
USING LOTUSSCRIPT
IN APPROACH

E
.D

.I.T.I.O
.N

The High-Powered Database
The Whole Team Can Use.

Under the copyright laws, neither the documentation nor the software may be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or
machine-readable form, in whole or part without the prior written consent of Lotus
Development Corporation, except in the manner described in the software agreement.

© Copyright 1995 Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142

All rights reserved. Printed in the United States.

Lotus, Lotus Notes, Approach, and Freelance Graphics are registered trademarks and
LotusScript, LotusObjects, and Word Pro are trademarks of Lotus Development
Corporation. dBASE, dBASE IV, and Paradox are registered trademarks of Borland
Intenational, Inc. FoxPro and Visual Basic are registered trademarks and Visual C++ is a
trademark of Microsoft Corporation.

1 An Introduction to Scripting
in Approach 1-1. .
Scripting vs Other Ways of Automating

Tasks . 1-1. . . .
Approach features that automate

tasks . 1-1. . . .
Macros . 1-2. . . .
Scripts . 1-2. . . .

LotusScript . 1-2. . . .
Getting Help on LotusScript 1-3. . . .
Additional LotusScript

documentation 1-3. . . .

2 Objects, Properties,
Methods, and Events 2-1. .
Objects . 2-2. . . .

Objects and classes 2-2. . . .
Properties . 2-3. . . .
Methods . 2-4. . . .
Events . 2-5. . . .

3 The LotusScript IDE 3-1. .
IDE Functionality . 3-1. . . .

Accessing the IDE 3-2. . . .
Viewing Classes in the IDE Browser 3-3. . . .

Displaying a list of classes, methods,
properties, and events 3-3. . . .

Pasting a class, method, property, or
event name into the current script 3-4. . . .

Getting context-sensitive Help in the
Browser . 3-4. . . .

Working in the IDE with Events 3-4. . . .
Accessing an object’s event 3-6. . . .
Sub and End Sub . 3-7. . . .
Attaching a script to an object event . 3-8. . . .

Reusing Scripts . 3-10. . .
Copying and pasting scripts 3-10. . .

Importing and Exporting a Script 3-11. . .

4 Writing Simple Scripts 4-1. .
Setting a Property . 4-1. . . .
Calculating a Value . 4-2. . . .
Testing Conditions . 4-3. . . .
Creating a New Object 4-5. . . .

Introducing the sub 4-6. . . .
Declaring a variable 4-6. . . .
Setting the location of the new object 4-7. . . .
Setting the properties of the new

object . 4-7. . . .
Creating a Function . 4-8. . . .

Example . 4-9. . . .

5 Advanced Scripting
Concepts . 5-1. .
Objects as Properties 5-1. . . .
Containment . 5-2. . . .
Classes that Inherit from Other Classes . 5-5. . . .
Accessing Data . 5-8. . . .

Accessing Approach data from other
Lotus products 5-9. . . .

Example . 5-9. . . .

6 OLE Automation Support . . . 6-1. .
Using OLE Automation in Lotus

Products . 6-1. . . .
Automation controllers 6-1. . . .
Automation servers 6-1. . . .
Accessing LotusObjects 6-2. . . .
LotusScript applications as controllers 6-3. . . .
Object names for applications 6-3. . . .

Contents iii

Contents

Smartsuite 96
Please note that the page numbers listed in the Table of Contents refer to the page numbers that appear in the footers of the printed documentation. To navigate to a specific page, select the chapter and use the scroll buttons in the tool bar to go to the page.

Chapter 1
An Introduction to Scripting in Approach

Lotus® Approach® provides several powerful tools for automating and
enhancing Approach tasks. In addition to macros, Approach now has the
LotusScript™ language, which lets you develop your own applications as
well as automate existing tasks.

Scripting vs Other Ways of Automating Tasks

A script is a sequence of instructions, often a program, that you write to
automate a task or customize a product for your specific needs. Any task
that you repeat frequently is a candidate for scripting. In fact, the simplest
use of scripting in Approach is the automation of a sequence of Approach
commands.

Approach features that automate tasks
Not all Approach command sequences require scripting. Approach
provides features that enable you to automate certain tasks. For example,
the Named Find/Sort feature lets you search for records according to the
criteria you define. By saving the search criteria, you can repeat the search
any time as needed. You can also easily switch between different found sets
of records.

Another example of a feature that automates tasks is the Drill-down to data
feature, which allows you to choose data in a crosstab or chart and view the
details behind that data. Normally, when you look at a chart or crosstab,
you don’t actually see individual data; you see groups and calculated
summaries, totals, counts, averages, and so on. Drill-down gives you a way
to see the data that goes into any of the groups or calculated values, by
creating a new worksheet that displays the data. You can add fields to this
worksheet and save it with your changes. Then, every time you use the
Drill-down to data feature on that crosstab or chart, the worksheet will
display as you formatted it.

1-1

Macros
Macros are another way of automating frequently performed tasks and are
easily built using point and click functionality. Some of the tasks you can
automate using macros include the following:

Switching from one Approach view to another in a file

Changing or setting data in a field for a small to medium set of records

Importing or exporting records

Switching to the next, previous, first, or last record

Displaying a message box with text and various user choices

Scripts
While macros are very easy to build, some database operations are
executed faster with scripts. Scripts are not only fast, they are often more
flexible in processing large amounts of data. Use scripting to perform tasks
such as the following:

Changing or setting data in a field for a large set of records

Changing the attributes (color, size, position, visibility, and so on) of a
field or view

Triggering actions that occur in response to many different events
(click, double-click, key press, and so on)

Displaying or manipulating Approach dialog boxes

Calling functions

LotusScript

In Approach, you can write scripts and programs using the LotusScript
programming language. LotusScript is a standard-BASIC scripting
language that is available in most Lotus products and that allows you to
write programs across multiple Lotus products. It provides a high degree of
flexibility to control the flow of a program. The following are some of the
tasks you can perform with LotusScript:

Write programs that store and manipulate data

Execute tasks based on the value of a specified condition

Perform loops (repetitions of processes) if you want to repeat tasks

1-2 Using LotusScript in Approach

Communicate with and pass data to and from other Lotus products
that support LotusScript

Communicate with and pass data to and from any product that uses
OLE Automation

Print text and values

Each Lotus product that uses LotusScript has its own set of LotusObjects™
that can be manipulated with LotusScript. Some objects are similar across
products, while some are unique to a product. For more information about
objects, see Chapter 2, “Objects, Methods, Properties, and Events.”

Getting Help on LotusScript
Help is available for LotusScript. When working in Approach, you can scan
Help to find information about the following topics:

LotusScript functions and statements

The LotusScript Integrated Development Environment (IDE)

Approach-specific LotusObjects

LotusObjects for any other installed Lotus products, besides Approach,
that use LotusScript

To access Help about LotusScript, choose Help to open the Help contents
and click the book called “LotusScript.”

To access Help about the IDE, choose Help to open the Help contents and
click the book called “Using the IDE in Approach.” For more information
about the IDE, see Chapter 3, “The LotusScript IDE.”

To access context-sensitive Help in the IDE Browser for any LotusScript
function or statement, or any LotusObject, select the name of the language
component and press F1.

Additional LotusScript documentation
In addition to this manual and online Help, you can refer to the following
materials for information on LotusScript:

The LotusScript Language Reference, a comprehensive summary of the
LotusScript language, presented in A-Z format. The LotusScript
Language Reference is available as Help in all Lotus products that
support LotusScript and is also available in print. To obtain this
manual, use the coupon enclosed in your Approach package.

The LotusScript Programmer’s Guide, a general introduction to
LotusScript that describes its basic building blocks and how to put them
together to create applications. To obtain this manual, use the coupon
enclosed in your Approach package.

An Introduction to Scripting in Approach 1-3

Chapter 2
Objects, Properties, Methods, and Events

When you write scripts in Approach, as in other Lotus products, you use
what are referred to as objects, properties, methods, and events to perform
application tasks. This chapter explains the basics of objects and the
properties, methods, and events associated with them.

An object represents a part of Approach that you manipulate in a script. For
example, the FieldBox object represents a field box. You might want to
write a script that checks the data in a field box and performs actions based
on the value in the field box. To do this, you use the FieldBox object.

Objects have characteristics, called properties, that allow you to control the
way an object looks or acts. For example, some properties of the FieldBox
object are Top (defines the top position of a field box), Left (defines the left
side position of a field box), Visible (defines whether or not a field box
displays on the screen), Font (defines the style of the text inside a field box),
and Background (defines the color of a field box).

Objects also have methods, which are actions performed on, or in a few
cases by, the objects. The actions change the object or give you control over
certain aspects the object’s behavior. For example, the FieldBox object has a
SetFocus method, which sets the focus from a field box to another object. It
also has a Refresh method, which refreshes the value in a field box.

All objects have events. Events are actions performed by a user, an
application, or your system. When an event takes place, the script
associated with that event is executed. For example, the Click event of the
FieldBox object executes whatever script is associated with the event
whenever you click the FieldBox object with the mouse.

2-1

Objects

The following table introduces some frequently used Approach objects (this
is not a complete list):

Object Description

Button A command button. You can attach a script to a button and run it
whenever the user clicks the button.

DropDownBox A control that displays a list of values in a drop-down box. The
user can select only one item in the list.

FieldBox A control that displays data and allows for data entry. The data
may or may not be from a field in a database.

Form A type of view that displays data one record at a time, like a form
at a doctor’s office. You can add, edit, and delete data in a form.

ListBox A control that displays a list of values.

RadioButton A control that allows selection of only one of a particular set of
entries for a field.

Report A type of view that displays multiple records on one page. You
can summarize data in a report.

TextBox A control that displays text on a form, report, mailing label, form
letter, or chart.

Worksheet A type of view that displays data in a spreadsheet format with
each row representing a record, and each column a field. You can
add, edit, and delete data in a worksheet.

Objects and classes
An object is technically an instance of a class. A class is a description or a
definition of a part of Approach. It has members, which are its properties,
methods, and events. For example, Top (a property), Refresh (a method),
and Click (an event) are members of the FieldBox class.

A FieldBox object is a specific instance of the FieldBox class. It represents an
existing field box in one of your Approach files. You can manipulate it in a
script, by referring to its unique object name, for example, Field1. Another
instance of the FieldBox class is another FieldBox object with a unique name
of its own, for example, Field2.

The easiest way to distinguish between classes and objects is to think of the
class as the description of a part of Approach, and the object as one instance
of the part described by the class. That instance can be identified with its
own unique name, that distinguishes it from all other instances of the class.
For example, the word “movie” describes a type of entertainment.
“Casablanca” is one instance of the class movie. “Gone with the Wind” is

2-2 Using LotusScript in Approach

another instance of that class. “Casablanca” and “Gone with the Wind” are
like objects because they are specific, real movies; whereas movie is like a
class because it describes the characteristics of a movie without specifically
naming any particular movie.

For more information
1. Choose Help - Help Topics and click the Index tab.

2. Type this word:

Classes

3. Select a topic, and then click Display.

Properties

Properties have predefined values that you can change, or “set,” to control
the behavior or appearance of an object. For example, in a script you can set
the Visible property of the FieldBox object to FALSE, causing the field box
to no longer display. Setting the Visible property back to TRUE redisplays
the field box.

You can find out what the current value of a property is, by accessing, or
“getting,” the property’s value. You set and get property values using
scripts.

The following table introduces some frequently used Approach properties
(this is not a complete list):

Property name Description

Background The background color of the object

Color The color of the object’s background

Left The location of the leftmost edge of the object

Text The text value of a selection in an object like DropDownBox,
ListBox, or TextBox

Top The location of the top of the object

Visible Indicates whether or not the object is visible

Some of these properties apply to a variety of objects. To determine which
properties belong to which objects, use the IDE Browser (described in
Chapter 3, “The LotusScript IDE”).

Objects, Properties, Methods, and Events 2-3

For more information
1. Choose Help - Help Topics and click the Index tab.

2. Type this word:

Properties

3. Select a topic, and then click Display.

Methods
The following table introduces some frequently used Approach methods
(this is not a complete list):

Method name Description

BringToFront Makes the object the topmost object.

NextRecord Goes to the next record.

PrevRecord Goes to the previous record.

Refresh Refreshes data.

SendToBack Makes the object the backmost object.

SetFocus Sets the focus to the named object.

Some of these methods apply to a variety of objects. To determine which
methods belong to which objects, use the IDE Browser (described in
Chapter 3, “The LotusScript IDE”).

For more information
1. Choose Help - Help Topics and click the Index tab.

2. Type this word:

Methods

3. Select a topic, and then click Display.

2-4 Using LotusScript in Approach

Events

Approach scripts are event-driven This means that in Approach you can
initiate script execution by triggering an event. An event is triggered by a
user action, an application, or your system.

For example, you can use the Click event of a Button object to initiate
execution of a script. When a user clicks the button, the script you
associated with the Click event runs. You can control processing and
functionality by specifying what operations occur as a result of the event
taking place.

You can also initiate execution of a script from a macro or from another
script, but the most common way is via an event.

The following table introduces some frequently used Approach events (this
is not a complete list).

Event name Description

Click Occurs when an object is clicked using the mouse. Use when you
want the user to initiate an action. For example, you can write a
script to change the color of the text in a field box when the user
clicks a button.

Change Occurs when the information in a data entry-type object changes
and the object loses focus. For example, if the user selects or
deselects a check box, this event occurs.

DoubleClick Occurs when the object is double-clicked using the mouse.

GotFocus Occurs when an object gets the focus by being tabbed to, clicked,
or selected by the keyboard, a script, or a macro. An object that
has the focus may appear bold, highlighted with a dashed border,
and so on.

LostFocus Occurs when an object had focus and then loses it by being tabbed
from or by another object being clicked or selected by the
keyboard, a script, or a macro.

MouseDown Occurs when a mouse button is pressed down while the mouse
pointer is over an object.

MouseMove Occurs when the mouse pointer is moved over an object.

MouseUp Occurs when a mouse button is released while the mouse pointer
is over the clicked object.

These events apply to a variety of objects. To determine which events
belong to which objects, use the IDE Browser (described in Chapter 3,
“The LotusScript IDE”).

Objects, Properties, Methods, and Events 2-5

For more information
1. Choose Help - Help Topics and click the Index tab.

2. Type this word:

Events

3. Select a topic, and then click Display.

2-6 Using LotusScript in Approach

Chapter 3
The LotusScript IDE

The LotusScript Integrated Development Environment (IDE) is a set of tools
you can use in Lotus applications to create and debug scripts.

IDE Functionality

When you open the IDE, a screen like this appears:

The IDE includes the following functionality:

The Script Editor lets you write scripts and check their syntax. It also
lets you set, clear, enable, and disable breakpoints used in debugging
scripts.

Script Editor

Variables panel

Output panel

Breakpoints panel

Browser panel

3-1

(A breakpoint is a user-set location in a script where normal execution
is interrupted to allow you to check the code. You insert a breakpoint in
a place where you think a problem has occurred. The script stops
executing at the statement that has the breakpoint, allowing you to
check for errors by proceeding through the script one line at a time.)

The Script Debugger lets you set, clear, enable, and disable breakpoints
and step through scripts to locate the source of problems in script
execution.

The Breakpoints, Browser, Output, and Variables panels help you
create and debug scripts:

The Breakpoints panel lists breakpoints set in scripts, and lets you
navigate to breakpoints, as well as clear, enable, and disable
breakpoints. (You can also clear, enable, and disable them using the
Script Editor.)

The Browser panel lists LotusScript keywords, Approach classes and
their members (methods, properties, and events), Approach
constants, Approach subs and functions, Approach variables, and
OLE Automation classes. It also lets you paste keywords, class and
member names, and OLE application-class identifiers into a script.

The Output panel displays output generated by LotusScript Print
statements executed in scripts.

The Variables panel displays information during debugging about
variables in a script and lets you change the values of variables.

Tip By default, certain language elements are displayed in different colors
in the Script Editor and the Script Debugger. For example, keywords are
displayed in blue, text containing errors are displayed in red, and user
input is displayed in black. To change these default colors, choose File -
Script Editor Preferences in the IDE.

Accessing the IDE
1. Choose Edit - Show Script Editor.

For more information
1. Choose Help - Help Topics and click the Index tab.

2. Type this word:

IDE

3. Click the index entry you want, then click Display.

3-2 Using LotusScript in Approach

Viewing Classes in the IDE Browser

The Browser displays Approach classes and all their properties, methods,
and events and lets you paste the name of these language components into
the current script.

The Browser panel is available from the Script Editor and the Script
Debugger, but you can select items and paste them into the current script
only when the Script Editor is active.

Displaying a list of classes, methods, properties, and events
1. In the Category drop-down box, choose Lotus Approach 96: Classes.

2. Click the arrow next to the name of a class to expand it.

Note A right arrow (¯) means that the item has a list of subcategories
that you can expand. A down arrow (®) means that the list is already
expanded.

3. Click the arrow next to Properties, Methods, or Events to expand the
subcategory you want to look at.

Subcategories of
CROSSTAB

Subcategories of Events

The LotusScript IDE 3-3

Pasting a class, method, property, or event name into the
current script

1. Select an item from an expanded category.

2. Click Paste Name at the top of the Browser panel.

The class, method, property, or event name you selected is pasted into
the current script at the location of the mouse pointer before you started
pasting.

Getting context-sensitive Help in the Browser
1. Select an entry for an Approach class, method, property, event or other

LotusScript language component.

2. Press F1.

Help for the component is displayed.

Working in the IDE with Events
All objects have events. Events are the primary way to trigger the execution
of scripts. The IDE lets you do the following:

View a list of all events associated with an object

View the script associated with an event for the current object

Write scripts for the current event

When you write a script for an event, you are really writing it for a single
object/event pair. The same event name may be associated with another
object, but it is still considered a unique event. You can attach a different
(or the same) script to each object/event pair. This means that while an
event may belong to several different objects, it is the script for a specific
object/event pair that is triggered when an event occurs for the object.

3-4 Using LotusScript in Approach

When you open the IDE from the main menu, the Script Editor shows the
last script edited. If no script was edited, the Script Editor shows the script
attached to the default event for the current object. If no script is attached, it
shows the space to write a script for the event, such as in the following
screen. This screen shows the Switchto event for Form 3, with a space to
write a script for the event.

Default event

Current object

Space to write a script

The LotusScript IDE 3-5

You can access a list of valid events for the current object by clicking the
Script drop-down box.

Accessing an object’s event
1. Click the Object drop-down box.

2. Select an object from the list.

3. Click the Script drop-down box.

A list of events for the selected object appears.

4. Select an event.

The Script Editor displays the script for the object event you selected.

Script drop-down box

List of valid events

3-6 Using LotusScript in Approach

Sub and End Sub
Event scripts are subroutines. Subroutines, or subs, are the parts of a script
that perform specific tasks without returning a value (unlike a function,
which does return a value). Subs begin with the Sub keyword followed by
the name of the sub and the sub’s arguments, and end with the line End
Sub. The script that you write between the Sub and End Sub keywords
determines what the sub does.

Arguments are the information in parentheses next to the name of the sub.
An argument is the information that is supplied to the sub so that it can
perform its tasks. You specify an argument to provide the sub with a
mechanism for accepting data that is coming from elsewhere when the sub
is invoked. For example, in the following screen, Source As Form and View
As VIEW are arguments that tell the sub which form to switch from and
which view to switch to. For more information about arguments, see the
LotusScript Programmer’s Guide.

The purpose of an event is to initiate the execution of the script inside the
sub attached to the event. When the event occurs, the sub is executed. By
writing a script inside the sub, you are attaching that script to the object
event.

Sub and End Sub
statements

Arguments

The LotusScript IDE 3-7

Attaching a script to an object event
The following steps use a simple example to illustrate how to attach a script
to an object event.

1. Create a new Approach file (EXAMPLE.APR) with two fields, one
called Field1 and the other called Field2, on the body of a form.

For information about creating a new Approach file, see Chapter 5,
“Creating Databases,” in Exploring Approach.

2. Choose View - Design to switch to design mode.

3. Choose Create - Control Button and draw a button on the form.

4. Choose Edit - Show Script Editor and click the Object drop-down box.

The name of the .APR file is the first item on the list.

Name of the .APR file

3-8 Using LotusScript in Approach

5. To expand the list of objects in the file, click the arrow (¯) next to the
name of the file, then click the arrow next to the name of the View
object representing a form (called Blank Database, the name assigned
by Approach). Then click the arrow next to the name of the Body object
(in this case Body).

6. Click ObjButton, which is the name Approach assigned to the Button
object you created.

The LotusScript IDE 3-9

The Click event, the default event for the Button object, appears in the
Script drop-down box, while the following code appears in the Script
Editor:

Sub Click(Source As Button,X As Long,Y As Long,Flags as
Long)

End Sub

Click is the name of the sub.

The information in parentheses represents arguments that are passed to
the sub. The arguments in this case are Source, X, Y, and Flags.

7. Type the following script between Sub Click and End Sub in the Script
Editor:

Source.Field1.Text="Hello"

This script, entered in the Click event script for ObjButton, changes the
text in Field1 to “Hello” when the button is clicked.

For information about the elements of scripts like this, see Chapter 4,
“Writing Simple Scripts.”

Reusing Scripts

The IDE saves you time when you want to reuse code. If you have a script
attached to an object event and you want to use the same script for another
object event, you can copy and paste it.

Copying and pasting scripts
1. Choose Edit - Show Script Editor and click the Object drop-down box.

2. Select the name of the object that has the code you want to copy.

3. Click the Script drop-down box and select an event name.

The Script Editor displays the script attached to that object event.

4. Highlight the entire script or the portion of the script you want to copy.

5. Choose Edit - Copy in the IDE.

6. Click the Object drop-down box and select the object that has the event
you want to copy the script to.

7. Click the Script drop-down box and select the event.

The Sub...End Sub statement for the event appears.

3-10 Using LotusScript in Approach

8. Insert the mouse pointer inside the Sub...End Sub statement and choose
Edit - Paste in the IDE.

The script is pasted in the Sub...End Sub statement.

Importing and Exporting a Script

The IDE lets you import and export scripts into other file formats so that
you can open and edit your scripts in other products, and then bring them
back into Approach easily. This feature is particularly useful if you prefer to
write and edit your scripts in an editor other than the one provided by the
IDE.

The File - Import Script and File - Export Script commands allow you to
import and export scripts to and from text files, and to and from other
Lotus products besides Approach.

For more information
1. Choose Help - Help Topics and click the Index tab.

2. Type one of these words:

Importing

Exporting

3. Click the index entry you want, then click Display.

The LotusScript IDE 3-11

Chapter 4
Writing Simple Scripts

This chapter uses examples to introduce some basic concepts that will help
you to write scripts in Approach.

Setting a Property

The following script is associated with the Click event of a Button object,
called ObjButton1, which is on a view that has two fields: Field1 and Field2.
The script runs every time the button is clicked.

Note An example in Chapter 3 uses a file called EXAMPLE.APR to explain
how to attach a script to an object event. The following script builds on that
example, using the same file and another button object (Approach assigns it
the name ObjButton1) on the form called Blank Database.

To place the words “Field1 is Empty” in Field2, use the following
statement:

Source.Field2.Text = "Field1 is Empty"

4-1

Source refers to the current object, in this case ObjButton1.

Field2 is the object whose property is being changed.

Text is the property being changed. It has a data type of String, which
means that it only accepts values that are text.

“Field1 is Empty” is the value that the property is being set to. The value is
a text string.

Note Using dots between identifiers in these code examples is referred to
as dot notation. You use the dots to connect objects with their properties
and methods, and to connect objects with objects they are related to. For
information about containment and inheritance relationships between
objects, see Chapter 5, “Advanced Scripting Concepts.”

Calculating a Value
The following script is associated with the Click event of a Button object,
called ObjButton1, which is on a view that has two fields: Field1 and Field2.
The script runs every time the button is clicked.

This example makes a calculation based on a formula and places the result
in Field2. The formula converts the value entered in Field1 to centigrade.

Source.Field2.Text=Str(((Val(Source.Field1.Text)-32)/9)*5)

4-2 Using LotusScript in Approach

Source refers to the current object, in this case ObjButton1.

Field2 is the object whose property is being changed.

Text is the property being changed. It has a data type of String, which
means that it only accepts values that are text.

Val is a LotusScript function that converts text to numbers. In this example,
the function converts the value of the Text property of Field1 so that the
value can be used in a mathematical formula.

Str is a LotusScript function that converts numbers to text. In this example,
the function converts the numeric value, after it has been calculated in the
centigrade formula, back to text so that it can be assigned to the Text
property of Field2.

Testing Conditions

This example uses a basic If...Then...Else statement to determine if the
centigrade formula should be calculated and its result placed in Field2.

Assume that the script is associated with the Click event of a Button object,
called ObjButton1, which is on a view that has two fields: Field1 and Field2.
The script runs every time the button is clicked.

If Source.Field1.Text="" Then

 Source.Field2.Text="Field1 is Empty"

Else

 Source.Field2.Text=Str(((Val(Source.Field1.Text)-32)/9)*5)

End If

Note Do not type a space between the quotation marks ("").

Writing Simple Scripts 4-3

If the text property of Field1 does not contain text, in other words if it
contains an empty string represented by the empty quotation marks (""),
then the script places the phrase “Field1 is Empty” in Field2. If the text
property of Field1 has a value other than the empty string, then the script
calculates the formula using that value, and places the result in the Text
property of Field2.

The If...Then... Else statement conditionally executes one or more
statements. If the condition of the If statement is true, then any statements
following Then are executed. If the condition is false, any statements
following Else are executed. This statement is very useful for building
flexibility into a script. Make sure that you use the same structure as in the
example above: the keyword Then must be on the same line as the keyword
If in order for the statement to work. The If...Then... Else statement must
end with the keywords End If to indicate the end of the condition being
evaluated.

4-4 Using LotusScript in Approach

Creating a New Object

The example in this section illustrates how a script creates a new object
using the LotusScript New keyword in a Set statement. In addition to how
it is used in the following example, New can create new objects in the
following ways:

You can use the New keyword in a Dim statement.

Most Approach classes use New as a means to construct a new object of
that class, and treat New as a method. The arguments vary from class
to class.

For more information on using the New keyword in the Set or Dim
statement, see the LotusScript Language Reference.

The following script uses a Approach file, EXAMPLE.APR, created in an
example in Chapter 3. The script is attached to the Click event of ObjText, a
TextBox object.

Sub Click(Source As TextBox, X As Long, Y As Long, Flags as
Long)

 Dim fb As FieldBox

 Set fb=New FieldBox(Source.Body)

 fb.Left=1440

 fb.Top=1440

 fb.Width=2880

 fb.Height=720

 fb.NamedStyle="Default"

 fb.Background.Color.SetRGB(COLOR_GREEN)

End Sub

This script does the following when the TextBox object it is attached to is
clicked:

Creates a new field box.

Sets its left and top sides to 1 inch (1440 twips) from the left and top of
the form. A twip (TWentIeth of a Point) is a measurement equal to
1/1440th of an inch.

Sets its width to 2 inches (2880 twips).

Sets its height to a 1/2 inch (720 twips).

Provides borders.

Sets the background color of the field box to green.

Writing Simple Scripts 4-5

Introducing the sub
The first line of the example identifies the event that causes the script to
execute. When the user clicks the object that the event belongs to (a text
box), the script executes, creating the FieldBox object.

Sub Click(Source As TextBox,X As Long,Y As Long, Flags as
Long)

Click is the name of the event.

Source refers to the current object, in this case a TextBox object.

As TextBox specifies the data type of Source. A data type is the
classification, or category, of a piece of data. It determines whether the data
is composed of numbers, text, or an object. The data type of an object is
always its class. In this case, As TextBox means that the object has a data
type of TextBox.

X and Y refer to the x-coordinate and the y-coordinate of the position of the
mouse pointer when you click the current object.

As Long refers to the data type of X and Y.

Flags refers to which mouse button was pressed, the left or the right.

As Long refers to the data type of Flags.

Declaring a variable
The next line of the example declares a variable. A variable is a uniquely
named container for storing a piece of data. Every variable has a data type,
which determines what kind of value (text, numbers, or an object) the
variable is allowed to hold.

When you declare a variable, you specify its data type and in some
instances, its value. It’s good practice to put all declarations at the
beginning of a script. That way you always know where to look for
information about variables when reading the code. Use the Dim statement,
or one of its variations, to explicitly define a variable’s type. For more
information about variables, see the LotusScript Programmer’s Guide.

In the example, fb is a variable with a data type of FieldBox. This means
that the only kind of data that can be stored in fb is a FieldBox object. The
variable is declared here so that it can be initialized to the FieldBox object
created in the next line of the example. Initializing a variable means that
you store a value in it.

4-6 Using LotusScript in Approach

Setting the location of the new object
The next line of the example does three things simultaneously:

Creates a new FieldBox object using the LotusScript New keyword.

Initializes the variable fb to the new FieldBox object. Essentially, the
new FieldBox object is stored in fb using the Set statement.

Places the new FieldBox object in the current Body object (source.body).

Set fb=New fieldbox(source.body)

Note By placing the FieldBox object in the current Body object, the Body
object becomes the “container” object. For information about containment,
see Chapter 5, “Advanced Scripting Concepts.”

Setting the properties of the new object
The remainder of the script sets the properties of the new FieldBox object
stored in fb.

The following two lines of code set the Left and Top properties of the
FieldBox object to 1 inch (1440 twips), which positions the FieldBox object
one inch from the left and top of the form.

fb.Left = 1440

fb.Top = 1440

The next two lines set the width of the FieldBox object to 2 inches (2880
twips), and the height to a 1/2 inch (720 twips).

fb.Width = 2880

fb.Height= 720

The next line sets the NamedStyle property, which controls the appearance
of the FieldBox object, to the Default style. The Default style turns on the
borders of the field box (otherwise they’d be invisible). For a list of the
acceptable values of the NamedStyle property, see Help.

fb.NamedStyle="Default"

The last line before the end of the example sets the background color of the
field box to green. COLOR_GREEN is the RGB (Red Green Blue) value for
green. RGB values determine the colors of objects. Approach has defined a
set of RGB values as constants (you can define your own colors as well). A
constant is a value that remains unchanged throughout a script, as opposed
to a variable, which can change.

fb.Background.Color.SetRGB(COLOR_GREEN)

Writing Simple Scripts 4-7

A list of the Approach color constants is available in the “Lotus
Approach96: Constants” category on the Browser Panel of the IDE. The
following screen shows a partial list:

Creating a Function

A function is a procedure in a script with a name assigned to it. It differs
from a sub in that it returns a value. You provide values to the function, it
processes them, and then sends back a single value result to the procedure
that called it.

LotusScript provides a set of built-in functions that you can use to perform
many common numeric, date/time, string, data-conversion, and
value-testing operations.

4-8 Using LotusScript in Approach

You can also create your own functions in Approach. You define a function
by specifying a series of one or more statements that are to be executed as a
block when you call the function in a script. You enclose these statements
between the Function keyword (followed by the function name) and the
End Function keyword.

To use a function in a script, simply provide the function name in a line of
code in the script, at the point where you want the function to execute, and
pass values (called arguments) to it. The function receives these arguments,
processes them, and returns a value.

For more information about functions, see Chapter 4, “Procedures,
Functions, Subs, and Properties,” in the LotusScript Programmer’s Guide.

Example
The following example illustrates a user-defined function. The function
retrieves a value, representing temperature, from a field box and runs the
value through one, two, or three tests, depending on what the results of
first and second test are:

If the temperature is less than or equal to 40 degrees, it returns a value
that represents the color pale blue.

If after the first test, the function determines that the temperature is
greater than 40 degrees, it checks to see if it is less than or equal to
80 degrees; if so, it returns a value that represents the color green.

If after the second test, the function determines that the temperature is
greater than 80 degrees, it returns a value that represents the color red.

Later, the function is called in the event script for the Change event of a
FieldBox object. When the function is called, its actions are performed.

Entering the function in the IDE
To enter the function in the IDE, do the following:

1. Click the Object drop-down box in the IDE.

2. Select (Globals) from the list.

(Globals) is listed immediately before the list of Approach objects.

Writing Simple Scripts 4-9

3. Type the following code in the Script Editor:

Function TempColor (Temperature As Integer) As Long

 If Temperature <=40 Then

 TempColor=COLOR_PALE_BLUE

 Else

 If Temperature <=80 Then

 TempColor=COLOR_GREEN

 Else

 TempColor=COLOR_RED

 End If

 End If

End Function

What the script does
The first line of the example introduces the function definition.

Function TempColor (Temperature As Integer) As Long

TempColor is the function name.

Temperature As Integer is the function argument. It specifies the variable
Temperature, to be used by the function for receiving the value that the
function is expecting in order to perform its calculation. This statement also
specifies the data type (Integer) of the variable. The value of this variable is
given to the function by the event script that calls the function.

As Long specifies the data type of the function’s return value.

Note Everything in the example between this first line and the End
Function line is the heart of the function, as it specifies what the function
does.

The next several lines of the example check the value in Temperature and,
depending on what the value is, the function returns an RGB color value.

If Temperature <=40 Then

 TempColor=COLOR_PALE_BLUE

Else

4-10 Using LotusScript in Approach

If the value in Temperature is less than or equal to 40, the function returns
the color pale blue. Otherwise, if the value in Temperature is greater than
40, proceed to the next line.

If Temperature <=80 Then

 TempColor=COLOR_GREEN

Else

If the value in Temperature is greater than 40 (already determined by the
previous If...Then...Else test) but less than or equal to 80, then the function
returns the color green. Otherwise, if the value in Temperature is greater
than 80, proceed to the next line.

 TempColor=COLOR_RED

 End If

 End If

End Function

Notice that you can put an If...Then...Else statement inside another
If...Then...Else statement. This is referred to as nesting If...Then...Else
statements.

If none of the previous conditions are met, in other words if Temperature is
greater than 80, the function returns the color red and then ends.

All If...Then...Else clauses require corresponding End If clauses. All
function definitions end with an End Function clause.

In this example, the function is called from inside the Change event script
for the field box that contains the temperature value. This means that when
the value inside the field box changes and the field box loses focus, for
example if a user enters a new value in the field box and then tabs out of the
field box, the Change event sub executes causing the TempColor function to
be called.

The following script illustrates how the function is called from inside the
Change event script for the FieldBox object.

Sub Change(Source As FieldBox)

Dim x As Long

x=TempColor(Val(Source.Field1.Text))

Source.Field1.Background.Color.SetRGB(x)

End Sub

Writing Simple Scripts 4-11

This script does the following:

Converts the value of the Text property for Field1 from a string to a
number, using the Val function

Calls the TempColor function and sends it the converted value from
Field1 for processing

Provides the variable x to store the value returned from TempColor

Sets the background color of Field1 to the value in x, using the SetRGB
method

4-12 Using LotusScript in Approach

Chapter 5
Advanced Scripting Concepts

This chapter introduces some advanced scripting concepts, which provide
you with more powerful capabilities for working in Approach.

Objects as Properties

As explained in Chapter 2, objects have properties, which represent
characteristics or attributes of the objects. Some objects also act as
properties of other objects. For example, Background, Font, Color, Border,
LineStyle, Table, Query, and Connection are objects that are sometimes
treated as properties of other objects. The following example illustrates how
this works.

Suppose that the current object in a form is FirstName, a FieldBox object. If
you want to change its background color to red, use the following
statements. (For this example, you must write these statements in an event
script, such as the Click event script, of the current object. For information
about writing event scripts, see “Working in the IDE with Events,” in
Chapter 3.)

Dim red As New Color(255,0,0)

Set Source.Background.Color = red

The first line of the script creates a new Color object called Red and
initializes it to red, as indicated by the RGB values 255 (red), 0 (Green),
0 (Blue).

The second line changes the Color property of the Background object to
red, using the new object that you created and stored in the variable red, in
the first line of the script. The Background object acts as a property of
FirstName (the FieldBox object represented by Source), and the Color object
acts as a property of the Background object.

Note Whenever you set an object to another object, as in this case where
you are setting Background.Color to the Red object, you must use the Set
statement. For more information on using the Set statement, see the
LotusScript Language Reference.

5-1

Containment

Some classes contain other classes. For example, the FieldBox class contains
the Background class. This relationship is often referred to as a parent-child
relationship. Background is a child of FieldBox, which means that FieldBox
is its parent. Likewise, the FieldBox class has several different parents
including the BodyPanel class, the HeaderFooterPanel class, and the
SummaryPanel class. The BodyPanel class has several parents too,
including the Form class, the FormLetter class, and the Report class. The
Form class has a parent called the Document class.

Note A class can be contained by multiple classes. For example, several
different classes, including BodyPanel, SummaryPanel, and
HeaderFooterPanel, contain the FieldBox class. This means that the
FieldBox class has multiple parents, which are all classes directly above it in
the containment hierarchy (see the diagram that follows). However, an
object, a single instance of a particular class, can only have a single parent,
and that parent must be an object of a class that contains the FieldBox class.

Understanding which classes are contained by other classes, and therefore
which objects are contained by other objects, helps you understand the
syntax to use in a script when you try to access an object or change one of
its properties. One of the advantages of containment is that it lets you
access any object by traversing the containment hierarchy that connects
objects with other objects.

5-2 Using LotusScript in Approach

The following diagram illustrates the containment relationships of classes
and objects.

Classes in bold contain other classes. Classes that are not bold do not
contain other classes.

Display, Panel, and View are classes that act as categories of other classes.
You cannot create an instance (object) of the Display, Panel, or View class.
You can, however, create an instance of one of the classes in each of these
categories. For example, you can create a TextBox object using the TextBox
class, which is a kind of Display class. The following table lists the kinds of
Display, Panel, and View classes.

Class Kinds of classes

Display Button, CheckBox, DropDownBox, Ellipse, FieldBox, LineObject,
ListBox, OLEObject, Picture, PicturePlus, RadioButton,
Rectangle, RoundRect, TextBox

Panel BodyPanel, HeaderFooterPanel, RepeatingPanel, SummaryPanel

View ChartView, CrossTab, Envelope, Form, FormLetter,
MailingLabels, Report, Worksheet

Application

ApplicationWindowDocument

View TableDocWindow

Panel

Display

.APR FILE

Advanced Scripting Concepts 5-3

Classes (and, therefore, objects) of the Display class category are contained
by classes of the Panel class category, which in turn are contained by classes
in the View class category, which in turn are contained by the Document
class, which in turn is contained by the Application class. While Application
is the immediate parent of Document, it indirectly contains the View, Panel,
and Display classes. The same is true of Document: it is the immediate
parent of View, but it indirectly contains Panel and Display.

Note The ApplicationWindow class is contained by the Application class,
and the DocWindow and Table classes are contained by the Document
class. However ApplicationWindow, DocWindow, and Table do not
contain any classes.

Building on the example in the previous section “Objects as Properties,”
suppose you want to change the background color of LastName, the name
of a FieldBox object. Assume that FirstName, not LastName, is the current
object. Since you want to change LastName, you have to access it. You can
do this several different ways, using the Approach containment hierarchy.

If FirstName and LastName have the same immediate parent, a
BodyPanel object on a Form object, use the following code to change the
background color:

Set Source.LastName.Background.Color = red

Since FirstName and LastName are siblings with the same immediate
parent, a reference to the parent is not necessary. Source, which
represents FirstName, is sufficient. This is true for all objects that share
the same immediate parent.

If FirstName and LastName do not share the same immediate parent,
for example, if FirstName is contained by Form1, and LastName is
contained by Form2, you can traverse up the hierarchy tree starting
from the current object (FirstName) and then back down to LastName:

Set Source.Body.Form1.Customer.Form2.Body.LastName.
Background.Color = red

Source represents the current object, FirstName.

Body is the BodyPanel object for Form1, and is contained by Form1.

Form1 is the Form object that represents the view containing
FirstName, and is contained by Customer.

Customer is a Document object. It is an Approach .APR file, and is the
object that FirstName and LastName have in common as a parent
(Customer contains both of these objects). At this point you need to
refer back down the hierarchy to LastName; you always start back
down the hierarchy at the common parent.

5-4 Using LotusScript in Approach

Form2 is the Form object that represents the view containing LastName.
Form2 is contained by Customer.

Body is the BodyPanel object for Form2, and is contained by Form2.

LastName is the object you are trying to change to red. It is contained
by the Body object of Form2, and has the property Background, which
is an object that has a property called Color, which is also an object.

Another option for accessing LastName, if it is not the current object
and does not share the same parent with the current object, is to refer to
it by starting at the top of the object hierarchy. For example:

Set CurrentApplication.Customer.Form2.Body.LastName.
Background.Color = red

CurrentApplication represents Approach, which is the object at the top
of the entire hierarchy.

Customer is the name of the Document object (an .APR file) that
contains the form.

Form2 is the Form object.

Body is the BodyPanel object for Form2 and is contained by Form2.

LastName is the object itself and is contained by Body. It has a property
called Background which is an object that has a property called Color.

Instead of the preceding option, you may use the following script to
access LastName:

Set CurrentDocument.Form2.Body.LastName.Background.Color =
red

In this case, CurrentDocument is equivalent to
CurrentApplication.Customer in the preceding example (Set

CurrentApplication.Customer.Form2.Body.LastName.

Background.Color = red). CurrentDocument refers to the current
Document object in the current session of Approach.

Classes that Inherit from Other Classes
Approach provides some classes, called abstract classes, that exist only to
create other classes, called derived classes. You cannot create an instance
(object) of an abstract class.

A derived class, also called a subclass, inherits the members (methods and
properties) of the class it derives from, called its base class.

The following diagram shows the Approach class hierarchy, including the
abstract classes (in italics) and the derived classes that inherit from them.

Advanced Scripting Concepts 5-5

The table that follows lists the abstract classes and their derived classes.

Display Button

CheckBox

DropdownBox

Ellipse

FieldBox

LineObject

ListBox

OLEObject

Picture

PicturePlus

RadioButton

Rectangle

RoundRect

TextBox

Application

Document Table

Window ApplicationWindow

Panel BodyPanel

View ChartView

DocWindow

HeaderFooterPanel

RepeatingPanel

SummaryPanel

Crosstab

Envelope

Form

FormLetter

MailingLabels

Report

Worksheet

DBENGN01.LSX

Connection

Query

ResultSet

Additional LotusObjects (These objects are common across Lotus products.)

Background Border Color

LineStyle Font Collection BaseCollection

5-6 Using LotusScript in Approach

Abstract class Derived classes

Display Button, CheckBox, DropDownBox, Ellipse, FieldBox, LineObject,
ListBox, OLEObject, Picture, PicturePlus, RadioButton, Rectangle,
RoundRect, TextBox

Panel BodyPanel, HeaderFooterPanel, RepeatingPanel, SummaryPanel

View ChartView, CrossTab, Envelope, Form, FormLetter,
MailingLabels, Report, Worksheet

Window ApplicationWindow, DocWindow

The advantage of abstract classes is that when the base class of a derived
class is an abstract class, you can refer to that abstract class in a script, and
then use any of its derived classes in its place, since those derived classes
inherit all the methods and properties of the abstract class. This makes the
script flexible and reusable.

The following script demonstrates how you can create a sub that accepts an
argument with the data type of any class based on a certain abstract class.
This example uses the MakeInvisible sub to hide from view an instance of
any class derived from the Display class. Display class is an abstract class.

Sub MakeInvisible (dis As Display)

 dis.Visible = FALSE

End Sub

This sub takes an argument, dis, which has a data type of the Display class.
This means that the sub accepts an argument with the data type of any
classes derived from the Display class. Button, CheckBox, DropDownBox,
Ellipse, FieldBox, LineObject, ListBox, OLEObject, Picture, PicturePlus,
RadioButton, Rectangle, RoundRect, and TextBox are all the classes derived
from the Display class. You can pass objects of any of these class types to
the sub, by assigning the object to the variable dis, and make them invisible.
The advantage of this functionality is that it saves you from having to create
a different sub for each of the derived classes. Instead, you create one sub
that works for all of them.

Keep in mind, however, that when you pass an argument with the data
type of a derived class to a function or sub that manipulates properties and
uses methods, those properties and methods must be valid for the derived
class. For example, the FieldBox class has an Alignment property, but the
ListBox class doesn't. The following sub, which left-justifies an object using
the Alignment property, would fail if you passed to it a ListBox object as an
argument. It, therefore, checks to see if the Type property of the object
stored in the variable dis contains the value $aprFieldBox, meaning that it is
an Approach FieldBox. If it is, the sub left-aligns the object by setting its
Alignment property to $LTSAlignmentLeft.

Advanced Scripting Concepts 5-7

Sub ChangeAlignment (dis As display)

If dis.Type = $aprFieldBox Then

 dis.Alignment = $LTSAlignmentLeft

End Sub

For more information
1. Choose Help - Help Topics and click the Index tab.

2. Type one of these words:

Classes

Display

View

Panel

Window

3. Click the index entry you want, then click Display.

Accessing Data

Approach provides three objects that let you access data: Connection,
Query, and ResultSet. Using these three objects provides you with the
power to directly access information in databases and data files (stored in
various formats including dBASE®, Paradox®, FoxPro®, Lotus Notes®,
and SQL) without going through the Approach user interface (the user
interface (UI) refers to the windows, menus, dialog boxes, and various
other controls that make up Approach).

The Connection, Query, and ResultSet objects let you access or even delete
data via scripting. Using them also allows you to avoid the restrictions of
the Approach UI. For example, if you use these objects in a script to
manipulate a field defined in the UI to accept values within a certain range,
the script doesn't recognize this UI restriction. This means you have a fast
and efficient way to manage data, since you aren’t restricted by the normal
operations defined in the UI.

Caution When you use the Connection, Query, and ResultSet objects, be
extremely careful that you don’t unintentionally delete data, since it won’t
be obvious from the user interface what you have done until later, when
you try to open an updated file.

5-8 Using LotusScript in Approach

Accessing Approach data from other Lotus products
The Connection, Query, and ResultSet objects can be made available to
other Lotus products that use LotusScript, so that programs written in
those products can access Approach data. These objects are exposed to
other Lotus products via a Lotus .LSX file (DBENGN01.LSX) that combines
the Connection, Query, and ResultSet objects. An .LSX file is like a
dynamically linked library (.DLL) that gives you access to data.

For example, if Lotus Word Pro™ users want to use the Connection, Query,
and ResultSet objects to access Approach data, they must do the following:

1. Click the Object drop-down box in the IDE.

2. Select !Globals from the list.

3. Type the following line of code in the Script Editor:

Uselsx "[drive name]\[path name]\Dbengn01.lsx"

Drive name refers to the drive in which the Approach DBENGN01.LSX
file is stored.

Path name refers to the directory path in which the Approach
DBENGN01.LSX file is stored. The default is LOTUS\APPROACH.

Example
This example illustrates the use of the Connection, Query, and ResultSet
objects in Approach. The script runs a query against a dBASE IV® table file
named EXAMPLE.DBF and prints to the IDE Output panel a list of the table
column names. You can type this example in an event script for any object.

Advanced Scripting Concepts 5-9

Dim fName As String

Dim con As New Connection

Dim qry As New Query

Dim rs As New ResultSet

If (con.ConnectTo ("dbase IV")) Then

 Set qry.Connection = con

 qry.Tablename = "C:\Lotus\Approach\Example.dbf"

 Set rs.Query = qry

 If ((rs.Execute)) Then

 N = rs.NumColumns

 Print "Number of columns = ", N

 For i = 1 To N

 fName = rs.FieldName (i)

 Print fName

 Next

 Else

 MessageBox "The query did not run successfully.",0,
"Query execution"

 End If

 con.Disconnect

End If

Declaring variables
The first four lines of the example declare and initialize four variables.

Dim fName As String

This Dim statement declares a variable that will be used later in the script to
print the names of the columns in a result set table.

Dim con As New Connection

Dim qry As New Query

Dim rs As New ResultSet

These Dim statements declare three variables that are essentially initialized
to new objects using the LotusScript New keyword. For more information
on using the New keyword in the Dim statement, see the LotusScript
Language Reference.

5-10 Using LotusScript in Approach

con is a Connection object variable, which represents a link to a database
type.

qry is a Query object variable, which represents the definition of the query
(the criteria) for selecting the data you want to retrieve.

rs is a ResultSet object variable, which represents the data returned by the
query in column and row format.

The data types of these three variables are their classes.

Testing the connection to the database
The next line of the example introduces an If...Then...Else statement that
tests whether the dBASE IV connection is active. To check the condition, the
ConnectTo method returns a value that indicates whether or not the
database was connected.

If (con.ConnectTo ("dBASE IV")) Then

If the condition is true, then the script performs several operations.

Setting the query connection
If the dBASE IV connection is active, in other words if the Connection object
is a dBASE IV connection, the script sets the Connection property of the
Query object to the Connection object (stored in the variable con). This
means that the Query object’s Connection property is now a dBASE IV
connection.

Set qry.Connection = con

Note Whenever you set an object to another object, as in this case where
you are setting qry.Connection to the con object, you must use the Set
statement. For more information on using the Set statement, see the
LotusScript Language Reference.

The script now sets the TableName property of the Query object to the
name of the dBASE IV.DBF data file. Approach already knows that the
connection is a dBASE IV connection but doesn’t know what dBASE IV
table to run the script against, so this line of code provides that information.

qry.TableName = "C:\Lotus\Approach\EXAMPLE.DBF"

Note You must provide an explicit path to the .DBF file. This example
assumes that the file is stored in the C:\LOTUS\APPROACH directory.

Advanced Scripting Concepts 5-11

The following statement sets the Query property of the ResultSet object to
qry. A Query object has two properties, a TableName and a Connection,
that were just set. These properties designate what data is retrieved and
from where.

Set rs.Query = qry

Running the query
The next line of the example executes the query and verifies whether or not
it executed successfully. The Execute method runs the query and creates a
result set.

If rs.Execute is successfully executed, then several actions, described next,
take place following the If...Then portion of the If...Then...Else statement,
which is nested within another If...Then...Else statement.

If (rs.Execute) Then

If rs.Execute is not successfully executed, then a message is displayed to the
user and the script terminates (see below). The Execute method will not be
invoked if the file does not exist or the file’s path name is not typed
correctly.

Iterating through the table
The next six lines of the example determine how many columns are in the
table, step through the table using that information, and print the name of
each column in the IDE Output panel (for information about the Output
Panel, see Chapter 3, “The LotusScript IDE”). The table is represented by rs,
the ResultSet object.

This statement captures the value of the NumColumns property of the
ResultSet object (rs), and places it in the variable N. NumColumns contains
the number of columns in the result set.

N = rs.NumColumns

The next statement prints the value in N (the number of columns in rs) in
the IDE Output panel.

Print "Number of columns = ", N

The next four lines are a For statement that iterates through the result set’s
columns. The number of columns was already stored in the variable N. The
For statement starts at 1 and loops N times through the result set’s
columns. For each column, the script does the following:

Returns the name of the column, using the FieldName method of the
ResultSet object

Stores the name in a variable called fName

Prints the name in the IDE Output panel

5-12 Using LotusScript in Approach

After performing these actions for a column, the script iterates to the next
column and repeats these steps until all columns have been processed. The
following code performs these steps.

 For i = 1 to N

 fName = fs.FieldName (i)

 Print fName

 Next

If the query fails to run, the preceding steps (iterating through the table) are
never performed and a message box displays the message “The query did
not run successfully.” The MessageBox statement takes three arguments:
the message to be displayed in the box, a value determining which buttons
appear on the box (in this case a value of zero specifies a box with an OK
button), and the message box name, in this case Query Execution.

 Else

 MessageBox "The query did not run successfully.",0,
"Query execution"

The last three lines of the script end the two If...Then...Else statements and
deactivate the dBASE IV connection.

 End If

 con.Disconnect

End If

Advanced Scripting Concepts 5-13

Chapter 6
OLE Automation Support

With OLE Automation you can access and control another application’s
objects. The application through which you manipulate such objects is
called the automation controller. The application providing the objects you
want to manipulate is called the automation server.

Using OLE Automation in Lotus Products

The following Lotus applications can function as both OLE Automation
controllers and servers:

Approach

Freelance Graphics®

Word Pro

Automation controllers
In addition to working with objects created using your current application,
you can write scripts in LotusScript to control objects in applications other
than the one in which you are running LotusScript. When you reference
such an object in a script, the application in which you run the script is
called the automation controller. For example, if you have Word Pro
installed, you can write a script in Approach (the automation controller)
that manipulates objects in Word Pro (the automation server).

Automation servers
When an automation controller accesses objects created by another
application, the application in which the objects were created is called an
automation server. The automation controller can manipulate or extract
data from the automation server’s objects by reading and writing properties
and invoking methods. Every Lotus application that supports LotusScript
can function as an OLE Automation server. You can access such OLE
Automation servers using LotusScript, Visual Basic®, Visual C++™, or
through other languages written for applications that support OLE
Automation.

6-1

Accessing LotusObjects
Once you know how to write scripts that run independently within
applications, you don’t have to learn much more to take advantage of OLE
Automation. When you write a script that controls another application’s
objects, you use mostly the same syntax that you would in a script written
for that application.

The following script, written in LotusScript and running in Word Pro, is an
example of an application manipulating its own objects. This script creates a
new Word Pro document, inserts some text, and saves the file:

Dim app As Application

Set app = CurrentApplication
app.NewDocument ("Foo.Lwp")
app.Text.InsertText "This is a New Line"
app.Save

You can do the same thing from outside of Word Pro using an application
that is running another scripting language. The next script is an example of
an application manipulating objects in another application, using Visual
Basic. The application running the Visual Basic script is the controller, and
Word Pro is the server:

Dim app As Object

Set app = CreateObject ("WordPro.Application")
app.NewDocument ("Foo.Lwp")
app.Text.InsertText "This is a New Line"
app.Save

In this example, Visual Basic attaches to Word Pro and instructs Word Pro
to create the new Word Pro document, insert some text, and save the file.
The syntax of the Visual Basic example differs from the Word Pro example
in the following two ways:

The Visual Basic CreateObject function is used to access Word Pro via
OLE Automation.

The variable app is declared as an Object, rather than as an Application.
Object is a Visual Basic data type.

6-2 Using LotusScript in Approach

For more information
For more information about OLE Automation in Word Pro, do the
following.

1. In Word Pro, choose Help - Help Topics and click the Search button.

2. Type this phrase:

OLE Automation

3. Click Show Topics, select a topic, and then click Go To.

LotusScript applications as controllers
Any product that supports LotusScript can act as an OLE Automation
controller. The LotusScript functions CreateObject and GetObject allow you
to write scripts that access OLE Automation objects. These objects are
stored in variables of type Variant, a LotusScript data type. For information
about LotusScript data types, see Chapter 3, “Data Types, Constants, and
Variables,” in the LotusScript Programmer’s Guide.

The following script is an example of an application manipulating objects in
another application, using LotusScript. The script runs in Approach or in
any other application that supports LotusScript. Like the two preceding
examples, it creates a new document, inserts some text, and saves the file.
In this example Approach is an automation controller accessing Word Pro,
an automation server:

Dim app As Variant

Set app = CreateObject ("WordPro.Application")
app.NewDocument ("Foo.Lwp")
app.Text.InsertText "This is a New Line"
app.Save

Notice that this example looks a lot like the Visual Basic example appearing
in the preceding section. The only difference is that it declares the variable
app as a Variant, rather than as an Object.

Object names for applications
An application object is at the start of the object hierarchy for its respective
application. From an application object, you can traverse the hierarchy to
find all other objects. To invoke the OLE Automation server for a Lotus
application, use your scripting language's CreateObject method.

OLE Automation Support 6-3

Lotus applications use the following object names when exposing their
objects for OLE Automation:

Approach.Application

Freelance.Application

WordPro.Application

6-4 Using LotusScript in Approach

	Table of Contents
	Chapter 1 An Introduction to Scripting in Approach
	Scripting vs Other Ways of Automating Tasks
	Approach features that automate tasks
	Macros
	Scripts

	LotusScript
	Getting Help on LotusScript
	Additional LotusScript documentation

	Chapter 2 Objects, Properties, Methods, and Events
	Objects
	Objects and classes
	For more information

	Properties
	For more information

	Methods
	For more information

	Events
	For more information

	Chapter 3 The LotusScript IDE
	IDE Functionality
	Assessing the IDE
	For more information

	Viewing Classes in the IDE Browser
	Displaying a list of classes, methods, properties, and events
	Pasting a class, method, property, or event name into the current script
	Getting context-sensitive Help in the Browser

	Working in the IDE with Events
	Assessing an object's event
	Sub and End Sub
	Attaching a script to an object event

	Reusing Scripts
	Copying and pasting scripts

	Importing and Exporting a Script
	For more information

	Chapter 4 Writing Simple Scripts
	Setting a Property
	Calculating a Value
	Testing Conditions
	Creating a New Object
	Introducing the sub
	Dedaring a variable
	Setting the location of the new object
	Setting the properties of the new object

	Creating a Function
	Example
	Entering the function in the IDE

	Chapter 5 Advanced Scripting Concepts
	Objects as Properties
	Containment
	Classes that Inherit from Other Classes
	Accessing Data
	Accessing Approach data from other Lotus products
	Example
	Declaring variables
	Testing the connection to the database
	Setting the query connection
	Running the query
	Iterating through the table

	Chapter 6 OLE Automation Support
	Using OLE Automation in Lotus Products
	Automation controllers
	Automation servers
	Assessing LotusObjects
	For more information

	LotusScript applications as controllers
	Object names for applications

