A
~ PHP4Delphi 5.5

PHP Extensions Development Framework

1. Introduction

PHP, which stands for "PHP: Hypertext Preprocessor" is a widely-used Open Source
general-purpose scripting language that is especialy suited for Web development and can be
embedded into HTML. Its syntax draws upon C, Java, and Perl, and is easy to learn. The main
goa of the language is to alow web developers to write dynamically generated WebPages
quickly, but you can do much more with PHP.

PHP4Delphi 5.0 is a Visua Development Framework for creating custom PHP
Extensions using Delphi. PHP extension, in the most basic of terms, is a set of instructions that is
designed to add functionality to PHP.

PHP4Delphi also allows executing the PHP scripts within the Delphi program directly
from file or memory. Y ou can read and write global PHP variables and set the result value.

PHP4Delphi allows you to embed the PHP interpreter into your Delphi application so
you can extend and customize the application without having to recompileit.

PHP is freely available from http://www.php.net/
For more information on the PHP Group and the PHP project, please see http://www.php.net.

What's new in version 5:

e PHP API and ZEND API converted from C to Delphi

e psvPHP component written completely in Delphi without additional C wrapper DLL

e phpLibrary component which allows to add new build-in PHP functions to psvPHP
component

e New visual PHP extension development framework to create PHP extensions using Delphi.



2. Creation PHP Extension

The creation of a PHP Extension DLL issimilar to the development of any standard DLL. For

: this purpose it is necessary to load Delphi, in the menu
File choose item New, then in a New Items dialog box
wiebServices ] Business ] “WebSnap ] web Documents choose an icon PHP Extension and to press the OK
New lf—'«ctiw% ] Multitier] Farms ] Dialogs] F'n:niects] button.

| ¥ O 5

Data Module  DLL Wizard Form Frame
Service
Wizard
e,
Test Thread Object Unit YWeb Sery
Applicatio

f'“ f'“ i

o ]

PHP4Delphi provides afull design time environment for the development of PHP Extensions. A
special Data Module PHPExtension is added to your new project; Y ou can place any non-visual
controlsin it and work with them.

2.1. TPHPEXxtension properties

The main properties of PHPExtension module are:

e e Name: Contains the module name (for example, "File
ject Inspector [x ; - ) o . .
[PHPEMersion]  TPHPEstencion = functions’, "Socket functions', "Crypt", etc.). This
_ name will show up in phpinfo(), in the section
Propattes | Events | "Additional Modules.”
Ahot FHPAD elphi 5.0
Functions | [TPHPFunctions) e Version: The version of the module. Y ou can use
ModuleName | mymodule NO_VERSION_YET if you don't want to give the
bModuleType | mtPerziztent .
i, . module a version number yet, but we really
arne PHPE sterzion . )
OCreatelrdel False recommend that you add a version string here. Such a
Tag 0 version string can look like this (in chronological
| Wersion [10.0] order): "2.5-dev", "2.5RC1", "2.5" or "2.5pl3".

e Functions: Contains all the functions that are to be made available externally, with the
function's name as it should appear in PHP



2.2. TPHPExtension Events

e OnActivation: Occurs when the Extension module is activated. Write an OnActivation
event handler to perform any initializations when the Extension module isfirst activated.
The Extension module is first activated when application starts and is also activated on
every PHP request.

e OnCreate: Occurs when an application instantiates the data module. Write an OnCreate
event handler to take specific actions when an application instantiates the data module.
For example, if the data module contains database and dataset components, an
application may establish a database connection immediately.

e OnDeactivation: Occurs when the Extension module is deactivated. Write an
OnDeactivation event handler to perform any final cleanup when the Extension moduleis
deactivated. PHPExtension modules are deactivated after the PHP request has been
processed and a custom PHP function returns a result.

e OnDestroy: Occurs when the data module is about to be destroyed. Write an OnDestroy
event handler to take specific actions when an application frees a data module. For
example, if the unit code for the data modul e instantiates any objects of its own, such asa
TStringlist, the OnDestroy event handler can be used to free those objects.

e OnModulelnfo: When phpinfo() is called in a script, Zend cycles through al loaded
modules and calls this function. Every module then has the chance to print its own
"footprint” into the output page. Generally thisis used to dump environmental or
statistical information.

e OnModulelnit: Thisevent occurs once upon module initialization and can be used to do
one-timeinitialization steps (such asinitial memory allocation, etc.).

e OnModuleShutdown: This event occurs once upon module shutdown and can be used
to do one-time deinitialization steps (such as memory deallocation). Thisisthe
counterpart to OnM odulel nit event.

e OnRequestinit: Thisevent occurs once upon every page request and can be used to do
one-time initialization steps that are required to process arequest. Note: As dynamic
loadable modules are loaded only on page requests, the request startup function is called
right after the module startup function (both initialization events happen at the same
time).

e OnRequestShutdown: Thisevent occurs once after every page request and works as
counterpart to OnRequestI nit event. Note: As dynamic loadable modules are loaded
only on page requests, the request shutdown function isimmediately followed by acall to
the modul e shutdown handler (both deinitialization events happen at the same time).



2.3. Add functions

Now is time to add some new functions to your PHP Extension.

Object Inspector

Propertiez IEvenml

PHFE stenzion].Functions[0] TFHFFunction =

I FunctionMame

myfunction

[TFunctionParamsz]

Parameters
Tag

0

| 7 Editing ... E| tsWnit1. pas

e+ *

< Praject  Unit1 |

0 - myfunction

# 00

unit Unitl:

interface

uses

Windows,
HNessages,
3ysUtils,
Classes,
Formws,
zendiPI,
phpdPI,
PHPModules:

TPHPFunction properties:

e Name: Denotes the function name as seen in PHP (for example, fopen, mysqgl_connect,
or, in our example, myfunction).

e Parameters: Contains the collection of function parameters. Each parameter object in
the collection represents an individual parameter. Use Items to access a particular
parameter. Index indicates the specific parameter to access. Index identifies the
parameter’ s position in the collection of parameters, in the range 0 to Count - 1.

Object Inspector

TFunctionPararnz[1]

PWDEWE$|Evean

TFunctionParanm

Param2

I arne
ParamType

tpStrin
tpBoalean
tpFloat

tplnteger

R p—p

| 7 Editing.... E| ts\Wnit1. pas
E & Project]  Urit1 |

| + ¥

0 - myfunction
1 - PHPFunctionl

7 Editing ... [X|
3 + &

X a@ - ~d

unit Unitl:

interface

uses
Windows,
Mes=ages,
Byslcils,

Classes,

0 - name
1 - Param2

Forms,
zenddPI,
phpdiPI,
FPHPHodules:

type

TFHFExtensionl =
private

{ Private declarvations }
public

cla=s (TPHFExtension)



TFunctionParam represents a parameter. Use the Name property to identify a particular

parameter within the TFunctionParams object.

The ParamType property indicates the datatype of the value the parameter represents.

%]
| PHPE stension]. Functions[0] j
Properties  Events = E] Project]  Unitl l
| OnExecute ctionsOE xecute | fhstants —_'] th

Parameters: TFunctionParams; var
TSRMLS DC: Pointer);
hegin

end;

end.

procedure TPHPExtensionl.PHPExtensionlFunctionsO0Execute (Sender: Tohject:

FeturnValue: Variant; ThisPtr: Pzval;

)

S =1jES

Next write an OnExecute event handler to implement a response to function call sent by the

PHP script.

Example:

procedure TPHPExtensionl.PHPExtensionlFunetionsOiExes
Parameters: TFunctionParams: war FeturnValue: Wari
TSREMLS_DC: Pointer):

begin
FeturnWalue := 'Hello, Delphi';

end;

end.

Y our PHP extension is now ready. Just compile and use.

To test your project you can use PHP script like this:

<?

if (extension_loaded(‘extname’)) {
di(‘skeleton.dll’);

}

$str = confirm_extname_compiled("skeleton™);
echo "$str\n";

$module = 'extname’;

if (extension_loaded($module)) {
$str = "module loaded";
} else{
$str = "Module $module is not compiled into PHP';
}

echo "$str\n";



$functions = get_extension_funcs($module);
echo "Functions available in the $modul e extension:<br>\n";
foreach($functions as $func) {

echo $func."<br>\n";

}

>

3. PHP Extensions — classical way

Y ou can also build PHP extensions in the classical way —using the ZEND API.
Y ou can find the ZEND API documentation here: http://www.zend.com/apidoc/

We'll start with the creation of avery simple extension at first. This basically does nothing more
than implement a function that returns a string.

library skel eton;

uses
W ndows, SysUtils, ZENDAPI, PHPAPI

function rinit (_type : integer; nodul e_number : integer; TSRWM.S DC
pointer) : integer; cdecl
begi n
Result : = SUCCESS;
end,
function rshutdown (_type : integer; nodul e_nunber : integer; TSRMLS DC :
pointer) : integer; cdecl
begi n
Resul t := SUCCESS
end;

procedure php_i nfo_nodul e(zend _nodul e : Pzend_nodul e_entry; TSRMLS DC :
poi nter); cdecl
begi n
php_info _print _table start();
php_info_print_table row(2, PChar('extnane support'), PChar('enabled));
php_info_print_table end();

end;
function mnit (_type : integer; nodul e_number : integer; TSRWS DC :
pointer) : integer; cdecl
begi n
RESULT : = SUCCESS
end;
function nshutdown (_type : integer; nodul e_nunber : integer; TSRWMLS DC :
pointer) : integer; cdecl
begi n
RESULT : = SUCCESS
end;
procedure confirmextnane_conpiled (ht : integer; return_value : pzval;

this_ptr : pzval
return_value used : integer; TSRMLS DC : pointer); cdecl
var



arg : PChar;
str : string;
param : array of pzval

begi n
if ( not (zend_get paraneters_ex(ht, @aranm) = SUCCESS )) then
begi n
zend_wrong_param count ( TSRMLS_DC) ;
Exit;
end;
arg := parani0]~.value.str.val;
str := Format (' Congratul ations! You have successfully nodified

ext/ % 78s/config.m. Module % 78s is now conpiled into PHP.', ['extname',
arg]);

ZVAL _STRI NG return_val ue, PChar(str), true);
end;

var
nodul eEntry : Tzend_nodul e_entry;
nmodul e_entry_table : array[0..1] of zend_function_entry;

function get _nodule : Pzend _nodul e_entry; cdecl

begi n
Modul eEntry. si ze : = sizeof (Tzend_nodul e_entry);
Modul eEntry. zend_api : = ZEND_MODULE_API _NO
Modul eEntry. zts : = USI NG _ZTS;
Modul eEntry. Nane : = 'extnane';
Modul eEntry.version := '0.0";

Modul eEntry. nodul e_startup_func := @nnit;

Modul eEnt ry. nodul e_shut down_func : = @mshut down;
Modul eEntry. request _startup_func := @init;
Modul eEnt ry. request _shut down_func : = @ shut down;
Modul eEntry.info_func : = @hp_i nfo_nodul e;
nodul e_entry table[0].fnanme := 'confirm extnane_conpil ed'
nodul e_entry _tabl e[ 0]. handl er := @onfirm extnane_conpil ed;
nodul e_entry table[0].func_arg types := nil
Modul eEntry. functions := @rodul e_entry_tabl e[0];
Modul eEntry. _type : = MODULE_PERSI STENT;
result := @bdul eEntry;

end;

exports

get _nodul e;
end.

This code contains a complete PHP module.

All PHP modules follow a common structure:

Declaration of exported functions (required to declare the Zend function block)
Declaration of the Zend function block

Declaration of the Zend module block

Implementation of get_module()

Implementation of all exported functions



To declare functions that are to be exported (i.e., made available to PHP as new native
functions), you have to add procedures with the following declaration:

procedure <procedure nane> (ht :

pzval ; return_val ue_used

i nteger; return_value : pzval; this_ptr :
TSRMLS DC : pointer); cdecl

Par ameter Description

Ht The number of arguments passed to the Zend
function.

Return_value Thisvariable is used to pass any return values
of your function back to PHP.

This _ptr Using this variable, you can gain access to the

object in which your function is contained, if
it's used within an object.

Return_value used

This flag indicates whether an eventual return
value from this function will actually be used
by the calling script. O indicates that the return
valueis not used; 1 indicates that the caller
expects areturn value. Evaluation of thisflag
can be done to verify correct usage of the
function as well as speed optimizationsin case
returning a value reguires expensive operations

TSRMLS DC

This variable points to global settings of the
Zend engine. You'll find this useful when
creating new variables, for example

Now that you have declared the functions to be exported, you also have to introduce them to
Zend. Introducing the list of functionsis done by using an array of zend_function_entry. This
array consecutively contains al functions that are to be made available externally, with the
function's name as it should appear in PHP and its name as defined in the Del phi source.

zend_function_entry = record
fnane : Pchar;
handl er : pointer;
func_arg_types : Pbyte;
end;
Entry Description
Fname Denotes the function name as seen in PHP (for
example, fopen, mysgl_connect, or, in our
example, first module).
Handler Pointer to the Delphi function responsible for

handling calls to this function

Func_arg_types

Allows you to mark certain parameters so that
they're forced to be passed by reference. You
usually should set thisto Nil.

Y ou can see that the last entry in the list always has to be { Nil, Nil, Nil}. This marker has to be
set for Zend to know when the end of the list of exported functionsis reached.




4. Setup

PHP4Delphi is a Delphi interface to PHP. 1t works with Delphi 5, 6 and 7.

PHP4Del phi alows you to execute PHP scripts from within your Delphi program directly,
without needing a WebServer. PHP4Delphi also contains the PHP APl and ZEND API and a
visual development framework for PHP extensions.

Thisisasource-only release of php4Delphi. It includes designtime and runtime packages for
Delphi 5 through 7.

Before using php4Delphi library:
If you do not have PHP installed, you have to download and install PHP separately. It is not

included in the package. Y ou can download the latest version of PHP from
http://www.php.net/downl oads.php

ZEND API documentation available at http://www.zend.com
PHP APl documentation available at http://www.php.net

Y ou need to ensure that the dlls which php uses can be found. php4ts.dil is aways used. If you
are using any php extension dlls then you will need those as well. To make sure that the dils can
be found, you should copy them to your system directory (e.g. winnt/system32 or
windows/system).

1. Delphi 5.x:

Uninstall any previoudly installed versions of the php4Delphi Library from your Delphi 5 IDE.
Y ou should also remove any previously compiled php4Delphi packages from your hard disk.

Use the "File\Open..." menu item in the Delphi IDE to open php4Delphi runtime package
php4DelphiR5.dpk. In "Package..." window click "Compile" button to compile the package
php4DelphiR5.dpk. Put the compiled BPL fileinto adirectory that is accessible through the
search PATH (i.e. DOS"PATH" environment variable; for example, in the Windows\System
directory).

After you have compiled the php4Del phi run-time package you must install the design-time
package into the IDE.

Use "File\Open..." menu item to open the design-time package php4Del phiD5.dpk.

In "Package..." window click "Compile" button to compile the package and then click "Install”
button to register the php4Delphi Library components on the component pal ette.

2. Delphi 6.x:

Uninstall any previoudly installed versions of the php4Delphi Library from your Delphi 6 IDE.
Y ou should also remove any previously compiled php4Delphi packages from your hard disk.

Use the "File\Open..." menu item in the Delphi IDE to open the php4Delphi runtime



package php4Del phiR6.dpk. In "Package..." window click "Compile" button to compile the
package php4DelphiR6. Put the compiled BPL file into a directory that is accessible through the
search PATH (i.e. DOS "PATH" environment variable; for example, in the Windows\System
directory).

After compiling the php4Delphi run-time package you must install the design-time
package into the IDE.

Use "File\Open..." menu item to open the design-time package php4Del phiD6.dpk.
In "Package..." window click "Compile" button to compile the package and then click "Install”
button to register php4Delphi Library components on the component pal ette.

3. Delphi 7.x:

Uninstall any previously installed versions of the php4Delphi Library from your Delphi 7 IDE.
Y ou should also remove any previously compiled php4Delphi packages from your hard disk.

Use the "File\Open..." menu item of your Delphi IDE to open the php4Delphi runtime
package php4DelphiR7.dpk. In "Package..." window click "Compile" button to compile the
package php4DelphiR7.dpk. Put the compiled BPL fileinto adirectory that is accessible
through the search PATH (i.e. DOS "PATH" environment variable; for example, in the
Windows\System directory).

After compiling the php4Delphi run-time package you must install the design-time package into
the IDE.

Use "Filé\Open..." menu item to open the design-time package php4Del phiD7.dpk
In "Package..." window click "Compile" button to compile the package and then click "Install"
button to register php4Delphi Library components on the component pal ette.

5. Special Thanks

Daaron Dwyer
Sebastien Hordeaux
Blake Schwendiman
Colin Nelson
VagaKlanjsek
Toby Allen

Mauro Diomelli
Kim Bracknell

Bart Libert

Peter Enz

and all developers who sent me comments, remarks and bug reports.

Sincethisisafreeware you are strongly encouraged to look at the source code and improve on
the componentsif you want to.



Of course | would appreciate it if you would send me back the changes and bug fixes you have
made.

Author: Serhiy Perevoznyk,
Belgium

Send any remarks to: serge_perevoznyk@hotmail.com
Please clearly state which Delphi version you are using and which version of the component you
are using. In case of doubt, download the latest version first at http://users.chello.be/ws36637




