
The Graphics32 Library
Delphi Classes, Components and Functions for Fast 32-bit Graphics Programming
Version 0.91
March 10, 2000

Alex Denissov
Copyr i g h t © 2000 by A l ex A . Den i ssov

A l l r i gh t s re se r ved

O v e r v i e w p a g e 1

...
...

...
...

..
...
Overview

Graphics32 is a set of classes, components and functions designed for Delphi 5. It allows
for fast graphics programming using 32-bit DIBs. Being highly specialized for 32-bit pixel
format, it provides fast operations with pixels and graphic primitives and in many cases
Graphics32 outperforms the TCanvas class.

Some of its features include:

• Fast per-pixel access;

• Bitmap transparency;

• Bitmap alpha blending (including per-pixel alpha blending);

• Pixel and line antialiasing (combined with alpha blending);

• Locking the bitmap for safe multithreading;

• Enhanced scaling of bitmaps;

• Flicker-free image displaying component;

• Multiple transparent layers or sprites;

• A property editor for RGB and alpha channel loading.

Some functions require Windows 98 or Windows 2000 to be installed. Even with a latest
version of Windows you may experience some problems with displaying of transparent bit-
maps due to obsolete video drivers. It is recommended to update your drivers to the lat-
est available.

There is no MMX, SSE or other processor-specific code included in the current version.
Future versions of library probably will have some of that realized.

The library comes with a full source code and pre-compiled examples.

The latest version of Graphics32 may be found on the web site:

http://www.geocities.com/den_alex

...
License

This notice may not be removed from or altered in any source distribution.

Graphics32 if distributed as a freeware. You are free to use Graphics32 as part of your
application for any purpose including freeware, commercial and shareware applications,
provided some credit is given.

This software is provided 'as-is', without warranty of any kind, either expressed or implied.
In no event shall the author be held liable for any damages arising from the use of this
software.

...
Installation

Delphi 5 is required in order to install Graphics32 library.

• Unzip the files.

• Select File | Open... on the menu bar. Set Files of type to Delphi package source,
locate and select the G32.dpk file, and click Open.

• Check the necessary file paths in Tools | Environment Options | Library | Library Path.
They should include G32 directory as well as $(DELPHI)\Source\Toolsapi and
$(DELPHI)\Source\Vcl.

• A package editor window will appear. Click Compile, then click Install.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

http://www.geocities.com/den_alex

I n t r o d u c t i o n p a g e 2

...
...

...
...

..
...
Introduction

Many features or Graphics32 are similar to those found in standard TImage, TBitmap and
TCanvas classes, however they were rewritten to accelerate and optimize drawing on 32-
bit DIBs.

TBitmap32 basically manages a 32-bit device independent bitmap (DIB). It is assignment-
compatible with a standard TBitmap class, that is the Assign method of TBitmap32 may
be used to copy it from a TBitmap object and vice-versa. However, TBitmap32 is not a
descendant of TBitmap object. For example, it does not provide a canvas for drawing and
has different implementation of transparency.

Note: The same handle may
be employed to attach the
internal DIB to the external
TCanvas object, this allows
using the standard TCanvas
methods for drawing.

If you want to use low-level Windows API functions in your application, the Handle prop-
erty of TBitmap32 may be of some help.

TImage32 may be considered as an alternative to TImage component. It displays a flicker-
free graphics and manages sprites. There are several bitmap scaling options supported
as well as a new property editor which handles loading of bitmaps with alpha channel.

This documentation includes description of the following items:

• Data types;

• Global procedures and functions;

• TBitmap32 class;

• TSprite and TSpriteSet class;

• TImage32 class.

...
The TColor32 Type

TColor32 represents an ARGB quad with color components in the following order:

Note: TColor32 has its own
property editor, which is capa-
ble of displaying semi-trans-
parent colors.

This order is different from ABGR pixel format used by most Windows API functions and
implemented in Delphi as TColor type. Several functions are provided to convert colors
between the different standards (See ”Color Construction and Conversion” on page 3).

The alpha channel is responsible for pixel’s opacity: zero value corresponds to complete
transparency, and the value of 255 corresponds to completely opaque pixels.

New color constants are similar to standard ones: clBlack32, clWhite32, etc. Do not use
Delphi’s standard color constants directly, convert them with the Color32 function instead
e.g.:

Bitmap32.SetPixel(10, 10, Color32(clBtnFace));

Note: There is an issue with color conversion: the appearance of TBitmap32 filled with the color
converted from, for example, clGray may be slightly different than Delphi’s TPanel or some
other control filled with the same clGray color. It seems to happen due to Windows color
profiles which are not applied to DIBs.

Delphi Graphics32
TColor TColor32
TBitmap TBitmap32
TImage TImage32

Bits 31…24 Bits 23…16 Bits 15…8 Bits 7…0
A R G B
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

C o l o r F u n c t i o n s p a g e 3

...
...

...
...

..
...
Color Functions

This section describes color handling functions which are not members of any class.

...Color Construction and Conversion

Color32 function Color32(R, G, B: Byte; A: Byte = $FF): TColor32; overload;

This function combines its arguments into a 4-byte TColor32.

function Color32(WinColor: TColor): TColor32; overload;

The pixel format of 32-bit DIBs (ARGB) is different from that used in standard TColor type
(ABGR). Some standard windows colors are coded using special constants which should
be converted into RGB form. This function provides conversion of TColor into TColor32.

function Color32(Index: Byte; Palette: PPalette32): TColor32; overload;
type PPalette32 = ^TPalette32;
type TPalette32 = array [0..255] of TColor32;

This function simply picks the color value from the palette.

SEE ALSO: ”The TColor32 Type” on page 2.

Gray32 function Gray32(Intensity: Byte; Alpha: Byte): TColor32;

The action of Gray32(I, A) is the same as Color32(I, I, I, A). It just works faster.

SEE ALSO: Color32.

WinColor function WinColor(Color32: TColor32): TColor;

Provides conversion of TColor32 value back into TColor. The highest-order byte (Alpha
channel) of resulting color is assigned the $FF value.

HSLtoRGB function HSLtoRGB(H, S, L: Single): TColor32;

Conversion from HSL color space. Each argument should normally be in 0…1 range.

RGBtoHSL procedure RGBtoHSL(RGB: TColor32; var H, S, L : Single);

Conversion from RGB into HSL color space. The H, S and L components are returned in
corresponding var parameters ranging from 0 to 1.

...Component Access

RedComponent function RedComponent(Color32: TColor32): Integer;

GreenComponent function GreenComponent(Color32: TColor32): Integer;

BlueComponent function BlueComponent(Color32: TColor32): Integer;

AlphaComponent function AlphaComponent(Color32: TColor32): Integer;

These functions return the value of the corresponding color component ranging from 0 to 255.

Intensity function Intensity(Color32: TColor32): Integer;

Returns the intensity of the color, which is calculated as

I = R * 0.21 + G * 0.71 +B * 0.08;

SetAlpha function SetAlpha(Color32: TColor32; NewAlpha: Integer): TColor32;

Returns the RGB color of the argument with a new alpha.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

C o l o r F u n c t i o n s p a g e 4

...
...

...
...

..
...Color Algebra

The following functions may be used for color combining.

ColorAdd function ColorAdd(C1, C2: TColor32): TColor32;

Returns the sum of two colors. Each color component: red, green, blue and alpha is
added separately and summation results are clamped to fit into [0…255] range.

ColorSub function ColorSub(C1, C2: TColor32): TColor32;

Subtracts C2 from C1. The resulting color components are clamped to [0…255] range.
This involves the alpha channel subtraction.

ColorModulate function ColorModulate(C1, C2: TColor32): TColor32;

The resulting color is the product of C1 and C2 divided by $FF:

CR = C1R * C2R / $FF;
CG = C1G * C2G / $FF;
CB = C1B * C2B / $FF;
CA = C1A * C2A / $FF.

ColorMax function ColorMax(C1, C2: TColor32): TColor32;

Returns the maximum of C1 and C2.

ColorMin function ColorMin(C1, C2: TColor32): TColor32;

Returns the minimum of C1 and C2.

ColorMix function ColorMix(C1, C2: TColor32; W1, W2: Integer): TColor32;

The resulting color is the blend of C1 and C2 with the applied contribution factors:
C = C1 * W1 / 100 + C2 * W2 / 100.

...Gamma Correction for Antialiasing

Pixel and line antialiasing produces much better results with correction of opacities of
partially covered pixels. The SetGamma procedure generates a lookup table for opacity
correction:

SetGamma procedure SetGamma(Gamma: Single = 0.7);

The default value of 0.7 works fine in most cases, but it may require some changes.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 5

...
...

...
...

..
...
The TBitmap32 Class

TBitmap32 is the most important class in Graphics32 library. It manages a single 32-bit
device-independent bitmap (DIB) and provides methods for drawing on it and combining
it with other DIBs, device-dependent bitmaps or other objects with the device context
(DC).

Note: Actually, TBitmap32 is
actually not a direct descen-
dant of TPersistent. See the
source code for details.

TBitmap32 is a descendant of the TPersistent class. It overrides the Assign and AssignTo
methods to provide a compatibility with standard objects: TBitmap, TPicture, TClipboard in
both directions. The design-time streaming to and from *.dfm files, inherited from TPer-
sistent, is supported, but it is realized differently from streaming with other stream types
(See the source code for details).

TBitmap32 does not implement low-level streaming or low level file loading/saving.
Instead, it uses streaming methods of temporal TBitmap or TPicture buffers which are
assigned to/from the bitmap. This is an obvious performance penalty, however such
approach allows using third-party libraries, which extend TGraphic class for various image
formats support (TGA, TIFF, GIF, etc.). If you install them, TBitmap32 will automatically
obtain support for new image file formats in design time and in run time.

In addition, TBitmap32 provides functions to prevent a simultaneous access from several
threads to the same data, which is done similar to the thread lock in TCanvas. For more
information on multithreading and locking, see comments for Lock and Unlock methods
as well as Delphi documentation.

TBitmap32 has several properties and methods which have similar action but may have
different arguments or other realization details. They follow the simple naming conven-
tion:

...Properties

AutoAlphaMult property AutoAlphaMult: Boolean;

When the bitmap has to be drawn with alpha blending (UseAlpha property is True), AutoAl-
phaMult specifies the format of the bitmap.

Note: Alpha blending requires
Windows 98 or later to be
installed. The latest video driv-
ers are recommended as well.

Windows API requires the blended bitmap to have premultiplied alpha, which means that
the red, green and blue channel values in the bitmap must be premultiplied with the
alpha channel value. That is, if the alpha value is x, the color channels must be multiplied
by x and divided by $FF before call.

Normally, you operate bitmaps without premultiplied alpha, and perform alpha multipli-
cation just before blending the bitmap to a screen, or to another bitmap. The problem is
that premultiplied bitmap should be completely redrawn even if you need to make just a
small change in it.

When AutoAlphaMult property is True, TBitmap32 creates temporal copy of the bitmap in
the memory, automatically premultiplies colors and uses it as a source each time the bit-
map should be blended.

Postfix Details Example

none
Property or method does not perform range checking of its argu-
ments. All the coordinates should be valid.

DrawLine

S
‘Safe’ version. Validates coordinates. If necessary, clipping of lines
etc. is performed.

DrawLineS

T
‘Transparent’ version of the method. Uses the alpha channel of the
provided color to blend the drawn primitive with the background
pixels. Does not validate coordinates.

DrawLineT

TS Combines both transparency and coordinates validation. DrawLineTS

F
Methods with ‘F’ postfix take the coordinates as floating point argu-
ments and provide the antialiasing of the drawn primitive. Does not
validate coordinates.

DrawLineF

FS
‘Safe’ version of antialiased methods which performs range check-
ing of its arguments.

DrawLineFS
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 6

...
...

...
...

..
You should set AutoAlphaMult to True if you want to use per-pixel opacity and if colors of
pixels were not premultiplied. One of the following strategies may be chosen to display a
bitmap with alpha blending:

• Do not use per-pixel alpha blending. If the bitmap has a uniform transparency, reset all
the pixels to opaque state with the ResetAlpha method and use the MasterAlpha prop-
erty to set the overall bitmap transparency;

Bitmap32 := TBitmap32.Create;
… draw something …
Bitmap32.UseAlpha := True; // use alpha channel then painting
Bitmap32.ResetAlpha; // set the alpha channel to $FF
Bitmap32.MasterAlpha := 127; // set the blending factor to 50%
Bitmap32.Draw(Form.Canvas.Handle, 10, 10); // paint it to a form

• In design time, when loading a bitmap from file, select the ‘Premultiply Alpha’ check
box. It will cause automatic conversion of the bitmap while importing it. This approach
is useful when you use static images with per-pixel transparency which are not changed
in run time;

• Operate the bitmap normally and change its AutoAlphaMult property to True. Each time
the bitmap has to be drawn, its copy is created in memory, then colors of the copy are
premultiplied and that data is actually used for drawing. This is the easiest way to
implement the per-pixel opacity, but unfortunately the slowest. Each time you draw the
bitmap, the buffer is recreated and recalculated;

Bitmap32 := TBitmap32.Create;
… draw something …
Bitmap32.AutoAlphaMult := True; // automatic pre-multiplication mode
Bitmap32.UseAlpha := True; // use alpha channel for painting
Bitmap32.MasterAlpha := 127; // set the blending factor to 50%
Bitmap32.Draw(Form.Canvas.Handle, 10, 10); // paint it to a form
… make some changes to the bitmap …
Bitmap32.Draw(Form.Canvas.Handle, 10, 10); // update the image in a form

• Construct the bitmap, and before displaying it, call the PreMultAlpha method, which will
convert it to a necessary state. If you want to make some changes into it, you have to
redraw all over again.

Bitmap32 := TBitmap32.Create;
… draw something …
Bitmap32.UseAlpha := True; // use alpha channel for painting
Bitmap32.MasterAlpha := 127; // set the blending factor to 50%
Bitmap32.PreMultAlpha; // pre-multiply opacities
Bitmap32.Draw(Form.Canvas.Handle, 10, 10); // paint it to a form
… completely redraw the bitmap …
Bitmap32.PreMultAlpha; // pre-multiply opacities
Bitmap32.Draw(Form.Canvas.Handle, 10, 10); // update the image in a form

• Construct two bitmaps: one for drawing and another as a temporal buffer. After some
changes have been made in the drawing bitmap, call the PreMultAlpha method to copy
and convert the data into a temporal buffer, then use it for blending until some changes
have to be made to a drawing bitmap. This will work faster than using AutoAlphaMult if
the bitmap is blended more often than it is altered, because the automatic premultipli-
cation with AutoAlphaMult recreates the buffer every time even if there were no changes
made to the bitmap.

Bitmap32 := TBitmap32.Create;
Buf := TBitmap32.Create; // temporal buffer
… draw something in Bitmap32…
Buf.UseAlpha := True; // use alpha channel for painting
Buf.MasterAlpha := 127; // set the blending factor to 50%
Buf.PreMultAlpha(Bitmap32); // copy data and pre-multiply opacities
Buf.Draw(Form.Canvas.Handle, 10, 10); // paint it to a form
… make changes to Bitmap32…
Buf.PreMultAlpha(Bitmap32); // copy data and pre-multiply opacities
Buf.Draw(Form.Canvas.Handle, 10, 10); // paint it to a form

SEE ALSO: Draw, DrawBlend, MasterAlpha, PreMultAlpha, ResetAlpha.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 7

...
...

...
...

..
Bits property Bits: PColor32Array; // read-only
type PColor32Array = ^TColor32Arra;
type TColor32Array = array[0..0] of TColor32;

The bits property contains the address of the first pixel in a bitmap. If the bitmap is not
allocated (has zero width or zero height), the returned address is nil.

SEE ALSO: PixelPtr, ScanLine.

Font property Font: TFont32;

Specifies a current font used by text output functions. The TFont32 class is the same as
TFont but it additionally contains an integer Escapement property, which specifies the
angle, in tenths of degrees, between each character's base line and the x-axis of the
device.

SEE ALSO: UpdateFont.

Handle property Handle: HDC; // read-only

Provides the device handle of the contained DIB. This handle may be used in low-level
Windows API calls or, for example, to attach a TCanvas object to TBitmap32:

var
Canvas: TCanvas;

begin
Canvas := TCanvas.Create; // create a new independent TCanvas object
try

Canvas.Handle := Bitmap32.Handle; // attach it to the Bitmap32 object
Canvas.Pen.Color := clRed; // use standard TCanvas methods for drawing
Canvas.Brush.Color := clGreen;
Canvas.Ellipse(10, 10, 60, 40);

finally
Canvas.Free;

end;
end;

Handle contains zero, if the bitmap is empty (width or height is zero), and its value may
be changed after resizing.

Height property Height: Integer;

Specifies the height of the bitmap in pixels.

SEE ALSO: Width, SetSize, Empty.

LockCount property LockCount: Integer; // read-only

Shows the nesting level of the thread lock. The bitmap is unlocked only when LockCount
equals 0.

SEE ALSO: Lock, Unlock.

MasterAlpha property MasterAlpha: Byte;

When blending a bitmap to the screen or to another bitmap, MasterAlpha controls the
blending factor. The information stored in the blended bitmap is premultiplied with a Mas-
terAlpha value. If the MasterAlpha property is $00, the bitmap will be fully transparent, if it
is equal to $FF, only per-pixel opacity, stored in bitmap’s alpha channel is used. The colors
of the bitmap should not premultiplied with MasterAlpha.

SEE ALSO: AutoAlphaMult, Draw, DrawBlend.

OuterColor property OuterColor: TColor32;

This property specifies the color returned by PixelS property when reading the pixel with
coordinates that lie outside of the bitmap. The default value is $00000000 which corre-
sponds to a fully transparent black.

SEE ALSO: Pixel.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 8

...
...

...
...

..
Pixel property Pixel[X, Y: Integer]: TColor32; default;
property PixelS[X, Y: Integer]: TColor32;

When writing, the Pixel property sets the value of the pixel in the bitmap. Reading it, will
return the color value of the pixel located at specified coordinates. This property does not
validate the specified coordinates, so use it only then you are completely sure that you are
not trying to read from or write to the outside of the bitmap boundary. Pixel is declared as
default property, you may use it as shown below:

Bitmap32[10, 20] := Bitmap32[20, 10]; // copy a pixel from (20, 10) to (10, 20) position

PixelS is a ‘safe’ version of the Pixel property. When reading pixels from the outside of the
bitmap boundary, the value specified by OuterColor is returned. Writing with invalid coor-
dinates will have no effect.

SEE ALSO: OuterColor, SetPixel.

PixelPtr property PixelPtr[X, Y: Integer]: PColor32; // read-only

Converts coordinates of a pixel to its address in memory. Since TBitmap32 uses 32-bit device independent
bitmaps, its memory is allocated as continuous string of 4-byte TColor32 values, starting at the top left
corner.

SEE ALSO: SetPixel, Bits, ScanLine.

ScanLine property ScanLine[Y: Integer]: PColor32; // read-only

Provides indexed access to each line of pixels. Has the same result as PixelPtr[0, Y].

SEE ALSO: Bits, PixelPtr.

Transparent property Transparent: Boolean;

Determines that pixels with color specified by TransparentColor propery has to be trans-
parent when the bitmap is drawn with the Draw method. Setting Transparent to True will
automatically reset the UseAlpha property. When drawing in transparent mode, the alpha
channel of the bitmap is disregarded.

SEE ALSO: TransparentColor, Draw, DrawTransparent, UseAlpha.

TransparentColor property TransparentColor: TColor32;

Specifies a key color used for transparent drawing when the Transparent property is set or
than DrawTransparent method is used. The alpha channel of the color key is not compared
with the bitmap pixels. That is colors $FFFFFFFF and $00FFFFFF, for example, are consid-
ered to be the same when drawing in transparent mode.

SEE ALSO: DrawTransparent, Transparent.

UpdateCount property UpdateCount: Integer; // read-only

The current nesting level of the update block. It is increased each time you call the Begin-
Update method and is decremented with EndUpdate calls. Bitmap does not report
changes to its parent (for example, TImage32 component) as long as UpdateCount is
greater than 0.

SEE ALSO: BeginUpdate, EndUpdate.

UseAlpha property UseAlpha: Boolean;

Specifies that Draw method should use blending when drawing the bitmap. Setting this
property will automatically reset the Transparent property.

SEE ALSO: Draw, DrawBlend, AutoAlphaMult.

Width property Width: Integer;

Specifies the width of the bitmap in pixels.

SEE ALSO: Height, SetSize, Empty.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 9

...
...

...
...

..
...Methods

AlphaToGrayscale procedure AlphaToGrayscale(AlphaSrc: TBitmap32 = nil);

This function converts AlphaChannel of an external bitmap referenced by AlphaSrc param-
eter into the grayscale image stored in RGB channels. If AlphaSrc is nil, the bitmap con-
verts itself. The resulting bitmap has the alpha channel filled with $FF values. If
necessary, the destination bitmap is resized to fit AlphaSrc dimensions.

This property is useful when you want visualize alpha channel or save it to disk.

SEE ALSO: ColorToGrayscale.

BeginUpdate procedure BeginUpdate;

Increases the UpdateCount property and disables the generation of OnChange events.
Calls to BeginUpdate method must be paired with EndUpdate calls and they may be safely
nested.

SEE ALSO: EndUpdate, UpdateCount, OnChange.

Changed procedure Changed(Sender: TObject); virtual;

Calls the OnChange event. If the code is outside the BeginUpdate…EndUpdate block.

SEE ALSO: OnChange, BeginUpdate, EndUpdate.

Clear procedure Clear; overload;
procedure Clear(FillColor: TColor32); overload;

Fills the whole bitmap with FillColor. If no argument is specified, clBlack32 ($FF000000)
is used.

ColorToGrayscale procedure ColorToGrayscale(ColorSrc: TBitmap32 = nil);

This function converts the image given in ColorSrc into a grayscale image. If the source is
nil (default) then the bitmap converts itself. If necessary, resizing is performed to fit the
size of the source bitmap. For example:

Bitmap32.ColorToGrayScale(ColorBitmap32);

resizes Bitmap32 to the size of ColorBitmap32 and puts the grayscale version of
ColorBitmap32 into Bitmap32.

The after conversion, the alpha channel contains $FF values.

SEE ALSO: AlphaToGrayscale, IntensityToAlpha.

Draw procedure Draw(hDst: HDC); overload;
procedure Draw(hDst: HDC; X, Y: Integer); overload;
procedure Draw(hDst: HDC; const Dst: TRect); overload;
procedure Draw(hDst: HDC; const Dst, Src: TRect); overload;

The Draw method draws the bitmap to any object that have the device context. Usually it
will be TCanvas, or another TBitmap32.

If the UseAlpha property is True, it calls the DrawBlend method to blend the bitmap with a
background.

If Transparent property is True, the DrawTransparent method will be called to draw the bit-
map with some pixels being transparent.

Overwise the bitmap is drawn with DrawOpaque.

SEE ALSO: DrawBlend, DrawOpaque, DrawTransparent, UseAlpha, MasterAlpha, Transparent,
PreMultAlpha.

DrawBlend procedure DrawBlend(hDst: HDC); overload;
procedure DrawBlend(hDst: HDC; X, Y: Integer); overload;
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 1 0

...
...

...
...

..
procedure DrawBlend(hDst: HDC; const Dst: TRect); overload;
procedure DrawBlend(hDst: HDC; const Dst, Src: TRect); overload;

Blends the bitmap with a background, using its per-pixel transparency contained in its
alpha channel and MasterAlpha to control the overall opacity.

The source format of the bitmap is specified by the AutoAlphaMult property. If it is set to
False, all the bitmap should consist of pixels premultiplied with the alpha channel. If
AutoAlphaMult is set to True, DrawBlend will copy and convert data into a temporal buffer
which will be used for painting.

SEE ALSO: Draw, UseAlpha, AutoAlphaMult, MasterAlpha.

DrawHorzLine procedure DrawHorzLine(X1, Y, X2: Integer; Value: TColor32);
procedure DrawHorzLineS(X1, Y, X2: Integer; Value: TColor32);
procedure DrawHorzLineT(X1, Y, X2: Integer; Value: TColor32);
procedure DrawHorzLineTS(X1, Y, X2: Integer; Value: TColor32);

Draws a horizontal line from (X1,Y) to (X2, Y). The last point is included. These functions
works faster compared to DrawLine. In versions with ‘S’ postfix necessary clipping to a
bitmap coordinate range is provided. The X1 value should be less than or equal to X2.

SEE ALSO: DrawLine, DrawVertLine.

DrawLine procedure DrawLine(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineT(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineTS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineA(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineAS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineF(X1, Y1, X2, Y2: Single; Value: TColor32);
procedure DrawLineFS(X1, Y1, X2, Y2: Single; Value: TColor32);

Draws a line from (X1,Y1) to (X2, Y2). In versions with ‘S’ postfix necessary line clipping
to a bitmap boundary is provided.

DrawLineA and DrawLineAS use modified Bresenham’s algorithm for antialiasing, but do
not support opacity of a color.

DrawLineF and DrawLineFS use my own algorithm for antialiasing. The end points may
have floating point coordinates and the line opacity is supported. These methods work
approximately 2.5 times slower than DrawLineA and DrawLineAS.

Note: Delphi does not render
the last point in a line.

All the methods, except DrawLineF and DrawLineFS, include rendering of the last point
with (X2, Y2) coordinates.

DrawLineF and DrawLineFS do not draw the last point in the line. That makes them suit-
able for drawing of series of connected lines with antialiasing and with floating point coor-
dinates. For example, these functions are ideal for drawing of highly detailed graphs:

var
I: Integer;
X1, Y1, X2, Y2, H2: Single;

begin
Bitmap32.Clear(clBlack32);
H2 := Bitmap32.Height / 2;
X1 := 0; // store coordinates for the first point
Y1 := H2 - Func(X1);
for I := 1 to N - 1 do
begin

X2 := 1.5 * I; // increment X2 to a next point
Y2 := H2 - Func(X2); // move the origin and invert the y coordinate
Bitmap32.DrawLineFS(X1, Y1, X2, Y2, clWhite32); // draw the line
X1 := X2;
Y1 := Y2;

end;
end;

Note, that most common line antialiasing algorithms (like modified Bresenham’s) use
integer end point coordinates, which would make the curve distorted at such small steps*.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 1 1

...
...

...
...

..
SEE ALSO: DrawHorzLine, DrawVertLine.

DrawOpaque procedure DrawOpaque(hDst: HDC); overload;
procedure DrawOpaque(hDst: HDC; X, Y: Integer); overload;
procedure DrawOpaque(hDst: HDC; const Dst: TRect); overload;
procedure DrawOpaque(hDst: HDC; const Dst, Src: TRect); overload;

DrawOpaque copies the bitmap to the destination specified in hDst argument. If destina-
tion rectangle, given by Dst has different dimensions than size of the source bitmap (or
from the rectangle given by Src), image will be stretched.

SEE ALSO: Draw.

DrawTransparent procedure DrawTransparent(hDst: HDC); overload;
procedure DrawTransparent(hDst: HDC; X, Y: Integer); overload;
procedure DrawTransparent(hDst: HDC; const Dst: TRect); overload;
procedure DrawTransparent(hDst: HDC; const Dst, Src: TRect); overload;

Draws the bitmap with transparency. That is the pixels having the same color components
as given by the TransparentColor property are fully transparent. The alpha channel is disre-
garded.

SEE ALSO: Draw, Transparent, TransparentColor.

DrawVertLine procedure DrawVertLine(X, Y1, Y2: Integer; Value: TColor32);
procedure DrawVertLineS(X, Y1, Y2: Integer; Value: TColor32);
procedure DrawVertLineT(X, Y1, Y2: Integer; Value: TColor32);
procedure DrawVertLineTS(X, Y1, Y2: Integer; Value: TColor32);

Draws a vertical line from (X,Y1) to (X, Y2). The last point is included. These functions
works faster compared to DrawLine. In versions with ‘S’ postfix necessary clipping to a
bitmap coordinate range is provided. The Y2 value should be greater or equal to Y1.

SEE ALSO: DrawLine, DrawVertLine.

Empty function Empty: Boolean;

Returns true if the bitmap is empty, that is both Width and Height are equal to zero and
there is no device context (Handle property) allocated.

SEE ALSO: Width, Height, Handle.

EndUpdate procedure EndUpdate;

Decreases the UpdateCount property and enables the generation of OnChange events if
UpdateCount reaches 0.

SEE ALSO: BeginUpdate, UpdateCount, OnChange.

FillRect procedure FillRect(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure FillRectS(X1, Y1, X2, Y2: Integer; Value: TColor32);

...
* In fact, this was the original reason why I started making the Graphics32 library.

Results of performance tests for different line drawing algorithms.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 1 2

...
...

...
...

..
procedure FillRectT(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure FillRectTS(X1, Y1, X2, Y2: Integer; Value: TColor32);

Fills the rectangle with a specified color. Methods with ‘S’ postfix provide necessary clip-
ping to bitmap boundaries. Unlike TCanvas, TBitmap32 fills the rectangle including the
right column (X2) and the bottom row (Y2).

SEE ALSO: FrameRect.

FrameRect procedure FrameRectS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure FrameRectTS(X1, Y1, X2, Y2: Integer; Value: TColor32);

Draws a rectangle. Row with X2 coordinate and column with Y2 coordinate are included.

SEE ALSO: FillRect.

IntensityToAlpha procedure IntensityToAlpha(IntensitySrc: TBitmap32 = nil);

This function converts intensity stored in IntensitySrc into opacities stored in alpha channel.
If IntensitySrc is nil, the bitmap converts itself. If necessary, the destination bitmap is
resized to fit IntensitySrc dimensions. Only the alpha channel is changed, RGB channels
remain intact as long as the bitmap has the same dimensions as IntensitySrc.

SEE ALSO: AlphaToGrayscale, ColorToGrayscale.

Invert procedure Invert(Src: TBitmap32 = nil);

This method copies inverted Src to the bitmap. If Src is nil, the the bitmap inverts itself.
Inversion is not performed for alpha channel.

LoadFromFile procedure LoadFromFile(const FileName: string);

Loads an image from a file. This method uses a temporal TPicture object to load data and
will succeed with any format supported by TPicture.

SEE ALSO: LoadFromStream, SaveToFile, SaveToStream.

LoadFromStream procedure LoadFromStream(Stream: TStream);

Loads an image from a stream. This method uses a temporal TPicture object to load data
and will succeed with any format supported by TPicture.

SEE ALSO: LoadFromFile, SaveToStream, SaveToFile.

Lock procedure Lock;

Blocks other execution threads from using the bitmap until the Unlock method is called. If
another thread is trying to call a Lock method of an object which is already locked, its exe-
cution is stalled until the lock is released with Unlock method.

Once a thread has locked the object, it can make additional calls to Lock method without
blocking its execution. This prevents the thread from deadlocking itself while waiting for
releasing of a lock that it already owns.

The LockCount property is increased each time the Lock method is called.

SEE ALSO: Unlock, LockCount.

PreMultAlpha procedure PreMultAlpha;

Prepares the bitmap for blending with DrawBlend function.

SEE ALSO: AutoAlphaMult, DrawBlend, Draw.

RaiseRectTS procedure RaiseRectTS(X1, Y1, X2, Y2: Integer; Contrast: Integer);

This function draws a raised or recessed frame. The contrast property is an integer value
ranging from –100 to +100.

+100% -100%
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 1 3

...
...

...
...

..
ResetAlpha procedure ResetAlpha;

Resets the alpha channel of the entire bitmap to $FF. Call this method after loading a bit-
map from a file or after assigning it from a TBitmap object, if the AutoAlphaMult property
is not used for blending.

SEE ALSO: AutoAlphaMult, DrawBlend.

Resize procedure Resize(NewWidth, NewHeight: Integer); virtual;

The Resize method scales the bitmap to the specified size. In current version of
Graphics32, it uses Windows API functions for bitmap resizing.

SEE ALSO: SetSize, Height, Width.

SetPixel procedure SetPixelT(X, Y: Integer; Value: TColor32); overload;
procedure SetPixelT(var Ptr: PColor32; Value: TColor32); overload;
procedure SetPixelTS(X, Y: Integer; Value: TColor32);
procedure SetPixelF(X, Y: Single; Value: TColor32);
procedure SetPixelFS(X, Y: Single; Value: TColor32);

SetPixelT blends the pixel with a bitmap at specified coordinates using the specified color.
The pixel’s alpha channel is used, but coordinates are not validated.

The overloaded version of SetPixelT with a pixel pointer argument allows setting pixels
addressed with the pointer rather than with coordinates. The pointer is automatically
incremented to a next pixel position each time you call SetPixelT, for example:

var
P: PColor32;
I: Integer;

begin
{ Draw a fading white line from (10, 20) to (265, 20) }
P := PixelPtr[10, 20];
for I := 0 to 255 do

SetPixelT(P, Color32(255, 255, 255, 255 - I));
end;

SetPixelTS is the SetPixelT method with added coordinate range checking. If pixel coordi-
nates lie outside the bitmap area, SetPixelTS does nothing.

SetPixelF and SetPixelFS methods provide antialiased rendering of points.

SEE ALSO: Pixel, PixelPtr.

SaveToFile procedure SaveToFile(const FileName: string);

Writes a bitmap image to disk. The format of the file is compatible with TBitmap and TPic-
ture objects.

SEE ALSO: SaveToStream

SaveToStream procedure SaveToStream(Stream: TStream);

Stores a bitmap image to a stream. The data in the stream is stored in a form compatible
with TBitmap and TPicture objects.

SEE ALSO: SaveToFile

X

Y

Bitmap’s
top left
corner
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 1 4

...
...

...
...

..
SetSize procedure SetSize(NewWidth, NewHeight: Integer); overload; virtual;
procedure SetSize(Source: TBitmap32); overload; virtual;

Call SetSize to set a new width and height of the bitmap. If one of the arguments is zero,
the bitmap is considered empty and its Handle property is set to zero. Calling SetSize
works faster than consecutive changing of Width and Height properties.

If you use another bitmap as an argument, the bitmap will be sized to its dimensions.

If you have an external TCanvas attached, refresh it Handle property after the bitmap
resizing:

Bitmap32.SetSize(100, 200);
Canvas.Handle := Bitmap32.Handle;

After the SetSize call the image will be corrupted and the bitmap should be completely
redrawn.

SEE ALSO: Height, Width, Resize, Handle.

TextOut procedure TextOut(X, Y: Integer; const Text: string); overload;
procedure TextOut(X, Y: Integer; const ClipRect: TRect; const Text: string); overload;
procedure TextOut(ClipRect: TRect; const Flags: Cardinal; const Text: string); overload;

Use TextOut to write a string onto the bitmap. The string will be written using the current
value of Font. Use the TextExtent method to determine the space occupied by the text in
the image.

TextOut does not support transparent text colors.

The second version performs clipping of a text to the ClipRect rectangle.

The last variant provides the most flexible text formatting. See description of DrawText
function in ‘Win32 Developer Reference’ help file for information on Flags and their func-
tion.

SEE ALSO: TextExtent, TextWidth, TextHeight.

TextExtent function TextExtent(const Text: string): TSize;

Returns the width and height, in pixels, of a string rendered in the current font.

SEE ALSO: TextHeight, TextWidth, TextOut.

TextHeight function TextHeight(const Text: string): Integer;

Returns the width, in pixels, of a string rendered in the current font.

SEE ALSO: TextExtent, TextWidth, TextOut.

TextWidth function TextWidth(const Text: string): Integer;

Returns the height, in pixels, of a string rendered in the current font.

SEE ALSO: TextExtent, TextHeight, TextOut.

Unlock procedure Unlock;

Decreases the LockCount property allowing other threads to access the object when Lock-
Count reaches 0. The thread must call Unlock once for each time that it locked the object.

SEE ALSO: Lock, LockCount.

UpdateFont procedure UpdateFont;

Use this method before calling the Windows API functions that handle text output. It will
synchronize the device font object with the Font property. You do not have to call Update-
Font when using text output methods of TBitmap32 since they call UpdateFont automati-
cally.

SEE ALSO: Font.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T B i t m a p 3 2 C l a s s p a g e 1 5

...
...

...
...

..
...Events

OnChange property OnChange: TNotifyEvent;

This event is called when the bitmap is changed. In order to prevent generation of multiple
OnChange events than making a lot of changes simultaneously, put BeginChange before
making any changes and call EndChange after it to generate a single OnChange event.

Due to performance reasons not all the methods, which change the bitmap, do in fact
generate the OnChange event. In fact, most of the drawing functions do not.

The table below shows the list of methods and properties of TBitmap32 which generate
OnChange event.

SEE ALSO: Changed, BeginUpdate, EndUpdate.

OnChange event is generated OnChange event is not generated
Properties (writing): Methods: Properties (writing): Methods:
• Height • AlphaToGrayScale • AutoAlphaMult • CheckerFillRectS
• Width • Assign • MasterAlpha • FillRect[S,T,TS]

• Clear • Pixel[S] • FrameRect[S,T,TS]
• ColorToGrayscale • Transparent • DrawHorzLine[S,T,TS]
• IntensityToAlpha • TransparentColor • DrawLine[S,T,TS,F,FS]
• Invert • UseAlpha • DrawVertLine[S,T,TS]
• LoadFromFile • PreMultAlpha
• LoadFromStream • RaiseRectTS
• Resize • ResetAlpha
• SetSize • SetPixel[S,T,TS,F,FS]

• TextOut
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T S p r i t e C l a s s p a g e 1 6

...
...

...
...

..
...
The TSprite Class

TSprite is a container for TBitmap32 object inserted in a TSpriteSet structure. It is used in
TImage32 component to draw sprites or layers over the background bitmap.

TSprite defines position and visibility of contained bitmap. The rest of the parameters,
such as opacity, transparency, dimensions etc., are defined in the contained bitmap
object.

TSprite is a descendant of TCollectionItem object.

...Properties

Bitmap property Bitmap: TBitmap32;

The Bitmap property specifies the bitmap object associated with the sprite.

SEE ALSO: The TBitmap32 Class.

Index property Index: Integer; // inherited from TCollectionItem

Determines index of the sprite in a TSpriteSet collection as well as the order in which the
sprites should be drawn. The sprites with greater Index are drawn after sprites with
smaller ones.

SEE ALSO: The TSpriteSet Class.

Position property Position: TPoint;

Holds coordinates of the sprite object. The location is stored either relative to the back-
ground bitmap or relative to the image displaying component.

SEE ALSO: PositionX, PositionY, The TImage32 Component.

PositionX property PositionX: Integer;

Specifies the horizontal coordinate of the sprite.

SEE ALSO: PositionY, Position.

PositionY property PositionY: Integer;

Specifies the vertical coordinate of the sprite.

SEE ALSO: PositionX, Position.

Visible property Visible: Boolean;

Determines visibility of the sprite. Those sprites with Visible property set to False will not
be displayed by the TImage32 component.

SEE ALSO: The TImage32 Component.

...Methods

Changed procedure Changed(Sender: TObject);

When some of the properties of TSprite change, this method is called automatically to
command to TImage32, that it has to be repainted.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T S p r i t e S e t C l a s s p a g e 1 7

...
...

...
...

..
...
The TSpriteSet Class

TSpriteSet is a descendant of Delphi’s TCollection. It is used by TImage32 to maintain a
list of TSprite objects.

...Properties

Count property Count: Integer; // read-only; inherited from TCollection

Returns the number of sprites in TSpriteSet.

SEE ALSO: Items.

Image property Image: TImage32; // read-only

Contains the reference to the owner.

SEE ALSO: The TImage32 Component.

Items property Items[Index: Integer]: TSprite; default;

Provides indexed access to stored sprites. The value of the Index parameter corresponds
to the Index property of TSprite.

SEE ALSO: Count.

Add function Add: TSprite;

Creates a new TSprite instance and adds it to the Items array.

Use this method to create an item in the collection in run time. The new item is placed at
the end of the Items array, for example:

var
ASprite: TSprite;
I: Integer;

begin
Image32.BeginUpdate; // temporarily disable image repainting
for I := 0 to 5 do
begin

ASprite := Image32.Sprites.Add; // Image32.Sprites property holds a TSpriteSet object.
ASprite.Bitmap.LoadFromFile(‘Sprite’ + IntToStr(I) + ‘.bmp’);

end;
Image32.EndUpdate; // enable image repainting

end;

SEE ALSO: Items.
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T I m a g e 3 2 C o m p o n e n t p a g e 1 8

...
...

...
...

..
...
The TImage32 Component

TImage32 is a VCL component which displays TBitmap32 together with sprites on a form.
TImage32 introduces several properties to determine how the image is displayed within
the boundaries of the TImage32 object.

It is a descendant of the TCustomControl class which automatically provides double-buff-
ering capabilities and flicker-free image.

...Properties

Bitmap property Bitmap: TBitmap32;

Specifies the bitmap which appears on the TImage32 control. The same bitmap is used as
a background when image contains sprites.

SEE ALSO: BitmapAlign, Scale, ScaleMode, Sprites, SpriteOrigin.

BitmapAlign property BitmapAlign: TBitmapAlign;
type TBitmapAlign = (baTopLeft, baCenter);

Specifies Bitmap alignment if the image constrol has dimensions different from Bitmap. It
may be centered (baCenter) or their top left corners may be aligned (baTopLeft).

SEE ALSO: Bitmap, ScaleMode, Scale.

DoubleBuffered property DoubleBuffered: Boolean; // inherited from TCustomControl

Determines whether the image is rendered directly to the window or painted to an in-
memory bitmap first. Double buffering reduces the amount of flicker when the control
repaints, but is more memory intensive.

Scale property Scale: Single;

Controls the bitmap scale when the ScaleMode is set to smScale

SEE ALSO: ScaleMode, Bitmap, BitmapAlign.

ScaleMode property ScaleMode: TScaleMode;
type TScaleMode = (smNormal, smStretch, smScale, smResize);

Determines how the bitmap is scaled (See the image above).

SEE ALSO: Scale, Bitmap, BitmapAlign.

Bitmap positioning with ScaleMode and BitmapAlign properties

ScaleMode = smNormal ScaleMode = smStretch ScaleMode = smScale ScaleMode = smResize

Bi
tm

ap
Al

ign
 =

 bm
To

pL
eft

Bi
tm

ap
Al

ign
 =

 bm
Ce

nte
r

A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

T h e T I m a g e 3 2 C o m p o n e n t p a g e 1 9

...
...

...
...

..
Sprites property Sprites: TSpriteSet;

Contains a set of sprites which are drawn over the background image. Each sprite is ren-
dered using the properties of its bitmap.

SEE ALSO: SpriteOrigin, The TSprite Class, The TSpriteSet Class.

SpriteOrigin property SpritesOrigin: TSpriteOrigin;
type TSpriteOrigin = (soImage, soBitmap);

SpriteOrigin controls positioning of sprites inside the image. The sprite origin may be posi-
tioned at the top left corner of the TImage32 component or it may coincide with the top
left corner of the background bitmap after its scaling and aligning.

SEE ALSO: Sprites, Bitmap.

...Methods

BeginUpdate procedure BeginUpdate;

Disables the image repainting until the EndUpdate method is called. Use BeginUpdate
when making multiple changes to the image simultaneously, when call EndUpdate to
repaint the image and to enable further repainting.

BeginUpdate…EndUpdate blocks may be nested, only the outermost one re-enables image
repainting.

Note, that TBitmap32 has the same type of update blocking. You may want to use it if you
are making changes only to a bitmap itself. The BeginUpdate and EndUpdate methods of
TImage32 provide blocking of updates when TImage properties, such as scale, alignment
or sprite positions are changed. The following example moves each sprite 2 pixels right
and 1 pixel down:

dx := 2;
dy := 1;
Image32.BeginUpdate; // disable image repainting
try
for I := 0 to Image32.Sprites.Count - 1 do
begin

Image32.Sprites[I].PositionX := Image32.Sprites[I].PositionX + dx;
Image32.Sprites[I].PositionY := Image32.Sprites[I].PositionY + dy;

end;
finally

Image32.EndUpdate; // repaint image and allow further repainting
end;

SEE ALSO: EndUpdate.

EndUpdate procedure EndUpdate;

Re-enables image repainting when bitmap changes. The number of EndUpdate calls
should match the number of BeginUpdate calls.

SEE ALSO: BeginUpdate.

SpriteOrigin = soImage SpriteOrigin = soBitmap
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

F i n a l i z a t i o n p a g e 2 0

...
...

...
...

..
SetupBitmap procedure SetupBitmap(DoClear: Boolean = False; ClearColor: TColor32 = $FF000000); virtual;

SetupBitmap simply sets the size of contained Bitmap (in pixels) to the size of an Image
control, then it may optionally fill the bitmap with specified color. It has the same action
as does the next pair or lines:

Image32.Bitmap.SetSize(Image32.Width, Image32.Height);
if DoClear then Image32.Bitmap.Clear(ClearColor);

...
Finalization

That’s all for now.

Do not forget to send your comments and suggestions, and visit my web page for updated
versions of Graphics32, as well as for some other freeware components.

Good luck,

Alex Denissov
denisso@uwindsor.ca
http://www.geocities.com/den_alex
A L E X D E N I S S O V V E R S I O N 0 . 9 1 — M A R C H 1 0 , 2 0 0 0

http://www.geocities.com/den_alex
mailto:denisso@uwindsor.ca
mailto:denisso@uwindsor.ca

	Overview
	License
	Installation
	Introduction
	The TColor32 Type
	Color Functions
	Color Construction and Conversion
	Color32
	Gray32
	WinColor
	HSLtoRGB
	RGBtoHSL

	Component Access
	RedComponent
	GreenComponent
	BlueComponent
	AlphaComponent
	Intensity
	SetAlpha

	Color Algebra
	ColorAdd
	ColorSub
	ColorModulate
	ColorMax
	ColorMin
	ColorMix

	Gamma Correction for Antialiasing
	SetGamma

	The TBitmap32 Class
	Properties
	AutoAlphaMult
	Bits
	Font
	Handle
	Height
	LockCount
	MasterAlpha
	OuterColor
	Pixel
	PixelPtr
	ScanLine
	Transparent
	TransparentColor
	UpdateCount
	UseAlpha
	Width

	Methods
	AlphaToGrayscale
	BeginUpdate
	Changed
	Clear
	ColorToGrayscale
	Draw
	DrawBlend
	DrawHorzLine
	DrawLine
	DrawOpaque
	DrawTransparent
	DrawVertLine
	Empty
	EndUpdate
	FillRect
	FrameRect
	IntensityToAlpha
	Invert
	LoadFromFile
	LoadFromStream
	Lock
	PreMultAlpha
	RaiseRectTS
	ResetAlpha
	Resize
	SetPixel
	SaveToFile
	SaveToStream
	SetSize
	TextOut
	TextExtent
	TextHeight
	TextWidth
	Unlock
	UpdateFont

	Events
	OnChange

	The TSprite Class
	Properties
	Bitmap
	Index
	Position
	PositionX
	PositionY
	Visible

	Methods
	Changed

	The TSpriteSet Class
	Properties
	Count
	Image
	Items
	Add

	The TImage32 Component
	Properties
	Bitmap
	BitmapAlign
	DoubleBuffered
	Scale
	ScaleMode
	Sprites
	SpriteOrigin

	Methods
	BeginUpdate
	EndUpdate
	SetupBitmap

	Finalization

