
(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

BETTER APPLE EVENT CODING THROUGH

OBJECTS
ERIC M. BERDAHL

In “Apple Event Objects and You” in develop Issue 10, Richard Clark discusses a procedural approach
to programming for Apple events and goes into details of the Apple event object model. This article
reveals a few simple truths about the significance of Apple events and the Apple event object model,
focusing on how the object model maps onto a typical object-oriented application. It also provides an
object-oriented C++ framework for adding scripting support.It’s every developer’s worst nightmare:
Your team has just spent the last two years putting the finishing touches on the latest version of Turbo
WhizzyWorks II NT Pro, which does everything, including make coffee. As a reward for your great
work, the team is now preparing to do some serious tanning development on an exotic island. Then,
Marketing comes in with “one last request.” They promise it’s the last thing they’ll ask for before
shipping, and in a weak moment, you agree that one last little feature won’t hurt your itinerary.
“Good,” quips the product manager, “then as soon as you add full scripting support, you can enjoy
your vacation.”

You know that to add scripting support, you need to delve into Apple events. You think this requires
learning about Apple events, the Apple event object model, and scripting systems. Further, you think
Apple events must be designed into your application from the ground up and can’t possibly be added
without a complete redesign. Which of the following is the appropriate reaction to Marketing’s
request?

A. Immediately strangle your sales manager and plead justifiable homicide.

B. Look around while laughing hysterically and try to find the hidden Candid Camera.

C. Change jobs.

D. Feign deafness.

E. None of the above.

1

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Unfortunately, there’s no correct answer, but the scenario is all too real as developers are increasingly
being asked to add scripting support to their applications. The design of Apple events and the Apple
event object model can provide the user with more power than any other scripting system. However, to
access the power of the design you need to work with the complex interface provided by the Apple
Event Manager. By its nature, this interface collapses to a procedural plane of programming that
prevents developers from fully taking advantage of the object-oriented design inherent in the Apple
event world. The Apple event object model is difficult to implement without some fancy footwork on
the part of your framework. But remember the words of Marshall Brodeen, “All magic tricks are easy,
once you know the secret.” With this in mind, join me on a trip through the rabbit hole into
AppleEventLand.

WHAT ARE APPLE EVENTS AND THE OBJECT MODEL?

Whenever I give presentations on Apple events, the audience has an overwhelming urge to ignore the
theory and jump into coding. Resist the urge. For most developers Apple events provide an unfamiliar
perspective on application design. To appreciate the significance of Apple events and the object model,
it’s important to understand their underlying concepts and background. So, although you’ll be reading
about code later, a little theory needs to come first.

At the most basic level, Apple events are a program-to-program communication (PPC) system, where
program is defined as a piece of code that the Macintosh can see as an application (in other words, that
has a real WaitNextEvent-based event loop). However, billing Apple events as PPC is akin to
describing an F-16 as merely a plane. To fully understand how Apple events are more than simple
program-to-program communication, you need to take a look at the Apple event object model.

The object model isn’t really defined in a pithy paragraph of Inside Macintosh, but is instead a holistic
approach to dealing with things that users call objects. In a literal sense, the object model is a software
developer’s description of user-centric objects or cognitive objects.

2

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

COGNITIVE THEORY
Cognitive science tells us that people interact with the world through objects. A printed copy of
develop is an object, a plant in the corner of your office is an object, and a can of Coke Classic on your
desk is an object. Each of the objects has properties, behaviors, and parts. Some properties exist for
each of the objects (for example, each one has a name) and other properties make sense for only some
of the objects (for example, page size makes sense only when applied to develop). Behaviors are quite
similar to properties in their ephemeral binding to objects. Only Coke will fizz, but all three objects
will decompose. However, they each decompose in a different way. Further, each object can be
separated into arbitrary parts that are themselves objects. The plant can be separated into branches,
which can in turn be separated

3

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

into leaves. The plant itself can also be separated into leaves, so leaves are contained by both branch
objects and plant objects.

BACK INSIDE THE COMPUTER
Now, since a user will someday interact with your software, and since users interact with the world in
terms of cognitive objects, it makes sense to model software in terms of cognitive objects. Hence, the
object model describes objects in a rather ghostlike fashion whereby objects have behaviors and
properties and contain other objects. Although the object model defines an inheritance for each
category of objects (for example, Journal might inherit from OpenableThing which might inherit from
Object), it’s used only for the purpose of grouping similar behaviors. Just as in the mind, the only thing
that’s important is the identity of a specific object in existence at a given time — its categorization is
purely a detail of implementation.

Gee, this sounds a lot like what real programmers mean when they talk about objects. Strangely
enough, real objects and cognitive objects are quite related. Many references cite cognitive theory as
justification for beginning to program in an object-oriented style. Object-oriented code tries to get
closer to the language of the native operating system of the human mind than traditional procedural
approaches, and the format of an Apple event object mirrors natural language to a surprisingly large
degree. It comes as no surprise, then, that Good Object Design lends itself quite easily to slipping in
support for Apple event scripting.

APPLE EVENTS SCRIPTING AND OBJECTS

The motivation for you to provide object model support is so that your users can “script” your
application. There are a variety of solutions available today that allow advanced users to write things
that resemble DOS batch files or UNIX® shell scripts. These entities are commonly called scripts, but
in the context of Apple events a script is something with greater potential. Whenever a user thinks “I
want to sharpen the area around the rose in this picture,” a script has been formed. If this seems too
simplistic, consider it again. Script here refers to the earliest conception of a user’s intent to do
something. It’s not relegated to the world of the computer and does not imply any given form or class
of forms; an oral representation (voice interface a la the Knowledge Navigator) is equally as valid as a
written one (traditional scripting systems). From this perspective, the definition of script takes the user
to a greater depth of control over applications than previously dreamed of, allowing access to the very
engine of your application by the very engine of the user. This is the great empowering ability of Apple
events: they enable users to use their native operating system — the mind — with little or no
translation into computerese.

4

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

OBJECT-ORIENTED PROGRAMMING OBJECTS

The biggest problem with Apple event objects is the interface provided by the Apple Event Manager.
Instead of allowing you to write real object-oriented source code

5

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

using a given class library that implements basic Apple event and object model functionality, the Apple
Event Manager requires you to register every detail programmatically. You must declare what classes
exist, which methods exist and where, and what relationships are possible within and between classes.
Although at first this flexibility seems advantageous, many developers find it a problem later when
they have to declare everything again at run time. Anyone with secret desires to design an object-
oriented runtime environment and a compiler/linker combination to support that environment will feel
quite at home with Apple event coding.

The second biggest problem with Apple event objects is that programs aren’t written in the Apple event
(user) world. Instead, they’re often written in object-oriented programming languages like LISP and
C++. What’s needed is a good generic interface to translate objects from the user world of natural
language into the world of LISP or C++ objects. Scripting systems do some of the work by delivering
Apple event objects to applications in the form of object specifiers, a strange data structure that
resembles a binary form of natural language stuffed into the familiar Apple event generic data structure
AEDesc. However, object-oriented applications ship objects around in the form of . . . well . . . objects!
So, you need translation from binary natural language to actual objects. Easy, huh? (Don’t hurt me yet
— this will seem fairly straightforward after reading a bit further.)

Presenting a new interface should solve the problem of the Apple Event Manager interfaces. Presenting
that new interface in terms of the familiar object-oriented class libraries should solve the problem of
different paradigms. So, if these two problems are approached with an object perspective, it’s clear that
some of the classes in your program need to include a set of methods that implement object model
protocols. Application domain classes must be able to return objects contained within them and to
perform generic operations on themselves. It turns out that if your classes also provide the ability to
count the number of a specific type of object they contain, you can provide a rudimentary, yet
powerful, parsing engine for transforming objects from the Apple event world into the traditional
object programming world.

Further analysis indicates that only those application domain classes that correspond to object model
classes need this protocol. This indicates that the protocol for providing Apple event object model
support is probably appropriate to provide in a mixin class (a class that’s meant to be multiply inherited
from). In this way, only those classes that need to provide object model support must provide the
necessary methods. In the sample application discussed later, that class is called MAppleObject.
MAppleObject plays a key role in UAppleObject, a generic unit that can be used to provide Apple
event object model support to any well-designed C++ application.

Apple provides a convenient solution to the user versus programming language problem in the form of the Object Support
Library (OSL). The OSL has the specific responsibility of turning an object specifier into an application’s internal
representation of an object. (See “A Sample OSL Resolution” for an example of how A SAMPLE OSL RESOLUTION

6

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Here’s a short example to give you a feel for how the OSL
actually works. Don’t read too much into the details of object
resolution, but do try to understand the flow and methodology
the OSL applies to resolve object specifiers. Also, don’t worry
too much about how the OSL asks questions; the protocol
you’ll actually be using in UAppleObject hides such details
from you.

Figure 1 on the next page gives an overview of the process.
Consider the simple object specifier “the third pixel in the first
scan line of the image called ‘Girl with Hat,’” and an Apple
event that says “Lighten the third pixel in the first scan line of
the image called ‘Girl with Hat’ by twenty gray levels.” On
receiving this Apple event (Lighten) the application notes that
the direct object of the event (the third pixel in the first scan line
of the image called “Girl with Hat”) is an object specifier and
asks the OSL to resolve it into a real object.

At this point the parsing engine in the OSL takes over,
beginning a dialog with your application through a set of
preregistered callback routines. Notice that the object specifier
bears a striking resemblance to a clause of natural language
— English in this case. This is not unintentional. Apple event
objects are cognitive objects, and cognitive objects are
described by natural language — hence the parallels between
object specifier formats and natural language. Further, the
parsing engine inside the OSL operates like a high school
sophomore parsing sentences at the chalkboard. But I
digress . . .

To continue, the OSL asks the null object to give it a token for
the image called “Girl with Hat.” (Tokens are the Coin

of the Realm to the OSL.) So the null object looks through its
images to find the one named “Girl with Hat” and returns a
token to it.

The OSL then turns around and asks the image called “Girl
with Hat” to give it a token for the first scan line. After getting
this token, the OSL has no further use for the image token, so
it’s returned to the application for disposal. In effect, this says,
“Uh, hey guys, I’m done with this token. If you want to do
anything like free memory or something, you can do it now.”
Notice how polite the OSL is.

Next, the OSL asks the scan line for a token representing the
third pixel, which the line handily returns. Now it’s the scan line
token’s turn to be returned to the application for recycling. The
OSL has no further use for the scan line token, so the
application can get rid of it if necessary.

Finally, having retrieved the token for the third pixel of the first
line of the image called “Girl with Hat,” the OSL returns the
token with a “Thanks, and come again.” The application can
then ask the object represented by the token to lighten itself
(remember that was the original Apple event), and dispose of
the token for the pixel.

As you can see, the OSL operates by taking an unreasonable
request, “give me the third pixel of the first line of the image
called “Girl with Hat,” and breaks it into a number of perfectly
reasonable requests. Thus, your application gets to take
advantage of its innate knowledge of its objects and their
simple relationships to answer questions about complex object
relationships.

the OSL actually works.) The OSL implements a generic parsing engine, applying a few simple
assumptions about the state of the application’s design to the problem. However, for all the power
provided by the engine within the OSL, it lacks an object-oriented interface. Instead, it uses a paradigm
like that provided by the Apple Event Manager, requiring the application to register a set of bottleneck
routines to provide application-specific functionality. As with the Apple Event Manager, you must
write routines that implement runtime dispatching to the individual objects your application creates
instead of using the natural method-dispatching mechanisms found in your favorite object-oriented
language, whatever it may be.

7

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

The nicest thing about the OSL is that, like the Apple Event Manager itself, it applies itself quite well
to being wrapped with a real object-oriented interface (although you have to write it yourself, sigh).
Curiously, the OSL solves both problems — poor interface and cognitive versus object-oriented
programming differences. With a nice object-oriented framework, you can write your code once, in the
fashion to which you’re accustomed. I won’t lie to you by telling you the job becomes easy, but it does
change from obscure and harrowing to straightforward and tedious.

8

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

OBJECT MODEL CONCEPTS

There are two basic concepts defined in the object model. One is containment, which means that every
object can be retrieved from within some other object. In the language of the object model, every
object is contained by another object. The only exception to this rule is the single object called the null
object. The null object is commonly called the application object, and may or may not be contained by
another object. In practice, a null object specifier is like a global variable defined by the object model.
The application implicitly knows which object is meant by “null object.” Object resolution always
begins by making some query of the null object.

For example, with a simple image processor, it would be appropriate to state that pixels are contained
by scan lines, scan lines by images, and images by windows. It’s also appropriate to have pixels
contained by images and windows. Windows themselves have no natural container, however.
Therefore, they must be contained by the null object. One way you can decide whether these
relationships make sense for your product is to ask if a user could find it useful to do something to “the
eighth pixel of the second scan line” or to “the twentieth pixel of the image.” If statements like these
make sense, a containment relationship exists.

The second basic concept of the object model is behavior. Behavior is quite simple; it means that
objects must be able to respond to an Apple event. Behavior correlates directly with the traditional
object programming concept of methods of a class. In fact, as you’ll see, the actual Apple event–
handling method of Apple event objects is usually a switch statement that turns an Apple event into a
dispatch to the C++ method that implements the Apple event’s functionality.

Taken together, the concepts of containment and behavior define the limits for objects in the model of
the Apple event world. The object model resembles the programming worlds of Smalltalk or LISP,
where everything is an object. Everything. For those familiar with these paradigms where even
integers, characters, and floating-point numbers are full first-citizen objects, the Apple event world will
be a refreshing change from traditional programming in C++ and Pascal.

9

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

FINDING THE OBJECTS

The overriding concept in designing object model support in your application is to do what makes
sense for both you — as the developer — and the user.

1. It’s best to begin by deciding what objects exist in your application. To decide what
objects exist, do some user testing and ask the users what objects they see and what
objects they think of while using your application. If this isn’t possible, just pretend
you’re a user and actually use your application, asking yourself those same
questions. For example, if you ask users for a list of objects in an image processing
application (and refrain from biasing them with computer mumbo jumbo) they’ll
probably list such things as window, icon, image, pixel, area, scan line, color,
resolution, and menu bar. (Figure 2 shows types of objects a user might list.) Guess
what? In reality, those probably are object model classes that an image processing
application could support when it supports the object model. Since the objects
you’ll want to support are user-level kinds of entities, this makes perfect sense.

10

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Figure 2
Objects the User Sees

11

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

2. After deciding what objects exist in your application, run another series of user
tests to determine the relationships between different objects. For example, what
objects does a window contain? Menus? Pixels? Areas? Color? What objects does
an area contain? Pixels? Scan lines? Windows? This is just as simple as it seems.
Just ask the question, “Does this object contain that object?” If you get immediate
laughter, move on. Positive answers or thoughtful looks indicate a possible
relationship.

3. Finally, determine what properties and behaviors each object class will have. These
questions can be asked during the same user test as in step 2 because the answers
users will give are closely related. Will you be able to ask windows for their names
or pixels for their colors? How about asking windows to move or close? Can you
ask pixels to change color or make a copy?

You may have noticed that this approach falls into the category of Good Object Design. Undoubtedly,
anyone who does object-oriented design has gone through a similar process when developing an
application. Resist the temptation to design the application’s internal structure using G.O.D. and be
done with it, because the object model design is different from the application design. When designing
the application, you typically analyze structure from the perspective of eventually implementing the
design. Thus, you impose design constraints to make implementation easier. For example, you
probably don’t keep representations of images, areas, and pixels, but choose one model for your
internal engine — a reasonable solution for a programmer looking at the problem space. A typical
image processing program usually has real classes representing images, and probably has an area class,
but may not have a pixel class or scan line class. Pixels and scan lines may be implemented by a more
basic representation than classes — simple indices or pointers into a PixMap, for example.

However, when you design object model support, you have a very different perspective. You’re
designing classes based on user expectation and intention, not on programmer constraints. In object
model design of an image processor, you do have TImage, TArea, TScanLine, and TPixel classes,
regardless of your internal representation. This is because a user sees all these classes. The TImage and
TArea may be the same as your internal engine’s TImage and TArea, and probably are. After all, there’s
little reason to ignore a perfectly usable class that already exists. However, the TPixel and TScanLine
classes exist only to provide object model support. I call classes that exist only to provide object model
support ephemeral classes.

12

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Undeniably, the most useful tool for finding objects is user testing. Another important source of
information is the Apple Event Registry. The Apple Event Registry describes Apple event classes that
are standardized in the Apple event world. The Registry lists each class along with its inheritance,
properties, and behaviors. It’s also the last word on the values used to code object model support. For
example,

13

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

constants for predefined Boolean operators and class types are listed in detail. As you follow the
process for finding the objects in your application, you can use the elements found in the Registry as a
basis for your investigation and for later implementation. For example, if your user tests reveal that a
pixel class is appropriate for your application and a Pixel class is documented in the Registry, you
should probably use the behaviors and properties documented there as a basis for your application’s
TPixel class. Doing so allows your application to work well with existing scripts that manipulate pixels
and allows your users to have a consistent scripting experience across all pixel-using applications.

OSL CONECPTS

In addition to the principles imposed by the object model itself, the OSL makes a few reasonable
assumptions about what applications provide to support their objects. Since the object model requires
that objects be able to retrieve contained objects, the OSL allows an object to count the number of
objects of a given type contained within them. So, if an image contains scan lines, the image object
needs to be able to count the number of scan line objects contained within it. Of course, in some
circumstances, the number of objects that are contained can’t be counted or is just plain big (try asking
how many TSand objects are contained in a TBeach object). In this case, the OSL allows the object to
indicate that the number can’t be counted.

Additionally, the OSL allows applications to apply simple Boolean operators to two objects. The
operators themselves are a part of the Apple Event Registry. They include the familiar operators like
less than, equal to, and greater than as well as some more interesting relations like before, after, over,
and under. The requirement for these operators is that they have Boolean results. This means that if
object1 and object2 have operator applied to them, the expression object1 operator object2 is either
true or false. Of course, there’s no requirement that every class implement every operator, only those
that make sense. It makes little sense to ask if an object of type TColor is greater than another, but
brighter than is another story.

During resolution of an Apple event, the OSL asks for tokens of objects between the application object
and the final target to be returned (as described earlier in this article in “A Sample OSL Resolution”).
To a programmer, they look like AEDescs being passed around, but the OSL treats them specially:

• The OSL guarantees that it will never ever look in the data portion of the token, the
dataHandle field of the AEDesc. It may peek at the descriptorType field from time
to time, but the data itself is golden. This becomes a critical point when applying
the OSL engine to an object-oriented interface. The token data of Apple event
objects should be “real” object references in whatever programming language is
appropriate, and keeping the data completely private to the application makes this
possible.

14

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

• The application must be able to recognize the token when it appears again. Thus, if
the application returns a token for the image “Girl with Hat” to the OSL, the
application must be able to recognize the significance of having that token passed
back by the OSL.

• The OSL asks only that we guarantee the validity of a token during the resolution
of the current object specifier.

Since the data contained in the AEDescs is private, the OSL must provide a system for the application
to know when a token is being created and when it’s being terminated. Creation of tokens is provided
through the containment accessor protocol. Termination is provided by a callback routine which does
the actual token disposal and which the application registers with the OSL. This callback is invoked
from AEDisposeToken and comes in handy when applying the object model to C++ classes.

There are also a number of features that are beyond the scope of this article. One of these is the OSL
concept of marking objects. This means that objects are labeled as belonging to a particular group. The
contract the OSL makes with the application is that the OSL will ask whenever it needs a new kind of
mark, and the application will recognize whether any object is marked with a particular mark. Further,
given the mark itself, the application will be able to produce all the objects with that mark. If this
sounds particularly confusing, just consider mark objects as typical list objects. Given a list and an
object, it’s quite natural to answer the question, “Is this object in this list?” Further, it’s quite natural to
answer the question, “What are all the objects contained in this list?”

The framework for adding Apple event support described later in the section “Inside UAppleObject”
satisfies the basic OSL requests for counting objects, applying Boolean operators, and handling tokens.
However, it doesn’t handle marks. The intrepid reader could add support for this feature with a little
thought.

CLASS DESIGN

To incorporate object model support into your applications, you need a class library that implements
the object model classes you want to support — for example, the TWindow, TImage, TArea, and
TPixel classes described earlier. These classes exist because they represent Apple event objects the
application will support. Then you create a mapping of Apple event objects to the C++ classes that
implement them (see Figure 3). For the sake of argument, say that TWindow, TArea, and TImage are
also part of the class library used to implement the non–object-model portions of the program. The
TPixel class is an ephemeral class. What these four classes have in common is a mixin class,
MAppleObject, that provides the hooks for adding object model functionality (see the next section,
“Inside UAppleObject,” for more details).

15

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Figure 3
The Objects As Implemented

MAppleObject must include protocol that implements the object model and OSL concepts. Given an
MAppleObject, there should be protocol for returning an object contained within MAppleObject. This
accessor method is expected to return an object that satisfies the containment request. It also needs to
inform the framework if the returned object is an ephemeral object — some might say that such an
object is lazy evaluated into existence. As a practical matter, this informs the framework whether an
object needs to be deleted when the OSL disposes of the object’s token (as described in “A Sample
OSL Resolution”). Obviously, it would be undesirable to have the framework delete the TImages
because the application depends on them for its internal representation. It would be equally stomach-
turning to have all the TPixels pile up in the heap, never to be deleted.

16

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Since TPixel objects don’t actually exist until they’re lazy evaluated into existence, you’re free to
design their implementation in a wide variety of ways. Remember that one of the contracts the OSL
makes with the application is that tokens need to be valid only during the resolution of the current
object specifier. Well, consider that the implementation of images is just a handle of gray values.
Normally, if someone suggested that a pixel be implemented as an index into a block of data, you’d
throw temper tantrums. “What!” you’d yell, “What if the pixel is moved in the image! Now the index
is stale.” This is not an issue for tokens, because they’re transient. Since pixels won’t be added during
the resolution of an object specifier, such a

17

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

representation is fine. Of course, if you’d prefer a more robust implementation, that’s fine, too, but
remember that the OSL doesn’t impose such robustness on you.

MAppleObject must also include a protocol to implement the comparison operators, counting protocol,
and behavior dispatching. As a practical matter, these methods will likely be large switch statements
that call other, more meaningful, methods depending on the details of the request. For example, the
counting protocol might key on the kind of objects that should be counted and invoke methods
specialized to count contained objects of a specific class.

Finally, each class provides protocol for telling clients which object model class the object represents.
This is necessary for the framework to be able to communicate with the OSL. During the resolution
conversation the OSL holds with the framework, the framework returns descriptors of each object the
OSL asks for. These descriptors are required to publish to the OSL the type of the object returned from
the request.

INSIDE UAPPLEOBJECT

UAppleObject is a framework whose main contribution is the class MAppleObject. MAppleObject
provides the basis for integrating Apple event objects and Apple event object support into object-
oriented applications. UAppleObject also includes a dispatcher, TAppleObjectDispatcher, and the 'aedt'
resource. You drop the UAppleObject files into your application and immediately begin subclassing to
provide Apple event functionality.

EXCEPTION HANDLING IN UAPPLEOBJECT
Developers familiar with the details of Apple event implementation are no doubt aware that the Apple
Event Manager deals exclusively with error code return values, as does the rest of the Toolbox. When
the Apple Event Manager invokes a developer-supplied callback routine, that routine commonly
returns an integer error code. This style of error handling is found nowhere in UAppleObject. Instead,
UAppleObject uses the UMAFailure unit to provide exception handling. UMAFailure is a unit
available on the Developer CD Series disc that provides both a MacApp-style exception-handling
mechanism for non-MacApp programs and excellent documentation for its use.

Wherever UAppleObject is invoked through a callback routine that expects an error code to be
returned, all exceptions are caught and the exception’s error code is returned to the Toolbox. Therefore,
when an error occurs, call the appropriate FailXXX routine provided by UMAFailure — for example
FailMemError, FailNIL, or FailOSErr. In the UAppleObject documentation, calling one of these
routines is referred to as throwing an exception.

18

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

MAPPLEOBJECT
The major workhorse of UAppleObject is MAppleObject, an implementation of the basic Apple event
object functionality. MAppleObject is an abstract mixin class that provides the protocol necessary for
the UAppleObject framework to resolve Apple event objects and handle Apple events.

class MAppleObject
{
public:

MAppleObject();
MAppleObject(const MAppleObject& copy);

virtual ~MAppleObject();

MAppleObject& operator=(const MAppleObject& assignment);

virtual DescType GetAppleClass() const = 0;

virtual long CountContainedObjects(DescType ofType);
virtual MAppleObject* GetContainedObject(DescType desiredType,

DescType keyForm, const AEDesc& keyData, Boolean& needDisposal);
virtual Boolean CompareAppleObjects(DescType compareOperator,

const MAppleObject& toWhat);
virtual void DoAppleEvent(const AppleEvent& message,

AppleEvent& reply, long refCon);

static void SetDefaultAppleObject(MAppleObject* defaultObject);
static MAppleObject* GetDefaultAppleObject();

static void GotRequiredParameters(const AppleEvent& theAppleEvent);

static void InitAppleObject(TAppleObjectDispatcher* dispatcher = nil);
};

GetAppleClass

DescType GetAppleClass() const = 0;

GetAppleClass is an abstract method that returns the object model type of an object. Every
MAppleObject subclass should override this method to return the object model type specific to the
individual object.

19

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

CountContainedObjects

long CountContainedObjects(DescType ofType);

CountContainedObjects should return the number of objects of the indicated type that are contained
within the receiver object. This is usually done by counting the

20

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

number of objects your subclass knows how to access and adding it to the number
of objects the parent class finds (in other words, call the inherited version and add it to the number you
find yourself). If the number of objects is too large to be enumerated in a signed 16-bit integer,
CountContainedObjects may throw the errAEIndexTooLarge exception.

GetContainedObject

MAppleObject* GetContainedObject(DescType desiredType, DescType keyForm,
const AEDesc& keyData, Boolean& needDisposal);

GetContainedObject is a generic method for obtaining an object contained by the receiver. Subclasses
always override this method to provide access to the subclass’s contained objects. The desiredType,
keyForm, and keyData arguments indicate the specific object to be returned as the function result. If
the resulting object is one used in the framework of the application, GetContainedObject should return
false in the needDisposal argument.

The alternative is for GetContainedObject to create the resulting object specifically for this request; in
this case, it returns true in the needDisposal argument. If needDisposal is true, the UAppleObject
framework deletes the result object when it’s no longer needed.

CompareAppleObjects

Boolean CompareAppleObjects(DescType compareOperator,
const MAppleObject& toWhat);

CompareAppleObjects performs the logical operation indicated by the arguments, returning the
Boolean value of the operation. The semantics of the operation
is this compareOperator toWhat. So, if the compareOperator parameter were kAEGreaterThan, the
semantics of the method call would be this is greater than toWhat. Subclasses always override this
method to provide the logical operations
they support.

DoAppleEvent

void DoAppleEvent(const AppleEvent& message, AppleEvent& reply,
long refCon);

21

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

When an object is identified as the target of an Apple event, it’s sent the DoAppleEvent message. The
message and reply Apple event records are passed
in the corresponding arguments. If the direct parameter to the message is typeObjectSpecifier, the
object specifier is guaranteed to resolve to the receiver; otherwise the receiver is the application object.
Additional modifiers for the event can be extracted from the message, and the reply should be filled in
by DoAppleEvent, if appropriate. The refCon parameter is the shortcut number registered with the
UAppleObject framework (see the section “The 'aedt' Resource”). Subclasses always

22

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

override DoAppleEvent to dispatch their supported Apple events to appropriate methods.

SetDefaultAppleObject and GetDefaultAppleObject

void MAppleObject::SetDefaultAppleObject(MAppleObject* defaultObject);
MAppleObject* MAppleObject::GetDefaultAppleObject();

GetDefaultAppleObject returns the MAppleObject currently registered as the null container. Similarly,
SetDefaultAppleObject registers a particular object as the null container. Usually, the object serving as
null container doesn’t change during the lifetime of the application — it’s always the application
object. In this case, just call SetDefaultAppleObject from within your application object’s constructor.
But remember that any Apple event that arrives when no null container is registered falls on the floor
and is returned to the Apple Event Manager with the errAEEventNotHandled error.

GotRequiredParameters

void MAppleObject::GotRequiredParameters(const AppleEvent&
theAppleEvent);

GotRequiredParameters is here for convenience. To do Apple event processing “right,” each Apple
event handler should check that it has received everything the sender sent. Almost every good Apple
event sample has this routine and calls it from within the handlers. Since all handling is done from
within an MAppleObject method, it makes sense for this protocol to be a member function of
MAppleObject. However, the member function really doesn’t need access to the object itself, and
could actually be called from anywhere, so it’s a static member function.

InitAppleObject

void MAppleObject::InitAppleObject(TAppleObjectDispatcher* dispatcher =
nil);

InitAppleObject must be called once after the application initializes the Toolbox and before it enters an
event loop (specifically, before WaitNextEvent gets called). This method installs the given object
dispatcher, or creates a TAppleObjectDispatcher if nil is passed.

TAPPLEOBJECTDISPATCHER
The second element of UAppleObject is TAppleObjectDispatcher. Together with MAppleObject,
TAppleObjectDispatcher forms a complete model of Apple events, the objects themselves, and the
Apple event engine that drives the object protocol. TAppleObjectDispatcher is responsible for
intercepting Apple events and directing them to the objects that should handle them. A core feature of
this engine is the ability to resolve object specifiers into “real” objects.

23

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

class TAppleObjectDispatcher
{
public:

TAppleObjectDispatcher();
virtual ~TAppleObjectDispatcher();

virtual void Install();

virtual MAppleObject* ExtractObject(const AEDesc& descriptor);
virtual void StuffDescriptor(AEDesc& descriptor, MAppleObject* object);

virtual void HandleAppleEvent(const AppleEvent& message,
AppleEvent& reply, long refCon);

virtual void AccessContainedObjects(DescType desiredClass,
const AEDesc& container, DescType containerClass, DescType form,
const AEDesc& selectionData, AEDesc& value, long refCon);

virtual long CountObjects(const AEDesc& containerToken,
DescType countObjectsOfType);

virtual Boolean CompareObjects(DescType operation, const AEDesc& obj1,
const AEDesc& obj2);

virtual void DisposeToken(AEDesc& unneededToken);

virtual MAppleObject* GetTarget(const AppleEvent& message);

virtual void SetTokenObjectDisposal(MAppleObject* tokenObject,
Boolean needsDisposal);

virtual Boolean GetTokenObjectDisposal(const MAppleObject*
tokenObject);

virtual MAppleObject* ResolveSpecifier(AEDesc& objectSpecifier);

virtual void InstallAppleEventHandler(AEEventClass theClass,
AEEventID theID, long refCon);

static TAppleObjectDispatcher* GetDispatcher();
};

24

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Install

void Install();

Install is called when the dispatcher object is actually installed (at InitAppleEvent time). It’s
responsible for reading the 'aedt' resources for the application and declaring the appropriate handlers to
the Apple Event Manager as well as registering with the OSL. Overrides should call the inherited
version of this member function

25

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

to maintain proper functionality. This method may be overridden to provide functionality beyond that
supplied by TAppleObjectDispatcher — to provide for mark tokens, for example, which are left as an
exercise for the reader. (Don’cha just hate it when articles do this to you?)

ExtractObject and StuffDescriptor

MAppleObject* ExtractObject(const AEDesc& descriptor);
void StuffDescriptor(AEDesc& descriptor, MAppleObject* object);

One of the key abstractions provided by TAppleObjectDispatcher is the packaging of MAppleObjects
into tokens for communication with the Apple Event Manager and OSL. ExtractObject and
StuffDescriptor are the pair of routines that carry the responsibility for translation. ExtractObject
returns the MAppleObject contained within the token descriptor, while StuffDescriptor provides the
inverse function. These functions are extensively used internally, but are probably of little interest to
clients. Subclasses that override one method should probably override the other as well.

HandleAppleEvent

void HandleAppleEvent(const AppleEvent& message, AppleEvent& reply,
long refCon);

HandleAppleEvent is called whenever the application receives an Apple event. All responsibility for
distributing the Apple event to an object is held by this member function. HandleAppleEvent is rarely
overridden.

AccessContainedObjects

void AccessContainedObjects(DescType desiredClass,
const AEDesc& container, DescType containerClass, DescType form,
const AEDesc& selectionData, AEDesc& value, long refCon);

At times during the resolution of an object specifier, MAppleObjects are asked to return objects
contained within them. AccessContainedObjects is called when the parsing engine makes that query (in
other words, it’s the polymorphic counterpart of the OSL’s object accessor callback routine). The
method is responsible for getting the MAppleObject container, making the appropriate inquiry, and
returning the result, properly packed. AccessContainedObjects is rarely overridden.

CountObjects

long CountObjects(const AEDesc& containerToken,
DescType countObjectsOfType);

26

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

At times during the resolution of an object specifier, it may be helpful to find out how many of a
particular object are contained within a token object. This method is called when the parsing engine
makes that query (in other words, it’s the polymorphic counterpart of the OSL’s count objects callback
routine). It’s responsible for finding

27

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

the MAppleObject corresponding to the token, making the inquiry of the object, and returning the
answer.

CompareObjects

Boolean CompareObjects(DescType operation, const AEDesc& obj1,
const AEDesc& obj2);

At times during the resolution of an object specifier, it may be helpful to compare two objects to
determine if some logic relationship (for example, less than, equal to, before, or after) holds between
them. CompareObjects is responsible for making the inquiry of the appropriate MAppleObject and
returning the result (in other words, it’s the polymorphic counterpart of the OSL’s compare objects
callback routine). The semantics of the operation is obj1 operation obj2. So, if the compareOperator
parameter were kAEGreaterThan, the semantics of the method call would be obj1 is greater than obj2.
This method is rarely overridden.

DisposeToken

void DisposeToken(AEDesc& unneededToken);

DisposeToken is called when the OSL determines that a token is no longer necessary. This commonly
occurs during resolution of an object specifier. DisposeToken is responsible for acting appropriately (in
other words, it’s the polymorphic counterpart of the OSL’s object disposal callback routine). For the
implementation in TAppleObjectDispatcher, this means the routine checks to see if the object is
marked as needing disposal, and deletes the object if necessary.

GetTarget

MAppleObject* GetTarget(const AppleEvent& message);

GetTarget is responsible for looking at the Apple event and determining which
object should receive it. Notably, GetTarget is used by HandleAppleEvent. The
TAppleObjectDispatcher implementation sends the Apple event to the default object unless the direct
parameter is an object specifier. If the direct parameter is an object specifier, it’s resolved to an
MAppleObject, which is then sent the Apple event. This method is rarely overridden.

SetTokenObjectDisposal and GetTokenObjectDisposal

void SetTokenObjectDisposal(MAppleObject* tokenObject,
Boolean needsDisposal);

Boolean GetTokenObjectDisposal(const MAppleObject* tokenObject);

28

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Any MAppleObject can be marked as needing disposal or not needing it. SetTokenObjectDisposal and
GetTokenObjectDisposal manage the internal representation of the table that keeps track of such
information. You may want to override them both (never do it one at a time) to provide your own
representation.

29

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

ResolveSpecifier

MAppleObject* ResolveSpecifier(AEDesc& objectSpecifier);

ResolveSpecifier returns the MAppleObject that corresponds to the object specifier passed as an
argument. Under most circumstances, you don’t need to call this routine since it’s called automatically
to convert the direct parameter of an Apple event into an MAppleObject. If, however, in the course of
handling an Apple event, you find another parameter whose descriptorType is typeObjectSpecifier,
you’ll probably want to resolve it through this routine. Remember that objects returned from
ResolveSpecifier may need to be deleted when the application is done with them. To accomplish this,
you may either stuff the object into an AEDesc by calling StuffDescriptor and then call
AEDisposeToken, or ask whether the object needs to be deleted by calling GetTokenObjectDisposal
and delete it if true is returned.

InstallAppleEventHandler

void InstallAppleEventHandler(AEEventClass theClass, AEEventID theID,
long refCon);

InstallAppleEventHandler is very rarely overridden. It’s responsible for registering an Apple event
with the Apple Event Manager, notifying the manager that the application handles the Apple event.

GetDispatcher

TAppleObjectDispatcher* GetDispatcher();

This static member function returns the dispatcher object that’s currently installed. It’s useful for
calling TAppleObjectDispatcher member functions from a global scope.

THE 'AEDT' RESOURCE
The last piece of the UAppleObject puzzle is the 'aedt' resource. The definition of this resource type is
in the Types.r file distributed with MPW. Developers familiar with MacApp’s use of the 'aedt' resource
already know how it works in UAppleObject because UAppleObject uses the same mechanism.

The 'aedt' resource is simply a list of entries describing the Apple events that an application handles.
Each entry contains, in order, the event class, the event ID, and a numeric reference constant. The
event class and ID describe the Apple event the application supports and the numeric constant is used
internally by your application. The constant should be different for each supported Apple event. This
allows your application to recognize the kind of Apple event at run time by looking at the refCon
passed to DoAppleEvent.

30

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

When installed via the Install method, a TAppleObjectDispatcher object looks at all 'aedt' resources in
the application’s resource fork, registering all the Apple events in them. Thus, additional Apple event
suites can be signified by adding resources

31

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

instead of adding to one resource. For example, the Rez code to define an 'aedt' resource for the four
required Apple events is as follows:

resource 'aedt' (100) {{
'aevt', 'oapp', 1;
'aevt', 'odoc', 2;
'aevt', 'pdoc', 3;
'aevt', 'quit', 4;

}};

When the Open Document Apple event ('aevt', 'odoc') is sent to the application, the refCon value to
DoAppleEvent is 2. Since you’ve assigned a unique numeric constant to each different Apple event, a
refCon value of 2 can be passed to DoAppleEvent only when the Apple event is Open Document.

To add the mythical foobar Apple event ('foo ', 'bar ') to the application, mapped to number 5, you may
either add a line to the resource described above or add another resource:

resource 'aedt' (101) {{
'foo ', 'bar ', 5;

}};

EXTENDING CPLUSTESAMPLE

So far this sounds all well and good. The theory behind adding Apple event object support holds
together well on paper. The framework, UAppleObject, has been written and works. The only thing left
is to put my money where my mouth is and actually use UAppleObject to demonstrate the addition of
Apple events to an Apple event–unaware application. The subject of this foray into the Twilight Zone
is CPlusTESample in the Sample Code folder on the Developer CD Series disc. TESample serves as
the basis for adding scripting support for object model classes.

CPlusTESample is attractive for a number of reasons. First, it’s a simple application that could support
some nontrivial Apple events. Second, it’s written in an object-oriented style and contains a decent
design from the standpoint of separating the user interface from the engine and internal representation.
Finally, it’s written in C++, a necessary evil for the use of UAppleObject.

32

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

To prove that CPlusTESample actually had the necessary flexibility to add Apple events, I began by
adding font, font size, and style menus to the original sample. Adding these features required little
modification to the original framework aside from the addition of methods to existing classes. Thus, I
was satisfied that the underlying assumptions and framework could hold the paradigm shift of adding
Apple event support.

33

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

In identifying the objects of the program, I chose windows and text blocks as the central object classes.
If I were more gutsy, I would have attempted to actually define words and characters. However, the
ancient programmer’s credo crept in — it was more work than I was willing to do for this example.
Further complicating this decision was the fact that CPlusTESample is built on TextEdit. Therefore, the
obvious concepts of paragraphs and words translated exceptionally poorly into the internal
representation, TEHandles. Characters would have been simpler than either paragraphs or words, but I
copped out and left it as an exercise for the reader.

The relationships between classes are very straightforward. Windows are contained by the null object
and text blocks are contained by windows. However, since I had a concept of window, it became
interesting to define various attributes contained in windows: name, bounding box, and position. So,
object model classes were defined for names, bounding boxes, and positions.

Behaviors were similarly straightforward. Text blocks, names, bounding boxes, and positions had
protocol for getting their data and setting their data. Thus, an Apple event could change a name or text
block or could ask for a position or bounding box.

In the end, six classes were defined to implement the object model classes: TESample, TEDocument,
TWindowName, TWindowBounds, TWindowPosition, and TEditText. TESample is the application
class and functions as the null object. TEDocument implements the window class and is used as the
internal representation of the document and all its data. The remaining four classes are ephemeral
classes that refer to a specific TEDocument instance and represent the indicated feature of that
instance.

From that point, it was straightforward to write methods overriding MAppleObject to provide the
containment, counting, comparison, and behavior dispatching. You can check out CPlusTESample with
Apple event support added on the Developer CD Series disc.

IMPLEMENTING A CLASS

This section shows how UAppleObject helps you write cleaner code by looking at one of the
CPlusTESample classes in detail — TEditText, the text class. User testing revealed the need for a class
to represent the text found inside a CPlusTESample window, so I created a TEditText class whose
objects are contained within some window class. Additionally, users wanted to retrieve and set the text
represented by the text class. The Apple Event Registry defines a text class that roughly resembles the
text class I wanted to provide in my CPlusTESample extension. Therefore, I decided to use the
Registry’s description as a basis for my TEditText class.

34

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

TEditText provides object model support for the user’s concept of text, indicating that it should inherit
from MAppleObject. TEditText objects don’t contain any other

35

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

objects, so there’s no need to override the CountContainedObjects or GetContainedObject methods.
However, TEditText objects do respond to Apple events. The Registry says that text objects should
provide access to the text data itself through the Set Data and Get Data Apple events. Therefore,
TEditText should include methods to implement each Apple event and should override DoAppleEvent
to dispatch an Apple event to the appropriate method. After taking all this into account, here’s what
TEditText looks like:

class TEditText : public MAppleObject
{
public:

TEditText(TEHandle itsTE);

virtual void DoAppleEvent(const AppleEvent& message,
AppleEvent& reply, long refCon);

virtual DescType GetAppleClass() const;

virtual void DoAppleGetData(const AppleEvent& message,
AppleEvent& reply);

virtual void DoAppleSetData(const AppleEvent& message,
AppleEvent& reply);

private:
TEHandlefTEHandle;

};

The constructor is relatively simple to implement. Since CPlusTESample uses TextEdit records
internally, it’s natural to implement TEditText in terms of TextEdit’s TEHandle data structure.
Therefore, TEditText keeps the TEHandle to which it refers in the fTEHandle instance variable.

TEditText::TEditText(TEHandle itsTE)
{

fTEHandle = itsTE;
}

UAppleObject requires each MAppleObject instance to describe its object model class type through
the GetAppleClass method. Since all TEditText objects represent the Registry class denoted by
typeText, TEditText’s GetAppleClass method is exceptionally straightforward, blindly returning the
typeText constant.

36

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

DescType TEditText::GetAppleClass() const
{

return typeText;
}

37

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

DoAppleEvent is also straightforward. It looks at the refCon parameter to determine which Apple
event–handling method should be invoked. This method represents a large part of the remaining
tedium for Apple event coding. Each class is responsible for translating the integer-based Apple event
specifier, refCon in this example, into a polymorphic method dispatch such as the invocation of
DoAppleSetData or DoAppleGetData. The nice part of this implementation is that subclasses of
TEditText won’t need to implement DoAppleEvent again if all the subclass needed was the Set Data or
Get Data protocol. Instead such a subclass would simply override the DoAppleSetData or
DoAppleGetData method and let the C++ method-dispatching mechanisms do the work.

void TEditText::DoAppleEvent(const AppleEvent& message,
AppleEvent& reply, long refCon)

{
switch (refCon)
{
case cSetData:

this->DoAppleSetData(message, reply);
break;

case cGetData:
this->DoAppleGetData(message, reply);
break;

default:
MAppleObject::DoAppleEvent(message, reply, refCon);
break;

}
}

DoAppleGetData and DoAppleSetData are the Apple event–handling methods of the TEditText class.
To developers familiar with the traditional Apple Event Manager interfaces, these methods are the
UAppleObject equivalents of what the Apple Event Manager calls Apple event handlers. Each method
follows a general pattern common to most remote procedure call protocols, of which Apple events are
an advanced form.

First, the Apple event–handling method reads additional information from the message Apple event.
The DoAppleGetData method doesn’t happen to need any additional information because the entire
meaning of the message is found in the identity of the Apple event itself. However, DoAppleSetData
needs one additional piece of information — the text that should be stuffed into the object.

38

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Next, the handler method calls GotRequiredParameters, passing the message Apple event as the sole
argument. GotRequiredParameters ensures that the handler has retrieved all the information that the
Apple event sender has sent. (For a discussion of why this is necessary, see Inside Macintosh Volume
VI, Chapter 6.)

39

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

Third, the handler method will do whatever is necessary to perform the Apple event and create
necessary reply data. The Get Data Apple event requires the TEditText object to fill the reply Apple
event with the text it represents. Therefore, the DoAppleGetData method should retrieve the text
contained in the TEHandle and pack it into an appropriate Apple event descriptor, putting that
descriptor into the reply Apple event. In contrast to Get Data, the Set Data Apple event requires no
reply, but does require that the text represented by the TEditText object be changed to reflect the text
contained by the message Apple event. Thus, the DoAppleSetData method should contain code that
sets the text contained in the object’s TEHandle to the text retrieved from the message Apple event.

void TEditText::DoAppleGetData(const AppleEvent& message,
AppleEvent& reply)

{
// Note: This method uses no additional parameters.

// Make sure we have all the required parameters.
GotRequiredParameters(message);

// Pack the text from the TEHandle into a descriptor.
CharsHandle theText = TEGetText(fTEHandle);
AEDesc textDesc;
HLock((Handle) theText);
OSErr theErr = AECreateDesc(typeText, (Ptr) *theText,

GetHandleSize((Handle) theText), &textDesc);

// Unlock the handle and check the error code, throwing an
// exception if necessary.
HUnlock((Handle) theText);
FailOSErr(theErr);

// Package the reply.
theErr = AEPutParamDesc(&reply, keyDirectObject, &textDesc);

// Dispose of the descriptor we created and check the reply from
// packaging the reply, throwing an exception if necessary.
OSErr ignoreErr = AEDisposeDesc(&textDesc);
FailOSErr(theErr);

}

40

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

void TEditText::DoAppleSetData(const AppleEvent& message,
AppleEvent& /* reply */)

{
// Get the text data descriptor from the message Apple event.
AEDesc textDesc;

41

ARTICLE TITLE December 1992

(AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the West
Coast to join Taligent. Having lived most of his life in a
suburb of the Windy City, he exhibits a psychosis
common to that area of the country — fanatic loyalty to
the Cubs. His formula for success includes bucking the
establishment and blindly following one’s heart over
one’s head. The jury’s still out on whether that formula

it’s been effective so far. He’s the current president of
MADA, an international developer’s association
devoted to providing cutting-edge access to
information about object technologies. MADA
conferences are a real blast, too (just ask Eric about
his grass skirt). In his copious spare time, he collects
comic books, catches up on the Cubs’ latest follies,
and chases a neurotic flying disc around a grassy field
(some call it Ultimate).•

December 1992

FailOSErr(AEGetParamDesc(&message, keyAETheData, typeText,
&textDesc));

// Make sure we have all the required parameters.
GotRequiredParameters(message);

// Use the data in the text descriptor to set the text of TEHandle.
HLock(textDesc.dataHandle);
TESetText(*textDesc.dataHandle, GetHandleSize(textDesc.dataHandle),

fTEHandle);
HUnlock(textDesc.dataHandle);

// Dispose of the text descriptor we created above.
OSErr ignoreErr = AEDisposeDesc(&textDesc);

}

IT'S UP TO YOU

This article set out to reveal the deep significance of Apple events and the object model and to find a
strategy for developing an object-oriented framework to take advantage of the Apple event object
model design. Along the way, it danced around cognitive theory and discussed how cognitive theory
applies to user perception of software. You’ve seen how object programming resembles such cognitive
models to a more-than-trivial degree. And you’ve seen how those similarities can be leveraged to give
workable, programmable models of user concepts within Turbo WhizzyWorks II NT Pro.

You’ve also seen the difficulties presented by the Apple Event Manager interface. Although Apple
event objects and the object model are unarguably tied to user models and user-centric models, the
Apple Event Manager is not. The UAppleObject framework presented here works with the object
model and the Apple Event Manager to reduce generic user scripting to a tedious but straightforward
task.

In the midst of all this detail, don’t forget the payoff — providing a mechanism for users to interact
with your applications using a level of control and precision previously undreamed of. The rest, as they
say, is in your hands.

42

ARTICLE TITLE December 1992

