
The TaskJuggler Project Management
Software
Chris Schlaeger

Copyright © 2003 Chris Schlaeger

Table of Contents
Introduction . 1
Features and Highlights. 1
Basics . 3
The TaskJuggler Syntax. 3
Global Attributes . 3
Macros . 3
Using flags . 4
Declaring Resources. 4
Time and Date Specifications. 5
Declaring Accounts . 5
Specifying Tasks . 5
Task Durations . 6
Allocating Resources . 6
Task Dependencies. 7
Task Priorities . 7
Comparing multiple Project Scenarios. 7
Tracking the Project Status. 8
Specifying Efforts . 8
Crediting costs to Accounts. 9
Specifying Milestones . 9
Generating Reports of the scheduled Project. 10
Generating HTML Task Reports. 11
Generating HTML Resource Reports. 11
Generating HTML Account Reports. 12
Generating XML Reports . 12
Conclusion . 13

Introduction
TaskJuggler is a project planing tool for Linux and UNIX system-based operating systems. All tasks with their
dependencies and other properties are edited by using a text editor. The file is then sent through TaskJuggler
which in turn produces all sorts of reports in HTML or XML format. The HTML files can be viewed and printed
with any web browser. The XML files are used by the Gantt- and PERT chart generators and the KDE Konqueror
plug-in.

Since TaskJuggler is not constrained by the performance requirements of real-time editing it can offer a much
broader set of features not found in any of the WYSIWYG (What You See Is What You Get) project planing tools.
The the project description language is easy to learn and supports the user very effectively during the planing and
tracking process.

TaskJuggler does not only honor the task interdependencies but also takes resource constrains and job prioritization
into account. The multi-scenario support makes TaskJuggler a versatile tool for both what-if-analysis and
plan/actual comparisons. Using TaskJuggler’s powerful filtering and reporting algorithms the user can create
a variety of task lists, resource usage tables, status reports, project calendars and project accounting statements.

1

Features and Highlights

• Automatic scheduling of interdependent tasks with resource conflict solver.

• Powerful project description syntax with macro support.

• Flexible working hours and vacation handling.

• Support for shifts.

• Multiple time zone support.

• Flexible resource grouping.

• Project accounting support.

• Task may have initial and finishing costs.

• Resource may have running costs.

• Support for profit and loss analysis.

• HTML and XML report generation.

• Gantt and PERT chart generators.

• Support for plan and actual scenario comparisons.

• Project tracking support.

• Groupware support by using a revision control system such as CVS or RCS on the project description files.

• Support for central resource allocation database.

• Support for cascaded and nested projects.

• Import and export of sub-projects.

• Unicode and localization support.

2

Basics
TaskJuggler uses one or more text files to describe a project. The main project should be placed in a file with the
.tjp extension. This main project may contain several sub-projects. Such sub-projects should be placed in files
with the.tjspextension. These sub-projects are included in the main project during compile time.

TaskJuggler works like a compiler. The user provides the source files and TaskJuggler computes the contents and
creates the output files.

Let’s sayAcSo.tjp is a valid TaskJuggler project file. It contains the tasks of the project and their dependencies.
To schedule the project and create report files the user calls TaskJuggler to process it.

% taskjuggler AcSo.tjp

TaskJuggler will try to schedule all tasks with the specified conditions and generate the reports that were requested
with thehtmltaskreport, htmlresourcereportor other report attributes in the input file.

The TaskJuggler Syntax
To introduce the TaskJuggler syntax we create the project plan for a software development project. This example
illustrates the basic features of TaskJuggler. The full source code of the example and the resulting reports can be
found on the TaskJuggler Web Site [http://www.taskjuggler.org] at http://www.taskjuggler.org/example.php.

A project is always started with theprojectproperty.

project acso "Accounting Software" "1.0" 2002-01-16 2002-04-26 {
now 2002-03-04

}

It tells TaskJuggler the default project ID, a short name for the project, a version number and a start and end
date. The start and end dates don’t need to be exact, but must enclose all tasks. It specifies the time interval the
TaskJuggler scheduler will use to fit the tasks in.

All TaskJuggler properties have a certain number of fixed attributes and a set of optional attributes. Optional
attributes are always enclosed in curly braces. In this example we use the optional attributesnowto set the current
day for the scheduler to another value than to the moment the user invokes TaskJuggler. We pick a day during
the above specified project period. So we always get the same results of a TaskJuggler run, no matter when we
process our first project.

Global Attributes
Besides finding suitable start and end dates for the tasks of the project, TaskJuggler can also do a simple profit
and loss analysis. The user has to specify the default daily costs of an employee. This can be changed for specific
employees later but it illustrates an important concept of TaskJuggler - inheritance of attributes. In order to reduce
the size of the TaskJuggler project file to a still readable minimum, properties inherit many optional attributes
from their enclosing scope. We’ll see further down, what this actually means. Here we are at top-level scope, so
this is the default for all following properties.

rate 310.0
currency "EUR"

Therateattribute can be used to specify the daily costs of resources. Thecurrencyattribute specifies the currency
to be used.

3

url(http://www.taskjuggler.org)
url(http://www.taskjuggler.org/example.php)

Macros
Macros are another TaskJuggler feature to keep project files small. Macros are text patterns that can be defined
once and inserted many times further down the project. A macro always has a name and the text pattern is enclosed
by square brackets.

macro allocate_developers [
allocate dev1
allocate dev2 { load 0.5 }
allocate dev3

]

To use the macro the user simply has to write${allocate_developers} and TaskJuggler will replace the
${allocate_developers}with the pattern. We will use the macro further down in the example and then explain
the meaning of the pattern.

Macros can also have parameters. Inside the macro they are referenced by their number.

macro foo [
The first parameter is ${1}.
And the second is ${2}.

]

Now the call

${foo "bar1" "bar2"}

would be expanded to

The first parameter is bar1.
And the second is bar2.

Using flags
A TaskJuggler feature that the user will probably make heavy use of isflags. Once declared the user can attach
them to many properties. When generating reports of the TaskJuggler results, the user can use the flags to filter
out information and limit the report to exactly those details that should be included.

flags team

Flags must be declared at global scope before they can be attached to other properties.

Declaring Resources

resource dev "Developers" {
resource dev1 "Paul Smith" { rate 330.0 }
resource dev2 "Sébastien Bono"
resource dev3 "Klaus Müller" { vacation 2002-02-01 - 2002-02-05 }

flags team

4

}
resource misc "The Others" {

resource test "Peter Murphy" { maxeffort 0.8 rate 240.0 }
resource doc "Dim Sung" { rate 280.0 }

flags team
}

This snippet of the example shows theresource property. Resources always have an ID and a Name. IDs may
only consist of ASCII characters, numbers and the underline character. All global TaskJuggler properties have
IDs. They need to be unique within their property class. The ID is needed so that we can reference the property
again later without having the need to write the potentially much longer name. Names are strings and as such
enclosed in double quotes. Strings may contain any character, even non-ASCII characters. As seen above,
resource properties can be nested.devis a virtual resource, a team, that consists of three other resources.

dev1, alias Paul Smith earns more than the normal employee. So the declaration ofdev1overwrites the inherited
default rate with a new value of 330.0. The default value has been inherited from the enclosing scope, resource
dev. Which in turn has inherited it from the global scope.

The declaration of the resource Klaus Mueller uses another optional attribute. Withvacationthe user can specify
a certain time interval where the resource is not available.

Time and Date Specifications
It is important to understand how TaskJuggler handles time intervals. Internally TaskJuggler uses the number of
seconds after January 1st, 1970 to store any date. So all dates are actually stored with an accuracy of 1 second.
2002-02-01specifies midnight February 1st, 2002. Again following the TaskJuggler concept of needing as little
info as necessary and extending the rest with sensible defaults, TaskJuggler adds the time 0:00:00 if nothing else
has been specified. So the vacation ends on midnight February 5th, 2002. Well, almost. Every time the user
specifies a time interval, the end date is not included in the interval. But the second before the date that has been
specified is still part of the interval. So Klaus Mueller’s vacation ends 23:59:59 on February 4th, 2002.

Peter Murphy only works 6.5 hours a day (actually 6.4 hours). So we use themaxeffortattribute to limit his daily
working hours. We could also define exact working hours using theshiftproperty, but we ignore this for now.shift
enables the user to specify the exact working hours for each day of the week.

Note that we have attached the flagteamafter the declaration of the sub-resources to the team resources. This way,
they flags don’t get inherited by the sub-resources. If we would have declared the flags before the sub-resources,
then they would have the flags attached as well.

Declaring Accounts
The use of our resources will create costs. For a profit and loss analysis, we need to balance the costs against the
customer payments. So that we don’t get lost with all the amounts, we declare 3 accounts to credit the amounts
to. We create one account for the development costs, one for the documentation costs and one for the customer
payments.

account dev "Development" cost
account doc "Dokumentation" cost
account rev "Payments" revenue

The accountproperty has 3 fixed attributes, an ID, a name and a type. The type can either becostor revenue.
For the analysis TaskJuggler subtracts the total amount of all cost accounts from the total amount of all revenue
accounts.

5

Specifying Tasks
Let’s focus on the real work now. The project should solve a problem - the creation of an accounting software.
Since the job is quite complicated we break it down into several sub tasks. We need to do a specification, develop
the software, test the software and write a manual. In TaskJuggler syntax this would look like that:

task AcSo "Accounting Software" {
task spec "Specification"
task software "Software Development"
task test "Software testing"
task deliveries "Milestones"

}

Just like resources, tasks are declared by using thetask keyword followed by an ID and a name string. All
TaskJuggler properties have their own namespaces. This means, that it is quite OK to have a resource and a task
with the same ID. Tasks may have optional attributes which can be tasks again, so tasks can be nested. In contrast
to all other TaskJuggler properties, task IDs inherit the ID of their enclosing task as a prefix to the ID. The full ID
of thespectask isAcSo.spec.TaskJuggler uses dots to concatenate the IDs of hierarchical tasks to absolute IDs.

To track important milestones of the project, we also added a task called Milestones. This task, like most of the
other task will get some sub tasks later on. We consider the specification task simple enough that we don’t have
to break it into further sub tasks. So let’s add some more details to it.

Task Durations

task spec "Specification" {
effort 20d
${allocate_developers}
depends !deliveries.start

}

The effort to complete the task is specified with 20 man days. Alternatively we could have used thelength
attribute or thedurationattribute.lengthspecifies the duration of the task in working days whiledurationspecifies
the duration in calendar days. Contrary toeffort these two don’t require to have a specification of the involved
resources. If resources are specified they are allocated when available but they do not affect the total duration of
the task.

Allocating Resources
Sinceeffortspecifies the duration in man days, we need to say who should be allocated to the task. The task won’t
finish before the resources could be allocated long enough to reach the specified effort.

Here we use the above mentioned macroallocate_developers. The expression

${allocate_developers}

is simply expanded to

allocate dev1
allocate dev2 { load 0.5 }
allocate dev3

6

If it is necessary to allocate the same bunch of people to several task, the macro saves some writing. One could
have written theallocateattributes directly instead of using the macro. Since the allocation of multiple resources
to a task is a very common place for macro usage, we found it a good idea to use it in this example as well.

One more interesting thing to note is the fact that we like the resourcedev2only to work 50% of the day on this
task, so we use the optional attributeload to specify this.

For TaskJuggler to schedule a task it needs to know either the start and end criteria of a task, or one of them and
a duration specification. The start and end criteria can either be fixed dates or relative dates. Relative dates are
specification of the type "task B starts after task A has finished". Or in other words, task B depends on task A. In
this example thespectask depends on a sub tasks of thedeliveriestasks. We haven’t specified it yet, but it has the
local ID start.

Task Dependencies
To specify the dependency between the two task we use thedependsattribute. The attribute must be followed
by one or more task IDs. If more than one ID is specified, each ID has to be separated with a comma from the
previous one. Task IDs can be either absolute IDs or relative IDs. An absolute ID of a task is the ID of this task
prepended by the IDs of all enclosing tasks. The task IDs are separated by a dot from each other. The absolute ID
of the specification task would beAcSo.spec.

Relative IDs always start with one or more exclamation marks. Each exclamation mark moves the scope to the
next enclosing task. So!deliveries.startis expanded toAcSo.deliveries.startsinceAcSois the enclosing task of
deliveries. Relative task IDs are a little bit confusing at first, but have a real advantage over absolute IDs. Sooner or
later the user wants to move tasks around in the project and then it’s a lot less likely that one has to fix dependency
specifications of relative IDs.

The software development task is still too complex to specify it directly. So we split it into sub tasks again.

Task Priorities

task software "Software Development" {
priority 1000
task database "Database coupling"
task gui "Graphical User Interface"
task backend "Back-End Functions"

}

We use thepriority attribute to mark the importance of the tasks. By default all tasks have a priority of 500 unless
the parent tasks specifies it differently. Setting the priority to 1000 marks the task as most important task, since the
possible range is 1 (not important at all) to 1000 (ultimately important).priority is an attribute that is inherited to
sub tasks if specified before the sub tasks declaration. So all sub tasks ofsoftwarehave a priority of 1000 as well.

task database "Database coupling" {
effort 20d
depends !!spec
allocate dev1
allocate dev2

}

The work on the database coupling should not start before the specification has been finished. So we use again the
dependsattribute to let TaskJuggler know about this. This time we use two exclamation marks for the relative ID.
The first one puts us in the scope of the enclosingsoftwaretask. The second one is to get into theAcSoscope that
contains thespectasks. This time we allocate resources directly without using a macro.

7

Comparing multiple Project Scenarios

task gui "Graphical User Interface" {
effort 35d
actualeffort 40d
depends !database, !backend
allocate dev2
allocate dev3

}

TaskJuggler can schedule the project for two different scenarios. The first scenario is called the plan scenario. The
other is referred to as the actual scenario. Many of the reports allow to put the values of both scenarios side by
side to each other, so one can compare the two scenarios. The two scenarios must have the same task structure
and the same dependencies. But the start and end dates of tasks as well as the duration and the resulting resource
allocation may vary. In the example we have planed the work on the graphical user interface to be 35 man days.
It turned out that we actually needed 40 man days. Theactualeffortattribute can be used to specify this.

Tracking the Project Status

task backend "Back-End Functions" {
effort 30d
complete 95
depends !database, !!spec
allocate dev1
allocate dev2

}

By default TaskJuggler assumes that all tasks are on schedule. Sometimes the user wants to generate reports, that
show how much of a task has actually been completed. TaskJuggler uses the current date for this unless another
date has been specified by using thenowattribute. If a task is ahead of schedule or late this can be specified using
thecompleteattribute. It specifies how many percent of the task have been completed up to the current date. In
our case the back-end implementation is slightly ahead of schedule as we will see from the report.

Specifying Efforts

task test "Software testing" {

task alpha "Alpha Test" {
effort 1w
depends !!software
allocate test
allocate dev2

}

task beta "Beta Test" {
effort 4w
depends !alpha
allocate test
allocate dev1

}
}

The software testing task has been split up into an alpha and a beta test task. The interesting thing here is, that
efforts can not only be specified as man days, but also man weeks, man hours, etc. Per default TaskJuggler assumes
a man week is 40 man hours or 5 man days. These values can be changed using thedailyworkinghoursattribute.

8

Crediting costs to Accounts
Let’s go back to the outermost task again. At the beginning of the example we stated that we want to credit all
development work to one account with IDdevand all documentation work to the accountdoc. To achieve this,
we use the attribute account to credit all tasks to thedevaccount.

task AcSo "Accounting Software" {

account dev

task software "Software Development" {

Since we specify the attribute for the top-level task before we declare any sub tasks, this attribute will be inherited
by all sub tasks and their sub tasks and so on. Since the only exception is the writing of the manual, we need to
change the account for this task again since it is also a sub task ofAcSo.

task manual "Manual" {
effort 10w
depends !deliveries.start
allocate doc
allocate dev3
account doc

}

Specifying Milestones
All task that have been discussed so far, had a certain duration. We did not always specify the duration explicitly,
but we expect them to last for a certain period of time. Sometimes the user just wants to capture a certain moment
in the project plan. These moments are usually called milestones since they have some level of importance for the
progress of the project.

TaskJuggler has support for milestones as well. They are handled as special types of tasks. By using the optional
attributemilestonefor a task, this task is declared a milestone. Milestones have no duration, so it’s illegal to
specify any duration criteria, or a non identical start and end date.

task deliveries "Milestones" {

account rev

task start "Project start" {
milestone
start 2002-01-16
actualstart 2002-01-20
startcredit 33000.0

}

task prev "Technology Preview" {
milestone
depends !!software.backend
startcredit 13000.0

}

task beta "Beta version" {
milestone
depends !!test.alpha
startcredit 13000.0

9

}

task done "Ship Product to customer" {
milestone
maxend 2002-04-17
depends !!test.beta, !!manual
startcredit 14000.0

}
}

}

We have put all important milestones of the project as sub tasks of thedeliveriestask. This way they show up
nicely grouped in the reports. All milestone have either a dependency or a fixed start date. For the first milestone
we have used the attributestart to set a fixed start date. All other tasks have direct or indirect dependencies on this
task. Moving back the start date will slip the whole project. This has actually happened, so we use theactualstart
attribute to specify the real start of the project 4 days later.

Every milestone is linked to a customer payment. By using thestartcreditattribute we can credit the specified
amount to the account associated with this task. Since we have assigned therev account to the enclosing task, all
milestones will use this account as well.

The line within the definition of the taskdonethat starts with a hash is a comment. If TaskJuggler finds a hash it
ignores the rest of the line. This way the user can include comments in the project. Themaxendattribute specifies
that the task should end no later than the specified date. This information is not used for scheduling but only for
checking the schedule afterwards. Since the task will end later than the specified date, commenting out the line
would trigger a warning.

Now the project has been completely specified. Stopping here would result in a valid TaskJuggler file that could
be processed and scheduled. But no reports would be generated to visualize the results.

Generating Reports of the scheduled Project
TaskJuggler offers a number of report types. Probably the most popular ones are the HTML reports. The user can
advice TaskJuggler to generate one or more HTML pages that contain lists of tasks, resources or accounts.

Before we start with the reports, we present another macro. We like to add a navigation bar to each HTML
page that holds a number of buttons. Each button changes the page to another report. This way we can create a
navigation bar that holds links to all reports. Since we have created a macro, we can add the navigation bar to all
reports without much hassle. The navigation bar is constructed with HTML tags. If the user is not familiar with
HTML this will look very strange but it is a cool feature we would like to demonstrate. Certainly the user can
use TaskJuggler to it’s full extend without having to learn HTML code.

The HTML code is injected into the reports using therawheadattribute. This will put the HTML code close to
the top of the HTML page right after the body started. As can be seen here, string parameters of attributes can be
enclosed in single quotes as well. This is handy, if the string itself needs to contain double quotes.

macro navbar [
rawhead

’<p><center>
<table border="2" cellpadding="10">
<tr>

<td class="default" style="font-size:120%" rowspan="2">
Tasks Overview</td>
<td class="default" style="font-size:120%" rowspan="2">
Tasks Details</td>
<td class="default" style="font-size:120%" rowspan="2">
Staff Overview</td>
<td class="default" style="font-size:120%" rowspan="2">
Staff Details</td>

10

<td class="default" style="font-size:120%" rowspan="2">
Accounting</td>
<td class="default" style="font-size:120%" rowspan="2">
GANTT Chart (Postscript)</td>

</tr>
</table>
</center></p>
’

]

Generating HTML Task Reports
As the first report, we would like to have a general overview of all tasks with their computed start and end dates.
For better readability we include a calendar like column that lists the effort for each week. The report shell consists
mainly of a listing of the tasks in a table form. The propertyhtmltaskreportgenerates exactly this, a list of all
tasks in a table. The columns are flexible and can be specified with thecolumnattribute. For this report we like to
see the number, the name, the start and end date, a weekly calendar and the total effort in the table.

htmltaskreport "Tasks-Overview.html" {
${navbar}
columns no, name, start, end, weekly, effort
headline "Accounting Software Project"
caption "This table shows the load for each task on a weekly basis.
All values are man-days."

}

With theheadlineattribute we can specify a headline for the report. To have a little more info included as well,
we use thecaptionattribute. Both of these attributes are followed by the string to be included into the report.

Now we like to generate a report that contains a lot more details about the task. The weekly calendar is replaced
by a daily calendar. The weekly calendar had a column for each week. The daily calendar features a column for
each day. The column includes the load for the task for the week or day and a colored background in case the task
is active that day or week.

htmltaskreport "Tasks-Details.html" {
${navbar}
columns no, name, start, end, daily
headline "Accounting Software Project"
caption "This table shows the load of each day for all the tasks.
Additionally the resources used for each task are listed. Since the
project start was delayed, the actual schedule differs significantly
from the original plan."
hideresource 0
showactual

}

We also like to list all assigned resources right after each task. Normally resources are hidden in task reports but
they can be enabled by using thehideresourceattribute. The attribute is followed by a logical expression that
specifies what resources to hide. The expression is evaluated for each resource and if the result is true (not 0) than
the resource is hidden. Since we want to show all resources we put a 0 in, so it’s false for all resources.

To add even more information to this report, we also turn on the reporting of values of the actual scenario by using
theshowactualattribute. This causes TaskJuggler to split the lines of the report into two where appropriate and
report the actual value underneath the plan value.

Generating HTML Resource Reports
11

The previous report listed the resources per task. Now we want to generate a report the lists all resources. It’s
again a report with a weekly calendar. This time we use the attributeloadunit to report the load in hours instead
of days.

htmlresourcereport "Staff-Overview.html" {
${navbar}
columns no, name, weekly, effort
showactual
loadunit hours
headline "Weekly working hours for the Accounting Software Project"

}

Now a similar report but with much more details. We want to include that tasks again, this time each resource
should be followed by the tasks the resource is assigned to. Inhtmltaskreportsresources are hidden by default
while in htmlresourcereportstasks are hidden by default. To include tasks the attributehidetaskneeds to be used.
It is followed by a logical expression just likehideresource.

htmlresourcereport "Staff-Details.html" {
${navbar}
columns name, daily, effort
showactual
hidetask 0
hideresource team
sortresources nameup
loadunit hours
headline "Daily working hours for the Accounting Software Project"

}

When specifying the resources we have grouped the resources into two teams by creating two pseudo resources
that had the real employees as sub resources. We have attached the flagteamto those pseudo resources. We now
use this flag as logical expression forhideresource. So all resources that have this flag will be hidden in the report.
For better readability we sort the resource list by name in ascending order. The attributesortresourcesis taking
care of this.

Generating HTML Account Reports
To conclude the HTML reports a report that shows how badly the project is calculated is generated. The company
won’t get rich with this project. Due to the slip, it actually needs some money from the bank to pay the salaries.

htmlaccountreport "Accounting.html" {
${navbar} columns no, name, total, monthly
headline "P&L for the Accounting Software Project"
caption "The table shows the profit and loss analysis as well as the

cashflow situation of the Accounting Software Project."
accumulate
showactual

}

Thehtmlaccountreportproperty produces similar reports as the above ones, but it lists accounts instead of tasks
or resources. Thetotal column shows the value of the account at the end of the reported time interval. The
accumulateattribute puts the calendar in accumulation mode. The monthly columns list the value of the account
at the end of the month. Normally the amount that has been added or subtracted from the account would be listed.

Generating XML Reports

12

Finally we generate an XML report that contains all info about the scheduled project. This report will be used by
tjx2gantt to create a nice GANTT chart of our project. The file can also be read by tools like tjGUI or the KDE
Konqueror plug-in.

xmlreport "AccountingSoftware.tjx"

Conclusion
TaskJuggler is a substantially different approach to project planing and tracking tools. The powerful textual project
description language allows the user to efficiently capture the properties of the project. Since the scheduler it is
not hampered by the performance requirements of GUI based tools it offers many important features not found
in GUI tools. For future versions we plan an optimizer that can find best results even with complex tasks and
skill-based resource selections.

13

