
TN 1189: The Monster Disk Driver Technote Page: 1

CONTENTS

Introduction

Disk Driver Basics

Driver Gestalt

Secrets of the Partition Map

Non-512 Byte Block Devices

Large Volume Support

How the ROM Loads SCSI and ATA Drivers

Loading FireWire Drivers

Chaining Drivers and Patch Partitions

Disk Drivers and the System Heap

PowerPC Native Disk Drivers

Installing and Removing Drivers and Drives

Close and Purge

File Exchange (né PC Exchange)

Private Control and Status Requests

Read-Verify Mode

Color Icons

Target Mode

Disk Driver Power Management

Summary

Downloadables

This Technote is both a summary and review
of existing disk driver information and a
description of disk driver features that until
now have not been generally documented.

This Note is directed at developers of disk
drivers and disk formatting utilities. There is
also a section specifically aimed at application
developers who need to operate on disks
directly.

 Updated: [Nov 22 1999]

TN 1189: The Monster Disk Driver Technote Page: 2

Introduction

The Mac OS disk driver architecture has not been comprehensively documented since Inside Macintosh II (1985). In the
intervening years, disk technology has changed radically, from 400 KB floppy disks to FireWire, visiting two different
SCSI Managers and four versions of ATA Manager on the way. Many of these technological changes have been accompanied by
architectural changes for which the documentation is in obscure places, was not generally released, or was just never
written.

The technote is an attempt to rectify that oversight. It serves both to bring together the existing documentation and to fill in
the missing pieces. You can use this technote as either a reference, an introduction to writing disk drivers, or just to bring
yourself up-to-date on the latest disk driver advances.

If you are new to Mac OS disk drivers, you should start with the Disk Driver Basics section. If you're already familiar with
the basics of the Mac OS disk driver architecture, you may want to start with the two high-level summaries, one for disk
driver writers and one for application developers.

Existing Information

The existing documentation for disk drivers is scattered through many different Apple documents, interface files, and code
samples. The section classifies these references based on their usefulness.

Core References

These large works cover information that you will definitely need in your driver. Don't start a disk driver without being
familiar with these works:

Inside Macintosh: Devices , SCSI Manager is the core reference for the classic SCSI Manager programming
interface, introduced with the Mac Plus. It also describes the Apple partition map format, used by all Macintosh
computers since the Mac Plus.
Inside Macintosh: Devices , SCSI Manager 4.3 is the core reference for the SCSI Manager 4.3 programming
interface, introduced with the Quadra 840av. All SCSI drivers written today should use the SCSI Manager 4.3
programming interface.
ATA Device Software for Macintosh Computers (previously known as the ATA Device Software Guide) is the core
reference for the ATA Manager, which allows you to find and control ATA devices connected to the computer. The
"ATA Driver Reference" chapter offers a useful summary of the Control and Status requests relevant to a modern
Mac OS hard disk driver, although some of the information is inaccurate and has been updated in this document.
ATA 0/1 Software Developers Guide is a supplement to the above, and describes the changes required to support
device 0/1 (master/slave) on ATA buses.
Inside Macintosh: Files describes the drive queue, a key data structure used by all disk drivers.
Technote 1041, "Inside Macintosh: Files Errata" comprises corrections to the core Inside Macintosh: Files
document.
The Shared Device Access Protocol specification.
DTS sample code RAM Disk implements the basic framework for a disk driver. Unfortunately, it does not
demonstrate how to handle requests asynchronously, which is one of the trickiest things to get right in a disk
driver.
DTS sample code TradDriverLoaderLib shows how to correctly install a Mac OS driver 'DRVR'.
DTS sample code SCSI Driver Example demonstrates a fully fledged SCSI driver that supports both classic SCSI
Manager and SCSI Manager 4.3. It is a useful sample, although it has decayed a bit in the years since it was last
updated (1994).
DTS sample code ATA_Demo demonstrates how to read blocks from both ATA and ATAPI disks.
"DriverGestalt.h" (from the latest Universal Interfaces) always contains the most up-to-date list of Driver
Gestalt selectors.
The MoreDisks module from the DTS sample code library MoreIsBetter contains a comprehensive list of all the
currently defined disk driver Control and Status requests, and where to get more information on how to support
them.

Additional Information

These smaller documents contain information that supplements the above in certain key areas.

TN 1189: The Monster Disk Driver Technote Page: 3

Technote 1098, "ATA Device Software Guide: Additions and Corrections" is the latest errata for the ATA Device
Software for Macintosh Computers.
Technote DV 17 Sony Driver: What your Sony Drives For You documents the Control and Status requests supported
by Apple's standard floppy disk driver. This is a key reference for disk driver developers. Floppy disk driver
writers should also read the "MFM Disk Device Driver" chapter of Apple Logic Board Design LPX-40 Developer
Note (hardware developer note), which includes information on floppy disk Control and Status requests that is
missing from DV 17.
Technote DV 22, "CD-ROM Driver Calls" documents the Control and Status requests supported by Apple's standard
CD-ROM driver. This is a key reference for CD-ROM driver developers.
Technote 1104, "Interrupt-Safe Routines" answers the perennial question, can I do X at interrupt time?
Technote 1067, "Traditional Device Drivers: Sync or Swim" addresses a common misconception of device driver
writers.
Technote 1040, "Write Cache Flushing: Techniques for Properly Handling System Shutdown" describes how disk
drivers should handle system shutdown.
Technote ME 09, "Coping with VM and Memory Mappings" is probably the best place for information on ensuring
that your device driver is compatible with virtual memory.
Technote 1094, "Virtual Memory Application Compatibility" contains a description of the Mac OS VM architecture
as a whole, which is useful background material for device driver writers.
Designing PCI Cards and Drivers for Power Macintosh Computers, pages 110 through 117, documents the Driver
Gestalt mechanism and some new Control requests. This technote provides clarifications and corrections on Driver
Gestalt and the mechanism used to boot from a partition. In addition, the File Exchange section of this technote
completely replaces the PC Exchange description in the book.
Guide to the File System Manager contains useful background information about how FSM interacts with disk
drivers; however, the specific recommendations for driver writers are covered in the File Exchange section of this
technote.
DTS Q&A OPS 22, "Notification Manager Reinitialized During Boot" is an important tidbit for disk driver
developers.
DTS Q&A DV 34, "Secondary Interrupts on the Page Fault Path" describes the dangers of using secondary interrupts
in software that must service page faults. While the Q&A was written for SIM developers, its warning is also
important for other page fault path software, such as disk drivers. Disk drivers must not use secondary
interrupts (or, for that matter, deferred tasks) on the page fault path.
Data Structure to Aid Security and Recovery Software, David Shayer and Marvin Carlberg, 1991
The InterruptSafeDebug module of the DTS sample code library MoreIsBetter can be useful when tracking down
nasty crashing problems in a device driver, especially those that happen early at startup time.

Obsolete

These documents, as they pertain to disk drivers, are considered obsolete. This list is provided for completeness only. You
should read the recommended material instead.

Inside Macintosh II , "The Disk Driver", page 211 through 219, documents the basic interface to a disk driver,
include the kEject (7) Control request, the kSetTagBuffer (8) Control request, and the kDriveStatus
(8) Status request.
Inside Macintosh IV , "The Disk Driver", page 223 through 224, documents the kVerify (5), kFormat (6),
kTrackCache (9), and kDriveIcon (21) Control requests.
Inside Macintosh IV , "The SCSI Manager", page 292 through 293 describes the original partitioning format used
on the Mac Plus and goes on to say, "Since the driver is called to install itself, it must contain code to set up its own
entry in the unit table and to call its own Open routine. An example of how to do this can be obtained from Developer
Technical Support." This example was part of the "SCSI Driver Developer Kit". All of the information in the kit is
available elsewhere. The specific sample code referenced by the book evolved into SCSI Driver Example.
Inside Macintosh V , "The Disk Driver", page 470 through 471, documents the kDriveIcon (21),
kMediaIcon (22), and kDriveInfo (23) Control requests.
Technote DV 2, "_AddDrive, _DrvrInstall, and _DrvrRemove" documented the AddDrive, DriverInstall, and
DriverRemove system routines. This technote is now obsolete. AddDrive is documented in Inside Macintosh:
Files, and DriverInstall, and DriverRemove are covered by Inside Macintosh: Devices, along with
DriverInstallReserveMem. Moreover, developers of 68K drivers should use TradDriverLoaderLib to install
their drivers.
Technote DV 12, "Our Checksum Bounced" documents a misfeature of the code used by the ROM to checksum disk
drivers. The technote is now obsolete. The ROM checksum behavior is described in Inside Macintosh: Devices and
this technote describes the checksum algorithm itself.
Technote DV 13, "_PBClose the Barn Door" still contains valid advice for general device driver writers, although
this technote deals with this topic as it applies to disk drivers.

TN 1189: The Monster Disk Driver Technote Page: 4

Technote DV 18, "CD-ROM Notes (Most Excellent)" contains some interesting historical information about
CD-ROM devices, although much of the information is now obsolete or covered elsewhere.
Power Macintosh 9500 Computers (hardware developer note) describes many aspects of the large volume support
(greater than 4 GB support) introduced with that machine. The large volume support aspects of that developer note
are now obsolete. This technote discusses large volume support as it applies to disk drivers. DTS Q&As FL 07 and
FL 08 discuss large volume support from the application perspective.
The following documents were never released generally. Their developer-oriented content has been rolled into this
technote.

"Chainable Drivers and Patches"
"Ruby Slipper Lite ERS" (large volume support)
"Bootable CD Developer Kit (Software Developer Note)"
"PC Exchange and Large Volume Drivers"

Checklist for Disk Driver Writers

All of the above is probably overwhelming, so here is a summary of the most important steps to take to improve the
reliability and compatibility of your disk driver:

If you do nothing else, you should support Driver Gestalt.
You should support the partition map entry features documented in Secrets of the Partition Map. Specifically, you
should ensure that your driver is checksummed, supports booting from a partition, and write your driver
signature to the pmPad field.
Your driver should support large volumes, including booting from large volumes on machines without large volume
support in the ROM by means of the 'ruby' patch.
You should follow the rules when installing and removing your driver and its drive queue elements. You should also
support close to allow other developers to remove your driver cleanly.
If your driver uses SCSI Manager 4.3 or ATA Manager, it must register itself with the manager. The documentation
for each manager describes how this is done. If you're using SCSI Manager 4.3, use SCSICreateRefNumXref. If
you're using ATA Manager, use kATAMgrDriveRegister.
You should support the File Exchange interface. This will allow foreign file systems to access your disks without
any skullduggery.
You should check that your private Control and Status requests follow the rules, both with respect to Driver Gestalt
and virtual memory. This is harder than you might think.
You should support read-verify mode. This technote explains how to do it easily.
You may want to support target mode in your ATA driver.
You may want to support color icons. Woo hoo!

For Application Writers

The purpose of a disk driver is to support a generic interface for accessing block devices. The primary client of this
interface is the File Manager, although it can be used by other programs. If you're writing a foreign file system, or just an
application that needs something beyond the standard File Manager programming interface, parts of this technote may be of
interest to you.

If you need to interrogate a driver about its capabilities, you should read the section Driver Gestalt for
Applications.
If you need to read arbitrary blocks on a volume, you should read the discussion of the XIOParam block for
applications, along with the accompanying hints and tips.
If you need to read arbitrary blocks outside of a volume -- for example, the partition map, or a non-Mac OS
partition -- you should investigate the File Exchange section of this technote, especially the section on using the
File Exchange interface.
If you need to verify that you have written data to the disk correctly, you should check out the read-verify mode
section which describes the easiest way to do this. [Hint: Think "MoreFiles"!]
If you need to get color icons for a drive, you can now call the disk driver to get them -- although you should
probably just call Icon Services instead.

In addition, if you're writing a disk formatting utility, this technote contain invaluable information on the partition map,
chaining drivers, patch partitions, and "hostile" takeovers.

Back to top

Disk Driver Basics

TN 1189: The Monster Disk Driver Technote Page: 5

Mac OS communicates with attached devices through device drivers, which are software plug-ins that conform to a
well-defined structure. The Device Manager is the original system component used to install, find, manage, and
communicate with device drivers. It exports routines that can be called by higher level system software, and by
applications. Most of these routines translate directly into requests to the underlying device driver.

In order to identify different drivers, the Device Manager assigns each installed driver a unique negative number, referred
to as a driver reference number. When calling the Device Manager, clients pass a driver reference number to tell it
which driver they are dealing with.

For a block device to be available to the system, it must have a disk driver. This is either in the ROM (for the built-in
floppy drive), or loaded at system startup from a special partition on the disk (SCSI, ATA, and FireWire devices), or loaded
from a system extension (USB and FireWire devices). In addition, a disk driver can be loaded when a device is plugged in by
either an I/O family expert (ATA, USB, and FireWire), or by a special utility program (SCSI). Finally, software can
install a disk driver for a virtual block device which has no obvious physical presence, such as a RAM disk or disk image.
Regardless of how they are installed, all disk drivers roughly follow the same rules.

It is important to note the difference between a disk and a device. A block device is the entity which reads and writes data
on a disk. A disk is the medium which actually stores the data. This distinction is unimportant for fixed disk devices (such
as hard disks), but is critical for removable disk devices (such as floppy drives and removable cartridge disk devices).

Mac OS always directs block I/O to a software entity known as a drive. Each disk driver creates one or more drives and
puts them in a system structure called the drive queue. Each drive queue element represents a drive, and contains
both the driver reference number and the drive number. The drive number is a positive number that uniquely identifies
the drive; it is assigned when the drive is added to the drive queue.

A drive does not necessarily correspond directly to a given physical device. Rather, the driver decides which drives to
create for the device it controls. In some cases, there is one drive per physical device. For example, the built-in floppy
disk driver creates a drive for each attached floppy disk device. However, it is also common for a driver to create multiple
drives for a single device. For example, the driver for a partitioned hard disk device creates a drive for each file system
partition on the disk.

When the system performs I/O to a drive, it supplies the driver reference number of the device driver and the drive
number of a drive created by that driver. The Device Manager uses the driver reference number to find the device driver
and call its entry point. The device driver then uses the drive number to determine which drive is the target of the I/O
request.

All drive I/O is done is terms of 512-byte logical blocks. Therefore, all transfers must start at multiple of 512 bytes and
be a multiple of 512 bytes long. This is regardless of the underlying device's block size.

File Manager and Drives

To allow the flexibility of storage required by the user interface (a hierarchy of folders and files), Mac OS implements
another layer of abstraction, known as the File Manager, on top of the Device Manager and the drive queue.

A file system is a mechanism for storing fine-grained data (files) and meta-data (folders, Finders attributes, and so on)
on a drive. The file system defines the way this data is stored and the rules for manipulating it. The File Manager includes
built-in support for two file systems (HFS and HFS Plus) and a plug-in architecture (File System Manager) for others
(AppleShare, DOS FAT, ProDOS , UDF, and third-party FSM plug-ins).

The File Manager exports a programming interface defined in terms of volumes, which contain directories, files, and
meta-data. A volume is an instance of a file system on a drive. Each volume is uniquely identified by a negative volume
reference number, which is stored, along with other data to operate the volume, in a volume control block (VCB)
that is linked into the system VCB queue. The VCB also contains the drive number and the driver reference number of the
drive on which the volume is mounted.

The process of making the contents of a drive available via the File Manager is called mounting a volume. When the File
Manager attempts to mount a volume on a drive, it calls each of the file systems in turn to determine which one understands
the logical format of the data on the disk in the drive. It then creates a VCB for that file system on that drive.

The File Manager takes requests to operate on the volume and passes them to the appropriate plug-in file system, which
reduces them to basic block operations and passes them to the drive via the Device Manager (using the drive number and
driver reference number stored in the VCB). As far as the file system is concerned, the drive is its own logical disk, even
though it may only represent a small part of the real disk.

TN 1189: The Monster Disk Driver Technote Page: 6

A drive can exist without having a volume mounted on it. This happens, for example, if the data format on the drive is
incomprehensible to the installed file systems, or the volume on the drive has been unmounted. You can still access the data
on a drive that has no volume mounted on it, but only via the Device Manager interface.

Terminology

In any technical document, it is very important to get your terminology straight. This is especially important when talking
about disk drivers, where much of the terminology has been extended over the long, confusing history of the Mac OS block
storage architecture. This technote uses the following terms throughout.

disk driver

A software plug-in that implements a hardware abstraction layer for block devices, like hard disks, floppy drives,
and CD-ROM drives. In Mac OS, a disk driver must be a Device Manager driver (either a 68K driver or a native
driver).

68K driver

A disk driver implemented using the traditional 68K driver architecture, as documented in Inside Macintosh:
Devices. A 68K driver is commonly stored in a resource of type 'DRVR' or in a driver partition.

native driver

A disk driver implemented using the native driver model, introduced with the first generation of PCI Power
Macintosh computers and documented in Designing PCI Cards and Drivers for Power Macintosh Computers. A native
driver is commonly stored in a file of type 'ndrv', although native drivers have started appearing in driver
partitions as well.

driver reference number

An SInt16 that uniquely identifies a Device Manager driver to the system. Driver reference numbers are not
persistent -- they are assigned when the driver is added to the unit table -- but some driver reference numbers
are assigned to certain well-known drivers. Driver reference numbers occupy the same "name space" as file
reference numbers (which identify an open file). Driver reference numbers are always negative, while file
reference numbers are always positive. Zero is an invalid driver reference number and an invalid file reference
number.

unit table

A Device Manager data structure that lists the installed device drivers (both 68K and native).

block device

A block-oriented storage device.

real block device

A block device that has some obvious physical presence, such as a floppy drive or a SCSI hard disk device.

virtual block device

A block device this has no obvious physical presence, such as a RAM disk, a disk image, or a network block device.

device

Some hardware attached to the computer. In this context of this technote, this typically means a block device
although, in some places, the term may be used for any type of device.

disk

The actual physical media which holds data. A disk is made up of blocks, each of which holds a fixed number of bytes
(typically 512). A disk is distinct from a block device because, in the case of removable disk devices, the user can

TN 1189: The Monster Disk Driver Technote Page: 7

insert one of many different disks into the device.

disc

A synonym for "disk" that is only used in the context of CD or DVD discs (where the disk is actually a disc).

media

See disk.

drive

A Mac OS software construct used to represent a block storage entity. A volume is always mounted on a drive. There
may be multiple drives corresponding to a single disk. Exception: some removable disk devices have been
historically known as drives (for example, floppy drive, CD-ROM drive). This technote continues to use "drive" in
these contexts, rather than the more cumbersome "floppy disk device." However, if the word "drive" appears
unqualified, it always refers to the primary definition.

drive queue

A OS queue which contains all the drive queue elements known to the system. You can get the head of the drive queue
using the routine GetDrvQHdr. See Inside Macintosh: Files for more details of the drive queue and its elements.

drive queue element

The specific data structure used to represent a drive. A drive queue element is a structure of type DrvQEl
allocated in the system heap and placed in the drive queue.

drive number

An SInt16 which uniquely identifies a drive. Drive numbers are not persistent; they are assigned when the drive
is added to the drive queue. Drive numbers occupy the same "name space" as volume reference numbers. Drive
numbers are always positive, while volume reference numbers are always negative.

partition

A disk may be divided into a set of contiguous blocks, each known as a partition. Partitions are typically either file
system partitions (which hold file system data) or meta-data partitions (which hold information about the disk,
such as the partition map or the disk's device driver). Not all disks are partitioned, although a disk must be
partitioned to support booting (except for floppy disks, because the driver for the built-in floppy disk drive is in
the ROM).

partition map

A data structure, typically at the beginning of the disk, which describes the partitions on the disk. Most Mac OS
disks are partitioned using the Apple partition map format, described in Secrets of the Partition Map.

partition map entry

The Apple partition map describes each partition on the disk using a partition map entry data structure (of type
Partition).

startup partition

The partition which the user has designated as the one from which they prefer to boot the system, or the partition
from which the system booted.

driver partition

A partition which contains a disk driver.

file system partition

TN 1189: The Monster Disk Driver Technote Page: 8

A partition which contains file system data.

meta-data partition

A partition which holds information about the disk, such as the partition map or the disk's device driver.

partition-based driver

A driver that is loaded from a partition.

file system-based driver

A driver that is loaded from a file in the file system, typically in the Extensions folder.

disk-based driver

Either a partition-based driver or a file system-based driver. This term is ambiguous and to be avoided.

ghost partitioning

A system used on non-512 byte block devices where partition map entries appear at both 512-byte boundaries and
device block boundaries so that they can be seen by software using either physical or device blocks.

I/O family

A component of the Mac OS I/O subsystem that is responsible for a particular category of devices. A driver can
work within multiple I/O families. Each family requires certain attributes of the driver (for example, how it is
packaged and the programming interface it provides to upper layer software) and provides services for the driver.
For example, a FireWire disk driver must be packaged as a native driver which responds to the standard disk
driver programming interface, and FireWire provides services to the disk driver, such as SBP-2 utility routines.

I/O family expert

A component of an I/O family that seeks out devices of a particular type and registers them with the I/O family.

volume

A File Manager software construct that represents a single, user-visible storage device. Each volume appears as a
icon on the desktop. Each volume is mounted on a drive, so if the disk has multiple file system partitions it will
also have multiple drives and hence multiple volumes.

volume reference number

An SInt16 which uniquely identifies a volume. Volume reference numbers are not persistent; they are assigned
when the volume is mounted. Volume reference numbers occupy the same 'name space' as drive numbers. Drive
numbers are always positive, while volume reference numbers are always negative.

refNum

This contraction of "reference number" is ambiguous and is not used in this document. In other documents, it
commonly means either a driver reference number or a file reference number, depending on context.

vRefNum

A contraction of volume reference number.

logical blocks

The block numbering scheme used to access blocks on a drive. Each logical block contains 512 bytes and the first
block accessible through the drive is block 0. See Block Translation for details.

physical blocks

The block numbering scheme used to access blocks on a disk. You can derive a physical block number from a logical

TN 1189: The Monster Disk Driver Technote Page: 9

block number by adding to it the start block number of the partition. If the disk is not partitioned, logical blocks
and physical blocks are identical. Each physical block contains 512 bytes. See Block Translation for details.

device blocks

The actual block numbering scheme used by the device hardware to access data on the disk. Device blocks are not
necessarily 512 bytes big, and the device driver is responsible for blocking and deblocking to present the illusion
of 512-byte physical blocks to the system. See Block Translation for details.

blocks

When used without qualification in this technote, blocks means logical blocks.

sectors

Depending on context, this can either mean device blocks (for a floppy drive), physical blocks (for a hard disk
device), or logical blocks (in a volume format specification). To avoid confusion, this technote avoids the term
"sector" in favor of its more specific synonyms.

chaining driver

A driver loaded from a partition which performs some action and then loads the next driver in the driver chain. The
most common chaining driver is Apple's patch driver.

driver chain

A sequence of drivers, each in its own driver partition, that can all be loaded for a particular expansion bus type
(for example, SCSI or ATA). Each driver chain consists of one or more chaining drivers and a real driver for the
disk. A disk may contain more than one driver chain if it can be accessed through more than one expansion bus type.

patch driver

A chaining driver which applies the patches from a patch partition and then chains to the next driver.

patch partition

A meta-data partition containing patches that must be applied to the system before it can boot. The patches in the
patch partition are applied by the patch driver before it chains to the real disk driver.

target mode

PowerBook computers can be placed in target mode, where the PowerBook's internal hard disk device is accessible
as a hard disk device to other computers on an expansion bus (typically SCSI).

SCSI disk mode

See target mode.

request

When the Device Manager calls a driver entry point (Open, Close, Prime, Control, or Status for a 68K driver,
DoDriverIO for native drivers), it passes the address of a parameter block which describes the requested
operation. This is known as a request. A request is different from a simple function call in that the driver may
return from this initial call without completing the request. Specifically, for queued requests, the request is not
complete until the driver explicitly tells the system so (by calling IODone for 68K drivers, or by calling
IOCommandIsComplete for native drivers).

queued request

Synchronous and asynchronous requests are collectively known as queued requests. This is because they are queued
in the driver's queue (on the dCtlQHdr) and the driver is marked as busy while the request is being processed.

immediate request

TN 1189: The Monster Disk Driver Technote Page: 10

Immediate requests are distinct from queued requests in that they are not placed in the driver's queue and do not
mark the driver as busy.

Back to top

Driver Gestalt

All disk drivers should support Driver Gestalt. Driver Gestalt is a mechanism whereby the system can query your driver
to determine whether it supports advanced driver features. In many ways it is similar to the Mac OS Gestalt Manager,
except that the system is querying your driver, not the other way around.

Your driver should support Driver Gestalt. If you don't support Driver Gestalt, the system is in the dark as to which
advanced driver features your driver supports.

Driver Gestalt Reference

The basic reference for Driver Gestalt is Designing PCI Cards and Drivers for Power Macintosh Computers, specifically the
"Driver Gestalt" section starting on page 106. However, Driver Gestalt is useful even on non-PCI computers. Your driver
must support Driver Gestalt regardless of what computer or OS version it is running on.

Designing PCI Cards and Drivers for Power Macintosh Computers does not document all of the selectors associated with
Driver Gestalt. The only official, up-to-date list of Driver Gestalt selectors is the "DriverGestalt.h" header file, provided
as part of Universal Interfaces. When Apple defines a new Driver Gestalt selector, we add the selector to "DriverGestalt.h",
along with comments that describe how to implement it.

In the event of a conflict between the written documentation and "DriverGestalt.h", "DriverGestalt.h" is correct and the
written documentation is wrong. For example, Designing PCI Cards and Drivers for Power Macintosh Computers describes
the response of the 'purg' selector as a Boolean (page 111), whereas "DriverGestalt.h" correctly describes the
response to be of type DriverGestaltPurgeResponse.

Driver Gestalt Guarantees

By saying that it supports Driver Gestalt, your driver guarantees certain things to the system, including:

1. Your driver will return controlErr in response to a Control request with an unrecognized csCode.
2. Your driver will return statusErr in response to a Status request with an unrecognized csCode.
3. Your driver will return controlErr in response to a Driver Configure request with an unrecognized selector.
4. Your driver will return statusErr in response to a Driver Gestalt request with an unrecognized selector.
5. Your driver will not use any csCodes below 128 for private Control or Status requests.

Items 3 and 4 in the list above are not documented clearly in Designing PCI Cards and Drivers for Power Macintosh
Computers, although they are implemented by all Apple drivers and are clearly shown in the various Driver Gestalt
samples. This technote serves to officially document these two additional requirements.

Driver Gestalt for Applications

Probably the best way to understand how to issue Driver Gestalt queries from an application is to look at some sample code.
"Driver Gestalt Demo" is a simple sample that shows how to issue a few queries. "DriverGestaltExplorer" is a more
comprehensive sample, which is also useful as a simple test and investigation tool. Both samples are available as DTS
sample code.

Summary of Driver Gestalt

All disk drivers should support Driver Gestalt.

Back to top

Secrets of the Partition Map

TN 1189: The Monster Disk Driver Technote Page: 11

A number of features have been added to the Apple partition map since it was documented in Inside Macintosh: Devices. This
section describes those features in detail.

Partition Field Relevance

The description of the Partition data type in Inside Macintosh: Devices does not explicitly call out that some fields of the
data structure are only relevant for driver partitions (those whose partition name contains "Apple" and "Driver").
Specifically, the fields from pmLgBootStart through to pmProcessor are only relevant for driver partitions.
Non-driver partitions should set these fields to zero.

pmParType Possibilities

Inside Macintosh: Devices documents the well known values for the pmParType field of the partition map entry, namely
"Apple_partition_map", "Apple_Driver", "Apple_Driver43", "Apple_MFS", "Apple_HFS", "Apple_Unix_SVR2",
"Apple_PRODOS", "Apple_Free", and "Apple_Scratch". This technote describes a number of additional partition types.

"Apple_Driver_ATA" -- Holds the device driver for an ATA device.
"Apple_Driver_ATAPI" -- Holds the device driver for an ATAPI device. When it discovers a device on an ATA bus,
the ATA Manager identifies whether a device is ATA or ATAPI and automatically loads the corresponding driver.
"Apple_Driver43_CD" -- A SCSI CD-ROM driver suitable for booting.
"Apple_FWDriver" -- Holds a FireWire driver for the device. See Loading FireWire Drivers for details.
"Apple_Void" -- A dummy partition map entry, used to pad out a partition map to ensure the correct alignment of
partition map entries in a bootable CD-ROM.
"Apple_Patches" -- Holds a patch partition. The patch partition architecture is described in Chaining Drivers and
Patch Partitions.

IMPORTANT:
Apple reserves all partition types beginning with "Apple". Apple expects to add a number of new partition types
in the near future, and your software should handle these new, reserved partition types cleanly.

pmPartStatus Revealed

Inside Macintosh: Devices says that the pmPartStatus field of the Partition data structure is only used by A/UX, bits
0 through 7 having a defined meaning and all others being reserved. This is no longer true.

The following flags are defined in pmPartStatus field of the Partition structure. All bits not defined here are
reserved (you should initialize them to 0 and ignore their value).

TN 1189: The Monster Disk Driver Technote Page: 12

enum {
 kPartitionAUXIsValid= 0x00000001,
 kPartitionAUXIsAllocated = 0x00000002,
 kPartitionAUXIsInUse= 0x00000004,
 kPartitionAUXIsBootValid = 0x00000008,
 kPartitionAUXIsReadable = 0x00000010,
 kPartitionAUXIsWriteable = 0x00000020,
 kPartitionAUXIsBootCodePositionIndependent = 0x00000040,

 kPartitionIsWriteable = 0x00000020,
 kPartitionIsMountedAtStartup = 0x40000000,
 kPartitionIsStartup = 0x80000000,

 kPartitionIsChainCompatible = 0x00000100,
 kPartitionIsRealDeviceDriver = 0x00000200,
 kPartitionCanChainToNext = 0x00000400,
};

Bits 0 through 4 and 6 are still defined as documented in Inside Macintosh: Devices. A Mac OS formatting utility should
always set these bit to 1 for file system partitions and clear them for other partition types.

The second group of bits is used by Apple Mac OS disk drivers to hold information about file system partitions.

kPartitionIsWriteable

This bit indicates whether the partition is writeable (1) or write-protected (0). If the bit is clear and your
driver creates a drive queue element to represent this partition, it should mark the drive queue element as
write-protected. Note that mask has the same value (and the same semantics) as
kPartitionAUXIsWriteable.

kPartitionIsMountedAtStartup

This bit indicates whether the partition is mounted at system startup (1) or not (0). If your driver would
otherwise create a drive queue element to represent this partition at system startup and this bit is clear, it should
not create the drive.

kPartitionIsStartup

This bit indicates whether this is the startup partition (1) or not (0). This bit must be set for at most one
partition. See A Partition of Your Imagination below.

Note:
Some third-party disk drivers reverse the sense of the kPartitionIsMountedAtStartup bit of
pmPartStatus. This is a bug. Unfortunately, we cannot retroactively fix that bug on all installed disks, so it
is not possible to look at this flag and determine whether the partition will be mounted. The most reliable way to
work out whether a partition will be mounted at startup is by using the partition attribute Control and Status
requests.

The third group of bits provides information about driver partitions. You may need to read Chaining Drivers and Patch
Partitions to understand these descriptions.

kPartitionIsChainCompatible

The driver in this partition supports being loaded by a chaining driver.

TN 1189: The Monster Disk Driver Technote Page: 13

kPartitionIsRealDeviceDriver

This partition contains a driver that actually knows how to drive the device. Contrast this with the patch driver,
which is chain compatible, but which can only load patches and then chain to the next driver; it does not actually
contain a disk driver.

kPartitionCanChainToNext

This partition contains a driver that can chain to another driver. Typically, all drivers in the chain must have this
bit set, except the last one where it is clear.

IMPORTANT:
Some Apple and most third-party drivers do not have the chaining flags set correctly, so it is virtually
impossible for your software to rely on their semantics.

Partition Attributes

There are a number of Control and Status requests that modify the attributes of a partition. A disk driver must support
these requests as described below. A formatting application can use these requests to modify partition attributes.

Note:
Many of these Control and Status requests were previously documented in Designing PCI Cards and Drivers for
Power Macintosh Computers, page 113 through 114, and ATA Device Software for Macintosh Computers. The
description herein replaces both of these documents. The old documents fail to describe the DeviceIdent
parameter to these routines, nor do they clarify that csParam[0..1] is a partition map entry address.

Setting the Startup Partition

Trap _Control

Mode Synch, Async

csCode SInt16 -> kSetStartupPartition (44)

ioVRefNum SInt16 -> The drive number of the new startup partition, or 0 if you wish to specify
the startup partition by block number.

csParam[0..1] UInt32 ->
If ioVRefNum is 0, this is the physical block number of the partition map
entry of the new startup partition. If ioVRefNum is not 0, this is ignored.

csParam[2..3] ->
If ioVRefNum is 0, this is the device containing the new startup partition.
This is in the same format as the SCSIID field of the partInfoRec. If
ioVRefNum is not 0, this is ignored.

In response to this request, your disk driver must set the partition described by ioVRefNum and csParam[0..3] as the
startup partition. Typically this involves setting kPartitionIsStartup in pmPartStatus, which in turn causes
your disk driver to place the drive queue element for this partition first in the drive queue at system startup.

IMPORTANT:
When your driver sets the kPartitionIsStartup bit for one partition, it must clear it for all other
partitions. This bit must be set for at most one partition.

TN 1189: The Monster Disk Driver Technote Page: 14

Determining Whether a Partition is the Startup Partition

Trap _Status

Mode Synch, Async

csCode SInt16 -> kGetStartupStatus (44)

ioVRefNum SInt16 -> The drive number of the partition to query, or 0 if you wish to query the
partition by block number.

csParam[0..1] UInt32 ->
If ioVRefNum is 0, this is the physical block number of the partition
map entry of the partition to query. If ioVRefNum is not 0, this is
ignored.

csParam[2..3] DeviceIdent ->
If ioVRefNum is 0, this is identifies the device containing the partition
to query. This is in the same format as the SCSIID field of the
partInfoRec. If ioVRefNum is not 0, this is ignored.

csParam[0] UInt16 <- Your disk driver must set this to either 0 (this is not the startup
partition) or 1 (this is the startup partition).

In response to this request, your disk driver must set csParam[0] to indicate whether the partition described by
ioVRefNum and csParam[0..3] is the startup partition. Typically this involves testing kPartitionIsStartup in
pmPartStatus.

The request returns the status that is currently recorded in the partition map, not whether the system actually started
from this partition.

Specifying That a Partition Should Be Mounted at Startup

Trap _Control

Mode Synch, Async

csCode SInt16 -> kSetStartupMount (45)

ioVRefNum SInt16 -> The drive number of the partition, or 0 if you wish to specify the
partition by block number.

csParam[0..1] UInt32 ->
If ioVRefNum is 0, this is the physical block number of the partition
map entry of the partition. If ioVRefNum is not 0, this is ignored.

csParam[2..3] DeviceIdent ->
If ioVRefNum is 0, this is the device containing the partition. This is in
the same format as the SCSIID field of the partInfoRec. If
ioVRefNum is not 0, this is ignored.

In response to this request, your disk driver must set the partition described by ioVRefNum and csParam[0..3] to be
mounted at startup. Typically this involves setting kPartitionIsMountedAtStartup in pmPartStatus, which in
turn causes your disk driver to place a drive queue element for this partition in the drive queue at system startup.

This request modifies the partition map, and hence only takes effect the next time the system is started. It does not affect
the state of any volume currently mounted on the partition.

Specifying That a Partition Should Not Be Mounted at Startup

Trap _Control

Mode Synch, Async

TN 1189: The Monster Disk Driver Technote Page: 15

csCode SInt16 -> kClearPartitionMount (48)

ioVRefNum SInt16 -> The drive number of the partition, or 0 if you wish to specify the
partition by block number.

csParam[0..1] UInt32 ->
If ioVRefNum is 0, this is the physical block number of the partition
map entry of the partition. If ioVRefNum is not 0, this is ignored.

csParam[2..3] DeviceIdent ->
If ioVRefNum is 0, this is the device containing the partition. This is in
the same format as the SCSIID field of the partInfoRec. If
ioVRefNum is not 0, this is ignored.

In response to this request, your disk driver must set the partition described by ioVRefNum and csParam[0..3] to not
be mounted at startup. Typically this involves clearing kPartitionIsMountedAtStartup in pmPartStatus,
which in turn causes your disk driver to not place a drive queue element for this partition in the drive queue at system
startup.

This request modifies the partition map and hence only takes effect the next time the system is started. It does not affect the
state of any volume currently mounted on the partition.

Determining Whether a Partition is to be Mounted

Trap _Status

Mode Synch, Async

csCode SInt16 -> kGetMountStatus (45)

ioVRefNum SInt16 -> The drive number of the partition to query, or 0 if you wish to query the
partition by block number.

csParam[0..1] UInt32 ->
If ioVRefNum is 0, this is the physical block number of the partition
map entry of the partition to query. If ioVRefNum is not 0, this is
ignored.

csParam[2..3] DeviceIdent ->
If ioVRefNum is 0, this is identifies the device containing the partition
to query. This is in the same format as the SCSIID field of the
partInfoRec. If ioVRefNum is not 0, this is ignored.

csParam[0] UInt16 <- Your disk driver must set this to either 0 (this partition is not to be
mounted) or 1 (this partition is to be mounted).

In response to this request, your disk driver must set csParam[0] to indicate whether the partition described by
ioVRefNum and csParam[0..3] is to be mounted at system startup. Typically this involves testing
kPartitionIsMountedAtStartup in pmPartStatus.

The request returns the status that is currently recorded in the partition map, not whether the partition was actually
mounted at startup.

Mounting a Partition Immediately

Trap _Control

Mode Synch, Async

TN 1189: The Monster Disk Driver Technote Page: 16

csCode SInt16 -> kMountVolume (60)

ioVRefNum SInt16 -> The drive number of the partition, or 0 if you wish to specify the
partition by block number.

csParam[0..1] UInt32 ->
If ioVRefNum is 0, this is the physical block number of the partition
map entry of the partition. If ioVRefNum is not 0, this is ignored.

csParam[2..3] DeviceIdent ->
If ioVRefNum is 0, this is the device containing the partition. This is in
the same format as the SCSIID field of the partInfoRec. If
ioVRefNum is not 0, this is ignored.

In response to this request, your disk driver must create a drive queue element for the partition described by ioVRefNum
and csParam[0..3] (if it doesn't already have one) and post a "disk inserted" event for it. It must do this regardless of
the state of the kPartitionIsMountedAtStartup bit in the partition's pmPartStatus; however, the
kPartitionIsWriteable bit still controls whether the drive is writeable.

If there is already a volume mounted on the partition, the system will ignore the "extra disk inserted" event this request
generates.

Locking a Partition

Trap _Control

Mode Synch, Async

csCode SInt16 -> kLockPartition (46)

ioVRefNum SInt16 -> The drive number of the partition, or 0 if you wish to specify the
partition by block number.

csParam[0..1] UInt32 ->
If ioVRefNum is 0, this is the physical block number of the partition
map entry of the partition. If ioVRefNum is not 0, this is ignored.

csParam[2..3] DeviceIdent ->
If ioVRefNum is 0, this is the device containing the partition. This is in
the same format as the SCSIID field of the partInfoRec. If
ioVRefNum is not 0, this is ignored.

In response to this request, your disk driver must lock the partition described by ioVRefNum and csParam[0..3].
Typically this involves:

clearing kPartitionIsWriteable in pmPartStatus, which in turn causes your disk driver to create a
read-only drive queue element for this partition at system startup, and
making the drive queue element associated with this partition read-only. A read-only drive queue element has bit 7
of the writeProt field of the drive queue element set, as described in Inside Macintosh: Files, page 2-85.

Unlocking a Partition

Trap _Control

Mode Synch, Async

csCode SInt16 -> kUnlockPartition (49)

ioVRefNum SInt16 -> The drive number of the partition, or 0 if you wish to specify the
partition by block number.

csParam[0..1] UInt32 ->
If ioVRefNum is 0, this is the physical block number of the partition
map entry of the partition. If ioVRefNum is not 0, this is ignored.

csParam[2..3] DeviceIdent ->
If ioVRefNum is 0, this is the device containing the partition. This is in
the same format as the SCSIID field of the partInfoRec. If
ioVRefNum is not 0, this is ignored.

TN 1189: The Monster Disk Driver Technote Page: 17

In response to this request, your disk driver must unlock the partition described by ioVRefNum and csParam[0..3].
Typically this involves:

setting kPartitionIsWriteable in pmPartStatus, which in turn causes your disk driver to create a
read/write drive queue element for this partition at system startup, and
making the drive queue element associated with this partition read/write.

Determining Whether a Partition is Locked

Trap _Status

Mode Synch, Async

csCode SInt16 -> kGetLockStatus (46)

ioVRefNum SInt16 -> The drive number of the partition to query, or 0 if you wish to query the
partition by block number.

csParam[0..1] UInt32 ->
If ioVRefNum is 0, this is the physical block number of the partition
map entry of the partition to query. If ioVRefNum is not 0, this is
ignored.

csParam[2..3] DeviceIdent ->
If ioVRefNum is 0, this is identifies the device containing the partition
to query. This is in the same format as the SCSIID field of the
partInfoRec. If ioVRefNum is not 0, this is ignored.

csParam[0] UInt16 <- Your disk driver must set this to either 0 (this partition is not locked)
or 1 (this partition is locked).

In response to this request, your disk driver must set csParam[0] to indicate whether the partition described by
ioVRefNum and csParam[0..3] is locked. Typically this involves testing kPartitionIsWriteable in
pmPartStatus.

IMPORTANT:
The polarity of this test is opposite to the other partition attribute Status requests. If the partition is locked,
kPartitionIsWriteable is clear in pmPartStatus.

The request returns the status that is currently recorded in the partition map, not whether the partition was actually
locked at startup. You can determine whether a drive is currently write-protected by looking at bit 7 of the writeProt
field of the drive queue element, as described in Inside Macintosh: Files, page 2-85.

pmPad Pearls

A previously undocumented feature of the Partition structure is the use of the pmPad field. The first four bytes of this
field is a driver signature, a Mac OS four- character code that uniquely identifies the driver. Developers must fill out
this field with either a registered creator code (which is strongly recommended) or zero. Drivers that use a registered
creator code in this driver signature field may then use the remainder of pmPad to hold driver-specific configuration
parameters.

Apple currently uses the following driver signatures:

TN 1189: The Monster Disk Driver Technote Page: 18

enum {
 kPatchDriverSignature = 'ptDR',
 kSCSIDriverSignature = 0x00010600,
 kATADriverSignature = 'wiki',
 kSCSICDDriverSignature = 'CDvr',
 kATAPIDriverSignature = 'ATPI',
 kDriveSetupHFSSignature = 'DSU1'
};

The values have the following meaning:

kPatchDriverSignature

The Apple patch driver.

kSCSIDriverSignature

The Apple SCSI hard disk driver. [The significance of this value has been lost in the mists of time.]

kATADriverSignature

The Apple ATA hard disk driver.

kSCSICDDriverSignature

The Apple SCSI CD-ROM driver.

kATAPIDriverSignature

The Apple ATAPI CD-ROM driver.

kDriveSetupHFSSignature

Drive Setup sets the first four bytes of the pmPad field of "Apple_HFS" partitions to this value. While this is not,
in the strictest sense, a driver signature, it is documented here for completeness.

Remember that your disk driver should use its own driver signature; do not use these values for your own driver.

New Driver Types

Inside Macintosh: Devices describes how a Mac OS driver is tagged by having ddType set to 1 in the driver descriptor map
(DDM). There is a constant for this, sbMac, defined in "SCSI.h". However, there are other useful constants for this field.

enum {
 kDriverTypeMacSCSI = 0x0001,
 kDriverTypeMacATA = 0x0701,
 kDriverTypeMacSCSIChained = 0xFFFF,
 kDriverTypeMacATAChained = 0xF8FF
};

The following constants are defined for the ddType field of the DDM:

TN 1189: The Monster Disk Driver Technote Page: 19

kDriverTypeMacSCSI

This is a Mac OS SCSI driver, equivalent to sbMac. Typically this is only used for the first driver (the patch
driver) in a SCSI driver chain.

kDriverTypeMacATA

This is a Mac OS ATA driver. Typically this is only used for the first driver (the patch driver) in an ATA driver
chain.

kDriverTypeMacSCSIChained

This is a chained Mac OS SCSI driver. This is used for the second and subsequent drivers in a driver chain.

kDriverTypeMacATAChained

This is a chained Mac OS ATA driver. This is used for the second and subsequent drivers in a driver chain.

The driver type for a chained driver is always the two's complement of the driver type for the patch driver. For more
information about this relationship, see Chaining Drivers and Patch Partitions.

Driver Checksums

Inside Macintosh, Volume V (page 580) contains an assembly language description of the checksum algorithm used for the
pmBootCksum field of the partition map, but this algorithm was somehow dropped from Inside Macintosh: Devices. As it is
now quite difficult to obtain copies of Inside Macintosh , Volume V , the algorithm is included below.

; Inputs:
; a0.l -> pointer to driver code
; d1.w -> length of driver code in bytes
; Outputs:
; d0.w -> driver checksum

DoCksum
 moveq.l #0,d0 ; initialize sum register
 moveq.l #0,d7 ; zero extended byte
 bra.s CkDecr; handle 0 bytes
CkLoop
 move.b(a0)+,d7 ; get a byte
 add.w d7,d0 ; add to checksum
 rol.w #1,d0 ; and rotate
CkDecr
 dbra d1,CkLoop ; next byte
 tst.w d0 ; convert a checksum of 0
 bne.s @1 ; into $FFFF
 subq.w#1,d0 ;
@1

The following is a C equivalent.

TN 1189: The Monster Disk Driver Technote Page: 20

static UInt32 ChecksumDriver(void *start, UInt16 bytesToSum)
{
 UInt8 *cursor;
 UInt16 result;

 cursor = (UInt8 *) start;
 result = 0;

 while (bytesToSum != 0) {
 result = result + *cursor;
 result = ((result << 1) & 0x0FFFE) |
 ((result >> 15) & 0x00001);
 cursor += 1;
 bytesToSum -= 1;
 }
 if (result == 0) {
 result = 0x0FFFF;
 }
 return result;
}

One minor mystery of the pmBootCksum field is that the field is 32 bits wide but the checksum algorithm only calculates
a 16-bit value. The checksum is always stored in the least significant 16 bits of pmBootCksum and the most significant
bits are always set to zero.

Inside Macintosh, Volume V also states that driver checksumming is only done for if the first four bytes of the driver's
partition map entry pmPartName field is "Maci". This is only true for SCSI disk drivers. Other, partition-based disk
drivers are always checksummed.

The above algorithm is known as the 16-bit driver checksum algorithm. This is because the ROM decrements and
tests bytesToSum using a DBRA instruction (which effectively makes bytesToSum a UInt16), so only the first
bytesToSum modulo 64 K bytes of the driver are checksummed. This is not a problem if your driver is smaller than 64
K bytes. If your driver is larger, you must be careful for two reasons.

1. The code you use to calculate pmBootCksum must mimic the incorrect behavior and only checksum your driver up to
the driver size modulo 64 K.

2. You may want to include your own checksum in the driver to ensure that the driver code is intact.

Note:
The 16-bit driver checksum algorithm is identical to the algorithm used by AppleTalk's Datagram Delivery
Protocol (DDP).

In some situations where the ROM loads a driver, it does not use the 16-bit checksum algorithm. Specifically,
later versions of ATA Manager use a 32-bit driver checksum algorithm, shown below.

TN 1189: The Monster Disk Driver Technote Page: 21

static UInt16 ATALoadDoCksum(void *start, UInt32 bytesToSum)
{
 UInt8 *startAsBytes;
 UInt32 result;
 UInt32 i;

 startAsBytes = (UInt8 *) start;
 result = 0;

 for (i = 0; i < bytesToSum; i++) {
 result += startAsBytes[i];
 result <<= 1;
 result |= (result & 0x00010000) ? 1 : 0;
 }
 return (UInt16) result;
}

The key difference is that bytesToSum is now expressed as a 32-bit quantity, and the algorithm correctly checksums
bytes beyond 64 KB. Further, the 16-bit algorithm never returns a checksum of 0 (it is mapped to $FFFF), while the
32-bit algorithm can return a checksum of 0.

Your formatting utility must set pmBootCksum appropriately, depending on which version of ATA Manager is loading your
driver. Furthermore, the ATA driver loader mechanism is updated during the system startup process so that on machines
with the old checksum algorithm in ROM, your driver will need a different checksum depending on whether it is loaded at
start time or after system startup.

Overall, the best solution to this driver checksum conundrum is:

make your driver's size less than 64 KB (if necessary, use a boot strap driver to load your main driver), and
if your driver checksums to 0, add pad bytes until it doesn't.

IMPORTANT:
ATA disk drivers are also limited to a size of 255 * block size bytes (just under 128 KB for 512-byte block
devices). This is because the ROM reads the entire driver using a single ATA request.

A Partition of Your Imagination

The original Mac Plus SCSI implementation did not allow the user to specify a startup partition. Obviously this is desired
feature, and disk driver developers came up with a number of solutions for this problem. Over the years, Apple has
introduced various stages of OS support for booting from a partition.

Developer-Only Solutions

Prior to Apple providing a solution, developers were responsible for engineering their own. Developers quickly noticed
that, all things being equal, the Macintosh tends to boot from the first bootable drive in the drive queue. Therefore, disk
driver writers arranged to add the startup partition's drive queue element to the drive queue before the non-boot
partitions' element. The disk driver's formatting utility provided the user interface for specifying the boot partition.

This technique was relatively effective and stimulated user demand for a reliable mechanism for booting from a partition.

Partition Attribute Support

Eventually, Apple codified this approach and provided support for it in the Startup Disk control panel. The codification
came in the form of the kPartitionIsStartup bit in the pmPartStatus field of the partition map, along with a

TN 1189: The Monster Disk Driver Technote Page: 22

driver Control request, kSetStartupPartition, which allows the Startup Disk control panel to instruct the driver to
set that bit.

This standardized the previous non-standard behavior, although it still is not a perfect solution because of variances in the
way the ROM startup code chooses a drive from which to start up.

SCSI Manager 4.3

Apple made further refinements to this solution with the introduction of SCSI Manager 4.3. SCSI Manager 4.3 presented
new problems to the startup code because it allows for multiple SCSI buses, and it provides full support for SCSI LUNs. So,
when SCSI Manager 4.3 was introduced, Apple also introduced a new technique for finding the startup partition, the
kdgBoot Driver Gestalt selector.

IMPORTANT:
SCSI Manager 4.3 must be in ROM for the kdgBoot selector to be effective. On machines, such as the Quadra
700, that can run SCSI Manager 4.3 but do not have it in ROM, SCSI Manager 4.3 loads out of the System file,
too late for it to affect the startup drive selection.

When the user chooses a drive in the Startup Disk control panel, Startup Disk sends the kdgBoot Driver Gestalt selector
to the disk driver controlling that drive. Startup Disk then records the response in PRAM. When the Macintosh boots, it
iterates through the drive queue, sending a kdgBoot request to each drive. When it finds a drive with a value matching the
value in PRAM, it knows that this is the correct startup drive.

The kdgBoot Driver Gestalt selector is documented in Designing PCI Cards and Drivers for Power Macintosh Computers,
page 113. This documentation is accurate for SCSI drivers. For ATA drivers, the DriverGestaltBootResponse
response fields should be set as follows.

extDev

The ATA bus number of the device.

partition

The partition number on the bootable partition on the device. As described below, the format of this field is
internal to your disk driver.

SIMSlot

ATA devices must set this to kDriverGestaltBootATASIMSlot ($20). [This constant is not currently in
Universal Interfaces, Radar ID 2314693.]

SIMsRSRC

If your driver supports ATA 0/1, you must put 0 or 1 in this field to indicate the number of the device on the ATA
bus. If your driver does not support ATA 0/1, you must set this to zero. See ATA 0/1 Software Developers Guide for
more details on ATA 0/1 support.

ROM-in-RAM (NewWorld)

The ROM-in-RAM architecture, introduced with the iMac, presents new challenges for the startup device selection process.
On a ROM-in-RAM machine, Open Firmware is responsible for loading the Mac OS ROM file off the startup partition, and
hence Open Firmware must define the startup partition well before Mac OS starts to execute. When the Mac OS ROM starts,
it continues booting from the startup partition chosen by Open Firmware to avoid the potential user confusion of loading the
Mac OS ROM from one disk and the system software from another.

Open Firmware synthesizes the traditional Macintosh startup process, including:

Startup drive selection algorithm -- Open Firmware implements the traditional startup drive selection algorithm.

TN 1189: The Monster Disk Driver Technote Page: 23

It turns out that this algorithm is very complex, although the gist of it is:
1. if a "snag" key is held down, try booting from the corresponding device,
2. try booting from the default drive (if any),
3. then try booting from other drives.

CODS -- Holding down command-option-delete-shift (CODS) prevents the Open Firmware from booting from the
default drive.
C for CD-ROM -- Holding down the C key forces Open Firmware to boot from the CD-ROM device. This was
previously implemented by the "snag" patch but is implemented by Open Firmware in ROM-in-RAM computers.
Flashing question mark -- If no startup device is available, Open Firmware displays the traditional "flashing
question mark" icon (although, in deference to the fact that ROM-in-RAM computers do not have floppy drives, it
flashes the question mark inside a folder icon instead of a floppy disk icon).

On ROM-in-RAM computers, the selected default startup device is held in an Open Firmware configuration variable
boot-device. This configuration variable holds an Open Firmware path to the default startup device. The Startup Disk
control panel generates a path based on the disk driver's response to various Driver Gestalt queries.

It is impossible for Open Firmware to completely mimic the startup drive selection algorithm when it comes to selecting a
startup partition. When booting from a partition, boot-device contains the Open Firmware partition number of the
startup partition. Unfortunately, there is no reliable way to get this from a disk driver with commonly implemented
Driver Gestalt queries.

Note:
You might think that the partition field of the DriverGestaltBootResponse would do the trick;
however, this field is defined to be opaque to the system. "Designing PCI Cards and Drivers for Power Macintosh
Computers" explicitly states:

The partition field enables the selection of a single partition on a multiply partitioned device as the
boot device. It is not interpreted by the ROM or the Startup Disk 'cdev' [sic], so the driver can choose a
meaning and a value for this field.

It turns out that different disk drivers use different values for the partition field. Apple disk drivers set this to be the
block number of the partition map entry for the partition, but some third-party drivers use other techniques, such as
recording 1 for the first HFS partition, 2 for the second HFS partition, and so on. The upshot of this is that Startup Disk is
unable to use this field reliably to set the partition number in boot-device.

Prior to Mac OS 9.0, the Startup Disk control panel used tricky heuristics to allow booting from a partition with Apple
disk drivers as a temporary measure to solving this problem. The long-term solution; however, is for disk drivers to
support a set of new Driver Gestalt queries, which return exactly the information Startup Disk needs to set
boot-device. The required Driver Gestalt selectors (kdgDeviceReference, kdgNameRegistryEntry,
kdgOpenFirmwareBootSupport, and kdgOpenFirmwareBootingSupport) are described in "DriverGestalt.h" in
Universal Interfaces 3.3.

Note:
Your driver only need support the kdgNameRegistryEntry Driver Gestalt selector if your device has an
obvious Name Registry node. For devices with no Name Registry node (SCSI), or where the Name Registry node
can be tricky to find (ATA), it is reasonable to just return statusErr.

Back to top

Non-512 Byte Block Devices

The original Mac OS disk driver architecture assumed that all block devices would use 512-byte blocks. Supporting block

TN 1189: The Monster Disk Driver Technote Page: 24

devices with a different block size is relatively simple, although it gets more complicated if you want to boot from such a
device. Non-512 byte block device support is most important for CD-ROM drivers, which use a 2-KB block size.

Just the Basics

The basic rule for supporting non-512 block devices on Mac OS is that the disk driver is responsible for blocking and
deblocking all I/O requests to a drive. This discussion assumes that the device block size is an integer multiple of 512,
although similar algorithms work for weird device block sizes.

Block Translation

The File Manager makes an I/O request in terms of 512-byte logical block numbers on a particular drive. The disk
driver is responsible for translating the logical block number of the request to an actual block number on the drive. If the
disk is partitioned, the first step of this translation is to add the offset of the partition to the logical block number; this
generates the physical block number. If the device uses 512-byte blocks, the physical block number is the actual
block number of the data on the disk. If the device uses non-512 byte blocks, the disk driver must do a further translation,
converting the physical block number to a device block number by dividing the physical block number by the number
of 512-byte blocks in each physical block.

In addition, the disk driver must block/deblock the request. If the physical block number, or the number of blocks to
transfer, is not evenly divisible by the device block size, the disk driver must transfer partial blocks to and from the disk.

The following diagrams shows the entire translation process for two partitions on a 2 KB block device. All numbers on the
diagram are in the units labeled in the left column. For example, partition 1 is a 50 MB partition which extends from 0 to
100 mega logical blocks (512-byte blocks), 40 to 140 mega physical blocks (also 512-byte blocks), and 10 to 35 mega
device blocks (2 KB byte blocks).

Implementation Notes

A disk driver typically deblocks a request by breaking it into three components. The leading component consists of all the
requested physical blocks up to the first device block boundary. The leading component is empty if the requested physical
blocks start on a device block boundary.

The main component consists of all the requested physical blocks which are fully encompassed by device blocks. The main
component may be empty if the transfer is short. The main component is transferred directly from between the client
buffer and the disk.

Finally, the trailing component consists of all the requested physical blocks of the transfer which fall after the last block
of the main component. The trailing component is empty if the physical block number plus the number of physical blocks to
transfer falls on a device block boundary.

Because you can't transfer a sub-block size request, the leading and trailing components must be transferred through a
temporary buffer. You should allocate this temporary buffer when your driver is opened. As the leading and trailing

TN 1189: The Monster Disk Driver Technote Page: 25

components are always less than one device block (otherwise they would be part of the main component), the temporary
buffer need only be as big as a device block. If your device driver is single threaded, you need only allocate a single
temporary buffer. If your driver is multi-threaded, you must allocate as many temporary buffers as you allow threads of
execution within your driver, or internally serialize the use of the temporary buffer.

The leading and trailing components are read by transferring the device block to the temporary buffer and then copying the
appropriate data out of the temporary buffer to the client buffer. The leading and trailing components are written by first
reading the current contents of the device to the temporary buffer, then copying the new data from the client buffer to the
temporary buffer, then writing the temporary buffer to the device.

The following illustration shows how misaligned read is transferred to the client buffer:

Performance Considerations

The above algorithm is obviously inefficient if transfers are misaligned, that is, if the leading and trailing components are
not empty. Misaligned writes are even more expensive than misaligned reads because the disk driver must do an extra I/O
to pre-fill the temporary buffer with the existing contents of device block. Worse yet, a misaligned write that has both
leading and trailing components takes five I/O operations (read leading, write leading, write main, read leading, write
leading).

There are a number of ways to avoid misaligned transfers:

Your formatting utility should always start partitions (especially file system partitions) on device block
boundaries.
File system clients can issue a Driver Gestalt kdgMediaInfo request to determine the device block size and
ensure that transfers are aligned. This is particularly important for write requests.
As a rule, volume formats should use the above technique to ensure that their allocation blocks are correctly
aligned. At a minimum, volume formats should align allocation blocks on 2 KB boundaries to accommodate the most
common cases, namely CD-ROM, DVD-ROM/RAM, and magneto-optical devices.

It is strongly recommended that your disk driver cache at least one device block. Many Mac OS programs will transfer data
in sequential 512-byte chunks. By caching a single device block, your driver can radically reduce the average time taken
to service these requests.

TN 1189: The Monster Disk Driver Technote Page: 26

Booting From Non-512 Byte Block Devices

This section is not yet finished and has been omitted in the interests of shipping an initial version of the technote. A future
revision of this technote will cover booting from a non-512 byte block device. If you are interested in this topic, please
email DTS and ask for a prerelease draft of this section.

Back to top

Large Volume Support

When Mac OS originally shipped, it supported volume sizes up to 2 GB. This limit was shared by a number of system
components, including the File Manager and disk drivers. Large volume support was introduced in two phases.

1. System 7.5 introduced support for volumes larger than 2 GB, up to a size of 4 GB. The semantics of two programming
interfaces were changed to accomplish this.

PBHGetVInfo does not return the true size of the volumes greater than 2 GB; the volume size and free
space are always clipped to 2 GB or less.
The dCtlPosition field of the Device Control Entry (DCE) was redefined as an unsigned quantity.

2. System 7.5.2 introduced support for volumes larger than 4 GB, up to a size of a 2 TB. This required two new
programming interfaces.

PBXGetVolInfo returns the volume size and free space as a 64-bit quantity.
The I/O parameter block passed to disk drivers was extended to include a 64-bit field, ioWPosOffset,
which supplants dCtlPosition.

The changes to the File Manager programming interfaces are not relevant to this technote; they are documented in DTS Q&A
FL 08, "Determining Volume Size." This section describes the changes to the disk driver interface.

Large Volume Interfaces

Supporting volumes between 2 GB and 4 GB was simply a matter of redefining the dCtlPosition field of the DCE and the
ioPosOffset field of the IOParam structure to be unsigned longs (UInt32).

IMPORTANT:
While the semantics of these fields have been changed to unsigned, Universal Interfaces (as of the current
version, 3.3) still define the fields as signed. Your code must type cast the fields as appropriate.

To support volumes larger than 4 GB, a new extended I/O parameter block (XIOParam) structure was defined. The
original and extended I/O parameter blocks are distinguished by the kUseWidePositioning bit of the ioPosMode
field (clear for original, set for extended).

The C definition of the extended I/O parameter block is given below. The key difference is the addition of the
ioWPosOffset field, a signed 64-bit quantity which contains the offset of the request.

IMPORTANT:
The extended I/O parameter block must only be used for _Read or _Write requests to device drivers. It must
not be used for accessing files. The following description assumes this restriction to simplify the text.

Note:
This structure was previously only documented in the Power Macintosh 9500 Computers hardware developer
note. The description here is not only easier to find, but updated and more accurate.

TN 1189: The Monster Disk Driver Technote Page: 27

struct XIOParam {
 QElemPtr qLink;
 shortqType;
 shortioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 OSErrioResult;
 StringPtr ioNamePtr;
 shortioVRefNum;
 shortioRefNum;
 SInt8ioVersNum;
 SInt8ioPermssn;
 Ptr ioMisc;
 Ptr ioBuffer;
 long ioReqCount;
 long ioActCount;
 shortioPosMode;
 wide ioWPosOffset;
};
typedef struct XIOParam XIOParam;
typedef XIOParam *XIOParamPtr;

For software making extended I/O requests, the fields are defined as follows:

qLink
qType
ioTrap
ioCmdAddr

Used internally by the Device Manager.

ioCompletion

For asynchronous requests, you must either set this field to zero or set it to a universal procedure pointer for
your completion routine. For synchronous requests, this field is ignored.

ioResult

On completion this field contains the result of the request, which is either noErr (0) or a negative error code.
The Device Manager guarantees that this field will be set to ioInProgress (1) until the request is complete.

ioNamePtr

Ignored for _Read and _Write requests.

ioVRefNum

You must set this field to the drive number of the drive you wish to read or write.

ioRefNum

You must set this field to the driver reference number of the device driver controlling the drive you wish to read
or write.

ioVersNum

TN 1189: The Monster Disk Driver Technote Page: 28

ioPermssn
ioMisc

Ignored for _Read and _Write requests.

ioBuffer

You must set this to point to a data buffer from which data is written, or to which data is read.

ioReqCount

You must set this field to the number of bytes you wish to read or write. For disk driver requests, this must be a
multiple of 512 bytes.

ioActCount

On completion this field contains the number of bytes of data that were actually transferred.

ioPosMode

You must set this field to kUseWidePositioning to indicate that this is a wide request. All wide requests use a
positioning mode of fsFromStart. You must not specify any other positioning mode (fsAtMark, fsFromLEOF,
or fsFromMark). You may also specify rdVerifyMask for read-verify mode, noCacheMask to request that
the data not be placed in the cache, or pleaseCacheMask to request that data be placed in the cache.

ioWPosOffset

You must set this field to the offset (in bytes) from the beginning of the disk where the transfer should begin. For
disk driver requests, this must be a multiple of 512 bytes.

For disk drivers servicing an extended I/O request, the fields are defined as follows:

qLink
qType

Used internally by the Device Manager.

ioTrap

Your driver must test bit 0 of this field to determine whether the request is a _Read (bit 0 clear) or a _Write
(bit 0 set). It must also test noQueueBit (bit 9) to determine whether the request is immediate (bit 9 set) or
not. If your driver does not support immediate requests, it must fail the request with a paramErr. Your driver
must not test asyncTrpBit (bit 10) to determine whether the request is synchronous or asynchronous.
Instead, it should handle all requests as if they were made asynchronously. See Technote 1067 Traditional Device
Drivers: Sync or Swim for details.

ioCmdAddr

Used internally by the Device Manager.

ioCompletion

The Device Manager IODone routine will do the right thing with this field. Your driver should ignore this field and
handle all requests as if they were made asynchronously. See Technote 1067 Traditional Device Drivers: Sync or
Swim for details.

ioResult

Your driver must not read or write this field. Your driver sets this field implicitly when it calls IODone. When
your driver has finished a queued request, it should call IODone to signal that the request is complete. IODone

TN 1189: The Monster Disk Driver Technote Page: 29

performs a number of actions, one of which is to set this field to the error status you passed to the routine in
register D0. Your driver must pass a non-positive error status to IODone.

ioNamePtr

Your driver must ignore this field.

ioVRefNum

Your driver must use this field to determine which drive is the target of the request. If your driver does not
control a drive with this drive number, it must complete the request with nsDrvErr.

ioRefNum

Your driver may look at this field to determine the driver reference number of the request. This may be useful if
the same code is used for multiple device drivers (see Code Sharing).

ioVersNum
ioPermssn
ioMisc

Your driver must ignore these fields.

ioBuffer

Your driver must transfer data to or from the buffer pointed to by this field.

ioReqCount

Your driver must attempt to transfer the number of bytes specified in this field. Your driver may fail a request
(with paramErr) if this is not a multiple of 512 bytes.

ioActCount

Before completing the request, your driver must set this field to the number of bytes that were actually
transferred.

ioPosMode

Your driver must test the kUseWidePositioning bit to determine whether this is a wide request, as described
in the next section. If it is a wide request, your driver must ignore the bottom 2 bits of this field (that is,
fsFromStart, fsAtMark, fsFromLEOF, and fsFromMark) and use ioWPosOffset to determine the offset
into the drive for the transfer. Your driver may choose to honor the rdVerifyMask, noCacheMask, and
pleaseCacheMask in the traditional way.

ioWPosOffset

Your driver must transfer data from this offset (in bytes) into the drive. Your driver may fail a request (with
paramErr) if this is not a multiple of 512 bytes. If ioWPosOffset is negative or ioWPosOffset plus
ioReqCount is beyond the end of the drive, your driver must fail the request with a paramErr.

Supporting Large Volumes in Your Driver

To support large volumes correctly, your driver must implement the following:

Your driver must return true in response to the kdgWide Driver Gestalt selector. You may want to use the
GetDriverGestaltBooleanResponse macro to ensure that you set the correct response byte in the
parameter block.
When handling all _Read or _Write requests, your driver must check whether the kUseWidePositioning
flag is set in ioPosMode. If it is, you must cast the parameter block to an XIOParam and do the I/O at the 64-bit

TN 1189: The Monster Disk Driver Technote Page: 30

offset specified in ioWPosOffset. This type of request is known as a wide request.
If kUseWidePositioning is not set, your driver must do the I/O at the offset specified by dCtlPosition.
You must cast this signed value to an unsigned quantity (UInt32) to correctly handle offsets from 2 GB to 4 GB.
This type of request is known as a narrow request.

There are some important caveats of which you should be aware.

There is no guarantee that the system will check with Driver Gestalt before issuing a wide request. The system
expects that any driver controlling a drive larger than 4 GB will respond to wide request correctly. Similarly, the
system expects that a driver controlling a drive whose size is between 2 GB and 4 GB is smart enough to treat
dCtlPosition as unsigned.
There is no guarantee that the system will always use wide requests when talking to a drive larger than 4 GB. In
fact, the system currently decides on a request-by-request basis whether to use a wide or a narrow request, based
on the request's offset on the drive. However, you must not rely on this behavior; you must handle wide requests to
offsets less than 4 GB correctly.
The dCtlPosition field of the DCE is a 32-bit quantity, thus it cannot accurately reflect the position of the
current I/O beyond the 4 GB boundary. You should ignore dCtlPosition for wide requests and use it only for
narrow requests.

Notes for Developers Calling Disk Drivers

If you're writing software that issues _Read or _Write requests to a disk driver, you must be careful to avoid some
common pitfalls. Specifically, you should follow the recommendations given below.

You should always use an ioPosMode of fsFromStart when calling a disk driver. Because dCtlPosition
cannot accurately reflect the position beyond 4 GB, other positioning modes do not work as expected in all cases.
Before issuing a wide request, you should call Driver Gestalt to determine whether the driver supports wide
requests.
If the driver supports wide requests, you may choose to always use wide requests for that driver. However, for
maximum compatibility, DTS recommends that you take the same approach as the system by deciding to use a wide
or narrow request based on the offset into the drive.

The following code snippet implements these recommendations.

static void SetWidePosOffset(UInt32 blockOffset, XIOParamPtr pb)
 // Set up ioPosMode and either ioPosOffset or ioWPosOffset for a
 // device _Read or _Write.
{
 pb->ioWPosOffset.lo = blockOffset << 9; // convert block number
 pb->ioWPosOffset.hi = blockOffset >> 23; // to wide byte offset

 if (pb->ioWPosOffset.hi != 0) {
 // Offset on drive is >= 4G, so use wide positioning mode
 pb->ioPosMode = fsFromStart | (1 << kWidePosOffsetBit);
 } else {
 // Offset on drive is < 4G, so use regular positioning mode,
 // and move the offset into ioPosOffset
 pb->ioPosMode = fsFromStart;
 ((IOParam *)pb)->ioPosOffset = pb->ioWPosOffset.lo;
 }
}

In addition, you should never call PBReadImmed or PBWriteImmed on a disk driver unless you know, in advance, that
the disk driver supports such requests. Many disk drivers fail to handle Immediate requests properly. Because
immediate requests result in the disk driver possibly being reentered, these problems are hard to detect and debug.

TN 1189: The Monster Disk Driver Technote Page: 31

Back to top

How the ROM Loads SCSI and ATA Drivers

This section describes how the ROM loads SCSI and ATA drivers from a driver partition. Understanding this process is
critical to an understanding of the chaining driver architecture, and useful for general disk driver writers.

Note:
This discussion only applies to computers with built-in support for SCSI or ATA, and the drivers loaded from
devices attached to those buses. It does not apply to the Macintosh 128 and 512, which can only boot through the
floppy drive interface and do not support partition-based drivers. Nor does it apply to drivers for
modern I/O buses, such as USB and FireWire.

When a Macintosh boots, code in the ROM scans each SCSI and ATA bus for block devices in a bus-specific manner. Once it
has found a potentially bootable block device, the ROM attempts to load a driver from that device. The ROM executes the
following procedure to load a driver.

1. It first reads device block 0 of the disk. This is the driver descriptor map (DDM) and is structured as the Block0 data
type defined in "SCSI.h". It checks that block 0 is a valid DDM by comparing the sbSig field to sbSIGWord
($4552 or 'ER'). If the DDM is not valid, the ROM ignores the device.

2. It then reads device block 1 of the disk and looking for the first entry of the partition map. A partition map entry is
represented by the Partition data structure in "SCSI.h". For the partition to be recognized, the pmSig field must
be newPMSigWord ($5453 or 'PM'). The ROM uses the pmMapBlkCnt field of this first partition to determine the
size of the partition map as a whole.

3. The ROM then searches the DDM for the first driver that is compatible with this bootable bus. The DDM contains an
array of DDMap structures. The key field in this structure is ddType, which identifies the type of driver defined by the
structure. If the device is attached to a SCSI bus, the ROM looks for a DDMap whose ddType is
kDriverTypeMacSCSI. If the device is attached to an ATA bus, the ROM looks for a DDMap whose ddType is
kDriverTypeMacATA.

4. The ROM then searches (by reading consecutive device blocks) the partition map for the chosen driver's partition map
entry (whose pmParType starts with "Apple_Driver" and whose pmPyPartStart equals the ddBlock field of
the DDMap of the chosen driver). It stores this partition map entry in a temporary memory block.

5. The ROM then searches (by reading consecutive device blocks) the partition map for the first HFS partition (whose
pmParType is "Apple_HFS"). It stores this partition map entry in a temporary memory block.

6. The ROM then uses the driver's DDMap to read the driver into memory. It first allocates a pointer block in the system
heap to hold the driver (the size of this block is the size of the driver in blocks (ddSize) multiplied by the disk's block
size (sbBlkSize)) and then reads the driver off the disk (starting from ddBlock) into that buffer.

7. Next, the ROM checksums the driver to ensure its validity. For more information on the exact details of the checksum,
see Driver Checksums.

8. The ROM then calls the driver's entry point. The exact calling conventions are described below. The driver is expected
to install itself in the unit table, open itself, and create drive queue elements for each mountable partition on the disk.
(The exact definition of "mountable" is covered in Cooperating with File System Manager.)

If any of these steps fail, the ROM assumes that the device is not bootable and attempts to boot from the next available
device.

IMPORTANT:
The fact that the ROM requires an "Apple_HFS" partition to boot from a device is important to authors of
non-standard disk drivers, such as RAID striping drivers. The RAID software must create a dummy
"Apple_HFS" partition on the device so that the ROM will boot far enough to load the RAID driver.

TN 1189: The Monster Disk Driver Technote Page: 32

Note:
The Macintosh Plus originally used an old style (Inside Macintosh IV) partition format, identified by a pmSig
of oldPMSigWord ($5453 or 'TS'). Chaining drivers are not supported on the old partition format.
However, the new (Inside Macintosh V) partition map format will work on the Mac Plus, so it is possible to
use chaining drivers on these venerable machines.

If you want to support the Macintosh Plus in your driver, you need to be aware of the subtle difference between it and later
computers. Specifically the buffer pointed to by A0 when the Macintosh Plus ROM calls your driver contains the contents of
the second block on the disk (the old style "device partition map"); on all subsequent computers, the buffer pointed to by
A0 contains the first "Apple_HFS" partition map entry.

Each driver has two possible entry points. The primary entry point is at the beginning of the memory block holding the
driver. The secondary entry point is 8 bytes into the memory block holding the driver. In general, the primary entry
point is called when an "old" driver is loaded, or a "new" driver is loaded by an 'old' ROM, and the secondary entry point is
used when a 'new' ROM load a "new" driver. The secondary entry point has extra parameters that make sense in the 'new'
ROM environment.

The exact definition of "old" and "new" depends on the bootable bus. For SCSI, a "new" ROM is one that contains SCSI
Manager 4.3, and a "new" driver is indicated by the bytes "43" in the two bytes following the "Apple_Driver" in
pmParType. For ATA, an 'old' ROM is one that contains ATA Manager 1.0. All newer versions of ATA Manager use the
secondary entry point. A 'new' ATA Manager will always call the secondary entry point of the driver.

Note:
Computers with ATA Manager 1.0 in ROM are listed in the table below:

Base Model Introduced and Derivatives?

Macintosh Performa 630 July 1994 yes

Macintosh PowerBook 150 July 1994 yes

Macintosh LC 580 Apr 1995 yes

Power Macintosh 5200 Apr 1995 yes

Power Macintosh 6200 May 1995 yes

Power Macintosh 5300 Aug 1995 yes

Power Macintosh 6300 Oct 1995 yes, except 6360

Both entry points use register-based calling conventions. The register usage is shown in the table below:

A0 Partition * ->

A pointer to the first "Apple_HFS" partition map entry in the partition map.
See step 5 above. You do not own this memory and must neither change it nor
free it. This memory is not guaranteed to be a standard Memory Manager
pointer block. This parameter is generally ignored by drivers.

D3 n/a -> See discussion below.

D5 bus dependent -> A specification of the device from which the driver was loaded, in a format that
is bootable-bus dependent. See the table and discussion below.

D7 long ->
The sbData field from the DDM. This parameter is generally ignored by
drivers.

D0 OSErr or SInt32 <- See discussion below.

Register D3

TN 1189: The Monster Disk Driver Technote Page: 33

Old Apple SCSI drivers require that register D3 be set to a non-zero value in order to boot correctly. This bug was fixed in
September 1996 although, if you are writing a SCSI disk -mounting utility, you may still encounter these old drivers.

Register D5

The data in register D5 depends on both the bootable bus and the entry point called. The following table indicates the
possible combinations.

Bootable Bus Entry Point D5 Format

SCSI Primary 0, 0, 0, SCSI ID

SCSI Secondary DeviceIdent

ATA Primary 0, 0, 0, Bus

ATA Secondary DeviceIdentATA

The format of DeviceIdentATA is given below.

struct DeviceIdentATA {
 UInt8 diReserved;
 UInt8 busNum;
 UInt8 devNum;
 UInt8 diReserved2;
};
typedef struct DeviceIdentATA DeviceIdentATA;
typedef DeviceIdentATA * DeviceIdentATAPtr;

Note:
DeviceIdentATA is not the same as the ataDeviceID structure defined in ATA 0/1 Software Developers
Guide, although it is easy to convert between the two.

The fields have the following meaning:

diReserved

Reserved. When calling a disk driver, the ROM sets this to 0; however, in the case described below, this field
contains meaningful data.

busNum

The ATA bus number.

devNum

If the machine has ATA 0/1 support, this is the device number of the device on that bus. Otherwise, it must be zero.

diReserved2

Reserved. Set to 0.

In some cases (such as the entry point to a patch loaded by the Apple patch driver), the diReserved field is used to
distinguish between a DeviceIdent and DeviceIdentATA. The appropriate values for this field are given below.

TN 1189: The Monster Disk Driver Technote Page: 34

enum {
 kBusTypeSCSI = 0,
 kBusTypeATA= 1,
 kBusTypePCMCIA= 2,
 kBusTypeMediaBay = 3
};

IMPORTANT:
Values other than kBusTypeSCSI (which indicates a DeviceIdent) and kBusTypeATA (which indicates a
DeviceIdentATA) are now deprecated. PC Card and media bay device are now handled through the ATA
Manager, modern versions of which handle multiple buses.

Note:
In times past, it was accepted practice to use various high bits of register D5 to hold various pieces of state
information. Specifically the following bits are used by various Apple and third party drivers.

enum {
 kSecondaryEntryPointCalled = 29, // 1 => secondary entry point called
 kDontMountVolumes = 30, // 1 => don't mount any partitions
 kAfterSystemStartupTime = 31 // 1 => post-system startup load
};

However, in the circumstances described above, all bits in register D5 can be used to hold information. Therefore, DTS
recommends that you discontinue the practice of storing flags in the high bit of D5 where practical.

A good substitute for the kAfterSystemStartupTime flag is described in Disk Drivers and the System Heap.

Register D0

The significance of register D0 on return from your driver's entry point varies depending on the manager that loaded your
driver.

For ATA Manager, your driver should return an error result in the low word of register D0 and, if the driver
successfully installed, its driver reference number in the high word (or a high word of zero otherwise). If you
return an error value other than noErr, ATA Manager will unload your driver code from memory.
For SCSI Manager 4.3, the contents of register D0 are always ignored. SCSI Manager 4.3 will never unload your
driver from memory. With some clever coding, you can unload the bulk of your driver code upon a failed
installation, if you feel that level of polish is necessary.
For old SCSI Manager, the situation varies depending on the particular ROM.

The Mac Plus will treat register D0 as an error result and unload your driver if you return a non-zero
value.
Subsequent computers ignore the contents of register D0. If your driver fails to install and you want its
code to be unloaded, you can return to the return address plus 4 bytes, which signals this to SCSI Manager.
Doing this on a computer running SCSI Manager 4.3 will crash the system.

TN 1189: The Monster Disk Driver Technote Page: 35

Back to top

Loading FireWire Drivers

This section is only available under non-disclosure agreement. Please contact DTS for details.

Back to top

Chaining Drivers and Patch Partitions

Booting a computer is always a tricky exercise. One of the perennial challenges is working around problems in the ROM
that prevent the OS from booting far enough to load patches in the normal way. On pre-ROM-in-RAM Macintosh computers,
this problem is solved by means of chaining drivers and patch partitions. Patches loaded in this way have been used to:

support booting from volumes larger than 2 GB on machines that don't have such support in the ROM (for example,
NuBus-based Power Macintoshes),
fix bugs in the ROM SCSI Manager that would otherwise prevent booting, and
provide support for snag booting, where the user can hold down the C key to force the system to boot from the
CD-ROM device.

This section explains how chaining drivers and patch partitions are implemented, and how you can license chaining drivers
and patches suitable for inclusion in your own disk formatting utility.

Note:
The chaining driver architecture is only required for SCSI and ATA devices. All computers capable of booting
from modern I/O buses (USB and FireWire) use the ROM-in-RAM architecture, where the ROM is loaded from
the "Mac OS ROM" file in the System Folder. On such machines, ROM patches are effected by updating the "Mac
OS ROM" file.

Background Material

This section presumes that you are familiar with the existing documentation on disk partitions and how Mac OS loads a
driver from the disk at startup time. Specifically, you should be familiar with:

Inside Macintosh: Devices, Chapter 3 "SCSI Manager" The Structure of Block Devices (page 3-12 through 3-15)
and Data Structures, (page 3-23 through 3-27), and
Inside Macintosh: Devices, Chapter 4 "SCSI Manager 4.3" Loading and Initializing a Driver (page 4-11)
Secrets of the Partition Map, earlier in this document.

Architecture Overview

When it boots from a block device, Mac OS loads the driver from the device itself. This driver is held in a driver partition
(whose pmParType starts with "Apple_Driver") and is referenced by an entry in the driver descriptor map (DDM),
which is stored in the first device block on the disk. The ROM searches the DDM to find the appropriate driver, loads that
driver into memory, and calls it.

The chaining driver architecture works by installing a special driver in place of the standard disk driver. This chaining
driver performs its operation (typically it applies a patch to the ROM) and then loads the next suitable driver in the
DDM, in exactly the same way as the ROM would have. The next driver may be a real disk driver, or yet another chaining
driver.

The sequence of drivers loaded in this way is known as a driver chain. There may be more than one driver chain on the
disk; often, there is one for each bootable bus possible for that disk. For example, a Zip disk may have a chain of SCSI
drivers (whose pmParType is "Apple_Driver43") for use when the Zip disk is inserted in a SCSI Zip device, and a chain
of ATA drivers (whose pmParType is "Apple_Driver_ATA") for use when the Zip disk is inserted in an ATA Zip device.

The last driver in a driver chain does not need to support chaining because there is nothing to chain to. This means that you
don't need to modify your disk driver to support this architecture, as long as the disk driver is always installed last in the

TN 1189: The Monster Disk Driver Technote Page: 36

chain.

One special kind of chaining driver is the patch driver. This is a driver supplied by Apple that is responsible for loading
and executing system patches out of a patch partition. Each patch has a patch descriptor, which contains a four
character code that uniquely identifies the patch. Once it has loaded the patches, the patch driver chains to the next driver,
as any other chaining driver would.

In general, you do not need to write a patch driver, or the patches it installs. However, your formatting utility must install
the patch driver and the patch partition such that the right patches are loaded.

Available Patches

Apple supplies both patch drivers and patches to developers. The available patch drivers are listed below:

"PatchChainDriver" -- This patch driver is used when booting from a SCSI device.
"ATAPatchChainDriver" -- This patch driver is used when booting from an ATA device, such as an internal ATA
hard disk.
"ATAPIPatchChainDriver" -- This patch driver is used when booting from an ATAPI device, such as an ATAPI
CD-ROM.

The following patches are available.

'mesh' -- This patch fixes a bug in the ROM SCSI Manager's handling of the MESH chip. It is required to
successfully boot on a machine with that chip.
'scsi' -- This patch makes adjustments to the classic SCSI Manager to enable booting from CD-ROM devices.
'ruby' -- This patch installs support for volumes larger than 2 GB on machines that don't have this support in
the ROM.
'snag' -- This patch implements the "To start up from this CD-ROM, hold down the C key as the computer starts
up" functionality used in many bootable CD-ROM products. It is only necessary on pre-ROM-in-RAM computers;
ROM-in-RAM computers implement snag booting in Open Firmware.

To legally include these patch drivers and patches in your formatting software, you must license the patches from Apple.
Contact Apple Software Licensing for details.

Note:
For experimental and debugging use, you can extract the relevant patch resources from Apple's Drive Setup
utility. Resources of type 'ptDR' hold patch drivers, resources of type 'pDES' hold patch descriptors, and
resources of type 'ptch' hold patch code. However, production software must license this resources from
Apple for redistribution.

Advice for Formatting Utilities

The first thing that a formatting utility must do is decide how many driver chains need to be constructed. This is determined
by the number of possible bootable buses for the disk. For example, a SCSI device can only be attached via SCSI, so the
utility need only construct one driver chain. In contrast, an removable cartridge disk might be placed in either a SCSI or
ATA mechanism, and therefore must contain two driver chains, one for SCSI and one for ATA. Moreover, a PowerBook
internal ATA hard disk device needs to have a SCSI driver chain if it is to work in target mode.

For each driver chain constructed, the formatting utility must first create a partition for the patch driver and then create
a partition for the disk driver itself. When creating partitions, the formatting utility must be careful to write the driver
signature into the pmPad field of the Partition record. Chaining drivers (including the patch driver) need this
signature to correctly find the next driver to load. The utility should also be sure to set up the pmPartStatus field
according to the description in pmPartStatus Revealed.

In addition to creating the driver partitions, the formatting utility must also create entries in the DDM with the
appropriate driver type. See New Driver Types for a list of driver types, and Architecture in Detail for an explanation of
the relationship between them.

The formatting utility must also construct the "Apple_Patches" partition. Some rules must be observed when doing this.

TN 1189: The Monster Disk Driver Technote Page: 37

The pmPartName field of the partition map entry should be "Patch Partition".
The pmParType field of the partition map entry must be "Apple_Patches".
The first block of the patch partition contains a list of the patches in the partition.
Patches are run in order, so it is necessary to place patches that are critical to the correct operation of later
patches (like 'mesh' and 'scsi') before the less critical ones (like 'snag').
Patch descriptors contain a version number. The formatting utility should not replace a newer patch with an older
one.
Patch descriptors are variable length data structures. You cannot index the list of patches as an array.

There are also some non-obvious factors when deciding whether to install a particular patch on a particular disk.

The MESH patch ('mesh') should be installed on any disk which might be booted from via SCSI. In particular, the
MESH patch is required on the internal ATA hard disk on PowerBooks, because it is possible they might be used to
boot a machine while in target mode.
The large volume support patch ('ruby') is only required if any of the partitions on the disk are 2 GB or larger.
Do not install the 'snag' patch on hard disks! Doing so will prevent the user from snag booting a CD. This is
because, if the C key is held down, the hard disk 'snag' patch prevents booting from the CD, while the CD-ROM
'snag' patch prevents booting from the hard disk.

Finally, formatting utilities should aim to leave some free space in the partition maps, driver partitions, and patch
partitions. Drivers and patches grow over time and wasting a few KB now may radically ease the job of upgrading a driver
or patch in the future.

IMPORTANT:
To be compatible with computers that have the classic SCSI Manager in ROM, all data that is read by the ROM
must be within the first 1 GB of the disk. This is because the classic SCSI Manager driver loading code uses
6-byte SCSI commands to read the driver.

Architecture in Detail

This section describes the chaining driver architecture in detail, including how chaining drivers intercept the driver
loading process, the Apple patch driver, and the structure of the patches it loads. To understand this section, you need to
understand how the ROM loads SCSI and ATA drivers.

Pre-Chaining Example

The following diagram shows how a partition map might be laid out prior to the introduction of chaining drivers. This
example includes both ATA and SCSI drivers, a setup which is useful for disks that can be mounted in both ATA and SCSI
mechanisms. Some salient features are:

The sample SCSI driver has a driver signature of 'QSCZ', and the sample ATA driver has a driver signature of
'QATA'.

TN 1189: The Monster Disk Driver Technote Page: 38

Chaining Drivers

The basic idea behind chaining drivers is very simple. A chaining driver appears to the ROM as the actual disk driver. It
has a DDM entry of the appropriate type (kDriverTypeMacSCSI for SCSI, kDriverTypeMacATA for ATA) and it has

TN 1189: The Monster Disk Driver Technote Page: 39

a partition with the appropriate type ("Apple_Driver43" for SCSI, "Apple_Driver_ATA" for ATA). The ROM finds, loads,
and executes the chaining driver as if it was the real disk driver. The chaining driver does its operation (patching,
password protection, and so on) and then finds, loads and executes the next driver in the driver chain. This process is
repeated once for each driver in the chain.

The first chaining driver in a driver chain always has the ddType expected by the ROM (kDriverTypeMacSCSI for
SCSI, kDriverTypeMacATA for ATA). Subsequent drivers in the driver chain have their ddType set to the two's
complement of the standard value (kDriverTypeMacSCSIChained for SCSI, kDriverTypeMacATAChained for
ATA).

There are a number of important implementation details for chaining drivers.

All drivers in the chain, except the first, must have the kPartitionIsChainCompatible bit set in the
pmPartStatus field of their partition map entries to indicate that they can be chained to (they don't have to be
loaded directly by the ROM). The first driver may have this bit set, although it is not required.
A chaining driver must always have the kPartitionCanChainToNext bit set in the pmPartStatus field of
its partition map entry. While this bit is not actually needed for the chaining driver to be loaded, formatting
utilities may use the bit to determine the required order of drivers in the DDM.
A chaining driver may also contain the real disk driver. If it does, it should have the
kPartitionIsRealDeviceDriver bit set in the pmPartStatus field of its partition map entry.
The ROM loads the chaining driver exactly as it would a normal driver. Therefore, if a chaining SCSI driver wants
to have its checksum validated by the ROM, it must set the first four bytes of its partition map entry
pmPartName field to "Maci".
A chaining driver must find the next driver to load using the following algorithm.

1. First, the chaining driver should search the partition map for its own partition map entry. It can
distinguish itself from other drivers by looking for its driver signature in the pmPad field.

2. Then, the driver should look up its entry in the DDM. It can find itself by matching the pmPyPartStart
field of its partition map entry to the ddBlock field of its DDMap.

3. It can then find the DDMap of the next driver in the driver chain by searching onwards from its own
DDMap for a DDMap with the appropriate ddType. In this case, appropriate is either the two's
complement of the chaining driver's ddType (if the chaining driver is first in the chain), or the same
ddType as the chaining driver (if the chaining driver is subsequent in the chain).

There may be no next driver to load. The chaining driver should treat this as an error, and handle it as described
below.
A chaining driver must load and execute the next driver exactly as the ROM would have. The exact details are
covered in the previous section. Note that the chaining driver must:

1. checksum the driver, as described in Driver Checksums, and
2. remember which of its entry point was called (primary or secondary) and call the same entry point for

the next driver, and
3. call the next driver with registers A0, D5, and D7 set exactly as they were when the chaining driver was

called.
4. handle any error returned by the next driver as described below.

A chaining driver may need to increase the size of the system heap to allow it to allocate enough memory to load the
next driver. See Disk Drivers and the System Heap for details on doing this.

How the chaining driver handles errors depends on whether the chaining driver precedes the disk driver in the driver
chain. If the chaining driver precedes the disk driver, any error loading the next driver, or any error returned by the next
driver's entry point, is fatal. The chaining driver should return ioErr from its entry point. However, if the chaining
driver is the disk driver (both kPartitionCanChainToNext and kPartitionIsRealDeviceDriver are set in
its pmPartStatus) or comes after the disk driver, any error loading the next driver is not fatal, and the chaining driver
should return noErr regardless of any error loading the next driver in the chain.

The following diagram shows how a partition map might be laid out for a disk that can only be booted on an ATA bus and
which has a chaining driver. Some salient features are:

The DDM has the chaining driver first, followed by the disk driver (with a negated ddType).
The chaining flags are set in the pmPartStatus fields of the chaining driver's and the disk driver's partition
map entry.

TN 1189: The Monster Disk Driver Technote Page: 40

TN 1189: The Monster Disk Driver Technote Page: 41

The Apple Patch Driver

The Apple patch driver is a chaining driver supplied by Apple that loads patches from a special partition on the disk. You
must license the patch driver and its accompanying patches for inclusion with your disk driver software. This section
describes the operation of the patch driver insofar as is necessary for you to write a formatting utility that correctly
installs the patches.

Typically, the patch driver is installed first in the driver chain. It finds the patch partition by searching the partition map
for an entry whose type is "Apple_Patches". It then walks the patch partition, loading and executing the patches. Finally, it
chains to the next driver.

The patch partition is structured to contain multiple patches. The first block of the patch partition contains a patch list, a
description of all the patches in the partition. The patch list is defined by the PatchList structure.

struct PatchList {
 UInt16 numPatchBlocks;
 UInt16 numPatches;
 PatchDescriptor thePatch[1];
};
typedef struct PatchList PatchList;
typedef PatchList *PatchListPtr;

The fields have the following meaning:

numPatchBlock

The number of device blocks used to hold the patch list. The patch driver must load this many blocks from the
start of the patch partition to ensure that it has all the patch descriptors.

numPatches

The number of patch descriptors contained in the patch list.

thePatch

The patch descriptor describing the first patch in the patch list.

IMPORTANT:
Each patch descriptor is of variable size, so you can't index thePatch as an array.

Each patch in the patch list is described by the PatchDescriptor data type.

TN 1189: The Monster Disk Driver Technote Page: 42

struct PatchDescriptor {
 OSType patchSig;
 UInt16 majorVers;
 UInt16 minorVers;
 UInt32 flags;
 UInt32 patchOffset;
 UInt32 patchSize;
 UInt32 patchCRC;
 UInt32 patchDescriptorLen;
 Str32 patchName;
 UInt8 patchVendor[1];
};
typedef struct PatchDescriptor PatchDescriptor;
typedef PatchDescriptor * PatchDescriptorPtr;
typedef PatchDescriptorPtr * PatchDescriptorHandle;

enum {
 kRequiredPatch = 0x00000001;
};

The fields have the following meaning:

patchSig

A four-character code that uniquely identifies the patch. If you create your own patches, you must use a registered
creator code.

majorVers

A major version number. Typically this is 1.

minorVers

A minor version number. Typically this is 0. This combines with the major version number to indicate a version
of the form 1.0, 1.1, and so on.

flags

A set of flags for the patch. The only bit currently defined is kRequiredPatch. If this is set, the patch must
succeed for the system to continue booting. See the section on error handling below. All other bits are reserved and
must be set to zero.

patchOffset

The offset, in device blocks , from the beginning of the patch partition to the patch code.

patchSize

The actual size of the patch code in bytes.

patchCRC

A checksum for the patch. This is calculated using the 16-bit driver checksum algorithm.

patchDescriptorLen

The total length, in bytes, of this patch descriptor. The minimum value for this field is

TN 1189: The Monster Disk Driver Technote Page: 43

sizeof(PatchDescriptor), which is 62 bytes. This value of this field must be even.

patchName

A human-readable name for the patch. This name is never displayed to users or used by the system. It is present
for debugging and diagnosis only.

patchVendor

A human-readable description of the patch vendor. This name is never displayed to users or used by the system. It
is present for debugging and diagnosis only. This string may be followed by an arbitrary amount of patch-specific
data.

IMPORTANT:
Previous versions of the patch partition documentation described patchName as a Str31 (actually, an array
of 32 UInt8s), which implied that patchVendor started at offset 60 in the structure. This is incorrect. The
patchName field is a Str32 and patchVendor starts at offset 61. Note that this is an exception to the
general rule that Pascal strings are not supposed to be placed at odd offsets in a structure.

In addition, because of the aforementioned error, the minimum value for the patchDescriptorLen field is 62, not 61
as previously documented.

IMPORTANT:
Previous versions of the patch partition documentation stated that patchDescriptorLen must be a multiple
of 4. This is contradicted by observed behavior.

Note:
Apple patches generally use "\pApple Computer, Inc." in the patchVendor field and have no patch-specific
data. This results in a patchDescriptorLen of 82, which is 62 + PLstrlen(patchVendor).

When the patch driver executes a patch, it does so by creating a new pointer block in the system heap which is large enough
to hold the patch, reading the patch code into that block, and then calling the patch entry point (the first byte of the memory
block) using the calling conventions described in the next section.

As part of its operation, the patch driver increases the size of the system heap to accommodate the size of the patches loaded.

Patch Driver Error Handling

Error handling in the patch driver follows the general outline for error handling in chaining drivers. Specifically, an
error is classified as either fatal or non-fatal. For a fatal error, the patch driver discards the current patch descriptor and
patch code (if any) and returns ioErr from its entry point, which indicates to the system that this disk is unusable. Fatal
errors include:

failure to load a required patch (one whose patch descriptor's flags field has kRequiredPatch set),
a positive result from a required patch,
a negative error result from any patch, and
failure to load the next driver (the patch driver is always loaded first in the driver chain, so a failure to load the
next driver is always a fatal error).

For a non-fatal error, the patch driver simply discards the patch descriptor and patch code for the patch and continues
trying to load the next patch (if any) or the next driver in the driver chain. Non-fatal errors include:

TN 1189: The Monster Disk Driver Technote Page: 44

inability to load a non-required patch, and
a positive error result from a non-required patch.

Patch Execution

The prototype for a patch's entry point is given below.

extern pascal OSErr MyPatch(PatchDescriptorPtr myPatch,
 DeviceIdent myDevID);

IMPORTANT:
Previous versions of the patch partition documentation incorrectly documented this prototype as using C calling
conventions and having a long return result. This documentation is correct.

The parameters to the entry point are:

myPatch

A pointer to the patch's patch descriptor. The patch can use this pointer to extract patch-specific information from
patchVendor part of the patch descriptor. The memory containing the patch descriptor will be deallocated after
the patch returns; the patch is responsible for copying any information it needs to retain.

myDevID

A device identifier which identifies the device from which the patch was loaded. The diReserved field of this
parameter can be used to distinguish whether this is a SCSI DeviceIdent or a DeviceIdentATA.

result

noErr, if the patch was successful. The patch driver will dispose of the patch descriptor but leave the patch code
in memory. A positive error code, if the patch encountered a non-fatal error. A negative error code, if the patch
encountered a fatal error. See the description of patch driver error handling for details.

The patch's code is always loaded in the system heap. The patch's entry point is always called at system task time.

IMPORTANT:
A patch must try to minimize any assumptions about its environment. Specifically:

A patch should not assume that it was loaded from an ATA or SCSI device. For example, a SCSI-specific patch should
behave correctly if it is loaded from an ATA device. This can happen if the patch is installed on a removable
cartridge disk that can be mounted in both ATA or SCSI devices.
A patch should not assume the existence of optional system software capabilities. For example, a SCSI Manager 4.3
specific patch should not assume that SCSI Manager 4.3 is present. It is possible for an external device to be moved
from a machine with SCSI Manager 4.3 to a machine without it, and vice versa.
Because of the above, patches should avoid loading data from the disk. If your patch needs data, you should add the
data after the patchVendor field of your patch descriptor.
Patches are loaded very early in the startup sequence and must allocate memory as outlined in Disk Drivers and the
System Heap.
A patch should work correctly even if it is loaded twice. For example, if the same patch is installed on multiple

TN 1189: The Monster Disk Driver Technote Page: 45

SCSI devices, both patches will be executed at startup time and the patches must coordinate to avoid any conflicts.

Note:
The myDevID parameter is a true device identifier, even if the patch is being loaded on a system without SCSI
Manager 4.3 in the ROM. In that case, the patch driver is responsible for synthesizing the device identifier
from the SCSI ID. A full explanation of the driver's various entry points is given in an earlier section.

Because a patch's code is always loaded in a pointer block in the system heap, it can reduce its size in memory using clever
code sorting and SetPtrSize. For example, imagine a patch that has 5 KB of install code and 25 KB of resident code. The
patch can reduce its memory footprint by sorting the code as shown below.

The following code snippet shows how this might be achieved in C.

extern pascal OSErr MyPatch(PatchDescriptorPtr myPatch,
 DeviceIdent myDevID)
{
 OSErr err;

 err = MyInstall(myPatch, myDevID);
 SetPtrSize((Ptr) &MyPatch,
 (UInt32) &MyInstall - (UInt32) &MyPatch
);
 return err;
}

TN 1189: The Monster Disk Driver Technote Page: 46

WARNING:
If you use this technique, be sure to generate a link map and check that the code order matches your
expectations. Your development environment might reorder code in an unexpected way.

Putting It All Together

The following diagram shows the layout of a disk that can be booted via SCSI and ATA.

The DDM has two patch chains, one for ATA booting and one for SCSI booting.
Each patch chain starts with the appropriate Apple patch driver.
The first block of the "Apple_Patches" partition contains a list of patches to be installed on the machine. The
remaining blocks contain the code for the patches themselves.
The 'mesh' patch is installed to ensure correct operation when booted via SCSI on a machine with the MESH chip.
The 'ruby' patch is installed to allow booting on machines without large volume support in ROM. Note that the
total disk size in this example is 5 GB. On the smaller disks used in the previous examples, the 'ruby' patch
would not be necessary.

TN 1189: The Monster Disk Driver Technote Page: 47

TN 1189: The Monster Disk Driver Technote Page: 48

Back to top

Disk Drivers and the System Heap

Disk drivers typically allocate their memory in the system heap. A disk driver must use one of three techniques to allocate
system heap space, depending on the execution context. There are three relevant execution contexts for your driver:

1. Driver Load Time -- If you driver is bootable, it is called at driver load time to install itself in the unit table.
2. System Startup -- It is possible for your driver to be called at system startup time, after driver load time but before

system startup is complete. For example, if your driver sets dNeedTime and some startup code (for example, an
'INIT') brings up a dialog, your driver will receive accRun requests.

3. After System Startup -- System startup time finishes when the Process Manager starts and launches the Finder.

The best way to detect whether system startup is complete is to compare the first byte (the length) of the Pascal string
returned by LMGetCurApName to $FF. If the first byte is $FF, the system is still starting up. If it is any other value,
system startup is complete.

There is no good way to distinguish between driver load time and system startup time. Your driver must remember
internally whether it is executing as a result of its install routine being called.

Driver Load Time

At driver load time, a driver that needs to allocate a large amount of memory must grow the system heap using
SetApplBase. This system routine is documented as Inside Macintosh: Memory, along with a warning that applications
should not use it. However, it is expected that disk drivers which need to expand the system heap will use this routine.

A simple example of calling SetApplBase is shown below.

TN 1189: The Monster Disk Driver Technote Page: 49

static void ExpandSystemHeap(Size bytesToGrow)
{
 THz currentZone;

 // Only try to expand the system heap if we're at startup time,
 // ie the CurApName is still filled with $FFs.

 assert(LMGetCurApName()[0] == 0xFF); // from <assert.h>

 currentZone = GetZone();

 // Round up the request to 512 bytes.

 bytesToGrow = (bytesToGrow + 0x01FF) & ~0x01FF;

 // Set the system heap to the specified size.

 SetApplBase((Ptr)((UInt32) (LMGetSysZone())->bkLim + bytesToGrow));

 SetZone(currentZone);
}

IMPORTANT:
Disk drivers should not attempt to grow the system heap too much using this mechanism. How much is too
much? It depends on a lot of factors, including the machine's ROM software, the system version, whether
virtual memory is turned on, which patches are being loaded, and which other device drivers are installed.

For example, on Mac OS 8.1 the system heap can grow to a maximum of 4 MB during this early phase of the
startup process and this limit was exceeded when certain PCI RAID cards were installed. While this problem
was worked around before Mac OS 8.1 shipped, it is an important lesson for developers of software that runs
during the early startup process. There is a system heap limit and there is no allocation policy for what
memory is available.

In the absence of a formal policy, DTS recommends that each individual developer limit their system heap
expansion to less than 256 KB during this early startup phase. This includes the expansion done by the system
to load your code. If necessary, you must compromise on the speed of your driver to achieve this goal. If you
need more memory to improve performance, you must either:

install a system extension with an 'INIT' resource, which grows the system heap (as described
below), and turns that memory over to your driver, or
wait until your driver receives an accRun Control request and allocate your extra memory then.

System Startup

Disk drivers that load as part of the 'INIT' loading process should request that the system heap be grown using a 'sysz'
resource, as documented in Inside Macintosh: Memory and Inside Macintosh: Operating System Utilities, and amended in
Technote IM 2 Inside Macintosh: Memory Errata.

TN 1189: The Monster Disk Driver Technote Page: 50

IMPORTANT:
'INIT' resources should not expand the system heap using SetApplBase. The Start Manager has open
resource files whose resource maps reside in the application zone and there is no supported way to close and
reopen these resource files.

After Startup Time

After the system has started up, a disk driver should allocate its system heap memory using NewPtrSys, or
NewHandleSys. The system heap will automatically expand to meet these requirements.

Back to top

PowerPC Native Disk Drivers

Many developers wish to implement their disk drivers in PowerPC native code. However, there is no well-defined
architecture for native disk drivers. There are a number of consequences and drawbacks, which this section discusses in
detail.

The Need for Speed

Most drivers are I/O bound. They spend a small amount of time setting up an I/O request and a proportionally much larger
amount of time waiting for the underlying hardware to complete that request. Such drivers receive very little benefit from
executing as native code. Moreover, the benefit varies depending on the ratio of small I/O requests (which tend to be CPU
bound) to large I/O requests (which tend to be I/O bound).

On the other hand, some drivers are CPU bound. For example, a driver that encrypts data as it transfers it to the disk may
spend a significant amount of time executing driver code. This may even be true for a complex, but still I/O focused driver,
such as a RAID driver or a caching disk driver. These drivers may receive significant benefit from "going native."

The only good way to tell whether your driver receives a benefit from conversion to native code, and that the benefit is
enough to overcome the difficulties in doing so, is to actually profile the code. You may be able to do this quickly by
profiling the driver code in an application framework before facing the challenges of creating a working native driver.

Difficulties with Taking Your Driver Native

The primary difficulty in creating a native disk driver is that there is no well-defined architecture for it. The PCI-native
driver model has a number of drawbacks for disk driver developers.

1. It does not include a disk driver I/O family expert. It is possible to write a generic native driver
(kServiceCategoryNdrvDriver) which acts as a disk driver, but it is not possible to do so within the native
driver architecture. Specifically, a disk driver must link to InterfaceLib to access routines like AddDrive. Linking to
InterfaceLib works just fine on the current Mac OS, but it is not legal within the native driver model and guarantees that
your driver will not be compatible with any future Mac OS that emulates this model on a non-traditional framework.

2. The PCI native driver model is not available on older, non-PCI-based, Power Macintosh computers.

Another possible approach is to implement a partially native driver, where code that you know to take a long time is
implemented as native code. This makes a lot of sense in some cases, such as an encryption driver, where the lengthy code is
easily isolated from the rest of the driver.

It is also possible to implement a virtually fully native driver without the PCI native driver module, using only a tiny
amount of 68K glue code to provide the driver header and an interface to IODone. In general, this approach is not
recommended by DTS because of the complexities involved in transitioning from 68K to native code and back.

When taking a disk driver native, it is important to remember that the primary client of the disk driver is the File
Manager, which is not native. While it is likely that a disk driver will incur Mixed Mode switches regardless of whether it
is native or not (the SCSI Manager and ATA Manager are native), taking the driver native shifts the line where the switches
occur, and may increase or decrease the number of switches depending on how your driver works. So, to guarantee an
overall speed improvement, it is important that the native driver be significantly faster than the emulated one.

Native Drivers and accRun

TN 1189: The Monster Disk Driver Technote Page: 51

Before implementing a disk driver as a native driver, you must read DTS Q&A DV 35, "Native Drivers ('ndrv's) and
dNeedTime", which describes an incompatibility between native drivers and dNeedTime.

The rest of this technote assumes that you are building a 68K driver, and thus you can set dNeedTime in dCtlFlags to
get system task time via the accRun Control request. If you are building a native driver and you need system task time,
you must implement one of the alternative mechanisms described in the Q&A.

68K drivers should continue to use dNeedTime as always.

Recommendations

DTS does not recommend that developers implement disk drivers in PowerPC native code unless there is clear evidence that
doing so improves the performance significantly. Typically this is only for drivers that are CPU bound, such as encrypting
drivers. A standard SCSI or ATA driver is I/O bound, and receives little benefit from running native.

The easiest way to implement a PowerPC native driver is using the native driver model, introduced with the PCI-based
Power Macintosh computers. However, this approach will not work on older Power Macintosh computers. Another
recommended alternative is to implement a partially native driver, where core functionality (such as an encryption
engine) is in native code.

Back to top

Installing and Removing Drivers and Drives

Over the course of the past 15 years, Mac OS has evolved from a relatively static environment -- a Mac with one or two
floppy drives that needed to be connected at startup time -- to a highly dynamic system, where devices and disks come and
go at runtime. The Mac OS disk driver architecture has, to a large extent, coped with this evolution, as long as driver
writers play by the rules. This section explains these rules in detail.

Installing and Removing Drivers

There are a number of ways to install your disk driver.

1. If you're writing a native driver that controls a real piece of hardware (a FireWire device, or a PCI RAM disk card, for
example), you can set up your DriverDescription so that the system automatically finds and opens your device
driver. See Designing PCI Cards and Drivers for Power Macintosh Computers for details.

2. If you're writing a native driver with no corresponding hardware, you can use DriverLoaderLib to install your driver
directly. See Designing PCI Cards and Drivers for Power Macintosh Computers for details.

3. If you're writing a 68K driver, you should use TradDriverLoaderLib to install your driver. Installing a driver in the unit
table is easy to do half right but tricky to do exactly right, which is why DTS strongly recommends that developers use
TradDriverLoaderLib. The only exception is boot disk drivers, where the limited scope of the task makes the general
nature of TradDriverLoaderLib seem a little too much. See Code Sharing for more details on this.

Note:
TradDriverLoaderLib is a DTS sample that provides similar functionality to DriverLoaderLib, except that it
works for 68K drivers rather than native drivers. You can download the sample via FTP.

WARNING:
Disk drivers, which can be called at interrupt time, must never be installed as RAM-based drivers
(dRAMBased must not be set in dCtlFlags); paradoxically, disk drivers are always "ROM-based."
TradDriverLoaderLib takes care of this and many other details of loading a driver.

To remove a disk driver from the unit table, you have a number of choices.

TN 1189: The Monster Disk Driver Technote Page: 52

1. If the driver is a native driver, you must use the DriverLoaderLib routine RemoveDriver to remove it.
2. If the driver is a 68K driver, you should have installed it using TradDriverLoaderLib. If so, you can remove it

using the TradRemoveDriver routine provided by that library.
3. If the driver was not installed using TradDriverLoaderLib (either because it was a boot disk driver or because it wasn't

installed by your software), you should follow the procedure described in the Hostile Takeovers section of this
document.

WARNING:
You must never remove a driver that has drives in the drive queue. Doing so will cause the system to
crash.

Code Sharing

Code sharing is a technique used by some third-party disk drivers to share the device driver code between multiple drivers
in the unit table. Code sharing is a legal technique, although it is not implemented by Apple disk drivers and is not
recommended by DTS. Before shipping a driver that uses code sharing, you need to understand the costs and benefits of the
technique.

How Code Sharing Works

The basic algorithm for code sharing is as follows:

1. When your driver installs itself, it first scans the unit table to see whether another instance of it is already installed.
2. If there is an existing instance, you must check its version number to determine whether to use its code or replace its

code with the code in your driver. You can get the driver's version using a Driver Gestalt kdgVersion request.
3. If the existing driver is older, you must somehow dispose of its code and replace it with yours. As there is no

Apple-defined way of replacing 'DRVR's, you must use a private hand-off technique built in to your driver.
Alternatively, you might consider not sharing code in this case.

4. If the existing driver is newer, you must somehow inform it that another instance of it is being created. Again, there is
no Apple-defined technique for this; this information exchange is private to your driver.

In addition, drivers that implement code sharing must reference count the code in order to support close and purge
correctly.

The Pros and Cons of Code Sharing

Code sharing has one big advantage: it reduces memory usage if two devices controlled by your driver are attached to the
system. This may be especially significant for a complex device driver, such as a RAID driver.

The disadvantages of code sharing include:

The standard library for installing 'DRVR's, TradDriverLoaderLib does not support code sharing. If you
implement code sharing, you must do this leg work yourself.
Supporting code sharing significantly complicates the installation code path of your driver. As the installation code
is run very early in the startup sequence, bugs in that code are often very hard to debug.
Drivers that use code sharing cannot be reopened.

Managing Drive Queue Elements

The Basics

The drive queue and its associated drive queue elements are documented in Inside Macintosh: Files, page 2-85. However,
that document does not describe how drive queue elements are created, installed, removed, and destroyed.

Your disk driver must add a drive queue element for each file system partition on each disk it controls. The strategy you use
for managing drive queue elements is largely up to you, within some basic constraints. Drive queue elements must be
allocated in the system heap, primarily so that they persist throughout the life of the system but also, in the case of paging

TN 1189: The Monster Disk Driver Technote Page: 53

devices, so that they are held resident in memory. Typically, your driver is responsible for creating and disposing the
drive queue elements under your control.

One popular technique for managing drive queue elements is to extend the DrvQEl data structure with the extra per-drive
storage needed by your driver. This makes it easy for you to find your per-drive storage structure given either the
DrvQElPtr (just cast the DrvQElPtr to a pointer to your per-drive storage structure) or the drive number (search
the drive queue looking for that drive number, which gives you the DrvQElPtr, and then proceed as before).

Another important thing to remember about drive queue elements is that the system requires that you implement four flag
bytes immediately before the first field of the DrvQEl. You can choose to either define these flags as part of your
per-drive storage structure (which complicates the cast between it and a DrvQElPtr), or just handle those flags as a
special case.

When creating a drive queue element, you must first decide on the drive number for the new drive. The algorithm to find a
free drive number is very simple: start with drive number 5 (or, by convention, 8 if you're a hard disk driver), check to
see whether it is in use, and if so, increment the number and try again.

IMPORTANT:
This algorithm must be run at system task time to work reliably.

Note:
Drive numbers below 5 are reserved. A third-party disk driver should not use drive numbers less than 5
except in special circumstances. As an example, a floppy disk driver that provides high-fidelity emulation of
Apple's ".Sony" driver, might want to use drive number 1.

Once your driver has created a drive queue element, it can put it in the drive queue with the system routine AddDrive.
AddDrive is a very thin wrapper around GetDrvQHdr and Enqueue. It is not strictly necessary to use this routine,
but it may be convenient.

IMPORTANT:
Prior to Mac OS 8.5, the PowerPC glue for AddDrive in InterfaceLib was broken. The MoreInterfaceLib
module of the DTS MoreIsBetter sample shows how to correctly call AddDrive from PowerPC code.

Once your driver has created a drive queue element, it should inform the system of its existence, as described in
Cooperating with File System Manager.

Removing a Drive Queue Element

Removing a drive queue element is somewhat more convoluted than adding one. The basics are very simple. The system
doesn't define a RemoveDrive routine; you must remove a drive queue element using the code shown below. Compilable
source is available as part of the MoreDisks module of the DTS sample code library MoreIsBetter.

TN 1189: The Monster Disk Driver Technote Page: 54

extern pascal OSErr MoreRemoveDrive(DrvQElPtr drvQEl)
{
 OSStatus err;

 if (MoreVolumeMountedOnDrive(drvQEl->dQDrive, false) == 0) {
 err = Dequeue((QElemPtr) drvQEl, GetDrvQHdr());
 } else {
 err = volOnLinErr;
 }
 return err;
}

WARNING:
You must never remove a drive queue element for a drive which has mounted volumes. Doing so
will cause the system to crash, with possible data loss.

WARNING:
You should never add or remove drive queue elements at interrupt time. For a start, AddDrive is
not documented to be interrupt safe. Furthermore, system task time code may be walking the drive queue,
looking at elements in the queue. If your interrupt-time code removes the drive queue element while system
task time code is looking at it, the system may crash.

It is also important to remember that, if your disk driver can be called asynchronously, it is possible for even
synchronous requests to be executed at interrupt time. See Technote 1067, "Traditional Device Drivers: Sync or Swim."

Consequently, your driver should never add or remove a drive queue element except in its Open or Close entry point, or in
response to an immediate request that it knows was made at system task time, such as an accRun Control request. In
particular, it is not safe for your disk driver to remove a drive queue element as part of handling an
kEject Control request.

If your disk driver needs to remove a drive queue element, it must mark the drive queue element as "to be removed" and set
dNeedTime in its dCtlFlags. When it receives the accRun Control request, it must walk the drive queue looking for
drives it owns that are marked as "to be removed" and remove them there. The DTS sample AsyncDriverSample shows a
correct implementation of this.

Drive Queue Strategies

While removing a drive queue element is relatively simple, deciding on a strategy for when to remove the drive queue
element is not. The key is how you handle the kEject Control request. The two common strategies are described below.

Real Block Device

If your disk driver controls some real piece of hardware (for example, a floppy drive, a SCSI ejectable disk device, a SCSI
fixed disk device), you should not remove the drive queue element when the user ejects the disk. You should leave the drive
queue element in the queue so that, when the user reinserts the disk, you can post a "disk inserted" event for it. This
simplifies your life and ensures that your drive's drive number is relatively stable.

This approach may seem a little strange for fixed disks, but it works just fine. Fixed disks are typically not marked as
ejectable, so the user can not really eject a fixed disk; they simply unmount the volume mounted on it. This is useful for
programs (for example, a disk recovery program) which want to unmount a volume, perform some low-level activity on
the disk, and then remount the volume. To remount the volume, the program can simply call PBMountVol for the old
drive number. This technique would not be possible if the fixed disk driver removed its drive queue elements when the disk
was ejected.

TN 1189: The Monster Disk Driver Technote Page: 55

Note:
The Alias Manager remounts volumes in this way, which is very convenient for the user. The user can unmount
a volume by dragging it to the Trash and later remount it by simply double-clicking an alias to the volume.

So leaving fixed disk drive queue elements in the drive queue is not only safe, it is also convenient.

IMPORTANT:
One important exception to the above is removable disks with multiple partitions. For example, if the users
ejects a disk with three partitions and then inserts a disk with a single partition, you should remove the two
extra drive queue elements (at system task time) before informing the system about the new disk.

Virtual Block Device

If you are writing a disk driver for some virtual block device (like a RAM disk, or a disk image, or a block-oriented
network protocol), your job is more complex. In the simple case, if the disk is ejected when there is no volume mounted on
it, you should remove the drive queue element, as explained in the previous section.

However, if the disk is ejected while there is still a volume mounted on it, you must take special action to avoid the disk
switch dialog asking the user to insert the virtual disk. [The "Please insert disk RAM Disk" disk switch dialog is
particularly amusing or annoying depending on how much caffeine you've had that day.] There are two common ways to
prevent this:

1. Non-Ejectable -- You can mark your virtual drive as non-ejectable. This is probably the easiest and most sensible
approach. It can; however, have problems when running with virtual memory enabled on older systems. Old versions of
the Virtual Memory Manager assume that any local, non-ejectable drive is eligible for paging. This may not be true for
your virtual block device driver (especially if it relies on the network). Modern versions of the Virtual Memory
Manager (starting with Mac OS 8.1) query the drive, via Driver Gestalt (kdgVMOptions), to see whether the drive is
really suitable for paging. However, for older systems, the only recourse you have is to make your drive as ejectable.

2. Auto Reinsert -- If you are forced to mark your virtual drive as ejectable, the following algorithm will ensure that you
remove the drive queue element when appropriate and never have an ejected drive with a volume mounted on it:

1. When you receive the kEject Control request, mark the drive as not having a disk in place and set the
dNeedTime bit in the dCtlFlags.

2. When the system sends you an accRun, walk the drive queue looking for any of your drives which are
marked as not having a disk in place.

3. For those drives, walk the system VCB queue looking for a volume that has been ejected but was previously
mounted on that drive.

4. If you find such a volume, post a "disk inserted" event for that drive. This will remount the volume back on the
drive.

5. If you don't find such a volume, remove the drive queue element for that drive.

The DTS sample AsyncDriverSample implements this algorithm.

Hot Swapping

The Mac OS I/O subsystem is evolving towards more support for hot-swappable devices. Modern I/O buses, like USB and
FireWire, fully support the addition and removal of devices while the system is running.

Unfortunately, other parts of Mac OS are not as friendly to the hot swapping of devices. For disk devices, hot swapping is a
relatively new idea, and Mac OS support for hot swappable disk devices is limited. While it is possible to add new drives on
the fly, removing a drive while there is a volume mounted on it will cause the system to crash, with possible loss of user
data.

There are two basic strategies for handling a disk device being unplugged unexpectedly.

1. Put It Back -- If possible, your disk driver should stop the system and post a dialog telling the user to replace the disk

TN 1189: The Monster Disk Driver Technote Page: 56

device. This dialog should have no OK or Cancel buttons; the user must replace the device to continue using the system
and the dialog should auto-dismiss when the device is reattached. This is tricky to implement, for the following reasons.

In most cases, the notification that a device has been removed happens at interrupt time, and it is unsafe to
pose a standard Dialog Manager dialog at interrupt time. You can defer the dialog until your next accRun,
but you may receive I/O requests before you are issued an accRun, and you must be prepared to handle
those I/O requests at interrupt time.
Some I/O families are not capable of handling reconnections at interrupt time.
Some block devices are not tagged with a unique ID so, even if the device is reconnected, there is no way to
guarantee that it is the same device.

2. Error Everything -- Your device driver should simply fail all I/O requests with the error driverHardwareGoneErr
(-503). In Mac OS 9.0 and higher, the File Manager recognizes this error and responds in the following way.

It sets the kVCBFlagsHardwareGoneBit in the vcbFlags field of the Volume Control Block (VCB).
It posts a Notification Manager alert saying, "The device for disk 'MyDiskName' was unexpectedly
disconnected. To prevent data loss, always use the Finder to 'Put Away' a disk before disconnecting its disk
device."
At system task time, it walks the volume list looking for volumes that have the
kVCBFlagsHardwareGoneBit bit set and puts them offline.

3. This approach is similar to that taken by the AppleShare external file system when the connection to the server tears.

In some cases, your I/O family may provide support for the hot unplugging of disk devices. For example, if your device is
connected via the media bay, the system will automatically put up a "put it back" dialog for you, and if your device is
connected via FireWire, you can use the FWWaitForDeviceRePlug routine to wait for a device to be reconnected.

Note:
The media bay uses the System Error Handler to display its dialogs. The system error codes used by the media
bay are documented in "Errors.h", namely:

System Error Code English Text (Mac OS 8.5)

dsMBFlpySysError Please reinsert the Floppy Drive module now.

dsMBATASysError Please reinsert the Disk Drive module now.

dsMBATAPISysError Please reinsert the CD-ROM module now.

dsMBExternFlpySysError Please reconnect the Floppy Drive module now.

You might think to use the same technique as the media bay but this is unsatisfactory for a number of reasons:

It is not supported by DTS.
The System Error Handler uses QuickDraw to display its dialogs. Calling QuickDraw at interrupt time is illegal,
and therefore calling SysError at interrupt time is illegal. This is a known compromise in the design of
SysError and is acceptable because, when you're handling a real system error, the system is already in a
precarious state. However, using SysError as part of the standard operation of your disk driver is asking for
trouble.

In the absence of an I/O family-specific solution, the best compromise solution is to implement the following algorithm:

When you are notified of a device being disconnected, check whether there is a volume mounted on any of its drives.
If there isn't a volume mounted on any of its drives, all is well; you can simply wait for the next accRun to
remove the device's drive queue elements. If there is a volume mounted, set a flag in your per-drive storage.
If you receive an I/O request while that flag is set, fail the request with driverHardwareGoneErr error. On
Mac OS 9.0 or above, this is a sufficient response. On earlier systems, you should also:

At accRun time, look through for drives owned by your driver which have the flag set. For each missing
device, post a Dialog Manager dialog that requires the user to reattach the device. Once the device is
reattached, clear the flag and return from your accRun handler.
Post a Notification Manager alert like that described above.

TN 1189: The Monster Disk Driver Technote Page: 57

Back to top

Close and Purge

For maximum friendliness, your driver must support being closed. This section explains how to support the Close request
properly in you disk driver and how a formatting utility might use this to allow a disk to be reformatted without rebooting.

Supporting Close in Your Driver

Your driver must support the Close request properly. This requirement was documented a long time ago and is as true today
as it ever was.

Your driver's Close entry point should attempt to undo all the things that its Open entry point did, including the tasks listed
below.

1. Check to see whether there are volumes mounted in any of the drives controlled by the driver. Code for doing this is
shown below. If there are, the Close should fail with a closErr.

extern pascal SInt16 MoreVolumeMountedOnDrive(SInt16 drive,
Boolean ejectedIsMounted)
{
 SInt16 result;
 VCBPtr thisVCB;

 result = 0;
 thisVCB = (VCBPtr) GetVCBQHdr()->qHead;
 while (thisVCB != nil && result == 0) {
 if (thisVCB->vcbDrvNum == drive ||
 (ejectedIsMounted &&
 thisVCB->vcbDrvNum == 0 &&
 thisVCB->vcbDRefNum == drive
)
) {
 result = thisVCB->vcbVRefNum;
 } else {
 thisVCB = (VCBPtr) thisVCB->qLink;
 }
 }

 return result;
}

1. Terminate all asynchronous operations and remove any interrupt handlers. Your Close entry point is always called
immediately at system task time, so it is safe to "spin wait" (that is, synchronously wait) for asynchronous operations to
complete.

2. Remove all of its drive queue elements from the drive queue. The system supplies a routine for adding a drive queue
elements (AddDrive), but not one to remove them. The code for removing a drive queue element is shown earlier.

3. Unregister with any system services with which it registered. Typically, this includes SCSI Manager or ATA Manager,
Power Manager, and Shutdown Manager.

4. Free any memory allocated by the driver, including the dCtlStorage.

If it is absolutely impossible to complete any of these steps, the driver should return closErr and continue as if the close
had not been requested.

TN 1189: The Monster Disk Driver Technote Page: 58

In addition, your driver may choose to implement the kdgPurge Driver Gestalt selector. The response to this selector is a
DriverGestaltPurgeResponse, as shown below.

struct DriverGestaltPurgeResponse {
 UInt16 purgePermission;
 UInt16 purgeReserved;
 Ptr purgeDriverPointer;
};
typedef struct DriverGestaltPurgeResponse DriverGestaltPurgeResponse;

If your driver responds to this selector, it must fill out the fields of the response as follows:

purgePermission

Three bits in this field are defined below. You should set them as appropriate for your driver. The remaining bits
are reserved and must be set to zero.

purgeReserved

Reserved. Must be set to zero.

purgeDriverPointer

A pointer to the memory block containing your driver's code. You must set this to a valid Memory Manager pointer
if you return kmOkCloseOkPurge in the purgePermission field.

The bits in the purgePermission field are defined as follows:

kbCloseOk

Set this bit if your driver correctly handles the Close request, as described above.

kbRemoveOk

Set this bit if your driver can be removed from the unit table with DriverRemove. Usually this is safe if you
installed your driver using DriverInstall or DriverInstallReserveMem (assuming your driver is
pointer based, which all disk drivers should be).

kbPurgeOk

Set this bit if you can supply a pointer to a single Memory Manager pointer block that contains your driver code
and that can be disposed to free the memory used by your driver's code. If you set this bit, you must set
purgeDriverPointer to be that pointer. If your driver supports code sharing, you must only set this bit if
there is only one instance of your driver remaining in the unit table.

Of the eight possible combinations of these three bits, only three make any real sense. There are symbolic constants for
these three useful combinations (kmNoCloseNoPurge, kmOkCloseNoPurge and kmOkCloseOkPurge).

Note:
If you set kbRemoveOk without setting kbPurgeOk, anyone closing your driver is guaranteed to leak the
memory containing your driver's code (unless you use code sharing).

TN 1189: The Monster Disk Driver Technote Page: 59

Supporting Reopen

If your driver supports close, it should also support being reopened. There are circumstances under which third party
software wants to close your driver, take control of the device, and then restore the normal function of your driver. This is
only possible if your driver supports reopen.

IMPORTANT:
Most existing SCSI and ATA drivers do not support reopen. There is no well-documented way of determining
whether a driver supports reopen. Software that relies on the ability to reopen disk drivers should warn the
user that the reopen may not work, preferably before closing the driver.

Most existing disk drivers perform their driver initialization code in their Install routine and do nothing in
their Open entry point. A typical SCSI driver's initialization code is as follows.

on install
install driver into unit table
 scan partition map
 create a drive queue element for each partition
 'open' driver by marking it open in the DCE
end install

on open
 return noErr
end open

The problem with this approach is that it does not allow clients to reopen the driver after closing it. A better approach is
shown below.

on install
 install driver into unit table
 rename driver to a unique name
 open driver using OpenDriver
end install

on open
 scan partition map
 create a drive queue element for each partition
end open

WARNING:
SCSI disk driver lore requires that a driver's installation routine not use the OpenDriver routine to open the
driver. Instead, the driver installation routine was expected to put the driver in the unit table and then mark
the driver as open by setting the dOpened bit of the DCE's dCtlFlags. This was because the implementation
of OpenDriver in old ROM's would touch the Resource Manager (and hence the File Manager) even when the
driver already existed in the unit table. DTS believes that this is only necessary on ancient Macintosh ROMs and
modern drivers should install themselves using OpenDriver.

TN 1189: The Monster Disk Driver Technote Page: 60

Note:
Many device driver writers guard against their Open entry point being called multiple times. This is
unnecessary for 68K drivers. Once your 68K driver is marked as open (bit dOpened is set in the DCE's
dCtlFlags), further calls to OpenDriver will simply return noErr without calling your driver's Open
entry point.

This is not true for native drivers, where opens and closes are reference counted by the Device Manager. For a native
driver, a second call to OpenDriver will result in your driver being sent another kOpenCommand request.

Note:
If your driver uses code sharing, it is impossible to support reopen properly because all instances of your
driver in the unit table will have the same name, and the OpenDriver routine only allows you to open a
driver by name.

Hostile Takeovers

There are circumstances under which software wants to remove the driver for a disk at runtime. For example, a formatting
utility might want to reformat a disk which was previously controlled by another driver. If the driver controlling the disk
is written by you, it is easy to coordinate this takeover. On the other hand, if the driver controlling the disk is unknown to
you, taking over the disk is tricky to do safely. This process is known as a hostile takeover.

Note:
Do not use the term "hostile takeover" in your user interface. It is likely to scare and confuse users.

To initiate a hostile takeover of a device, you must take the following steps.

1. Warn the user that you are attempting something that risks both crashing and data loss.
2. Verify that there are no volumes mounted on drives controlled by the device. Do this by iterating through the mounted

volumes (by making indexed calls to PBHGetVInfo) checking that ioVDRefNum is not equal to the driver reference
number of the driver in question. If there are volumes mounted using the driver, you may want to unmount the volumes
yourself using PBUnmountVol.

3. If the driver supports Driver Gestalt, issue a kdgPurge Driver Gestalt request. If this succeeds, you can check the
purgePermission to see whether the driver supports the Close request. If it doesn't, a hostile takeover is not
possible without restarting.

4. Call CloseDriver to close the driver, which returns one of the following results.
1. noErr -- The driver closed successfully. Continue with the next step.
2. closErr (or any other error) -- The driver could not be closed. A hostile takeover is not possible without

restarting.

Note:
Never close a driver with FSClose or PBClose. If you're closing a driver, always use CloseDriver.
Similarly, if you're opening a driver, always use OpenDriver. These routines provide the correct glue to the
_Open and _Close traps to ensure that you are acting on a driver, not a file, or a desk accessory, or a slot
driver.

1. Just to be certain, you should check whether any drive queue elements belonging to the driver remain in the drive
queue. If there are, the driver's implementation of the Close request is broken and a hostile takeover is not possible

TN 1189: The Monster Disk Driver Technote Page: 61

without restarting.
2. If you issued a kdgPurge request (step 3 above) and kbRemoveOk was set in the purgePermission response,

you can call DriverRemove to remove the driver from the unit table. If the driver doesn't support Driver Gestalt, or
kbRemoveOk is not set, the hostile takeover is complete. The driver is still installed in the unit table but it should be a
relatively benign memory leak.

3. If you issued a kdgPurge request (step 3 above) and kbPurgeOk was set in the purgePermission response,
you can call DisposePtr on purgeDriverPointer to remove the driver's code from memory. If the driver
doesn't support Driver Gestalt, or kbPurgeOk is not set, the hostile takeover is complete. The driver code is still in
memory but it should be a relatively benign memory leak.

Note:
You might think that you can just dispose dCtlDriver, but that is not correct. dCtlDriver may not be a
valid Memory Manager pointer. Specifically, for SCSI and ATA drivers, dCtlDriver typically points some
number of bytes into the pointer block.

If a hostile takeover is not possible without restarting -- or the user declines your offer to attempt one -- you are forced
to restart the computer to take over the disk. You can overwrite the DDM to eliminate all foreign drivers from the disk and
then restart the computer. Because there are no drivers in the DDM, the disk will not be mounted and you will be free to
use it as you wish.

IMPORTANT:
Do not expect any data on the disk to survive this operation. While most drivers use the standard partition
format, there are some non-standard partition formats (such as RAID striping) for which the driver is the
only thing that "holds it all together". In those cases, eliminating the driver typically eliminates the data. The
only way around this is to treat each of the common RAID formats as a special case in your hostile takeover
software.

Note:
Some third-party formatting utilities implement a more powerful but less safe approach to hostile takeovers.
Specifically, if the check for orphaned drive queue elements (step 5 above) fails, the utility simply dequeues
the orphaned drive queue elements and unregisters the drives with the appropriate manager. This technique
works in most cases, although it leaks memory (the orphaned drive queue elements) and may potentially cause a
system crash. If you implement this technique, be sure to warn the user of the possible consequences.

Back to top

File Exchange (né PC Exchange)

Foreign file systems (such as File Exchange) require your disk driver to do extra work to support the mounting of
non-HFS volumes. While this extra work is not hard, it has been poorly documented. This section explains the correct way
to support foreign file systems in your disk driver.

Note:
For an in-depth explanation of the whole volume mounting process, see Partition Handling: Background and
Rationale later in this section.

Cooperating with File System Manager

TN 1189: The Monster Disk Driver Technote Page: 62

There are two steps you must take to fully support File System Manager in your disk driver. The first step is to support
the File Exchange interface, which is described in the next section. The second step is related to the way your disk driver
scans a bus and creates drive queue elements for devices on that bus. Your current algorithm might look something like that
shown below.

on scanForDevices
 scan bus for devices
 for each device found on the bus
 if the disk contains an Apple partition map
for each partition on the disk
 if kPartitionIsMountedAtStartup is set in pmPartStatus
 if the partition is of type "Apple_HFS"
 create a drive queue element with FSID of 0
 post a "disk inserted" event
 end-if
 end-if
end-for
 end-if
 end-for
end scanForDevices

To cooperate with FSM, you should modify this algorithm to the one shown below.

TN 1189: The Monster Disk Driver Technote Page: 63

on scanForDevices
 clear InformFSM flag
 scan bus for devices
 for each device found on the bus
 if the disk contains an Apple partition map
for each partition on the disk
 if kPartitionIsMountedAtStartup is set in pmPartStatus
 if the partition is of type "Apple_HFS"
 create a drive queue element with FSID of 0
 post a "disk inserted" event
 else if the partition is of a known non-disk type
 do nothing
 else
 create a drive queue element with FSID of fsmGenericFSID
 set InformFSM flag
 end-if
 end-if
end-for
 else
create a drive queue element with FSID of fsmGenericFSID \
 that encompasses the entire drive
set InformFSM flag
 end-if
 end-for
 if InformFSM flag
 call InformFSM(fsmDrvQElChangedMessage)
 end-if
end scanForDevices

IMPORTANT:
InformFSM is a generic utility routine by which your disk driver can send messages to FSM. It is documented
in Guide to the File System Manager.

The basic algorithm, as shown above, is surprisingly easy. However, complications arise if your disk driver might load
before FSM. This can happen in the following circumstances:

1. If your disk driver is loaded out of a driver partition in a partition map.
2. If your disk driver loads from a system extension on an old system. Systems prior to System 7.5 did not have FSM in

the System file, so FSM loaded at INIT time. The system extension which loads your driver might run before the one
loading FSM.

Note:
There are two common cases where FSM might load from a system extension:

1. Early versions of PC Exchange contain an equally early version of FSM embedded in the extension. When
PC Exchange loads, it checks to see whether FSM is already present in the system. If it isn't, it loads the
embedded version of FSM.

2. FSM plug-in developers can license a system extension, "File System Manager", to install with their FSM
plug-in on older systems.

TN 1189: The Monster Disk Driver Technote Page: 64

If your disk driver loads before FSM, the above algorithm has a number of problems. Firstly, InformFSM is not
implemented until FSM loads, so calling it would be bad. Secondly, the support for fsmGenericFSID is implemented by
FSM, so creating a drive queue element with that FSID is a bad idea unless FSM is installed.

The solution to this is to defer both activities until FSM loads. If system startup completes without FSM loading, you simply
do not perform these steps. You can poll for both of these events in your driver's accRun handler. The new algorithm is
shown below.

on scanForDevices
 determine whether FSM is installed
 clear InformFSM flag
 scan bus for devices
 for each device found on the bus
 if the disk contains an Apple partition map
for each partition on the disk
 if kPartitionIsMountedAtStartup is set in pmPartStatus
 if the partition is of type "Apple_HFS"
 create a drive queue element with FSID of 0
 post a "disk inserted" event
 else if the partition is of a known non-disk type
 do nothing
 else
 if FSM available
 create a drive queue element with FSID of fsmGenericFSID
 end-if
 set InformFSM flag
 end-if
 end-if
end-for
 else
if FSM available
 create a drive queue element with FSID of fsmGenericFSID \
that encompasses the entire drive
end-if
set InformFSM flag
 end-if
 end-for
 if InformFSM flag
 if FSM available
call InformFSM(fsmDrvQElChangedMessage)
 else
set gPollForFSM
set dNeedTime in dCtlFlags
 end-if
 end-if
end scanForDevices

on accRun
 if gPollForFSM
 if FSM available then
call scanForDevices again
clear gPollForFSM
clear dNeedTime in dCtlFlags (unless you need it for other reasons)

TN 1189: The Monster Disk Driver Technote Page: 65

 else if startup time is over
clear gPollForFSM
clear dNeedTime in dCtlFlags (unless you need it for other reasons)
 end-if
 end-if
end accRun

Note:
You can determine whether system startup is complete using the technique described in Disk Drivers and the
System Heap.

For more information about why this algorithm is necessary, see Partition Handling: Background and Rationale.

Finally, if you mount a large number of disks simultaneously, you may run afoul of the system event queue's size limit. On
current systems (Mac OS 9.0), the system event queue is limited to 48 events. If the system event queue is full and you
post a "disk inserted" event, the event is ignored. There are two aspects to this problem:

1. If you explicitly posted the "disk inserted" event by calling PostEvent, you will find that an event posted while the
event queue is full will cause the first event in the queue to be dropped. PostEvent will not return an error to indicate
that an event was dropped.

2. You also receive no notification that the event queue is full if you implicitly post "disk inserted" events by calling
InformFSM with the fsmDrvQElChangedMessage selector.

There is a simple algorithm that handles both of these cases:

1. When a drive is ready for operation (its disk has just been inserted, or you detected it during your initial scan for
devices), set a flag in your per-drive storage to indicate that a "disk inserted" event is pending.

2. Inform the system that the disk was inserted as described above (either by posting a "disk inserted" event or by calling
InformFSM with the fsmDrvQElChangedMessage selector).

3. When any I/O is done to the drive, clear the disk inserted pending flag. I/O to the drive indicates that some file system
has queried the drive to determine whether to mount a volume on it, which implies that the "disk inserted" event was
successfully processed.

4. At accRun time, check for any drives with the disk inserted pending flag still set. If you find one it is likely that the
"disk inserted" event was lost, so you should reinform the system of the disk insertion.

Implementing File Exchange Support

This section describes how you should implement the File Exchange interface in your disk driver.

Note:
The requests described here have been documented in a number of places, including Designing PCI Cards and
Drivers for Power Macintosh Computers, page 114, and "PCX and Large Volume Drivers." However, none of the
previous descriptions are sufficiently detailed for you to implement the requests correctly.

Implementing Driver Gestalt kdgAPI

A disk driver that supports the following Control and Status requests must implement the kdgAPI selector to indicate that
it does. For more information about Driver Gestalt, see the Driver Gestalt section of this technote.

Partition Information Record

The partition information record (partInfoRec) is a structure used to store information about a partition on a disk. The

TN 1189: The Monster Disk Driver Technote Page: 66

fields of the structure are:

SCSIID

If the underlying device is connected via a SCSI interface, this field holds the SCSI Manager DeviceIdent of the
device. If the device is connected via an ATA interface, this field holds the ATA Manager ataDeviceID (a
structure defined in ATA 0/1 Software Developers Guide). Devices connected via other interfaces can use whatever
value makes sense to uniquely identify the device on that bus (typically this is the same 32-bit number returned
by the kdgDeviceReference Driver Gestalt selector). If no value makes sense, a driver must clear this field.

physPartitionLoc

The block number of the first block in the partition.

partitionNumber

The physical block number of the partition map entry of this partition.

Note:
You can determine the interface used by the device issuing the kdgInterface Driver Gestalt query. Drivers
that support File Exchange should also support this Driver Gestalt selector.

Note:
For more information about the ataDeviceID structure, consult the ATA Device 0/1 Software Developer
Guide. This structure is not the same as the DeviceIdentATA structure, defined above.

Creating a New Drive Queue Element

Trap _Control

Mode Synch, Async, Immediate

csCode SInt16 -> kGetADrive (51)

csParam[0..1] DrvQElPtr * ->

On input, contains the address of a drive queue
element pointer. The request creates a new drive
queue element based on the supplied drive queue
element and places a pointer to the new drive queue
element in the supplied address.

In response to this request, your disk driver must create a new drive queue element. The fields of the new drive queue
element must be filled out as described below.

drive flags (the 4 bytes prior to qLink)

Inherited from the supplied drive queue element.

qLink

Set up when you add the drive to the drive queue using AddDrive.

qType

Inherited from the supplied drive queue element.

dQDrive

TN 1189: The Monster Disk Driver Technote Page: 67

Must be set to a new unique drive number.

dQRefNum

Must be set to your driver's reference number.

dQFSID

Inherited from the supplied drive queue element.

dQDrvSz

Inherited from the supplied drive queue element.

dQDrvSz2

Inherited from the supplied drive queue element.

partition offset (typically held in extra bytes beyond dQDrvSz2)

Inherited from the supplied drive queue element.

Your driver must return the new drive queue element in the memory pointed by csParam[0..1]. You must not post a
"disk inserted" event for the new drive, or send the fsmDrvQElChangedMessage message to FSM.

IMPORTANT:
This request is typically issued as a synchronous request, which can cause problems if your driver needs to
allocate memory to create the new drive queue element. To avoid this problem, DTS recommends that all clients
issue this as an immediate request. However, to work with old clients, your driver should be prepared to handle
all possible request modes.

IMPORTANT:
Your driver should be prepared for the incoming value of the drive queue element pointed to by
csParam[0..1] being nil, or some other value which is not a pointer to one of your driver's drive queue
elements. In that case, your driver should initialize the fields of the new drive queue element to default values.

 Changing the Partition of a Drive Queue Element

Trap _Control

Mode Synch, Async

csCode SInt16 -> kRegisterPartition (50)

csParam[0..1] DrvQElPtr -> The drive queue element whose partition is to be changed

csParam[2..3] UInt32 -> The block number of the first block in the partition

csParam[4..5] UInt32 -> The size (in blocks) of the partition

In response to this request, your disk driver must retarget the specified drive queue element to represent the given
partition on the disk. After this request, the drive queue element must represent a partition that starts at the block
specified by csParam[2..3] and is of the size specified by csParam[4..5].

You must not post a "disk inserted" event for the drive, or send the fsmDrvQElChangedMessage message to FSM.

TN 1189: The Monster Disk Driver Technote Page: 68

IMPORTANT:
The effects of this request are limited to the drive queue element in memory. This request must not change the
partitioning scheme on the disk.

 Preventing a Partition from Mounting

Trap _Control

Mode Synch, Async

csCode SInt16 -> kProhibitMounting (52)

csParam[0..1] partInfoRec * ->
A pointer to a partInfoRec that describes the
partition which is not to be mounted at startup

In response to this request, your disk driver must mark the partition specified csParam[0..1] such that it isn't
mounted at system startup.

IMPORTANT:
The effects of this request are permanently applied to the partition map on the disk.

Note:
Modern versions of File Exchange do not require your driver to support this request (partly because it is
functionally equivalent to kClearPartitionMount). If you decide not to support it, make sure to return
controlErr.

Note:
The partition is completely determined by the fields of the partition information record, not by the
ioVRefNum field of the parameter block.

 Determining the Partition of a Drive

Trap _Status

Mode Synch, Async

csCode SInt16 -> kGetPartInfo (51)

ioVRefNum SInt16 -> The drive number of the drive whose partition
information is requested

csParam[0..1] partInfoRec * ->
A pointer to a partInfoRec where the partition
information is placed

In response to this request, your disk driver must place partition information about the specified drive in the partition
information record pointed to by csParam[0..1].

TN 1189: The Monster Disk Driver Technote Page: 69

Note:
Your driver's response to this request has a non-obvious effect on the Disk Initialization Package, especially
the DIReformat call. The Disk Initialization Package prevents the user changing the file system on a drive
that exists on a partitioned disk. It does this to prevent the data on the partition getting out of sync with the
partition type (pmParType) in the partition map entry. For example, if the user could reformat an existing
HFS partition to be in DOS FAT format, the partition data would be in DOS FAT format while the pmParType
would still be "Apple_HFS". This is obviously not a good thing (the ROM might attempt to boot from a DOS FAT
partition!), so the Disk Initialization Package prevents it.

This raises the question, how does the Disk Initialization Package know whether a drive is a partition on a disk. The
algorithm used is shown below.

on driveIsAPartition drive
 if drive's driver supports File Exchange requests (kdgAPI)
 and kGetPartInfo on drive succeeds then
 return physPartitionLoc != 0
 else
 return drive's driver's unit number in [32..39]
 end-if
end driveIsAPartition

The gist of this algorithm is that, if your driver supports File Exchange requests, the drive's partition must start at the
beginning of the disk for the Disk Initialization Package to allow a change of format. Alternatively, if your driver does not
support File Exchange requests, it is considered to have partitions if its unit number falls in the range reserved for classic
SCSI Manager drivers.

If other demands on your driver prevent it from being reformatted by the above algorithm, you will probably need to
include reformat support in your formatting utility.

DTS has requested a better solution to this problem [Radar ID 2287925].

Determining Whether a Partition is Mounted

Trap _Status

Mode Synch, Async

csCode SInt16 -> kGetPartitionStatus (50)

csParam[0..1] partInfoRec * ->
A pointer to a partInfoRec that describes the
partition to be queried

csParam[2..3] SInt16 * ->

A pointer to an SInt16. On return, this holds the
vRefNum of the volume represented by this
partition, or 0 if no volume is represented by this
partition.

In response to this request, your disk driver must determine whether the partition described by the partition information
record pointed to by csParam[0..1] is mounted and return the volume reference number of the volume in the SInt16
pointed by csParam[2..3], or 0 if the partition is not mounted.

TN 1189: The Monster Disk Driver Technote Page: 70

Note:
The partition is completely determined by the fields of the partition information record, not by the
ioVRefNum field of the parameter block.

Using These Requests

This section explains how you might utilize the File Exchange driver requests in your application (or FSM plug-in) to
access portions of a partitioned disk that lie outside of the HFS partitions.

WARNING:
Many of the File Exchange driver requests require you to pass a pointer to a buffer. As explained in Private
Requests and Virtual Memory, you must hold these buffers (in the VM sense) to prevent fatal page faults.

Note:
This section contains a number of routines which demonstrate the use of the File Exchange interface. Some of the
details have been removed for brevity. Moreover, the routines rely on other utility routines that are not
included here. The full source code for these routines is available in the MoreDisks module of the DTS
MoreIsBetter sample code library.

The first step of using the File Exchange interface is to create a drive queue element that targets the section of the disk you
wish to read or write. The following code snippet shows how this might be done.

extern pascal OSErr MoreCreateNewDriveQueueElement(SInt16 driveToClone,
UInt32 firstBlock, UInt32 sizeInBlocks, SInt16 *newDrive)
 // See comment in interface part.
{
 OSErr err;
 CntrlParam pb;
 DrvQElPtr drvQEl;

 // First check that the driver supports the File Exchange
 // interface.

 err = noErr;
 if (! MoreDriveSupportFileExchange(driveToClone)) {
 err = controlErr;
 }

 // Find the drive queue element associated with
 // driveToClone. This is an input parameter to
 // kGetADrive.

 if (err == noErr) {
 err = MoreUTFindDriveQ(driveToClone, &drvQEl);
 }

 // Make the kGetADrive request to the driver. Because
 // we pass a pointer to memory outside of the parameter
 // block (drvQEl) and the driver might be a paging device,
 // we must hold drvQEl (and make sure to unhold it later!).

TN 1189: The Monster Disk Driver Technote Page: 71

 if (err == noErr) {
 err = SafeHoldMemory(&drvQEl, sizeof(drvQEl));
 if (err == noErr) {
 pb.ioVRefNum = driveToClone;
 pb.ioCRefNum = MoreGetDriveRefNum(driveToClone);
 pb.csCode = kGetADrive;
 *((DrvQElPtr **) &pb.csParam[0]) = &drvQEl;

 err = PBControlSync((ParmBlkPtr) &pb);
 if (err == noErr) {
 *newDrive = drvQEl->dQDrive;
 }
 (void) SafeUnholdMemory(&drvQEl, sizeof(drvQEl));
 }
 }

 // Now retarget the new drive to the partition on the
 // disk specified by firstBlock and sizeInBlocks. We do
 // this in the create call because some disk drivers
 // don't always inherit the partition information from
 // the drive that was cloned.

 if (err == noErr) {
 err = MoreSetDrivePartition(*newDrive, firstBlock, sizeInBlocks);
 }

 return err;
}

This routine works in two parts. First, it finds the drive queue element associated with driveToClone and clones it
using a kGetADrive request to the driver. Then, it sets the new drive's partition location and size using
MoreSetDrivePartition, which is shown below.

TN 1189: The Monster Disk Driver Technote Page: 72

 extern pascal OSErr MoreSetDrivePartition(SInt16 drive, UInt32 firstBlock,
 UInt32 sizeInBlocks)
 // See comment in interface part.
{
 OSErr err;
 CntrlParam pb;
 DrvQElPtr drvQEl;

 // First check that the driver supports the File Exchange
 // interface.

 err = noErr;
 if (! MoreDriveSupportFileExchange(drive)) {
 err = controlErr;
 }

 // Find the drive queue element associated with
 // drive. This is an input parameter to
 // kRegisterPartition.

 if (err == noErr) {
 err = MoreUTFindDriveQ(drive, &drvQEl);
 }

 // Make the kRegisterPartition Control request. We
 // don't need to hold any memory because all the
 // parameters to this Control request are entirely
 // contained within the parameter block.

 if (err == noErr) {
 pb.ioVRefNum = drive;
 pb.ioCRefNum = MoreGetDriveRefNum(drive);
 pb.csCode = kRegisterPartition;
 *((DrvQElPtr *) &pb.csParam[0]) = drvQEl;
 *((UInt32 *) &pb.csParam[2]) = firstBlock;
 *((UInt32 *) &pb.csParam[4]) = sizeInBlocks;

 err = PBControlSync((ParmBlkPtr) &pb);
 }

 return err;
}

Once you have a drive queue element that spans the blocks you're interested in, you can read and write those blocks using
standard Device Manager routines, for example, PBReadSync. The next listing shows how this might be done.

TN 1189: The Monster Disk Driver Technote Page: 73

static OSErr ReadBlock(SInt16 drive, UInt32 blockNumber, void *blockBuffer)
{
 OSErr err;
 IOParam pb;

 pb.ioVRefNum = drive;
 pb.ioRefNum = MoreGetDriveRefNum(drive);
 pb.ioBuffer = blockBuffer;
 pb.ioReqCount = 512;
 pb.ioPosMode = fsFromStart;
 pb.ioPosOffset = blockNumber * 512;
 err = PBReadSync((ParmBlkPtr) &pb);
 return err;
}

Partition Handling: Background and Rationale

To understand the current disk driver architecture, you really need to understand the history of how it evolved, starting
with the floppy disk drives on the Mac 128.

Mac 128 Disk Driver

When the original Mac shipped all disks were floppy disks, which did not support partitions. The floppy disk driver would
create a single drive queue element that represented the entire disk, and the File Manager used this drive as the entire
volume. There was a one-to-one translation between logical blocks on the volume (blocks that the File Manager requests)
and physical blocks on the disk.

For example, on a floppy disk, if the File Manager requests block 64, the disk driver would simply return block 64.

Disk insertion was handled with the following algorithm:

1. The disk driver created a drive queue element for each physically attached floppy drive.
2. When the user inserted a disk in a drive, the driver posted a disk inserted (diskEvt) event for that drive.
3. The next time the application called GetNextEvent (a predecessor to WaitNextEvent), the (Toolbox) Event

Manager got the "disk inserted" event and called _MountVol.
4. _MountVol only recognized built-in file systems, such as MFS and HFS. An attempt to mount an unsupported file

system would cause _MountVol to return an error.
5. The (Toolbox) Event Manager put the error result from _MountVol into the high word of the message field of the

EventRecord, and returned the "disk inserted" event to the application.
6. The application saw the "disk inserted" event and examined the high word of the event's message field. If the value

was not zero, the "disk inserted" event was "bad" and the application called the Disk Initialization Package's
DIBadMount routine. DIBadMount would give the user the opportunity to initialize or eject the disk.

SCSI and Partitions

The introduction of SCSI hard disk devices on the Mac Plus made this situation more complex. Hard disk devices support
multiple partitions. The File Manager was not changed to recognize these partitions, so the burden of supporting partitions
fell on the disk driver. When a disk is partitioned, the disk driver must read the partition map and creates a drive queue
element for each HFS partition (a partition whose pmParType is "Apple_HFS") on the disk.

Thus, each drive queue element on a partitioned disk contains an implicit translation from logical blocks to physical blocks.
For example, if you have a partition that starts at block 1024 and continues for 4096 blocks, the driver creates a drive
queue element for a drive whose size is 4096 blocks. When the system reads logical block 64 on that volume, the driver
knows that it must translate that to physical block 1088 (that is, 1024 + 64) on the disk.

The new disk insertion algorithm was:

TN 1189: The Monster Disk Driver Technote Page: 74

1. The ROM or a system extension loaded the disk driver.
2. The disk driver parsed the partition map looking for all the partitions of type "Apple_HFS". For each found partition,

the driver would create a drive queue element and post a "disk inserted" event.
3. If the driver was being loaded at system startup, the Start Manager would call _MountVol to mount the startup

volume. It would then boot from that volume. Later, when the Finder launched and started calling GetNextEvent, the
"disk inserted" events for other partitions would be processed.

4. If the driver was being loaded after system startup, the process would proceed as from step 3 above.

This works just fine for disks with the Apple partition map and HFS partitions, where the driver recognizes both the
partition map format and the "Apple_HFS" partition map entries, and creates the appropriate drive queue elements.
However, it doesn't allow foreign disk formats to be handled correctly, in two important cases.

1. The partition map contains non-HFS partitions (such as "Apple_PRODOS" or "Apple_UNIX_SVR2" (A/UX)
partitions) -- When confronted by a non-HFS partition, the driver has a difficult choice. If it creates a drive queue
element for the partition and a suitable foreign file system is not installed, the system asks the user whether they want to
initialize the partition. Probably not good. On the other hand, if it doesn't create a drive queue element for the partition,
there is no way for a foreign file system to access the data on the partition. To safeguard user data, most drivers choose
the second alternative.

2. The partition map format is unrecognized -- As Mac OS loads disk drivers from a partition on the disk, it is rare
that a disk driver is loaded for a non-Apple partitioned disk. However, if a driver is loaded (by a system extension, for
example) for a disk with an unrecognized partition map (such as a DOS partition map), it faces the same difficult
choice described above. Most drivers resolve this issue by simply not creating any drive queue elements for disks with
an unrecognized partition map.

A foreign file system (such as a File System Manager plug-in) is responsible for controlling a volume mounted on a
particular drive (represented by a drive queue element). If there is no drive queue element for a partition, there is no
obvious way to create one. Similarly, if there is no driver for a particular disk (because the disk doesn't have an Apple
partition map to load it from), there is no easy way for the foreign file system to read from or write to the disk.

File System Manager

When File System Manager was introduced, it defined a new way for disk drivers to announce the arrival of new drive queue
elements. This mechanism allows disk drivers to create drive queue elements for non-Apple partitions, free from the fear
of the dreaded "This is not a Macintosh disk. Would you like to initialize it?" dialog.

The new algorithm works as described below:

1. When the disk driver loads, it parses the partition map. For each partition of type "Apple_HFS", the driver creates a
drive queue element and posts a "disk inserted" event. For other partition types, the disk driver creates a drive queue
element whose FSID is fsmGenericFSID and calls InformFSM with the fsmDrvQElChangedMessage
message. If it can't recognize the partition map, the driver just creates a single drive queue element whose FSID is
fsmGenericFSID and calls InformFSM with the fsmDrvQElChangedMessage message.

2. When InformFSM is called with the fsmDrvQElChangedMessage message, FSM posts a "disk inserted" event
for the drive if all the following conditions are met:

the drive's FSID is not zero,
the drive's FSID is not fsmIgnoreFSID,
the drive does not already have a volume mounted on it, and
the drive's FSID is fsmGenericFSID or the drive's FSID matches the FSID of one of the installed FSM
plug-ins.

3. Each "disk inserted" event is handled as before, except:
1. FSM passes _MountVol requests to external file systems, which have the opportunity to claim the drive as a

foreign volume.
2. FSM tail patches _MountVol. If _MountVol fails and the drive on which the mount was attempted has the

FSID of fsmGenericFSID, FSM causes _MountVol to return nsDrvErr. This error code, when passed
back to the application and hence on to DIBadMount, causes DIBadMount to not display the disk
initialization dialog.

The effect of these changes is that disk drivers are now free to create a drive queue element for any partition and will not
trigger the Disk Initialization Package as long as they set the FSID of the drive to fsmGenericFSID. This goes some way
to addressing problem 1, described above.

TN 1189: The Monster Disk Driver Technote Page: 75

File Exchange

The final part of the solution for problem 1 is the File Exchange interface for disk drivers, as defined above. To mount
non-HFS partitions in an Apple partition map, File Exchange (and by extension any FSM plug-in) uses this interface in the
following way.

1. It first creates a new drive queue element by cloning an existing drive queue element using kGetADrive.
2. It then retargets that drive queue element to represent the partition map for the disk using kRegisterPartition.

For an Apple partition map, this is a two-step process. First it must set the partition to start at block 0 and be 2 blocks
long. This gives access to the driver descriptor map (DDM) and to the first partition map entry. It then uses the first
partition map entry to determine the size of the partition map. It then retargets the drive to represent the entire DDM
and partition map.

3. It then reads through the partition map looking for the required partition type. For each found partition, it creates a new
drive queue element (using kGetADrive) and sets that drive queue element to represent the partition's data. It can
then mount a volume on that drive queue element.

A similar technique can be used for non-Apple partition maps.

File Exchange also includes a partial solution to problem 2 in that it contains a generic SCSI disk driver. At startup time,
File Exchange scans the SCSI bus looking for devices that contain DOS partition maps. When it finds such a device, it loads
its generic SCSI driver for the device. Obviously that driver supports the File Exchange interface, which File Exchange
then uses (in a similar process to that described above) to read through the DOS partition map and create drives for all the
mountable DOS partitions on the disk.

This is only a partial solution because (a) it only supports SCSI and ATA devices (the system includes a generic ATA device
driver), but not any other block devices, and (b) the mechanism for loading the generic SCSI driver is not documented to
developers. However, as a disk driver writer, you can craft your driver to guarantee a total solution to problem 2, as
described in Cooperating with File System Manager.

Back to top

Private Control and Status Requests

If you define private Control and Status requests for communication with your device driver, you must follow certain rules
to ensure their reliable operation. This section outlines these rules.

Private csCode Selection

If your driver claims to supports Driver Gestalt, it must not use any csCode below 128 for a private Control or Status
request. All private csCodes must be allocated from the range 128 to 32767.

Private Means Private

If you implement a Control or Status request that is private to your driver, you must issue it only to your driver. Do not
issue your private Control and Status requests to other drivers, because the other driver might use the private csCode
for a completely different purpose, one that is potentially fatal to user data (such as rewriting the partition map!).

At a minimum, you must check the driver name before issuing a private Control or Status request. You may also want to
perform other checks (such as verifying a signature in the driver header, or issuing a private Driver Gestalt) just to be
sure.

Synchronous != System Task Time

As described in DTS Technote 1067, "Traditional Device Drivers: Sync or Swim," calling a device driver synchronously
does not guarantee that the driver's entry point will run at system task time. If you are defining a Control or Status request
for which your driver must do something that is not interrupt safe, you must define the request to be executed immediately.

Private Requests and Virtual Memory

If your driver supports virtual memory (you can use the kdgVMOptions Driver Gestalt selector to indicate this), you
must be careful to avoid fatal page faults when fielding private Control or Status requests. Specifically, your driver must

TN 1189: The Monster Disk Driver Technote Page: 76

not cause a page fault while it is fielding a queued (that is, synchronous or asynchronous) request.

The Virtual Memory Manager holds the entire ParamBlockRec (80 bytes) passed to all queued _Read, _Write,
_Control, and _Status calls. In addition, VM holds the I/O buffer (pointed to by ioBuffer, for length ioReqCount)
for _Read and _Write requests. Thus your driver can safely access this memory without causing a fatal page fault.

The problem comes when you define a private Control or Status request whose ParamBlockRec contains a pointer to
another piece of memory. If your driver accesses that memory, it may cause a page fault. If your driver supports virtual
memory, that page fault will be fatal (because a page fault while any paging device is busy is fatal).

There are a number of ways to avoid this problem.

1. Always include all information "inline" in the parameter block. Remember that the parameter block is automatically
held for you by the Virtual Memory Manager.

2. If you must include pointers in your parameter block, define your private Control or Status interface to be called
immediately. Immediate requests to a driver do not mark the driver as busy, and hence any page faults they cause will
not be fatal. However, your driver must be written to support immediate requests of this kind.

3. If none of the above are suitable, you must require that your clients hold any buffers pointed to by the parameter block.

If you're making a queued Control or Status request to a device driver which supports paging and the parameter block
contains pointers to other data structures, you should hold those data structures, just to be sure.

For more background about how the Mac OS Virtual Memory Manager prevents fatal page faults, see DTS Technote 1094,
"Virtual Memory Application Compatibility."

Back to top

Read-Verify Mode

Very few disk driver writers support read-verify mode in their drivers, perhaps on the mistaken assumption that it is
difficult to do. This may be because the historical definition of read-verify mode in the ".Sony" driver is tricky to
implement for any DMA-based peripheral. This section explains the current definition of read-verify mode, the best way
to support it in your driver, and the best way for application software to use it.

Read-Verify Mode Explained

Read-verify mode is engaged by setting rdVerifyMask in the ioPosMode field of the I/O parameter block passed to a
device driver. The original definition of read-verify mode is that the driver should do a byte-for-byte comparison of the
data buffer (pointed to be ioBuffer and ioReqCount) with the data on disk. If they are the same, the operation would
succeed. If they are different, the operation would fail with an ioErr.

This was easy to implement in the classic ".Sony" driver because the driver polled all bytes in to and out of memory. So
implementing read-verify mode was a simple as changing the original copy loop:

while (err == noErr && ioActCount != ioReqCount) {
 err = GetByte(ioBuffer + ioActCount);
 if (err == noErr) {
 ioActCount += 1;
 }
}

to a verify loop:

TN 1189: The Monster Disk Driver Technote Page: 77

while (err == noErr && ioActCount != ioReqCount) {
 err = GetByte(&tmp);
 if (err == noErr && tmp != *(ioBuffer + ioActCount)) {
 err = ioErr;
 }
 if (err == noErr) {
 ioActCount += 1;
 }
}

This form of read-verify mode is tricky to implement in modern disk drivers, which typically use a DMA engine to
transfer the data. So the definition of read-verify mode has changed, as explained in the next section.

Implementing Read-Verify Mode in Your Driver

The new definition of read-verify mode is simple to explain, and to implement in your driver. If your driver gets a
read-verify request, it should treat it exactly like a read request except that it must disable all caches for the request. The
data transferred into memory must have originated from the physical medium itself.

This new definition of read-verify mode still allows applications to perform read-verify operations, as explained in the
next section.

Using Read-Verify Mode in an Application

It is easy to write software that uses read-verify mode in way that is compatible with both the old and new definitions. The
FSWriteVerify routine in the DTS sample "MoreFiles" is an excellent example. The basic algorithm is as follows.

1. Write the data to the disk in the traditional way.
2. Copy the data to a temporary buffer.
3. Read the data back into the temporary buffer.
4. Compare the temporary buffer to the original data.

This works because:

if the driver implements read-verify mode in the old way, any errors will be detected at step 3, and
if the driver implements read-verify mode in the new way, any errors will be detected at step 4.

Back to top

Color Icons

A classic problem with disk drivers is that the mechanism for returning icons from a disk driver (Control requests
kDriveIcon (21) and kMediaIcon (22), documented in Technote DV 17, "Sony Driver: What Your Sony Drives for
You") is limited to black-and-white icons. In Mac OS 8, the Finder was changed to look at the drive and apply special-case
color icons, but there was still no generic way for a disk driver to return a color icon.

Mac OS 8.5 and later allow disk drivers to return color icons. This is done through two new Driver Gestalt selectors,
kdgPhysDriveIconSuite (equivalent to the kDriveIcon (21) Control request) and kdgMediaIconSuite
(equivalent to the kMediaIcon (22) Control request). To give your drives a color icon, you must respond to these Driver
Gestalt requests by putting a pointer to an icon family ('icns') in driverGestaltResponse. The icon family allows
you to return any number of icon sizes and depths in one data structure.

You can build an icon family in a number of ways.

Manually -- The format is documented in "IconServices.r". This approach is most suitable for boot disk drivers
which typically statically link the icon into the driver code resource.
Resource Editor -- Modern resource editors have been updated to edit these structures directly.

TN 1189: The Monster Disk Driver Technote Page: 78

Programatically -- The Icon Services programming interface allows you to create an icon family from an icon
suite, as shown in the code sample below. This approach is more suitable for disk drivers that are loaded after the
machine has started to boot, for example, network or disk image drivers.

static IconFamilyPtr GetRamDiskIconFamily(void)
{
 OSErr err;
 OSErr junk;
 IconFamilyPtr result;
 IconSuiteRef iconSuite;
 IconFamilyHandle iconFamily;
 Size iconFamilySize;

 result = nil;
 iconSuite = nil;
 iconFamily = nil;

 err = GetIconSuite(&iconSuite, 128, kSelectorAllAvailableData);
 if (err == noErr) {
 err = IconSuiteToIconFamily(iconSuite, kSelectorAllAvailableData, &iconFamily);
 }
 if (err == noErr) {
 iconFamilySize = GetHandleSize((Handle) iconFamily);

 result = (IconFamilyPtr) NewPtrSys(iconFamilySize);
 err = MemError();
 if (err == noErr && result == nil) {
 err = memFullErr;
 }
 }
 if (err == noErr) {
 BlockMoveData(*iconFamily, result, iconFamilySize);
 }

 // Clean up.

 if (iconSuite != nil) {
 (void) DisposeIconSuite(iconSuite, false);
 }
 if (iconFamily != nil) {
 DisposeHandle((Handle) iconFamily);
 }

 return result;
}

IMPORTANT:
Icon Services always requests icons using an immediate request at system task time. Your driver can move or
purge memory in response to these requests. Be warned; however, that this immediate request can cause your
driver to be reentered.

TN 1189: The Monster Disk Driver Technote Page: 79

IMPORTANT:
If an application issues these Driver Gestalt requests, it must follow Icon Services and issue them using an
immediate request at system task time.

Back to top

Disk Driver Power Management

This section is not yet finished and has been omitted in the interests of shipping an initial version of the technote. A future
revision of this technote will cover disk driver power management. In the meantime, you can consult the following
references:

Inside Macintosh: Devices , Power Manager
DTS Technote 1046, "Inside Macintosh: Devices, Power Manager Addenda"
DTS Technote 1039, "File Access and the Power Manager"

Back to top

Target Mode

Most PowerBooks support target mode (commonly known as "SCSI disk mode"), in which the attachment of a special cable
causes the PowerBook to make its internal hard disk device available as a SCSI target device. For PowerBooks that use
internal SCSI hard disk devices, support for target mode requires no special work by the disk driver. The PowerBook
simply stays off of the SCSI bus and the host computer has free access to the PowerBook's internal hard disk device.
However, for PowerBooks that use an internal ATA hard disk device, the implementation of target mode is somewhat more
complex, and requires explicit support by the ATA disk driver.

When a PowerBook with an internal ATA hard disk device boots in target mode, the CPU runs special target mode software.
This software loads the ATA driver for the internal hard disk device and then puts the built-in SCSI controller into target
mode, listening for incoming SCSI requests. When such a request is made, the CPU services that request by interpreting the
incoming SCSI command. If the command requires disk I/O, the CPU makes an appropriate I/O request to the ATA disk
driver to satisfy that I/O.

In order to support target mode, your ATA disk driver must support some additional Control and Status requests that allow
the target mode software to do its job. These requests are described in the remainder of this section.

Target Mode Checklist

If your ATA disk driver is having trouble when used in target mode, check that you support the following items.

You must support the kdgBoot ('boot') Driver Gestalt selector as described above.
You must return kdgDiskType ('disk') in response to the kdgDeviceType ('devt') Driver Gestalt
selector.
You must support the kPhysicalIOCode (17) Control request, described below.
You must support the kGetDriveCapacity (125) Status request, described below.
You must support the kSetPowerMode (70) Control request, described in Designing PCI Cards and Drivers for
Power Macintosh Computers.
You may choose to support the kGetErrorInfo (123) and kGetDriveInfo (124) Status requests, although
the system will accommodate you not supporting them. See below for details of how to support these Status
requests.

Required Control and Status Requests

Your ATA driver must support the Control and Status requests described in this section in order to work in target mode.

Switching to Physical I/O Mode

TN 1189: The Monster Disk Driver Technote Page: 80

Trap _Control

Mode Synch, Async

csCode SInt16 -> kPhysicalIOCode (17)

ioVRefNum SInt16 -> A drive number of a drive controlled by your driver

csParam[0] UInt16 -> Contains either 1 to specify physical I/O mode, or 0 to specify logical I/O
mode

In response to this request, your disk driver must change how it does logical-to-physical block translation on the drive
specified by ioVRefNum. If csParam[0] is 1, your driver must disable logical-to-physical block translations on the
drive for subsequent I/O requests. In this mode, an I/O request for logical block X will always access physical block X. If
csParam[0] is 0, your driver must re-enable logical-to-physical block translation. In this mode, an I/O request for
logical block X will access physical block X + Y, where Y is the offset from the beginning of the disk of the partition
represented by the drive.

For more details on logical-to-physical block translation, see Block Translation.

If ioVRefNum is not a drive number controlled by your driver, it must return nsDrvErr.

Returning Disk Size

Trap _Status

Mode Synch, Async

csCode SInt16 -> kGetDriveCapacity (125)

ioVRefNum SInt16 -> The ataDeviceID of your device

csParam[0] UInt16 <- Your disk driver must set this to the bottom 16 bits of the number of
physical blocks on the device

csParam[1] UInt16 <- Your disk driver must set this to the top 16 bits of the number of physical
blocks on the device

In response to this request, your disk driver must return the physical size (in 512-byte blocks) of the disk in the device.

IMPORTANT:
In this request, ioVRefNum is an ataDeviceID, not the more typical drive number.

If ioVRefNum is not an ataDeviceID of a device controlled by your driver, it must return nsDrvErr.

Optional Status Requests

Your ATA driver may support the following Status requests to improve the fidelity of SCSI target emulation.

Returning Error Information

Trap _Status

Mode Synch, Async

TN 1189: The Monster Disk Driver Technote Page: 81

csCode SInt16 -> kGetErrorInfo (123)

ioVRefNum SInt16 -> A drive number of a drive controlled by your driver

csParam[2] OSErr <- Your disk driver must set this to the last error that occurred on the drive

csParam[3..4] UInt32 <- Your disk driver must set this to the number of bytes that were transferred
in the I/O request that caused the last error on the drive

In response to this request, your disk driver must return the information described above about the last error that
occurred on the drive.

If ioVRefNum is not a drive number controlled by your driver, it must return nsDrvErr.

Getting Information About the Drive

Trap _Status

Mode Synch, Async

csCode SInt16 -> kGetDriveInfo (124)

ioVRefNum SInt16 -> The ataDeviceID of your device

csParam[0..1] void * <-

Your disk driver must set this to a pointer to a 20-byte structure
containing ASCII text describing the attached drive; the first 16 bytes
should be the model number, the next 4 bytes should be the firmware
revision number

In response to this request, your disk driver must return the information described above about the attached drive. The
target mode software uses this information to satisfy a SCSI Inquiry ($12) command.

Note:
The Apple ATA driver extracts this information from the results of an ATA kATAcmdDriveIdentify ($EC)
command to the device. The model number is extracted from bytes 27 through 42 of the response. The firmware
revision number is extracted from bytes 23 through 26 of the response.

IMPORTANT:
In this request, ioVRefNum is an ataDeviceID, not the more typical drive number.

If ioVRefNum is not an ataDeviceID of a device controlled by your driver, it must return nsDrvErr.

Back to top

Summary

When the war of the giants is over, the war of the pygmies will begin.

Winston S. Churchill

This technote is the summary!

Back to top

TN 1189: The Monster Disk Driver Technote Page: 82

References

See the Existing Information section of the technote.

Downloadables

Acrobat version of this Note (K). Download

PartitionExtras.h (49K) Download

MoreIsBetter (contains MoreDisks module) (486K) Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

