bean’s type specifies the type of object that can be assigned to it. For
example, if you change a Factory’s type to Customer, it can create Customer
objects. If you change a Variable’s type to Customer, you can use it to reference
any Customer object that you assign to it.

You can visually create and access beans in the Visual Composition Editor.

Bean Description

m A bean that dynamically creates instances of Java
beans

Mariabld A bean that provides access to instances of Java beans

Adding a Factory or Variable bean

Select a Factory or Variable bean from the Other category of the beans palette.
Alternatively, you can select a class type as a Variable in the Choose Bean window.

Changing the Factory or Variable type

When you add a Factory or Variable bean from the palette, its initial type is Object.
Change the type as follows:

Open the bean pop-up menu.

Select Change type to open the Choose a Type window.

In the Pattern field, enter the type name.

In the Class Names or Type Names field, select the type you want.

In the Package Names field select the desired package.

Click on OK.

ok whpE

After you change the type, you can make connections to features of the new type.
Creating objects with a Factory

Connect an event to a Factory constructor method. If the constructor you choose
requires parameter values, you can provide these values with additional
connections or with property settings. Because the Factory bean references an
object that it creates, you can make connections from the Factory’s this event to
methods and properties of the referenced object.

Assigning a bean instance to a Variable

Connect a bean property of the same type as the Variable to the this property of
the Variable. This connection assigns the source property to the Variable, and the
Variable references the source as a bean instance. If the source bean is the source
property, use its this property as the connection source.

You can use two customized variations of this procedure:

1. Tearing off a property. If a bean is a property of another bean, you can access
its features by creating a bean instance of the property in the form of a
Variable. You accomplish this by tearing off the property of the bean. You can
then access the features of the property through the Variable. For example:

* A Customer bean has properties for name, address, and phone.

» The address property is an Address bean with street, city, state, and zipCode
properties.

* When you add a Customer bean, you can make connections to its address
property, but not to individual elements of the address.

» Tear off the address property of the Customer bean and an Address Variable
appears on the free-form surface.

* A connection assigns the address property of the Customer bean to the
Address Variable.

Chapter 25. Using VisualAge beans in visual composition 115

116 visual Composition

You can now make connections to the properties of the Address Variable to
access elements of the Customer’s address property.

2. Promoting a Variable. You can enhance bean reusability by defining its data
source as a property of the bean. When you use the bean in another bean, you
can assign the data using a connection to the data property. To do this, add a
Variable for the data source bean type in the reusable bean. Then, promote the
Variable bean’s this property to the interface of the reusable bean. For example:

A CustomerView bean provides a panel of fields to display or obtain
information for a Customer bean. To make the CustomerView bean reusable
with a Customer bean, you don’t want to specify a particular Customer bean
as the data model for the CustomerView bean.

Use a Customer Variable bean, instead of a Customer bean, in the
CustomerView bean as the data model for the customer information fields.
Connect properties of the Customer Variable to corresponding customer
information fields to tie the data model to the user interface.

Promote the Customer Variable to the CustomerView bean interface as a
customer property.

Whenever you add a CustomerView bean to another bean, also add either a
Customer bean or another bean that contains a Customer bean as a property.
Connect the Customer bean to the customer property of the CustomerView
bean. This assigns the Customer bean to the Customer Variable in the
CustomerView bean.

For examples that use a Variable, see the Amortization class in the
com.ibm.ivj.examples.vc.swing.mortgageamortizer package, and the AddressView
and CustomerView classes in the com.ibm.ivj.examples.vc.customerinfo package.
These examples are shipped in the IBM Java Examples project.

RELATED TASKS

RELATED REFEREMNCES

FChanter 43 Eact , | 3 1

Chapter 26. Setting general properties for beans

The property sheet for individual beans is different depending on the bean.
However, there are property settings similar for many beans. The following table
lists the property, possible values, and descriptions:

Property...

Description of Values

alignmentX and
alignmentY

Swing components—Assigns component position within
BoxLayout. If border layout is specified as being X_Axis, you
can change the alignmentY to -1 for top or 1 for bottom. If the
Y_AXxis is specified, you can change the alignmentX to -1 for left
or 1 for right.

background and

Chose from Basic, System, or RGB colors to replace the default

foreground colors.

beanName Enter the replacement name for the default beanName. This is
the name used in code to identify the bean.

border Specify the border type for your component. The border type

can be your own code string or chosen from the bean
implementing interface list.

constraints

Including x and y constraints (for position placement within the
container) and width and height (for size of the component).

cursor

You can specify a cursor type for each component. For example,
when the user points to the target button,

doubleBuffered

Boolean value—Sets whether the receiving component uses a
buffer to paint. If set to true, the painting is performed to an
offscreen buffer and then copied to the screen. If a component is
buffered and one of its ancestor is also buffered, the ancestor
buffer is used.

enabled Boolean value—An enabled component responds to user input
and generates events. Components are enabled initially by
default.

font Specify the name, style, and size of the text font within the
component.

locale Specify the language and country codes. The default is en_US

and represents English language code with the United States
country code. Language codes must be 1SO-639 compliant and
Country codes must be 1ISO-3166 compliant.

nextFocusableComponent

Specify the next focusable component.

opaque

Boolean value—If a Swing component is set to opaque, the
Swing painting system does not paint anything behind the
component.

preferredSize

The preferred size indicates the best size for the component.
Enter new dimensions to change the default. However, certain
layout managers ignore this property.

requestFocusEnabled

Request that the component get the keyboard focus.

text

Specify the text you want to appear within the component.

toolTipText

For Swing components— Enter text you want to appear as
fly-over text or hover help. To provide tool tip text for table
cells, enter the toolTipText for the cell renderer.

© Copyright IBM Corp. 1997, 2000

117

Property... Description of Values

visible Boolean value—When set to true, default, the component is
visible.

118 visual Composition

Chapter 27. Enabling custom edit support for your bean

The lavaBeans specificatiod defines two ways for you to implement custom edit

behavior for your bean: property editors and customizers. Check the most recent
version of the spec for details; a summary of custom editors follows:

» For setting a single property, use a property editor. This simple GUI implements
the java.beans.PropertyEditor interface. You can associate a property editor with
a property type or a specific property. Property editors are typically grouped
into a single property sheet for the bean. The quickest way to create a property
editor is to inherit from java.beans.PropertyEditorSupport, a concrete
implementation class.

» For setting multiple properties through a single GUI, use a customizer. It is also
a good choice if the bean interface itself is large or complex enough that you
want to take responsibility for edit behavior for all properties in the bean. The
quickest way to create a customizer in VisualAge is to inherit
fromjava.awt.Panel, implementing the java.beans.Customizer interface.

All properties must be serializable. Java uses serialization to share instance
information.

You must explicitly assign a customizer for it to be used; this is not true for
property editors. The JavaBeans specification provides the following alternatives
for associating a property editor and property:

* Name the property editor class appropriately and place it in the same package.
If the property is of type MyObject, call the property editor class
MyObjectEditor.

* Register the property editor with the PropertyEditorManager.

» Explicitly assign the property editor in the bean’s BeanlInfo class.

Assigning custom edit support to a bean property

In VisualAge, you can assign property editors and customizers from the Beanlnfo
page of the class browser, or you can hand-edit the BeanInfo class directly.

To assign a property editor when you define the property, enter the name of the
class in the Property editor field on the second page of the New Property Feature
SmartGuide. To assign a property editor at any other time, directly edit the
Property editor field in the Property Feature Information pane of the Beanlnfo
page. In this case, the change does not take effect until you save the bean, either
by closing the class browser and electing to save changes or by typing Ctrl+S.

To assign a customizer to a bean, directly edit the Customizer class field in the
Bean Information pane of the Beanlnfo page. (Make sure you have no features
selected; if a feature is selected, the Feature Information pane appears instead.) The
change does not take effect until you save the bean, either by closing the class
browser and electing to save changes or by typing Ctrl+S.

Registering custom edit support for all instances of a property type

You can register custom edit support globally through the use of a .properties file.
Follow these steps:

© Copyright IBM Corp. 1997, 2000 119

http://www.java.sun.com/beans/docs/index.html

120 visual Composition

1. Create the file ivj-property-editor-registry.properties in your favorite text editor.

Follow the standard format for entries in a .properties file, in this case,
property_type=custom_edit_class. An example follows:

javax.swing.Border=myorg.mypackage.MyBorderEditor

Both class specifications must be fully qualified. You cannot override the editor
for java.lang.String.

To unregister the editor currently being used, simply specify the property type
without a corresponding custom edit class, as follows:

java.awt.Color=
Save the file in the program\lib directory of your VisualAge installation.

VisualAge scans the program\lib directory for the existence of this file every
time a new Visual Composition Editor is opened. Consequently, any that are
already open at the time you save the file will not be affected.

Testing custom edit support

To test a bean’s customization, drop the bean on the free-form surface and
double-click on it.

» If you have implemented a property editor, the standard property sheet appears.

Select the value field for the associated property. If the property editor has a

custom editor, a small button L4 appears to the right. Select the button to
open the custom editor.

If you have implemented a customizer, a property sheet appears, bearing a
Custom Properties button. Click on the button to open the customizer; it
appears in a modal window.

For more information on implementing property editors themselves, see

tChapter 28 Property editor examples” on page 121, which discusses the

com.ibm.ivj.examples.vc.propertyeditors sample package.

RELATED COMNCEPTS

RELATED TASKS

RELATED REFEREMNCES

Chapter 28. Property editor examples

The lavaBeans specificatiod and VisualAge support the following types of editors
implementing the java.beans.PropertyEditor interface:

Wxsed] This editor presents a fixed list of property values (known
individually as tags) from a drop-down list in the property sheet.

flext-hased] This editor accepts a single string from within a property sheet,
parsing it as necessary to set the property.

Custom] This editor opens a window separate from the property sheet to collect
settings information.

Baintablel This editor paints a graphic representation of the property value
back into the property sheet rather than returning a String value.

Each type of property editor supports a subset of the PropertyEditor interface,
meaning that a different set of method implementations returns non-null values. A
summary follows:

» All property editors must support setValue() and signal property change events.
They must also support either setAsText() or getCustomEditor(). If they support
getCustomEditor(), they must also return true from supportsCustomEditor().

» Tag-based editors support getTags() and getAsText().
» Text-based editors support getAsText().
» Paintable editors support paintValue() and return true from isPaintable().

For properties that require special code to be generated for initialization, the
getlavalnitializationString() method should return a non-null value. VisualAge
uses this value when it generates code for the bean whose property you are

setting. (For an example, see [*Custom editor for the Person hean” on page 124))

For examples, look at the com.ibm.ivj.examples.vc.propertyeditors package shipped
with VisualAge in the IBM Java Examples project. Consider the Person bean, which
has the following properties: name, address, phoneNumber, sex, and incomeRange.

public class Person {

String fieldSex = "";

protected transient java.beans.PropertyChangeSupport propertyChange
= new java.beans.PropertyChangeSupport(this);

transient Address fieldAddress = null;

static public final int belowTwenty = 1;

static public final int twentyToFifty = 2;

static public final int fiftyToOneHundred

static public final int aboveOneHundred =

int fieldIncomeRange = 0;

String fieldPhoneNumber = "";

Name fieldName = null;

= 33
4,

}

Because possible incomeRange values are predefinable, this property can be set
using a tag-based editor. The phoneNumber property has a known format in each
locale, so the example uses a text-based editor and validates the input argument in
setAsText() to make sure it matches the North American notion of a telephone
number. For the name property, the example uses a custom editor instead of
setAsText(); name is an instance of a serializable class, as required. We illustrate a
paintable editor for the sex property. Because this example does not include an

© Copyright IBM Corp. 1997, 2000 121

http://www.java.sun.com/beans/docs/index.html

editor for the address property and the Address class happens not to be
serializable, the instance has been marked as transient.

The sample package illustrates two means of associating a property editor. The sex,
incomeRange, and phoneNumber properties are of types (String and int) for which
there is default editor support in VisualAge, so editors for these properties are
explicitly assigned in the bean’s BeanInfo class. The name property is of type
Name; because a NameEditor class exists in the same package, Java uses it by
default.

For a tour of each property editor, follow the Related Reference links below. To test
these editors, we used a simple visual composite based on the JApplet bean,
PersonTester. When you double-click on the APerson bean in the composite, a
standard property sheet appears with certain property editor examples enabled.

RELATED TASKS
RELATED REFEREMNCES

. H H [T]

Tag-based editor for the Person bean

122 visual Composition

This topic discusses classes found in the com.ibm.ivj.examples.vc.propertyeditors
package. You can try this editor from the PersonTester composite.

The incomeRange property has a tag-based editor class associated with it. This
editor extends java.beans.PropertyEditorSupport, a concrete implementation class
for thejava.beans.PropertyEditor interface. As a result, setValue() does not have to
be implemented locally.

public class IncomeRangeEditor extends java.beans.PropertyEditorSupport {
String[] stringValues = {
"0 - 20,000",
"20,000 - 50,000",
"50,000 - 100,000",
"100,000+" };

int[] intValues = {1, 2, 3, 4};

String[] codeGenStrings = {
"propertyeditors.Person.belowTwenty",
"propertyeditors.Person.twentyToFifty",
"propertyeditors.Person.fiftyToOneHundred",
"propertyeditors.Person.aboveOneHundred"};

public String getAsText() {
for (int i=0; i< intValues.length; i++) {
if (intValues[i] == ((Integer) getValue()).intValue())
return stringValues[i];
}

return "";

1
public String getJavaInitializationString() {
for (int i=0; i< intValues.length; i++) {
if (intValues[i] == ((Integer) getValue()).intValue())
return codeGenStrings[i];
}

return "0";

1
public String[] getTags() {

return stringValues;

public void setAsText(String text) throws java.lang.IllegalArgumentException {
for (int i=0; i< stringValues.length; i++) {
if (stringValues[i].equals(text)) {
setValue(new Integer(intValues[i]));
return;
}
}
throw new java.lang.I1legalArgumentException(text);

}
}

The getTags() method holds allowable property values in an array.
IncomeRangeEditor uses a set of parallel arrays to manage the allowable income
ranges. Note that the sole purpose of the codeGenStrings array is to address
incomeRange constants in the Person bean through the getlavalnitializationString()
method. The return value from this method appears in the getAPerson() method
of the PersonTester class:

private Person getAPerson() f{

if (ivjAPerson == null) {

try {

ivjAPerson = new com.ibm.ivj.examples.vc.propertyeditors.Person();
ivjAPerson.setSex("female");

ivjAPerson.setName(new Name("Mrs.", "Susan", "Gail", "Carpenter"));
ivjAPerson.setPhoneNumber("555-1212");

ivjAPerson.setIncomeRange (com.ibm.ivj.examples.vc.propertyeditors.Person.belowTwenty);
// user code begin {1}

// user code end

} catch (java.lang.Throwable ivjExc) {

// user code begin {2}

// user code end

handleException(ivjExc);

1

1

return ivjAPerson;

}
RELATED REFEREMNCES

FText-hased editor for the Person hean’l

Text-based editor for the Person bean

This topic discusses classes found in the com.ibm.ivj.examples.vc.propertyeditors
package. You can try this editor from the PersonTester composite.

The phoneNumber property has a text-based editor associated with it. This editor
extends java.beans.PropertyEditorSupport, a concrete implementation class for the
java.beans.PropertyEditor interface. As a result, setValue() does not have to be
implemented locally.

public class PhoneNumberPropertyEditor extends java.beans.PropertyEditorSupport {
public void setAsText(String text) throws java.lang.I1legalArgumentException {
if ((text.length() == 8) && (text.charAt(3) == '-')) {
setValue(text);
return;
}
if (text.length() == 7) {
setValue(text.substring(0,3) + "-" + text.substring(3,7));
return;

Chapter 28. Property editor examples 123

}

throw new java.lang.IllegalArgumentException(text);
}
}

The setAsText() method accepts only values that meet its format criteria;
otherwise, it throws an lllegalArgumentException.

RELATED REFEREMNCES

Custom editor for the Person bean

124 visual Composition

This topic discusses classes found in the com.ibm.ivj.examples.vc.propertyeditors
package.You can try this editor the PersonTester composite.

Thename property has a custom editor (NameEditor) and custom editor panel
(NameCustomEditor) associated with it. Support of the PropertyEditor interface
and the edit function itself are decoupled in order to optimize performance in
Person’s property sheet. By decoupling them, we can delay construction of the
custom editor panel until the user requests it; only the property editor itself is
instantiated when the property sheet is first opened. This functional separation is
significant when the type being supported can occur several times in a single
property sheet (like a custom String editor), because each property requires its own
instance of the custom editor.

When you browse the sample, note the public constructor for NameEditor. All of
the other property editor classes in this sample have protected constructors,
generated by default because the superclass constructor is protected. When you
explicitly assign a property editor in Beanlnfo, access to the protected constructor
is not a problem. For the name property, however, we have not explicitly assigned
an editor in BeanlInfo. In this case, the PropertyEditorManager class becomes
involved in coordinating edit support for the property, so we must provide a
public constructor.

The NameEditor property editor looks like this:

public class NameEditor extends java.beans.PropertyEditorSupport {
java.beans.PropertyChangeSupport iPropertyChange
= new java.beans.PropertyChangeSupport(this);
NameCustomEditor iNameCustomEditor = null;
Name iName = null;

public String getAsText() {
return ((Name) getValue()).toString();
}

public java.awt.Component getCustomEditor() {
if (iNameCustomEditor == null) {
iNameCustomEditor = new NameCustomEditor();
iNameCustomEditor.setTheNameThis(getName());
}

return iNameCustomEditor;

public String getJavalnitializationString() {
Name tName = ((Name) getValue());
return "new propertypditors.Name(\"" +
tName.getTitle() +
II\II’ \IIII +

tName.getFirstName() +
II\II’ \IIII +
tName.getMiddleName() +
II\II’ \IIII +
tName.getLastName() +
II\II)II;
}
public Name getName() {
if (iName == null) iName = new Name();
return iName;

}

public Object getValue() {
if (iNameCustomEditor == null)
return getName();
else
return iNameCustomEditor.getTheNameThis();

public void setValue(Object value)
Object tValue = getName();
if (iNameCustomEditor == null) {
iName = ((Name) value);
iPropertyChange.firePropertyChange("value", tValue, value);

}
else
iNameCustomEditor.setTheNameThis((Name) value);

public boolean supportsCustomEditor() {
return true;

}
}

NameEditor manages the getting and setting of property values through the
property sheet; NameCustomEditor collects the information from the user. The
common currency between the property editor and the custom editor panel is a
Name instance. The NameCustomEditor panel looks like this:

I -

g e S
— | o
- _—
i -
-— —

Flislas . L I kelJame

In this composite, property-to-property connections link Name properties in the
variable bean to the text properties of the TextField beans. The Choice bean
requires two connections: one from its selecteditem property to the title property of
the variable, and one from the title property of the variable to the select() method
of the Choice bean (passing in the current value of title as a parameter of the
select() method). The variable’s this property is promoted to the interface of the
composite so that it can be set from NameEditor during initialization.

To understand how these two classes interact, follow this partial program flow:

1. When Person’s property sheet is opened, a NameEditor instance is created. The
getAsText() method is called to populate the value field for the name property.

Chapter 28. Property editor examples 125

2. The setValue() method is called, passing the value that currently appears in the

property sheet as an input parameter. This value is then stored in NameEditor’s
iName field.

3. When the value field is selected, NameEditor’s supportsCustomEditor()

method is called. It returns true, so a small button appears in the value field.

4. When the button is clicked, NameEditor’s getCustomEditor() method is called,

creating an instance of NameCustomEditor and setting NameCustomEditor’s
TheName variable to match NameEditor’s iName field.

5. If the OK button of NameCustomEditor is clicked, the getValue() and
getlavalnitializationString() methods of NameEditor are called. If, however, the
Cancel button is clicked, no methods are called in NameEditor.

RELATED REFEREMNCES

FChanter 28 Properiy edii o 1

Paintable editor for the Person bean

126 Visual Composition

This topic discusses classes found in the com.ibm.ivj.examples.vc.propertyeditors
package. You can try this editor from the PersonTester composite.

The sex property has a paintable editor associated with it. This editor extends
java.beans.PropertyEditorSupport, a concrete implementation class for the
java.beans.PropertyEditor interface. As a result, setValue() does not have to be
implemented locally. In this type of property editor, we paint the tagged value
back into the property sheet instead of returning it as a String.

public class PaintingEditor extends java.beans.PropertyEditorSupport {
public String[] getTags() {
String[] tags = {"male", "female"};
return tags;

public boolean isPaintable() {
return true;

}

public void paintValue(java.awt.Graphics gfx, java.awt.Rectangle box) {
String tString = getAsText();

if (tString.equals("male"))
gfx.setColor(java.awt.Color.blue);

else
gfx.setColor(java.awt.Color.magenta);

gfx.drawString(tString, (box.x) + 1, (box.y) + (box.height) - 2);
return;
}
1

The getTags() method holds allowable property values in an array. Instead of

using getAsText() and setAsText() as we did for lncomeRangeEditar we override
isPaintable() and paintValue(). The resulting property sheet looks like this:

E,_,_:l PERSOMTESTER - PROPERTIES

APerson

AFersan

JeanMame

o] Le

incomeRange

0-20.000

|h'lrs. susan Gaill Carpente

name
phoneNumber bhb-1212
SEx female
[
|beanName —
Feset.. |
I_ :_ Ty 2 .l_ =y ||_. alll|f=i=

RELATED REFEREMNCES

Chapter 28. Property editor examples

127

128 visual Composition

Chapter 29. Separating strings for translation

Before doing this task, please read the conceptual information listed at the end of
this topic.

From the Workbench, you can separate all String values from the class at once.
From the Visual Composition Editor, you can separate String property values as

you ket them in the praperty sheet.

To separate String values from an entire class at once, follow these steps:
1. From the Projects page of the Workbench, select the class.

2. Select Selected and then Externalize Strings. Alternatively, click the right
mouse button and select Externalize Strings from the pop-up menu that
appears.

The Externalizing: Package.Class window appears, bearing a list of hardcoded
strings found in the class.

3. Specify the type of resource bundle by selecting one of the following radio
buttons:
» List resource bundle
* Property resource file

4. Specify the name of the resource bundle.

* To choose an existing resource bundle, click on the Browse button, pick a
bundle from the standard dialog box, and then click on OK.

» To create a new bundle, click on New. Enter values as prompted, depending
on the type of resource bundle; click on OK.

5. If necessary, mark for exclusion those strings listed under Strings to be
separated that should be left as is. To mark an item, click on the graphic listed
to the left of the column, as follows:

» To separate the item, do nothing. Translate is already displayed.

+ If the item must never be separated, click on once to display Never
translate.
* To leave the item hardcoded for now, click on twice to display [2] Skip.

If you are not sure of an item, review it in the Context field.
6. Click on OK to proceed with separation.

VisualAge marks each item marked with a special comment. To make a string

previously marked appear in the externalization list once again, find the string
in the code and delete the comment at the end of the line: //$NON-NLS-1$. Then
perform this task a second time.

Separating strings through property sheets

To separate String property values as you set them, follow these steps:
1. Open the property sheet for each embedded bean that contains a text setting.

© Copyright IBM Corp. 1997, 2000 129

130 visual Composition

9.

Click on the value field to the right of the property name. A small button j
appears to the right.

Click on the small button. The String Externalization Editor window appears.
At the top of the window is a set of radio buttons that enable you to specify
how you want VisualAge to handle the text. The current property setting, if
any, appears in the Value field.

Select the appropriate radio button:
* Do not externalize string
» Externalize string

If you selected Do not externalize string, you are finished. Just click on OK to
close the window.

If you selected Externalize string, specify the type of resource bundle by
selecting one of the following radio buttons:

» List resource bundle

* Property resource file

Specify the name of the resource bundle.

» To choose an existing resource bundle, click on the Browse button, pick a
bundle from the standard dialog box, and then click on OK.

» To create a new bundle, click on New. Enter values as prompted, depending
on the type of resource bundle; click on OK.

The name of the bundle appears in the Bundle list. If you selected an existing
class, a currently defined key-value pair appears in fields below the bundle
name.

To define a resource, type its name in the Key field. If the resource already
exists, the corresponding value for the key appears in the Value field
underneath; otherwise, the field is empty. To edit the resource, type a new
value.

Click on OK to close the window.

The next time you save the class, VisualAge modifies the generated get methods
for the beans whose properties you just set as bundles.

RELATED COMNCEPTS
RELATED TASKS

RELATED REFEREMNCES

Chapter 30. Incorporating user-written code into visual
composites

Although VisualAge enables you to compose and generate user interface beans,
you will probably want to write other beans yourself at some point. These are
typically nonvisual beans that provide business logic. You can either create a new
bean and write the code to support its features, or you can define bean interface
features for code you have already written.

If you just need to extend the function of the bean, you can probably accomplish
this by using code connections. As a last resort, you can modify generated code for
the bean.

VisualAge provides a code assist tool within source panes and some other dialogs
and browsers, such as Scrapbook windows and Configure Breakpoints. Code assist
provides a list of appropriate classes, methods, and fields to insert in your code.
For more information on this tool, refer to Getting Started.

Assembling a bean from generated and user-written code

Before you get started, read the related conceptual topic about generated code.

1. Design the bean interface.

2. Define the bean interface in the BeanInfo page. VisualAge generates source
code for the interface features in the bean class. It also generates descriptor
methods for the bean and its features in an associated BeanInfo class.

3. Modify the feature code to provide the behavior you want.

Modifying generated feature code

For properties, generated feature code is usually sufficient without modification.
For method features, you must modify the feature code to add the behavior you
want your bean to provide.

You can modify the feature code in the Source pane of either the Members page or
the BeanlInfo page. If you choose to modify feature code for visual composites, be
sure to stick to the designated user-code areas marked. Otherwise, VisualAge will
overwrite your code the next time the bean is saved.

If you need to modify the signature for a method that supports a feature, follow
these steps:

1. Remove the feature in the Beanlnfo page.

2. Modify or replace the method in the Members page.

3. Add the feature again in the BeanInfo page.

Adapting user-written classes for use as beans

Before you get started, read the related conceptual topic about generated code.

1. If you wrote a class outside of VisualAge, import the class. VisualAge interprets
the bean interface using introspector design patterns.

2. From the BeanlInfo page, extend the bean interface with new features as
needed. VisualAge generates a Beanlnfo class when you add the first new
feature. The Beanlnfo class contains bean information for the bean, for the
features you imported and for each new feature you add.

© Copyright IBM Corp. 1997, 2000 131

If you add public methods on the Members page, you can add them as
features on the Beanlnfo page. To add methods as features, select Add
Available Features from the Features menu. Then, select the methods you want
to add as features.

If you add a new method feature with the same name as a method you have
already written, VisualAge uses the existing method. Otherwise, it generates a new

method stub.
RELATED CONCEPTS
o ol oAl I T - |

. H EE]

RELATED TASKS

| : I E he fil]
RELATED REFEREMNMCES

132 visual Composition

../../ide/tasks/tiimport.htm

Chapter 31. Defining bean interfaces for visual composition

The bean interface defines the property, event, and method features of your bean.
These features can be used in visual composition when your bean is added to
another bean. A Beaninfo class describes the bean and features that you add to the
bean. Other features are inherited from the superclass of your bean unless you
choose not to inherit features. See the related conceptual topic about bean
interfaces for more information.

Add features to the bean interface in the BeanInfo page. You can use either the

tool bar or Features menu to add a new feature. When you add a feature,

VisualAge generates the following:

* Public methods for the feature in the bean class

» Bean information code that describes the feature in the Beanlnfo class for the
bean

If you create public methods for the bean in the Members page, you can add them
as features in the BeanlInfo page. Select Add Available Features from the Features
menu to open the Add Available Features window and add methods as features.

Promote features of embedded beans in the Visual Composition Editor. You can

promote features from the pop-up menu of an embedded bean. When you promote

a feature, VisualAge generates the following:

* Public methods in the bean class that call methods of the embedded bean

* Bean information code that describes the feature in the BeanInfo class for the
bean

RELATED COMNMCEPTS

l‘(‘halnfnr 9_Generated code” on page 31

RELATED TASKS

RELATED REFEREMNCES

Creating and modifying a BeanlInfo class

When you create a new bean, it does not initially have a BeanlInfo class. VisualAge
automatically creates a BeanlInfo class for a bean if one does not exist and you do
any of the following:

* Modify a BeanlInfo property in the Information pane of the Beanlnfo page.
VisualAge generates bean information code that describes the bean.

© Copyright IBM Corp. 1997, 2000 133

* Add a new feature in the BeanInfo page. VisualAge generates bean information
code that describes the bean and the new feature.

* Promote a feature of an embedded bean in the Visual Composition Editor.
VisualAge generates bean information code that describes the bean and the
promoted feature.

You can explicitly create a Beanlnfo class in the BeanInfo page as follows:

1. From the Features menu, select New BeanlInfo Class to open the SmartGuide —
Beaninfo Class window.

2. In the SmartGuide — Beanlnfo Class window, you can specify a display name
and short description to use for the bean. If you want to provide customized
initialization of bean properties, specify a customizer class for the bean. Click
on Next to open the SmartGuide — Bean Icon Information window.

3. In the SmartGuide — Bean Icon Information window, you can specify files
containing icons for the bean. Click on Finish to create the BeanlInfo class.

You can also create or replace a Beanlnfo class in the Beanlnfo page as follows.
From the Features menu, select Generate Beanlnfo class. VisualAge generates
bean information code that describes the bean and all features that you have added
or promoted to the bean interface.

To modify the information in a BeanlInfo class, edit bean information properties in
the Information pane of the BeanInfo page. If no feature is selected in the Features
pane, you can edit bean information for the bean. If a feature is selected, you can
edit bean information for the feature.

If you want a bean to be serialized, set the Hidden-state property of the bean to
true in the Information pane.

RELATED COMNCEPTS

RELATED TASKS

E .] — I

RELATED REFEREMNCES

FReaninfo Class STarGide” >ad

Adding property features

134 visual Composition

Define property features to represent bean data or attributes that you want other
beans to have access to.

Add a new property feature in the BeanInfo page as follows:

p
1. From the tool bar, select 2 New Property Feature. If you prefer, you can

select New Property Feature from the Features menu. Either selection opens
the SmartGuide — New Property Feature window.

2. In the SmartGuide — New Property Feature window, do the following:
a. Specify the property name in the Property name field.

b. Specify the property type in the Property type field.

c. If you want the property value to be retrievable, make sure that the
Readable check box is selected. If this option is selected, a get method is
generated for the property.

d. If you want the property value to be modifiable, make sure that the
Writeable check box is selected. If this option is selected, a set method is
generated for the property.

e. If you want the property to send value changes on connections, make sure
that the bound check box is selected.

f. If the property consists of an array of elements, select the Indexed check
box. After you finish adding the property feature, select Add Available
Features from the Features menu to add the get and set array element
methods as features so you can make connections to them.

g. If you want other beans to be able to veto value changes for the property,
select the constrained check box.

h. Click onNext to open the SmartGuide — Bean Information window.
In the SmartGuide — Bean Information window, do the following:

a. If you want a name other than the actual feature name to be displayed for
the property in the Visual Composition Editor, specify the name in the
Display name field. This name appears when the property is listed in
connection menus, the bean property sheet, and other windows.

b. If you want a description other than the feature name to be displayed for
the property in the Visual Composition Editor, specify the description in the
Short description field. This description appears in certain windows, such
as connection windows and the Promote Features window, when the
property is selected.

c. If you do not want the property to appear in development windows unless
the user chooses to display expert features, select the expert check box.

d. If you do not want the property to be exposed to the bean consumer, select
the hidden check box.

e. If you want the property to be available in the bean connection menu, select
the preferred check box.

f. If you want to provide customized initialization of the property, specify a
property editor class.

g. Click on Finish to add the property. VisualAge generates the following:
* Public methods for the feature in the bean class
* Bean information code that describes the feature in the BeanlInfo class for

the bean

RELATED COMNMCEPTS

[olines" >a

RELATED TASKS

RELATED REFEREMNCES

FNew Proneriy Eeature SmartGuide™ T

Chapter 31. Defining bean interfaces for visual composition 135

Adding method features

136 Visual Composition

Define method features to represent bean behaviors or functions that you want
other beans to have access to.

Add a new method feature in the BeanInfo page as follows:

£
1. From the tool bar, select New Method Feature. If you prefer, you can
select New Method Feature from the Features menu. Either selection opens the
SmartGuide — New Method Feature window.

2. In the SmartGuide — New Method Feature window, do the following:
a. Specify the method name in the Method name field.
b. Specify the method return type in the Return type field.

c. If your method feature requires parameter input, specify the number of
parameters in the Parameter count field.

d. Click on Next to open the either the SmartGuide — Parameter window or
the SmartGuide — Bean Information window.

3. In the SmartGuide — Parameter window for each parameter, do the following:
a. Specify the parameter name in the Parameter name field.
b. Specify the parameter type in the Parameter type field.

c. If you want a name other than the actual parameter name to be displayed
for the parameter in the Visual Composition Editor, specify the name in the
Display name field. This name appears when the parameter is listed in
visual composition windows.

d. If you want a description other than the feature name to be displayed for
the parameter in the Visual Composition Editor, specify the description in
the Short description field. This description appears when the parameter is
selected in visual composition windows.

e. Click on Next to open the SmartGuide — Bean Information window.
4. In the SmartGuide — Bean Information window, do the following:

a. If you want a name other than the actual feature name to be displayed for
the method in the Visual Composition Editor, specify the name in the
Display name field. This name appears when the method is listed in
connection menus, the Promote Features window, and other windows.

b. If you want a description other than the feature name to be displayed for
the method in the Visual Composition Editor, specify the description in the
Short description field. This description appears in certain windows, such
as connection windows and the Promote Features window, when the
method is selected.

c. If you do not want the method to appear in development windows unless
the user chooses to display expert features, select the expert check box.

d. If you do not want the method to be exposed to the bean consumer, select
the hidden check box.

e. If you want the method to be available in the bean connection menu, select
the preferred check box.
f. Click on Finish to add the method. VisualAge generates the following:
* A public method for the feature in the bean class
» Bean information code that describes the feature in the Beanlnfo class for
the bean

RELATED COMNMCEPTS

RELATED TASKS

Febanter 31 Definine henn interfaces Tor el T R

RELATED REFEREMNCES

Adding event features

Define event features to represent the occurrence of any events in your bean that
you want other beans to be aware of.

You can add an event feature in the Beanlnfo page based on either an existing
event set or a new event set that you define. An event set consists of an event
listener interface with associated event object and multicaster classes. The
multicaster enables multiple listeners for an event.

Add an event feature based on an existing event set in the BeanInfo page as
follows:

E
1. From the tool bar, select 2 New Event Set Feature. If you prefer, you can

select New Event Set Feature from the Features menu. Either selection opens
the SmartGuide — New Event Set Feature window.

2. In the SmartGuide — New Event Set Feature window, do the following:
a. Specify the event name in the Event name field.
b. Select an event listener in the Event listener list.
c. Click on Next to open the SmartGuide — Bean Information window.
3. In the SmartGuide — Bean Information window, do the following:

a. If you want a name other than the actual feature name to be displayed for
the event in the Visual Composition Editor, specify the name in the Display
name field. This name appears when the event is listed in connection
menus, the Promote Features window, and other windows.

b. If you want a description other than the feature name to be displayed for
the event in the Visual Composition Editor, specify the description in the
Short description field. This description appears in certain windows, such
as connection windows and the Promote Features window, when the event
is selected.

c. If you do not want the event to appear in development windows unless the
user chooses to display expert features, select the expert check box.

d. If you do not want the event to be exposed to the bean consumer, select the
hidden check box.

e. If you do not want the event to be available in the bean connection menu,
select the preferred check box.

Chapter 31. Defining bean interfaces for visual composition 137

f. Click on Finish to add the method. VisualAge generates the following:
* A public method for the feature in the bean class
* Bean information code that describes the feature in the BeanInfo class for
the bean

Add an event feature based on a new event set in the BeanInfo page as follows:

1. Select New Listener Interface from the Features menu to open the SmartGuide
— New Event Listener window.

2. In the SmartGuide — New Event Listener window, do the following:
a. Specify the event name in the Event name field.

b. Specify the event listener name in the Event listener field. A default name
is produced based on the name you specify in the Event name field.

c. Specify the event object name in the Event object field. A default name is
produced based on the name you specify in the Event name field.

d. Specify the event multicaster name in the Event Multicaster field. A default
name is produced based on the name you specify in the Event name field.

e. Click on Next to open the SmartGuide — Event Listener Methods window.
3. In the SmartGuide — Event Listener Methods window, do the following:

a. For each method that you want to add to the listener, specify the method in
the Method name field. Then, click on Add. These listener methods
respond to the event. You must add code that responds to the event in each
method.

b. Click on Next to open the SmartGuide — Bean Information window.
4. In the SmartGuide — Bean Information window, do the following:

a. If you want a name other than the actual feature name to be displayed for
the event in the Visual Composition Editor, specify the name in the Display
name field. This name appears when the event is listed in connection
menus, the Promote Features window, and other windows.

b. If you want a description other than the feature name to be displayed for
the event in the Visual Composition Editor, specify the description in the
Short description field. This description appears in certain windows, such
as connection windows and the Promote Features window, when the event
is selected.

c. If you do not want the event to appear in development windows unless the
user chooses to display expert features, select the expert check box.

d. If you do not want the event to be exposed to the bean consumer, select the
hidden check box.

e. If you do not want the event to be available in the bean connection menu,
select the preferred check box.

f. Click on Finish to add the method. VisualAge generates the following:
* A public method for the feature in the bean class
« Bean information code that describes the feature in the Beanlnfo class for
the bean

You can modify BeanlInfo for the event in the Information pane of the BeanlInfo
page. If you want the event to appear as a preferred feature in the connection
menu of the bean, set the feature’s Preferred property to true.

RELATED COMNMCEPTS

RELATED TASKS

138 Visual Composition

Promoting features of embedded beans

Promote features in the Visual Composition Editor as follows:

1.

2.

From the pop-up menu of the embedded bean, select Promote bean feature to
open the Promote Features window.

For each feature that you want to promote, do the following:

a. Click on Method, Property, or Event to filter promotable features in the
features list box.

b. In the features list box, select the feature you are promoting.

c. Click on the >> button. The feature is moved to the Promoted features list.

d. If you do not want to use the default name, double-click the feature name
in the Promote feature name field. Then, edit the name to change it.

Click on OK to close the Promote Features window.

Save the composite bean to incorporate the features you just promoted. If you
run the test tool, the bean is automatically saved.

RELATED CONCEPTS

RELATED TASKS

FCbanter 31 Definine henn interfoces Tor el T R

RELATED REFEREMNCES

Specifying expert features

You can designate expert features that you do not normally want listed in
development windows. These are features that are complex or easily misused.

To designate a feature as expert, do either of the following:

When adding the feature, select the expert check box in the SmartGuide — Bean
Information window.

Edit the bean information in the Information pane of the BeanInfo page. Click
on the Expert property; then select True in the value column.

RELATED COMNMCEPTS

RELATED TASKS

Chapter 31. Defining bean interfaces for visual composition 139

RELATED REFEREMCES

Specifying hidden features

You can designate hidden features that you do not want to be available for
connections and property settings. These are features that you use within the bean
for implementation that you do not want exposed.

To designate a feature as hidden, do either of the following:

* When adding the feature, select the hidden check box in the SmartGuide — Bean
Information window.

» Edit the bean information in the Information pane of the Beanlnfo page. Click
on the Hidden property; then select True in the value column.

RELATED COMNCEPTS

RELATED TASKS

RELATED REFEREMCES

Specifying preferred features

You can designate preferred features that you want to appear in the connection
menu of a bean. These are features that you want to be available use within the
bean for implementation.

To designate a feature as preferred, do either of the following:

* When adding the feature, select the preferred check box in the SmartGuide -
Bean Information window.

» Edit the bean information in the Information pane of the Beanlnfo page. Click
on the Preferred property; then select True in the value column.

RELATED COMNCEPTS

RELATED TASKS
Tor E finino | - : : oLzl — %)

RELATED REFEREMNCES

Setting enumeration constants for a property

Through an associated Beanlnfo class, you can establish valid enumeration
constants for a given property. This enables you to control the range of values
presented in the bean’s property sheet without resorting to a custom property
editor. Follow these steps:

140 visual Composition

1. Open the bean in the class/interface browser to the Beanlnfo page.

2. In the Features pane, select the property for which you want to set up
enumeration constants.

3. In the Information pane, select the Enumeration Values property; then select

the value column. A small button, L1 appears to the right.
4. Select the small button. The Enumeration Values window opens.

5. To add an enumeration constant, click on New Item. Focus moves to the
Identifier column of the table.

6. Enter an identifier for the enumeration constant. (This identifier is what
appears in the property sheet later.)

7. In the Value column, type a value for the new constant.
If you enter a primitive value (such as 5), VisualAge converts your entry to

the corresponding object value (such as new Integer(5)). You cannot enter a
named system constant in this field.

8. VisualAge fills in the Java Initialization String column. This string corresponds
to an initialization string that is valid for the property editor in effect for the
property’s type.

9. To reorder an element in the enumeration, select the element from the table
and click on Move Up or Move Down.

10. When you are finished, click on OK.

When the Beaninfo class is saved, VisualAge generates code in the property
descriptor method for the Beanlnfo class.

RELATED COMNMCEPTS

RELATED TASKS

o TN T PR YO |

RELATED REFEREMNCES

Chapter 31. Defining bean interfaces for visual composition 141

142 visual Composition

Chapter 32. Repairing class or package references

If your classes contain obsolete class or package references due to renaming, you
can repair breakage with the Fix/Migrate SmartGuide. Because this sort of repair is
as much an art as it is an algorithm, be sure to read the related topic listed at the
end of this section before you attempt the repair. You will find this tool especially
useful if you are moving classes to the Java® 2 SDK.

Note: You must use this tool for repairing visual composites, even if you make
corrections by hand. This is because metadata must also be repaired. If you
do not repair the metadata, VisualAge will probably generate incorrect code.

VisualAge can correct references to the following program elements:
» Classes, interfaces, and packages

» Superclass designation

* Import designations

» User-defined fields and methods

* Fields and methods that are generated for visual composites

To repair references, follow these steps:
1. In the Workbench, right-click on any class, package, or project name.
2. From the pop-up menu that appears, select Reorganize and then Fix/Migrate.
3. Follow these steps for each class or package that has been renamed:
* In the From field, enter the original name of the renamed class or package.

To specify a package, append .* to the package name. For example, to repair
all classes in myPackage, enter myPackage.*

* In the To field, enter the current name of the renamed class or package.
* Click on Add.

4. To automatically migrate references to the Java 2 SDK, select the Include
JDK1.2 renamed packages check box.

5. Click on Finish.

If VisualAge detects any transient problems during the repair, an error window
will appear. Make a note of the error and click on OK to continue the process. In
most cases, errors occur because of the order in which references are being
repaired; these errors are usually corrected by the time that all references have
been repaired. Following the repair guidelines will minimize this occurrence.

To fix errors in visual composites that remain after all classes have been repaired,
open the composites in the Visual Composition Editor and regenerate code from
the Bean menu.

RELATED REFEREMNCES

© Copyright IBM Corp. 1997, 2000 143

144 visual Composition

Chapter 33. Fix/migrate guidelines for class or package

references

The Fix/Migrate SmartGuide can repair broken class or package references due to
migration of classes to the Java 2 SDK or the renaming of user-defined program
elements. Because this sort of repair is not an exact science, follow these tips for
the best results:

In the Workbench, look at the All Problems page to get a sense of what is
broken.

If possible, repair references at the class level. This gives you the most control
over the order in which classes are repaired, minimizing transient compilation
problems. If you do repair at the package or project level, VisualAge processes
Beanlnfo classes before their associated bean classes.

Repair referenced classes first, as necessary. Proceeding in this direction ensures
that APl updates for a referenced program element are available when the
classes that refer to it are repaired.

If a given class has an associated Beanlnfo class, repair the Beanlnfo class first.
After repair of visual composites, open them in the Visual Composition Editor
and regenerate code.

To migrate references to the IBM Data Access libraries from Version 1.0 to
Version 2.0, specify the following changes:

— COM.ibm.jvj.eab.data.* to com.ibm.ivj.eab.dab.*

— COM.ibm.ivj.javabeans.* to com.ibm.ivj.eab.dab.*

To migrate references to the javax.swing.preview.JFileChooser class, specify the
following change: javax.swing.preview.* to javax.swing.*

Successful migration of class references to the Java 2 SDK does not ensure that
all beans run as you expect them to. Sun’s implementation of some beans might
have changed, so test migrated beans thoroughly.

RELATED TASKS

FChanter32 B | | f 5 e

© Copyright IBM Corp. 1997, 2000 145

146 visual Composition

Chapter 34. Beans for visual composition

VisualAge provides a wide range of beans that you can use to visually compose

your own program elements. These include the following:

» Basic user interface beans from the Abstract Windowing Toolkit (AWT)

* Enhanced user interface beans

» Factory and variable beans for dynamically creating and referencing bean
instances

The following topics describe beans provided by IBM. When you create your own
beans, you can add them to the palette. See the related task topic on modifying the
palette.

User interface beans

VisualAge provides a set of user interface beans that you can use to compose an
applet or application. Basic user interface beans from the Abstract Windowing
Toolkit (AWT) are provided in the Java class libraries project. AWT beans are in the
java.awt and java.applet packages. Enhanced user interface beans (Swing) are also
provided in the Java class libraries project. Swing beans are in javax.swing and
related packages.

Although Swing and AWT components can be mixed, it is inadvisable. For this
reason, VisualAge does not allow you to drop AWT beans on Swing beans.
Because you might want to add Swing beans to AWT beans that you created
before Swing was available, VisualAge does allow you to drop Swing beans on
AWT beans. You can morph the AWT beans to Swing beans when you are ready to
convert completely to Swing.

The problem with mixing AWT and Swing beans arises from the fact that all AWT
components have peer classes that are specific to the operating system, while most
Swing components do not. Components with system peers are known as
heavyweight components. Components without system peers are known as
lightweight components. The only Swing heavyweight components are JApplet,
JDialog, JFrame, and JWindow. Painting problems occur if heavyweight
components are children of lightweight parents, because the heavyweight
components always paint over lightweight components.

VisualAge provides its own BeanlInfo classes for Swing and AWT beans. These
Beanlnfo classes are tailored for visual composition.

Swing beans have a LookAndFeel (L&F) architecture that specifies how Swing
components appear and behave. On the Visual Composition Editor, Swing beans
appear in the default, cross-platform Metal L&F implementation. To change the
run-time appearance to the System L&F of the current platform, execute the
following code in your main() method before you construct your components:

String myLookAndFeel = javax.swing.UIManager.getSystemLookAndFeelClassName();
javax.swing.UIManager.setLookAndFeel (myLookAndFeel);

myLookAndFeel can be the name of any class that implements

javax.swing.LookAndFeel and is available on the current platform. This code
changes only the run-time L&F implementation and not the images on the Visual

© Copyright IBM Corp. 1997, 2000 147

Composition Editor. To change L&F on the Visual Composition Editor, see

VisualAge information about Swing and AWT beans supplements class information
from Sun Microsystems. VisualAge reference topics for these beans provide links to
Sun API information. The following topics describe these beans:

Factory and variable beans

148 visual Composition

VisualAge provides Factory and Variable beans that you can use to dynamically
create and reference bean instances. The following topic describes these beans,

« E1]

RELATED COMNCEPTS

RELATED TASKS

Chapter 35. Applet beans

Applets are generally small, specialized programs that are downloaded and run by
a Java-enabled web browser. Applets operate within constraints that provide
security from remote system intrusion.

The following beans provide applets:

Bean Description
W A container bean you use with Swing beans.
m A container bean you use with AWT beans.

RELATED TASKS

RELATED REFEREMNCES

JApplet (Swing)

The JApplet bean @ differs in one way from the AWT Applet bean in that it
contains a content pane. In the Visual Composition Editor this content pane
completely covers the JApplet bean. While the content pane provides logical
separation of the applet from its child components, it also makes accessing the
JApplet bean difficult. You can, however, access the JApplet bean within the Beans
List. With the exception of JMenuBar, you add user interface components to the
content pane. The default content pane, JAppletContentPane, is represented in the
Beans List as the child of the JApplet bean. You can delete the default content pane
and replace it with another container component.

If you want to create an applet using Swing components, specify JApplet as the
superclass for a new applet bean.

If you want to use AWT components in the applet, use an Applet bean rather than
a JApplet bean.

RELATED TASKS

RELATED REFEREMNCES

FChantor 5 Annlet beansd

Applet (AWT)

The Applet bean @ is the basic object required for building your applet. Specify
Applet as the superclass for a new applet bean.

If you want to use Swing components in the applet, use a JApplet bean rather than
an Applet bean.

RELATED TASKS

© Copyright IBM Corp. 1997, 2000 149

150 visual Composition

RELATED REFEREMNCES

Chapter 36. Window beans

Bean Description
[Dialog (Swing) or Dialog (AWT) | A custom dialog, typically a secondary window
EileDialog (AWT) A dialog for accessing the file system

[Erame (Swing) or Erame (AWT) A desktop window with a title bar, sizing borders,

and sizing buttons

[lnternalErame (Swing) A frame that is a child of another Swing component
DwWindow (Swing) or Mindawl A window without a title bar, sizing borders, and
laum) sizing buttons

Window beans are the primary visual context for other user interface components.
VisualAge provides window beans from both Swing and the Abstract Windowing
Toolkit (AWT) packages. Basic window beans from AWT reside in the java.awt
package (Java class libraries project) and appear in the AWT palette category.
Enhanced window beans reside in the javax.swing package and appear in the
Swing palette category.

RELATED TASKS

RELATED REFEREMNCES

FChanter 34 Boansf | T 7

JDialog (Swing)

Use a JDialog bean E for a custom dialog. A dialog is typically used to display
or gather information for a single purpose.

The JDialog bean provides a content pane in which to place other components. The
content pane provides logical separation of the dialog from its child components.
With the exception of JMenuBar, user interface components are added to the
content pane. The default content pane, JDialogContentPane, is represented in the
Beans List as the child of the JDialog bean. You can delete the default content pane
and replace it with another container component.

Use a Dialog bean, rather than a JDialog bean, if you want to use AWT
components in the dialog. Alternatively, use a JOptionPane bean to create any of a
variety of standard dialogs.

Changing Default Property Settings

Setting Value Description

mode Load Set the value to Load for an
Open File dialog

mode Save Set value to Save for an Save
file dialog

directory specify the directory Define the initial directory
selection information for the
file dialog

© Copyright IBM Corp. 1997, 2000 151

Setting

Value

Description

file

specify the file

Define the initial file
selection information for the
file dialog

RELATED TASKS

RELATED REFEREMNCES

Dialog (AWT)

Use a Dialog bean IE for a custom dialog. A dialog is typically used to display or
gather information for a single purpose.

The Dialog bean contains a ContentsPane bean, the default client component,
where you place other visual components. You can replace the default client with
another container component.

RELATED TASKS

RELATED REFEREMNCES

FileDialog (AWT)

152 visual Composition

Use a FileDialog bean for a dialog through which the user can open or save
files. File dialogs are useful in stand-alone applications and are not typically used
in applets because of security constraints.

The FileDialog bean represents a system file dialog. The bean appears on the
free-form surface as an icon because it cannot be composed.

Changing Default Property Settings

Setting Value Description
directory specify the directory Define the initial directory
selection information for the
file dialog
file specify the file Define the initial file

selection information for the
file dialog

filenameFilter

specify the filename filter

Define the file type selection
information for the file
dialog

mode

Load Set the value to Load for an
Open File dialog
Save Set value to Save for an Save

file dialog

RELATED TASKS
RELATED REFEREMNCES

FChantor 36 Window: beans” =

JFrame (Swing)

Use a JFrame bean j for a desktop window with a title bar, sizing borders, and
sizing buttons. You can add beans to the frame and its content pane to define
menus and other user interface components.

The JFrame bean provides a content pane in which to place other components. The
content pane provides logical separation of the frame from its child components.
With the exception of JMenuBar, user interface components are added to the
content pane. The default content pane, JFrameContentPane, is represented in the
Beans List as the child of the JFrame bean. You can delete the default content pane
and replace it with another container component.

Use a Frame bean, rather than a JFrame bean, if you want to use AWT components
in the frame.

RELATED TASKS

RELATED REFEREMNCES

¢ [T

Frame (AWT)

Use a Frame bean j for a desktop window with a title bar, sizing borders, and
sizing buttons. You can add beans to the frame to define menus and other user
interface components.

The Frame bean contains a ContentsPane bean, the default client component,
where you place other visual components. You can replace the default client with
another container component.

If you want to use Swing components in the frame, use a JFrame bean rather than
a Frame (AWT) bean.

RELATED TASKS

RELATED REFEREMNCES

FChantor 36 Window. boans =

Chapter 36. Window beans 153

JinternalFrame

(Swing)

Use a JinternalFrame bean @ for a frame that is a child of a JDesktopPane bean.
By contrast, a JFrame bean is a child of the desktop. The user can manipulate an
internal frame within a desktop pane. For example, the user can maximize,
minimize, resize, move, or close the internal frame.

The JinternalFrame bean provides a content pane in which to place other
components. The content pane provides logical separation of the frame from its
child components. With the exception of JMenuBar, user interface components are
added to the content pane. The default content pane, JinternalFrameContentPane,
is represented in the Beans List as the child of the JinternalFrame bean. You can
delete the default content pane and replace it with another container component.

RELATED TASKS

RELATED REFEREMNCES

FiErame (Swing)” =3

JWindow (Swing)

Use a JWindow bean @ to add a window without a title bar, sizing borders, and
sizing buttons. This bean is suitable for a splash window that your application
displays briefly at start-up.

The JWindow bean provides a content pane in which to place other components.
The content pane provides logical separation of the window from its child
components. With the exception of JMenuBar, user interface components are added
to the content pane, which completely covers the JWindow bean in the Visual
Composition Editor. The JWindow bean can be accessed from the Beans List. The
default content pane, JWindowContentPane, is represented in the Beans List as the
child of the JWindow bean. You can delete the default content pane and replace it
with another container component.

Use a Window bean, rather than a JWindow bean, if you want to use AWT
components in the window.

RELATED TASKS
RELATED REFEREMNCES

Frhanter 33 Windma heans” =

Window (AWT)

154 visual Composition

Use a Window bean to add a window without a title bar, sizing borders, and
sizing buttons. This bean is suitable for a splash window that your application
displays briefly at start-up.

Use a JWindow bean, rather than a Window bean, if you want to use Swing
components in the window.

RELATED TASKS
RELATED REFEREMNCES

FChantor 36 Window: beans” =

Chapter 36. Window beans 155

156 Visual Composition

Chapter 37. Pane and panel beans

A pane or panel is a container for other components. It is used within another
pane or panel, within a window, or within an applet. VisualAge provides pane and
panel beans from Swing and AWT packages. Basic pane and panel beans from the
Abstract Windowing Toolkit (AWT) are provided in the java.awt package (Java
class libraries project). Enhanced pane and panel beans are provided in the
javax.swing package.

The following beans provide panes and panels:

Bean Description

[DesktopPane (Swing) A pane for a desktop within another Swing container
[EditarPane (Swing) A pane for editing defined text types, such as HTML
[OptionPane (Swing) A simple dialog pane

[Panel (Swing) or Panel (AWT) A composition surface for user interface components
[ScrollPane (Swing) or ScrollPand | A scrollable view for another component

[SplitPane (Swing) A split view for other components
[TabbedPane (Swing) A tabbed view for other components
[TextPane (Swing) A pane for editing text with visible styles and

embedded objects

RELATED TASKS

RELATED REFEREMNCES

JDesktopPane (Swing)

Use a JDesktopPane bean E for a desktop within another Swing container. Add
one or more JinternalFrame beans to the desktop pane.

RELATED TASKS

RELATED REFEREMNCES
FChanter 37_Pane and panel beans’

© Copyright IBM Corp. 1997, 2000 157

JEditorPane (Swing)

Use a JEditorPane bean for editing defined text types, such as HTML.
RELATED TASKS

RELATED REFEREMNCES

JOptionPane (Swing)

Use a JOptionPane bean for an input prompt, a message, or user confirmation.
The dialog is modal, so the thread is held until the user dismisses the dialog.

RELATED TASKS

RELATED REFEREMNCES

JPanel (Swing)

Use a JPanel bean I:I as a composition surface for other user interface
components, such as buttons, lists, and text. You can add a panel to a window, an
applet, or another panel. In a Swing window or JApplet, JPanel can either serve as
the contentPane, or be added to the contentPane.

RELATED TASKS

RELATED REFEREMNCES

Panel (AWT)

158 Visual Composition

Use a Panel bean l:l as a composition surface for other user interface
components, such as buttons, lists, and text. You can add a panel to a window, an
applet, or another panel. In an AWT window, Panel can either serve as the client
component, or be added to the client component.

RELATED TASKS

RELATED REFEREMNCES

JScrollPane (Swing)

Use a JScrollPane bean Eﬂ for a pane with scroll bars. This enables you to define
a pane that is not always completely within view. You can place one component in
the scroll pane. If you want multiple components within the scroll pane, add a
JPanel bean to the scroll pane and place the components on the panel.

RELATED TASKS

RELATED REFEREMNCES

ScrollPane (AWT)

Use a ScrollPane bean Q for a pane with scroll bars. This enables you to define a
pane that is not always completely within view. You can place one component in
the scroll pane. If you want multiple components within the scroll pane, add a
Panel bean to the scroll pane and place the components on the panel.

RELATED TASKS

RELATED REFEREMNCES

JSplitPane (Swing)

Use a JSplitPane bean D:I as a split view for other components. You can place one
component on each pane. If you want multiple components within a pane, add a
JPanel bean to the pane and place the components on the panel.

RELATED TASKS

RELATED REFEREMNCES

JTabbedPane (Swing)

Use a JTabbedPane bean EI as a tabbed view for other components. Each
component you drop on a JTabbedPane becomes a new page with a separate tab. If
you want multiple components within a page, add a JPanel bean to the scroll pane
and place the components on the panel. When you add a JTabbedPane bean, a
JPanel bean is automatically added as the first page.

RELATED TASKS

RELATED REFEREMNCES

Chapter 37. Pane and panel beans 159

JTextPane (Swing)

Use a JTextPane bean for editing text with visible styles and embedded
objects.

RELATED TASKS

RELATED REFEREMNCES

160 visual Composition

Chapter 38. Table and tree beans

A table or tree provides a view of objects from a data model that organizes objects
in a tabular or expandable tree format. VisualAge provides table and tree beans in
the javax.swing and javax.swing.table packages (Java class libraries project), as

follows:

Bean Description

(Tanid A tabular view of objects in a data model
fableColumn A view of objects in a table-model column
[Tred A hierarchical view of objects in a data model

RELATED TASKS

RELATED REFEREMNCES

JTable (Swing)

Use a JTable bean D:I as a view of objects from a table data-model. Use the table
model to define or derive the objects for the table. You can do this either by coding
the model or by using a tool such as the database builder to create the data model.

The user can select objects from the table, manipulate columns, and directly edit
table cells.

RELATED TASKS

RELATED REFEREMNCES

JTree (Swing)

Use a JTree bean E as a view of objects from a tree data-model. Use the tree
model to define or derive the objects for the tree.

RELATED TASKS

RELATED REFEREMNCES

TableColumn (Swing)

=
Use a TableColumn bean 28 as a view of objects from a table-model column. This
bean enables you to map a column in a JTable bean to a column in the table
model. You can also use it to define visual properties of a table column. If you
want a default table view of each column in the table model, do not add any
TableColumn beans to a JTable bean.

© Copyright IBM Corp. 1997, 2000 161

RELATED TASKS
RELATED REFEREMNCES

o 4 FeansT | —— I

162 visual Composition

Chapter 39. Text beans

Text components are available for simple text and for enhanced text and editing
panes. VisualAge provides text beans from Swing and AWT packages. Basic text
beans from the Abstract Windowing Toolkit (AWT) are provided in the java.awt
package (Java class libraries project). Enhanced text beans are provided in the
javax.swing and javax.swing.text packages.

The following beans provide simple text components:

Bean Description

(L abel (Swing) or lLabel (AWT) A label, usually to identify another component
[PasswardField (Swing) A text field for sensitive data

[TextArea (Swing) or MextAred A multiline text area

[TextField (Swing) or MextField A single-line text field

RELATED TASKS

RELATED REFEREMNCES

JLabel (Swing)

Use a JLabel bean as a text label for your user interface. You can add a
graphic to the label as well as text. You can also define a mnemonic in the label as
a means of quick access to a text input field.

RELATED TASKS

RELATED REFEREMNCES

FChanter 39 Text boan]

Label (AWT)

Use a Label bean as a text label for your user interface.
RELATED TASKS

RELATED REFEREMCES
|‘(‘hnpmr 39_Text heans’d

© Copyright IBM Corp. 1997, 2000 163

JPasswordField (Swing)

Use a JPasswordField bean ﬂ as a text field for sensitive data. A JPasswordField
bean is a text field that always uses an echo character to mask characters that are
entered. The echo character can be specified in the property sheet for
JPasswordField. You can use a focus accelerator to provide quick accessability to
the password field.

RELATED TASKS

RELATED REFEREMNCES

JTextArea (Swing)

Use a JTextArea bean g as a large area for text entry or presentation. A text area
can contain multiple lines of text. To make a JTextArea bean scrollable, drop it in a
JScrollPane bean. You can use a focus accelerator to provide quick accessibility to
the text area.

RELATED TASKS

RELATED REFEREMNCES

TextArea (AWT)

Use a TextArea bean @ as a large area for text entry or presentation. A text area
can contain multiple lines and is vertically and horizontally scrollable.

RELATED TASKS

RELATED REFEREMNCES

JTextField (Swing)

Use a JTextField bean EI:I for text entry or presentation. A text field consists of a
single line. You can use a focus accelerator to provide quick accessibility to the text
field.

RELATED TASKS

RELATED REFEREMNCES

164 visual Composition

TextField (AWT)

Use a TextField bean EI:I for text entry or presentation. A text field consists of a
single line.

RELATED TASKS

RELATED REFEREMNCES

¢ i1

Chapter 39. Text beans 165

166 Visual Composition

Chapter 40. List and slider beans

List components provide a list of items for the user to select. Slider components
show a range of selection values or show progress for the duration of an operation.
VisualAge provides list and slider beans from Swing and AWT packages. Basic list
and slider beans from the Abstract Windowing Toolkit (AWT) are provided in the
java.awt package (Java class libraries project). Enhanced list and slider beans are
provided in the javax.swing package.

The following beans provide visual list and slider components:

Bean Description

IComhoBRax (Swing) or Choicd A selectable list with an entry field

[List (Swing) or List (AWT) A selectable list of choices

[ProgressRar (Swing) A progress indicator

[IScrollRar (Swing) or Scrollbat A scrolling component

W A selection component for a range of values

RELATED TASKS

RELATED REFEREMNCES

JComboBox (Swing)

Use a JComboBox bean for a selectable drop-down list. You can choose to
allow direct text entry as well as selection from the list.

RELATED TASKS

RELATED REFEREMNCES

EChapter 40.List and slider heans™

Choice (AWT)

Use a Choice bean for a drop-down list that lets the user select a single
choice. The current choice is always displayed. The user can open the list by
selecting the drop-down button.

RELATED TASKS

RELATED REFEREMNCES

EChapter 40_List and slider heans’

© Copyright IBM Corp. 1997, 2000 167

JList (Swing)

Use a JList bean for a list of choices from which the user can make one or
more selections. Your program can add or remove choices from the list. If you
want the list to be scrollable, place it in a JScrollPane bean.

By default, the user can select one choice from the list. When the user selects a
choice, any previously selected choice is no longer selected. You can change the
behavior of the list to allow multiple selection.

RELATED TASKS

RELATED REFEREMNCES

List (AWT)

a
R |] R R .
Use a List bean for a list of choices from which the user can make one or
more selections. Your program can add or remove choices from the list.

By default, the user can select one choice from the list. When the user selects a
choice, any previously selected choice is no longer selected. You can change the
behavior of the list to allow multiple selection.

RELATED TASKS

RELATED REFEREMNCES

JProgressBar (Swing)

Use a JProgressBar bean uy as a progress indicator for an operation.
RELATED TASKS

RELATED REFEREMNCES

FChanter A0 List ancslider_beans™ T

JScrollBar (Swing)

168 Visual Composition

Use a JScrollBar bean Al as a scrolling component. Generally, JScrollPane is a
suitable alternative for a scrollable view with scroll bars.

RELATED TASKS

RELATED REFEREMNCES

FChantor 40 Listand slider boans T

Scrollbar (AWT)

Use a Scrollbar bean Lk for a slider that the user can manipulate to select a value
from a range of values. A scroll bar consists of a scroll shaft that represents the
range of values, a scroll box within the range, and scroll arrows at the ends of the
range. A scroll bar can be either horizontal or vertical.

RELATED TASKS

RELATED REFEREMNCES

JSlider (Swing)

Use a JSlider bean @ as a selection component for a range of values.
RELATED TASKS

RELATED REFEREMNCES

Chapter 40. List and slider beans 169

170 visual Composition

Chapter 41. Button beans

VisualAge provides button beans from Swing and AWT packages. Basic button
beans from the Abstract Windowing Toolkit (AWT) are provided in the java.awt
package (Java class libraries project). Enhanced button beans are provided in the
javax.swing package.

The following beans provide button components:

Bean Description

[Button (Swing) or Button (AWT) | A push button, generally used to perform a function
ICheckRox (Swing) or Checkhox A setting button that is checked when selected

[RadioButton (Swing) or A radio button or group for mutually exclusive
CheckhoxGroup (AWT) settings
[ToggleButton (Swing) A two-state push button that appears to be pushed in

when selected

RELATED TASKS

RELATED REFEREMNCES

FChanter 34 Boans | o 7

JButton (Swing)

Use a JButton bean o for a push button that the user can select to perform an
action. For example, you can define an OK button to let the user save changes and
close a window.

RELATED TASKS

RELATED REFEREMNCES
EChanter 41_Button beans’]

Button (AWT)

Use a Button bean Lo for a push button that the user can select to perform an
action. For example, you can define an OK button to let the user save changes and
close a window.

RELATED TASKS

RELATED REFEREMNCES
EChanter 41_Button beans’]

© Copyright IBM Corp. 1997, 2000 171

JCheckBox (Swing)

Use a JCheckBox bean to provide a settings choice that has two states, such as
on and off. A mark in the check box indicates that the choice is selected. You can
customize the images used for unselected and selected check boxes.

RELATED TASKS

RELATED REFEREMNCES

3 7

Checkbox (AWT)

Use a Checkbox bean to provide a settings choice that has two states, such as
on and off. A mark in the check box indicates that the choice is selected.

Check boxes are independently selectable, unless they are defined in a group. Use
check boxes in a group to provide a set of mutually exclusive choices that appear
as radio buttons. To define a group, associate each Checkbox bean with a
CheckboxGroup bean.

RELATED TASKS

RELATED REFEREMNCES

. [T

JRadioButton (Swing)

Use a JRadioButton bean @ to provide one of a group of mutually exclusive
settings choices. A mark on the radio button indicates that the choice is selected.

RELATED TASKS

RELATED REFEREMNCES

FChantor 4L Button beans” 57|

CheckboxGroup (AWT)

Use a CheckboxGroup bean @ to provide a set of mutually exclusive choices that
appear as radio buttons. Each choice in the group is a Checkbox bean that you
associate with the CheckboxGroup bean.

RELATED TASKS

RELATED REFEREMNCES

. E1]

172 visual Composition

JToggleButton (Swing)

Use a JToggleButton bean L for a two-state push button. The button appears to
be pushed in when selected, and popped out when not selected. Use JToggleButton
beans in a button group for a set of mutually exclusive functions. When the user
selects an unselected button in the group, the previously selected button is popped
out.

RELATED TASKS

RELATED REFEREMNCES

Chapter 41. Button beans 173

174 visual Composition

Chapter 42. Menu and tool bar beans

VisualAge provides support for menus and tool bars. Basic menu beans from the
Abstract Windowing Toolkit (AWT) are provided in the java.awt package (Java
class libraries project). Enhanced menu and tool bar beans are provided in the
javax.swing package (Java class libraries project). Some IBM bean implementations
for visual composition are provided in the com.ibm.uvm.abt.edit package (IBM
Java Implementation project).

The following beans provide menu and tool bar components:

Bean Description

IMenuBar (Swing) or MenuBar (AWT) | A menu bar for a window

IMenu (Swing) or Menu (AWT) A cascade menu for another menu or menu bar
[PopupMenu (Swing) or BopupMenil | A pop-up menu for window components

IMenultem (Swing) or Menultem A menu choice that calls a method
ICheckBoxMenultem (Swing) or A menu choice that toggles a setting on and off
CheckhoxMenultem (AWT)

[RadioButtonMenu (Swing) A menu choice that provides one of a set of

mutually exclusive setting values

[Separator (Swing) or MenuSeparatod | A horizontal line that separates groups of related

(awT) choices

[TaolBar (Swing) A graphical set of tool choices

[ToolBarButton (Swing) A button for a tool bar

(ToolBarSeparator (Swing) A visual separator between components in a tool
bar

RELATED TASKS
RELATED REFEREMNCES

FChanter 34 Beans | | T]

JMenuBar (Swing)

Use a JMenuBar bean j as a set of pull-down menus for a window. When you
add a JMenuBar bean, one menu is automatically added to the menu bar. You can
modify this menu and add other menus that you need.

RELATED TASKS
RELATED REFEREMNCES

FChanter 34 Beans 1 | T]

© Copyright IBM Corp. 1997, 2000 175

MenuBar (AWT)

Use a MenuBar bean j as a set of pull-down menus for a window. When you
add a MenuBar bean, one menu is automatically added to the menu bar. You can
modify this menu and add other menus that you need.

RELATED TASKS

RELATED REFEREMNCES

JMenu (Swing)

Use a JMenu bean _lJ for a set of related choices for a window or component.
You can add the menu either as a pull-down menu for a menu bar or as a cascade
menu for another menu. You can also add subclasses of AbstractAction to the
free-form surface and add them to the menu in the menu get method.

RELATED TASKS

RELATED REFEREMNCES

Menu (AWT)

Use a Menu bean _lJ for a set of related choices for a window or component. You
can add the menu either as a pull-down menu for a menu bar or as a cascade

menu for another menu.
RELATED TASKS

RELATED REFEREMNCES

JPopupMenu (Swing)

Use a JPopupMenu bean J for a pop-up list of choices for window components.

The user can display the menu by clicking a pop-up mouse button on a
component. You can also add subclasses of AbstractAction to the free-form surface

and add them to the menu in the menu’s get method.
RELATED TASKS

RELATED REFEREMNCES

176 Visual Composition

PopupMenu (AWT)

Use a PopupMenu bean J for a pop-up list of choices for window components.
The user can display the menu by clicking a pop-up mouse button on a
component.

RELATED TASKS

FAQd ool bar i

RELATED REFEREMNCES

JMenultem (Swing)

Use a JMenultem bean '_lJ as a functional choice for a menu.
RELATED TASKS

FAdding a menu or taol bar” on page 111
RELATED REFEREMNCES

FChanter 34 BeansT | o T3

Menultem (AWT)

Use a Menultem bean '_r as a functional choice for a menu.
RELATED TASKS

RELATED REFEREMNCES

FChanior 34 BeansT | o 7%

JCheckBoxMenultem (Swing)

Use a JCheckBoxMenultem bean ﬂJ to provide a menu setting choice that the
user can toggle on and off.

RELATED TASKS

RELATED REFEREMNCES

CheckboxMenultem (AWT)

Use a CheckboxMenultem bean J to provide a menu setting choice that the user
can toggle on and off.

RELATED TASKS

RELATED REFEREMNCES

Chapter 42. Menu and tool bar beans 177

JRadioButtonMenultem (Swing)

Use a JRadioButtonMenultem bean “_lJ to provide a menu setting choice for a
group of mutually exclusive menu settings.

RELATED TASKS

RELATED REFEREMNCES

JSeparator (Swing)

Use a JSeparator bean :lJ to visually separate other components. It is commonly
used to draw a horizontal line between groups of related items in a menu, but can
also be used to separate components on a panel.

RELATED TASKS

FAQd ol bar i

RELATED REFEREMNCES

MenuSeparator (AWT)

Use a MenuSeparator bean :lJ to provide a horizontal line between groups of
related menu items.

RELATED TASKS

RELATED REFEREMNCES

JToolBar (Swing)

Use a JToolBar bean j to provide a graphical menu. When you add a JToolBar
bean, a JToolBarButton bean is automatically added as the first component. Add
JToolBarButton and other components to the tool bar. You can also add subclasses
of AbstractAction to the free-form surface and add them to the tool bar in the tool
bar’s get method.

RELATED TASKS

RELATED REFEREMNCES

178 Visual Composition

JToolBarButton

Use a JToolBarButton bean B to add buttons to a tool bar. VisualAge customizes
the JButton bean for a tool bar by presetting certain properties as follows:

Property Setting

icon question mark
text null

margin 0,0,0,0
horizontalTextPosition CENTER
vertical TextPosition BOTTOM

The JToolBarButton bean is provided as a convenience. VisualAge generates code
for a JButton bean.

RELATED TASKS

RELATED REFEREMNCES

¢ E1]

JToolBarSeparator

Use a JToolBarSeparator bean 3 to provide visual separation between other
components on a tool bar. You can drop a JToolBarSeparator bean only on a
JToolBar bean. The JToolBarSeparator bean is provided as a convenience. VisualAge
generates code for the addSeparator() method of the JToolBar bean.

RELATED TASKS

RELATED REFEREMNCES

Chapter 42. Menu and tool bar beans 179

180 visual Composition

Chapter 43. Factory and variable beans

VisualAge provides beans that enable you to dynamically create and refer to bean
instances visually. These beans are not Java classes. A Factory bean creates new
instances of a bean type. A Variable bean refers to any instance of a bean type that
you assign to it. With either Factory or Variable, you specify the bean type that it
can create or reference.

The following beans provide support for bean instances:

Bean Description
Eacton) Dynamically creates bean instances
Mariabld Provides access to bean instances

RELATED TASKS
F ieall - | - | - = |
RELATED REFEREMNCES

Factory

Use a Factory bean to dynamically create instances of the Java type that you
specify. A Factory bean is not a Java class or an instance of the bean it creates. The
Factory bean creates a bean instance whenever an event occurs, based on a
connection you make from the event.

Generally, when you add a bean to a visual composite, a fixed instance of that
bean is created. When you add a Factory bean, however, a bean instance is not
created. Instead, you can make a connection to dynamically create a bean instance
of the type specified for the Factory bean. Connections to the Factory bean’s
features then operate on the created bean instance. If you create another bean
instance, connections to the Factory bean’s features operate on the newly created
bean instance rather than on the previously created instance. The Factory bean
serves as a bean instance generator.

RELATED TASKS

RELATED REFEREMNCES

EChapter 43._Factory and variable heans’

Variable

Use a Variable bean E EI to refer to any instance of a particular class. A Variable
bean is not a Java class or an instance of the class it represents. Variable beans are
commonly used to represent tear-off properties and objects from other composite
beans.

© Copyright IBM Corp. 1997, 2000 181

182 visual Composition

Generally, when you add a bean to a visual composite, a single fixed instance of
that bean is created. When you add a Variable bean, however, a bean instance is
not created. Instead, you can make a connection to assign any bean instance of the
type specified for the Variable bean. Connections to the Variable bean’s features
then operate on the assigned bean instance. If you assign another bean instance to
the Variable bean, connections to the Variable bean’s features operate on the newly
assigned bean instance rather than on the previously assigned instance. The
Variable bean serves as a reference for bean instances.

RELATED TASKS
E call - | - | - = |
RELATED REFEREMNCES

FChanter 43 Eaciary and variabls 5 |

Chapter 44. Visual Composition Editor

The Visual Composition Editor is a powerful composing tool that you can use to:
» Build the user interface for your program by dropping beans.

» Construct business logic by connecting the beans.

» Edit existing beans.

The Visual Composition Editor makes it easy to build applets, beans, and entire
applications using the functions available on the menu bar, pop-up menus, tool
bar, and the variety of reusable beans on the beans palette. A description of the
functions on the tool bar or beans palette appears when the mouse pointer is
positioned over the item.

Areas in this window

RELATED COMNMCEPTS
l‘: :. I -y I - I IiI:S" DID IDagE!I
RELATED TASKS

FChapter 12 Visual bean basics” =3

RELATED REFEREMNCES

Status area—Visual Composition Editor

The status area displays information about the last operation or your current
selection.

The tool bar in visual composition

Use the tools on the tool bar to help you build the user interface for your program.

You can also access some or all of these tools from the Tools pull-down menu in
the Visual Composition Editor, and from pop-up menus.

The alignment tools are only available when using the null layout manager.

The anchor bean, indicated by solid selection handles, is the bean that serves as the
alignment reference. When you want to align beans with one another, select the

© Copyright IBM Corp. 1997, 2000 183

ones you want to move and select the anchor bean last. You can also change the
anchor bean by holding the Ctrl key and double-clicking on the new anchor bean.

Tools in this area

HE @ E

e

—
E e
¢ :
0o
11

‘Match Width” on page 190

>
P
e

FMatch Oeighr 1o

RELATED COMNCEPTS

RELATED TASKS

Positioning heans” on page 72

184 visual Composition

Chapter 44. Visual Composition Editor

185

186 Visual Composition

Chapter 45. The menu bar in visual composition

The following menus provide options unique to the Visual Composition Editor:

. 3 L1

Bean

The Bean menu provides options to perform the following tasks:

Save Bean

Saves the current bean and generates and
compiles its code.

Re-generate Code

Generates and compiles the code for the
current bean.

Run > In Applet Viewer

Saves the current bean, generates and
compiles its code, and runs the bean in an
applet viewer.

Run > Run main

Saves the current bean, generates and
compiles its code, and runs the bean in a
test frame.

Run > Check Class Path

Brings up the Class Path tab of the project
properties window where you can modify
the path for the current class. VisualAge
adds the path for each dropped bean.
However, if you are using other files, such
as .gif files, be sure to add their location to
the path.

Code Generation Options

Brings up the properties window for your

current composite. Tab options can include:

* Applet—Modify the runtime size and
name attributes and applet parameters for
an applet bean

* Program—Include runtime command line
arguments and properties for composite
beans running in main()

» Class Path—Modify the class path. See

* Code Generation—Allow code generation
and make event handling decisions. See

* Info—List information about the
composite

Modify Palette

Manipulates categories and beans in the
beans palette.

Fix Unresolved References

Changes the class of an unknown
component to one that is loaded into your
workspace. Before you select this, read
EChapter 62 Resolve Class References” anl

© Copyright IBM Corp. 1997, 2000

187

../../ide/tasks/ticlspth.htm

Construct Visuals from Source Reverse-engineers a visual composite from
Java source code. This option is available
only if the source class has a null
constructor. Before you select this, read

EChapter 12_BRean morphing” an page 43,

Tools

Run

Select Tools to help build and manipulate your user interface. The Visual
Composition Editor also provides such tools as Show Connections and Hide
Connections that lets you change how the free-form surface looks as you build
your user interface.

You can access all or some of these tools from the tool bar, which is just below the
menu bar in the Visual Composition Editor, and from pop-up menus.

The alignment tools are only available when using the null layout manager.

The anchor bean, indicated by solid selection handles, is the bean that serves as the
alignment reference. When you want to align beans with one another, select the
ones you want to move and select the anchor bean last. You can also change the
anchor bean by holding the Ctrl key and double-clicking on the new anchor bean.

Select j: Run to save the bean, generate code, compile the class, and run the
compiled bean in an applet window.

Properties

Beans

188 Visual Composition

Select % Properties to display the property sheet for the bean you selected. The
property sheet contains editable values for the selected bean. You can open the
property sheet for a selected bean either from the Visual Composition Editor or
Beans List window.

If you selected multiple beans and then Properties, a property sheet appears and
displays the common properties for the selected beans. When you change a
property on the property sheet, the change affects all the selected beans.

If you modify a setting and change your mind, click the Reset button and a
secondary window appears listing the modified properties. Select the box next to
each property you want to reset, click OK, and VisualAge returns the value to the
default setting.

List

Select J Beans List to display a list of the beans and connections used in your
user interface. You can perform many of the same tasks within the beans list as
you would in the Visual Composition Editor. This ability is particularly important
when you are working with components that are covered by other components.
For example, if your base bean is a panel using a border layout, another panel

used as the center component expands to fill all empty space. Performing tasks on
the covered border layout panel is difficult.

Show Connections

Select : to display the connections you create between beans. This tool works
on all connections only if nothing is selected. Otherwise, only the connections to
and from the selected beans are affected.

The Visual Composition Editor displays all connections by default.

Hide Connections

Select j Hide Connections to conceal the connecting links between beans. If
you wish to hide all connections, do not select any beans. Otherwise, select only
the beans with connections you wish to hide.

If your program has numerous connections, you can reduce the visual clutter by
hiding those not currently being modified.beans

Align left

Select E Align Left to move the selected beans so that their left edges are
aligned.

Align Center

Select * Align Center to move the selected beans so that their centers are
aligned vertically.

Align Right

Select g Align Right to move the selected beans so that their right edges are
aligned.

Align Top

Select III

aligned.

Align Top to move the selected beans so that their top edges are

Align Middle

Select I Align Middle to move the selected beans so that their centers are
aligned horizontally.

Chapter 45. The menu bar in visual composition 189

Align Bottom

Select @ Align Bottom to move the selected beans so that their bottom edges
are aligned.

Distribute Horizontally

Select @ Distribute Horizontally to move the selected beans so that they are
spaced evenly between the left and right container borders.

Distribute Vertically

Select L=21] Distribute Vertically to move the selected beans so that they are
spaced evenly between the top and bottom of the container borders.

Match Width

Select =21 Match Width to size the selected beans to the width of the anchor
bean.

Match Height
Select I"
bean.

RELATED COMNCEPTS

Match Height to size the selected beans to the height of the anchor

RELATED TASKS

RELATED REFEREMNCES

190 visual Composition

Chapter 46. Keys

You can use keys in the following ways while you are using this product:

Use the...

To...

Mindow keyd

Navigate within and among windows.

[accelerator keyd

Speed up certain actions in product windows.

Help keyd

Display help information.

When a plus sign (+) joins two key names, use them together. Hold down the first
key and press the second key.

Mnemonics (single underlined characters) are available for menu bar and
pull-down choices. To select a menu bar choice using the mnemonics, hold down
Alt and type the mnemonic for the choice that you want. (If the menu bar has the
focus, enter only the mnemonic.)

To select a choice on a pull-down menu, enter the mnemonic for the pull-down

choice.
Window keys

Use... To...

Alt Move the focus to and from the menu bar or close the system
menu.

Alt+F4 Close the primary window.

Alt+Spacebar Open the system menu for the primary window.

Arrow key Move the cursor from choice to choice.

Ctrl+Esc In Windows NT: Display the task list.

Ctrl+F5 In Windows platforms: Restore the primary window.

Enter Complete the selection of a menu bar choice or pull-down choice.
Also perform the action described on the push button that
currently has focus.

Esc Cancel a pull-down menu or cancel the action window if the
window contains a Cancel push button.

F10 Move the focus to and from the menu bar or close the system
menu.

Page Down or PgDn Scroll forward a page at a time.

Page Up or PgUp Scroll backward a page at a time.

Spacebar Select or deselect check boxes and list box choices. Also perform
the action described on the button that currently has focus.

Tab Move the selection cursor from field to field.

© Copyright IBM Corp. 1997, 2000

191

Accelerator keys

You can use the following keys, when applicable, to speed up actions within the

product windows:

Use...

To...

Alt+up arrow

In UNIX platforms: Move through all active windows.

Alt+Right Mouse Button

In UNIX platforms: Minimize the active window.

Ctrl+zZ Reverse (undo) the operation most recently performed on the
bean.
Ctrl+Y (Redo) Remove the effect of the last Undo operation.

Ctrl+Alt+Right Mouse

Button

In UNIX platforms: Select several parts at a time using the
right mouse button.

Ctrl+Click

Select several parts at the same time. In UNIX platforms, use
the right mouse button.

Ctrl+Double-click

Assigns the anchor part in multiple selection.

Ctrl+X

Move selected beans or information to the clipboard.
Note: Select the beans or text before using the Ctrl+Delete
keys.

Ctrl+E Exit (close) the current window.

Ctrl+S Saves any changes you made to the part.

Ctrl+G Generate bean code for the bean currently being edited. If the
bean has no primary bean, VisualAge saves the bean.

Ctri+C Copy selected beans or information to the clipboard.

Ctrl+P Add a new bean to the beans palette.

Ctrl+Vv Load the mouse pointer with the contents of the clipboard.

Delete Delete the selected beans or text.

Shift+Drag Handles

To size in one direction only.

Shift+Control+Drag

To copy and move the copy.

Help keys

192 visual Composition

Use... To...

F1 Display general help for the active window. You can use this
key on any window.

Esc Display the previous help window.

Alt+F4 Close the help window.

Shift+F10 Display help for Help. You can use this on any help window.

Chapter 47. Pop-up menus for the Visual Composition Editor

VisualAge provides pop-up menus from the following:
* Free-form surface

* Beans palette

* Beans

» Connections

These menus provide options for adding or making changes to various elements of
theVisual Composition Editor or bean design. Depending on the elements you
work with, the following pop-up menu items are available:

Add Bean from Project

Select Add Bean from Project from the palette pop-up and the Modify Palette
window appears. This version of the Modify Palette window provides an option
for you to add beans from your project to the palette.

Browse Connections

Select Browse Connections to show or hide connections to or from the bean.

Menu choices

Show To Displays the connections for which the bean is the target.

Show From Displays the connections for which the bean is the source.

© Copyright IBM Corp. 1997, 2000 193

Show To/From Displays the connections for which the bean is either the target

or source.

Show All Displays all the connections among beans in the Visual
Composition Editor window.

Hide To Conceals the connections for which the bean is the target.

Hide From Conceals the connections for which the bean is the source.

Hide To/From Conceals the connections for which the bean is either the target
or source.

Hide All Conceals all connections among beans in the Visual

Composition Editor window.

Change Bean Name

Select Change Bean Name to change the name of a bean placed in the Visual
Composition Editor.

You can give beans descriptive hames to more easily identify them. For example,
you can change the default name Buttonl to Delete. Change Bean Name does not
change the label that appears on beans such as push buttons.

When you change the name of any bean, you change the beanName property. This
name appears in the status area at the bottom of the Visual Composition Editor
window as you make connections, and identifies the bean in the beans list.

Note: For subclasses of java.awt.Component, the bean name is the same as the
name property of the bean.

For a nonvisual bean, the name also appears as text beneath the icon for the bean
on the free-form surface.

Change Connection Name

From the connection pop-up menu, select Change Connection Name to change the
name of a connection in the Visual Composition Editor.

You can give connections descriptive names to more easily identify them. For
example, you can change the name of a connection that changes the background
color from buttonlactionPerformed to ChangeBackgroundColor.

Change type

Select Change type to change the class of a variable bean on the free-form surface.
The default class for a dropped variable bean is java.lang.Object. The default class
for a torn-off property variable is the same as the declared type of the property.
For example, if you set a panel to CardLayout and tear off its layout property, the
variable type is LayoutManager, not CardLayout.

Connect

194 visual Composition

To make a connection between two beans, select Connect from the pop-up menu.
When you select Connect, the list of preferred features associated with the bean
appears.

Select a feature from the Preferred features list. If the feature you want is not in
the Preferred features list, select Connectable Features. A connection window
appears that lists the available features associated with the bean.

Connectable Features

The Connectable Features option is available from the bottom of the Connect
option on the pop-up menu. Select Connectable Features to see a complete list of
the available features (properties, events, and methods) for the bean that you are
connecting. The features in the list depend upon the bean and features with which
you are working. For example, since an event cannot be a target, the target
connections list does not include events.

If the Connectable Features menu does not display the feature you are looking for,
check the Show expert features check box. If the feature is designated as expert, it
appears in the list.

Delete

Click on Delete to delete a bean and its connections, just the bean, or just the
connections. You can use multiple selection to delete more than one bean at a time.

Event to Code

Select Event to Code from a bean’s pop-up menu to create a connection that calls a
code whenever a specified event occurs. The code can be an existing method or a
newly written method. For more information see t‘Chapter 59 Fvent-to-Cadd

Layout

Select Layout to adjust the placement of beans in a container using null-layout or
to adjust the placement of a container bean on the free-form surface. You can
adjust the layout of one bean or adjust placement of several beans in a container. If
you select one bean, you can adjust its placement horizontally or vertically, by
selecting Distribute. If you select two beans, you can adjust:

» Alignment to each other—Ileft, center, right, top, middle, bottom
* Relative size to each other—match width, match height, both
 Distribution—horizontally or vertically in the surface

If you select three or more beans, you can make all of these adjustments as well as
distribution horizontally or vertically within a bounding box.

Distribute

Select Distribute to space visual beans evenly within a specified area.

Horizontally in bounding box

Select Horizontally in bounding box to space the selected beans evenly between
the right and left edges of the bounding box they occupy. This item appears only if
three or more beans are selected.

Chapter 47. Pop-up menus for the Visual Composition Editor 195

Horizontally in surface

Use Horizontally in surface to space the selected beans evenly between the right
and left edges of the bean on which they were dropped. If the selected beans sit
directly on the free-form surface, VisualAge distributes them across the entire
scrollable width of the free-form surface.

Vertically in bounding box

Use Vertically in bounding box to space the selected beans evenly between the
top and bottom edges of the bounding box they occupy. This item appears only if
three or more beans are selected.

Vertically in surface

Use Vertically in surface to space the selected beans evenly between the top and
bottom edges of the bean on which they were dropped. If the selected beans sit
directly on the free-form surface, VisualAge distributes them across the entire
scrollable height of the free-form surface.

Layout Options

Select Layout Options to modify the constraints of a component using
GridBagLayout. You can also modify these constraints from the property sheet. The
pop-up layout options include the following:

Option Description

Fill Horizontal Sizes the component to fill the cell horizontally when the cell is
larger than the component.

Fill Vertical Sizes the component to fill the cell vertically when the cell is
larger than the component.

Fill Both Sizes the component to fill the cell horizontally and vertically
when the cell is larger than the component.

Remove Fills Removes any specified fills to the component.

Weight Horizontal Assigns a weight of 1.0 to the horizontal placement of the

component to prevent them from clumping together in the
center of their container. The distribution of extra space is
calculated as a proportional fraction of the total weightX in a
row and weightY in a column.

Weight Vertical Assigns a weight of 1.0 to the vertical placement of the
component to prevent them from clumping together in the
center of their container. The distribution of extra space is
calculated as a proportional fraction of the total weightX in a
row and weightY in a column.

Remove Weights Removes any weight assignments.
Remove Padding Removes internal padding from the component.
Remove Insets Removes the external padding (padding between the component

and the edges of its cell) from the component.

Modify Palette

Select Modify Palette from the palette pop-up menu; the Modify Palette window
appears.

196 visual Composition

Morph Into

Select Morph Into to change the class or type of a component. For example, you
can use this capability in a visual composite to change AWT components to Swing
components with few (if any) changes to property or connection settings. For more
information before you proceed, see L ing”

Open

Select Open to open an editor for the bean you selected. If the selected bean has
embedded visual beans, the Visual Composition Editor opens for the bean.

Parameter from Code

Select Parameter-from-Code from the bean pop-up to complete a connection that
calls code whenever a specified event occurs.

Promote bean feature

Select Promote bean feature to make a feature of an embedded bean accessible
outside the scope of the current composite.

Quick Form

Select Quick Form to generate a visual layout from the property interface of a
bean.

Refresh Palette

Select Refresh Palette from the palette pop-up to view changes made to the
palette, such as recently added beans and changes to icons. Refresh Palette also
displays beans for features not loaded at the project level.

Refresh Interface

Select Refresh Interface to refresh the bean interface when you add methods or
other bean information. The changes are reflected in the Visual Composition Editor.

Reorder Connections From

Select Reorder Connections From to change the order in which the connections are
executed.

Since the connections from an object with the same notification id run in the order
in which they are made, you must use Reorder Connections From to place the
connections in the order that want them to occur.

Restore shape

Select Restore shape to redraw the selected connections in their original shape.

Chapter 47. Pop-up menus for the Visual Composition Editor 197

Set Tabbing

Select Set Tabbing to specify the tabbing order for beans that support tabbing. The
tabbing order determines the sequence in which beans receive focus when the user
presses the Tab, backtab, or cursor movement keys.

The initial tabbing order is determined by the order in which you add the beans.
Tabbing options include:

Tabbing Option Description

Default Ordering Sets tabbing order from left to right, top to bottom.

Show Tab Tags Shows tab tags next to all beans included in the tabbing
order.

Hide Tab Tags Hides the displayed tab tags.

You can change the tab order by dragging the tab tags to the desired order.

Show Large Icons

Select Show Large Icons from the palette pop-up to modify the size of icons on
the palette and the Beans List. Show Large Icons is a toggle with the default set to
display 16x16 icon images. The large icons are 32x32.

Switch to

Select Switch to when using the CardLayout manager. The CardLayout manager
arranges the components in a linear depth sequence (like a deck of cards). Switch
to is also available for the Swing bean, JTabbedPane.

Switching to... Does this...

First Arranges the cards so that the first card is on the top of the
deck.

Next Moves the next card to the top of the deck.

Previous Returns the card previously on the top of the deck to the top.

Last Moves the last card in the deck to the top.

Tear-off property

198 Visual Composition

Select Tear-off property to work with a property as if it were a stand-alone bean.
The torn-off property is a variable representing the property and not actually a
separate bean.

When you select Tear-off property, VisualAge displays the list of properties for the
bean you are tearing from. After you select a property from the list, you can drop
the torn-off property on the free-form surface. VisualAge creates a connection
(represented by a blue double-headed arrow) between the original bean and the
torn-off property. You can then form other connections to or from the torn-off
property.

RELATED CONCEPTS

Chapter 47. Pop-up menus for the Visual Composition Editor 199

200 visual Composition

Chapter 48. Modify Palette window

Use this window to perform the following actions:
* Add and remove a category

* Add and remove a bean

* Add and remove a grouping separator

* Reorder beans

* Rename a category

Once you have added beans to the palette, you can place them on the free-form
surface, in the beans list, or on an existing container bean, in the same way you
place beans that VisualAge provides.

Choose this button... To perform this action...

Browse Locate the class/file for the bean.

Add to Category Add a bean to the selected category.

New Category Create a new category for the palette.

Rename Category Change the name of the selected palette
category.

Remove Remove the selected bean or category from
the palette.

Add Separator Place a separator line within the category

and drag it to the desired position.

Restore Original Beans Restore the order and composition of the
base categories. User created categories or
beans are not affected.

OK Perform the action and exit the window.

Cancel Cancel the action.

Bean type
The bean type field specifies the form of bean that you can add.
Select... If you want...
Class To add a bean to the palette.
Serialized To add a serialized bean to the palette.

Class name or file name

This field name changes according to the specified bean type.

If you specified... The field name is...
Class Class Name
Serialized File Name

If you created the bean, the name you specified appears in the Name field.

© Copyright IBM Corp. 1997, 2000 201

Open the Modify Palette window from the palette pop-up or by clicking on Bean
and then Modify Palette. In the Name field, type the class name of the bean that
you want to add. If you created the bean, this is the same name you specified
when you originally created the bean. You can use the Browse button to locate the
correct file or class name.

Palette list

202 visual Composition

The Palette list displays the current categories where you can add a bean. If you
create a new category, it appears in this list. You can expand the category for a list
of its beans and you can remove beans and categories by selecting the item and
then clicking on Remove.

RELATED COMNMCEPTS

RELATED TASKS

Chapter 49. Choose Bean window

2 -t
Select the on the palette to retrieve a bean and drop it on the beans list,
free-form surface, or an existing container bean. You must supply the fully
qualified class name to add the bean from this window. You can, however, use the
Browse button to locate the name.

Use the Choose Bean window under the following circumstances:
* When the bean does not appear on the beans palette.
» For beans that you do not use frequently.

Note: You cannot add a bean inside itself and you cannot embed a composite bean
inside itself.

Fields

Bean type

You can add a bean as a class, a serialized bean, or as a variable. When you add a
bean as a class, the default constructor for the class is used when the application
runs. This means that a real object is created, not a variable that points to a real
object defined elsewhere.

From Bean Type, select the type of bean you want to add.

Select... If you want...

Class To add an instance of a bean.

Variable To add a reference to an instance of a bean.

Serialized To add a serialized bean.

[ENTERFPRISE] To add a variable with a transaction context, which
ensures that all operations performed on the

Transacted Variable (Persistence instance referenced by the variable are scoped within

Builder) a single unique transaction.

Class name

This field name changes according to the specified bean type.

If you specified... The field name is...
Class Class Name

Variable Interface/Class Name
Serialized File Name

© Copyright IBM Corp. 1997, 2000 203

In the Class name field, type the fully qualified name of the Java class. You can
use the Browse button to locate the name or, if you added the bean previously, it
appears in the drop-down list box.

Name

204 visual Composition

Type a name in the Name field for the bean you want to drop. Bean names may
include letters and numbers, but must begin with a letter and include no spaces.
This text appears under the bean icon on the free-form surface. If you leave this
field blank, VisualAge assigns a hame for you.

RELATED CONCEPTS

RELATED TASKS

Chapter 50. Promote Features window

Use this window to select the methods, properties, and events that you want to
add to the public interface for the composite bean.

Fields

Push buttons

Promote name

In the Promoted features list, double-click the name of the promoted feature and
enter the name that you want the property, method, or event to have when added
to the public interface for the bean. When you move a feature to the list of
promoted features, a default name appears in this field.

>> Promote
Click on >> to add the property, method, or event to the Promoted features list.
Click on OK to add the feature to the public interface of the bean. The feature that
you promote appears in the Connectable Features window and in the property
sheet.

<< Remove

Click on << to delete the property, method, or event from the Promoted features
list. You must first select the feature from the Promoted features list.

RELATED COMNMCEPTS
RELATED TASKS

RELATED REFEREMNCES

© Copyright IBM Corp. 1997, 2000 205

206 visual Composition

Chapter 51. Reorder Connections window

Use this window to change the sequence in which connections from the selected
bean are run.

If you make several connections from the same event or property of a bean, the
connections for the event or property run in the order in which you made the
connections. You can change the sequence by selecting and dragging the listed
connection.

RELATED CONCEPTS

RELATED TASKS

RELATED REFEREMNCES

© Copyright IBM Corp. 1997, 2000 207

208 visual Composition

Chapter 52. Quick Form SmartGuide

Use the Quick Form SmartGuide to define and register quick forms for use in the
Visual Composition Editor.

Parts of this SmartGuide

In the Quick Farm windowl you specify the properties to be included, the

components to be dropped, and the location of the finished quick form. You can
also register a pre-existing visual bean as a quick form from this window.

In the Quick Farm | ayout windowl you specify how you want VisualAge to lay

the components out.

In the Bave Quick Farm windowl you specify how you want VisualAge to save

and register your quick form for reuse.

Quick Form window

In this window, you specify the properties to be included, the components to be
dropped, and the location of the finished quick form. You can also register a
pre-existing visual bean as a quick form from this window.

Fields

Select a parent for the quick form, which determines where the quick-form
components will be dropped. Any valid container bean in the composite will
appear in this list.

Use an existing registered quick form, a list of all quick forms already
registered for objects of this type.

Create a new quick form, a table in which you map individual properties to

quick-form components. Filter the list of registered quick forms by clicking on
the Swing and AWT check boxes.

To register an existing component or composite as a quick form from this window,

click on Manage Quick Forms. The Quick Form Manager window opens.

Quick Form Layout window

In this window, you specify how you want VisualAge to lay the components out.

Fields

Number of columns per row, which determines how many columns to set up in
the layout, regardless of whether labels are used.

Layout style

— GridBag into panel. With this setting, VisualAge lays down a panel on top of
the parent container bean, sets the newly dropped panel to GridBaglLayout,
and drops the quick-form components into the newly dropped panel. (For
parent-container layouts other than <null> or GridBag, this option is used
automatically; the radio buttons are not enabled.)

— Free flow into parent. This option is available only if the parent container
bean is empty and already set to either <null> or GridBagLayout. In this case,
VisualAge drops the quick-form components directly into the parent
container.

© Copyright IBM Corp. 1997, 2000 209

Properties to quick form, a reorderable list of the properties you chose to
include in the quick form. Use the Up and Down buttons to reorder items in the
list.

Property quick form details, which summarizes how each property will be
represented in the quick form, as follows:

— The visual bean that you chose to represent the property (read-only)
— Include label check box

— Radio buttons for label alignment: Top or Left

— Label text field

— Columns to span, the number of columns you want the property’s
representation to take up in the layout

The Preview pane reflects your layout choices as you make them. When you click
on Finish, VisualAge implements the quick form without saving it for reuse. To
save the quick form for reuse, click on Next.

Save Quick Form window

In this window, you specify how you want VisualAge to save and register your
quick form for reuse.

210 visual Composition

Fields

Save quick form, which determines whether the quick form will be saved in a
separate class. By default, it is not checked.

Project, the name of the project in which you want the class to be stored.
Package, the name of the package in which you want the class to be stored.
Class name, the name of the quick-form class.

Quick form name, the name of the quick form as maintained by the quick-form
manager.

Quick form short description.

Register quick form, which determines whether to register the quick form. By
default, it is checked, but it is enabled only if Save quick form has been
checked.

RELATED COMNCEPTS

RELATED TASKS

FChanter 21 Creating UL Euoiis i ok forme on bane 71

Chapter 53. Quick Form Manager window

Use this window to check which quick forms are registered for a given type. You
can also register or unregister quick forms.

Areas in this window

* Types, which lists the types that currently have quick forms registered for them.
This list does not include product defaults.

* Registered quick forms, which lists the quick forms that are registered for the
selected type.

Push buttons

To register a quick form, click on Register New. The Register Quick Farmd window
opens.

To delete a registration, select the quick form and click on Unregister. This action
does not delete the quick form class.

To apply your changes, click on OK.
RELATED CONCEPTS

RELATED TASKS

Fehanter 21_Croating GLL o waith ook forme =

© Copyright IBM Corp. 1997, 2000 211

212 visual Composition

Chapter 54. Register Quick Form window

Use this window to register a visual bean as a quick form for a specific property
type.

Fields

Quick form name, a nickname for the quick-form class as applied to this
property type.

Select a type to register the quick form against, the designated property type.
Click on Browse to open a class-selection dialog.

Select a visual bean to represent the quick form, the designated visual class.
This can be a component or a visual composite. Click on Browse to open a
class-selection dialog.

Select the target property for the visual bean, the property to which VisualAge
will draw the connection.

Select the target event for the visual bean, the event that will trigger
property-value synchronization from the visual bean. If the property you
specified earlier is bound, this field is automatically set to the event associated
with the bound property.

Quick form short description, text that, in the future, will help you decide
when to use this particular quick form.

Include label, which determines whether VisualAge inserts a label with the
visual bean used to represent the quick form. The initial value of the label is set
for you, but you can edit it at the time you actually use the quick form.

RELATED COMNMCEPTS

RELATED TASKS

Fohanter 21 Croating GLL] ek forme =

© Copyright IBM Corp. 1997, 2000 213

214 visual Composition

Chapter 55. Connection windows

Use the connection windows to select the feature that you want to use in a
connection.

* The Start Connection From window appears when you select Connectable
Features from the connections pop-up window of the bean you are connecting
from.

* The Connect feature_type Named window appears when you select Connectable
Features from the preferred features list of the bean you are connecting to.

Fields

The values in these fields vary depending on the following:
* The bean you selected

» If you selected the free-form surface

* How you added features to the bean interface

Push buttons
To use the selected method, property, or event and continue, click on OK.

The Set parameters button appears when the target of your connection is a
method, writable property, or script. Click on this button to specify constant input
parameters for the method.

RELATED COMNMCEPTS

RELATED TASKS

Method

From the Method list, select the method you want to use. The list of methods

available depends on the bean you selected. The act of changing or setting the
value of a property can be considered a method, so property names might also
appear in this list.

© Copyright IBM Corp. 1997, 2000 215

Property

From the Property list, select the property you want to use. The list of properties
available depends on the bean you selected.

Event

From the Event list, select the event you want to use. The list of events available
depends on the bean you selected.

Details

The Details field provides information about the selected feature.

216 Visual Composition

Chapter 56. Property-To-Property Connection window

Use the Property-to-Property Connection — Properties window to change the source
or target of a connection.

Tanget prapery
tala W]iTe]t
AL Sie cangtPogiar
minimumSize J columns
FErmie cursor
parenl =] |echolhe =
Source avan Tanget event

I":'I_'I'.'z‘ j |'flll.ll e j

I Shivw eoer leatures

Selact sounce and tangsl propery for thes conmecion.

|' Ok -I Cancal I FiEsel Dalele Fewersa Help

Push buttons

To update the source and target properties or event of the connection and close the
window, click on OK.

To back out of the window without making changes, click on Cancel.

To reset the source and target connections to the original configuration, click on
Reset.

To switch the source and target properties of the connection, click on Reverse.

To delete the connection, click on Delete.

Source property

The Source Property field shows the current source for the connection. To update
the connection, select a new source property from the list and then click on OK.

If you cannot find the property you want, check the Show expert features check
box. If the property is designated as expert, it appears in the list.

© Copyright IBM Corp. 1997, 2000 217

Target property

The Target Property field shows the current target for the connection. To update
the connection, select a new target property from the list. Then click on OK.

If you cannot find the property you want, check the Show expert features check
box. If the property is designated as expert, it appears in the list.

Source event

The Source Event field lists the event associated with the source of a connection.
To update the connection, select a new source event from the list and then click on
OK.

Setting this field enables you to control whether the data synchronization is
unidirectional, bidirectional, or only performed at initialization. This field also
enables you to use an unbound property as the source of a connection. When the
event is triggered, the target is aligned with the source value. If you do not set this
value and the property is not bound, VisualAge enables you to make the
connection, but the target property value is not updated when the source property
value changes.

Target event

218 visual Composition

The Target Event field lists the event associated with the target of a connection. To
update the connection, select a new target event from the list. Then click on OK.

Setting this field enables you to control whether the data synchronization is
unidirectional, bidirectional, or only performed at initialization. This field also
enables you to use an unbound property as the target of property-to-property
connections. When the event is triggered, the source is aligned with the target
value. If you do not set this value and the property is not bound, VisualAge
enables you to make the connection, but the source property value is not updated
when the target property value changes.

RELATED COMNCEPTS

RELATED TASKS

Fobanter 25 © : 5 21

RELATED REFEREMNCES

o = © | TS 51

. H H 7

] H H 7

Chapter 57. Event-To-Method Connection window

Use the Event-to-Method Connection — Properties window to change either end
point of an event-to-method connection.

Euton (ackonPeroemed’) —» TexFielo (el

I Fass crvend Cais

Ewanl kb
compo nsntuwanis TeoadFie dil

o nEntH ol wmEmng]
CORPONEATSFS0 resEieiFIcus —1
componeEntEesrad |.-':n‘r|:l-"||-r|'irr 1 -
companentShoem i | Ll-l

™ Shosy &g sl st nes

S ElECT BOCE envenl Bnd inngel s figd for thes conneclion

oK | Cancel J Rizspt | Dzl pam Gl pErameiers | Halp I

Push buttons

To update the source and target connection features and close the window, click on
OK.

To delete the connection, click on Delete.

To specify constant parameter values for the target method, click on Set
parameters.

Pass event data

The Pass event data check box indicates whether connection code will pass data,
which is sent in the event notification, to the target as input. The specific nature of
the data varies by type of event.

This setting affects the visual cues that VisualAge uses to indicate incomplete
connections. Since event data is the first parameter value passed, if the target
method or code requires only one parameter and Pass event data is selected, the
connection appears complete. If the target method or code requires more than one
parameter, the connection continues to appear incomplete.

If this box is cleared and inputs are required, VisualAge does not attempt to pass
event data to the target, and the connection appears incomplete.

© Copyright IBM Corp. 1997, 2000 219

If an event has more than one data parameter and is not specified in another order,
the data is passed to the target’s parameter in order.

Event

The Event field shows the current source event for the connection. To update the
connection, select a new source from the Event list. Then click on OK.

Method

The Method field shows the current target method for the connection. To update
the connection, select a new target from the Method list. Then click on OK.

Show expert features

Features that are designated as expert do not appear by default in the feature list.
When you select the Show expert features check box, VisualAge displays all
features, including those designated as expert.

Set parameters

When you select the Set parameters button, the Constant Parameter Value
Properties window opens. Use this window to specify parameter values for the
connection.

If you specify parameter values and change your mind, click on Reset; a secondary
window appears listing the modified properties. Select the box next to each
property you want to reset and click on OK. VisualAge reverts the value to the
default setting.

RELATED COMNCEPTS

RELATED TASKS

RELATED REFEREMNCES

FChanter 55 C | o >1g

. H H 7

. H H 7

220 Visual Composition

Chapter 58. Constant Parameter Value properties window

Use this window to supply a parameter as a constant value. In each parameter

field, enter the constant value to be assigned to the specified parameter at run
time.

The fields provided in this window depend on the type and number of parameters
defined by the method.

O, Cancal I Halp |

RELATED CONCEPTS

¢ H E1]

RELATED TASKS

o

RELATED REFEREMNCES

© Copyright IBM Corp. 1997, 2000 221

222 Visual Composition

Chapter 59. Event-to-Code Connection window

Use the Event-to-Code Connection window to create a connection that calls code
whenever a specified event occurs.

Fields

- ECode pane?

Push buttons
To complete the connection and close the window, click on OK.
To specify parameter values that are constant, click on Set parameters.

To close the window without completing the connection, click on Cancel.

Method class

The Method class field lists the class being edited and all its superclasses. By
selecting one of the superclasses, you connect your code to code contained in the
superclass. The Method class field updates according to the class selected.

Event

From the Event list, select the event you want to use. The list of events available
depends on the bean you selected.

Methods

This field provides a drop-down list that contains a placeholder name for new
methods and the names of methods you previously created. If you select <new
method> and create a new method, VisualAge assigns a default method name by
combining the bean name with the event type. For example, if you create an
Event-to-Code Connection with buttonl as the source and actionPerformed as the
event with no event data passed, VisualAge assigns the name
buttonl_ActionPerformed to the new method. You can make the method more
descriptive and easier to recognize by changing its name.

Note: The connection name in the beans list is connEtoC1.

Code pane

The method code pane is the large pane located below the event and method
fields. Enter your method code in this editable pane. You can also change the
name, return value, or parameters of the method by editing the method code. The
code pane pop-up menu provides options to assist in editing your code.

© Copyright IBM Corp. 1997, 2000 223

Note: You can use code assist in this code pane. For information on this tool, refer
to Getting Started.

Pass event data

224 Visual Composition

If you want the event to pass its parameters to the new method, check Pass event
data at the bottom of the panel.

The Pass event data check box indicates whether connection code will pass data,
which is sent in the event notification, to the target as input. The specific nature of
the data varies by type of event.

This setting affects the visual cues that VisualAge uses to indicate incomplete
connections. Since event data is the first parameter value passed, if the target
method or code requires only one parameter and Pass event data is selected, the
connection appears complete. If the target method or code requires more than one
parameter, the connection continues to appear incomplete.

If this box is cleared and inputs are required, VisualAge does not attempt to pass
event data to the target, and the connection appears incomplete.

If an event has more than one data parameter and is not specified in another order,
the data is passed to the target’s parameter in order.

If the event and method parameters match in type, VisualAge defaults to Pass
event data. If the event does not have or does not accept parameters, the default is
to not pass event data.

RELATED COMNCEPTS

. ET]

RELATED TASKS

RELATED REFEREMNCES

. H H 7

1 H H 7

Chapter 60. Parameter-from-Code Connection window

Use the Parameter-from-Code Connection window to complete a connection that
calls code whenever a specified event occurs. The Parameter-from-Code
Connection window is similar to the Event-to-Code Connection window, except it
is used to complete a connection that requires further parameters.

Note: You can use code assist in this source pane. For information on this tool,
refer to Getting Started.

publis java, lom Snciny comnEvels Valaag) [

I'WLEID DELdc

k

Al L
| St 3 i e e i] el i 1 e
=

RELATED COMNMCEPTS

RELATED TASKS

© Copyright IBM Corp. 1997, 2000 225

226 Visual Composition

Chapter 61. Morph Into

Use the Morph Into window to change the class or type of a component.

To change the class, type the fully qualified name of the new class in the entry

field provided. To pick a class from the list of classes loaded in your workspace,
click on Browse.

To specify a new type, select one of the following. Not all choices may be
available, depending on the current class and type of component.

* Class, a fully initialized instance.

* Variable, an uninitialized instance.

» Serialized, a fully initialized, serialized instance. If you select Serialized as the

new type, you must replace the displayed class name with the name of an .ser
file.

Connections to features that are no longer valid in the new class remain until code
is regenerated for the composite. To delete such connections instead, select Delete
invalid connections before you click on OK to start the process.

RELATED COMNMCEFPTS

RELATED REFEREMNCES

© Copyright IBM Corp. 1997, 2000 227

228 Visual Composition

Chapter 62. Resolve Class References

Use the Resolve Class References window to change the class of an unknown
component to one that is loaded into your workspace.

When VisualAge encounters an unknown class reference, it attempts to find the
correct class name anywhere in the repository. VisualAge then displays the name
of the first class name it finds.

Push buttons

To leave the class unresolved for the moment, click on Ignore.

To pick an alternative class name from the standard class dialog, click on Replace.

To proceed with the change, click on OK.
RELATED CONCEPTS

FChonter 1o B g %|

© Copyright IBM Corp. 1997, 2000 229

230 visual Composition

Chapter 63. String Externalization Editor

Use the String Externalization Editor window to specify how you want a given
String property value separated for translation. Select one of the following radio
buttons:

* Do not externalize string, for leaving literal String values in the generated code
» Externalize string, for specifying String separation

Resource type radio buttons
» List resource bundle
* Property resource file

Fields

* Bundle, the name of the resource bundle in which to define the String resource
* Key, the locale-independent string used to retrieve the resource

* Value, the locale-dependent string value of the resource

Push buttons
To create a new resource bundle, click on New.

To pick from an existing resource bundle, click on Browse.
RELATED CONCEPTS

RELATED TASKS

© Copyright IBM Corp. 1997, 2000 231

232 Visual Composition

Chapter 64. Externalizing: Package.Class

Use this window to specify how you want strings in this class separated for
translation.

Resource type radio buttons
» List resource bundle
* Property resource file

Fields

* An unlabeled entry field through which you specify the resource bundle name.
The name of the last bundle accessed, if any, appears in the field. A maximum of
eight bundle names is selectable from the drop-down list.

» Strings to be separated, which contains the following information. You can edit
all values.
— An unlabeled column that indicates how VisualAge will treat the item. One of

the following graphics appear: Translate, Never translate, or
Skip.

— Kaey, the locale-independent string used to retrieve each resource.

— Value, the locale-dependent string value of a given resource.

» Context, which shows you where the selected string occurs.
Push buttons

To create a new resource bundle, click on New.

To pick from an existing resource bundle, click on Browse.

This window lists those strings that have not been previously externalized or

marked . To make a string previously marked appear in this window, find

the string in the code and delete the comment at the end of the line: //$NON-NLS-1$
RELATED CONCEPTS

RELATED TASKS

© Copyright IBM Corp. 1997, 2000 233

234 visual Composition

Chapter 65. BeaniInfo page

Use the BeanlInfo page of the class/interface browser to view, define, or modify
bean interface features. These features, consisting of properties, events, and
methods, represent the characteristics and behavior of your class. When you add
features in the BeanlInfo page, you define the external view of your bean to
consumers who use the bean. By contrast, when you compose a composite bean in
the Visual Composition Editor, you define the internal content of the bean.

When you add a new feature in the BeanInfo page, VisualAge generates code for
the feature in the bean class. For some features, particularly properties, you might
not need to modify this generated code. Additionally, VisualAge generates code
that describes the feature in the BeanInfo class for the bean. If a BeanInfo class
does not exist for the bean, it is created when you add the first feature in the
BeanInfo page. You can also create a Beanlnfo class from the Features menu. See
the lavaSoft home page for links to detailed information about the JavaBeans
specification and Beanlnfo.

If you do not want your bean to inherit features from its superclass, turn off
Beaninfo inheritance before a Beanlnfo class is created for your bean. If Beanlnfo is
not inherited from the superclass, only features defined in your bean are available
to bean consumers. This means that no inherited features are available for
connections or the property sheet when your bean is embedded in another bean.
BeanlInfo inheritence does not affect accessibility within your class to inherited
methods and fields. To control Beaninfo inheritance, select Options from the
Window menu. Then, select Inherit BeanInfo of bean superclass in the Visual
Composition pane.

If you edit an embedded bean in the Visual Composition Editor and then change
its features in the Beanlnfo page, be sure to refresh the bean interface when you
return to the Visual Composition Editor. Do this by selecting Refresh Interface
from the bean’s pop-up menu in the Visual Composition Editor.

From the BeanlInfo page, use either the Features menu or the tool bar, or both, to
manage bean features. Open the Features menu either by selecting it from the
menu bar or by opening it as a pop-up menu from the Features pane.

RELATED TASKS

RELATED REFEREMNCES

© Copyright IBM Corp. 1997, 2000 235

http://www.java.sun.com/

Features pane—Beaninfo page

Use this pane to view locally defined features for a bean. To view inherited
features, browse the bean that defines the features. Initially, all local features except
hidden and expert features are listed.

To specify which features are listed, open the Features menu, select Show, then
select a choice to filter the list. The title of the Features pane reflects its filtered
contents. The features that are listed for each title are as follows:

Option Description

Features All features of the bean

Normal Features All features except hidden and expert features

Property Features Features that represent bean properties

Event Features Features that report the occurrence of an event in your
bean

Method Features Features that provide bean behavior

Expert Features Features that are marked in BeanInfo as expert

Hidden Features Features that are marked in BeanInfo as hidden

Each listed feature is preceded by a symbol that indicates the feature type:

J*E Property

Event

s
IZTI Method

The following superscripts provide information about features in the pane:

Bound

Constrained

Expert

Hidden

Indexed

Readable

£ D —ImMmoD

Writeable

236 Visual Composition

If you select a feature in the Features pane, the following information appears in

other areas of the BeanInfo page:

» Underlying classes, interfaces, and methods of the feature are listed in the
Definitions pane.

* Bean information for the feature appears in the Source pane.

» The fully-qualified name of the feature appears in the status area.

RELATED TASKS

RELATED REFEREMNCES

Definitions pane—BeanInfo page

Use this pane to list the underlying classes, interfaces, and methods that define
features listed in the Features pane. If no features are selected, the Definitions pane
is empty. If you select a feature, definitions for the selected feature are listed.

If you select a definition in the Definitions pane, the following information appears

in other areas of the BeanInfo page:

* Source code for the class, interface, or method appears in the Source pane.

» The fully-qualified name of the class, interface, or method appears in the status
area.

RELATED REFEREMNCES

Information pane—Beaninfo page

Use this pane to view or edit bean information for a bean or feature. The
information is obtained from the Beanlnfo class for the bean, if it exists, or by bean
reflection.

The content of the Information pane depends on whether you have selected a
feature in the Features pane. If a feature is selected, information is displayed for
the selected feature. Otherwise, information is displayed for the bean.

The title also depends on whether the information is obtained from Beaninfo or by
reflection. For example, if information is displayed for a bean by reflection, the title
of the Information pane is Bean Reflection Information. If the information is
obtained from Beanlinfo, the title is Bean Information.

You can modify information in this pane by selecting the item and editing its value
field, as follows:

» Direct entry. In some cases, you simply enter a value in the field.

Chapter 65. Beanlnfo page 237

» Selection from a drop-down list. To set boolean information, select True or

False. To set a type (such as designating a property editor class), select from the
list of classes that are valid for that purpose.

Setup of enumeration constants. You can establish valid enumeration constants
for a property by editing Enumeration Values. You enter identifier/value pairs;
when an instance of the bean is dropped and edited later, the identifiers appear
as selectable values in the property sheet for the bean. (For examples of this,
open JComponent to the BeanInfo page: Look at alignment and orientation
properties.)

RELATED COMNCEPTS
RELATED TASKS

RELATED REFEREMNCES

Source pane—Beaninfo page

Use this pane to view or edit source code for a feature definition. The Source pane
is displayed when you select a class, interface, or method in the Definitions pane.

RELATED CONCEPT
RELATED REFEREMNMCES

Status area—BeanlInfo page

238 Visual Composition

Use the status area at the bottom of the Beanlnfo page to view the fully-qualified
name of a selected feature or feature definition.

If you select a feature in the Features pane, the status area shows the feature
name.

If you select a class, interface, or method in the Definitions pane, the status area
shows the name of the selected item.

If nothing is selected, a message to that effect is displayed in the status area.
RELATED REFEREMCES

Chapter 66. BeanInfo page menus

Several menus are available in the BeanIlnfo page that you can use to work with
beans and their features. You can use the following menu bar choices to work with
features and related information:

» Edit: Use with the Source pane

» Features: Use with the Features pane

» Definitions: Use with the Definitions pane

» Information: Use with the Information pane

RELATED REFEREMNCES

Features—BeanInfo page

Use this menu to define or modify bean interface features. You can open the
Features menu either from the menu bar or as a pop-up menu from the Features

pane.

You can perform the following tasks from the Features menu:
» Create a bean information class for a bean

» List bean interface features for a bean

« Add or remove bean interface features

* Open a feature

Option Description

Open Opens the class/interface browser for the selected feature
Open to Opens a menu of bean information choices

Show Opens a menu of filtering choices for the Features pane
Sort Opens a menu of ordering choices for the Features pane

New Beanlnfo Class

Opens a SmartGuide to create a BeanlInfo class for the bean

Generate Beanlnfo class

Creates a Beanlnfo class for the bean

Add Available Features

Opens a dialog to add methods and fields as features

New Property Feature

Opens a SmartGuide to create a new property

New Event Set Feature

Opens a SmartGuide to create a new event set feature

New Method Feature

Opens a SmartGuide to create a new method feature

New Listener Interface

Opens a SmartGuide to create a new event listener

Delete

Opens a dialog to remove selected features and underlying
definitions

RELATED TASKS

Fol . i I

RELATED REFEREMNCES

© Copyright IBM Corp. 1997, 2000

239

Show—BeanInfo page

Use this menu to determine what features are listed in the Beanlnfo page Features
pane. You can open this menu by selecting it from the Features menu. Then select
a choice to list all features or a subset of features for a bean. The features that are
listed for each menu choice are as follows:

Option Description

Connectable Features All features of the bean

Normal features All features except hidden and expert features

Property features Features that represent bean properties

Event features Features that report the occurrence of an event in
your bean

Method features Features that provide bean behavior and access to
bean properties

Expert features Features that are marked in Beanlnfo as expert

Hidden features Features that are marked in Beaninfo as hidden

RELATED REFEREMNCES

Sort—BeanInfo page

Use this menu to order features in the Beanlnfo page’s Features pane. You can

open this menu by selecting it from the Features menu. Then select a choice to sort
features by name or by type.

RELATED REFEREMNCES

Definitions—BeanlInfo page

Use this menu to work with feature definitions in the Definitions pane. You can
open the Definitions menu either as a pull-down menu from the menu bar or as a
pop-up menu from the Definitions pane.

Option Description

Open Opens a browser for the selected method, class, or interface

240 visual Composition

Option

Description

Open to

Opens a menu of choices for opening another browser:
Project A project browser for one of the following:
* The class or interface that contains the selected
method
* The selected class or interface
Package
A package browser for one of the following:
* The class or interface that contains the selected
method
* The selected class or interface
Type A browser for the selected class or interface

References To

Opens a menu of choices to search for the following:
This Method
Calls to the selected method from other methods
Sent Methods
Methods that are called from the selected method
Accessed Fields
Fields that are accessed by the selected method
ReferencedTypes
Classes and interfaces that are referenced by the
selected method
This Type
References to the selected class or interface
Field References to a field in the selected class or interface
Static Field
References to a static field in the selected class or
interface
Constant
References to a constant in the selected class or
interface

Declarations Of

Opens a menu of choices to search for declarations of the
following:
This Method
The selected method
Sent Methods
Methods that are called from the selected method
Accessed Fields
fields that are accessed by the selected method
ReferencedTypes
Classes and interfaces that are referenced by the
selected method

Replace With

Opens a menu of choices for replacement by one of the
following:
Previous Edition
The previous edition of the selected method, class, or
interface
Another Edition
Any other edition of the selected method, class, or
interface

Chapter 66. BeanInfo page menus 241

Option

Description

Manage

Opens a menu of management choices for a class or interface:
Version
Version the open edition of the selected class or
interface
Release
Release the open edition of the selected class or
interface
Create Open Edition
Create a new open edition of the selected class or
interface
Change Owner
Change ownership of the selected class or interface

Compare With

Opens a menu of choices for comparison with one of the
following:
Released Edition
The released edition of the selected class or interface
Previous Edition
The previous edition of the selected method, class, or
interface
Another Edition
Any other edition of the selected method, class, or
interface
Each Other
Selected methods, classes, or interfaces

Document

Opens a menu of choices for replacement by one of the
following:
Print Prints source code for the selected class or interface
Generate javadoc
Generates Java APl documentation for the selected class
or interface

Print

Prints source code for the selected method

RELATED REFEREMNCES

Information—BeanlInfo page

242 Visual Composition

Use this menu to work with bean information for a bean or feature in the
Information pane. You can open the Information menu by right-clicking anywhere
within the Information pane.

Revert Returns the bean information to its previously saved state

Save Saves the current bean information

RELATED REFEREMNCES

Chapter 67. BeanInfo page tools

Several tools are available from the Beanlnfo page to help you work with beans
and their features. You can access these tools through menus or the tool bar.
Creates or replaces a Beanlnfo class for a bean, without user input

Defines information about a bean and creates a BeanlInfo class

Specifies icon files for a bean
Defines bean information for a new feature

Defines a new property feature

Defines a new event listener

Defines methods for a new event listener
Defines a new event set feature

Defines a new method feature

Defines a parameter for a new method feature
Lists methods that can be added as features

Lists features and underlying methods that can be deleted

Selects a fully-qualified class name for a bean
RELATED REFEREMCES

Tool bar—BeaniInfo page

Use the tool bar to launch some common tools in the BeanInfo page. The
following tools are available from the tool bar:

Tool Description

Open Debugger Opens a window for debugging

Search Opens a window to search for a class, interface,
constructor, method, or field

New Property Feature Opens a window to define a new property feature

New Event Set Feature Opens a window to define a new event set feature

New Method Feature Opens a window to define a new method feature

RELATED REFEREMNCES

© Copyright IBM Corp. 1997, 2000 243

BeanInfo class

generator

Use the Beaninfo class generator to create bean information class code for the bean
you are working with. This produces bean information for all existing features.

Before you generate the bean information class, bean information for the BeanIlnfo
page is obtained by reflection. After you generate the bean information class, the
class is used to find bean information.

RELATED REFEREMNCES

BeanInfo Class SmartGuide

244 visual Composition

Use the SmartGuide — Beanlnfo Class window to create bean information class
code for the bean you are working with. This produces bean information for the
bean, but not for existing features. When you add new features, bean information
is added to the BeanInfo class.

Before you add any new features, bean information for the BeanInfo page is
obtained by reflection. After you generate the bean information class, the class is
used to find bean information.

Fields

Display name
The display name represents the Beanlnfo class in the VisualAge user
interface. This field is optional. If you do not specify a display name, the
Beaninfo class name is used.

Short description
The short description is used in the VisualAge user interface. This field is
optional. If you do not provide a description, the BeanInfo class hame is
used.

Customizer
A customizer class provides customized definition of property values for a
bean. This field is optional. To provide a custom dialog for modification of
your bean properties, specify a class to support the dialog. To select an
existing customizer class, click on Browse.

expert Expert beans do not appear in the Visual Composition Editor by default.
However, you can request that expert beans be shown. Mark the bean as
expert if you want it to be available in visual composition, but not by
default. This option is not initially selected.

hidden
Hidden beans do not appear in some tools, but are available in the Visual
Composition Editor. Mark the bean as hidden if you do not want it to be
available in other tools. This option is not initially selected.

RELATED REFEREMNCES

Bean Icon Information SmartGuide

Use the SmartGuide — Bean Icon Information window to specify the names of files
that define icons for your bean. These icons represent the bean on the palette, in
the Beans List, and on the free-form surface.

Fields

16X 16 Color
A file that contains a color icon that is 16 pixels wide and 16 pixels high.
This field is optional. To specify an icon file, click on Browse.

32X 32 Color
A file that contains a color icon that is 32 pixels wide and 32 pixels high.
This field is optional. To specify an icon file, click on Browse.

16X 16 Monochrome
A file that contains a monochrome icon that is 16 pixels wide and 16 pixels
high. This field is optional. To specify an icon file, click on Browse.

32X 32 Monochrome
A file that contains a monochrome icon that is 32 pixels wide and 32 pixels
high. This field is optional. To specify an icon file, click on Browse.

Bean Information SmartGuide

Use the SmartGuide — Bean Information window to define bean information for a
new feature. This information determines how the feature is viewed and accessed
in visual composition.

Fields

Display name
The display name represents the feature in the VisualAge user interface.
This field is optional. If you do not specify a display name, the feature
name is used.

Short description
The short description is used in the VisualAge user interface. This field is
optional. If you do not provide a description, the feature hame is used.

Property editor
This optional field is available only for property features. A property editor
provides customized definition of a property value. To provide a custom
dialog to modify a property, specify a property editor class to support the
dialog. To select an existing property editor, click on Browse.

For example, you might want to provide a property editor for an
alignment property that has an integer value. This property can be edited
with the registered integer property editor. However, a user can more
easily understand descriptive choices, such as Left, Center, and Right. You
can create a property editor class that presents these descriptive choices to
the user and maps them to integer values for the property.

expert Expert features do not appear in the Visual Composition Editor by default.
However, you can request that expert features be shown. Select expert if
you want the feature to be available in visual composition, but not by
default. This option is not initially selected.

hidden
Hidden features do not appear in the Visual Composition Editor. Select
hidden if you do not want the feature to be available in visual
composition. This option is not initially selected.

preferred
Preferred features do not appear in the bean connection menu by default.

Chapter 67. Beanlnfo page tools 245

Select preferred if you want the feature to be available in the bean
connection menu. This option is not initially selected.

New Property Feature SmartGuide

246 visual Composition

Use the SmartGuide — New Property Feature window to add a new property
feature. Method features are also added to get and set the property. If the property
is readable, a get method feature is added, and if the property is writable, a set
method feature is added.

If the property is indexed, it contains individually accessible elements. Get and set
method features are added to access an element. These are in addition to the get
and set method features for the property as a whole. Note that an array property
can either be indexed or not. If it is not indexed, array elements are not accessible
in the Visual Composition Editor.

If the property is bound, the propertyChange event and related method features
are also added if they have not yet been added. The propertyChange event
provides notification of property value changes.

If the property is constrained, the vetoableChange event and related method
features are also added if they have not yet been added. The vetoableChange event
provides notification of requested property value changes. If a listener of the
vetoableChange event throws the PropertyVetoException, the property value
change is not committed.

Fields

Property name
The name of the property feature. Enter a name for the feature.

Property type
The data type of the property. The type value is initially java.lang.String. If
you need a different type, either enter a data type or click on Browse to
select a fully qualified type. You can focus the type search by entering a
partial type specification in the Property type field before you click on
Browse.

Readable
A readable property can report its value. This means that you can make a
connection from the property to obtain its value. This option is initially
selected.

Writeable
A writable property can have its value modified. This means that you can
make a connection to the property to change its value. This option is
initially selected.

Indexed
An indexed property contains individually accessible elements. This means
that, if the property is readable and writable, you can make a connection to
obtain or change the value of an element. This option is initially not
selected.

bound A bound property can report value changes. This means that you can make
a connection from the property to obtain the new value whenever it is
changed. VisualAge generates code to report the change using the
propertyChange event. This option is initially selected if a Beanlnfo class
has been created for the bean.

If a property is not bound, you must associate an event with the source
and target properties in connection settings to obtain the value change.

VisualAge generates listener methods to get the source property value and
set the target property when the event occurs. For example, if you want to
obtain the text property value from a TextField bean when the Enter key is
pressed, you can associate the actionPerformed event with the text source
property and the target property.

constrained
A constrained property can have its value changes vetoed. This means that
you can make a connection from the vetoableChange event to a method
feature or code that could veto the proposed change. This option is not
initially selected.

RELATED REFEREMNCES

New Event Listener SmartGuide

Use the SmartGuide — New Event Listener window to create a hew event listener
and add it as an event set feature. An event set consists of an event listener
interface with associated event object and multicaster classes. The multicaster
enables multiple listeners for an event.

Method features are also added that other beans can use to add and remove the
listener. These methods enable other beans to start and stop listening for the event.

Fields

Event name
The name of the event set feature. Enter a name for the feature.

Event listener
The name of the event listener. This field is initialized when you define the
Event name field. For example, if the event name is whatHappened, the
event listener name is initially WhatHappenedListener.

Event object
The name of the event object. This field is initialized when you define the
Event name field. For example, if the event name is whatHappened, the
event object name is initially WhatHappenedEvent.

Event Multicaster
The name of the event multicaster. This field is initialized when you define
the Event name field. For example, if the event name is whatHappened,
the event multicaster name is initially WhatHappenedMulticaster.

RELATED REFEREMNMCES

Event Listener

Methods SmartGuide

Use the SmartGuide — New Event Listener window to define one or more methods
for a new event listener. These listener methods respond to the event. You must
add code for each method. The first listener method is added as an event feature.
To add additional listener methods as event features, select Add Available
Features from the Features menu. Then, in the Add Available Features window,
select the methods you want to add as features.

Chapter 67. Beanlnfo page tools 247

Fields

Method name
The name of an event method to add to the listener.

Event Listener methods
A list of methods for the event listener. To add the method in the Method
name field as a listener method, click on Add. To remove the selected
method from the list, click on Remove.

New Event Set

Feature SmartGuide

Use the SmartGuide — New Event Set Feature window to select an existing event
listener and add it as an event set feature. An event set consists of an event listener
interface with associated event object and multicaster classes. The multicaster
enables multiple listeners for an event.

The event listener contains one or more methods that respond to the event. Each
listener method is added as an event feature. Method features are also added that
other beans can use to add or remove the listener. These methods enable other
beans to start and stop listening for the event.

Fields

Event name
The name of the event set feature. The initial selection is action. You can
select a different event set from the drop-down list.

Event listener
The name of the event listener. The initial selection depends on the selected
event set. For the action event, the initial listener is
java.awt.event.ActionListener. You can select a different event listener from
the drop-down list. If you need to select a fully-qualified name for the
particular listener you want, click on Browse for the listener.

RELATED REFEREMNCES

New Method Feature SmartGuide

248 visual Composition

Use the SmartGuide — New Method Feature window to add a new method feature.
The SmartGuide creates a new public class method for the feature. You must add
logic code for the method.

Fields

Method name
The name of the method feature. Enter a name for the feature.

Return type
The return data type of the method feature. The type value is initially void.
If you need a different type, either enter a data type or click on Browse to
select a fully qualified type. You can focus the type search by typing a
partial type specification in the Return type field before you click on
Browse.

Parameter count
The number of parameters for the method feature. The initial selection is 0.
You can select a different number from the drop-down list. You define each
parameter with the parameter SmartGuide.

RELATED COMNMCEPTS
RELATED REFEREMNCES

Parameter SmartGuide

Use the SmartGuide — Parameter window to define a parameter for a new method
feature.

Fields

Parameter name
The name of the method parameter. Enter a name for the parameter.

Parameter type
The data type of the parameter. The type value is initially boolean. If you
need a different type, either enter a data type or click on Browse to select a
fully qualified type. You can focus the type search by typing a partial type
specification in the Return type field before you click on Browse.

Display name
The display name is used in the VisualAge user interface. This field is
optional. If you do not specify a display name, the parameter name is
used.

Short description
The short description is used in the VisualAge user interface. This field is
optional. If you do not provide a description, the parameter name is used.

RELATED REFEREMNCES

Add Available Features

Use the Add Available Features window to add features based on public methods
that are not defined as features. VisualAge finds all available public methods of the
class that have not been added as features, and lists them for you to select. For
example, methods that you add in the Members page can be added as features.
Get and set methods for fields can be added as property features.

Delete Features

Use the Delete features window to remove features and underlying methods.
Features that you selected for deletion are listed in the All the following feature(s)
will be deleted: field. The methods that define the features are listed in the The
following selected method(s) will be deleted: field. If you want to delete any of
these methods, select them. Click on OK to delete features and methods.

Chapter 67. Beanlnfo page tools 249

Class Qualification Dialog

250 visual Composition

Use the Class Qualification Dialog to select a fully-qualified class or interface name
for a field in another window. The initial scope of the class or interface search is
determined by input to this dialog when it is opened.

Fields

Pattern
A selection pattern that determines class and interface names listed in the
Type Names field. The initial pattern depends on information passed to
this dialog.

Type Names
A list of unqualified class and interface names that match the selection
pattern, accessed through Browse. If there is no selection pattern, all
available classes and interfaces are listed.

Package Names
A list of packages that contain the selected class or interface. Select the
package that contains the class or interface you want. The selected package
name is used to qualify the selected class or interface name returned to the
calling window.

Notices

Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1997, 2000 251

252 visual Composition

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd.

1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-1BM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these hames are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1997, 2000. All rights reserved.

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning:: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

* IBM

* VisualAge

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, SourceSafe, Visual C++, Visual SourceSafe, Windows, Windows
NT, Win32, Win32s and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Reader comments

IBM welcomes your comments. You can send your comments in any one of the
following methods:

 Electronically to the network ID listed below. Be sure to include your entire
network address if you wish a reply.
— Internet: torrcf@ca.ibm.com
— IBMLink: toribm(torrcf)

* By FAX to the following number:
— United States and Canada: 416-448-6161
— Other countries: (+1)-416-448-6161

» By mail to the following address:

IBM Canada Ltd. Laboratory
Information Development
2G/KB7/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada M3C 1H7

Notices 253

	Contents
	Chapter 1. Visual programming fundamentals
	Chapter 2. How classes and beans are related
	Chapter 3. Visual, nonvisual, and composite beans
	Chapter 4. Visual Composition Editor overview
	Free-form surface
	Beans palette
	Selection tool
	Choose bean tool

	Visual composition hints and tips
	Property sheets
	Tabbing order
	Torn-off properties
	Layout managers in visual composition
	BorderLayout manager
	BoxLayout manager
	CardLayout manager
	FlowLayout manager
	GridLayout manager
	GridBagLayout manager
	Null layout
	Dropping beans into the layout

	Chapter 5. Bean design for visual composition
	Chapter 6. Use of visual beans created in other tools
	Chapter 7. Bean interfaces and BeanInfo
	Promotion of bean features
	Default promoted feature names
	Feature naming guidelines

	Chapter 8. Connections
	The source and target of a connection
	Property-to-property connections
	Event-to-property connections
	Event-to-method connections
	Code connections
	Parameter connections

	Chapter 9. Generated code
	Code generated from visually composed beans
	Generated feature code
	Generated BeanInfo descriptor code (an advanced topic)
	How generated code coexists with user-written code

	Chapter 10. Example of generated feature code
	Chapter 11. Example of code generated from visual composite
	Chapter 12. Bean morphing
	Chapter 13. Quick form
	Chapter 14. Object serialization in VisualAge
	Chapter 15. Internationalization in VisualAge
	Chapter 16. Using visual composites from previous releasesof VisualAge
	Chapter 17. Visual bean basics
	Editing bean properties
	Opening the property sheet for a bean
	Setting properties typed as interface implementers
	Using code strings in bean properties
	Changing bean colors
	Changing bean fonts
	Changing bean size and position
	Specifying icons
	Editing bean labels

	Displaying bean pop-up menus
	Working in the Beans List
	Renaming beans and connections

	Chapter 18. Advanced visual bean tasks
	Setting the tabbing order
	Promoting bean features
	Tearing off properties
	Setting a layout manager during visual composition
	Setting layout properties during visual composition
	GridBagLayout constraints
	Achieving the resize behavior you want
	Creating a GUI using GridBagLayout

	Morphing beans
	Changing look and feel in Swing-based composites

	Chapter 19. Composing beans visually
	Embedding beans in a composite bean
	Adding beans from the palette
	Adding beans not on the palette
	Unloading the mouse pointer

	Editing beans within a composite beans
	Saving a bean
	Running and testing beans

	Chapter 20. Arranging beans visually
	Selecting and deselecting beans
	Positioning beans
	Resizing visual beans
	Resizing beans by dragging
	Matching bean sizes using the tool bar

	Moving beans
	Copying beans
	Deleting beans
	Undoing and redoing changes in the Visual Composition Editor

	Chapter 21. Creating GUI layouts with quick forms
	Sharing quick forms
	Registering quick forms

	Chapter 22. Connecting beans
	Connecting features to other features
	Connecting features to code
	Connecting from connection results
	Supplying parameter values for incomplete connections
	Supplying a parameter value using a connection
	Supplying a parameter value using a parameter-from-codeconnection
	Supplying a parameter value using a constant
	Specifying values for parameters by default

	Editing connection properties

	Chapter 23. Manipulating connections
	Showing and hiding connections
	Deleting connections
	Selecting and deselecting connections
	Selecting a single connection
	Selecting multiple connections
	Deselecting connections

	Reordering connections
	Changing the connection name
	Changing the source and target of connections
	Moving either end of a connection to a different bean
	Moving either end of a connection to a different feature
	Reversing the direction of a connection

	Changing the shape of a connection

	Chapter 24. Managing the beans palette
	Adding a category to the palette
	Adding a bean to the palette
	Deleting a bean or category from the palette

	Chapter 25. Using VisualAge beans in visual composition
	Composing an applet
	JApplet tasks
	Composing a window
	Dialog and JDialog tasks

	Adding a pane or panel
	JScrollPane and ScrollPane tasks
	JSplitPane tasks
	JTabbedPane tasks
	JEditorPane tasks
	JOptionPane tasks

	Adding a table or tree view
	JTable, table model, and TableColumn tasks
	JTree and tree model tasks

	Adding a text component
	Adding a list or slider component
	JList and List bean tasks
	JComboBox or Choice bean tasks
	JScroll and Scroll bean tasks
	JProgressBar and JSlider bean tasks

	Adding a button component
	Adding a menu or tool bar
	Dynamically creating and accessing a bean instance

	Chapter 26. Setting general properties for beans
	Chapter 27. Enabling custom edit support for your bean
	Chapter 28. Property editor examples
	Tag-based editor for the Person bean
	Text-based editor for the Person bean
	Custom editor for the Person bean
	Paintable editor for the Person bean

	Chapter 29. Separating strings for translation
	Separating strings through property sheets

	Chapter 30. Incorporating user-written code into visualcomposites
	Assembling a bean from generated and user-written code
	Modifying generated feature code

	Adapting user-written classes for use as beans

	Chapter 31. Defining bean interfaces for visual composition
	Creating and modifying a BeanInfo class
	Adding property features
	Adding method features
	Adding event features
	Promoting features of embedded beans
	Specifying expert features
	Specifying hidden features
	Specifying preferred features
	Setting enumeration constants for a property

	Chapter 32. Repairing class or package references
	Chapter 33. Fix/migrate guidelines for class or packagereferences
	Chapter 34. Beans for visual composition
	User interface beans
	Factory and variable beans

	Chapter 35. Applet beans
	JApplet (Swing)
	Applet (AWT)

	Chapter 36. Window beans
	JDialog (Swing)
	Dialog (AWT)
	FileDialog (AWT)
	JFrame (Swing)
	Frame (AWT)
	JInternalFrame (Swing)
	JWindow (Swing)
	Window (AWT)

	Chapter 37. Pane and panel beans
	JDesktopPane (Swing)
	JEditorPane (Swing)
	JOptionPane (Swing)
	JPanel (Swing)
	Panel (AWT)
	JScrollPane (Swing)
	ScrollPane (AWT)
	JSplitPane (Swing)
	JTabbedPane (Swing)
	JTextPane (Swing)

	Chapter 38. Table and tree beans
	JTable (Swing)
	JTree (Swing)
	TableColumn (Swing)

	Chapter 39. Text beans
	JLabel (Swing)
	Label (AWT)
	JPasswordField (Swing)
	JTextArea (Swing)
	TextArea (AWT)
	JTextField (Swing)
	TextField (AWT)

	Chapter 40. List and slider beans
	JComboBox (Swing)
	Choice (AWT)
	JList (Swing)
	List (AWT)
	JProgressBar (Swing)
	JScrollBar (Swing)
	Scrollbar (AWT)
	JSlider (Swing)

	Chapter 41. Button beans
	JButton (Swing)
	Button (AWT)
	JCheckBox (Swing)
	Checkbox (AWT)
	JRadioButton (Swing)
	CheckboxGroup (AWT)
	JToggleButton (Swing)

	Chapter 42. Menu and tool bar beans
	JMenuBar (Swing)
	MenuBar (AWT)
	JMenu (Swing)
	Menu (AWT)
	JPopupMenu (Swing)
	PopupMenu (AWT)
	JMenuItem (Swing)
	MenuItem (AWT)
	JCheckBoxMenuItem (Swing)
	CheckboxMenuItem (AWT)
	JRadioButtonMenuItem (Swing)
	JSeparator (Swing)
	MenuSeparator (AWT)
	JToolBar (Swing)
	JToolBarButton
	JToolBarSeparator

	Chapter 43. Factory and variable beans
	Factory
	Variable

	Chapter 44. Visual Composition Editor
	Status area—Visual Composition Editor
	The tool bar in visual composition

	Chapter 45. The menu bar in visual composition
	Bean
	Tools
	Run
	Properties
	Beans List
	Show Connections
	Hide Connections
	Align left
	Align Center
	Align Right
	Align Top
	Align Middle
	Align Bottom
	Distribute Horizontally
	Distribute Vertically
	Match Width
	Match Height

	Chapter 46. Keys
	Window keys
	Accelerator keys
	Help keys

	Chapter 47. Pop-up menus for the Visual Composition Editor
	Add Bean from Project
	Browse Connections
	Change Bean Name
	Change Connection Name
	Change type
	Connect
	Connectable Features
	Delete
	Event to Code
	Layout
	Distribute
	Horizontally in bounding box
	Horizontally in surface
	Vertically in bounding box
	Vertically in surface

	Layout Options
	Modify Palette
	Morph Into
	Open
	Parameter from Code
	Promote bean feature
	Quick Form
	Refresh Palette
	Refresh Interface
	Reorder Connections From
	Restore shape
	Set Tabbing
	Show Large Icons
	Switch to
	Tear-off property

	Chapter 48. Modify Palette window
	Bean type
	Class name or file name
	Palette list

	Chapter 49. Choose Bean window
	Bean type
	Class name
	Name

	Chapter 50. Promote Features window
	Promote name
	>> Promote
	<< Remove

	Chapter 51. Reorder Connections window
	Chapter 52. Quick Form SmartGuide
	Quick Form window
	Quick Form Layout window
	Save Quick Form window

	Chapter 53. Quick Form Manager window
	Chapter 54. Register Quick Form window
	Chapter 55. Connection windows
	Method
	Property
	Event
	Details

	Chapter 56. Property-To-Property Connection window
	Source property
	Target property
	Source event
	Target event

	Chapter 57. Event-To-Method Connection window
	Pass event data
	Event
	Method
	Show expert features
	Set parameters

	Chapter 58. Constant Parameter Value properties window
	Chapter 59. Event-to-Code Connection window
	Method class
	Event
	Methods
	Code pane
	Pass event data

	Chapter 60. Parameter-from-Code Connection window
	Chapter 61. Morph Into
	Chapter 62. Resolve Class References
	Chapter 63. String Externalization Editor
	Chapter 64. Externalizing: Package.Class
	Chapter 65. BeanInfo page
	Features pane—BeanInfo page
	Definitions pane—BeanInfo page
	Information pane—BeanInfo page
	Source pane—BeanInfo page
	Status area—BeanInfo page

	Chapter 66. BeanInfo page menus
	Features—BeanInfo page
	Show—BeanInfo page
	Sort—BeanInfo page
	Definitions—BeanInfo page
	Information—BeanInfo page

	Chapter 67. BeanInfo page tools
	Tool bar—BeanInfo page
	BeanInfo class generator
	BeanInfo Class SmartGuide
	Bean Icon Information SmartGuide
	Bean Information SmartGuide
	New Property Feature SmartGuide
	New Event Listener SmartGuide
	Event Listener Methods SmartGuide
	New Event Set Feature SmartGuide
	New Method Feature SmartGuide
	Parameter SmartGuide
	Add Available Features
	Delete Features
	Class Qualification Dialog

	Notices
	Programming interface information
	Trademarks and service marks
	Reader comments

