Quick Start

Borlan_d®
Kylix™ 3
Delphi™ and C++ for Linuxe

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Refer to the DEPLOY document located in the root directory of your Kylix product for a complete list of files that you
can distribute in accordance with the Kylix License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

CoPYRIGHT © 20012002 Borland Software Corporation. All rights reserved. All Borland brand and product names

are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

HDE7030WW21000 3E3R0702
0203040506-987654321
D3

Contents

Chapter 1

Introduction
WhatisKylix?
Registering Kylix.
Finding information

Online Help

F1 Help
Developer support services and Web site
Typographic conventions

Chapter 2

A tour of the environment
Starting Kylix
The IDE
The menus and toolbars
The Component Palette, Form Designer,
and Object Inspector
The Object TreeView
The Object Repository
The Code Editor
Code Insight
Class Completion for Delphi
Code Browsing
The Diagram page
Viewing form code
The Code Explorer
The Project Manager
The Project Browser
To-do lists

Chapter 3
Programming with Kylix
Creating a project
Adding data modules
Building the user interface
Placing components on a form

1-1
11
1-2
1-3
1-4
14
1-6
1-6

2-1
2-1
2-1
23

iii

Setting component properties 3-3
Writingcode. 3-5
Writing eventhandlers 3-5
Using the CLX libraries. 3-6
Compiling and debugging projects. 3-6
Deploying applications. 3-8
Internationalizing applications 3-8
Typesof projects 3-8
Web server applications 3-8
Database applications. 3-9
Custom components 3-10
Shared objects 3-10
Chapter 4
Customizing the desktop 4-1
Organizing your workarea 4-1
Arranging menus and toolbars 4-1
Docking tool windows 4-3
Saving desktop layouts. 4-5
Customizing the Component palette 4-5
Arranging the Component palette. 4-6
Creating component templates 4-6
Installing component packages 4-7
Using frames 4-8
Setting projectoptions 4-8
Specifying project and form templates
asthedefault. 4-9
Adding templates to the Object
Repository 49
Setting tool preferences. 4-10
Customizing the Form Designer. 4-10
Customizing the Code Editor 4-11
Customizing the Code Explorer. 4-11
Index -1

iv

Introduction

This Quick Start provides an overview of the Kylix development environment to get
you started using the product right away. It also tells you where to look for details
about the tools and features available in Kylix.

Chapter 2, “A tour of the environment,” describes the main tools on the Kylix
desktop, or integrated desktop environment (IDE). Chapter 3, “Programming with
Kylix” explains how you use some of these tools to create an application. Chapter 4,
“Customizing the desktop” describes how you can customize the Kylix IDE for your
development needs.

What is Kylix?

Kylix is an object-oriented, visual programming environment for rapid application
development (RAD). Using Kylix, you can create highly efficient applications for
Linux servers and workstations with a minimum of manual coding. Kylix provides
all the tools you need to develop, test, and deploy applications in both the Delphi and
C++ programming languages, including a large library of reusable components, a
suite of design tools, application and form templates, and programming wizards.

Introduction 1-1

Registering Kylix

Registering Kylix

Kylix can be registered in several ways. The first time you launch Kylix after
installation, you will be prompted to enter your serial number and authorization key.
Once this has been entered, a registration dialog offers four choices:

¢ Register using your internet connection.
Use this option to register online using your existing internet connection.
® Register by phone or Web browser.

Use this option to register by phone or through your web browser. If you received
an activation key via email, use this option to select the file.

¢ Import software activation information from a file or email.
* Register later.

Online registration is the easiest way to register Kylix, but it requires that you have
an active connection to the internet. If you are already a member of the Borland
Community, or have an existing software registration account, simply enter the
relevant account information. This will automatically register Kylix. If not, the
registration process provides a way to create an account.

Register online

Member
of the Borland
Community?

Yes:

No

Existing
software
registration
account?

Enter username or
Yes—®» e-mail address and
password

No

v

Create new software
registration account

1

Enter information for
your account

1

Product registered

1-2 Quick Start

Finding information

The second option (register by phone or Web page) is useful if the machine you are
installing on is not connected to the internet, or if you are behind a firewall that is
blocking online registration.

Register by phone
or Web browser

Register
using a Web
browser?

Call closest number
listed

Yes

Enter Serial Number,
Authorization Key,
and Registration
Code

'

Enter your account
information or create
a new account (an
activation key will be
sent to your e-mail
address)

<
-

A A
Product registered.
Follow instructions

on how to save your

activation file before
you click finish.

If you have previously received software activation information, you can select the
Import software activation information from a file or email option and select the
activation.slip file on your system.

Note Unless you have a specific reason not to, use the online registration option.

Finding information

You can find information on Kylix in the following ways:

* Online Help
¢ Printed documentation
¢ Borland developer support services and Web site

For information about new features in this release, refer to What’s New in the online
Help Contents and to the www.borland.com Web site.

Introduction 1-3

Finding information

Online Help

The online Help system provides detailed information about user interface features,
language implementation, programming tasks, and the components in the Borland
Component Library for Cross-Platform (CLX). It includes all the material in the Kylix
Developer’s Guide, Delphi Language Guide, and a host of Help files for other features
bundled with Kylix.

To view the table of contents, choose the first item under the Help menu and click the
Contents tab. To look up CLX objects or any other topic, click the Index or Find tab
and type your request.

F1 Help

By selecting an item and pressing F1 you can get context-sensitive Help on CLX
objects and any part of the development environment including menu items, dialog
boxes, toolbars, and components.

] o j File Edit Bookpark Dptiors Help
Form1 M
Help Ti Back | Print| << I
Praperies | Events | Press F1 on a property or —IEDPCI;P':fiI i) 2|
. event name in the Object e
Bitmap (Mane) d

; —>
EBarderlcans |[aiSystembden Inspector to dlSpIay CLX TControl.Font
BorderStyle |MsGizeahle J Help. foomel feesie Cemle

Caption Form1
CligntHeight | 540

Controls the attributes of text written on or In the control,

property Font: TFont;
ClientWidth 763

Description
Calzy el To change to a new font, specify a new TFont object. To madify a font,
EHConstraints | (TSizeConstra change the value of the Charset, Color, Height, Name, Pitch, Size, or Style of
Cursor crDefault the TFont ohject.

Draghode | dmhanua)
Enabled True
@Font]

FormStyle |fsMormal j

All shown il
elp
— A unn I
¥ Trom Dax
0 varaesiConsiel | procedure Trorml.Buttonlclic TApplication.Terminate
e begin Application Sez also Exangle
application. [TTNERTE,
. lend; Ends appiication execution
In the Code Editor, press procedure Terninate;
end. Description
F1 ona |anguage or CLX Call Terminate to end the application programmatically. By caling Terminate
g rather than freeing the application object, you allow the application to shut
element down i an orderly fashion.

<

« | 31 2 22 |Modfed [isen \CodefDiagran

1-4 Quick Start

Finding information

[Kyiix Object and Component Reference MR
Ei Edit Bookmark Options

Press Fiona oo Toie] 7] grme]

componentonaform. > iﬁm

Hieraichy Properies Mefnods Events Using TEuton See also

et |

o] 20|

Form1

[_ID[]| | Teutonis apush button control,
Unit

QstdCtrs
Buttan1 H 85 85 85 85 o | | Description
b i i i i 2| | Use TButton to put a standard push button on a form. TButton introduces
several properties to control its behavior in a dialog box setting. Users
chaose button controls to infiate actions.

Pressing the Help button in any dialog box also displays context-sensitive online
documentation.

Kyliz 3 1 [_[o]x]

File Edit Search View Froject RBun Component Tools Window Help || [<Nones)

-3 @%° 2= €7 & = Syslsm] D\alngs] Data A:cess] Data Cnmmls] ﬂhExpress] \memsﬂ Indy. Cusmﬂ Indy Sarvers] Ingy. Mlsc} |
£ Aftach to Process

HEG | O b -

% @ S5

o

& Trace Into F7 i
‘@i Trace to Mext Source Line Shift+F 7 File Edit Beokaark Gptions

" Run to Cursor Fd

Help Topios | Back| Print| < Zoon |
Press F1on any Run|Step Over
menu command,

See alsa
dialog box or window

Choose RunfStep Over to execute a program one line at a time, stepping

: over procedures while executing them as a single unit
to dISp|ay He|p on The Step Cver command executes the program statement highlighted by the
th at item execution point and advances the execution point to the next statement,
. Evaluate/Modity... Ctrl+F7 - Ifyou issue the Step Over command when the execution point is located
o Aeld Watch Cirl+F5

on'a function call the debugger runs that function at full speed, then
positions the execution point on the statement that follows the function call

+ Ifyou issue Step Over when the execution point is positioned on the end
statement of a routine, the routine retums from fts cal, and the execution
point is placed on the statement following the routine call

Add Breakpoint »

The debugger considers multiple program statements on one line of textas a
single line of code; you cannot indlvidually debug multiple statements
contained on a single line of test. The debugger also considers a single
statement that spans several lines of text as a single line of cade.

By default, when you inltiate a debugging session with RuniStep Over, the
product moves the execution polnt to the first line of code that contains
debugging information.

In addition to stepping over procedures, you can trace into them, following
the execution of each line. Use Run|Trace Into to execute each line of a
procedure.

An alternative way to perform this command is:

Choose the Step Over button on the toolbar.

Error messages from the compiler and linker appear in a special window below the

Code Editor. To get Help with compilation errors, select a message from the list and
press F1.

Introduction 1-5

Developer support services and Web site

Developer support services and Web site

Borland also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support, refer to
http:/ /www .borland.com/devsupport/.

From the Web site, you can access many newsgroups where Kylix developers
exchange information, tips, and techniques. The site also includes a list of books
about Kylix, additional Kylix technical documents, and Frequently Asked Questions
(FAQs).

Typographic conventions

This manual uses the typefaces described below to indicate special text.

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Italicized words in text represent Kylix identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit
a menu.”

The Delphi printed icon represents Delphi programming language text and

“ code examples.

The C++ printed icon represents C++ programming language text and code
C++ examples.

1-6 Quick Start

A tour of the environment

This chapter explains how to start Kylix and gives you a quick tour of the main parts
and tools of the integrated development environment (IDE).

Starting Kylix

You can start Kylix in the following ways:

¢ In either KDE or Gnome, open the start menu, choose Borland Kylix 3 and select
either the C++ or the Delphi version of Kylix.

¢ From the bin directory of your Kylix installation, type ./startdelphi (Delphi
language IDE) or ./startbcb (C++ IDE).

The IDE

When you first start Kylix, you'll see some of the major tools in the IDE. In Kylix, the
IDE includes the menus, toolbars, Component palette, Object Inspector, Object
TreeView, Code Editor, Project Manager, and many other tools. The particular
features and components available to you will depend on which edition of Kylix
you've purchased.

A tour of the environment 2-1

The IDE

The Object TreeView displays a

hierarchical view of your components’ The menus and toolbars access a host of features
parent-child relationships. and tools to help you write an application.
Flo £t Saen view Pt fun Comparen Toos Mindow bl [|[core> <] & 7 The Component palette
D@ @S 33| & | siender | aditonal] Conman Contrls| System] Dilags | Data Access| Data Cantols | abEspress| intemet| ndy Cients| may Servers| sy wise| <[+ [CONtAINS ready.made
358 P, Nleg |t OF S Amar e dga’ 5 1 components to add to
T | [E— == your projects.
[Fomi 5 EITVZ‘:\Th‘IES/Cnnsta\ unit Unitl; B . .
& rom i Code Editor displays
7T g e I " N . ol code to view and edit.
S ooao
3 crom
S oo
S conc
o
[oiect E ~————The Form Designer
] contains a blank form on
= 5 - - - - - - which to start designing
ahnes skt the user interface for your
b ey application. An application
E::::::‘sc«ﬂ:: 5:‘3::.'2::’" e e e e e e can include several fOrmS.
Feaon Fom
Gt 13 «
aconstshs rseconsia
Cursor crDefault =
The Object Inspector)
is used to change objects’ The Code Explorer (Delphi Language Only) shows you the
properties and select event classes, variables, and routines in your unit and lets you
handlers.

Note The previous and subsequent examples show Kylix 3 using the Delphi Language
Integrated Development Environment (IDE). This guide will note when there are
significant differences between the Delphi and C++ environments.

Kylix’s development model is based on two-way tools. This means that you can move
back and forth between visual design tools and text-based code editing. For example,
after using the Form Designer to arrange buttons and other elements in a graphical
interface, you can immediately view the form file that contains the textual
description of your form. You can also manually edit any code generated by Kylix
without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can design
graphical interfaces, browse through class libraries, write code, compile, test, debug,
and manage projects without leaving the IDE.

To learn about organizing and configuring the IDE, see “Customizing the desktop”
on page 4-1.

2-2 Quick Start

The menus and toolbars

The menus and toolbars

The main window, which occupies the top of the screen, contains the main menu,
toolbars, and Component palette.

S Kylx 3 - Project] LELd Main window in
File Edit Searsh Yiew Projest Run Component Tools Window Help | | [<None- <] 2 its default
Is | dbExpress | Intermef | Indy Clients | Indy Servers | Indy Misc] <]+ Its aerau

D&-H @ 35| @ | Sandad|addtonsl] Common Controls| Systen] Dialags| Data Access| Data Co

ntrol
Sem ol N s wls DT R AR W e & e e arrangement.

Kylix’s toolbars provide quick access to frequently used operations and commands.
Most toolbar operations are duplicated in the drop-down menus.

Standard toolbar View toolbar Desktops toolbar
Remove
Open flefom view Toggle Name of saved Save current
New Save prOJect PFOJeCt unit form/unit desktop Iayout desktop
|
|
= - ""F—-' Desktu settin a5
o % o5 In;% I T
Open Save all Add f|Ie V|ew New Set debug
to project form form desktop
Debug toolbar Internet toolbar To find out what a button does,
point to it for a moment until a
List of projects Trace New WebSnap ~ New WebSnap tooltip appears.
you can run into Application Data Module
You can use the right-click
I ; o menu to hide any toolbar. To
“ i1 “ | ‘ =] | | bt display a toolbar if it's not
‘ ‘ { (showing, choose View|Toolbars
Run Pause Step over NewWebSnap External and check the one you want.

Page Module Editor

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

The toolbars are also customizable. You can add commands you want to them or
move them to different locations. For more information, see “Arranging menus and
toolbars” on page 4-1 and “Saving desktop layouts” on page 4-5.

For more information...
If you need help on any menu option, point to it and press F1.

A tour of the environment 2-3

The Component Palette,

Form Designer, and Object Inspector

The Component Palette, Form Designer, and Object Inspector

The Component palette, Form Designer, Object Inspector, and Object TreeView work
together to help you build a user interface for your application.

The Component palette includes tabbed pages with groups of icons representing
visual or nonvisual CLX components. The pages divide the components into various
functional groups. For example, the Standard, Additional, and Common Controls
pages include controls such as an edit box and up/down button; the Dialogs page
includes common dialog boxes to use for file operations such as opening and saving
files.

Click to view

Component palette pages, grouped by function more pages

Standard | addiional | Common Controls | System] Dialogs| Data Access | Data Controls | dbExpress| Internet] Indy Clients | Incy Servers | Incy Musc] o ‘

b B & AR S wr @ g™ 2 &
| |
Components

Each component has specific attributes (properties, events, and methods) that enable
you to control your application.

After you place components on the form you can arrange components the way they
should look on your user interface. For the components you place on the form, use
the Object Inspector to set design-time properties, create event handlers, and filter
visible properties and events. See “Placing components on a form” on page 3-2.

After you place components on a form, the Object Inspector dynamically
changes the set of properties it displays, based on the component selected.

Ohject Inspectar x|

Button1 -
\
]

%

Froperties W E\,-gmﬂ

[D]

Default False

= Form1
Draghiode | dmhdanual N
Enabled True PEREE
[EIFont =] pLiniiiiiie Buont [:
Charset |fcsDefaultCha : : : :
Color clBlack
Height |12
Narme helvetica
Pitch ¥ ariakle
Size 10
EStyle i
Weight |50
Height 25 =

All shown

For more information...
See “Component palette” in the online Help index.

2-4 Quick Start

The Object TreeView
The Object TreeView

The Object TreeView displays a component’s sibling and parent-child relationships
in a hierarchical, or tree diagram. The tree diagram is synchronized with the Object
Inspector and the Form Designer so that when you change focus in the Object
TreeView, both the Object Inspector and the form change focus.

You can use the Object TreeView to change related components’ relationships to each
other. For example, if you add a panel and CheckBox component to your form, the
two components are siblings. But in the Object TreeView, if you drag the check box
on top of the panel icon, the CheckBox becomes the child of the panel.

If an object’s properties have not been completed, the Object TreeView displays a red
question mark next to it. You can double-click any object in the tree diagram to open
the Code Editor to a place where you can write an event handler.

If the Object TreeView isn’t displayed, choose View | Object TreeView.

Cbiec =l Form1 [_[O]
The Object TreeView, DF%

Object Inspector, and the e

Form Designer work S R R N

together. When you click an
object on your form, it
automatically changes the
focus in both the Object
TreeView and the Object
Inspector and vice versa.

Press Alt-Shift-F11to focus i B

on the Object TreeView. Prapeties |verts| i

Caption CheckBoxl =]
Checked False |
Color clBackgmundJ
@EConstraints (TSizeConstra
Cursor crDefault

. . .
¥ CheckBox =

Panel

DragMode | dmbanual
Enabled |True

[EFont (Fot) =]~

All shown

The Object TreeView is especially useful for displaying the relationships between
database objects.

For more information...
See “Object TreeView” in the online Help index.

The Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, shared
libraries, sample applications, and other items that can simplify development.
Choose File | New | Other to display the New Items dialog box when you begin a

A tour of the environment 2-5

The Object Repository

project. The New Items dialog box is the same as the Object Repository. Check the
Repository to see if it contains an object that resembles one you want to create.

The Repository’s tabbed pages include
objects like forms, frames, units, and New | Prajectt | Forms | Dialogs | Projects | Data Modules | WehSnap | WebServices
wiiards to create specialiied items e 1 1 :
-]
Data Mod. Form Frame
When you're creating an item based on B [=
. . / —_—
one from the Object Repository, you Package PrpetGr.. Shared O . . .

can copy, inherit, or use the item:

Copy (the default) creates a copy of @
the item in your project. Inherit means oo Bert. ML Dt
changes to the object in the Repository
are inherited by the one in your project.
Use means changes to the object in
your project are inherited by the object
in the Repository.

oK Cancel ‘ Help ‘

To edit or remove objects from the Object Repository, either choose Tools | Repository
or right-click in the New Items dialog box and choose Properties.

Object Repository [_Ix]

E: Ohjects:

e You can add, remove, or
Dilgs [Tebied pages rename tabbed pages from
Dt Moes L I R the Object Repository.

Wehsnap
W ehServices
[Chject Repository]

Delete Page

Bename Page..

Ll

Click the arrows to change
= the order in which a tabbed
@ ‘ ‘ page appears in the New

o] oo [b | Items dialog box.

To add project and form templates to the Object Repository, see “Adding templates
to the Object Repository” on page 4-9.

For more information...

See “Object Repository” in the online Help index. The objects available to you will
depend on which edition of Kylix you purchased.

2-6 Quick Start

The Code Editor

The Code Editor

As you design the user interface for your application, Kylix generates the underlying
code. When you select and modify the properties of forms and objects, your changes
are automatically reflected in the source files. You can add code to your source files
directly using the built-in Code Editor, which is a full-featured ASCII editor. Kylix
provides various aids to help you write code, including the Code Insight tools, class
completion, and code browsing.

it | Components added to
— it oatel; 2 the form are reflected
intartace in the code.
I
uzas
SysUtils, Types, Classas, QGraphics, QControls, QFormz, QDialogs,
Qstdctrls;
Form1 [_[O[x]
typa
TForml = class(TForm)
Generated Panali: Tanal;
Buttonl: TButton;
Code' ChackBoxl: TChackBox;
privats
{ Private daclarations }
public Button1
{ Publie doclarations }
and;
Panell
vax
Forml: TForml;
I~ CheckBox1
implamantation
{$R #*.xrm}
and.
B |
417 Modified Insert CndEKD\agram
Code Insight

The Code Insight tools display context-sensitive pop-up windows.

Tool

Code completion

Code parameters

Tooltip expression evaluation

How it works

For the C++ IDE, type the name of a variable that represents a
pointer to an object followed by an arrow (->) or that represents
a non-CLX object followed by a dot.

For the Delphi IDE, type a class name followed by a dot (.) to
display a list of properties, methods, and events appropriate to
the class, select it, and press Enter. In the interface section of
your code you can select more than one item.

Type the beginning of an assignment statement and press
Ctrl+spacebar to display a list of valid values for the variable. Type
a procedure, function, or method name to bring up a list of
arguments.

Type a method name and an open parenthesis to display the
syntax for the method’s arguments.

While your program has paused during debugging, point to any
variable to display its current value.

A tour of the environment 2-7

The Code Editor

Tool How it works

Tooltip symbol insight While editing code, point to any identifier to display its
declaration.

Code templates Press Ctrl+J to see a list of common programming statements that

you can insert into your code. You can create your own
templates in addition to the ones supplied with Kylix.

T =B With code completion, when you reference a

300 vanshssiconsta| procadura Tomml ButtonICick (Sandar: TObJact); =l member of an object (with a . in Delphi or a ->

- in C++) Kylix displays a list of properties,
methods, and events for the class. As you
type, the list automatically filters to the
selection that pertains to that class. Select an
item on the list and press Enterto add it to
your code.

Procedures and properties are colored as teal
and functions as blue.

““““““ A You can sort this list alphabetically by right-
clicking and clicking Sort by Name.

Sysvtils, Types, Classes, fohics, ., @Forms, gpial

\ I~ The tooltip symbol insight displays declaration
information for any identifier when you pass
V Papiic dectar the mouse over it.

ena;

Forml: TForml;

implementation

To turn these tools on or off, choose Tools | Editor Options and click the Code Insight
tab. Check or uncheck the tools in the Automatic features section.

HEE Class Completion for Delphi

In the Delphi language IDE, class completion generates skeleton code for classes.
Place the cursor anywhere within a class declaration of the interface section of a unit
and press Cirl+Shift+C or right-click and choose Complete Class at Cursor. Kylix
automatically adds private read and write specifiers to the declarations for any
properties that require them, then creates skeleton code for all the class’s methods.
You can also use class completion to fill in class declarations for methods you've
already implemented.

To turn on class completion, choose Tools | Environment Options, click the Explorer
tab, and make sure Finish incomplete properties is checked.

For more information...
See “Code Insight” and “class completion” in the online Help index.

2-8 Quick Start

The Code Editor

Code Browsing

While passing the mouse over the name of any class, variable, property, method, or
other identifier, the pop-up menu called Tooltip Symbol Insight displays where the
identifier is declared. Press Ctrland the cursor turns into a hand, the identifier turns
blue and is underlined, and you can click to jump to the definition of the identifier.

The Code Editor has forward and back buttons like the ones on Web browsers. As
you jump to these definitions, the Code Editor keeps track of where you've been in
the code. You can click the drop-down arrows next to the Forward and Back buttons
to move forward and backward through a history of these references.

unitt | @Foms| a1 ==
=S 2l Press Ctrland click or right-click and click

L Find Declaration to jump to the definition

m— of the identifier.
procadura TPormL. BubtenlCLici (Sanday: TOBYSEET] The Code editor maintains a list of the
oy _ definitions you jumped to.

APPLLcat e
ana; Fing

Clase Page Ciri+F4
Open Eile at Cursor Cirl+Enter
New Edit Window

Browse Syrikol at Cursor

Topic Search F1
Cofiplete class at cursor ShifCHlaC
A0 To-Do ftem ShitteCir+T

and.

Click the back arrow to
) return to the last place
=« | you were working in
your code. Then click
the forward arrow to
move forward again.

28 3 |V

Toggle Bookmarks »
Goto Baokmarks »

Dehug N lashes with X11 hasders, use GetScreen() in Co+ }

Read Only function GatScrasn: TScraen

Message View function : TControl) :
View Explorer TR function Ishccal(VK: Word; const Str: WidaString): Boolean; -

L —
w1 nsei \cose/.

Propetties

To customize your code editing environment, see “Customizing the Code Editor” on
page 4-11.

For more information...
See “Code Editor” in the online Help index.

The Diagram page

The bottom of the Code Editor may contain one or more tabs, depending on which
edition of Kylix you have. The Code page, where you write all your code, appears in
the foreground by default. The Diagram page displays icons and connecting lines
representing the relationships between the components you place on a form or data
module. These relationships include siblings, parent to children, or components to
properties.

To create a diagram, click the Diagram page. From the Object TreeView, simply drag
one or multiple icons to the Diagram page to arrange them vertically. To arrange
them horizontally, press Shift while dragging. When you drag icons with parent-
children or component-property dependencies onto the page, the lines, or connectors,
that display the dependent relationships are automatically added. For example, if

A tour of the environment 2-9

The Code Editor

you add a dataset component to a data module and drag the dataset icon plus its
property icons to the Diagram page, the property connector automatically connects
the property icons to the dataset icon.

For components that don’t have dependent relationships but where you want to
show one, use the toolbar buttons at the top of the Diagram page to add one of four
connector types, including allude, property, master/detail, and lookup. You can also
add comment blocks that connect to each other or to a relevant icon.

From the Object TreeView, drag
the icons of the components to
the Diagram page.

To view other diagrams you've named in the
current project, click the drop-down list box.

Type a name and description for your
diagram.

Use the Diagram page
toolbar buttons—Property,
Master/Detail and Lookup—
to designate the relationship
between components and
components and their
properties. The appearance
of the connecting line varies
for each type of relationship.

L8 Dasoucel .
/]\ Click the Comment block
z button to add a comment,
Yeucan set the DataSource
e and the Allude connector
oty (& | button to draw a connection

to another comment or icon.

< o

11 |Modfied [insart [\Code hDiagram /

You can type a name and description for your diagram, save the diagram, and print it
when you are finished.

For more information...
See “diagram page” in the online Help index.

Viewing form code

Forms are a very visible part of most Kylix projects—they are where you design the
user interface of an application. Normally, you design forms using Kylix’s visual
tools, and Kylix stores the forms in form files. Form files (.dfm) describe each
component in your form, including the values of all persistent properties. To view
and edit a form file in the Code Editor, right-click the form and select View as Text.
To return to the graphic view of your form, right-click and choose View as Form.

2-10 Quick Start

The Code Explorer

| Form1 N— N— I— __ BEE
|

Do [euteni s

|

Edit »

4 Use View As Text
to view a text
description of the
form’s attributes in
the Code Editor.

Flip Children »

Add to Reposiory.

v Text XFM

You can save form files in either text (the default) or binary format. Choose Tools |
Environment Options, click the Designer page, and check or uncheck the New forms
as text check box to designate which format to use for newly created forms.

For more information...
See “form files” in the online Help index.

M The Code Explorer

When you open Kylix, the Code Explorer is docked to the left of the Code Editor
window, depending on whether the Code Explorer is available in the edition of Kylix
you have. The Code Explorer displays the table of contents as a tree diagram for the
source code open in the Code Editor, listing the types, classes, properties, methods,
global variables, and routines defined in your unit. It also shows the other units listed
in the uses clause.

You can use the Code Explorer to navigate in the Code Editor. For example, if you
double-click a method in the Code Explorer, a cursor jumps to the definition in the
class declaration in the interface part of the unit in the Code Editor.

B unitl.pas [_ O] x]
= unirf 1
=¥} TForm1
£ 2 Published procadura TForml.ButtonlClick (Sendar: TObjact); I=|
Lttan bagin . . .

M Egﬂn%m| > Double-click an item in the Code
=00 Varasles/Constants ||| @R Explorer and the cursor moves to
[0 Uses . N B

and. that item’s implementation in the
Code Editor. Press Ctrl+Shift+E to
move the cursor back and forth
between the last place you were in
the Code Explorer and Code Editor.
Each item in the Code Explorer has
an icon that designates its type.

g 1 Maodified Insert Code f Diagram [

A tour of the environment 2-11

The Project Manager

To configure how the Code Explorer displays its contents, choose Tools |
Environment Options and click the Explorer tab.

For more information...
See “Code Explorer” in the online Help index.

The Project Manager

When you first start Kylix, it automatically opens a new project. A project includes
several files that make up the application or shared object you are going to develop.
You can view and organize these files—such as form, unit, resource, object, and
library files—in a project management tool called the Project Manager. To display the
Project Manager, choose View | Project Manager.

Fath

‘home/shawmm
shome/shawnm
‘home/shawnm
it1.pas thome/shawnm
m1 fhome/shawnm

You can use the Project Manager to combine and display information on related
projects into a single project group. By organizing related projects into a group, such as
multiple executables, you can compile them at the same time. To change project
options, such as compiling a project, see “Setting project options” on page 4-8.

For more information...
See “Project Manager” in the online Help index.

IEHE The Project Browser

In the Delphi IDE, the Project Browser examines a project in detail. The Browser
displays classes, units, and global symbols (types, properties, methods, variables,
and routines) your project declares or uses in a tree diagram. Choose View | Browser
to display the Project Browser.

2-12 Quick Start

To-do lists

= i
Globals Hml Units ‘
= ¥} Tobject »3 TObject The Project Browser has two
= W‘;e;::iz';”:mem Scope]mheman:e} References | J resizeable panes: the
Rty A = Inspector pane (on the left)
= ¥4 TWinContral - AtierConstruction and the Details pane. The
- -%:;r:g:mm&v] :j Bemisescon Inspector pane has three tabs
e o . & Classhiame for globals, classes, and units.
& a:;v;:m § Globals displays classes,
4§ ClassTyps types, properties, methods,
:A g%tww'ﬂstanw variables, and routines.
A Create
@ Detaut-andier Classes displays classes in a
: g\?’;:{:h hierarchical diagram.
& Fleldaddress - Units displays units, identifiers
e anee declared in each unit, and the
& Gefinterface other units that use and are
& GetinterfaceEntry used by each unit.
4 |ﬂ <. GetinterfaceTahle ﬂ

By default, the Project Browser displays the symbols from units in the current project
only. You can change the scope to display all symbols available in Delphi. Choose
Tools | Environment Options, and on the Explorer page, check All symbols.

For more information...
See “Project Browser” in the online Help index.

To-do lists

To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items
directly in the source code. Choose View | To-Do List to add or view information
associated with a project.

Action [tem | ! | Module £ I Owiner | Category
O &dd Action Manager dialog box 1 Jaoerg 1]
O Add buttons ta library 2 Joerg ul
- bug HIES 2
Right-click on a to-do list to
o ot < display commands that let you
Delete Dl sort and filter the list.
[Action ltem
Filter » Status
4J| v Show Completed Items Type
E\lems (0 hidden) E v Show ToolTips when Clipped Friority
Madule
(Ces ' Dwner
CI|Ck the Check Vel S At Category

box when you're v Dackable
done with an item.

For more information...
See “to-do lists” in the online Help index.

A tour of the environment 2-13

2-14 Quick Start

Programming with Kylix

The following sections provide an overview of software development with Kylix,
including creating a project, working with forms, writing code, and compiling,
debugging, deploying, and internationalizing applications, and including the types
of projects you can develop.

Creating a project

A project is a collection of files that are either created at design time or generated
when you compile the project source code. When you first start Kylix, a new project
opens. The Delphi IDE automatically generates a project file (Projectl.dpr), unit file
(Unitl.pas), and resource file (Unitl.dfm; Unitl.xfm for CLX applications), among
others. The C++ IDE produces Projectl.bpr, Unitl.cpp, and Unitl.h along with the
form files.

If a project is already open but you want to open a new one, choose either File | New |
Application or File | New | Other and double-click the Application icon. File | New |
Other opens the Object Repository, which provides additional forms, modules, and
frames as well as predesigned templates such as dialog boxes to add to your project.
To learn more about the Object Repository, see “The Object Repository” on page 2-5.

When you start a project, you have to know what you want to develop, such as an
application or shared object. To read about what types of projects you can develop
with Kylix, see “Types of projects” on page 3-8.

For more information...
See “projects” in the online Help index.

Programming with Kylix 3-1

Building the user interface

Adding data modules

A data module is a type of form that contains nonvisual components only. Nonvisual
components can be placed on ordinary forms alongside visual components. But if
you plan on reusing groups of database and system objects, or if you want to isolate
the parts of your application that handle database connectivity and business rules,
data modules provide a convenient organizational tool.

To create a data module, choose File | New | Data Module. Kylix opens an empty data
module, which displays an additional unit file for the module in the Code
EditorCode Editor, and adds the module to the current project as a new unit. Add
nonvisual components to a data module in the same way as you would to a form.

DataModule? M=
. Double-click a nonvisual
ity component on the Component
gie| palette to place the component in
D #MLTransform1 the data module.

HKMLTransformClient]

1 I

When you reopen an existing data module, Kylix displays its components.

For more information...
See “data modules” in the online Help index.

Building the user interface

With Kylix, you first create a user interface (UI) by selecting components from the
Component palette and placing them on the main form.

Placing components on a form

To place components on a form, do one of the following;:
¢ Double-click the component.

¢ Click the component once and then click the form where you want the component
to appear.

* Select the component and drag it to wherever you want on the form.

* Choose View | Component list from the main window, select a component, and
click the Add to form button.

3-2 Quick Start

W Kylix 3 - Project!

Building the user interface

File Edit Search View Project Run Component Tools Window Help | | [<hone= ~| &y

D - W @ &3 | @ |t | addionsl] Conmon
FEE ok O & AR

J[=l B3

Coniy Syslem} D\a\ugs] Data. Access} Data Cuntru\s} dbExpress} Imemeﬂ Indy Cliems] Indy Servevs} Indy M\sc}j_»
Slod gl @ Sl s T = g

0

Click a component on the Component palette.

Then click where you want to place it on the form.

Form1

5 Eutton1 5

For more information...

Or choose a component from

an alphabetical list.

¥iew Project Run Component Tools Window Help <Mone=

Cirl+Alt+F11
F11
Shit+Alt+F11

% Project Manager

=% Object Inspector
S Object TreeView

=3 To-Do List

Alignment Palette

o Browser

g Code Explorer

Shit+Ctrl+B

nent List
B Window List Alt+D)
Debug Windows »
Desktops »
5 Toggle Fomy/Unit Fl2
[Units. Chrl+F12
S Foms. shiftsF12
New Edit Window
Toolbars »

See “Component palette” in the online Help index.

Setting component properties

BI| Comman Controls | System | Dialo

AR = & 6 &

.7
E

search by name

R

]| Frames
il ThctionList [QACt

D |radapter (webad:

TAdaptErD\spalchsﬂ

Add to form

After you place components on a form, set their properties and code their event
handlers. Setting a component’s properties changes the way a component appears
and behaves in your application. When a component is selected on a form, its
properties and events are displayed in the Object Inspector.

Programmi

ng with Kylix

3-3

Building the user interface

-]
1

El

Properties] Evgnlsl

Bitmag (Mone)
[EBaordeticons | [hisSystemien

Borderstyle fhsSizeahle

Caption Form1

ClientHeight | 540

ClientW¥idth | 783

Colar clBackgroun

e

[EConstraints (TSizeConstra
Cursor
Draghiode
Enabled

crhefault
dmbdanual
True

i

=
=]

[EFont

FormStyle
Il shown

fzMarmal

Or use this drop-down list to
select an object. Here,
Form1 is selected, and its
properties are displayed.

| Select a property and

change its value in the
right column.

Click an ellipsis to open
a dialog box where you
can change the
properties of a helper
object.

You can also click a plus sign to open a detail list.

You can select a
component, or object, on
the form by clicking on it.

Form1

Button

Many properties have simple values—such as names of colors, True or False, and
integers. For Boolean properties, you can double-click the word to toggle between
True and False. Some properties have associated property editors to set more complex
values. When you click on such a property value, you'll see an ellipsis. For some

properties, such as

size, enter a value.

Caption [Buttam J Double-click here to

Color clButton change the value from
Constraints | (TSizeConsiraints) TI’UG to FH/SE.

Cursar crhefault
[Defautt Tue = =

Draghode | dmtdanual Click any eIIipsis to

Enabled True display a property

= editor for that property.

olor EENE] -

ECa(clAaqua

Cufcl¥hite

Deqcltlone

Dr4ciBackground Enahled True

cIHighlight

: cIHighlighiText | ::Dm m J

He(IForeground eight 23

Click on the down
arrow to select from a
list of valid values.

Select Font

Font

Font style

e] [
Bookman [abisource]
Courier [abisourcs]
Courier new [ahisource]
Symbol [ablsource]

Times new roman [ahisource]
Courier [adobe]

Effects

Narmmal

Bold Oblique

I™ Strikeout
™ Underiine

script

Western (IS0 8855-1) -

A

Saniple

faBbfaze

When more than one component is selected in the form, the Object Inspector displays
all properties that are shared among the selected components.

The Object Inspector also supports expanded inline component references. This
provides access to the properties and events of a referenced component without
having to select the referenced component itself. For example, if you add a button
and pop-up menu component to your form, when you select the button component,
in the Object Inspector you can set the PopupMenu property to PopupMenul, which
displays all of the pop-up menu'’s properties.

3-4 Quick Start

Writing code

Set the Button
- component’s
Properies | everns | PopupMenu property
T 3w Al to PopupMenul, and
ParentFont True all of the popup
Parentshowk Trus . menu’s propemes
e e B appear when you
Teborder 0 \l/ click the plus sign (+).
TabStop True .
Egg\esuﬂunga\se A Inline Componem
i 2 references are
visble True | colored red, and their
Width 75 = A
Al shown N subproperties are
colored green.
For more information...

See “Object Inspector” in the online Help index.

Writing code

An integral part of any application is the code behind each component. While Kylix’s
RAD environment provides most of the building blocks for you, such as preinstalled
visual and nonvisual components, you will usually need to write event handlers,
methods, and perhaps some of your own classes. To help you with this task, you can
choose from thousands of objects in Kylix’s CLX class libraries. To work with your
source code, see “The Code Editor” on page 2-7.

Writing event handlers

Your code may need to respond to events that might occur to a component at
runtime. An event is a link between an occurrence in the system, such as clicking a
button, and a piece of code that responds to that occurrence. The responding code is
an event handler. This code modifies property values and calls methods.

To view predefined event handlers for a component on your form, select the
component and, on the Object Inspector, click the Events tab.

Programming with Kylix 3-5

Compiling and debugging projects

Objact Inspecior Here, Button1 is selected and its type is displayed: TButton.
[Butiont < =11 Click the Events tab in the Object Inspector to see the
propertes’ Events | events that the Button component can handle.
Action 1= | B unitt e [
‘ OnClick Button1Click. ﬂ vl] 4
Lo procedure TForml.ButtonlClick (Sender: TObject); =
e ’L Select an existing event ==
OnDragover [~ handler from the drop- end;
OnEndDrag down list. end-
OnEnte . .
ongit _|| Or double-click in the
OnKeyDown value column, and Kylix
BilayFiEss generates skeleton cod
g for the new event
nkeyUp h dl
OnhkouseDo j andaler.
All shown B
TR o
2 1 |vodted |insent \CodefDiagian]
For more information...

See “events” in the online Help index.

Using the CLX libraries

Kylix comes with the Borland Component Library for Cross-Platform (CLX) which is
made up of sublibraries of objects, some of which are also components or controls,
that you use when writing code. These libraries include objects that are visible at
runtime—such as edit controls, buttons, and other user interface elements—as well
as nonvisual controls like datasets and timers. Objects descended from TComponent
have properties and methods that allow them to be installed on the Component
palette and added to Kylix forms and data modules. Because CLX components are
hooked into the IDE, you can use tools like the Form Designer to develop
applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a CLX button control,
you don’t have to write code to handle generated events when the button is clicked;
you are responsible only for the application logic that executes in response to the
click itself.

For more information...
See “CLX Reference” in the Help contents and in the online Help index.

Compiling and debugging projects

After you have written your code, you will need to compile and debug your project.
With Kylix, you can either compile your project first and then separately debug it, or
you can compile and debug in one step using the integrated debugger. To compile

3-6 Quick Start

Compiling and debugging projects

your program with debug information, choose Project | Options, click the Compiler
page, and make sure Debug information is checked.

Kylix uses an integrated debugger so that you can control program execution, watch
variables, and modify data values. You can step through your code line by line,
examining the state of the program at each breakpoint. To use the integrated
debugger, choose Tools | Debugger Options, click the General page, and make sure
Integrated debugging is checked.

You can begin a debugging session in the IDE by clicking the Run button on the
Debug toolbar, choosing Run | Run, or pressing F9.

Run Component Tools Window Help

2
o< Attach to Process
i Parameters.
o Bl Over ko | Choose any of the B o
B oo nensouce s s | 4EDUGGING commands from . 2
[T Run to Cursar F4 the Run menu. Some

commands are also available Run button

on the toolbar.

Evaluate/Modify Cirl+F7
o Add Watch Ctrl+F5
Add Breakpoint »

With the integrated debugger, many debugging windows are available, including
Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and
Event Log. Display them by choosing View | Debug Windows. Not all debugger
views are available in all editions of Kylix.

Watch List, L 1, TH x|

Watch List| Local Variables | Call Stack [EVERROITT LS| Thread Status |

Filename/Address | Line/Length ‘ Condition ‘ Action ‘ P H

B Unitl pas m Ereak o Youcan combine several
B Unitt pas 20 Break o|| debugging windows for
B Unitl.pas 23 Break 1] easier use.

‘ i

To learn how to combine debugging windows for more convenient use, see “Docking
tool windows” on page 4-3.

Once you set up your desktop as you like it for debugging, you can save the settings
as the debugging or runtime desktop. This desktop layout will be used whenever
you are debugging any application. For details, see “Saving desktop layouts” on
page 4-5.

For more information...
See “debugging” and “integrated debugger” in the online Help index.

Programming with Kylix 3-7

Deploying applications

Deploying applications

You can make your application available for others to install and run by deploying it.
When you deploy an application, you will need all the required and supporting files,
such as the executables, shared objects, package files, and helper applications.

For more information...
See “deploying, applications” in the online Help index.

Internationalizing applications

Kylix offers several features for internationalizing and localizing applications. The
IDE and CLX support input method editors (IMEs) and extended character sets to
internationalize your project.

For more information...
See “international applications” in the online Help index.

Types of projects

All editions of Kylix support general-purpose 32-bit Linux programming, Shared
Objects, packages, custom components, multithreading, and multiprocess
debugging. Some editions support server applications such as Web server
applications, database applications, multi-tiered applications, CORBA, and decision-
support systems.

For more information...

To see what tools your edition supports, refer to the feature list on
www .borland.com.

Web server applications

A Web server application works with a Web server by processing a client’s request
and returning an HTTP message in the form of a Web page. To publish data for the
Web, Kylix includes two different technologies, depending on what edition of Kylix
you have.

Kylix’s oldest Web server application technology is called Web Broker. Web Broker
applications can dispatch requests, perform actions, and return Web pages to users.
Most of the business logic of an application is defined in event handlers written by
the application developer. To create a Web Broker Web server application, choose
File | New | Other and double-click the Web Server Application icon. You can add
components to your Web module from the Component palette page.

3-8 Quick Start

Types of projects

WebSnap adds to this functionality with adapters, additional dispatchers, additional
page producers, session support, and Web page modules. These extra features are
designed to handle common Web server application tasks automatically. WebSnap
development is more visual and simple than Web Broker development. A WebSnap
application developer can spend more time designing the business logic of an
application, and less time writing event handlers for common page transfer tasks. To
create a new WebSnap server application, select File | New | Other, click the WebSnap
page, and double-click the Web Server Application icon. You can add WebSnap
components from the WebSnap Component palette page.

News WebSnap Application ™ E
S— You can create an
ek - application to run on
<——+— various Web server

" Weh App Debugger executable

application types,
including a test server to

You can also access the help you dtT_bust;_ your Web
Websnap App“catlon ,data Application Module Components server app ication.
module by choosing Viewl & Page Module Choose whether you

Toolbarslinternet, and
clicking the New WebSnap

want a data module or a
page module, which

€ Data Module

%

App”caﬁon icon. £pplication Module Options — displays your HTML page
Page Mame: ‘WEbAppMDduIES as you work.
Page Optians..
Caching. |Cache Instance j

B

Cancel ‘ Help |

For more information...
See “Web applications” in the online Help index.

Database applications

Kylix offers a variety of database and connectivity tools to simplify the development
of database applications.

To create a database application, first design your interface on a form using the Data
Controls page components. Second, add a data source to a data module using the
Data Access page. Third, to connect to various database servers, add a dataset and
data connection component to the data module from the previous or corresponding
pages of the following connectivity tools:

¢ dbExpress is a collection of database drivers for cross-platform applications that
provide fast access to SQL database servers, including DB2, InterBase, MySQL,
and Oracle. With a dbExpress driver, you can access databases using
unidirectional datasets.

¢ Certain database connectivity tools are not available in all editions of Kylix.

Programming with Kylix 3-9

Types of projects

For more information...
See “database applications” in the online Help index.

Custom components

The components that come with Kylix are preinstalled on the Component palette and
offer a range of functionality that should be sufficient for most of your development
needs. You could program with Kylix for years without installing a new component,
but you may sometimes want to solve special problems or display particular kinds of
behavior that require custom components. Custom components promote code reuse
and consistency across applications.

You can either install custom components from third-party vendors or create your
own. To create a new component, choose Component | New Component to display
the New Component wizard. To install components provided by a third party, see
“Installing component packages” on page 4-7.

For more information...

See Part V, “Creating custom components,” in the Developer’s Guide and
“components, creating” in the online Help index.

Shared objects

Shared Objects are compiled modules containing routines that can be called by
applications and by other Shared objects. A Shared object contains code or resources
typically used by more than one application. Choose File | New | Other and double-
click the Shared object Wizard icon to create a template for a Shared Object.

For more information...
See “Shared objects” in the online Help index.

3-10 Quick Start

Customizing the desktop

This chapter explains some of the ways you can customize the tools in Kylix IDE.

Organizing your work area

The IDE provides many tools to support development, so you'll want to reorganize
your work area for maximum convenience, including rearranging your menus and
toolbars, combining tool windows, and saving a new way your desktop looks.

Arranging menus and toolbars

In the main window, you can reorganize the menu, toolbars, and Component palette
by clicking the grabber on the left-hand side of each one and dragging it to another
location.

You can move menus and toolbars within the main window. Drag the
grabber (the vertical bar on the left) of an individual toolbar to move it.

W Kyliz 3 - Projectl

Fi)d Edit Search View Project Run Component Tools ‘Window Help | [<Monex = =

ffe-B @ 2 € | Stendad|additional] Conmon Controls | System | Dialogs| Data Access | Data Controls | dhExpress | intemet | Indy Clients | indy Servers | Indy Misc | < »

@ ol -ulaEls OF AW Hmr 6 SHFe T =]

Customizing the desktop 4-1

Organizing your work area

Main window in its
default arrangement.

W Kylix 3 - Project1 JH[=] B3

File Edit Search View Project Run Component Tools Window Help | | [<Mones = -

D@ & @9 22| & | stenvarn]additional] Conmon Controls| System| Dialogs] Data Access | Data Controls | doExpress| Intermet | Indy Cliznts | Indy Servers | indy Misc | «[»

mik= = s S awlh SE S AR ENDR 6 ST &
Main window
organized differently

Standard | gcitional] Camman Contrels| System| Dialogs| Data Access | Data Contruls| dnExprese | Intemet | Ingy Clients | Indy Servers | sy Mise | sy Intercepts | Iy 4O Handlers | Wensnars | »
R OE & AR S b ke S g0 =&
1= 8] oo D @253 @ |[<wone = (e

File Edit Search View Project Run Component Tools Window Help

You can separate parts from the main window and place them elsewhere on the

screen or remove them from the desktop altogether. This is useful if you have a dual
monitor setup.

File Edit Search Wiew Project Run Component Tools Window Help

I Kylix 3 - Project] [_[C]x] |

Main window with

> =
Standard | Aditional | Cammon Controls | System | Dialngs | Data Access | Data Controls | dsExpress | internet | indly Clients| indly Servers | indy Mise | inay nterceps | indy 1/ Handlers | w, <J

B OE S ARME i x @B = parts separated.
| [E x| = =
N a0 DS -H @5 33 <None| =] 3 | O @

You can add or delete tools from the toolbars by choosing View | Toolbars |
Customize. Click the Commands page, select a category, select a command, and drag
it to the toolbar where you want to place it.

Toolbars Commands | Dplionsl

On the Commands
page, select any
command and drag it

Categories: Commands:

Separator =
_[eBl;ka onto any toolbar.
th Call Stack On the Options page,
BT click Show tooltips to
Zhpodes make sure the hints for
anCFU components and
Tools R -l toolbar icons appear.

To add command buttons, drag and drop commands onto a toolbar.
To remove command buttons, diag them off of a Toolbar.

Close Help |

For more information...
See “toolbars, customizing” in the online Help index.

4-2 Quick Start

Docking tool windows

Organizing your work area

You can open and close individual tool windows and arrange them on the desktop as

you wish. Many windows can also be docked to one another for easy management.

Docking—which means attaching windows to each other so that they move

together—helps you use screen space efficiently while maintaining fast access to

tools.

From the View menu, you can bring up any tool window and then dock it directly to

another. For example, when you first open the Delphi Language IDE in its default
configuration, the Code Explorer is docked to the left of the Code Editor. You can

add the Project Manager to the first two to create three docked windows.

To get docked windows with
grabbers, release the
mouse when the drag
outline snaps to the
window’s corner.

B unitl pas
—_—_—

unitt |

Project! B
Files Path
= o olp Ihomed

=] Project! Ihome

=5 unitt Jhomed

) Unitt pas /homef
 Forml /home)

=0l x|

unit Unitl;
interface

uses
SysUtils, Types, Classes, QGraphics, QControls, QFon
QStdCtrls;

type
TForml = class (TForm,
private
{ Private declarations }
public
{ Public declarations }
end;

var
Forml: TForml;

implementation

11 Madified Insert \Code {Diagram {

Customizing the desktop

4-3

Organizing your work area

Here the Project Manager and Object
Inspector are docked to the Code Editor.

Fartl -

Properties WEventsl |
You can combine, or e interface
« PR : ctiveContro
dIOCk W|nd0WS Wlth @Eanchors [akLefl,akTop]
either grabbers, ason Autsscrol True uses
the nght or tabs Eitrmap (MNone) SysUtils, Types, Classes, QGraphics, QControls, QFor

’ ’ mEBorderlcons [hiSystefienu @StdCtrls;

BorderSiyle thsSizeahle

Capti Farml

Clanign 540 type

TForml = class (TForm)
All shown private

Project!

public

end;
home.
=& Projectl fhame, var
=5 unm home. F L: TF 1
[Unitt pas home. ormi: ormi;
= Form1 /home.
implementation
Fven e -
“ »
11 Maodified Insert \CodeﬁDiagram/’

{ Private declarations }

{ Public declarations }

To dock a window, click its title bar and drag it over the other window. When the
drag outline narrows into a rectangle and it snaps into a corner, release the mouse.
The two windows snap together.You can also dock tools to form tabbed windows.

A unitt I
Frofect | unit Unitl;
il Pain

interface

‘momers

= 8 unit muers| - uses
) unit pas mders SysUtils, Types, Classes, QGraphics, QControls,
B Fomt ders gstdctrls;

type

To get docked windows that are
tabbed, release the mouse before
the drag outline snaps to the other
window’s corner.

P

QForms, gpDia

TForml = class (TForm)
private 7
{ Private declarations }
public
{ Public declarations }
end;
B Unitl pas =] 3
4 unitt |
var Profect Manager | objctInspectr
Forml: TForml; - unit Unitl; =
G
. . New
implementation interface
Pain
« o ;:nme:s:awnm luses
ome/shavnm
T 1 [Modiied [inset \Cou .‘;‘ngu nomeratam SysUtils, Types, Classes, QGraphics, QControls, QForms
) unitt pas fhome/shavmm Qstdctrls;
Il Fom1 /home/shawnm
type
TForml = class (TForm)
private [~
{ Private declarations }
public
{ Public declarations }
end;
var
Forml: TForml;
implementation
At .
5 21 |Modfied [insert \Code fDiagram /

To undock a window, double-click its grabber or tab, or click and drag the tab

outside of the docking area.

4-4 Quick Start

Customizing the Component palette
To turn off automatic docking, either press the Ctrl key while moving windows

around the screen, or choose Tools | Environment Options, click the Preferences page,
and uncheck the Auto drag docking check box.

For more information...
See “docking” in the online Help index.

Saving desktop layouts

You can customize and save your desktop layout. The Desktops toolbar in the IDE
includes a pick list of the available desktop layouts and two icons to make it easy to
customize the desktop.

———=—— Save current
|My desktop j =) desktop
Named desktop Set debug
settings are listed here. desktop

Arrange the desktop as you want, including displaying, sizing, and docking
particular windows.

On the Desktops toolbar, click the Save current desktop icon or choose
View | Desktops | Save Desktop, and enter a name for your new layout.

[SaveDesktop M|

Save Desktop Ll Enter a name for the desktop layout
Save curtent deskiap as you want to save and click OK.
iy ciesitos =

For more information...
See “desktop layout” in the online Help index.

Customizing the Component palette

In its default configuration, the Component palette displays many useful CLX objects
organized functionally onto tabbed pages. You can customize the Component palette
by:

Hiding or rearranging components.

Adding, removing, rearranging, or renaming pages.

Creating component templates and adding them to the palette.
Installing new components.

Customizing the desktop 4-5

Customizing the Component palette

Arranging the Component palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use
the Palette Properties dialog box. You can open this dialog box in several ways:

¢ Choose Component | Configure Palette.
* Choose Tools | Environment Options and click the Palette tab.
¢ Right-click the Component palette and choose Properties.

Palette Properties [_1x]
Palene}
Pages: Cotponents:
Standard Neme Package
Additional
Common Controls
System —
Dialogs E[| TMainMenu dclstd sa6
Data Access =
Data Cantrals Sk | TPopuphenu delste sa i
dbExpress
Internet A | TLabel delsid 0.6 You can rearrange the palette
indy Clients
e Sereers [T | Tesi delstas0.0 and add new pages.
Indy Misc =
Indy ntercepts =l ema oelst. 306
Indy VO Hanalers Lot]| TButon delstd 50 B
webSnap
E’lﬁ]‘jse“’i”s B | TcheckBox dolstd.s06
@ | TRadioBution dclstd s0.8 B
Add, Delete ‘ Rename. ‘ ‘ Move Down |
oK | Cancel ‘ Help ‘

For more information...
Click the Help button in the Palette Properties dialog box.

Creating component templates

Component templates are groups of components that you add to a form in a single
operation. Templates allow you to configure components on one form, then save
their arrangement, default properties, and event handlers on the Component palette
to reuse on other forms.

To create a component template, simply arrange one or more components on a form
and set their properties in the Object Inspector, and select all of the components by
dragging the mouse over them. Then choose Component | Create Component
Template. When the Component Template Information dialog box opens, select a
name for the template, the palette page on which you want it to appear, and an icon
to represent the template on the palette.

After placing a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

4-6 Quick Start

Customizing the Component palette

.] r—-
.] Bl Component Template Information [_1x]
Component name: [MyTemplate
Palette page Templates -

Palette lcon: Lo] Change.
OK. Cancel ‘ Help ‘

For more information...
See “templates, component” in the online Help index.

Installing component packages

Whether you write custom components or obtain them from a vendor, the
components must be compiled into a package before you can install them on the
Component palette.

A package is a special shared object containing code that can be shared among Kylix
applications, the IDE, or both. Runtime packages provide functionality when a user
runs an application. Design-time packages are used to install components in the IDE.
Kylix packages have a .bpl extension.

If a third-party vendor’s components are already compiled into a package, either
follow the vendor’s instructions or choose Component | Install Packages.

_ Project Options for Project] [_1x]
Packages }

Design packages

tiponerts These components come preinstalled

: Sr\n dbExpress Database Companents in Kylix. When you install new
orland Editor Emacs Enhancements N
] Borland Infernet Componats components from third-party vendors,
] Borland InternetExpress Components . h T
] Boland Markup Language izaros 5 their package appears in this list.
homedshawnm/cartez/bindcldbdesign so 6.3 Click Components to see what
A Remove | components | components the package contains.
Runtime packages
™ Build with runtime packages
I Default oK Cancel Help

For more information...
See “installing components” and “packages” in the online Help index.

Customizing the desktop 4-7

Setting project options

Using frames

A frame (TFrame), like a form, is a container for components that you want to reuse.
A frame is more like a customized component than a form. Frames can be saved on
the Component palette for easy reuse and they can be nested within forms, other
frames, or other container objects. After a frame is created and saved, it continues to
function as a unit and to inherit changes from the components (including other
frames) it contains. When a frame is embedded in another frame or form, it continues
to inherit changes made to the frame from which it derives.

To open a new frame, choose File | New | Frame.

femez BEE You can add whatever visual
or nonvisual components

Cait you need to the frame. A new
unit is automatically added to
Eutton1 the Code Editor.
Buttonz

For more information...
See “frames” and “TFrame” in the Help index.

Setting project options

If you need to manage project directories and to specify form, application, compiler,
and linker options for your project, choose Project | Options. When you make
changes in the Project Options dialog box, your changes affect only the current
project; but you can also save your selections as the default settings for new projects.

To save your selections as the default settings for all new projects, in the lower-left
corner of the Project Options dialog box, check Default. Checking Default writes the
current settings from the dialog box to the options file.

For more information...
See “Project Options dialog box” in the online Help index.

4-8 Quick Start

Specifying project and form templates as the default

Specifying project and form templates as the default

When you choose File | New | Application, Kylix creates a standard new application
with an empty form, unless you specify a project template as your default project. You
can save your own project as a template in the Object Repository on the Projects page
by choosing Project | Add to Repository. Or you can choose from one of Kylix’s
existing project templates from the Object Repository (see “The Object Repository”
on page 2-5).

To specify a project template as the default, choose Tools | Repository. In the Object
Repository dialog box, under Pages, select Projects. If you've saved a project as a
template on the Projects page, it appears in the Objects list. Select the template name,
check New Project, and click OK.

Object Repository [_]

Pages Objects The Object Repository’s pages
(101 appicaton contain project templates only,
aad Page form templates only, or a
combination of both.

To set a project template as the
default, select an item in the
Objects list and check New

Edit Object Pro]’ect.

BelH @l To set a form template as the
default, select an item in the
R Objects list and check New Form
¥ ew Project |
- r or Main Form.

Data Modules

el Documents
onznap Delete Page

Webservices
[Obiect Repository] Rename Page.

R

i

of Cancel | Help ‘

Once you've specified a project template as the default, Kylix opens it automatically
whenever you choose File | New | Application.

In the same way that you specify a default project, you can specify a default new form
and a default main form from a list of existing form templates in the Object Repository.
The default new form is the form created when you choose File | New | Form to add
an additional form to an open project. The default main form is the form created
when you open a new application. If you haven’t specified a default form, Kylix uses
a blank form.

You can override your default project or form temporarily by choosing File | New |
Other and selecting a different template from the New Items dialog box.

For more information...
See “templates, adding to Object Repository,” “projects, specifying default,” and
“forms, specifying default” in the online Help index.

” i

Adding templates to the Object Repository

You can add your own objects to the Object Repository as templates to reuse and share
with other developers over a network. Reusing objects lets you build families of

Customizing the desktop 4-9

Setting tool preferences

applications with common user interfaces and functionality that reduces
development time and improves quality.

For example, to add a project to the Repository as a template, first save the project
and choose Project| Add To Repository. Complete the Add to Repository dialog box.

Add to Repository [_[x]
Title:
\ Enter a title, description,
Description and author. In the Page list
\ box, choose Projects so that
Page Author your project will appear on
\ BN the Repository’s Projects
e Select an icon io represent this project: tabbed page.
Browse...

(313 Cancel ‘ Help ‘

The next time you open the New Items dialog box, your project template will appear
on the Projects page (or the page to which you had saved it). To make your template
the default every time you open Kylix, see “Specifying project and form templates as
the default” on page 4-9.

For more information...
See “templates, adding to Object Repository” in the online Help index.

Setting tool preferences

You can control many aspects of the appearance and behavior of the IDE, such as the
Form Designer, Object Inspector, and Code Explorer. These settings affect not just the
current project, but projects that you open and compile later. To change global IDE
settings for all projects, choose Tools | Environment Options.

For more information...

See “Environment Options dialog box” in the online Help index, or click the Help
button on any page in the Environment Options dialog box.

Customizing the Form Designer

The Designer page of the Tools | Environment Options dialog box has settings that
affect the Form Designer. For example, you can enable or disable the “snap to grid”
feature, which aligns components with the nearest grid line; you can also display or
hide the names, or captions, of nonvisual components you place on your form.

For more information...

In the Environment Options dialog box, click the Designer page and click the Help
button.

4-10 Quick Start

Setting tool preferences

Customizing the Code Editor

One tool you may want to customize right away is the Code Editor. Several pages in
the Tools | Editor Options dialog box have settings for how you edit your code. For
example, you can choose keystroke mappings, fonts, margin widths, colors, syntax
highlighting, tabs, and indentation styles.

You can also configure the Code Insight tools that you can use within the editor on
the Code Insight page of Editor Options. To learn about these tools, see “Code
Insight” on page 2-7.

For more information...

In the Editor Options dialog box, click the Help button on the General, Display, Key
Mappings, Color, and Code Insight pages.

Customizing the Code Explorer

When you start the Delphi IDE, the Code Explorer (described in “ The Code
Explorer” on page 2-11) opens automatically. If you don’t want Code Explorer to
open automatically, choose Tools | Environment Options, click the Explorer tab, and
uncheck Automatically show Explorer.

You can change the way the Code Explorer’s contents are grouped within the Code
Explorer by right-clicking in the Code Explorer, choosing Properties, and, under
Explorer categories, checking and unchecking the check boxes. If a category is
checked, elements in that category are grouped under a single node. If a category is
unchecked, each element in that category is displayed independently on the
diagram'’s trunk. For example, if you uncheck the Published category, the Published
folder disappears but not the items in it.

Environment Options [_ =]
Preferences | Designer | Object Inspector | Palete |
Library Blorer | EnvionmentVariables | Intemet |
Explorer options Explorer cateqories:
¥ Automatically show Explarer v'i Private
¥ Highlight incomplete class items : ::l':lf:'e"
| th C d E | ™ Show declaration syntax vl3 Published
v Fi .
n the Code Explorer, you Expora soring 212 Properes To display the folder for
can sort all source elements & Hghogstoa 25 iy each type of source
alphabetically or in the order C soue g it | tin the Cod
in which they are declared Slasscanpston oo ol glement In tne Looe
in the source file ¥ Einish incopiete properes 713 Vit Constr Explorer, check an
: - vl Explorer category.
& Classes (" Units Globals 2 ;‘ Inherited
*1 Infrocuced
Browser scope
& Project symbols only
€ All symbols
Tok Cancel Help

For more information...
See “Code Explorer, Environment options” in the online Help index.

Customizing the desktop 4-11

4-12 Quick Start

A

adding items to Object Repository 2-5
applications

compiling and debugging 3-6

creating 3-1

database 3-9

deploying 3-8

internationalizing 3-8

Web server 3-8

Browser 2-12

C

character sets, extended 3-8
Class Completion 2-8, 4-11
ClassExplorer 2-11
CLX 2-4
code
event handlers 3-5
help in writing 2-7 to 2-8
viewing and editing 2-7 to 2-12
writing 3-5
code completion 2-7
Code Editor
combining with other windows 4-3
customizing 4-11
using 2-7 to 2-9
Code editor
customizing 4-11
Code Explorer
customizing 4-11
using 2-11
Code Parameters 2-7
Code Templates 2-8
compiling applications 3-6
Component palette
adding custom components 3-10
adding pages 4-6
customizing 4-5 to 4-7
defined 2-4
using 3-2
component templates, creating 4-6
components
adding to a form 3-2
adding to Component palette 4-6
arranging on Component palette 4-6
creating custom 3-10
customizing 3-10, 4-6

Index

installing 3-10, 4-7

setting properties 3-3
context menus, accessing 2-3
controls, adding to a form 3-2
customizing

Code Editor 4-11

Code Explorer 4-11

Component palette 2-3

Form Designer 4-10

D

data modules
adding 3-2
database applications, creating 3-9
dbExpress 3-9
debugging programs 3-6 to 3-7
default
project and form templates 4-9
project options 4-8
deploying applications 3-8
desktop
organizing 4-1 to 4-5
saving layouts 4-5
developer support 1-6
.dfm files 2-10
Diagram page 2-9
docking windows 4-3 to 4-5

E

Editor Options dialog box 2-8, 4-11
Environment Options dialog box 2-8, 4-10
event handlers, defined 3-5

F

files, form 2-10
Form Designer, customizing 4-10
form files, viewing code 2-10
forms
adding components to 3-2
main 4-9
specifying as default 4-9
frames 4-8

G

global symbols 2-12

H

Help, F1 1-4

Index

I1

I P

IDE packages 4-7

defined 1-1 parent-child relationships 2-5

organizing 4-1 programs

tour of 2-1 compiling and debugging 3-6
IMEs 3-8 deploying 3-8
information, finding 1-3 internationalizing 3-8
input method editors 3-8 Web server applications 3-8
installing custom components 4-7 Project Browser 2-12 to 2-13
integrated debugger 3-7 project groups 2-12
integrated development environment (IDE) Project Manager 2-12

tour of 2-1 Project Options dialog box 4-8
internationalizing applications 3-8 project templates 4-9

projects
K adding items to 2-5
- creating 3-1
keystroke mappings 4-11 managing 2-12
setting options as default 4-8

L specifying as default 4-9

types 3-8 to 3-10
properties, setting 3-3

M R

main form, defined 4-9

localizing applications 3-8

right-click menus 2-3

menus : 23
context 2-3 running an application 3-
in C++Builder 2-3 S

organizing 2-3,4-1

saving desktop layouts 4-5
N setting properties 3-3
source code
help in writing 2-7 to 2-8
SQL database servers 3-9
support services 1-6

new features 1-3
new form, defined 4-9
New Items dialog box
saving templates to 4-9, 4-10
using 2-5 T
newsgroups 1-6

tabbed windows, docking 4-4

O technical support 1-6
; templates

Object Inspector . . .
]definec{:) 24 adding to Object Repository 4-9

specifying as default 4-9
to-do lists 2-13
tool windows, docking 4-3

inline component references 3-4
using 3-3 to 3-4

Object Repository
. toolbars 2-3
gi;iﬁ?e%tezr_ré?éa_tles to 4-9 adding and deleting components from 4-2

organizing 4-1
Tooltip Expression Evaluation 2-7
Tooltip Symbol Insight 2-8
Typographic conventions 1-6
typographic conventions 1-6

using 2-5 to 2-6
Object TreeView 2-5
objects, defined 3-6
online Help files 1-4
options, setting for projects 4-8

I-2 Quick Start

U

user interfaces, creating 3-2

w

Web server applications, creating 3-8
Web site, Borland 1-6

WebSnap, introduction 3-8
windows, combining 4-3
Writing code 3-5

X

xfm files 2-10

Index

I3

I-4 Quick Start

	Quick Start
	Contents
	Introduction
	What is Kylix?
	Registering Kylix
	Finding information
	Online Help
	F1 Help

	Developer support services and Web site
	Typographic conventions

	A tour of the environment
	Starting Kylix
	The IDE
	The menus and toolbars
	The Component Palette, Form Designer, and Object Inspector
	The Object TreeView
	The Object Repository
	The Code Editor
	Class Completion for Delphi
	The Diagram page
	Viewing form code

	�The Code Explorer
	The Project Manager
	�The Project Browser
	To-do lists

	Programming with Kylix
	Creating a project
	Adding data modules

	Building the user interface
	Placing components on a form
	Setting component properties

	Writing code
	Writing event handlers
	Using the CLX libraries

	Compiling and debugging projects
	Deploying applications
	Internationalizing applications
	Types of projects
	Web server applications
	Database applications
	Custom components
	Shared objects

	Customizing the desktop
	Organizing your work area
	Arranging menus and toolbars
	Docking tool windows
	Saving desktop layouts

	Customizing the Component palette
	Arranging the Component palette
	Creating component templates
	Installing component packages

	Setting project options
	Specifying project and form templates as the default
	Adding templates to the Object Repository

	Setting tool preferences
	Customizing the Form Designer
	Customizing the Code Editor
	Customizing the Code Explorer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

