Scripting

In this chapter:

Overview 12-2

Entering and Editing Scripts 12-3
Informed JavaScript Implementation 12-5
Reference Object Descriptions 12-12
Additional Built-in Objects 12-67

Error Handling 12-70

Sample Scripts 12-71

12-2 -

Scripting

Scripting

Scripting languages allow you to control Windows and Mac OS applications with program-like
scripts.You can write scripts to perform tasks as simple as opening and printing a form, or as com-
plex as controlling a sophisticated workflow process.

This chapter provides an overview of Informed’s scripting capabilities. You'll learn how to use
Informed Designer’s Scripts command to attach scripts to templates so that they can be configured
to run when the Informed Filler user invokes certain actions.

This chapter includes a thorough reference to Informed’s implementation of the JavaScript script-
ing language. The reference material includes a description of each Informed JavaScript object as
well as examples and descriptions of the terminology to use when writing scripts for Informed
Filler. For information about Informed’s AppleScript implementation, please refer to the “Using
AppleScript” topic in Informed Designer’s on-line help system or the on-line document
“AScript.PDF” on the Informed CD-ROM.

Overview

A single script can automate a task that normally requires several steps. For example, you might
write a script that would find and print all invoices that exceed five hundred dollars. A different
script could create a new purchase order form and fill it in with information from one or more pur-
chase requisition forms. For the Informed Filler user, performing such tasks becomes as simple as
selecting a script

Informed’s scripting features rely on Informed scripting plug-ins. By using plug-ins, Shana
Corporation can easily support new scripting languages simply by implementing new scripting
plug-ins. At the time this documentation was prepared, Informed Designer included plug-ins for the
following scripting languages:

JavaScript
AppleScript

Informed’s JavaScript support gives you the ability to create powerful cross-platform scripts that
will operate equally well on both Windows and MacOS computers. Informed’s AppleScript fea-
tures are available only on MacOS compatible computers.

Informed Designer can store scripts in form documents. Whenever you copy a form document to
another place, or mail a form to another person, the scripts remain part of the form. Applications
that can store scripts, such as Informed Designer and Informed Filler, are oftemttatirdble
applications. This is because scripts caattechedto particular actions in the application. When

the user performs an action, the application triggers a script.

Scripting : 12-3
You configure forms with Informed Designer so that Informed Filler invokes scripts when the user
performs certain actions. You can attach scripts to the following actions:

selecting a menu item
clicking a button

typing a value in a lookup cell
submitting a form

Before configuring an action, however, you must first enter the script using Informed Designer’s
Scripts command. See the following section for instructions on how to enter and edit scripts.

Entering and Editing Scripts

The procedure for entering a script is the same on both Windows and Mac OS compatible comput
ers.You use Informed Designer’s Scripts command to add, remove, and edit scripts.

Choosescripts from the Configure submenu under the Form menu. The Scripts dialog appears.

T |
Sowpk Myes PR leiH a
J Haw |
[RAREETIN
|
|

If any scripts are currently attached to the form, their names will appear in the scrolling list in the
order that they were created.

To add a new script to your form:

Click ‘New.’ The Edit Script dialog box appears.

12-4 - Scripting

Script Hame IE:-:pDrt Fecords | Check | oK I

[~ Show in Informed Filler's scripts menu Uit | Caizel

Document(l).export(File ("Datas58.ifn"),Cell(1l,10) , INFORMED_DATA) ; ﬂ

]

Type the name of the new script in the ‘Script Name’ text box. This is the name that you'll see
when you configure an action to invoke a script.

Enter a script by typing in the text box, or click the ‘Import’ button to import a script from
another file.

In version 2.5 (or later) of Informed, a script that’s attached to a form does not automatically appear
in Informed Filler's Scripts menu. If you want a script to appear in Informed Filler's Scripts menu:

Click the ‘Show in Informed Filler’'s Scripts menu’ checkbox.

Check for errors by clicking the ‘Check’ button. If an error is detected, you'll see a message
describing the error. If there are no errors, the script will display properly formatted.

Click ‘OK’ on the Edit Script dialog box. Informed Designer will store the script with the form
and display it in the scrolling list on the Scripts dialog.

Skt Ny e (BT

o

H |kl

Scripting : 12-5

To edit an existing script:

Select the script name in the Scripts dialog scrolling list, then click ‘Edit.’
Make the appropriate changes on the Edit Scripts dialog.

To remove a script:

Select the script name in the Scripts dialog scrolling list, then click ‘Remove.

Informed JavaScript Implementation

This section provides an overview of Informed’s JavaScript implementation. It is assumed that you
already understand the basics of JavaScript and are familiar with the Informed Designer and
Informed Filler applications.

Reference Objects

Using JavaScript to communicate with Informed Filler can be thought of as a conversation with
various objects in the Informed Filler application. To initiate this ‘conversation’ you need to create
reference objects. A reference object is a JavaScript object that refers to one or more elements of
the Informed user interface. For example, a Record object refers to one or more records in Informec
Filler and a Cell object refers to one or more cells.

You use JavaScriptisew operator to construct reference objects as shown below:

/lcreate a Document object
theDoc = new Document(2);

/[create a new Menu object
theMenu = new Menu("File");

Reference objects can refer to their corresponding Informed elements in a number of different
ways. For example, a Cell object can refer to one or more cells in Informed by name, index, id,
absolute position, relative position, range, or test.

[Irefers to the cell named "Cost" in the third record of the second document
Document(2).Record(3).Cell("Cost")

7 |

Reference by index Reference by name

For detailed information about reference objects, see “Reference Object Descriptions” and “Refer-
ence Object Types” later in this chapter.

12-6 : Scripting

Containment

Reference objects are organized hierarchically so that some objects are elements of others. For
example, an Attachment object is an element of a Record object, and a Record object is an element
of a Document object. This organization is referred tcoasainmentOne object isontainedby

another or one object is tikentainerof another. The object containment hierarchy in Informed is
shown in the following diagram.

| Informed }——' Built-in command|

—| Document |——| Attached Script |

—| Format |—| Column |
_| Record Attachment |

Cell |—| Element

Saved Format

Tag

—| Menu |—| Menu Item I— Menu Item

Plug-in command

Template

Window

Syntax Shortcuts

To refer to a specific object, you would normally be required to specify its complete containment.
The example below specifies the complete containment for a cell called “Age” in the first record of
a document called “Contacts”:

theDoc = new Document("Contacts”, Informed);
theRec = new Record(1, theDoc);
theCell = new Cell("Age", theRec);

Complete containment specifications can be quite long, and typing them would quickly become
tiresome. Fortunately, Informed provides syntax shortcuts which can simplify your scripts. Using a
syntax shortcut, the above containment specification can be condensed to a single line:

theCell = Informed.Document("Contacts").Record(1).Cell("Age");

Scripting : 12-7

Using Variables

Another way to simplify your scripts is to use variables to store frequently used containment. The
example below uses the same containment in each line of the script.

Informed.Document(2).currentRecord.Cell("Name").value = "Brent Taylor";
Informed.Document(2).currentRecord.Cell("Age").value = 37;
Informed.Document(2).currentRecord.Cell("Sex").value = "Male";

By using a variable, the above code can be simplified as follows:

var theRecord = Informed.Document(2).currentRecord;
theRecord.Cell("Name").value = "Brent Taylor";
theRecord.Cell("Age").value = 37;
theRecord.Cell("Sex").value = "Male";

Implied Containment

Another way to simplify your scripts is to use “implied containment.” This means that certain
objects can be left out of the object specification and appropriate defaults will be provided. The fol-
lowing objects are optional in a containment specification:

Informed
Document
Record

The example below shows a complete containment specification:

/I Refers to the fourth cell of the third record of the second document
Informed.Document(2).Record(3).Cell(4)

The above example could be shortened by leaving out the Informed object. Therefore, the Informec
object is “implied.”

/I Refers to the fourth cell of the third record of the second document
Document(2).Record(3).Cell(4)

Rules for Implied Containment
If you use implied containment in your scripts, you must be aware of the following rules:
If no document is specified, then the implied document is the current document:
/I refers to the fourth cell of the third record of the current document
Informed.Record(3).Cell(4)
If no record is specified, then a#tcords of the specified container are implied:

1/ refers to the fourth cell of every record of the second document
Document(2).Cell(4)

12-8 : Scripting

If no container is specified (or if the specified container is Informed) then the current record of
the current document is implied:

/I refers to the fourth cell of the current record of the current document
Informed.Cell(4)

Reference Object Types

A reference object can refer to its corresponding Informed element by index, nhame, id, absolute
position, or relative position. A reference object may also reference a group of Informed elements
which fall within a particular range or list, or which match a particular test. Each reference object
provides constructors for the variety of ways in which the Informed elements can be referenced.

Index Reference Objects

A reference object that refers to its corresponding Informed element by index is called an index ref-
erence object. Any Informed element which has an index property can be referenced by an index
reference object. The constructor for an index reference object requires the object’s index as the
first argument and the object’s container as the second argument. If no container is specified, the
implied container will be used.

1 references the fourth cell of the record referenced by theRec
theCell = new Cell(4, theRec);

I references the fourth cell of the current record
theRec.Cell(4)

The way an object’s index is determined depends on the type of object, as shown in the table below:

Determining Index

Object How Index is Determined

Document A Document’s index represents its front to back position on the screen. The
frontmost Document would be Document (1), the Document behind it would
be Document (2).

Record A Record’s index refers to its position in its container. A Record’s container
can be a document or a collection:

IIreferences the first record of the second document
Doc(2).Record(1)

IIreferences the first record of the current collection of the
/lsecond document
Doc(2).currentCollection.Record(1)

Cell A Cell's index is taken from its Tab position on the form. For example, the cell
with Tab position 4 would be referred to as Cell (4).

Scripting : 12-9

Name Reference Objects

Any Informed element which has a name property can be referenced by a name reference object.
The constructor for a name reference object requires the object’s name as the first argument and tt
object’s container for the second argument. If no container is specified, the implied container will
be used.

/I references the attachment named "Addendum" which belongs
/I to the record referenced by theRec
theAttachment = new Attachment("Addendum®, theRec);

ID Reference Obijects

Any object which has an id property can be referenced by an id reference object. The constructor
for an ID reference object requires the object’s ID reference as the first argument and the object’s
container as the second argument. If no container is specified, the implied container will be used.

Depending on the class, the id property of an object should be either an integer or a string. A refer
ence id is obtained by passing the appropriate integer or string to the built-in id() function.

/I references the record whose id is 1620 of the
/I document referenced by theDoc
theRec = new Record (id(1620), theDoc);

Absolute Position Reference Objects

Any object which has an index property can be referenced by an absolute position reference objec
The constructor for an absolute position reference object requires a constant which represents the
object’s absolute position as the first argument and the object’s container as the second argument.
no container is specified, the implied container will be used.

The Informed object’s absolute position can be referenced by any of the following constants:
FIRST, LAST, MIDDLE, ANY or ALL. TheALL constant references all Informed objects of the specified
class contained within the specified container.

IIreferences the first cell of the record referenced by theRec
theCell = new Cell(FIRST, theRec);

/I references every record in the current collection
/I of the document referenced by theDoc
theRecList = theDoc.currentCollection.Record(ALL);

Relative Position Reference Objects

Any object which has an index property can be referenced by a relative position reference object.
The constructor for a relative position reference object requires a constant which represents the
object’s relative position as the first argument and the object’s container as the second argument. |
no container is specified, the implied container will be used. Both the object and its container must
have the same class.

12-10 : Scripting

Note

The object’s absolute position can be referenced by any of the following cons&tsar
PREVIOUS

I references the next cell after the cell referenced by theRefCell
theCell = new Cell(NEXT, theRefCell);

Range Reference Objects

A range reference object is used to reference any range of indexed objects within the same con-
tainer. A range consists of all objects with indices between two boundary objects, inclusive. The
constructor for a range reference object requires the lower boundary reference object as the first
argument, the upper boundary reference object as the second argument, and the objects’ container
as the third argument. Each boundary object must be an index, name, id, or absolute position.

/I references cells 5 through the last of the document referenced by theDoc
theRecList = new Record(5, LAST, theDoc);

When using a range reference, the cells between the lower boundary and the upper boundary
are determined by Tab position.

List Reference Objects

A list reference object refers to an arbitrary list of objects within the same container. The construc-
tor for a list reference object requires an Array of object references as the first argument and the
objects’ container as the second argument. Each object reference must be an index or a name.

lIrefers to a list consisting of the cells "Qty" and "Cost"
theRefList = new Array("Qty", "Cost");
theCellList = theRec.Cell(theRefList);

Test Reference Objects

A test reference object is used to reference any group of objects within the same container which
pass a particular test. The constructor for a test reference object requires a test descriptor as the first
argument and the objects’ container as the second object.

A test descriptor describes a comparison test or a logical test to be performed on each object within
the container. If an object passes the test, then it will be included among the objects referenced by
the test reference object.

Comparison Test Descriptors

Comparison test descriptors are obtained by calling one of the built-in functions testEQ(), testNE(),
testGT(), testGE(), testLT(), testLE(), testBEG(), testEND(), or testCON(). Each of these functions
requires two test arguments on which it performs the appropriate comparison. Each argument can
be a reference object contained by the object being tested, or a property of the object being tested. If
S0, useself as the container of the argument. Each argument can also be any other valid JavaScript
value.

Scripting @ 12-11

Iltests each record of the second document to see if the value of the
/["Name" cell is equal to "Bob"
Doc(2).Record(testEQ(self.Cell("Name"), "Bob"));

IIreferences every record in the document referenced by
/I theDoc whose index > 10
theRecList = new Record(testGT(self.Index, 10), theDoc);

Logical Tests Descriptors

Logical test descriptors are obtained by calling one of the built-in functions testAND(), testOR(), or
testNOT(). The functions testAND() and testOR() require two or more test descriptor arguments
and testNOT() requires one test descriptor argument. Each argument may be either a comparison
test descriptor object or a logical test descriptor object.

/I references every record in the current document whose

/I cell "Name" contains "Brent" and whose cell "Date" equals today’s date
testl = testCON (self.Cell("Name").value, "Brent");

test2 = testEQ (self.Cell("Date".value), new LongDate);

theTest = testAND (testl, test2);

theRecList = Informed.currentDocument.Record(theTest);

Index Test Reference Objects

An index test reference object references a specific object from those which pass a particular test.
The constructor for an index test reference object requires an index value as the first argument, a
test descriptor as the second argument, and the object’s container as the third argument. The inde
argument can be specified by either an integer value or one of the following absolute position con-
stantsFIRST, LAST, MIDDLE, ANY or ALL.

I references the second record of the document referenced
/I by theDoc whose cell "Qty" <= 100

theTest = testLE (self.Cell("Qty").value, 100));

theRecList = theDoc.Record(2, theTest);

/I references the last record of the document referenced
/I by theDoc whose cell "Price" > 1000

theTest = testGT (self.Cell("Price").value, 1000));
theRecList = theDoc.Record(2, theTest);

Range Test Reference Objects

A range test reference object references a specific range of objects from those which pass a partic
lar test. The constructor for a range test reference object requires index values as the first and sec
ond arguments, a test descriptor as the third argument, and the objects’ container as the fourth
argument. Each of the index arguments can be specified by either an integer value or one of the fc
lowing absolute position constanBRST, LAST, MIDDLE, ANY or ALL.

/I references the first five records of the document referenced
/I by theDoc whose cell "Cost" > 10000

theTest = testGT (self.Cell("Cost").value, 10000);

theRecList = theDoc.Record (1, 5, theTest);

12-12 : Scripting

Reference Object Descriptions

The following sections describe each of the reference objects supported by Informed. Each object
description lists the reference methods, properties, and methods supported by the object.

AttachedScript

A document can contain a number of attached scripts. An attached script can be linked to a button
or a menu item and can be executed by selecting the associated menu item or button. It can also be
executed directly by another script. AttachedScript object represents one or more scripts that

are attached to a document.

Reference
An AttachedScript object can reference attached scripts by:
name
index
id
absolute position
relative position
range
test

Properties
The following table lists the properties of an AttachedScript object.

AttachedScript Properties

Property Writeable? Description

container no The container for the attached script. An attached script is always
contained by a Document object.

id no The unique id of the attached script.

index no The index of the attached script.

name no The name of the attached script.

objectClass no The AttachedScript class.

Scripting : 12-13

Methods
The following methods are defined for an AttachedScript object:

execute ()

Theexecute method executes an attached script and returns its result.

/I Execute the script named "Post Submit" of the current document and store its

/ result in the cell named "Submit Results" of the current record of the current

1 cell.

/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.

Cell("Submit Results").value = AttachedScript("Post Submit").execute();

exists ()

Theexrists method verifies the existence of an attached script.

/I If it exists, execute the script named "Process Orders" of the document
/I named "PO Batch" ignoring its result.
theScript = Document("PO Batch").AttachedScript("Process Orders");
if (theScript.exists())
theScript.execute();

Attachment

With paper forms, associated documents such as receipts or drawings are often attached to a forn
with a paper clip. Informed Filler provides this same capability by allowing you to attach electronic
documents to electronic forms. Artachment object represents one or more files that are

attached to a record.

Reference
An Attachment object can reference attachments by:

name
index

id

absolute position
relative position
range

test

12-14 : Scripting

Properties
The following table lists the properties of an Attachment object.

Attachment Properties

Property Writeable? Description
container no The container for the attachment. An attachment is always con-
tained by a record.
id no The unique id of the attachment.
index no The index of the attachment.
name no The name of the attachment.
objectClass no The Attachment class.
Methods

The following methods are defined for an Attachment object:

exists ()

Theesists method verifies the existence of an attachment.

/I Set the variable "ok" to true if an attachment named "Sample.txt" exists
/l'in the current record of the current document.
ok = Informed.currentDocument.currentRecord.Attachment("Sample.txt").exists();

remove ()

Theremove method deletes an attachment from a record.

/l Remove every attachment from every record of the current collection of the

/I document referenced by the variable theDoc.

/I This example uses implied containment.See "Containment” earlier in this chapter
// for more information.

theDoc.currentCollection.Attachment(ALL).remove();

Scripting : 12-15

save (inFile)
Thesave method saves an attachment.

Arguments for the save method
Argument Description

inFile This argument must be a File object which specifies the file into which the attach-
ment will be saved.

/I Save every attachment of the current record of the document named "Submissions"
/I with its own name into the directory "c:\submit\".
theRec = Document("Submissions").currentRecord;
for (i = 1; i <= theRec.count(Attachment); i++) {
theAttachment = theRec.Attachment(i);
theAttachment.save(File("c:\submit\" + theAttachment.name));

BuiltinCommand

Built-in commands correspond to the commands that are built into Informed Filler. The “Send
Mail” command is an example of a built-in commanduNtinCommand object represents one or
more built-in commands in Informed Filler. For a list of Informed’s built-in commands, please see
“Appendix B” in this manual.

Reference

A BuiltinCommand object can reference built-in commands by:

name
index

id

absolute position
relative position
range

test

Properties
The following table lists the properties of a BuiltinCommand object.
BuiltinCommand Properties

Property Writeable? Description
enabled yes Is the built-in command enabled?

12-16 : Scripting

id no The unique id of the built-in command.

index no The index of the built-in command.

name no The name of the built-in command.

objectClass no The BuiltinCommand class.
Methods

The following methods are defined for the BuiltinCommand object:

execute ()

Theesxecute method executes a built-in command.

/I Execute the built-in command "Log Off Service" to log off the signing service.
BuiltinCommand(“Log Off Service").execute();

exists ()

Theexists method verifies the existence of a built-in command.

/I Set the variable ok to true if the built-in command "Send Mail" exists.
ok = BuiltinCommand("Send Mail").exists();

Button

A button on a form can be configured to invoke commands that are built into Informed Filler,
commands that are available through Informed plug-ins, or scripts that are attached to the form. A
Button object represents one or more buttons on a form.

Reference
A Button object can reference buttons by:

name
index

absolute position
relative position
range

test

Scripting : 12-17

Properties
The following table lists the properties of a Button object.

Button Properties

Property Writeable? Description

container no The container for the button. A button is always contained by a
document.

enabled yes Is the button enabled?

index no The index of the button.

name no The name of the button.

objectClass no The Button class.

title no The title of the button.

Methods

The following methods are defined for a Button object:

execute ()

Theexecute method executes a button’s configured action.

/I Execute the button named "Approve" of the current document if it is enabled.
theButton = Button("Approve");
if (theButton.enabled)

theButton.execute();

exists ()

Theesists method verifies the existence of a button.

/I Check for the existence of the fifth button of the second document.
buttonExists = Document(2).Button(5).exists();

Cell

A Cell object represents one or more cells in a record. Cells include single value fields (drawn with
the Field tool in Informed Designer) and multiple value fields, (drawn with the Table tool in
Informed Designer).

12-18 : Scripting

Reference
A Cell object can reference cells by:

name
index

id

absolute position
relative position
range

test

Properties
The following table lists the properties of a Cell object.

Cell Properties

Property Writeable? Description

container no The container for the cell. A cell is always contained by a record.
currentElement yes The current element.

displayOnly yes Is the cell display only?

extraChoices yes The list of extra choices for the cell.

id no The unique id of the cell.

index no The index of the cell, relative to other cells.
mainChoices no The list of main choices for the cell.

name no The name of the cell.

objectClass no The Cell class.

signed no Is the cell signed?

tablelD no The table id for a column cell.

title no The title of the cell.

value yes The value of the cell.

Scripting : 12-19

Methods
The following methods are defined for a Cell object:

clear ()

Theclear method clears the cell of any data.

/I Clear the cell named "Signature" of the current record of the document named
// "Authorization”.
Document("Authorization").currentRecord.Cell("Signature").clear();

/I Clear the cell named "Signature" of every record of the current collection of

I/l the document named "Authorization”.

/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.
Document("Authorization").currentCollection.Cell("Signature").clear();

/I Clear the cell named "Signature" of every record of the document named

I/ "Authorization".

/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.

Document("Authorization").Cell("Signature").clear();

/I Clear every row of the table column cell named "Description” of the current

/I record of the current document.

/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.

Cell("Description").clear();

commit (jwithLookup])

Thecommit method commits the cell data, triggering any formatting, check calculations, or look-

ups configured for the cell.

Arguments for the commit method
Argument Description

withLookup Specifies whether or not a lookup is performetldf , the lookup is performed
unconditionally. Iffalse , the lookup is ignored. Hull , a lookup is performed
only if the cell’s value has changed. The default value for the withLookup argu-
ment isnull . This argument is ignored if the specified cell is not a lookup cell.

/I Perform a deferred lookup by committing the cell data at a later time.

theDoc = Document("Purchase Order");

lookupCell = theDoc.currentRecord.Cell("Part Number");

lookupCell.set("PA123", true, false); // set lookup cell data but suppress lookup
DoSomeStuff(); /I do some other stuff before doing lookup
theDoc.currentCell = lookupCell; /I make lookup cell the current cell
lookupCell.commit(true); /I force lookup now

12-20 : Scripting

count (elementClass)
Thecount method returns the number of elements in a cell.

Arguments for the count method

Argument Description
elementClass This argument specifies the class of the elements to be counted. Its value must be
Element.

/I Count the number of elements in the table cell "Result" of the current record of
/I the second document.
rowCount = Document(2).currentRecord.Cell("Result").count(Element);

dataSize ()

ThedataSize method returns the size of the cell data in bytes.

/I Get the data size of the current cell of the current document.
theSize = Informed.currentDocument.currentCell.dataSize();

exists ()

Theesxists method verifies the existence of a cell.

/I Check for the existence of Cell with an index of 999 in the third record
/I of the frontmost document.
exists = Document(1).Record(3).Cell(999).exists();

get ()
Theget method gets the value of a cell.

/I Get the value of the cell named "Signed Date" of the current record of the
/I frontmost document.
theValue = Document(FIRST).currentRecord.Cell("Signed Date").get();

/I Get the value of the first cell in the current document.

/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.

theValue = Cell(FIRST).get();

/I Get the value of the table cell named "Description” of the current record of the
/I current document. The result is an array.
theValueList = Informed.currentDocument.currentRecord.Cell("Description").get();

/I Get the value of the cell named “Last Name" of every record of the current

/I collection of the second document.

/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.

theValueList = Document(2).currentCollection.Cell("Last Name").get();

Scripting @ 12-21

Il Get the value of the cell named "Birthdate" of every record of the document

/I named "Student Info".

/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.

theValueList = Document("Student Info").Cell("Birthdate™).get();

set (value,[withCommit],[withLookup])
Theset method sets the value of a cell.

Arguments for the set method

Argument Description
value The value to which the cell will be set.
withCommit Iftrue , the data is committed to the cell immediately and any check calcula-

tions or formatting options are triggeredfalée , the data is not committed
immediately. The default isue .

withLookup Specifies whether or not a lookup is performetldf , the lookup is per-
formed unconditionally. Ifalse , the lookup is ignored. Hull , a lookup is
performed only if the cell's value has changed. The default value for the with-
Lookup argument isull . This argument is ignored if the specified cell is not a
lookup cell.

Note: If withLookup is specifiedtue orfalse), then withCommit must be
true ornull

/I Clear the current cell of the current document.
Informed.currentDocument.currentCell.set(");

/I Set a list of cells to a list of values.

cellNames = new Array ("Company Name", "Phone Number");
theCells = Document(2).currentRecord.Cell(cellNames);
theData = new Array ("Shana Corporation”, "(403) 433-3690");
theCells.set(theData);

/I Set a table column cell named "Values" from an Array of values.
theValues = new Array ("A", "B", "C");
theDoc.currentRecord.Cell("Values").set(theValues);

/I Set each row of a table cell named "ltems" of the current record of the document
/I named "Summary" to the value of the cell named "ltem" of each record of the

/I current collection of the document named "Detail".

/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.

theValueList = Document("Detail").currentCollection.Cell("Item").get();
Document("Summary").currentRecord.Cell("ltems").set(theValueList);

12-22 -

Scripting

/I Set the cell named "Phone Number" of the current record of the document named
/I "Address Info" to "(403)" but donit commit it.

theCell = Document("Address Info").currentRecord.Cell("Phone Number");
theCell.set("(403)", false);

/I Copy cell "Part Number" from the current record of the document named "Purchase
/I Requisition" to the current record of "Purchase Order" without performing the

/I resulting lookup.

theVal = Document("Purchase Requisition").currentRecord.Cell("Part Number").get();
orderCell = Document("Purchase Order").currentRecord.Cell("Part Number");
orderCell.set(theVal, true, false);

sign ([signingSystem])

Thesign method signs the indicated signature cells.

Arguments for the sigh method
Argument Description

signingSystem Specifies which signing service to use. This argument can be a constant such
asENTRUSTISIGNIMAP, or ISIGNPOP, a string that specifies the name of a sign-
ing plug-in, ormull . The default value for this argumentigi , which uses
the signing service selected on the user’s Preferences dialog, or displays a dia-
log asking the user to select a signing service.

/I Sign the signature cell named "Signature" of the current record of the
/I document named "Authorization" using the Entrust signing system.
Document("Authorization").currentRecord.Cell("Signature").sign(ENTRUST);

/ Sign the cell named "Signature" of every record of the current collection of the

/I document named Authorization" using the signing system configured for the cell.
/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.
Document("Authorization").currentCollection.Cell("Signature").sign();

verify ()

Theverify method verifies the indicated signature cells and retuknsif the cell contains a valid
signature, anéhlse if the signature is not valid (or if the cell is not signed).

/I Verify the signature in the cell named "Signature" of the current record of the
/I document named "Authorization”.
isValid = Document("Authorization").currentRecord.Cell("Signature").verify();

/I Verify the cell named "Signature" of every record of the document named

/I "Authorization®. The result is an Array of boolean values.

/I This example uses implied containment.See "Containment” earlier in this chapter
// for more information.

isValidList = Document("Authorization™).Cell("Signature").verify();

Scripting : 12-23

Collection

A Collection object represents the current collection of records in a document.

Reference
A Collection object can reference collections by:

index

id

absolute position
test

Properties
The following table lists the properties of a Collection object.

Collection Properties

Property Writeable? Description
container no The container for the collection. A collection is always con-
tained by a document.
id no The unique id of the collection
index no The index of the collection.
objectClass no The Collection class.
Methods

The following methods are defined for a Collection object:

count (elementClass)
Thecount method returns the number of records in a collection.

Arguments for the count method

Argument Description
elementClass This argument specifies the class of the elements to be counted. Its value must be
Record.

/I Count the number of records in the current collection of the current document.
theCount = Informed.currentDocument.currentCollection.count(Record);

12-24 : Scripting

exists ()

Theesists method verifies the existence of a collection.

/I Check if the current collection of the second document exists.
exists = Document(2).currentCollection.exists();

export (toFile,whichCells],[format],[doAppend],[rowwise],[useQuotes]
[doMerge],[includeNotes])

Theexport method exports every record in a collection to a file.

Arguments for the export method

Argument
toFile

whichCells

format

doAppend

rowwise

useQuotes

doMerge

includeNotes

Description

This argument must be a File object which specifies the file into which the data
will be exported.

Specifies the cells which will be exported. This argument can be a single Cell
object, an array of Cell objects, a single column, or an array of columns. The
default value for whichCells il , which specifies all cells. No container is
allowed for this argument.

Specifies the file format of the export file. This argument can be one of the fol-
lowing constantsSNTERCHANGETAB_DELIMITED, or COMMA_DELIMITEDoOr a

string that specifies a format name. The default value for the format argument is
INTERCHANGE

Ifrue , the exported records are appended to the end of the exportféike. I
the export file is replaced with the exported records. The default védilse is.

Iftrue , then tables will be exported in row ordertalée , tables will be
exported in column order. The default valuélis

Ifrue , then all exported values—except numbers—are surrounded with quotes.
If false , then only those values which contain delimiter characters are sur-
rounded with quotes. This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED

Ifrue , Informed will list each cell name on the first line of a new export file. The
default value isrue . This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED

Itrue , then any notes attached to the form will be exported. The default value is
true . This argument is ignored if the format argument iSIKTERCHANGE

/I Export all cells of every record of the current collection of the current
/I document to the Informed Interchanged file named "info.iif".

theFile = File("HD:info.iif");
Informed.currentDocument.currentCollection.export(theFile);

Scripting : 12-25

/I Append the cells named "LastName", "FirstName", "Address", and "Phone" of

/I every record in the current collection of the document named "Customers" to the
/I tab delimited file named "names.txt" using quotes for all non-numeric data.
theCollection = Document("Customers").currentCollection;

theFile = File("c:\\names.txt");

theCells = Cell(new Array ("LastName", "FirstName", "Address", "Phone"));
theCollection.export(theFile, theCells, TAB_DELIMITED, true, null, true);

make (elementClass)

Themake method creates a new record in a collection.

Arguments for the make method

Argument Description

elementClass This argument specifies the class of the new element. Its value must be Record.

/I Create a new record in the current collection of the document named
/l "Receivables".

theRec = Document("Receivables").currentCollection.make(Record);
print ([as],[copies],[fromPage],[toPage],[fromPart],[toPart],[printTemplate],
[printData],[collate])
Theprint method prints every record in a collection.

Arguments for the print method

Argument Description

as Specifies whether to print as forms or as a list. This argument can be either
FORMSr RECORD_LISTThe default value iIBORMS

copies Specifies the number of copies to print. The default value is 1.

fromPage Specifies the page to start printing from. The default value is the first page.

toPage Specifies the page to stop printing at. The default value is the last page.

fromPart Specifies which part of a multipart form to start printing from. The default

value is the first part.

toPart Specifies which part of a multipart form to stop printing at. The default value
is the last part.

printTemplate Iffalse , then don't print the template. The default valutuis .
printData Iffalse , then don't print the data. The default valueus .

collate Specifies whether or not to collate pages. The default vatue is

12-26 : Scripting

/I Print every record in the collection of the current document as a single
// form.
Informed.currentDocument.currentCollection.print();

/I Print two copies of the first page of every record in the second documentis
/I current collection as a record list.
Document(2).currentCollection.print(RECORD_LIST, 2, 1, 1);

send ([recipients],[subject],[body],[format],[encloseAs],
[messageAttachments])
Thesend method sends every record in a collection using an electronic mail service.

Arguments for the send method

Argument Description

recipients Specifies the recipients. This argument can be a string or an array of
strings.

subject Specifies the subject of the message. The default is the name of the doc-
ument being sent.

body The body of the mail message. The default valoelis (no body).

format The format to send the form in. This argument can be one of the follow-

ing constantsDATA PACKAGE INTERCHANGE COMMA_DELIMITEDor
TAB_DELIMITED, or a string that specifies the name of a format. The
default value iDATA

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

messageAttachments Specifies any additional attachments. This argument can be a File object
or an array of File objects.

/I Send every record of the current collection of the current document to the
/I recipient "someone@someplace.com”.
Informed.currentDocument.currentCollection.send("someone@someplace.com");

/I Send every record of the current collection of the document named "Purchase

/I Request” using the provided addressing information.

theCollection = Document("Purchase Request").currentCollection;

theRecipients = new Array ("someone@someplace.com”, "someoneelse@someplace.com");
theSubject = "Purchase Request Form";

theBody = "Here's the purchase request form you requested.";

theAttach = new File ("c:\\request.xls");

theCollection.send(theRecipients, theSubject, theBody, PACKAGE, null, theAttach);

Scripting : 12-27

sendExt ([usingStep],[recipients],[ccRecipients],[bccRecipients],
[appendRecipients],[subject],[body],[format],[encloseAs],
[messageAttachments],[appendAttachments],[mail System])

ThesendExt method sends every record in a collection.

Arguments for the sendExt method

Argument Description

usingStep Specifies the name or the index of the routing step to use. The default
value isnull (no routing step). If a routing step is supplied, all other
optional arguments override their corresponding settings in the routing
step configuration.

recipients Specifies the recipients. This argument can be a string or an array of
strings. The default isull (no recipients).

ccRecipients Specifies a list of recipients to cc. This argument can be a string or an
array of strings. The defaultisll (no cc recipients).

bccRecipients Specifies a list of recipients to bcc. This argument can be a string or an
array of strings. The defaultisll (no bcc recipients).

appendRecipients Specifies whether or not to append other recipients to those already
specified in a routing step. The default valuklie

subject Specifies the subject of the message. The default is the name of the doc-
ument being sent.

body The body of the mail message. The default valuellis (no body).

format The format to send the form in. This argument can be one of the follow-

ing constantsDATA PACKAGE INTERCHANGE COMMA_DELIMITEDor
TAB_DELIMITED, or a string that specifies the name of a format. The
default value iDATA

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

messageAttachments Specifies any additional attachments. This argument can be a File object
or an array of File objects. The default value is null (no additional
attachments).

appendAttachments Specifies whether or not to append other attachments to those already
specified in a routing step. The default valufalie

12-28 : Scripting

mailSystem This argument is illegal if a routing step is provided. If no routing step is
provided, this argument can be a constant, a string that specifies the
name of a mail plug-in, or null which calls the default mail system on
the user’s machine. Informed provides the following constants for mail
systems that have the same name on both Windows and MacOS:

SMTPEUDORAMSMAIL, CCMAIL, andGROUPWISE

The following constants are for Windows only:
EXCHANGE, MAPI, VIM, MHS, MHSLOCAL

The following constants are for MacOS only:

QUARTERDECK, QUICKMAIL

/I Send every record of the current collection of the current document as specified
/I by the 2nd routing step, except override the message body and CC to the

/I recipient "somebody@someplace.com".

theCollection = Informed.currentDocument.currentCollection;

theRecipient = "someone@someplace.com";

theBody = "This is the new message body.";

theCollection.sendExt(2, theRecipient, null, null, true, null, theBody);

sendStep ([usingStep])
ThesendStep method sends every record in a collection using a preconfigured routing step.

Arguments for the sendStep method
Argument Description
usingStep Specifies the name or the index of the routing step to use. The default value is

null (no routing step). If a routing step is supplied, all other optional argu-
ments override their corresponding settings in the routing step configuration.

/I Send every record of the current collection of the current document using the
/I routing step named "Route To Manager".
Informed.currentDocument.currentCollection.sendStep("Route To Manager");

Scripting : 12-29

sort (sortCell,[descending])
Thesort method sorts the records in the current collection.

Arguments for the sort method

Argument Description

sortCell Specifies the cells or columns on which to sort. Its value must be a Cell object,
Column object, or Array of Cell or Column objects. If an Array object is spec-
ified, the current collection is sorted on each cell in the Array, beginning with
the first cell in the Array and ending with the last. No container is allowed for
this argument.

descending Specifies whether or not to sort in descending order. The deéimglt is

/I Sort the current collection of the document named "Employees" according to the
/I "Employee No." cell.
Document("Employees").currentCollection.sort(Cell("Employee No."));

/I Sort the current collection of the document "Employees" by the column named
// "Age" in descending order.
Document("Employees").currentCollection.sort(Column("Age"), true);

/I Sort the current collection of the current document first by the cell "First

/I Name" and then by the cell "Last Name". The result will be that the cells will
/I be sorted by first name within last name as would be found in a phone book.
theSortCells = Cell(new Array("First Name", "Last Name"));
Informed.currentDocument.currentCollection.sort(theSortCells);

Column

Informed Filler's Record List is a standard window that displays records in a list format. Informa-
tion on the Record List is divided into rows and columns. Each row in the list represents one record.
Each column corresponds to one cell on the for€ollimn object represents one or more columns

on the Record List.

Reference
A Column object can reference columns by:

name
index

id

absolute position
relative position
range

test

12-30 : Scripting

Properties

The following table lists the properties of a Column object.

Column Properties

Property Writeable? Description

alignment no The alignment of the data in the column. This property can be
one of the following constantsEFT, CENTEROr RIGHT.

average no The average of the data in the column. This property only
works with averaged columns.

celllD no The id of the cell associated with the column.

container no The container for the column. A column is always contained
by a format.

id no The unique id of the column.

index no The index of the column.

name no The name of the column.

objectClass no The Column class.

selected no Is the column selected?

sorted no Is the column sorted?

total no The total of the data in the column. This property only works
with totalled columns.

totalsType no The totals type of the column. This property can be one of the
following constantSNONETOTALLED or AVERAGED

width no The width of the column in pixels.

Methods

The following methods are defined for a Column object:

clear ()

Theclear method clears the column of any data.

/I Clears the column named "Approval" of the current format of the current
/I document.
Informed.currentDocument.currentFormat.Column("Approval").clear();

Scripting © 12-31

exists ()

Theexists method verifies the existence a column.

/I Get the total of the third column of the current format of the document
/I referenced by theDoc.
theColumn = theDoc.currentFormat.Column(3);
if (theColumn.exists())
if (theColumn.totalsType == TOTALLED)
theTotal = theColumn.total;

Document

A Document object represents an opened data document in Informed Filler.

Reference
A Document object can reference documents by:

name
index

id

absolute position
relative position
range

test

Properties
The following table lists the properties of a Document object.

Document Properties

Property Writeable? Description

attachmentswWindow no The attachments window

authorName no The template author’s name as entered on the Template
Information dialog.

authorOrganization no The template author’s organization as entered on the Tem-
plate Information dialog.

checkPeriod yes The revision check period. This property can be one of the
following constantsEVERY_TIME DAILY, WEEKLYMONTHLY
or NEVER

currentCell yes The current cell.

currentCollection yes The current collection of records.

© Scripting

currentFormat
currentPage
currentRecord

description

diskFile
distributed
formWindow
id

index
lastChecked
modified
name
objectClass

pageCount

recordListWindow

revision

status

statusMessage

templatelD

templateName

yes
yes
yes

no

no
no
no
no
yes
no
no
no
no
no
no

no

no

no

no

no

The current Record List format.
The current page of the form.
The current record in the document.

The description of the template as entered on the Template
Information dialog.

The disk file that contains the data document.

Is the template distributed?

The form window.
The unique id of the data document.
The index of the data document.

When the last revision check occurred.
Has the data document been modified?
The name of the data document.

The Document class.

The number of pages in the document.
The Record List window.

The revision number of the template as entered on the
Template Information dialog.

The status of the template. This property will be one of the
following constantsSCURRENTNONCURREN®r
DISCONTINUED

The status message for the template as entered on the Tem-
plate Information dialog.

The template document’s template ID as entered on the
Template Information dialog.

The template document’s template name as entered on the
Template Information dialog.

Scripting : 12-33

Methods
The following methods are defined for a Document object:

close ([saving],[savingIn])
Thecloese method closes a document.

Arguments for the close method
Argument Description

saving Specifies whether changes should be saved before closinrg.,IEhanges will
be saved before closing.fifse , changes will not be savednifll , Informed
will display a dialog asking if the user wants to save the changes if necessary. The
default value isull

savingin Specifies the file in which to save the document. The default value is the file into
which the document was previously saved. If the document was not previously
saved, the standard Save dialog is displayed.

/I Close the second document. Prompt the user to save if necessary.
Document(2).close();

/I Close the document whose id is 104 without saving.
Document(id(104)).close(false);

/I Close and save the document named "Inventory".
Document("Inventory").close(true);

/I Close and save the current document as "Invoice".
thePlatform = Informed.platform;
if (thePlatform = WIN32 || thePlatform = WIN16)
thePath = "c:\\informed\\data\\invoice.ifm";
else
thePath = "HD:Informed A :Data:Invoice";
Informed.currentDocument.close(true, thePath);

collect (fileList,[append])
Thecollect method imports one or more files into a document.

Arguments for the collect method
Argument Description

fileList Specifies the files to import into the document. Its value must be a File object
or an Array of File objects.

append Ifrue , the imported records are appended to the end of the current collection.
If false , the imported records become the current collection. The default value
is false

12-34 : Scripting

/I Import the tab-delimited text file called "transact.txt" into the current
/I document without appending.
Informed.currentDocument.collect(File("c:\\transact.txt"));

/I lmport the Informed Interchange file called "Temp Records" into the second
/I document and append the records to the current collection.
Document(2).collect(File("HD:SomeDirectory: Temp Records"), true);

/I lmport each of the files "Templ", "Temp2", and "Temp3" into the document named
/I "Archive" without appending to the current collection.

filel = File("Temp1");

file2 = File("Temp2");

file3 = File("Temp3");

theFileList = new Array(filel, file2, file3);

Document("Archive").collect(theFileList);

count (elementClass)

The count method returns the number of attached scripts, buttons, collections, formats, records,
saved formats, or tags within a document.

Arguments for the count method
Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value must be
AttachedScript, Button, Collection, Format, Record, SavedFormat, or Tag.

/I Count the number of records in the current document.
theCount = Informed.currentDocument.count(Record);

/I Count the number of attachments in each record of the first document.
/I Note: The result will be an array of integers.
theCountList = Document(1).count(Attachment);

exists ()

Theesxists method verifies the existence a document.

/I Close the document named "Attendance" if it exists.
if (Document("Attendance").exists())
Document("Attendance").close(true);

export (toFile,whichCells],[format],[doAppend],[rowwise],[useQuotes]
[doMerge],[includeNotes])

Theexport method exports every record in a document to a file.

Scripting : 12-35

Arguments for the export method
Argument Description

toFile This argument must be a File object which specifies the file into which the data
will be exported.

whichCells Specifies the cells which will be exported. This argument can be a single Cell
object, an array of Cell objects, a single column, or an array of columns. The
default value for whichCells iall , which specifies all cells. No container is
allowed for this argument.

format Specifies the file format of the export file. This argument can be one of the fol-
lowing constantSINTERCHANGETAB_DELIMITED, or COMMA_DELIMITEDor a
string that specifies a format name. The default value for the format argument is
INTERCHANGE

doAppend Iftrue , the exported records are appended to the end of the exportffike. If
the export file is replaced with the exported records. The default vélise is.

rowwise Iftrue , then tables will be exported in row orderfalfe |, tables will be
exported in column order. The default valuélise

useQuotes Ifrue , then all exported values—except numbers—are surrounded with quotes.
If false , then only those values which contain delimiter characters are sur-
rounded with quotes. This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED

doMerge Iftrue , Informed will list each cell name on the first line of a new export file. The
default value isrue . This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED

includeNotes Ifrue , then any notes attached to the form will be exported. The default value is
true . This argument is ignored if the format argument iISNTERCHANGE

/I Export all cells of every record in the current document to the Informed
I/l Interchange file named "details.iif".
Informed.currentDocument.export(File("c:\\details.iif"));

/I Append the "LastName", "FirstName", "Address", and "Phone" cells of every record
/l'in the document named "Customers" to the tab-delimited text file "Address Info".
theFile = File("HD:Address Info");

theCellList = Cell(new Array ("LastName", "FirstName", "Address", "Phone"));
Document("Customers").export(theFile, theCellList, TAB_DELIMITED, true);

12-36 : Scripting

make (elementClass, withData,[withProperties])
Themake method creates a new record, saved format, or tag in a document.

Arguments for the make method
Argument Description

elementClass Specifies the class of the new element. Its value must be Record,
SavedFormat, or Tag

withData This argument is not used. Its value must.lbe.

withProperties Specifies the initial values for the properties of the new element. This argu-
ment is not used when creating a new record. This argument must be an object
with a name property that specifies the name of the new SavedFormat or Tag.

/I Create a new record in the current document.
Informed.currentDocument.make(Record);

/I Create a new saved format named "Special Report" in the document named "Roster".
theFormatProperties = new Object;

theFormatProperties.name = "Special Report";
Document("Roster").make(SavedFormat, null, theFormatProperties);

/I Create a new tag named "Deadbeats" in the document named "Receivable" for every
I/l record whose cell "Balance Owing" is greater than 0.

theDoc = Document("Receivable");

theTest = testGT(self.Cell("Balance Owing").value, 0);

theDoc.currentCollection = Record(theTest);

theTagProperties = new Object;

theTagProperties.name = "Deadbeats";

theDoc.make(Tag, null, theTagProperties);

print ([as],[copies],[fromPage],[toPage],[fromPart],[toPart],[printTemplate],
[printData],[collate])

Theprint method prints every record in a document.

Scripting : 12-37

Arguments for the print method

Argument

as

copies
fromPage
toPage

fromPart

toPart

printTemplate
printData

collate

Description

Specifies whether to print as forms or as a list. This argument can be either
FORMSr RECORD_LISTThe default value iIBORMS

Specifies the number of copies to print. The default value is 1.
Specifies the page to start printing from. The default value is the first page.
Specifies the page to stop printing at. The default value is the last page.

Specifies which part of a multipart form to start printing from. The default
value is the first part.

Specifies which part of a multipart form to stop printing at. The default value
is the last part.

Iffalse , then don't print the template. The default valututs .
Iffalse , then don't print the data. The default valuedis .

Specifies whether or not to collate pages. The default vatue is

/I Print every record in the current document as a single form.
Informed.currentDocument.print();

I Print two copies of every record in the first document as a record list.
Document(FIRST).print(RECORD_LIST, 2);

save ([inFile],[format])

Thesave method saves a document.

Arguments for the save method

Argument Description

inFile

This argument must be a File object which specifies the file into which the docu-

ment will be saved. The default value is the file into which the document was pre-
viously saved. If the document was not previously saved, the standard Save dialog
is displayed.

format

This argument specifies the file format of the saved file. This argument will be one

of the following constant©ATAor PACKAGEThe default value iBATA

/I Save the document named "Samples".
Document("Samples”).save();

/I Save the current document as "c:\\summary.ifm".
Informed.currentDocument(File("c:\\summary.ifm"));

12-38 : Scripting

/I Save the current document as a package in "c:\\summary.ipk".
Informed.currentDocument(File("c:\\summary.ipk"), PACKAGE);

search (matchCell, matchValue,[matchOption],[findOption])
The search method searches for specific records in a document.

Arguments for the search method
Argument Description

matchCell Specifies the cell to search in. This argument cannot have a container and must
be either a single cell or column.

matchValue The value to search for. This argument must be an Array of two values if the
match option iRNG

matchOption ~ The match option. This argument will be one of the following constants:

EQ(is equal to)

NE (is not equal to)

LT (less than)

LE (less than or equal to)
GT(greater than)
GE(greater than or equal to)
BEG(begins with)

END(ends with)
CON(contains)

RNG(range)

The default value iRNGf the matchValue argument is an Arr@ONf the
matchValue argument is a text, character or name céQother wise.

findOption Specifies which records to look through and what to do with the records found.
This argument will be one of the following constants:

ALL_RECORDS$Iook through all records)
COLLECTED_RECORM®Ok through collected records)
ADD_TO_COLLECTIONadd to collection)
OMIT_FROM_COLLECTIOfbmIt from collection)
FIRST_MATCH(go to first match in collection)
SELECT_MATCHEelect matches in Record List).

The default value i8LL_RECORDS
/I Set the current collection to every record whose cell "Name" contains

/1'"Smith".
Informed.currentDocument.search(Cell("Name"), "Smith");

Scripting : 12-39

/I Add every record whose cell "Date" contains a date between January 1,
/11998 and January 31, 1998 to the current collection of the third document.
rangeStart = new LongDate(0, 1998, 0, 1);

rangeEnd = new LongDate(0, 1998, 0, 31);

dateRange = new Array(rangeStart, rangEnd);
Document(3).search(Cell("Date"), dateRange, RNG, ADD_TO_COLLECTION);

send ([recipients],[subject],[body],[format],[encloseAs],
[messageAttachments]
Thesend method sends every record in a document using an electronic mail service.

Arguments for the send method

Argument Description

recipients Specifies the recipients. This argument can be a string or an array of
strings.

subject Specifies the subject of the message. The default is the name of the doc-
ument being sent.

body The body of the mail message. The default valuaellis (no body).

format The format to send the form in. This argument can be one of the follow-

ing constantsDATA PACKAGE INTERCHANGE COMMA_DELIMITEDor
TAB_DELIMITED, or a string that specifies the name of a format. The
default value iDATA

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

messageAttachments Specifies any additional attachments. This argument can be a File object
or an array of File objects.

/I Send every record of the current record to the recipient “jshmoe@worldcorp.com"
Informed.currentDocument.send("jshmoe@worldcorp.com");

/I Send every record in the third document using the provided mail addressing

/I information.

theRecipients = new Array("someone@worldcorp.com", "someoneelse@worldcorp.com");
theSubject = "Requested Form™;

theBody = "Hereis the form you requested";

Document(3).send(theRecients, theSubject, theBody, INTERCHANGE);

12-40 : Scripting

sendExt ([usingStep],[recipients],[ccRecipients],[bccRecipients],
[appendRecipients],[subject],[body],[format],[encloseAs],
[messageAttachments],[appendAttachments],[mailSystem])

ThesendExt method sends every record in a document. This method provides extended options

over thesend method.

Arguments for the sendExt method

Argument
usingStep

recipients

ccRecipients

bccRecipients

appendRecipients

subject

body

format

encloseAs

messageAttachments

appendAttachments

Description

Specifies the name or the index of the routing step to use. The default
value isnull (no routing step). If a routing step is supplied, all other
optional arguments override their corresponding settings in the routing
step configuration.

Specifies the recipients. This argument can be a string or an array of
strings. The default isul (no recipients).

Specifies a list of recipients to cc. This argument can be a string or an
array of strings. The defaultisll (no cc recipients).

Specifies a list of recipients to bcc. This argument can be a string or an
array of strings. The defaultisll (no bcc recipients).

Specifies whether or not to append other recipients to those already
specified in a routing step. The default valualie

Specifies the subject of the message. The default is the name of the doc-
ument being sent.

The body of the mail message. The default valoelis (no body).

The format to send the form in. This argument can be one of the follow-
ing constantsDATA PACKAGE INTERCHANGE COMMA_DELIMITEDor
TAB_DELIMITED, or a string that specifies the name of a format. The
default value iDATA

Specifies the name of the form attachment. The default value is the
name of the data document.

Specifies any additional attachments. This argument can be a File object
or an array of File objects. The default value is null (no additional
attachments).

Specifies whether or not to append other attachments to those already
specified in a routing step. The default valualie

Scripting © 12-41

mailSystem This argument is illegal if a routing step is provided. If no routing step is
provided, this argument can be a constant, a string that specifies the
name of a mail plug-in, or null which calls the default mail system on
the user’'s machine. Informed provides the following constants for mail
systems that have the same name on both Windows and MacOS:

SMTPEUDORAMSMAIL CCMAIL, andGROUPWISE

The following constants are for Windows only:
EXCHANGE, MAPI, VIM, MHS, MHSLOCAL

The following constants are for MacOS only:
QUARTERDECK, QUICKMAIL

/I Send every record of the document referenced by the variable theDoc using the
/I fifth routing step with the additional attachments specified.

theAttachments = new Array(File("c:\\report.wpf"), File("c:\\summary.xIs"));
theDoc.sendExt(5, null, null, null, null, null, null, null, null, theAttachments);

sendStep ([usingStep])
ThesendStep method sends every record in a document using a preconfigured routing step.

Arguments for the sendStep method
Argument Description
usingStep Specifies the name or the index of the routing step to use. The default value is

null (no routing step). If a routing step is supplied, all other optional argu-
ments override their corresponding settings in the routing step configuration.

/I Send every record in the current document using the routing step called "Send to
/I Manager".
Informed.currentDocument.sendStep("Send to Manager");

Element

An Element object refers to an element of a cell. A field cell contains only one element, whereas a
table cell contains one element for each row of that table cell.

12-42 : Scripting

Reference
An Element object can reference elements by:
index
absolute position
relative position

range
test

Properties
The following table lists the properties of an Element object.

Element Properties

Property Writeable? Description
container no The container for the element. An element is always contained
by a cell.
index no The index of the row element.
objectClass no The Element class.
value yes The value of the row element.
Methods

The following methods are defined for an Element object:

clear ()

Theclear method clears the element of any data.

/I Clear the third element of the cell named "Person" of the current record of the
/Il current document.
Informed.currentDocument.currentRecord.Cell("Person").Element(3).clear();

/I Clear the last element of the cell named "Price" of the current record of the

/I second document.

/I This example uses implied containment.See "Containment" earlier in this chapter
/I for more information.
Document(2).currentRecord.Cell("Price").Element(LAST).clear();

commit (jwithLookup])

Thecommit method commits the element data, triggering any formatting, check calculations or
lookups configured for the element.

Scripting © 12-43

Arguments for the commit method
Argument Description

withLookup Specifies whether or not a lookup will be performetudf , the lookup is per-
formed unconditionally. Ifalse , the lookup is ignored. Hull , a lookup is per-
formed only if the cell's value has changed. The default value for the withLookup
argument iswll . This argument is ignored if the specified cell is not a lookup
cell.

/I Perform a deferred lookup by committing the element data at a later time.
theDoc = Document("Purchase Order");

lookupElem = theDoc.currentRecord.Cell("Part Number").currentElement;
lookupElem.set("PA1234", true, false);// set element data but suppress lookup
DoSomeStuff();// do some other stuff before doing lookup

theDoc.currentCell = lookupElem;// make lookup element the current cell
lookupElem.commit(true);// force lookup now

dataSize ()

ThedataSize method returns the size of the element data in bytes.

Il Return the size of the data in the second element of the first cell of the last
/I record of the current collection of the third document.
Document(3).currentCollection.Record(LAST).Cell(FIRST).Element(2).dataSize();

/] Get the size of each element of the cell named "Names" of the current record of

the document "Player Roster".

theElements = Document("Player Roster").currentRecord.Cell("Names").Element(ALL);
theSizes = theElements.dataSize();

exists ()

Theexists method verifies the existence an element.

Il Check to see if the 99th element of the first cell exists in the current record

/I of the current Document.

/I This example uses implied containment.See "Containment" earlier in this chapter
[l for more information.

exists = Cell(FIRST).Element(99).exists();

get ()
Theget method gets the value of an element in the specified format.

/I Get the value of the last element of the table cell named "Qty" of the current

/I record of the document named "Purchase Detail".

theElement = Document("Purchase Detail").currentRecord.Cell("Qty").Element(LAST);
theValue = theElement.get();

12-44 - Scripting

set (value,[withCommit],[withLookup])
Theset method sets the value of a cell.

Arguments for the set method

Argument Description
value The value to which the cell will be set.
withCommit Iftrue , the data is committed to the cell immediately and any check calcula-

tions or formatting options are triggeredfalée , the data is not committed
immediately. The default ieue .

withLookup Specifies whether or not a lookup is performetldf , the lookup is per-
formed unconditionally. Ifalse , the lookup is ignored. Hull , a lookup is
performed only if the cell's value has changed. The default value for the with-
Lookup argument isull . This argument is ignored if the specified cell is not a
lookup cell.

Note: If withLookup is specifiedtue orfalse), then withCommit must be
true or null

/I Set the next available element of the cell named "ltem Number" of the
/I current record of the current document to its row number.

theCell = Informed.currentDocument.currentRecord.Cell("Item Number");
nextindex = theCell.count(Element) + 1;
theCell.Element(nextindex).set(nextindex);

/I Set the current element of the cell named "Phone" of the last record of the

/l document named "Personnel” to "403" but don't commit it.

theElement = Document("Personnel").Record(LAST).Cell("Phone").currentElement;
theElement.set("(403)", false);

/I Set the last element of the cell named "Employee Number" of the current record
of the document reference by theDoc to 350213 and force a lookup.

theElement = theDoc.currentRecord.Cell("Employee Number").Element(LAST);
theElement.set(350213, true, true);

File

A File object represents a file. For example, if you write a script to export records from a data doc-
ument, you use the File object to specify the file that you're exporting the records to.

Reference
A File object can reference files by:

name

Scripting © 12-45

Properties
No properties.

Methods

The following methods are defined for a File object:

open ([withRevisionCheck])
Theopen method opens a file and returns the resulting Document object.

Arguments for the open method
Argument Description

withRevisionCheck Specifies whether or not to do a revision check when opening the file. If
true , this argument forces a revision checKalfe , no check is per-
formed. Ifnull , the settings on the Revision Preferences panel take
effect. The default value sl

/I Open the Macintosh file named "Temporary" without a revision check.
theTempDoc = File("HD:Informed:Data: Temporary").open(false);

/I Open the Windows file named "payroll.ifm" and force a revision check.
thePayrollDoc = File("c:\\informed\\data\\payroll.ifm").open(true);

/I Open the file named "Register" on either platform and perform a revision check
/I only if it is required as per the Revision Preferences settings.
if (Informed.platform == WIN16 || Informed.platform == WIN32)
registerFile = "c:\\informed\\data\\register.ifm";
else
registerFile = "HD:Informed:Data:Register";
registerDoc = registerFile.open();

print ()

Theprint method prints the specified file. Informed always displays the standard Print dialog when
this method is used on a File object.

I/ Print the file named "Schedule" on either platform.

if (Informed.platform == MACOS68K || Informed.platform == MACOSPPC)
File("HD:Informed:Data:Schedule").print();

else
File("c:\\informed\\data\\schedule.ifm").print();

12-46 : Scripting

Format

A Format object represents the current Record List format.

Reference

A Format object can reference formats by:

index

id

absolute position
test

Properties

The following table lists the properties of a Format object.

Format Properties

Property Writeable? Description
container no The container for the format. A format is always contained by
a document.
id no The unique id for the format.
index no The index of the format.
objectClass no The Format class.
totalsVisible yes Are the totals for the columns visible?
Methods

The following methods are defined for a Format object:

count (elementClass)
The count method returns the number of columns in a format.

Arguments for the count method

Argument Description
elementClass This argument specifies the class of the elements to be counted. Its value must be
Column.

/I Count the number of columns in the current format of the second document.
theCount = Document(2).currentFormat.count(Column);

exists ()

Scripting : 12-47

Theexists method verifies the existence of a format.

/I Check for the existence of the current format in the Document named "Payroll".
ok = Document("Payroll").currentFormat.exists();

Informed

The Infoermed object represents the Informed application.

Reference

No reference required.

Properties

The following table lists the properties of the Informed object.

Informed Properties

Property Writeable?
currentDocument yes
frontmost yes

name no
objectClass no
platform no

registeredCompany no

registeredName no
serialNumber no
suppressuUl yes
version no

Description
The current document displayed by the application.

Is this the frontmost application?
The name of the application.
The Informed class.

The operating system the application is running on. This
property can be MacOS68K, MacOSPPC, Winl6, or
Win32.

The name of the company the application is registered to.
The name of the user the application is registered to.

The serial number of the application.

Suppress the display of dialogs and error messages?

The version number of the application.

12-48 : Scripting

Methods
The following methods are defined for the Informed object:

count ([elementClass])

The count method returns the number of built-in commands, documents, menus, plug-in com-
mands, templates, or windows within the Informed application.

Arguments for the count method

Argument Description
elementClass This argument specifies the class of the elements to be counted. Its value must
be BuiltinCommand, Document, Menu, PluginCommand, Template, or Window

/I Count the number of open documents.
documentCount = Informed.count(Document);

exists ()

Theexists method verifies the existence of the Informed object.

/I Check for the existence of the Informed object.
exists = Informed.exists();

make (elementClass, withData])
Themake method creates a new document in Informed.

Arguments for the make method

Argument Description

elementClass This argument specifies the class of the new element. Its value must be Docu-
ment.

withData This argument specifies the data from which the new element will be created.

Its value must be a Template object.

/I Create a new document from the template with template id "Transact B308".
theTemplate = Template(id("Transact B308"));
theDoc = Informed.make(Document, theTemplate);

quit ([saving])

The quit method quits Informed.

Scripting © 12-49

Arguments for the quit method
Argument Description

saving Specifies whether to save changes before quitting: If changes will be saved.
If false , changes will not be saved.nifll , Informed will display a dialog ask-
ing if the user wants to save the changes. The default valuk is

/I Prompt to save changes in each modified document and then quit Informed.
Informed.quit();

/I Quit Informed without saving.
Informed.quit(false);

/I Save changes in each modified document without asking and then quit Informed.
Informed.quit(true);

Menu

A Menu object represents one or more menus in Informed Filler's menu bar.

Reference
A Menu object can reference menus by:
name
index
absolute position
relative position
range
test

Properties
The following table lists the properties of a Menu object.

Menu Properties

Property Writeable? Description

enabled yes Is the menu enabled?

index no The index of the menu.
name no The name of the menu.

objectClass no The Menu class.

12-50 : Scripting

Methods

The following methods are defined for a Menu object:

count (elementClass)

Thecount method returns the number of menu items within a menu.

Arguments for the count method

Argument Description
elementClass This argument specifies the class of the elements to be counted. Its value must
be Menultem.

/I Count the number of menu items in the "File" menu.
menultemCount = Menu("File").count(Menultem);

exists ()

Theesists method verifies the existence of a menu.

/I Get the name of the sixth menu if it exists.
theMenu = Menu(6);
if (theMenu.exists())

theName = theMenu.name;

Menultem

A Menultem object represents one or more menu items in a particular menu.

Reference

A Menultem object can reference menu items by:

name

index

absolute position
relative position
range

test

Scripting © 12-51

Properties
The following table lists the properties of a Menultem object.

Menu Item Properties

Property Writeable? Description
container no The container for the menu item. A menu item is always
contained by a menu.
enabled yes Is the menu item enabled?
index no The index of the menu item.
name no The name of the menu item.
objectClass no The Menultem class.
Methods

The following methods are defined for a Menultem object:

count (elementClass)
Thecount method returns the number of menu items within a menu item.

Arguments for the count method

Argument Description
elementClass This argument specifies the class of the elements to be counted. Its value must
be Menultem.

/I Count the number of menu items in the menu item "Tags" of the menu "Database".
menultemCount = Menu("Database").Menultem("Tags").count(Menultem);

execute ()

Theesecute method executes a menu item’s configured action.

/I Execute the "Submit" command of the "File" menu if it is enabled.
theMenultem = Menu("File").Menultem("Submit");
if (theMenultem.enabled)

theMenultem.execute();

12-52 : Scripting

exists ()

Theesists method verifies the existence of a menu item.

/I Execute the menu item "Assign Next Value" of the "Cell" menu if it exists.
theMenultem = Menu("Cell").Menultem("AssignNextValue");
if (theMenultem.exists())

theMenultem.execute();

PluginCommand

Some of Informed Filler’s features are made available by installing Informed plug-ins. Certain
plug-ins have commands associated with themlu§inCommand object represents one or more
plug-in commands in Informed Filler.

Reference
A PluginCommand object can reference plug-in commands by:

name
index

id

absolute position
relative position
range

test

Properties
The following table lists the properties of a PluginCommand object.

PluginCommand Properties

Property Writeable? Description

enable yes Is the plug-in command enabled?

id no The unique id of the plug-in command.
index no The index of the plug-in command.
name no The name of the plug-in command.

objectClass no The PluginCommand class.

Scripting : 12-53

Methods
The following methods are defined for a PluginCommand object:

execute ([withData])
Theexecute method executes a plug-in command.

Arguments for the execute method
Argument Description
withData Specifies the data string required by the plug-in.

Il If it exists, execute the plug-in command referenced by the variable
/I thePluginCmd with the data referenced by the string variable theData.
if (thePluginCmd.exists())

thePluginCmd.execute(theData);

exists ()

Theexists method verifies the existence of a plug-in command.

/I Set the variable ok to true if the plug-in command reference by the variable
[/ thePluginCmd exists.
ok = thePluginCmd.exists();

Record

In Informed Filler, completed forms are stored as records in a data docunsentrid object rep-
resents one or more records in a data document.

Reference
A Record object can referenced records by:

index

id

absolute position
relative position
range

test

12-54 : Scripting

Properties

The following table lists the properties of a Record object.

Record Properties

Property Writeable? Description
attachmentCount no The number of attachments enclosed in the record.
container no The container for the record. A record is always contained
by a document.

created no When the record was created.

id no The unique id of the record.

index no The index of the record.

lastMailed no When the record was last mailed.

lastModified no When the record was last modified.

lastPrinted no When the record was last printed.

modified no Has the record been modified?

objectClass no The Record class.

selected yes Is the record selected in the Record List?

Methods

The following methods are defined for a Record object:

clear ()

Theclear method clears the record of any data.

/I Clear the current record of the current document.
Informed.currentDocument.currentRecord.clear();

commit ()

The commit method commits the record data to the document.

/I Commit the data of the current record of the document named "Transactions".
Document("Transactions").currentRecord.commit();

count ([elementClass])

Thecount method returns the number of attachments or cells within a record.

Scripting : 12-55

Arguments for the count method
Argument Description

elementClass This argument specifies the class of the elements to be counted. Its value must be
Attachment or Cell.

/I Count the number of attachments in the current record of the current document.
theCount = Informed.currentDocument.currentRecord.count(Attachment);

duplicate ()

Theduplicate method duplicates a record.

/I Duplicate the current record of the current collection of the first document.
theNewRecord = Document(FIRST).currentRecord.duplicate();

exists ()

The exists method verifies the existence of a record.

/I Check if the third record of the first document exists.
exists = Document(FIRST).Record(3).exists();

export (toFile,[whichCells],[format],[doAppend],[rowwise],juseQuotes]
[doMerge],[includeNotes])

Theexrport method exports a record to a file.

Arguments for the export method
Argument Description

toFile This argument must be a File object which specifies the file into which the data
will be exported.

whichCells Specifies the cells which will be exported. This argument can be a single Cell
object, an array of Cell objects, a single column, or an array of columns. The
default value for whichCells iaull , which specifies all cells. No container is
allowed for this argument.

format Specifies the file format of the export file. This argument can be one of the fol-
lowing constantsSNTERCHANGETAB_DELIMITED, or COMMA_DELIMITEDor a
string that specifies a format name. The default value for the format argument is
INTERCHANGE

doAppend Ifrue , the exported records are appended to the end of the exportféike. If
the export file is replaced with the exported records. The default véise is.

rowwise Iftrue , then tables will be exported in row orderfalée , tables will be
exported in column order. The default valuélise

12-56 : Scripting

useQuotes Ifrue , then all exported values—except numbers—are surrounded with quotes.
If false , then only those values which contain delimiter characters are sur-
rounded with quotes. This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED

doMerge Iftrue , Informed will list each cell name on the first line of a new export file. The
default value isrue . This argument is ignored if the format argument is not
TAB_DELIMITED or COMMA_DELIMITED

includeNotes Ifrue , then any notes attached to the form will be exported. The default value is
true . This argument is ignored if the format argument iSMTERCHANGE

/I Export all cells of the current record of the current document to the comma
/I delimited file named "details.txt".

theRecord = Informed.currentDocument.currentRecord;
theRecord.export(File("c:\\details.txt"), null, COMMA_DELIMITED);

/I Export the cells named "Name", "Address", and "Balance Owing" of every record
/I of the document named "Accounts" whose cell "Balance Owing" is greater than 0 to
/ the Informed Interchange file named "Receivables".

theTest = testGT(self.Cell("Balance Owing").value, 0);

theRecordList = Document("Accounts”).Record(theTest);

theFile = File("HD:Receivables");

theCells = Cell(new Array ("Name", "Address", "Balance Owing"));
theRecordList.export(theFile, theCells, INTERCHANGE);

make (elementClass, withData)
Themake method creates a new attachment in a record.

Arguments for the make method

Argument Description
elementClass The class of the new element. Its value must be Attachment.
withData Specifies the data from which the new element will be created. Its value must

be a File object.

/I Create a new attachment for the third record of the current record of the

/I current document from the file "Photo 1".

/I This example uses implied containment.See "Containment” earlier in this chapter
/I for more information.

Record(3).make(Attachment, File("HD:Photo 1"));

omit ()

Scripting : 12-57

Theomit method omits a record from the current collection.

/I Omit the first record from the current collection of the document referenced by

/Il the variable theDoc.

theDoc.currentCollection.Record(FIRST).omit();

/I Omit every record of the current collection of the document "Receivables" whose
/I cell "Last Payment" contains a value on or after January 1, 1998.

theTest = testGE(self.Cell("LastPayment”).value, new LongDate(0, 1998, 0, 1));
Document("Receivables").currentCollection.Record(theTest).omit();

print ([as],[copies],[fromPage],[toPage],[fromPart],[toPart],[printTemplate],

[printData],[collate])

Theprint method prints a specified record.

Arguments for the print method

Argument

as

copies
fromPage
toPage

fromPart

toPart

printTemplate
printData

collate

Description

Specifies whether to print as forms or as a list. This argument can be either
FORMSr RECORD_LISTThe default value iIBORMS

Specifies the number of copies to print. The default value is 1.
Specifies the page to start printing from. The default value is the first page.
Specifies the page to stop printing at. The default value is the last page.

Specifies which part of a multipart form to start printing from. The default
value is the first part.

Specifies which part of a multipart form to stop printing at. The default value
is the last part.

Iffalse , then don't print the template. The default valutuks .
Iffalse , then don't print the data. The default valuedus .

Specifies whether or not to collate pages. The default vatue is

/I Print the last record in the current collection of the current document as a

/I single form.

Informed.currentDocument.currentCollection.Record(LAST).print();

/I Print two copies of the third part of the current record in the first document.
Document(FIRST).currentRecord.print(null, 2, null, null, 3, 3);

/I Print every record of the current collection of the current document whose cell
/] "Company" contains the value "Shana" as a record list.

theTest = testCON(self.Cell("Company").value, "Shana");

theRecordList = Informed.currentDocument.currentCollection.Record(theTest);
theRecordList.print(RECORD_LIST);

12-58 °

Scripting

remove ()

Theremove method deletes a record from a document.

/I Delete the current record of the current document.
Informed.currentDocument.currentRecord.remove();

/I Delete every record of the current collection of the document referenced by

/I theDoc whose cell "LastSubscribed" contains a date before December 31, 1995.
lastValidDate = new LongDate (0, 1995, 11, 31);

theTest = testLT(self.Cell("LastSubscribed").value, lastValidDate);
theDoc.currentCollection.Record(theTest).remove();

revert ()

Therevert method restores a record to its last saved state.

/I This command reverts the current record of the current document.
Informed.currentDocument.currentRecord.revert();

send ([recipients],[subject],[body],[format],[encloseAs],

[messageAttachments])
Thesend method sends a record using an electronic mail service.

Arguments for the send method

Argument Description

recipients Specifies the recipients. This argument can be a string or an array of
strings.

subject Specifies the subject of the message. The default is the name of the doc-
ument being sent.

body The body of the mail message. The default valuaellis (no body).

format The format to send the form in. This argument can be one of the follow-

ing constantsDATA PACKAGE INTERCHANGE COMMA_DELIMITEDor
TAB_DELIMITED, or a string that specifies the name of a format. The
default value iDATA

encloseAs Specifies the name of the form attachment. The default value is the
name of the data document.

messageAttachments Specifies any additional attachments. This argument can be a File object
or an array of File objects.

/I Send the current record of the document named "Requests" to the recipient
/I "someone@someplace.com".
Document("Requests").currentRecord.send('someone@someplace.com");

Scripting : 12-59

/I Send every record of the current document whose cell "FirstName" equals "Brent"
/I and cell "LastName" equals "Taylor" with the provided addressing information.
testl = testEQ(self.Cell("FirstName").value, "Brent");

test2 = testEQ(self.Cell("LastName").value, "Taylor");

theRecordList = Informed.currentDocument.Record(testAND(test1, test2));
theRecipients = "btaylor@worldcorp.com";

theSubject = "Hi there";

theBody = "Just called to say hi!";
theRecordList.send(theRecipients, theSubject, theBody);

sendExt ([usingStep],[recipients],[ccRecipients],[bccRecipients],
[appendRecipients],[subject],[body],[format],[encloseAs],
[messageAttachments],[appendAttachments],[mail System])

ThesendExt method sends a record using an electronic mail service. This method provides
extended options over tkend method.

Arguments for the sendExt method

Argument

usingStep

recipients

ccRecipients

bccRecipients

appendRecipients

subject

body

format

encloseAs

Description

Specifies the name or the index of the routing step to use. The default
value isnull (no routing step). If a routing step is supplied, all other
optional arguments override their corresponding settings in the routing
step configuration.

Specifies the recipients. This argument can be a string or an array of
strings. The default isull (no recipients).

Specifies a list of recipients to cc. This argument can be a string or an
array of strings. The defaultisll (no cc recipients).

Specifies a list of recipients to bcc. This argument can be a string or an
array of strings. The defaultisll (no bcc recipients).

Specifies whether or not to append other recipients to those already
specified in a routing step. The default valufalie

Specifies the subject of the message. The default is the name of the doc-
ument being sent.

The body of the mail message. The default valuellis (no body).

The format to send the form in. This argument can be one of the follow-
ing constantsDATA PACKAGE INTERCHANGE COMMA_DELIMITEDor
TAB_DELIMITED, or a string that specifies the name of a format. The
default value iDATA

Specifies the name of the form attachment. The default value is the
name of the data document.

12-60 : Scripting

messageAttachments Specifies any additional attachments. This argument can be a File object
or an array of File objects. The default value is null (no additional
attachments).

appendAttachments Specifies whether or not to append other attachments to those already
specified in a routing step. The default valualie

mailSystem This argument is illegal if a routing step is provided. If no routing step is
provided, this argument can be a constant, a string that specifies the
name of a mail plug-in, or null which calls the default mail system on
the user’s machine. Informed provides the following constants for mail
systems that have the same name on both Windows and MacOS:

SMTPEUDORAMSMAIL, CCMAIL, andGROUPWISE

The following constants are for Windows only:
EXCHANGE, MAPI, VIM, MHS, MHSLOCAL

The following constants are for MacOS only:

QUARTERDECK, QUICKMAIL

/I Send the current record of the document named "Summary" as specified by the
/I third routing step, except send it to "someone@worldcorp.com” instead of to the
/I specified recipient.

theRecord = Document("Summary").currentRecord;

theRecord.send (3, "someone@worldcorp.com”, null, null, false);

sendStep ([usingStep])
ThesendStep method sends a record using a preconfigured routing step.

Arguments for the sendStep method
Argument Description
usingStep Specifies the name or the index of the routing step to use. The default value is

null (no routing step). If a routing step is supplied, all other optional argu-
ments override their corresponding settings in the routing step configuration.

/I Send the last record of the current collection of the document named "Invoices"
/I using the routing step named "Submit Invoice".
Document("Invoices").currentCollection.Record(LAST).sendStep("Submit Invoices");

Scripting © 12-61

SavedFormat

Informed Filler's Record List window can be customized to display data in a variety of different
formats. AsavedFormat object represents one or more saved Record List formats.

Reference
A SavedFormat object can reference saved formats by:
name
index
id
absolute position
relative position
range
test

Properties
The following table lists the properties of a SavedFormat object.

SavedFormat Properties

Property Writeable? Description

container no The container for the saved format. A saved format is always
contained by a document.

id no The unique id for the saved format.

index no The index of the saved format.

name no The name of the saved format.

objectClass no The SavedFormat class.

Methods

The following methods are defined for a SavedFormat object:

exists ()

Theexists method verifies the existence of a saved format.

/I Set the current format of the first document to the saved format
/] "QuickCheck Format" if it exists.
theDocument = Document(1);
theSavedFormat = theDocument.SavedFormat("QuickCheck Format");
if (theSavedFormat.exists())
theDocument.currentFormat = theSavedFormat;

12-62 : Scripting

remove ()

Theremove method deletes a saved format from a document.

/I Delete all saved formats from the document named "Tax Form".
Document("Tax Form").SavedFormat(ALL).remove();

Tag

Informed Filler's Tag feature provides an easy way to identify unique collections of records so that
they can be quickly recalled and viewediay object represents one or more tags in a document.

Reference
A Tag object can reference tags by:

name
index

id

absolute position
relative position
range

test

Properties
The following table lists the properties of a Tag object.

Tag Properties

Property Writeable? Description

container no The container for the tag. A tag is always contained by a docu-
ment.

id no The unique id for the tag.

index no The index of the tag.

name no The name of the tag.

objectClass no The Tag class.

Scripting : 12-63

Methods
The following methods are defined for a Tag object:

exists ()

The exists method verifies the existence of a tag.

/I Set the current collection of the current document to the tag named "California
/I Invoices" if it exists.
theDoc = Informed.currentDocument;
theTag = theDoc.Tag("California Invoices");
if (theTag.exists())
theDoc.currentCollection = theTag;

remove ()

Theremove method deletes a tag from a document.

/I Delete the tag named "Invoices" from the first document.
Document(1).Tag("Invoices").remove();

/I Delete every tag in the current document.

/I This example uses implied containment.See "Containment" earlier in this chapter
I for more information.

Tag(ALL).remove();

Template

A Template object represents the form template used by a data document.

Reference
A Template object can reference templates by:

name
index

id

absolute position
relative position
range

test

12-64 : Scripting

Properties

The following table lists the properties of a Template object.

Template Properties

Property Writeable?
diskFile no

id no

index no

name no
objectClass no
revision no

Methods

Description
The disk file that contains the template

The template id for the template as entered on the Template
Information dialog.

The index of the template.

The template name of the template as entered on the Template
Information dialog.

The Template class.

The revision number of the template as entered on the Tem-
plate Information dialog.

The following methods are defined for a Template object:

exists ()

Theesnists method verifies the existence of a template.

/I Create a new document from the template with template id "Timesheet" if it

/I exists.

theTemplate = Template(id("TimeSheet"));

if (theTemplate.exists())

theDocument = Informed.make(Document, theTemplate);

Window

A Window object represents a window in Informed Filler.

Reference

A Window object can reference windows by:

name

index

id

absolute position
relative position

Scripting : 12-65

range
test

Properties
The following table lists the properties of a Window object.

Window Properties

Property Writeable? Description

bounds yes The boundary rectangle for the window.

closeable no Does the window have a close box?

floating no Is the Window a floating window?

id no The unique ID of the window.

index yes The number of the window.

kind no The window kind. This property can be one the following con-

stants ATTACHMENTS_KINBCLIPBOARD_KIND FORM_KIND or
RECORD_LIST_KIND

modal no Is the window modal?
name no The title of the window.
objectClass no The class of object.
parentDocument no The document to which the window belongs.
resizable no Is the window resizable?
titled no Does the window have a title bar?
visible yes Is the window visible?
zoomable no Is the window zoomable?
zoomed yes Is the window zoomed?
Methods

The following methods are defined for a Window object:

close ([saving],[savingIn])

Theclose method closes a window.

12-66 : Scripting

Arguments for the close method
Argument Description

saving Specifies whether changes should be saved before closimg.,IEhanges will
be saved. lfalse , changes will not be saved.nlfl , Informed will display a
dialog asking if the user wants to save the changes. The default vallie.is
This argument is ignored if the window is not a form window.

savingIn Specifies the file in which to save the window. The default value is the file into
which the window’s parent document was previously saved. It the document was
not previously saved, the standard Save dialog is displayed. This argument is
ignored if the window is not a form window.

/I Close the frontmost window and prompt to save (if it is a form window).
Window(FIRST).close();

/I Close the record list window of the current document.
Informed.currentDocument.recordListWindow.close();

I Close the form window referenced by the variable theFormWind without saving.
theFormWind.close(false);

/I Close the form window referenced by the variable theFormWind and save to the
Il file "NewFile".
thePlatform = Informed.platform;
if (thePlatform == MACOS68K || thePlatform == MACOSPPC)
thePath = "HD:Informed:Data:NewFile";
else
thePath = "c:\\informed\\data\\newfile.ifm";
theFormWind.close(true, File(thePath));

exists ()

Theesxists method verifies the existence of a window.

/I Check for the existence of a window named "Invoice".
invoiceWindowExists = Window("Invoice").exists();

open ()
Theopen method opens a window and returns the resulting Window object.

/I Open the attachments window of the second document.
theWindow = Document(2).attachmentsWindow.open();

Scripting : 12-67

Additional Built-in Objects

Informed’s JavaScript implementation provides several additional built-in objects to specify data
required by Informed.

LongDate Object

The Date object is a built-in object which provides system-independent dates and times.
Unfortunately, the Date object only supports date and time values since January 1, 1970. Therefore
JavaScript for Informed provides a LongDate object which supports the entire range of data and
time values required by Informed.

The LongDate object supports virtually the same set of constructors as the Date object except for a
additional argument which specifies the era (0 = AD, -1 = BC). The LongDate object also provides
methods for getting and setting the era.

The value of an Informed cell can be set to either a Date object or a LongDate object. The value
obtained from an Informed cell is always a LongDate object.

For example, the following script sets the value of a cell to the date “November 6, 1960 AD".

theDate = new LongDate (0, 1960, 11, 6);
theCell . value = theDate;

Communicating with Other Applications

An important feature of Informed’s scripting functionality is the ability to integrate with other
applications. By controlling different applications, a single script can effectively combine different
features from different products to provide more powerful solutions. For example, you can write a
script which instructs Informed Filler to collect data from a collection of records, chart the data
using a spreadsheet application, then insert the results into a letter using a word processor.

On Mac OS, this type of functionality is available through AppleScript. On Windows, Informed
provides two Windows-only built-in objects—Application and DDE—which allow a script to com-
municate with another Windows application using DDE (Dynamic Data Exchange).

12-68 °

Scripting

Application Object

TheRpplication object is a Windows-only built-in object which can be used to launch and termi-
nate another application.

The constructor for the Application object requires a single string argument which contains the
command line (filename plus optional parameters) for the application to be launched. If the argu-
ment does not contain the full path for the application, Windows searches the directories in the fol-
lowing order.

the current directory

the Windows directory

the directory from which Informed Filler was launched
the directories listed in the PATH environment variable
the directories mapped in a network

Methods

The following methods are defined for the Application object.

launch ()

Thelaunch method launches the application specified by the constructor argument and internally
stores a reference to the application.

I launch Excel
theApp = new Application("Excel");
theApp.launch();

terminate ()

Theterminate method uses the internal reference to the application to terminate it. Therefore, an
Application object cannot be used to terminate an application that it did not launch.

/Il terminate Excel
theApp.terminate();

DDE Object

TheDDE object is a Windows-only built-in object which can be used to open a DDE conversation
with a DDE server application. The conversation protocol is application specific, so you must pro-
vide those values required by the server application.

The constructor requires two arguments which represent the application and the topic for the
desired DDE conversation.

Scripting : 12-69

Methods

The following methods are defined for the DDE object.

connect ()

Theconnect method is used to open a DDE conversation. The DDE server must be running in
order to open the conversation. Use the Application object to launch the DDE server if necessary.

request ()

Therequest method requests a value from a DDE server. The first argument is the item for the
DDE transaction. The second argument is the timeout value measured in milliseconds. The timeou
argument is optional. All other arguments are required. If successful, the method returns the result
of the request.

poke ()

Thepoke method passes a value to a DDE server. The first argument is the item for the DDE trans
action. The second argument is the value for the DDE transaction. The third argument is the timeou
value measured in milliseconds. The timeout argument is optional. All other arguments are
required.

execute ()

Theesxecute method passes a command to a DDE server. The first argument is the command for
the DDE transaction. The second argument is the timeout value measured in milliseconds. The tin
eout argument is optional. All other arguments are required.

disconnect ()

Thedisconnect method is used to terminate the DDE conversation.

The following script uses the Application and DDE objects to exchange data between Informed
Filler and Microsoft Excel.

/l'launch Excel
theApp = new Application("Excel");
theApp.launch();

/I open the DDE conversation
theDDE = new DDE("Excel", "Sheet1");
theDDE.connect();

/I exchange the data
Cell("Cost").value = theDDE.request("R1C1");
theDDE.poke("R1C2", Cell("Price").value);

12-70 -

Scripting

/I close the DDE conversation
theDDE.disconnect();

I terminate Excel
theApp.terminate();

Error Handling

The JavaScript language does not currently provide any form of exception handling. Since most
Informed reference object methods can potentially return an error, Informed provides built-in func-
tions which allow these errors to be handled intelligently.

Standard Behaviour

Normally, if an error occurs while executing a script, a dialog with the appropriate error message is
displayed and the script terminates at the line on which the error occurred.

For example, if the file “Invoice.ifm” is missing, the following script will display an error dialog
and the script will terminate on the second line. The third line of the script will not be executed.

theFile = new File("c:\\informed\\data\\Invoice.ifm");
theCoc.currentCollection = theDoc.Record(ALL);
theFile.open;

Suspending Errors

The suspendErrors built-in function is used to turn error suspension on or off. If an error occurs
while error suspension is on, the error dialog is not displayed and execution of the script continues.
The suspendErrors function requires a boolean argument which indicates whether error suspension
is to be turned on or off. The suspendErrors function also returns a boolean result which indicates
the previous error suspension state. The error suspension state for any script is false by default.

ThegetLastError built-in function is used to obtain error information about the most recent opera-
tion which may have produced an error. If no error occurred, getLastError returns null. If an error
did occur, getLastError returns a built-in Error object whose code and message properties may be
inspected to obtain the error code and error message generated by the error, respectively.

For example, the following script attempts to open a file. If an error occurs, the error message is
stored into the cell “Error”.

/I turn error suspension on and remember the old state
oldState = suspendErrors(true);

Scripting : 12-71

/I open the file
theFile = new File("Invoice.ifm");
theFile.open;

/I handle the error
theError = getLastError ();
if (theError) {
Cell("Error code”).value = theError.code;
Cell ("Error message”).value = theError.message;
return;

}

/I restore the error suspension state
suspendErrors (oldState);

/I proceed with the script
theDoc.currentCollection = the Doc.Record(ALL);

Sample Scripts

The following sample scripts are provided to show you how JavaScript can be used to automate
tasks that are performed frequently by Informed Filler users.

Working with Documents

Opening a Document
This script opens a specific document:

var theFile, theDocument;

theFile = new File("HD:Test Form");
theDocument = theFile.open();

Closing a Document

This script closes the first document;
/I Close the first document
Document(1).close();

This script closes all open documents:

/I Close every document
Document(ALL).close();

12-72 : Scripting

This script closes and saves a specific document:

/I Close and save the document named "Inventory".
Document(“Inventory").close(true);

Saving a Document

This script saves a document:

/I Save the document named "Samples".

Document("Samples”).save();

This script saves a document into a particular file using the package data format:

/I Save the current document as a package in "c:\\summary.ipk".
Informed.currentDocument(File("c:\\summary.ipk"), PACKAGE);

Working with Records

Making a New Record

This script makes a new record in the current document:
/I Make a new record in the current document

Document(1).make(Record);

This script uses the "make" method to return a reference to the new record object, and then uses that
reference to manipulate the new record:

var theRec;

theRec = Document(1).make(Record);
theRec.Cell("Name").value = "Fred";
theRec.Cell("Era").value = "Jurassic";

Setting a Collection of Records

This script sets the current collection to all records in the document:

/I Set the collection to all records
Document(1).currentCollection = Document(1).Record(ALL);

This script sets the current collection to a group of records that match a test. In this sample, the
script tests for all records where the "Salary" cell is greater than 35000:

/I Set the collection to some records that match a test
theTest = testGT(self.Cell("Salary").value, 35000);
Document(1).currentCollection = Document(1).Record(theTest)

Scripting : 12-73

Counting Records

This script counts the number of records in the current collection:
/I Count the number of records in the current collection

var count

count = Document(1).currentCollection.count(Record);

This script counts the number of records in a document, including records that are not part of the
current collection:

count = Document(1).count(Record);

This script sets the current collection to all records in the document, then counts the total number o
records:

/I Set the collection to "every record", then count.

Document(1).currentCollection = Record(ALL);
count = Document(1).count(Record);

Deleting Records

This script deletes the current record:

/I Delete the current record
Document(1).currentRecord.remove();

This script deletes a specific range of records:

/I Delete the first three records
Document(1).currentCollection.Record(1,3).remove();

This script deletes all records that match a specific test. In this sample, the test is all records wher
the "Name" cell is equal to "Fred".

/I Delete records that match a test
theTest = testEQ(self.Cell("Name").value, "Fred");
Document(1).currentCollection.Record(theTest).remove();

Duplicating Records

This script duplicates the current record:

/I Duplicate the current record
Document(1).currentRecord.duplicate();

Omitting Records

This script omits a specific record from the current collection:

/I Omit a specific record
Document(1).currentCollection.Record(1).omit();

12-74 ;

Scripting

This script omits all records that match a test. In this case, the script tests for all records where the
"City" cell equals "New York."

/I Omit records that match a test
theTest = testEQ(self.Cell("City").value, "New York");
Document(1).currentCollection.Record(theTest).omit();

Committing a Record

This script commits any changes to the current record. This is equivalent to the user pressing the
“Enter” key:

/I Commit any changes to the current record.
Document(1).currentRecord.commit();

Reverting a Record

This script reverts a record to its last saved state:

/I Revert any changes to the current record
Document(1).currentRecord.revert();

Looping Through Records

This script counts the number of records in a collection, then loops through each record and finds
the grand total of all the "Total" cells:

/I Process each record
var i, n, theTotal;

n = Document(1).currentCollection.count (Record);
theTotal = 0.0;
for (i=1;i<=n;i++){
theTotal += Document(1).currentCollection.Record(i).Cell("Total").value;

}

Exporting Records

This script exports the current document using the tab delimited data format:

/I Export document 1 as tab delimited text
var theFile;

theFile = new File("HD:Data File");
Document(1).export(theFile, null, TAB_DELIMITED);

This script exports a single record into a file:

/I Export the current record to a file

Document(1).currentRecord.export(File("HD:Test.iif"));

Scripting : 12-75

This script searches for any records where the amount in the "Overdue Amt" cell is greater than
zero, and exports those records into a file named "Deadbeats.iif".

/I Export some specific records
theTest = testGT(self.Cell("Overdue Amt").value, 0);
Document(1).currentCollection.Record(theTest).export(File ("HD:Deadbeats.iif");

Importing Records

This script imports a specific file into a document:
/I Import some data

Document(1).collect(File("HD:Data File"));

This script moves data from one document to another by using the export and collect methods:

/I set the collection of document 1 to every record

/I with an overdue amount:

1

var docl = Document(1);

var deadbeats = docl.Record(testGT(self.Cell("Overdue Amt").value, 0));

if (deadbeats.exists ())

{
theFile = File ("HD:Deadbeats.iif");
docl.currentCollection = deadbeats;
docl.currentCollection.export(theFile);
Document("Deadbeats").collect(theFile);

}

Printing

This script prints a document:

I/ Print everything

Document(1).print();

This script prints the current collection of records as a list rather than forms:
/I Print the current collection as a list

Document(1).currentCollection.print(RECORD_LIST);

This script prints only the data (no template) from the current collection of records:

/I Print the current collection onto pre-printed forms.

/I (print the data only)

I

Document(1).currentCollection.print(FORMS, null, null, null, null, null, false,
true);

12-76 : Scripting
Working with Cells

Setting a Cell’s Value

This script sets the current cell’s value to a blank value:
/I Clear the current cell of the current document.
This script sets the values for multiple cells:

/I Set a list of cells to a list of values.

cellNames = new Array ("Company Name", "Phone Number");
theCells = Document(2).currentRecord.Cell(cellNames);
theData = new Array ("Shana Corporation", "(403) 433-3690");
theCells.set(theData);

Clearing a Cell

This script clears the value of one cell in a single record:

/I Clear the cell named "Signature" of the current record of the document named
/1 "Authorization”.
Document("Authorization").currentRecord.Cell("Signature").clear();

This script clears the value of the same cell of every record in a collection:

/I Clear the cell named "Signature" of every record of the current collection of
/I the document named "Authorization".
Document("Authorization").currentCollection.Cell("Signature").clear();

Getting a Cell’s Value
This script gets the value of a specific cell in the current record:

/I Get the value of the cell named "Signed Date" of the current record of the
/ frontmost document.
theValue = Document(FIRST).currentRecord.Cell("Signed Date").get();

This script gets the value of a table cell:

/I Get the value of the table cell named "Description" of the current record of the
/I current document. The result is an array.
theValueList = Informed.currentDocument.currentRecord.Cell("Description”).get();

Scripting : 12-77

Copying Cell Values Between Documents

This script copies a group of cell values from one document to another. It reads the values into loca
variables, then writes them to the other document:

function Copy ()

{
var theName, theAddress, theCity, theZip;
var rec;

rec = Document("Employees").currentRecord;

theName = rec.Cell("Name").value;
theAddress = rec.Cell("Address").value;
theCity = rec.Cell("City").value;

theZip = rec.Cell("Zip").value;

rec = Document("Holidays").currentRecord;

rec.Cell("Name").value = theName;
rec.Cell("Address").value = theAddress;
rec.Cell("City").value = theCity;
rec.Cell("Zip").value = theZip;

}

This script makes an array of cell names, then copies all the values at once into the other documer

function Copy ()
{

var cellNames, cellValues;
var rec;

cellNames = new Array("Name", "Address", "City", "Zip");

rec = Document("Employees").currentRecord;
cellValues = rec.Cell(cellNames).value;

rec = Document("Holidays").currentRecord,;
rec.Cell(cellNames).value = cellValues;

Signing Cells
This script signs a signature cell using the Entrust signing system:

/I Sign the signature cell named "Signature" of the current record of the
/I document named "Authorization" using the Entrust signing system.
Document("Authorization").currentRecord.Cell("Signature").sign(ENTRUST);

12-78 : Scripting
Working with Attachments

Making a New Attachment

This script makes a new attachment for a specific record:

/I Create a new attachment for the third record of the current record of the
/I current document from the file "Photo 1".
Record(3).make(Attachment, File("HD:Photo 1"));

Removing Attachments
This script removes every attachment from every record in the collection:

/I Remove every attachment from every record of the current collection of the
/I document referenced by the variable theDoc.
theDoc.currentCollection.Attachment(ALL).remove();

Saving Attachments

This script saves all files attached to the current record:

/I Save every attachment of the current record of the document named "Submissions"
/I with its own name into the directory "c:\submit\".
theRec = Document("Submissions").currentRecord;
for (i = 1; i <= theRec.count(Attachment); i++) {
theAttachment = theRec.Attachment(i);
theAttachment.save(File("c:\submit\\" + theAttachment.name));

Quitting Informed

This script quits the Informed application:

Informed.quit();

	Overview
	Entering and Editing Scripts
	Informed JavaScript Implementation
	Reference Objects
	Containment
	Syntax Shortcuts
	Using Variables
	Implied Containment
	Rules for Implied Containment

	Reference Object Types
	Index Reference Objects
	Name Reference Objects
	ID Reference Objects
	Absolute Position Reference Objects
	Relative Position Reference Objects
	Range Reference Objects
	List Reference Objects
	Test Reference Objects
	Comparison Test Descriptors
	Logical Tests Descriptors
	Index Test Reference Objects
	Range Test Reference Objects

	Reference Object Descriptions
	Additional Built-in Objects
	Communicating with Other Applications

	Error Handling
	Standard Behaviour
	Suspending Errors

	Sample Scripts
	Working with Documents
	Opening a Document
	Closing a Document
	Saving a Document
	Working with Records
	Making a New Record
	Setting a Collection of Records
	Counting Records
	Deleting Records
	Duplicating Records
	Omitting Records
	Committing a Record
	Reverting a Record
	Looping Through Records
	Exporting Records
	Importing Records
	Printing
	Working with Cells
	Setting a Cell’s Value
	Clearing a Cell
	Getting a Cell’s Value
	Copying Cell Values Between Documents
	Signing Cells
	Working with Attachments
	Making a New Attachment
	Removing Attachments
	Saving Attachments
	Quitting Informed

