4th Dimensione

Language Reference
Windows and Mac OS Versions

4th Dimension
by
Laurent Ribardiére
Adapted by Bernard Gallet

4th Dimension Language Reference
Version 6.0 for Windows® and Mac™ OS

Copyright © 1985-1998 ACI SA/ACI US, Inc.
All rights reserved

The Software described in this manual is governed by the grant of license in the ACI
Product Line License Agreement provided with the Software in this package. The
Software, this manual, and all documentation included with the Software are copyrighted
and may not be reproduced in whole or in part except for in accordance with the ACI
Product Line License Agreement.

4th Dimension, 4D, the 4D logo, 4D Server, ACI, and the ACI logo are registered
trademarks of ACI SA.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Apple, Macintosh, Mac, Power Macintosh, Laser Writer, Image Writer, ResEdit, and
QuickTime are trademarks or registered trademarks of Apple Computer, Inc.

All other referenced trade names are trademarks or registered trademarks of their
respective holders.

IMPORTANT LICENSE INFORMATION

Use of this Software is subject to the ACI Product Line License Agreement, which is
provided in electronic form with the Software. Please read the ACI Product Line License
Agreement carefully before completely installing or using the Software.

Contents

1.

2.

3.

Introduction 31
Preface 33
Introduction 35
Building a 4D Application 45

Language Definition 59
Introduction to the 4D Language 61
Data Types 66
Constants 71
Variables 75
System Variables 80
Pointers 83
Identifiers 92
Control Flow. 103
If...Else...End if 105
Case of...Else...End case 107
While...End while 110
Repeat...Until 111
For...End for 112
Methods 118
Project Methods 123

4D Environment 131
Application type 133
Version type 134
Application version 135
Compiled application 137
PLATFORM PROPERTIES 138
Application file 142
Structure file 143
Data file 144
ACI folder 146
DATA SEGMENT LIST 148
ADD DATA SEGMENT 150

4th Dimension Language Reference

FLUSH BUFFERS 151

QUIT 4D 152
SELECT LOG FILE 154
4. Arrays 157
Arrays 159
Creating Arrays 160
Arrays and Form Objects 163
Grouped Scrollable Areas 171
Arrays and the 4D Language 174
Arrays and Pointers 176
Using the element zero of an array. 178
Two-dimensional Arrays 180
Arrays and Memory 182
ARRAY INTEGER 184
ARRAY LONGINT. 185
ARRAY REAI 186
ARRAY STRING 187
ARRAY TEXT 189
ARRAY DATE 190
ARRAY BOOLEAN 191
ARRAY PICTURE 193
ARRAY POINTER 195
Size of array 197
SORT ARRAY. 198
Find in array. 200
INSERT ELEMENT 202
DELETE ELEMENT 203
COPY ARRAY 204
LIST TO ARRAY 205
ARRAY TO LIST 206
SELECTION TO ARRAY. 208
SELECTION RANGE TO ARRAY. 210
ARRAY TO SELECTION 213
DISTINCT VALUES 215

4 4th Dimension Language Reference

5. BLOB 217

BLOB Commands 219
SET BLOB SIZE 222
BLOB size 223
COMPRESS BLOB 224
EXPAND BLOB 226
BLOB PROPERTIES 228
DOCUMENT TO BLOB 230
BLOB TO DOCUMENT 232
VARIABLE TO BLOB 234
BLOB TO VARIABLE 237
LIST TO BLOB 238
BLOB to list 240
INTEGER TO BLOB 242
LONGINT TO BLOB 244
REAL TO BLOB 246
TEXT TO BLOB 249
BLOB to integer. 251
BLOB to longint 253
BLOB to real 255
BLOB to text 257
INSERT IN BLOB 259
DELETE FROM BLOB 260
COPY BLOB 261
6. Boolean 263
Boolean Commands 265
True 266
False 267
Not 268
7. Clipboard 269
APPEND TO CLIPBOARD 271
CLEAR CLIPBOARD 277

4th Dimension Language Reference

6

GET CLIPBOARD

278

GET PICTURE FROM CLIPBOARD 280
Get text from clipboard 281
SET PICTURE TO CLIPBOARD 283
SET TEXT TO CLIPBOARD 284
Test clipboard 285
8. Communications 287
SET CHANNEL 289
SET TIMEOUT 293
USE ASCII MAP 294
SEND PACKET 295
RECEIVE PACKET 297
RECEIVE BUFFER 300
SEND VARIABLE 302
RECEIVE VARIABLE 303
SEND RECORD 304
RECEIVE RECORD 305
9. Compiler 311
Compiler Commands 313
C BLOB 316
C_BOOLEAN 317
C_DATE 318
C_GRAPH 319
C_INTEGER 320
C_LONGINT 321
C_PICTURE 322
C_POINTER 323
C_REAL 324
C_STRING 325
C_TEXT 326
C_TIME 327
IDLE 328

4th Dimension Language Reference

10. Database Methods 329

Database Methods 331
On Startup Database Method 333
On Exit Database Method 335
11. Data Entry 341
ADD RECORD 343
MODIFY RECORD 345
ADD SUBRECORD 347
MODIFY SUBRECORD 349
DIALOG 350
Modified 352
old 354
12. Date and Time 355
Current date 357
Day of 359
Month of 360
Year of 362
Day number. 363
Add to date 365
Date 366
Current time 367
Time string 368
Time 369
Tickcount 370
Milliseconds 371
SET DEFAULT CENTURY 372
13. Debugging 375
Why a Debugger? 377
Syntax Error Window 381

4th Dimension Language Reference

Debugger 383

Watch Pane 388
Call Chain Pane 393
Custom Watch Pane 394
Source Code Pane 397
Break Points 401
Break List Window. 403
Debugger Shortcuts 409
Tracing a Process not visible or not executing code 411
14. Drag and Drop 413
Drag and Drop 415
Drop position 422
DRAG AND DROP PROPERTIES 423
15. Entry Control 429
ACCEPT 431
CANCEI 432
Keystroke 433
FILTER KEYSTROKE 438
GOTO AREA 444
REJECT 445
16. Form Events 447
Form event 449
Before 467
During 468
After 469
In header 470
In break 471
In footer. 472
Activated 473
Deactivated 474
Outside call 475

8 4th Dimension Language Reference

17. Form Pages 477

Form Pages 479
FIRST PAGE 480
LAST PAGE 481
NEXT PAGE 482
PREVIOUS PAGE 483
GOTO PAGE 484
Current form page 485
18. Graphs 487
GRAPH 489
GRAPH SETTINGS 493
GRAPH TABLE 495
19. Hierarchical Lists 499
Load list 501
SAVE LIST 503
New list 504
Copy list 505
CLEAR LIST 506
Count list items 508
Is a list 510
REDRAW LIST 511
SET LIST PROPERTIES 512
GET LIST PROPERTIES 519
SORT LIST 521
APPEND TO LIST 523
INSERT LIST ITEM 529
SET LIST ITEM PROPERTIES 530
GET LIST ITEM PROPERTIES 532
List item position 533
List item parent 534
DELETE LIST ITEM 536
GET LIST ITEM 537

4th Dimension Language Reference

SET LIST ITEM 539

Selected list item 541
SELECT LIST ITEM 543
SELECT LIST ITEM BY REFERENCE 544
20. Import and Export 545
IMPORT TEXT. 547
EXPORT TEXT 549
IMPORT SYLK 551
EXPORT SYLK 553
IMPORT DIF 555
EXPORT DIF 557
21. Interruptions 559
ON EVENT CALI 561
FILTER EVENT 565
ON ERR CALL 566
ABORT 570
22. Language o571
Count parameters 573
Type 575
Self 578
RESOLVE POINTER 579
Nil 581
Is a variable 582
Get pointer 583
EXECUTE 584
Command name 585
Commands by Name 588
Commands by Number. 605
TRACE 621
NO TRACE 623

10 4th Dimension Language Reference

23. Math

625

Abs 627
Int 628
Dec 629
Round 630
Trunc 631
Random 632
Mod 633
Square root 634
Log 635
Exp 636
Sin 637
Cos 638
Tan 639
Arctan 640
SET REAL COMPARISON LEVEI 641
Display of Real Numbers 642
24. Menus 645
Managing Menus 647
MENU BAR 650
HIDE MENU BAR 652
SHOW MENU BAR 653
SET ABOUT 654
Menu selected 655
Count menus 657
Count menu items 658
Get menu title 659
Get menu item 660
SET MENU ITEM 661
Get menu item style 662
SET MENU ITEM STYLE 663
Get menu item mark 664
SET MENU ITEM MARK 665
Get menu item key. 666
SET MENU ITEM KEY. 667

4th Dimension Language Reference

DISABLE MENU ITEM 668

ENABLE MENU ITEM 669
APPEND MENU ITEM 670
INSERT MENU ITEM 672
DELETE MENU ITEM 673
25. Messages 675
MESSAGES OFF 677
MESSAGES ON 678
ALERT 679
CONFIRM 682
Request 685
MESSAGE 687
GOTO XY. 691
26. Named Selections 693
Named Selections 695
COPY NAMED SELECTION 697
CUT NAMED SELECTION 699
USE NAMED SELECTION 700
CLEAR NAMED SELECTION 701
27. Object Properties 703
Obiject Properties 705
FONT 707
FONT SIZE 708
FONT STYLE 709
ENABLE BUTTON 711
DISABLE BUTTON 712
BUTTON TEXT 714
SET FORMAT. 716
SET FILTER 718
SET CHOICE LIST 720
SET ENTERABLE 721

12 4th Dimension Language Reference

SET VISIBLE 722

SET COLOR 724
SET RGB COLOR 726
28. Obsolete commands_ 731
SEARCH BY INDEX 733
SORT BY INDEX 734
ON SERIAL PORT CALI 735
29. On a Series 7137
On a Series 739
Sum 740
Average 741
Min 742
Max 743
Std deviation 744
Variance 745
Sum squares 746
30. Operators 47
Operators 749
String Operators 751
Numeric Operators 752
Date Operators 753
Time Operators 754
Comparison Operators 756
Logical Operators 761
Picture Operators 762
Bitwise Operators 771

4th Dimension Language Reference

31. Printing 775

REPORT 777
PRINT LABEL 779
PRINT SELECTION 782
Printing page 784
BREAK LEVEL 785
ACCUMULATE 786
Subtotal 787
Level 790
PRINT RECORD 792
PAGE SETUP 793
PRINT SETTINGS 795
SET PRINT PREVIEW. 796
PRINT FORM 797
PAGE BREAK 799
32. Pictures 801
Pictures 803
COMPRESS PICTURE 806
LOAD COMPRESS PICTURE FROM FILE 807
COMPRESS PICTURE FILE 808
SAVE PICTURE TO FILE 809
Picture size 810
PICTURE PROPERTIES 811
PICTURE LIBRARY LIST 812
GET PICTURE FROM LIBRARY 814
SET PICTURE TO LIBRARY 815
REMOVE PICTURE FROM LIBRARY 818

33. Process (Communications) 819

Semaphore 821
CLEAR SEMAPHORE 823
CALL PROCESS 824
GET PROCESS VARIABLE 825

4th Dimension Language Reference

SET PROCESS VARIABLE 828

VARIABLE TO VARIABLE 831
34. Process (User Interface) 833
HIDE PROCESS 835
SHOW PROCESS 836
BRING TO FRONT 837
Frontmost process 838
35. Processes 839
Processes 841
New process 845
Execute on server. 848
DELAY PROCESS 852
PAUSE PROCESS 853
RESUME PROCESS 854
Current process 855
Process state 856
PROCESS PROPERTIES 858
Process number. 860
Count users 862
Count tasks 863
Count user processes 864
36. Queries 865
QUERY BY EXAMPLE 867
QUERY. 868
QUERY SELECTION 874
QUERY BY FORMULA 875
QUERY SELECTION BY FORMULA 877
SET QUERY DESTINATION 878
SET QUERY LIMIT 884
ORDER BY 885
ORDER BY FORMULA 888

4th Dimension Language Reference

37. Record Locking 891

Record Locking 893
READ WRITE 900
READ ONLY 901
Read only state 902
LOAD RECORD 903
UNLOAD RECORD 904
Locked 905
LOCKED ATTRIBUTES 906
38. Records 907
DISPLAY RECORD 909
CREATE RECORD 910
DUPLICATE RECORD 911
Modified record 912
SAVE RECORD 913
DELETE RECORD 914
Records in table 915
Record number. 916
GOTO RECORD 917
Sequence number. 918
About Record Numbers 920
PUSH RECORD 923
POP RECORD 924
Using the Record Stack 925
39. Relations 927
Relations 929
AUTOMATIC RELATIONS 932
RELATE ONE 933
RELATE MANY 935
CREATE RELATED ONE 937
SAVE RELATED ONE 938
OLD RELATED ONE 939

16 4th Dimension Language Reference

SAVE OLD RELATED ONE 940

OLD RELATED MANY 941
RELATE ONE SELECTION 942
RELATE MANY SELECTION 943
40. Resources 945
Resources 947
Resources and 4D Insider: an Example 955
Open resource file 962
Create resource file 966
CLOSE RESOURCE FILE 968
RESOURCE TYPE LIST 969
RESOURCE LIST. 971
STRING LIST TO ARRAY. 973
ARRAY TO STRING LIST. 974
Get indexed string 976
Get string resource 977
SET STRING RESOURCE 978
Get text resource 979
SET TEXT RESOURCE 980
GET PICTURE RESOURCE 981
SET PICTURE RESOURCE 982
GET ICON RESOURCE 983
GET RESOURCE 985
SET RESOURCE 987
Get resource name 989
SET RESOURCE NAME 991
Get resource properties 992
SET RESOURCE PROPERTIES 993
DELETE RESOURCE 996
41. Selection 999
ALL RECORDS 1001
Records in selection 1002
DELETE SELECTION 1003
Selected record number. 1005

4th Dimension Language Reference

GOTO SELECTED RECORD 1006

FIRST RECORD 1008
NEXT RECORD 1009
LAST RECORD 1010
PREVIOUS RECORD 1011
Before selection 1012
End selection 1014
DISPLAY SELECTION 1016
MODIFY SELECTION 1019
APPLY TO SELECTION 1020
REDUCE SELECTION 1022
SCAN INDEX 1024
ONE RECORD SELECT 1025
42. Sets 1027
Sets 1029
CREATE EMPTY SET. 1034
CREATE SET 1035
USE SET 1036
ADD TO SET 1037
REMOVE FROM SET 1038
CLEAR SET 1039
Is in set 1040
Records in set 1041
SAVE SET 1042
LOAD SET 1043
DIFFERENCE 1044
INTERSECTION 1046
UNION 1048
COPY SET 1050
43. String 1051
String 1053
Num 1056
Position 1058
Substring 1059

4th Dimension Language Reference

Length 1061

Ascii 1062
Char 1064
Character Reference Symbols 1065
Uppercase 1068
Lowercase 1069
Change string 1070
Insert string 1071
Delete string 1072
Replace string 1073
Mac to Win 1074
Win to Mac 1075
Mac to ISO 1076
ISO to Mac 1079
44, Structure Access 1081
Structure Access 1083
Count tables 1084
Count fields 1085
Table name 1086
Field name 1087
Table 1088
Field 1089
GET FIELD PROPERTIES 1090
SET INDEX 1092
45. Subrecords 1093
CREATE SUBRECORD 1095
DELETE SUBRECORD 1096
ALL SUBRECORDS 1098
Records in subselection 1099
APPLY TO SUBSELECTION 1100
FIRST SUBRECORD 1101
LAST SUBRECORD 1102
NEXT SUBRECORD 1103
PREVIOUS SUBRECORD 1104

4th Dimension Language Reference

Before subselection 1105

End subselection 1106
ORDER SUBRECORDS BY. 1107
QUERY SUBRECORDS 1108
46. System Documents. 1109
System Documents 1111
Open document 1117
Create document 1119
Append document 1121
CLOSE DOCUMENT 1122
COPY DOCUMENT 1123
MOVE DOCUMENT 1124
DELETE DOCUMENT 1125
Test path name 1126
CREATE FOLDER 1127
VOLUME LIST 1128
VOLUME ATTRIBUTES 1129
FOLDER LIST 1131
DOCUMENT LIST 1132
Document type 1133
SET DOCUMENT TYPE 1134
MAP FILE TYPES 1135
Document creator. 1137
SET DOCUMENT CREATOR 1138
GET DOCUMENT PROPERTIES 1139
SET DOCUMENT PROPERTIES 1145
Get document size 1146
SET DOCUMENT SIZE 1147
Get document position 1148
SET DOCUMENT POSITION 1149
47. System Environment 1151
Screen height 1153
Screen width 1154
Count screens 1155

20 4th Dimension Language Reference

SCREEN COORDINATES 1156

SCREEN DEPTH 1157
SET SCREEN DEPTH 1159
Menu bar screen 1160
Menu bar height 1161
FONT LIST 1162
Font name 1163
Font number 1164
System folder. 1165
Temporary folder 1166
Current machine 1167
Current machine owner 1168
Gestalt 1169
48. Table 1171
DEFAULT TABLE 1173
Current default table 1175
INPUT FORM 1176
OUTPUT FORM 1178
Current form table 1179
49. Transactions 1181
Using Transactions 1183
START TRANSACTION 1188
VALIDATE TRANSACTION 1189
CANCEL TRANSACTION 1190
In transaction 1191
50. Triggers 1193
Triggers 1195
Database event 1206
Trigger level 1208
TRIGGER PROPERTIES 1209

4th Dimension Language Reference

51. User Interface 1211

BEEP 1213
PLAY 1214
Get platform interface 1216
SET PLATFORM INTERFACE 1217
SET TABLE TITLES 1219
SET FIELD TITLES 1223
Shift down 1225
Caps lock down 1226
Windows Ctrl down 1227
Windows Alt down 1228
Macintosh command down 1229
Macintosh option down 1230
Macintosh control down 1231
GET MOUSE 1232
Pop up menu 1233
POST KEY 1236
POST CLICK 1237
POST EVENT 1238
GET HIGHLIGHT 1240
HIGHLIGHT TEXT 1241
SET CURSOR 1242
Last object 1243
REDRAW 1244
INVERT BACKGROUND. 1245
52. Users and Groups 1247
EDIT ACCESS 1249
CHANGE ACCESS 1250
CHANGE PASSWORD 1251
Validate password 1252
Current user. 1253
User in group 1254
DELETE USER 1255
Is user deleted 1256
GET USER LIST 1257

22 4th Dimension Language Reference

GET USER PROPERTIES 1258

Set user properties 1260
GET GROUP LIST 1262
GET GROUP PROPERTIES 1263
Set group properties 1265
53. Variables 1267
SAVE VARIABLES 1269
LOAD VARIABLES 1270
CLEAR VARIABLE 1271
Undefined 1273
54. Web Server 1275
Web Services, Overview. 1277
Web Services, Configuration 1280
Web Services, Your First Time (Part I) 1286
Web Services, Your First Time (Part II) 1292
Web Services, Web Connection Processes 1298
On Web Connection Database Method 1305
Web Services, HTML Support 1311
Web Services, HTML and Javascript Encapsulation 1317
The Text Parameter Passed to 4D Methods Called via URLs 1329
START WEB SERVER 1333
STOP WEB SERVER 1334
SET WEB TIMEOUT 1335
SET WEB DISPLAY LIMITS 1336
SET HTML ROOT 1339
SEND HTML FILE 1340
CHANGE WEB LICENSE 1343
55. Windows 1345
Managing Windows 1347
Open window. 1348
Window Types 1352

4th Dimension Language Reference 23

Open external window. 1357

SHOW WINDOW. 1359
HIDE WINDOW 1360
CLOSE WINDOW 1362
ERASE WINDOW 1363
REDRAW WINDOW. 1364
DRAG WINDOW. 1365
Get window title 1367
SET WINDOW TITLE 1368
HIDE TOOL BAR 1369
SHOW TOOL BAR 1370
WINDOW LIST 1371
Window kind 1372
Window process 1373
GET WINDOW RECT 1374
SET WINDOW RECT 1375
Frontmost window. 1376
Next window. 1377
Find window. 1378
MAXIMIZE WINDOW. 1379
MINIMIZE WINDOW. 1381
56. Error Codes 1383
Syntax Errors 1385
Database Engine Errors 1388
Network Components Errors 1391
OS File Manager Errors 1392
OS Memory Manager Errors 1393
OS Printing Manager Errors 1394
OS Resource Manager Errors 1395
SANE NaN Errors 1396
OS Sound Manager Errors 1397
OS Serial Ports Manager Errors 1398
MacOS System Errors 1399
Testing the locked status of the data file 1400

24 4th Dimension Language Reference

57. ASCII Codes 1403

ASCII Codes 1405
ASCII Codes 0..63 1406
ASCII Codes 64..127 1407
ASCII Codes 128..191 1408
ASCII Codes 192..255 1412
Function Key Codes 1416
58. Command Syntax 1417
Command Syntax by Name 1419
Constants 1437
4D Environment 1439
ASCII Codes 1440
BLOB 1442
Clipboard 1443
Colors 1444
Communications 1445
Database Engine 1446
Database Events 1447
Date Display Formats 1448
Days and Months 1449
Events (Modifiers) 1450
Events (What) 1451
Expressions 1452
Field and Variable Types 1453
Find window:. 1454
Font Styles 1455
Form Events 1456
Function Keys 1457
Hierarchical Lists 1458
ISO Latin Character Entities 1459
Math 1461
Open window. 1462

4th Dimension Language Reference

Picture Display Formats 1463

Platform Interfaces 1464
Platform Properties 1465
Process state 1466
Query Destinations 1467
Resources Properties 1468
SCREEN DEPTH 1469
SET RGB COLOR 1470
Standard System Signatures 1471
TCP Port Numbers 1472
Test path name 1473
Time Display Formats 1474
Window kind 1475

Command Index 1477

26 4th Dimension Language Reference

4th Dimension Language Reference

27

28 4th Dimension Language Reference

4th Dimension Language Reference

29

30 4th Dimension Language Reference

1 Introduction

4th Dimension Language Reference 31

32 4th Dimension Language Reference

Preface Introduction

version 6.0

4th Dimension has its own programming language. This built-in language, consisting of
over 500 commands, makes 4th Dimension a powerful development tool for database
applications on desktop computers. You can use the 4th Dimension language for many
different tasks—from performing simple calculations to creating complex custom user
interfaces. For example, you can:

« Programmatically access any of the editors available to the user in the User
environment,

« Create and print complex reports and labels with the information from the database,
e Communicate with other devices,

* Manage documents,

e Import and export data between 4th Dimension databases and other applications,

= Incorporate procedures written in other languages into the 4th Dimension
programming language.

The flexibility and power of the 4th Dimension programming language make it the ideal
tool for all levels of users and developers to accomplish a complete range of information
management tasks. Novice users can quickly perform calculations. Experienced users
without programming experience can customize their databases. Experienced developers
can use this powerful programming language to add sophisticated features and capabilities
to their databases, including file transfer and communications. Developers with
programming experience in other languages can add their own commands to the

4th Dimension language.

The 4th Dimension programming language is expanded when any of the 4th Dimension

modules are added to the application. Each module includes language commands that are
specific to the capabilities they provide.

4th Dimension Language Reference 33

About the Manuals

The manuals described here provide a guide to the features of both 4th Dimension and
4D Server. The only exception is the 4D Server Reference, which describes features exclusive
to 4D Server and is included only in the 4D Server documentation package.

« The Language Reference is a guide to using the 4th Dimension language. Use this manual
to learn how to customize your database by incorporating 4th Dimension commands and
functions.

« The Design Reference provides detailed descriptions of the operations you can perform in
the Design environment to create forms for managing data.

« The User Reference provides a description of the User environment, in which users enter
and manipulate data in forms.

e The Discover 4D manual leads you through example lessons in which you create and use
a 4th Dimension database. These examples provide hands-on experience and help you
become familiar with the concepts and features of 4th Dimension and 4D Server.

e The 4D Server Reference, which is included only in the 4D Server package, is a guide to
managing multi-user databases with 4D Server.

About this Manual
This manual describes the 4th Dimension language. It assumes that you are familiar with
terms such as table, field, and form. Before you read this manual, you should:

» Use the Discover 4D manual to work through the database example.
« Begin creating your own databases, referring to the Design Reference manual when
necessary.

« Be comfortable with managing your database in the User environment. See the User
Reference manual for more information on the User environment.

Where to go from here?
If you read this manual for the first time, read the section Introduction.

34 4th Dimension Language Reference

Introduction Introduction

version 6.0

This topic introduces you to the 4th Dimension programming language. The following
topics are discussed:

« What the language is and what it can do for you,
* How you will use methods,
 How to develop an application with 4th Dimension.

These topics are covered here in general terms; they are covered in greater detail in other
sections.

What is a Language?

The 4th Dimension language is not very different from the spoken language we use every
day. It is a form of communication used to express ideas, inform, and instruct. Like a
spoken language, 4th Dimension has its own vocabulary, grammar, and syntax; you use it
to tell 4th Dimension how to manage your database and data.

You do not need to know everything in the language in order to work effectively with
4th Dimension. In order to speak, you do not need to know the entire English language;
in fact, you can have a small vocabulary and still be quite eloquent. The 4th Dimension
language is much the same—you only need to know a small part of the language to
become productive, and you can learn the rest as the need arises.

Why Use a Language?

At first it may seem that there is little need for a programming language in 4th
Dimension. The Design and User environments provide flexible tools, which require no
programming to perform a wide variety of data management tasks. Fundamental tasks,
such as data entry, queries, sorting, and reporting are handled with ease. In fact, many
extra capabilities are available, such as data validation, data entry aids, graphing, and label
generation.

4th Dimension Language Reference 35

Then why do we need a 4th Dimension language? Here are some of its uses:

= Automate repetitive tasks: These tasks include data modification, generation of complex
reports, and unattended completion of long series of operations.

e Control the user interface: You can manage windows and menus, and control forms
and interface objects.

» Perform sophisticated data management: These tasks include transaction processing,
complex data validation, multi-user management, sets, and named selection operations.
e Control the computer: You can control serial port communications, document
management, and error management.

« Create applications: You can create easy-to-use, customized databases that use the
Runtime environment.

» Add functionality to the built-in 4D Web Services: Create dynamic HTML pages in
addition to those automatically translated from forms by 4D.

The language lets you take complete control over the design and operation of your

database. While the User environment gives you powerful “generic” tools, the language
lets you customize your database to whatever degree you require.

Taking Control of Your Data

The 4th Dimension language lets you take complete control of your data in a powerful
and elegant manner. The language is easy enough for a beginner, and sophisticated
enough for an experienced application developer. It provides smooth transitions from
built-in database functions to a completely customized database.

The commands in the 4th Dimension language provide access to the User environment
editors, with which you are already familiar. For example, when you use the QUERY
command, you are presented with the Query Editor. Using this language command is
almost as easy as choosing the Query command from the Queries menu, but the QUERY
command is even more useful. You can tell the QUERY command to search for explicitly
described data. For example, QUERY ([People];[People]Last Name="Smith") will find all the
people named Smith in your database.

The 4th Dimension language is very powerful—one command often replaces hundreds or
even thousands of lines of code written in traditional computer languages. Surprisingly
enough, with this power comes simplicity—commands have plain English names. For
example, to perform a query, you use the QUERY command; to add a new record, you use
the ADD RECORD command.

The language is designed for you to easily accomplish almost any task. Adding a record,
sorting records, searching for data, and similar operations are specified with simple and
direct commands. But the language can also control the serial ports, read disk documents,
control sophisticated transaction processing, and much more.

36 4th Dimension Language Reference

The 4th Dimension language accomplishes even the most sophisticated tasks with relative
simplicity. Performing these tasks without using the language would be unimaginable for
many.

Even with the language’s powerful commands, some tasks can be complex and difficult. A
tool by itself does not make a task possible; the task itself may be challenging and the
tool can only ease the process. For example, a word processor makes writing a book faster
and easier, but it will not write the book for you. Using the 4th Dimension language will
make the process of managing your data easier and will allow you to approach
complicated tasks with confidence.

Is it a “Traditional” Computer Language?

If you are familiar with traditional computer languages, this section may be of interest. If
not, you may want to skip it.

The 4th Dimension language is not a traditional computer language. It is one of the most
innovative and flexible languages available on a computer today. It is designed to work
the way you do, and not the other way around.

To use traditional languages, you must do extensive planning. In fact, planning is one of
the major steps in development. 4th Dimension allows you to start using the language at
any time and in any part of your database. You may start by adding a method to a form,
then later add a few more methods. As your database becomes more sophisticated, you
might add a project method controlled by a menu. You can use as little or as much of the
language as you want. It is not “all or nothing,” as is the case with many other databases.

Traditional languages force you to define and pre-declare objects in formal syntactic
terms. In 4th Dimension, you simply create an object, such as a button, and use it.

4th Dimension automatically manages the object for you. For example, to use a button,
you draw it on a form and name it. When the user clicks the button, the language
automatically notifies your methods.

Traditional languages are often rigid and inflexible, requiring commands to be entered in

a very formal and restrictive style. The 4th Dimension language breaks with tradition,
and the benefits are yours.

4th Dimension Language Reference 37

Methods are the Gateway to the Language

A method is a series of instructions that causes 4th Dimension to perform a task. Each
line of instruction in a method is called a statement. Each statement is composed of parts
of the language.

Because you have already worked through the Discover 4D tutorials (you did go through
Discover 4D, didn’t you?), you have already written and used methods.

You can create five types of methods with 4th Dimension:

« Object Methods: Usually short methods used to control form objects.

e Form Methods: Manage the display or printing of a form.

- Table Methods/Triggers: Used to enforce the rules of your database.

« Project methods: Methods that are available for use throughout your database. For
example, methods that can be attached to menus.

- Database methods: Execute initializations or special actions when a database is opened
or closed, or when a Web browser connects to your database published as a Web Server on
Internet an Intranet.

The following sections introduce each of these method types and give you a feel for how
you can use them to automate your database.

Getting started with object methods

Any form object that can perform an action (that is, any active object) can have a
method associated with it. An object method monitors and manages the active object
during data entry and printing. A object method is bound to its active object even when
the object is copied and pasted. This allows you to create reusable libraries of scripted
objects. The object method takes control exactly when needed.

Object methods are the primary tools for managing the user interface, which is the
doorway to your database. The user interface consists of the procedures and conventions
by which a computer communicates with the user. The goal is to make the user interface
of your database as simple and easy to use as possible. The user interface should make
interaction with the computer a pleasant process, one that the user enjoys or does not
even notice.

38 4th Dimension Language Reference

There are two basic types of active objects in a form:

» Those for entering, displaying, and storing data; such as fields and subfields

« Those for control; such as enterable areas, buttons, scrollable areas, hierarchical lists, and
meters

4th Dimension enables you to build classic forms, such as the one shown here:
@Enlly for Employees =] B3
=]
Employees

Department Code (XN

First Name [ehirtey
Last Name IRansome

Salary I 36040
SS Number I

Start Day pri11ze0
Title IS upernvisor

4)] x] e
i o

You can also build forms with multiple graphic controls, such as this one:

D ——.

rForeground color ————— —Background color

Yalue : 0x00000000 Yalue : 0x009CA951

-40 -20 0 20 40

L

“40 ‘20 'o 20 40

-40 -20 0 20 40 -40 -20 0 20 40

?'
3
£
£
2
g
s
3
3
g
3

4th Dimension Language Reference 39

You can even build forms that incorporate a graphical flair limited only by your
imagination:

rColors and lights —————— ~Popup, popdown, who cares? —

cRU@2T P H

rLights and Magics rUseful objects...

L YalC-Yed t

rTraffic lights

] = = = i ﬁ'
] vy || zv | ¥ @‘ﬁ%

Setup

Whatever your style in building forms, all active objects have built-in aids, like range
checking and entry filters for data entry areas, and automatic actions for controls, menus,
and buttons. Always use these aids before adding object methods. The built-in aids are
similar to methods in that they remain associated with the active object and are active
only when the active object is being used. You will typically use a combination of built-in
aids and object methods to control the user interface.

An object method associated with an active object used for data entry typically performs a
data-management task specific to the field or variable. The method can perform data
validation, data formatting, or calculations. It may even get related information from
other files. Some of these tasks can, of course, also be performed with the built-in data
entry aids for objects. Use object methods when the task is too complex for the built-in
data entry aids to manage. For more information about the built-in data entry aids, refer
to the 4th Dimension Design Reference.

Object methods are also associated with active objects used for control, such as buttons.
Active objects used for control are essential to navigating within your database. Buttons
allow you to move from record to record, move to different forms, and add and delete
data. These active objects simplify the use of a database and reduce the time required to
learn it. Buttons also have built-in aids and, as with data entry, you should use these built-
in aids before adding methods. Object methods enable you to add actions that are not
built-in, to your controls.

40 4th Dimension Language Reference

For example, the following window is the object method for a button that, when clicked,
displays the Query editor.

ES’B Method: bQuery |_ (O] x|

-

| * bQuery button object method -
QUERY/([Departments])

[« N

As you become more proficient with scripts, you will find that you can create libraries of
objects with associated methods. You can copy and paste these objects and their methods
between forms, tables, and databases. You can even keep them in the Clipbook
(Windows) or Scrapbook (Macintosh), ready to be used when you need them.

Controlling forms with form methods

In the same way that object methods are associated with the active objects in a form, a
form method is associated with a form. Each form can have one form method. A form is
the means through which you can enter, view, and print your data. Forms allow you to
present the data to the user in different ways. Through the use of forms, you can create
attractive and easy-to-use data entry screens and printed reports. A form method monitors
and manages the use of an individual form both for data entry and for printing.

Form methods manage forms at a higher level than do object methods. Object methods
are activated only when the object is used, whereas a form method is activated when
anything in the form is used. Form methods are typically used to control the interaction
between the different objects and the form as a whole.

As forms are used in so many different ways, it is informative to monitor what is
happening while your form is in use. You use the various form events for this purpose.
They tell you what is currently happening with the form. Each type of event (i.e., clicks,
double-clicks, keystrokes...) enables or disables the execution of the form method as well
as the object method of each object of the form.

For more information about form, objects, events and methods, see the section Form
event.

4th Dimension Language Reference 41

Enforcing the rules of your database using the table methods/triggers

A Trigger is attached to a table; for this reason, it is also called a Table Method. Triggers are
automatically invoked by the 4D database engine each you manipulate the records of a
table (Add, Delete, Modify and Load). Triggers are methods that can prevent “illegal”
operations with the records of your database. For example, in an invoicing system, you
can prevent anyone from adding an invoice without specifying the customer to whom
the invoice is billed. Triggers are a very powerful tool to restrict operations on a table as
well as to prevent accidental data loss or tampering. You can write very simple triggers,
then make them more and more sophisticated.

For detailed information about Triggers, see the section Triggers.

Using project method throughout the database

Unlike object methods, form methods, and triggers, which are all associated with a
particular object, form, or table, project methods are available for use throughout your
database. Project methods are reusable, and available for use by any other method. If you
need to repeat a task, you do not have to write identical methods for each case. You can
call project methods wherever you need them—from other project methods or from
object or form methods. When you call a project method, it acts as if you had written the
method at the location where you called it. Project methods called from other method are
often referred to as “subroutines.”

There is one other way to use project methods—associating them with menu commands.
When you associate a project method with a menu command, the method is executed
when the menu is chosen. You can think of the menu command as calling the project
method.

Handling working sessions with database methods

In the same way object and form methods are invoked when events occur in a form,
there are methods associated with the database which are invoked when a working
session event occurs. These are the database methods. For example, each time you open a
database, you may want to initialize some variables that will be used during the whole
working session. To do so, you use the On Startup Database Method, automatically
executed by 4D when you open the database.

For more information about Database Methods, see the section Database Methods.

42 4th Dimension Language Reference

Developing Your Database

Development is the process of customizing a database using the language and other built-
in tools.

By simply creating a database, you have already taken the first steps to using the
language. All the parts of your database—the tables and fields, the forms and their objects,
and the menus—are tied to the language. The 4th Dimension language “knows” about all
of these parts of your database.

Perhaps your first use of the language is to add a method to a form object in order to
control data entry. Later, you might add a form method to control the display of your
form. As the database becomes more complex, you can add a menu bar with project
methods to completely customize your database.

As with other aspects of 4th Dimension, development is a very flexible process. There is
no formal path to take during development—you can develop in a manner with which
you are comfortable. There are, of course, some general patterns in the process.

e Implementation: Implement your design in the Design environment.

« Testing: You try out the design in the User environment and perhaps stay there to use
your customized database.

« Usage: When your database is fully customized, you use it in the Custom Menus
environment.

e Corrections: If you find errors, you return to the Design environment to fix them.

Special development support tools, hidden until needed, are built into 4th Dimension. As
you use the language more frequently, you will find that these tools facilitate the
development process. For example, the Method Editor catches typing errors and formats
your work; the Interpreter (the engine that runs the language) catches errors in syntax
and shows you where and what they are; and the Debugger lets you monitor the
execution of your methods to catch errors in design.

4th Dimension Language Reference 43

Building Applications

By now you are familiar with the general uses of a database—data entry, searching,
sorting, and reporting. You have performed these tasks in the User environment, using
the built-in menus and editors.

As you use a database, you perform some sequences of tasks repeatedly. For example, in a
database of personal contacts, you might search for your business associates, order them
by last name, and print a specific report each time information about them is changed.
These tasks may not seem difficult, but they can certainly be time-consuming after you
have done them 20 times. In addition, if you don’t use the database for a couple of weeks,
you may return to find that the steps used to generate the report are not so fresh in your
mind. The steps in methods are chained together, so a single command automatically
performs all the tasks linked to it. Consequently, you do not have to worry about the
specific steps.

Applications have custom menus and perform tasks that are specific to the needs of the
person using your database. An application is composed of all the pieces of your database:
the structure, the forms, the object, form and project methods, the menus, and the
passwords.

You can use 4D Compiler to compile your databases and create stand-alone Windows and
Macintosh applications. Compiling databases increases the execution speed of the
language, protects your databases, and allows you to create applications that are
completely independent. It also checks the syntax and the types of variables in methods
for consistency.

An application can be as simple as a single menu that lets you enter people’s names and
print a report, or as complex as an invoicing, inventory, and control system. There are no
limits to the uses of database applications. Typically, an application grows from a database
used in the User environment to a database controlled completely by custom menus.

Where to go from here?

« Developing applications can be as simple or complex as you like. For a quick overview
about building a simple 4D application, see the section Building a 4D application.

< If you are new to 4D, refer to the Language Definition sections to learn about the basics
of the 4D language: start with Introduction to the 4D Language.

44 4th Dimension Language Reference

Building a 4D Application Introduction

version 6.0

An application is a database designed to fill a specific need. It has a user interface designed
specifically to facilitate its use. The tasks that an application performs are limited to those
appropriate for its purpose. Creating applications with 4th Dimension is smoother and
easier than with traditional programming. 4th Dimension can be used to create a variety
of applications, including:

< An invoice system

e An inventory control system

e An accounting system

e A payroll system

« A personnel system

e A customer tracking system

» A database shared over the Internet or an Intranet

It is possible that a single application could even contain all of these systems. Applications
like these are typical uses of databases. In addition, the tools in 4th Dimension allow you
to create innovative applications, such as:

e A document tracking system

< A graphic image management system

< A catalog publishing application

« A serial device control and monitoring system

« An electronic mail system (E-mail)

e A multi-user scheduling system

< A list such as a menu list, video collection, or music collection

An application typically starts as a database used in the User environment. The database
“evolves” into an application as it is customized. What differentiates an application is that
the systems required to manage the database are hidden from the user. Database
management is automated, and users use menus to perform specific tasks.

When you use a 4th Dimension database in the User environment, you must know the
steps to take to achieve a result. In an application, you use the Custom Menus
environment, in which you need to manage all the aspects that are automatic in the User
Environment.

4th Dimension Language Reference 45

These include:

eTable Navigation: The Choose Table/Form dialog box and List of Tables window are not
available to the user. You can use menu commands and methods to control navigation
between tables.

e Menus: In the Custom Menus environment, you only have the default File menu with
the Quit menu command, Edit menu, and the Help menu (Windows only) or the Apple
menu (Macintosh only). If the application requires more menus, you have to create and
manage them using 4D methods.

e Editors: The editors, such as the Query and Order By editors, are no longer automatically
available in the Custom Menus environment. If you want to use them in the Custom
Menus environment, you have to call them using 4D methods.

The following sections include examples showing how the language can automate the use
of a database.

Custom Menus: an Example

Custom Menus are the primary interface in an application. They make it easier for users
to learn and use a database. Creating custom menus is very simple—you associate
methods with each menu command (also called menu items) in the Menu editor.

“The User's Perspective” section describes what happens when the user chooses a menu
command. Next, “Behind the Scenes” describes the design work that made it happen.
Although the example is simple, it should be apparent how custom menus make the
database easier to use and learn. Rather than the “generic” tools and menu commands in
the User environment, the user sees only things that are appropriate to his or her needs.

46 4th Dimension Language Reference

The User’s Perspective

The user chooses a menu item called New from the People menu to add a new person to

the database.

v 4th Dimension |_ (O] x|
File Edit LCompanies Help

Ctrl+N

Y| | |
A Modiy Ctileh
Report I [=] B

4th Dimension - Author: Laurent Ribardiére
Adapted by Bernard Gallet. @ ACI SA 1985-1996., All rights reserved.

-

The Input form for the People table is displayed.

@Cuslom _ (O] <]
People 0ofo

First Name I—
LastName[
Company I—
Address I—
City —
Zip [

g x b le e

4th Dimension Language Reference

The user enters the person’s first name and then tabs to the next field.

4] Custom

The user enters the person’s last name and then tabs to the next field.

|| Custom

48 4th Dimension Language Reference

The user sees that the last name has been converted to uppercase.

@ Custom !E]

People G

First Name F
Last Name |SMITH—
Company |—
Address |—
City I
State [

zip [

pixL ek bl

The user finishes entering the record and clicks the validation button (the last button in
the vertical row of buttons).

|=i| Custom _ (O]
People 10f1

First Name ﬁuhn
M Last Name |SMITH

&

Ef Company ﬁcme Corp.
l Address |1 23 Easy St.
City |Sometown

i

8

Another blank record appears, and the user clicks the Cancel button (the one with the
“X”) to terminate the “data entry loop.” The user is returned to the menu bar.

4th Dimension Language Reference 49

Behind the Scenes

The menu bar was created in the Design environment, using the Menu Bar Editor.

ﬂMenu Bar Editor _ (O] x|
List of Menu Bars Current Menu Bar
Menu Bar #1 d
New Person
Modify People
People Report
O Companies
=
rCurrent ltem
Method Name: |New Person
[~ Stat aNew Process [11 Toolbar [
IV Shortcut N V¥ Enabled [Line
[~ Bold ™ Underline
I sradiz ™ Outline [~ Shadow
I Access Privileges: [All Groups =l
pdd | Deete | AddMenu | Addllem | Deete |

The menu item New has a project method named New Person associated with it. This
method was created in the Design environment, using the Method editor.

&8 Method: New Person Mi=] B3

Repeat -:-l
ADD RECORD([People])
Until (OK=0)

id
Fidd | »

When the user chooses this menu item, the New Person method executes:

Repeat
ADD RECORD([People])
uUntil (OK=0)

50 4th Dimension Language Reference

The Repeat...Until loop with an ADD RECORD command within the loop acts just like the
New Record menu item in the User environment. It displays the input form to the user,
so that he or she can add a new record. When the user saves the record, another new
blank record appears. This ADD RECORD loop continues to execute until the user clicks
the Cancel button.

When a record is entered, the following occurs:

e There is no method for the First Name field, so nothing executes.

« There is a method for the Last Name field. This Object Method was created in the Design
environment, using the Form and Method editors. The method executes:

Last Name:=Uppercase(Last Name)
This line converts the Last Name field to uppercase characters.

After a record has been entered, when the user clicks the Cancel button for the next one,
the OK variable is set to zero, thus ending the execution of the ADD RECORD loop.

As there are no more statements to execute, the New Person method stops executing and
control returns to the menu bar.

Comparing an Automated Task with the Actions to be performed in the User
environment

Let’s compare the way a task is performed in the User environment and the way the same
task is performed using the language. The task is a common one:

e Find a group of records
e Sort them
e Print a report

The next section, “Using a Database in the User Environment,” displays the tasks
performed in the User environment.

The following section, “Using the Built-in Editors within the Custom Menus
environment,” displays the same tasks performed in an application.

Note that although both methods perform the same task, the steps in the second section
are automated using the language.

4th Dimension Language Reference 51

Using a database in the User environment
The user chooses Query from the Queries menu.

[Pl Report Special Web S
Show All Ctil+G
Show Subset Ctel+H

Querny... Ctrl+S

Query by Example... Ctil+L
Query and Modify...
Query by Formula...

Order by... Ctel+T

The Query editor is displayed.

~Query Editor
Fields Comparisons
cd - -
¥ Last Name is not equal to
is greater than
~ Company is greater than or equal to
+ Address is less than
¥ Cit LI [is less_ than or equal to LI
rvalue
and | 0 | Except | Delline | InsettLine | AddLine |

Save... | Load... | Cancel | Query in selection | Query I

The user enters the criteria and clicks the Query button. The search is performed.

52 4th Dimension Language Reference

The user chooses Order by from the Queries menu.

Report Special Web!

Show All Ctl+G
Show Subset Ctrl+H
Query... Ctrl+S
Query by Example... Ctrl+L
Query and Modify...
Query by Formula...

Order by... Ctrl+T

The Order By editor is displayed.

S

rOrder by Editor

Availahle Fields
A

/X Last Name
] Company

A Address

/X City

/X State

A Zip

HEE

Sorted FieldsiFormulas

=

=

Add Formula... | falejellit |

Cancel | Sort I

The user enters the criteria and clicks the Sort button. The sort is performed.

Then, to print the records, these additional steps are required:
e The user chooses Print from the File menu.

e The Choose Print Form dialog box is displayed, because users need to know which form
to print.
« The Printing dialog boxes are displayed. The user chooses the settings, and the report is
printed.

4th Dimension Language Reference

53

Using the built-in editors within the Custom Menus environment
Let’s examine how this can be performed in the Custom Menus environment.

The User chooses Report from the People menu.

Even at this point, using an application is easier for the users—they did not need to know
that querying is the first step!

A method called My Report is attached to the menu command; it looks like this:

QUERY ([People])

ORDER BY ([People])

OUTPUT FORM ([People]; "Report™)
PRINT SELECTION ([People])

The first line is executed:

QUERY ([People])

The Query editor is displayed.

¢ Query Editor
Fields Comparisons
> a -
¥ Last Name is not equal to
is greater than
~ Company is greater than or equal to
+ Address is less than
¥ Cit ﬂ [is less_ than or equal to Ll
rvalue
and | O | Except | Delline | Insettline | AddLine |

Save... | Load... | Cancel | Query in selection | Query I

The user enters the criteria and clicks the Query button. The query is performed.

The second line of the My Report method is executed:

ORDER BY ([People])

Note that the user did not need to know that ordering the records was the next step.

54 4th Dimension Language Reference

The Order By Editor is displayed.

@ rOrder hy Editor

Available Fields Sorted FieldsiFormulas

R B B
X Last Name
A Company
A pddress
A City

/X State

A Zip

HEL

[~

2| Add Formula... | By |

Cancel | Sort I

The user enters the criteria and clicks the Sort button. The sort is performed.
The third line of the My Report method is executed:
OUTPUT FORM ([People]; "Report™)

Once again, the user did not need to know what to do next; the method takes care of
that.

The final line of the My Report method is executed:
PRINT SELECTION ([People])

The Printing dialog boxes are displayed. The User chooses the settings, and the report is
printed.

4th Dimension Language Reference

55

Automating the Application Further

The same commands used in the previous example can be used to further automate the
database.

Let’s take a look at the new version of the My Report method.

The user chooses Report from the People menu. A method called My Report2 is attached
to the menu command. It looks like this:

QUERY ([People];[People]Company="Acme")

ORDER BY([People]; [People]Last Name;>;[People]First Name;>)
OUTPUT FORM([People];"Report™)

PRINT SELECTION([People];*)

The first line is executed:
QUERY ([People];[People]Company="Acme")

The Query editor is not displayed. Instead, the query is specified and performed by the
QUERY command. The user does not need to do anything.

The second line of the My Report2 method is executed:
ORDER BY([People];[People]Last Name;>;[People]First Name;>)

The Order By editor is not displayed, and the sort is immediately performed. Once again,
Nno user actions are required.

The final lines of the My Report2 method are executed:

OUTPUT FORM ([People]; "Report™)
PRINT SELECTION ([People]; *)

The Printing dialog boxes are not displayed. The PRINT SELECTION command accepts an
optional asterisk (*) parameter that instructs the command to use the print settings that
were in effect when the report form was created. The report is printed.

This additional automation saved the user from having to enter options in three dialog
boxes. Here are the benefits :

e The query is automatically performed: users may select wrong criteria when making a
query.

e The sort is automatically performed: users may select wrong criteria when defining a
sort.

e The printing is automatically performed: users may select the wrong form to print.

56 4th Dimension Language Reference

Tools for Developing 4D Applications

As you develop a 4D application, you will discover many capabilities that you did not
notice when you started. You can even augment the standard version of 4D by adding
other tools and plug-ins to your 4D development environment.

Development tools

ACI provides several tools that can be used for developing applications. These tools help
you move objects from one database to another, compile your databases, and check your
database syntactically. These tools include:

= 4D Insider allows you to cross-reference your 4th Dimension databases. You can use it to
view and print methods, variables, commands, externals, structures, lists, and forms. The
cross-referencing utility tells you where each of these objects is used throughout your
database. It also helps you to move objects like tables, forms, methods, menu bars, lists,
packages, and styles from one database to another.

« 4D Compiler translates your methods and scripts into assembly-level instructions. This
increases the execution speed of your databases, checks the consistency of the code, and
detects logical and syntactical conflicts. Furthermore, it protects your database from being
viewed or modified, deliberately or inadvertently.

4D Plug-ins

You can extend the capabilities of your 4D applications by adding professional Plug-ins to
your 4D development environment.

ACI provides the following Productivity Plug-ins:

* 4D Write: Word-processor
e 4D Calc: Spreadsheet
< 4D Draw: Graphical drawing program

ACI also provides the following Connectivity Plug-ins:

- 4D ODBC: Connectivity via ODBC

* 4D ORACLE: Connectivity with ORACLE databases

« 4D SQL SERVER: Connectivity with SYBASE SQL Server and Microsoft SQL Server
* 4D Open: Connectivity (from 4D to 4D) for building distributed 4D information
systems.

4th Dimension Language Reference 57

For more information, contact ACI or its Partners. Visit our Web Sites:

USA and International http://www.acius.com
France and International http://www.aci.fr
Japan and Asia http://www.aci.co.jp

The 4D community and third party tools

There is a very active worldwide 4D community, composed of User Groups, Electronic
Forums, and ACI Partners. ACI Partners produce Third Party Tools, such as Area List Pro
from Foresight Technology, Inc. (http://www.fsti.com).

Browse your 4D CD—it contains demos and information from ACI Partners. Find out
about them on the Web. Subscribe to Dimensions magazine (Mark Yelich, Publisher,
myelichcps@aol.com).

The 4D community offers access to tips and tricks, solutions, information, and additional
tools that will save you time and energy, and increase your productivity.

58 4th Dimension Language Reference

2 Language Definition

4th Dimension Language Reference 59

60 4th Dimension Language Reference

Introduction to the 4D Language Language Definition

version 6.0

The 4th Dimension language is made up of various components that help you perform
tasks and manage your data.

» Data types: Classifications of data in a database. See discussion in this section as well as
the detailed discussion in the section Data Types.

« Variables: Temporary storage places for data in memory. See detailed discussion in the
section Variables.

e Operators: Symbols that perform a calculation between two values. See discussion in this
section as well as the detailed discussion in the section Operators and its subsections.

« Expressions: Combinations of other components that result in a value. See discussion in
this section.

e Commands: Built-in instructions to perform an action. All 4D commands, such as ADD
RECORD, are described in this manual, grouped by theme; when necessary, the theme is
preceded by an introductory section. You can use 4D Plug-ins to add new commands to
your 4D development environment. For example, once you have added the 4D Write
Plug-in to your 4D system, the 4D Write commands become available for creating and
manipulating word-processing documents.

e Methods: Instructions that you write using all parts of the language listed here. See
discussion in the section Methods and its subsections.

This section introduces Data Types, Operators, and Expressions. For the other components,
refer to the sections cited above.

In addition:

e Language components, such as variables, have names called Identifiers. For a detailed
discussion about identifiers and the rules for naming objects, refer to the section
Identifiers.

« To learn more about array variables, refer to the section Arrays.

e To learn more about BLOB variables, refer to the section BLOB commands.

< If you plan to compile your database, refer to the section Compiler Commands as well as
the 4D Compiler Reference Guide.

4th Dimension Language Reference 61

Data Types

In the language, the various types of data that can be stored in a 4th Dimension database
are referred to as data types. There are seven basic data types: string, numeric, date, time,
Boolean, picture, and pointer.

e String: A series of characters, such as “Hello there”. Alpha and Text fields, and string and
text variables, are of the string data type.

< Numeric: Numbers, such as 2 or 1,000.67. Integer, Long Integer, and Real fields and
variables are of the numeric data type.

« Date: Calendar dates, such as 1/20/89. Date fields and variables are of the date data type.
e Time: Times, including hours, minutes, and seconds, such as 1:00:00 or 4:35:30 PM.
Time fields and variables are of the time data type.

- Boolean: Logical values of TRUE or FALSE. Boolean fields and variables are of the
Boolean data type.

= Picture: Picture fields and variables are of the picture data type.

< Pointer: A special type of data used in advanced programming. Pointer variables are of
the pointer data type. There is no corresponding field type.

Note that in the list of data types, the string and numeric data types are associated with
more than one type of field. When data is put into a field, the language automatically
converts the data to the correct type for the field. For example, if an integer field is used,
its data is automatically treated as numeric. In other words, you need not worry about
mixing similar field types when using the language; it will manage them for you.

However, when using the language it is important that you do not mix different data
types. In the same way that it makes no sense to store “ABC” in a Date field, it makes no
sense to put “ABC” in a variable used for dates. In most cases, 4th Dimension is very
tolerant and will try to make sense of what you are doing. For example, if you add a
number to a date, 4th Dimension will assume that you want to add that number of days
to the date, but if you try to add a string to a date, 4th Dimension will tell you that the
operation cannot work.

There are cases in which you need to store data as one type and use it as another type. The
language contains a full complement of commands that let you convert from one data
type to another. For example, you may need to create a part number that starts with a
number and ends with characters such as “abc”. In this case, you might write:

[Products]Part Number:=String(Number)+"abc"
If Number is 17, then [Products]Part Number will get the string “17abc”.

The data types are fully defined in the section Data Types.

62 4th Dimension Language Reference

Operators

When you use the language, it is rare that you will simply want a piece of data. It is more
likely that you will want to do something to or with that data. You perform such
calculations with operators. Operators, in general, take two pieces of data and perform an
operation on them that results in a new piece of data. You are already familiar with many
operators. For example, 1 + 2 uses the addition (or plus sign) operator to add two numbers
together, and the result is 3. This table shows some familiar numeric operators:

Operator Operation Example

+ Addition 1+ 2resultsin 3

- Subtraction 3-2resultsinl

* Multiplication 2 * 3 resultsin 6
Division 6/ 2 results in 3

Numeric operators are just one type of operator available to you. 4th Dimension supports
many different types of data, such as numbers, text, dates, and pictures, so there are
operators that perform operations on these different data types.

The same symbols are often used for different operations, depending on the data type. For
example, the plus sign (+) performs different operations with different data:

Data Type Operation Example

Number Addition 1 + 2 adds the numbers and results in 3

String Concatenation “Hello ” + “there” concatenates (joins together)
the strings and results in “Hello there”

Date and Number Date addition 11/1/1989! + 20 adds 20 days to the date

January 1, 1989, and results in the date
January 21, 1989

The operators are fully defined in the section Operators and its subsections.

Expressions

Simply put, expressions return a value. In fact, when using the 4th Dimension language,
you use expressions all the time and tend to think of them only in terms of the value
they represent. Expressions are also sometimes referred to as formulas.

Expressions are made up of almost all the other parts of the language: commands,
operators, variables, and fields. You use expressions to build statements (lines of code),
which in turn are used to build methods. The language uses expressions wherever it needs
a piece of data.

4th Dimension Language Reference 63

Expressions rarely “stand alone.” There are only a few places in 4th Dimension where an
expression can be used by itself:

e Query by Formula dialog box in the User environment

» Debugger where the value of expressions can be checked

e Apply Formula dialog box

* Quick Report editor as a formula for a column

An expression can simply be a constant, such as the number 4 or the string “Hello.” As
the name implies, a constant’s value never changes. It is when operators are introduced
that expressions start to get interesting. In preceding sections you have already seen
expressions that use operators. For example, 4 + 2 is an expression that uses the addition
operator to add two numbers together and return the result 6.

You refer to an expression by the data type it returns. There are seven expression types:

e String expression

 Numeric expression (also referred to as number)
« Date expression

« Time expression

» Boolean expression

 Picture expression

» Pointer expression

The following table gives examples of each of the seven types of expressions.

Expression Type Explanation

“Hello” String The word Hello is a string constant,
indicated by the double quotation marks.

“Hello ” + “there” String Two strings, “Hello ” and “there”,

are added together (concatenated)
with the string concatenation operator (+).
The string “Hello there” is returned.

“Mr. ” + [People]Name String Two strings are concatenated:
the string “Mr. ” and the current value
of the Name field in the People table.
If the field contains “Smith”, the expression
returns “Mr. Smith”.

Uppercase (“smith™) String This expression uses “Uppercase”,
a command from the language,
to convert the string “smith” to uppercase.
It returns “SMITH”.

4 Number This is a number constant, 4.

4*2 Number Two numbers, 4 and 2, are multiplied
using the multiplication operator (*).
The result is the number 8.

64 4th Dimension Language Reference

My Button

11/25/97!

Current date + 30

date.

78:05:307?
?2:03:04? + ?1:02:03?

True

10 # 20
numbers.

SLABC71 = L‘XYZ1’
strings.

FALSE.

My Picture + 50 Picture

Picture,

->[People]Name

Table (1)

See Also

Number

Date

Date

Time

Time

Boolean
Boolean

Boolean

Pointer

Pointer

This is the name of a button.
It returns the current value of the button:
1 if it was clicked, O if not.

This is a date constant for the date 1/25/97
(January 25, 1997).

This is a date expression that uses
the command “Current date” to get today’s

It adds 30 days to today’s date and returns
the new date.

This is a time constant that represents 8 hours,
5 minutes, and 30 seconds.

This expression adds two times together and
returns the time 3:05:07.

This command returns the Boolean value TRUE.
This is a logical comparison between two

The number sign (#) means “is not equal to”.
Since 10 “is not equal to” 20, the expression
returns TRUE.

This is a logical comparison between two

They are not equal, so the expression returns

This expression takes the picture in My

moves it 50 pixels to the right, and returns
the resulting picture.

This expression returns a pointer to the field
called [People]Name.

This is a command that returns a pointer to
the first table.

Arrays, Constants, Data Types, Methods, Operators, Pointers, Variables.

4th Dimension Language Reference 65

Data Types Language Definition

version 6.0

4th Dimension fields, variables, and expressions can be of the following data types:

Data Type Field Variable Expression
String (see note 1) Yes Yes Yes
Number (see note 2) Yes Yes Yes
Date Yes Yes Yes
Time Yes Yes Yes
Boolean Yes Yes Yes
Picture Yes Yes Yes
Pointer No Yes Yes
BLOB (see note 3) Yes Yes No
Array (see note 4) No Yes No
Subtable Yes No No
Undefined No Yes Yes
Notes

1. String includes alphanumeric field, fixed length variable, and text field or variable.
2. Number includes Real, Integer, and Long Integer field and variable.

3. BLOB is an acronym for Binary Large OBject. For more information about BLOBs, see
the section BLOB Commands.

4. Array includes all types of arrays. For more information, see the section Arrays.

String

String is a generic term that stands for:
e Alphanumeric field

 Fixed length variable

» Text field or variable

e Any string or text expression

A string is composed of characters. Each character can be any of the 256 ASCII codes. For

more information about ASCII codes and how 4D handles them in a cross-platform
environment, see the section ASCIl Codes.

66 4th Dimension Language Reference

e An Alphanumeric field may contain from 0 to 80 characters (limit depends on the field
definition).

« A Fixed length variable may contain from 0 to 255 (limit depends on the variable
declaration).

« A Text field, variable, or expression may contain from 0 to 32,000 characters.

You can assign a string to a text field and vice-versa; 4D does the conversion, truncating
if necessary. You can mix string and text in an expression.

Note: In the 4D Language Reference, both string and text parameters in command
descriptions are denoted as String, except when marked otherwise.

Number

Number is a generic term that stands for:
« Real Field, variable or expression

« Integer field, variable or expression

e Long Integer field, variable or expression

The range for the Real data type is +1.7e+308 (15 digits)
The range for the Integer data type (2-byte Integer) is -32,768..32,766 (2°15..(2”15))
The range for the Long Integer data type (4-byte Integer) is -27°31..(2°31)-1

You can assign any Number data type to another; 4D does the conversion, truncating or
rounding if necessary. However, when values are out of range, the conversion will not
return a valid value. You can mix Number data types in expressions.

Note: In the 4D Language Reference, no matter the actual data type, the Real, Integer, and

Long Integer parameters in command descriptions are denoted as Number, except when
marked otherwise.

Date

< A Date field, variable or expression can be in the range of 1/1/100 to 12/31/32,767.

< Using the US English version of 4D, a date is ordered month/day/year.

« If a year is given as two digits, it is assumed to be in the 1900’s (unless this default was
changed using the command SET DEFAULT CENTURY).

Note: In the 4D Language Reference, Date parameters in command descriptions are
denoted as Date, except when marked otherwise.

4th Dimension Language Reference 67

Time

« A Time field, variable or expression can be in the range of 00:00:00 to 596,000:00:00.
« Using the US English version of 4D, time is ordered hour:minute:second.

e Times are in 24-hour format.

= A time value can be treated as a number. The number returned from a time is the
number of seconds that time represents. For more information, see the section Time
Operators.

Note: In the 4D Language Reference, Time parameters in command descriptions are
denoted as Time, except when marked otherwise.

Boolean

A Boolean field, variable or expression can be either TRUE or FALSE.

Note: In the 4D Language Reference, Boolean parameters in command descriptions are
denoted as Boolean, except when marked otherwise.

Picture

A Picture field, variable or expression can be any Windows or Macintosh picture. In
general, this includes any picture that can be put on the Clipboard or read from the disk
using 4D or Plug-In commands.

Note: In the 4D Language Reference, Picture parameters in command descriptions are
denoted as Picture, except when marked otherwise.

Pointer

A Pointer variable or expression is a reference to another variable (including arrays and
array elements), table, or field. There is no field of type Pointer.

For more information about Pointers, see the section Pointers.

Note: In the 4D Language Reference, Pointer parameters in command descriptions are
denoted as Pointer except when marked otherwise.

68 4th Dimension Language Reference

BLOB

A BLOB field or variable is a series of bytes (from 0 to 2 GB in length) that you can address
individually or by using the BLOB Commands. There is no expression of type BLOB.

Note: In the 4D Language Reference, BLOB parameters in command descriptions are
denoted as BLOB.

Array

Array is not actually a data type. The various types of arrays (such as Integer Array, Text
Array, and so on) are grouped under this title. Arrays are variables—there is no field of
type Array, and there is no expression of type Array. For more information about arrays,
see the section Arrays.

Note: In the 4D Language Reference, Array parameters in command descriptions are
denoted as Array, except when marked otherwise (i.e., String Array, Numeric Array, ...).

Subtable

Subtable is not actually a data type. Only fields can be of type Subtable. There is no
variable or expression of type Subtable. For more information about subtables, see the 4th
Dimension Design Reference manual as well as the commands regrouped under the
Subrecords theme.

Undefined

Undefined is not actually a data type. It denotes a variable that has not yet been defined.
A function (a project method that returns a result) can return an undefined value if,
within the method, the function result ($0) is assigned an undefined expression (an
expression calculated with at least one undefined variable). A field cannot be undefined.

Converting Data Types

The 4D language contains operators and commands to convert between data types, where
such conversions are meaningful. The 4D language enforces data type checking. For
example, you cannot write: "abc"+0.5+!12/25/96!-?00:30:457?. This will generate syntax
errors.

4th Dimension Language Reference 69

The following table lists the basic data types, the data types to which they can be
converted, and the commands used to do so:

Data Type Convert to Convert to Convert to Convert to
String Number Date Time

String Num Date Time

Number (*) String

Date String

Time String

Boolean Num

(*) Time values can be be treated as numbers.

Note: In addition to the data conversions listed inthis table, more sophisticated data
conversions can be obtained by combining operators and other commands.

See Also
Arrays, Constants, Control Flow, Identifiers, Methods, Operators, Pointers, Type, Variables.

70 4th Dimension Language Reference

Constants Language Definition

version 6.0

A constant is an expression that has a fixed value. There are two types of constants:
predefined constants that you select by name, and literal constants for which you type
the actual value.

Predefined Constants

Version 6 of 4th Dimension introduces predefined constants. These constants are listed in
the Explorer Window:

QEHpImel - [O] x]
H Tablesl 4 Fotrnsl 2| Methods K Constanlsl Comrnands] tm Lislsl

4D Environment ﬂ Text data : "TEXT"
ASCII Codes

BLOB

El Clipboard

$- No such data in clipboard

- Picture data
o 2wt data
Colors

Communications

~|
T

HEw | el I [VelEte |“I? = FputEarm = uteutEermi

The predefined constants are listed by theme. To use a predefined constant in a Method
editor window:

e Drag and drop the constant from the Explorer window to the Method Editor window.
e Directly type its name in the Method Editor window.

Predefined constant names can contain up to 31 characters.
Tip: If you directly enter the name of a predefined constant, you can use the @ symbol (at
sign) to avoid typing the entire constant name. For example, if you type “No such da@”,

4D will fill the line with the constant “No such data in clipboard” when you press Return
or Enter to validate the line of code.

4th Dimension Language Reference 71

Note: The predefined constants (about 500) are listed by theme in this manual. See the
section About this manual for more information. When appropriate, predefined constants
are also listed in the command descriptions.

Predefined constants appear underlined within the Method Editor and Debugger
windows:

O Method: SET RECORD TO CLIPBOARD =————— HI1H
$viRecordData:="" * Initialize the "TEXT" image of the record ;

For ($vIField;1 ;Count fields($1)) * For each field of the record
GET FIELD PROPERTIES($1 ;$vIField;$vIFieldType) * Get the type of the field
$vpField :=Field($1 ;$vIField) * Get a pointer to the field
Case of
= (($vIFieldType=Is Alpha Field) | ($vIFieldType=ls Text))
$viFieldData =$vpField->
= (($vIFieldType=Is Real) | ($vIFieldType=Is Integer) | ($vIFieldType=Is Longint) | ($vIFieldT J
$viFieldData :=String($vpField->)
: ($vIFieldType=|s Boolean)
$viFieldData :=String(Num($vpField->);"Yes;;No")
Else
$viFieldData:="" * Skip and ingore other field data types
End case _
o - s

P L sha A A AL e ZAN.A e vm 4 L me =

|

7 «Jim] Dz

In the window shown here, Is Alpha Field, for example, is a predefined constant.

Literal Constants

Literal Constants can be of four data types:
e String

* Numeric

* Date

e Time

String Constants
A string constant is enclosed in double, straight quotation marks ("..."). Here are some
examples of string constants:

"Add Records"
"No records found."
"Invoice"

An empty string is specified by two quotation marks with nothing between them ().

72 4th Dimension Language Reference

Numeric Constants

A numeric constant is written as a real number. Here are some examples of numeric
constants:

27
123.76
0.0076

Negative numbers are specified with the minus sign(-). For example:

=27
-123.76
—-0.0076

Date Constants

A date constant is enclosed by exclamation marks (!...1). In the US English version of 4D,
a date is ordered month/day/year, with a slash (/) setting off each part. Here are some
examples of date constants:

11/1/76!

14/4/04!

112/25/96!

A null date is specified by '00/00/00!

Tip: The Method Editor includes a shortcut for entering a null date. To type a null date,
enter the exclamation (!) character and press Enter.

Note: A two-digit year is assumed to be in the 1900’s. Unless this default setting has been
changed using the command SET DEFAULT CENTURY.
Time Constants

A time constant is enclosed by question marks (?...7).

Note: This syntax can be used on both Windows and Macintosh. On Macintosh, you can
also use the Dagger symbol (Option-T on a US keyboard).

In the US English version of 4D, a time constant is ordered hour:minute:second, with a
colon (:) setting off each part. Times are specified in 24-hour format.

4th Dimension Language Reference 73

Here are some examples of time constants:
200:00:00? ~ midnight

209:30:00? © 9:30 am
?13:01:59? ° 1 pm, 1 minute, and 59 seconds

A null time is specified by ?00:00:00?
Tip: The Method Editor includes a shortcut for entering a null time. To type a null time,

enter the question mark (?) character and press Enter.

See Also
Control Flow, Data Types, Identifiers, Methods, Operators, Pointers, Variables.

74 4th Dimension Language Reference

Variables Language Definition

version 6.0

Data in 4th Dimension is stored in two fundamentally different ways. Fields store data
permanently on disk; variables store data temporarily in memory.

When you set up your 4th Dimension database, you specify the names and types of fields
that you want to use. Variables are much the same—you also give them names and
different types.

The following variable types correspond to each of the data types:

« String: Fixed alphanumeric string of up to 255 characters

e Text: Alphanumeric string of up to 32,000 characters

e Integer: Integer from -32768 to 32767

e Long Integer: Integer from -2731 to (2°31)-1

e Real: A number to £1.7e+308 (15 digits)

e Date: 1/1/100 to 12/31/32767

e Time: 00:00:00 to 596000:00:00 (seconds from midnight)

« Boolean: True or False

« Picture: Any Windows or Macintosh picture

« BLOB (Binary Large OBject): Series of bytes up to 2 GB in size
« Pointer: A pointer to a table, field, variable, array, or array element

You can display variables (except Pointer and BLOB) on the screen, enter data into them,
and print them in reports. In these ways, enterable and non-enterable area variables act
just like fields, and the same built-in controls are available when you create them:

« Display formats

« Data validation, such entry filters and default values
e Character filters

e Choice lists (hierarchical lists)

e Enterable or non-enterable values

Variables can also do the following:

e Control buttons (buttons, check boxes, radio buttons, 3D buttons, and so on)
e Control sliders (meters, rulers, and dials)

= Control scrollable areas, pop-up menus, and drop-down list boxes

e Control hierarchical lists and hierarchical pop-up menus

e Control button grids, tab controls, picture buttons, and so on

» Display results of calculations that do not need to be saved.

4th Dimension Language Reference 75

Creating Variables

You create variables simply by using them; you do not need to formally define them as
you do with fields. For example, if you want a variable that will hold the current date plus
30 days, you write:

MyDate:=Current date+30

4th Dimension creates MyDate and holds the date you need. The line of code reads
“MyDate gets the current date plus 30 days.” You could now use MyDate wherever you
need it in your database. For example, you might need to store the date variable in a field
of same type:

[MyTable]MyField:=MyDate
Sometimes you may want a variable to be explicitly defined as a certain type. For more

information about typing variables for a database that you intend to compile, see the
section Compiler Commands.

Assigning Data to Variables

Data can be put into and copied out of variables. Putting data into a variable is called
assigning the data to the variable and is done with the assignment operator (:=). The
assignment operator is also used to assign data to fields.

The assignment operator is the primary way to create a variable and to put data into it.
You write the name of the variable that you want to create on the left side of the
assignment operator. For example:

MyNumber:=3

creates the variable MyNumber and puts the number 3 into it. If MyNumber already exists,
then the number 3 is just put into it.

Of course, variables would not be very useful if you could not get data out of them. Once
again, you use the assignment operator. If you need to put the value of MyNumber in a
field called [Products]Size, you would write MyNumber on the right side of the assignment
operator:

[Products]Size:=MyNumber
In this case, [Products]Size would be equal to 3. This example is rather simple, but it

illustrates the fundamental way that data is transferred from one place to another by
using the language.

76 4th Dimension Language Reference

Important: Be careful not to confuse the assignment operator (:=) with the comparison
operator, equal (=). Assignment and comparison are very different operations. For more
information about the comparison operators, see the section Operators.

Local, Process, and Interprocess Variables

You can create three types of variables: local variables, process variables, and interprocess
variables. The difference between the three types of variables is their scope, or the objects
to which they are available.

Local variables

A local variable is, as its name implies, local to a method—accessible only within the
method in which it was created and not accessible outside of that method. Being local to
a method is formally referred to as being “local in scope.” Local variables are used to
restrict a variable so that it works only within the method.

You may want to use a local variable to:

» Avoid conflicts with the names of other variables
« Use data temporarily

* Reduce the number of process variables

The name of a local variable always starts with a dollar sign ($) and can contain up to 31
additional characters. If you enter a longer name, 4th Dimension truncates it to the
appropriate length.

When you are working in a database with many methods and variables, you often find
that you need to use a variable only within the method on which you are working. You
can create and use a local variable in the method without worrying about whether you

have used the same variable name somewhere else.

Frequently, in a database, small pieces of information are needed from the user. The
Request command can obtain this information. It displays a dialog box with a message
prompting the user for a response. When the user enters the response, the command
returns the information the user entered. You usually do not need to keep this
information in your methods for very long. This is a typical way to use a local variable.
Here is an example:

$vsID:=Request("Please enter your ID:")
If (OK=1)

QUERY ([People];[People]ID =$vsID)
End if

This method simply asks the user to enter an ID. It puts the response into a local variable,
$vsID, and then searches for the ID that the user entered. When this method finishes, the
$vsID local variable is erased from memory. This is fine, because the variable is needed
only once and only in this method.

4th Dimension Language Reference 77

Process variables
A process variable is available only within a process. It is accessible to the process method
and any other method called from within the process.

A process variable does not have a prefix before its name. A process variable name can
contain up to 31 characters.

In interpreted mode, variables are maintained dynamically, they are created and erased
from memory “on the fly.” In compiled mode, all processes you create (user processes)
share the same definition of process variables, but each process has a different instance for
each variable. For example, the variable myVar is one variable in the process P_1 and
another one in the process P_2.

Starting with version 6, a process can “peek and poke” process variables from another
process using the commands GET PROCESS VARIABLE and SET PROCESS VARIABLE. It is
good programming practice to restrict the use of these commands to the situation for
which they were added to 4D:

« Interprocess communication at specific places or your code

e Handling of interprocess drag and drop

< In Client/Server, communication between processes on client machines and the stored
procedures running on the server machines

For more information, see the section Processes and the description of these commands.

Interprocess variables

Interprocess variables are available throughout the database and are shared by all
processes. They are primarily used to share information between processes.

The name of an interprocess variable always begins with the symbols (<>) — a “less than”
sign followed by a “greater than” sign— followed by 31 characters.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

In Client/Server, each machine (Client machines and Server machine) share the same

definition of interprocess variables, but each machine has a different instance for each
variable.

78 4th Dimension Language Reference

Form Object Variables

In the Form editor, naming an active object—button, radio button, check box, scrollable
area, meter bar, and so on—automatically creates a variable with the same name. For
example, if you create a button named MyButton, a variable named MyButton is also
created. Note that this variable name is not the label for the button, but is the name of
the button.

The form object variables allow you to control and monitor the objects. For example,
when a button is clicked, its variable is set to 1; at all other times, it is 0. The variable
associated with a meter or dial lets you read and change the current setting. For example,
if you drag a meter to a new setting, the value of the variable changes to reflect the new
setting. Similarly, if a method changes the value of the variable, the meter is redrawn to
show the new value.

For more information about variables and forms, see the 4th Dimension Design Reference
Manual as well as the section Form event.

System Variables

4th Dimension maintains a number of variables called system variables. These variables
let you monitor many operations. System variables are all process variables, accessible only
from within a process.

The most important system variable is the OK system variable. As its name implies, it tells
you if everything is OK in the particular process. Was the record saved? Has the importing
operation been completed? Did the user click the OK button? The OK system variable is
set to 1 when a task is completed successfully, and to 0 when it is not.

For more information about system variables, see the section System Variables.

See Also
Arrays, Constants, Control Flow, Data Types, ldentifiers, Methods, Operators, Pointers.

4th Dimension Language Reference 79

System Variables Language Definition

version 6.0 (Modified)

4th Dimension manages system variables, which allow you to control the execution of
different operations. All system variables are process variables that can only be accessed
within one process. This section describes 4th Dimension system variables.

OK

This is the most commonly used system variable. Usually it is set to 1 when an operation
is successfully executed. It is set to O when the operation fails. The following commands

modify the value of the OK system variable:

Append document
ADD RECORD

APPLY TO SELECTION
CHANGE ACCESS
QUERY

QUERY BY EXAMPLE

QUERY SELECTION BY FORMULA

COMPRESS BLOB

Create document
EXPAND BLOB

DIALOG

SET PICTURE TO CLIPBOARD
SET RESOURCE PROPERTIES
SET STRING RESOURCE
SET TEXT RESOURCE
SAVE VARIABLES

EXPORT DIF

SEND RECORD

SEND VARIABLE

SELECT LOG FILE

PRINT LABEL

RELATE ONE SELECTION
START WEB SERVER
IMPORT DIF

Get indexed string

GET RESOURCE

GET ICON RESOURCE
Get text resource

LOAD VARIABLES

MODIFY RECORD
CANCEL

Open resource file
RECEIVE RECORD
RECEIVE VARIABLE

RELATE MANY SELECTION

APPEND TO CLIPBOARD
ADD SUBRECORD

BLOB TO DOCUMENT
LOAD SET

QUERY SELECTION
QUERY BY FORMULA
SEARCH BY INDEX
CONFIRM

Create resource file
Request

DOCUMENT TO BLOB
SET RESOURCE NAME
SET RESOURCE

SET PICTURE RESOURCE
SET TEXT TO CLIPBOARD
EXPORT TEXT

EXPORT SYLK

SEND PACKET

REPORT

SET TIMEOUT

PRINT SELECTION

PLAY

IMPORT TEXT

IMPORT SYLK

GET PICTURE FROM LIBRARY
Get string resource

GET PICTURE RESOURCE
Get text from clipboard
STRING LIST TO ARRAY
MODIFY SUBRECORD
Open document

PRINT SETTINGS
RECEIVE PACKET

SET CHANNEL

SAVE SET

80 4th Dimension Language Reference

DELETE DOCUMENT DELETE RESOURCE

ARRAY TO LIST ARRAY TO STRING LIST
ARRAY TO SELECTION ORDER BY

ORDER BY FORMULA USE ASCII MAP
DISTINCT VALUES ACCEPT

VALIDATE TRANSACTION

Document

Document contains the "long name" (access path+name) of the last file opened or created
using the following commands:

Append document LOAD SET
Create document Create resource file
SAVE VARIABLES EXPORT TEXT
EXPORT DIF EXPORT SYLK
REPORT SELECT LOG FILE
PRINT LABEL IMPORT TEXT
IMPORT DIF IMPORT SYLK
LOAD VARIABLES Open document
Open resource file SAVE SET

SET CHANNEL USE ASCII MAP
FldDelimit

FldDelimit contains the ASCII code that will be used as a field separator when importing or
exporting text. By default, this value is set to 9, which is the ASCII code for the Tab key.
To use a different field separator, assign a new value to FldDelimit.

RecDelimit

RecDelimit contains the ASCII code that will be used as a record separator when importing
or exporting text. By default, this value is set to 9, which is the ASCII code for the
Carriage Return key. To use a different record separator, assign a new value to FldDelimit.

Error

Error can only be used in a method installed by the ON ERR CALL command. This variable
contains the error code. 4th Dimension error codes and system error codes are listed in
the Error Codes section.

4th Dimension Language Reference 81

MouseDown, MouseX, MouseY, KeyCode, Modifiers and MouseProc

These system variables can only be used in a method installed by the ON EVENT CALL
command.

* MouseDown is set to 1 when the mouse button is pushed. Otherwise, it is set to O.

« If the event is a MouseDown (MouseDown=1), the MouseX and MouseY system variables
are respectively set to the vertical and horizontal coordinates of the location where the
click took place. Both values are expressed in pixels and use the local coordinate system of
the window.

« KeyCode is set to the ASCII code of the key that was just pressed. If the key is a function
key, KeyCode is set to a special code. ASCII codes and function key codes are listed in the
sections ASCIl Codes and Function Key Codes.

< Modifiers is set to the keyboard modifier keys (Ctrl/command, Alt/Option, Shift, Caps
Lock). This variable is only significant in an "interruption on event" installed by the
command ON EVENT CALL.

* MouseProc is set to the process number in which the last event took place.

See Also
No reference.

82 4th Dimension Language Reference

Pointers Language Definition

version 6.0

Pointers provide an advanced way (in programming) to refer to data.

When you use the language, you access various objects—in particular, tables, fields,
variables, and arrays—by simply using their names. However, it is often useful to refer to
these elements and access them without knowing their names. This is what pointers let
you do.

The concept behind pointers is not that uncommon in everyday life. You often refer to
something without knowing its exact identity. For example, you might say to a friend,
“Let’s go for a ride in your car” instead of “Let’s go for a ride in the car with license plate
123ABD.” In this case, you are referencing the car with license plate 123ABD by using the
phrase “your car.” The phrase “car with license plate 123ABD” is like the name of an
object, and using the phrase “your car” is like using a pointer to reference the object.

Being able to refer to something without knowing its exact identity is very useful. In fact,
your friend could get a new car, and the phrase “your car” would still be accurate—it
would still be a car and you could still take a ride in it. Pointers work the same way. For
example, a pointer could at one time refer to a numeric field called Age, and later refer to
a numeric variable called Old Age. In both cases, the pointer references numeric data that
could be used in a calculation.

You can use pointers to reference tables, fields, variables, arrays, and array elements. The
following table gives an example of each data type:

Object To Reference To Use To Assign

Table vpTable:=->[Table] DEFAULT TABLE(vpTable->) n/a

Field vpField:=->[Table]Field ALERT(vpField->) vpField->:="John"

Variable vpVar:=->Variable ALERT(vpVar->) vpVar->:="John"

Array VpArr:=->Array SORT ARRAY(VpArr->;>) COPY ARRAY (Arr;vpArr->)
Array element vpElem:=->Array{1} ALERT (vpElem->) vpElem->:="John"

4th Dimension Language Reference 83

Using Pointers: An Example

It is easiest to explain the use of pointers through an example. This example shows how
to access a variable through a pointer. We start by creating a variable:

MyVar:="Hello"

MyVar is now a variable containing the string “Hello.” We can now create a pointer to
MyVar:

MyPointer:=->MyVar

The -> symbol means “get a pointer to.” This symbol is formed by a dash followed by a
“greater than” sign. In this case, it gets the pointer that references or “points to” MyVar.
This pointer is assigned to MyPointer with the assignment operator.

MyPointer is now a variable that contains a pointer to MyVar. MyPointer does not contain
“Hello”, which is the value in MyVar, but you can use MyPointer to get this value. The
following expression returns the value in MyVar:

MyPointer->

In this case, it returns the string “Hello”. The -> symbol, when it follows a pointer,
references the object pointed to. This is called dereferencing.

It is important to understand that you can use a pointer followed by the -> symbol
anywhere that you could have used the object that the pointer points to. This means that
you could use the expression MyPointer-> anywhere that you could use the original MyVar
variable.

For example, the following line displays an alert box with the word Hello in it:

ALERT(MyPointer->)

You can also use MyPointer to change the data in MyVar. For example, the following
statement stores the string "Goodbye" in the variable MyVar:

MyPointer->:="Goodbye"

If you examine the two uses of the expression MyPointer->, you will see that it acts just as
if you had used MyVar instead. In summary, the following two lines perform the same
action—both display an alert box containing the current value in the variable MyVar:

ALERT(MyPointer->)
ALERT(MyVar)

84 4th Dimension Language Reference

The following two lines perform the same action— both assign the string "Goodbye" to
MyVar:

MyPointer->:="Goodbye"
MyVar:="Goodbye"

Using Pointers to Buttons

This section describes how to use a pointer to reference a button. A button is (from the
language point of view) nothing more than a variable. Although the examples in this
section use pointers to reference buttons, the concepts presented here apply to the use of
all types of objects that can be referenced by a pointer.

Let’s say that you have a number of buttons in your forms that need to be enabled or
disabled. Each button has a condition associated with it that is TRUE or FALSE. The
condition says whether to disable or enable the button. You could use a test like this each
time you need to enable or disable the button:

If (Condition) ~ If the condition is TRUE...

ENABLE BUTTON (MyButton) ~ enable the button
Else ~ Otherwise...

DISABLE BUTTON (MyButton) ° disable the button
End if

You would need to use a similar test for every button you set, with only the name of the
button changing. To be more efficient, you could use a pointer to reference each button
and then use a subroutine for the test itself.

You must use pointers if you use a subroutine, because you cannot refer to the button’s
variables in any other way. For example, here is a project method called SET BUTTON,
which references a button with a pointer:

* SET BUTTON project method
* SET BUTTON (Pointer ; Boolean)
* SET BUTTON (-> Button ; Enable or Disable)

* $1 - Pointer to a button
* $2 - Boolean. If TRUE, enable the button. If FALSE, disable the button

If ($2) " If the condition is TRUE...

ENABLE BUTTON($1->) * enable the button
Else ~ Otherwise...

DISABLE BUTTON($1->) " disable the button
End if

4th Dimension Language Reference 85

You can call the SET BUTTON project method as follows:

SET BUTTON (->bValidate; True)
SET\ E'BIL.JTTON (->bValidate;False)
SET‘E;UTTON (->bValidate;([Employee]Last Name#"")
For (éleadioButton;l;ZO)
$vpRadioButton:=Get pointer("r*+String($viRadioButton))

SET BUTTON ($vpRadioButton;False)
End for

Using Pointers to Tables

Anywhere that the language expects to see a table, you can use a dereferenced pointer to
the table.
You create a pointer to a table by using a line like this:

TablePtr:=->[anyTable]

You can also get a pointer to a table by using the Table command. For example:

TablePtr:=Table(20)

You can use the dereferenced pointer in commands, like this:

DEFAULT TABLE(TablePtr->)

Using Pointers to Fields

Anywhere that the language expects to see a field, you can use a dereferenced pointer to
reference the field. You create a pointer to a field by using a line like this:

FieldPtr:=->[aTable]ThisField

You can also get a pointer to a field by using the Field command. For example:
FieldPtr:=Field(1; 2)

You can use the dereferenced pointer in commands, like this:

FONT(FieldPtr->; "Arial")

86 4th Dimension Language Reference

Using Pointers to Array Elements

You can create a pointer to an array element. For example, the following lines create an
array and assign a pointer to the first array element to a variable called ElempPtr:

ARRAY REAL(anArray; 10) ~ Create an array
ElemPtr:=->anArray{1} = Create a pointer to the array element

You could use the dereferenced pointer to assign a value to the element, like this:

ElemPtr->:=8

Using Pointers to Arrays

You can create a pointer to an array. For example, the following lines create an array and
assign a pointer to the array to a variable called ArrPtr:

ARRAY REAL(anArray; 10) * Create an array
ArrPtr := ->anArray ~ Create a pointer to the array

It is important to understand that the pointer points to the array; it does not point to an
element of the array. For example, you can use the dereferenced pointer from the
preceding lines like this:

SORT ARRAY/(ArrPtr->; >) * Sort the array

If you need to refer to the fourth element in the array by using the pointer, you do this:

ArrPtr->{4} = 84

Using an Array of Pointers

It is often useful to have an array of pointers that reference a group of related objects.

One example of such a group of objects is a grid of variables in a form. Each variable in
the grid is sequentially numbered, for example: Varl,vVar2,..., Varl0. You often need to
reference these variables indirectly with a number. If you create an array of pointers, and
initialize the pointers to point to each variable, you can then easily reference the
variables. For example, to create an array and initialize each element, you could use the
following lines:

ARRAY POINTER(apPointers; 10) ~ Create an array to hold 10 pointers
For ($i; 1; 10) " Loop once for each variable

apPointers{$i}:=Get pointer("Var"+String($i)) ° Initialize the array element
End for

4th Dimension Language Reference 87

The Get pointer function returns a pointer to the named object.

To reference any of the variables, you use the array elements. For example, to fill the
variables with the next ten dates (assuming they are variables of the date type), you could
use the following lines:

For ($i; 1; 10) * Loop once for each variable
apPointers{$i}->:=Current date+$i = Assign the dates
End for

Setting a Button Using a Pointer

If you have a group of related radio buttons in a form, you often need to set them
quickly. It is inefficient to directly reference each one of them by name. Let’s say you
have a group of radio buttons named Buttonl, Button2,..., Button5.

In a group of radio buttons, only one radio button is on. The number of the radio button
that is on can be stored in a numeric field. For example, if the field called
[Preferences]Setting contains 3, then Button3 is selected. In your form method, you could
use the following code to set the button:

Case of
:(Form event=0n Load)

Case of
. ([Preferences]Setting = 1)
Buttonl:=1
. ([Preferences]Setting = 2)
Button2:=1
: ([Preferences]Setting = 3)
Button3:=1
. ([Preferences]Setting = 4)
Button4:=1
. ([Preferences]Setting = 5)
Button5:=1
End case

End case

88 4th Dimension Language Reference

A separate case must be tested for each radio button. This could be a very long method if
you have many radio buttons in your form. Fortunately, you can use pointers to solve
this problem. You can use the Get pointer command to return a pointer to a radio button.
The following example uses such a pointer to reference the radio button that must be set.
Here is the improved code:

Case of
:(Form event=0n Load)

$va.(;1.dio::Get pointer("Button"+String([Preferences]Setting))
$vpRadio->:=1

End case

The number of the set radio button must be stored in the field called [Preferences]Setting.
You can do so in the form method for the On Clicked event:

[Preferences]Setting:=Button1l+(Button2*2)+(Button3*3)+(Button4*4)+(Button5*5)

Passing Pointers to Methods

You can pass a pointer as a parameter to a method. Inside the method, you can modify
the object referenced by the pointer. For example, the following method, TAKE TWO,
takes two parameters that are pointers. It changes the object referenced by the first
parameter to uppercase characters, and the object referenced by the second parameter to
lowercase characters. Here is the method:

* TAKE TWO project method
* $1 - Pointer to a string field or variable. Change this to uppercase.
* $2 — Pointer to a string field or variable. Change this to lowercase.
$1->:=Uppercase($1->)
$2->:=Lowercase($2->)

The following line uses the TAKE TWO method to change a field to uppercase characters
and to change a variable to lowercase characters:

TAKE TWO (->[My Table]My Field; ->MyVar)
If the field [My Table]My Field contained the string "jones", it would be changed to the

string "JONES". If the variable MyVar contained the string "HELLO", it would be changed to
the string "hello".

4th Dimension Language Reference 89

In the TAKE TWO method, and in fact, whenever you use pointers, it is important that
the data type of the object being referenced is correct. In the previous example, the
pointers must point to an object that contains a string or text.

Pointers to Pointers

If you really like to complicate things, you can use pointers to reference other pointers.
Consider this example:

MyVar := "Hello"

PointerOne := ->MyVar
PointerTwo := ->PointerOne
(PointerTwo->)-> := "Goodbye"
ALERT((Point Two->)->)

It displays an alert box with the word “Goodbye” in it.
Here is an explanation of each line of the example:

e MyVar:="Hello"
— This line puts the string "Hello" into the variable MyVar.

e PointerOne:=->MyVar
—> PointerOne now contains a pointer to MyVar.

« PointerTwo:=->PointerOne
— PointerTwo (a new variable) contains a pointer to PointerOne, which in turn points to

MyVar.
e (PointerTwo->)->:="Goodbye"

—> PointerTwo-> references the contents of PointerOne, which in turn references MyVar.
Therefore (PointerTwo->)-> references the contents of MyVar. So in this case, MyVar is
assigned "Goodbye".

* ALERT ((PointerTwo->)->)

—> Same thing: PointerTwo-> references the contents of PointerOne, which in turn
references MyVar. Therefore (PointerTwo->)-> references the contents of MyVar. So in this
case, the alert box displays the contents of myVar.

The following line puts "Hello" into MyVar:

(PointerTwo->)->:="Hello"

90 4th Dimension Language Reference

The following line gets "Hello" from MyVar and puts it into NewVar:

NewVar:=(PointerTwo->)->
Important: Multiple dereferencing requires parentheses.

See Also
Arrays, Arrays and Pointers, Constants, Control Flow, Data Types, Identifiers, Methods,
Operators, Variables.

4th Dimension Language Reference

91

Identifiers Language Definition

version 6.0

This section describes the conventions for naming various objects in the 4th Dimension
language. The names for all objects follow these rules:

« A name must begin with an alphabetic character.

« Thereafter, the name can include alphabetic characters, numeric characters, the space
character, and the underscore character.

 Periodes, slashes, and colons are not allowed.

« Characters reserved for use as operators, such as * and +, are not allowed.

* 4th Dimension ignores any trailing spaces.

Tables

You denote a table by placing its name between brackets: [...]. A table name can contain
up to 31 characters.

Examples

DEFAULT TABLE ([Orders])
INPUT FORM ([Clients]; "Entry")
ADD RECORD ([Letters])

Fields

You denote a field by first specifying the table to which the field belongs. The field name
immediately follows the table name. A field name can contain up to 31 characters.

Do not start a field name with the underscore character (). The underscore character is
reserved for plug-ins. When 4th Dimension encounters this character at the beginning of
a field in the Method editor, it removes the underscore.

Examples

[Orders]Total:=Sum([Line]Amount)
QUERY ([Clients];[Clients]Name="Smith")
[Letters]Text:=Capitalize text ([Letters]Text)

It is a good programming technique to specify the table name before the field, even
though it is not absolutely necessary in a table, form, or object method.

92 4th Dimension Language Reference

Subtables

You denote a subtable by first specifying the parent table to which the subtable belongs.
The subtable name immediately follows the table name. A subtable name can contain up
to 31 characters.

Examples

ALL SUBRECORDS ([People]Children)
ADD SUBRECORD ([Clients]Phones;"Add One")
NEXT SUBRECORD ([Letters]Keywords)

A subtable is treated as a type of field; therefore, it follows the same rules as a field when
used in a form. If you are specifying a subtable in the table, form, or object method of the
parent table, you do not need to specify the parent table name. However, it is a good
programming technique to specify the name of the table before the subtable name.

Subfields

You denote a subfield in the same way as a field. You denote the subfield by first
specifying the subtable to which the subfield belongs. The subfield name follows, and is
separated from the subtable name by an apostrophe (*). A subfield name can contain up to
31 characters.

Examples

[People]Children'First Name:=Uppercase([People]Children'First Name)
[Clients]Phones'Number:="408 555-1212"
[Letters]Keywords'Word:=Capitalize text ([Letters]Keywords'Word)

If you are specifying a subfield in a subtable, form, or object method of the subfile, you

do not need to specify the subtable name. However it is a good programming technique
to specify the table name and the subtable name before the name of the subfield.

Interprocess Variables

You denote an interprocess variable by preceding the name of the variable with the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess variable can have up to 31 characters, not including the <> symboils.

4th Dimension Language Reference 93

Examples

<>vIProcessID:=Current process
<>vsKey:=Char(KeyCode)
If (<>vtName#"")

Process Variables

You denote a process variable by using its name (which cannot start with the <> symbols
nor the dollar sign $). A process variable name can contain up to 31 characters.

Examples

<>vrGrandTotal:=Sum([Accounts]Amount)
If (bValidate=1)
vsCurrentName:=""

Local Variables

You denote a local variable with a dollar sign ($) followed by its name. A local variable
name can contain up to 31 characters, not including the dollar sign.

Examples

For ($vIRecord; 1; 100)
If ($vsTempVar="No")
$vsMyString:="Hello there"

Arrays

You denote an array by using its name, which is the name you passed to the array
declaration (such as ARRAY LONGINT) when you created the array. Arrays are variables,
and from the scope point of view, like variables, there are three different types of arrays:

= Interprocess arrays,
* Process arrays,
e Local arrays.

Interprocess Arrays
The name of an interprocess array is preceded by the symbols (<>) — a “less than” sign
followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

94 4th Dimension Language Reference

An interprocess array name can contain up to 31 characters, not including the <>
symbols.

Examples

ARRAY TEXT(<>atSubjects;Records in table([Topics]))
SORT ARRAY (<>asKeywords; >)
ARRAY INTEGER(<>aiBigArray;10000)

Process Arrays
You denote a process array by using its name (which cannot start with the <> symbols
nor the dollar sign $). A process array name can contain up to 31 characters.

Examples

ARRAY TEXT(atSubjects;Records in table([Topics]))
SORT ARRAY (asKeywords; >)
ARRAY INTEGER(aiBigArray;10000)

Local Arrays
The name of a local array is preceded by the dollar sign ($). An local array name can
contain up to 31 characters, not including the dollar sign.

Examples

ARRAY TEXT ($atSubjects;Records in table([Topics]))
SORT ARRAY ($asKeywords; >)
ARRAY INTEGER($aiBigArray;10000)

Elements of arrays
You reference an element of an interprocess, process or local array by using the curly
braces({...}). The element referenced is denoted by a numeric expression.

Examples

* Adressing an element of an interprocess array
If (<>asKeywords{1}="Stop")
<>atSubjects{$vIElem}:=[Topics]Subject
$viNextValue:=<>aiBigArray{Size of array(<>aiBigArray)}

* Adressing an element of a process array
If (asKeywords{1}="Stop")
atSubjects{$vIElem}:=[Topics]Subject
$viNextValue:=aiBigArray{Size of array(aiBigArray)}

4th Dimension Language Reference

95

* Adressing an element of a local array
If ($asKeywords{1}="Stop")
$atSubjects{$viElem}:=[Topics]Subject
$viNextValue:=$aiBigArray{Size of array($aiBigArray)}

Elements of two-dimensional arrays

You reference an element of a two-dimensional array by using the curly braces ({...})
twice. The element referenced is denoted by two numeric expressions in two sets of curly
braces.

Examples

* Adressing an element of a two-dimensional interprocess array
If (<>asKeywords{$vINextRow}{1}="Stop")
<>atSubjects{10}{$vIElem}:=[Topics]Subject
$viNextValue:=<>aiBigArray{$vISet}{Size of array(<>aiBigArray{$viSet})}

* Adressing an element of a two-dimensional process array
If (asKeywords{$vINextRow}{1}="Stop")
atSubjects{10}H{$vIElem}:=[Topics]Subject
$viNextValue:=aiBigArray{$vISet}{Size of array(aiBigArray{$viSet})}

* Adressing an element of a two-dimensional local array
If ($asKeywords{$vINextRow}{1}="Stop")
$atSubjects{10H{$vIElem}:=[Topics]Subject
$viNextValue:=$aiBigArray{$vISet}{Size of array($aiBigArray{$viSet})}

Forms

You denote a form by using a string expression that represents its name. A form name
can contain up to 31 characters.

Examples

INPUT FORM([People];"Input™)
OUTPUT FORM([People]; "Output™)
DIALOG([Storage];"Note box"+String($viStage))

96 4th Dimension Language Reference

Methods

You denote a method (procedure and function) by using its name. A method name can
contain up to 31 characters.

Note: A method that does not return a result is also called a procedure. A method that
returns is a result is also called a function.

Examples

If (New client)
DELETE DUPLICATED VALUES
APPLY TO SELECTION ([Employees];INCREASE SALARIES)

Tip: It is a good programming technique to adopt the same naming convention as the
one used by 4D for built-in commands. Use uppercase characters for naming your
methods; however if a method is function, capitalize the first character of its name. By
doing so, when you reopen a database for maintenance after a few months, you will
already know if a method returns a result by simply looking at its name in the Explorer
window.

Note: When you call a method, you just type its name. However, some 4D built-in
commands, such as ON EVENT CALL, as well as all the Plug-In commands, expect the
name of a method as a string when a method parameter is passed. Example:

Examples

" This command expects a method (function) or formula
QUERY BY FORMULA ([aTable];Special query)

* This command expects a method (procedure) or statement
APPLY TO SELECTION ([Employees];INCREASE SALARIES)

* But this command expects a method name
ON EVENT CALL ("HANDLE EVENTS")

* And this Plug-In command expects a method name
WR ON ERROR ("WR HANDLE ERRORS")

Methods can accept parameters (arguments). The parameters are passed to the method in
parentheses, following the name of the method. Each parameter is separated from the
next by a semicolon (;). The parameters are available within the called method as
consecutively numbered local variables: $1, $2,..., $n. In addition, multiple consecutive
(and last) parameters can be addressed with the syntax ${n}where n, numeric expression,
is the number of the parameter.

Inside a function, the $0 local variable contains the value to be returned.

4th Dimension Language Reference 97

Examples

* Within DROP SPACES $1 is a pointer the field [People]Name
DROP SPACES (->[People]Name)

* Within Calc creator:

- $1 is numeric and equal to 1

* - $2 is numeric and equal to 5

* - $3 is text or string and equal to "Nice"

* - The result value is assigned to $0
$vsResult:=Calc creator (1; 5; "Nice")

© Within Dump:

* - The three parameters are text or string

* - They can be addressed as $1, $2 or $3

" - They can also be addressed as, for instance, ${$vIParam} where $vIParam is 1, 2 or

* - The result value is assigned to $0
vtClone:=Dump ("is"; "the"; "it")

Plug-In Commands (External Procedures, Functions and Areas)

You denote a plug-in command by using its name as defined by the plug-in. A plug-in
command name can contain up to 31 characters.

Examples

WR BACKSPACE (wrArea; 0)
$spNewArea:=SP New offscreen area

98 4th Dimension Language Reference

Sets

From the scope point of view, there are two types of sets:
» Interprocess sets
* Process sets

4D Server also includes:
» Client sets

Interprocess Sets
A set is an interprocess set if the name of the set is preceded symbols (<>) — a “less than”
sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess set name can contain up to 80 characters, not including the <> symbols.

Process Sets

You denote a process set by using a string expression that represents its name (which
cannot start with the <> symbols or the dollar sign $). A set name can contain up to 80
characters.

Client Sets
The name of a client set is preceded by the dollar sign ($). A client set name can contain
up to 80 characters, not including the dollar sign.

Note: In 4D Client/Server up to version 6, a set was maintained on the Client machine
where it was created. Starting with version 6, sets are maintained on the Server machine.
In certain cases, for efficiency or special purposes, you may need to work with sets locally
on the Client machine. To do so, you use Client sets.

Examples

* Interprocess sets

USE SET("<>Deleted Records")

CREATE SET([Customers];"<>Customer Orders")

If (Records in set("<>Selection"+String($i))>0)
* Process sets

USE SET("Deleted Records")

CREATE SET([Customers];"Customer Orders")

If (Records in set("<>Selection"+String($i))>0)
* Client sets

USE SET("$Deleted Records")

CREATE SET([Customers];"$Customer Orders")

If (Records in set("$Selection"+String($i))>0)

4th Dimension Language Reference 99

Named Selections

From the scope point of view, there are two types of named selections:
e Interprocess named selections
* Process named selections

Interprocess Named Selections
A named selection is an interprocess named selection if its name is preceded by the
symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on
Macintosh only, you can use the diamond (Option-Shift-V on US keyboard).

An interprocess named selection name can contain up to 80 characters, not including the
<> symbols.

Process Named Selections

You denote a process named selection by using a string expression that represents its
name (which cannot start with the <> symbols nor the dollar sign $). A named selection
name can contain up to 80 characters.

Examples

" Interprocess Named Selection

USE NAMED SELECTION([Customers];"<>ByZipcode")
* Process Named Selection

USE NAMED SELECTION([Customers];"<>ByZipcode")

Processes

In the single-user version, or in Client/Server on the Client side, there are two types of
processes:

» Global processes

e Local processes

Global Processes
You denote a global process by using a string expression that represents its name (which
cannot start with the dollar sign $). A process name can contain up to 31 characters.

Local Processes

You denote a local process if the name of the process is preceded by a dollar ($) sign. The
process name can contain up to 31 characters, not including the dollar sign.

100 4th Dimension Language Reference

Example

* Starting the global process "Add Customers"
$vIProcessID:=New process("P_ADD_CUSTOMERS";48*1024;"Add Customers")

* Starting the local process "$Follow Mouse Moves"

$viIProcessID:=New process("P_MOUSE_SNIFFER";16*1024;"$Follow Mouse Moves")

Summary of Naming Conventions

The following table summarizes 4th Dimension naming conventions.

Type

Table

Field

Subtable

Subfield
Interprocess Variable
Process Variable
Local Variable
Form

Interprocess Array
Process Array
Local Array
Method

Plug-in Routine
Interprocess Set
Process Set

Client Set

Named Selection
Interprocess Named Selection
Local Process
Global Process

Max. Length

31

31

31

31
<>+ 31
31
$+31
31
<>+ 31
31
$+31
31

31
<>+ 80
80
$+80
80
<>+ 80
$+31
31

Example

[Invoices]

[Employees]Last Name
[Friends]Kids
[Documents]Keyword'Keyword
<>VINextProcessID
vsCurrentName
$viLocalCounter

"My Custom Web Input"
<>apTables

asGender

$atValues
M_ADD_CUSTOMERS

WR INSERT TEXT
"<>Records to be Archived"
"Current selected records"
"$Previous Subjects”
"Employees A to Z"
"<>Employees Z to A"
"$Follow Events"
"P_INVOICES_MODULE"

4th Dimension Language Reference 101

Resolving Naming Conflicts

If a particular object has the same name as another object of a different type (for
example, if a field is named Person and a variable is also named Person), 4th Dimension
uses a priority system to identify the object. It is up to you to ensure that you use unique
names for the parts of your database.

4th Dimension identifies names used in procedures in the following order:

. Fields

Commands

. Methods

. Plug-in routines

. Predefined constants
. Variables

OUTRWNE

For example, 4th Dimension has a built-in command called Date. If you named a method
Date, 4th Dimension would recognize it as the built-in Date command, and not as your
method. This would prevent you from calling your method. If, however, you named a
field “Date”, 4th Dimension would try to use your field instead of the Date command.

See Also
Arrays, Constants, Data Types, Methods, Operators, Pointers, Variables.

102 4th Dimension Language Reference

Control Flow Language Definition

version 6.0

Regardless of the simplicity or complexity of a method, you will always use one or more
of three types of programming structures. Programming structures control the flow of
execution, whether and in what order statements are executed within a method. There
are three types of structures:

e Sequential
e Branching
e Looping

The 4th Dimension language contains statements that control each of these structures.

Sequential structure
The sequential structure is a simple, linear structure. A sequence is a series of statements
that 4th Dimension executes one after the other, from first to last. For example:

OUTPUT FORM([People]; "Listing™)
ALL RECORDS([People])
DISPLAY SELECTION([People])

A one-line routine, frequently used for object methods, is the simplest case of a sequential
structure. For example:

[People]Last Name:=Uppercase([People]Last Name)

Branching structures

A branching structure allows methods to test a condition and take alternative paths,
depending on the result. The condition is a Boolean expression, an expression that
evaluates TRUE or FALSE. One branching structure is the If...Else...End if structure, which
directs program flow along one of two paths. The other branching structure is the Case
of...Else...End case structure, which directs program flow to one of many paths.

4th Dimension Language Reference 103

Looping structures

When writing methods, it is very common to find that you need a sequence of
statements to repeat a number of times. To deal with this need, the language provides
three looping structures:

« While...End while
e Repeat...Until
e For...End for

The loops are controlled in two ways: either they loop until a condition is met, or they
loop a specified number of times. Each looping structure can be used in either way, but
While loops and Repeat loops are more appropriate for repeating until a condition is met,
and For loops are more appropriate for looping a specified number of times.

See Also
Logical Operators, Methods.

104 4th Dimension Language Reference

If...Else...End if Language Definition

version 6.0

The formal syntax of the If...Else...End if control flow structure is:

If (Boolean_Expression)
statements(s)

Else
statement(s)

End if

Note that the Else part is optional; you can write:

If (Boolean_Expression)
statements(s)
End if

The If...Else...End if structure lets your method choose between two actions, depending on
whether a test (a Boolean expression) is TRUE or FALSE.

When the Boolean expression is TRUE, the statements immediately following the test are
executed. If the Boolean expression is FALSE, the statements following the Else statement
are executed. The Else statement is optional; if you omit Else, execution continues with
the first statement (if any) following the End if.

Example

" Ask the user to enter the name
$Find:=Request(“Type a name:”)
If (OK=1)

QUERY([People]; [People]LastName=$Find)
Else

ALERT("You did not enter a name.")
End if

4th Dimension Language Reference 105

Tip: Branching can be performed without statements to be executed in one case or the
other. When developing an algorithm or a specialized application, nothing prevents you
from writing:

If (Boolean_Expression)
Else

statement(s)
End if

or:

If (Boolean_Expression)
statements(s)

Else

End if

See Also
Case of...Else...End case, Control Flow, For...End for, Repeat...Until, While...End while.

106 4th Dimension Language Reference

Case of...Else...End case Language Definition

version 6.0

The formal syntax of the Case of...Else...End case control flow structure is:

Case of
: (Boolean_Expression)
statement(s)
: (Boolean_Expression)
statement(s)

: (Boolean_Expression)
statement(s)
Else
statement(s)
End case

Note that the Else part is optional; you can write:

Case of
: (Boolean_Expression)
statement(s)
: (Boolean_Expression)
statement(s)

: (Boolean_Expression)
statement(s)
End case

As with the If...Else...End if structure, the Case of...Else...End case structure also lets your
method choose between alternative actions. Unlike the If...Else...End if structure, the Case
of...Else...End case structure can test a reasonable unlimited number of Boolean expressions
and take action depending on which one is TRUE.

4th Dimension Language Reference 107

Each Boolean expression is prefaced by a colon (:). This combination of the colon and the
Boolean expression is called a case. For example, the following line is a case:

: (bValidate=1)

Only the statements following the first TRUE case (and up to the next case) will be
executed. If none of the cases are TRUE, none of the statements will be executed (if no
Else part is included).

You can include an Else statement after the last case. If all of the cases are FALSE, the
statements following the Else will be executed.

Example
This example tests a numeric variable and displays an alert box with a word in it:

Case of
: (VResult = 1) ° Test if the number is 1
ALERT("One.") " Ifitis 1, display an alert
: (VResult = 2) ~ Test if the number is 2
ALERT("Two.") " Ifitis 2, display an alert
. (VResult = 3) " Test if the number is 3
ALERT("Three.") " Ifitis 3, display an alert
Else " Ifitis not 1, 2, or 3, display an alert
ALERT("It was not one, two, or three.")
End case

For comparison, here is the If...Else...End if version of the same method:

If (vResult = 1) ° Test if the number is 1
ALERT("One.") " Ifitis 1, display an alert
Else
If (vResult = 2) ~ Test if the number is 2
ALERT("Two.") " Ifitis 2, display an alert
Else
If (vResult = 3) ° Test if the number is 3
ALERT("Three.") " Ifitis 3, display an alert
Else " Ifitis not 1, 2, or 3, display an alert
ALERT("It was not one, two, or three.")
End if
End if
End if

108 4th Dimension Language Reference

Remember that with a Case of...Else...End case structure, only the first TRUE case is
executed. Even if two or more cases are TRUE, only the statements following the first

TRUE case will be executed.

Tip: Branching can be performed without statements to be executed in one case or

another. When developing an algorithm or a specialized application, nothing prevents

you from writing:

Case of
: (Boolean_Expression)
: (Boolean_Expression)

: (Boolean_Expression)
statement(s)
Else
statement(s)
End case

or:

Case of
: (Boolean_Expression)
: (Boolean_Expression)
statement(s)

: (Boolean_Expression)
statement(s)
Else
End case

or:

Case of

Else
statement(s)

End case

See Also

Control Flow, For...End for, If...Else...End if, Repeat...Until, While...End while.

4th Dimension Language Reference

109

While...End while Language Definition

version 6.0

The formal syntax of the While...End while control flow structure is:

While (Boolean_Expression)
statement(s)
End while

A While...End while loop executes the statements inside the loop as long as the Boolean
expression is TRUE. It tests the Boolean expression at the beginning of the loop and does
not enter the loop at all if the expression is FALSE.

It is common to initialize the value tested in the Boolean expression immediately before
entering the While...End while loop. Initializing the value means setting it to something
appropriate, usually so that the Boolean expression will be TRUE and While...End while
executes the loop.

The Boolean expression must be set by something inside the loop or else the loop will
continue forever. The following loop continues forever because NeverStop is always TRUE:

NeverStop:=True
While (NeverStop)
End while

If you find yourself in such a situation, where a method is executing uncontrolled, you
can use the trace facilities to stop the loop and track down the problem. For more
information about tracing a method, see the section Debugging.

Example

CONFIRM ("Add a new record?") The user wants to add a record?
While (OK =1) " Loop as long as the user wants to

ADD RECORD([aTable]) ~ Add a new record
End while " The loop always ends with End while

In this example, the OK system variable is set by the CONFIRM command before the loop
starts. If the user clicks the OK button in the confirmation dialog box, the OK system
variable is set to 1 and the loop starts. Otherwise, the OK system variable is set to 0 and
the loop is skipped. Once the loop starts, the ADD RECORD command keeps the loop
going because it sets the OK system variable to 1 when the user saves the record. When
the user cancels (does not save) the last record, the OK system variable is set to 0 and the
loop stops.

See Also
Case of...Else...End case, Control Flow, For...End for, If...Else...End if, Repeat...Until.

110 4th Dimension Language Reference

Repeat...Until Language Definition

version 6.0

The formal syntax of the Repeat...Until control flow structure is:

Repeat
statement(s)
Until (Boolean_Expression)

A Repeat...Until loop is similar to a While...End while loop, except that it tests the Boolean
expression after the loop rather than before. Thus, a Repeat...Until loop always executes
the loop once, whereas if the Boolean expression is initially False, a While...End while loop
does not execute the loop at all.

The other difference with a Repeat...Until loop is that the loop continues until the Boolean
expression is TRUE.

Example

Compare the following example with the example for the While...End while loop. Note
that the Boolean expression does not need to be initialized—there is no CONFIRM
command to initialize the OK variable.

Repeat
ADD RECORD([aTable])
Until (OK=0)

See Also
Case of...Else...End case, Control Flow, For...End for, If...Else...End if, While...End while.

4th Dimension Language Reference 111

For...End for Language Definition

version 6.0

The formal syntax of the For...End for control flow structure is:

For (Counter_Variable; Start_Expression; End_Expression {; Increment_Expression})
statement(s)
End for

The For...End for loop is a loop controlled by a counter variable:

e The counter variable Counter_Variable is a numeric variable (Real, Integer, or Long
Integer) that the For...End for loop initializes to the value specified by Start_Expression.

» Each time the loop is executed, the counter variable is incremented by the value
specified in the optional value Increment_Expression. If you do not specify
Increment_Expression, the counter variable is incremented by one (1), which is the default.

< When the counter variable passes the End_Expression value, the loop stops.

Important: The numeric expressions Start_Expression, End_Expression and
Increment_Expression are evaluated once at the beginning of the loop. If these expressions
are variables, changing one of these variables within the loop will not affect the loop.

Tip: However, for special purposes, you can change the value of the counter variable
Counter_Variable within the loop; this will affect the loop.

» Usually Start_Expression is less than End_Expression.
= If Start_Expression and End_Expression are equal, the loop will execute only once.

« If Start_Expression is greater than End_Expression, the loop will not execute at all unless
you specify a negative Increment_Expression. See the examples.

Basic Examples
1. The following example executes 100 iterations:
For (vCounter;1;100)

* Do something
End for

2. The following example goes through all elements of the array anArray:

For ($vIElem;1;Size of array(anArray))
* Do something with the element
anArray{$vilElem}:=...
End for

112 4th Dimension Language Reference

3. The following example goes through all the characters of the text vtSomeText:

For ($viChar;1;Length(vtSomeText))
" Do something with the character if it is a TAB
If (Ascii(vtSomeText<$viCharz)=Char(Tab))

End if
End for

4. The following example goes through the selected records for the table [aTable]:

FIRST RECORD([aTable])
For ($vIRecord;1;Records in selection([aTable]))
" Do something with the record
SEND RECORD([aTable])

h .(.3.0 to the next record
NEXT RECORD([aTable])
End for

Most of the For...End for loops you will write in your databases will look like the ones
listed in these examples.

Decrementing variable counter

In some cases, you may want to have a loop whose counter variable is decreasing rather
than increasing. To do so, you must specify Start Expression greater than End_Expression
and a negative Increment_Expression. The following examples do the same thing as the
previous examples, but in reverse order:

5. The following example executes 100 iterations:

For (vCounter;100;1;-1)
* Do something
End for

6. The following example goes through all elements of the array anArray:

For ($vIElem;Size of array(anArray);1;-1)
" Do something with the element
anArray{$vilElem}:=...
End for

4th Dimension Language Reference 113

7. The following example goes through all the characters of the text vtSomeText:

For ($viChar;Length(vtSomeText);1;-1)
" Do something with the character if it is a TAB
If (Ascii(vtSomeText<$viCharz)=Char(Tab))

End if
End for

8. The following example goes through the selected records for the table [aTable]:

LAST RECORD([aTable])
For ($vIRecord;Records in selection([aTable]);1;-1)
* Do something with the record
SEND RECORD([aTable])

) .(.3.0 to the previous record
PREVIOUS RECORD([aTable])
End for

Incrementing the counter variable by more than one

If you need to, you can use an Increment_Expression (positive or negative) whose absolute
value is greater than one.

9. The following loop addresses only the even elements of the array anArray:

For ($vIElem;2;((Size of array(anArray)+1)\2)*2;2)
" Do something with the element #2,#4...#2n
anArray{$viElem}:=...
End for

Note that the ending expression ((Size of array(anArray)+1)\2)*2 takes care of even and
odd array sizes.

114 4th Dimension Language Reference

Getting out of a loop by changing the counter variable

In some cases, you may want to execute a loop for a specific number of iterations, but
then get out of the loop when another condition becomes TRUE. To do so, you can test
this condition within the loop and if it becomes TRUE, explicitly set the counter variable
to a value that exceeds the end expression.

10. In the following example, a selection of the records is browsed until this is actually
done or until the interprocess variable <>vbWeStop, intially set to FALSE, becomes TRUE.
This variable is handled by an ON EVENT CALL project method that allows you to interrupt
the operation:

<>vbWeStop:=False
ON EVENT CALL ("HANDLE STOP")

" HANDLE STOP sets <>vbWeStop to True if Ctrl-period (Windows) or Cmd-Period

(Macintosh) is pressed
$vINbRecords:=Records in selection([aTable])
FIRST RECORD([aTable])
For ($vIRecord;1;$vINbRecords)
* Do something with the record
SEND RECORD([aTable])

* Go to the next record
If (<>vbWeStop)
$vIRecord:=$vINbRecords+1 * Force the counter variable to get out of the loop
Else
NEXT RECORD([aTable])
End if
End for
ON EVENT CALL(")
If (<>vbWeStop)
ALERT("The operation has been interrupted.")
Else
ALERT("The operation has been successfully completed.")
End if

4th Dimension Language Reference 115

Comparing looping structures
Let's go back to the first For...End for example:

The following example executes 100 iterations:

For (vCounter;1;100)
" Do something
End for

It is interesting to see how the While...End while loop and Repeat...Until loop would
perform the same action.

Here is the equivalent While...End while loop:

$i := 1 ° Initialize the counter
While ($i<=100) * Loop 100 times

" Do something

$i ;= $i + 1 * Need to increment the counter
End while

Here is the equivalent Repeat...Until loop:

$i := 1 " Initialize the counter
Repeat

* Do something

$i := $i + 1 ~ Need to increment the counter
Until ($i=100) ° Loop 100 times

Tip: The For...End for loop is usually faster than the While...End while and Repeat...Until
loops, because 4th Dimension tests the condition internally for each cycle of the loop and
increments the counter. Therefore, use the For...End for loop whenever possible.

Optimizing the execution of the For...End for loops

You can use Real, Integer, and Long Integer variables as well as interprocess, process, and
local variable counters. For lengthy repetitive loops, especially in compiled mode, use local
Long Integer variables.

11. Here is an example:

C_LONGINT($vICounter) ° use local Long Integer variables
For ($viCounter;1;10000)

" Do something
End for

116 4th Dimension Language Reference

Nested For...End for looping structures

You can nest as many control structures as you (reasonably) need. This includes nesting
For...End for loops. To avoid mistakes, make sure to use different counter variables for each
looping structure.

Here are two examples:
12. The following example goes through all the elements of a two-dimensional array:

For ($vIElem;1;Size of array(anArray))
) .[')'o something with the row

For ($vISubElem;1;Size of array(anArray{$viElem}))
" Do something with the element
anArray{$vIElem}{$vISubElem}:=...
End for
End for

13. The following example builds an array of pointers to all the date fields present in the
database:

ARRAY POINTER($apDateFields;0)
$vIElem:=0
For ($viTable;1;Count table)
For($vlIField;1;Count fields($viTable))
$vpField:=Field($viTable;$vlIField)
If (Type($vpField->)=Is Date)
$vIElem:=$vIElem+1
INSERT ELEMENT ($apDateFields;$vIElem)
$apDateFields{$vIElem}:=$vpField
End if
End for
End for

See Also
Case of...Else...End case, Control Flow, If...Else...End if, Repeat...Until, While...End while.

4th Dimension Language Reference 117

Methods Language Definition

version 6.0

In order to make the commands, operators, and other parts of the language work, you
put them in methods. There are several kinds of methods: Object methods, Form
methods, Table methods (Triggers), Project methods, and Database methods. This section
describes features common to all types of methods.

A method is composed of statements; each statement consists of one line in the method.
A statement performs an action, and may be simple or complex. Although a statement is
always one line, that one line can be as long as needed (up to 32,000 characters, which is
probably enough for most tasks).

For example, the following line is a statement that will add a new record to the [People]
table:

ADD RECORD([People])
A method also contains tests and loops that control the flow of the execution. For a

detailed discussion about the control flow programming structures, see the section Control
Flow.

Types of Methods

There are five types of methods in 4th Dimension:

« Object methods: An object method is a property of an object. It is a usually a short
method associated with an active form object. Object methods generally “manage” the
object while the form is displayed or printed. You do not call an object method—4D calls
it automatically when an event involves the object to which the object method is
attached.

e Form methods: A form method is a property of a form. You can use a form method to
manage data and objects, but it is generally simpler and more efficient to use an object
method for these purposes. You do not call a form method—4D calls it automatically
when an event involves the form to which the form method is attached.

For more information about Object methods and Form methods, see the 4th Dimension
Design Reference Manual as well as the section Form event.

118 4th Dimension Language Reference

- Table methods (Triggers): A Trigger is a property of a table. You do not call a Trigger.
Triggers are automatically invoked by the 4D database engine each time that you
manipulate the records of a table (Add, Delete, Modify and Load). Triggers are methods
that can prevent “illegal” operations with the records of your database. For example, in an
invoicing system, you can prevent anyone from adding an invoice without specifying
the customer to whom the invoice is billed. Triggers are a very powerful tool to restrict
operations on a table, as well as to prevent accidental data loss or tampering. You can
write very simple triggers, and then make them more and more sophisticated.

For detailed information about Triggers, see the section Triggers.

« Project methods: Unlike object methods, form methods, and triggers, which are all
associated with a particular object, form, or table, project methods are available for use
throughout your database. Project methods are reusable, and available for use by any
other method. If you need to repeat a task, you do not have to write identical methods
for each case. You can call project methods wherever you need them—from other project
methods or from object or form methods. When you call a project method, it acts as if
you had written the method at the location where you called it. Project methods called
from other method are often referred to as “subroutines.” A project method that returns a
result can also be called a function.

There is one other way to use project methods—associating them with menu commands.
When you associate a project method with a menu command, the method is executed
when the menu is chosen. You can think of the menu command as calling the project
method.

For detailed information about Project methods, see the section Project Methods.

« Database methods: In the same way object and form methods are invoked when events
occur in a form, there are methods associated with the database that are invoked when a
working session event occurs. These are the database methods. For example, each time
you open a database, you may want to initialize some variables that will be used during
the whole working session. To do so, you use the On Startup Database Method,
automatically executed by 4D when you open the database.

For more information about Database Methods, see the section Database Methods.

Compatiblity with previous versions of 4D

You can skip these compatibility notes if you work with brand-new databases created with
version 6 of 4th Dimension.

1. Version 6 introduces many new object and form events (such as On Double Clicked, On
Getting Focus, and so on) that replace the execution cycles from the previous versions. If
you have converted a version 3 database to version 6, your forms have been converted in
order to preserve as much as the “expected behavior” of your forms and objects.

4th Dimension Language Reference 119

If you want to take advantage of the new events for forms and objects created with a
previous version of 4D, you must enable the new events in the Form Properties and
Object Properties windows for the forms and the objects.

2. Table method, also called trigger, is a new type of method introduced in version 6. In
previous versions of 4th Dimension, table methods (called file procedures) were executed
by 4D only when a form for a table was used for data entry, display, or printing. They
were rarely used. Note that triggers execute at a much lower level that the old file
procedures. No matter what you do to a record via user actions (like data entry) or
programmatically (like a call to SAVE RECORD), the trigger of a table will be invoked by
4D. Triggers are truly quite different from the old file procedures. If you have converted a
version 3 database to version 6, and if you want to take advantage of the new Trigger
capability, you must deselect the Use Old File Procedures Scheme property in the
Database Properties dialog box (shown in this section).

3. Database methods is a new type of method introduced in version 6. In previous
versions of 4th Dimension, there was only one method (procedure) that 4D automatically
executed when you opened a database. This procedure had to be called STARTUP (US
English INTL version) or DEBUT (French version) in order to be invoked. If you have
converted a version 3 database to version 6, and if you want to take advantage of the new
On Startup Database Method capability, you must deselect the Use Old Startup Method
property in the Database Properties dialog box (shown in this section). This property
only affects the STARTUP/On Startup Database Method alternative. If you do not deselect
this property and add, for instance, an On Exit Database Method, this latter will be

invoked by 4D.

Bl =2|s|2|a|

rTable and Fields———— ~Method Editor

GIiC s € Default to Listing
" Color Background € Default to Flowchart
[~ Use Icons for Field Types €% No Default (Prompt)

™ Hide Keywords

rDesign Environment Printing

[V Print Titles

—Compatibility
[V Use DId Startup Method Scheme
[V Use OId File Procedure Scheme

Cancel | oK |

120 4th Dimension Language Reference

An Example Project Method

All methods are fundamentally the same—they start at the first line and work their way
through each statement until they reach the last line (i.e., they execute sequentially).
Here is an example project method:

QUERY ([People]) ° Display the Query editor
If (OK=1) " The user clicked OK, not cancel
If (Records in selection([People])=0) ° If no record was found...
ADD RECORD([People]) Let the user add a new record
End if
End if * The end

Each line in the example is a statement or line of code. Anything that you write using
the language is loosely referred to as code. Code is executed or run; this means that 4th
Dimension performs the task specified by the code.

We will examine the first line in detail and then move on more quickly:
QUERY([People]) * Display the Query editor

The first element in the line, QUERY, is a command. A command is part of the 4th
Dimension language—it performs a task. In this case, QUERY displays the Query editor.
This is similar to choosing Query from the Queries menu in the User environment.

The second element in the line, specified between parantheses, is an argument to the
QUERY command. An argument (or parameter) is data required by a command in order
to complete its task. In this case, [People] is the name of a table. Table names are always
specified inside square brackets ([...]). In our example, the People table is an argument to
the QUERY command. A command can accept several parameters.

The third element is a comment at the end of the line. A comment tells you (and anyone
else who might read your code) what is happening in the code. It is indicated by the
reverse apostrophe (7). Anything (on the line) following the comment mark will be
ignored when the code is run. A comment can be put on a line by itself, or you can put
comments to the right of the code, as in the example. Use comments generously
throughout your code; this makes it easier for you and others to read and understand the
code.

Note: A comment can be up to 80 characters long.

4th Dimension Language Reference 121

The next line of the method checks to see if any records were found:

If (Records in selection([People]) = 0) ~ If no record was found...

The If statement is a control-of-flow statement—a statement that controls the step-by-
step execution of your method. The If statement performs a test, and if the statement is
true, execution continues with the subsequent lines. Records in selection is a function—a
command that returns a value. Here, Records in selection returns the number of records in
the current selection for the table passed as argument.

Note: Notice that only the first letter of the function name is capitalized. This is the
naming convention for 4th Dimension functions.

You should already know what the current selection is—it is the group of records you are
working on at any one time. If the number of records is equal to O (in other words, if no
record was found), then the following line is executed:

ADD RECORD([People]) * Let the user add a new record

The ADD RECORD command displays a form so that the user can add a new record. 4th
Dimension formats your code automatically; notice that this line is indented to show you
that it is dependent on the control-of-flow statement (If).

End if ~ The end

The End if statement concludes the If statement’s section of control. Whenever there is a
control-of-flow statement, you need to have a corresponding statement telling the
language where the control stops.

Be sure you feel comfortable with the concepts in this section. If they are all new, you
may want to review them until they are clear to you.

Where to go from here?

To learn more about:

* Object methods and Form methods, see the section Form event.
= Triggers, see the section Triggers.

< Project methods, see the section Project Methods.

« Database methods, see the section Database Methods.

See Also

Arrays, Constants, Control Flow, Data Types, Database Methods, Identifiers, Operators,
Pointers, Triggers, Variables.

122 4th Dimension Language Reference

Project Methods Language Definition

version 6.0

Project methods are aptly named. Whereas form and object methods are bound to forms
and objects, a project method is available anywhere; it is not specifically attached to any
particular object of the database. A project method can have one of the following roles,
depending on how it is executed and used:

e Menu method

» Subroutine and function
* Process method

e Event catching method
e Error catching method

These terms do not distinguish project methods by what they are, but by what they do.

A menu method is a project method called from a custom menu. It directs the flow of
your application. The menu method takes control—branching where needed, presenting
forms, generating reports, and generally managing your database.

The subroutine is a project method that can be thought of as a servant. It performs those
tasks that other methods request it to perform. A function is a subroutine that returns a
value to the method that called it.

A process method is a project method that is called when a process is started. The process
lasts only as long as the process method continues to execute. For more information
about processes, see the section Processes. Note that a menu method attached to a menu
command whose property Start a New Process is selected, is also the process method for
the newly started process.

An event catching method runs in a separate process as the process method for catching
events. Usually, you let 4D do most of the event handling for you. For example, during
data entry, 4D detects keystrokes and clicks, then calls the correct object and form
methods so you can respond appropriately to the events from within these methods. In
other circumstances, you may want to handle events directly. For example, if you run a
lengthy operation (such as For...End For loop browsing records), you may want to be able
to interrupt the operation by typing Ctrl-Period (Windows) or Cmd-Period (Macintosh).
In this case, you should use an event catching method to do so. For more information,
see the description of the command ON EVENT CALL.

An error catching method is an interrupt-based project method. Each time an error or an

exception occurs, it executes within the process in which it was installed. For more
information, see the description of the command ON ERR CALL.

4th Dimension Language Reference 123

Menu Methods

A menu method is invoked in the Custom Menus environment when you select the
custom menu command to which it is attached. You assign the method to the menu
command using the Menu editor. The menu executes when the menu command is
chosen. This process is one of the major aspects of customizing a database. By creating
custom menus with menu methods that perform specific actions, you personalize your
database. Refer to the 4th Dimension Design Reference manual for more information about
the Menu editor.

Custom menu commands can cause one or more activities to take place. For example, a
menu command for entering records might call a method that performs two tasks:
displaying the appropriate input form, and calling the ADD RECORD command until the
user cancels the data entry activity.

Automating sequences of activities is a very powerful capability of the programming
language. Using custom menus, you can automate task sequences that would otherwise be
carried out manually in the User environment. With custom menus, you provide more
guidance to users of the database.

Subroutines

When you create a project method, it becomes part of the language of the database in
which you create it. You can then call the project method in the same way that you call
4th Dimension’s built-in commands. A project method used in this way is called a
subroutine.

You use subroutines to:

« Reduce repetitive coding

e Clarify your methods

» Facilitate changes to your methods
e Modularize your code

For example, let’s say you have a database of customers. As you customize the database,
you find that there are some tasks that you perform repeatedly, such as finding a
customer and modifying his or her record. The code to do this might look like this:

" Look for a customer
QUERY BY EXAMPLE([Customers])
* Select the input form
INPUT FORM([Customers];"Data Entry")
" Modify the customer's record
MODIFY RECORD([Customers])

124 4th Dimension Language Reference

If you do not use subroutines, you will have to write the code each time you want to
modify a customer’s record. If there are ten places in your custom database where you
need to do this, you will have to write the code ten times. If you use subroutines, you will
only have to write it once. This is the first advantage of subroutines—to reduce the
amount of code.

If the previously described code was a method called MODIFY CUSTOMER, you would
execute it simply by using the name of the method in another method. For example, to
modify a customer’s record and then print the record, you would write this method:

MODIFY CUSTOMER
PRINT SELECTION([Customers])

This capability simplifies your methods dramatically. In the example, you do not need to
know how the MODIFY CUSTOMER method works, just what it does. This is the second
reason for using subroutines—to clarify your methods. In this way, your methods become
extensions to the 4th Dimension language.

If you need to change your method of finding customers in this example database, you
will need to change only one method, not ten. This is the next reason to use
subroutines—to facilitate changes to your methods.

Using subroutines, you make your code modular. This simply means dividing your code
into modules (subroutines), each of which performs a logical task. Consider the following
code from a checking account database:

FIND CLEARED CHECKS ° Find the cleared checks
RECONCILE ACCOUNT ° Reconcile the account
PRINT CHECK BOOK REPORT " Print a checkbook report

Even for someone who doesn’t know the database, it is clear what this code does. It is not
necessary to examine each subroutine. Each subroutine might be many lines long and
perform some complex operations, but here it is only important that it performs its task.

We recommend that you divide your code into logical tasks, or modules, whenever
possible.

4th Dimension Language Reference 125

Passing Parameters to Methods

You’'ll often find that you need to pass data to your methods. This is easily done with
parameters.

Parameters (or arguments) are pieces of data that a method needs in order to perform its
task. The terms parameter and argument are used interchangeably throughout this
manual. Parameters are also passed to built-in 4th Dimension commands. In this example,
the string “Hello” is an argument to the ALERT command:

ALERT("Hello")

Parameters are passed to methods in the same way. For example, if a method named DO
SOMETHING accepted three parameters, a call to the method might look like this:

DO SOMETHING(WithThis;AndThat;ThisWay)
The parameters are separated by semicolons (;).

In the subroutine (the method that is called), the value of each parameter is automatically
copied into sequentially numbered local variables: $1, $2, $3, and so on. The numbering
of the local variables represents the order of the parameters.

The local variables/parameters are not the actual fields, variables, or expressions passed by
the calling method; they only contain the values that have been passed.

Within the subroutine, you can use the parameters $1, $2... in the same way you would
use any other local variable.

Since they are local variables, they are available only within the subroutine and are cleared
at the end of the subroutine. For this reason, a subroutine cannot change the value of the
actual fields or variables passed as parameters at the calling method level. For example:

* Here is some code from the method MY METHOD

DO S'(BMETHING ([People]Last Name) " Let's say [People]Last Name is equal to "williams"
ALERT([People]Last Name)

* Here the code of the method DO SOMETHING
$1:=Uppercase($1)
ALERT($1)

The alert box displayed by DO SOMETHING will read “WILLIAMS” and the alert box
displayed by MY METHOD will read “williams”. The method locally changed the value of
the parameter $1, but this does not affect the value of the field [People]Last Name passed
as parameter by the method MY METHOD.

126 4th Dimension Language Reference

There are two ways to make the method DO SOMETHING change the value of the field:

1. Rather than passing the field to the method, you pass a pointer to it, so you would
write:

* Here is some code from the method MY METHOD

) I._.e.t‘s say [People]Last Name is equal to "williams"
DO SOMETHING (->[People]Last Name)
ALERT([People]Last Name)

* Here the code of the method DO SOMETHING
$1->:=Uppercase($1->)
ALERT($1->)

Here the parameter is not the field, but a pointer to it. Therefore, within the DO
SOMETHING method, $1 is no longer the value of the field but a pointer to the field. The
object referenced by $1 ($1-> in the code above) is the actual field. Consequently,
changing the referenced object goes beyond the scope of the subroutine, and the actual
field is affected. In this example, both alert boxes will read “WILLIAMS”.

For more information about Pointers, see the section Pointers.

2. Rather than having the method DO SOMETHING “doing something,” you can rewrite
the method so it returns a value. Thus you would write:

" Here is some code from the method MY METHOD

) I._.e.t‘s say [People]Last Name is equal to "williams"
[People]Last Name:=DO SOMETHING ([People]Last Name)
ALERT([People]Last Name)

* Here the code of the method DO SOMETHING
$0:=%1
ALERT($0)

This second technique of returning a value by a subroutine is called “using a function.”
This is described in the next paragraphs.

Advanced note: Parameters within the subroutine are accessible through the local
variables $1, $2... In addition, parameters can be optional and can be referred to using the
syntax ${...}. For more information on parameters, see the description of the command
Count parameters.

4th Dimension Language Reference 127

Functions: Project Methods that return a value

Data can be returned from methods. A method that returns a value is called a function.
4D or 4D Plug-in commands that return a value are also called functions.

For example, the following line is a statement that uses the built-in function, Length, to
return the length of a string. The statement puts the value returned by Length in a
variable called MyLength. Here is the statement:

MyLength:=Length("How did | get here?")

Any subroutine can return a value. The value to be returned is put into the local variable
$0.

For example, the following function, called Uppercase4, returns a string with the first four
characters of the string passed to it in uppercase:

$0:=Uppercase(Substring($1; 1; 4))+Substring($1; 5)

The following is an example that uses the Uppercase4 function:
NewPhrase:=Uppercase4 ("This is good.")

In this example, the variable NewPhrase gets “THIS is good.”

The function result, $0, is a local variable within the subroutine. It can be used as such
within the subroutine. For example, in the previous DO SOMETHING example, $0 was first
assigned the value of $1, then used as parameter to the ALERT command. Within the
subroutine, you can use $0 in the same way you would use any other local variable. It is
4D that returns the value of $0 (as it is when the subroutine ends) to the called method.

Recursive Project Methods

Project methods can call themselves. For example:
e The method A may call the method B which may call A, so A will call B again and so on.
« A method can call itself.

This is called recursivity. The 4D language fully supports recursivity.
Here is an example. Let’s say you have a [Friends and Relatives] table composed of this
extremely simplified set of fields:

- [Friends and Relatives]Name
- [Friends and Relatives]Children'Name

128 4th Dimension Language Reference

For this example, we assume the values in the fields are unique (there are no two persons
with the same name). Given a name, you want to build the sentence “A friend of mine,
John who is the child of Paul who is the child of Jane who is the child of Robert who is

the child of Eleanor, does this for a living!”:

1. You can build the sentence in this way:

$vsName:=Request("Enter the name:";"John")
If (OK=1)
QUERY ([Friends and Relatives];[Friends and Relatives]Name=%$vsName)
If (Records in selection([Friends and Relatives])>0)
$vtTheWholeStory:="A friend of mine, "+$vsName
Repeat
QUERY/([Friends and Relatives];[Friends and Relatives]Children'Name=$vsName)
$vlQueryResult:=Records in selection([Friends and Relatives])
If ($vIQueryResult>0)
$vtTheWholeStory:=$vtTheWholeStory+" who is the child of "
+[Friends and Relatives]Name
$vsName:=[Friends and Relatives]Name
End if
Until ($vIiQueryResult=0)
$vtTheWholeStory:=$vtTheWholeStory+", does this for a living!"
ALERT($vtTheWholeStory)
End if
End if

2. You can also build it this way:

$vsName:=Request("Enter the name:";"John")
If (OK=1)
QUERY([Friends and Relatives];[Friends and Relatives]Name=%vsName)
If (Records in selection([Friends and Relatives])>0)
ALERT("A friend of mine, "+Genealogy of ($vsName)+", does this for a living!"
End if
End if

with the recursive function Genealogy of listed here:

" Genealogy of project method
* Genealogy of (String) -> Text
* Genealogy of (Name) -> Part of sentence

$0:=%1
QUERY ([Friends and Relatives];[Friends and Relatives]Children'Name=%$1)
If (Records in selection([Friends and Relatives])>0)
$0:=$0+" who is the child of "+Genealogy of ([Friends and Relatives]Name)
End if

4th Dimension Language Reference 129

Note the Genealogy of method which calls itself.
The first way is an iterative algorithm. The second way is a recursive algorithm.

When implementing code for cases like the previous example, it is important to note that
you can always write methods using iteration or recursivity. Typically, recursivity provides
more concise, readable, and maintainable code, but using it is not mandatory.

Some typical uses of recursivity in 4D are:

e Treating records within tables that relate to each other in the same way as in the
example.

« Browsing documents and folders on your disk, using the commands FOLDER LIST and
DOCUMENT LIST. A folder may contain folders and documents, the subfolders can
themselves contain folders and documents, and so on.

Important: Recursive calls should always end at some point. In the example, the method
Genealogy of stops calling itself when the query returns no records. Without this
condition test, the method would call itself indefinitely; eventually, 4D would return a
“Stack Full” error becuase it would no longer have space to “pile up” the calls (as well as
parameters and local variables used in the method).

See Also
Control Flow, Database Methods, Methods.

130 4th Dimension Language Reference

3 4D Environment

4th Dimension Language Reference 131

132 4th Dimension Language Reference

Application type 4D Environment

version 6.0
Application type — Long Integer
Parameter Type Description
This command does not require any parameters
Function result Long Integer < Numeric value denoting the type of the
application
Description

The Application type command returns a numeric value that denotes the type of 4D

environment that you are running. 4D provides the following predefined constants:

Constant Type Value
4th Dimension Long Integer 0
4D Engine Long Integer 1
4D Runtime Long Integer 2
4D Runtime Classic Long Integer 3
4D Client Long Integer 4
4D Server Long Integer 5
4D First Long Integer 6
Example

Somewhere in your code, other than in the On Server Startup database method, you need

to check if you are running 4D Server. You can write:

= If (Application type=4D Server)
* Perform appropriate actions
End if

See Also
Application version, Version type.

4th Dimension Language Reference

133

Version type 4D Environment

version 6.0

Version type — Long Integer

Parameter Type Description
This command does not require any parameters

Function result Long Integer < 0 -> Full version
1 -> Demo Limited version

Description

The Version type command returns a numeric value that denotes the type of 4D
environment version that you are running. 4D provides the following predefined
constants;

Constant Type Value
Full Version Long Integer 0
Demo Version Long Integer 1
Example

Your 4D application includes some features that are not available when a demo version of
the 4D environment is used. Surround these features with a test that calls Version type:

= If (Version type=Full Version)
" Perform appropriate operations
Else
ALERT("This feature is not available in the Demo version of"
+" Super Management Systems™.")
End if

See Also
Application type, Application version.

134 4th Dimension Language Reference

Application version 4D Environment

version 6.0
Application version {(*)} — String
Parameter Type Description
* * — Long version number if passed, otherwise
Short version number
Function result String -~ Version number encoded string

Description

The Application version command returns an encoded string value that expresses the
version number of the 4D environment you are running.

< If you do not pass the optional * parameter, a 4-character string is returned, formatted as
follows:

Characters Description

1-2 Version number
3 Update number
4 Revision number

Example: The string "0600" stands for version 6.0.0.

 If you pass the optional * parameter, an 8-character string is returned, formatted as
follows:

Characters Description

1 "F" denotes a final version
"B" denotes a beta version
Other characters denote an ACI internal version
-3-4 Internal ACI compilation number
6 Version number
Update number
Revision number

Example: The string "B0120602" would stand for the Beta 12 of version 6.0.2.

4th Dimension Language Reference 135

Examples
1. This example displays the 4D environment version number:
= $vs4Dversion:=Application version

ALERT("You are using the version "+String(Num(Substring($vs4Dversion;1;2)))
+"."+$vs4Dversion[[3]]+"."+$vs4Dversion[[4]])

2. This example tests to verify that you are using a final version:

= If(Subtring(Application version(*);1;1)#"F")
ALERT("Please make sure you are using a Final Production version of 4D
with this database!")

QUIT 4D
End if

See Also
Application type, Version type.

136 4th Dimension Language Reference

Compiled application 4D Environment

version 6.0
Compiled application — Boolean
Parameter Type Description
This command does not require any parameters
Function result Boolean -— Compiled (True), Interpreted (False)

Description

Compiled application tests whether you are running in compiled mode (True) or
interpreted mode (False).

Example

In one of your routines, you include debugging code useful only when you are running

in interpreted mode, so surround this debugging code with a test that calls Compiled
application:

= If (Not(Compiled application))
" Include debugging code here
End if

See Also
IDLE, Undefined.

4th Dimension Language Reference

137

PLATFORM PROPERTIES 4D Environment

version 3

PLATFORM PROPERTIES (platform{; system{; machine}})
Parameter Type Description
platform Number -— 1 68K-based Macintosh

2 Power Macintosh

3 Windows
system Number -~ Depends on the version you are running
machine Number -~ Depends on the version you are running
Description

The PLATFORM PROPERTIES command returns information about the type of platform
you are running, the version of the operating system, and the processor installed on your
machine.

PLATFORM PROPERTIES returns environment information in the parameters platform,
system, and machine.

Platform indicates whether you are running a 68K or PowerPC-based Macintosh, or
Windows version of 4 th Dimension. This parameter returns one the following predefined
constants:

Constant Type Value
Macintosh 68K Long Integer 1
Power Macintosh Long Integer 2
Windows Long Integer 3

The information returned in system and machine depends on the version of 4th
Dimension you are running.

Macintosh (both 68K and PowerPC versions)

If you are running a MacOS version of 4th Dimension, the system and machine
parameters return the following information.

e The system parameter returns a 32-bit (Long Integer) value, for which the high level
word is unused and the low level word is structured like this:

- The high byte contains the major version number,

- The low byte is composed of two nibbles (4 bits each). The high nibble is the major
update version number and the low nibble is the minor update version. Example: System
7.5.1 is coded as $0751, so you receive the decimal value 1873.

138 4th Dimension Language Reference

Note: In 4D, you can extract these values using the % (modulo) and \ (integer division)
numeric operators or the bitwise operators introduced in version 6.

e The Machine parameter returns a unique ID number identifying the model of
Macintosh.

Note: An update list of these unique ID numbers is published by Apple Computer, Inc. in
its Developer and Technical documentation. New values may be added when Apple or
other manufacturers release new models of the Macintosh.

Windows version

If you are running the Windows version of 4 th Dimension, system and machine return
the following information.

« The system parameter returns a 32-bit (Long Integer) value, the bits and bytes of which
are structured as follows:

If the high level bit is set to 1, it means you are running one of the types of Windows NT.
If the bit is set to O, it means you are running Windows 3.1 or Window 95.

Note: The high level bit fixes the sign of the long integer value. Therefore, in 4D, you
just need to test the sign of the value; if it is positive you are running Windows NT. You
can also use the bitwise operators introduced in version 6.

The low byte gives the major Windows version number. If it returns 3, you are running
version 3.x of Windows or Window NT. If it returns 4, you are running Windows 95 or

Windows NT 4. In both cases, the sign of the value tells whether or not you are running
NT.

The next low byte gives the minor Windows version number.

Note: In 4D, you can extract these values using the % (modulo) and \ (integer division)
numeric operators or the bitwise operators introduced in version 6.

e The machine parameter returns one the following predefined constants:

Constant Type Value
INTEL 386 Long Integer 386
INTEL 486 Long Integer 486
Pentium Long Integer 586
PowerPC 601 Long Integer 601
PowerPC 603 Long Integer 603
PowerPC 604 Long Integer 604

Note: Under Windows 3.1.x, machine returns 486 even though your machine is equipped
with a Pentium processor.

4th Dimension Language Reference 139

Example

The following project method displays an alert box showing the OS software you are
using:

* SHOW OS VERSION project method

= PLATFORM PROPERTIES($vIPlatform;$vISystem;$vIMachine)
If (($vIPlatform<1) | (3<$vIPlatform))
$vsPlatformQS:=""
Else
If ($vIPlatform=3)
$vsPlatformOS:=""
If ($vISystem<0)
$winMajVers:=((2°31)+3$vISystem)%256
$winMinVers:=(((2°31)+$vISystem)\256)%256
If ($winMajVers>=4)
$vsPlatformOS:="Windows™ 95"
Else
$vsPlatformOS:="Windows™ (with Win32s)"
End if
Else
$winMajVers:=$vISystem%256
$winMinVers:=($vISystem\256)%256
$vsPlatformOS:="Windows™ NT"
End if
$vsPlatformOS:=$vsPlatformOS+" version
"+String($winMajVers)+"."+String($winMinVers)
Else
$vsPlatformOS:="MacOS™ version
"+String($vISystem\256)+"."+String(($vISystem\16)%16)
+(("."+String($vISystem%16))*Num(($vISystem%16) # 0))
End if
End if
ALERT ($vsPlatformOS)

On Windows, you get an alert box similar to this:

o

Windows™ NT version 4.0

140 4th Dimension Language Reference

On Macintosh, you get an alert box similar to this:

Note

MacOS™ version 7.6

See Also
Bitwise Operators.

4th Dimension Language Reference

141

Application file 4D Environment

version 6.0
Application file — String
Parameter Type Description
This command does not require any parameters
Function result String -— Long name of the 4D executable file or
application
Description

The Application file command returns the long name of the 4D executable file or
application you are running.

On Windows
If, for example, you are running 4th Dimension located at \4dDWIN600\PROGRAM on
the volume E, the command returns E:\4DWIN600\PROGRAM\4D.EXE.

On Macintosh

If, for example, you are running 4th Dimension in the folder 4th Dimension® 6.0f on
the disk Macintosh HD, the command returns Macintosh HD:4th Dimension® 6.0f:4th
Dimension® 6.0.

Example
At startup on Windows, you need to check if a DLL Library is correctly located at the
same level as the 4D executable file. In the On Startup database method of your
application you can write:
If (On Windows & (Application type#4D Server))
= If (Test path name (Long name to path name (
Application file)+"XRAYCAPT.DLL")#Is a document)
" Display a dialog box explaining that the library XRAYCAPT.DLL
" is missing. Therefore, the X-rays capture capabilitity will not be available.
End if
End if

Note: The project methods On Windows and Long name to path name are listed in the
section System Documents.

See Also
Data file, DATA SEGMENT LIST, Structure file.

142 4th Dimension Language Reference

Structure file 4D Environment

version 6.0
Structure file — String
Parameter Type Description
This command does not require any parameters
Function result String -— Long name of the database structure file

Description

The Structure file command returns the long name of structure file for the database with
which you are currently working.

On Windows
If, for example, you are working with the database MyCDs located in \DOCS\MyCDs on
the volume G, the command returns G:\DOCS\MyCDs\MyCDs.4DB.

On Macintosh

If, for example, you are are working with the database located in the folder
Documents:MyCDsf: on the disk Macintosh HD, the command returns Macintosh
HD:Documents:MyCDsf:MyCDs.

WARNING: If you call this command while running 4D Client, only the name of the
structure file is returned; the long name is not returned.

Example

This example displays the name and the location of the structure file currently in use:
If (Application type#4D Client)

= $vsStructureFilename:=Long name to file name (Structure file)

= $vsStructurePathname:=Long name to path name (Structure file)
ALERT("You are currently using the database "+
Char(34)+$vsStructureFilename+Char(34)+" located at "+
Char(34)+$vsStructurePathname+Char(34)+".")
Else
= ALERT("You are connected to the database "+Char(34)+Structure file+Char(34))
End if

Note: The project methods Long name to file name and Long name to path name are listed
in the section System Documents.

See Also
Application file, Data file, DATA SEGMENT LIST.

4th Dimension Language Reference 143

Data file 4D Environment

version 6.0
Data file {(segment)} — String
Parameter Type Description
segment Number — Segment number
Function result String -— Long name of the data file for the database
Description

The Data file command returns the long name of the data file or one data segment for the
database with which you are currently working.

If you do not pass the segment parameter, it returns the long name of the data file or the
first segment (if the database is segmented). If you pass the segment parameter, it returns
the long name of the corresponding data segment. If you pass a segment number greater
than the number of data segments, it returns an empty string.

On Windows

If, for example, you are working with the database MyCDs located at \DOCS\MyCDs on
the volume G, a call to Data file returns G:\DOCS\MyCDs\MyCDs.4DD (provided that
you accepted the default location and name proposed by 4D when you created the
database).

On Macintosh

If, for example, you are working with the database located in the folder
Documents:MyCDsf: on the disk Macintosh HD, a call to Data file returns Macintosh
HD:Documents:MyCDsf:MyCDs.data (provided that you accepted the default location
and name proposed by 4D when you created the database).

WARNING: If you call this command while running 4D Client, only the name of the data
file or the first data segment is returned, not the long name. In addition, even though
the database is segmented, the command returns an empty string for the other data
segments. If you need (for adminstrative purposes) to display a list of the data segments
on a 4D Client station, use a Stored Procedure to build the data segment list and store it in
a variable on the server machine, then get the contents of this variable using the GET
PROCESS VARIABLE command.

144 4th Dimension Language Reference

Example
The following code goes through the data segments of a database.

If (Application type#4D Client)
$viDataSegNum:=0

Repeat
$viDataSegNum:=$viDataSegNum+1
= $vsDataSegName:=Data file($viDataSegNum)

If ($vsDataSegName#"")
ALERT ("Data segment "+String($viDataSegNum)+":"+Char(34)+
$vsDataSegName+Char(34)+".")
End if
Until ($vsDataSegName="")
ALERT("There is/are "+String($viDataSegNum-1)+"data segment(s).")
End if

See Also
Application file, DATA SEGMENT LIST, Structure file.

4th Dimension Language Reference 145

ACI folder 4D Environment

version 6.0

ACI folder — String

Parameter Type Description
This command does not require any parameters

Function result String -— Pathname to ACI Folder

Description

The ACI folder command returns the pathname to the ACI folder located in the active
system folder or directory.

On Windows

The ACI directory (folder) is named ACI and is located in the active WINDOWS directory
(usually C:\WINDOWS). This is why the ACI folder command usually returns the
pathname C:\WINDOWS\ACI\. However, PC computers can be set up with multi-boot
configurations, and, the location and name of the active WINDOWS directory can be
customized during installation. Therefore, if you want to save your own files (documents)
in the ACI folder, this command enables you to get the actual pathname to that
directory.

On Macintosh

The ACI folder is named ACI and is located in the Preferences folder of the active system
folder. Typically, the pathname Macintosh HD:System folder:Preferences:ACI: is the value
returned by the ACI folder command after a fresh installation of 4D. Because Macintosh
users can rename their disks and system folders, the pathname to the ACI folder can vary.
Therefore, if you want to save your own documents (files) in the ACI folder, this
command enables you to get the actual pathname to this folder.

Platform Independence and International: By using the ACI folder command to get the

actual pathname to that folder, you also ensure that your code will work on any platform
running any localized system.

146 4th Dimension Language Reference

The 4D environment uses the ACI folder to store the following information:

e User registration files

» Preferences files used by the 4D environment applications, tools, and utility programs

e 4D Client/Server or Internet/Intranet Network Components (on Windows only, within
the ..N\ACI\NNETWORK directory) as well as their option files

« .rex and res files created by 4D Client for storing resources downloaded from 4D Server
« Local database folders created by 4D Client for storing the 4D Extensions downloaded
from 4D Server

WARNING: You are free to store whatever files or documents you wish into the ACI
folder, however, it is good idea not to move or modify the files created by the 4D
environment itself.

Example

During the startup of a single-user database, you want to load (or create) your own
settings in a file located in the ACI folder. To do so, in the On Startup database method,
you can write code similar to this:

MAP FILE TYPES("PREF";"PRF";"Preferences file")
* Map PREF MacOS file type to .PRF Windows file extension

= $vsPrefDocName:=ACI folder+"MyPrefs" ~ Build pathname to the Preferences file
* Check if the file exists
If (Test pathname($vsPrefDocName+(".PRF"*Num(On Windows)))#ls a document)
$vtPrefDocRef:=Create document($vsPrefDocName;"PREF") * If not, create it
Else
$vtPrefDocRef:=Open document($vsPrefDocName;"PREF") ~ If so, open it
End if
If (OK=1)
* Process document contents
CLOSE DOCUMENT ($vtPrefDocRef)
Else
* Handle error
End if

See Also
System folder, Temporary folder, Test path name.

4th Dimension Language Reference 147

DATA SEGMENT LIST 4D Environment

version 6.0
DATA SEGMENT LIST (Segments)
Parameter Type Description
Segments String array -— Long names of data segments for the database
Description

DATA SEGMENT LIST populates the segments array with the long names of the data
segments for the database with which you are currently working.

WARNING: This command does nothing if executed on 4D Client. If you need (for
administrative purposes) to display a list of the data segments on a 4D Client station, use
a Stored Procedure to build the data segment list and store it in a variable on the server
machine, then get the contents of this variable using the GET PROCESS VARIABLE
command.

Examples

1. In the Data Segments Information form for the [Dialogs] table, you want to display a
drop-down list populated with the names of the data segments. To do so, write:

* [Dialogs];"Data Segments Information" form method
Case of
: (Form event=0On Load)

ARRAY STRING(255;asDataSegName;0)
= DATA SEGMENT LIST(asDataSegName)

End case

2. The following method tells you if a database is segmented.

" Is data file segmented -> Boolean
C_BOOLEAN ($0)
= DATA SEGMENT LIST($asDataSegName)
$0:=(Size of array($asDataSegName)>1)

148 4th Dimension Language Reference

3. After a call to ADD DATA SEGMENT, you want to test whether the user added new
segments.

= DATA SEGMENT LIST($asBefore)
ADD DATA SEGMENT
= DATA SEGMENT LIST($asAfter)
If(Size of array($asBefore)#Size of array($asAfter))
* Yes, there are more data segments
Else
* Same number of data segments
End if

See Also
Application file, Data file, Structure file.

4th Dimension Language Reference 149

ADD DATA SEGMENT 4D Environment

version 3

ADD DATA SEGMENT

Parameter Type Description
This command does not require any parameters

Description

The ADD DATA SEGMENT command displays the Data Segment Management dialog box
shown here:

@J ~Data Segment Management———

F:\nvoices\INVOICES.4DD A
i VOICES.4DS
0ICES2.4DS

“AnvoiceshINY
F:Alnvoicesh NV
Delete I

Add I

d Cancel I
Maximum Size: _ Kb Set ,TI

If the user clicks the OK button to validate the dialog box, the OK variable is set to 1. If
the user clicks the Cancel button, OK is set to 0.

NOTE: This command does nothing when used with 4D Server.

When all data segments are full, 4th Dimension or 4D Server generates an error -9999. An
error message is displayed, stating that the disk is full.

If you are using 4th Dimension, you can use the ON ERR CALL method to trap the error
message so you can handle the error procedurally. You can then use ADD DATA SEGMENT
to allow the user to add a new data segment on another volume that has available space.

If you are using 4D Server, you can display an alert stating that the Database
Administrator must add a new data segment from the server machine.

See Also
ON ERR CALL.

System Variables and Sets
OK is set to 1 if the Data Segment Management dialog box is validated.

150 4th Dimension Language Reference

FLUSH BUFFERS 4D Environment

version 3

FLUSH BUFFERS

Parameter Type Description
This command does not require any parameters

Description

The command FLUSH BUFFERS immediately saves the data buffers to disk. All changes that
have been made to the database are stored on disk.

You usually do not need to call this command, as 4D saves data modification on a regular
basis. The database property Flush Data Buffers (in the Design environment), which
specifies how often to save, is typically used to control buffer flushing.

Note: 4D integrates a built-in data cache scheme for accelerating 1/0O operations. The fact
that data modifications are, for some time, present in the data cache and not on the disk
is transparent to your coding. For example, if you issue a QUERY call, the 4D database
engine integrates the data cache in the query operation.

4th Dimension Language Reference 151

QUIT 4D 4D Environment

version 3

QUIT 4D

Parameter Type Description
This command does not require any parameters

Description

The QUIT 4D command exits 4th Dimension and returns to the Desktop. After you call
QUIT 4D, the current process stops its execution, then 4D acts as follows:

« If there is an On Exit Database Method, 4D starts executing this method within a newly
created local process. For example, you can use this database method to inform other
processes, via interprocess communication, that they must close (data entry) or stop the
execution of operations started by the On Startup Database Method (connection from 4D
to another database server). Note that 4D will eventually quit; the On Exit Database
Method can perform all the cleanup or closing operations you wish, but cannot refuse the
quit and will at some point end.

« If there is no On Exit Database Method, 4D aborts each running process one by one,
without distinction.

If the user is performing data entry, the records will be cancelled and not saved.

If you want to let the user save data entry modifications made in the current open
windows, you can use interprocess communication to signal all the other user processes
that the database is going to be exited. To do so, you can adopt two strategies:

< Perform these operations from within the current process before calling QUIT 4D
< Handle these operations from within the On Exit Database Method.

A third strategy is also possible. Before calling QUIT 4D, you check whether a window will
need validation; if that is the case, you ask the user to validate or cancel these windows
and then to choose Quit again. However, from a user interface standpoint, the first two
strategies are preferable.

152 4th Dimension Language Reference

Example

The project method listed here is associated with the Quit or Exit menu item in the File
menu.

* M_FILE_QUIT Project Method

CONFIRM("Are you sure that you want to quit?")

If (OK=1)
= QUIT 4D
End if

See Also

On Exit Database Method.

4th Dimension Language Reference 153

SELECT LOG FILE 4D Environment

version 3

SELECT LOG FILE (logFile | *)

Parameter Type Description

logFile | * String | * — Name of the Log file or
"*" for closing the current Log file

Description

The SELECT LOG FILE command opens, creates, or closes the Log File according to the
value you pass in logFile.

IMPORTANT: Calling SELECT LOG FILE is the same as choosing Log File from the File
menu in the User environment. This should only be used when 4D Backup is installed in
the database.

If you pass an empty string in logFile, SELECT LOG FILE presents an Open File dialog box,
allowing the user to open a log file or to create a new one. If the user clicks the Open
button and the file is opened correctly, the OK variable is set to 1. Otherwise, if the user
clicks Cancel or if the Log File could not be opened or created, OK is set to O.

If you pass "*" in logFile, SELECT LOG FILE closes the current Log File for the database. The
OK variable is set to 1 when the log file is closed.

If you use SELECT LOG FILE to create or open a Log File when a full backup has not yet
been performed and the data file already contains records, 4th Dimension displays the
following alert:

-

—

Oyt
"

You need to hackup your database hefore you can create a Log File.

154 4th Dimension Language Reference

4D then generates an error -4447, which you can intercept with an ON ERR CALL method.

Note: The SELECT LOG FILE command does not do anything when used with 4D Server.
For more information about this command, see the documentation for the 4D Backup
plug-in.

See Also

ON ERR CALL.

System Variables and Sets
OK is set to 1 if the Log File is correctly opened, created, or closed.

Error Handling

An error -4447 is generated if the operation cannot be performed because the database
needs to be backed up. You can intercept the error with an ON ERR CALL method.

4th Dimension Language Reference 155

156 4th Dimension Language Reference

4 Arrays

4th Dimension Language Reference 157

158 4th Dimension Language Reference

Arrays Arrays

version 6.0

An array is an ordered series of variables of the same type. Each variable is called an
element of the array. The size of an array is the number of elements it holds. An array is
given its size when it is created; you can then resize it as many times as needed by adding,
inserting, or deleting elements, or by resizing the array using the same command used to
create it.

You create an array with one of the array declaration commands. For details, see the
section Creating Arrays.

Elements are numbered from 1 to N, where N is the size of the array. An array always has
an element zero that you can access just like any other element of the array, but this
element is not shown when an array is present in a form. Although the element zero is
not shown when an array supports a form object, there is no restriction in using it with
the language. For more information about the element zero, see the section Using the
element zero of an array.

Arrays are 4D variables. Like any variable, an array has a scope and follows the rules of the
4D language, though with some unique differences. For more information, see the
sections Arrays and the 4D Language and Arrays and Pointers.

Arrays are language objects; you can create and use arrays that will never appear on the
screen. Arrays are also user interface objects. For more information about the interaction
between arrays and form objects, see the sections Arrays and Form Objects and Grouped
Scrollable Areas.

Arrays are designed to hold reasonable amounts of data for a short period of time.

However, because arrays are held in memory, they are easy to handle and quick to
manipulate. For details, see the section Arrays and Memory.

4th Dimension Language Reference 159

Creating Arrays Arrays

version 6.0

You create an array with one of the array declaration commands described in this chapter.
The following table lists the array declaration commands:

Command Creates or resizes an array of:

ARRAY INTEGER 2-byte Integer values

ARRAY LONGINT 4-byte Integer values

ARRAY REAL Real values

ARRAY TEXT Text values (from 0 to 32,000 characters per element) (see Note)
ARRAY STRING String values (from O to 255 characters per element) (see Note)
ARRAY DATE Date values

ARRAY BOOLEAN Boolean values

ARRAY PICTURE Pictures values

ARRAY POINTER Pointer values

Each array declaration command can create or resize one-dimensional or two-dimensional
arrays. For more information about two-dimensional arrays, see the section Two-
dimensional Arrays.

Note: The difference between Text arrays and String arrays lies in the nature of their
elements. In both types of array, elements can hold text values (characters). However:

< In a Text array, each element is of variable length and stores its characters in a separate
part of memory.

< In a String array, all elements have the same fixed length (the length passed when the
array was created). All elements are stored one after the other in the same part of
memory, no matter what the contents.

Due to this structural difference, string arrays act faster than text arrays. Note, however,
that an element of a String array can only hold up to 255 characters.

160 4th Dimension Language Reference

The following line of code creates (declares) an Integer array of 10 elements:
ARRAY INTEGER(aiAnArray;10)

Then, the following code resizes that same array to 20 elements:
ARRAY INTEGER(aiAnArray;20)

Then, the following code resizes that same array to no elements:
ARRAY INTEGER(aiAnArray;0)

You reference the elements in an array by using curly braces ({...}). A number is used
within the braces to address a particular element; this number is called the element
number. The following lines put five names into the array called atNames and then
display them in alert windows:

ARRAY TEXT (atNames;5)

atNames{1} := "Richard"
atNames{2} := "Sarah"
atNames{3} := "Sam"
atNames{4} := "Jane"
atNames{5} := "John"

For ($vilElem;1;5)
ALERT ("The element #"+String($vIElem)+" is equal to: "+atNames{$vIElem})
End for

Note the syntax atNames{$vIElem}. Rather than specifying a numeric literal such as

atNames{3}, you can use a numeric variable to indicate which element of an array you are

addressing.

Using the iteration provided by a loop structure (For...End for, Repeat... Until (...) or While
(-..) End while), compact pieces of code can address all or part of the elements in an array.

4th Dimension Language Reference

161

Arrays and other areas of the 4D language

There are other 4D commands that can create and work with arrays. For more
information, refer to the descriptions of the following commands:

e To work with arrays and selection of records, use the commands SELECTION RANGE TO
ARRAY, SELECTION TO ARRAY, ARRAY TO SELECTION and DISTINCT VALUES.

< You can create graphs and charts on series of values stored in tables, subtables, and
arrays. For more information, see the GRAPH command.

< Although version 6 brings a full set of new commands to work with hierarchical lists,
the commands LIST TO ARRAY and ARRAY TO LIST (from the previous version) have been
retained for compatibility.

 New commands in version 6 build arrays in one call. These commands are FONT LIST,
WINDOW LIST, VOLUME LIST, FOLDER LIST, and DOCUMENT LIST.

See Also

ARRAY BOOLEAN, ARRAY DATE, ARRAY INTEGER, ARRAY LONGINT, ARRAY PICTURE, ARRAY
POINTER, ARRAY REAL, ARRAY STRING, ARRAY TEXT, Arrays, Two-dimensional Arrays.

162 4th Dimension Language Reference

Arrays and Form Objects Arrays

version 6.0

Arrays are language objects—you can create and use arrays that will never appear on the
screen. However, arrays are also user interface objects. The following types of Form
Obijects are supported by arrays:

e Pop-up menu

e Drop-down List
e Combo Box

» Scrollable Area
e Tab Control

While you can predefine these objects in the Design Environment Form Editor (using the
Default Values button of the Object Properties window), you can also define them
programmatically using the arrays commands. In both cases, the form object is supported
by an array created by you or 4D.

When using these objects, you can detect which item within the object has been selected
(or clicked) by testing the array for its selected element. Conversely, you can select a
particular item within the object by setting the selected element for the array.

When an array is used to support a form object, it has then a dual nature; it is both a
language object and a user interface object. For example, when designing a form, you
create a scrollable area; in the Variable page of the Object Properties window, you name
the Variable Object:

[E Form: [Table1]input !E]m

- = H =) -
% [atNames l

@ @I\}I"’lmlﬂlj—j:lg ?_;_Iel
@ rVariable

;... I.E Name: IatNames

@J Type: ISch]abIeArea LI
ﬂ L Action: INO Action L,

Not Used

e

= Enterable

t. 50, .. 180
Faf | Object List
’VIVariablzﬂ 1

4th Dimension Language Reference 163

The name, in this case atNames, is the name of the array you use for creating and
handling the array.

Note: You cannot display two-dimensional arays or pointer arrays.

Example: Creating a drop-down list

The following example shows how to fill an array and display it in a drop-down list. An
array arSalaries is created using the ARRAY REAL command. It contains all the standard
salaries paid to people in a company. When the user chooses an element from the drop-
down list, the [Employees]Salary field is assigned the value chosen in the User or Custom
Menus environment.

Create the arSalaries drop-down list on a form
Create a drop-down list and name it arSalaries. The name of the drop-down list should be
the same as the name of the array.

(@ Form: [Employees]input | _ (O]]

B > = 4 [|

50

ﬂ Firsﬂiame IéirstNarr;e . [
L8l sostome. T |- Frog
@!l Deparilement iDepanerr'lent
ﬂsma;y [salary ..|arSaIaries' = = L150

L. 'sn’ 480 150 200 250 300 350 | 11 <]
Ze[] [

Initializing the array
Initialize the array arSalaries using the On Load event for the object. To do so, remember
to enable that event in the Object Properties window, as shown:

K
dlul=m =] 2= = el

rEvent:

v On Load -
On Unload
OnValidate

v 0On Clicked
On Double Clicked
On Keystroke

v 0OnData Change
On Drop
On Drag Over

Obiject List
{|Variable1 1 =l

164 4th Dimension Language Reference

Click the Object Method button and create the method, as follows:

& Method: arSalaries |_ (O]]
Case of 4

\
: (Form event=0n Load)

ARRAY REAL (arSalaries;10)

For ($vIElemn;1;10)
arSalaries{$vIElem}=2000+($vIElem™500)

End for

arSalaries:=Find in array(arSalaries;[Employees]Salary)

If (arSalaries=-1)
arSalaries:=0

End if |

End case

Klf

Keywords i‘ | ¢ Employees il Commands

i

= First Name 4D Environment

If Last Name Arrays

Else Departement BLOB

Endif LI Salary L‘ Boolean v/
e | o
The lines:

ARRAY REAL (arSalaries;10)
For($viElem;1;10)

arSalaries{$vIElem}:=2000+($vIElem*500)
End for

create the numeric array 2500, 3000... 7000, corresponding to the annual salaries $30,000
up to $84,000, before tax.

The lines:

arSalaries:=Find in array(arSalaries;[Employees]Salary)
If (arSalaries=-1)

arSalaries:=0
End if

handle both the creation of a new record or the modification of existing record.

< If you create a new record, the field [Employees]Salary is initially equal to zero. In this
case, Find in array does not find the value in the array and returns -1. The test If
(arSalaries=-1) resets arSalaries to zero, indicating that no element is selected in the drop-
down list.

< If you modify an existing record, Find in array retrieves the value in the array and sets
the selected element of the drop-down list to the current value of the field. If the value
for a particular employee is not in the list, the test If (arSalaries=-1) deselects any element
in the list.

Note: For more information about the array selected element, read the next section.

4th Dimension Language Reference 165

Reporting the selected value to the [Employees]Salary field

To report the value selected from the drop-down list arSalaries, you just need to handle the
On Clicked or On Data Change event to the object. The element number of the selected
element is the value of the array arSalaries itself. Therefore, the expression
arSalaries{arSalaries} returns the value chosen in the drop-down list.

Complete the method for the object arSalaries as follows:

Case of
: (Form event=0n Load)
ARRAY REAL (arSalaries;10)
For($viElem;1;10)
arSalaries{$vIElem}:=2000+($vIElem*500)
End for
arSalaries:=Find in array(arSalaries;[Employees]Salary)
If (arSalaries=-1)
arSalaries:=0
End if
: (Form event=0On Data Change)
[Employees]Salary:=arSalaries{arSalaries}
End case

In the User or Custom Menus environment, the drop-down list looks like this:

v

Employees 10f1

First Name ohn

LastName |DOE
Departement F«ccouting

Salary | 4000 (4000 -
2500 Al

&)

3000
3500

4000 |
4500

5000

5500 -

Eele e

2 lx |

The following section describes the common and basic operations you will perform on
arrays while using them as form objects.

166 4th Dimension Language Reference

Getting the size of the array

You can obtain the current size of the array by using the Size of array command. Using

the previous example, the following line of code would display 5:

ALERT ("The size of the array atNames is: "+String(Size of array(atNames)))

Reordering the elements of the array

You can reorder the elements of the array using the SORT ARRAY command. Using the

previous example, and provided the array is shown as a scrollable area:
a. Initially, the area would look like the list on the left.

b. After the execution of the following line of code:
SORT ARRAY (atNames;>)

the area would look like the list in the middle.

c. After the execution of the following line of code:
SORT ARRAY(atNames;<)

the area would look like the list on the right.

Richard
Sarah
Sam
Jane
John

B

I

Sarah _:J

Richard
John
Jane

Adding or deleting elements

You can add, insert, or delete elements using the commands INSERT ELEMENT and DELETE

ELEMENT.

4th Dimension Language Reference

167

Handling clicks in the array: testing the selected element

Using the previous example, and provided the array is shown as a scrollable area, you can
handle clicks in this area as follows:

" atNames scrollable area object method
Case of
: (Form event=0n Load)
" Initialize the array (as shown further above)
ARRAY TEXT (atNames;5)

: (Form event=0On Unload)
" We no longer need the array
CLEAR VARIABLE(atNames)

: (Form event=0n Clicked)
If (atNames#0)
vtinfo:="You clicked on: "+atNames{atNames}
End if
: (Form event=0n Double Clicked)
If (atNames#0)
ALERT ("You double clicked on: "+atNames{atNames}
End if
End case

Note: The events must be activated in the Object Properties window.

While the syntax atNames{$vIElem} allows you to work with a particular element of the
array, the syntax atNames returns the element number of the selected element within
the array. Thus, the syntax atNames{atNames} means “the value of the selected element
in the array atNames.” If no element is selected, atNames is equal to O (zero), so the test If
(atNames#0) detects whether or not an element is actually selected.

Setting the selected element

In a similar fashion, you can programmatically change the selected element by assigning
a value to the array.

Examples

* Selects the first element (if the array is not empty)
atNames:=1

" Selects the last element (if the array is not empty)
atNames:=Size of array(atNames)

168 4th Dimension Language Reference

" Deselects the selected element (if any) then no element is selected
atNames:=0

If ((O<atNames)&(atNames<Size of array(atNames))
" If possible, selects the next element to the selected element
atNames:=atNames+1
End if

If (1<atNames)
* If possible, selects the previous element to the selected element
atNames:=atNames-1
End if

Looking for a value in the array

The Find in array command searches for a particular value within an array. Using the
previous example, the following code will select the element whose value is “Richard,” if
that is what is entered in the request dialog box:

$vsName:=Request("Enter the first name:")
If (OK=1)
$vIElem:=Find in array (atNames;$vsName)
If ($vIElem>0)
atNames:=$vIElem
Else
ALERT ("This is no "+$vsName+" in that list of first names.")
End if
End if

Pop-up menus, drop-down lists, scrollable areas, and tab controls can be usually handled in
the same manner. Obviously, no additional code is required to redraw objects on the
screen each time you change the value of an element, or add or delete elements.

Note: To create and use tab controls with icons and enabled and disabled tabs, you must

use a hierarchical list as the supporting object for the tab control. For more information,
see the example for the New list command.

4th Dimension Language Reference 169

Handling combo boxes

While you can handle pop-up menus, drop-down lists, scrollable areas, and tab controls
with the algorithms described in the previous section, you must handle combo boxes
differently.

A combo box is actually a text enterable area to which is attached a list of values (the
elements from the array). The user can pick a value from this list, and then edit the text.
So, in a combo box, the notion of selected element does not apply.

With combo boxes, there is never a selected element. Each time the user selects one of
the values attached to the area, that value is put into the element zero of the array. Then,
if the user edits the text, the value modified by the user is also put into that element zero.

Example

" asColors Combo Box object method
Case of
. (Form event=0n Load)
ARRAY STRING(31;asColors;3)
asColors{1}:="Blue"
asColors{2}:="White"
asColors{3}:="Red"
: (Form event=0n Clicked)
If (asColors{0}#"")
* The object automatically changes its value
* Using the On Clicked event with a Combo Box
" is required only when additional actions must be taken
End if
: (Form event=0On Data Change)
* Find in array ignores element 0, so returns -1 or >0
If (Find in array(asColors;asColors{0})<0)
* Entered value is not one the values attached to the object
* Add the value to the list for next time
$vIElem:=Size of array(asColors)+1
INSERT ELEMENT (asColors;$vIElem)
asColors{$viElem}:=asColors{0}
Else
* Entered value is among the values attached to the object
End if
End case

See Also
Arrays, Grouped Scrollable Areas.

170 4th Dimension Language Reference

Grouped Scrollable Areas Arrays

version 6.0

You can group scrollable areas for display in a form. When several scrollable areas are
grouped, they act as one scrollable area. Each scrollable area can have its own font and
style; however, we recommend that you use the same font height (which depends on
font and font size) for each column. When displayed during data entry, only the

the

frontmost scrollable area displays a scroll bar. Following are three scrollable areas grouped

together in the Design environment:

[E Form: [Departments]E xample Grouped SA !E]m
B g H H B : :U -

E asTitle E asDepartment

asName

- 408
it B
L F

: ; i ; f i il g
............ :250

hA A0 .. 180 . 150 . 200 . . 250 .. 300 . . 350 . . 400/ 111 ¥
ERIN|

Here are some tips on creating grouped scrollable areas:

» Make sure that all the arrays have been given the same size (number of elements).

« Use the same font size for each area.

* Make each area the same height.

< Align the tops of all the areas.

- Make sure the areas do not overlap.

« Make sure that the area on the right is in front, because the scroll bar appears on the
frontmost area.

e Group the areas (using the Group menu command) to make them work as one
scrollable area.

The following project method fills the three arrays and displays them on the screen:

ALL RECORDS(Employees)

SELECTION TO ARRAY([Employees]Last
Name;asName;[Employees]Title;asTitle;[Departments]Name;asDepartment)
DIALOG([Departments];"Example Grouped SA")

4th Dimension Language Reference

171

This method uses the data in the fields of the [People] table and the [Departments] table.
These tables are shown here:

(K| Structure for PRSNNL.4DB !El!:i
~
Code A
Last Name Iy Name A
First Name A Manager A
Start Day D Budget R
Salary R Total Salaries R
Title A
58 Number A
Department Code A
M|
K1 Gh

Note: The [Departments] table can be used, provided that there is an automatic relation
from [People] to [Departments].

The resulting display:

\=d| Entry for Departments |_ (O] <]
Johnson Engineer Design -
Bentley Engineer Transportation
Davis Salesperson Sales
Ransome Supervisor Manufacturing
Hanson Manager Administration
Venable Engineer Art
Borrell Salesperson Sales
Pfaff Secretany Administration
Heizer Clerk Sales
Forbes Secretany Art
Hammons Salesperson Sales
Smith Engineer Administration
Bell Director Manufacturing L,
cancel | oKk |

Note that only a single scroll bar is displayed; it is always on the frontmost scrollable area.
This scroll bar controls the scrolling of all three arrays as if they were one. When the user
clicks a line, all three areas are highlighted simultaneously. The variable associated with
each scrollable area is set to the number of the line that the user clicks; only the object
method for the area that is clicked executes. For example, if the user clicks the name
“Bentley,” asName, asTitle, and asDepartment are all set to two, but only the object
method for asName executes. If you set the selected element of one of the arrays in the
grouped scrollable areas, the other arrays are set to the same selected element for the next
event, and the respective line in the scrollable area is highlighted.

172 4th Dimension Language Reference

The arrays can be sorted with the command SORT ARRAY. For example:

SORT ARRAY (asTitle;asName;asDepartment;>)

The following is the result of the sort:

@Enhy for Departments

I[=1 B3

Heizer
Terry
Reed
Garbando
Johnson
Krause
Nash
Grambo
Doyen
Bell
Conqueror
MecCoy
Johnson

Clerk
Clerk
Clerk
Clerk
Cledk
Designer
Designer
Designer
Designer
Director
Engineer
Engineer
Engineer

Sales
Administration
Production
Transportation
Accounting
Design

Design

Design

Design
Manufacturing
Transportation
Design
Manufacturing

Cancel

| oKk |

Note that the arrays were sorted based on the first argument to the SORT ARRAY

command; the other two arrays were specified in order to keep the rows synchronized.
The command SORT ARRAY always sorts the arrays (if several are specified) on the values

of the first array and keeps the additional arrays synchronized.

Note: SORT ARRAY does not perform a multi-level sort on arrays. To show a table similar to
the one above and also perform multi-level sorts (i.e., by department, then by title, then

by name), use a subform in which you display the table, and then use ORDER BY.

See Also

Arrays, Arrays and Form Objects.

4th Dimension Language Reference

173

Arrays and the 4D Language Arrays

version 6.0

Arrays are 4D variables. Like any variable, an array has a scope and follows the rules of the
4D language, though with some unique differences.

Local, process and interprocess arrays

You can create and work with local, process, and interprocess arrays. Examples:

ARRAY INTEGER ($aiCodes;100) "~ This creates a local array of 100 2-byte Integer values

ARRAY INTEGER (aiCodes;100) " This creates a process array of 100 2-byte Integer
values

ARRAY INTEGER (<>aiCodes;100) ~ This creates an interprocess array of 100 2-byte
Integer values

The scope of these arrays is identical to the scope of other local, process, and interprocess
variables:

Local arrays
A local array is declared when the name of the array starts with a dollar sign ($).

The scope of a local array is the method in which it is created. The array is cleared when
the method ends. Local arrays with the same name in two different methods can have
different types, because they are actually two different variables with different scopes.

When you create a local array within a form method, within an object method, within or
a project method called as subroutine by the two previous type of method, the array is
created and cleared each time the form or object method is invoked. In other words, the
array is created and cleared for each form event. Consequently, you cannot use local
arrays in forms, neither for display nor printing.

As with local variables, it is a good idea to use local arrays whenever possible. In doing so,
you tend to minimize the amount of memory necessary for running your application.

Process arrays
A process array is declared when the name of the array starts with a letter.

The scope of a process array is the process in which it is created. The array is cleared when
the process ends or is aborted. A process array automatically has one instance created per
process. Therefore, the array is of the same type throughout the processes. However, its
contents are particular to each process.

174 4th Dimension Language Reference

Interprocess arrays

An interprocess array is declared when the name of the array starts with <> (on Windows
and Macintosh) or with the diamond sign, Option-Shift-V on a US keyboard (on
Macintosh only).

The scope of an interprocess array consists of all processes during a working session. They
should be used only to share data and transfer information between processes.

Tip: When you know in advance that an interprocess array will be accessed by several
processes that could possible conflict, protect the access to that array with a semaphore.
For more information, see the example for the Semaphore command.

Note: You can use process and interprocess arrays in forms to create form objects such as
scrollable areas, drop-down lists, and so on.

Passing an Array as parameter

You can pass an array as parameter to a 4D command or to the routine of a 4D Plug-in.
On the other hand, you cannot pass an array as parameter to a user method. The
alternative is to pass a pointer to the array as parameter to the method. For details, see the
section Arrays and Pointers.

Assigning and array to another array

Unlike text or string variables, you cannot assign one array to another. To copy (assign)
an array to another one, use COPY ARRAY.

See Also
Arrays, Arrays and Pointers.

4th Dimension Language Reference 175

Arrays and Pointers Arrays

version 6.0

You can pass an array as parameter to a 4D command or to the routine of a 4D Plug-in.
On the other hand, you cannot pass an array as parameter to a user method. The
alternative is to pass a pointer to the array as parameter to the method.

Note: You can pass process and interprocess arrays as parameters, but not local arrays.
Here are some examples.

e Given this example:

If ((O<atNames)&(atNames<Size of array(atNames))
* If possible, selects the next element to the selected element
atNames:=atNames+1
End if

If you need to do the same thing for 50 different arrays in various forms, you can avoid
writing the same thing 50 times, by using the following project method:

* SELECT NEXT ELEMENT project method

* SELECT NEXT ELEMENT (Pointer)

* SELECT NEXT ELEMENT (-> Array)
C_POINTER ($1)
If ((0<$1->)&($1-><Size of array($1->))

$1->:=$1->+1 " If possible, selects the next element to the selected element
End if

Then, you can write:

SELECT NEXT ELEMENT (->atNames)
SELECT NEXT ELEMENT (->asZipCodes)

SELECT NEXT ELEMENT (->alRecordIDs)
*...and so on

176 4th Dimension Language Reference

« The following project method returns the sum of all the elements of a numeric array
(Integer, Long Integer, or real):

* Array sum
* Array sum (Pointer)
“ Array sum (-> Array)

C_REAL ($0)
$0:=0
For ($viIElem;1;Size of array($1->))

$0:=$0+$1->{$vIElem}
End for

Then, you can write:

$vISum:=Array sum (->arSalaries)
$vISum:=Array sum (->aiDefectCounts)
$vISum:=Array sum (->alPopulations)

« The following project method capitalizes of all the elements of a string or text array:

* CAPITALIZE ARRAY
* CAPITALIZE ARRAY (Pointer)
* CAPITALIZE ARRAY (-> Array)

For ($viIElem;1;Size of array($1->))
If ($1->{$vIElem}#")
$1->{$vIElem}:=Uppercase($1->{$vIElem}[[1]])+
Lowercase(Substring($1->{$viElem};2))
End if
End for
Then, you can write:
CAPITALIZE ARRAY (->atSubjects)
CAPITALIZE ARRAY (->asLastNames)

The combination of arrays, pointers, and looping structures, such as For... End for, allows
you to write many useful small project methods for handling arrays.

See Also
Arrays, Arrays and the 4D Language.

4th Dimension Language Reference 177

Using the element zero of an array Arrays

version 6.0

An array always has an element zero. While element zero is not shown when an array
supports a form object, there is no restriction in using it with the language.

One example of the use of element zero is the case of the combo box discussed in the
section Arrays and Form Objects.

Here are two other examples.

1. If you want to execute an action only when you click on an element other than the
previously selected element, you must keep track of each selected element. One way to do
this is to use a process variable in which you maintain the element number of the selected
element. Another way is to use the element zero of the array:

~ atNames scrollable area object method
Case of
: (Form event=0n Load)
" Initialize the array (as shown further above)
ARRAY TEXT (atNames;5)

" Initialize the element zero with the number

* of the current selected element in its string form

* Here you start with no selected element
atNames{0}:="0"

: (Form event=0n Unload)
" We no longer need the array
CLEAR VARIABLE(atNames)

: (Form event=0n Clicked)
If (atNames#0)
If (atNames#Num(atNames{0}))
vtinfo:="You clicked on: "+atNames{atNames}
+" and it was not selected before."
atNames{0}:=String(atNames)
End if
End if
: (Form event=0n Double Clicked)
If (atNames#0)
ALERT ("You double clicked on: "+atNames{atNames}
End if
End case

178 4th Dimension Language Reference

2. When sending or receiving a stream of characters to or from a document or a serial
port, 4D provides a way to filter ASCII codes between platforms and systems that use
different ASCII maps— the commands USE ASCII MAP, Mac to I1SO, ISO to Mac, Mac to Win
and Win to Mac.

In certain cases, you might want to fully control the way ASCII codes are translated. One
way to do this is to use an Integer array of 255 elements, where the Nth element is set to
the translated ASCII code for the character whose source ASCII code is N. For example, if
the ASCII code #187 must be translated as #156, you would write
<>aiCustomOutMap{187}:=156 and <>aiCustomInMap{156}:=187 in the method that
initializes the interprocess arrays used everywhere in the database. You can then send a
stream of characters with the following custom project method:

* X SEND PACKET (Text { ; Time })
For ($viChar;1;Length($1))
$1[[vIChar]]:=Char(<>aiCustomOutMap{Ascii($1[[viChar]])})
End for
If (Count parameters>=2)
SEND PACKET ($2;$1)
Else
SEND PACKET ($1)
End if

" X Receive packet (Text { ; Time }) -> Text
If (Count parameters>=2)
RECEIVE PACKET ($2;%$1)
Else
RECEIVE PACKET ($1)
End if
$0:=$1
For ($viChar;1;Length($1))
$0[[vIChar]]:=Char(<>aiCustomInMap{Ascii($0[[vIChar]])})
End for

In this advanced example, if a stream of characters containing NULL characters (ASCII
code zero) is sent or received, the zero element of the arrays <>aiCustomOutMap and
<>aiCustomInMap will play its role as any other element of the 255 element arrays.

See Also
Arrays.

4th Dimension Language Reference 179

Two-dimensional Arrays Arrays

version 6.0

Each of the array declaration commands can create or resize one-dimensional or two-
dimensional arrays. Example:

* Creates a text array composed of 100 rows of 50 columns
ARRAY TEXT (atTopics;100;50)

Two-dimensional arrays are essentially language objects; you can neither display nor print
them.

In the previous example:

- atTopics is a two-dimensional array

e atTopics{8}5} is the 5th element (5th column...) of the 8th row

« atTopics{20} is the 20th row and is itself a one-dimensional array

= Size of array(atTopics) returns 100, which is the number of rows

 Size of array(atTopics{17}) returns 50, which the number of columns for the 17th row

In the following example, a pointer to each field of each table in the database is stored in
a two-dimensional array:

* Create as many initially empty rows as tables
ARRAY POINTER (<>apFields;Count tables;0)
* For each table
For ($viTable;1;Size of array(<>apFields))
" Resize the row with as many columns as fields in the table
INSERT ELEMENT (<>apFields{$viTable};1;Count fields($vITable))
* Set the values of the elements
For ($viIField;1;Size of array(<>apFields{$viTable}))
<>apFields{$viTable}{$vIField}:=Field($vITable;$vIField)
End for
End for

180 4th Dimension Language Reference

Provided that this two-dimensional array has been initialized, you can obtain the pointers
to the fields for a particular table in the following way:

* Get the pointers to the fields for the table currently displayed at the screen:
COPY ARRAY (<>apFields{Table(Current form table)};$apTheFieldslamWorkingOn)
" Initialize Boolean and Date fields
For ($vIElem;1;Size of array($apTheFieldslamWorkingOn))
Case of
. (Type($apTheFieldslamWorkingOn{$viElem}->)=Is Date)
$apTheFieldslamWorkingOn{$vIElem}->:=Current date
. (Type($apTheFieldslamWorkingOn{$vIElem}->)=Is Boolean)
$apTheFieldslamWorkingOn{$vlElem}->:=True
End case
End for

Note: As this example suggests, rows of a two-dimensional arrays can be the same size or
different sizes.

See Also
Arrays.

4th Dimension Language Reference 181

Arrays and Memory Arrays

version 6.0

Unlike the data you store on disk using tables and records, an array is always held in
memory in its entirety.

For example, if all US zip codes were entered in the [Zip Codes] table, it would contain
about 100,000 records. In addition, that table would include several fields: the zip code
itself and the corresponding city, county, and state. If you select only the zip codes from
California, the 4D database engine creates the corresponding selection of records within
the [Zip Codes] table, and then loads the records only when they are needed (i.e., when
they are displayed or printed). In order words, you work with an ordered series of values
(of the same type for each field) that is partially loaded from the disk into the memory by
the database engine of 4D.

Doing the same thing with arrays would be prohibitive for the following reasons:

< In order to maintain the four information types (zip code, city, county, state), you
would have to maintain four large arrays in memory.

e Because an array is always held in memory in its entirety, you would have to keep all the
zip codes information in memory throughout the whole working session, even though
the data is not always in use.

e Again, because an array is always held in memory in its entirety, each time the database
is started and then quit, the four arrays would have to be loaded and then saved on the
disk, even though the data is not used or modified during the working session.

Conclusion: Arrays are intended to hold reasonable amounts of data for a short period of
time. On the other hand, because arrays are held in memory, they are easy to handle and
quick to manipulate.

However, in some circumstances, you may need to work with arrays holding hundreds or
thousands of elements. The following table lists the formulas used to calculate the
amount of memory used for each array type:

Array Type Formula for determining Memory Usage in Bytes

Boolean (31+number of elements)\8

Date (1+number of elements) * 6

String (1+number of elements) * Declared length (+1 of odd, +2 if even)
Integer (1+number of elements) * 2

Long Integer (1+number of elements) * 4

Picture (1+number of elements) * 4 + Sum of the size of each picture
Pointer (1+number of elements) * 16

Real (1+number of elements) * 8 (Windows, PPC) or * 10 (68K)

Text (1+number of elements) * 6 + Sum of the size of each text

Two-dimemsional

(1+number of elements) * 12 + Sum of the size of each array

182 4th Dimension Language Reference

Note: A few additional bytes are required to keep track of the selected element, the
number of elements, and the array itself.

When working with very large arrays, the best way to handle full memory situations is to
surround the creation of the arrays with an ON ERR CALL project method. Example:

* You are going to run a batch operation the whole night
* that requires the creation of large arrays. Instead of risking
* occurrences of errors in the middle of the night, put
* the creation of the arrays at the beginning of the operation
" and test the errors at this moment:
gError:=0 ~ Assume no error
ON ERR CALL ("ERROR HANDLING") " Install a method for catching errors
ARRAY STRING (63;asThisArray;50000) ~ Roughly 3125K
ARRAY REAL (arThisAnotherArray;50000) ~ 488K
ON ERR CALL (") " No longer need to catch errors
If (gError=0)
" The arrays could be created
* and let's pursue the operation
Else
ALERT ("This operation requires more memory!")
End if
" Whatever the case, we no longer need the arrays
CLEAR VARIABLE (asThisArray)
CLEAR VARIABLE (arThisAnotherArray)

The ERROR HANDLING project method is listed here:

" ERROR HANDLING project method
gError:=Error * Jusrt return the error code

See Also
Arrays, ON ERR CALL.

4th Dimension Language Reference 183

ARRAY INTEGER Arrays

version 3

ARRAY INTEGER (arrayName; size{; size2})
Parameter Type Description
arrayName Array — Name of the array
size Number — Number of elements in the array or

Number of rows if size2 is specified
size2 Number — Number of columns in a two-dimensional array
Description

The command ARRAY INTEGER creates and/or resizes an array of 2-byte Integer elements
in memory.

e The arrayName parameter is the name of the array.

* The size parameter is the number of elements in the array.

e The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY INTEGER to an existing array:

< If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to 0.
 If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 2-byte Integer elements:

= ARRAY INTEGER (aiValues;100)
2. This example creates a local array of 100 rows of 50 2-byte Integer elements:
= ARRAY INTEGER ($aiValues;100;50)

3. This example creates an interprocess array of 50 2-byte Integer elements, and sets each
element to its element number:

= ARRAY INTEGER (<>aiValues;50)
For ($vIElem;1;50)
<>aiValues{$vlElem}:=$vIElem
End for

184 4th Dimension Language Reference

ARRAY LONGINT Arrays

version 3

ARRAY LONGINT (arrayName; size{; size2})
Parameter Type Description
arrayName Array — Name of the array
size Number — Number of elements in the array or

Number of rows if size2 is specified
size2 Number — Number of columns in a two-dimensional array
Description

The command ARRAY LONGINT creates and/or resizes an array of 4-byte Long Integer
elements in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

e The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

When applying ARRAY LONGINT to an existing array:

< If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to 0.
« If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 4-byte Long Integer elements:

= ARRAY LONGINT (alValues;100)

2. This example creates a local array of 100 rows of 50 4-byte Long Integer elements:
= ARRAY LONGINT ($alValues;100;50)

3. This example creates an interprocess array of 50 4-byte Long Integer elements and sets
each element to its element number:

= ARRAY LONGINT (<>alValues;50)
For ($vIElem;1;50)
<>alValues{$vlElem}:=$vIElem
End for

4th Dimension Language Reference 185

ARRAY REAL Arrays

version 3

ARRAY REAL (arrayName; size{; size2})
Parameter Type Description
arrayName Array — Name of the array
size Number — Number of elements in the array or

Number of rows if size2 is specified
size2 Number — Number of columns in a two-dimensional array
Description

The command ARRAY REAL creates and/or resizes an array of Real elements in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

» The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY REAL to an existing array:

< If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to O.
 If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Real elements:

= ARRAY REAL (arValues;100)
2. This example creates a local array of 100 rows of 50 Real elements:

= ARRAY REAL ($arValues;100;50)

3. This example creates an interprocess array of 50 Real elements and sets each element to
its element number:

= ARRAY REAL (<>arValues;50)
For ($vlElem;1;50)
<>arValues{$vIElem}:=$vIElem
End for

186 4th Dimension Language Reference

ARRAY STRING Arrays

version 3

ARRAY STRING (strLen; arrayName; size{; size2})

Parameter Type Description
strLen Number — Length of string (1... 255)
arrayName Array — Name of the array
size Number — Number of elements in the array or
Number of rows if size2 is specified
size2 Number — Number of columns in a two-dimensional array
Description

The command ARRAY STRING creates and/or resizes an array of String elements in
memory.

e The strLen parameter specifies the maximum number of characters that can be
contained in each array element in a string array. The length can be from 1 to 255
characters.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

» The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY STRING to an existing array:

 If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to " (empty string).
« If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 31-character String elements:

= ARRAY STRING (31;asValues;100)
2. This example creates a local array of 100 rows of 50 63-character String elements:

= ARRAY STRING (63;$asValues;100;50)

4th Dimension Language Reference 187

3. This example creates an interprocess array of 50 255-character String elements and sets
each element to the value “Element #” followed by its element number:

= ARRAY STRING (255;<>asValues;50)
For ($vIElem;1;50)
<>asValues{$vIElem}:="Element #"+String($vIElem)
End for

188 4th Dimension Language Reference

ARRAY TEXT Arrays

version 3
ARRAY TEXT (arrayName; size{; size2})
Parameter Type Description
arrayName Array — Name of the array
size Number
size2 Number — Number of columns in a two-dimensional array
Description

The command ARRAY TEXT creates and/or resizes an array of Text elements in memory.

* The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

» The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY TEXT to an existing array:

< If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to " (empty string).
 If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Text elements:

= ARRAY TEXT (atValues;100)
2. This example creates a local array of 100 rows of 50 Text elements:

= ARRAY TEXT ($atValues;100;50)

3. This example creates an interprocess array of 50 Text elements and sets each element to
the value “Element #” followed by its element number:

= ARRAY TEXT (<>atValues;50)
For ($vlElem;1;50)
<>atValues{$vlElem}:="Element #"+String($vIElem)
End for

4th Dimension Language Reference 189

ARRAY DATE Arrays

version 3

ARRAY DATE (arrayName; size{; size2})
Parameter Type Description
arrayName Array — Name of the array
size Number — Number of elements in the array or

Number of rows if size2 is specified
size2 Number — Number of columns in a two-dimensional array
Description

The command ARRAY DATE creates and/or resizes an array of Date elements in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

» The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY DATE to an existing array:

< If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to the null date (100/00/00!).
 If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Date elements:

= ARRAY DATE (adValues;100)
2. This example creates a local array of 100 rows of 50 Date elements:

= ARRAY DATE ($adValues;100;50)

3. This example creates an interprocess array of 50 Date elements, and sets each element
to the current date plus a number of days equal to the element number:

= ARRAY DATE (<>adValues;50)
For ($vlElem;1;50)
<>adValues{$vIElem}:=Current date+$vIElem
End for

190 4th Dimension Language Reference

ARRAY BOOLEAN Arrays

version 3

ARRAY BOOLEAN (arrayName; size{; size2})
Parameter Type Description
arrayName Array — Name of the array
size Number — Number of elements in the array or

Number of rows if size2 is specified
size2 Number — Number of columns in a two-dimensional array
Description

The command ARRAY BOOLEAN creates and/or resizes an array of Boolean elements in
memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

e The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY BOOLEAN to an existing array:

< If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to False.
« If you reduce the array size, the last elements deleted from the array are lost.

Tip: In some contexts, an alternative to using Boolean arrays is using an Integer array
where each element “means true” if different from zero and “means false” if equal to
zero.

Examples
1. This example creates a process array of 100 Boolean elements:

= ARRAY BOOLEAN (abValues;100)
2. This example creates a local array of 100 rows of 50 Boolean elements:

= ARRAY BOOLEAN ($abValues;100;50)

4th Dimension Language Reference 191

3. This example creates an interprocess array of 50 Boolean elements and sets each even
element to True:

= ARRAY BOOLEAN (<>abValues;100)
For ($vIElem;1;50)
<>abValues{$vIElem}:=(($vIElem%2)=0)
End for

192 4th Dimension Language Reference

ARRAY PICTURE Arrays

version 3

ARRAY PICTURE (arrayName; size{; size2})
Parameter Type Description
arrayName Array — Name of the array
size Number — Number of elements in the array, or

Number of rows if size2 is specified
size2 Number — Number of columns in a two-dimensional array
Description

The command ARRAY PICTURE creates and/or resizes an array of Picture elements in
memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

e The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the first dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY PICTURE to an existing array:

< If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to empty pictures. This means that Picture size applied to one of
these elements will return 0.

« If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Picture elements:

= ARRAY PICTURE (agValues;100)
2. This example creates a local array of 100 rows of 50 Picture elements:

= ARRAY PICTURE ($agValues;100;50)

4th Dimension Language Reference 193

3. This example creates an interprocess array of Picture elements and loads each picture
into one of the elements of the array. The array’s size is equal to the number of 'PICT'
resources available to the database. The array’s resource name starts with "User Intf/":

RESOURCE LIST("PICT";$aiResIDs;$asResNames)

= ARRAY PICTURE (<>agValues;Size of array($aiResIDs))
$vIPictElem:=0
For ($viElem;1;Size of array(<>agValues))
If ($asResNames="User Intf/@")
$vIPictElem:=vIPictElem+1
GET PICTURE RESOURCE("PICT";$aiResIDs{$vIElem};$vgPicture)
<>agValues{$vlIPictElem}:=$vgPicture
End if
End for
ARRAY PICTURE (<>agValues;$vIPictElem)

194 4th Dimension Language Reference

ARRAY POINTER Arrays

version 3

ARRAY POINTER (arrayName; size{; size2})
Parameter Type Description
arrayName Array — Name of the array
size Number — Number of elements in the array, or

Number of rows if size2 is specified
size2 Number — Number of columns in a two-dimensional array
Description

The command ARRAY POINTER creates or resizes an array of Pointer elements in memory.

e The arrayName parameter is the name of the array.

e The size parameter is the number of elements in the array.

» The size2 parameter is optional; if size2 is specified, the command creates a two-
dimensional array. In this case, size specifies the number of rows and size2 specifies the
number of columns in each array. Each row in a two-dimensional array can be treated as
both an element and an array. This means that while working with the firt dimension of
the array, you can use other array commands to insert and delete entire arrays in a two-
dimensional array.

While applying ARRAY POINTER to an existing array:

< If you enlarge the array size, the existing elements are left unchanged, and the new
elements are initialized to null pointer. This means that Nil applied to one of these
elements will return True.

« If you reduce the array size, the last elements deleted from the array are lost.

Examples
1. This example creates a process array of 100 Pointer elements:

= ARRAY POINTER (apValues;100)
2. This example creates a local array of 100 rows of 50 Pointer elements:

= ARRAY POINTER ($apValues;100;50)

4th Dimension Language Reference 195

3. This example creates an interprocess array of Pointer elements and sets each element
pointing to the table whose number is the same as the element. The size of the array is
equal to the number of tables in the database:

= ARRAY POINTER (<>apValues;Count tables)
For ($viElem;1;Size of array(<>apValues))
<>apValues{$vlElem}:=Table($vIElem)
End for

196 4th Dimension Language Reference

Size of array Arrays

version 3
Size of array (array) — Number
Parameter Type Description
array Array — Array whose size is returned
Function result Number -— Returns the number of elements in array
Description

The command Size of array returns the number of elements in array.

Example
1. The following example returns the size of the array anArray:

= vISize:=Size of array(anArray) ° viSize gets the size of anArray
2. The following example returns the number of rows in a two-dimensional array:

= vIRows:=Size of array(a2DArray) ~ vIRows gets the size of a2DArray

3. The following example returns the number of columns for a row in a two-dimensional

array:

= viIColumns:=Size of array(a2DArray{10}) ° viColumns gets the size of a2DArray{10}

See Also
DELETE ELEMENT, INSERT ELEMENT.

4th Dimension Language Reference

197

SORT ARRAY Arrays

version 3

SORT ARRAY (array{; array2; ...; arrayN}{; > or <})

Parameter Type Description

array Array — Arrays to sort

>or< — > to sort in Ascending order, or
< to sort in Descending order, or
Ascending order if omitted

Description

The command SORT ARRAY sorts one or more arrays into ascending or descending order.

Note: You cannot sort Pointer or Picture arrays. You can sort the elements of a two-
dimensional array (i.e., a2DArray{$vIThisElem}) but you cannot sort the two-dimensional
array itself (i.e., a2DArray).

The last parameter specifies whether to sort array in ascending or descending order. The
“greater than” symbol (>) indicates an ascending sort; the “less than” symbol (<)
indicates a descending sort. If you do not specify the sorting order, then the sort is
ascending.

If more than one array is specified, the arrays are sorted following the sort order of the
first array; no multi-level sorting is performed here. This feature is especially useful with
grouped scrollable areas in a form; SORT ARRAY maintains the synchronicity of the arrays
that sustain the scrollable areas.

Examples
1. The following example creates two arrays and then sorts them by company:

ALL RECORDS ([People])
SELECTION TO ARRAY ([People]Name;asNames;[People]Company;asCompanies)

= SORT ARRAY (asCompanies; asNames;>)

However, because SORT ARRAY does not perform multi-level sorts, you will end up with
people‘s names in random order within each company. To sort people by name within
each company, you would write:

ALL RECORDS ([People])
ORDER BY ([People];[People]Company;>;[People]Name;>)
SELECTION TO ARRAY ([People]Name;asNames;[People]Company;asCompanies)

198 4th Dimension Language Reference

2. You display the names from a [People] table in a floating window. When you click on
buttons present in the window, you can sort this list of names from A to Z or from Z to A
. As several people may have the same name, you also can use a [People]ID number field,
which is indexed unique. When you click in the list of names, you will retrieve the record
for the name you clicked. By maintaing a synchronized and hidden array of ID numbers,
you are sure to access the record corresponding to the name you clicked:

=

* asNames array object method
Case of
. (Form event=0n Load)
ALL RECORDS([People])
SELECTION TO ARRAY([People]Name;asNames;[People]ID number;allDs)
SORT ARRAY (asNames;allDs;>)
. (Form event=0On Unload)
CLEAR VARIABLE(asNames)
CLEAR VARIABLE(allDs)
: (Form event=0n Clicked)
If (asNames#0)
* Use the array allDs to get the right record
QUERY/([People];[People]ID Number=allDs{asNames})
" Do something with the record
End if
End case

" bA2Z button object method
* Sort the arrays in ascending order and keep them synchronized

SORT ARRAY (asNames;allDs;>)

" bZ2A button object method
* Sort the arrays in descending order and keep them synchronized

SORT ARRAY (asNames;allDs;<)

See Also
ORDER BY, SELECTION TO ARRAY.

4th Dimension Language Reference 199

Find in array Arrays

version 3
Find in array (array; value{; start}) — Number
Parameter Type Description
array Array — Array to search
value Expression — Value of same type to search in the array
start Number — Element at which to start searching
Function result Number -— Number of the first element in array

that matches value

Description

The command Find in array returns the number of the first element in array that matches
value.

Find in array can be used with Text, String, Numeric, Date, Pointer, and Boolean arrays.
The array and value parameters must be of the same type.

If no match is found, Find in array returns -1.

If start is specified, the command starts searching at the element number specified by
start. If start is not specified, the command starts searching at element 1.

Examples

1. The following project method deletes all empty elements from the string or text array
whose pointer is passed as parameter:

* CLEAN UP ARRAY project method
* CLEAN UP ARRAY (Pointer)
" CLEAN UP ARRAY (-> Text or String array)

C_POINTER ($1)
Repeat
= $vlElem:=Find in array ($1->;"")
If ($vIElem>0)
DELETE ELEMENT ($1->;$vIElem)
End if
Until ($vIElem<0)

200 4th Dimension Language Reference

After this project method is implemented in a database, you can write:

ARRAY TEXT (atSomeValues;...)
) I.j.o plenty of things with the array

* Eliminate empty string elements
CLEAN UP ARRAY (->atSomeValues)

2. The following project method selects the first element of an array whose pointer is
passed as the first parameter that matches the value of the variable or field whose pointer
is passed as parameter:

* SELECT ELEMENT project method
© SELECT ELEMENT (Pointer ; Pointer)
" SELECT ELEMENT (-> Text or String array ; -> Text or String variable or field)

= $1->:=Find in array ($1->;$2->)
If ($1->=-1)
$1->:=0 " If no element was found, set the array to no selected element
End if

After this project method is implemented in a database, you can write:

* asGender pop-up menu object method
Case of
: (Form Event=0On Load)
SELECT ELEMENT (->asGender;->[People]Gender)

End case

See Also
DELETE ELEMENT, INSERT ELEMENT, Size of array.

4th Dimension Language Reference 201

INSERT ELEMENT Arrays

version 3
INSERT ELEMENT (array; where{; howMany})
Parameter Type Description
array Array — Name of the array
where Number — Where to insert the elements
howMany Number — Number of elements to be inserted, or

1 element if omitted

Description

The command INSERT ELEMENT inserts one or more elements into the array array. The
new elements are inserted before the element specified by where, and are initialized to the
empty value for the array type. All elements beyond where are consequently moved
within the array by an offset of one or the value you pass in howMany.

If where is greater than the size of the array, the elements are added to the end of the
array.

The howMany parameter is the number of elements to insert. If howMany is not specified,
then one element is inserted. The size of the array grows by howMany.

Example
1. The following example inserts five new elements, starting at element 10:

= INSERT ELEMENT (anArray;10;5)

2. The following example appends an element to an array:

$vIElem:=Size of array(anArray)+1

= INSERT ELEMENT (anArray;$vIElem)
anArray{$viElem}:=...

See Also
DELETE ELEMENT, Size of array.

202 4th Dimension Language Reference

DELETE ELEMENT

Arrays

version 3

DELETE ELEMENT (array; where{; howMany})

Parameter Type

array Array —
where Number —
howMany Number —
Description

Description

Array from which to delete elements
Element at which to begin deletion
Number of elements to delete, or

1 element if omitted

The command DELETE ELEMENT deletes one or more elements from array. Elements are
deleted starting at the element specified by where.

The howMany parameter is the number of elements to delete. If howMany is not specified,
then one element is deleted. The size of the array shrinks by howMany.

Examples

1. The following example deletes three elements, starting at element 5:

= DELETE ELEMENT (anArray; 5; 3)

2. The following example deletes the last element from an array, if it exists:

$vIElem:=Size of array(anArray)
If ($vIElem>0)

- DELETE ELEMENT (anArray;$vIElem)
End if

See Also
INSERT ELEMENT, Size of array.

4th Dimension Language Reference

203

COPY ARRAY Arrays

version 3

COPY ARRAY (source; destination)

Parameter Type Description

source Array — Array from which to copy
destination Array -— Array to which to copy
Description

The command COPY ARRAY creates or overwrites the destination array destination with
the exact contents, size, and type of the source array source.

The source and destination arrays can be local, process, or interprocess arrays. When
copying arrays, the scope of the array does not matter.

Examples

The following example fills the array named C. It then creates a new array, named D, of
the same size as C and with the same contents:

ALL RECORDS ([People]) " Select all records in People
SELECTION TO ARRAY ([People]Company; C) ~ Move company field data into array C

= COPY ARRAY (C; D) " Copy the array C to the array D

204 4th Dimension Language Reference

LIST TO ARRAY Arrays

version 3
Compatibility Note
Due to the new implementation of Choice Lists, compatibility for this command could
not be fully maintained. Also, starting with version 6, we recommend that you start using
the command Load list to work with the hierarchical lists defined in the Design
environment List Editor.

LIST TO ARRAY (list; array{; itemRefs})

Parameter Type Description

list String — List from which to copy the first level items
array Array -— Array to which to copy the list items
itemRefs Array -— List item reference numbers

Description

The command LIST TO ARRAY creates or overrides the array array with the first level items
of the list list.

If you have not previously defined the array as a string or text array, LIST TO ARRAY
creates a text array by default.

The optional itemRefs parameter (a numeric array) returns the list item reference numbers.

Compatibility Note: In the previous version of 4D, this array was filled with the names of
any linked lists. If an element of the list had a linked list, the name of the linked list was
put into the array element with the same number as the list element. If there was no
linked list, then the element was the empty string. The second array was set to the same
size as array. You could use the names in this array to access the linked lists.

You can continue to use LIST TO ARRAY to build an array based on the first level items of a
hierarchical list. However, this command does not provide you with the child items, if
any. To work with hierarchical lists, use the new Hierarchical Lists commands introduced
in version 6.

Example

The following example copies the items of a list called Regions into an array called
atRegions:

= LIST TO ARRAY ("Regions"; atRegions)

See Also
ARRAY TO LIST, Load list, SAVE LIST.

4th Dimension Language Reference 205

ARRAY TO LIST Arrays

version 3

Compatibility Note

Due to the new implementation of Choice Lists, compatibility for this command could
not be fully maintained. Also, starting with version 6, we recommend that you use the
command SAVE LIST to work with the hierarchical lists defined in the Design
environment List Editor.

ARRAY TO LIST (array; list{; itemRefs})

Parameter Type Description

array Array — Array from which to copy array elements
list String — List into which to copy array elements
itemRefs Array — Numeric array of item reference numbers
Description

The command ARRAY TO LIST creates or replaces the list list (as defined in the Design
environment List Editor) using the elements of the array array.

This command allows you to define only the first level items of the list.

The optional itemRefs parameter, if specified, must be a numeric array synchronized with
the array array. Each element, then, indicates the list item reference number for the
corresponding element in array. If you omit this parameter, 4D automatically sets the list
item reference numbers to 1, 2... N.

Compatibility Note: In the previous version of 4D, this parameter was used to link other
lists to each element in array. If an element of the links array was the name of an existing
list, then that list was attached to the corresponding item.

You can continue to use ARRAY TO LIST to build a list based on the elements of an array.
However, this command does not provide a means of working with the child items. To
work with hierarchical lists, use the new Hierarchical Lists commands introduced in
version 6.

206 4th Dimension Language Reference

Example
The following example copies the array atRegions to the list called “Regions:”

= ARRAY TO LIST (atRegions;"Regions")

See Also
LIST TO ARRAY, Load list, ON ERR CALL, SAVE LIST.

Error Handling

An error -9957 is generated when ARRAY TO LIST is applied to a list that is currently being
edited in the Design environment List Editor. You can catch this error using an ON ERR
CALL project method.

4th Dimension Language Reference 207

SELECTION TO ARRAY Arrays

version 3

SELECTION TO ARRAY (field | table; array{; field2 | table2; array2; ...; fieldN | tableN; arrayN})

Parameter Type Description
field | table Field or Table — Field to use for retrieving data or

Table to use for retrieving record numbers
array Array -— Array to receive field data or record numbers
Description

The command SELECTION TO ARRAY creates one or more arrays and copies data in the
fields or record numbers from the current selection into the arrays.

The command SELECTION TO ARRAY applies to the selection for the table specified in the
first parameter. SELECTION TO ARRAY, can perform the following:

» Load values from one or several fields.

e Load Record numbers using the syntax ...;[table];Array;...

» Load values from related fields, provided that there is a Many to One automatic relation
between the tables or provided that you have previously called AUTOMATIC RELATIONS to
make manual Many to One relations automatic. In both cases, values are loaded from
tables through several levels of Many to One relations.

Each array is typed according to the field type. There are two exceptions:

- If a Text field is copied into a String array, the array will remain a String array.
- A Time field is copied into a Long Integer array.

Note: You cannot specify Subtable fields or subfields.
If you load record numbers, they are copied into a Long Integer array.

4D Server: The SELECTION TO ARRAY command is optimized for 4D Server. Each array is
created on the server and then sent, in its entirety, to the client machine.

208 4th Dimension Language Reference

WARNING: The SELECTION TO ARRAY command can create large arrays, depending on the
range you specify in start and end, and on the type and size of the data you are loading.
Arrays reside in memory, so it is a good idea to test the result after the command is
completed. To do so, test the size of each resulting array or cover the call to the
command, using an ON ERR CALL project method.

Note: After a call to SELECTION TO ARRAY, the current selection and current record
remain the same, but the current record is no longer loaded. If you need to use the values
of the fields in the current record, use the LOAD RECORD command after the SELECTION
TO ARRAY command.

Examples

1. In the following example, the [People] table has an automatic relation to the
[Company] table. The two arrays asLastName and asCompanyAddr are sized according to
the number of records selected in the [People] table and will contain information from
both tables:

= SELECTION TO ARRAY ([People]Last
Name;asLastName;[Company]Address;asCompanyAddr)

2. The following example returns the [Clients] record numbers in the array
alRecordNumbers and the [Clients]Names field values in the array asNames:

= SELECTION TO ARRAY([Clients];alRecordNumbers;[Clients]Names; asNames)

See Also
ARRAY TO SELECTION, AUTOMATIC RELATIONS, ON ERR CALL, SUBSELECTION TO ARRAY.

4th Dimension Language Reference 209

SELECTION RANGE TO ARRAY Arrays

version 3.5.3

SELECTION RANGE TO ARRAY (start; end; field | table; array{; field2 | table2; array2; ...;
fieldN | tableN; arrayN})

Parameter Type Description
start Number — Selected record number where data retrieval
starts
end Number — Selected record number where data retrieval
ends
field | table Field or Table — Field to use for retrieving data or

Table to use for retrieving record numbers
array Array -~ Array to receive field data or record numbers
Description

SELECTION RANGE TO ARRAY creates one or more arrays and copies data from the fields or
record numbers from the current selection into the arrays.

Unlike SELECTION TO ARRAY, which applies to the current selection in its entirety,
SELECTION RANGE TO ARRAY only applies to the range of selected records specified by the
parameters start and end.

The command expects you to pass in start and end the selected record numbers
complying with the formula 1 <= start <= end <= Records in selection (]...]).

If you pass 1 <= start = end < Records in selection (]...]), you will load fields or get the
record number from the record whose selected record is start = end.

If you pass incorrect selected record numbers, the command does the following:

< If end > Records in selection ([...]), it returns values from the selected record specified by
start to the last selected record.
= If start > end, it returns values from the record whose selected record is start only.

210 4th Dimension Language Reference

« If both parameters are inconsistent with the size of the selection, it returns empty
arrays.

Like SELECTION TO ARRAY, the SELECTION RANGE TO ARRAY command applies to the
selection for the table specified in the first parameter.

Also like SELECTION TO ARRAY, SELECTION RANGE TO ARRAY can perform the following:

e Load values from one or several fields.

« Load Record numbers using the syntax ...;[table];Array;...

e Load values from related fields, if there is a Many to One automatic relation between the
tables or if you have previously called AUTOMATIC RELATIONS to change manual Many to
One relations to automatic. In both cases, values can be loaded from tables through
several levels of Many to One relations.

Each array is typed according to the field type. There are two exceptions:

< If a Text field is copied into a String array. In this case, the array will remain a String
array.
- A Time field is copied into a Long Integer array.

Note: You cannot specify Subtable fields or subfields.
If you load record numbers, they are copied into a Long Integer array.

4D Server: SELECTION RANGE TO ARRAY is optimized for 4D Server. Each array is created
on the server and then sent, in its entirety, to the client machine.

WARNING: SELECTION RANGE TO ARRAY can create large arrays, depending on the range
you specify in start and end, and on the type and size of the data you are loading. Arrays
reside in memory, so it is a good idea to test the result after the command is completed.
To do so, test the size of each resulting array or cover the call to the command, using an
ON ERR CALL project method.

If the command is successful, the size of each resulting array is equal to (end-start)+1,

except if the end parameter exceeded the number of records in the selection. In such a
case, each resulting array contains (Records in selection([...])-start)+1 elements.

4th Dimension Language Reference 211

Examples

1. The following code addresses the first 50 records from the current selection for the
[Invoices] table. It loads the values from the [Invoices]invoice ID field and the
[Customers]Customer ID related field.

= SELECTION RANGE TO ARRAY(1;50;[Invoices]Invoice
ID;allnvolD;[Customers]Customer ID;alCustID)

2. The following code addresses the last 50 records from the current selection for the
[Invoices] table. It loads the record numbers of the [Invoices] records as well as those of the
[Customers] related records:

ISelSize := Records in selection ([Invoices])

= SELECTION RANGE TO ARRAY (ISelSize-
49;ISelSize;[Invoices];alinvRecN;[Customers];alCustRecN)

3. The following code process, in sequential “chunks”of 1000 records, a large selection
that could not be downloaded in its entirety into arrays:

IMaxPage := 1000

ISelSize := Records in selection ([Phone Directory])

For ($IPage ; 1; 1+((ISelSize-1)\IMaxPage))

" Load the values and/or record numbers
= SELECTION RANGE TO ARRAY (1+(IMaxPage*($IPage-
1)):IMaxPage*$lPage;.. e
Do somethmg W|th the arrays
End for

See Also
AUTOMATIC RELATIONS, ON ERR CALL, SELECTION TO ARRAY.

212 4th Dimension Language Reference

ARRAY TO SELECTION Arrays

version 3

ARRAY TO SELECTION (array; field{; array2; field2; ...; arrayN; fieldN})

Parameter Type Description

array Array — Array to copy to the selection
field Field -— Field to receive the array data
Description

The command ARRAY TO SELECTION copies one or more arrays into a selection of records.
All fields listed must belong to the same table.

If a selection exists at the time of the call, the elements of the array are put into the
records, based on the order of the array and the order of the records. If there are more
elements than records, new records are created. The records, whether new or existing, are
automatically saved.

If the arrays are of different sizes, the first array is used to determine how many elements
to copy. Any additional arrays are moved into the field that follows each array name.

This command does the reverse of SELECTION TO ARRAY. However, the ARRAY TO
SELECTION command does not allow fields from different tables, including related tables,
even when an automatic relation exists.

WARNING: Use ARRAY TO SELECTION with caution, because it overwrites information in
existing records. If a record is locked by another process during the execution of ARRAY
TO SELECTION, that record is not modified. Any locked records are put into the process set
called LockedSet. After ARRAY TO SELECTION has executed, you can test the set LockedSet
to see if any records were locked.

4D Server: The command is optimized for 4D Server. Arrays are sent by the client
machine to the server, and the records are modified or created on the server machine. As
such a request is handled synchronously, the client machine must wait for the operation
to be completed successfully. In the multi-user or multi-process environment, any records
that are locked will not be overwritten.

4th Dimension Language Reference 213

Example

In the following example, the two arrays asLastNames and asCompanies place data in the
[People] table. The values from the array asLastNames area placed in the field [People]Last
Name and the values from the array asCompanies are placed in the field [People]Company:

= ARRAY TO SELECTION (asLastNames;[People]Last
Name;asCompanies;[People]Company)

See Also
SELECTION TO ARRAY.

214 4th Dimension Language Reference

DISTINCT VALUES Arrays

version 6.0 (Modified)

DISTINCT VALUES (field; array)

Parameter Type Description

field Field or Subfield — Field or subfield to use for data
array Array -— Array to receive indexed field data
Description

The command DISTINCT VALUES creates and populates the array array with non-repeated
(unique) values coming from the field field for the current selection of the table to which
the field or subfield belongs.

In the previous version of 4D, you could only pass alphanumeric fields to this command.
Starting with version 6, you can pass any indexed field or subfield. Note however that the
command does nothing when applied to an indexed Boolean field.

If you pass the field of a table, DISTINCT VALUES browses and retains the non-repeated
values present only in the currently selected records. However, if you pass a subfield,
DISTINCT VALUES browses all the subrecords present in each currently selected record.

If you create the array prior to the call, DISTINCT VALUES expects an array type compatible
with the field or subfield you pass. Otherwise, in interpreted mode, DISTINCT VALUES will
create an array of the proper type. However, if the field or subfield is of type Time, the
command expects or creates a Longint array.

After the call, the size of the array is equal to the number of distinct values found in the
selection. The command does not change the current selection or the current record. The
DISTINCT VALUES command uses the index of the field, so the elements in array are
returned sorted in ascending order. If this is the order you need, you do not need to call
SORT ARRAY after using DISTINCT VALUES.

WARNING: DISTINCT VALUES can create large arrays depending on the size of the
selection and the number of different values in the records. Arrays reside in memory,
therefore it is a good idea to test the result after the completion of the command. To do
so, test the size of the resulting array or cover the call to the command, using an ON ERR
CALL project method.

4D Server: The command is optimized for 4D Server. The array is created and the values
are calculated on the server machine; the array is then sent, in its entirety, to the client.

4th Dimension Language Reference 215

Examples

1. The following example creates a list of cities from the current selection and tells the
user the number of cities in which the firm has stores:

ALL RECORDS([Retail Outlets]) = Create a selection of records

= DISTINCT VALUES([Retail Outlets]City;asCities)
ALERT("The firm has stores in " +String(Size of array(asCities))+" cities.")

2. The following example returns in asKkeywords all the keywords that are attached (using
a subtable) to the 4D Write documents stored in the table [Documentation] and whose
theme is “Economy”:

QUERY ([Documentation];[Documentation]Theme="Economy")
= DISTINCT VALUES([Documentation]Keywords'Keyword;asKeywords)

After this array has been built, you can reuse it to quickly locate all the documents
associated with the selected keyword:

QUERY ([Documentation];[Documentation]Keywords'Keyword=
asKeywords{asKeywords})
SELECTION TO ARRAY ([Documentation]Subject;asSubjects)

See Also
ON ERR CALL, SELECTION TO ARRAY, SUBSELECTION TO ARRAY.

216 4th Dimension Language Reference

5 BLOB

4th Dimension Language Reference 217

218 4th Dimension Language Reference

BLOB Commands BLOB

version 6.0

Definition
4th Dimension version 6 introduces the BLOB (Binary Large OBjects) data type.

You can define BLOB fields and BLOB variables:

e To create a BLOB field, select BLOB in the Field type drop-down-list within the Field
Properties window.

e To create a BLOB variable, use the compiler declaration command C_BLOB. You can
create local, process, and interprocess variables of type BLOB.

Note: There is no array for BLOBs.

Within 4th Dimension, a BLOB is a contiguous series of variable length bytes, which can
be treated as one whole object or whose bytes can be addressed individually. A BLOB can
be empty (null length) or can contain up to 2,147,483,647 bytes (2 GB).

BLOBs and Memory

A BLOB is loaded into memory in its entirety. A BLOB variable is held and exists in
memory only. A BLOB field is loaded into memory from the disk, like the rest of the
record to which it belongs.

Like the other field types that can retain a large amount of data (Picture and subtable field
types), BLOB fields are not duplicated in memory when you modify a record.
Consequently, the result returned by the commands Old and Modified is not significant
when applied to a BLOB field.

Displaying BLOBs

A BLOB can retain any type of data, so it has no default representation on the screen. If
you display a BLOB field or variable in a form, it will always appear blank, whatever its
contents.

BLOB fields

You can use BLOB fields to store any kind of data, up to 2 GB. You cannot index a BLOB
field, so you must use a formula in order to search records on values stored in a BLOB
field. Do not use BLOB fields for storing data that you want to retrieve quickly with a
search operation. For example, do not store keywords in a BLOB field; instead, use a subfile
in which you can index the keyword subfield.

4th Dimension Language Reference 219

Parameter passing, Pointers and function results

4th Dimension BLOBs can be passed as parameters to 4D commands or 4D Extensions
routines that expect a BLOB parameters. On the other hand, they cannot be passed as
parameters to a user method. A BLOB cannot be returned as a function result.

To pass a BLOB to your own methods, define a pointer to the BLOB and pass the pointer
as parameter.

Examples:

" Declare a variable of type BLOB
C_BLOB (anyBlobVar)

" The BLOB is passed as parameter to a 4D command
SET BLOB SIZE (anyBlobVar;1024*1024)

" The BLOB is passed as parameter to an external routine
$errCode:= Do Something With This BLOB (anyBlobVar)

* A pointer to the BLOB is passed as parameter to a user method
COMPUTE BLOB (->anyBlobVar)

" Declare a variable of type Pointer
C_POINTER (aPointer)

* Define a pointer to the BLOB
aPointer := ->anyBlobVar

* A pointer to the BLOB is passed as parameter to a user method
COMPUTE BLOB (aPointer)

Note for 4D Extensions developers: A BLOB parameter is declared as “&0O” (the letter “O”,
not the digit “0”).

Assignment
You can assign BLOBs to each other.

Example:
" Declare two variables of type BLOB
C_BLOB (vBlobA;vBlobB)
* Set the size of the first BLOB to 10K
SET BLOB SIZE (vBlobA;10*1024)
* Assign the first BLOB to the second one
vBlobB:=vBlobA

However, no operator can be applied to BLOBs; there is no expression of type BLOB.

220 4th Dimension Language Reference

Addressing BLOB contents

You can address each byte of a BLOB individually using the curly brackets symbols {...}.
Within a BLOB, bytes are numbered from 0 to N-1, where N is the size of the BLOB.
Example:

" Declare a variable of type BLOB
C_BLOB (vBlob)
* Set the size of the BLOB to 256 bytes
SET BLOB SIZE (vBlob;256)
" The loop below initializes the 256 bytes of the BLOB to zero
For (vByte ; O ; BLOB size (vBlob)-1)
vBlob{vByte}:=0
End for

Because you can address all the bytes of a BLOB individually, you can actually store
whatever you want in a BLOB field or variable.

BLOBs 4th Dimension commands
4th Dimension provides the following commands for working BLOBS:

« SET BLOB SIZE resizes a BLOB field or variable.

< BLOB size returns the size of a BLOB.

< DOCUMENT TO BLOB and BLOB TO DOCUMENT enable you to load and write a whole
document to and from a BLOB (optionally, the data and resource forks on Macintosh).

« VARIABLE TO BLOB and BLOB TO VARIABLE as well as LIST TO BLOB and BLOB to list allow
you to store and retrieve 4D variables in BLOBs.

e COMPRESS BLOB, EXPAND BLOB and BLOB PROPERTIES allow you to work with
compressed BLOBs

e The commands BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO
BLOB, LONGINT TO BLOB, REAL TO BLOB and TEXT TO BLOB enable you to manipulate
any structured data coming from disk, resources, OS, and so on.

e DELETE FROM BLOB, INSERT IN BLOB and COPY BLOB allow quick handling of large
chunks of data within BLOB:s.

These commands are described in this chapter.

In addition:

e C_BLOB declares a variable of type BLOB. Refer to the Compiler chapter for more
information.

e GET CLIPBOARD and APPEND CLIPBOARD enable you to deal with any data type stored
in the Clipboard. Refer to the Clipboard chapter for more information.

e GET RESOURCE and SET RESOURCE enable you to work with any type stored of resource
stored on disk. Refer to the Resources chapter for more information.

4th Dimension Language Reference 221

SET BLOB SIZE BLOB

version 6.0

SET BLOB SIZE (blob; size{; filler})

Parameter Type Description

blob BLOB — BLOB field or variable

size Number — New size of the BLOB

filler Number — ASCII code of filler character
Description

SET BLOB SIZE resizes the BLOB blob according to the value passed in size.

By default, new allocated bytes (if any) for the BLOB are initialized to 0x00. If you want
to have those bytes initialized to another value, pass the value (0..255) into the optional
filler parameter.

Examples

1. When you are through with a large process or interprocess BLOB, it is good idea to free
the memory it occupies. To do so, write:

= SET BLOB SIZE(aProcessBLOB;0)
= SET BLOB SIZE(<>anInterprocessBLOB;0)

2. The following example creates a BLOB of 16K filled of OxFF:
C_BLOB(vxData)
= SET BLOB SIZE(vxData;16*1024;0xFF)

See Also
BLOB size.

Error Handling

If you cannot resize a BLOB due to insufficient memory, the error -108 is generated. You
can trap this error using an ON ERR CALL interruption method.

222 4th Dimension Language Reference

BLOB size

BLOB

version 6.0

BLOB size (blob) — Number

Parameter Type
blob BLOB
Function result Number
Description

Description
BLOB field or variable

Size in bytes of the BLOB

BLOB size returns the size of blob expressed in bytes.

Examples

The line of code adds 100 bytes to the BLOB myBIlob:
= SET BLOB SIZE (BLOB size(myBlob)+100)

See Also
SET BLOB SIZE.

4th Dimension Language Reference

223

COMPRESS BLOB BLOB

version 6.0

COMPRESS BLOB (blob{; compression})

Parameter Type Description
blob BLOB — BLOB to compress
compression Number — If not omitted:

1, compress as compact as possible
2, compress as fast as possible

Description

The COMPRESS BLOB command compresses the BLOB blob using the internal
4th Dimension compression algorithm. This command only compresses BLOB whose
size is over 255 bytes.

The optional compression parameter allows to set the way the BLOB will be compressed:

< If you pass 1, the BLOB is compressed as much as possible, at the expanse of the speed of
compression and decompression operations.

< If you pass 2, the BLOB is compressed as fast as possible (and will be decompressed as fast
as possible), at the expense of the compression ratio (the compressed BLOB will be bigger).
« If you pass another value or if you omit the parameter, the BLOB is compressed as much
as possible, using the compression mode 1.

4th Dimension provides the following predefined constants:

Constant Type Value
Compact compression mode Long Integer 1
Fast compression mode Long Integer 2

After the call, the OK variable is set to 1 if the BLOB has been successfully compressed. If
the compression could not be performed, the OK variable is set to 0; for example, if there
is not enough memory to compress a BLOB.

After a BLOB has been compressed, you can expand it using the EXPAND BLOB command.
To detect if a BLOB has been compressed, use the BLOB PROPERTIES command.
WARNING: A compressed BLOB is still a BLOB, so there is nothing to stop you from

modifying its contents. However, if you do so, the EXPAND BLOB command will not be
able to decompress the BLOB properly.

224 4th Dimension Language Reference

Examples

1. This example tests if the BLOB vxMyBlob is compressed, and, if it is not, compresses it:

BLOB PROPERTIES (vxMyBlob;$viCompressed;$viExpandedSize;$viCurrentSize)
If ($viICompressed=Is not compressed)

= COMPRESS BLOB (vxMyBlob)
End if

Note however, that if you apply COMPRESS BLOB to an already compressed BLOB, the
command detects it and does nothing.

2. This example allows you to select a document and then compress it:

$vhDocRef := Open document (")
If (OK=1)
CLOSE DOCUMENT ($vhDocRef)
DOCUMENT TO BLOB (Document;vxBlob)
If (OK=1)
. COMPRESS BLOB (vxBlob)
If (OK=1)
BLOB TO DOCUMENT (Document;vxBlob)
End if
End if
End if

See Also
BLOB PROPERTIES, EXPAND BLOB.

System Variables or Sets

The OK variable is set to 1 if the BLOB has been successfully compressed; otherwise, it is

set to O.

4th Dimension Language Reference

225

EXPAND BLOB BLOB

version 6.0

EXPAND BLOB (blob)

Parameter Type Description
blob BLOB — BLOB to expand
Description

The EXPAND BLOB command expands the BLOB blob that was previously compressed
using the COMPRESS BLOB command.

After the call, the OK variable is set to 1 if the BLOB has been compressed (or if the BLOB
was not compressed originally). If the expansion could not be performed, the OK variable
is set to O; for example, if there was not enough memory.

To detect if a BLOB has been compressed, use the BLOB PROPERTIES command.

Examples
1. This example tests if the BLOB vxMyBlob is compressed and, if so, expands it:

BLOB PROPERTIES (vxMyBlob;$viICompressed;$vlExpandedSize;$viCurrentSize)
If ($viCompressed#ls not compressed)

- EXPAND BLOB (vxMyBlob)
End if

Note however, that if you apply EXPAND BLOB to an uncompressed BLOB, the command
detects this and does nothing.

2. This example allows you to select a document and then expand it, if it is compressed:

$vhDocRef := Open document (")
If (OK=1)
CLOSE DOCUMENT ($vhDocRef)
DOCUMENT TO BLOB (Document;vxBlob)
If (OK=1)
BLOB PROPERTIES (vxBlob;$viICompressed;$viExpandedSize;$viCurrentSize)
If ($viICompressed#ls not compressed)

= EXPAND BLOB (vxBlob)
If (OK=1)
BLOB TO DOCUMENT (Document;vxBlob)
End if
End if
End if
End if

226 4th Dimension Language Reference

See Also
BLOB PROPERTIES, COMPRESS BLOB.

System Variables or Sets

The OK variable is set to 1 if the BLOB has been successfully expanded, otherwise it is set
to 0.

4th Dimension Language Reference 227

BLOB PROPERTIES BLOB

version 6.0

BLOB PROPERTIES (blob; compressed{; expandedSize{; currentSize}})

Parameter Type Description

blob BLOB — BLOB for which to get information
compressed Number -— 0 = BLOB is not compressed

1 = BLOB compressed compact

2 = BLOB compressed fast

expandedSize Number -~ Size of BLOB (in bytes) when not compressed
currentSize Number -~ Current size of BLOB (in bytes)
Description

The BLOB PROPERTIES command returns information about the BLOB blob.

e The compressed parameter tells whether or not the BLOB is compressed, and returns one
of the following values. Note: 4th Dimension provides the predefined constants.

Constant Type Value
Is not compressed Long Integer 0
Compact compression mode Long Integer 1
Fast compression mode Long Integer 2

« Whatever the compression status of the BLOB, the expandedSize parameter returns the
size of the BLOB when it is not compressed.

e The parameter currentSize returns the current size of the BLOB. If the BLOB is
compressed, you will usually obtain currentSize less than expandedSize. If the BLOB is not
compressed, you will always obtain currentSize equal to expandedSize.

228 4th Dimension Language Reference

Examples
1. See examples for the commands COMPRESS BLOB and EXPAND BLOB.

2. After a BLOB has been compressed, the following project method obtains the
percentage of space saved by the compression:

* Space saved by compression project method
* Space saved by compression (Pointer {; Pointer }) -> Long
* Space saved by compression (-> BLOB {; -> savedBytes }) -> Percentage

C_POINTER ($1;%$2)
C_LONGINT ($0;$vICompressed;$viExpandedSize;$viCurrentSize)

= BLOB PROPERTIES ($1->;$vICompressed;$vIiExpandedSize;$vICurrentSize)
If ($vIExpandedSize=0)

$0:=0
If (Count parameters>=2)
$2->:=0
End if
Else

$0:=100-(($vICurrentSize/$vIExpandedSize)*100)
If (Count parameters>=2)
$2->:=%vIExpandedSize-$viCurrentSize
End if
End if

After this method has been added to your application, you can use it this way:
COMPRESS BLOB (vxBlob)
$vIPercent:=Space saved by compression (->vxBlob;->vIBlobSize)
ALERT ("The compression saved "+String (vIBlobSize)+" bytes, so "+String
($viPercent;"#0%")+
" of space.")

See Also
COMPRESS BLOB, EXPAND BLOB.

4th Dimension Language Reference

229

DOCUMENT TO BLOB BLOB

version 6.0

DOCUMENT TO BLOB (document; blob{; *})

Parameter Type Description
document String — Name of the document
blob BLOB — BLOB field or variable to receive the document
-~ Document contents
* * — On Macintosh only:
Resource fork is loaded if * is passed
otherwise Data fork is loaded
Description

DOCUMENT TO BLOB loads the whole contents of document into blob. You must pass the
name of an existing document that is not already open, otherwise an error will be
generated. To let the user choose the document to be loaded into the BLOB, use the
command Open document and the process variable document (see Example).

Note regarding Macintosh: Macintosh documents can be composed of two forks: the
Data fork and the Resource fork. By default, the command DOCUMENT TO BLOB loads
the Data fork of the document. To load the Resource fork of the document instead, pass
the optional * parameter. On Windows, the optional * parameter is ignored. Note that the
4D environment provides the equivalent of MacOS resource forks on Windows. For
example, the data fork of a 4D database is stored in a file with the file extension .4DB; the
resource fork is stored in a file with the same name and the file extension .RSR. On
Windows, if you write a 4D application with the data fork and resource fork stored in
BLOBs, you just need to access the file corresponding to the fork with which you want to
work.

Example

You write an Information System that enables you to quickly store and retrieve
documents. In a data entry form, you create a button that allows you to load a document
into a BLOB field. The method for this button could be:

$vhDocRef:=Open document(") " Select the document of your choice
If (OK=1) " If a document has been chosen

CLOSE DOCUMENT($vhDocRef) ~ We don't need to keep it open

= DOCUMENT TO BLOB (Document;[YourTable]YourBLOBField)
If (OK=0)
* Handle error

End if

End if

230 4th Dimension Language Reference

See Also
BLOB TO DOCUMENT, Open document.

System Variables

OK is set to 1 if the document is correctly loaded, otherwise OK is set to 0 and an error is
generated.

Error Handling

< If you try to load (into a BLOB) a document that does not exist or that is already open
by another process or application, the appropriate File Manager error is generated.

* An |/O error can occur if the document is locked, located on a locked volume, or if there
is problem in reading the document.

« If there is not enough memory to load the document, an error -108 is generated.

In each case, you can trap the error using an ON ERR CALL interruption method.

4th Dimension Language Reference 231

BLOB TO DOCUMENT BLOB

version 6.0
BLOB TO DOCUMENT (document; blob{; *})
Parameter Type Description
document String — Name of the document
blob BLOB — New contents for the document
* * — On Macintosh only:

Resource fork is written if * is passed
otherwise Data fork is written

Description

BLOB TO DOCUMENT rewrites the whole contents of document using the data stored in
blob. You must pass the name of an existing document that is not already open,
otherwise an error will be generated. If you want to let the user choose the document, use
the commands Open document or Create document and use the process variable document
(see example).

Note regarding Macintosh: Macintosh documents can be composed of two forks: the
Data fork and the Resource fork. By default, the command BLOB TO DOCUMENT rewrites
the Data fork of the document. To rewrite the Resource fork of the document instead,
pass the optional * parameter. On Windows, the optional * parameter is ignored. Note
that the 4D environment provides the equivalent of MacOS resource forks on Windows.
For example, the data fork of a 4D database is stored in a file with the file extension .4DB;
the resource fork is stored in a file with the same name and the file extension .RSR. On
Windows, if you write a 4D application with the data fork and resource fork stored in
BLOBs, you just need to access the file corresponding to the fork with which you want to
work.

Example

You write an Information System that enables you to quickly store and retrieve
documents. In a data entry form, you create a button which allows you to save a
document that will contain the data previously loaded into a BLOB field. The method for
this button could be:

$vhDocRef:=Create document("") ~ Save the document of your choice
If (OK=1) " If a document has been created

CLOSE DOCUMENT($vhDocRef) * We don't need to keep it open

= BLOB TO DOCUMENT (Document;[YourTable]YourBLOBField)
If (OK=0)
* Handle error

End if

End if

232 4th Dimension Language Reference

See Also
Create document, DOCUMENT TO BLOB, Open document.

System Variables

OK is set to 1 if the document is correctly written, otherwise OK is set to 0 and an error is
generated.

Error Handling

« If you try to rewrite a document that does not exist or that is already open by another
process or application, the appropriate File Manager error is generated.

« The disk space may be insufficient for writing the new contents of the document.
« 1/O errors can occur while writing the document.
In all cases, you can trap the error using an ON ERR CALL interruption method.

4th Dimension Language Reference 233

VARIABLE TO BLOB BLOB

version 6.0

VARIABLE TO BLOB (variable; blob{; *})

Parameter Type Description

variable Variable — Variable to store in the BLOB
blob BLOB — BLOB to receive the variable
* Character — * to append the value
Description

The command VARIABLE TO BLOB stores the variable variable in the BLOB blob.

If you specify the * optional parameter, the variable is appended to the BLOB and the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of variables or lists (see other BLOB commands) in a BLOB, as long as
the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the
variable is stored at the beginning of the BLOB, overriding its previous contents; the size
of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the variable is written at the offset (starting from
zero) within the BLOB. No matter where you write the variable, the size of the BLOB is
increased according to the location you passed (plus the size of the variable, if necessary).
Newly allocated bytes, other than the ones you are writing, are initialized to zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another variable or list.

VARIABLE TO BLOB accepts any type of variable (including other BLOBS), except the
following:

e Pointer

= Array of pointers

e Two-dimensional arrays

However, if you store a Long Integer variable that is a reference to a hierarchical list
(ListRef), VARIABLE TO BLOB will store the Long Integer variable, not the list. To store and
retrieve hierarchical lists in and from a BLOB, use the commands LIST TO BLOB

and BLOB to list.

234 4th Dimension Language Reference

WARNING: If you use a BLOB for storing variables, you must later use the command
BLOB TO VARIABLE for reading back the contents of the BLOB, because variables are stored
in BLOBs using a 4D internal format.

After the call, if the variable has been successfully stored, the OK variable is set to 1. If the
operation could not be performed, the OK variable is set to 0; for example, there was not
enough memory.

Note regarding Platform Independence: VARIABLE TO BLOB and BLOB TO VARIABLE use a
4D internal format for handling variables stored in BLOBs. As a benefit, you do not need
to worry about byte swapping between platforms while using these two commands. In
other words, a BLOB created on Windows using either of these commands can be reused
on Macintosh, and vice-versa.

Examples

1. The two following project methods allow you to quickly store and retrieve arrays into
and from documents on disk:

" SAVE ARRAY project method
* SAVE ARRAY (String ; Pointer)
* SAVE ARRAY (Document ; -> Array)
C_STRING (255;%1)
C_POINTER ($2)
C_BLOB ($vxArrayData)
= VARIABLE TO BLOB ($2->;$vxArrayData) Store the array into the BLOB
COMPRESS BLOB ($vxArrayData) ~ Compress the BLOB
BLOB TO DOCUMENT ($1;$vxArrayData) ~ Save the BLOB on disk

" LOAD ARRAY project method
" LOAD ARRAY (String ; Pointer)
" LOAD ARRAY (Document ; -> Array)
C_STRING (255;$1)
C_POINTER ($2)
C_BLOB ($vxArrayData)
DOCUMENT TO BLOB ($1;$vxArrayData) ~ Load the BLOB from the disk
EXPAND BLOB ($vxArrayData) * Expand the BLOB

= BLOB TO VARIABLE ($vxArrayData;$2->) ~ Retrieve the array from the BLOB

After these methods have been added to your application, you can write:
ARRAY STRING (...;asAnyArray;...)

SAVE ARRAY ($vsDocName;->asAnyArray)

LOAD ARRAY ($vsDocName;->asAnyArray)

4th Dimension Language Reference 235

2. The two following project methods allow you to quickly store and retrieve any set of
variables into and from a BLOB:

* STORE VARIABLES INTO BLOB project method
* STORE VARIABLES INTO BLOB (Pointer { ; Pointer ... {; Pointer } })
" STORE VARIABLES INTO BLOB (BLOB {; Varl ... {; Var2 } })
C_POINTER (${1})
C_LONGINT ($vIParam)

SET BLOB SIZE ($1->;0)
For ($vlParam;2;Count parameters)

= VARIABLE TO BLOB (${$vIParam}->;$1->;*)
End for

" RETRIEVE VARIABLES FROM BLOB project method
" RETRIEVE VARIABLES FROM BLOB (Pointer { ; Pointer ... {; Pointer}})
" RETRIEVE VARIABLES FROM BLOB (BLOB { ; Varl ... { ; Var2 } })
C_POINTER (${1})
C_LONGINT ($vIParam;$vIOffset)

$vIOffset:=0
For ($vIParam;2;Count parameters)

= BLOB TO VARIABLE ($1->;${$vIParam}->;$vIOffset)
End for

After these methods have been added to your application, you can write:
STORE VARIABLES INTO BLOB (->vxBLOB;->vgPicture;->asAnArray;->alAnotherArray)

RETRIEVE VARIABLES FROM BLOB (->vxBLOB:->vgPicture:->asAnArray:->alAnotherArray)

See Also
BLOB to list, BLOB TO VARIABLE, LIST TO BLOB.

System Variables or Sets

The OK variable is set to 1 if the variable has been successfully stored; otherwise, it is
set to 0.

236 4th Dimension Language Reference

BLOB TO VARIABLE BLOB

version 6.0

BLOB TO VARIABLE (blob; variable{; offset})

Parameter Type Description
blob BLOB — BLOB containing 4D variables
variable Variable -~ Variable to write with BLOB contents
offset Number — Position of variable within BLOB

-— Position of following variable within BLOB
Description

The command BLOB TO VARIABLE rewrites the variable variable with the data stored within
the BLOB blob at the byte offset (starting at zero) specified by offset.

The BLOB data must be consistent with the destination variable. Typically, you will use
BLOBs that you previously filled out using the command VARIABLE TO BLOB.

If you do not specify the optional offset parameter, the variable data is read starting from
the beginning of the BLOB. If you deal with a BLOB in which several variables have been
stored, you must pass the offset parameter and, in addition, you must pass a numeric
variable. Before the call, set this numeric variable to the appropriate offset. After the call,
that same numeric variable returns the offset of the next variable stored within the BLOB.

After the call, if the variable has been successfully rewritten, the OK variable is set to 1. If
the operation could not be performed, the OK variable is set to 0; for example, if there
was not enough memory.

Note regarding Platform Independence: BLOB TO VARIABLE and VARIABLE TO BLOB use a
4D internal format for handling variables stored in BLOBs. As a benefit, you do not need
to worry about byte swapping between platforms while using these two commands. In
other words, a BLOB created on Windows using either of these commands can be reused
on Macintosh, and vice-versa.

Example
See the examples for the command VARIABLE TO BLOB.

See Also
VARIABLE TO BLOB.

System Variables or Sets

The OK variable is set to 1 if the variable has been successfully rewritten, otherwise it is set
to 0.

4th Dimension Language Reference 237

LIST TO BLOB BLOB

version 6.0
LIST TO BLOB (list; blob{; *})
Parameter Type Description
list ListRef — Hierarchical list to store in the BLOB
blob BLOB — BLOB to receive the Hierarchical list
* *

!

* to append the value

Description
The command LIST TO BLOB stores the hierarchical list list in the BLOB blob.

If you specify the * optional parameter, the hierarchical list is appended to the BLOB and
the size of the BLOB is extended accordingly. Using the * optional parameter, you can
sequentially store any number of variables or lists (see other BLOB commands) in a BLOB,
as long as the BLOB fits into memory.

If you do not specify the * optional parameter, the hierarchical list is stored at the
beginning of the BLOB, overriding its previous contents; the size of the BLOB is adjusted
accordingly.

WARNING: If you use a BLOB for storing lists, you must later use the command BLOB to
list for reading back the contents of the BLOB, because lists are stored in BLOBs using a
4D internal format.

After the call, if the list has been successfully stored, the OK variable is set to 1. If the
operation could not be performed, the OK variable is set to O; for example, if there was
not enough memory.

Note regarding Platform Independence: LIST TO BLOB and BLOB to list use a 4D internal
format for handling lists stored in BLOBs. As a benefit, you do not need to worry about
byte swapping between platforms when using these two commands. In other words, a
BLOB created on Windows using those commands can be reused on Macintosh, and vice-
versa.

238 4th Dimension Language Reference

Examples
See example for the command BLOB to list.

See Also
BLOB to list, BLOB TO VARIABLE, VARIABLE TO BLOB.

4th Dimension Language Reference 239

BLOB to list BLOB

version 6.0
BLOB to list (blob{; offset}) — ListRef
Parameter Type Description
blob BLOB — BLOB containing a hierarchical list
offset Number — Offset within the BLOB (expressed in bytes)
-~ New offset after reading
Function result ListRef -— Reference to newly created list

Description

The command BLOB to list creates a new hierarchical list with the data stored within the
BLOB blob at the byte offset (starting at zero) specified by offset and returns a List
Reference number for that new list.

The BLOB data must be consistent with the command. Typically, you will use BLOBs that
you previously filled out using the command LIST TO BLOB.

If you do not specify the optional offset parameter, the list data is read starting from the
beginning of the BLOB. If you deal with a BLOB in which several variables or lists have
been stored, you must pass the offset parameter and, in addition, you must pass a numeric
variable. Before the call, set this numeric variable to the appropriate offset. After the call,
that same numeric variable returns the offset of the next variable stored within the BLOB.

After the call, if the hierarchical list has been successfully created, the OK variable is set to
1. If the operation could not be performed, the OK variable is set to 0; for example, if
there was not enough memory.

Note regarding Platform Independence: BLOB to list and LIST TO BLOB use a 4D internal
format for handling lists stored in BLOBs. As a benefit, you do not need to worry about
byte swapping between platforms when using these two commands. In other words, a
BLOB created on Windows using those two commands can be reused on Macintosh and
vice-versa.

240 4th Dimension Language Reference

Example

In this example, the form method for a data entry form extracts a list from a BLOB field

before the form appears on the screen, and stores it back to the BLOB field if the data

entry is validated:

* [Things To Do];"Input" Form Method
Case of

: (Form event=0On Load)

= hList:=BLOB to list([Things To Do]Other Crazy ldeas)
If (OK=0)
hList:=New list
End if

: (Form event=0n Unload)
CLEAR LIST(hList;*)

. (bValidate=1)
= LIST TO BLOB(hList;[Things To Do]Other Crazy Ideas)

End case

See Also
LIST TO BLOB.

System Variables and Sets

The OK variable is set to 1 if the list has been successfully created, otherwise it is set to O.

4th Dimension Language Reference

241

INTEGER TO BLOB BLOB

version 6.0

INTEGER TO BLOB (integer; blob; byteOrder{; offset | *})

Parameter Type Description
integer Number — Integer value to write into the BLOB
blob BLOB — BLOB to receive the Integer value
byteOrder Number — 0 Native byte ordering

1 Macintosh byte ordering

2 PC byte ordering
offset | * Variable | * -~ New offset after writing if not *
Description

The command INTEGER TO BLOB writes the 2-byte Integer value integer into the BLOB
blob.

The byteOrder parameter fixes the byte ordering of the 2-byte Integer value to be written.
You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between the Macintosh
and PC platforms, it is up to you to manage byte swapping issues when using this
command.

If you specify the * optional parameter, the 2-byte Integer value is appended to the BLOB
and the size of the BLOB is extended accordingly. Using the * optional parameter, you can
sequentially store any number of Integer, Long Integer, Real or Text values (see other BLOB
commands) in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the 2-byte
Integer value is stored at the beginning of the BLOB, overriding its previous contents; the
size of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the 2-byte Integer value is written at the byte
offset (starting from zero) within the BLOB. No matter where you write the 2-byte
Integer value, the size of the BLOB is increased according to the location you passed (plus
up to 2 bytes, if necessary). Newly allocated bytes, other than the ones you are writing,
are initialized to zero.

242 4th Dimension Language Reference

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

= INTEGER TO BLOB (0x0206;vxBlob;Native byte ordering)

e The size of vxBlob is 2 bytes
* On Macintosh vxBLOB{0} = $02 and vxBLOB{1} = $06
 On PC vxBLOB{0} = $06 and vXBLOB{1} = $02

2. After executing this code:
= INTEGER TO BLOB (0x0206;vxBlob;Macintosh byte ordering)

« The size of vxBlob is 2 bytes
< On all platforms vxBLOB{0} = $02 and vxBLOB{1} = $06

3. After executing this code:
= INTEGER TO BLOB (0x0206;vxBlob;PC byte ordering)

e The size of vxBlob is 2 bytes
« On all platforms vxBLOB{0} = $06 and vxBLOB{1} = $02

4. After executing this code:
SET BLOB SIZE (vxBlob;100)
= INTEGER TO BLOB (0x0206;vxBlob;PC byte ordering;*)

» The size of vxBlob is 102 bytes
* On all platforms vxBLOB{100} = $06 and vxBLOB{101} = $02
e The other bytes of the BLOB are left unchanged

5. After executing this code:

SET BLOB SIZE (vxBlob;100)
vlOffset:=50

= INTEGER TO BLOB (518;vxBlob;Macintosh byte ordering;vlOffset)

e The size of vxBlob is 100 bytes

« On all platforms vxBLOB{50} = $02 and vxBLOB{51} = $06

e The other bytes of the BLOB are left unchanged

e The variable vlOffset has been incremented by 2 (and is now equal to 52)

See Also

BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, LONGINT TO BLOB, REAL TO
BLOB, TEXT TO BLOB.

4th Dimension Language Reference 243

LONGINT TO BLOB BLOB

version 6.0

LONGINT TO BLOB (longlint; blob; byteOrder{; offset | *})

Parameter Type Description
longint Number — Long Integer value to write into the BLOB
blob BLOB — BLOB to receive the Long Integer value
byteOrder Number — 0 Native byte ordering

1 Macintosh byte ordering

2 PC byte ordering
offset | * Variable | * — Offset within the BLOB (expressed in bytes)

or * to append the value

-~ New offset after writing if not *

Description

The command LONGINT TO BLOB writes the 4-byte Long Integer value integer into the
BLOB blob.

The byteOrder parameter fixes the byte ordering of the 4-byte Long Integer value to be
written. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues while using this command.

If you specify the * optional parameter, the 4-byte Long Integer value is appended to the
BLOB and the size of the BLOB is extended accordingly. Using the * optional parameter,
you can sequentially store any number of Integer, Long Integer, Real or Text values (see
other BLOB commands) in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter nor the offset variable parameter, the 4-
byte Long Integer value is stored at the beginning of the BLOB, overriding its previous
contents; the size of the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the 4-byte Long Integer value is written at the
offset (starting from zero) within the BLOB. No matter where you write the 4-byte Long
Integer value, the size of the BLOB is increased according to the location you passed (plus
up to 4 bytes, if necessary). New allocated bytes, other than the ones you are writing, are
initialized to zero.

244 4th Dimension Language Reference

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

= LONGINT TO BLOB (0x01020304;vxBlob;Native byte ordering)

e The size of vxBlob is 4 bytes
e On Macintosh vxBLOB{0}=$01, vxBLOB{1}=%$02, vxBLOB{2}=$03, vxBLOB{3}=$04
» On PC vxBLOB{0}=%$04, vxBLOB{1}=%$03, vxBLOB{2}=$02, vxBLOB{3}=%$01

2. After executing this code:
= LONGINT TO BLOB (0x01020304;vxBlob;Macintosh byte ordering)

e The size of vxBlob is 4 bytes
e On all platforms vxBLOB{0}=$01, vxBLOB{1}=$02, vxBLOB{2}=$03, vxBLOB{3}=%$04

3. After executing this code:
= LONGINT TO BLOB (0x01020304;vxBlob;PC byte ordering)

e The size of vxBlob is 4 bytes
< On all platforms vxBLOB{0}=$04, vxBLOB{1}=$03, vxBLOB{2}=$02, vxBLOB{3}=%$01

4. After executing this code:
SET BLOB SIZE (vxBlob;100)
= LONGINT TO BLOB (0x01020304;vxBlob;PC byte ordering;*)

e The size of vxBlob is 104 bytes

* On all platforms vxBLOB{100}=$04, vxBLOB{101}=$03, vxBLOB{102}=%$02,
vxBLOB{103}=$01

e The other bytes of the BLOB are left unchanged

5. After executing this code:
SET BLOB SIZE (vxBlob;100)
vlOffset:=50
= LONGINT TO BLOB (0x01020304;vxBlob;Macintosh byte ordering;vlOffset)

e The size of vxBlob is 100 bytes

e On all platforms vxBLOB{50}=$01, vxBLOB{51}=$02, vxBLOB{52}=$03, vxBLOB{53}=$04
e The other bytes of the BLOB are left unchanged

« The variable vIiOffset has been incremented by 4 (and is now equal to 54)

See Also

BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, REAL TO
BLOB, TEXT TO BLOB.

4th Dimension Language Reference 245

REAL TO BLOB BLOB

version 6.0

REAL TO BLOB (real; blob; realFormat{; offset | *})

Parameter Type Description
real Number — Real value to write into the BLOB
blob BLOB — BLOB to receive the Real value
realFormat Number — 0 Native real format

1 Extended real format

2 Macintosh Double real format

3 Windows Double real format
offset | * Variable | * — Offset within the BLOB (expressed in bytes)

or * to append the value

-~ New offset after writing if not *

Description

The command REAL TO BLOB writes the Real value real into the BLOB blob.

The realFormat parameter fixes the internal format and byte ordering of the Real value to
be written. You pass one of the following predefined constants provided by 4th
Dimension:

Constant Type Value
Native real format Long Integer 0
Extended real format Long Integer 1
Macintosh double real format Long Integer 2
PC double real format Long Integer 3

Platform Independence Note: If you exchange BLOBs between Macintosh and PC
platforms, it is up to you to manage real formats and byte swapping issues when using
this command.

If you specify the * optional parameter, the Real value is appended to the BLOB; the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of Integer, Long Integer, Real or Text values (see other BLOB commands)
in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter or the offset variable parameter, the Real

value is stored at the beginning of the BLOB, overriding its previous contents; the size of
the BLOB is adjusted accordingly.

246 4th Dimension Language Reference

If you pass the offset variable parameter, the Real value is written at the offset (starting
from zero) within the BLOB. No matter where you write the Real value, the size of the
BLOB is increased according to the location you passed (plus up to 8 or 10 bytes, if
necessary). New allocated bytes, other than the ones you are writing, are initialized to
zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therefore, you can reuse that same variable with another
BLOB writing command to write another value.

Examples
1. After executing this code:

C_REAL (vrValue)
vrValue = ...

= REAL TO BLOB (vrValue;vxBlob;Native real format)

* On PC and Power Macintosh, the size of vxBlob is 8 bytes
< On Macintosh 68K, the size of vxBlob is 10 bytes

2. After executing this code:
C_REAL (vrValue)
vrValue = ...
= REAL TO BLOB (vrValue;vxBlob;Extended real format)

e On all platforms, the size of vxBlob is 10 bytes

3. After executing this code:

C_REAL (vrValue)

vrValue := ...
= REAL TO BLOB (vrValue;vxBlob;Macintosh Double real format) * or Windows double
real format

* On all platforms, the size of vxBlob is 8 bytes

4. After executing this code:

SET BLOB SIZE (vxBlob;100)

C_REAL (vrValue)

vrValue := ...
= INTEGER TO BLOB (vrValue;vxBlob;Windows Double real format) * or Macintosh
double real format

* On all platforms, the size of vxBlob is 8 bytes

4th Dimension Language Reference 247

5. After executing this code:
SET BLOB SIZE (vxBlob;100)
= REAL TO BLOB (vrValue;vxBlob;Extended real format;*)

* On all platforms, the size of vxBlob is 110 bytes
* On all platforms, the real value is stored at the bytes #100 to #109
e The other bytes of the BLOB are left unchanged

6. After executing this code:

SET BLOB SIZE (vxBlob;100)

C_REAL (vrValue)

vrValue := ...

vlOffset:=50
= REAL TO BLOB (vrValue;vxBlob;Windows Double real format;vlOffset) ~ or Macintosh
double real format

< On all platforms, the size of vxBlob is 100 bytes

< On all platforms, the real value is stored in the bytes #50 to #57

e The other bytes of the BLOB are left unchanged

« The variable viOffset has been incremented by 8 (and is now equal to 58)

See Also

BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT
TO BLOB, TEXT TO BLOB.

248 4th Dimension Language Reference

TEXT TO BLOB

BLOB

version 6.0

TEXT TO BLOB (text; blob; textFormat{; offset | *})

Parameter

text
blob
textFormat

offset | *

Description

Type Description
String — Text value to write into the BLOB
BLOB — BLOB to receive the text value
Number — 0 C String

1 Pascal String

2 Text with length

3 Text without length

Variable | * — Offset within the BLOB (expressed in bytes)

or * to append the value
-~ New offset after writing if not *

The command TEXT TO BLOB writes the Text value text into the BLOB blob.

The textFormat parameter fixes the internal format of the text value to be written. You
pass one of the following predefined constants provided by 4th Dimension:

Constant

C string

Pascal string

Text with length
Text without length

Type Value

Long Integer
Long Integer
Long Integer
Long Integer

WNEFO

The following table describes each of these formats:

Text format
C string

Pascal string

Text with length

Description and Examples
The text is ended by a NULL character (ASCII code $00)

" — $00

"Hello World!" — $48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00
The text is preceded by a 1-byte length

" — $00

"Hello World!" — $0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21
The text is preceded by a 2-byte length

"™ — $00 00

"Hello World!" — $00 0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

4th Dimension Language Reference 249

Text without length The text is composed only of its characters.

— No data
"Hello World!" — $48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Note: The command accepts both Text (declared with C_TEXT) and String (declared with
C_STRING) expressions. Remember that a Text variable can contain up to 32,000
characters and a String variable can contain up to the number of characters in its
declaration, with a maximum of 255 characters.

If you specify the * optional parameter, the Text value is appended to the BLOB; the size
of the BLOB is extended accordingly. Using the * optional parameter, you can sequentially
store any number of Integer, Long Integer, Real or Text values (see other BLOB commands)
in a BLOB, as long as the BLOB fits into memory.

If you do not specify the * optional parameter nor the offset variable parameter, the Text
value is stored at the beginning of the BLOB, overriding its previous contents; the size of
the BLOB is adjusted accordingly.

If you pass the offset variable parameter, the Text value is written at the offset (starting
from zero) within the BLOB. No matter where you write the Text value, the size of the
BLOB is, increased according to the location you passed (plus up to the size of the text, if
necessary). New allocated bytes, other than the ones you are writing, are initialized to
zero.

After the call, the offset variable parameter is returned, incremented by the number of
bytes that have been written. Therfore, you can reuse that same variable with another
BLOB writing command to write another value.

Example
After executing this code:

SET BLOB SIZE (vxBlob;0)
C_TEXT (vtValue)
vtValue := "Hello World!" " Length of vtValue is 12 bytes

TEXT TO BLOB (vtValue;vxBlob;C string) " Size of BLOB becomes 13 bytes

TEXT TO BLOB (vtValue;vxBlob;Pascal string) ~ Size of BLOB becomes 13 bytes

TEXT TO BLOB (vtValue;vxBlob;Text with length) ~ Size of BLOB becomes 14 bytes
TEXT TO BLOB (vtValue;vxBlob;Text without length) " Size of BLOB becomes 12 bytes

2R

See Also

BLOB to integer, BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT
TO BLOB, REAL TO BLOB.

250 4th Dimension Language Reference

BLOB to integer BLOB

version 6.0
BLOB to integer (blob; byteOrder{; offset}) - Number
Parameter Type Description
blob BLOB — BLOB from which to get the integer value
byteOrder Number — 0 Native byte ordering
1 Macintosh byte ordering
2 PC byte ordering
offset Variable — Offset within the BLOB (expressed in bytes)
-~ New offset after reading
Function result Number -~ 2-byte Integer value

Description
The command BLOB to integer returns a 2-byte Integer value read from the BLOB blob.

The byteOrder parameter fixes the byte ordering of the 2-byte Integer value to be read.
You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues when using this command.

If you specify the optional offset variable parameter, the 2-byte Integer value is read at
the offset (starting from zero) within the BLOB. If you do not specify the optional offset
variable parameter, the first two bytes of the BLOB are read.

Note: You should pass an offset (in bytes) value between 0 (zero) and the size of the BLOB
minus 2. If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read, Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 251

Example
The following example reads 20 Integer values from a BLOB, starting at the offset 0x200:

$vIOffset:=0x200
For ($viLoop;0;19)
= $viValue:=BLOB to integer(vxSomeBlob;PC byte ordering;$vIOffset)
* Do something with $viValue
End for

See Also

BLOB to longint, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

252 4th Dimension Language Reference

BLOB to longint BLOB

version 6.0

BLOB to longint (blob; byteOrder{; offset}) — Number
Parameter Type Description
blob BLOB — BLOB from which to get

the Long Integer value
byteOrder Number — 0 Native byte ordering

1 Macintosh byte ordering

2 PC byte ordering
offset Variable — Offset within the BLOB (expressed in bytes)

-~ New offset after reading

Function result Number -~ 4-byte Long Integer value

Description

The command BLOB to longint returns a 4-byte Long Integer value read from the BLOB
blob.

The byteOrder parameter fixes the byte ordering of the 4-byte Long Integer value to be
read. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native byte ordering Long Integer 0
Macintosh byte ordering Long Integer 1
PC byte ordering Long Integer 2

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage byte swapping issues while using this command.

If you specify the optional offset variable parameter, the 4-byte Long Integer is read at
the offset (starting from zero) within the BLOB. If you do not specify the optional offset
variable parameter, the first four bytes of the BLOB are read.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus 4.
If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 253

Example

The following example reads 20 Long Integer values from a BLOB, starting at the offset
0x200:

$vIOffset:=0x200
For ($viLoop;0;19)
= $vIValue:=BLOB to longint(vxSomeBlob;PC byte ordering;$vIOffset)
* Do something with $viIValue
End for

See Also

BLOB to integer, BLOB to real, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

254 4th Dimension Language Reference

BLOB to real BLOB

version 6.0

BLOB to real (blob; realFormat{; offset})
Parameter Type Description
blob BLOB — BLOB from which to get the Real value
realFormat Number — 0 Native real format

1 Extended real format

2 Macintosh Double real format

3 Windows Double real format
offset Variable — Offset within the BLOB (expressed in bytes)

1

New offset after reading

Description
The command BLOB to real returns a Real value read from the BLOB blob.

The realFormat parameter fixes the internal format and byte ordering of the Real value to
be read. You pass one of the following predefined constants provided by 4th Dimension:

Constant Type Value
Native real format Long Integer 0
Extended real format Long Integer 1
Macintosh double real format Long Integer 2
PC double real format Long Integer 3

Note regarding Platform Independence: If you exchange BLOBs between Macintosh and
PC platforms, it is up to you to manage real formats and byte swapping issues while using
this command.

If you specify the optional offset variable parameter, the Read value is read at the offset
(starting from zero) within the BLOB. If you do not specify the optional offset variable
parameter, the first 8 or 10 bytes of the BLOB are read.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus 8
or 10. If you do not do so, an error -111 is generated.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

4th Dimension Language Reference 255

Example

The following example reads 20 Real values from a BLOB, starting at the offset 0x200:
$vIOffset:=0x200
For ($viLoop;0;19)

= $vrValue:=BLOB to real(vxSomeBlob;PC byte ordering;$vIOffset)

" Do something with $vrValue
End for

See Also

BLOB to integer, BLOB to longint, BLOB to text, INTEGER TO BLOB, LONGINT TO BLOB,
REAL TO BLOB, TEXT TO BLOB.

256 4th Dimension Language Reference

BLOB to text

BLOB

version 6.0

BLOB to text (blob; textFormat{; offset{; textLength}})

Parameter

blob
textFormat

offset

textLength

Description

Type Description
BLOB — BLOB from which to get the Text value
Number — 0 C String
1 Pascal String
2 Text with length
3 Text without length
Variable — Offset within the BLOB (expressed in bytes)
-~ New offset after reading
Number — Number of characters to be read

The command BLOB to text returns a Text value read from the BLOB blob. The textFormat
parameter fixes the internal format of the text value to be read. You pass one of the
following predefined constants provided by 4th Dimension:

Constant

C string

Pascal string

Text with length
Text without length

Type Value
Long Integer 0
Long Integer 1
Long Integer 2
Long Integer 3

The following table describes each of these formats:

Text format
C string

Pascal string

Text with length

Text without length

Description & Examples
The text is ended by a NULL character (ASCII code $00)

" — $00

"Hello World!" — $48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00
The text is preceded a 1-byte length

un — $00

"Hello World!" — $0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21
The text is preceded by a 2-byte length

"™ — $00 00

"Hello World!" — $00 0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 21
The text is only composed of its characters.

" — No data
"Hello World!" — $48 65 6C 6C 6F 20 57 6F 72 6C 64 21

4th Dimension Language Reference 257

WARNING: The number of characters to be read is determined by the textFormat
parameter, EXCEPT for the format Text without length, for which you MUST specify the
number of characters to be read in the parameter textLength. For the other formats,
textLength is ignored and you can omit it.

Remember that a Text variable can contain up to 32,000 characters and a String variable
can contain up to the number of characters in its declaration, with a maximum of 255
characters. If you try to read more data than a variable can hold, 4D will truncate the
result of the command when placing it into the variable.

If you specify the optional offset variable parameter, the Text value is read at the offset
(starting from zero) within the BLOB. If you do not specify the optional offset variable
parameter, the beginning of the BLOB is read according to the value you pass in
textFormat. Note that you must pass the offset variable parameter when you are reading
text without length.

Note: You should pass an offset value between 0 (zero) and the size of the BLOB minus
the size of the text to be read. If you do not do so, the function result is unpredictable.

After the call, the variable is incremented by the number of bytes read. Therefore, you
can reuse that same variable with another BLOB reading command to read another value.

Example

The following example reads an hypothetical MacOS-based resource whose internal
format is identical to that of the 'STR#' resources:

GET RESOURCE ("ABCD";viResID;vxResData;viMyResFile)
vISize:=BLOB Size(vxResData)
If (vISize>0)
* The resource starts with a 2-byte integer specifying the number of strings
vIOffset:=0
ViNbENtries:=BLOB to integer(vxResData;Macintosh Byte Ordering;vIOffset)
* Then the resource contains concatenated, not padded, Pascal strings
For (viEntry;1;viNbEntries)
If (vIOffset<vlSize)
= vsEntry:=BLOB to text(vxResData;Pascal string;vIOffset)
* Do something with vsEntry
Else
" Resource data is invalid, get out of the loop
viEntry:=viNbEntries+1
End if
End for
End if

See Also

BLOB to integer, BLOB to longint, BLOB to real, INTEGER TO BLOB, LONGINT TO BLOB, REAL
TO BLOB, TEXT TO BLOB.

258 4th Dimension Language Reference

INSERT IN BLOB BLOB

version 6.0

INSERT IN BLOB (blob; offset; len{; filler})

Parameter Type Description
blob BLOB — BLOB into which bytes will be inserted
offset Variable — Starting position where bytes will be inserted
len Number — Number of bytes to be inserted
filler Number — Default byte value (0x00..0xFF)
0x00 if omitted
Description

The command INSERT IN BLOB inserts the number of bytes specified by len into the BLOB
blob at the position specified by offset. The BLOB then becomes len bytes larger.

If you do not specify the optional filler parameter, the bytes inserted into the BLOB are set
to 0x00. Otherwise, the bytes are set to the value you pass in filler (modulo 256 — 0..255).

Before the call, you pass in the offset variable parameter the position of the insertion
relative to the beginning of the BLOB. After the call, the offset variable parameter returns
the position just after the insertion.

See Also
DELETE FROM BLOB.

4th Dimension Language Reference 259

DELETE FROM BLOB BLOB

version 6.0

DELETE FROM BLOB (blob; offset; len)

Parameter Type Description

blob BLOB — BLOB from which to delete bytes

offset Number — Starting offset where bytes will be deleted
len Number — Number of bytes to be deleted
Description

The command DELETE FROM BLOB deletes the number of bytes specified by len from the
BLOB blob at the position specified by offset (expressed relative to the beginning of the
BLOB). The BLOB then becomes len bytes smaller.

See Also
INSERT IN BLOB.

260 4th Dimension Language Reference

COPY BLOB BLOB

version 6.0

COPY BLOB (srcBLOB; dstBLOB; srcOffset; dstOffset; len)

Parameter Type Description

srcBLOB BLOB — Source BLOB

dstBLOB BLOB — Destination BLOB

srcOffset Variable — Source position for the copy
dstOffset Variable — Destination position for the copy
len Number — Number of bytes to be copied
Description

The COPY BLOB command copies the number of bytes specified by len from the BLOB
srcBLOB to the BLOB dstBLOB.

The copy starts at the position (expressed relative to the beginning of the source BLOB)
specified by srcOffset and takes place at the position (expressed relative to the beginning
of the destination BLOB) specified by dstOffset.

Note: The destination BLOB can be resized if necessary.

After the call, the variables srcOffset and dstOffset return the positions within the source
and destination BLOBs, respectively, just after the copy.

See Also
DELETE FROM BLOB, INSERT IN BLOB.

4th Dimension Language Reference 261

262 4th Dimension Language Reference

6 Boolean

4th Dimension Language Reference 263

264 4th Dimension Language Reference

Boolean Commands Boolean

version 6.0

4D includes Boolean functions, are used for Boolean calculations:

True
False
Not

Examples

This example sets a Boolean variable based on the value of a button. It returns True in
myBoolean if the myButton button was clicked and False if the button was not clicked.
When a button is clicked, the button variable is set to 1.

If (myButton=1) " If the button was clicked
myBoolean:=True * myBoolean is set to True
Else " If the button was not clicked,
myBoolean:=False ~ myBoolean is set to False
End if

The previous example can be simplified into one line.
myBoolean:=(myButton=1)

See Also
False, Logical Operators, Not, True.

In addition, the following 4D commands return a Boolean result: Activated, After, Before,
Before selection, Before subselection, Caps lock down, Compiled application, Deactivated,
During, End selection, End subselection, In break, In footer, In header, In transaction, Is a list,
Is a variable, Is in set, Is user deleted, Locked, Macintosh command down, Macintosh control
down, Macintosh option down, Modified, Modified record, Nil, Outside call, Read only state,
Semaphore, Shift down, True, Undefined, User in group, Windows Alt down, Windows Ctrl
down.

4th Dimension Language Reference 265

True

Boolean

version 3

True — Boolean

Parameter Type Description
This command does not require any parameters

Description
True returns the Boolean value True.

Example

The following example sets the variable vbOptions to True:

= vbOptions:=True

See Also
False, Not.

266 4th Dimension Language Reference

False Boolean

version 3

False — Boolean

Parameter Type Description
This command does not require any parameters

Description
False returns the Boolean value False.

Example
The following example sets the variable vbOptions to False:

= vbOptions:=False

See Also
Not, True.

4th Dimension Language Reference 267

Not Boolean

version 3

Not (boolean) — Boolean

Parameter Type Description
boolean Boolean — Boolean value to negate
Description

The Not function returns the negation of boolean, changing True to False or False to True.

Example

This example first assigns True to a variable, then changes the variable value to False, and
then back to True.

VResult:=True ° vResult is set to True
= vResult:=Not(vResult) ~ vResult is set to False
= vResult:=Not(vResult) ~ vResult is set to True

268 4th Dimension Language Reference

(/ Clipboard

4th Dimension Language Reference 269

270 4th Dimension Language Reference

APPEND TO CLIPBOARD Clipboard

version 6.0
APPEND TO CLIPBOARD (dataType; data)
Parameter Type Description
dataType String — 4-character data type string
data BLOB — Data to append to the Clipboard

Description

The APPEND TO CLIPBOARD command appends to the Clipboard the data contained in
the BLOB data under the data type specified in dataType.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the BLOB data is correctly appended to the Clipboard, the OK variable is set to 1.
Otherwise the OK variable is set to 0 and an error may be generated.

Usually, you will use the APPEND TO CLIPBOARD command to append multiple instances
of the same data to the Clipboard or to append data that is not of type TEXT or PICT. To
append new data to the Clipboard, you must first clear the Clipboard using the

CLEAR CLIPBOARD command.

If you want to clear and append:
« text to the Clipboard, use the SET TEXT TO CLIPBOARD command,
= a picture to the Clipboard, use the SET PICTURE TO CLIPBOARD command.

However, note that if a BLOB actually contains some text or a picture, you can use the
APPEND TO CLIPBOARD command to append a text or a picture to the Clipboard.

Example

Using Clipboard commands and BLOBs, you can build sophisticated Cut/Copy/Paste
schemes that deal with structured data rather than a unique piece of data. In the
following example, the two project methods SET RECORD TO CLIPBOARD and GET
RECORD FROM CLIPBOARD enable you to treat a whole record as one piece of data to be
copied to or from the Clipboard.

4th Dimension Language Reference 271

* SET RECORD TO CLIPBOARD project method
* SET RECORD TO CLIPBOARD (Number)
" SET RECORD TO CLIPBOARD (Table number)

C_LONGINT($1;$vIField;$vIFieldType)
C_POINTER($vpTable;$vpField)
C_STRING(255;$vsDocName)
C_TEXT($vtRecordData;$vtFieldData)
C_BLOB($vxRecordData)

* Clear the Clipboard (it will stay empty if there is no current record)

= CLEAR CLIPBOARD
* Get a pointer to the table whose number is passed as parameter
$vpTable:=Table($1)
" If there is a current record for that table
If ((Record number($vpTable->)>=0) | (Record number($vpTable->)=-3))
" Initialize the text variable that will hold the text image of the record
$vtRecordData:=""
* For each field of the record:
For ($viField;1;Count fields($1))
* Get the type of the field
GET FIELD PROPERTIES($1;$vIField;$vIFieldType)
* Get a pointer to the field
$vpField:=Field($1;$vIField)
" Depending on the type of the field, copy (or not) its data
" in the appropriate manner
Case of
: (($vIFieldType=Is Alpha field) | ($vIFieldType=Is Text))
$vtFieldData:=$vpField->
. (($vIFieldType=Is Real) | ($vIFieldType=Is Integer) |
($vIFieldType=Is LonglInt) | ($vIFieldType=Is Date) | ($vIFieldType=Is Time))
$vtFieldData:=String($vpField->)
: ($vIFieldType=Is Boolean)
$vtFieldData:=String(Num($vpField->);"Yes;;No")

Else
* Skip and ignore other field data types
$vtFieldData:=""
End case
* Accumulate the field data into the text variable holding
* the text image of the record
$vtRecordData:=$vtRecordData+Field name($1;$vlIField)+":"+Char(9)
+$vtFieldData+CR
" Note: The method CR returns Char(13) on Macintosh
" and Char(13)+Char(10) on Windows
End for
* Put the text image of the record into the clipboard
SET TEXT TO CLIPBOARD($vtRecordData)

272 4th Dimension Language Reference

* Name for scrap file in Temporary folder
$vsDocName:=Temporary folder+"Scrap"+String(1+(Random%99))
" Delete the scrap file if it exists (error should be tested here)
DELETE DOCUMENT($vsDocName)
" Create scrap file
SET CHANNEL(10;$vsDocName)
* Send the whole record into the scrap file
SEND RECORD($vpTable->)
" Close the scrap file
SET CHANNEL(11)
* Load the scrap file into a BLOB
DOCUMENT TO BLOB($vsDocName;$vxRecordData)
* We longer need the scrap file
DELETE DOCUMENT($vsDocName)
" Append the full image of the record into the Clipboard
" Note: We use arbitrarily "4Drc" as data type
APPEND TO CLIPBOARD("4Drc";$vxRecordData)
* At this point, the clipboard contains:
" (1) A text image of the record (as shown in the screen shots below)
* (2) A whole image of the record (Picture, Subfile and BLOB fields included)

End if

While entering the following record:

Entry for Employees —————— | H
Employees |
Employee ID 1 Kids
First Name IJane P |First Name :
Christina =
Middle Name [Roberta Sylvester
Arnold
Last Name [poE =
Address 12345 Main Street, Apt 6789
City |cuPerTIND Category]
State [ca DOB 2/5/61
Zip Code 95014 Hours 02:00:00
Salary 50000 Full time CiMale (3 Femate

4

4th Dimension Language Reference

273

If you apply the method SET RECORD TO CLIPBOARD to the [Employees] table, the

Clipboard will contain the text image of the record, as shown, and also the whole image
of the record.

[0 =——— dippoard =———FHEB
Employee ID: 1

First Name: Jane

Middle Name: Roberta

Last Name: DOE

Address: 12345 Main Street, Apt 6789
City: CUPERTINO

State: CA

Zip Code: 95014

Salary: 50000

Category: 4

DOB: 2/5/61

Hours: 08:00:00

Full Time: No

Photo:

Kids:

%

You can paste this image of the record to another record, using the method GET RECORD
FROM CLIPBOARD, as follows:

* GET RECORD FROM CLIPBOARD method

* GET RECORD FROM CLIPBOARD (Number)

" GET RECORD FROM CLIPBOARD (Table number)
C_LONGINT($1;$vIField;$vIFieldType;$vIPosCR;$vIPosColon)
C_POINTER($vpTable;$vpField)
C_STRING(255;%vsDocName)

C_BLOB($vxClipboardData)
C_TEXT($vtClipboardData;$vtFieldData)

* Get a pointer to the table whose number is passed as parameter
$vpTable:=Table($1)
* If there is a current record
If ((Record number($vpTable->)>=0) | (Record number($vpTable->)=-3))
Case of
" Does the clipboard contain a full image record?
: (Test clipboard("4Drc")>0)
" If so, extract the clipboard contents
GET CLIPBOARD("4Drc";$vxClipboardData)
" Name for scrap file in Temporary folder
$vsDocName:=Temporary folder+"Scrap"+String(1+(Random%99))
" Delete the scrap file if it exists (error should be tested here)
DELETE DOCUMENT($vsDocName)
" Save the BLOB into the scrap file
BLOB TO DOCUMENT($vsDocName;$vxClipboardData)

274 4th Dimension Language Reference

" Open the scrap file
SET CHANNEL(10;$vsDocName)
" Receive the whole record from the scrap file
RECEIVE RECORD($vpTable->)
* Close the scrap file
SET CHANNEL(11)
* We longer need the scrap file
DELETE DOCUMENT($vsDocName)
" Does the clipboard contain TEXT?
: (Test clipboard("TEXT")>0)
* Extract the text from the clipboard
$vtClipboardData:=Get text from clipboard
" Initialize field number to be increment
$viField:=0
Repeat
* Look for the next field line in the text
$vIPosCR:=Position(CR ;$vtClipboardData)
If ($vIPosCR>0)
" Extract the field line
$vtFieldData:=Substring($vtClipboardData;1;$vIPosCR-1)
" If there is a colon ":"
$vIPosColon:=Position(":";$vtFieldData)
If ($vIPosColon>0)
* Take only the field data (eliminate field name)
$vtFieldData:=Substring($vtFieldData;$vIPosColon+2)
End if
" Increment field number
$viIField:=$vIField+1
* Clipboard may contain more data than we need...
If ($viIField<=Count fields($vpTable))
° Get the type of the field
GET FIELD PROPERTIES($1;$vIField;$vIFieldType)
" Get a pointer to the field
$vpField:=Field($1;$vIField)
" Depending on the type of the field,
* copy (or not) the text in the appropriate manner
Case of
. (($vIFieldType=Is Alpha field) | ($vIFieldType=Is Text))
$vpField->:=$vtFieldData
. (($vIFieldType=Is Real) |
($vIFieldType=Is Integer) | ($vIFieldType=Is Longint))
$vpField->:=Num($vtFieldData)
. ($vIFieldType=Is Date)
$vpField->:=Date($vtFieldData)
. ($vIFieldType=Is Time)
$vpField->:=Time($vtFieldData)

4th Dimension Language Reference 275

. ($viIFieldType=Is Boolean)
$vpField->:=($vtFieldData="Yes")

Else
* Skip and ignore other field data types
End case
Else

" All fields have been assigned, get out of the loop
$vtClipboardData:=""
End if
* Eliminate text that has just been extracted
$vtClipboardData:=Substring($vtClipboardData;$vIPosCR+Length(CR))
Else
* No delimiter found, get out of the loop
$vtClipboardData:=""
End if
" Repeat as long as we have data
Until (Length($vtClipboardData)=0)
Else
ALERT("The Clipboard does not any data that can be pasted as a record.")
End case
End if

See Also
CLEAR CLIPBOARD, SET PICTURE TO CLIPBOARD, SET TEXT TO CLIPBOARD.

System Variables

If the BLOB data is correctly appended to the clipboard, OK is set to 1; otherwise OK is set
to 0 and an error may be generated.

Error Handling

If there is not enough memory to append the BLOB data to the clipboard, an error -108 is
generated.

276 4th Dimension Language Reference

CLEAR CLIPBOARD Clipboard

version 6.0

CLEAR CLIPBOARD

Parameter Type Description
This command does not require any parameters

Description

The CLEAR CLIPBOARD command clears the Clipboard of its contents. If the Clipboard
contains multiple instances of the same data, all instances are cleared. After a call to
CLEAR CLIPBOARD, the Clipboard becomes empty.

You must call CLEAR CLIPBOARD once before appending new data to the Clipboard using
the command APPEND TO CLIPBOARD, because this latter command does not clear the
Clipboard before appending the new data.

Calling CLEAR CLIPBOARD once and then calling APPEND TO CLIPBOARD several times
enables you to Cut or Copy the same data under different formats.

On the other hand, the commands SET TEXT TO CLIPBOARD and SET PICTURE TO
CLIPBOARD automatically clear the Clipboard before appending the TEXT or PICT data to
it.
Example
(1) The following code clears and then appends data to the clipboard:
= CLEAR CLIPBOARD ° Make sure the clipboard becomes empty
APPEND TO CLIPBOARD('XWKZ';$vxSomeData) ~ Append some data of type 'XWKZ'
APPEND TO CLIPBOARD('SYLK";$vxSylkData) ~ Append same data but as Sylk data
(2) See example for the APPEND TO CLIPBOARD command.

See Also
APPEND TO CLIPBOARD.

4th Dimension Language Reference 277

GET CLIPBOARD Clipboard

version 6.0
GET CLIPBOARD (dataType; data)
Parameter Type Description
dataType String — 4-character string data type
data BLOB -— Requested data extracted from the clipboard
Description

The GET CLIPBOARD command returns into the BLOB field or into the variable data the
data present in the Clipboard and whose type you pass in dataType.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the data is correctly extracted from the clipboard, the command sets the OK variable to
1. If the Clipboard is empty or does not contains any data of the specified type, the
command returns an empty BLOB, sets the OK variable to 0 and generates an error -102.
If there is not enough memory to extract the data from the clipboard,the command sets
the OK variable to 0 and generates an error -108.

Example

The following object methods for two buttons copy from and paste data to the array
asOptions (pop-up menu, drop-downlist,...) located in a form:

* bCopyasOptions object method
If (Size of array(asOptions)>0) ° Is there something to copy?
* Accumulate the array elements in a BLOB
VARIABLE TO BLOB (asOptions;$vxClipData)
CLEAR CLIPBOARD ° Empty the clipboard
APPEND TO CLIPBOARD ("artx";asOptions) ~ Note the data type arbitrarily chosen
End if

" bPasteasOptions object method
If (Test clipboard ("artx")>0) " Is there some "artx" data in the clipboard?
= GET CLIPBOARD ("artx";$vxClipData) ~ Extract the data from the clipboard
* Populate the array with the BLOB data
BLOB TO VARIABLE ($vxClipData;asOptions)
asOptions:=0 " Reset the selected element for the array
End if

278 4th Dimension Language Reference

See Also
APPEND TO CLIPBOARD, GET PICTURE FROM CLIPBOARD, Get text from clipboard.

System Variables

If the data is correctly extracted, OK is set to 1; otherwise OK is set to 0 and an error is
generated.

Error Handling

« If there is not enough memory to extract the data, an error -108 is generated.
« If there is no data of the requested type in the clipboard, an error -102 is generated.

4th Dimension Language Reference 279

GET PICTURE FROM CLIPBOARD Clipboard

version 6.0
GET PICTURE FROM CLIPBOARD (picture)
Parameter Type Description
picture Picture -— Picture extracted from the Clipboard
Description

GET PICTURE FROM CLIPBOARD returns the picture present in the Clipboard into the
picture field or variable picture.

If the picture is correctly extracted from the Clipboard, the command sets the OK variable
to 1. If the Clipboard is empty or does not contain a picture, the command returns an
empty picture, sets the OK variable to 0, and generates an error -102. If there is not
enough memory to extract the picture from the Clipboard, the command sets the OK
variable to 0 and generates an error -108.

Examples

The following button’s object method assigns the picture present in the Clipboard (if
any) to the field [Employees]Photo:

If (Test clipboard ("PICT")>0)

= GET PICTURE FROM CLIPBOARD ([Employees]Photo)
Else
ALERT ("The clipboard does not contain any picture.")
End if
See Also

GET CLIPBOARD, Get text from clipboard, Test clipboard.

System Variables

If the picture is correctly extracted, OK is set to 1; otherwise OK is set to O and an error is
generated.

Error Handling

« If there is not enough memory to extract the picture, an error -108 is generated.
« If there is no picture in the Clipboard, an error -102 is generated.

280 4th Dimension Language Reference

Get text from clipboard Clipboard

version 6.0
Get text from clipboard — String
Parameter Type Description
This command does not require any parameters
Function result String -— Returns the text (if any) present

in the Clipboard

Description
Get text from clipboard returns the text present in the clipboard.

If the text is correctly extracted from the Clipboard, the command sets the OK variable to
1. If the Clipboard is empty or does not contain any text, the command returns an
empty string, sets the OK variable to 0, and generates an error -102. If there is not
enough memory to extract the text from the Clipboard, the command sets the OK
variable to 0 and generates an error -108.

4th Dimension text fields and variables can contain up to 32,000 characters. If there are
more than 32,000 characters in the Clipboard, the result returned by Get text from
clipboard will be truncated when placed into the field or variable receiving the value. To
handle very large Clipboard text contents, first test the size of the data using the
command Test clipboard. Then, if the text exceeds 32,000 characters, use the command
GET CLIPBOARD instead of Get text from clipboard.

Examples

The following example tests the for the presence of text in the Clipboard, then,
depending on the size of the data, extracts the text from the Clipboard as text or as a
BLOB:

$viSize:=Test clipboard ("TEXT")
Case of
. ($vISize<=0)
ALERT ("There is no text in the clipboard.")
. ($vISize<=32000)
= $vtClipData:=Get text from clipboard
If (OK=1)
" Do something with the text
End if

4th Dimension Language Reference 281

: ($vISize>32000)
GET CLIPBOARD ("TEXT";$vxClipData)
If (OK=1)
* Do something with the BLOB
End if
End case

See Also
GET CLIPBOARD, GET PICTURE FROM CLIPBOARD, Test clipboard.

System Variables

If the text is correctly extracted, OK is set to 1; otherwise OK is set to 0 and an error is
generated.

Error Handling

« If there is not enough memory to extract the text, an error -108 is generated.
 If there is no text in the Clipboard, an error -102 is generated.

282 4th Dimension Language Reference

SET PICTURE TO CLIPBOARD Clipboard

version 6.0
SET PICTURE TO CLIPBOARD (picture)
Parameter Type Description
picture Picture — Picture whose copy is to be put into the
Clipboard
Description

SET PICTURE TO CLIPBOARD clears the Clipboard and puts a copy of the picture you passed
in picture into the Clipboard.

After you have put a picture into the Clipboard, you can retrieve it using the command
GET PICTURE FROM CLIPBOARD or by calling GET CLIPBOARD ("PICT";...).

If the picture is correctly put in the Clipboard, the OK variable is set to 1. If there is not
enough memory to put a copy of the picture into the Clipboard, the OK variable is set to
0, but no error is generated.

Example

Using a floating window, you display a form that contains the array asEmployeeName,
which lists the names of the employees from an [Employees] table. Each time you click
on a name, you want to copy the employee's picture to the Clipboard. In the object
method for the array, you write:

If (asEmployeeName#0)
QUERY ([Employees];[Employees]Last name=asEmployeeName{asEmployeeName})
If (Picture size ([Employees]Photo)>0)

= SET PICTURE TO CLIPBOARD ([Employees]Photo) ~ Copy the employee's photo
Else
CLEAR CLIPBOARD " No photo or no record found
End if
End if
See Also

APPEND TO CLIPBOARD, GET PICTURE FROM CLIPBOARD.

System Variables or Sets
If a copy of the picture is correctly put into the Clipboard, the OK variable is set to 1.

4th Dimension Language Reference 283

SET TEXT TO CLIPBOARD Clipboard

version 6.0
SET TEXT TO CLIPBOARD (text)
Parameter Type Description
text String — Text whose copy is to be put into the
Clipboard
Description

SET TEXT TO CLIPBOARD clears the clipboard and then puts a copy of the text you passed
in text into the Clipboard.

After you have put some text into the Clipboard, you can retrieve it using the Get text
from clipboard command or by calling GET CLIPBOARD ("TEXT";...).

If the text is correctly put in the Clipboard, the OK variable is set to 1. If there is not
enough memory to put a copy of the text into the Clipboard, the OK variable is set to 0,
but no error is generated.

4th Dimension text expressions can contain up to 32,000 characters. To copy larger text
values, accumulate the text into a BLOB, call CLEAR CLIPBOARD, then call APPEND TO
CLIPBOARD ("TEXT";...).

Example
See the example for the APPEND TO CLIPBOARD command.

See Also
APPEND TO CLIPBOARD, Get text from clipboard.

System Variables or Sets
If a copy of the text is correctly put into the Clipboard, the OK variable is set to 1.

284 4th Dimension Language Reference

Test clipboard Clipboard

version 6.0
Test clipboard (dataType) — Number
Parameter Type Description
dataType String — 4-character data type string
Function result Number -— Size (in bytes) of data stored in Clipboard

or error code result

Description

The Test clipboard command allows you to test if there is data of the type you passed in
dataType present in the Clipboard.

WARNING: The value you pass in dataType is case sensitive, i.e., “abcd” is not equal to
“ABCD.”

If the Clipboard is empty or does not contain any data of the specified type, the
command returns an error -102 (see the table of predefined constants). If the Clipboard
contains data of the specified type, the command returns the size of this data, expressed
in bytes.

After you have detected that the Clipboard contains data of the type in which you are
interested, you can extract that data from the Clipboard using one the following
commands:

« If the Clipboard contains type TEXT data, you can obtain that data using the
Get text from clipboard command, which returns a text value, or the GET CLIPBOARD
command, which returns the text into a BLOB.

« If the Clipboard contains type PICT data, you can obtain that data using the
GET PICTURE FROM CLIPBOARD command, which returns the picture into a picture field
or variable, or the GET CLIPBOARD command, which returns the picture into a BLOB.

e For any other data type, use the GET CLIPBOARD command, which returns the data into
a BLOB.

4th Dimension provides the following predefined constants:

Constant Type Value
No such data in clipboard Long Integer -102
Text data String TEXT
Picture data String PICT

4th Dimension Language Reference 285

Examples

(1) The following code tests whether the Clipboard contains a picture and, if so, copies
that picture into a 4D variable:

= If (Test clipboard (Picture data) > 0) " Is there a picture in the clipboard?
GET PICTURE FROM CLIPBOARD ($vPicVariable) " If so, extract the picture from
the clipboard
Else
ALERT("There is no picture in the clipboard.")
End if

(2) Usually, applications cut and copy data of type TEXT or PICT into the Clipboard,
because most applications recognize two standard data types. However, an application can
append to the Clipboard several instances of the same data in different formats. For
example, each time you cut or copy a part of a spreadsheet, the spreadsheet application
could append the data under the hypothetical ‘SPSH’ format, as well as in SYLK and TEXT
formats. The ‘SPSH’ instance would contain the data formatted using the application’s
data structure. The SYLK form would contain the same data, but using the SYLK format
recognized by most of the other spreadsheet programs. Finally, the TEXT format would
contain the same data, without the extra information included in the SYLK or the
hypothetical ‘SPSH’ format. At this point, while writing Cut/Copy/Paste routines between
4th Dimension and that hypothetical spreadsheet application, assuming you know the
description of the ‘SPSH’ format and that you are ready to parse SYLK data, you could
write something like:

Case of
* First, check whether the clipboard contains data
* from the hypothetical spreadsheet application

= : (Test clipboard ('SPSH") > 0)
) gécond, check whether the clipboard contains Sylk data
= : (Test clipboard ('SYLK") > 0)
) lli.i.nally check whether the clipboard contains Text data
= : (Test clipboard (‘'TEXT') > 0)
End casé”

In other words, you try to extract from the Clipboard the instance of the data that carries
most of the original information.

(3) See the example for the APPEND TO CLIPBOARD command.

See Also
GET CLIPBOARD, GET PICTURE FROM CLIPBOARD, Get text from clipboard.

286 4th Dimension Language Reference

8 Communications

4th Dimension Language Reference 287

288 4th Dimension Language Reference

SET CHANNEL Communications

version 3
SET CHANNEL (port | operation{; settings | document})
Parameter Type Description
port | operation Number — Serial port number, or
Document operation to perform
settings | document Number | String — Serial port settings, or

Document name

Description

The SET CHANNEL command opens a serial port or a document. You can open only one
serial port or one document at a time with this command.

Historical Note: This command was originally the first 4D command used for working
with serial ports and documents on disks. Since that time, new commands have been
added. Today, you will typically work with documents on disk using the commands Open
document, Create document and Append document. With these commands, you can read
and write characters to and from documents using SEND PACKET or RECEIVE PACKET
(these commands work with SET CHANNEL, too). However, if you want to use the
commands SEND VARIABLE, RECEIVE VARIABLE, SEND RECORD and RECEIVE RECORD, you
must use SET CHANNEL to access the document on disk.

The description of SET CHANNEL is composed of two sections:

* Working with Serial Ports
* Working with Documents

Working with Serial Ports - SET CHANNEL (port;settings)

The first form of the SET CHANNEL command opens a serial port, setting the protocol and
other port information. Data can be sent with SEND PACKET, SEND RECORD or SEND
VARIABLE, and received with RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD or RECEIVE
VARIABLE.

The port Parameter
The first parameter, port, selects the port and the protocol.

4th Dimension Language Reference 289

On Windows:

You can address up to 99 serial ports (one at a time). The following table lists the values
for port:

Range Description

101 to 199 Serial communication with no protocol

201 to 299 Serial communication with software protocol such as XON/XOFF
301 to 399 Serial communication with hardware protocol such as RTS/CTS

Important: The value you pass in port must refer to an existing serial COM port
recognized by the Windows session. For example, in order to be able to use the values
101, 103 and 125, the serial ports COM1, COM3 and COM25 must have been set up
correctly.

On Macintosh:

You determine the value for port by adding the serial port and protocol values as listed in
the following table.

Value to accumulate Description
in port parameter
Serial Port 0 Macintosh Printer Port (or Windows COM2)
1 Macintosh Modem Port (or Windows
COM1)
Protocol 0 None
20 XON/XOFF
30 DTR

For example, to use XON/XOFF with the modem port, you would add 1 + 20 = 21. You
would then use 21 as the value of the port parameter. For code compatibility across
platforms, the port values as used on Macintosh are redirected as follows on Windows:

port value Description

0 CcoM2

1 coM1

20 COM2 (with software protocol such as XON/XOFF)
21 COM1 (with software protocol such as XON/XOFF)
30 COM2 (with hardware protocol such as RTS/CTS)
31 COM1 (with hardware protocol such as RTS/CTS)

290 4th Dimension Language Reference

The settings Parameter

The settings parameter sets the speed, number of data bits, number of stop bits, and
parity. You determine the value for settings by adding the speed, data bits, stop bits, and
parity values as listed in the following table. For example, to set 1200 baud, 8 data bits, 1
stop bit, and no parity, you would add 94 + 3072 + 16384 + 0 = 27742. You would then
use 27742 as the value of the setup parameter.

Value to accumulate Description
in settings parameter

Speed 380 300
(in baud) 189 600
94 1200
62 1800
46 2400
30 3600
22 4800
14 7200
10 9600
4 19200
0 57600
1022 115200
1021 230400
Data bits 0 5
2048 6
1024 7
3072 8
Stop bits 16384 1
-32768 1.5
-16384 2
Parity 0 None
4096 Odd
12288 Even

Tip: The various numeric values to be accumulated and passed in port and settings (but
not including the values for COM1...COM99) are available as predefined constants in the
theme Communications within the Design environment Explorer windows. For
COML1...COM99, use numeric literals.

4th Dimension Language Reference 291

Working with Documents on Disk - SET CHANNEL(operation;document)

The second form of the SET CHANNEL command allows you to create, open, and close a
document. Unlike the System documents commands, it can open only one document at a
time. The document can be read from or written to.

The operation parameter specifies the operation to be performed on the document
specified by document. The following table lists the values of operation and the resulting
operation with different values for document. The first column lists the allowed values for
operation. The second column lists the allowed values for document. The third column
lists the resulting operation.

For example, to display an Open File dialog box to open a text file, you would use the
following line:

= SET CHANNEL (13; ")

Operation Document Result

10 String Opens the document specified by String.
If the document doesn’t exist, the document
is opened and created.

10 " (empty string) Displays the Open File dialog box to open a file.
All file types are displayed.
11 none Closes an open file.
12 " (empty string) Displays the Save File dialog box to create a new file.
13 " (empty string) Displays the Open File dialog box to open a file.

Only text file types are displayed.

All of the operations in this table set the Document system variable if appropriate. They
also set the OK system variable to 1 if the operation was successful. Otherwise, the OK
system variable is set to O.

Examples
See examples for the commands RECEIVE BUFFER, SET TIMEOUT and RECEIVE RECORD.

See Also

Append document, Create document, Open document, RECEIVE BUFFER, RECEIVE PACKET,
RECEIVE RECORD, RECEIVE VARIABLE, SEND PACKET, SEND RECORD, SEND VARIABLE, SET
TIMEOUT.

292 4th Dimension Language Reference

SET TIMEOUT Communications

version 3

SET TIMEOUT (seconds)

Parameter Type Description
seconds Number — Seconds until the timeout
Description

SET TIMEOUT specifies how much time a serial port command has to complete. If the
serial port command does not complete within the specified time, seconds, the serial port
command is canceled, an error -9990 is generated, and the OK system variable is set to 0.
You can catch the error with an error-handling method installed using ON ERR CALL.

Note that the time is the total time allowed for the command to execute, not the time
between characters received. To cancel a previous setting and stop monitoring serial port
communication, use a setting of 0 for seconds.

The commands that are affected by the timeout setting are:
e RECEIVE PACKET

< RECEIVE RECORD

< RECEIVE VARIABLE

Example

The following example sets the serial port to receive data. It then sets a time-out. The data
is read with RECEIVE PACKET. If the data is not received in time, an error occurs:

SET CHANNEL (MacOS Serial Port; Speed 9600 +
Data Bits 8 + Stop Bits One + Parity None) *~ Open Serial Port
= SET TIMEOUT (10) " Set the timeout for 10 seconds
ON ERR CALL ("CATCH COM ERRORS") " Do not let the method being interrupted
RECEIVE PACKET (vtBuffer; Char (13)) " Read until a carriage return is met

If (OK=0)

ALERT (“Error receiving data.")
Else

[People]Name:=vtBuffer ~ Save received data in a field
End if

ON ERR CALL("")

See Also
ON ERR CALL, RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD, RECEIVE VARIABLE.

4th Dimension Language Reference 293

USE ASCII MAP Communications

version 3
USE ASCIlI MAP (map | *{; mapInOut})
Parameter Type Description
map | * String | * — Document name of the map to use, or
* to reset to default ASCII map
maplnOut Number — 0 = Output map
1 = Input map

If omitted, output map

Description

USE ASCII MAP has two forms. The first form loads the ASCII map named map from disk
and uses that ASCII map. If mapInOut is 0, the map is loaded as the output map. If
maplInOut is 1, the map is loaded as the input map.

The ASCII map must have been previously created with the ASCII map dialog box in the
User environment. After an ASCII map is loaded, 4th Dimension uses the map during
transfer of data between the database and a document or a serial port. Transfer operations
include the import and export of text (ASCII), DIF, and SYLK files. An ASCIlI map also
works on data transferred with SEND PACKET, RECEIVE PACKET, and RECEIVE BUFFER. It has
no effect on transfers of data done with SEND RECORD, SEND VARIABLE, RECEIVE RECORD,
and RECEIVE VARIABLE.

If you give an empty string for map, USE ASCII MAP displays a standard Open File dialog
box so that the user can specify an ASCIlI map document. Whenever you execute USE
ASCIl MAP, the OK system variable is set to 1 if the map is successfully loaded, and to O if
it is not.

The second form of USE ASCII MAP, with the asterisk (*) parameter instead of map, restores
the default ASCII map. If maplnOut is O, the map is reset for output. If mapInOut is 1, the
map is reset for input. The default ASCII map has no translation between characters.

Example
The following example loads a special ASCIlI map from disk. It then exports data. Finally,
the default ASCII map is restored:
= USE ASCII MAP ("MactoPC"; 0) ° Load an alternative ASCIl map
EXPORT TEXT ([MyTable]; "MyText") ~ Export data through the map
= USE ASCII MAP (*; 0) ~ Restore the default map

See Also

EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT DIF, IMPORT SYLK, IMPORT TEXT, Mac
to Win, RECEIVE BUFFER, RECEIVE PACKET, SEND PACKET, Win to Mac.

294 4th Dimension Language Reference

SEND PACKET Communications

version 3
SEND PACKET ({docRef; }packet)
Parameter Type Description
docRef DocRef — Document reference number, or
Current channel (serial port or document)
packet String — String or Text to be sent
Description

SEND PACKET sends a packet to a serial port or to a document. If docRef is specified, the
packet is written to the document referenced by docRef. If docRef is not specified, the
packet is written to the serial port or document previously opened by the SET CHANNEL
command. A packet is just a piece of data, generally a string of characters.

Before you use SEND PACKET, you must open a serial port or a document with SET
CHANNEL, or open a document with one of the document commands.

When writing to a document, the first SEND PACKET begins writing at the beginning of
the document unless the document was opened with Append document. Until the
document is closed, each subsequent packet is appended to any previously sent packets.

Version 6 Note: This command is still useful for a document opened with SET CHANNEL.
On the other hand, for a document opened with Open document, Create document and
Append document, you can now use the new commands Get document position and SET
DOCUMENT POSITION to get and change the location in the document where the next
writing (SEND PACKET) or reading (RECEIVE PACKET) will occur.

Important: SEND PACKET writes Windows ASCII data on Windows and Macintosh ASCII
data on Macintosh. Each of these uses eight bits. Standard ASCII uses only the lower
seven bits. Many devices do not use the eighth bit in the same way as does
Windows/Macintosh. If the string to be sent contains data that uses the eighth bit, be
sure to create an ASCII map to translate the ASCII characters, and execute USE ASCII MAP
before using SEND PACKET. Protocols like XON/XOFF use some low ASCII codes to
establish communication between machines. Be careful to not send such ASCII codes, as
this may interfere with the protocol or even break communication.

4th Dimension Language Reference 295

Example

The following example writes data from fields to a document. It writes the fields as fixed-
length fields. Fixed-length fields are always of a specific length. If a field is shorter than
the specified length, the field is padded with spaces. (That is, spaces are added to make up
the specified length.) Although the use of fixed-length fields is an inefficient method of
storing data, some computer systems and applications still use them:

$vhDocRef := Create document (") ~ Create a document
If (OK=1) "~ Was the document created?
For ($vIRecord; 1; Records in selection ([People])) " Loop once for each record
* Send a packet. Create the packet from a string of 15 spaces
* containing the first name field
= SEND PACKET ($vhDocRef; Change string(15 * Char(Space); [People]First;1))

* Send a second packet. Create the packet from a string of 15 spaces
* containing the last name field
* This could be in the first SEND PACKET, but is separated for clarity

= SEND PACKET ($vhDocRef; Change string (15 * Char(Space); [People]Last; 1))
NEXT RECORD([People])
End for
* Send a Char(26), which is used as an end-of-file marker for some computers
= SEND PACKET ($vhDocRef; Char(SUB ASCII Code))
CLOSE DOCUMENT ($vhDocRef) ~ Close the document
End if
See Also

Get document position, RECEIVE PACKET, SET DOCUMENT POSITION.

296 4th Dimension Language Reference

RECEIVE PACKET Communications

version 3
RECEIVE PACKET ({docRef; }receiveVar; stopChar | numChars)
Parameter Type Description
docRef DocRef — Document reference number, or
Current channel (serial port or document)
receiveVar Variable — Variable to receive data

stopChar | numChars String | Number — Character at which to stop receiving, or
Number of characters to receive

Description
RECEIVE PACKET reads characters from a serial port or from a document.

If docRef is specified, this command reads characters from a document opened using Open
document, Create document or Append document. If docRef is omitted, this command
reads characters from the serial port or the document opened using SET CHANNEL.

Whatever the source, the characters read are returned in receiveVar, which must be a Text
or String variable. To read a particular number of characters, pass this number in
numChars. To read characters until a particular character is encountered, pass this
character in stopChar (the stop character is not returned in receiveVar).

When reading a document, if stopChar | numChars is not specified, RECEIVE PACKET will
stop reading at the end of the document. However, remember that while a string variable
has a fixed length, a text variable accepts up to 32000 characters. When reading from a
serial port, RECEIVE PACKET will attempt to wait indefinitely until the timeout (if any) has
elapsed (see SET TIMEOUT) or until the user interrupts the reception (see below).

During execution of RECEIVE PACKET, the user can interrupt the reception by pressing
Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This interruption
generates an error -9994 that you can catch with an error-handling method installed
using ON ERR CALL. Usually, you will only have to handle interruption of a reception
when communicating over a serial port.

When reading a document, the first RECEIVE PACKET begins reading at the beginning of

the document. The reading of each subsequent packet begins at the character following
the last character read.

4th Dimension Language Reference 297

Version 6 Note: This command is still useful for document opened with SET CHANNEL. On
the other hand, for a document opened with Open document, Create document and
Append document, you can now use the new commands Get document position and SET
DOCUMENT POSITION to get and change the location in the document where the next
writing (SEND PACKET) or reading (RECEIVE PACKET) will occur.

When attempting to read past the end of a file, RECEIVE PACKET will return with the data
read up to that point and the variable OK will be set to 1. Then, the next RECEIVE PACKET
will return an empty string and set the OK variable to zero.

Examples

1. The following example reads 20 characters from a serial port into the variable
getTwenty:

— RECEIVE PACKET (getTwenty; 20)

2. The following example reads data from the document referenced by the variable
myDoc into the variable vData. It reads until it encounters a carriage return:

= RECEIVE PACKET (myDoc;vData;Char (Carriage Return))

3. The following example reads data from a document into fields. The data is stored as
fixed-length fields. The method calls a subroutine to strip any trailing spaces (spaces at the
end of the string). The subroutine follows the method:

$vhDocRef := Open document (";"TEXT") ~ Open a TEXT document
If (OK=1) " If the document was opened
Repeat ° Loop until no more data

RECEIVE PACKET ($vhDocRef; $Varl; 15) " Read 15 characters

RECEIVE PACKET ($vhDocRef; $Var2; 15) " Do same as above for second field
If (OK = 1) " If we are not beyond the end of the document
CREATE RECORD([People]) * Create a new record
[People]First := Strip ($Varl) " Save the first name
[People]Last := Strip ($Var2) ~ Save the last name
SAVE RECORD([People]) ~ Save the record
End if
Until (OK =0)
CLOSE DOCUMENT ($vhDocRef) * Close the document
End if

U

U

298 4th Dimension Language Reference

The spaces at the end of the data are stripped by the following method, called Strip:
For ($i; Length ($1); 1; -1) " Loop from end of string to start
If (BL[[SiI]]#" ") " Ifitis not a space...
$i :=-$i " Force the loop to end
End if
End for
$0 := Delete string ($1; -$i; Length ($1)) " Delete the spaces

See Also

Get document position, RECEIVE PACKET, SEND PACKET, SET DOCUMENT POSITION, SET
TIMEOUT.

System Variables or Sets

After a call to RECEIVE PACKET, the OK system variable is set to 1 if the packet is received
without error. Otherwise, the OK system variable is set to 0.

4th Dimension Language Reference 299

RECEIVE BUFFER Communications

version 3

RECEIVE BUFFER (receiveVar)

Parameter Type Description
receiveVar Variable — Variable to receive data
Description

RECEIVE BUFFER reads the serial port that was previously opened with SET CHANNEL. The
serial port has a buffer that fills with characters until a command reads from the buffer.
RECEIVE BUFFER gets the characters from the serial buffer, put them into receiveVar then
clears the buffer. If there are no characters in the buffer, then receiveVar will contain
nothing.

On Windows:

The Windows serial port buffer is limited in size. This means that the buffer can overflow.
When it is full and new characters are received, the new characters replace the oldest
characters. The old characters are lost; therefore, it is essential that the buffer is read
quickly when new characters are received.

On Macintosh

The Macintosh serial port buffer is 64 characters in size. This means that the buffer can
hold 64 characters before it overflows. When it is full and new characters are received, the
new characters replace the oldest characters. The old characters are lost; therefore, it is
essential that the buffer is read quickly when new characters are received.

Note: There are 4D plug-ins that enable you to increase the size of the serial buffer.

RECEIVE BUFFER is different from RECEIVE PACKET in that it takes whatever is in the buffer
and then immediately returns. RECEIVE PACKET waits until it finds a specific character or
until a given number of characters are in the buffer.

During the execution of RECEIVE BUFFER, the user can interrupt the reception by pressing
Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This interruption
generates an error -9994 that you can catch with an error-handling method installed
using ON ERR CALL.

300 4th Dimension Language Reference

Example

The project method LISTEN TO SERIAL PORT uses RECEIVE BUFFER to get text from the
serial port and accumulate it into a an interprocess variable:

" LISTEN TO SERIAL PORT
While (<>IP_Listen_Serial_Port)
RECEIVE BUFFER($vtBuffer)
If ((Length($vtBuffer)+Length(<>vtBuffer))>MAXTEXTLEN)
<>vtBuffer:=""
End if
<>vtBuffer:=<>vtBuffer+$Buffer
End while

This method can be executed as a process method for a local process:

* Start listening to the serial port
SET CHANNEL (201; Speed 9600 + Data Bits 8 + Stop Bits One

+ Parity None) ~ Open Serial Port
<>|P_Listen_Serial_Port:=True
$viSerialPID:=New process("LISTEN TO SERIAL PORT";16*1024;"$Serial Port Listener")

At this point, any other process can read the interprocess <>vtBuffer to work with the data
coming from the serial port.

To stop listening to the serial port, just execute:

* Stop listening to the serial port
<>|P_Listen_Serial_Port:=False

Note that access to the interprocess <>vtBuffer variable should be protected by a
semaphore, so that processes will not conflict. See the command Semaphore for more
information.

See Also
ON ERR CALL, RECEIVE PACKET, Semaphore, SET CHANNEL, Variables.

4th Dimension Language Reference 301

SEND VARIABLE Communications

version 3

SEND VARIABLE (variable)

Parameter Type Description
variable Variable — Variable to send
Description

SEND VARIABLE sends variable to the document or serial port previously opened by SET
CHANNEL. The variable is sent with a special internal format that can be read only by
RECEIVE VARIABLE. SEND VARIABLE sends the complete variable (including its type and
value).

Notes

1. If you send a variable to a document using this command, the document must have
been opened using the SET CHANNEL command. You cannot use SEND VARIABLE with a
document opened with Open document, Append document or Create document.

2. This command does not support array variables. If you want to send and receive arrays
from a document or over a serial port, use the new BLOB commands introduced in
version 6.

Example
See example for the command RECEIVE RECORD.

See Also
RECEIVE RECORD, RECEIVE VARIABLE, SEND RECORD, SET CHANNEL.

302 4th Dimension Language Reference

RECEIVE VARIABLE Communications

version 3

RECEIVE VARIABLE (variable)

Parameter Type Description
variable Variable — Variable in which to receive
Description

RECEIVE VARIABLE receives variable, which was previously sent by SEND VARIABLE from the
document or serial port previously opened by SET CHANNEL.

In interpreted mode, if the variable does not exist prior to the call to RECEIVE VARIABLE,
the variable is created, typed and assigned according to what has been received. In
compiled mode, the variable must be of the same type as what is received. In both cases,
the contents of the variable are replaced with what is received.

Notes

1. If you receive a variable from a document using this command, the document must
have been opened using the SET CHANNEL command. You cannot use RECEIVE VARIABLE
with a document opened with Open document, Append document or Create document.

2. This command does not support array variables. If you want to send and receive arrays
from a document or over a serial port, use the new BLOB commands introduced in version
6.

3. During the execution of RECEIVE VARIABLE, the user can interrupt the reception by
pressing Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This
interruption generates an error -9994 that you can catch with an error-handling method
installed using ON ERR CALL. Usually, you only need to handle the interruption of a
reception while communicating over a serial port.

Example
See example for the command RECEIVE RECORD.

See Also
ON ERR CALL, RECEIVE RECORD, SEND RECORD, SEND VARIABLE.

System Variables or Sets

The OK system variable is set to 1 if the variable is received. Otherwise, the OK system
variable is set to O.

4th Dimension Language Reference 303

SEND RECORD Communications

version 3
SEND RECORD {(table)}
Parameter Type Description
table Table — Table from which to send the current record,
or

Default table, if omitted

Description

SEND RECORD sends the current record of table to the serial port or document opened by
the SET CHANNEL command. The record is sent with a special internal format that can be
read only by RECEIVE RECORD. If no current record exists, SEND RECORD has no effect.

The complete record is sent. This means that all subrecords, pictures and BLOBs stored in
the record are also sent.

Important: When records are being sent and received using SEND RECORD and RECEIVE
RECORD, the source table structure and the destination table structure must be
compatible. If they are not, 4D will convert values according to the table definitions
when RECEIVE RECORD is executed.

Note: If you send a record to a document using this command, the document must have
been opened using the SET CHANNEL command. You cannot use SEND RECORD with a
document opened with Open document, Append document or Create document.

Example
See example for the command RECEIVE RECORD.

See Also
RECEIVE RECORD, RECEIVE VARIABLE, SEND VARIABLE.

304 4th Dimension Language Reference

RECEIVE RECORD Communications

version 3
RECEIVE RECORD {(table)}
Parameter Type Description
table Table — Table into which to receive the record, or

Default table, if omitted

Description

RECEIVE RECORD receives a record into table from the serial port or document opened by
the SET CHANNEL command. The record must have been sent with SEND RECORD. When
you execute RECEIVE RECORD, a new record is automatically created for table. If the record
is received correctly, you must then use SAVE RECORD to save the new record.

The complete record is received. This means that all subrecords, pictures and BLOBs stored
in the record are also received.

Important: When records are being sent and received using SEND RECORD and RECEIVE
RECORD, the source table structure and the destination table structure must be
compatible. If they are not, 4D will convert values according to the table definitions
when RECEIVE RECORD is executed.

Notes

1. If you receive a record from a document using this command, the document must
have been opened using the SET CHANNEL command. You cannot use RECEIVE RECORD
with a document opened with Open document, Append document or Create document.

2. During the execution of RECEIVE RECORD, the user can interrupt the reception by
pressing Ctrl-Alt-Shift (Windows) or Command-Option-Shift (Macintosh). This
interruption generates an error -9994 that you can catch with an error-handling method
installed using ON ERR CALL. Usually, you only need to handle the interruption of a
reception while communicating over a serial port.

Example

A combined use of SEND VARIABLE, SEND RECORD, RECEIVE VARIABLE and RECEIVE RECORD
is ideal for archiving data or for exchanging data between identical single-user databases
used in different places. You can exchange data between 4D databases using the
import/export commands such as EXPORT TEXT and IMPORT TEXT. However, if your data
contains graphics, subtables and/or related tables, using SEND RECORD and RECEIVE
RECORD is far more convenient.

4th Dimension Language Reference 305

For instance, the documentation you are currently reading has been created using 4D and
4D Write. Because several writers in different locations wordwide were working on it, we
needed a simple way to exchange data between the different databases. Here is a
simplified view of the database structure:

El CM See Also El

—— |CM Number L
CM US Name A
CM FR Name A

(2] [eMus Params |:]
Gl lw El J— CM Number

CM Number CM ParmName A

>

CM US Name
WR_CM_US_ P

(2] [cMFR Params EI

CM Number
CM ParmName A

The table [Commands] contains the description of each command or topic. The tables [CM
US Params] and [CM FR Params] respectivily contain the parameter list for each command
in English and in French. The table [CM See Also] contains the commands listed as
reference (See Also section) for each command. Exchanging documentation between
databases therefore consists in sending the [Commands] records and their related records.
To do so, we use SEND RECORD and RECEIVE RECORD. In addition, we use SEND VARIABLE
and RECEIVE VARIABLE in order to mark the import/export document with tags.

Here is the (simplified) project method for exporting the documentation:

* CM_EXPORT_SEL project method
" This method works with the current selection of the [Commands] table

= SET CHANNEL(12;"") ~ Let's the user create an open a channel document
If (OK=1)
" Tag the document with a variable that indicates its contents
" Note: the BUILD_LANG process variable indicates
" if US (English) or FR (French) data is sent
$vsTag:="4DV6COMMAND"+BUILD_LANG
= SEND VARIABLE($vsTag)
* Send a variable indicationg how many [Commands] are sent
$vINbCmd:=Records in selection([Commands])

= SEND VARIABLE($VINbCmd)
FIRST RECORD([Commands])

306 4th Dimension Language Reference

* For each command

For ($viCmd;1;$vINbCmd)

* Send the [Commands] record

SEND RECORD([Commands])
" Select all the related records
RELATE MANY([Commands])
* Depending on the language, send a variable indicating
* the number of parameters that will follow
Case of
: (BUILD_LANG="US")
$vINbParm:=Records in selection([CM US Params])
: (BUILD_LANG="FR")
$vINbParm:=Records in selection([CM FR Params])
End case

SEND VARIABLE($vINbParm)
* Send the parameter records (if any)
For ($vIParm;1;$vINbParm)
Case of
: (BUILD_LANG="US")
SEND RECORD([CM US Params])
NEXT RECORD([CM US Params])
: (BUILD_LANG="FR")
SEND RECORD([CM FR Params])
NEXT RECORD([CM FR Params])
End case
End for
* Send a variable indicating how many “See Also” will follow
$vINbSee:=Records in selection([CM See Also])

SEND VARIABLE($VINbSee)
" Send the [See Also] records (if any)
For ($viISee;1;$vINbSee)
SEND RECORD([CM See Also])
NEXT RECORD([CM See Also])
End for
" Go to the next [Commands] record and continue the export
NEXT RECORD([Commands])

End for
SET CHANNEL(11) ° Close the document

4th Dimension Language Reference

307

Here is the (simplified) project method for importing the documentation:

" CM_IMPORT_SEL project method

= SET CHANNEL(10;") ° Let's user open an existing document
If (OK=1) " If a document was open

= RECEIVE VARIABLE($vsTag) ° Try receiving the expected tag variable
If (BvsTag="4DV6COMMAND@") ° Did we get the right tag?
" Extract language from the tag
$CurLang:=Substring($vsTag;Length($vsTag)-1)
If (($CurLang="US") | ($CurLang="FR")) Did we get a valid language
* How many commands are there in this document?
= RECEIVE VARIABLE($vINbCmd)
If (3vINbCmd>0) " If at least one
For ($vICmd;1;$vINbCmd) For each archived [Commands] record
" Receive the record

= RECEIVE RECORD([Commands])
* Call a subroutine that saves the new record or copies its values
* into an already existing record
CM_IMP_CMD ($CurLang)
* Receive the number of parameters (if any)
= RECEIVE VARIABLE($vINbParm)
If ($vINbParm>=0)
* Call a subroutine that calls RECEIVE RECORD then saves
* the new records or copies them into already existing records
CM_IMP_PARM ($vINbParm;$CurLang)
End if
" Receive the number of “See Also” (if any)
= RECEIVE VARIABLE($VINbSee)
If ($vINbSee>0)
* Call a subroutine that calls RECEIVE RECORD then saves
" the new records or copies them into already existing records
CM_IMP_SEEA ($vINbSee;$CurlLang)

End if
End for
Else
ALERT("The number of commands in this export document is invalid.")
End if
Else
ALERT("The language of this export document is unkown.")
End if
Else
ALERT("This document is NOT a Commands export document.")
End if
= SET CHANNEL(11) ° Close document
End if

308 4th Dimension Language Reference

Note that we do not test the OK variable while receiving the data nor try to catch the
errors. However, because we stored variables in the document that describes the document
itself, if these variables, once received, made sense, the probability for an error is very low.
If for instance a user opens a wrong document, the first test stops the operation right
away.

See Also
RECEIVE VARIABLE, SEND RECORD, SEND VARIABLE.

System Variables or Sets

The OK system variable is set to 1 if the record is received. Otherwise, the OK system
variable is set to O.

4th Dimension Language Reference 309

310 4th Dimension Language Reference

9 Compiler

4th Dimension Language Reference 311

312 4th Dimension Language Reference

Compiler Commands Compiler

version 6.0

4D Compiler translates your database applications into assembly level instructions. The
advantages of 4D Compiler are:

e Speed: Your database can run from 3 to 1,000 times faster.

« Code checking: Your database application is scanned for the consistency of code. Both
logical and syntactical conflicts are detected.

» Protection: A compiled database is functionally identical to the original, except that the
structure and procedures cannot be viewed or modified, deliberately or inadvertently.
Compiling a database ensures security.

- Stand-alone double-clickable applications: 4D Compiler creates stand-alone applications
(.EXE files) with their own custom icons.

The commands in this theme relate to the use of the compiler. They enable you to
normalize data types throughout your database. The IDLE command is specifically used in
compiled databases.

C_BLOB C_INTEGER C_REAL IDLE
C_BOOLEAN C_LONGINT C_STRING

C_DATE C_PICTURE C_TEXT

C_GRAPH C_POINTER C_TIME

These commands, except IDLE, declare variables and cast them as a specified data type.
Declaring variables resolves ambiguities concerning a variable’s data type. If a variable is
not declared with one of these commands, the compiler attempts to determine a
variable’s data type. The data type of a variable used in a form is often difficult for the
compiler to determine. Therefore, it is especially important that you use these commands
to declare a variable used in a form.

Numeric operations on long integer and integer variables are usually much faster than
operations on the default numeric type (real).

General rules about writing code that will be compiled

« Variable indirection as used in 4th Dimension version 1 is not allowed. You cannot use
alpha indirection, with the section symbol (8), to indirectly reference variables. Nor can
you use numeric indirection, with the curly braces ({...}), for this purpose. Curly braces
can only be used when accessing specific elements of an array that has been declared.
However, you can use parameter indirection, as described in the documentation for 4D
Compiler.

4th Dimension Language Reference 313

< You can’t change the data type of any variable or array.

* You can’t change a one-dimensional array to a two-dimensional array, or change a two-
dimensional array to a one-dimensional array.

* You can’t change the length of string variables or of elements in string arrays.

e Although 4D Compiler will type the variable for you, you should specify the data type
of a variable by using compiler directives where the data type is ambiguous, such as in a
form.

= Another reason to explicitly type your variables is to optimize your code. This rule
applies especially to any variable used as a counter. Use variables of a long integer data
type for maximum performance.

e To clear a variable (initialize it to null), use CLEAR VARIABLE with the name of the
variable. Do not use a string to represent the name of the variable in the CLEAR VARIABLE
command.

« The Undefined function will always return False. Variables are always defined.

Examples

(1) The following are some basic variable declarations for 4D Compiler:

* The process variable vxMyBlob is declared as a variable of type BLOB
= C_BLOB(vxMyBlob)

" The interprocess variable <>OnWindows is declared as a variable of type Boolean
= C_BOOLEAN(<>OnWindows)

" The local variable $vdCurDate is declared as a variable of type Date
= C_DATE($vdCurDate)

" The 3 process variables vgl, vg2 and vg3 are declared as variables of type Graph
= C_GRAPH(vg1;vg2;vg3)

(2) In the following example, the project method OneMethodAmongOthers declares 3
parameters:

* OneMethodAmongOthers Project Method

* OneMethodAmongOthers (Real ; Integer { ; Long })

* OneMethodAmongOthers (Amount ; Percentage { ; Ratio })

= C_REAL(%$1) * 1st parameter is of type Real
= C_INTEGER($2) " 2nd parameter is of type Integer
= C_LONGINT($3) * 3rd parameter is of type Long Integer

314 4th Dimension Language Reference

(3) In the following example, the project method Capitalize accepts a string parameter and
returns a string result:

* Capitalize Project Method
* Capitalize (String) -> String
" Capitalize (Source string) -> Capitalized string

= C_STRING(255;$0;$1)
$0:=Uppercase(Substring($1;1;1))+Lowercase(Substring($1;2))

(4) In the following example, the project method SEND PACKETS accepts a time parameter
followed by a variable number of text parameters:

* SEND PACKETS Project Method

" SEND PACKETS (Time ; Text { ; Text2... ; TextN })
" SEND PACKETS (docRef ; Data { ; Data2... ; DataN })

= C_TIME ($1)
= C_TEXT (${2})
= C_LONGINT ($vlIPacket)

For ($vIPacket;2;Count parameters)
SEND PACKET ($1;${$vIPacket})
End for

(5) In the following example, the project method COMPILER_Param_Predeclare28
predeclares the syntax of other project methods for 4D Compiler

* COMPILER_Param_Predeclare28 Project Method

* OneMethodAmongOthers (Real ; Integer { ; Long })

= C_REAL(OneMethodAmongOthers;$1)
= C_INTEGER(OneMethodAmongOthers;$2) -
= C_LONGINT(OneMethodAmongOthers;$3) T

* Capitalize (String) -> String
= C_STRING(Capitalize;255;$0;$1)

* SEND PACKETS (Time ; Text { ; Text2... ; TextN })
= C_TIME(SEND PACKETS;$1)
= C_TEXT(SEND PACKETS;${2})

See Also

C_BLOB, C_BOOLEAN, C_DATE, C_GRAPH, C_INTEGER, C_LONGINT, C_PICTURE,
C_POINTER, C_REAL, C_STRING, C_TEXT, C_TIME, IDLE.

4th Dimension Language Reference 315

C_BLOB Compiler

version 6.0
C_BLOB ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

C_BLOB casts each specified variable as a BLOB variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_BLOB(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_BLOB(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands.

316 4th Dimension Language Reference

C_BOOLEAN Compiler

version 3
C_BOOLEAN ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The command C_BOOLEAN casts each specified variable as a Boolean variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_BOOLEAN(%{...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_BOOLEAN(${5}) tells 4D and 4D Compiler
that starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters.

4th Dimension Language Reference 317

C_DATE Compiler

version 3
C_DATE ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The command C_DATE casts each specified variable as a Date variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_DATE(%{...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_DATE(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters.

318 4th Dimension Language Reference

C_GRAPH Compiler

version 3
C_GRAPH ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method String — Name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The command C_GRAPH casts each specified variable as a Graph variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_GRAPH(%{...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_GRAPH(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands.

4th Dimension Language Reference 319

C_INTEGER Compiler

version 3
C_INTEGER ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The C_INTEGER command casts each specified variable as an Integer variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_INTEGER(%{...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_INTEGER(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters, C_LONGINT, C_REAL.

320 4th Dimension Language Reference

C_LONGINT Compiler

version 3
C_LONGINT ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The C_LONGINT command casts each specified variable as a Long Integer variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_LONGINT(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_LONGINT(${5}) tells 4D and 4D Compiler
that starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters, C_INTEGER, C_REAL.

4th Dimension Language Reference 321

C_PICTURE Compiler

version 3
C_PICTURE ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The command C_PICTURE casts each specified variable as a Picture variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_PICTURE(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_PICTURE(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters.

322 4th Dimension Language Reference

C_POINTER Compiler

version 3
C_POINTER ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The command C_POINTER casts each specified variable as a Pointer variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_POINTER(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_POINTER(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters.

4th Dimension Language Reference 323

C_REAL Compiler

version 3
C_REAL ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The command C_REAL casts each specified variable as a Real variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_REAL(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_REAL(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters, C_INTEGER, C_LONGINT.

324 4th Dimension Language Reference

C_STRING Compiler

version 3
C_STRING ({method; }size; variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
size Number — Size of the string
variable Variable or ${...} — Name of variable(s) to declare
Description

The command C_STRING casts each specified variable as a String variable.

The size parameter specifies the maximum length of the strings that the variable can
contain. Strings are limited to 255 characters. If speed is a concern, use string variables
rather than text variables wherever possible.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_STRING(...;${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_STRING(...;${5}) tells 4D and 4D Compiler
that starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters, C_TEXT.

4th Dimension Language Reference 325

C_TEXT Compiler

version 3
C_TEXT ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The command C_TEXT casts each specified variable as a Text variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_TEXT(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_TEXT(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler Commands, Count parameters, C_STRING.

326 4th Dimension Language Reference

C_TIME Compiler

version 3
C_TIME ({method; }variable{; variable2; ...; variableN})
Parameter Type Description
method Method — Optional name of method
variable Variable or ${...} — Name of variable(s) to declare
Description

The command C_TIME casts each specified variable as a Time variable.

The first form of the command, in which the optional method parameter is NOT passed,
is used to declare and type any process, interprocess, or local variable.

Note: This form can be used in interpreted databases.

The second form of the command, in which the optional method parameter IS passed, is
used to predeclare for 4D Compiler the result and/or the parameters ($0, $1, $2 etc) for a
method. Use this form of the command in order to skip the Typing variables phase while
compiling a database, saving compilation time.

WARNING: The second form cannot be executed in interpreted mode. For this reason, if
you are using this syntax, keep it in a method that is not executed in interpreted mode.
The name of this method must start with “COMPILER.”

Advanced Tip: The syntax C_TIME(${...}) allows you to declare a variable number of
parameters of the same type, under the condition that these are the last parameters for
the method. For example, the declaration C_TIME(${5}) tells 4D and 4D Compiler that
starting with the fifth parameter, the method can receive a variable number of
parameters of that type. For more information, see the Count parameters command.

Examples
See examples in the section Compiler Commands.

See Also
Compiler commands, Count parameters.

4th Dimension Language Reference 327

IDLE Compiler

version 3

IDLE

Parameter Type Description
This command does not require any parameters

Description

The IDLE command is designed only for 4D Compiler. This command is only used in
compiled databases in which user-defined methods are written so that no calls are made
back to the 4th Dimension engine. For example, if a procedure has a For loop in which no
4th Dimension commands are executed, the loop could not be interrupted by a process
installed with ON SERIAL PORT CALL or ON EVENT CALL, nor could a user switch to
another application. In this case, you should insert IDLE to allow 4th Dimension to trap
events. If you do not want any interruptions, omit IDLE.

Examples

In the following example, the loop would never terminate in a compiled database without
the call to IDLE:

" Do Something Project Method
ON EVENT CALL ("EVENT METHOD")
<>vbWeStop:=False
MESSAGE ("Processing..."+Char(13)+"Type any key to interrupt...")
Repeat

" Do some processing that doesn’t involve a 4D command
= IDLE
Until (<>vbWeStop)
ON EVENT CALL (")
with:

" EVENT METHOD Project Method
If (Undefined(KeyCode))

KeyCode:=0
End if
If (KeyCode#0)

CONFIRM ("Do you really want to stop this operation?")

If (OK=1)

<>vbWeStop:=True

End if

End if

See Also
Compiler commands, ON EVENT CALL, ON SERIAL PORT CALL.

328 4th Dimension Language Reference

10 Database Methods

4th Dimension Language Reference 329

330 4th Dimension Language Reference

Database Methods

Database Methods

version 6.0

Database methods are methods that are automatically executed by 4th Dimension when a

general session event occurs.

8| Explorer =] B3
d@l# &@[k|lm|m|

I =] D atabase Methods

2 OnExit

On Server Close Connection
0On Server Open Connection
On Server Shutdown

On Server Startup

On Startup

On'Web Connection
Form Methods & Triggers
Project Methods

v

izan] |2 (s

To create or open and edit a database method:

1. Open the Explorer window.

2. Select the Methods tab.

3. Expand the Database Methods theme.

4. Double click on the method.

or:
1. Select the method.

2. Click Edit or press Enter or Return.

You edit a database method in the same way as any other method.

You cannot call a database method from another method. Database methods are
automatically invoked by 4th Dimension at certain points in a working session. The
following table summarizes execution of database methods:

Database Method

On Startup

On Exit

On Web Connection

On Server Startup

On Server Shutdown

On Server Open Connection
On Server Close Connection

4th Dimension

Yes, Once
Yes, Once
Yes, Multiple
No

No

No

No

4D Server

No

No

Yes, Multiple
Yes, Once
Yes, Once
Yes, Multiple
Yes, Multiple

4D Client

Yes, Once
Yes, Once
No
No
No
No
No

4th Dimension Language Reference 331

For detailed information about each of the database methods, see the following sections:

e On Startup Database Method

e On Exit Database Method

e On Web Connection Database Method

e On Server Startup Database Method (4D Server Reference manual)

e On Server Shutdown Database Method (4D Server Reference manual)

« On Server Open Connection Database Method (4D Server Reference manual)
« On Server Close Connection Database Method (4D Server Reference manual)

See Also
Methods.

332 4th Dimension Language Reference

On Startup Database Method Database Methods

version 6.0

The On Startup Database Method is called once when you open a database.

This occurs in the following 4D environments:

e 4th Dimension

= 4D Client (on the client side, after the connection has been accepted by 4D Server)
e 4D Runtime

e 4D application compiled and merged with 4D Compiler and 4D Engine

Note: The On Startup Database Method is NOT invoked by 4D Server.

The On Startup Database Method is automatically invoked by 4D; unlike project methods,
you cannot call this database method yourself. To call and perform tasks from within the
On Startup Database Method, as well as from project methods later on, use subroutines.

The On Startup Database Method is the perfect place to:

< Initialize interprocess variables that you will use during the whole working session.

» Start processes automatically when a database is opened.

e Load Preferences or Settings saved for this purpose during the previous working session.
< Prevent the opening of the database if a condition is not met (i.e., missing system
resources) by explicitly calling QUIT 4D.

« Perform any other actions that you want to be performed automatically each time a
database is opened.

4th Dimension Language Reference 333

Compatibility with previous versions of 4D

Database methods are a new type of method introduced in version 6. In previous versions
of 4th Dimension, there was only one method (procedure) that 4D automatically
executed when you opened a database. This procedure had to be called STARTUP (US
English INTL version) or DEBUT (French version) in order to be invoked. If you have
converted a version 3 database to version 6, and if you want to take advantage of the new
On Startup Database Method capability, you must deselect the Use Old Startup Method
property in the Database Properties dialog box (shown in this section). This property
only affects the STARTUP/On Startup Database Method alternative. If you do not deselect
this property and add, for instance, an On Exit Database Method, this latter will be
invoked by 4D.

Blelo =)= 2| el

rTable and Fields———— ~Method Editor
o l: s € Default to Listing
€ Color Background € Default to Flowchart
I~ Use Icons for Field Types % No Default (Prompt)

™ Hide Keywords

rDesign Environment Printing

IV Print Titles

—Compatibility
[V Use DId Startup Method Scheme
[V Use 0Id File Procedure Scheme

Cancel | 0K I

Example
See the example in the section On Exit Database Method.

See Also
Database Methods, Methods, On Exit Database Method, QUIT 4D.

334 4th Dimension Language Reference

On Exit Database Method Database Methods

version 6.0

The On Exit Database Method is called once when you quit a database.

This method is used in the following 4D environments:

e 4th Dimension

e 4D Client (on the client side)

e 4D Runtime

» 4D application compiled and merged with 4D Compiler and 4D Engine

Note: The On Exit Database Method is NOT invoked by 4D Server.

The On Exit Database Method is automatically invoked by 4D; unlike project methods, you
cannot call this database method yourself. To call and perform tasks from within the On
Startup Database Method, as well as from project methods, use subroutines.

A database can be exited if any of the following occur:

e The user selects the menu command Quit from the User or Design Environment File
menu

« A call to the QUIT 4D command is issued

* A 4D Plug-in issues a call to the QUIT 4D entry point

No matter how the exit from the database was initiated, 4D performs the following
actions:

« If there is no On Exit Database Method, 4D aborts each running process one by one,
without distinction. If the user is performing data entry, the records will be cancelled and
not saved.

« If there is an On Exit Database Method, 4D starts executing this method within a newly
created local process. You can therefore use this database method to inform other
processes, via interprocess communication, that they must close (data entry) or stop
executing. Note that 4D will eventually quit—the On Exit Database Method can perform
all the cleanup or closing operations you want, but it cannot refuse the quit, and will at
some point end.

The On Exit Database Method is the perfect place to:

» Stop processes automatically started when the database was opened

« Save (locally, on disk) Preferences or Settings to be reused at the beginning of the next
session in the On Startup Database Method

« Perform any other actions that you want to be done automatically each time a database
is exited

4th Dimension Language Reference 335

Example

The following example covers all the methods used in a database that tracks the
significant events that occur during a working session and writes a description in a text
document called “Journal.”

e The On Startup Database Method initializes the interprocess variable <>vbQuit4D, which
tells all the use processes whether or not the database is being exited. It also creates the
journal file, if it does not already exist.

* On Startup Database Method
C_TEXT(<>vtIPMessage)
C_BOOLEAN(<>vbQuit4D)
<>vbQuit4D:=False

If (Test path name("Journal") # Is a document)
$vhDocRef:=Create document("Journal")
If (OK=1)
CLOSE DOCUMENT($vhDocRef)
End if
End if
WRITE JOURNAL ("Opening Session")

e The project method WRITE JOURNAL, used as subroutine by the other methods, writes
the information it receives, in the journal file:

* WRITE JOURNAL Project Method

* WRITE JOURNAL (Text)

* WRITE JOURNAL (Event description)
C_TEXT($1)
C_TIME($vhDocRef)

While (Semaphore("$lournal™))
DELAY PROCESS(Current process;1)
End while
$vhDocRef:=Append document("Journal")
If (OK=1)
PROCESS PROPERTIES(Current process;$vsProcessName;$viState;
$viElapsedTime;$vbVisible)
SEND PACKET($vhDocRef;String(Current date)+Char(9)
+String(Current time)+Char(9)+String(Current process)+Char(9)
+$vsProcessName+Char(9)+$1+Char(13))
CLOSE DOCUMENT($vhDocRef)
End if
CLEAR SEMAPHORE("$Journal™)

336 4th Dimension Language Reference

Note that the document is open and closed each time. Also note the use of a semaphore
as “access protection” to the document—we do not want two processes trying to access
the journal file at the same time.

e The M_ADD_RECORDS project method is executed when a menu item Add Record is
chosen in Custom menus:

* M_ADD_RECORDS Project Method

MENU BAR(1)

Repeat
ADD RECORD([Table1];*)
If (OK=1)
WRITE JOURNAL ("Adding record #"+String(Record number([Tablel]))
+" in Table1")
End if

Until ((OK=0) | <>vbQuit4D)
This method loops until the user cancels the last data entry or exits the database.

e The input form for [Table 1] includes the treatment of the On Outside Call events. So,
even if a process is in data entry, it can be exited smoothly, with the user either saving (or
not saving) the current data entry:

* [Tablel];"Input" Form Method
Case of
. (Form event=0n Outside Call)
If (<>vtIPMessage="QUIT")
CONFIRM("Do you want to save the changes made to this record?")
If (OK=1)
ACCEPT
Else
CANCEL
End if
End if
End case

e The M_QUIT project method is executed when Quit is chosen from the File menu in the
Custom Menus environment:

" M_QUIT Project Method
$vIProcessID:=New process("DO_QUIT";32*1024;"$DO_QUIT")

The method uses a trick. When QUIT 4D is called, the command has an immediate effect.
Therefore, the process from which the call is issued is in “stop mode” until the database is
actually exited. Since this process can be one of the processes in which data entry occurs,
the call to QUIT 4D is made in a local process that is started only for this purpose.

4th Dimension Language Reference 337

Here is the DO_QUIT method:

* DO_QUIT Project Method
CONFIRM("Are you sure you want to quit?")
If (OK=1)
WRITE JOURNAL ("Quitting Database")
QUIT 4D
" QUIT 4D has an immediate effect, any line of code below will never be executed

End if

< Finally, here is the On Exit Database Method which tells all open user processes “It's time
to get out of here!” It sets <>vbQuit4D to True and sends interprocess messages to the user
processes that are performing data entry:

* On Exit Database Method
<>vbQuit4D:=True
Repeat
$vbDone:=True
For ($viProcess;1;Count tasks)
PROCESS PROPERTIES($vIProcess;$vsProcessName;$viState;
$viElapsedTime;$vbVisible)
If (((($vsProcessName="ML_@") | ($vsProcessName="M_@"))) & ($viIState>=0))
$vbDone:=False
<>vtIPMessage:="QUIT"
BRING TO FRONT($vIProcess)
CALL PROCESS($vIProcess)
$vhStart:=Current time
Repeat
DELAY PROCESS(Current process;60)
Until ((Process state($vIProcess)<0) |
((Current time-$vhStart)>=?00:01:007?))
End if
End for
Until ($vbDone)
WRITE JOURNAL ("Closing session™)

Note: Processes that have names beginning with "ML_..." or "M_..." are started by menu
commands for which the Start a New Process property has been selected. In this
example, these are the processes started when the menu command Add record was
chosen.

The test (Current time-$vhStart)>=?00:01:007? allows the database method to get out of the
“waiting the other process” Repeat loop if the other process does not act immediately.

338 4th Dimension Language Reference

e The following is a typical example of the Journal file produced by the database:

2/6/97
2/6/97
2/6/97
2/6/97
2/6/97

15:47:25
15:55:43
15:55:46
15:55:54
15:55:58

~No ool

User/Custom Menus process Opening Session

ML_1
ML_1
$DO_QUIT
$xx

Adding record #23 in Tablel
Adding record #24 in Tablel
Quitting Database

Closing session

Note: The name $xx is the name of the local process started by 4D in order to execute the

On Exit Database Method.

See Also

On Startup Database Method, QUIT 4D.

4th Dimension Language Reference

339

340 4th Dimension Language Reference

11 Data Entry

4th Dimension Language Reference 341

342 4th Dimension Language Reference

ADD RECORD Data Entry

version 3
ADD RECORD ({table}{; H*}
Parameter Type Description
table Table — Table to use for data entry, or
Default table, if omitted
* — Hide scroll bars
Description

The command ADD RECORD lets the user add a new record to the database for the table
table or for the default table, if you omit the table parameter.

ADD RECORD creates a new record, makes the new record the current record for the
current process, and displays the current input form. In the Custom Menus environment,
after the user has accepted the new record, the new record is the only record in the
current selection.

The following figure shows a typical data entry form.

@Enlw for Employees =1 B3
=

Employees

Department Code li
First Name l—
Last Name]—

Salary]—D

SS Number l—

Start Day [m

Title

|
il Ll

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

ADD RECORD displays the form until the user accepts or cancels the record. If the user is
adding several records, the command must be executed once for each new record.

The record is saved (accepted) if the user clicks an Accept button or presses the Enter key
(numeric keypad), or if the ACCEPT command is executed.

4th Dimension Language Reference 343

The record is not saved (canceled) if the user clicks a Cancel button or presses the cancel
key combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to ADD RECORD, OK is set to 1 if the record is accepted, to O if canceled.

Note: Even when canceled, the record remains in memory and can be saved if SAVE
RECORD is executed before the current record pointer is changed.

Examples
1. The following example is a loop commonly used to add new records to a database:

INPUT FORM ([Customers];"Std Input") ~ Set input form for [Customers] table
Repeat ° Loop until the user cancels

= ADD RECORD ([Customers];*) ~ Add a record to the [Customers] table
Until (OK=0) ° Until the user cancels

2. The following example queries the database for a customer. Depending on the results of
the search, one of two things may happen. If no customer is found, then the user is
allowed to add a new customer with ADD RECORD. If at least one customer is found, the
user is presented with the first record found, which can be modified with MODIFY
RECORD:

READ WRITE([Customers])
INPUT FORM([Customers];"Input") ° Set the input form
viCustNum:=Num(Request ("Enter Customer Number:")) ~ Get the customer number
If (OK=1)
QUERY ([Customers];[Customers]CustNo=vICustNum) ~ Look for the customer
If (Records in selection([Customers])=0) ° If no customer is found...
= ADD RECORD([Customers]) ~ Add a new customer
Else
If(Not(Locked([Customers])))
MODIFY RECORD([Customers]) ~ Modify the record
UNLOAD RECORD([Customers])
Else
ALERT("The record is currently being used.")
End if
End if
End if

See Also
ACCEPT, CANCEL, CREATE RECORD, MODIFY RECORD, SAVE RECORD.

System Variables or Sets

Accepting the record sets the OK system variable to 1; canceling it sets the OK system
variable to 0. The OK system variable is set only after the record is accepted or canceled.

344 4th Dimension Language Reference

MODIFY RECORD Data Entry

version 3
MODIFY RECORD ({table}{; H{*}
Parameter Type Description
table Table — Table to use for data entry, or
Default table, if omitted
* — Hide scroll bars
Description

The command MODIFY RECORD lets the user modifies the current record for the table
table or for the default table if you omit the table parameter. MODIFY RECORD loads the
record, if it is not already loaded for the current process, and displays the current input
form. If there is no current record, then MODIFY RECORD does nothing. MODIFY
RECORD does not affect the current selection.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

To use MODIFY RECORD, the current record must have read-write access and should not
be locked.

If the form contains buttons for moving within the selection of records, MODIFY
RECORD lets the user click the buttons to modify records and move to other records.

The record is saved (accepted) if the user clicks an Accept button or presses the Enter key
(numeric key pad), or if the ACCEPT command is executed.

The record is not saved (canceled) if the user clicks a Cancel button or presses the cancel
key combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed. Even when canceled, the record remains in memory and
can be saved if SAVE RECORD is executed before the current record pointer is changed.

After a call to MODIFY RECORD, OK is set to 1 if the record is accepted, to O if canceled.

Note: Even when canceled, the record remains in memory and can be saved if SAVE
RECORD is executed before the current record pointer is changed.

If you are using MODIFY RECORD and the user does not change any of the data in the
record, the record is not considered to be modified, and accepting the record does not
cause it to be saved again. Actions such as changing variables, checking check boxes, and
selecting radio buttons do not qualify as modifications. Only changing data in a field,
either through data entry or through a method, causes the record to be saved.

4th Dimension Language Reference 345

Example
See example for the command ADD RECORD.

See Also
ADD RECORD, Locked, Modified record, READ WRITE, UNLOAD RECORD.

System Variables or Sets

Accepting the record sets the OK system variable to 1; canceling it sets the OK system
variable to 0. The OK system variable is set only after the record is accepted or canceled.

346 4th Dimension Language Reference

ADD SUBRECORD Data Entry

version 3

ADD SUBRECORD (subtable; form{; *})

Parameter Type Description

subtable Subtable — Subtable to use for data entry
form String — Form to use for data entry

* — Hide scroll bars

Description

The command ADD SUBRECORD lets the user add a new subrecord to subtable, using the
form form. ADD SUBRECORD creates a new subrecord in memory, makes it the current
subrecord, and displays form. A current record for the parent table must exist. If a current
parent record does not exist for the process, ADD SUBRECORD has no effect. The form
must belong to subtable.

The subrecord is kept in memory (accepted) if the user clicks an Accept button or presses
the Enter key (numeric pad), or if the ACCEPT command is executed. After the subrecord
has been added, the parent record must be explicitly saved in order for the subrecord to be
saved.

The subrecord is not saved if the user clicks a Cancel button or presses the cancel key
combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to ADD SUBRECORD, OK is set to 1 if the subrecord is accepted, to O if
canceled.

The form is displayed in the frontmost window of the process. The window has scroll bars

and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

4th Dimension Language Reference 347

Example

The following example is part of a method. It adds a subrecord for a new child to an
employee’s record. The data for the children is stored in a subtable named
[Employees]Children. Note that the [Employees] record must be saved in order for the new
subrecord to be saved:

= ADD SUBRECORD([Employees]Children;"Add Child")
If (OK=1) " If the user accepted the subrecord
SAVE RECORD ([Employees]) ° save the employee’s record
End if

See Also
ACCEPT, CANCEL, MODIFY SUBRECORD, SAVE RECORD.

System Variables or Sets

Accepting the subrecord sets the OK system variable to 1; canceling it sets the OK system
variable to 0.

348 4th Dimension Language Reference

MODIFY SUBRECORD Data Entry

version 3

MODIFY SUBRECORD (subtable; form{; *})

Parameter Type Description

subtable Subtable — Subtable to use for data entry
form — Form to use for data entry

* — Hide scroll bars

Description

The command MODIFY SUBRECORD displays the current subrecord of subtable for
modification using the form form. The form must belong to subtable.

A current record for the parent table must exist. If a current parent record does not exist
for the process, MODIFY SUBRECORD has no effect. In addition, if there is no current
subrecord, then MODIFY SUBRECORD does nothing.

The subrecord is kept in memory (accepted) if the user clicks an Accept button or presses
the Enter key (numeric pad), or if the ACCEPT command is executed. After the subrecord
has been modified, the parent record must be explicitly saved in order for the subrecord
to be saved.

The subrecord is not modified if the user clicks a Cancel button or presses the cancel key
combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to MODIFY SUBRECORD, OK is set to 1 if the subrecord modifications are
accepted, to O if canceled.

The form is displayed in the frontmost window of the process. The window has scroll bars
and a size box. Specifying the optional * parameter causes the window to be drawn
without scroll bars or a size box.

See Also
ACCEPT, ADD SUBRECORD, CANCEL, SAVE RECORD.

System Variables or Sets

Accepting the subrecord modifications sets the OK system variable to 1; canceling it sets
the OK system variable to O.

4th Dimension Language Reference 349

DIALOG Data Entry

version 3

DIALOG ({table; }form)

Parameter Type Description

table Table — Table owning the form or
Default table if omitted

form Form — Form to display as dialog

Description

The command DIALOG presents the form form to the user. This command is often used to
get information from the user through the use of variables, or to present information to
the user, such as options for performing an operation.

It is common to display the form inside a modal window created with the Open window
command.

Here is a typical example of a dialog:

i . Chesdsadet
- PRINT SETTINGS

Print Selection Qutput Format

(% Summary

{" Detail Report
" Print Selected Records

|11 records ¢ Quick Report
" Print Current Record

[No Cument Record
¢ ,C)ﬂ\ 7 ”Cf’l c_..--P) iﬂ’f

In a dialog, data entry can be performed only by using variables. Fields can be displayed
with the current values, but are not enterable.

Tip: Sometimes dialogs can be simulated by ADD RECORD, if you need the capabilities
provided by field data entry. In this case, if the form is accepted, a record is added to the
table.

Tip: Conversely, data entry can be performed using the DIALOG command. In this case,
you must create and save the record. DIALOG does not manipulate records.

Use DIALOG instead of ALERT, CONFIRM, or Request when the information that must be
presented or gathered is more complex than those commands can manage.

350 4th Dimension Language Reference

Unlike ADD RECORD or MODIFY RECORD, DIALOG does not use the current input form.
You must specify the form to be used in the form parameter. Also, the default button
panel is not used if buttons are omitted. Instead the OK and Cancel buttons are
automatically created. Adding any custom button removes the default OK and Cancel
buttons.

The dialog is accepted if the user clicks an Accept button or presses the Enter key
(numeric key pad), or if the ACCEPT command is executed.

The dialog is canceled if the user clicks a Cancel button or presses the cancel key
combination (Ctrl-Period on Windows, Command-Period on Macintosh), or if the
CANCEL command is executed.

After a call to DIALOG, if the dialog is accepted, OK is set to 1; if it is canceled, OK is set to
0.

Example

The following example shows the use of DIALOG to specify search criteria. A custom form
containing the variables vName and vState is displayed so the user can enter the search
criteria.

Open window (10;40;370;220) * Open a modal window

= DIALOG([Company];"Search Dialog") " Display a custom search dialog
CLOSE WINDOW " No longer need the modal window
If (OK=1) " If the dialog is accepted
QUERY ([Company];[Company]Name=vName;*)
QUERY ([Company];&;[Company]State=vState)
End if

See Also
ACCEPT, ADD RECORD, CANCEL, Open window.

System Variables or Sets

After a call to DIALOG, if the dialog is accepted, OK is set to 1; if it is canceled, OK is set to
0.

4th Dimension Language Reference 351

Modified Data Entry

version 3
Modified (field) — Boolean
Parameter Type Description
field Field — Field to test
Function result Boolean -— True if the field has been assigned a new value,

otherwise False

Description

Modified returns True if field has been programmatically assigned a value or has been
edited during data entry.

During data entry, a field is considered modified if the user has edited the field (whether
or not the original value is changed) and then left it by going to another field or by
clicking on a control. Note that just tabbing out of a field does not set Modified to True.
The field must have been edited in order for Modified to be True.

When executing a method, a field is considered to be modified if it has been assigned a
value (different or not).

In both cases, use the Old command to detect if the field value has been actually changed.

Note: Although modified can be applied to any type of field, if you use it in combination
with the old command, be aware of the restrictions that apply to the old command. For
details, see the description of the Old command.

During data entry, it is usually easier to perform operations in object methods than to use
Modified in form methods. Since an object method is sent an On Data Change event
whenever a field is modified, the use of an object method is equivalent to using Modified
in a form method.

Examples

1. The following example tests if either the [Orders]Quantity field or the [Orders]Price field
has changed. If either has been changed, then the [Orders]Total field is recalculated.

= If ((Modified ([Orders]Quantity) | (Modified ([Orders]Price))
[Orders]Total :=[Orders]Quantity*[Orders]Price
End if

Note that the same thing could be accomplished by using the second line as a subroutine
called by the object methods for the [Orders]Quantity field and the [Orders]Price field.

352 4th Dimension Language Reference

2. You select a record for the table [anyTable], then you call multiple subroutines that may
modify the field [anyTable]important field, but do not save the record. At the end of the
main method, you can use the Modified command to detect if you must save the record:

" Here the record has been selected as current record
" Then you perform actions using subroutines

DO SOMETHING
DO SOMETHING ELSE
DO NOT FORGET TO DO THAT

) At then you test the field to detect if the record has to be saved
If (Modified([anyTable]important field))

=
SAVE RECORD([anyTable])
End if
See Also
Old.

4th Dimension Language Reference 353

Oold Data Entry

version 3
Old (field) — Expression
Parameter Type Description
field Field — Field for which to return old value
Function result Expression -— Original field value
Description

The command Old returns the value held in field before the field was programmatically
assigned a value or modified in data entry.

Each time you change the current record for a table, 4D creates and maintains in memory
a duplicated “image” of the new current record when it is loaded in memory. (For
optimization, 4D disregards Text, Picture and BLOB fields.) When modifying a record, you
work with the actual image of the record, not this duplicated image. This image is then
discarded when you change the current record again.

Old returns the value from the duplicated image. In other words, for an existing record, it
returns the value of the field as it is stored on disk. If a record is new, Old returns the
default empty value for field according to its type. For example, if field is an Alpha field,
Old returns an empty string. If field is a numeric field, Old returns zero (0), and so on.

Old works on field whether the field has been modified by a method or by the user during
data entry.

Old cannot be applied to Text, Picture or BLOB fields. It can be applied to all other field
types, including subfields, but has no meaning when applied to a subtable field itself.

To restore the original value of a field, assign it the value returned by Old.

See Also
Modified.

354 4th Dimension Language Reference

12 Date and Time

4th Dimension Language Reference 355

356 4th Dimension Language Reference

Current date Date and Time

version 3
Current date {(*)} — Date
Parameter Type Description
* — Returns the current date from the server
Function result Date -~ Current date
Description

The command Current date returns the current date as kept by the system clock.

4D Server: If you use the asterisk (*) parameter when executing this function on a 4D
Client machine, it returns the current date from the server.

Examples
1. The following example displays an alert box containing the current date:

= ALERT("The date is " + String(Current date)+".")

2. If you write an application for the international market, you may need to know if the
version of 4D that you run works with dates formatted as MM/DD/YYYY (US version) or
DD/MM/YYYY (French version). This is useful to know for customizing data entry fields.

The following project method allows you to do so:

* Sys date format global function
* Sys date format -> String
* Sys date format -> Default 4D data format

C_STRING(31;%$0;$vsDate;$vsMDY;$vsMonth;$vsDay;$vsYear)
C_LONGINT($1;$vIPos)
C_DATE($vdDate)

" Get a Date value where the month, day and year values are all different

= $vdDate:=Current date
Repeat
$vsMonth:=String(Month of($vdDate))
$vsDay:=String(Day of($vdDate))
$vsYear:=String(Year of($vdDate)%100)

4th Dimension Language Reference 357

If ((BvsMonth=$vsDay) | ($vsMonth=3vsYear) | ($vsDay=$vsYear))
vOK:=0
$vdDate:=$vdDate+1
Else
vOK:=1
End if
Until (vOK=1)
$0:="" " Initialize function result
$vsDate:=String($vdDate)
$vIPos:=Position("/";$vsDate) " Find the first / separator in the string ../../..
$vsMDY:=Substring($vsDate;1;$vIPos-1) " Extract the first digits from the date
* Eliminate the first digits as well as the first / separator
$vsDate:=Substring($vsDate;$vIPos+1)

Case of
. ($vsMDY=%vsMonth) * The digits express the month
$0:="MM"
: ($vsMDY=$vsDay) " The digits express the day
$0:="DD"
. (BvsMDY=$vsYear) " The digits express the year
$0:="YYYY"
End case

$0:=$0+"/" " Start building the function result
$vIPos:=Position("/";$vsDate) " Find the second separator in the string ../..
$vsMDY:=Substring($vsDate;1;$vIPos-1) ~ Extract the next digits from the date
" Reduce the string to the last digits from the date
$vsDate:=Substring($vsDate;$vIPos+1)
Case of
. ($vsMDY=%vsMonth) ~ The digits express the month
$0:=$0+"MM"
: ($vsMDY=$vsDay) " The digits express the day
$0:=$0+"DD"
. ($vsMDY=%vsYear) " The digits express the year
$0:=$0+"YYYY"
End case
$0:=$0+"/" " Pursue building the function result
Case of
. ($vsDate=$vsMonth) * The digits express the month
$0:=$0+"MM"
: ($vsDate=$vsDay) " The digits express the day
$0:=$0+"DD"
. ($vsDate=$vsYear) " The digits express the year
$0:=$0+"YYYY"
End case
" At this point $0 is equal to MM/DD/YYYY or DD/MM/YYYY or...

See Also
Date Operators, Day of, Month of, Year of.

358 4th Dimension Language Reference

Day of Date and Time

version 3
Day of (date) - Number
Parameter Type Description
date Date — Date for which to return the day
Function result Number -— Day of the month of date
Description

The command Day of returns the day of the month of date.

Note: Day of returns a value between 1 and 31. To get the day of the week for a date, use
the command Day number.

Examples

1. The following example illustrates the use of Day of. The results are assigned to the
variable vResult. The comments describe what is put in vResult:

= VResult := Day of (112/25/92!) " vResult gets 25
= vResult := Day of (Current date) " vResult gets day of current date

2. See the example for the command Current date.

See Also
Day number, Month of, Year of.

4th Dimension Language Reference 359

Month of Date and Time

version 3
Month of (date) — Number
Parameter Type Description
date Date — Date for which to return the month
Function result Number -— Number indicating the month of date
Description

The command Month of returns the month of date.
Note: Month of returns the number of the month, not the name (see Example 1).

4th Dimension provides the following predefined constants:

Constants Type Value
January Long Integer 1
February Long Integer 2
March Long Integer 3
April Long Integer 4
May Long Integer 5
June Long Integer 6
July Long Integer 7
August Long Integer 8
September Long Integer 9
October Long Integer 10
November Long Integer 11
December Long Integer 12
Examples

1. The following example illustrates the use of Month of. The results are assigned to the
variable vResult. The comments describe what is put in vResult:

= VResult := Month of (112/25/92!) " vResult gets 12
= VvResult := Month of (Current date) ~ vResult gets month of current date

2. See example for the command Current date.

360 4th Dimension Language Reference

3. 4th Dimension's 'STR#' ID=11 resource includes the names of the months localized for

the current country:

S[J== STR# 11 from 4th Dimension® 6.0 b45 PPC

— &

» 1) Jan

2) Feb

3) Mar

4) Apr

5) May

6) Jun

7 Ju

8) Aug

9) Sep
10) Oct
11) Nov
12) Dec
13) January
14) February
15) March
16) April
17) May
18) June
19) July
20) August
21) September
22) October
23) November
24) December

ﬂ‘

Crew) [o

Cancel

) B[]

The following project method returns the name of the month for a date:

* Month name of project method
* Month name of (Date) -> String

* Month name of (Date) -> Name of the month

= $0:=Get indexed string(11;12+Month of ($1))

The following project method returns the abbreviation of the month for a date:

* Month abbr of project method
* Month abbr of (Date) -> String

" Month abbr of (Date) -> Name of the month

= $0:=Get indexed string(11;Month of ($1))

See Also
Day of, Year of.

4th Dimension Language Reference

361

Year of Date and Time

version 3
Year of (date) — Number
Parameter Type Description
date Date — Date for which to return the year
Function result Number -— Number indicating the year of date
Description

The command Year of returns the year of date.

Examples

1. The following example illustrates the use of Year of. The results are assigned to the
variable vResult.

VResult := Year of (112/25/92!) " vResult gets 1992

VResult := Year of (112/25/1992!) " vResult gets 1992

VResult := Year of (112/25/1892!) " vResult gets 1892

VResult := Year of (112/25/2092!) " vResult gets 2092

VResult := Year of (Current date) ~ vResult gets year of current date

L2

2. See example for the command Current date.

See Also
Day of, Month of.

362 4th Dimension Language Reference

Day number Date and Time

version 3
Day number (date) — Number
Parameter Type Description
date Date — Date for which to return the number
Function result Number -— Number representing the weekday on which
date falls
Description

The command Day number returns a number representing the weekday on which date
falls.

Note: Day number returns 2 for null dates.

4th Dimension provides the following predefined constants:

Constants Type Value
Monday Long Integer 2
Tuesday Long Integer 3
Wednesday Long Integer 4
Thursday Long Integer 5
Friday Long Integer 6
Saturday Long Integer 7
Sunday Long Integer 1

Note: Day number of returns a value between 1 and 7. To get the day number within the
month for a date, use the command Day of.

4th Dimension Language Reference 363

Example
The following example is a function that returns the current day as a string:

= $viDay := Day number (Current date) ~ $viDay gets the current day number

Case of

: ($viDay = 1)

$0 := "Sunday"

: ($viDay = 2)

$0 := "Monday"

: ($viDay = 3)

$0 := "Tuesday"

: ($viDay = 4)

$0 := "Wednesday"

: ($viDay = 5)

$0 := "Thursday"”

: ($viDay = 6)

$0 := "Friday"

: ($viDay = 7)

$0 := "Saturday"
End case

See Also
Day of.

364 4th Dimension Language Reference

Add to date Date and Time

version 6.0

Add to date (date; years; months; days) — Date

Parameter Type Description

date Date — Date to which to add days, months, and years
years Number — Number of years to add to the date

months Number — Number of months to add to the date

days Number — Number of days to add to the date

Function result Date -— Resulting date

Description

The command Add to date adds years, months, and days to the date you pass in date, then
returns the result.

Although you can use the Date Operators to add days to a date, Add to date allows you to
quickly add months and years without having to deal with the number of days per
month or leap years (as you would when using the + date operator).

Examples

* This line calculates the date in one year, same day
$vdinOneYear:=Add to date(Current date;1;0;0)

* This line calculates the date next month, same day
$vdNextMonth:=Add to date(Current date;0;1;0)

* This line does the same thing as $vdTomorrow:=Current date+1
$vdTomorrow:=Add to date(Current date;0;1;0)

See Also
Date Operators.

4th Dimension Language Reference 365

Date Date and Time

version 3
Date (dateString) — Date
Parameter Type Description
dateString String — String representing the date to be returned
Function result Date -~ Date
Description

The command Date evaluates dateString and returns a date.
The dateString parameter must follow the normal rules for the date format.

In the US version of 4D, the date must be in the order MM/DD/YY (month, day, year).
The month and day can be one or two digits. The year can be two or four digits. If the
year is two digits, then Date adds 19 to the beginning of the year, unless you have
change this default using the command SET DEFAULT CENTURY. The following characters
are valid date separators: slash (/), space, period (.), and hyphen (-).

Date does not check whether or not dateString is a valid date. If an invalid date (such as
"13/35/94") is passed, Date will return the invalid date. However, if dateString could not
possibly be interpreted as a date (for example, "aa/12/94"), the null date value ('00/00/00!)
is returned.

It is your responsibility to verify that dateString is a valid date.

Examples

1. The following example uses a request box to prompt the user for a date. The string
entered by the user is converted to a date and stored in the regDate variable:

= vdRequestedDate:=Date(Request ("Please enter the date:";String(Current date)))
If (OK=1)
* Do something with the date now stored in vdRequestedDate
End if
2. The following example returns the string "12/12/94" as a date:

= vdDate:=Date("12/12/94")

366 4th Dimension Language Reference

Current time Date and Time

version 3
Current time {(*)} — Time
Parameter Type Description
* — Returns the current time from the server
Function result Time -~ Current time
Description

The command Current time returns the current time from the system clock.

The current time is always between 00:00:00 and 23:59:59. Use String or Time string to
obtain the string form of the time expression returned by Current time.

4D Server: If you use the asterisk (*) parameter when executing this function on a 4D
Client machine, it returns the current time from the server.

Examples

1. The following example shows you how to time the length of an operation. Here,
LongOperation is a method that needs to be timed:

= $vhStartTime:=Current time °~ Save the start time
LongOperation ~ Perform the operation

= ALERT ("The operation took "+String(Current time-$vhStartTime)) ~ Display how long
it took

2. The following example extracts the hours, minutes, and seconds from the current time:

= $vhNow:=Current time
ALERT("Current hour is: "+String($vhNow\3600))
ALERT("Current minute is: "+String(($vhNow\60)%60))
ALERT("Current second is: "+String($vhNow%60))

See Also
Milliseconds, String, Tickcount, Time Operators.

4th Dimension Language Reference 367

Time string Date and Time

version 3
Time string (seconds) — String
Parameter Type Description
seconds Number — Seconds from midnight
Function result String -— Time as a string in 24-hour format
Description

The command Time string returns the string form of the time expression you pass in
seconds.

The string is in the HH:MM:SS format.

If you go beyond the number of seconds in a day (86,400), Time string continues to add
hours, minutes, and seconds. For example, Time string (86401) returns 24:00:01.

Note: If you need the string form of a time expression in a variety of formats, use String.

Example

The following example displays an alert box with the message, “46800 seconds is
13:00:00.”

= ALERT("46800 seconds is "+Time string(46800))

See Also
String, Time.

368 4th Dimension Language Reference

Time

Date and Time

version 3

Time (timeString) — Time

Parameter Type
timeString Time
Function result Time
Description

Description
Time for which to return number of seconds

Time specified by timeString

The command Time returns a time expression equivalent to the time specified as a string

by timeString.

The timeString parameter must follow the HH:MM:SS format and be in 24-hour format.

Example

The following example displays an alert box with the message “1:00 P.M. = 13 hours O

minute”:

= ALERT ("1:00 P.M. = "+String(Time("13:00:00");Hour Min))

See Also
String, Time string.

4th Dimension Language Reference 369

Tickcount Date and Time

version 6.0
Tickcount — Number
Parameter Type Description
This command does not require any parameters
Function result Number -— Number of ticks (60th of a second) elapsed

since the machine was started

Description

Tickcount returns the number of ticks (60th of a second) elapsed since the machine was
started.

Note: Tickcount returns a value of type Long Integer.

Example
See example for the command Milliseconds.

See Also
Current time, Milliseconds.

370 4th Dimension Language Reference

Milliseconds Date and Time

version 6.0
Milliseconds — Number
Parameter Type Description
This command does not require any parameters
Function result Number -— Number of milliseconds elasped

since the machine was started

Description

Milliseconds returns the number of milliseconds (1000th of a second) elapsed since the

machine was started.
Note: Milliseconds returns a value of type Real.

Example
The following code displays the “Chronometer” window for one minute::

Open window (100;100;300;200;0;"Chronometer")
$vhTimeStart:=Current time
$vITicksStart:=Tickcount

$vrMillisecondsStart:=Milliseconds

=
Repeat
GOTO XY (2;1)
MESSAGE ("Time............"+String (Current time -$vhTimeStart))
GOTO XY (2;3)
MESSAGE ("Ticks..........."+String (Tickcount -$vITicksStart))
GOTO XY (2;5)
= MESSAGE ("Milliseconds...:"+String (Milliseconds -$vrMillisecondsStart))
Until ((Current time -$vhTimeStart)>=100:01:00t)
CLOSE WINDOW
=——— Chronometer —— 5
Time...........:00:00:18
Ticks. .. .c.c0i 1095
Milliseconds...: 18217
See Also

Current time, Tickcount.

4th Dimension Language Reference

371

SET DEFAULT CENTURY Date and Time

version 6.0
SET DEFAULT CENTURY (century{; pivotYear})
Parameter Type Description
century Number — Default century (minus one)
for entry of date with two-digit year
pivotYear Number — Pivot year for entry of date with two-digit year
Description

The command SET DEFAULT CENTURY allows you to specify the default century used by
4D when you enter a date with only two digits for the year.

By default, 4D sets the century to be the 20th century. For example:

* 01/25/97 means January 25, 1997
* 01/25/07 means January 25, 1907

To change this default, pass the new default century minus one in century.
For example, after the call:

SET DEFAULT CENTURY(20) * Switch to 21st century for default century

e 01/25/97 means January 25, 2097
* 01/25/07 means January 25, 2007

In addition, if you specify the optional pivotYear parameter, 4D will interpret data entry
of a date with a two-digit year as follows:

 If the year is greater than or equal to the pivot year, 4D uses the current default century.
 If the year is less than the pivot year, 4D uses the next century (relative to the current
default).

For example, after this call, in which the pivot year is 1995:

SET DEFAULT CENTURY(19;95) ° Switch to 21st century for default century if year
is less than

e 01/25/97 means January 25, 1997
e 01/25/07 means January 25, 2007

Note: This command only affects how 4D interprets dates entered with a two-digit year.

372 4th Dimension Language Reference

In all cases:

e 01/25/1997 means January 25, 1997
* 01/25/2097 means January 25, 2097
e 01/25/1907 means January 25, 1907
e 01/25/2007 means January 25, 2007

This command only affects data entry. It has no effect on date storage, computation, and
so on.

The effect of SET DEFAULT CENTURY is immediate.

4th Dimension Language Reference 373

374 4th Dimension Language Reference

13 Debugging

4th Dimension Language Reference 375

376 4th Dimension Language Reference

Why a Debugger? Debugging

version 6.0

When developing and testing your methods, it is important that you find and fix the
errors they may contain.

There are several types of errors you can make when using the language: typing errors,
syntax errors, environmental errors, design or logic errors, and runtime errors.

Typing Errors

Typing errors are detected by the Method editor and are marked with bullets (). The
following window shows a typing error:

@ Method: A Method With a Typing Error =] .
-~

*The line of code below containg a typing error: —

[Employees]Last Name:=Uppercase(*[Employes]Last Name=)

“A'e" is missing in [Employees]

I
>
KN O

Note: The comments have been manually inserted for the purpose of this manual. 4D
only inserts the (*) at the location of the error.

When this occurs, fix the typing error and type Enter (on the numeric pad) to validate
the fix. For more information about the Method editor, refer to the 4th Dimension Design

Reference.

4th Dimension Language Reference 377

Syntax Error

Syntax errors are caught when you execute the method. The Syntax Error window is
displayed when a syntax error occurs. For example:

@ 4D was expecting a text expression.

[Employees]Last Name: =Uppercase([E mployees [T

Abort | Trace | Continue | Edit I

In this window, the error is that a table name is passed to the Uppercase command, which
expects a text expression. To learn about this window and its button, see the section
Syntax Error window.

Environmental Error

Occasionally, there there may not be enough memory to create an array or a BLOB.
When you access a document on disk, the document may not exist or may already open
by another application. In such cases, the Error window appears, describing the error and
the action that could not be performed. For example:

’@ rError
File not found.

File: MyDocument. TXT

rAction
The document cannot be opened.

These errors do not directly occur because of your code or the way you wrote it; they
occur because sometimes “bad things just happen.” Most of the time, these errors are easy
to treat with an error catching method installed using the command ON ERR CALL. For
more information, see the description of ON ERR CALL.

378 4th Dimension Language Reference

Design or Logic Error

These are generally the most difficult type of error to find—use the Debugger to detect
them. Note that, other than typing errors, all the previous error types are to a certain
extent covered by the expression “Design or logic error.” For example:

< A syntax error may occur because you try to use a variable that has not yet been
initialized.

< An environmental error may occur because you try to open a document whose name is
received by a subroutine which does not get the right value in the parameter. Note that
in this example, the piece of code that actually “breaks” may be different than the code
that is actually the origin of the problem.

Design or logic errors also include such situations as:

« A record is not properly updated because, while calling SAVE RECORD, you forgot to first
test whether or not the record was locked.

< A method does not do exactly what you expect, because the presence of an optional
parameter is not tested.

Runtime Error

In compiled mode, you can obtain errors that you never saw in interpreted mode. Here is
an example:

Runtime Error

A runtime error occured at line number:
3

When executing the method:

METHOD1

In¥alid character reference.

This says “You are trying to access a character whose position is beyond the length of a
string.” To quickly find the origin of the problem, note the name of the method and the
line number, reopen the interpreted version of the structure file, and go to that method
at the indicated line.

4th Dimension Language Reference 379

What To Do When an Error Occurs?

Errors are common. It would be unusual to write a substantial number of lines of code
(let’s say several hundred) without generating any errors. Conversely, treating and/or
fixing errors is normal, too!

With its multi-tasking environment, 4D enables you to quickly edit/run methods by
simply switching windows. You will discover how quickly you can fix mistakes and errors
when you do not have to rerun the whole thing each time. You will also discover how
quickly you can track errors if you use the Debugger.

A common beginner mistake in dealing with error detection is to click Abort in the
Syntax Error Window, go back to the Method Editor, and try to figure out what's going
by looking at the code. Do not do that! You will save plenty of time and energy by
always using the Debugger.

e If an unexpecting syntax error occurs, use the Debugger.
e If an environmental error occurs, use the Debugger.
< If any other type of error occurs, use the Debugger.

In 99% of the cases, the Debugger displays the information you need in order to
understand why an error occurred. Once you have this information, you know how to fix
the error.

Tip: A few hours spent in learning and experimenting with the Debugger can save days
and weeks in the future when you have to track down errors.

Another reason to use the Debugger is for developing code. Sometimes you may write an
algorithm that is more complex than usual. Despite all feelings of accomplishment, you
are not totally sure that your coding is correct, even before trying it. Instead of running it
“blind,” use the TRACE command at the beginning of your code. Then, execute it step by
step to control what happens and to check whether your suspicion was correct or not. A
purist may dislike this method, but somethimes pragmatism pays off more quickly.
Anyway... use the Debugger.

General Conclusion
Use the Debugger.

See Also

Break List Window, Debugger, Debugger Shortcuts, ON ERR CALL, Syntax Error Window,
Tracing a Process not visible or not executing code.

380 4th Dimension Language Reference

Syntax Error Window Debugging

version 6.0

The Syntax Error Window is displayed when method execution is halted. Method
execution can be halted for either of two reasons:

< 4th Dimension halts execution because there is a syntax error preventing further
method execution.

« You generate a user interrupt by pressing Alt+Click (Windows) or Option+Click
(Macintosh) while a method is executing.

The Syntax Error window is shown here:

@ Argument types are incompatible.

wCount:=(vOther*asCategories {6

Abort | Trace | Continue | Edit I

The upper text area of the Syntax Error window displays a message describing the error.
The lower text area shows the line that was executing when the error occurred; the area
where the error occurred is highlighted.

There are four option buttons at the bottom of the window: Abort, Trace, Continue, and
Edit.

e Abort: The method is halted, and you return to where you were before you started
executing the method. If a form or object method is executing in response to an event, it
is stopped and you return to the form. If the method is executing from within the
Custom Menu environment, you return to the Custom Menu environment.

e Trace: You enter Trace/Debugger mode, and the Debugger window is displayed. If the
current line has been partially executed, you may have to click the Trace button several
times. Once the line finishes, you end up in the Debugger window.

4th Dimension Language Reference 381

e Continue: Execution continues. The line with the error may be partially executed,
depending on where the error was. Continue with caution—the error may prevent the
remainder of your method from executing properly. Usually, you do not want to
continue. You can click Continue if the error is in a trivial call, such as SET WINDOW
TITLE, which does not prevent executing and testing the rest of your code. You can thus
concentrate on more important code, and fix a minor error later.

e Edit: All method execution is halted. 4th Dimension switches to the Design
environment. The method in which the error occurred is opened in the Method editor,
allowing you to correct the error. Use this option when you immediately recognize the
mistake and can fix it without further investigation.

See Also
Debugger, ON ERR CALL, Why a Debugger?.

382 4th Dimension Language Reference

Debugger Debugging

version 6.0

The term Debugger comes from the term bug. A bug in a method is a mistake that you
want to eliminate. When an error has occurred, or when you need to monitor the
execution of your methods, you use the debugger. A debugger helps you find bugs by
allowing you to slowly step through your methods and examine method information.
This process of stepping through methods is called tracing.

You can cause the Debugger window to display and then trace the methods in the
following ways:

e Clicking the Trace button in the Syntax Error Window

e Using the TRACE command

e Pressing Alt+Click (Windows) or Option-Click (Macintosh) while a method is executing
e Choosing Trace from the Process menu in the Design environment for the process
selected in the Process List Window (see section Tracing a Process not visible or not
executing code)

» Creating or editing a Catch Command or Break Point in the Break List Window.

Note: If a password system exists for the database, only the designer and users belonging
to the group that has structure access privileges can trace methods.

The Debugger window is displayed here:

Debug: DebugDemo

A T e giﬁ%er?tugbiglﬂ to: C_DATE

Expression Value Call Chain

& Line Objects i' - B DE_DebugD... | =]

[-i-] B3 Variables LI

K constants -

[;] = Fields Expression Value

& Semaphores i LI

b o M| |
IMENU BAR(1) Al

% C_DATE($dDate)
'C_LONGINT ($x;8y;5Lpid;$LWindowlD)
'C_BLOB(MyBLOB)

§$Lpid:=D£_Unm'aﬁze (-=[Customers]-=[Customers]Company,"Z"' |
H v

RN o

You can move the Debugger Window and/or resize any of its internal window panes as
necessary.

4D is a multi-tasking environment. If you run several user processes, you can trace them
independently. You can have one debugger window open for each process.

4th Dimension Language Reference 383

Execution Control Tool Bar Buttons

Eight buttons are located in the Execution Control Tool Bar at the top of the Debugger
window:

]| o] =] 2]

Sudton Windows Macintosh
Step Out F7 or Ctri-U Command-U
Step Into Process

Step Into FS or Ctr1-T Cormand-T
Step Over F10or Ctr1-S Command-5S
Edit F2 or Ctri1-E Command-E
Abort and Edit

Abort F& or Ctri1-K Command-K
No Trace FS or Ctr1-R Command-R

No Trace Button
Tracing is halted and normal method execution resumes.

Note: ALT+F5 (Windows) and Option-Command-R (Macintosh) resumes execution. They
also disable all the next TRACE calls for the current process.

Abort Button

The method is halted, and you return to where you were before you started executing the
method. If you were tracing a form or object method executing in response to an event,
it is stopped and you return to the form. If you were tracing a method executing from
within the Custom Menu environment, you return to the Custom Menu environment.

Abort and Edit Button

The method is halted as if you clicked on Abort. Also, if necessary, 4th Dimension opens
and brings the Design environment process to the front, then opens a Method Editor
window for the method that was executing at the time the Abort and Edit button was
clicked.

Tip: Use this button when you know which changes are required in your code and when
these changes are required to pursue the testing of your methods. After you are finished
with the changes, rerun the method.

384 4th Dimension Language Reference

Edit Button

Clicking the Edit button does the same as Clicking Abort and Edit button, but does not
abort the current execution. The method execution is paused at that point. If necessary,
4th Dimension opens and brings the Design environment process to the front, then
opens a Method Editor window for the method that was executing at the time the Edit
button was clicked.

Important: You can modify this method; however, these modifications will not appear or
execute in the instance of the method currently being traced in the debugger window.
After the method has either aborted or completed successfully, the modifications will
appear on the next execution of this method. In other words, the method must be
reloaded so its modifications will be taken into account.

Tip: Use this button when you know which changes are required in your code and when
they do not interfere with the rest of the code to be executed or traced.

Tip: Object Methods are reloaded for each event. If you are tracing an object method (i.e.,
in response to a button click), you do not need to leave the form. You can edit the object
method, save the changes, then switch back to the form and retry. For tracing/changing
form methods, you must exit the form and reopen it in order to reload the form method.
When doing extensive debugging of a form, a trick is to put the code (that you are
debugging) into a project method that you use as subroutine from within a form method.
In doing so, you can stay in the form while you trace, edit, and retest your form, because
the subroutine is reloaded each time it is called by the form method.

Step Over Button

The current method line (the one indicated by the yellow arrow—called the program
counter) is executed, and the Debugger steps to the next line. The Step Over button does
not step into subroutines and functions; it stays at the level of the method you are
currently tracing. If you want to also trace subroutines and functions calls, use the Step
Into button.

Step Into Button

On execution of a line that calls another method (subroutine or function), this button
causes the Debugger window to display the method being called and allows you to step
through this method. The new method becomes the current (top) method in the Call
Chain pane of the Debugger window. On execution of a line that does not call another
method, this button acts in the same manner as the Step Over button.

Step Into Process Button

On execution of a line that creates a new process (i.e., calling the command New process),
this button opens a new Debugger window that allows you to trace the process method of
the newly created process. On execution of a line that does not creates a new process, this
button acts in the same manner as the Step Over button.

4th Dimension Language Reference 385

Step Out Button

If you are tracing subroutines and functions, clicking on this button allows you to
execute the entire method currently being traced and to step back to the caller method.
The Debugger window is brought back to the previous method in the call chain. If the
current method is the last method in the call chain, the Debugger window is closed.

Execution Control Tool Bar Information

On the right side of the execution control tool bar, the debugger provides the following
information:

« The name of the method you are currently tracing (displayed in black)

e The problem caused the appearance of the Debugger window (displayed in red)

Using the example window shown above, the following information is displayed:

e The method DE_DebugDemo is the method being traced.

e The debugger window appeared because it detected a call to the command C_DATE and
this command was one of the commands to be caught.

Here are the possible reasons for the debugger to appear and for the message (displayed in
red):

« TRACE Command: A call to TRACE has been issued.

« Break Point Reached: A temporary or persistent break point has been encountered.

e User Interrupt: You used ALT+Click (Windows) or Option-Click (Macintosh) or you used
the Trace menu command from the Design environment Process menu.

e Caught a call to: Name of the command: A call to a 4D command to be caught is on
the point of being performed.

e Stepping into a new process: You used the Step Into Process button and this message is
displayed by the Debugger window opened for the newly created process.

386 4th Dimension Language Reference

The Debugger Window’s Panes

The Debugger window consists of the previously described Execution Control Tool Bar
and four resizable panes:

* Watch Pane

» Call Chain Pane

e Custom Watch Pane
» Source Code Pane

The first three panes use easy-to-navigate hierarchical lists to display pertinent debugging
information. The fourth one, Source Code Pane, displays the source code of the method
being traced. Each pane has its own function to assist you in your debugging efforts. You
can use the mouse to vertically and horizontally resize the debugger window and also
each pane. In addition, the first three panes include a dotted separation line between the
two columns they display. Using the mouse, you can move this dotted line to
horizontally resize the columns, at your convenience.

See Also

Break List Window, Call Chain Pane, Custom Watch Pane, Debugger Shortcuts, ON ERR CALL,
Source Code Pane, Syntax Error Window, TRACE, Watch Pane, Why a Debugger?.

4th Dimension Language Reference 387

Watch Pane Debugging

version 6.0

The Watch pane is displayed in the top left corner of the Debugger window, below the
Execution Control Tool Bar. Here is an example:

Expression Value

= & Line Objects il
B3 $sSearchCriteria "z
- B pField ->[Customers]Company
[+ B3 pTable -»[Customers]

[=)- B3 Variables
[=]- B3 Inter-Process

i L Em <>fDebugger True
[=- B3 Process

i [2) B3 asCategories 7 elements
i i B asCategories 0

B3 asCategorie.. ("™

B3 asCategorie.. i "Action"

- B3 asCategorie.. i "Ars/Music"
B3 asCategorie.. {"Children"

i B3 asCategorie.. i"Comedy" I
s

The Watch pane displays useful general information about the system, the 4D
environment, and the execution environment.

The Expression column displays the names of the objects or expressions. The Value
column displays the current value of corresponding the object or expression.

Clicking on any value on the right side of the pane allows you to modify the value of the
object, if this is permitted for that object.

The multi-level hierarchical lists are organized by theme at the main level. The themes
are:

e Line Objects

« Variables

e Constants
 Fields

- Semaphores

* Sets

* Processes
 Named Selections
* Information

Depending on the theme, each item may have one or several sublevels. Clicking the list
node next to a theme name expands or collapses the theme. If the theme is expanded,
the items in that theme are visible. If the theme has several levels of information, click
the list node next to each item for exploring all the information provided by the theme.

388 4th Dimension Language Reference

At any point, you can drag and drop themes, theme sublists (if any), and theme items to
the Custom Watch pane.

Information: Displays general information, such the current Default Table (if any). The
expressions from this theme cannot be modified.

Named Selections: Lists the process named selections that are defined in the current
process (the one you’re currently tracing); it also lists the interprocess named selections.
For each named selection, the Value column displays the number of records and the table
name. This list may be empty if you do not use named selections. The expressions from
this theme cannot be modified.

Processes: Lists the processes started since the beginning of the working session. The
value column displays the current state for each process (i.e., Executing, Paused, and so
on). The expressions from this theme cannot be modified.

Sets: Lists the sets defined in the current process (the one you're currently tracing); it also
lists the interprocess sets. For each set, the Value column displays the number of records
and the table name. This list may be empty if you do not use sets. The expressions from
this theme cannot be modified.

Semaphores: Lists the local and global semaphores currently being set. For each
semaphore, the Value column provides the name of the process that sets the semaphore.
This list may be empty if you do not use semaphores. The expressions from this theme
cannot be modified.

Fields: This theme lists the tables and fields in the database; it does not list subfields. For
each Table item, the Value column displays the size of the current selection for the
current process. For each Field item, the Value column displays the value of the field
(except picture, subtable, and BLOB) for the current record, if any. In this theme, the field
values can be modified (there is no undo), but the table information cannot.

Constants: Displays predefined constants provided by 4D. like the Constants page of the
Explorer window. The expressions from this theme cannot be modified.

Variables: This theme is composed of the following subthemes:

e Interprocess: Displays the list of the interprocess variables being used at this moment.
This list can be empty if you do not use interprocess variables. The values of the
interprocess variables can be modified.

« Process: Displays the list of the process variables being used by the current process. This
list is rarely empty. The values of the process variables can be modified.

» Local: Displays the list of the local variables being used by the method being traced (the
one being shown in the source code pane). This list can be empty if no local variable is
used or has not yet been created. The values of the local variables can be modified.

4th Dimension Language Reference 389

- Parameters: Displays the list of parameters received by the method. This list can be
empty if no parameter were passed to the method being traced (the one being shown in
the source code pane). The values of the parameters can be modified.

« Self Pointer: Displays a pointer to the current object if you are tracing an Object
Method. This value cannot be modified

Note: You can modifiy String, Text, Numeric, Date, and Time variables; in other words,
you can modify the variables whose value can be entered with the keyboard.

Arrays, like other variables, appear in the Interprocess, Process, and Locals subthemes,
depending on their scope. The debugger displays each array with an additional
hierarchical level; this enables you to obtain or change the values of the array elements, if
any. The debugger displays the first 100 elements, including the element zero. The Value
column displays the size of the array in regard to its name. After you have deployed the
array, the first sub-item displays the current selected element number, then the element
zero, then the other elements (up to 100). You can modifiy String, Text, Numeric, and
Date arrays. You can modify the selected element number, the element zero, and the
other elements (up to 100). You cannot modify the size of the array.

Reminder: At any time, you can drag and drop an item from the Watch pane to the
Custom Watch pane, including an individual array element.

Line Objects

This theme displays the values of the objects or expressions that are:

< used in the line of code to be executed (the one marked with the program counter—the
yellow arrow in the Source Code pane), or

e used in the previous line of code.

Since the previous line of code is the one that was just executed before, the Line Objects
theme therefore shows the objects or expressions of the current line before and after that
the line was executed. Let's say you execute the following method:

TRACE
a.=1

b:=a+1
c:=a+b

1. You enter the Debugger window with the Source Code pane program counter set to the
line a:=1. At this point the Line Objects theme displays:

a: Undefined

The a variable is shown because it is used in the line to be executed (but has not yet been
initialized).

390 4th Dimension Language Reference

2. You step one line. The program counter is now set to the line b:=a+1. At this point, the
Line Objects theme displays:

a: 1
b: Undefined

The a variable is shown because it is used in the line that was just executed and was
assigned the numeric value 1. It is also shown because it is used in the line to be executed
as the expression to be assigned to the variable b. The b variable is shown because it is
used in the line to be executed (but has not yet been initialized).

3. Again, you step one line. The program counter is now set to the line c:=a+b. At this
point the Line Objects theme displays:

c: Undefined
a: 1
b: 2

The c variable is shown because it is used in the line to be executed (but has not yet been
initialized). The a and b variables are shown because there were used in the previous line
and are used in the line to be executed. And so on...

The Line Objects theme is a very convenient tool—each time you execute a line, you do

not need to enter an expression in the Custom Watch pane, just watch the values
displayed by the Line Objects theme.

Speed Menu

Addtional options are provided by the Speed Menu of the Watch pane. To display this
menu:

 On Windows, click anywhere in the Watch pane using the right mouse button.

* On Macintosh, Control-Click anywhere in the Watch pane.

The Speed Menu of the Watch pane is shown here:

Expression Value

#- &2 Line Objects =
[+ B3 Variables

#- K Constants i

- = Fields

[+ & Semaphores

Collapse All
Expand All

Show Types

Show Field and Table Numbers
v Show Icons

Sorted Tables and Fields

Shaow Integers in Hexadecimal

[+
[+
[+
[+

4th Dimension Language Reference 391

e Collapse All: Collapses all levels of the Watch hierarchical list.

e Expand All: Collapses all levels of the Watch hierarchical list.

e Show Types: Displays the object type for each object (when appropriate).

e Show Field and Table Numbers: Displays the number of each table or field of the Fields.
If you work with table or field numbers, or with pointers using the commands such as
Table or Field, this option is very useful.

« Show Icons: Displays an icon denoting the object type for each object. You can turn this
option off in order to speed up the display, or just because you prefer to use only the
Show Types option.

« Sorted Tables and Fields: Forces the table and fields to be displayed in alphabetical order,
within their respective lists.

« Show Integers in Hexadecimal: Numbers are usually displayed in decimal notation. This
option displays them in hexadecimal notation. Note: To enter a numeric value in
hexadecimal, type 0Ox (zero + "x"), followed by the hexadecimal digits.

The following is a view of the Watch pane with all options selected:

Expression Value
+- B [Comp Platforms] : [10] 0 selected records ﬂ
ﬂ H [Comp References] : [11] 0 selected records
- B [Companies] : [2] 1676 selected records
=2 [Companies]City : [2]3 : Alpha(40) "Santa Fe"

[Companies]Company ID : [2]1 : Long Integer 5
[Companies]Company Name : [2]2 : Alpha(40) "ACUMEN, Inc"
[Companies]Company Profile : [2]9 : Text "ACUMEN Inc. is the pu.. _I
[Companies]Consulting Info : [2]13 : Text "
[Companies]Country : [2]6 : Alpha(20) "USA"

=| [Companies]Expertise Info : [2]14 : Text "ACUMEN's experise is... vl

See Also
Call Chain Pane, Custom Watch Pane, Debugger, Debugger Shortcuts, Source Code Pane.

392 4th Dimension Language Reference

Call Chain Pane Debugging

version 6.0

One method may call other methods, which may call other methods. For this reason, it
is very helpful to see the chain of methods, or Call Chain, during the debugging process.
The Call Chain pane, which provides this useful function, is the top right pane of the
Debugger window. This pane is displayed using a hierarchical list. Here is an example of
the Call Chain pane:

Call Chain
= BB M_BitTestbemo =
- logo Undefined
= BB DE_Unitialize
o 0
- $1 ->[Customers]
$2 ->[Customers]Company
- $3 z

[+ @ DE_DebugDemo

=
e Each main level item is a name of a method. The top item is the method you are
currently tracing, the next main level item is the name of the caller method (the method
that called the method you are currently tracing), the next one is the caller's caller
method, and so on. In the example above, the method M_BitTestDemo is being traced; it
has been called by the method DE_LInitialize, which has been called by DE_DebugbDemo.

e Double-clicking the name of a method in the Call Chain pane “transports” you back to
the caller method, displaying its source code in the Source code pane. In doing so, you
can quickly see “how” the caller method made its call to the called method. You can
examine any stage of the call chain this way.

e Clicking the node next to a Method name expands or collapses the parameter ($1, $2...)
and the optional function result ($0) list for the method. The values appear on the right
side of the pane. Clicking on any value on the right side allows you to change the value
of any parameter or function result. In the figure above:

1. M_BitTestDemo has not received any parameter.

2. M_BitTestDemo's $0 is currently undefined, as the method did not assign any value to
$0 (because it has not executed this assignment yet or because the method is a subroutine
and not a function).

3. DE_LlInitialize has received three parameters from DE_DebugDemo. $1 is a pointer to the
table [Customers], $2 is a pointer to the field [Customers]Company, and $3 is an
alphanumeric parameter whose value is "Z".

« After you have deployed the parameter list for a method, you can also drag and drop
parameters and function results to the Custom Watch pane.

See Also
Custom Watch Pane, Debugger, Debugger Shortcuts, Source Code Pane, Watch Pane.

4th Dimension Language Reference 393

Custom Watch Pane Debugging

version 6.0

Directly below the Call Chain pane is the Custom Watch pane. This pane is used to
evaluate expressions. Any type of expression can be evaluated, including fields, variables,
pointers, calculations, built-in functions, your own functions, and anything else that
returns a value.

You can evaluate any expression that can be shown in text form. This does not cover
picture and BLOB fields or variables. On the other hand, the Debugger uses deployed
hierarchical lists to let you display arrays and pointers. To display BLOB contents, you can
use BLOB commands, such as BLOB to text.

In the following example, you can see several of these items: two variables, a field pointer
variable and the result of a built-in function, and a calculation.

Expression Value
B3 oK 1 d

If' B3 pField -»[Customers]Company
i i H [Customers)Company d
- ;‘] Records in selection([Customers]) 0
[~ | $sSearchCriteria "Z@" LI

Inserting a new expression

You can add an expression to be evaluated in the Custom Watch pane in the following
way:

« Drag and drop an object or expression from the Watch pane

e Drag and drop an object or expression from the Call Chain pane

< In the Source Code pane, click on an expression that can be evaluated

To create a blank expression, double-click somewhere in the empty space of the Custom
Watch pane. This adds an expression ~ New expression and then goes into editing mode so
you can edit it. You can enter any 4D formula that returns a result.

After you have entered the formula, type Enter or Return (or click somewhere else in the
pane) to evaluate the expression.

To change the expression, click on it to select it, then click again (or press Enter
—numeric key pad) to go into editing mode.

If you no longer need an expression, click on it to select it, then press Backspace or
Delete.

394 4th Dimension Language Reference

Custom Watch Pane Speed Menu

To help you enter and edit an expression, the Custom Watch Pane’s Speed menu gives

you access the 4D formula editor. In fact, the speed menu also proposes additional

options.

To present this menu:

e On Windows, click anywhere in the Custom Watch pane using the right mouse button

< On Macintosh, Control-Click anywhere in the Custom Watch pane.

New expression...
Insert Command

Delete All
Collapse All
Expand All

Show Types

Show Field and T able Numbers

v Show |lcons
Sorted Tables and Fields

Show Integers in Hexadecimal

« New Expression: This inserts a new expression and displays the 4D Formula Editor (as
shown) so you can edit the new expression.

Formula Editor

[Comp Platforms]
[Comp References]
[Companies]
[Contacts]
[Languages]
[OnLine Services]

BEEBEEBE
o e

Formula Editor
] T e 3 N I o Y
|4l Tables Ba|

J=8 [Comp Areas] o
H [Comp Keywords]

Boolean

Clipboard

Communications

Compiler

Data Entry

Date and Time

Drag and Drop

Entry Control Ll

Load... |

Cancel | 0K I

For more information about the Formula Editor, See the 4th Dimension User Reference

Manual.

4th Dimension Language Reference

395

e Insert Command: This hierarchical menu item is a shortcut for inserting a command as
a new expression, without using the Formula Editor.

* Delete All: Deletes all the expressions currently present.

« Collapse All/Expand All: Collapses or Expands all the expressions whose evaluation is
done by the means of a hierarchical list (i.e., pointers, arrays,...)

- Show Types: Displays the object type for each object (when appropriate).

« Show Field and Table Numbers: Displays the number of each table or field of the Fields.
If you work with table or field number or pointers using the commands such as Table or
Field, this option is very useful.

« Show Icons: Displays an icon denoting the object type for each object. You can turn this
option off in order to speed up the display, or just because you prefer to use only the
Show Types option.

« Sorted Tables and Fields: Forces the table and fields to be displayed in alphabetical order,
within their respective lists.

« Show Integers in Hexadecimal: Numbers are displayed using the decimal notation. This

option displays them hexadecimal notation. Note: To enter a numeric value in
hexadecimal, type Ox (zero + "x"), followed by the hexadecimal digits.

See Also
Call Chain Pane, Debugger, Debugger ShorTcuts, Source Code Pane, Watch Pane.

396 4th Dimension Language Reference

Source Code Pane Debugging

version 6.0

The Source Code pane shows the source code of the method being traced.

« If the method is too long to fit in the text area, you can scroll to view other parts of the
method.

« Moving the mouse pointer over any expression that can be evaluated (field, variable,
pointer, array,...) will cause a Tool Tip to display the current value of the object or
expression and its declared type.

Here is an example of the Source Code pane:

$sSearchCriteria=$3 Al

QUERY(pTable-=;pField-==§sSearchCriteria)
e jLRecordsinSe pTabIg:P01nter=->[Customers] ble->)

o If (JLRecordsInSelection=0)
$0:=New process('DE_Semaphores";16*1024;"$Semaphores")
M_BitTestDemo

Else
$0:=-1 *No records selected

End if

s
| i

A tool tip is displayed because the mouse pointer was over the variable pTable which,
according to the tool tip, is a pointer to the table [Customers].

Tip: In the Source Code pane, clicking on an expression (that can be evaluated) copies the
expression or object to the Custom Watch pane.

Program Counter

A yellow arrow in the left margin of the Source Code pane (see the figure above) marks
the next line that will be executed. This arrow is called the program counter. The
program counter always indicates the line on the verge of being executed.

For debugging purposes, you can change the program counter for the method being on
top of the call chain (the method actually being executed). To do so, click and drag the
yellow arrow vertically, to the line you want.

WARNING: Use this feature with caution!

4th Dimension Language Reference 397

Moving the program counter forward does NOT mean that the debugger is rapidly
executing the lines you skip. Similarily, moving the program counter backward does NOT
mean that the debugger is reversing the effect of the lines that has already been executed.

Moving the program counter simply tells the debugger to “pursue tracing or executing
from here.” All current settings, fields, variables, and so on are not affected by the move.

Here is an example of moving the program counter. Let’s say you are debugging the
following code:

If (This condition)

DO SOMETHING
Else

DO SOMETHING ELSE
End if

The program counter is set to the line If (This condition). You step once and you see that
the program counter moves to the line DO SOMETHING ELSE. This is unfortunate, because
you wanted to execute the other alternative of the branch. In this case, and provided that
the expression This condition does not perform operations affecting the next steps in your
testing, just move the program counter back to the line DO SOMETHING. You can now
continuing tracing the part of the code in which you are interested.

Setting Break Points

In the debugging process, you may need to skip the tracing of some parts of the code.
The debugger offers you several ways to execute code up to a certain point:

« While stepping, you can click on the Step Over button instead of Step Into button. This
is useful when you do not want to enter into possible subroutines or functions called in
the program counter line.

< If you mistakenly entered into a subroutine, you can execute it and directly go back to
the caller method by clicking on the Step Out button.

< If you have a TRACE call placed at some point, you can click the No Trace button, which
resumes the execution up to that TRACE call.

398 4th Dimension Language Reference

Now, let’s say you are executing the following code, with the program counter set to the
line ALL RECORDS([ThisTable]):

ALL RECORDS([ThisTable])

$vrResult:=0

For($viRecord;1;Records in selection([ThisTable]))
$vrResult:=This Function([ThisTable]))
NEXT RECORD([ThisTable])

End for

If ($vrResult>=$vrLimitValue)

Your goal is to evaluate the value of $vrResult after the For loop has been completed. Since
it takes quite some execution time to reach this point in your code, you do not want to
abort the current execution, then edit the method in order to insert a TRACE call before
the line If ($vrResult....

One solution is to step through the loop, however, if the table [ThisTable] contains several
hundreds records, you are going to spend the entire day for this operation. In this type of
situation, the debugger offers you break points. You can insert break points by clicking in
the left margin of the Source Code pane.

For example:
You click in the left margin of the Source Code pane at the level of the line If ($vrResult...:

i ALL RECORDS([ThisTable])

$vrResult:=0

For($vIRecord;1 ;Records in selection([ThisTable]))
$vrResult :=This Function{ [ThisTable]))
NEXT RECORD([ThisTable])

End for

® If ($vrResult>=$vrLimitvalue)

This inserts a break point for the line. The break point is indicated by a red bullet. Then
click the No Trace button.

This resumes the normal execution up to the line marked with the break point. That line
is not executed itself—you are back to the trace mode. In this example, the whole loop
has consequently been executed normally. Then, when reaching the break point, you just
need to move the mouse button over $vrResult to evaluate its value at the exit point of
the loop.

Setting a break point beyond the program counter and clicking the No Trace button
allows you to skip portions of the method being traced.

4th Dimension Language Reference 399

A red break point is a persistent break point. Once you created it, it “stays.” Even though
you quit the database, then reopen it later on, the break point will be there.

There are two ways to eliminate a persistent break point:

 If you are through with it, just remove it by clicking on the red bullet—the break point
disappears.

 If you are not totally through with it, you may want to keep the break point. You can

temporarily disable the break point by editing it. This explained in the section Break
Points.

See Also
Break Points, Call Chain Pane, Custom Watch Pane, Debugger, Watch Pane.

400 4th Dimension Language Reference

Break Points Debugging

version 6.0

As explained in the Source Code pane section, you set a break point by clicking in the left
margin of the Source Code pane at the same level as the line of code on which you want
to break. In the following figure, a break point has been set on the line
If($vrResult>=$vrLimitValue):

o1 ALL RECORDS([ThisTable])

$vrResult:=0

For($vIRecord;1 ;Records in selection([ThisTable]))
$vrResult:=This Function([ThisTable]))
NEXT RECORD([ThisTable])

End for

® | If ($vrResult>=$vrLimitvalue)

If you click again on the red bullet, the break point is deleted.

Editing a Break Point

Pressing Alt-click (Windows) or Option-click (Macintosh) in the left margin of the source
code pane, for a line of code, gives you access to the Break Point Properties window.

« If you click on an existing break point, the window is displayed for that break point.
« If you click on a line where no break point was set, the debugger creates one and
displays the window for the newly created break point.

The Break Point Properties window is shown here:

Break Point Properties

@ Break Point

r Location

Genealogy of, line: 7

rType
O Temporary (disappears when method achieves)
@ Persistent

rBreak when following expression is true ——
| | Check Syntax

rNumber of times to skip before breaking

[] Break Point is disabled.

| |

4th Dimension Language Reference 401

Here are the properties:

Location: This tells you the name of the method and the line number where the break
point is set. You cannot change this information.

Type: By default, the debugger lets you create persistent break points, depicted by a red
bullet in the source code pane of the debugger window. To create a temporary break
point, select the Temporary option. A temporary break point is useful when you want to
break just once in a method. A temporary break point is identified by a green bullet in the
source code pane of the Debugger window. Note: You can also set a temporary break
point directly in the source code pane by clicking in the left margin while pressing
ALT+Shift (Windows) or Option+Shift (Macintosh).

Break when following expression is true: You can create conditional break points by
entering a 4D formula that returns True or False. For example, if you want to break at a
line only when Records in selection([aTable])=0, enter this formula, and the break will
occur only if there no record selected for the table [aTable], when the debugger
encounters the line with this break point. If you are not sure about the syntax of your
formula, click the Check Syntax button.

Number of times to skip before breaking: You can set a break point to a line of code
located in a loop structure (While, Repeat, or For) or located in subroutine or function
called from within a loop. For example, you know that the “problem” you are tracking
does not occur before at least the 200th iteration of the loop. Enter 200, and the break
point will activate at the 201st iteration.

Break Point is disabled: If you currently do not need a persistent break point, but you
may need it later, you can temporarily disable the break point by editing it. A disabled
break point appears as a dash (-) instead of a bullet () in the source code pane of the
debugger window and in the Break List window.

You create and edit break point from within the Debugger window. You can also edit
existing break points using the Design environment Break List window. For more
information, see the section Break List window.

See Also
Break List Window, Debugger, Source Code Pane.

402 4th Dimension Language Reference

Break List Window

Debugging

version 6.0

The Break List window is a Design Environment window that enables you to:

* Manage the Break Points created in the Debugger Window.
- Add additional breaks to your code by catching calls to 4D commands.

To open the Break List window:

1. Switch to the Design environment if you are not already there.

2. Choose Break List from the Tools menu.

Tools

Explorer

Database Structure
Menu Bar Editor
List Editor
Passwords

Picture Library

Process List

ookl |

The Break List window appears.

|=i|Break List
Caught Commands

IS [=] B3

Condition

® DELETE RECORD
® ppplication version

® Get platform interface

[Customers] d
1
2

Break Location

Condition

® DE_LInitialize, line: 24
® DE_DebugDemo, line: 16

4th Dimension Language Reference

403

Note that when the Break List window is the frontmost window of the Design
environment, the Break List menu appears in the main menu bar:

Add New Catch

Delete
Delete All

Enable/Disable

The Break List window has two panes, each composed of two columns:

e The top pane lists the commands to be caught during execution. The left column
displays the Enable/Disable status of the caught command, followed by the name of the
command. The right column displays the condition associated with the caught
command, if any.

e The lower pane shows the persistent Break Points. The left column displays the
Enable/Disable status of the break point, followed by the name of the method and the
line number where the break point has been set (using the Debugger window). The right
column displays the condition associated with the break point, if any.

3. To select a pane as the active pane of the window, click somewhere in the pane or use
the Tab key.

Catching Commands

Catching a command enables you to start tracing the execution of any process as soon as
a command is called by that process. Unlike a break point, which is located in a particular
project method (and therefore triggers a trace exception only when it is reached), the
scope of catching a command includes all the processes that execute 4D code and call that
command.

Catching a command is a convenient way to trace large portions of code without setting
break points at arbitrary locations. For example, if a record that should not be deleted is
deleted after you have executed one or several processes, you can try to reduce the field of
your investigation by catching commands such as DELETE RECORD and DELETE
SELECTION. Each time these commands are called, you can check if the record in
question has been deleted, and thus isolate the faulty part of the code.

With some experience, you can combine the use of break points and command catching.

404 4th Dimension Language Reference

Adding a New Command to be Caught
To add a new command:

1. Choose Add New Catch from the Break List menu.

OR

Double-click the left mouse button in the Caught Commands list.

In both cases, a new entry is added to the list with the ALERT command as default.

The entry is set to the edit mode.

i4|Break List P[=] 3 |
Caught Commands Condition
‘ =
=
Break Location Condition
=

2. Enter the name of the command you want to catch.

3. Press Enter or Return to validate your choice.

4. Press the right mouse button (Control-Click on Macintosh) to display the speed menu:

Add New Catch For »

Delete Al
Disable

»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»

4D Environment » Process ([Communications) »
Arrays > Process (User Interface)
BLOB > Processes

Boolean » | Queries

LClipboard > Record Locking
[IDGEIGI Y SET CHANNEL
Compiler » SEND RECORD
Data Entry » RECEIVE RECORD
Date and Time » SEND VARIABLE
Drag and Drop » RECEIVE VARIABLE
Entry Control » SEND PACKET
Form Events [l RECEIVE PACKET
Form Pages » RECEIVE BUFFER
Graphs » USE ASCII M&P
Hierarchical Ligts » SET TIMEOUT
Import and Export » Table

Interuptions > Tool Bar

Language > Transactions

Math > Triggers

Menus > User Interface
Messages > Users and Groups
Named Selections » Variables

Object Properties » | Web Server

On a Series > | Windows

Pictures >

Printing »

4th Dimension Language Reference

405

5. Select Add New Catch, then select the desired command from the command themes
and names submenus. A new entry is added with the command you selected.

Editing the Name of a Caught Command
To edit the name of a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list
(if the current selected entry is not already in edit mode).

2. To toggle an entry between edit mode and select mode, press Enter or Return.
3. Enter or modify the name of the command.

4. To validate your changes, press Enter or Return. If name you entered does not
correspond to an existing 4D command, the entry is set to its previous value. If the entry
is a new one, it is reset to ALERT.

Disabling/Enabling a Caught Command
To disable or enable a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list
(if the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch to select mode.
3. Choose Enable/Disable from the Break List menu or from the speed menu.

Shortcut: Each entry in the list may be disabled/enabled by clicking on the bullet (¢). The
bullet changes to a dash (-) when disabled.
Deleting a Caught Command

To delete a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list
(if the current selected entry is not already in edit mode).

2. If the entry is in edit mode, press Enter or Return to switch to select mode.

3. Press the Delete key, choose Delete from the Break List menu or choose Delete from
the speed menu.

Note: To delete all the caught commands, choose Delete All from the Break List menu or
from the speed menu.

406 4th Dimension Language Reference

Setting a Condition for Catching a Command
To set a condition for catching a command:

1. Click on the entry in the right column.

2. Enter a 4D formula (expression, command call or project method) that returns a
Boolean value.

Note: To remove a condition, delete its formu