

MVE

Modular Visualisation Environment

Programming documentation

version 1.01

Centre of Computer Graphics
and Data Visualisation

University of West Bohemia
Univerzitní 8, Box 314, 30614 Plzeň

Czech Republic

1

Centre of Computer Graphics and Data Visualisation
http://herakles.zcu.cz

Staff

Prof. ing. Václav Skala, CSc.
Doc. dr. ing. Ivana Kolingerová
Ing. Jiří Dobrý
Ing. Martin Franc
Ing. Jan Hrádek
Ing. Marek Krejza
Ing. Martin Kuchař
Ing. Pavel Maur
Ing. Ladislav Pe�ička
Ing. Michal Rou�al
Ing. Tomá� Jirka
Ing. Radek Sviták
Martin Čermák
Jindřich Suja

February 25, 2000

http://herakles.zcu.cz/

 2

1. Table of contents

1. How to create new MVE modules .. 3
2. What is this all about... 3
3. How MVE works .. 4
4. Module creation... 5

4.1. Function used to get information about modules stored in DLL 5
4.2. Module functions... 6

5. Create module with MS VC++ 6.0 ... 9
5.1. Create project .. 9
5.2. How to get information about modules in the DLL.. 10
5.3. Main module functions.. 11
5.4. Usage of modules .. 12

6. Create module with Delphi v 4.0 .. 13
6.1. Create project .. 13
6.2. How to get information about modules in the DLL.. 13

7. Create module with Borland C++Builder 3.0 ... 16
7.1. Create project .. 16
7.2. How to get information about modules in the DLL.. 16

8. Description of used data structures ... 18
8.1. Data structures used to return information about modules in DLLs. 18
8.2. Structures for data encapsulation (for data transport between modules) 20

2. How to create new MVE modules

3. What is this all about

 This system is provided to allow user to visually design schemes from
computing/loading/rendering modules to create own �application�. Those applications
are also executed by this system.
 Module means �object� which can from his input data and some setup produce
some output data. Some modules can have no input (loading from drive for example) and
of course some modules can have no output (modules for data visualization �renderers�).
On figure 1.1 we can see an example of a most common module structure.

 The module connecting proce
of one module to inputs of another m
(description is not included in this do

Figure 1.1

p

...
Setu
1
Input 1
 2
Input 2

Modul

...
Input N
3

ss means that the user i
odule. For such process
cumentation.

State
Output
Output
Output M
nteractively connects outputs
 a design system is provided

This applicatio
between these module
schemes, where is that

Main aim of t
and eliminate redunda

For example, i
necessary to impleme
defined data structures
can be added the schem
them together with yo

4. How MVE w

System is usin
be created with all pro
Borland Delphi or Bor

Every module
+ suffix). Those func
ability of module. One
the modules are repres

Figure 1.2

After the execution of thi
one with the original pict

Load picture
tr

Filtration Inverse Fourier
transformation
Fourier
ansformatio
4

n can execute designed schemes of modules and transfer data
s. There is also implemented a mechanism for parallel execution of
 possible.
his application is to make some standard data formats (structures)
nt and no important work on chosen problem (algorithm).
n case of picture filtration (as you can see on figure 1.2), it is not
nt always-new part for loading or rendering pictures. When some
 and programming structure will be used, already existing modules
e (if they are solving problem we need) and the editor can connect

ur own module.

orks

g DLL libraries under MS Windows environment. Modules can
gramming languages, which enable creating DLLs, like MS VC++,
land C++ Builder.
is represented by the set of functions of given name (module name
tions are included in one DLL and represents complete function
 DLL library can of course contain more modules. For internal use
ented in system as objects, see figure 1.3.

s scheme, two windows should appear on the screen,
ure and one with the filtered picture.

Rendering Rendering

 5

This solution has one problem, which is that all memory that is allocated by
functions from DLL library must be deallocated by functions from the same DLL library.
This is involving necessity that you must write deallocating routines for all data
structures which are allocated by your module and returned as outputs of this module.

5. Module creation

You have to create in your programming environment empty DLL project as first.
All functions have their names given by name of module and by name of particular type
of function. Functions for memory deallocation are necessary because of memory
management mentioned above. Also is necessary to set structure member alignment to �1
BYTE� and calling convention to �stdcall� for all created DLLs.

In next part will be described all required functions for one module, their
parameters and return values. Lets anticipate that we already have created empty project
and now we need only to add functions.

5.1. Function used to get information about modules stored in DLL

When the empty project is created we have to add functions, which are used to get
information about modules stored in this DLL (number of modules, counts of their inputs
and outputs and data types). This part is mostly theoretical and real data types etc. will be
in sections for given programming languages.

Figure 1.3
 Main program

 DLL library

Module 1 (object)

Module 2 (object)

Module1-Function1
Module1-Function2
�
Module2-Function1
Module2-Function2
�
�

Setup *
MainFunc *
�

Setup *
MainFunc *
�

 6

Pointer to information about modules Get_Modules()
This function is only one in DLL library and is used to give information about contained
modules to system itself.
Return value
 Function return pointer to structure with information about modules in DLL (type of
module, name of module, number of its inputs and outputs etc.)

 Numeric values of existing data types and module types, which have to be set, are
in the following table.

Data types: Module types:
Undefined 0 Loader 1
Points 1 ComputingModule 2
Triangles 2 Saver 3
Tetrahedras 3 Renderer 10
Image 4
Volume 5
Freq 6

On our internet pages (WWW project pages) should be accessible actual versions
of files Types.def and Modules.def with this numbers.

Free_DLL_Descr(pointer to info about modules)
 This function is here to free information data that has been returned by function
Get_Modules().

5.2. Module functions

Now we have a DLL project with registered modules that will be included in this
DLL. You have to add functions, which realize the execution part of module or user setup
of module (file name, some parameters). Each module consists from five obligatory and
one non-obligatory function. Their names are created from name of module and suffixes,
which are declared for function types in header files (MVE_Include.h, or
MVE_Include.pas). There are also parameters and return values of those functions. All
functions must be reentrant to enable parallel execution.

Names of functions consist from module name and suffix, for this part of
documentation is name of module replaced by string ModuleName. Real data types in
function declaration are also replaced by some description.

 7

Pointer to new module setup ModuleName_SETUP_FUNC(
Pointer to old module setup)

This function gives to the user the way, how to set some parameters for the module. This
function can be called in the editor and should display some dialog for this setup.
Pointer to old module setup

Pointer to the data structure with old module setup. This data are read-only, this
pointer is set to NULL if module has no previous setup.

Return value
Function returns pointer to structure with new module setup. There is also member
value with the size of this setup data in the structure (see chapter 8.2). The setup data
must be consistent block of data, it means that there can�t be any others pointers or
references. This is because the setup data are copied during the design of schemes and
are saved together with schemes. When no setup has been done (dialog was ended by
Cancel button for example) you can return NULL.

Pointer to module output data ModuleName_MAIN_MODULE_FUNC(

Pointer to module setup data,
Pointer to module input data,
Module state data)

This is main function of module and it realizes whole execution part of module.
Pointer to module setup data

User setup data returned by previous function ModuleName_SETUP_FUNC. When
module has still no setup data this parameter is NULL.

Pointer to module input data
Data to input of this module can come from other modules, of course only when this
module needs some input data for his work. When module has some input data than
this data are read-only. Only exception is Data_State member (see chapter 7.2).

Module state data
Pointer to pointer, which can be used to point to data with stored module state. This is
just replacement of global pointer in DLL which can�t be used because of parallel
execution. This parameter is here only for iteration modules but in current version are
no iteration modules. We don�t recommend to use this parameter in this version.

Return value
Return value of this module is pointer to data structure containing all outputs of the
module. All data types (their numbers) must be same as are specified in description
data returned by function Get_Modules(). For data structures description see chapters
8.1 and 8.2.

ModuleName_FREE_SETUP_DATA(Pointer to module setup data)
Function for deallocation of data with module setup from ModuleName_SETUP_FUNC.
Pointer to module setup data

Pointer to data to deallocate.
Return value

0 OK, other failed

 8

ModuleName_FREE_DATA(Pointer to module output data)
This function must deallocate all data returned by ModuleName_MAIN_MODULE_FUNC as
output data.
Pointer to module output data

Pointer to data structure with data to free.
Return value

0 OK, other failed.

ModuleName_FREE_STATE(module state)
Function to free state data of module, if used.
Module state

Pointer to pointer to module state data.
Return value

0 OK, other failed.

Pointer to a string ModuleName_HELP_FUNC()
This function returns some base info about module (some simple help for example). This
function is not obligatory.
Return value

�C� String with information (end line chars are 13,10 (\r\n)).

 9

6. Create module with MS VC++ 6.0

6.1. Create project

Lets premise, that you want to create the DLL with two modules, one module for
data loading (loading set of points) and one for some data processing (triangle mesh
generating for example). These modules can be named �PointLoader�, and
�Triangulation�

1. File � New
2. Projects � �MFC AppWizard (DLL)“ (or �Win32 Dynamic-Link Library� when you

don�t want use any MFC classes) � Project Name � �TestModules�
3. MFC Extension DLL (using shared MFC DLL) or Regular DLL using shared

(statical) MFC DLL

Copy the MVE_Include.h file that contains all definitions and some macros to the
directory with the project and add this file to the project.

Add those lines:

StdAfx.h
...
#include “MVE_Include.h”
...

Global setting changes:

Set structure member alignment to 1 byte and calling convention to __stdcall.

1. Project � Settings
2. Setting for: All Configurations
3. C/C++ - Category: Code Generation
4. Calling convention: __stdcall
5. Struct member alignment: 1 Byte, or #pragma pack(1)

 10

6.2. How to get information about modules in the DLL

Small example for our DLL library:

TestModules.cpp
...
DLL_DESCR* __stdcall Get_Modules(void)
{
MODULE_DEF_INIT

ADD_MODULE(1," PointLoader","This module loads set of modules")
ADD_OUTPUT(1,"Loaded points")

ADD_MODULE(2," Triangulation","Triangulation on set of points")
ADD_OUTPUT(2,"Triangle mesh")
ADD_INPUT(1," Points for triangulation ")

MODULE_DEF_DONE
}

int __stdcall Free_DLL_Descr(DLL_DESCR *What)
{
FREE_DLL_INFO(What) // or write deallocation yourself
return 0;
}
...

Macros MODULE_DEF_INIT, ADD_MODULE, ADD_INPUT, ADD_OUTPUT,
MODULE_DEF_DONE and FREE_DLL_INFO are defined only for C programming
language. For Pascal you have to allocate, set members and also deallocate all data
structures. Functionality of the macros is noticeable from example above.

Parameters of macros:

ADD_MODULE(Module type, Module description)
 Module type - number representing module type
 Module description - string describing this module

ADD_OUTPUT(Data type, IO Description), ADD_INPUT(...)
 Data type - number representing data type for this input/output
 IO Description - string describing this input/output

The values for parameters �Module type and Data type� are given (see chapter
3.1) and by these values the checking in the editor is done.

 11

Add these lines to TestModules.def file, which is used for defining exported functions.

TestModules.def
...
Get_Modules @1
Free_DLL_Descr @2

6.3. Main module functions

In this case it will be following functions:

For module PointLoader:
 PointLoader_SETUP_FUNC
 PointLoader_MAIN_MODULE_FUNC
 PointLoader_FREE_SETUP_DATA
 PointLoader_FREE_DATA
 PointLoader_FREE_STATE
 PointLoader_HELP_FUNC

For module Triangulation:
 Triangulation_SETUP_FUNC
 Triangulation_MAIN_MODULE_FUNC
 Triangulation_FREE_SETUP_DATA
 Triangulation_FREE_DATA
 Triangulation_FREE_STATE

Triangulation_ HELP_FUNC

Example of functions headers for module PointLoader:

TestModules.cpp
CUSTOM_MODULE_DATA* __stdcall PointLoader_SETUP_FUNC(
 CUSTOM_MODULE_DATA* oldSetup)
DATA_DESCRIPTORS* __stdcall PointLoader_MAIN_MODULE_FUNC(

CUSTOM_MODULE_DATA* setupData,
DATA_DESCRIPTORS* inData,

 void** stateData)
int __stdcall PointLoader_FREE_SETUP_DATA(CUSTOM_MODULE_DATA* oldSetup)
int __stdcall PointLoader_FREE_DATA(DATA_DESCRIPTORS* oldData)
int __stdcall PointLoader_FREE_STATE(void* oldState)
char* __stdcall PointLoader_HELP_FUNC(void)

 12

At the end add those lines for function export to TestModules.def file.

TestModules.def
...
PointLoader_SETUP_FUNC @3
PointLoader_MAIN_MODULE_FUNC @4
PointLoader_FREE_SETUP_DATA @5
PointLoader_FREE_DATA @6
PointLoader_FREE_STATE @7
PointLoader_HELP_FUNC @8
Triangulation_SETUP_FUNC @9
Triangulation_MAIN_MODULE_FUNC @10
Triangulation_FREE_SETUP_DATA @11
Triangulation_FREE_DATA @12
Triangulation_FREE_STATE @13
Triangulation_ HELP_FUNC @14

6.4. Usage of modules

After build of the DLL you have TestModules.DLL containing 2 modules. It
should export all functions that were specified in TestModules.def file. This DLL is easy
to add to the editor, where you can use your modules for designing new schemes.

 13

7. Create module with Delphi v 4.0

Here we will describe only specific parts for Delphi.

7.1. Create project

To create empty DLL project choose:

1. File � New...
2. New - DLL

Copy the file MVE_Include.pas, to directory with project and add them to project.

Because this DLL needs to work with NULL terminated strings you must add also
ShareMem to units. When you want to use DLL with modules from Delphi you must
copy DELPHIMM.DLL with it.

TestModules.dpr
...
uses ShareMem, ... , MVE_Include, ...
...

Project settings changes:

Set record fields align to 1 byte.

1. Project � Options...
2. Compiler � Code Generation � uncheck Aligned record fields

7.2. How to get information about modules in the DLL

You have to add all functions described in chapters 3.1 and 3.2 to this DLL. All
those functions must be of same type as are described in MVE_Include.pas. It is also
important to export all functions with �Calling convention“ stdcall (see file
MVE_Include.pas).

 14

Example of function headers for the module PointLoader:

TestModules.dpr
function Get_Modules: PDLL_DESCR; stdcall;
function Free_DLL_Descr(mDescr: PDLL_DESCR): Integer; stdcall;

function PointLoader_SETUP_FUNC (
 What : PCUSTOM_MODULE_DATA) : PCUSTOM_MODULE_DATA; stdcall;
function PointLoader_MAIN_MODULE_FUNC (
 mData : PCUSTOM_MODULE_DATA;
 mDataDescr : PDATA_DESCRIPTORS;
 mState : Pointer) : PDATA_DESCRIPTORS; stdcall;
function PointLoader_FREE_SETUP_DATA (
 What : PCUSTOM_MODULE_DATA) : Integer; stdcall;
function PointLoader_FREE_DATA (
 What : PDATA_DESCRIPTORS) : Integer; stdcall;
function PointLoader_FREE_STATE (What : pointer) : Integer; stdcall;
function PointLoader_HELP_FUNC () : PChar; stdcall;

To export functions out from the DLL use exports command.

TestModules.dpr
...
exports
 Get_Modules index 1,
 Free_DLL_Descr index 2,

 PointLoader_MAIN_MODULE_FUNC index 3,
 PointLoader_SETUP_FUNC index 4,
 PointLoader_FREE_DATA index 5,
 PointLoader_FREE_SETUP_DATA index 6,
 PointLoader_FREE_STATE index 7,
PointLoader_HELP_FUNC index 8,

 Triangulation_MAIN_MODULE_FUNC index 9,
 Triangulation_SETUP_FUNC index 10,
 Triangulation_FREE_DATA index 11,
 Triangulation_FREE_SETUP_DATA index 12,
 Triangulation_FREE_STATE index 13;
Triangulation_ HELP_FUNC index 14;

Begin
....
end.

 15

When using Delphi you can�t use macros in functions Get_Modules and

Free_DLL_Descr, so you have to set all data structures yourself. Meaning of these
functions is same as in chapters 4.2 a 4.3.

 Data structures are same (binary) as was described and only difference is in the
names of the data types in C and Pascal. For strings is good to use PChar type in Delphi.

Compatible data types Delphi vs. C (MS VC++):

Delphi C
Shortint Char
Smallint Short
Longint Long
Byte Unsigned char
Word Unsigned short
Integer Int
Cardinal Unsigned long
Single Float
Double Double
Pointer Void*
Char Char

 16

8. Create module with Borland C++Builder 3.0

8.1. Create project

Only two steps are different in this case from VC++ section:

1. File � New...
2. New - DLL

Copy the MVE_Include.h file to the directory with project.

Add this line:

TestModules.cpp
...
#include “MVE_Include.h”
...

Problems with data alignment in VCL library can be solved in this way:
Every inclusion of VCL headers must be surrounded by pragma tags.

 #pragma option -a4 // alignment 4 bytes
#include <vcl.h>
#pragma option -a1 // alignment 1 byte

Project settings changes:

Set structures member alignment to 1 byte, and __stdcall as standard �Calling
convention� for all functions in project.

3. Project � Options
4. Advanced Compiler
5. Data alignment: Byte
6. Calling convention: Standard call

8.2. How to get information about modules in the DLL

Add to project all functions described in chapters 3.1 and 3.2. All this functions
should have �Calling convention“ stdcall (see file MVE_Include.h).

 17

Example of function headers for module PointLoader:

TestModules.cpp
DLL_DESCR * __export __stdcall Get_Modules(void)
int __export __stdcall Free_DLL_Descr(DLL_DESCR *What)

CUSTOM_MODULE_DATA * __export __stdcall PointLoader_SETUP_FUNC(
 CUSTOM_MODULE_DATA *What)
DATA_DESCRIPTORS * __export __stdcall PointLoader_MAIN_MODULE_FUNC(
 CUSTOM_MODULE_DATA *CustomData,
 DATA_DESCRIPTORS *Descriptors,
 void **State)
int __export __stdcall PointLoader_FREE_SETUP_DATA(
 CUSTOM_MODULE_DATA *What)
int __export __stdcall PointLoader_FREE_DATA(DATA_DESCRIPTORS *Descriptors)
int __export __stdcall PointLoader_FREE_STATE(void *)
char*__export __stdcall PointLoader_HELP_FUNC(void)

As you can see on example, export of functions is done by __export directive.

 18

9. Description of used data structures

9.1. Data structures used to return information about modules in
DLLs.

These structures are used by Get_Modules function to return information about

the modules contained in one DLL library. When the macros for C language are used,
there is no need to read following lines. But when you are using Delphi than, you have to
set these structures yourself.

Structure describing one input/output of module.

C Pascal
typedef struct {
 int IO_Type;
 char *Descr;
} IO_CONN;

PIO_CONN = ^IO_CONN;
IO_CONN = record
 IO_Type : Integer;
 Descr : PChar;
end;

• IO_Type - Number of the data type for input/output
• Descr - Short description shown by tooltip in editor

Structure describing all inputs/outputs of module

C Pascal
typedef struct {
 int IO_Num;

IO_CONN *IO_Types;
} IO_DESCR;

AIO_CONN = array[0..1] of IO_CONN;
PAIO_CONN = ^AIO_CONN;

PIO_DESCR = ^IO_DESCR;
IO_DESCR = record
 IO_Num : Integer;
 IO_Types : PAIO_CONN;
end;

• IO_Types - Array (pointer to first item) of the structures IO_CONN
• IO_Num - Item count of the array IO_Types

 19

Structure describing one module

C Pascal
typedef struct {
 int Module_Type;
 char *Module_Name;
 char *Module_Descr;
 IO_DESCR *Inputs;
 IO_DESCR *Outputs;
} MODULE_DESCR;

PMODULE_DESCR = ^MODULE_DESCR;
MODULE_DESCR = record
 Module_Type : Integer;
 Module_Name : PChar;
 Module_Descr : PChar;
 Inputs : PIO_DESCR;
 Outputs : PIO_DESCR;
end;

• Module_Type - Module type (number) (see chapter 4.2).
• Module_Name - Module name (Used as prefix for names of module functions)
• Module_Descr - Short description of module (used as tooltip in editor)
• Inputs - Pointer to the structure IO_DESCR with info about inputs
• Outputs - Pointer to the structure IO_DESCR with info about outputs

Structure describing all modules in one DLL

C Pascal
typedef struct {
 int Num_Descr;
 MODULE_DESCR *Descriptors;
} DLL_DESCR;

AMODULE_DESCR = array[0..1] of MODULE_DESCR;
PAMODULE_DESCR = ^AMODULE_DESCR;

PDLL_DESCR = ^DLL_DESCR;
DLL_DESCR = record
 Num_Descr : Integer;
 Descriptors : PAMODULE_DESCR;
end;

• Descriptors - Array (pointer to first item) of structures MODULE_DESCR
• Num_Descr - Item count in Descriptors array

Same data structures are used for Delphi with only small difference in type names.

 20

9.2. Structures for data encapsulation (for data transport between
modules)

For data transfer we have to �package� all data to standard data structures.

Structure for one data input/

C Pascal
typedef struct {
 int Data_Type;
 void *Data;
 unsigned long Data_Length;
 void *Header;
 unsigned long Header_Length;
 int Data_State;
} DATA_DESCR;

PDATA_DESCR = ^DATA_DESCR;
DATA_DESCR = record
 Data_Type : Integer;
 Data : Pointer;
 Data_Length : LongInt;
 Header : Pointer;
 Header_Length : LongInt;
 Data_State : Integer;
end;

• Data_Type - Type of contained data (see chapter 3.1) � required
• Data - Pointer to data itself � required
• Data_Length - Data size (in bytes) � only internal information � not required
• Header - Pointer to data header (doesn�t need to be used when all included

in data, than set to NULL) � not required
• Header_Length - Header data size (in bytes) � only internal information � not

required
• Data_State - Current state of the data (Before the module execution is this

value set to 1 for all inputs/outputs, when module doesn�t need input data anymore he
(his programmer) must set this value to 0 for all data inputs) � required

Data states:

0 � Data are not used (are ready to deallocate)
1 � Data are still in use (can�t be deallocate)
2 � Data can be updated (only for renderer, not use in other case)
3 � Just updating data (only for renderer, not use in other case)

 21

Structure describing all input/output data for module

C Pascal
typedef struct {
 int Num_Descr;
 DATA_DESCR *Descriptors;
} DATA_DESCRIPTORS;

ADATA_DESCR = array[0..1] of DATA_DESCR;
PADATA_DESCR = ^ADATA_DESCR;

PDATA_DESCRIPTORS = ^DATA_DESCRIPTORS;
DATA_DESCRIPTORS = record
 Num_Descr : Integer;
 Descriptors : PADATA_DESCR;
end;

• Descriptors - Array of structures DATA_DESCR (representing all input/output

data for module)
• Num_Descr - Item count in Descriptors array

Structure for user setup of module

C Pascal
typedef struct {
 void *Data;
 unsigned long Data_Length;
} CUSTOM_MODULE_DATA;

PCUSTOM_MODULE_DATA = ^CUSTOM_MODULE_DATA;
CUSTOM_MODULE_DATA = record
 Data : Pointer;
 Data_Length : LongInt;
end;

• Data - Pointer to the data structure with user-setup of the module. This

data structure must be consistent block of data (structure on which points Data
pointer can�t contain any other pointers, if string than only static ones) � required

• Data_Length - Exact size of data block (structure) on which is pointing Data
pointer � required

Remarks and suggestions send to rousal@kiv.zcu.cz

mailto:rousal@kiv.zcu.cz

