
Monday, March 19, 2001 TN 1156: Scribbling Into AWT Components Page: 1

file:///Prospero/Apple/TN%20cleanup/tn1100%20series/
technotes%20clean/tn/tn1156.html

CONTENTS

Introduction to Impure Drawing

How To Do It

Compatibility

References

Downloadables

This Technote describes how to draw into an
AWT Component by means other than the
Java AWT Graphics API. In particular, by
discovering the QuickDraw GrafPort, origin,
and clipping Region corresponding to the
Component's visible area, you can use any
means at your disposal (most likely
QuickDraw) to draw things inside the
Component.

 Updated: [Mar 1 1999]

Introduction to Impure Drawing

Most Java applications are content (if sometimes grudgingly so) to use normal "100% Pure Java" APIs to draw their user
interface. They use a combination of existing AWT control components like Button or Checkbox, and custom Component
subclasses that use the graphics primitives provided by the AWT Graphics class to draw themselves. (They may also use
components provided by higher-level class libraries such as Swing or IFC, which in turn use Graphics.)

However, some Java code needs to use drawing services provided by the platform's toolbox. Such code will usually be a Java
library whose goal is to provide a Java API for features provided by the platform's toolbox -- Apple's QuickTime For Java
is one such example; another would be an OpenGL interface for Java.

Such code will need to use either native methods or JDirect to make calls to the toolbox. Both of these mechanisms are
documented elsewhere. When it comes time to draw, though, the problem appears: How does the drawing code acquire the
resources it needs to draw into the Component? For instance, before making QuickDraw calls, you'd need to know the right
GrafPort to use, and set up the GrafPort's origin and clipping.

This is an issue that applies to any platform, not just the Mac OS (although the details of the resources necessary are of
course platform-specific.) Sun Microsystems, therefore, defined an API collectively referred to as DrawingSurface that
can be used to map from a Component object to native-window system resources.

Back to top

How To Do It

First, use the right kind of Component as your drawing surface. You need a Component with a native peer, so lightweight
Components won't work. And doing your own drawing into components that AWT itself already draws into -- like Button or
Choice -- is discouraged. The Component types that work best, then, are Canvas, Panel and any of the Window types
(Window, Frame, Dialog.)

Getting to the DrawingSurface

The interface sun.awt.DrawingSurface is used to access native drawing surface information. This interface is
implemented by non-lightweight component peers and by Images created for offscreen graphics. The interface contains only

Monday, March 19, 2001 TN 1156: Scribbling Into AWT Components Page: 2

file:///Prospero/Apple/TN%20cleanup/tn1100%20series/
technotes%20clean/tn/tn1156.html

a single method, getInfo, which returns a DrawingSurfaceInfo object. This is the main object you'll need to use.

Here's a Java snippet that shows how to get the DrawingSurfaceInfo for the Component theComponent:

import sun.awt.*;

...

DrawingSurface ds = (DrawingSurface)theComponent.getPeer();
DrawingSurfaceInfo dsi = ds.getDrawingSurfaceInfo();

(You can do the same thing from native code using JNI; it's just more awkward.)

How to Draw

You need to call the DrawingSurfaceInfo's lock method before you start drawing, and its unlock method after you
stop drawing. The lock method sets up QuickDraw's state and ensures the GrafPort is in decent shape for you to draw
into it.

To prevent AWT code running on other threads from messing with the port (or other global Toolbox state) while you're
drawing, you need to synchronize against the Toolbox lock before you call the DrawingSurfaceInfo's lock method.
This is described in detail in Technote 1153, Thread-Safe Toolbox Access From MRJ . The next snippet below shows how to
do this.

IMPORTANT:
Synchronizing against the Toolbox lock acquires a central AWT semaphore which prevents other Java threads,
as well as the native host application, from accessing the Toolbox until your synchronized block exits. This
means that

You should lock for as short a time as possible -- get in, do your drawing, then get out.
You should not make any other AWT calls while the drawing surface is locked (nor should the thread
doing the drawing do anything that could block against other threads of yours that need to make AWT
calls, or you could deadlock).
You should make absolutely sure that you unlock on the way out, by putting the unlock call in a finally
clause.

Now that you've locked the drawing surface, QuickDraw is all set to draw into the Component. Its GrafPort is the current
port, the local coordinate (0,0) is at the top left of the Component, and the clipRgn is set to the visible region of the
Component (which will not include the regions occupied by any non-lightweight child Components.)

You can get the Component's bounding box in local coordinate by calling the method DrawingSurfaceInfo.getBounds.
It's safe to make this call while the DrawingSurface is locked.

When you're done drawing, you don't need to restore the previous GrafPort. However, you must restore any state you
changed in the Component's GrafPort (clipping, colors, etc.) And of course you need to unlock the drawing surface.

It looks like this, continuing the above snippet:

Monday, March 19, 2001 TN 1156: Scribbling Into AWT Components Page: 3

file:///Prospero/Apple/TN%20cleanup/tn1100%20series/
technotes%20clean/tn/tn1156.html

import QuickdrawFunctions; // from JDirect Sample Code in SDK
import com.apple.mrj.macos.toolbox.Toolbox;

...
synchronized(Toolbox.LOCK) {
 dsi.lock();
 try{
 Rectangle bounds = dsi.getBounds();
 QuickdrawFunctions.MoveTo(bounds.left, bounds.top);
 QuickdrawFunctions.LineTo(bounds.width-1, bounds.height-1);
 }finally{
 dsi.unlock();
 }
}

Accessing the WindowPtr

In some circumstances (e.g., if messing with the Palette Manager) you may need to find the Mac OS WindowPtr of the
window the Component is in. This is not the same as the Component's GrafPort; MRJ 2.1 creates its own GrafPorts
and never uses the WindowPtr directly for drawing. If you do access the WindowPtr, you should not use it for drawing
-- use the DrawingSurface's GrafPort instead.

IMPORTANT:
The GetWindow method was added in MRJ 2.1; it is not implemented in MRJ 2.0 and thus MRJ 2.0 will throw
an error when trying to call this method.

You get the WindowPtr by doing the following. Note that you can also get the GrafPort and GDevice in the same way:

MacDrawingSurface mds = (MacDrawingSurface) dsi.getSurface();
int windowPtr = mds.getWindow(); // WindowPtr cast to int
int grafPtr = mds.getPort(); // CGrafPtr cast to int
int gdevice = mds.getDevice(); // GDHandle cast to int

Don't hang onto these values for too long -- they will not be valid after the Component's peer has been disposed, that is,
after the Component or a parent is hidden or the window closed. For safety's sake you should only get and access them while
the DrawingSurfaceInfo is locked.

IMPORTANT:
There is a bug in MRJ 2.1 that makes it essential that you call getWindow, getPort, or getDevice at
least once on any DrawingSurface you ever draw into, if you plan on mixing native and Java-based (using
java.awt.Graphics) drawing in the same Component or Image. Until one of these methods is called, MRJ
2.1 doesn't realize that native drawing is taking place, and it won't fully synchronize the Java drawing with the
native calls.

Back to top

Compatibility

Monday, March 19, 2001 TN 1156: Scribbling Into AWT Components Page: 4

file:///Prospero/Apple/TN%20cleanup/tn1100%20series/
technotes%20clean/tn/tn1156.html

The DrawingSurface API is implemented in MRJ 2.0 and later, although the implementation in MRJ 2.1 is more robust.

The method MacDrawingSurface.getWindow was added in MRJ 2.1; it is not implemented in MRJ 2.0, and thus in
MRJ 2.0 the class-loader will throw an error when trying to load a class that calls this method.

Not all Java implementations on all platforms support DrawingSurface -- Sun explicitly points out that sun.* classes
are not part of the supported Java API set. Sun's JDK 1.1 and later do support DrawingSurface. Naturally, the exact OS
calls you'll need to make to draw are platform specific, and the MacDrawingSurface class will not exist. You'll need to get
documentation from the vendor of any other Java implementation to find out how to use DrawingSurfaces with it.

Back to top

References

Technote 1153: Thread-Safe Toolbox Access From MRJ. Describes the "Toolbox lock" and how to use it. A must-read if
you're going to use the Mac Toolbox for drawing.

Back to top

Downloadables

Acrobat version of this Note (K). Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

