Emperor

Emperor

Copyright © Copyright2000-2001 by Matthias Gietzelt

Emperor

COLLABORATORS
TITLE :
Emperor
ACTION NAME DATE SIGNATURE
WRITTEN BY January 23, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Emperor iv

Contents

1 Emperor 1
1.1 Documentation of Emperor e 1
1.2 IntroducCtion e e e 2
1.3 Copyright e 3
1.4 SystemrequiremMentsttt e 3
1.5 Inmstallation 4
1.6 Getting started L. e e e e e e e e e e 5
1.7 0perating e e 5
1.8 Menu 6
1.9 Mainwindow e e e e 7
1.10 Mainwindow - Reaction - page e e e e 8
1.11 Mainwindow - Requests - Page e 12
1.12 Mainwindow - Menu - Page 12
1.13 Mainwindow - ASL -Page e 13
1.14 Mainwindow - Locale - Page e e 13
1.15 Mainwindow - Array - Page e 13
1.16 Mainwindow - GlobVars-Page 13
1.17 Mainwindow - Windows - Page L e 14
1.18 Mainwindow - GadTools - Page e 14
1.19 Mainwindow - Interconnection Map -Page L 14
1.20 Programminghelp L e e 15
1.21 Inputmessage handle 15
1.22 predefined variables e e e e e e e 16
1.23 Macrofunctions L e e e e e e e 16
1.24 Function Emperor_CloseWindow e 17
1.25 Function Emperor_OpenWindow e e e e e e e 18
1.26 Function Emperor_IconifyWindow L e 19
1.27 Function Emperor_UniconifyWindow L 20
1.28 Function Emperor_ChangeWindowPosition L 21
1.29 Function Emperor_ChangeWindowSize e 22

Emperor v
1.30 Function Emperor_SetWindowBusyPointer 23
1.31 Function Emperor_SetWindowTitle e 24
1.32 Function Emperor_SetScreenTitle e 25
1.33 Function Emperor_GetMenultemAttr L e 25
1.34 Function Emperor_SetMenultemAttr e 26
1.35 Function Emperor_ActivateGadget e e e e e 27
1.36 Function Emperor_QuitFunc e 28
1.37 Function Emperor_RethinkLayout e 29
1.38 Function Emperor_RefreshGadget e 30
1.39 Function Emperor_GetGadgetAttr e e e e e 30
1.40 Function Emperor_GetGadgetAttrComplex e 32
1.41 Function Emperor_GetGadgetDisabledAttr e 33
1.42 Function Emperor_GetGadgetReadOnlyAttr e 34
1.43 Function Emperor_SetGadgetAttr e e e e e 35
1.44 Function Emperor_SetGadgetAttrComplex e 36
1.45 Function Emperor_SetGadgetDisabledAttr 37
1.46 Function Emperor_SetGadgetReadOnlyAttr e 38
1.47 Function strin@toint e e e e 39
1.48 Function inttoString o i e e e e e 39
1.49 Function stringlength e 40
L.50 HIStory . . . o o o e e e e e e e 41
1.51 FAQ . . o 43
1.52 knownbugs & future plans e e 43
153 Author 44
1.54 Expressionof thanks 44

Emperor 1/44

Chapter 1

Emperor

1.1 Documentation of Emperor

[xkxKkkxk/ /::| /::| /% %%\ Jxxkxxk/ [HrEkx\ /% %%\ /% %%\
/ * % / [Hxxx | [xkx | /x_ kx\ / x % VERVE T + 2 NA T A\ /x4
* %\
[HRx/ /x/ |xx/|x| /x/__/ x| [/ /x/__ /x| %/ \ x| /x/__
/|
[xxkxxk/ [x/ |/ | *| [hxkkrxkk/ [rxkkkxk/ [rxkkxkk/ | x| | * | P

[xkkxkKhkx/

[x____ [/*/ | * | [Hx__) xk_ [[x__kx__ [|| [* | /Hx__*x__/
[HEx/ /*/ | * | /*/ [Hxx/____ /*x/ \x\ AT /x/ /x/ \x\
Jxxkxxk/ [x/ | * | /x/ Jxxkxkxx/ [x/ \ x\ \xxkxx/ /*x/ \ x\
/) /) 1 /_/ /] /) _\ __/ /_/ _\

The object-oriented programming language

Available at www.aminet.de ! (Drawer: dev/c)

Emperor - an easy object-oriented programming language

Introduction What does Emperor do ?
Copyright What rights do I have ?
Systemrequirements What does Emperor need ?
Installation How to install Emperor ?
Getting started How to run Emperor ?
Operating How does Emperor work ?
predefined variables Which variables can I use ?

Macrofunctions How does Emperor make working more easily ?

Emperor 2/44
History What’s the story ?
FAQ Which questions were asked frequently ?
known bugs Which bugs does Emperor have ?
expression of thanks Whom I want to thank very much ?
Author Who made it 2
1.2 Introduction
Please support the further development of this software and mail me
your opinion, problems und criticisms, because the programming costs a lot
of time (but it was a pleasure!).
Thank you for decrunching and the will to testing the program-packet.
This program is for "revolutioning" the software-development on Amiga.
Object-oriented programminglanguage (OOP) is maybe a bit too high for that
program, because there are "real" C/C++-sourcecodes generated and
an external C/C++-Compiler must translate it into machine-code. In the Amiga- <«
sphere
there are only less applications like CanDo, Storm-Wizard and so on, but one day
I have seen the program "Delphi" on the PC :(! This OOP is exclusive controlable
in Pascal (that set’s me up) and it has millions of configuration-possibilities.
I didn’t knew such things on Amiga, and so I made it by myself.
I want to make parameting of the Graphical User Interface (GUI) and its macro- <
elements as easy as
possible. Following standard-GUI-elements are implemented:
* Windows
* 052.0 Gadgets (GadTools)
* 0S3.5 Gadgets (Reaction)
* Requests (EasyRequest)
* Menus (NewMenu)
* ASL-Requests (File, Font, Screenmode)
= Locale (Translations)
* Function-macros, which makes programming under 0S3.5 more easily
With Emperor you are generating a complete C/C++-sourcecode, which only must be
compiled by an external compiler (e.g. StormC from the developer CD2.1).
There are many different files, which are including following data:
PROJEKTNAME. c Programsourcecode (compileable)
PROJEKTNAME. cd Catalog-rawdata
PROJEKTNAME . h own sourcecode
PROJEKTNAME .project projectfile for Emperor
PROJEKTNAME. Storm-projectfile
PROJEKTNAME_SPRACHE.ct translated catalog in rawdatas
Aim of this program is to assure software developer to create their programs (its <=

sourcecode)

Emperor 3/44

by Emperor, because the making of software (opening of windows, file— and <
fontrequests,

menus etc.) is often equal and must not longer copied by programmers from other <+
sourcecodes.

Emperor decrees about one or more macros for every GUI-element. Like the menus:

here you must, for creating the complete Project-menu (open, close, save, print <

etc.) and its
translation, (in Locale-".catalog"-file) only select the corresponding entry in <>
the list.
This is also possible with requests e.g. by making a QuitRequest. These are called
in

the own sourcecode as function "REQUESTNAME ();".

But the program should also be for amigans, who never programmed before,
and bade an easy way in the programming of AmigaOS-GUIs.

1.3 Copyright

Emperor Version 4.0 is copyrighted © 2000-2001 by Matthias Gietzelt
Emperor Version 4.0 is Freeware
All rights reserved.

You can spread Emperor version 4.0, if your intention is non-commercial.
The author takes no responsibility for using the program, and possible
happend damage. :)

What is Freeware ?

Freeware you can copy and spread freely, as long as there is made no benefit
with the program, but the program-packet must be complete, which means there must <

be:
- the program "Emperor"
- the startuppicture "Emperor.pic"
- the prefs-file "Emperor.prefs"
- the install-script "Emperor.install"
- this guide "Emperor.guide" (english and german)
- the catalog-file "Catalogs/deutsch/Emperor.catalog"
- the raw catalog-file "Catalogs/Emperor.cd"
- the project-directory "Projects/" with some projects
— das scripts-directory "Scripts/" for interactive StormC-connection via ARexx

If you are missing one of these files in the archive, please contact me !

1.4 Systemrequirements

- an Amiga ;-)

- Memory 4 MByte; recommended 16 MByte or more

— Workbench version 3.5 or higher

- Processor at least 68020; recommended 68060

— Amiga Developer CD 2.1 of the HAAGE & Partner GmbH

Emperor

4/44

- C/C++-Compiler (from the developer CD "ADCD_2.l:Contributions/Haage_&_Partner/ <

StormC/")

- CatComp (from the developer CD "ADCD_2.1:NDK/NDK_3.5/Tools/CatComp")
- xen.font in size 8 installed in "Fonts:"-directory of the Bootdevice,

tested with follow configurations:

- A 1200
* 68060/50MHz (BlizzardPPC-Card)
* 603e+/240MHz
* 100 MB Memory
* BlizzardVisionPPC - graphixcard
- A 4000
* 68040/25MHz
* 64 MB Memory
* CyberVision 64/3D - graphixcard
* FastLane 72
- A 2000
* 68040/30MHz
* 18 MB Memory
* GVP Series—-II SCSI Filecard
- A 2000
* 68040/40MHz
* 1 MB memory CHIP
* 58 MB memory FAST
* Delfina Lite soundcard
* CyberVision 64/3D graphics card
* 10 GByte hard drive space
- A 1200

68060/50MHz (Blizzard 1260)
1230 SCSI-Kit

int. IDE HD 60MB

ext. SCSI HD 3.3GB

ext. SCSI CD-player

ext. SCSI ZIP-drive (250 MB)
AmigaOS 3.9 with BoingBagl
AGA-screen (800x600 pixel)

b S S S S

1.5 Installation

Please use enclosed install-skript.

If you want to install by hand, then copy the catalog
directory "SYS:Locale/Catalogs/deutsch";

the program-file ("Emperor"),

the startuppicture ("Emperor.pic"),
the prefs-file ("Emperor.prefs"),
this guide-file ("Emperor.guide")
the scripts-dir ("Scripts/")

("Emperor.catalog")

i)

in the

Emperor 5/44

and
the projects-dir ("Projects/")

to a place you’d like.
Then add the line:
"Assign Emperor: PROGRAMMPATH:"

in your user-startup-file and reboot your system.
Now you can use the program without an restriction.

"PROGRAMPATH:" should be the path, where you’ve copied "Emperor".

1.6 Getting started

The program can be started by CLI (Shell) without following arguments.

But you can also doubleclick on the icon of the program.

There are a few things, you must pay attention on:

AmigaOS 3.5 installed ?

4 MBytes of systemmemory must be free on startup
assign on <PATH>:Emperor

RexxMast already started ?

stack at >50000 bytes ?

— under CLI: type ’'stack 50000

* ok ok X X

- under WB: in iconinformations choose a stack of >50000 bytes
— under DOpus:in menu ’Settings-—-Environment’ choose point ’CLI-Launching’ <
and

change stack !

1.7 Operating

How the menu of Emperor is used...
Menu
How the single windows of Emperor are used...

Mainwindow
Reaction-page
Requests—-page
Menu-page
ASL-page
Locale-page
Arrays—-page
GlobVars—-page
Windows-page
GadTools—-page

Emperor 6/44

InterConnection-page

other windows
Programminghelp
Input message handle

1.8 Menu

At this place should be the menuentries only listed and short descipted:

New — Deletes the current project from the memory (additional loading of " <
template.project")
Delete - like "New", no loading of "template.project"
Open - Opens a created project ("x.project"-Datei)
Merge - Adds a project to the current
Save (Submenu)
Project save — Saves the current project ("x.project"-file)
Storm-project save — Generates a Storm-project ("x.q"-file)
Catalog-raw—-file save — Generates catalog-raw files ("*.cd" and "*_LANGUAGE.ct"- ¢«
file)
Own sourcecode save — Saves the own sourcecode ("x.h"-file)
Catalog generate — Generates the catalog file ("x.catalog"-file)
ATTENTION ! This is only functionable, if "CatComp" is installed.
sourcecode generate - Generates compilable C/C++-sourcecode ("+.c"-file)
Save as — Saves the current project under new name ("x.project"-file)
Save as template - Saves the currnet project as template-project ("x.project"- ¢
file)
Clipboard save — Saves the clipboard-content
Save all - Saves following data:
("+x.c"-file) generated program-code
("x.h"-file) Own sourcecode
("x.catalog"-file) Locale-catalog
("+x.project"-file) Emperor-project
("x.q"-file) Storm-project
("+_LANGUAGE.ct"-file) Catalog-translationfile
Print (Submenu)
Objecttable print - prints the current objecttable
Catalog-raw—-files print - prints the catalog-raw files ("*.cd" and "x_SPRACHE.ct"- ¢
file)
Own sourcecode print - prints the own sourcecode ("x.h"-file)
Programsourcecode print - prints compilable C/C++-sourcecode ("*.c"-file)
Print all - prints following data:
("x.c"-file) generated program-code
("x.h"-file) own sourcecode

and the objecttable

Manager - changes to page "Windows"

Preferences — opens the window for several program preferences

Program preferences - opens the window for several program-specific preferences
Information - gives Information about program

Quit - quits the program

Emperor 7/44
Cut — cuts the current listentry
Copy - saves the current object into the Clipboard
Paste - pastes content of the Clipboard into a list
Undo - take back last operation
Redo - do operation again
Delete — deletes the current listentry
x%% Then there are some menuitems, which only can reached from the texteditor. <~
* Kk k
Format text — this item has 2 modi:
when the l.character ~
is a space- <
character,
Emperor is formatting <=
the text in the
normal way.
when the 1l.character is <
NOT a space-character,
the text is formatted on <«
the left border
Testwindow - opens a window, which is comparable to the compiled <>
project
Attributwindow — opens a window, in which you can paramete object-depending <+
adjustments

Show own sourcecode

Programminghelp
Input message hand

1.9 Mainwindow

The mainwindow carrys as title the name of the current project.

14
in which a little
There are also fil
So there are 9 dif

In general the win

help is shown, when the pointer is over a gadget.
ing-cards, which contents a determined systemcomponent.

ferent pages:

Reaction-page
Requests—-page
Menu-page

ASL-page

Locale-page
Arrays—-page
GlobVars—page
Windows-page
GadTools—-page
InterConnection-page

dow is equal for all

— opens the internal texteditor
— opens the Programminghelp-window
le - opens the Input message handling-window

filing—-cards.

It has a statusbar <«

Emperor 8/44

On the right side there is a list with templates for every component,

left from this there are some buttons:

with "Add" you can add a modified element to the own list;

with "Up"/"Down" you can move the current active entry in the own list up/down;

with "Delete" deletes the current active entry from the own list;

with "Test" can Emperor show, how your work looks (without compiling)

On the left side you’ll have an empty list, which should be fill by modified <>
objects.

1.10 Mainwindow - Reaction - page

On the gadgets-page there are 3 groups of gadgets:

* On the right side there is a list with gadget-templates.
If you are choosing an entry, the "Attribute-window for gadgets" is <+
renewed, in which
the attributes can be set.

* In the middle there are some buttons:
with "Add" you can add a modified element to the own list;
with "Up"/"Down" you can move the current active entry in the own list up/ <«
down;
with "Delete" deletes the current active entry from the own list;
with "Test" can Emperor show, how your work looks (without compiling)

* On the left side there is an empty list, which later could be filled with <+
the own
hierarchical liste of gadget-objects.
The entries are at a time the names of the gadgets.
An added gadget is put into the next-higher "generation", and it’s so
an diverted gadget of the previous.

Aim of this "new" kind, to create surfaces is it to took more and more work from <
the

programmer. The positions und sizes are automatically rendered by the system,

in relation to the windowsize.

You can influence the arrangement of the gadgets, when you create vertical and <+
horizontal

groups (Layouts). Gadgets, which belongs to a layout, must be diverted from the <+
Layout-Gadget,

which means that they appear in the list more right and form a new subclass.

But horizontal und vertical Layout-Groups can split into new horizontal

and vertical Layout-Groups.

Horizontal group means, that all gadgets are horizontal arranged.
Vertical group means, that all gadgets are vertical arranged.

Example 1:
Easy example with one string-gadget (Inputfield) and two buttons.

[x| [=1=1
[x| [=1=1

Emperor

9/44

The list for this example must look like that:

vertical Layoutl
of every gadgetlist.
the attribute

It isn’t difficult or is it 27

Editfield |

Stringgadget

Button 1 |

Button 2

Stringl
object in our list.

horizontal Layout2

+—
+—

there are two gadget—-groups (1.
which are layouted vertically.

the so-called "Root-Layout"
In this case it should have
"Orientation-vertical",

because
String-Gadget / 2. two Buttons),

the string-gadget is the first visible

groups;

we are creating a new group,

arranged) .

Buttonl
Button2

then more extensive:

that are laying side by side

this is the left Button
and this the right Button

appoints the beginning

So,
Example 2:
[x|
x|

Button 1 |

Button

2

| \
Fuelgauge

1

| Button

3

\
Fuelgauge

2

a renewed devide of the space tooks place right here.
First we had devide the whole window in vertical

in one we had the string-gadget and in the other

which contents gadgets

(horizontally <>

Emperor 10/ 44

| [
| | I x| | | | | [x| |

| | =1 [##] Chooser 1 | | (Il ||
| | | |__ T | | [[
| | | | [[
| | I | [[
| | Listbrowser | | | Listbrowser | | |

| | I I | | (I I
| | o] | ##| Chooser 2 | | ol ||
| | | |__ T | | [|

| | | | [[
| | | | [|
| | I | (I [
| | I I | | [||
| | | | ##| Chooser 3 | | [_| |

| | | x| |__T | | [x| |

| |
| |
| String-Gadget | | | | |

| \ | | Button 4 | |

| |
|

|

Layoutl

|

+- vertical Layout
|
+- horizontal Layout
I

| +- Buttonl

| +- Button2

| +— Button3

|

+- horizontal Layout
I

| +— Fuelgaugel

| +- Fuelgauge?2

|

+- horizontal Layout
+- Listbrowser

+- vertical Layout
[

| +- Chooserl

| +- Chooser2

| +- Chooser3

|

|
|
|
|
|
|
|
|
|
| +- Listbrowser
|
+- horizontal Layout

|

+- String

+- Button4

Emperor 11/44

So play around with the horizontally and vertically groups, so that you are <+
getting

a feeling for that. If you worked with the Gadtools-Library so far, and used <
absolute

values for sizes and positions, then the swifting around from that isn’t soooco <
easy ! But,

the more you’ll exercise the better you are !

SPECIAL NOTES...

ad 1 (using clicktab-gadgets) :

When using clicktab-gadgets you MUST create your gadget-list that way:

|
|
| [I
| [I
| Button 1 [] Button 2 \
| [[
| [I
|
|

Clicktab
|
+- vertical Pagel
|
+- horizontal Page2
I
| +- Buttonl
| +— Button2
I
+- vertical Page3
I
| +— Integerl
| +- Integer2
I
+- horizontal Paged
|
+- Listbrowserl
+- Listbrowser?2

You can generate a "Page" by taking a layout—-gadget and turn it into "PageMode"
in the attributes-window.

Emperor 12/ 44

PAY ATTENTION ! Don’t forget the first page—-gadget below the clicktab !!!!

ad 2 (using images) :

Images are special gadgets, which contains e.g. picture informations or system <>

glyphs.

If you want to integrate such an image, you have to pay attention that the image <
is

derive from the corresponding gadget or you have to assign the image via <+
connecting

within the attributes-window. But be careful ! You only have got possibilities to

derive an image from a button, a layout or a slider gadget !!!
An example may looks like that:

horizontal Layoutl
|
+- vertical Layout2
[
| +- Bitmapl
I
+- vertical Layout3
|
+— Buttonl
I
| +- Glyphl
I
+- Sliderl
|
+- Bitmap2

SPECIAL NOTES...

1.11 Mainwindow - Requests - Page

On the Requests-Page there are entrys in the right 1list, which generates

requests like for information, quit oder errorreports.

An easy click on the corresponding entrys (with the opened "Window-Attributwindow <>
")

you can edit them. Then you can add them into the own list.

There are prepared requests, like the Quitrequest (a dialogwindow, which makes

a creating of a request to quit superfluous), whether the program (not Emperor)
really should be quitted, like you know from other applications and tools.

1.12 Mainwindow - Menu - Page

In the menueditor in the right list there are 5 entrys; the first three entrys are
systemdefinitions (Title, Item, Subitem) -> see AutoDocs;

Emperor 13/44

The other entrys are complete menus. Project stand for the known Project-Menu
(open, save, print etc.). Thwe entry must be chosen and added to the own list
Now you have created the complete menu INCLUSIVE TRANSLATIONS.

The single entrys can be modified and adjusted to the own taste.

1.13 Mainwindow - ASL - Page

Here you can modify the requests for File-, Font- and Screenmode-choosing
and test them, until they meet with your ideas.

See AutoDocs !

1.14 Mainwindow - Locale - Page

On the Locale-Page you can create catalog for Locale.
The catalog-Identification will be transported from all parts of the programs
(Requests, Menu etc.) into this list.

Only the translation is done right here. For that, you must choose the lauguage <>
and the

catalog-ID, which should be translated.

Then choose the middle string-field (in the opened attribute-window Menu-"Window- <>
Attributewindow")

and translate the string below the chosen field.

1.15 Mainwindow - Array - Page

When you are creating an Array (entrys for Listbrowser, Radiobutton, Chooser and <
Clicktabs),

you MUST open the attribute-window Menu-"Window-Attributewindow".

In the Attributewindow there is also a list, which must filled out with entrys of <>
the Array,

before the entry (Name of the Array) is added to the own list in the Mainwindow

1.16 Mainwindow - GlobVars - Page

Here you can choose between different variabletypes. Before you add them to your <«
own list,
you must make the specific preferences.

The first cyclegadget (from the top) can only be used, when a systemstructure

(see AutoDocs) 1is called and initialized.

The second field specify the variablenames, which are used in the the own <+
sourcecode.

The third is used for the initial wvalue.

Emperor 14/ 44

1.17 Mainwindow - Windows - Page

On this page, you are able to configure your whole windows, which do you wish to <>
implement
into your program.

Here you must pay attention, that the current window is marked by "Active". Which <
means, that

the lists of gadgets denpends on your current window.

I.e., ONLY the content of an "Active" window could be changed anyway.

! ' TMPORTANT ! !

In the attributwindow you can say set, whether a window should appears in

AmigaOS 2.0 or AmigaOS 3.5 - look. If you choose the 0S 2.0 - look, you aren’t <>
allowed to allocate

Reaction—-gadgets to it !

' ' IMPORTANT ! !

1.18 Mainwindow - GadTools - Page

Because GadTools only decrees about gadgets, which demands absolute positions, the
handling is a bit more complicated (or more logical ? :))).

For creation of an window with GadTools-gadgets (OS 2.0 - look), the window itself <
must be an
0S 2.0 - window. This could be attributed on the Window-page.

Now it is important, that the window, in which the gadget will be positionized, 1is ¢
open.

Now you can choose on the GadTools-page the gadget what you want. And in the <
second step

you have to define position and size by mouseclick (and mousemove) into the window <

Subsequent changings are possible by clicking the marked areas in the edges of a <
gadget.
Do you want to move or resize a gadget, you can activate it by a simple click.

The left-sided list is deactivated at the GadTools-page.

It is possible to generate a program based on O0S 2.0 as well as based on 0S 3.5,
by supportting of 0S 2.0 - windows and gadgets.

1.19 Mainwindow - Interconnection Map - Page

Interconnection maps connect gadgets to each other. This connection makes it <«
possible, that different
tags and its values between gadgets are exchanged.

I.e. a fuelgauge—-gadget is connected with a palette-gadget; there must be clear, <
which tags are used.

Emperor 15/44

So you can connect tag "FUELGAUGE_Level" with "PALETTE_Colour". Everytime the <>
palette is clicked, it
will be send its new value direct to fuelgauge.

There are unidirectional and bidirectional maps;

unidirectional maps only send informations from primary to secondary gadget,

bidirectional maps will send informations from primary to secondary and from <>
secondary to

primary gadget.

Let gadgets exchanging datas, an ICMap must be added to own list. - without <=
writing a single line
of source !

1.20 Programminghelp

The programminghelp is in a very early phase of development.
From this window you can call the prepared Function-macros,
paramete them and include them to your own sourcecode.

Choose the function by clicking
A window i1s opened, where you can choose the parameters
Press the button "Add function to your own sourcecode"
Two windows, the texteditor and the Input message handle are opened (4a <«
) s
if the texteditor wasn’t open itself (4b).
4a. In the window Input message handling you must
choose the message, in which the function should be added. <+
This could be
also a non-existing function.
4b. When the texteditor is open, the function is added at the <
position of
the Cursors.

Sw N

When a function is choosen, HELP can be pressed to start the guide on that side, <+
which describes
the specific macrofunction.

1.21 Input message handle

This window is devided in two lists. The list on the left side
consists of many possible appearing messages.

The single entries of the list means:

GadgetUp - when a gadget was clicked

GadgetHelp - when the pointer is over a gadget
MenuPick - when a entry is picked from the menu
MenuHelp — when the pointer is over a menuitem
CloseWindow — when the close-symbol is clicked

Iconify - when the iconify-symbol is clicked

Emperor

16 /44

Uniconify
ActiveWindow
InactiveWindow
RawKey
VanillaKey
MouseButtons
MouseMove
NewSize
ChangeWindow
DisposedWindow
IntuiTick
ShowWindow
Startup
Shutdown

- when
- when
- when
— when
- when
— when
— when
- when
— when
— when

the icon was double clicked

the window was activated

the window is gone in state "inactiv"

a key was pressed

a key was pressed (menu-shortcut)

a mousebutton was pressed

the mouse was moved

the size of a window was changed

the size or position of a window was changed
a window has done an action

- all 1/10-sec a message

- when

a window was opened

- at program-start (by initialization)
- at program-finish

For detailed description of messages of the system,
please consult the AutoDocs of the AmigaDeveloperCD!

If you choose one of these enties, the corresponding selection-possibilities to
specify the wanted Gadget/Menu/Window-objects appears in the right list.
A doubleclick on the entry in the right list generates a new function (procedure)

in the texteditor,

in which the own sourcecode could be included.

That could be e.g. the prepared Function-macros

or the systemfunctions of AmigaOS.

1.22 predefined variables

Name Kind
0s35 (BOOL)
terminated (BOOL)
vinfo (void =)
Catalog (struct
Menu (struct
AppPort (struct
Screenl (struct

Contains

= TRUE, when 0OS 3.5 is installed
= TRUE, when program should be quitted

= GetVisualInfo ()
Catalog x) = OpenCatalogA()
Menu) = CreateMenus ()
MsgPort =) MsgPort for windows and its evaluation
Screen *) = LockPubScreen ()

Variable "Screenl" has been changed for 4.0 from variable "Screen"

1.23 Macrofunctions

In Emperor there are some macrofunctions, which overtakes complicated operations <

with

an easy call and the corresponing parameters. These macros are to call from the <+
own sourcecode.

Windowhandling
Emperor_CloseWindow
Emperor_OpenWindow
Emperor_IconifyWindow
Emperor_UniconifyWindow

Emperor

17 /44

Windowattributes
Emperor_ChangeWindowPosition
Emperor_ChangeWindowSize
Emperor_SetWindowBusyPointer
Emperor_SetWindowTitle
Emperor_SetScreenTitle

Gadgetattributes
Emperor_GetGadgetAttr
Emperor_GetGadgetDisabledAttr
Emperor_GetGadgetReadOnlyAttr
Emperor_SetGadgetAttr
Emperor_SetGadgetDisabledAttr
Emperor_SetGadgetReadOnlyAttr

Menuattributes
Emperor_GetMenultemAttr
Emperor_SetMenultemAttr

Misc

Emperor_ActivateGadget
Emperor_RethinkLayout
Emperor_RefreshGadget
Emperor_QuitFunc
stringlength ()
stringtoint ()
inttostring()

1.24 Function Emperor_CloseWindow

Function
Macrofunction for closing windows

Synopsis
Emperor_CloseWindow (WindowObject)

void Emperor_CloseWindow (Object x);

Action
This function does some tasks for the programmer.
1. deleting created Menu
2. closing window
3. resetting variable "Window"

Input
WindowObject - This must be the name of the windowobject.
You can paramete it in the project-manager, when you are
creating a new window. Template is:
Object *WindowObijX; X is the number of the window;
e.g. Object *WindowObjl, *WindowObij2...;

Example
/* Closing of windows must be done by yourself, x/
/* because that actions of freeing memory can’t done by the maincode. */

/+ If the applicationwindow is closed, Emperor isn’t closing the program ! */

Emperor 18 /44

void Emperor_ChooserlGadgetUpEvent (void)

{
/ *

pre—-sourcecode

*/
Emperor_CloseWindow (WindowObjl) ;

/ *

past—-sourcecode

*/

Windowl = Emperor_OpenWindow (WindowObjl) ;

/ *
sourcecode
*/
}
See also

Emperor_OpenWindow ()

1.25 Function Emperor_OpenWindow

Function
Macrofunction for opening windows

Synopsis
Window = Emperor_OpenWindow (WindowObject)

struct Window *xEmperor_OpenWindow (Object =) ;

Action
This function does some tasks for the programmer.
1. Opening of the window
2. Creating the menu

Input
WindowObject - This must be the name of the windowobject.
You can paramete it in the project-manager, when you are
creating a new window. Template is:
Object xWindowObjX; X is the number of the window;
e.g. Object *WindowObjl, *WindowObij2...;

Result

Emperor 19/44

is a variable of the type "struct Window *". It’s a pointer to the windows- <«
structure.
This should be that variable, which name you typed at creating the window <+
in the

project-manager. If you haven’t gave a name for the window, it’s a <=
variable like this:
Object xWindowX; X is the number of the window;
e.g. struct Window *xWindowl, *Window2...;

Example
void Emperor_ButtonlGadgetUpEvent (void)
{
/ *

pre—-sourcecode

*/
Emperor_CloseWindow (WindowObjl) ;

/ *

pre—-sourcecode

*/
Windowl = Emperor_OpenWindow (WindowObijl) ;

/ *

past—-sourcecode

*/

See also
Emperor_CloseWindow ()

1.26 Function Emperor_lconifyWindow

Function
Macrofunction for iconify of windows

Synopsis
Emperor_IconifyWindow (WindowObject)

void Emperor_IconifyWindow (Object «);

Action
This function does some tasks for the programmer.
1. deleting created Menu
2. closing window

Emperor 20/ 44

3. resetting variable "Window"
Input
WindowObject - This must be the name of the windowobject.
You can paramete it in the project-manager, when you are
creating a new window. Template is:
Object xWindowObjX; X is the number of the window;
e.g. Object *WindowObjl, *WindowObij2...;

Example

void Emperor_CheckboxlGadgetUpEvent (void)
{
/ *

some sourcecode

*/
Emperor_IconifyWindow (WindowObijl) ;

/ *

further sourcecode

*/
Window = Emperor_UniconifyWindow (WindowObjl) ;

/ *

further sourcecode

*/

see also
Emperor_UniconifyWindow ()

1.27 Function Emperor_UniconifyWindow

Function
Macrofunction for uniconify of windows

Synopsis
Window = Emperor_UniconifyWindow (WindowObject)

struct Window *xEmperor_UniconifyWindow (Object x);
Action

This function does some tasks for the programmer.
1. Opening of the window

Emperor 21/ 44

2. Creating the menu

Input
WindowObject - This must be the name of the windowobject.
You can paramete it in the project-manager, when you are
creating a new window. Template is:
Object xWindowObjX; X is the number of the window;
e.g. Object *WindowObjl, *WindowObij2...;

Result
is a variable of the type "struct Window *". It’s a pointer to the windows- <
structure.
This should be that variable, which name you typed at creating the window <>
in the

project-manager. If you haven’t gave a name for the window, it’s a <=
variable like this:
Object *WindowX; X is the number of the window;
e.g. struct Window *xWindowl, *Window2...;

Example
void Emperor_CheckboxlGadgetUpEvent (void)
{
/ *

some sourcecode

"

Emperor_IconifyWindow (WindowObijl) ;

/ *
further sourcecode
*/
Window = Emperor_UniconifyWindow (WindowObijl) ;
/ *
further sourcecode
*/

see also
Emperor_IconifyWindow ()

1.28 Function Emperor_ChangeWindowPosition

Emperor 22/44

Function
Macrofunction for setting the window—-attributes.

Synopsis
Emperor_ChangeWindowPosition (Window, Left, Top)

void Emperor_ChangeWindowPosition (struct Window %, WORD, WORD) ;
Action

This macro is using the ChangeWindowBox () -Function of the Intuition-Library.
The position of the windows is modified.

Input

Window - Window to modify. Example: Windowl

Left - Left edge of the window, relative to the left screenborder.
Top — Top edge of the window, relative to the top screenborder.
Example

void Emperor_WindowPositionMenuEvent (void)
{
/ *

some sourcecode

*/
Emperor_ChangeWindowPosition (Window, 100, 200);

/ *

further sourcecode

*/

see also
Emperor_ChangeWindowSize ()

1.29 Function Emperor_ChangeWindowSize

Function
Macrofunction for setting of window-attributes.

Synopsis
Emperor_ChangeWindowSize (Window, Width, Height)

vold Emperor_ChangeWindowSize (struct Window *, WORD, WORD) ;
Action

This macro is using the ChangeWindowBox () -Function of the Intuition-Library.
The position of the windows is modified.

Emperor 23 /44

Input
Window - Window to modify. Example: Windowl
Width - Width of the window.

Height - Height of the window.

Example
void Emperor_WindowSizeMenuEvent (void)

{
/ *

some sourcecode

*/

Emperor_ChangeWindowSize (Window, 300, 400);

/ *
further sourcecode
*/
}
see also

Emperor_ChangeWindowPosition ()

1.30 Function Emperor_SetWindowBusyPointer

Function
Macrofunction for setting of window-attributes.

Synopsis
Emperor_SetWindowBusyPointer (Window, on/off)

void Emperor_Window (struct Window =, BOOL) ;

Action
This macro is using the SetWindowPointer ()-Function of the Intuition-Library.
The pointer is toggled to "Busy"-mode.

Input
Window — Window to modify. Example: Windowl
on/off - switching the BusyPointer on ("TRUE") and off ("FALSE").

Example
void Emperor_WindowBusyPointerMenuEvent (void)
{
/ *

some sourcecode

o

Emperor 24/ 44

Emperor_SetWindowBusyPointer (Window) ;

/ *

further sourcecode

*/

1.31 Function Emperor_SetWindowTitle

Function
Macrofunction for setting of window-attributes.

Synopsis
Emperor_SetWindowTitle (Window, windowtitle)

void Emperor_SetWindowTitle (struct Window =%, STRPTR);

Action
This macro is using the SetWindowTitles () -Function of the Intuition-Library.
The titel of the window is modified.

Input
Window - Window to modify. Example: Windowl
windowtitle - new titel for the window

Example
void Emperor_WindowTitleMenuEvent (void)
{
/ *

some sourcecode

o

Emperor_SetWindowTitle (Window, "new title");

/ *
further sourcecode
*/
}
see also

Emperor_SetScreenTitle ()

Emperor 25/ 44

1.32 Function Emperor_SetScreenTitle

Function
Macrofunction for setting of window-attributes.

Synopsis
Emperor_SetScreenTitle (Window, screentitle)

volid Emperor_SetScreenTitle (struct Window %, STRPTR);
Action

This macro is using the SetWindowTitles () -Function of the Intuition-Library.
The titel of the screen is modified.

Input

Window - Window to modify. Example: Windowl
screentitle - new titel for the screen
Example

void Emperor_WindowTitleMenuEvent (void)
{
/ *

some sourcecode

*/

Emperor_SetScreenTitle (Window, "new title");

/ *
further sourcecode
*/
}
see also

Emperor_SetWindowTitle ()

1.33 Function Emperor_GetMenultemAttr

Function
Macrofunction for getting of menuitem-attributes.

Synopsis
result = Emperor_GetMenultemAttr (MenuObject, MenuattrID)

BOOL Emperor_GetMenultemAttr (UBYTE, UWORD) ;
Action

The function gives the current state of attributes of menuitems.
You can ask, whether the item is checked, enabled and so on.

Emperor

26/44

Input
MenuObject - here you must put in the name of the menu-objects,
which could be attributed by creating the menustrip.
This solution is very advantageous, because the management
of menus and its ID-numbers is relative complicable
for beginners.
MenuFlagmask - this parameter you must set by the three following masks,
which choose the asked attribut:
«+ ITEMENABLED (whether the item is chooseable)
* MENUTOGGLED (for MutualExclude or Checkit;
asks, whether the item is toggled)
* CHECKED (fir MutualExclude oder Checkit;
asks, whether the item is checked)

Result
result = TRUE, if the chosen attribute is set, otherwise result = FALSE

Example
void Emperor_ItemCheckitMenuEvent (void)

{
BOOL boolean;

/ *

some sourcecode

*/

boolean = Emperor_GetMenultemAttr (Menu_ItemCheckit, CHECKED) ;

/ *
further sourcecode
*/
}
see also

Emperor_SetMenultemAttr ()

1.34 Function Emperor_SetMenultemAttr

Function
Macrofunction for setting of menuitem-attributes.

Synopsis
Emperor_SetMenultemAttr (MenuObject, MenuattrID, Set/Reset)

void Emperor_SetMenultemAttr (UBYTE, UWORD, BOOL);

Action
The function sets the current state of attributes of menuitems.

Emperor 27 /44

You can set, whether the item should be checked, enabled and so on.

Input
MenuObject - here you must put in the name of the menu-objects,
which could be attributed by creating the menustrip.
This solution is very advantageous, because the management
of menus and its ID-numbers is relative complicable
for beginners.
MenuFlagmask - this parameter you must set by the three following masks,
which choose the set attribut:
* ITEMENABLED (whether the item is chooseable)
* MENUTOGGLED (for MutualExclude or Checkit;
set, whether the item should be toggled)

* CHECKED (fir MutualExclude oder Checkit;
set, whether the item should be checked)
Set/Reset - Set/Clear the chosen mask.
Example

void Emperor_ItemCheckitMenuEvent (void)

{
BOOL boolean;

/ *

some sourcecode

*/
Emperor_SetMenultemAttr (Menu_ItemCheckit, ITEMENABLED, TRUE) ;
Emperor_SetMenultemAttr (Menu_ItemCheckit, CHECKED, FALSE);

/ *
further sourcecode
*/
}
see also

Emperor_GetMenultemAttr ()

1.35 Function Emperor_ActivateGadget

Function
Macrofunction for activating a String- or CustomGadgets.

Synopsis
Emperor_ActivateGadget (GadgetObject)

void Emperor_ActivateGadget (struct Gadget «);

Action
When this function is called a StringGadget is activated and the Cursor

Emperor 28/ 44

is set into das Gadget, so that the user can make inputs, without clicking.
This macro uses the Intuition-function ActivateGadget () .

Input
GadgetObject - Name des Gadgets, das aktiviert werden soll.

Example
void Emperor_ActivateMenuEvent (void)
{
/ *

some sourcecode

*/
Emperor_ActivateGadget (String3);

/ *

further sourcecode

*/

1.36 Function Emperor_QuitFunc

Function
Macrofunction for quitting the program.

Synopsis
Emperor_QuitFunc ()

void Emperor_QuitFunc (void) ;
Action

When you are calling that function, all opened libraries etc.

are closed.

Bevor calling this function, you needn’t close opened windows !
Example

void Emperor_ProjectQuitMenuEvent (void)

{

BOOL error;

/ *

some sourcecode

o

if (error) Emperor_QuitFunc();

Emperor 29/ 44

/ *
Ende

*/

1.37 Function Emperor_RethinkLayout

Function
Macrofunction for redrawing the whole layout.

Synopsis
Emperor_RethinkLayout (GadgetObject)

void Emperor_RethinkLayout (struct Gadget x);

Action

This macro uses the LayoutGadget-function RethinkLayout ().

When you are calling this function, the whole layout is redrawed.

But you can define from which position in your gadgetlist the refreshing
should take place.

If you want to redraw all gadgets, you should put the value "GadgetX[O0]",

"X" represents the number of the window in your list in the project-manager
Important by complete refreshing is the "[0]" behind the name in the list.
This expression stands for the Root-Gadget (first Gadget in the list).

Input
GadgetObject - Name of the Gadgets, from which position in the list of the
Gadgets the objects should be refreshed.

Example
void Emperor_RethinkMenuEvent (void)

{
/ *

some sourcecode

*/
Emperor_RethinkLayout (Buttonl) ;

/ *

further sourcecode

*/
Emperor_RethinkLayout (Gadgetl1l[0]);

/ *

Emperor

30/44

further sourcecode

*/

see also
Emperor_RefreshGadget ()

1.38 Function Emperor_RefreshGadget

Function
Macrofunction for redrawing a single gadget.

Synopsis
Emperor_RefreshGaget (GadgetObject)

void Emperor_RefreshGadget (struct Gadget x);

Action
This macro uses the Intuition-Function RefreshGList ().

When you are calling this function, declared gadget is redrawed.

Input
GadgetObject - Name of the gadgets, which should be refreshed.

Example
void Emperor_RefreshMenuEvent (void)
{
/ *

some sourcecode

*/
Emperor_RefreshGadget (Button2) ;

/ *

further sourcecode

*/

see also
Emperor_RethinkLayout ()

1.39 Function Emperor_GetGadgetAttr

Emperor 31/44

Function
Macrofunction for getting a Gadget-value.

Synopsis
result = Emperor_GetGadgetAttr (GadgetObject)

STRPTR Emperor_GetGadgetAttr (struct Gadget x);

Action
This macro uses the GetAttr()-Function of the Intuition-Library.
Depending on the kind of the gadget this macro controls GetAttr()-Function.
Without additional inputs, the flag-choice is made by this macro !
These flags are supported:

GA_Selected (Button, Checkbox)
CHOOSER_Selected
CLICKTAB_Current
FUELGAUGE_Level

GRAD_CurVal

INTEGER_Number
LISTBROWSER_Selected
PALETTE_Colour
RADIOBUTTON_Selected
SCROLLER_Top

SLIDER_Level
STRINGA_TextVal
TEXTEDITOR_Contents - Flag.

If you want to get other flags, then please use the real Intuition-Function.

Input
Gadget - which gadget should be get Example: Checkbox3

Result
This function returns the flag (see above) of the gadget.

ATTENTION!! The return value is of type "STRPTR" (chain of characters).
The transformation of the value can be executed by calling these functions

stringtoint ()
inttostring()
Bugs
The function returns a peculiar value in version 2.00.
This bug is compensated since version 2.20.
Example

void Emperor_Checkbox3GadgetUpEvent (void)

{
LONG number;
STRPTR string;

/ *

some sourcecode

Emperor 32/44

*/
number = stringtoint (Emperor_GetGadgetAttr (Fuelgauge2));

strcpy (string, Emperor_GetGadgetAttr (String3));

/ *
further sourcecode
*/
}
see also

Emperor_SetGadgetAttr ()

1.40 Function Emperor_GetGadgetAttrComplex

Function
Macrofunction for getting a Gadget-value.

Synopsis
result = Emperor_GetGadgetAttrComplex (GadgetObject, GadgetattrID)

STRPTR Emperor_GetGadgetAttrComplex (struct Gadget =, ULONG) ;

Action
This macro uses the GetAttr ()-Function of the Intuition-Library.
In contrast to Emperor_GetGadgetAttr () here you must
set a concrete tag.

Input
Gadget - which gadget should be got Example: Checkbox3

GadgetattrID - which GadgetattrID should by used Example: <
CHECKBOX_TextPlace

Result
This function returns the value of the given tag.

ATTENTION!! The return value is of type "STRPTR" (chain of characters).
The transformation of the value can be executed by calling these functions

stringtoint ()
inttostring()

Example
void Emperor_Checkbox3GadgetUpEvent (void)
{
LONG number;
STRPTR string;

Emperor

33/44

/ *

some sourcecode

o

number = stringtoint (Emperor_GetGadgetAttrComplex (Fuelgauge2, FUELGAUGE_Min));

strcpy (string, Emperor_GetGadgetAttrComplex (Button3, GA_Text));

/ *
further sourcecode
*/
}
see also

Emperor_SetGadgetAttrComplex ()

1.41 Function Emperor_GetGadgetDisabledAttr

Function
Macrofunction for getting the GA_Disabled-attributes.

Synopsis
result = Emperor_GetGadgetDisabledAttr (GadgetObject)

BOOL Emperor_GetGadgetDisabledAttr (struct Gadget x);

Action
This macro uses the GetAttr ()-Function of the Intuition-Library.
The GA_Disabled-Flag (whether the gadget is chooseable) is set

and returned.

Input
Gadget - which gadget should be got Example: Checkbox3

Result

The function returns the GA_Disabled-Flag of the corresponding gadget.

Example
void Emperor_IntegerlGadgetUpEvent (void)

{
BOOL result;

/ *

some sourcecode

"

Emperor

34/ 44

result = Emperor_GetGadgetDisabledAttr (Buttonl);

/ *
further sourcecode
*/
}
see also

Emperor_SetGadgetDisabledAttr ()

1.42 Function Emperor_GetGadgetReadOnlyAttr

Function
Macrofunction for getting the GA_ReadOnly-attributes.

Synopsis
result = Emperor_GetGadgetReadOnlyAttr (GadgetObject)

BOOL Emperor_GetGadgetReadOnlyAttr (struct Gadget x);
Action
This macro uses the GetAttr ()-Function of the Intuition-Library.
The GA_ReadOnly-Flag (whether the gadget is only for reading) is set

and returned.

Input
Gadget - which gadget should be got Example: Checkbox3

Result

The function returns the GA_ReadOnly-Flag of the corresponding gadget.

Example
void Emperor_IntegerlGadgetUpEvent (void)

{
BOOL result;

/ *

some sourcecode

*/
result = Emperor_GetGadgetReadOnlyAttr (Buttonl);

/ *

further sourcecode

*/

Emperor 35/44

see also
Emperor_SetGadgetReadOnlyAttr ()

1.43 Function Emperor_SetGadgetAttr

Function
Macrofunction for setting a Gadget-value.

Synopsis
Emperor_SetGadgetAttr (GadgetObject, Value)

volid Emperor_SetGadgetAttr (struct Gadget x, STRPTR);

Action
This macro uses the SetGadgetAttr () -Function of the Intuition-Library.
Depending on the kind of the gadget this macro controls SetGadgetAttr ()-Function

Without additional inputs, the flag-choice is made by this macro !
These flags are supported:

GA_Selected (Button, Checkbox)
CHOOSER_Selected
CLICKTAB_Current
FUELGAUGE_Level

GRAD_CurVal

INTEGER_Number
LISTBROWSER_Selected
PALETTE_Colour
RADIOBUTTON_Selected
SCROLLER_Top

SLIDER_Level
STRINGA_TextVal
TEXTEDITOR_Contents - Flag.

If you want to set other flags, then please use the real Intuition-Function.

Input
Gadget - which gadget should be set Example: Checkbox3

Value - Value, how the flag should be modified.
ATTENTION!! The value must be from type "STRPTR" (chain of characters).
The converting can be done by using these functions:

stringtoint ()
inttostring()

Example
void Emperor_Checkbox3GadgetUpEvent (void)
{
/ *

some sourcecode

"

Emperor 36 /44

Emperor_SetGadgetAttr (Fuelgauge2, "23");

Emperor_SetGadgetAttr (String3, "String");

/ *
further sourcecode
*/
}
see also

Emperor_GetGadgetAttr ()

1.44 Function Emperor_SetGadgetAttrComplex

Function
Macrofunction for setting a Gadget-value.

Synopsis
Emperor_SetGadgetAttrComplex (GadgetObject, GadgetattrID, Value)

void Emperor_SetGadgetAttrComplex (struct Gadget %, ULONG, STRPTR);

Action
This macro uses the SetGadgetAttr () -Function of the Intuition-Library.
In contrast to Emperor_SetGadgetAttr () here you must

set a concrete tag.

Input
Gadget - which gadget should be set Example: Checkbox3

GadgetattrID - which GadgetattrID should by used Example: <>
CHECKBOX_TextPlace

Value - Value, how the flag should be modified.
ATTENTION!! The value must be from type "STRPTR" (chain of characters).
The converting can be done by using these functions:

stringtoint ()
inttostring ()

Example
void Emperor_Checkbox3GadgetUpEvent (void)
{
/ *

some sourcecode

o

Emperor_SetGadgetAttrComplex (Fuelgauge2, FUELGAUGE_Min, "23");

Emperor 37/44

Emperor_SetGadgetAttrComplex (String3, STRINGA_MaxChars, "10");
Emperor_SetGadgetAttrComplex (Listbrowserl, LISTBROWSER _MinVisible, "20");
Emperor_SetGadgetAttrComplex (Listbrowserl, LISTBROWSER Labels, (STRPTR) & <>

Listbrowser_NewListArray) ;

/**/

/* This isn’t a bug in the guide.... */
/* When changing Labels, you must pay attention =/
/* that you cast the argument with (STRPTR) */
/* and give the address (&)!! to the function */

/**/

/ *

further sourcecode

*/

see also
Emperor_GetGadgetAttrComplex ()

1.45 Function Emperor_SetGadgetDisabledAttr

Function
Macrofunction for setting the GA_Disabled-attributes.

Synopsis
Emperor_SetGadgetDisabledAttr (GadgetObject, disable/enable)

void Emperor_SetGadgetDisabledAttr (struct Gadget %, BOOL);
Action

This macro uses the SetGadgetAttr () -Function of the Intuition-Library.
The GA_Disabled-Flag (whether the gadget is chooseable) is set.

Input

Gadget — which gadget should be set Example: Checkbox3
dis/enable - TRUE to disable, FALSE to enable flag.

Example

void Emperor_IntegerlGadgetUpEvent (void)
{
/ *

some sourcecode

o

Emperor_SetGadgetDisabledAttr (Buttonl, TRUE);

Emperor 38/44

Emperor_SetGadgetDisabledAttr (Checkbox3, FALSE);

/ *
further sourcecode
*/
}
see also

Emperor_GetGadgetDisabledAttr ()

1.46 Function Emperor_SetGadgetReadOnlyAttr

Function
Macrofunction for setting the GA_ReadOnly-attributes.

Synopsis
Emperor_SetGadgetReadOnlyAttr (GadgetObject, on/off)

void Emperor_SetGadgetReadOnlyAttr (struct Gadget =, BOOL);
Action

This macro uses the SetGadgetAttr () -Function of the Intuition-Library.
The GA_ReadOnly-Flag (whether the gadget is chooseable) is set.

Input

Gadget — which gadget should be set Example: Checkbox3

on/off — TRUE to make gadget readonly, FALSE to make gadget choosable.
Example

void Emperor_IntegerlGadgetUpEvent (void)

{
/ *

some sourcecode

*/
Emperor_SetGadgetReadOnlyAttr (Buttonl, FALSE);
Emperor_SetGadgetReadOnlyAttr (Checkbox3, TRUE);

/ *
further sourcecode
*/
}
see also

Emperor_GetGadgetReadOnlyAttr ()

Emperor 39/44

1.47 Function stringtoint

Function
This function converts characters (STRPTR = chains of characters) into
an integer number (LONG = 32-bitnumber).
Synopsis
result = stringtoint (string)

LONG stringtoint (STRPTR) ;

Action
It is for transformations of the results of functions like:
Emperor_GetGadgetAttr
Emperor_SetGadgetAttr

Input

string - characters to convert
Example

void Emperor_Cut_MenuEvent (void)
{

LONG number;

STRPTR string = "-123456789";

/ *

some sourcecode

*/
number = stringtoint (string); /* !! number = -123456789 !! «/

/ *

further sourcecode

*/

see also
inttostring ()

1.48 Function inttostring

Function
This function converts an integer number (LONG = 32-bitnumber)
into characters.

Synopsis

Emperor 40/ 44

result = inttostring (number)

STRPTR inttostring (LONG) ;

Action
This function converts a number of the area from -999999999
to 999999999 into characters (= STRPTR).
It is for transformations of the results of functions like:
Emperor_GetGadgetAttr
Emperor_SetGadgetAttr

Input

number - number to transform

Example

void Emperor_Cut_MenuEvent (void)
{
STRPTR string;

/ *

some sourcecode

*/
strcpy (string, (char *) inttostring(-123456789));

/ *

further sourcecode

*/

see also
stringtoint ()

1.49 Function stringlength

Function
This function returns the length of a string.

Synopsis
result = stringlength (string)

ULONG stringlength (STRPTR) ;

Input
string - string, you want to get the length from

Beispiel
void Emperor_Cut_MenuEvent (void)

Emperor

41/ 44

/ *

/ *

o

ULONG result;

some sourcecode

result = stringlength("Hello"); /* result = 5 x/

further sourcecode

1.50 History

Initial release

AmigaOS 2.0 Gadget support !!

(GadTools—-Gadgets are implemented now !)

reached to shrink programsize by coding the window-stuff by myself
instead of making it by ReActor

Oops..The program crashed, when a clicktab was in a test-window.
speed optimizations (e.g. at startup, shutdown etc.)

defined catalog-creation

C++-Code support

added the macro "Preferences-Menu" for Prefs-Programs

better & easier generated C-sourcecode

minor bugfixes

prefs—editor rewritten

chooseable processortype for generated StormC-project
modified programming-help

some functionmacros rewritten

minor bugfixes

gadgets—-test routine rewritten
fixed bugs by showing tapedeck & colorwheel gadgets

fixed problems with clicktabs & page gadgets (see "clicktabsexample")

added function "Shutdown ()" (called, when program quits)
added progress-bar while saving
added macrofunctions Emperor_Set/GetGadgetAttrComplex ()

fixed a bug when generating source for window with colorwheel

source is now *morex SAS/C friendly

fixed a silly bug when copy a function from programming help into
texteditor

Emperor 42] 44

- added online help for macrofunctions (see chapter Programming Help for <«
details)

- added ARexx-connection to StormC (Scripts - Dir)

- added arguments by starting StormC (e.g. GoldED support for StormC)

- added loading picture

3.2 - added parametry of several image-gadgets (bevel, bitmap, glyph)
(see "ClicktabExample" for details)
- fixed a bug with slider and getfile-gadgets
- fixed problem with requester-body-text ["\n" (Newline) will be recognized <>
now]
- rewritten routine for adding, moving (up and down) and removing of objects <>
in a list

3.5 - showing of scroller & slider-gadgets fixed

- layout—-gadget (bevelstyle & —-state) doesn’t switch back to previous setted
values anymore

- added support of finnish catalog

- added program-environment for configuration of version, program name,
stack, mem and many more

— deleting windows is possible now

- when pages were added to gadgetlist, its generation was incorrect

- added gadgethelp support - just connect a gadget to configure ! (program- <

environment)

- added function <Menu-Edit-Clearlist> to reset current list of objects

— label’s Locale-connection works correct now

— gadgethelp for nearly every gadget

— added chooseable HookType for string-gadgets

- added some initial-configurations for texteditor-gadgets

- moving Locale-entrys is possible now

— editing the includelist is also possible now

- added new startup-picture (thanks to Janne Perdaho)

3.6 - Gradientsliders horiz/vert orientation works correct now
- some global variables problems fixed
— problems with node-array fixed
- special positions/sizes for 0S 2.0 windows work now
— chooseable smallfont for large lists
- fixed crash when moving a test-window
- modifyable library-integration for your project
- fixed bug in installer-script (doesn’t notice, if an OS higher than 3.5 was ¢
installed)
- added interconnection maps
- generating source based on AmigaOS 2.0, AmigaOS 3.5+ or mixed code

4.0 - DONE ! the whole code is rewritten and structured ! only 4 MBytes of <
systemmemory

is needed !

- the programflow maybe changed a bit to a better, because also all low-level
functions were rewritten

- look also changed a bit

— menu is more complex and professional

- expanded GadTools-handling (with RightMouseButton)

Emperor 43/ 44

1.51 FAQ

Question: When I change the size of a GadTools-gadget, the border, which marks <+
the activation,
isn’t (or just a bit) visible.

Answer: Probably you are using a program like VisualPrefs, which patches the <+
visualization
of GadTools—-gadgets. If you deactivate it, it should work.
Or you may change your border-sizes of a "String"- and "Integer"- <

gadgets down to
normalsize, which does have the same effect.

Question: Emperor doesn’t run on my system !

Answer: There are a few things, you must pay attention on:

* AmigaOS 3.5 installed ?
4 MBytes of systemmemory must be free on startup
assign on <PATH>:Emperor
RexxMast already started ?
stack at >50000 bytes *?
- under CLI: type ’stack 50000
- under WB: in iconinformations choose a stack of >50000 bytes
— under DOpus:in menu ’Settings-Environment’ choose point ’'CLI- ¢

Launching’ and
change stack !

To every occured error at startup should appear a request...

* % % ot

1.52 known bugs & future plans

known bugs of the program:
1. Printing the objecttable is deactivated.
This bug shouldn’t have an influence to the capability of functions of <«
the program.
2. The attribut-window "Datebrowser" is much too wide (when choosing a <
nonproportional
screenfont) ! (but why ?)
3. Saving clips has no function. (deactivated)
4. Text- or lineformatting is not implemented yet. (deactivated)
5. Labels and bitmaps aren’t shown in the preview-window
future plans:
1. Speedbar-Buttons should be configurable one day

2. Screen-category

3. Undo/Redo action for lists

Emperor 44] 44

4. Checking items of the lists

5. Insertmode isn’t supported by the ReAction-Texteditor-Gadget

1.53 Author

If you have some suggestions for improving or correcting the program,
please write or mail me your facts to:

The address of the author:

Matthias Gietzelt

Ringstrale 41

19069 Hundorf

Germany

EMail:
shamane@exmail .de

1.54 Expression of thanks

I want to thank very, very much Janne Perdaho for his nice startup-picture he made <>

Also for his bugreports, to correct existing errors in Emperor.
— Thanks Janne !

Olivier Martin for his bugreports and his highend-example project "automate". You <>

can
find this example in the directory "projects" of Emperor. It is a very nice tool <
to show
the developing of "virtual life" on Amiga - check this out !

— Thanks Olivier !

Also I want to say thanks very much to all the bugreporters for the thorough use <«
of Emperor !!

	Emperor
	Documentation of Emperor
	Introduction
	Copyright
	Systemrequirements
	Installation
	Getting started
	Operating
	Menu
	Mainwindow
	Mainwindow - Reaction - page
	Mainwindow - Requests - Page
	Mainwindow - Menu - Page
	Mainwindow - ASL - Page
	Mainwindow - Locale - Page
	Mainwindow - Array - Page
	Mainwindow - GlobVars - Page
	Mainwindow - Windows - Page
	Mainwindow - GadTools - Page
	Mainwindow - Interconnection Map - Page
	Programminghelp
	Input message handle
	predefined variables
	Macrofunctions
	Function Emperor_CloseWindow
	Function Emperor_OpenWindow
	Function Emperor_IconifyWindow
	Function Emperor_UniconifyWindow
	Function Emperor_ChangeWindowPosition
	Function Emperor_ChangeWindowSize
	Function Emperor_SetWindowBusyPointer
	Function Emperor_SetWindowTitle
	Function Emperor_SetScreenTitle
	Function Emperor_GetMenuItemAttr
	Function Emperor_SetMenuItemAttr
	Function Emperor_ActivateGadget
	Function Emperor_QuitFunc
	Function Emperor_RethinkLayout
	Function Emperor_RefreshGadget
	Function Emperor_GetGadgetAttr
	Function Emperor_GetGadgetAttrComplex
	Function Emperor_GetGadgetDisabledAttr
	Function Emperor_GetGadgetReadOnlyAttr
	Function Emperor_SetGadgetAttr
	Function Emperor_SetGadgetAttrComplex
	Function Emperor_SetGadgetDisabledAttr
	Function Emperor_SetGadgetReadOnlyAttr
	Function stringtoint
	Function inttostring
	Function stringlength
	History
	FAQ
	known bugs & future plans
	Author
	Expression of thanks

