Simple, Robust Software RAID for Linux 2.6

Daniel Phillips
21st June 2003

Abstract

Linux’s new Device Mapper subsystem provides efficient facilities for concatenating, striping and
mirroring physical volumes into a single logical volume, but support of RAID level 5 is left to the
existing Multiple Device subsystem. Though the Device Mapper and Multiple Device subsystems can
be combined to work around this problem, this requires extra administration work, adds an extra level
of processing overhead, and does not satisfy Device Mapper’s original goal of simplicity. A new RAID
plug-in for Device Mapper is introduced here to provide RAID5-like functionality for physical volume
configurations consisting of 27k + 1 disks, where each logical block is split across 2"k disks, and parity
information is written to the remaining disk. This strategy resembles the old RAID 3 strategy, and
avoids one of the greatest sources of complexity in RAID 5, which is the need to read before writing in
order to update parity information. This in turn removes the need for an extra block cache in the RAID
driver. With the IO path thus simplified, performance for largely sequential write loads can approach
the combined IO bandwith of the physical devices. Versus RAID 5, random IO loads generate higher
seeking and lower rotational latency penalties, so random IO performance remains acceptable.

1 Introduction

Linux’s new Device Mapper subsystem provides efficient facilities for concatenating, striping and mirroring
physical volumes into a single logical volume. Device-mapper currently supports a striped target (RAID
0), and by the time 2.6 is released, a mirrored target (RAID 1). However, device-mapper does not directly
support block device redundancy beyond simple mirroring, that is, device-mapper has no RAID 5 or similar
target. One way to provide such support is by running device-mapper underneath the existing Multiple
Device subsystem, as a virtual block device. This is not entirely satisfactory due to the extra overhead
introduced by a second level of virtualization. Such a combination would also require an extra level of
configuration and administration. Finally, it would fall short of satisfying Device Mapper’s original goal of
simplicity.

A new RAID plug-in for Device Mapper is introduced here to provide funcionality similar to RAID5, but
with a considerably simpler implementation. This is accomplished by restricting the allowed number of
physical drives to 2"k + 1. For example, 3 drive, 5 drive and 9 drive arrays would be supported while 6
drive arrays would not be.

2 Terminology

There are many possible ways of distributing data amongst the drivers of a RAID array. A particular RAID
scheme is typically called a “RAID level”, as if each possible RAID level were a subset of the next higher

level. This is not strictly true. For example, RAID 0[1] simply distributes data sectors across an array
of drives with no redundancy, while RAID 1[2] stores an identical copy of each sector on both drives of a
two-drive array. RAID 0 is clearly not a subset of RAID 1, since a RAID 0 array can have many drives
while a RAID 1 array can have only two. In practice, RAID level numbers tend to reflect the difficulty of
implementing each scheme more than anything else.

There exists some confusion over the use of the term “stripe”. Properly speaking, it’s a contiguous run of
blocks on one drive. Sometimes taken to mean a set of sectors, one on each of (n-1) drives in the RAID set,
each contributing to a parity sector on the remaining drive. To avoid confusion, I use the term “parity row”
to mean a set of data sectors stored on N-1 drives of a RAID array, contributing to a parity sector stored
on the remaining drive.

The term “interleave” was orginally used to describe the practice of stepping the physical sector number of
the starting logical sector on each track of a hard disk, so that the time required to step the head from one
track to another is less than the time for the first logical sector of the new track to rotate under the read
head after the last logical sector of the previous track is read. This term was repurposed as part of RAID
terminology to describe the practice of stepping the drive number of the starting sector of each parity row.
We can call the latter “drive interleave” as opposed to the former “sector interleave”. In this sense, RAID 5
has a drive interleave of 1 or -1, while RAID 4 has a drive interleave of 0, that is, it is not interleaved.

I now introduce a new term, “band”, meaning a contiguous set of data sectors distributed across a raid array
having the same interleave offset, together with their parity blocks. In other words, each time the interleave
offset changes, we step to a new band.

We say that RAID 4 and RAID 5 are striped, while RAID 0, 1 and 2 are not.

RAID 3.5, which I introduce in this paper is, following the above terminology, a non-striped distributed
parity scheme with band-wise interleaving.

3 Taxonomy of RAID Schemes

In this section we examine a few of the existing RAID schemes that are related more or less closely to the
RAID 3.5 I propose, or which might in some sense compete with the new scheme. This includes obsolete
RAID levels 3 and 4 (with RAID 2 making a cameo appearance) and the widely used RAID 5. RAID 0
is not discussed here, as it offers no redundancy. RAID 1 is not discussed because its approach to data
redundancy - replicating data verbatum across multiple volumes - is clearly less efficient in terms of storage
size and transfer bandwidth than most higher RAID levels.

The main question we intend to answer in this section is: is the RAID scheme proposed here actually novel,
or is it simply a special case of an existing scheme? (Below, I conclude that it is in fact novel, i.e., it is not
a subset of any existing RAID level.)

3.1 RAID 2 and RAID 3

RAID 3J3] is a simplified version of RAID 2 [ref http://www.acnc.com/04_01_02.html]. Like RAID 2[4],
RAID 3 uses a stride of a N bytes, where N is the number of drives in the array. In places of RAID
2’s ECC codes, RAID 3 uses a simple XOR. This RAID 3 drive array has N-1 drives for data, with the
remaining drive storing exclusively parity. With RAID 3, all drives rotate in synchronization, which requires
hardware support that not available on many drives. Hardware support is also required to divide blocks

up between the drives, and generate the parity bytewise. RAID 3 has traditionally been thought to suffer
from performance bottlenecks under random access loads. Because of that and its specialized hardware
requirements, it is no longer commonly used.

RAID 3.5 strongly resembles RAID 3, except that the bytes of each filesystem block are divided differently
between the physical drive sectors, and the parity sectors differ as a result. In other words, given the
restriction of 2°k+1 drives and band interleave of 0, RAID 3 and RAID 3.5 use the same locations on the
drive array for each transfered block, but split the data differently between those locations. (RAID 3 uses
a stride of N-1 whereas RAID 3.5 uses a stride of B/(N-1) bytes, where N is the number of drives and B is
the transfer blocksize.) Thus, it is not possible to configure a RAID 3 system to read a volume formatted
as RAID 3.5, and consequently, RAID 3.5 is not simply a software implementation of RAID 3.

A further difference between RAID 3 and RAID 3.5 is the provision for bandwise interleaving, mentioned
in this paper but not described in detail.

In some sense, RAID 5 is the chief “competitor” to the RAID 3.5 scheme introduced here.

3.2 RAID 4

RAID 4 uses a data striping arrangement (as in RAID 0 configurations, or “striped targets” in device-mapper
terminology) with parity stored on a dedicated parity drive. RAID 4 arrays tend to suffer from performance
problems under many loads, due to the need to update the parity drive on every write.

RAID 3.5 resembles a specific configuration of RAID 4, where stripe size has been set to, e.g., 1K on a 5
drive system. However, as described below, RAID 3.5 supports band-level interleaving, which is not possible
with RAID 4 as defined, so RAID 3.5 is not a subset of RAID 4. Furthermore, although in practical terms,
a RAID 4 implementation could be configured to access a non-interleaved RAID 3.5 volume, performance
would be very poor, as the algorithm used for IO transfers differs dramatically between RAID 4 and RAID
5. In theory, a RAID 4 implementation could be improved with cross-stripe optimization, in which case it
could perform identically to RAID 3.5 in the cases where RAID 3.5 performs well. Band level interleaving
could also be added to RAID 4, however what we would have at that point is a superset of a subset of the
original RAID 4.

3.3 RAID 5

RAID5[7] uses both data striping (as in RAID 0) and parity (as in RAID 4). The difference between RAID
level 5 and RAID level 4 is the interleave factor, that is, parity is stored on a different drive in each band,
which distributes the parity update load across the entire array. In practice, this gives RAID 5 such a great
advantage over RAID 4 that the latter has fallen into disuse, and is seldom even implemented on software
or hardware RAID systems.

As with RAID 4, a RAID 5 array can be configured to resemble a RAID 3.5 array closely, by setting the
stripe size to a binary fraction of the virtual volume’s filesystem block size. The only remaining difference
would be the interleaving: RAID 5 would store the parity information for each adjacent filesystem block on
a different drive, while RAID 3.5 stores the parity information on the same drive, within each band.

4 RAID 3.5

A new RAID scheme, RAID 3.5 is introduced here. RAID 3.5 is restricted to RAID arrays consisting of 2"k
+ 1 driver, where each logical block is split evenly across 2"k drives, and a correspondingly sized block of
parity information is written to the remaining drive. This strategy resembles the obsolete RAID 3. However,
it avoids one of the greatest sources of complexity in RAID 5, which is the need to read before writing in
order to update parity information. This in turn removes the need for an extra block cache in the RAID
driver. With the IO path thus simplified, performance for largely sequential write loads can approach the
combined IO bandwidth of the physical devices. Versus RAID 5, random IO loads generate higher seeking
and lower rotational latency penalties, so random IO performance remains acceptable.

Why is it called RAID 3.57 Because it is very similar to both RAID 3 and RAID 4, but it is neither identical
to or a subset of either, hence RAID 3.5. Specifically, RAID 3.5 has the data blocking scheme of RAID
3 but the data is distributed within a row like RAID 4. This scheme turn out to have certain practical
advantages, among them simplicity and parsimonious use of drive bus bandwidth.

Why has this arrangement not been considered before? First, because it is no means certain that perfor-
mance at or near the level of RAID 5 will be achieved. However, as I illustrate below, it does perform much
better than one would expect.

An important characteristic of RAID 3 and RAID 3.5 is that all drives seek in unison, each filesystem
block (including parity) is split across all drives. In the case of RAID 3, it was thought that this property
would introduce an unacceptable loss of performance in the form of nearly an entire revolution’s worth of
rotational latency (about 6 ms) per read or write transfer. This is incorrect: in a sequence of transfers, only
the first is likely to incur nearly a full revolution penalty; the rotational latency of succeeding seeks overlap
nicely. It was also thought that hardware synchronization would be required to avoid the aforementioned
rotational latency penalty, but we see now that this is not necessary, though it would indeed be useful.

A further performance problem previously thought to be associated with RAID 3 is the fact that it is unable
to process more than a single transfer at a time, since all (or all but one in the read case) of the drives
in the array are needed for each transfer. As we shall see, RAID 5 suffers different, but nearly as severe
performance problems of its own, the end result being that this is not nearly as big a problem as it appears.

RAID 3.5 has a number of advantages over RAID, not the least being that it is very simple, and so a reliable
implementation can be built using much less code and effort than for RAID 5. Once it is working, there is
very little that can go wrong with it: it either works or it doesn’t, and has far fewer corner cases to handle
than (an efficient implementation of) RAID 5 does.

RAID 3.5 is an optimal strategy for loads that involve mainly large, serial transfers. As such, a RAID
3.5 array would be an attractive replacement for a traditional tape backup system, delivering far higher
throughput and much better data safety.

Finally, though it is not discussed here, there is a small embellishment to the RAID 3.5 strategy which uses
bandwise interleaving to achieve steady state read throughput equal to the combined bandwidth of all the

drives in the array, as opposed to RAID 5, which can achieve the bandwidth of all the drives in the array,
less one, at most.

5 Implementation

The RAID 3.5 target is just another target, much like the “striped” target, and is in fact derived from it.

5.1 Efficient BIO generation

A naive implementation of RAID 3.5 would simply generate T*2"k physical transfers for every logical
transfer, where T is the number of blocks in the transfer. This would generate an unacceptable amount of
device bus traffic. Instead, we want to make scatter-gather DMA hardware do most of the work for us. The
new BIO (Block I0) layer in Linux 2.6 supports this well. Each BIO object defines one transfer, possibly
consisting of many regions contiguous at the destination but disjoint at the source. Thus, each source BIO
object received by the logical device generates N BIO transfers, one to each of the target drives, and each
of these BIO objects contains T transfer regions of size B/2"k, where B is the filesystem blocksize. The
low-level device driver will ultimately translate these BIO regions into scatter-gather regions, effecting the
transfer as efficiently as possible.

5.2 Partial block transfers

With most filesystems, transfers having sub-block size or alignment almost never occur. With suitable atten-
tion to the alignment of volume partitions, we might use the word “never” here. However, it is possible that,
for example, when performing the initial load of the superblock, a non-aligned transfer might be required.
It is not necessary to support such an operation efficiently, however, the RAID3.5 implementation would
be more robust if the operation simply ran slowly, rather than failing outright. This is easily accomplished:
when a subblock transfer is called for, a slow path is used....

Ext2, Ext3 and ReiserF'S never perform subblock transfers [except possibly for the superblock read/write?],
the former because it does not support UFS-style fragments, and the latter because it uses tailmerging as
an alternative to fragment processing, which works in units of full blocks.

On the other hand, XFS currently works in extents, with a granularity of 512 bytes. However, a new mkfs
option to specify a coarser XFS granularity has already been implemented and is currently being tested, so
new versions of XFS should also work well with RAID 3.5. !

Even UFS, if it were implemented on Linux, would work in certain configurations. For example, with a 2K
fragment size on a five drive array, or 1K fragment size with three drives. An implementation of RAID 3.5
is in progress. At time of writing, the necessary XOR processing has been written and benchmarked, and
found to perform satisfactorily. The author’s test system consists of an array of 5 scsi drives each capable
of transferring 40 MB/s, connected to an ultra scsi bus supporting up to 160 MB/s of parallel transfers.
Raw throughput without any raid processing on this system was found to approach 133 MB/s. Thus, an
aggressive performance level of greater than 100 MB/s, read or write, has been set as the goal for the target
performance level for the finished RAID 3.5 system.

5.3 Examples

Here are some concrete examples of how data is laid according to various RAID configurations. For the
RAID 3.5 and RAID 5 examples, the overhead involved in carrying out a small write transfer is examined.
The write example is intentionally concocted not only to be favorable to RAID 3.5, but to draw attention
to the unintuitive result that sometimes RAID 3.5 is faster than RAID 5, by a wide margin.

ISome operating environments, particularly mainframes, do not support a transfer granularity as fine as 512 bytes.

5.3.1 Example 1: Raid 3

For the purpose of the examples below, we assume a 5 disk array for now, with 4KB transfer units.

5.3.2 Example 1: Raid 3

Each row has four bytes of date, one byte of parity:

’ Drive0 \ Drivel \ Drive2 \ Drive3 H Drive4 ‘

a:1/4096 | a:1/4006 | a:1/4096 | a:1/4096 || parity(a0..a3)
a:1/4096 | a:5/4096 | a:6/4096 | a:7/4096 || parity(a3..a7)

b:0/4096 | b:1/4096 | b:2/4096 | b:2/4096 || parity(b0..b3)

¢:0/4096

d:0/4096

But in practice, it’s really stored on the drive in sectors. So assuming a 512 byte sector, we have:

5.3.3 Example 2: Raid 3

Each row has 2048 bytes and 512 bytes of parity:

’ Drive0 \ Drivel \ Drive2 \ Drive3 H Drive4 ‘
a:0/8 | a:1/8 | a:2/8 | a:3/8 || parity(a0/8..a3/8)
a:3/8 | a:4/8 | ab/8 | a:6/8, || parity(a3/8..a7/8)
b:0/8 | b:1/8 | b:2/8 | b:3/8 || parity(b0/8..b3/8)
5:3/8 | b:4/8 | b:5/8 | b:6/8 || parity(b3/8..67/3)

c:0/8 | ¢:1/8 | ¢:2/8 | ¢:3/8 || parity(c0/8..c3/8)
c:3/8 | ¢4/8 | ¢:5/8 | c¢:6/8 || parity(c3/8..c7/8)
d:0/8 | d:1/8 | d:2/8 | d:3/8 || parity(d0/8..d3/8)
d:3/8 | d:4/8 | d:5/8 | d:6/8 || parity(d3/8..d7/8)

Each 512 byte data sector has every fourth byte of the original data, in other words, there is no change from
Example 1 except for the grouping, which just reflects how the data is actually transfered to the drive.

On a (less common) hard disk with 1024 byte sectors, we would have:

5.3.4 Example 3: Raid 3

Each row has 4098 bytes of data and 1024 bytes of parity:

’ Drive0 \ Drivel \ Drive2 \ Drive3 H Drive4 ‘
a:0/4 | al/4 | a:2/4 | a:3/4 | parity(a)
b:0/4 | b:1/4 | b:2/4 | b:3/4 || parity(b)
c0/4 | c¢:1/4 | c¢:2/4 | ¢:3/4 | parity(c)
d:0/4 | d:1/4 | d:2/4 | d:3/4 || parity(d)

where a0/4 has every fourth byte of a modulo 0, al/4 has every fourth byte of a modulo 1, and so on.

5.3.5 Example 4: Raid 3.5

Each row has one filesystem block and parity for that block:

’ Drive0 \ Drivel \ Drive2 \ Drive3 H Drive4 ‘
a:0/4 | a:l/4 | a:2/4 | a:3/4 | parity(
b:0/4 | b:1/4 | b:2/4 | b:3/4 || parity(
c:0/4 | c:1/4 | ¢:2/4 | c¢:3/4 | parity(
d:0/4 | d:1/4 | d:2/4 | d:3/4 || parity(

)
b)
)
Q)

where a0/4 has the first 1/4 block block a, b0/4 has the second 1/4 block block b and so on.

Now, the only difference between raid 3.5 and raid 3 is how the bytes of one block are divided between the
drives, and how the parity is calculated. The diagrams are identical. So when we look at it this way, raid
3.5 is almost the same as raid3, except for partitioning the bytes of the block differently between the data
drives, and the parity also being different as a result. Therefore, the actual data on the drives won’t be
compatible between raid 3 and raid 3.5, though the data is shared between the drives in an almost identical
way.

Say we want to write blocks b and c. The operations are:

’ Drive0 \ Drivel \ Drive2 \ Drive3 \ Drive4 ‘
*write b:0/4 | *write b:1/4 | *write b:1/4 | *write b:1/4 | *write b:1/4
write c:0/4 | write ¢:0/4 | write c:0/4 | write c:0/4 | write c:0/4

* Latency due to seek time and 1/2 rotation on average

Assuming seek time is 3 ms and rotational period is 6 ms, the transaction finishes in 6 ms. Total bus traffic
is two blocks.

5.3.6 Example 5: Raid 4

Each row has four filesystem blocks and parity for those four blocks.

If stripe size is one block:

’ Drive0 \ Drivel \ Drive2 \ Drive3 H Drive4 ‘
[a | b [¢ [d [parity(a,b,cd |

To illustrate how the pattern continues with a stripe size of two blocks:

Drive0 | Drivel \ Drive2 \ Drive3 H Drive4 ‘

a C e g parity(aa C, €, g)
b d f h parity(b, d, f, h)

5.3.7 Example 6: Raid 5

Each row has four filesystem blocks and parity for those four blocks

With one block stripes:

’ Drive0 \ Drivel \ Drive2 \ Drive3 \ Drive4 ‘
a b c d parity(a, b, c, d)
parity(e, f, g, h) e f g h

The first row is identical to RAID 4; the second is shifted over by one drive.

With negative interleave the shift is in the other direction:

[Drive0 [Drivel | Drive2 | Drive3 | Drived \
a b C d parity(a, b, c, d)
e f g parity(e, f, g, h) h

Finally, a stripe size of two blocks shows how the pattern develops:

Drive0 | Drivel | Drive2 | Drive3 | Drived \
a c e g parity(a, c, e, g)
b f h parity(b, d, f, h)
i k m parity(i, k, m, o) o
j 1 n parity(j, 1, n, p) p

With RAID 5, stripe size is very important in determining performance characteristics under different
loads.A small stripe size is better for random transactions because it increases the chance that full parity
rows can be written, avoiding the need to read before writing. However, a small stripe size is not very good
for larger transfers because the transfer will not lie entirely on one disk, and more of the disk heads will
need to seek to perform the transfer. Clearly, there is no one best stripe size for all loads. It is apparent that
when the stripe size happens to be inappropriate for a particular load that either seeking will increase and
extra reads will be performed, which one again shows that RAID 5 does not have as much of an advantage

over RAID 3.5 as it would first appear.

Say a transfer writes blocks b and c¢. The operations performed are:

’ Drive0 \ Drivel \ Drived ‘
*read b *read ¢ *read parity(a, c, e, g)
*write b | **write ¢ read parity(b, d, f, h)
**write parity(a, c, e, g)
write parity(b, d, f, h)

* Delay of seek time plus 1/2 rotation on average

** Delay of seek time plus a full rotation

Assuming seek time is 3 ms and rotation time is 6 ms, the transaction is finished in 9 ms. Total bus traffic
is eight blocks. So in this case, RAID 3.5 soundly trounces RAID 5, which is the surprising result promised
above.

Note that RAID 3.5 will by no means always perform better than RAID 5. In fact, I expect that when the
benchmark results come in, we will see that a good RAID 5 implementation does in fact perform as well
or better than a RAID 3.5 implementation under typical loads. However, the difference will not be nearly
as great as one would expect. The RAID 3.5 implementation will surely be far simpler than the RAID 5
implementation, and thus both more robust and easier to optimize.

6 Further work

Besides completing and benchmarking the current design, a number of incremental improvements are pos-
sible. First, the restriction of 27k + 1 drives can be removed. Second, read transfers can be optimized
as described above in the text. Third, a procedural interface for scatter-gather region generation could be
implemented in the block layer and device drivers, reducing the amount of storage required for the BIO
transfers.

References

[1] http://osrbdoc.ca.caldera.com:457/OSAdminG /vdmC.vdtypes.html#vdmC.raid0
[2] http://osrbdoc.ca.caldera.com:457/OSAdminG /vdmC.vdtypes.html#vdmC.raidl
[3] http://www.robustdigitalsolutions.com /html/raid-3.html

[4] http://www.acnc.com/04_01_02.html

[5] http://osrbdoc.ca.caldera.com:457/OSAdminG /vdmC.vdtypes.html#vdmC.raid4
[7] http://osrbdoc.ca.caldera.com:457/OSAdminG /vdmC.vdtypes.html#vdmC.raid5

