

MVE

Modular Visualisation Environment

User documentation

version 1.04

Note that this is still BETA version of manual.
To get the latest copy of this manual visit

http://herakles.zcu.cz/research.php

Centre of Computer Graphics
and Data Visualisation

University of West Bohemia
Univerzitní 8, Box 314, 30614 Plzeň

Czech Republic

Centre of Computer Graphics and Data Visualisation
http://herakles.zcu.cz

Staff

Prof. ing. Václav Skala, CSc.
Doc. dr. ing. Ivana Kolingerová
Ing. Jiří Dobrý
Ing. Martin Franc
Ing. Jan Hrádek
Ing. Marek Krejza
Ing. Martin Kuchař
Ing. Pavel Maur
Ing. Ladislav Pe�ička
Ing. Michal Rou�al
Ing. Tomá� Jirka
Ing. Radek Sviták
Martin Čermák
Jindřich Suja

July 25, 2001

http://herakles.zcu.cz/

 1

1. Table of contents

1. Table of contents ..1
2. MVE system version 1.3 ..3

2.1. Installation and start ...3
2.2. How to add new modules into MVE..3
2.3. How to design a schema ..4
2.4. Designed schemes loading and saving...4
2.5. Connecting the modules...5
2.6. User set up of modules...5
2.7. Module schemes execution ..6
2.8. Editor and module options ...7
2.9. Other module functions..7

3. Modules overview ..8
3.1. Table of modules with a short description...8
3.2. Table of modules according to the input and output..10

4. Input/Output modules ...12
4.1. PointLoader & PointLoaderMulti ..12
4.2. PointGenerator & PointGeneratorMulti...12
4.3. TriangleLoader...12
4.4. PureSTLLoader..13
4.5. MKP2Tetra ..13
4.6. VolumeLoader ...14
4.7. LatticeLoader ...14
4.8. Polyg_editor...14
4.9. LatticeSaver ...15

5. Renderers ..15
5.1. Rotation..15
5.2. Renderer ...18
5.3. SlicesViewer ..18
5.4. VolumeSlicer ...19

6. Computing modules..21
6.1. DTlib ..21
6.2. DT3Dlib ...22
6.3. TetraGenerator & TetraGeneratorMulti...23
6.4. CreateMesh ..24
6.5. MeshChecker ...25
6.6. Decimation...26
6.7. SlicesMaker..27
6.8. SurfReconstr ..29
6.9. Iso & IsoMulti..29
6.10. TetraIso & TetraIsoMulti ...32
6.11. Tetra2Triangle & Tetra2TriangleMulti..32
6.12. DT3Auxlib ...32
6.13. IsoExtractor..32
6.14. Volume2Lattice..33
6.15. Lattice2Volume..33
6.16. ForwardTransform ...33
6.17. InverseTransform...34
6.18. Filter...34

 2

6.19. Polygonizer ..34
Examples ..36

A.1. Examples of visualisation of points ...36
A.2. Examples of visualisation of triangles ...38
A.3. Visualisation and operations over volumetric data..39
A.4. Examples of VolumeSlicer outputs ...40
A.5. Visualisation of slices ..41
A.6. Examples of implicit visualization...41

List of example data ...43

 3

2. MVE system version 1.3

The editor for designing module schemes in the MVE system will be described in this part
of the documentation. We will explain how to set up and control this editor as a new user
would whilst designing a new scheme.

2.1. Installation and start

After inserting the MVE CD into CDROM drive, the installation program should start
automatically. If not, run the file autorun.exe from the root directory on the CD. Follow the
instructions of the installation program.

After the execution of MVE_Editor.exe, the main application window will appear on the

screen with an empty document (scheme), see Figure 2.1.

Figure 2.1 : Empty document

2.2. How to add new modules into MVE

Before the scheme design process can begin, we need to add some modules into the system;
hence we have to add the DLL libraries that contain them. You can register the DLL libraries
in two different ways.

1) Copy DLL libraries containing modules into subdirectory Modules located in the main

MVE directory. If you copy DLL libraries into this directory while MVE is running, then
you have to restart MVE.

2) The other way to add modules into MVE is through the menu Options � Modules dialog,

where you can manually add new (external) modules. This option is aimed at modules
which are either non-standard or have to be located in different directories (Figure 2.2).

 4

Figure 2.2 : External modules dialog

2.3. How to design a schema
It is possible to display all available modules in a modules window (see Figure 2.3) by

selecting Modules from View menu or by pressing Ctrl–M hotkey. There is a list of modules
with information about the type (loader, renderer, etc.), number of inputs and outputs and the
path to the DLL library where said module is located.

Figure 2.3

Now you can easily drag the modules from this list and drop them on the workspace

using the left mouse button. Each module is visualized as a special graphic object � an icon.
The icon, representing the module, contains the module name and all of its inputs and outputs
(along with their data types). Inputs and outputs are depicted with small arrows, as shown in
Figure 2.5.
 On the workspace we can manipulate (drag) modules with the mouse. The mouse
cursor changes to show that dragging is possible.

2.4. Designed schemes loading and saving

Schemes designed in the editor can be saved to/loaded from a disk. This is done using

the File � Open, File � Save menu items. The scheme from the editor is saved into a binary
file with .mve extension. Paths to the DLLs can be relative (DLLs from Modules directory) or
absolute (DLLs from other directories).

This means that schemes designed only from modules with relative paths can be
moved into different directories and they should still work. But the schemes containing
modules with absolute paths depend on accessibility of their DLL libraries.

 5

We recommend using modules with relative paths (Modules directory) and use the
external modules (DLL list) only for debugging new modules.

Figure 2.4

2.5. Connecting the modules

The modules on the workspace can be connected together as a user wishes enabling
the data flow to be defined. Modules can be connected using a mouse. You need only to drag
an input or output of one module to an output or input of other one as is shown on Figure 2.5.

When connecting the modules, data types are immediately checked so the user can
connect only input and output of the same data type. When it is possible to connect the
modules the line representing the connection is red, otherwise it is grey.

Connections between modules can be easily cancelled by pressing the right mouse
button on the destination of the connection (input of destination module) and selecting
disconnect from the menu.

Figure 2.5 : Connecting the modules

2.6. User set up of modules

 Some modules require a user set up before their execution (for example: the module
for isosurface extraction from volume data needs a border value to be set, see Figure 2.6).
Set-up data required by such modules can be inputted by pressing the Set-up button on the
icon representing that module, otherwise default values will be used.

 6

Figure 2.6

2.7. Module schemes execution

If all of the modules in a scheme are connected and set up then they can be executed.
Execution of the whole scheme can be done by pressing the red �run� button on the
application toolbar. The names of modules that are currently running are shown on the status
line of the editor. Next to the �run� button is the �recycle bin� button, which frees up all
useless data (if there are any left after the execution).

 The �run� button and the �recycle bin� button :

Figure 2.7 : A simple visualisation

 7

2.8. Editor and module options

In the editor options a user can set up several runtime parameters. There is a special
set-up dialog in the editor, which is activated from the menu Options � Editor. You can see
these parameters in this dialog (Figure 2.8).

Figure 2.8 : Editor options

Module execution
• Serial � serial execution of modules in the designed scheme
• Parallel � parallel execution of modules in the designed scheme (if the

scheme design allows it). This option is especially
recommended for multiprocessor systems.

Data disposal
• When not needed � frees the data when they are not needed
• Before next execution � frees the data before the next module execution

Show running modules � shows names of running modules on application status line

2.9. Other module functions
Some other functions for modules are available through popup menu. This menu is activated
when you press the right mouse button on the module title (see Figure 2.9).

Figure 2.9 : Module popup menu

Popup menu items:
Run module – where possible (i.e. when all data on inputs are ready and output isn�t

blocked) the module is executed and data are transferred to the next module
Module status – displays an information window with the module execution time
Module info – if the function ModuleName_HELP_FUNC is implemented in the module,

then the module info window will be displayed.

 8

3. Modules overview

3.1. Table of modules with a short description

Module name Short module description Inputs Outputs Library
PointLoader Loads a set of points (max. 4D) from an input text file Points PointLoader.dll
PointLoaderMulti Loads a set of points (max. 20D) from an input text file Points2 PointLoaderMulti.dll
PointGenerator Generates a set of points with different distribution in 3D space Points Tetra.dll
PointGeneratorMulti Generates a set of points with different distribution in 3D space Points2 TetraMulti.dll
TriangleLoader Loads a triangle mesh from a file in SLT or TRI format. Triangles Triangle_Modules.dll
PureSTLLoader Loads a triangle mesh from an STL file Triangles MeshModule.dll
MKP2Tetra Reconstructs evaluated tetrahedral meshes from output data of

MKP application.
 Tetrahedra MKP2Tetra.dll

VolumeLoader Loads volumetric data from a file in CT, MRI or other known
volumetric data formats.

 Volume Volume_Modules.dll

LatticeLoader Loads a BMP picture to Lattice data. Lattice Transform.dll
Polyg_editor Simple module with predefined implicit functions and methods

for CSG modelling.
 F-rep Polyg_editor.dll

LatticeSaver Saves Lattice 2D data to a file as BMP. Lattice Transform.dll
Rotation Visualisation of N-Dimensional data using isolines. Triangles

Points2
 Rotation_module.dll

Renderer Renders an input triangle mesh using OpenGL in a rendering
window.

Triangles Triangle_Modules.dll

SliceViewer View slices. Slices SlicesModules.dll
VolumeSlicer Plane slicing of volumetric data set. Volume VolumeSlicer.dll
Dtlib Computes a 2D Delaunay triangulation. Triangles Dtlib.dll
DT3Dlib Computes a 3D Delaunay triangulation (tetrahedronization). Tetrahedra DT3Dlib.dll
TetraGenerator Generates tetrahedra from the input data set of points. Points Tetrahedra Tetra.dll
TetraGeneratorMulti Generates tetrahedra from the input data set of points. Points2 Tetrahedra2 TetraMulti.dll
CreateMesh Adds an adjacency information into triangle mesh and

computes normal vectors in vertices and triangles.
Triangles Triangles MeshModule.dll

 9

MeshChecker Checks correctness of a triangle mesh (number of vertices,
edges, triangles and solid surfaces) using both Euler�s and
Vertex-to-vertex rule.

Triangles Triangles MeshModule.dll

Decimation Simplifies triangular meshes. Triangles Triangles Decim_module.dll
SliceMaker Generates orthogonal sets of parallel slices from a triangle

mesh.
Triangles Slices SlicesModules.dll

SurfReconstr Reconstructs a surface from orthogonal slices. Slices Triangles SlicesModules.dll
Iso Extracts isostatic levels from a set of tetrahedral. Tetrahedra Triangles Isosurface.dll
TetraIso Generates an iso-surface from an input tetrahedral mesh. Tetrahedra Triangles Tetra.dll
TetraIsoMulti Generates an iso-surface from an input tetrahedral mesh. Tetrahedra2 Triangles TetraMulti.dll
Tetra2Triangle Converts a tetrahedral mesh to a triangular mesh. Tetrahedra Triangles Tetra.dll
Tetra2TriangleMulti Converts a tetrahedral mesh to a triangular mesh. Tetrahedra2 Triangles TetraMulti.dll
DT3Auxlib Converts tetrahedronization into a set of triangles. Tetrahedra Triangles DT3Dlib.dll
IsoExtractor Extracts an isosurface (triangle mesh) from volume data using

Marching Cubes, Marching Tetrahedra5 or Marching
Tetrahedra 6 methods.

Volume Triangles Volume_Modules.dll

Volume2Lattice Converts Volume data to Lattice data. Volume Lattice Transform.dll
Lattice2Volume Converts Lattice data to Volume data. Lattice Volume Transform.dll
ForwardTransform Transforms Lattice data to frequency using FFT,DCT or FHT. Lattice Frequency Transform.dll
InverseTransform Gets Lattice data from an frequency pattern using FFT,DCT or

FHT.
Frequency Lattice Transform.dll

Filter Filters frequency data. Frequency Frequency Transform.dll
Polygonizer Polygonizer module generates the triangle mesh of objects as

defined by an implicit function.
F-rep Triangles Polygonizer.dll

 10

3.2. Table of modules according to the input and output

Input Output Save Render Point Triangles Slices Tetrahedron Volume Lattice Frequency F-rep
Load /
Generate

 PointLoader
PointGenerator

TriangleLoader
PureSTLloader

 MKP2Tetra VolumeLoader LatticeLoader Polyg_editor

Point RotationI Dtlib DT3Dlib
TetraGenerator

Triangles Renderer
RotationI

 CreateMesh
MeshChecker
Decimation

Slice-
Maker

Slices Slice-
Viewer

 SurfReconstr

Tetrahedron Iso
TetraIso
Tetra2Triangle
DT3Auxlib

Volume Volume-
Slicer

 IsoExtractor Volume2Lattice

Lattice Lattice-
Saver

 Lattice2Volume Forward-
Transform

Frequency Inverse-
Transform

Filter

F-rep Polygonizer

The modules PointLoader, PointGenerator, TetraGenerator, TetraIso, Tetra2Triangle, Iso each have multidimensional implementation (up to
20D) in modules named *Multi.
Indexes I,O indicates more inputs or outputs of the module.

 11

 12

4. Input/Output modules

4.1. PointLoader & PointLoaderMulti
PointLoader is a loader for a set of points. This module has no input, the set of points is an
output of the module. In the setup window (see Figure 4.1.) the user can select the name of the
file by typing the filename with the path into the text box or by pressing Browse button � this
action opens the file dialog.

Figure 4.1 : Set up window of PointLoader module

The points are read from the text file, structured as follows:
50 number of points,
10.0 5.0 8.0… x,y,z coordinates of each point; the number of these coordinates can be

up to four, or up to twenty for the module PointLoaderMulti;
coordinates are separated with white spaces.

The number of points must be on the first line, with the expected coordinates of each vertex
on the following lines, each vertex on a special line. As yet, blank lines and comments are
unsupported.

4.2. PointGenerator & PointGeneratorMulti
PointGenerator generates the points in 3D space. Again this module has no input, and
the set of points is its output. In the set up window (see Figure 4.2) the user can select the
point distribution from uniform, gaussian, points placed in clusters and points placed on lines.
It is possible to place a scalar value in each generated point (4th dimension option). The last
option is for the number of points to be generated. As yet PointGeneratorMulti doesn�t
allow the usage of more than four dimensions.

Figure 4.2 : Setup window of PointGenerator module

4.3. TriangleLoader
This module loads a triangle mesh from a file in TRI or STL format in binary or ascii form.
You choose the input file using Open file dialog which will appear after clicking on Set up
button.

 13

4.4. PureSTLLoader
This module is used for loading a triangle mesh from an STL file. It reads all triangles in
sequence from a file, setting up the necessary values (bounding box, number of vertices and
triangles, etc.) and giving a triangle mesh as the output. The required input is simply the name
of STL file to be loaded. An input file is chosen by clicking the Setup button and selecting the
desired file from a dialog box.

4.5. MKP2Tetra
This module is designed to reconstruct evaluated tetrahedra meshes from the output

data of an MKP application (Finite elements method). Reconstruction is based on a certain
index net which is then divided into a tetrahedra mesh with conform decomposition.

All input data for this module is given in text files of the same format, but they are of
three different types. The first one describes the index net with maximum of 1 500 000
vertices in E3, the second gives us the type of cell decomposition in the index net, mostly to
tetrahedra and the type of material the tetrahedron is made of. Finally, the third type of file
contains values of measured magnitudes in the referential points of tetrahedra.

The output of the module is an evaluated tetrahedral mesh.
Module was created as a loader for isosurface extraction.

Input parameters setting

The process for setting the input parameters is divided between two forms. In the first
the user sets up the names of the input files with tetrahedra mesh, magnitudes, partition and
materials. Edit boxes are set up with names of the example input files. File browsing is also
possible from this form.

Figure 4.3 : Setting up the input file names and net type

The other form sets up the method of reconstruction. There is a selection of affected materials
and magnitudes used to evaluate the output vertices, along with the option to save the output
to file.

 14

Figure 4.4 : Setting up the data subset and magnitude for reconstruction

To complete the information about the reconstruction it is necessary to choose at least one
item from each of the lists.

4.6. VolumeLoader
VolumeLoader loads volumetric data from a file in CT, MRI or other supported format.
You choose the input file using Open file dialog that will appear when the Setup button is
clicked.

4.7. LatticeLoader
LatticeLoader loads a picture in BMP format. Using the Open file dialog you choose the
file to load. The formats of supported BMP files are: Windows 3.0 device independent bitmap
in 1,4,8,24 bits, not compressed or RLE encoded.

4.8. Polyg_editor
The Polyg_editor is a simple module with certain predefined functions. This module
takes no input and its output is the implicit function. The module�s Set up dialog is shown in
Figure 4.5.

Figure 4.5 : The Setup dialog of Polyg_editor module.

 15

4.9. LatticeSaver
LatticeSaver saves two-dimensional data from Lattice into the file in BMP format. By
clicking on the Set up button the output file is chosen. The file will be saved into a 24bit BMP
without RLE. If data are not two dimensional, the file will not be saved.

5. Renderers

5.1. Rotation
The rotation module is a module for visualisation N-dimensional data. This

module has two main parts.
The computing part is a conversion from 2D triangle mesh (with values

in z-coordinate) to a 3D surface using rotation of the isoline by x-axis. The izolines are
searched by third z-coordinate (valuation). The next step is the conjunction of this izolines to
the connected sections. The resulting 3D surface is obtained by rotating the connected
sections.
 The second part visualise the output data (rotation surface), and the points (input N-D
data) as glyphs.

 This module has two inputs and no outputs. The array of points in both inputs must
have the same values in first two dimensions.

Control Panel

Figure 5.1 : Main window –Control Panel of rotation module

The menu of Control panel (Figure 5.1) provides the following functions:

 16

File Exit - end of module
About About - Module info

Here is explanation of important function in the window:
z - the z-coordination for computing isoline
number of cuts - number of sides the rotation surface
Angle for rotation - maximal angle of rotation
Position (y-coordinate) - distance of rotation axis from mesh
Execute - starts the computation
correct direction of normals - correct the direction of the normals in output
Input + N-dim - dialog of visualisation of input data, isoline and axis

of rotation
Output - visualise the rotation mesh

Window – Input

Figure 5.2 : Input window

Here is explanation of important function in the Input window (Figure 5.2):

line - change line/surface view
refresh - refresh data
set up - settings of input data

Functions of mouse buttons:
 left button - rotation with objects
 right button - zoom/unzoom scene
 middle button - change view-position in x, y

Window - Setup dimensions

 17

Figure 5.3 : Set up dimensions window

Here is the explanation of important function in the Set up dimensions window (Figure 5.3)

Info - writes the information about the input data to the Data

 information box
Preview info - set/unset if all of the points or just the selected number

of points will be written to the Data information box
How many points - the number of points for preview information
Auto update - set/unset automatically refresh of input window
COLOR - set coordinate for colour of surface
GLYPHS - enable/disable visualisation of glyphs

SIZE - set the dimension for the size of glyphs
COLOR - set the dimension for the colour of glyphs
RELATIVE SIZE - set the relative size of glyphs

Output window

Figure 5.4 : Output window

Here is the explanation of the important functions in the Output window (Figure 5.4):

line - change line/surface view

 18

inv.normals - invert the direction of the normals
refresh - refresh the data

Functions of mouse buttons:

 left button - rotate object
 right button - zoom/unzoom scene
 middle button - change view-position in x, y

The menu of this window provides the following functions:

File

Save as � save mesh as *.stl file

5.2. Renderer
Renderer is used for visualisation of triangle meshes. It has a configuration dialog (under
View: (Un)Hide Options menu) where you can set various features of renderer. Renderer is
capable of saving the displayed mesh in TRI or STL format (menu File:Save as..). You can
also save a screenshot of the render window as BMP (menu File:Export BMP).

5.3. SlicesViewer
This views the sets (SLC format) of parallel slices (produced by e.g. SlicesMaker). Users
select the number, colour and watch orientation of the visible slices to be viewed.

 19

Figure 5.5 : SlicesViewer

5.4. VolumeSlicer
VolumeSlicer visualizes the intersection between a volumetric data set and a generic
plane (which can be moved and rotated). This module uses volume data for its input and
doesn�t produce an output. Each one of VolumeSlicer features is accessible from a toolbar
and so it does not require any set-up before being run. The module window is shown in
Figure 5.6.

Figure 5.6 : Module main window

 20

Features
 In each of the following cases, after choosing the tool, move the cursor over image and hold
the left mouse button.

 Panning - Movement of the mouse moves the image correspondingly.

 Rotating - Movement of the mouse moves the image correspondingly

 Rotating - By moving mouse up and down the plane is translated forwards and
backwards from the current view.

 Zoom - By moving mouse up and down the view is zoomed in and out.

 Measure - After choosing this tool, move cursor over first point and hold LMB
then move cursor over second point and release LMB.

 Other icons on toolbar and features:

 Colouring - After choosing this tool a new dialog appears (Figure 5.3).
Text in upper left corner is informative and is possible to change it by double
clicking on it. The check box activates and deactivates colour substitution. The
colour bar represents current substitute colour, which can be changed by clicking
on it. The graph on the right controls the method of colour mixing. Different types
are accessible from popup menu. Cursors in grey gradient represent interval.

Figure 5.7 : Coloring dialog

 Intensity clipping - After choosing this tool a new dialog appears (Figure 5.4).
The first slider represents the lower clipping value with the second representing
the upper clipping value. After editing, values are shown in edit boxes . The
<Enter> key should be pressed to confirm these new values.

Figure 5.8 : Clipping dialog

 Ruler, pallet, data bounding box - switch the informative tools.

 21

Sampling rate - Sampling rate is accessible from Quality menu.
6. Computing modules

6.1. DTlib
DTlib triangulates input points into triangles. It creates a triangular mesh using Delaunay
triangulation.

Figure 6.1 : Setting parameters of the DTlib

The module shows a form (see Figure 6.1) where you can set parameters as follows:
Input:
• Random - randomly generated points on regular grid or uniformly distributed points or

normally distributed points. The points are generated in 2-dimensional space, and the third
coordinate can be set as a function from the list box.

• File � points are read from a text file in format:

n
x0 y0 z01 z0k
...
xn-1 yn-1 zn-1 ... z n-1k

where n is the total number of points (integer number) and
(xi,yi,zi0,...,zik),i=0,1,...,n-1 are the given input points coordinates
in k-dimensional space. Only (xi,yi),i=0,1,...,n-1 are used for computation.
Coordinates are floating point numbers.

The checkbox Triangles to a file enables an output to be saved to file. The file contains a list
of point coordinates in the same format as described above. Then the file continues with
triangles as follows:
 nt

v00 v01 v02
...
vnt-10 vnt-11 vnt-12 v

 where nt is the total number of triangles (integer number) and (vi0,vi1,vi2),
i=0,1,...,nt-1 are vertices of the triangle no. i.

 22

6.2. DT3Dlib
DT3Dlib tetrahedrizes input points into tetrahedra. It creates the tetrahedra using Delaunay
tetrahedrization.

Figure 6.2 : Setting parameters of the DT3Dlib

This module shows a form (Figure 6.2) where you can set parameters as follows:
Input:
• Random - randomly generates points on either regular grid or a choice between uniformly

or normally distributed points. In this case points are generated in 3-dimensions and the
fourth coordinate can be set as a function in the list box.

• File� points are read from a text file in format:

n
x0 y0 z01 z0k
...
xn-1 yn-1 zn-1 ... z n-1k

where n is the total number of points (integer number) and
(xi,yi,zi0,...,zik),i=0,1,...,n-1 are the given input points� coordinates
in k-dimensional space. Only (xi,yi,zi0),i=0,1,...,n-1 are used for
computation. Coordinates are floating point numbers.

The checkbox Tetrahedra to a file enables the saving of output to file. The first part of the file
contains:

<new_net>
<vertex_3d>

Then follows a list of point coordinates in the same format as described above. The file
continues as follows:

<tetrahedron_by_vertices>
 nt

v00 v01 v02 v03
...
vnt-10 vnt-11 vnt-12 vnt-13

 where nt is the total number of tetrahedra (integer number) and
(vi0,vi1,vi2,vi3), i=0,1,...,nt-1 are vertices of the terahedron no. i.

 23

6.3. TetraGenerator & TetraGeneratorMulti
TetraGenerator is a tetrahedra mesh creator and optimiser. The input is a set of points,
and the output is a mesh of tetrahedra. In the set up window (see Figure 6.3) it is possible to
select a criterion for the process of local optimisation. Meshes created are then locally
optimised according to this criterion.

User can select one of these criteria:

• Delaunay � criterion of empty circumsphere, it creates a 3D Delaunay triangulation,
• MaxVolume � maximizing of tetrahedra volume,
• MaxMinVolume � maximizing of minimal tetrahedra volume,
• MinTetrahedraNumber � minimizing of number of all tetrahedra,
• MaxTetrahedraNumber � maximizing of number of all tetrahedra,
• MaxRadiusRatio � maximizing of ratio of 3*radius of inscribed sphere and radius of

circumscribed sphere,
• MaxMinRadiusRatio � maximizing of minimal ratio of 3*radius of inscribed sphere

and radius of circumscribed sphere,
• MinAspectRatio � minimizing of ratio of the cirsumsphere radius and the longest

edge,
• MinMaxAspectRatio � minimizing of maximal ratio of the cirsumsphere radius and

the longest edge,
• MinEdgeRatio � minimizing of ratio of the longest and the shortest edge,
• MinMaxEdgeRatio � minimizing of maximal ratio of the longest and the shortest edge,
• MaxMinSolidAngle � maximizing of minimal solid angle.
• MinMaxSolidAngle � minimizing of maximal solid angle.

Figure 6.3 : Set up window of TetraGenerator module

If the tetrahedral mesh cannot be created (e.g. due to insufficient memory space or problems
with numerical precision) an error message box is shown.
The difference between the TetraGeneratorMulti and TetraGenerator lies solely
in the number of supported point dimensions.

 24

6.4. CreateMesh

Figure 6.4 : Set-up dialog of module CreateMesh

This module is mainly used for creating information about the adjacency of triangles within
the triangle mesh. The module�s functions are:
• Vertex duplicity reduction
• Set triangle adjacency
• Make same orientation for all triangles
• Triangles� normal vectors
• Vertices� normal vectors

If you require the function you have to check its enable check-box in the set-up dialog
(see Figure 6.4).

Vertex duplicity reduction

It is recommended to reduce the duplicates of vertices where such duplication arises between
several triangles.

There are three methods used for searching for duplicate copies of a vertex:

• Brute force � searching the set of vertices one by one until the first duplicate vertex is

found (O(N2)).
• Hash table � divides the set of vertices using a hash function and scans only vertices with

the same hash value (O(N⋅⋅⋅⋅k1), k1 << N, where k1 is the average number of vertices with
the same value and is usually of order 1 or 10).

• Min-max box division � divides the set of vertices using division of an object�s bounding
box, scanning only the vertices belonging to the same sub-box (O(N⋅⋅⋅⋅k2), k2 << N, usually
k2 > k1).

Set triangle adjacency

In this function information about triangles adjacency is created (or re-created if it is already
existent). For each edge of each triangle another triangle is found (if it exists) containing the
same edge (i.e. an edge with the same vertices), e.g., triangles 1 and 2 in Figure 6.5. Indices to
adjacent triangles are stored so that triangle�s first adjacent triangle is the opposite one to the
triangle�s first vertex (see Figure 6.5), similarly for the second and third adjacent triangles.

 25

Figure 6.5 : Adjacency of triangles
(a) Adjacent triangles for triangle 1
(b) Data structures for this example

If no such triangle is found, then the index to the adjacent triangle for the current triangle is
set to the highest possible value (232-1 for DWORD). The same situation arises when more
than one triangle with the same edge is found (see Figure 6.6). This is because no function is
available to determine which two triangles are really adjacent.

Figure 6.6 : More than two adjacent triangles

Make the same orientation for all triangles

Use this function when you need all triangles oriented in the same direction (counter
clockwise or clockwise, (see Figure 6.7). The orientation of triangles can be used for
computing normal vectors of triangles. Triangles are checked for the same orientation within
solid surfaces.

Figure 6.7 : Triangle orientation

(a) Counter clockwise (b) Clockwise
Normal vectors of triangles

This function computes normal vectors of all triangles, considering the chosen triangle
orientation for front faced surface of triangle (see normal vectors in Figure 6.7).

Normal vectors in vertices

This function computes normal vectors in all vertices of triangle mesh. The normal vector is
computed as an average of the normal vectors of triangles sharing the vertex.

6.5. MeshChecker

This module checks the correctness of a triangle mesh. It works with information about
triangle adjacency but, if it is not included in data, the function doesn’t compute it. This
means that this function doesn�t actually change any information or value included in triangle

 26

mesh, merely computing the number of vertices, edges, triangles and solid surfaces and
checking them under the following rules:
• Euler�s rule
• Vertex-to-vertex rule
• Checking of number of vertices and triangles

This module has no set-up dialog. When all checking operations are done the function
shows the results in a modal dialog.

Euler’s rule

The basic method for checking triangle mesh correctness is Euler�s
rule SEVT ⋅=−+ 2 , where T is number of all triangles, V is number of all vertices, E is
number of all edges, S is number of all surfaces. If Euler�s rule is passed then triangle mesh is
correct and contains only surfaces.

Vertex-to-vertex rule

Figure 6.8 : Vertex-to-vertex rule

(a) Triangles don�t fulfil the rule (b)Correction of the situation

 This rule states that each edge must be shared just by two triangles. Each triangle has to have
just two common vertices with all its adjacent triangles. When the situation from Figure 6.8a
arises the triangle must be divided to two as shown in Figure 6.8b. This module doesn�t
perform this division.

Checking of number of vertices and triangles

On the basis of validity of Euler�s rule we have three additional rules for checking triangle
mesh correctness:
• Number of all triangles (T) must be even
• Number of all edges (E) must be multiple of 3
• 2 * Number of all edges (E) must be equal to 3 * Number of all triangles (T)

When these equations are satisfied, then triangle mesh is adjudged correct.

6.6. Decimation

Decimation for triangular mesh simplification involves reducing the number of triangles
in the mesh. This module has a triangular mesh both input and output. It provides several
methods of reduction allowing one to obtain different approximations of the original model at
different quality levels(see Settings paragraph).
The Decimation module is intended to be used mostly when visualising large and
complex models, with thousands or millions of triangles. Such visualisation is very
demanding in terms of both memory requirement and graphics hardware performance. The
manipulation (rotation, shading type change, etc.) of such complex models is almost
impossible on common PCs. It is convenient to simplify the model first (preserving as much

 27

important detail as possible) and then visualise it. Results indicate that a 60% reduction in the
number of triangles still leaves an acceptable model to work with.

Module set up
The Decimation module has plenty of user-defined parameters, with the resultant
reduction being dependent on the settings. The set up window (see Figure 6.9) appears by
clicking on set up button on the module in MVE.

Figure 6.9 : Decimation module set up window.

In the set up window you can choose number of threads processing the simplification
algorithm. The next parameter is the maximal angle between two neighbouring triangles
(dihedral angle), i.e. will the edge shared by these two triangles will be marked as a �sharp�
edge1? Probably most important parameter is the amount of resulting reduction. You can
choose value between 0% and 100%. The simplification method can be chosen in the
Heuristic radio group. The edge contraction criterion is selected from the radio group
Contraction Condition.

6.7. SlicesMaker

SliceMaker is a generator of orthogonal sets of parallel slices. Input for this module is a
triangle mesh (produces e.g. TriangleLoader), and the output of the module are the sets
of orthogonal slices (in SLC format).
In the set up window (see Figure 6.10) a user can select number of slices in each set, the
minimal size of the edges in the contours, and the orientation of these contours. A user can
also decide that SlicesMaker will run without its main window (see Figure 6.11)

1 Vertices on such edges are reduced by different criterions than other (sharp edged are
preserved in the model).

 28

Figure 6.10 : Setup window of SlicesMaker module

Figure 6.11 : SlicesMaker base dialog

In SlicesMaker base dialog (Figure 6.11) a user can store slices into the files, preview
generated slices (Show Preview button) and set up the placement of the slices (SetUp!
button) in Slices Control Centre! (Figure 6.12).

In Slices Control Centre! user can adjust the placement of the slices in each set. The red lines
represent the slices. The yellow bar represents the selection of the slices over which the user
can make operations (such as �add� or �delete�). The user can chose to add or delete slices on
an individual basis.

 29

Figure 6.12 : Slices Control Centre window

6.8. SurfReconstr

SurfReconstr is a module for reconstruction of the triangle surface from orthogonal sets
of parallel slices. Its input are sets of orthogonal slices (produces e.g. SlicesMaker), the
output is a triangle mesh, which can be seen using the Renderer module.

6.9. Iso & IsoMulti

The difference between the modules Iso and IsoMulti is in number of dimensions they
can operate in. The module Iso takes input of 4 dimensional points (1 value in each point)
whereas the module IsoMulti works in 20 dimensions (17 values in each point). The
dialogs are nearly the same, differing only that in the multidimensional version the user has to
select the dimension for isosurfaces creation. Only the multidimensional version will be
described here as the Iso module�s functionality is otherwise identical.
In brief, the IsoMulti module was designed to extract isostatic levels from a set of
tetrahedra. This means that if there is an object consisting of tetrahedral, each of whose
vertices is represented by the x, y, z and v3,v4,...vn-1 coordinates, then it could be important to
find and display the surface where the value of the vi parameter is constant. Therefore the
input of the IsoMulti module is a tetrahedra represented object with specific values in each
tetrahedron vertex. On the output there is a triangle mesh approximating the isostatic level of
the given value � i.e. the surface where value vi is constant. This surface can be displayed in
the Renderer module or further processed e.g. in the Decimation module. The whole
triangle mesh may also be saved into a file in the STL format and later loaded again via the
TriangleLoader module.

 30

Using the Iso module within MVE

Since the IsoMulti module requires a tetrahedra represented object as its input (the data
structure is called Tetrahedra2), it may only follow modules that produce a set of
tetrahedra with values v3 through vn-1 attached to each vertex, that is the Tetrahedra2
data format, such as TetraGenerator. As described above, the module itself produces a
triangle mesh, thus being determined to precede modules that accept such a mesh as their
input. These are for instance the Decimation module or the Renderer module.

IsoMulti set up

It is now possible to adjust the IsoMulti module parameters by clicking the Setup button
on the module icon on the MVE main screen before the whole diagram is executed. Although
the range of acceptable values cannot be calculated at the moment, users have a chance to
insert the value to search for, so that the whole diagram of modules can be run smoothly with
no interruption. The value may be entered either directly (in case that the user is familiar with
the data he/she works with) or in percentage. Similarly, the number of dimensions, the input
data will consist of, is unknown yet. However, the user can choose the dimension to search in.
It can be any dimension from the interval v0 through vn-1 including v0, v1 and v2, which in
fact represent the x, y and z coordinates. The only restriction is that, unlike the v3 through vn-1
values, these three coordinates may not be overwritten by any function. The set up window is
displayed on Figure 6.13.

Figure 6.13 : The Set up window

In the Enter the module parameters box the user can choose whether to set up the module
right now or during the computation or whether to set it up at the moment yet keeping a
chance to change it later. Having checked the appropriate option, the user must choose,
whether he/she will Enter the value to search for in percentage or directly as a real value. For
the description of the remaining options on the Set up form, see the Set up window
description section below.

 31

 If the user decides not to set up the module in advance using the Set up window (i.e.
other option than now is checked in the first box), the module window (see Figure 3) will
appear after the IsoMulti module gets focus from the MVE. By that time, the IsoModule
has already obtained the input data, calculated the minimal and maximal values that can be
searched for and displayed these on the form.

Figure 6.14 : Adjusting IsoMulti

Setup window description:

• Value to search for - This is the value the Iso module will search for. It must be from

the interval <Minimal value, Maximal value>, otherwise an error
message appears.

• Dimension to search - In this listbox, the user can choose the dimension to search in.

• Constant value - Pressing this button overwrites the v value of all vertices with

zero. Consequent search will then result in displaying the whole
object.

• Plane - Pressing this button overwrites the v value of each vertex with its

x coordinate. Consequent search will then result in displaying a
plane.

• Two Planes - Pressing this button overwrites the v value of each vertex with

the absolute value of its x coordinate. Consequent search will
then result in displaying one or two planes, according to the
location of the original object.

• Cylinder - Pressing this button overwrites the v value of each vertex with its

distance from the z axis. Consequent search will then result in
displaying a part of a cylinder.

• Sphere - Pressing this button overwrites the v value of each vertex with its

distance from the center point S [0,0,0]. Consequent search will
then result in displaying a part of a sphere.

• Ellipsoid - Pressing this button overwrites the v value of each vertex with its

distance from the center point S [0,0,0], where the z coordinate is
divided by 2. Consequent search will then result in displaying a
part of an ellipsoid.

 32

• Save results to file: - Saves the computed triangle mesh into a file using the STL
format. The file path and name may be specified by clicking the
Browse button

• Show statistics - If this option is checked, the module will display a Statistics

window after the computation has finished.

6.10. TetraIso & TetraIsoMulti
TetraIso is a module, which implements a simple algorithm of for generating an isosurface
from a tetrahedral mesh. The input is a mesh of tetrahedral and the output is a triangle mesh,
representing the isosurface. In the set up window (see Figure 6.15) only one parameter is
expected: the percentage of the requested isosurface according to the minimal and maximal
value in the tetrahedra mesh.
This module was initially created only for checking the functionality of the
TetraGenerator module. This module will not be improved as it has been superceded by
a new module for generating isosurface, developed during the project.
TetraIsoMulti version was created only for compatibility with other Multi modules.

Figure 6.15: Setup window of TetraIso module

6.11. Tetra2Triangle & Tetra2TriangleMulti
Tetra2Triangle is a module for the conversion of a tetrahedral mesh into a triangular
mesh. The input is a mesh of tetrahedra and the output consists of a mesh of triangles. This
type of conversion is needed only for visualisation of raw tetrahedral mesh. Module requires
no set up.
Tetra2TriangleMulti version was created only for compatibility with other Multi
modules.

6.12. DT3Auxlib
This is an auxiliary module for DT3Dlib, converting a tetrahedral mesh into a set of
triangles. It doesn't require a set up function, as everything is set up from the module
DT3Dlib.

6.13. IsoExtractor
IsoExtractor is used to compute iso-surfaces (triangle meshes) from the volumetric data.
This module uses simple dialog (se Figure 6.16) to set the threshold and the method used.
There are three methods implemented : Marching Cubes, Marching Tetrahedra5 and
Marching Tetrahedra 6. The most common used method is Marching Cubes. The threshold
gives the percentage of the requested isosurface according to the minimal and maximal value
in volumetric data.

 33

Figure 6.16: Settings of computing modules (MC, MT5, MT6).

6.14. Volume2Lattice
Volume2Lattice converts data of type Volume (3 dimensions, 1 layer) to data of type
Lattice (1-3 dimensions, 1-4 layers). It doesn�t physically change the data.

6.15. Lattice2Volume
Lattice2Volume converts data of type Lattice (1-3 dimensions, 1-4 layers) to data of type
Volume (3 dimensions, 1 layer). As with Volume2Lattice, this conversion makes no
change to data. If Lattice data are not three-dimensional and have more (or less) than one
layer, then the conversion will not be done.

6.16. ForwardTransform
ForwardTransform transforms data of type Lattice to frequency domain (type Freq) using
either a fast Fourier transformation, a discrete cosine transformation (DCT2) or a fast Hartley
transformation. For module ForwardTransform is possible to select which parts will be
converted to frequency domain and the type of transformation used. By clicking the SETUP
button a dialog (see Figure 6.17) will appear.

Figure 6.17 : Default settings of module ForwardTransform

The type of transformation can be chosen in the left part of the dialog. It is possible to choose
from five types of transformations:
• fast Fourier transform (real) choose Fast Fourier (FTT), disable Complex
• fast Fourier transform (complex) choose Fast Fourier (FFT), enable Complex
• discrete cosine transform choose Discrete Cosine (DCT), disable DCT8
• discrete cosine transform by blocks of size 8 choose Discrete Cosine (DCT), enable DCT8
• fast Hartley transform choose Fast Hartley (FHT)

In the right part of the dialog the user can choose which layers to transform.

 34

6.17. InverseTransform
InverseTransform transforms data from the frequency domain (type Freq) to the data
domain (data of type Lattice) using inverse of FFT, DCT or FHT. The type of transform is
taken from the previous type of ForwardTransform.

6.18. Filter
Filter uses a simple filter to cut high, low or selected frequencies from the frequency
domain data (type Freq). Set up is done through a simple dialog window (see Figure 6.18).
For module Filter an interval (radius) of the remaining frequency spectrum must be set up:
slider Start sets up the beginning of this field and slider End defines its conclusion. Buttons
above and below the sliders allow setting to specific values. To the right of each slider is the
edit field where it is possible to enter an exact value for that slider. Value 1025 corresponds to
¶, as values bigger than 1025 are only for use in multidimensional cases (2D,3D).

Figure 6.18 : Default settings of module Filter (this is low pass filter (LP))

6.19. Polygonizer
The Polygonizer is one of the MVE modules, which extracts an iso-surface as defined by
implicit function. The module input is a pointer to an implicit function and the output is a
triangle mesh. The Set up dialog of Polygonizer is shown in Figure 6.19.

Figure 6.19 : The Setup dialog of Polygonizer module.

 35

Controls description

Main menu
• File

• Save Triangles � Saves a triangle net to disk in TRI format.
• Save Report � Saves the Report list box to disk in RSL text file.
• Save Histogram � Saves Histogram to disk in HIST text file.

• Exit � Closes dialog without saving of setup.
• Actions - Start � Starts the computation.
• Help - About � The basic information dialog about actual module�s version and author.

Buttons description
• Parameters

• N (cubes) � Partitions the defined area (Area size) in all axes (x, y, z).
• Bounds � Bounding box, the maximal number of indexes of cells (cubes) in all axes.
• Threads � The number of working threads in parallel computation (Exhaustive search

method only).
• Work method – The implemented methods for visualization of implicit surfaces.

• Random search
• Numeric method
• Exhaustive search
• Marching triangles

• Report � Two boxes containing information about the computation (name of method and
function, area size and its partitioning in axes, number of threads, number of triangles and
vertices, time of computation).

• Area size � Size of area in 3D.
• Quality statistic

• Number of angle divisions - (π/n).
• Create histogram – Creates a histogram showing the density of the division of the

angle.
• Trace approximation quality – The approximate quality. The results are written to

Report list box.
• Run with Polygonizer dialog � Running of module with polygonizer set up dialog. It is

useful for measuring the parameters of functions from other modules, or for visualisation
of suspended polygonization (when Stop button is pressed).

• Start � Starts the computation.
• Stop � Stops the computation.
• OK � Saves the module�s set up or sends the triangle net to the next MVE module*.
• Cancel � Closes the dialog without saving the set up.

* Only if the module was run with Run with polygonizer dialog checked.

 36

Examples

A.1. Examples of visualisation of points

The points can be visualized using triangles. Here are some examples.

On Figure A.1 there is an example of using the Renderer for visualization of tetrahedra
created from a set of 3D points.

Figure A.1 Visualization of points (tetrahedra)

Example of visualization of N-dimensional (more that 3D) points using Renderer is on Figure
A.2. Points are loaded, tetrahedronized and then converted to the iso surface (triangle mesh)
for rendering.

Figure A.2. : Example of using the MKP2Tetra module

Figures A.3. and A.4 show how Delaunay triangulation can be used in MVE. On Figure A.3
there is a 2D case: triangulation is done only in two dimensions, but each vertex can have
height (value). Figure A.4 shows a scheme for visualizing tertrahedra using a triangle mesh
(iso surface).

 37

Figure A.3 : 2D Delaunay triangularization

Figure A.4 : 3D Delaunay tetrahedronization

On Figure A.5 is a visualization of the rotated isoline (making a 3D triangular mesh). The
isoline is extracted from triangularized 2D triangular mesh using other dimensions.

 38

Figure A.5 : Connection of modules

A.2. Examples of visualisation of triangles

Visualisation of triangles is the most commonly used method. Triangles can be directly
visualised using Renderer.

The usual way to visualise triangles is displayed on Figure A.6. Note the decimation module,
used to reduce the number of triangles.

Figure A.7 depicts a scheme for adding information about the mesh to the triangles, such as
adjacency, normal vectors etc. This information can be used by other modules.

Figure A.6 : Visualisation of triangles with decimation

 39

Figure A.7 : Adding useful information into triangles

A.3. Visualisation and operations over volumetric data

Volumetric data (usually medical or mechanical CT, MRI) consists of objects, which can be
visualised in various ways.

The first way is the extraction of isosurfaces (triangles). The scheme for this type of
visualisation is shown on Figure A.8.

Figure A.9 shows a scheme using discrete transformations on volumetric data.

Figure A.8: Visualisation of volumetric data using isoextraction

 40

Figure A.9 : Visualisation of volumetric data with discrete transformation

A.4. Examples of VolumeSlicer outputs

The scheme below represents the most common configuration of modules for the slicing of a
volumetric data set. The first module loads volumetric data from a file. Its output is connected
with the input of the VolumeSlicer module. The VolumeSlicer is a renderer class
module so it�s always at the end of the evaluation chain.

Figure A.10 : Scheme of Slicing of volumetric data set.

 41

Figure A.11 : Usage of coloring in volume slicing

A.5. Visualisation of slices

Presently there is only one way to get these slices-from a triangle mesh (and also you can get
triangle mesh from slices). Slices can be displayed separately. Figure A.12 shows such a
scheme.

Figure A.12 : Visualisation of slices

A.6. Examples of implicit visualization

In the basic scheme (Figure A.13) there are three collaborating MVE modules. The
Polyg_editor is an implicit function source, Polygonizer is the computing module
and the Renderer module is used for triangle mesh visualization.

 42

Figure A.13 : The basic polygonizer scheme

 43

List of example data

Type Name Size Courtesy
Tri Bell.tri

bone.tri
bunny.tri
cow.tri
hand.tri

28,776kB
9,052kB
9,467kB
682kB

87,772kB

Cyberware
Gatech
Avalon
Gatech

Stl Bin Dino50.stl
teapot.stl
teeth25.stl

2,750kB
7,794kB
2,849kB

Cyberware

Cyberware
Stl Ascii Baba.stl

isis25.stl
9,287kB

20,381kB
Cyberware
Cyberware

Vol 1byte bentum.vol
cthead.vol
ctmayo.vol
engine.vol
hplogo.vol
syn_64.vol

16,385kB
7,233kB
2,049kB
7,041kB
2,213kB
257kB

University of North Carolina

Vol 2byte Cthead.vol 14,464kB University of North Carolina
Cyberware : http://www.cyberware.com
Gatech : http://www.cc.gatech.edu/projects/large_models/index.html

