ProDelphi User Guide

(Release 14.6)

Copyright Dipl. Inform Helrmuth J.H Adol ph 1998 - 2004

The Profiler for Delphi 2, 3, 4, 5, 6 and 7 (for Pentium and compatible CPU's)

Profiling

The purpose of ProDelphi is to find out which parts of a program consume the most CPU-time. Because Borland
(Inprise, Corel or who ever) gave up the profiler for 32-bit applications, a new tool had to be created. ProDelphi with it's
comfortable viewer, browser, history and programmers API meanwhile is more than the legendary Tubo Profiler. The
viewer with it's sorted results enables the user to find the bottle necks of his program very fast. The history function
shows the user, if a preceeding optimization was successful or not. ProDelphi's outstanding granularity makes it possible
even to optimize time critical procedures. The built-in calibration routine adapts the measurement routines to the used
processor and memory speed and guaranties results that do not include measurement overhead.

Starting with release 7.4 even a simple coverage profiling can be performed. All methods that are not called while
profiling are stored at the end of the testees run an can displayed by the built-in browser. If a coverage profiling on a line-
by-line base is necessary, the coverage tool Discover can be strongly recommended (see links on the ProDelphi web
page).

Starting with release 8.0 the dynamic acitivation becomes very easy to use. Instead of inserting API-Calls (which in all
former releases was possible and still is), now by a handy dialog the activation starting methods can be selected. The in
all former versions built-in functionality of the measurement-DLL now is usable without recompilation.

Also starting with release 8.0 measurement on another PC can be emulated. Instead of installing the complete IDE on a
faster or slower PC now you can measure under your normal equipment and let ProDelphi recalculate the measurement
results for any given PC.

With release 13.0 came a caller / called graph that lets navigating through the measurement results (in connection with

opening a source file in the IDE editor just by mouse click) be a pure pleasure. The starting point list makes it easy to
identify pathes to profile.

Post Mortem Review

Another reason to develop ProDelphi was the need for a tool that shows the call stack of a testee in case of an abortion /
exception. ProDelphi realizes that function without the testee running under the IDE.

Differences between the freeware mode and the professional mode
In the freeware mode up to 20 procedures can be measured or tracked, in the professional mode 32000.

In the professional mode additionally assembler procedures can be measured and tracked, minimum and maximum
runtimes can be displayed in the viewer and the user part of the library path can be profiled.

Date: 12/30/2003

0. Contents of this description

A. Principle of Profiling

Al. How to profile

Al.1 Files created by ProDelphi or the measured program
Al.2 Checking the results with the Built in viewer

Al1.3 Emulation of a faster or slower PC

Al.4 Using the caller / called graph (call graph)

A2 Getting exact results

A2.1 Common causes of disturbing influences outside of your program
A2.2 Common causes of disturbing influences inside your program
A2.3 Common cause of disturbing influence is the PC's cache

A2.4 Profiling on mobile computers

A2.5 Summary

A3 Interactive optimization
A3.1 The history function
A3.2 Practical use of the history function

A4 Measuring only parts of the program
A4.1 Exclusion of parts of the program

A4.2 Dynamic activation of measurement
A4.3 Finding points for dynamic activation
A4.4 Measuring specified parts of procedures

A5 Programming API

A5.1 Measuring defined program actions through Activation and Deactivation
A5.2 Preventing to measure idle times

A5.3 Programmed storing of measurement results

A6. Options for profiling

A6.1 Code intrumenting options:
A6.2 Runtime measurement options
A6.3 Measurement activation options
A6.4 General options

A7. Online operation of the profiled program

A8. Dynamic link libraries (DLL) / packages
A8.1 DLL’s
A8.2 Packages

A9 Treatment of special Windows- and Delphi-API-functions
A9.1 Redefined Windows-API functions

A9.2 Redefined Delphi-API functions

A9.3 Replaced Delphi-API functions

A9.4 Not replaced or redefined Delphi functions

A10 Conditional compilation
A10.1 Delphi2..5
A10.2 Delphi 6 and above

All. Limitations of use

Al12. Assembler code

Al13. Modifying code vaccinated by ProDelphi

Al4. Hidden performance losses / Tips for optimization
Al15. Error messages

Al6 Security aspects

Appendices:

B. Post mortem review

C. Cleaning the sources

D Compatibility

E. Installation of ProDelphi

F. Description of the result file (data base export)

G. Updating / Upgrading ProDelphi

H. How to order the registration key for unlocking the Professional mode
l. Author
J. History

K. Literature

BEFORE using ProDelphi practically, please read Chapter 15 carefully !

A. Principle of Profiling

The source code of the program to be optimized is vaccinated with calls to a time measuring unit. The insertions are
made at the begin and the end of a procedure or function.

Any time a procedure / function / method (in the following named procedure) is called, the start time of the procedure is
memorized. At the end of the procedure the ellapsed time is calculated. When the program ends, between three and
five files are created that contain the runtime information for each procedure:

The first file (programname.txt) contains the elapsed times in CPU-Cycles. The format is ASCII, separated by semicolon
(;) and can be used either for Data Base import or for the built-in viewer of ProDelphi. The format is described at the
end of this description.

The second file (programname.tx2) contains additional information like a headline and how often measurements have
been appended to the first file. It is relevant in connection with the online operation window or the programmers API.

The third file (programname.tx3) contains information used for opening a file in the editor and positioning the editor
cursor to the measured procedure.

The fourth file (programname.nev) contains the names of all methods which have never been called when measuring
the runtime of your program. It is used be the viewer, it is displayed as a hierarchical tree when you press the button
named ‘Not called methods’. This button is not enabled if all methods have been called or if you display the
measurement results of a former version of ProDelphi.

The fifth file is also optional and only created, if the automatic switching off is activated (see A5).

Al How to profile

Using ProDelphi is quite simple. It has been used in a project with a large program, which now already contains more
than 370 000 lines of code written by 12 programmers. After more than two years of developping the program has been
optimized with the help of ProDelphi. The programs runtime could be decreased by 50 %.

Use the Setup-program to install ProDelphi. The setup program can only then work correctly when Delphi or a
previous version of ProDelphi is not started. If you want to install ProDelphi manually, you need to perform the
following steps:

Copy the files ProfCali.DLL, ProfMeas.DLL and ProfOnForm.DLL into the WINDOWS\SYSTEM - directory (for Windows
95/98) or into the WINNT\SYSTEM3?2 - directory (for Windows NT/2000/XP). Copy the files Profint.PAS and
Profintc.PAS into into the Delphi LIB-directory. For opening a file in the editor by clicking on a measured procedure, the
IDE-interface files need to be installed and entered in the registry in the section ‘Known Packages'. These files have the
name PDIFacx0.BPL (x = Delphi version number). this is possible for Delphi 5 to 7 only.

After installation, try to compile your program to create the Delphi project files (the DOF-file is needed by ProDelphi). If
no DOF-file exists, all files have to be in the same directory (*.PAS, *.INC, *.DPR, *.EXE and *.DLL).

If you want to measure procedures in a program and in DLL's simultaneously, program and DLL's must have
exactly the same units source path, their DPR-files need to be in the same directory, also the EXE-files and the
DLL-file have to be in the same directory. In that case compile both: program and DLL's. All files to be profiled
must be stored in directories of the units search path except those that have an explicite path in the USES-
statement in the DPR-files of program or DLL. For profiling program and DLL simultaneously, the button
‘Profiling program + DLL’'s / Multiple DLL’s’ must be checked (see also chapter 8).

If your files to profile are very large and you have opened them in the IDE, you should close them. It was reported, that
Delphi does not properly actualize it's window content if a file is very large and the file is changed on disk from outside
the IDE.

If no compilation errors occur, you may profile your program (and/or DLL).

Don't use the original units for profiling, maybe ProDelphi still contains bugs. Just make a security copy of the
program to be measured, e.g. by zipping all PAS-, DPR and INC-files.

For profiling your sources perform the following steps:

- Define the Compiler-Symbol PROFILE (project/options/conditional defines).

- Deactivate the Optimization option.

- Optionally deactivate all runtime checks.

- Use the Delphi 'Save All' command. This assures that the options file (*.DOF) is stored.

- Start ProDelphi from the Delphi tools menu, from the Windows Startmenu or somehow else.

- With ProDelphi select the project to profile (if it is not automatically selected).

- For the first example only those options that are checked in the following example are recommended.

Following options are available in professional mode only:

- Measuring units in the library path

- Assembler procedures

- Evaluating minimum and maximum runtimes (in the freeware mode only the much more important average runtimes
are available).

- Do not change file dates. Checking this results in changing the filedate by 3 seconds only when profiling, just enough
to make Delphi realize that a file has changed.

By the way: The most important buttons are ‘First Steps’ and ‘User guide’!

ProDelphi 14.4 Professional ¥ersion -0 x|

Registered for Speedy Gonzales, Faster Software Ltd |

T R e Frofiling | P Review | Clean sources | view results | Info | Register |

Files in and below the
Delphi ibrary and source
directories will nhot be
profiled or cleaned !

Insert statements for execution time counting into
source files

Code instrumenting options {changing requires re-profiling):

[T Initislization and Finalization [Assembler procedures
— [~ Profile local procedures [~ Write protected files
[~ Profile Library path: [~ Program + DLL's { Mult. DLL's

[T Do not change file dates ; .
Euntirne measurement options:

—ﬁl?\ISCSLlerawr oLY [T Countinherited calls for caller [~ Testee contains threads
= [T Deact methods consurming = 1ps T Wain thread anly
. [T Generate data for call graphs [~ Ewaluate min. [max runtimes
Warnings :

[T Online operation window ontop [Mo Online operation window

[+@ project selected [L.
aro Activation of measurerment:

Froject hias no EiCE-file |

; At program start and by online operation window First Steps
Flease carmpile .) R —
Flagse define the svmbol f By invoking selected methods
¥ By AP-call and online operation window Lser Guide

FROFILE faryaur project|
Afer that save the project |

select activating methods anly | Profile and select activ. meth.

Defined compiler symbols: i \ R140 ConditionalE xpre

Activated compiler switches:
EXE-'DLL-output directory:
DPR-dir.+units search path:
Uszer part of library path:

Excluded directories :

I
i aiting

- Select the kind of activation fo measurement you like (in this example by start).

- Click the Profile-button. After a very short time all units are vaccinated. The vaccinated files are listed in a log window.
- If you want to measure procedures in DLL's profile the necessary DLL's too.

- Recompile the program (or DLL's).

To allow simultaneous measuring of DLL's and programs, all files in the units search path are profiled!!! (unless
they are write protected !!!). The unit search path must be exactly the same for program an DLL, both DPR-files

have to be in the same directory !!!

Files in and below the Delphi LIB and SOURCE directories path will not be profiled.

After that, start the program and let it do its job.

A small window appears that allows you to start and stop the time measurement:

See next page for the Online operation window, please.

ProDelphi - online operation

Hext runtimes will be stored with Run-Id: 1

CPU-Speed: "‘

[Cyclic messurement storage ever30 minuters)

| J

500 MH=z

Depending on the profiling options the button 'Start' is enabled (No Autostart option) or not (with autostart option). With
autostart option the measurement starts with the start of the testee. Without the autostart option you have to press the
start button in the online operation window when you want to start the measurement, define activating methods or insert
calls into your sources for activation or deactivation. See chapter A7 for the complete description. After the program has
ended, you can

view the results of the measurement with the built-in viewer of ProDelphi,

For the Built-in viewer, just start ProDelphi again, go to the ‘View results’ page. If the name of your project is not
automatically displayed, select it. Then click the ‘Load and view’ view-button.

In principal this is all that has to be done. If you want to let the program run without time measurement, simply delete the
compiler symbol PROFILE in the Delphi options and make a complete compilation.

Al.1 Files created by ProDelphi or the measured program

ProDelphi creates the file ‘profist.asc’, it contains information about the procedures to be measured for profiling or traced
for post mortem review. The file profile.ini contains options for the time measurement and the last screen coordinates of
the online operation window. The viewer can create a file named “*.hst’ if you use the history function (see A3).

Your compiled program the file with the name ‘progname.txt’ contains the data in the ASCII-semicolon-delimited format
for data base export and viewer and ‘progname.tx2’ for the headlines for the different intermediate results (for the built-in
viewer). A file ‘programname.tx3’ is stored for the interface to the Delphi-IDE. The file ‘progname.swo’ with the list of
procedures that have to be deactivated for time measurement at next program start is stored optionally. Also a file with
the name ‘progname.nev’ is created into which the names of the uncalled methods are stored. This file is also used by
the viewer.

Your compiled program creates a file named ‘progname.pmr’ in case you have selected post mortem review and an
exception occured and was trapped. It contains the call stack.

All files are stored in the output directory for the *.exe (*.dll) file.
To allow simultaneous measuring of DLL's and programs, all files in the units search path (except the Delphi LIB

and SOURCE directories and below them) are profiled if they are not write protected !!! Seach path for program
and DLL need to be identical in that case.

Al1l.2 Checking the results with the Built-in Viewer

The most comfortable way to view the run times of your procedures, is to use the built-in viewer. Just click view.

The results are stored into the result file either at the end of the tested program or any time the Store-button of
the online-operation window is clicked.

& ProDelphi 13.9 Professional Yersion =10l x|

Registered for Speedy Gonzales, Faster Software Ltd |

T R] Profiling | PM Review | Clean sources Viewresults |info | Register |

Files in and below the
Delphi library and source
directories will not he

Load and view the results of profiling stored on disk

profiled or cleaned I Options: User Guide |
[Exclude methods with runtimes less than
1 ps
[~ Do notchange file dates 10ps [~ Emulate another computer
— Class Library——————— ¢ 100ps Itz speed index: Il]
¥ WL i CLX
€ 1ms Its Speed (MH2; o
: MV “iew results in s, ms, .. _
Warnings : _ : [With reduced accuracy 1)
™ “iew results in cycles

[{o project selected [-
Fraject has no DOF-fle | [~ Campare with histary

EFlease compile 1

EROFILE faryaur project! ¥

Aler that save the project |

TN IR i CFLE CFLISEE I 32 MW IND O'wS VER 140 ConditionalE spressions |
Activated compiler switches: _
EEsmLoutputdirectory. [
DFR-dir+units search patt: [KRR
Userpartof ibrarypatn: | AR

Exclude Directaries : |

I
Wi aiting

You can choose if you want to view the results in ps, ms ... or in CPU-Cycles.

You can exclude methods with less than 1pus, 10us,100us or 1ms.

Also you can emulate (recalculate) the measurements for a faster or slower PC. No need to install the IDE on that PC,
just enter two constants in an edit field and let ProDelphi tell you how fast or how slow your program would perform on
that PC (see chapter 1.3).

On clicking ‘View’, a grid is shown, which gives you the results of the measurement. You can scroll through the results or
e.g. search a specific unit, class or method.

See next page please.

i PruDEIphl - Yiewer ' =10 x|

Hunl Unit | Class | Method | % | cans [avrrT | RT-Sum | Av. RT* | RT-5um* | %+ ﬂ
1|Procalz - DeepFunction 08 10,000 002 ps 20482 ps Qoo02ps 20482ps 018
1|Procal2 - Empty n.oo 100 0.000 ps 0.000 pys 0.000 ps 0.oo00ps 0.00
1 /Procalz |- Functionith100 n0.ar 100 1.133ps 113264 ps 1.132ps 113264 p= 0.497
1|Procalz - |Fun|:ti|:|nWith1 oo I 89,43 100 1103t ps 1103ms 11.032ps 1.103ms 9.43
1 Procalz [MidFunction | 235 1,000 0275ps 275040ps 0296 ps 2955325 253
1 Procalz --- TopFunction 0.30 100 0352 s 35164 ps 3306 ps | 330696 gz 2.83
1|Protmai2 - ConverdTime 0.41 20 2405 ps 48106 ps 2406 ps 48106ps 0.4
1 Protmai2 TForm1 MBox 0.2z 1 26074ps 26074ps 26074ps 26074ps 022
1 Protmai2 | TForm1 [StaritAll a0.44 1 9413ms 9413ms 11.034ms 11.034 ms 94.30
1|Protmai2 TFaorm1 |Useressage a.70 1| BEE.Y42 ps BEG.T42 ps BEE.T42 ps BEET42ps 570

] _'fl_I

[Type unitto search [Type class to search [Type method to search [Method uses mare than 1 %

Browser | S0t fmax chande) | Sortimax chane inel. child}l

‘ This page shows runtime and calls of all methods, without and with {*) child times

=4 Mot called Methods| [T Minimum and maximom rurtimes (RT) Comment: At finishing application

S| Save as Histary | [Minimim and meximum BT gncl. chid RT) | ¢PU- 500 MHz f Total RT: 11.701 ms

Alphabetically sorted results, first Units, second classes and third methods/procedures

Explanation of this window:

CPU: nnn MHZ giving the CPU - speed
Total RT: ttt giving the runtime of all measured methods (alternatively in CPU-cycles)
Comment: ccccc Text set as comment in the online operation window for intermediate results, ‘At finishing

application’ when the results were automatically stored when the testee ended or date and
time when the online operation window cyclically stored results.
Sorting the table:

The displayed table can be sorted after different criteria by clicking the tabs, just try it! Two extra buttons are supplied to
sort by comparing the measured results with a stored history. The columns are sorted in a way that those methods that
changed the most are displayed on top (see also history). The displayed order can be reversed by clicking a second
time.

Navigating through the results:

Navigating throgh the results can be done by scrolling, using the browser or by searching for unit, class and object. The
search is started by typing in the search text. With the F3-key the search can be repeated, also positioning by paging up
and down is possible.

Navigating from the viewer to the source code:

Right mouse button click in a line of the viewers grid causes Delphi to open the file in the editor and positioning the

cursor on the start of the method. For using this function Delphi has to be started. Available for Delphi 5 and above !!!
The Print - buttons:
They print the actually displayed table or table + graphic. The table is automatically adjusted so that it fits on the paper.

Using the first button, everything is printed in black, only if absolutely nescessary, color is used (color save mode). Using
the second button, everything is printed as displayed on the screen (full color mode).

The Minimum/Maximum checkboxes (Professional Mode only):

Checking these options, minimum and maximum runtimes are displayed if they were collected in the measurement (see
Chapter A 6.2. If these checkboxes are disabled, no minimum and maximum values were evaluated.

The History - button: see chapter A3

Meaning of Run:

Any time the program stores data into the result file, it puts a leading number before the measured times: the number of
the measurement. With the << (Previous)- or >> (Next)- button you can switch between different measurements. At the
next run of the program the counting starts at 1 again.

Meaning of the RED columns:

% Percentage of the total runtime the procedure took without their child procedures
Calls How often the procedure was called
Av. RT Average runtime of the procedure in CPU-cycles or in pgs, ms, sec or hour units

(in the professional mode also minimum and maximum runtimes can be displayed)
RT-sum RT * Calls
Meaning of the BLUE columns:

Av. RT Average runtime of the procedure inclusive its child procedures in CPU-cycles or in us, ms, ...
(in the professional mode also minimum and maximum runtimes can be displayed)

RT-sum RT * Calls
% Percentage of the total runtime the procedure took inclusive her child procedures.
Meaning of the <<-Button and the >>-Button:

If your program has stored intermediate results into the result file (by using the ProDelphi-API or by Online
operation) you can page back or forward in the result file.

Meaning of '‘Comment":
It is the headline that was inserted when the measurement was stored. In the example you see the default.
The other availlable pages show:

The 12 sorted methods that consumed the most of the runtime (exclusive child procedures) given in a text- and a
graphical representation

The 12 sorted methods that were called most often displayed in a text- and a graphical representation

The 12 sorted methods that consumed the most of the runtime (inclusive child procedures) given in a text- and a
graphic representation

The 12 sorted classes that consumed the most runtime
The 12 sorted units that consumed the most runtime
Meaning of runtimes inside a red frame:

The runtime is greater as the time stored in the history file. The frame only then appears, if the change is greater than
1% of the total runtime of the application.

Meaning of runtimes inside a green frame:

The runtime is is less as the time stored in the history file. The frame only then appears, if the change is greater than 1%
of the total runtime of the application.

The Not called Methods - button:

At the end of runtime the testee creates a file with the names of all uncalled methods. Using this button, these methods
are displayed in hierarchical order: Unit - Class - Method.

ProDelphi - HE?ErEaIIEdFunctiu"' A
=- Procal?

The Browser - button:

It opens a small browser window (similar to the explorer) that shows units, classes and methods in a hierachial order. It
can be used to quickly find the profiling results for a certain method.

ProDelphi - Browser £l
=-Procal?

-. DeepFunction

Emp‘[y

- Functionwith100

- Functionwith1000

- MidFunction

.. TopFunction

= Protmai2

- ConventTime

[

See next page please for another viewer window example

4 ProDelphi - Yiewer -0l x|
Details | MaxRT-T MaxRT-G | Max Calls-T | Max Calls-G | Max RT incl child-T | Max RT incl child-G | RT-Classes | 1.4 ¥

Mo Unit Class | Method | RrRrisum | % | | Percentage of runtim
_1:Pratmaiz TForm1 Startitall 9.413 ms z0.45 |
2 Procal? Functiomaith1000 1.103 ms G432 .
3 Protmai? TFarm1 lzeriessage G66.742 ps a0 .
4 Procal2 MidFunction 275040 ps 238 |
A Procal? Functionith100 113.264 ps 0.4y |
A FProtmai? ConvertTime 48.106 ps 041
7|Procal2 TopFunction 35.164 ps n.3o
g Protmai? TFarm1 M8 o 26.074 ps 022
9 Procal? DeepFunction 20,492 ps n1a
10 Procal? Empty 0.000 ps n.oo

This page shows the methods, that uzed the mast runtime of all

=4 Mot called Methods| [T Minimum and maximom rurtimes (RT) Comment: At finishing application

S| Save as Histary | [Minimim and meximum BT gncl. chid RT) | ¢PU- 500 MHz f Total RT: 11.701 ms

Example of: Maximum run time consuming methods (graphical)

Al1l.3 Emulation of a faster or slower PC

If you want to know, how fast (or slow) your program would perform on another PC, just use the program Getspeed.exe
to get the other PC'’s speed index, enter it in ProDelphi, enter the speed in MHz of the other computer and start the
viewer. Automatically all measurements are recalculated for the other PC. Certainly the results are not as accurate as
if measured on the original PC.

Limitation of use: If in your program you have a procedure that executes for a fixed time (e.g. for 1 sec), the emulation
result for that procedure is wrong!

(The speed index and MHZz'es of the PC on which ProDelphi is executed, is calculated automatically, so do not delete
Getspeed.exe after installing ProDelphi, it is used for this purpose also on the PC on which ProDelphi is installed).

See next page for example, please.

+f Getspeed - |EI|E|

This PC's speed index is: 710

lse this program to getthe speed index

afthe PC to be emulated with ProDelphi

ProDelphi 13.9 Professional Yersion

=10l x|

Registered for Speedy Gonzales, Faster Software Ltd |

N PRLLERANEY Profiling | PM Review | Clean sources View results |Inf|:| | Register |

Files in and below the
Delphi ibrary and source
directories will not he

Load and view the results of profiling stored on disk

profiled or cleaned 1! Options: User Guide |
[T Exclude methods with runtimes less than
% 1 ps
[~ Do notchange file dates 10 s ¥ Emulate another computer
— Class Library ——————— 100ps Its speed inde:: |?1l]
g e € 1ms lts Speed (MH2): 400
: ¥ “iew results in ps, ms, .. .
Warnings : _ i (YWith reduced accuracy 1)
Mo project selected 11 ™ “iew results in cycles
Project has noDOF-fle | [™ Compare with history

Flease carmpile [
 [o'PuDeRhiPROFLEMEPratesizhst i |
FROFILE faryaur project| Histary file

ject .
Afer that save the project | Leen) & ‘xﬁewl

e TTE RMII - L L35 /1132 MS\WIND 0w/ VER 40 CondiionalE spressions]
Activated compiler switches: _
ExE/DLoutputdirectory: [
DER-dir.+units search path: _
Userpartofliprary path: | R

Exclude Directaries : |

I
i aiting

Al.4 Using the caller / called graph (call graph)

When clicking with the left mouse button on a measured result in the viewer grid, a new form opens which displays the
runtimes of the selected procedure in a grid in the middle of the form. Above that up to 15 procedures are displayed that
have called this procedure. If more procedures called the selected procedure, this is displayed at the right top of the
form. Always those procedures are displayed, that consumed the most runtime. For each procedure the number of calls
for the selected procedure and the runtime inclusive all child procedures is displayed.

Below the procedure shown in the grid, up to 15 procedures called by the selected procedure are displayed. Again here

those procedures that consumed the most runtime are displayed with the number of calls and the runtime consumed
inclusive child times (Screen shot is not from the example program in this manual):

;,' ProDelphi CallGraph

-omtain childtimes
lewvel until the end of the pr Calling Procedures

Fenhaupt

Class hethad A BT RET-5um Ay BT*

1§Eeitgehe TZeitgeber FPruefendbWecken a7l s 2793 ms 96160 ps

Fa0bjekt
TContainer

imes conkain the runtime af the narme
Times contain ..hn:-.run ime af the hamed Cﬂ"Ed PTDEEdUTES
procedure + childtin

until the end of the proc ath |

Left clicking on the symbol for a called or calling procedure makes this procedure appear in the grid with it's complete
measurement results. Clicking on the procedure in the grid opens the concerned unit in the editor. The editor displays
the procedure on top of the window. A yellow ‘R’ on the left side of the grid in the middle of the window mean that the
shown procedure was called recursively. Also a yellow procedure name in one of the ymbols has this meaning.

A2 Getting exact results

If you measure program runtimes a few times, you will see that the measurement results differ from measurement to
measurement with out that you have changed your sources. Two kind of results will offen differ: the runtime of a method
and the percentage of their runtime of the complete program. The reasons are :

- there are events that disturb the measurement, e.g. programs running in the background.

- you measure methods which are activated by Windows more or less often,

- you measure operations which are started by an event a different number of times each measurement,

- you measure procedures which perform disk transfer, the data can be transferred to disk or to disk cache.

Every profiler has this problems. Because of the highest possible granularity of ProDelphi (1 CPU-cycle), you see these
differences.

To get comparable measurements you need to take care, that the influence of disturbances is kept low. Here some
hints:

A2.1 Common causes of disturbing influences outside of your program
Some disturbers everybody might be aware of:

- activated screen saver,

- Windows power management,

- background schedulers,

- online virus protection,

- automatic recognition of CD changing,

- temporary windows swapfile causes memory transfers of different duration,

- dynamic Windows disk cache size causes a different amount of memory for each measurement.

These disturbing influences are easy to eliminate.
A2.2 Common causes of disturbing influences inside your program

Some disturbances you might have inside your measured program itself, these occure when you measure everything,
e.g. by using the autostart function of ProDelphi:

- defining a Default Handler Procedure (is called for nearly every message your program receives),
- defining a procedure to handle mouse moves (called everytime you are moving the mouse cursor),
- defining a timer routine.

The three influences are also easy to eliminate. You only need to exclude these procedures from measurement. Another
way is not to use the autostart function of ProDelphi but start measurement at the starting point of a certain action. How
to exclude methods is described in Chapter A4, how to measure defined actions only is described in chapter A5.

A2.3 Common cause of disturbing influence is the PC's processor cache

The influence of the cache can't be easyly excluded. The only way is to produce exactly the same sequence of events
two times every measurement and to start measurement with starting the second sequence by the programming API,
switch it off at the end of the second sequence and store the measured data to disk (also by the ProDelphi API). This
guarantees that as much code as possible is stored in the cache and that eyery measurement the same code and data
is in the cache. Only if your program does exactly the same every measurement, you can compare the results and find
out (e.g. by the history function of ProDelphi), if an optimization has decreased the runtime or not.

A2.4 Profiling on mobile computers

Mobile computers have one problem: They change their CPU-speed dynamically. If a mobile computer is connected with
AC power it normally use the full CPU speed, if working with battery power, the CPU speed changes dynamically.

This does not directly affect the measurement: ProDelphi measures CPU cycles. If we look to the CPU - cycles displayed
in the viewer, the measurement is correct. If times are displayed, it could be that too long or too short times are
dispayed. It depends on the CPU speed that was set when the CPU speed was measured. Different processors use

different algorithyms to change the speed. The only way to get 100% correct results is to switch off the power safe mode.
A2.5 Summary

If you eliminate the disturbances mentioned in A2.1 / A2.2 and measure defined actions, you will see the differences
between two measurements is very low, most times only a few CPU-cycles. Larger differences appear only when
neasuring procedures with disk transfers. A good trick is, to use the second measurement for comparison with later
optimizations, specially when the disk transfer is a reading transfer. The first run of the program will get the most data
into disk cache, the second measurement reads the data from cache.

A3 Interactive optimization

Interactive optimization means that you optimize something, check if it has brought you significant decreasement of
runtime or not, make the next step of optimization and so on.

Important is, which method is worth to be optimized: A method, that uses 10 % runtime must be optimized by 50
% to decrease the total program runtime by 5 % !!!

There are different ways of comparing the measurement results:

- to use the viewer and print the measurement results or
- to use ProDelphi's history function.

A3.1 The history function

The history function of the viewer enables you to compare your measurement results with a preceeding run. So you can
see, if an optimization has brought an increasement or a decreasement of runtimes.

Having made a measurement, you can store the results being displayed in the viewers table on disk. You can store
multiple histories on disk for different kind of measurement.

Once you have stored results as history, you can select one of the history files to be compared with the results of the last
measurement. Before loading the results into the viewer select the history to compare with and check the button
‘Compare with history’. The viewer will colour the cells of the viewers table, by this you have a quick overview about all
changes of runtime: Red means method got slower, green means method got faster and white mean that no essential
change occured.

To get the cell colored, the methods change of runtime must be essential. Essential means, it must have changed so
much, that it influenced the programs runtime by 1 % or more.

To display the runtime of a method from the stored history, just right-click the concerned method.

If you succeed in excluding disturbing effects as mentioned before, you can use the history very well. E.g., | had to
optimize the processing of measured values. | simply didn't use the auto start function and used the API to switch
masurement on and off. | switched id on after processing 10 measurement values (all called methods were in the cache
then), measured processing of 100 values, stopped measurement and stored the data on disk. To be sure that no
disturbing actions occure any more, | repeated this and compared the measurement results with the history function.
When there there were nearly no differences between two measurements, | started to optimize and always used the
history to compare, if my optimization was successful or not.

A3.2 Practical use of the history function

- Make a measurement for the defined action you want to optimize.

- Load the results into the viewer.

- Click on the history button to store these results into the history file.

- Optimize a method that is worth to be optimized.

- Repeat your measurement.

- Load the new data into memory.
If you made the function significantly faster, the optimized method should be colored green now.
If your method is slower now, it is colored red.

If there is no significant difference, it is colored white.
- Select a cell in that line, where your changed method is displayed.
- A small window pops up. It shows the average runtime of a procedure stored in the history file. If '---' is displayed, the
method is not present in the history file.

=
1.131 ps 1.131 ps

A4 Measuring parts of the program
A4.1 Exclusion of parts of the program

All Windows programs are message driven. So, if you define a function that, for instance, handles mouse moves,
ProDelphi will give you a very big percentage of runtime for this procedure because it will be activated any time you
move the mouse over a window of your program. But you might not be interested in this procedure.

What | described above, is the default setting of ProDelphi: all procedures are measured, the measurement starts with
the start of the program (if option 'Activation of measurement / At program start' is checked).

For normal you would like to measure only certain actions of the program and might want to exclude functions which
cannot be optmized (e.g. because they are very simple).

There are different ways of excluding parts of the program:
1. Files in and below the Delphi LIB- and SOURCE- directories are always excluded.

2. Procedures which have the first 'BEGIN' statement and the last 'END' statement in the same line, are NOT
measured. It's not a bug !!! It's a feature !!!

3. Exclusion of directories
Enter the directories in the field ‘Excludedirectories’ of the ProDelphi main window.
4. Exclusion of complete units
- Enable write protection for the units not to compile
(unless you don't check 'Process write protected files', they are not profiled) or
- insert the following statement before the first line of the unit:
//PROFILE-NO
5. Exclusion of DLL's but measuring the program
Just compile the DLL without the compiler definition PROFILE and the program with that definition.
6. Exclusion of the whole program but measuring the DLL's
Compile the program without the compiler definition PROFILE and the DLL with that definition.
7. Exclusion of functions

Before profiling insert statements before and after the procedures that
have to be excluded to switch off the vaccination by ProDelphi:

/ / PROFI LE- NO |
Excl uded procedure(s) | These statements are not removed by ProDelphi.
/ | PROFI LE- YES |

Automatic exclusion

You can exclude procedures automatically by checking the option 'Deactivate functions consuming < 1 us'.
Checking this option means that those procedures, which are at least called 10 times during the measurement
period and consume an average of less then 1 us will not be measured the next time the program is started. For
that purpose a file is created when the program ends. It contains all the procedures which have to be
deactivated. When you start your program next time the file will be read and all named procedures are
deactivated. It might be that after the next run of your program again some lines will be appended with
procedures to be deactivated.

The procedures that are not to be measured are stored in the file '‘ProgramName.swo'.

Caution, the next run of ProDelphi will delete this file. If you want to make the exclusion permanent, put a
/IPROFILE-NO statements into your source code.

A4.2 Dynamic activation of measurement

This is the best way of profiling. Normally one optimizes a certain function of a program, mostly that which takes too
long. E.g., if a program processes measured values and paints nice pictures and the number of processed values are
not enough, one only wants to optimize that part of the program and not the painting.

In this example it would be nice to switch on the measurement every time a measured value has to be processed and to
switch off after. The advantage is, that the number of runtimes seen in the viewer is drastically reduced, the other is, that
it is much easier to see, which function should be optimized.

There are three ways for dynamical activation of measurement in ProDelphi (1. and 2. can be used simultaneously):

1.

By dialog

In the main window of ProDelphi under the option ‘Activation of measurement’ select:

‘By entering a selected method’. After profiling you can select until 16 methods which should
start the measuring. If you have profiled your program before already, you as well can use
the button ‘Select activating methods only’. So you easily can change between different
activating methods.

Measuring is switched on, when the selected method is entered and stops when the last
statement of the method is processed.

By inserting special comments into the source code.

Inserting a comment //PROFILE-ACTIVATE into the source code, the next procedure or
function after that comment automatically starts measurement. Also here you have to check
‘By entering a selected method’ in the main window of ProDelphi. You can optionally select
further activating methods, but it is not necessary.

By using API-calls.

This method is described in the next chapter. It is the only way versions of ProDelphi earlier
than 8.0 could handle this problem. In principle, this way can still be used, but it is not very
comfortable. Using that third method you always need to insert two calls, one for activation
and one for deactivation.

A4.3 Finding points for dynamic activation

If you need to profile an application you have not implemented yourself, it is not so easy to find out where an action
starts. Most times there are a lot of events and windows messages, but which are the procedures reacting on these
events or messages?

To make it a little easier to find out this, all procedures thart start an action are entered in a list of starting points. Just
perform a measurement run wich measures all procedures and starts the measurement automatically with the start of
the application. After performing the action to profile, end the application, start the profiler and view the results. Under
the last tab of the viewer all procedures are listed, that were not called by other measured procedures, this means that
they were started by events like mouse clicks, windows messages etc.. Starting with these functions and in connection
with the call graph it should be easy to find out where to set activation points for an action to measure. Just left click on
the procedure to display the call graph for a procedure.

A4.4 Measuring specified parts of procedures

For the case of very large procedures sometimes it might be interesting to know which part of it consumed the most run
time. One way to find this out is to restructure the procedure into neat parts or to devide it up by means of local
procedures. Another idea would be that ProDelphi would measure each block of a structure and not the whole
procedure. The last solution would cost a lot of measurement overhead and would make timecritical applications stop
working.

For the case that both solutions given is too much work or to risky, ProDelphi has the feature of defining blocks to
measure.

With the insertion of two simple statements a block to measure can be defined. These statements are constructed as
comments and can remain in the sources even after cleaning.

Just insert this line before the block to measure:
//PROFILE-BEGIN:comment

and this one behind it:
//IPROFILE-END

Profiling the sources after this causes ProDelphi to insert measurement statements right after the comments. The
runtime measured in this so defined block will be found in the viewer because the comment is set behind the procedure
name.

Using this feature is only possible when taking care to insert these statements so, that the block structure of the program
remains unchanged. E.g. it is not possible to insert the statement into an ELSE-part without BEGIN and END, this would
cause compiler errors.

The time measured in this part is not included in the runtime of the procedure but is included in the child time.
Example:

PROCEDURE DoSomething;
BEGIN
part a of instructions using 5 ms
part b of instructions using 10 ms
part ¢ of instructions using 3 ms
END;
The total runtime displayed by the viewer would be 18 ms (displayed in the line for the procedure DoSomething).

The same example with measuring part-b separately:

PROCEDURE DoSomething;
BEGIN
part a of instructions using 5 ms
//PROFILE-BEGIN:part-b
part b of instructions using 10 ms
//PROFILE-END
part ¢ of instructions using 3 ms
END;
In this case the runtime of the procedure would be 8 ms (displayed in the line for procedure DoSomething),
run time inclusive child time would be 18 ms.
In the line for procedure DoSomething-part-b 10 ms would be displayed.

It might be that the results are not exactly the same because the processor cache is used in a different way, especially
processors with a small cache have the problem, that not the whole procedure inclusive measurement parts of
ProDelphi fit into the cache, so additional wait states occure.

Remark:

It is possible to define more than one measurement block in a procedure or to nest these blocks. Nesting might not be a
good idea because the results might be misinterpreted.

Example for nesting:

PROCEDURE DoSomething;
BEGIN
//PROFILE-BEGIN:part-a-b

part a of instructions using 5 ms
//PROFILE-BEGIN:part-b

part b of instructions using 10 ms
//PROFILE-END
//PROFILE-END

part ¢ of instructions using 3 ms
END;

In this examle the runtime for part b is displayed separatly AND also included as child time of part a (and, of course, also
in the child time of DoSomething).

A5 Programming API

A5.1 Measuring defined program actions through Activation and Deactivation

A good way to make different result files comparable, is to measure only those actions of your program you want to
optimize. In that case do not check the button for ‘automatic start' of measurement. Do the profiling of your source code
and insert activation statements at the relevant places.

Examplel:

You only want to know how much time a sorting algorithym consumes and how much time all called child procedures
consume. You are not interested in any other procedure. The sorting is started by a procedure named button click.
PROCEDURE TFor ml. Butt ond i ck;

BEG N
{$| FDEF PROFI LE}asm ..end; Try; asm.. call Proflint.ProfEnter;...end; {$END F}
SortAll; // the procedure of which you want to know the runtine

{$| FDEF PRCFI LE}finally; asm..; mov cx, nunber; call ProfExit; end; end; {$END F}
END;
/[l @elf if used inside classes otherwise NL
You can modify the code in three different ways:
{ possibillity 1}
PROCEDURE TFor ml. Butt ond i ck;

BEG N
{$| FDEF PROFILE}asm ..end; Try; asm.. call Proflint.ProfEnter;...end; {$END F}
{ $| FDEF PRCFI LE}try; Proflnt. ProfActivate; {$ENDI F}
SortAll; // the procedure which you want to know the runtine of
{ $| FDEF PRCFI LE}final ly; Proflint. Prof Deactivate; end; {$END F}
{$l| FDEF PRCFI LE}finally; asm..; mov cx, nunber; call ProfExit; end; end; {$END F}
END;

{ possibillity 2}
PROCEDURE TFor ml. Butt ond i ck;

BEG N
{ $| FDEF PRCFI LE}try; Proflnt. ProfActivate; { $ENDI F}

SortAll; // the procedure which you want to know the runtine of
{ $| FDEF PRCFI LE}final ly; Proflint. Prof Deactivate; end; {$END F}
END;

{ possibillity 3}
/ | PROFI LE- NO
PROCEDURE TFor ml. Butt ond i ck;

BEG N
{ $| FDEF PRCFI LE}try; Proflnt. ProfActivate; { $ENDI F}

SortAll; // the procedure which you want to know the runtine of
{ $| FDEF PRCFI LE}final ly; Proflnt. Prof Deactivate; end; {$END F}
END;

!/ PROFI LE- YES

You should use possibillity 1 or 3 because a new profiling does not change your code, Possibillity 2 is changed by the
next profiling into possibility 1.

Be sure that you use more than one space between $IFDEF and PROFILE you inserted, otherwise the statements
will be deleted the next time that the source code is vaccinated by ProDelphi. Alternatively you also can use
lower case letters.

Example 2:

You want to activate the time measurement by a procedure named buttonl and deactivate it by a procedure named
button2 use the following construction:

/| PROFI LE- NO

PROCEDURE TFor mil. But t onl;

BEG N

{ $| FDEF PRCFI LE} Prof I nt. Prof Acti vate; {$ENDI F}
END;

PROCEDURE TFor . But t on2;

BEGA N

{ $| FDEF PRCFI LE} Prof I nt . Prof Deacti vate; {$ENDI F}
END;

/ | PROFI LE- YES

Deactivation switches off the measurement totally. That means that no procedure call is measured until activation.

A5.2 Preventing to measure idle times

Some Windows-API functions and Delphi functions interrupt the calling procedure and set the program into an idle
mode. A well-known example is the Windows-call MessageBox. This call returns to the calling procedure after the a
button click. Between call and return to the calling procedure, the program consumes CPU cycles. In such a case, it
would be nice, not to measure this idle time.

A lot of Windows-API calls and some Delphi-calls are replaced automatically by the Unit ‘Profint.pas’. For the above
named example MessageBox, there is a redefiniton. It automatically interrupts the counting of CPU-cycles for the calling
procedure only and reactivates it after returning from windows.

If other procedures are called while waiting for user action, they are measured normally, e.g. if a WM_TIMER messages
is received and you have defined a handler for it.

To make this possible, there are the ProDelphi-API-calls StopCounting and ContinueCounting. In chapter A9 you can
find the list of calls, which are redefined in the unit ‘Profint.pas’. They automatically call these functions before using the
original Windows- or Delphi calls. Some functions are replaced by the profiler (e.g. Application.HandleMessage).
Some functions cannot be replaced by ‘Profint.pas’, specially object-methods. If you use such methods and do not want
to measure their idle times, just exclude these calls by inserting the following lines:
{ $| FDEF PRCFI LE} Prof I nt. St opCounti ng; {$ENDI F}
bj ect. | dl eMbdeSet ti nghvet hod;

{ $| FDEF PRCFI LE} Pr of I nt. Cont i nueCounti ng; {$ENDI F}

Important:

Use more than one space between $IFDEF and PROFILE, otherwise the statements will be removed with the next
profiling or by cleaning the sources. Alternatively you also can use lower case letters.

A5.3 Programmed storing of measurement results
Normally at the start of the program the file for the measurement results is emptied and only at the end of the program
the measurement results are appended. If you need more detailed information, you can insert statements into your
sources to produce output information where you like to.
Just insert the statement

{ $| FDEF PRCFI LE} Pr of I nt . Pr of AppendResul t s(FALSE); {$ENDI F }
into your source. In that case a new output will be appended at the end of your file and all counters will be reset.

Normally the headline of the result file will be 'At finishing application’ any time new results will be appended to the file.

For this example you might want to use a different headline. If so, you can set the text for the headline by inserting

{$| FDEF PROFI LE} Prof I nt . Prof Set Conment (' your special comrent'); {$END F}
into your source.
Another way to produce intermediate results is to use the online operation window. Any time you click on the 'Append'-
button the actual measurement values are appended to the result file and all result counters are set to zero (see chapter
A5 also).

Important:

Use more than one space between $IFDEF and PROFILE, otherwise the statements will be removed with the next
profiling or by cleaning the sources. Alternatively you also can use lower case letters.

A6 Options for profiling

Profiling options are divided into three groups:
- Code instrumenting options (or vaccination options): How and what to vaccinate.
- Runtime measurement options: How to measure and what to do with the results.
- Activation of measurement: Where or when to start measuring runtimes.
- General options: Which Delphi version / file date.

A6.1 Code instrumenting options:

Changing these options after profiling DO afford a new profiling to take effect !!!

Profile Assembler procedures (Professional Mode only)

Assembler code is normally not profiled (often assembler is a result of an optimization process already). In the
professional mode this option can be used.

Initialization and finalization

Normally the initialization and finalization parts of the units are not measured. In case you want to do this, check the
appropriate option if you use the keywords INITIALZATION and FINALIZATION in your units.

Profile local procedures

Normally local procedures are not measured, if you activate this option they are.

Profile Library path (Professional Mode only)

Normally only the files belonging to a project are profiled. These files are all the files in the unit search path of the actual
project. Files which are belonging to components e.g. which are linked to the program by the linker are not profiled.
Usually they are profiled separately once and then not again with every project. That's why they are normally excluded.
This option opens the possibility to measure also the files in the library path. For doing so, carefullness is necessary. If
you include these files, the sources are vaccinated with profiler statements. If you, after profiling one project, change to
another project, the files are still vaccinated. This means that you measure the runtime of the library sources in all other
projects too. This measurement then slows down all other projects which are using these files. To prevent this, you
should clean the sources before changing to another (unprofiled) project.

Also when you want to profile another project, you need to be careful. As long as the files in the library path are not
cleaned, you need to activate this option in all projects.

If you exclude directories from the library path, the need to be excluded in all projects, otherwise in the results you might
find undefined procedures.

Process write protected files

checking this option means, that all write protections for your source files are deleted and the files are profiled. Without
this option, write protected files are not processed.

Program + DLL’s / Mult. DLL’s
checking this option means, that you either want to measure a DLL or a program + the used DLL('s). See chapter 8 for

details.

A6.2 Runtime measurement options

Changing these options after profiling do NOT afford a new profiling.

Count Inherited calls for parent

This option is only valid for methods (procedures and functions belonging to objects or classes).

Normally times are measured separate for each procedure. Use this method if you want, that, if a method calls a method
with the same name of an upper class (e.g. by INHERITED), the time of the inherited method is counted for the calling
method.

Deactivate functions consuming <1 pS

Any time the measurement results are stored in the result file, those procedures that are called at least ten times and
consume less then 1 uS are deactivated for the future. The deactivated functions are stored in the file
'ProgramName.SWO' for the next run.

Online operation window on top

Normally the online operation window is displayed as a secondary window, that means that it is hidden by the main
window. With this option you can enforce to display it above the main window.

No Online operation window

The online operation window will not be displayed. So no intermediate measurement results can be stored.

Testee contains threads

If this option is checked, the measurement is enhanced for handling threads. It is not useful to check this option if your

program does not create threads, the program only runs slower. But it is absolutely necessary to check this option if you
use threads, otherwise the results of the measurement are completely wrong.

Main thread only

If this option is checked, only the measured times of the main thread are measured. Times of child threads are ignored.
Evaluate minimum and maximum runtimes (Professional Mode only)

If this option is checked, the measurement routines of ProDelphi additionally estimates minimum and maximum runtimes
of every procedure. Normally only average times ar estimated. Minimum an maximum times later can be displayed on
demand by the built-in viewer. For some special purposes this function can be used. Of course using this function needs
more overhead than measuring only average times.

A6.3 Measurement activation options

Changing these options after profiling do NOT afford a new profiling.

At program start (default)

If this option is checked, the time measurement will start as soon as your program is started. In that case the 'Start'-
button in the online operation window is disabled and the stop button is enabled. If the option is not checked the 'Start'-
Button is enabled and the 'Stop'-button is disabled.

By entering a selected method

You'll be requested to enter methods (or you have already inserted //PROFILE-ACTIVATE statements into your source
code (see also chapter A 4.2). If you use this option, you should not use the Online-operation window.

Example:

see next page, please.

ProDelphi - Definition of activating met
= Procal2 bl IInit Clazz Methiod
.. DeepFunction PROCALZ
- Empty

- FunctionWith 100
- Function\with 1000
- MidFunction

- MotUsed

.. TopFunction

=- Protmai2

- ComvertTime

= TFormi1

- TopFunction

. StartitAll
... UserMessage

I A | Deletel Delete aIIl Dkay,savel Cluael

By API-Calls or online operation window
(see chapter A5.1 and A7 for details)
A6.4 General options

Delphi version

You should check the version to that Delphi verion you are going to compile the program with. This assures that
ProDelphi uses the correct compiler switches.

File Date

The check box ‘Do not change file dates’ is available in professional mode only. Checking this results in changing the file
dates by 5 seconds when profiling, enough to make Delphi realize that a file has changed. Unchecking means that the
actual date and time is used.

When cleaning the surces the filedate is decreased by 5 sec. This makes possile that the file date keeps the same
between checking out and in from a source code control system.

A7 Online operation window

With the online-operation window

ProDelphi - online operation

Hext runtimes will be stored with Bun-id: 1

CPU-Speed: ’—‘ amment far the

[T Cyclic meazurement storage ever 30 minuter=)

| J

500 MH=z

you can start and stop the time measurement. This enables you to measure only certain activities of your program. The
'Start ..."-button enables the measurement, the 'Stop ..."-button disables it. With the 'Delete’-button all counters are set to
zero. The 'Add ..." - button appends the actual counter values to the result file and sets the counters to zero.

You can edit the text which is the headline for the results in the ASCII-File. For the built in viewer, any time, the results
are stored, the 'Run-Id' is incremented and you can switch between different runs with the viewer.

The default value for the headline for intermediate results is:

'none’.
Also an automatic and cyclic storing of measurment results can be done. Use the slider to set the time cycle between 1
and 60 minutes. After that check the box for cyclic measurement storage. After checking the slider disappears until

unchecked again. The results will automatically get date and time as headline. In the viewer you can scroll through the
results by the buttons ‘<<’ and ‘>>'.

The online operation window is not available for Console applications !

A8 Dynamic Link Librarys (DLL's) and packages
A8.1 DLL’s

DLL's can be profiled the same way as programs. The only difference is, that, if you measure a DLL without the rest of
the program, you won't have the online-operation window.

Some precautions are needed to avoid problems:

DLL'’s can only be profiled with a calling program, no matter if you need the measurement results for code in the program
or not. The DLL always expects the profiling information in the EXE-directory of the calling program. Also it stores the
measurement results in that directory.

To ensure a problemless measuring which works in all combinations (EXE only, DLL only, EXE + DLL, EXE + multiple
DLL’s) with a minimum effort of handling, work as described in the following:

1. Check the option: Program + DLL’s / Mult. DLL's in the profilers main window.

2. Make the units search path of all affected projects (EXE + DLL('s) identical. Also the directory for storing EXE- and
DLL-file have to be identical. ProDelphi reads the search path and the compiler switches from the DOF-file of the
selected project. No matter which of the projects is profiled, you always have the profiling information and the
measurement results in the correct directory and all necessary code is profiled.

3. To select measurement results of a DLL or the program or both, just define the compiler switch PROFILE for the
appropriate project and (re)compile the project. For the part you don’t want measurement results for, delete the symbol
and (re)compile. Just by defining or not defining this compiler symbol, you can select the different measurement results.

If you measure the DLL without the program and need the online operation an additional manual step is necessary:

In the USES-clause of the program you'll find:
{$IFNDEF PROFILE } Unitxyz, {$ENDIF }
{$IFDEF PROFILE } Unitxyz, Profint, {$ENDIF }
before Application.Run; you'll find:
{$IFDEF PROFILE } Profint.ProfOnlineOperation; {$ENDIF}

Just add two lines manually, so that the code looks like this:
{$IFNDEF PROFILE } Unitxyz, Profint, {$ENDIF }
{$IFDEF PROFILE } Unitxyz, Profint, {SENDIF }
{$IFDEF PROFILE } Profint.ProfOnlineOperation; {$ENDIF}
{$IFNDEF PROFILE } ProfInt.ProfOnlineOperation; {$SENDIF}

A8.1 Packages

Profiling designtime packages is not recommended. Profiling runtime packages is not supported active. The DOF-file of
a package is not read, ProDelphi reads the compiler switches and compiler symbols from the DOF-file of a program. So
for measuring procedures in a package one needs to profile the program that uses the package. In order to profile the
units belonging to the package, all PAS- and INC-files of the package need to be stored in directories that are named in
the search path of the using program. Until here it is quite similar like profiling a program and DLL’s simultaneously. The
big difference comes into the game whith the DPK-files.

DPK-files are not evaluated. In the CONTAINS section of the DPK-file PAS-files belonging to the package can be
named. If these files are named together with a path, a problem could occur. When these pathes are not in the units
search path of the program, they won't be profiled. (Units named in DPR-files are profiled even the when they are not
stored in a directory of a search path if their path is explicitly named in the uses section).

The best way to profile a package is:

1. Put the sources of the package to be profiled into a separate directory.
2. Include that directory into the units search path of the program.

3. Profile the program. This then includes to profile the code of the package as well.
4. Recompile the package with the defined compiler symbol PROFILE.

5. Install the package.

6. Compile the program.

If you now run the program you’ll get the results for program + package.

Don’t forget:

Any time now you change the program by inserting or deleting functions and re-profile again, step 4 and 5 also have to
be executed again.

Any time now you change the package by inserting or deleting functions and re-profile again, step 6 also has to be
executed again.

A9 Treatment of special Windows- and Delphi-API-functions

Some functions set the program into an idle mode until an event occurs and the function returns. It's not useful to
measure these idle times. Because of that reason, some functions are redefined in the unit ‘Profint.pas’ or are replaced
by the profiler in the source code. The result is that the idle time of the calling procedure is not counted, but other
procedures called while waiting are still counted.

Redefinition is always done the same way, this is shown be the example for the Windows Sleep function (defined in
‘Profint.pas):

PROCEDURE Sl eep(tine : DWORD);
BEG N

St opCount i ng;

W ndows. Sl eep(tine);

Cont i nueCount i ng;
END;

Because of this redefinition, the Profint-unit must be named after the units Windows and Dialogs. This is normally done.
The only exception is, if you name these units in the implementation part of the unit. Delphi itself places them into the
interface part.

If you find functions you want also to exclude from counting, you can make own definitions according to the example.

A9.1 Redefined Windows-API functions

- DispatchMessage, DialogBox, DialogBoxIndirect, MessageBox, MessageBoxEXx, SignalObjectAndWait
- WaitForSingleObject, WaitForSingleObjectEx, WaitForMultipleObjects, WaitForMultipleObjectsEx

- MsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx, Sleep, SleepEx, WaitCommEvent

- WaitForlnputldle, WaitMessage and WaitNamedPipe.

A9.2 Redefined Delphi-API functions

- ShowMessage,
- ShowMessageFmt and
- MessageDlg.

A9.3 Replaced Delphi-API functions

- Application.MessageBox,
- Application.ProcessMessage and
- Application.Handle Message.

There are some VCL-functions which can't be replaced or redefined because they are class methods, it would be much
to complicated. If you encounter measurement problems, just include them into StopCounting and ContinueCounting. An
example for such method is TControl.Show.

A10 Conditional compilation

A10.1 Delphi2,3,4and5

Conditional compilation is fully supported.

A10.2 Delphi 6 and above

Conditional compilation is, except arithmetic expressions (like comparison with constants) supported.
The directives $IFDEF, $IFNDEF, $ELSE and $ENDIF are fully supported.

The directives $IF, $IF, $ELSEIF, $ELSEIF, DEFINED(switch) and $SIFEND are completely evaluated inclusive the
boolean expressions AND and NOT. Arithmetic expressions are always evaluated as TRUE.

These are the limitations:

{$IF const > x } evaluated as TRUE comparison with a constant
{$IF SizeOf(Integer) > 10} evaluated as TRUE Arithmetic expression

This is evaluated correctly:
{$IF NOT DEFINED(switchl) AND (DEFINED(switch2))}
This example causes problems:

CONST

XXX = 4;
{$IF xxx >5}

PROCEDURE AddIt(VAR first, second, sum : Int64);

BEGIN
{$ELSE }

PROCEDURE AddIt(VAR first, second, sum : Comp);

BEGIN <- first Profiler statement is inserted after this BEGIN instead of after the previous
{$ENDIF }

sum := first + second; <- second Profiler statement inserted correctly here before END
END;

Omitting the problem is very easy, just write it this way:

CONST
XXX = 4;
{$IF xxx >5}
PROCEDURE AddIt(VAR first, second, sum : Int64);
{$ELSE }
PROCEDURE AddIt(VAR first, second, sum : Comp);
{$ENDIF }
BEGIN <- first Profiler statement is inserted correctly after this BEGIN
sum := first + second; <- second Profiler statement inserted correctly here before END
END;

All Limitations of use
Console applications have no online operation window.
Procedures in a DPR-file can not be measured.

The measured times are always differ about +-5 % (max) from those of an unprofiled program. The reason is that the
program code is not so often replaced in the cache than without measuring.

For the purpose of vaccinating the source code, ProDelphi reads the sources. It is absolutely necessary, that the
program can be compiled without any compiler errors. ProDelphi expects code to be syntactically correct.

While measuring, a user stack is used by the profiler unit. The maximum stack depth is 16000 calls.
In the freeware mode of ProDelphi only 20 procedures can be measured, in the professional mode 32000.

A problem for measurement is Windows itself. Because it is a multitasking system, it may let other tasks run besides the
one you are just measuring. Maybe only for a few microseconds. So your program can be interrupted by a task switch to
another application. I've made tests and let the same routine again and again and each time I've got slightly differing
results.

Don't forget the influence of the processor cache also. You might get different results for each measurement, just
because sometimes the instructions are loaded into the cache already and sometimes not. This might be the reason,
that sometimes an empty procedure needs some CPU-cycles for getting the code into the cache. The larger the cache
size, the better the results ! The profiling procedures use the cache too !

Then there is the CPU itself. The modern CPU's like Intels Pentium or AMD's K6 are able to execute instructions parallel.
When the profiler inserts instruction, the parallelity is different from without these instructions. That's another reason, why
the runtime with measurement differs from that without measuring.

All my tests have shown, that the larger the cache is, the smaller the difference between the real runtime and the
measured runtime is. With an AMD K86, the differences were only a few CPU-cycles.

If your measured program uses threads, the results are less correct. The reason is, that a thread change is not
recognized at the time of change. It is recognized at the next procedure entry.

Be aware that, if you measure procedures that make I/O-calls, you might also get different results each time. The reason
is the disk cache of Windows. Sometimes Windows writes into the cache sometimes directly to the disk.

Al2 Assembler Code

Pure Assembler procedures and functions (e.g. FUNCTION Assi : Integer; asm mov eax,2; end;) are profiled only in
Professional mode.

If it is absolutely necessary to measure such procedures in the Freeware mode, just put an additional BEGIN before the
asm statement and an additional END after the last statement (e.g. FUNCTION Assi : Integer; BEGIN asm mov eax,2;
end; END;)

Al13 Modifying code vaccinated by ProDelphi
While working on the optimization of your program you can of cause modify your code. The only limitation is, that, if you

define new procedures and want them to be measured, you have to let ProDelphi profile your code again. It is NOT
necessary to delete the old statements inserted by ProDelphi before.

Al4 Hidden performance losses / Tips for optimization

ProDelphi measures runtimes of procedure bodies. This means that the entry part of a procedure which e.g. writes
variables to the stack, is measured in the calling procedure! The first possibility to take a time stamp is right behind the
BEGIN-statement. This might be seen as a disadvantage compared to other profilers. But once you know this fact it's no
disadvantage anymore. Anyway, changing of the number of parameters of a procedure changes always the runtime of
the calling procedure (also for other profilers).

Below three examples for this.

- Passing Parameters:

FUNCTION TestFunction(s : String) : Integer; / Runtime 5 CPU-Cycles + 983 in the calling procedure
BEGIN

Result := Ord(s[1]);
END;

FUNCTION TestFunction(CONST s : String) : Integer; // Runtime 5 CPU-Cycles + 645 in the calling procedure (-33%)
BEGIN

Result := Ord(s[1]);
END;

- Local variables:

FUNCTION TestFunction : Integer; /l Runtime 159 CPU-cycles + 126 cycles in the calling procedure
VAR
i : Integer;
BEGIN
FORi:=1TO 10 DO
Result := LastFunction;
IF Result >0 THEN
Exit
ELSE
Result ;= -1;
END;

FUNCTION TestFunction : Integer; / Runtime 159 CPU-cycles + 6.932.128 cycles in the calling procedure
VAR
i : Integer;
yys : array [1..32000] of Integer; I/l increasement caused by initialization of these local variables !!!
yyv : array [1..32000] of String;
BEGIN
FORi:=1TO 10 DO
Result := LastFunction;
IF Result >0 THEN
Exit
ELSE
Result :=-1;
END;

- GoTo statements

FUNCTION TestFunction : Integer; / Runtime 159 CPU-cycles + 126 cycles in the calling procedure
VAR
i : Integer;
BEGIN
FORi:=1TO 10DO
Result := LastFunction;
IF Result > 0 THEN
Exit
ELSE
Result :=-1;
END;
FUNCTION TestFunction : Integer; /l Runtime 159 CPU-cycles + 177 cycles in the calling procedure (+ 40%)
VAR
i : Integer;
Label final, /I Cause the additional runtime
BEGIN
FORi:=1TO 10DO
Result := LastFunction;
IF Result > 0 THEN
GoTo final /I in connection with this GoTo
ELSE
Result :=-1;
Final:

END;

Al15 Error messages

In case of errors an error message is displayed by ProDelphi at the bottom line of its window (e.g. file-1/O-errors). If that
occurs, have a look into the profiling directory.

Vaccinating a file is done in this way:

- the original file *.pas is renamed into *.pay (or *.dpr into *.dpy and *.inc into *.iny),

- after that the renamed file is parsed and vaccinated, the output is stored into a *.pas-file (or *.dpr / *.inc),

- the last step to process a file is to delete the saved file, except an error occurs before.

This is done for all files of a directory. In case that an error occurs you can rename the saved file to *.pas / *.dpr / *.inc.

Before doing so, maybe it's worth to have a look into the output file. In case of a parsing error, you can send the original
file + the incomplete output file to the author for the purpose of analysis.

Al6 Security aspects
- Save all your sources before profiling (e.g. by zipping them into an archive).
- ProDelphi checks, if you have enough space on disk to store a profiled file before profiling it. ProDelphi

assumes that the output file uses 3 times the space of the original file (normally it uses less). If there is not
sufficient space, it will stop profiling.

B Post mortem review

As mentioned above, ProDelphi can vaccinate your sources with statements for post mortem review. It also interpretes
the sources and inserts statements at the begin and at the end of a procedure.

ProDelphi 13.9 Professional Yersion =10l x|

Registered for Speedy Gonzales, Faster Software Ltd |

Copyright: HJHA 1998-2003 IR IRRUACUEL] | Clean sources | view results | Info | Reaister |

Files in and below the

Delphi ibrary and source
directories will not he)
profiled or cleaned I Options:

_E, ™ Process write protected files

[T Do not change file dates

Insert statements for Post Mortem Review
into source files

™ Process Library path

— izlass Librany
v WL oL [~ Laocal Procedures
Warnings : ™ Program + DLL's / Mult. DLL's
[+m project selected [:
Froject has no DOF-file | [T Testee contains threads:

Flease carmpile [
Flease define the syrmbal

FROFILE faryaur project| Ll G
ject
Afer that save the project | - |

Defined compiler symbols: o o WS WYERT40 itionalE xpress
Activated compiler switches:
EXE-'DLL-output directory:
DPR-dir.+unitz search path:
Uszer part of library path:

Exclude Directories :

I
i aiting

In case of an aborting because of an exception, a message box will open which will give you the filename where the call
stack is listed (ProgramName.PMR).

Also here the source comments //PROFILE-NO and //PROFILE-YES can exclude parts of your sources.
For the availlable options see chapter A4.
The handling of Prodelphi is the same as for profiling. You also have to define the compiler symbol PROFILE:

If you have vaccinated ProDelphi with statements for post mortem review and work with the IDE of Delphi and an
exception occurs, you must continue your program unless you have deactivated the option 'Stop at exception'.

Limitation of use: Stack overflows are not caught because ProDelphi itself needs stack space. And if there is no stack
any more, ProDelphi can not work properly. The overflow might as well appear in the ProDelphi stack tracing routines.
ProDelphi can not handle this.

C Cleaning the sources

If you want to delete all lines that ProDelphi inserted into your sources, use the 'Clean' command.

& ProDelphi 13.9 Professional Yersion =10l x|

Registered for Speedy Gonzales, Faster Software Ltd |

T R] Profiling | PM Review Clean sources | view resuts | nfo | Register |

Files in and below the

Delphi library and source
directories will not he)
profiled or cleaned I Options:

_Z, [Process write protected source files

[~ Do notchange file dates

Delete all ProDelphi statements from all source files

™ Process Library path

— Class Library
v WL Gl [~ Prograrn + DLL's f Mult. DLL's
Warnings : ™ Delete measurement result files
[{o project selected [
Project has no DOF-file | I~ Delete proflst.asc and profile.ini

EFlease compile 1

Flease define the syrmbal ™ Delete measurerent histary files e
FROFILE foryour praject! Ser l=uiae |

Aler that save the project |

pefined cormpiler syrbolz:
Activated compiler swichies: [
ExE/DLLoutout drectory: [

DPR-dir.+units search path; RGN o TR ({0 1828 %1

User partoflibrary path: |

Exclude Directaries : |

I
Wi aiting

It is not necessary to clean the sources if you simply want to let your program run without time measurement for a short
time only. In that case just delete the compiler symbol 'PROFILE' in your projects options.

It is also not necessary to clean the sources if you want to use the 'Profile’ command another time. Each profiling
process automatically deletes all old ProDelphi statements in the source code and inserts new statements. For that
purpose it scans the code for statement that start with

{$| FDEF PRCFILE} and with {$I FNDEF PROFI LE }
and deletes them completely (except you have more than 1 space between IFDEF and PROFILE).
The option ‘Do not change file dates’ makes that the file date is increased at profiling by 5 sec and decreased at cleaning

by 5 sec. This makes possile that the file date keeps the same between checking out and in from a source code control
system.

D Compatibility

ProDelphi was testet under
- Windows 95, 98, Windows NT 4.0, Windows 2000 and Windows XP.
- AMD K6 166 / 233 MHz, AMD K6-2 266 / 300 / 500 MHz, AMD K6-3 400 MHz, AMD Athlon 1800 MHz,

- AMD Duron 1100 MHz
- Pentium Overdrive 120 MHz, Pentium Il / 400 MHz, Pentium Il 750 MHz, Pentium Celeron 400 MHz.

E Installation of ProDelphi

ProDelphi is most comfortably installed with the included setup program (Setup.Exe). This program copies all necessary
DLL's into the Windows system directory and all needed units into the Delphi-LIB-directory and the editor interface is
registered. Also it creates an entry in the list of programs (Windows Start menu / Programs) and integrates ProDelphi
into the Delphi tools menu.

F Description of the result file (for data base export and viewer)

The result file can also be used for export to a data base (e.g. Paradox or DBase) or a spreadsheet program like Quattro
Pro.

File content of '‘progname.txt' (one line for each procedure):

run; unitname; classname; procedurename; % of RT; calls; minimum RT excl. child; average RT excl. child; maximum RT excl. child;
RT-sum excl. child; minimum RT incl. child; average RT incl. child; maximum RT incl. child; RT-sum incl. child; % incl. child

File content of 'progname.tx2' (one line for each run):

run; CPU-clock-rate; keyword; headline for that run //keyword is either MINIMAXON or MINIMAXOFF

G Updating / Upgrading of ProDelphi

Updates and upgrades can be loaded via authors home page. Every new release will automatically be stored
there. Just click on 'Additional information' to see which version is actual.

H How to order the registration key for unlocking the professional mode

Customers who who want to use the professional mode, can order a registration key to unlock the
Professional mode. Just start the program ProDelphi (Profiler.exe), select the page for registration and enter
the information you have got by e-mail. At the next start of ProDelphi, the Professional mode is unlocked. This
key is also valid for upgrading following versions. If a bugfix is made or an upgrade is done, it will be stored on
my homepage. Just download from there and you can continue to use the new program in Professional mode.
The registration key is stored in the file ‘profiler.rky’.

Customers who ordered the registration key can have a link to their company in my customers reference list,
just send me an e-mail.

The key to unlock the professional mode can be ordered by Sharelt shareware registration service (see the
files REGISTER.ENG and REGISTER.GER).

I Aut

hor

Helmuth J. H. Adolph (Dipl. Inform)

Am Gruener Park 17

90766 Fuerth
Germany

E-Mail:
Home page:

hjh.adolph@prodelphi.de
http://www.prodelphi.de
http://www.windkraft.prodelphi.de

J History

Version 1.0 :
Version 2.0 :
Version 3.0 :
Version 3.1 :
Version 4.0 :
Version 5.0 :
Version 5.3 :
Version 6.0 :
Version 6.3 :
Version 6.4 :
Version 6.5 :
Version 6.6 :
Version 7.0 :
Version 7.2 :
Version 7.3 :

Version 7.4 :
Version7.5 -

7.61:03-04/00

9/97
2/98
4/98
5/98
10/98
11/98
12/98
2/99
5/99
5/99
7/99
8/99
9/99
11/99
01/00

02/00

Version 7.62:04/00

Version 8.0 : 05/00

Version 8.3 :
Version 8.4 :
Version 8.5 :

Version 8.51:

Version 8.54:

Version 8.55:

Version 9.0 :
Version 9.1 :
Version 9.2 :

Version 9.3 :
Version 9.4 :
Version 9.5 :

09/00
10/00
12/00

01/01

02/01

04/01

04/01
08/01
11/01

12/01
01/02
01/02

First release

Successfully used to optimize VICOS P500 for Sixth Railways project (China).
Enhanced accuracy, brought to the public via Compuserve

Enhanced granularity (1 CPU - cycle), published by Torry's Delphi Pages
Viewer Added, export to data base, support of Delphi 4.

Profiling statements changed to assembler (less overhead)

DLL-Support added

Treating of Read Only attribute, DLL-support enhanced, ProDelphi homepage
Profiling assembler routines

Setup program added

Profiling of multiple directories added

History function added

Adaption to Delphi 5

Profiler enhanced: Processing of relative pathnames.

Profiler enhanced: Better accuracy, lower overhead, $IFOPT processing,

In Professional mode 16000 methods can be measured (before 10000).
Browser added for checking which procedure was not called.

Different bug fixes

In Professional mode 32000 methods can be measured (before 16000).

Units search path editable, minor bugfixes

Dynamic activation and deactivation of measurement by dialog and by special
comments in the source files, emulation of other PC’s, main form arranged nicer,
profiling log added.

Viewer and Parser enhanced, Bugfix concerning not existing drive C: .

Viewer consumes less memory, browser enhanced (TOutline replaced by TTreeView)
More security in the user interface (warning if no DOF-file exists),

the last project is stored and automatically selected in case of restart,

for the viewer automatically the result file is selected,

sorting in the viewer is easier now (just click on the headline of the grid).

Bug in counting inherited for parent fixed,

new feature ‘Measure only the main thread.

New feature to keep the online operation window on top.

Bug fixes: Class methods and class forward definitions can be handled,

Units without Uses-statements can be processed,

Processing of relative pathnames improved.

Size optimization for one of the measurement DLL's (Profmeas.DLL).

Search function of the viewer optimized.

Processing of initialization and finalization part corrected.

Delphi 6 support added.

Printing of reports added.

Documentation as PDF-File, button texts in window for selecting methods corrected,
CLX support for Delphi 6, optical improvements, exclusion of directories, bug fixes.
Bug in DOF-file processing (concerning Delphi 6)

Printed report enhanced: alternatively printing in full color or in color saving mode
Bugfixes: Names of local procedures were converted to upper case. When processing
files with the read only attribute, the read only attribute was not set to true after

Version 9.6 : 04/02

Version 10.0:05/02

Version 10.1:07/02
Version 10.2:07/02
Version 10.3:07/02

Version 11.0:07/02
Version 11.1:08/02
Version 11.2:09/02

Version 11.3:09/02

Version 11.4 10/02

Version 11.5:11/02

Version 11.6 01/03
Version 11.7 03/03
Version 12.0 03/03

Version 12.1 03/03

Version 13.0 04/03

Version 13.2 05/03

Version 13.3 05/03

Version 13.4 06/03

Version 13.5 06/03

Version 13.6 07/03

Version 13.7 08/03

Version 13.8 08/03

Version 13.9 08/03

Version 14.0 10/03

profiling or cleaning. Overloaded functions were partly not recognized, same with some

class definitions (this occured in the implementation part and in include files).

Improvement: The file creation date is optionally changed by 3 seconds only (Profess. mode)
Bugfix: Two ‘END’-statement in one line could have caused a profiling error,

Improvement: Cyclic automatic storage of measurement results

Evaluation of minimum and maximum runtimes, profiling of the library path, measuring of
specified parts of procedures, stack depth increased to 9600 entries, improvement of U,
rounding bug in sorting after change of runtime fixed.

Upgraded for cross platform development (Windows / Linux), bug in treating Case-statement
fixed, Setup program improved (handling of missing registry entries).

Buggy

Processing of environment variables in pathnames added. Profiling of files named in the USES-
statement in the DPR-file of a program added. Simultaneous measuring of a program and DLL's
or mulltiple DLL’s improved.

Adaption to Delphi 7.

Parser enhancement: Procedure declarations over more than one line are handled now.
Information for measured specified parts of procedures was missing if ‘Local procedures’ was
not activated.

Bugfix: Files named in the Uses - statement of a DPR-file were profiled even they were write
protected.

Bugfix: Project settings were not persistent if DPR- and EXE-file were in different directories.
Setup program improved: it is no honger necessary to manually install ProfMeas.dIl. For
upgrading from freeware version to professional version a complete distribution has to be
downloaded from internet.

Bugfix: Definition of SleepEXx in the interface file corrected.

Bug in displaying data after sorting the results with class or method as sort criteria (the colums
which include child times were not actualized).

Bugfix in parser resolved. Setup program fixed: start from network drive now possible.

Viewer enhanced, bug in API resolved, user guide corrected

Automatic opening of the source file in Delphi by clicking the method in the viewer,

Multiple history files, print dialog bugfixed.

Correction of algorithym for estimating the CPU-speed regarding mobile processors.

New features: caller / called graph, starting point list. Bugfix concerning Initialization part.
Bugfixes: Calculation of recursive functions completely worked over, Emulation profiling did not
emuluate minimum and maximum values.

Bugfix: It was not possible to have characters in a call for Application.MessaageBox that start a
comment.

Inprovement: In the call graph recursively called method are marked.

Bugfix: Compiler definitions in a unit were not valid in an include file, Compiler definitions in an
include file were not valid in the including unit.

Bugfix: Directories with a dot in their name could disable the history function.

Bugfix: Applications with a language resource file aborted with ecxeption.

Bugfix: Check for profiling more than 32000 methods was missing, which caused partly wrong
measurement results when this case occured.

Bugfix: History always used the file progname.hst in the exe-directory even another file was
selected.

Bugfix: A local FORWARD declaration caused that following procedures were not instrumented.
Bugfix: A local FORWARD declaration caused wrong procedure names in ProfList. ASC so that
result data was assigned to the wrong method.

Bugfix: Environment variables in path names were not processed correctly if noted at the
beginning of the path.

Bugfix: Closing the Online operation window terminated the profiled application.

Bugfix: Setup program deleted existing tools from the tools menu.

Feature: Online operation window can be disabled

Feature: Form for selecting activating methods improved

Bugfix: Ini-file settings were lost

Bugfix: Units with one uses statement were not profiled if Uses was in the same line with
implementation statement

Feature: Number of activating procedures increased from 16 to 32.

User guide: New chapter about hidden performance losses.

Bugfix: Setup was not possible on a PC with no C-drive (10/03)

Version 14.1 11/03 Enhancement: The option ‘Do not change file date’ now makes that the file date is increased at
profiling by 5 sec and decreased at cleaning by 5 sec. This makes possile that the file date
keeps the same between checking out and in from a source code control system.
Enhancement: The Professional Version can measure 64000 procedures (before 32000).

Version 14.2 11/03 Bugfix: Results for methods in the library path were missing (bug appeared in 14.1 only)

Version 14.3 11/03 Bugfix: Parser bug fixed

Version 14.4 11/03 Feature: Editing the path for directories to be excluded from profiling made easier and more
safe. Trying now to analyze if the application contains threads and displaying a warning if so
and the option ‘Testee contains threads’ is not checked.

Version 14.5 12/03 Bugfix: ProDelphi ended after clicking OK after thread warning message
Bugfix: Result file was reported to be empty when results were added with the online operation
window and no measured procedure was called.

Version 14.6 12/03 Feature: Environmentvariable in the output path possible now.

Compatibility: Navigation interface can be used together with packages using ShareMem now.
Bugfix: Parser bug for processing a line with Application.Messagebox containing an empty
string now.

K Literature

How to optimize for the Pentium family of microprocessors by Agner Fog / 1998-08-01
C/C++ user journal 'A Testjig Tool for Pentium Optimization' by Steve Durham (December 1996).

