
TN 1150: HFS Plus Volume Format Page: 1

CONTENTS

HFS Plus Basics

Core Concepts

Volume Header

B-Trees

Catalog File

Extents Overflow File

Allocation File

Attributes File

Startup File

Unicode Subtleties

HFS Wrapper

Volume Consistency Checks

Summary

Downloadables

This Technote describes the on-disk format for
an HFS Plus volume. It does not describe
any programming interfaces for HFS Plus
volumes.

This technote is directed at developers who
need to work with HFS Plus at a very low
level, below the abstraction provided by the
File Manager programming interface. This
includes developers of disk recovery utilities
and programmers implementing HFS Plus
support on other platforms.

This technote assumes that you have a
conceptual understanding of the HFS volume
format, as described in Inside Macintosh:
Files.

 Updated: [Jan 18 2000]

HFS Plus Basics

HFS Plus is a new volume format for Mac OS. HFS Plus was introduced with Mac OS 8.1. HFS Plus is architecturally very similar to
the HFS, although there have been a number of changes. The following table summarizes the important differences.

Table 1 HFS and HFS Plus Compared

TN 1150: HFS Plus Volume Format Page: 2

Feature HFS HFS Plus Benefit/Comment

User visible name Mac OS Standard Mac OS Extended

Number of
allocation blocks 16 bits worth 32 bits worth Radical decrease in disk space used on large volumes, and a

larger number of files per volume.

Long file names 31 characters 255 characters Obvious user benefit; also improves cross-platform
compatibility

File name encoding MacRoman Unicode Allows for international-friendly file names, including
mixed script names

File/folder
attributes

Support for fixed size
attributes (FInfo and
FXInfo)

Allows for future
meta-data extensions

Future systems may use metadata for a richer Finder
experience

OS startup support System Folder ID Also supports a
dedicated startup file

May help non-Mac OS systems to boot from HFS Plus
volumes

catalog node size 512 bytes 4 KB

Maintains efficiency in the face of the other changes. (This
larger catalog node size is due to the much longer file names
[512 bytes as opposed to 32 bytes], and larger catalog
records (because of more/larger fields)).

Maximum file size 231 bytes 263 bytes
Obvious user benefit, especially for multimedia content
creators.

The extent to which these HFS Plus features are available through a programming interface is OS dependent. Currently (version 8.5),
Mac OS does not provide programming interfaces for any HFS Plus-specific features.

To summarize, the key goals that guided the design of the HFS Plus volume format were:

efficient use of disk space,
international-friendly file names,
future support for named forks, and
ease booting on non-Mac OS operating systems.

The following sections describes these goals, and the differences between HFS and HFS Plus required to meet these goals.

Efficient Use of Disk Space

HFS divides the total space on a volume into equal-sized pieces called allocation blocks. It uses 16-bit fields to identify a particular

allocation block, so there must be less than 216 (65,536) allocation blocks on an HFS volume. The size of an allocation block is
typically the smallest multiple of 512 such that there are less than 65,536 allocation blocks on the volume (i.e., the volume size
divided by 65,535, rounded up to a multiple of 512). Any non-empty fork must occupy an integral number of allocation blocks. This
means that the amount of space occupied by a fork is rounded up to a multiple of the allocation block size. As volumes (and therefore
allocation blocks) get bigger, the amount of allocated but unused space increases.

HFS Plus uses 32-bit values to identify allocation blocks. This allows up to 2 32 (4,294,967,296) allocation blocks on a volume.
More allocation blocks means a smaller allocation block size, especially on volumes of 1 GB or larger, which in turn means less
average wasted space (the fraction of an allocation block at the end of a fork, where the entire allocation block is not actually used). It
also means you can have more files, since the available space can be more finely distributed among a larger number of files. This
change is especially beneficial if the volume contains a large number of small files.

International-Friendly File Names

HFS uses 31-byte strings to store file names. HFS does not store any kind of script information with the file name to indicate how it
should be interpreted. File names are compared and sorted using a routine that assumes a Roman script, wreaking havoc for names
that use some other script (such as Japanese). Worse, this algorithm is buggy, even for Roman scripts. The Finder and other
applications interpret the file name based on the script system in use at runtime.

Note:
The problem with using non-Roman scripts in an HFS file name is that HFS compares file names in a case
insensitive fashion. The case-insensitive comparison algorithm assume a MacRoman encoding. When presented
with non-Roman text, this algorithm fails in strange ways. The upshot is that HFS decides that certain
non-Roman file names are duplicates of other file names, even though they are not duplicates in the source
encoding.

HFS Plus uses up to 255 Unicode characters to store file names. Allowing up to 255 characters makes it easier to have very
descriptive names. Long names are especially useful when the name is computer-generated (such as Java class names).

The HFS catalog B-tree uses 512-byte nodes. An HFS Plus file name can occupy up to 512 bytes (including the length field). Since a

TN 1150: HFS Plus Volume Format Page: 3

B-tree index node must store at least two keys (plus pointers and node descriptor), the HFS Plus catalog must use a larger node size.
The typical node size for an HFS Plus catalog B-tree is 4 KB.

In the HFS catalog B-tree, the keys stored in an index node always occupy a fixed amount of space, the maximum key size. In HFS Plus,
the keys in an index node may occupy a variable amount of space determined by the actual size of the key. This allows for less wasted
space in index nodes and creates, on typical disks, a substantially larger branching factor in the tree (requiring fewer node accesses
to find any given record).

Future Support for Named Forks

Files on an HFS volume have two forks: a data fork and a resource fork, either of which may be empty (zero length). Files and
directories also contain a small amount of additional information (known as catalog information or metadata) such as the modification
date or Finder info.

Apple software teams and third-party developers often need to store information associated with particular files and directories. In
some cases (e.g., custom icons for files), the data or resource fork is appropriate. But in other cases (e.g., custom icons for
directories, or File Sharing access privileges), using the data or resource fork is not appropriate or not possible.

A number of products have implemented special-purpose solutions for storing their file- and directory-related data. But because
these are not managed by the file system, they can become inconsistent with the file and directory structure.

HFS Plus has an attribute file, another B-tree, that can be used to store additional information for a file or directory. Since it is part
of the volume format, this information can be kept with the file or directory as is it moved or renamed, and can be deleted when the
file or directory is deleted. The contents of the attribute file's records have not been fully defined yet, but the goal is to provide an
arbitrary number of forks, identified by Unicode names, for any file or directory.

Note:
Because the attributes file has not been fully defined yet, current implementations are unable to delete named
forks when a file or directory is deleted. Future implementations that properly delete named forks will need to
check for these orphaned named forks and delete them when the volume is mounted. The
lastMountedVersion field of the volume header can be used to detect when such a check needs to take place.

Whenever possible, an application should delete named forks rather than orphan them.

Easy Startup of Alternative Operating Systems

HFS Plus defines a special startup file, an unstructured fork that can be found easily during system startup. The location and size of
the startup file is described in the volume header. The startup file is especially useful on systems that don't have HFS or HFS Plus
support in ROM. In many respects, the startup file is a generalization of the HFS boot blocks, one that provides a much larger,
variable-sized amount of storage.

Note:
The startup file is not currently used by Mac OS.

Back to top

Core Concepts

HFS Plus uses a number of interrelated structures to manage the organization of data on the volume. These structures include:

the volume header
the catalog file
the extents overflow file
the attributes file
the allocation file (bitmap)
the startup file

Each of these complex structures is described in its own section. The purpose of this section is to give an overview of the volume
format, describe how the structures fit together, and define the primitive data types used by HFS Plus.

Terminology

HFS Plus is a specification of how a volume (files that contain user data, along with the structure to retrieve that data) exists on a
disk (the medium on which user data is stored). The disk is divided into 512 byte logical blocks of data, known as sectors. Sectors
are identified by a sector number, starting at 0 and continuing to the last sector on the disk (whose number is the disk size divided
by 512 minus 1).

HFS Plus allocates sectors in groups called allocation blocks; an allocation block is simply a group of consecutive sectors. The size

TN 1150: HFS Plus Volume Format Page: 4

(in bytes) of an allocation block is a power of two, greater than or equal to 512, which is set when the volume is initialized. This
value cannot be easily changed without reinitializing the volume. Allocation blocks are identified by a 32-bit allocation block

number, so there can be at most 232 allocation blocks on a volume. Future implementations of the file system will be optimized for
4K allocation blocks.

All of the volume's structures, including the volume header, are part of one or more allocation blocks (with the possible exception of
the alternate volume header, discussed below). This differs from HFS, which has several structures (including the boot blocks,
master directory block, and bitmap) which are not part of any allocation block.

You can find the first sector of an allocation block by simply multiplying the allocation block number by the allocation block size and
dividing by the sector size (512).

IMPORTANT:
This clean mapping between an allocation block and a sector is muddied by the possibility of an HFS wrapper.
HFS Plus sectors are always considered to start at the beginning of the disk embedded in the wrapper, which
may not be the start of the real disk.

To promote file contiguity and avoid fragmentation, disk space is typically allocated to files in groups of allocation blocks, or clumps.
The clump size is always a multiple of the allocation block size. The default clump size is specified in the volume header.

IMPORTANT:
The actual algorithm used to extend files is not part of this specification. The implementation is not required to
act on the clump values in the volume header or file catalog records; it merely provides space to store those
values.

Note:
The current non-contiguous algorithm in Mac OS will begin allocating at the next free block it finds. It will
extend its allocation up to a multiple of the clump size if there is sufficient free space contiguous with the end of
the requested allocation. Space is not allocated in contiguous clump-sized pieces.

Every HFS Plus volume must have a volume header. The volume header contains sundry information about the volume, such as the
date and time of the volume's creation and the number of files on the volume, as well as the location of the other key structures on the
volume. The volume header is always located at sector 2.

A copy of the volume header, known as the alternate volume header, is stored in the second to last sector of the volume (starting
1024 bytes before the end of the volume). Sectors 0 and 1, and the last sector on the volume, are reserved. The actual number of
allocation blocks occupied by the volume header and the alternate volume header varies depending on the allocation block size.

An HFS Plus volume contains five special files, which store the file system structures required to access the file system payload:
folders, user files, and attributes. The special files are the catalog file, the extents overflow file, the allocation file, the attributes
file and the startup file. Special files only have a single fork (the data fork) and the extents of that fork are described in the volume
header.

The catalog file is a special file that describes the folder and file hierarchy on a volume. The catalog file contains vital information
about all the files and folders on a volume, as well as the catalog information, for the files and folders that are stored in the catalog
file. The catalog file is organized as a B-tree (or "balanced tree") to allow quick and efficient searches through a large folder
hierarchy.

The catalog file stores the file and folder names, which consist of up to 255 Unicode characters, as described below.

Note:
The B-Trees section contains an in-depth description of the B-trees used by HFS Plus.

The attributes file is another special file which contains additional data for a file or folder. Like the catalog file, the attributes file
is organized as a B-tree. In the future, it will be used to store information about additional forks. (This is similar to the way the
catalog file stores information about the data and resource forks of a file.)

HFS Plus tracks which allocation blocks belong to a fork by maintaining a list of the fork's extents. An extent is a contiguous range of
allocation blocks allocated to some fork, represented by a pair of numbers: the first allocation block number and the number of
allocation blocks. For a user file, the first eight extents of each fork are stored in the volume's catalog file. Any additional extents are
stored in the extents overflow file, which is also organized as a B-tree.

The extents overflow file also stores additional extents for the special files except for the extents overflow file itself. However, if the
startup file requires more than the eight extents in the Volume Header (and thus requires additional extents in the extents overflow
file), it would be much harder to access, and defeat the purpose of the startup file. So, in practice, a startup file should be allocated

TN 1150: HFS Plus Volume Format Page: 5

such that it doesn't need additional extents in the extents overflow file.

The allocation file is a special file which specifies whether an allocation block is used or free. This performs the same role as the
HFS volume bitmap, although making it a file adds flexibility to the volume format.

The startup file is another special file which facilitates booting of non-Mac OS computers from HFS Plus volumes.

Finally, the bad block file prevents the volume from using certain allocation blocks because the portion of the media that stores
those blocks is defective. The bad block file is neither a special file nor a user file; this is merely convention used in the extents
overflow file. See Bad Block File for more details.

Broad Structure

The bulk of an HFS Plus volume consists of seven types of information or areas:

1. user file forks,
2. the allocation file (bitmap),
3. the catalog file,
4. the extents overflow file,
5. the attributes file,
6. the startup file, and
7. unused space.

The general structure of an HFS Plus volume is illustrated in Figure 1.

Figure 1. Organization of an HFS Plus Volumes.

The volume header is always at a fixed location (sector 2). However, the special files can appear anywhere between the volume header
block and the alternate volume header block. These files can appear in any order and are not necessarily contiguous.

The information on HFS Plus volumes (with the possible exception of the alternate volume header, as discussed below) is organized
solely in allocation blocks. Allocation blocks are simply a means of grouping sectors into more convenient parcels. The size of an

TN 1150: HFS Plus Volume Format Page: 6

allocation block is a power of two, and at least 512. The allocation block size is a volume header parameter whose value is set when
the volume is initialized; it cannot be changed easily without reinitializing the volume.

Note:
The allocation block size is a classic speed-versus- space tradeoff. Increasing the allocation block size
decreases the size of the allocation file, and often reduces the number of separate extents that must be
manipulated for every file. It also tends to increase the average size of a disk I/O, which decreases overhead.
Decreasing the allocation block size reduces the average number of wasted bytes per file, making more efficient
use of the volume's space.

WARNING:
While HFS Plus disks with an allocation block size smaller than 4 KB are legal, DTS recommends that you
always use a minimum 4 KB allocation block size. Disks with a smaller allocation block size will be markedly
slower when used on systems that do 4 KB clustered I/O, such as Mac OS X Server.

Primitive Data Types

This section describes the primitive data types used on an HFS Plus volume. All data structures in this volume are defined in the C
language. The specification assumes that the compiler will not insert any padding fields. Any necessary padding fields are explicitly
declared.

IMPORTANT:
The HFS Plus volume format is largely derived from the HFS volume format. When defining the new format, it
was decided to remove unused fields (primarily legacy MFS fields) and arrange all the remaining fields so that
similar fields were grouped together and that all fields had proper alignment (using PowerPC alignment rules).

Reserved and Pad Fields

In many places this specification describes a field, or bit within a field, as reserved. This has a definite meaning, namely:

When creating a structure with a reserved field, an implementation must set the field to zero.
When reading existing structures, an implementation must ignore any value in the field.
When modifying a structure with a reserved field, an implementation must preserve the value of the reserved field.

This definition allows for backward-compatible enhancements to the volume format.

Pad fields have exactly the same semantics as a reserved field. The different name merely reflects the designer's goals when including
the field, not the behavior of the implementation.

Integer Types

All integer values are defined by one of the following primitive types: UInt8, SInt8, UInt16, SInt16, UInt32, SInt32,
UInt64, and SInt64. These represent unsigned and signed (2's complement) 8-bit, 16-bit, 32-bit, and 64-bit numbers.

All multi-byte integer values are stored in big-endian format. That is, the bytes are stored in order from most significant byte
through least significant byte, in consecutive bytes, at increasing offset from the start of a block.

HFS Plus Names

File and folder names on HFS Plus consist of up to 255 Unicode characters with a preceding 16-bit length, defined by the type
HFSUniStr255.

struct HFSUniStr255 {
 UInt16 length;
 UniChar unicode[255];
};
typedef struct HFSUniStr255 HFSUniStr255;
typedef const HFSUniStr255 *ConstHFSUniStr255Param;

UniChar is a UInt16 that represents a character as defined in the Unicode character set defined by The Unicode Standard, Version
2.0 [Unicode, Inc. ISBN 0-201-48345-9].

TN 1150: HFS Plus Volume Format Page: 7

HFS Plus stores strings fully decomposed and in canonical order. HFS Plus compares strings in a case-insensitive fashion. Strings
may contain Unicode characters that should be ignored by this comparison. For more details on these subtleties, see Unicode
Subtleties.

Text Encodings

Current Mac OS programming interfaces pass filenames as Pascal strings (either as a StringPtr or as a Str63 embedded in an
FSSpec). The characters in those strings are not Unicode; the encoding varies depending on how the system software was localized
and what language kits are installed. Identical sequences of bytes can represent vastly different Unicode character sequences.
Similarly, many Unicode characters belong to more than one Mac OS text encoding.

HFS Plus includes two features specifically designed to help Mac OS handle the conversion between Mac OS-encoded Pascal strings and
Unicode. The first feature is the textEncoding field of the file and folder catalog records. This field is defined as a hint to be used
when converting the record's Unicode name back to a Mac OS- encoded Pascal string.

The valid values for the textEncoding field are defined in Table 2.

Table 2 Text Encodings

Encoding Name Value Encoding Name Value

MacRoman 0 MacThai 21

MacJapanese 1 MacLaotian 22

MacChineseTrad 2 MacGeorgian 23

MacKorean 3 MacArmenian 24

MacArabic 4 MacChineseSimp 25

MacHebrew 5 MacTibetan 26

MacGreek 6 MacMongolian 27

MacCyrillic 7 MacEthiopic 28

MacDevanagari 9 MacCentralEurRoman 29

MacGurmukhi 10 MacVietnamese 30

MacGujarati 11 MacExtArabic 31

MacOriya 12 MacSymbol 33

MacBengali 13 MacDingbats 34

MacTamil 14 MacTurkish 35

MacTelugu 15 MacCroatian 36

MacKannada 16 MacIcelandic 37

MacMalayalam 17 MacRomanian 38

MacSinhalese 18 MacFarsi 140 (49)

MacBurmese 19 MacUkrainian 152 (48)

MacKhmer 20

IMPORTANT:
Non-Mac OS implementations of HFS Plus may choose to simply ignore the textEncoding field. In this case,
the field should be treated as a reserved field.

Note:
Mac OS uses the textEncoding field in the following way. When a file or folder is created or renamed, Mac
OS converts the supplied Pascal string to a HFSUniStr255. It stores the source text encoding in the
textEncoding field of the catalog record. When Mac OS needs to create a Pascal string for that record, it uses
the textEncoding as a hint to the text conversion process. This hint ensures a high-degree of round-trip
conversion fidelity, which in turn improves compatibility.

The second use of text encodings in HFS Plus is the encodingsBitmap field of the volume header. For each encoding used by a
catalog node on the volume, the corresponding bit in the encodingsBitmap field must be set. Bit 0 is the least significant bit; bit
63 is the most significant bit.

It is acceptable for a bit in this bitmap to be set even though no names on the volume use that encoding. This means that when an

TN 1150: HFS Plus Volume Format Page: 8

implementation deletes or renames an object, it does not have to clear the encoding bit if that was the last name to use the given
encoding.

IMPORTANT:
The text encoding value is used as the number of the bit to set in encodingsBitmap to indicate that the
encoding is used on the volume. However, encodingsBitmap is only 64 bits long, and thus the text encoding
values for MacFarsi and MacUkrainian cannot be used as bit numbers. Instead, another bit number (shown in
parenthesis) is used.

Note:
Mac OS uses the encodingsBitmap field to determine which text encoding conversion tables to load when the
volume is mounted. Text encoding conversion tables are large, and loading them unnecessarily is a waste of
memory. Most systems only use one text encoding, so there is a substantial benefit to recording which encodings
are required on a volume-by-volume basis.

WARNING:
Non-Mac OS implementations of HFS Plus must correctly maintain the encodingsBitmap field. Specifically,
if the implementation sets the textEncoding field a catalog record to a text-encoding value, it must ensure
that the corresponding bit is set in encodingsBitmap to ensure correct operation when that disk is mounted
on a system running Mac OS.

HFS Plus Dates

HFS Plus stores dates in several data structures, including the volume header and catalog records. These dates are stored in unsigned
32-bit integers (UInt32) containing the number of seconds since midnight, January 1, 1904, GMT. This is slightly different from
HFS, where the value represents local time.

The maximum representable date is February 6, 2040 at 06:28:15 GMT.

The date values do not account for leap seconds. They do include a leap day in every year that is evenly divisible by four. This is
sufficient given that the range of representable dates does not contain 1900 or 2100, neither of which have leap days.

The implementation is responsible for converting these times to the format expected by client software. For example, the Mac OS File
Manager passes dates in local time; the Mac OS HFS Plus implementation converts dates between local time and GMT as appropriate.

Note:
It should be noted that the creation date stored in the Volume Header is NOT stored in GMT; it is stored in local
time. The reason for this is that many applications (including backup utilities) use the volume's creation date
as a relatively unique identifier. If the date was stored in GMT, and automatically converted to local time by an
implementation (like Mac OS), the value would appear to change when the local time zone or daylight savings
time settings change (and thus cause some applications to improperly identify the volume). The use of the
volume's creation date as a unique identifier outweighs its use as a date. This change was introduced late in the
Mac OS 8.1 project.

HFS Plus Permissions

For each file and folder, HFS Plus maintains a record containing access permissions, defined by the HFSPlusPermissions
structure. This structure is intended as a placeholder. Future specifications may define a way to layer POSIX or AFP permissions onto
the HFS Plus volume format.

IMPORTANT:
The details of this structure have not been finalized and are subject to change; however, the size of the
structure will not change.

TN 1150: HFS Plus Volume Format Page: 9

struct HFSPlusPermissions {
 UInt32 ownerID;
 UInt32 groupID;
 UInt32 permissions;
 UInt32 specialDevice;
};
typedef struct HFSPlusPermissions HFSPlusPermissions;

The fields have the following meaning:

ownerID
An implementation must treat this as a reserved field. This field is intended to hold a number uniquely identifying the owner of the
file or folder.

groupID
An implementation must treat this as a reserved field. This field is intended to hold a number uniquely identifying the group of the
file or folder.

permissions
An implementation must treat this as a reserved field. This field is intended to hold the access rights for the owner, group, and all
other users.

specialDevice
An implementation must treat this as a reserved field. This field is intended for use by POSIX-based systems to hold extra
information that would typically be held in a POSIX file system.

WARNING:
Mac OS handles the permission structure as defined in this specification, that is, as a reserved field.

Fork Data Structure

HFS Plus maintains information about the contents of a file using the HFSPlusForkData structure. Two such structures -- one for
the resource and one for the data fork -- are stored in the catalog record for each user file. In addition, the volume header contains a
fork data structure for each special file.

An unused extent descriptor in an extent record would have both startBlock and blockCount set to zero. For example, if a given
fork occupied three extents, then the last five extent descriptors would be all zeroes.

struct HFSPlusForkData {
 UInt64 logicalSize;
 UInt32 clumpSize;
 UInt32 totalBlocks;
 HFSPlusExtentRecord extents;
};
typedef struct HFSPlusForkData HFSPlusForkData;

typedef HFSPlusExtentDescriptor HFSPlusExtentRecord[8];

The fields have the following meaning:

logicalSize
The size, in bytes, of the valid data in the fork.

clumpSize
The clump size for the fork in bytes. This is a hint to the implementation as to the size by which a growing file should be
extended.

totalBlocks
The total number of allocation blocks used by all the extents in this fork.

extents
An array of extent descriptors for the fork. This array holds the first eight extent descriptors. If more extent descriptors are
required, they are stored in the extents overflow file.

TN 1150: HFS Plus Volume Format Page: 10

IMPORTANT:
The HFSPlusExtentRecord is also the data record used in the extents overflow file (the extent record).

The HFSPlusExtentDescriptor structure is used to hold information about a specific extent.

struct HFSPlusExtentDescriptor {
 UInt32 startBlock;
 UInt32 blockCount;
};
typedef struct HFSPlusExtentDescriptor HFSPlusExtentDescriptor;

The fields have the following meaning:

startBlock
The first allocation block in the extent.

blockCount
The length, in allocation blocks, of the extent.

Back to top

Volume Header

Each HFS Plus volume contains a volume header at sector 2. The volume header -- analogous to the master directory block (MDB) for
HFS -- contains information about the volume as a whole, including the location of other key structures in the volume. The
implementation is responsible for ensuring that this structure is updated before the volume is unmounted.

A copy of the volume header, the alternate volume header, is stored in the second to last sector of the volume (starting 1024 bytes
before the end of the volume). The implementation should only update this copy when the length of one of the special files changes. The
alternate volume header is intended for use solely by disk repair utilities.

The first two sectors (before the volume header) and the last sector (after the alternate volume header) are reserved.

Note:
The first two sectors are reserved for use as boot blocks; the Mac OS Finder will write to them when the System
Folder changes. The boot block format is outside the scope of this specification. It is defined in Inside Macintosh:
Files.

The last sector is used during Apple's CPU manufacturing process.

The allocation block (or blocks) containing sectors 0 through 2 are marked as used in the allocation file (see the Allocation File
section). Also, in order to accommodate the alternate volume header and last (reserved) sector, the last allocation block (or two
allocation blocks, if the volume is formatted with 512-byte allocation blocks) is also marked as used in the allocation file,.

IMPORTANT:
The alternate volume header is always stored in the second to last sector . If the disk size is not an even
multiple of the allocation block size, this sector may lie beyond the last allocation block. However, the last
allocation block (or two allocation blocks for a volume formatted with 512-byte allocation blocks) is still
reserved even if the alternate volume header is not stored there.

The volume header is described by the HFSPlusVolumeHeader type.

TN 1150: HFS Plus Volume Format Page: 11

struct HFSPlusVolumeHeader {
 UInt16 signature;
 UInt16 version;
 UInt32 attributes;
 UInt32 lastMountedVersion;
 UInt32 reserved;

 UInt32 createDate;
 UInt32 modifyDate;
 UInt32 backupDate;
 UInt32 checkedDate;

 UInt32 fileCount;
 UInt32 folderCount;

 UInt32 blockSize;
 UInt32 totalBlocks;
 UInt32 freeBlocks;

 UInt32 nextAllocation;
 UInt32 rsrcClumpSize;
 UInt32 dataClumpSize;
 HFSCatalogNodeID nextCatalogID;

 UInt32 writeCount;
 UInt64 encodingsBitmap;

 UInt8 finderInfo[32];

 HFSPlusForkData allocationFile;
 HFSPlusForkData extentsFile;
 HFSPlusForkData catalogFile;
 HFSPlusForkData attributesFile;
 HFSPlusForkData startupFile;
};
typedef struct HFSPlusVolumeHeader HFSPlusVolumeHeader;

The fields have the following meaning:

signature
The volume signature, which must be kHFSPlusSigWord ('H+') for an HFS Plus volume.

version
The version of the volume format, which is currently 4 (kHFSPlusVersion).

attributes
Volume attributes, as described below.

lastMountedVersion
A value which uniquely identifies the implementation that last mounted this volume for writing. This value can be used by future
implementations to detect volumes that were last mounted by older implementations and check them for deficiencies. When a
volume has been mounted for writing, the implementation should update this field with its own unique value. Third-party
implementations of HFS Plus should place a registered creator code in this field. The value used by Mac OS 8.1 is '8.10'
(kHFSPlusMountVersion).

Note:
It is very important for implementations (and utilities that directly modify the volume!) to set the
lastMountedVersion. It is also important to choose different values when non-trivial changes are made to
an implementation or utility. If a bug is found in an implementation or utility, and it sets the
lastMountedVersion correctly, it will be much easier for other implementations and utilities to detect and
correct any problems.

reserved

TN 1150: HFS Plus Volume Format Page: 12

An implementation must treat this as a reserved field.
createDate

The date and time when the volume was created. See HFS Plus Dates for a description of the format.
modifyDate

The date and time when the volume was last modified. See HFS Plus Dates for a description of the format.
backupDate

The date and time when the volume was last backed up. The volume format requires no special action on this field; it simply
defines the field for the benefit of user programs. See HFS Plus Dates for a description of the format.

checkedDate
The date and time when the volume was last checked for consistency. Disk checking tools, such as Disk First Aid, must set this
when they perform a disk check. A disk checking tool may use this date to perform periodic checking of a volume.

fileCount
The total number of files on the volume. The fileCount field does not include the special files. It should equal the number of
file records found in the catalog file.

folderCount
The total number of folders on the volume. ThefolderCount field does not include the root folder. It should equal the number
of folder records in the catalog file, minus one (since the root folder has a folder record in the catalog file).

blockSize
The allocation block size, in bytes.

totalBlocks
The total number of allocation blocks on the disk. For a disk whose size is an even multiple of the allocation block size, all sectors
on the disk are included in an allocation block, including the volume header and alternate volume header. For a disk whose size is
not an even multiple of the allocation block size, only the allocation blocks that will fit entirely on the disk are counted here. The
remaining sectors at the end of the disk are not use by the volume format (except for storing the alternate volume header, as
described above).

freeBlocks
The total number of unused allocation blocks on the disk.

nextAllocation
Start of next allocation search. The nextAllocation field is used by Mac OS as a hint for where to start searching for free
allocation blocks when allocating space for a file. It contains the allocation block number where the search should begin. An
implementation that doesn't want to use this kind of hint can just treat the field as reserved. [Implementation details: the current
implementation for Mac OS 8 typically sets it to the first allocation block of the extent most recently allocated. It is not set to the
allocation block immediately following the most recently allocated extent because of the likelihood of that extent being shortened
when the file is closed (since a whole clump may have been allocated but not actually used).] See Allocation File section for
details.

rsrcClumpSize
The default clump size for resource forks, in bytes. This is a hint to the implementation as to the size by which a growing file
should be extended.

dataClumpSize
The default clump size for data forks, in bytes. This is a hint to the implementation as to the size by which a growing file should
be extended.

nextCatalogID
The next unused catalog ID. See Catalog File for a description of catalog IDs.

writeCount
This field is incremented every time a volume is mounted. This allows an implementation to keep the volume mounted even when
the media is ejected (or otherwise inaccessible). When the media is re-inserted, the implementation can check this field to
determine when the media has been changed while it was ejected. It is very important that an implementation or utility change the
writeCount field if it modifies the volume's structures directly. This is particularly important if it adds or deletes items on the
volume.

encodingsBitmap
This field keeps track of the text encodings used in the file and folder names on the volume. This bitmap enables some
performance optimizations for implementations that don't use Unicode names directly. See the Text Encoding sections for details.

finderInfo
This field contains information used by the Mac OS Finder. It's format is not part of the HFS Plus specification.

allocationFile
Information about the location and size of the allocation file. See Fork Data Structure for a description of the
HFSPlusForkData type.

extentsFile
Information about the location and size of the extents file. See Fork Data Structure for a description of the HFSPlusForkData
type.

catalogFile
Information about the location and size of the catalog file. See Fork Data Structure for a description of the HFSPlusForkData
type.

attributesFile
Information about the location and size of the attributes file. See Fork Data Structure for a description of the
HFSPlusForkData type.

startupFile

TN 1150: HFS Plus Volume Format Page: 13

Information about the location and size of the startup file. See Fork Data Structure for a description of the HFSPlusForkData
type.

Volume Attributes

The attributes field of a volume header is treated as a set of one-bit flags. The definition of the bits is given by the constants listed
below. Bit 0 is the least significant bit; bit 31 is the most significant bit.

enum {
 /* Bits 0-6 are reserved */
 kHFSVolumeHardwareLockBit = 7,
 kHFSVolumeUnmountedBit = 8,
 kHFSVolumeSparedBlocksBit = 9,
 kHFSVolumeNoCacheRequiredBit = 10,
 kHFSBootVolumeInconsistentBit = 11,
 /* Bits 12-14 are reserved */
 kHFSVolumeSoftwareLockBit = 15
};

The bits have the following meaning:

bits 0-7
An implementation must treat these as reserved fields.

kHFSVolumeUnmountedBit (bit 8)
This bit is set if the volume was correctly flushed before being unmounted or ejected. An implementation must clear this bit on the
media when it mounts a volume for writing. An implementation must set this bit on the media as the last step of unmounting a
writable volume, after all other volume information has been flushed. If an implementation is asked to mount a volume where this
bit is clear, it must assume the volume is inconsistent, and do appropriate consistency checking before using the volume.

kHFSVolumeSparedBlocksBit (bit 9)
This bit is set if there are any records in the extents overflow file for bad blocks (belonging to file ID kHFSBadBlockFileID).
See Bad Block File for details.

kHFSVolumeNoCacheRequiredBit (bit 10)
This bit is set if the blocks from this volume should not be cached. For example, a RAM or ROM disk is actually stored in
memory, so using additional memory to cache the volume's contents would be wasteful.

kHFSBootVolumeInconsistentBit (bit 11)
This bit is similar to kHFSVolumeUnmountedBit, but inverted in meaning. An implementation must set this bit on the media
when it mounts a volume for writing. An implementation must clear this bit on the media as the last step of unmounting a writable
volume, after all other volume information has been flushed. If an implementation is asked to mount a volume where this bit is set,
it must assume the volume is inconsistent, and do appropriate consistency checking before using the volume.

bits 12 through 14
An implementation must treat these as reserved fields.

kHFSVolumeSoftwareLockBit (bit 15)
This bit is set if the volume is write-protected due to a software setting. Any implementations must refuse to write to a volume with
this bit set. This flag is especially useful for write-protecting a volume on a media that cannot be write-protected otherwise, or for
protecting an individual partition on a partitioned device.

Note:
An implementation may keep a copy of the attributes in memory and use bits 0-7 for its own runtime flags. As
an example, Mac OS uses bit 7, kHFSVolumeHardwareLockBit, to indicate that the volume is
write-protected due to some hardware setting.

Note:
The existence of two volume consistency bits (kHFSVolumeUnmountedBit and
kHFSBootVolumeInconsistentBit) deserves an explanation. Macintosh ROMs check the consistency of a
boot volume if kHFSVolumeUnmountedBit is clear. The ROM-based check is very slow, annoyingly so. This
checking code was significantly optimized in Mac OS 7.6. To prevent the ROM check from being used, Mac OS 7.6
(and higher) leaves the original consistency check bit (kHFSVolumeUnmountedBit) set at all times.
Instead, an alternative flag (kHFSBootVolumeInconsistentBit) is used to signal that the disk needs a
consistency check.

TN 1150: HFS Plus Volume Format Page: 14

Note:
For the boot volume, the kHFSBootVolumeInconsistentBit should be used as described but
kHFSVolumeUnmountedBit should remain set; for all other volumes, use the
kHFSVolumeUnmountedBit as described but keep the kHFSBootVolumeInconsistentBit clear. This
is an optimization that prevents the Mac OS ROM from doing a very slow consistency check when the boot
volume is mounted since it only checks kHFSVolumeUnmountedBit, and won't do a consistency check; later
on, the File Manager will see the kHFSBootVolumeInconsistentBit set and do a better, faster
consistency check. (It would be OK to always use both bits at the expense of a slower Mac OS boot.)

Back to top

B-Trees

Note:
For a practical description of the algorithms used to maintain a B-tree, seeAlgorithms in C , Robert Sedgewick,
Addison-Wesley, 1992. ISBN: 0201514257.

Many textbooks describe B-trees in which an index node contains N keys and N+1 pointers, and where keys less
than key #X lie in the subtree pointed to by pointer #X, and keys greater than key #X lie in the subtree pointed
to by pointer #X+1. (The B-tree implementor defines whether to use pointer #X or #X+1 for equal keys.)

HFS and HFS Plus are slightly different; in a given subtree, there are no keys less than the first key of that
subtree's root node.

This section describes the B-tree structure used for the catalog, extents overflow, and attributes files. A B-tree is stored in file data
fork. Each B-tree has a HFSPlusForkData structure in the volume header that describes the size and initial extents of that data
fork.

Note:
Special files do not have a resource fork because there is no place to store its HFSPlusForkData in the
volume header. However, it's still important that the B-tree is in the data fork because the fork is part of the
key used to store B-tree extents in the extents overflow file.

A B-tree file is divided up into fixed-size nodes, each of which contains records, which consist of a key and some data. The purpose
of the B-tree is to efficiently map a key into its corresponding data. To achieve this, keys must be ordered, that is, there must be a
well-defined way to decide whether one key is smaller than, equal to, or larger than another key.

The node size (which is expressed in bytes) must be power of two, from 512 through 32,768, inclusive. The node size of a B-tree
is determined when the B-tree is created. The logical length of a B-tree file is just the number of nodes times the node size.

There are four kinds of nodes.

Each B-tree contains a single header node. The header node is always the first node in the B-tree. It contains the
information needed to find other any other node in the tree.
Map nodes contain map records, which hold any allocation data (a bitmap that describes the free nodes in the B-tree) that
overflows the map record in the header node.
Index nodes hold pointer records that determine the structure of the B-tree.
Leaf nodes hold data records that contain the data associated with a given key. The key for each data record must be unique.

All nodes share a common structure, described in the next section.

Node Structure

Nodes are indicated by number. The node's number can be calculated by dividing its offset into the file by the node size. Each node has
the same general structure, consisting of three main parts: a node descriptor at the beginning of the node, a list of record offsets at the
end of the node, and a list of records. This structure is depicted in Figure 2.

TN 1150: HFS Plus Volume Format Page: 15

Figure 2. The structure of a node.

The node descriptor contains basic information about the node as well as forward and backward links to other nodes. The
BTNodeDescriptor data type describes this structure.

struct BTNodeDescriptor {
 UInt32 fLink;
 UInt32 bLink;
 SInt8 kind;
 UInt8 height;
 UInt16 numRecords;
 UInt16 reserved;
};
typedef struct BTNodeDescriptor BTNodeDescriptor;

The fields have the following meaning:

fLink
The node number of the next node of this type, or 0 if this is the last node.

bLink
The node number of the previous node of this type, or 0 if this is the first node.

kind
The type of this node. There are four node kinds, defined by the constants listed below.

height
The level, or depth, of this node in the B-tree hierarchy. For the header node, this field must be zero. For leaf nodes, this field must
be one. For index nodes, this field is one greater than the height of the child nodes it points to. The height of a map node is zero,
just like for a header node. (Think of map nodes as extensions of the map record in the header node.)

numRecords
The number of records contained in this node.

reserved
An implementation must treat this as a reserved field.

A node descriptor is always 14 (which is sizeof(BTNodeDescriptor)) bytes long, so the list of records contained in a node
always starts 14 bytes from the start of the node. The size of each record can vary, depending on the record's type and the amount of
information it contains.

The records are accessed using the list of record offsets at the end of the node. Each entry in this list is a UInt16 which contains
the offset, in bytes, from the start of the node to the start of the record. The offsets are stored in reverse order, with the offset for the
first record in the last two bytes of the node, the offset for the second record is in the previous two bytes, and so on. Since the first

TN 1150: HFS Plus Volume Format Page: 16

record is always at offset 14, the last two bytes of the node contain the value 14.

IMPORTANT:
The list of record offsets always contains one more entry than there is records in the node. This entry contains
the offset to the first byte of free space in the node, and thus indicates the size of the last record in the node. If
there is no free space in the node, the entry contains its own byte offset from the start of the node.

The kind field of the node descriptor describes the type of a node, which indicates what kinds of records it contains and, therefore, its
purpose in the B-tree hierarchy. There are four kinds of node types given by the following constants:

enum {
 kBTLeafNode = -1,
 kBTIndexNode = 0,
 kBTHeaderNode = 1,
 kBTMapNode = 2
};

It's important to realise that the B-tree node type determines the type of records found in the node. Leaf nodes always contain data
records. Index nodes always contain pointer records. Map nodes always contain map records. The header node always contains a header
record, a reserved record, and a map record. The four node types and their corresponding records are described in the subsequent
sections.

Header Nodes

The first node (node 0) in every B-tree file is a header node, which contains essential information about the entire B-tree file. There
are three records in the header node. The first record is the B-tree header record. The second is a reserved record that is always 128
bytes long. The last record is the B-tree map record; it occupies all of the remaining space between the reserved record and the
record offsets. The header node is shown in Figure 3.

Figure 3 Header node structure

The fLink field of the header node's node descriptor contains the node number of the first map node, or 0 if there are no map nodes.
The bLink field of the header node's node descriptor must be set to zero.

Header Record

The B-tree header record contains general information about the B-tree such as its size, maximum key length, and the location of

TN 1150: HFS Plus Volume Format Page: 17

the first and last leaf nodes. The data type BTHeaderRec describes the structure of a header record.

struct BTHeaderRec {
 UInt16 treeDepth;
 UInt32 rootNode;
 UInt32 leafRecords;
 UInt32 firstLeafNode;
 UInt32 lastLeafNode;
 UInt16 nodeSize;
 UInt16 maxKeyLength;
 UInt32 totalNodes;
 UInt32 freeNodes;
 UInt16 reserved1;
 UInt32 clumpSize; // misaligned
 UInt8 btreeType;
 UInt8 reserved2;
 UInt32 attributes; // long aligned again
 UInt32 reserved3[16];
};
typedef struct BTHeaderRec BTHeaderRec;

Note:
The root node can be a leaf node (in the case where there is only a single leaf node, and therefore no index nodes,
as might happen with the catalog file on a newly initialized volume). If a tree has no leaf nodes (like the extents
overflow file on a newly initialized volume), the firstLeafNode, lastLeafNode, and rootNode fields
will all be zero. If there is only one leaf node (as may be the case with the catalog file on a newly initialized
volume), firstLeafNode, lastLeafNode, and rootNode will all have the same value (i.e., the node
number of the sole leaf node). The firstLeafNode and lastLeafNode fields just make it easy to walk
through all the leaf nodes by just following fLink/bLink fields.

The fields have the following meaning:

treeDepth
The current depth of the B-tree. Always equal to the height field of the root node.

rootNode
The node number of the root node, the index node that acts as the root of the B-tree. See Index Nodes for details. There is a
possibility that the rootNode is a leaf node. See Inside Macintosh: Files, pp. 2-69 for details.

leafRecords
The total number of records contained in all of the leaf nodes.

firstLeafNode
The node number of the first leaf node. This may be zero if there are no leaf nodes.

lastLeafNode
The node number of the last leaf node. This may be zero if there are no leaf nodes.

nodeSize
The size, in bytes, of a node. This is a power of two, from 512 through 32,768, inclusive.

maxKeyLength
The maximum length of a key in an index or leaf node. HFSVolumes.h has the maxKeyLength values for the catalog and
extents files for both HFS and HFS Plus (kHFSPlusExtentKeyMaximumLength, kHFSExtentKeyMaximumLength,
kHFSPlusCatalogKeyMaximumLength, kHFSCatalogKeyMaximumLength). The maximum key length for the
attributes B-tree will probably be a little larger than for the catalog file. In general, maxKeyLength has to be small enough
(compared to nodeSize) so that a single node can fit two keys of maximum size plus the node descriptor and offsets.

totalNodes
The total number of nodes (be they free or used) in the B-tree. The length of the B-tree file is this value times the nodeSize.

freeNodes
The number of unused nodes in the B-tree.

reserved1
An implementation must treat this as a reserved field.

clumpSize
Ignored for HFS Plus B-trees. The clumpSize field of the HFSPlusForkData record is used instead. For maximum
compatibility, an implementation should probably set the clumpSize in the node descriptor to the same value as the
clumpSize in the HFSPlusForkData when initializing a volume. Otherwise, it should treat the header records's clumpSize

TN 1150: HFS Plus Volume Format Page: 18

as reserved.
btreeType

Must be 0 for HFS Plus B-trees.
reserved2

An implementation must treat this as a reserved field.
attributes

A set of bits used to describe various attributes of the B-tree. The meaning of these bits is given below.
reserved3

An implementation must treat this as a reserved field.

The following constants define the various bits that may be set in the attributes field of the header record.

enum {
 kBTBadCloseMask = 0x00000001,
 kBTBigKeysMask = 0x00000002,
 kBTVariableIndexKeysMask = 0x00000004
};

The bits have the following meaning:

kBTBadCloseMask
This bit indicates that the B-tree was not closed properly and should be checked for consistency. This bit is not used for HFS
Plus B-trees. An implementation must treat this as reserved.

kBTBigKeysMask
If this bit is set, the keyLength field of the keys in index and leaf nodes is UInt16; otherwise, it is a UInt8. This bit must be
set for all HFS Plus B-trees.

kBTVariableIndexKeysMask
If this bit is set, the keys in index nodes occupy the number of bytes indicated by their keyLength field; otherwise, the keys in
index nodes always occupy maxKeyLength bytes. This bit must be set for the HFS Plus Catalog B-tree, and cleared for the
HFS Plus Extents B-tree.

Bits not specified here must be treated as reserved.

Reserved Record

The second record in a header node is always 128 bytes long. It is not used by HFS Plus B-trees. An implementation must treat the
contents of this record as a reserved field.

Map Record

The remaining space in the header node is occupied by a third record, the map record. It is a bitmap that indicates which nodes in
the B-tree are used and which are free. The bits are interpreted in the same way as the bits in the allocation file.

All tolled, the node descriptor, header record, reserved record, and record offsets occupy 256 bytes of the header node. So the size of
the map record (in bytes) is nodeSize minus 256. If there are more nodes in the B-tree than can be represented by the map record
in the header node, map nodes are used to store additional allocation data.

Map Nodes

If the map record of the header node is not large enough to represent all of the nodes in the B-tree, map nodes are used to store the
remaining allocation data. In this case, the fLink field of the header node's node descriptor contains the node number of the first map
node.

A map node consists of the node descriptor and a single map record. The map record is a continuation of the map record contained in the
header node. The size of the map record is the size of the node, minus the size of the node descriptor (14 bytes), minus the size of two
offsets (4 bytes), minus two bytes of free space. That is, the size of the map record is the size of the node minus 20 bytes; this keeps
the length of the map record an even multiple of 4 bytes. Note that the start of the map record is not aligned to a 4-byte boundary: it
starts immediately after the node descriptor (at an offset of 14 bytes).

The B-tree uses as many map nodes as needed to provide allocation data for all of the nodes in the B-tree. The map nodes are chained
through the fLink fields of their node descriptors, starting with the header node. The fLink field of the last map node's node
descriptor is zero. The bLink field is not used for map nodes and must be set to zero for all map nodes.

TN 1150: HFS Plus Volume Format Page: 19

Note:
Not using the bLink field is consistent with the HFS volume format, but not really consistent with the overall
design.

Keyed Records

The records in index and leaf nodes share a common structure. They contain a keyLength, followed by the key itself, followed by the
record data.

The first part of the record, keyLength, is either a UInt8 or a UInt16, depending on the attributes field in the B-tree's
header record. If the kBTBigKeysMask bit is set in attributes, the keyLength is a UInt16; otherwise, it's a UInt8. The
length of the key, as stored in this field, does not include the size of the keyLength field itself.

IMPORTANT:
All HFS Plus B-trees use a UInt16 for their key length.

Immediately following the keyLength is the key itself. The length of the key is determined by the node type and the B-tree
attributes. In leaf nodes, the length is always determined by keyLength. In index nodes, the length depends on the value of the
kBTVariableIndexKeysMask bit in the B-tree attributes in the header record. If the bit is clear, the key occupies a constant
number of bytes, determined by the maxKeyLength field of the B-tree header record. If the bit is set, the key length is determined
by the keyLength field of the keyed record.

Following the key is the record's data. The format of this data depends on the node type, as explained in the next two sections. However,
the data is always aligned on a two-byte boundary and occupies an even number of bytes. To meet the first alignment requirement, a
pad byte must be inserted between the key and the data if the size of the keyLength field plus the size of the key is odd. To meet the
second alignment requirement, a pad byte must be added after the data if the data size is odd.

Index Nodes

The records in an index node are called pointer records. They contain a keyLength, a key, and a node number, expressed a
UInt32. The node whose number is in a pointer record is called a child node of the index node. An index node has two or more
children, depending on the size of the node and the size of the keys in the node.

Note:
A root node does not need to exist (if the tree is empty). And even if one does not exist, it need not be an index
node (i.e., it could be a leaf node -- if all the records fit in a single node).

Leaf Nodes

The bottom level of a B-tree is occupied exclusively by leaf nodes, which contain data records instead of pointer records. The data
records contain a keyLength, a key, and the data associated with that key. The data may be of variable length.

In an HFS Plus B-tree, the data in the data record is the HFS Plus volume structure (such as a CatalogRecord, ExtentRecord,
or AttributeRecord) associated with the key.

Searching for Keyed Records

A B-tree is highly structured to allow for efficient searching, insertion, and removal. This structure primarily affects the keyed
records (pointer records and data records) and the nodes in which they are stored (index nodes and leaf nodes). The following are the
ordering requirements for index and leaf nodes:

Keyed records must be placed in a node such that their keys are in ascending order.
All the nodes in a given level (whose height field is the same) must be chained via their fLink and bLink field. The node
with the smallest keys must be first in the chain and its bLink field must be zero. The node with the largest keys must be
last in the chain and its fLink field must be zero.
For any given node, all the keys in the node must be less than all the keys in the next node in the chain (pointed to by fLink).
Similarly, all the keys in the node must be greater than all the keys in the previous node in the chain (pointed to by bLink).

Keeping the keys ordered in this way makes it possible to quickly search the B-tree to find the data associated with a given key. Figure
4 shows a sample B-tree containing hypothetical keys (in this case, the keys are simply integers).

When an implementation needs to find the data associated with a particular search key, it begins searching at the root node. Starting
with the first record, it searches for the record with the greatest key that is less than or equal to the search key. In then moves to the
child node (typically an index node) and repeats the same process.

TN 1150: HFS Plus Volume Format Page: 20

This process continues until a leaf node is reached. If the key found in the leaf node is equal to the search key, the found record
contains the desired data associated with the search key. If the found key is not equal to the search key, the search key is not present in
the B-tree.

Figure 4. A sample B-Tree

HFS and HFS Plus B-Trees Compared

The structure of the B-trees on an HFS Plus volume is a closely related to the B-tree structure used on an HFS volume. There are
three principal differences: the size of nodes, the size of keys within index nodes, and the size of a key length (UInt8 vs. UInt16).

Node Sizes

In an HFS B-tree, nodes always have a fixed size of 512 bytes.

In an HFS Plus B-tree, the node size is determined by a field (nodeSize) in the header node. The node size must be a power from
512 through 32,768. An implementation must use the nodeSize field to determine the actual node size.

Note:
The header node is always located at the start of the B-tree, so you can find it without knowing the B-tree node
size.

HFS Plus uses the following default node sizes:

4 KB for the catalog file
1 KB for the extents overflow file
4 KB for the attributes file

These sizes are set when the volume is initialized and cannot be easily changed. It is legal to initialize an HFS Plus volume with
different node sizes, but the node sizes must be large enough for an index node to contain two keys of maximum size (plus the other
overhead such as a node descriptor, record offsets, and pointers to children).

IMPORTANT:
The node size of the catalog file must be at least kHFSPlusCatalogMinNodeSize (4096).

IMPORTANT:
The node size of the attributes file must be at least kHFSPlusAttrMinNodeSize (4096).

Key Size in an Index Node

In an HFS B-tree, all of the keys in an index node occupy a fixed amount of space: the maximum key length for that B-tree. This
simplifies the algorithms for inserting and deleting records because, within an index node, one key can be replaced by another key
without worrying whether there is adequate room for the new key. However, it is also somewhat wasteful when the keys are variable
length (such as in the catalog file, where the key length varies with the length of the file name).

In an HFS Plus B-tree, the keys in an index node are allowed to vary in size. This complicates the algorithms for inserting and
deleting records, but reduces wasted space when the length of a key can vary (such as in the catalog file). It also means that the
number of keys in an index node will vary with the actual size of the keys.

TN 1150: HFS Plus Volume Format Page: 21

Back to top

Catalog File

HFS Plus uses a catalog file to maintain information about the hierarchy of files and folders on a volume. A catalog file is organized as
a B-tree file, and hence consists of a header node, index nodes, leaf nodes, and (if necessary) map nodes. The location of the first
extent of the catalog file (and hence of the file's header node) is stored in the volume header. From the catalog file's header node, an
implementation can obtain the node number of the root node of the B-tree. From the root node, an implementation can search the
B-tree for keys, as described in the previous section.

The B-Trees chapter defined a standard rule for the node size of HFS Plus B-trees. As the catalog file is a B-tree, it inherits the
requirements of this rule. In addition, the node size of the catalog file must be at least 4 KB (kHFSPlusCatalogMinNodeSize).

Each file or folder in the catalog file is assigned a unique catalog node ID (CNID). For folders, the CNID is the folder ID, sometimes
called a directory ID, or dirID; for files, it's the file ID. For any given file or folder, the parent ID is the CNID of the folder
containing the file or folder, known as the parent folder.

The catalog node ID is defined by the CatalogNodeID data type.

typedef UInt32 HFSCatalogNodeID;

The first 16 CNIDs are reserved for use by Apple Computer, Inc., and include the following standard assignments:

enum {
 kHFSRootParentID = 1,
 kHFSRootFolderID = 2,
 kHFSExtentsFileID = 3,
 kHFSCatalogFileID = 4,
 kHFSBadBlockFileID = 5,
 kHFSAllocationFileID = 6,
 kHFSStartupFileID = 7,
 kHFSAttributesFileID = 8,
 kHFSBogusExtentFileID = 15,
 kHFSFirstUserCatalogNodeID = 16
};

These constants have the following meaning:

kHFSRootParentID
Parent ID of the root folder.

kHFSRootFolderID
Folder ID of the root folder.

kHFSExtentsFileID
File ID of the extents overflow file.

kHFSCatalogFileID
File ID of the catalog file.

kHFSBadBlockFileID
File ID of the bad block file. The bad block file is not a file in the same sense as a special file and a user file. See Bad Block File
for details.

kHFSAllocationFileID
File ID of the allocation file (introduced with HFS Plus).

kHFSStartupFileID
File ID of the startup file (introduced with HFS Plus).

kHFSAttributesFileID
File ID of the attributes file (introduced with HFS Plus).

kHFSBogusExtentFileID
Used temporarily during ExchangeFiles operations.

kHFSFirstUserCatalogNodeID
First CNID available for use by user files and folders.

In addition, the CNID of zero is never used and serves as a nil value.

TN 1150: HFS Plus Volume Format Page: 22

The implementation must store a number greater than the largest CNID used by any file or folder on the volume in the
nextCatalogID field of the volume header. Typically CNIDs are allocated sequentially, starting at
kHFSFirstUserCatalogNodeID. When the CNID reaches its maximum ($FFFFFFFF), the disk is out of CNIDs and no new files
or folders can be created.

As the catalog file is a B-tree file, it inherits its basic structure from the definition in B-Trees. Beyond that, you need to know only
two things about an HFS Plus catalog file to interpret its data:

1. the format of the key used both in index and leaf nodes, and
2. the format of the leaf node data records (file, folder, and thread records).

Catalog File Key

For a given file, folder, or thread record, the catalog file key consists of the parent folder's CNID and the name of the file or folder.
This structure is described using the HFSPlusCatalogKey type.

struct HFSPlusCatalogKey {
 UInt16 keyLength;
 HFSCatalogNodeID parentID;
 HFSUniStr255 nodeName;
};
typedef struct HFSPlusCatalogKey HFSPlusCatalogKey;

The fields have the following meaning:

keyLength
The keyLength field is required by all keyed records in a B-tree. The catalog file, in common with all HFS Plus B-trees, uses a
large key length (UInt16).

parentID
For file and folder records, this is the folder containing the file or folder represented by the record. For thread records, this is the
CNID of the file or folder itself.

nodeName
This field contains Unicode characters, fully decomposed and in canonical order. For file or folder records, this is the name of the
file or folder inside the parentID folder. For thread records, this is the empty string.

IMPORTANT:
The length of the key varies with the length of the string stored in the nodeName field; it occupies only the
number of bytes required to hold the name. The keyLength field determines the actual length of the key; it
varies between kHFSPlusCatalogKeyMinimumLength (6) to
kHFSPlusCatalogKeyMaximumLength (516).

Note:
The catalog file key mirrors the standard way you specify a file or folder with the Mac OS File Manager
programming interface, with the exception of the volume reference number, which determines which volume's
catalog to search.

Catalog file keys are compared first by parentID and then by nodeName. The parentID is compared as an unsigned 32-bit
integer. The nodeName should be compared in a case-insensitive way, as described in the String Comparison Algorithm section.

For more information about how catalog keys are used to find file, folder, and thread records within the catalog tree, see Catalog Tree
Usage.

Catalog File Data

A catalog file leaf node can contain four different types of data records:

1. A folder record contains information about a single folder.
2. A file record contains information about a single file.
3. A folder thread record provides a link between a folder and its parent folder, and lets you find a folder record given just the

folder ID.
4. A file thread record provides a link between a file and its parent folder, and lets you find a file record given just the file ID. (In

both the folder thread and the file thread record, the thread record is used to map the file or folder ID to the actual parent directory

TN 1150: HFS Plus Volume Format Page: 23

ID and name.)

Each record starts with a recordType field, which describes the type of catalog data record. The recordType field contains one of
the following values:

enum {
 kHFSPlusFolderRecord = 0x0001,
 kHFSPlusFileRecord = 0x0002,
 kHFSPlusFolderThreadRecord = 0x0003,
 kHFSPlusFileThreadRecord = 0x0004
};

The values have the following meaning:

kHFSPlusFolderRecord
This record is a folder record. You can use the HFSPlusCatalogFolder type to interpret the data.

kHFSPlusFileRecord
This record is a file record. You can use the HFSPlusCatalogFile type to interpret the data.

kHFSPlusFolderThreadRecord
This record is a folder thread record. You can use the HFSPlusCatalogThread type to interpret the data.

kHFSPlusFileThreadRecord
This record is a file thread record. You can use the HFSPlusCatalogThread type to interpret the data.

The next three sections describe the folder, file, and thread records in detail.

Note:
The position of the recordType field, and the constants chosen for the various record types, are especially
useful if you're writing common code to handle HFS and HFS Plus volumes.

In HFS, the record type field is one byte, but it's always followed by a one-byte reserved field whose value is
always zero. In HFS Plus, the record type field is two bytes. You can use the HFS Plus two-byte record type to
examine an HFS record if you use the appropriate constants, as shown below.

enum {
 kHFSFolderRecord = 0x0100,
 kHFSFileRecord = 0x0200,
 kHFSFolderThreadRecord = 0x0300,
 kHFSFileThreadRecord = 0x0400
};

The values have the following meaning:

kHFSFolderRecord
This record is an HFS folder record. You can use the HFSCatalogFolder type to interpret the data.

kHFSFileRecord
This record is an HFS file record. You can use the HFSCatalogFile type to interpret the data.

kHFSFolderThreadRecord
This record is an HFS folder thread record. You can use the HFSCatalogThread type to interpret the data.

kHFSFileThreadRecord
This record is an HFS file thread record. You can use the HFSCatalogThread type to interpret the data.

Catalog Folder Records

The catalog folder record is used in the catalog B-tree file to hold information about a particular folder on the volume. The data of the
record is described by the HFSPlusCatalogFolder type.

TN 1150: HFS Plus Volume Format Page: 24

struct HFSPlusCatalogFolder {
 SInt16 recordType;
 UInt16 flags;
 UInt32 valence;
 HFSCatalogNodeID folderID;
 UInt32 createDate;
 UInt32 contentModDate;
 UInt32 attributeModDate;
 UInt32 accessDate;
 UInt32 backupDate;
 HFSPlusPermissions permissions;
 DInfo userInfo;
 DXInfo finderInfo;
 UInt32 textEncoding;
 UInt32 reserved;
};
typedef struct HFSPlusCatalogFolder HFSPlusCatalogFolder;

The fields have the following meaning:

recordType
The catalog data record type. For folder records, this is always kHFSPlusFolderRecord.

flags
This field contains bit flags about the folder. No bits are currently defined for folder records. An implementation must treat this as
a reserved field.

valence
The number of files and folders directly contained by this folder. This is equal to the number of file and folder records whose
key's parentID is equal to this folder's folderID.

IMPORTANT:
The current Mac OS File Manager programming interfaces require folders to have a valence less than 32,767.
An implementation must enforce this restriction if it wants the volume to be usable by Mac OS. Values of
32,768 and larger are problematic; 32,767 and smaller are OK. It's an implementation restriction for the
older Mac OS APIs; items 32,768 and beyond would be unreachable by PBGetCatInfo. As a practical matter,
many programs are likely to fails with anywhere near that many items in a single folder. So, the volume format
allows more than 32,767 items in a folder, but it's probably not a good idea to exceed that limit right now.

folderID
The CNID of this folder. Remember that the key for a folder record contains the CNID of the folders parent, not the CNID of the
folder itself.

createDate
The date and time the folder was created. See HFS Plus Dates for a description of the format. Again, the createDate of the
Volume Header is NOT stored in GMT; it is local time. (Further, if the volume has an HFS wrapper, the creation date in the MDB
should be the same as the createDate in the Volume Header).

contentModDate
The date and time the folder's contents were last changed. This is the time when a file or folder was created or deleted inside this
folder, or when a file or folder was moved in or out of this folder. See HFS Plus Dates for a description of the format.

Note:
The current Mac OS APIs use the contentModDate when getting and setting the modification date. The current
Mac OS APIs treat attributeModDate as a reserved field.

attributeModDate
The attributeModDate is set when a named fork (attribute) -- other than the data and resource fork -- is written to. The
contentModDate is used for the data and resource forks, and when adding/removing items in a directory. An implementation
which doesn't use named forks should treat the attributeModDate as reserved.

accessDate
The date and time the folder's contents were last read. This field has no analog in the HFS catalog record. It represents the last
time the folder's contents were read. This field exists to support POSIX semantics when the volume is mounted on non-Mac OS

TN 1150: HFS Plus Volume Format Page: 25

platforms. See HFS Plus Dates for a description of the format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not maintain the accessDate field. Newly created files or
folders have an accessDate of zero.

backupDate
The date and time the folder was last backed up. The volume format requires no special action on this field; it simply defines the
field for the benefit of user programs. See HFS Plus Dates for a description of the format.

permissions
This field contains folder permissions, similar to those defined by POSIX or AFP. See HFS Plus Permissions for a description of
the format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not use the permissions field. Folders created by Mac OS have
the entire field set to 0.

userInfo
This field contains information used by the Mac OS Finder. Its format is not part of the HFS Plus specification.

finderInfo
This field contains information used by the Mac OS Finder. Its format is not part of the HFS Plus specification.

textEncoding
A hint as to text encoding from which the folder name was derived. This hint can be used to improve the quality of the conversion
of the name to a Mac OS-encoded Pascal string. See Text Encodings for details.

reserved
An implementation must treat this as a reserved field.

Catalog File Records

The catalog file record is used in the catalog B-tree file to hold information about a particular file on the volume. The data of the
record is described by the HFSPlusCatalogFile type.

struct HFSPlusCatalogFile {
 SInt16 recordType;
 UInt16 flags;
 UInt32 reserved1;
 HFSCatalogNodeID fileID;
 UInt32 createDate;
 UInt32 contentModDate;
 UInt32 attributeModDate;
 UInt32 accessDate;
 UInt32 backupDate;
 HFSPlusPermissions permissions;
 FInfo userInfo;
 FXInfo finderInfo;
 UInt32 textEncoding;
 UInt32 reserved2;

 HFSPlusForkData dataFork;
 HFSPlusForkData resourceFork;
};
typedef struct HFSPlusCatalogFile HFSPlusCatalogFile;

The fields have the following meaning:

recordType
The catalog data record type. For files records, this is always kHFSPlusFileRecord.

flags
This field contains bit flags about the file. The currently defined bits are described below. An implementation must treat undefined

TN 1150: HFS Plus Volume Format Page: 26

bits as reserved.
reserved1

An implementation must treat this as a reserved field.
fileID

The CNID of this file.
createDate

The date and time the file was created. See HFS Plus Dates for a description of the format.
contentModDate

The date and time the file's contents were last changed by extending, truncating, or writing either of the forks. See HFS Plus Dates
for a description of the format. The contentModDate is set when the data or resource forks are extended, truncated, or written
to. The attributeModDate is set when any other named fork (attribute) is extended, truncated, or written to. Since the current
Mac OS APIs don't support the other named forks, it treats attributeModDate as reserved.

attributeModDate
The date and time the file's attributes were last changed. The attributeModDate is set when any other named fork (attribute)
is extended, truncated, or written to. Since the current Mac OS APIs don't support the other named forks, it treats
attributeModDate as reserved (see the Attributes File section). See HFS Plus Dates for a description of the format.

accessDate
The date and time the file's contents were last read. This field has no analog in the HFS catalog record. It represents the last time
either of a file's forks was read. This field exists to support POSIX semantics when the volume is mounted on non-Mac OS
platforms. See HFS Plus Dates for a description of the format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not maintain the accessDate field. Newly created files or
folders have an accessDate of zero.

backupDate
The date and time the file was last backed up. The volume format requires no special action on this field; it simply defines the field
for the benefit of user programs. See HFS Plus Dates for a description of the format.

permissions
This field contains file permissions, similar to those defined by POSIX. See HFS Plus Permissions for a description of the
format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not use the permissions field. Files created by Mac OS have the
entire field set to 0.

userInfo
This field contains information used by the Mac OS Finder. Its format is not part of the HFS Plus specification.

finderInfo
This field contains information used by the Mac OS Finder. Its format is not part of the HFS Plus specification.

textEncoding
A hint as to text encoding from which the file name was derived. This hint can be used to improved the quality of the conversion
of the name to a Mac OS encoded Pascal string. See Text Encodings for details.

reserved2
An implementation must treat this as a reserved field.

dataFork
Information about the location and size of the data fork. See Fork Data Structure for a description of the HFSPlusForkData
type.

resourceFork
Information about the location and size of the resource fork. See Fork Data Structure for a description of the
HFSPlusForkData type.

For each fork, the first eight extents are described by the HFSPlusForkData field in the catalog file record. If a fork is
sufficiently fragmented to require more than eight extents, the remaining extents are described by extent records in the extents
overflow file.

The following constants define bit flags in the file record's flags field:

TN 1150: HFS Plus Volume Format Page: 27

enum {
 kHFSFileLockedBit = 0x0000,
 kHFSFileLockedMask = 0x0001,
 kHFSThreadExistsBit = 0x0001,
 kHFSThreadExistsMask = 0x0002
};

The values have the following meaning:

kHFSFileLockedBit, kHFSFileLockedMask
If kHFSFileLockedBit is set, then none of the forks may be extended, truncated, or written to. They may only be opened for
reading (not for writing). The catalog information (like finderInfo and userInfo) may still be changed.

kHFSThreadExistsBit, kHFSThreadExistsMask
This bit incidates that the file has a thread record. As all files in HFS Plus have thread records, this bit must be set.

Catalog Thread Records

The catalog thread record is used in the catalog B-tree file to link a CNID to the file or folder record using that CNID. The data of the
record is described by the HFSPlusCatalogThread type.

IMPORTANT:
In HFS, thread records were required for folders but optional for files. In HFS Plus, thread records are
required for both files and folders.

struct HFSPlusCatalogThread {
 SInt16 recordType;
 SInt16 reserved;
 HFSCatalogNodeID parentID;
 HFSUniStr255 nodeName;
};
typedef struct HFSPlusCatalogThread HFSPlusCatalogThread;

The fields have the following meaning:

recordType
The catalog data record type. For thread records, this is kHFSPlusFileRecord or kHFSPlusFolderRecord, depending
on whether the thread record refers to a file or a folder. Both types of thread record contain the same data.

reserved1
An implementation must treat this as a reserved field.

parentID
The CNID of the parent of the file or folder referenced by this thread record.

nodeName
The name of the file or folder referenced by this thread record.

The next section explains how thread records can be used to find a file or folder using just its CNID.

Catalog Tree Usage

File and folder records always have a key that contains a non-empty nodeName. The file and folder records for the children are all
consecutive in the catalog, since they all have the same parentID in the key, and vary only by nodeName.

The key for a thread record is the file's or folder's CNID (not the CNID of the parent folder) and an empty (zero length) nodeName.
This allows a file or folder to by found using just the CNID. The thread record contains the parentID and nodeName field of the file
or folder itself.

Finding a file or folder by its CNID is a two-step process. The first step is to use the CNID to look up the thread record for the file or
folder. This yields the file or folder's parent folder ID and name. The second step is to use that information to look up the real file or
folder record.

Since files do not contain other files or folders, there are no catalog records whose key has a parentID equal to a file's CNID and

TN 1150: HFS Plus Volume Format Page: 28

nodeName with non-zero length.These unused key values are reserved.

Back to top

Extents Overflow File

HFS Plus tracks which allocation blocks belong to a file's forks by maintaining a list of extents (contiguous allocation blocks) that
belong to that file, in the appropriate order. Each extent is represented by a pair of numbers: the first allocation block number of the
extent and the number of allocation blocks in the extent. The file record in the catalog B-tree contains a record of the first eight
extents of each fork. If there are more than eight extents in a fork, the remaining extents are stored in the extents overflow file.

Note:
Fork Data Structure discusses how HFS Plus maintains information about a fork.

Like the catalog file, the extents overflow file is B-tree. However, the structure of the extents overflow file is relatively simple
compared to that of a catalog file. The extents overflow file has a simple, fixed length key and a single type of data record.

Extents Overflow File Key

The structure of the key for the extents overflow file is described by the HFSPlusExtentKey type.

struct HFSPlusExtentKey {
 UInt16 keyLength;
 UInt8 forkType;
 UInt8 pad;
 HFSCatalogNodeID fileID;
 UInt32 startBlock;
};
typedef struct HFSPlusExtentKey HFSPlusExtentKey;

The fields have the following meaning:

keyLength
The keyLength field is required by all keyed records in a B-tree. The extents overflow file, in common with all HFS Plus
B-trees, uses a large key length (UInt16). Keys in the extents overflow file always have the same length,
kHFSPlusExtentKeyMaximumLength (10).

forkType
The type of fork for which this extent record applies. This must be either 0 for the data fork or $FF for the resource fork.

pad
An implementation must treat this as a pad field.

fileID
The CNID of the file for which this extent record applies.

startBlock
The offset, in allocation blocks, into the fork of the first extent described by this extent record. The startBlock field lets you
directly find the particular extents for a given offset into a fork.

Note:
Typically, an implementation will keep a copy of the initial extents from the catalog record. When trying to
access part of the fork, they see whether that position is beyond the extents described in the catalog record; if
so, they use that offset (in allocation blocks) to find the appropriate extents B-tree record. See Extents
Overflow File Usage for more information.

Two HFSPlusExtentKey structures are compared by comparing their fields in the following order: fileID, forkType,
startBlock. Thus, all the extent records for a particular fork are grouped together in the B-tree, right next to all the extent
records for the other fork of the file.

Extents Overflow File Data

The data records for an extents overflow file (the extent records) are described by the HFSPlusExtentRecord type, which is
described in detail in Fork Data Structure.

TN 1150: HFS Plus Volume Format Page: 29

IMPORTANT:
Remember that the HFSPlusExtentRecord contains descriptors for eight extents. The first eight extents in
a fork are held in its catalog file record. So the number of extent records for a fork is ((number of extents - 8
+ 7) / 8).

Extents Overflow File Usage

The most important thing to remember about extents overflow file is that it is only used for forks with more than eight extents. In
most cases, forks have fewer extents, and all the extents information for the fork is held in its catalog file record. However, for more
fragmented forks, the extra extents information is stored in the extents overflow file.

When an implementation needs to map a fork offset into a sector on disk, it first looks through the extent records in the catalog file
record. If the fork offset is within one these extents, the implementation can find the corresponding sector without consulting the
extents overflow file.

If, on the other hand, the fork offset is beyond the last extent recorded in the catalog file record, the implementation must look in the
next extent record, which is stored in the extents overflow file. To find this record, the implementation must form a key, which
consists of information about the fork (the fork type and the file ID) and the offset info the fork (the start block).

Because extent records are partially keyed off the fork offset of the first extent in the record, the implementation must have all the
preceding extent records in order to know the fork offset to form the key of the next extent record. For example, if the fork has two
extent records in the extents overflow file, the implementation must read the first extent record to calculate the fork offset for the
key for the second extent record.

However, you can use the startBlock in the extent key to go directly to the record you need. Here's a complicated example:

We've got a fork with a total of 23 extents (very fragmented!). The blockCounts for the extents, in order, are as follows: one
extent of 6 allocation blocks, 14 extents of one allocation block each, two extents of two allocation blocks each, one extent of 7
allocation blocks, and five more extents of one allocation block each. The fork contains a total of 36 allocation blocks.

The block counts for the catalog's fork data are: 6, 1, 1, 1, 1, 1, 1, 1. There is an extent overflow record whose startBlock is 13
(0+6+1+1+1+1+1+1+1), and has the following block counts: 1, 1, 1, 1, 1, 1, 1, 2. There is a second extent overflow record
whose startBlock is 22 (13+1+1+1+1+1+1+1+2), and has the following block counts: 2, 7, 1, 1, 1, 1, 1, 0. Note this last
record only contains seven extents.

Suppose the allocation block size for the volume is 4K. Suppose we want to start reading from the file at an offset of 108K. We want to
know where the data is on the volume, and how much contiguous data is there.

First, we divide 108K (the fork offset) by 4K (the allocation block size) to get 27, which is the number of allocation blocks from the
start of the fork. So, we want to know where fork allocation block #27 is. We notice that 27 is greater than or equal to 13 (the
number of allocation blocks in the catalog's fork data), so we're going to have to look in the extents B-tree.

We construct a search key with the appropriate fileID and forkType, and set startBlock to 27 (the desired fork allocation
block number). We then search the extents B-tree for the record whose key is less than or equal to our search key. We find the second
extent overflow record (the one with startBlock=22). It has the same fileID and forkType, so things are good. Now we just
need to figure out which extent within that record to use.

We compute 27 (the desired fork allocation block) minus 22 (the startBlock) and get 5. So, we want the extent that is 5
allocation blocks "into" the record. We try the first extent. It's only two allocation blocks long, so the desired extent is 3 allocation
blocks after that first extent in the record. The next extent is 7 allocation blocks long. Since 7 is greater than 3, we know the desired
fork position is within this extent (the second extent in the second overflow record). Further, we know that there are 7-3=4
contiguous allocation blocks (i.e., 16K).

We grab the startBlock for that second extent (i.e., the one whose blockCount is 7); suppose this number is 444. We add 3
(since the desired position was 3 allocation blocks into the extent we found). So, the desired position is in allocation block
444+3=447 on the volume. That is 447*4K=1788K from the start of the HFS Plus volume. (Since the Volume Header always starts
1K after the start of the HFS Plus volume, the desired fork position is 1787K after the start of the Volume Header.)

Bad Block File

The extent overflow file is also used to hold information about the bad block file. The bad block file is used to mark areas on the disk as
bad, unable to be used for storing data. This is typically used to map out bad sectors on the disk.

Note:
All space on an HFS Plus volume is allocated in terms of allocation blocks. Typically, allocation blocks are
larger than sectors. If a sector is found to be bad, the entire allocation block is unusable.

TN 1150: HFS Plus Volume Format Page: 30

When an HFS Plus volume is embedded within an HFS wrapper (the way Mac OS normally initializes a hard disk), the space used by
the HFS Plus volume is marked as part of the bad block file within the HFS wrapper itself . (This sounds confusing because you have a
volume within another volume.)

The bad block file is not a file in the same sense as a user file (it doesn't have a file record in the catalog) or one of the special files
(it's not referenced by the volume header). Instead, the bad block file uses a special CNID (kHFSBadBlockFileID) as the key for
extent records in the extents overflow file. When a block is marked as bad, an extent with this CNID and encompassing the bad block is
added to the extents overflow file. The block is marked as used in the allocation file. These steps prevent the block from being used for
data by the file system.

IMPORTANT:
The bad block file is necessary because marking a bad block as used in the allocation file is insufficient. One
common consistency check for HFS Plus volumes is to verify that all the allocation blocks on the volume are
being used by real data. If such a check were run on a volume with bad blocks that weren't also covered by
extents in the bad block file, the bad blocks would be freed and might be reused for file system data.

Bad block extent records are always assumed to reference the data fork. The forkType field of the key must be 0.

Note:
Because an extent record holds up to eight extents, adding a bad block extent to the bad block file does not
necessarily require the addition of a new extent record.

HFS uses a similar mechanism to store information about bad blocks. This facility is used by the HFS Wrapper to hold an entire HFS
Plus volume as bad blocks on an HFS disk.

Back to top

Allocation File

HFS Plus uses an allocation file to keep track of whether each allocation block in a volume is currently allocated to some file system
structure or not. The contents of the allocation file is a bitmap. The bitmap contains one bit for each allocation block in the volume. If
a bit is set, the corresponding allocation block is currently in use by some file system structure. If a bit is clear, the corresponding
allocation block is not currently in use, and is available for allocation.

Note:
HFS stores allocation information in a special area on the volume, known as the volume bitmap. The
allocation file mechanism used by HFS Plus has a number of advantages.

Using a file allows the bitmap itself to be allocated from allocation blocks. This simplifies the design,
since volumes are now comprised of only one type of block -- the allocation block. The HFS is slightly
more complex because it uses sectors to hold the allocation bitmap and allocation blocks to hold file data.
The allocation file does not have to be contiguous, which allows allocation information and user data to
be interleaved. Many modern file systems do this to reduce head travel when growing files.
The allocation file can be extended, which makes it significantly easier to increase the number of
allocation blocks on a disk. This is useful if you want to either decrease the allocation block size on a
disk, or increase the total disk size.
The allocation file may be shrunk. This makes it easy to create a disk images suitable for volumes of
varying sizes. The allocation file in the disk image is sized to hold enough allocation data for the largest
disk, and shrunk back when the disk is written to a smaller disk.

Each byte in the allocation file holds the state of eight allocation blocks. The byte at offset X into the file contains the allocation state of
allocations blocks (X * 8) through (X * 8 + 7). Within each byte, the most significant bit holds information about the allocation
block with the lowest number, the least significant bit holds information about the allocation block with the highest number. Listing 1
shows how you would test whether an allocation block is in use, assuming that you've read the entire allocation file into memory.

TN 1150: HFS Plus Volume Format Page: 31

static Boolean IsAllocationBlockUsed(UInt32 thisAllocationBlock,
 UInt8 *allocationFileContents)
{
 UInt8 thisByte;

 thisByte = allocationFileContents[thisAllocationBlock / 8];
 return (thisByte & (1 << (7 - (thisAllocationBlock % 8)))) != 0;
}

Listing 1 Determining whether an allocation block is in use.

The size of the allocation file depends on the number of allocation blocks in the volume, which in turn depends both on the number of
sectors on the disk and on the size of the volume's allocation blocks (the number of sectors per allocation block). For example, a
volume on a 1 GB disk and having an allocation block size of 4 KB needs an allocation file size of 256 Kbits (32 KB, or 8 allocation
blocks). Since the allocation file itself is allocated using allocation blocks, it always occupies an integral number of allocation blocks
(its size may be rounded up).

The allocation file may be larger than the minimum number of bits required for the given volume size. Any unused bits in the bitmap
must be set to zero.

Note:
Since the number of allocation blocks is determined by a 32-bit number, the size of the allocation file can be up
to 512 MB in size, a radical increase over HFS's 8 KB limit.

IMPORTANT:
Because the entire volume is composed of allocation blocks (with the possible exception of the alternate volume
header, as describedabove), the volume header, alternate volume header, and reserved sectors (the first two
sectors and the last sector) must be marked as allocated in the allocation file. The actual number of allocation
blocks allocated for these sectors varies with the size of the allocation blocks. Any allocation block that contains
any of these sectors must be marked allocated.

For example, if 512-byte allocation blocks are used, the first three and last two allocation blocks are allocated.
With 1024-byte allocation blocks, the first two and the last allocation blocks are allocated. For larger
allocation block sizes, only the first and last allocation blocks are allocated for these sectors.

See the Volume Header section for a description of these sectors.

Back to top

Attributes File

The HFS Plus attributes file is reserved for implementing named forks in the future. An attributes file is organized as a B-tree file.
It a special file, described by an HFSPlusForkData record in the volume header, with no entry in the catalog file. An attributes
files has a variable length key and three data record types, which makes it roughly as complex as the catalog file.

It is possible for a volume to have no attributes file. If the first extent of the attributes file (stored in the volume header) has zero
allocation blocks, the attributes file does not exist.

The B-Trees chapter defined a standard rule for the node size of HFS Plus B-trees. As the attributes file is a B-tree, it inherits the
requirements of this rule. In addition, the node size of the attributes file must be at least 4 KB (kHFSPlusAttrMinNodeSize).

IMPORTANT:
The exact organization of the attributes B-tree has not been fully designed. Specifically:

the structure of the keys in the attribute B-tree has not been finalized and is subject to change, and
addition attribute's file data record types may be defined.

An implementation written to this specification may use the details that are final to perform basic consistency
checks on attributes. These checks will be compatible with future implementations written to a final attributes
specification. See Attributes and the Allocation File Consistency Check.

Attributes File Data

TN 1150: HFS Plus Volume Format Page: 32

IMPORTANT:
Several types of attributes file data records are defined. It is possible that additional record types will be
defined in future specifications. Implementations written to this specification must ignore record types not
defined here.

The leaf nodes of an attributes file contain data records, known as attributes . There are two types of attributes:

1. Fork data attributes are used for attributes whose data is large. The attribute's data is stored in extents on the volume and the
attribute merely contains a reference to those extents.

2. Extension attributes augment fork data attributes, allowing an fork data attribute to have more than eight extents.

Each record starts with a recordType field, which describes the type of attribute data record. The recordType field contains one
of the following values.

enum {
 kHFSPlusAttrInlineData = 0x10,
 kHFSPlusAttrForkData = 0x20,
 kHFSPlusAttrExtents = 0x30
};

The values have the following meaning:

kHFSPlusAttrInlineData
Reserved for future use.

kHFSPlusAttrForkData
This record is a fork data attribute. You can use the HFSPlusAttrForkData type to interpret the data.

kHFSPlusAttrExtents
This record is an extension attribute. You can use the HFSPlusAttrExtents type to interpret the data. A record of type
kHFSPlusAttrExtents is really just overflow extents for a corresponding record of type kHFSPlusAttrForkData.
(Think of kHFSPlusAttrForkData as being like a catalog record and kHFSPlusAttrExtents as being like an extents
overflow record.)

The next two sections describe the fork data and extension attributes in detail.

Fork Data Attributes

A fork data attribute is defined by the HFSPlusAttrForkData data type.

struct HFSPlusAttrForkData {
 UInt32 recordType;
 UInt32 reserved;
 HFSPlusForkData theFork;
};
typedef struct HFSPlusAttrForkData HFSPlusAttrForkData;

The fields have the following meaning:

recordType
The attribute data record type. For fork data attributes, this is always kHFSPlusAttrForkData.

reserved
An implementation must treat this as a reserved field.

theFork
Information about the location and size of the attribute data. See Fork Data Structure for a description of the
HFSPlusForkData type.

Extension Attributes

A extension attribute is defined by the HFSPlusAttrExtents data type.

TN 1150: HFS Plus Volume Format Page: 33

struct HFSPlusAttrExtents {
 UInt32 recordType;
 UInt32 reserved;
 HFSPlusExtentRecord extents;
};
typedef struct HFSPlusAttrExtents HFSPlusAttrExtents;

The fields have the following meaning:

recordType
The attribute data record type. For extension attributes, this is always kHFSPlusAttrExtents.

reserved
An implementation must treat this as a reserved field.

extents
The eight extents of the attribute data described by this record. See Fork Data Structure for a description of the
HFSPlusExtentRecord type.

Attributes and the Allocation File Consistency Check

While the key structure for the attributes file is not fully specified, it is still possible for an implementation to use attribute file
information in its allocation file consistency check. The leaf records of the attribute file are fully defined, so the implementation can
simply iterate over them to determine which allocation blocks on the disk are being used by fork data attributes.

See Allocation File Consistency Check for details.

Back to top

Startup File

The startup file is a special file intended to hold information needed when booting a system that does not have built-in (ROM) support
for HFS Plus. A boot loader can find the startup file without full knowledge of the HFS Plus volume format (B-trees, catalog file, and
so on). Instead, the volume header contains the location of the first eight extents of the startup file.

IMPORTANT:
It is legal for the startup file to contain more than eight extents, and for the remaining extents to be placed in
the extents overflow file. However, doing so defeats the purpose of the startup file.

Note:
Mac OS does not use the startup file to boot from HFS Plus disks. Instead, it uses the HFS wrapper, as described
later in this document.

Back to top

Unicode Subtleties

HFS Plus makes heavy use of Unicode strings to store file and folder names. However, Unicode is still evolving, and its use within a
file system presents a number of challenges. This section describes some of the challenges, along with the solutions used by HFS Plus.

IMPORTANT:
Before reading this section, you should read HFS Plus Names.

IMPORTANT:
An implementation must not use the Unicode utilities implemented by its native platform (for decomposition
and comparison), unless those algorithms are equivalent to the HFS Plus algorithms defined here, and are
guaranteed to be so forever. This is rarely the case. Platform algorithms tend to evolve with the Unicode
standard. The HFS Plus algorithms cannot evolve because such evolution would invalidate existing HFS Plus
volumes.

TN 1150: HFS Plus Volume Format Page: 34

Note:
The Mac OS Text Encoding Converter provides several constants that let you convert to and from the canonical,
decomposed form stored on HFS Plus volumes. When using CreateTextEncoding to create a text encoding,
you should set the TextEncodingBase to kTextEncodingUnicodeV2_0, set the
TextEncodingVariant to kUnicodeCanonicalDecompVariant, and set the
TextEncodingFormat to kUnicode16BitFormat. Using these values ensures that the Unicode will be in
the same form as on an HFS Plus volume, even as the Unicode standard evolves.

Canonical Decomposition

Unicode allows some sequences of characters to be represented by multiple, equivalent forms. For example, the character " " can be
represented as the single Unicode character u+00E9 (latin small letter e with acute), or as the two Unicode characters u+0065 and
u+0301 (the letter "e" plus a combining acute symbol).

To reduce complexity in the B-tree key comparison routines (which have to compare Unicode strings), HFS Plus defines that Unicode
strings will be stored in fully decomposed form, with composing characters stored in canonical order. The other equivalent forms are
illegal in HFS Plus strings. An implementation must convert these equivalent forms to the fully decomposed form before storing the
string on disk.

The Unicode Decomposition table contains a list of characters that are illegal as part of an HFS Plus string, and the equivalent
character(s) that should be used instead. Any character appearing in a column titled "Illegal", must be replaced by the character(s)
in the column immediately to the right (titled "Replace With").

In addition, the Korean Hangul characters with codes in the range u+AC00 through u+D7A3 are illegal and must be replaced with the
equivalent sequence of conjoining jamos, as described in the Unicode 2.0 book, section 3.10.

IMPORTANT:
The characters with codes in the range u+2000 through u+2FFF are punctuation, symbols, dingbats, arrows,
box drawing, etc. The u+24xx block, for example, has single characters for things like "(a)". The characters in
this range are not fully decomposed; they are left unchanged in HFS Plus strings. This allows strings in Mac OS
encodings to be converted to Unicode and back without loss of information. This is not unnatural since a user
would not necessarily expect a dingbat "(a)" to be equivalent to the three character sequence "(", "a", ")" in a
file name.

So, for the example given earlier, " " must be stored as the two Unicode characters u+0065 and u+0301 (in that order). The
Unicode character u+00E9 may not appear in a Unicode string used as part of an HFS Plus B-tree key.

String Comparison Algorithm

In HFS Plus, strings must be compared in a case- insensitive fashion. The Unicode standard does not strictly define upper and lower
case equivalence, although it does suggest some equivalences. The HFS Plus string comparison algorithm (defined below) include a
concrete case equivalence definition. An implementation must use the equivalence expressed by this algorithm.

Furthermore, Unicode requires that certain formatting characters be ignored (skipped over) during string comparisons. The
algorithm and tables used for case equivalence also arrange to ignore these characters. An implementations must ignore the characters
that are ignored by this algorithm.

The HFS Plus string comparison algorithm is defined by the FastUnicodeCompare routine, shown below. This routine returns a
value that tells the caller how the strings should be ordered relative to each other: whether the first string is less than, equal to, or
greater than the second string. An HFS Plus implementation may use this routine directly, or use another routine that produces the
same relative ordering.

Note:
The FastUnicodeCompare routine does not handle composed Unicode characters since they are illegal in HFS
Plus strings. As described in Canonical Decomposition, all HFS Plus strings must be fully decomposed, with
composing characters in canonical order.

//
// FastUnicodeCompare - Compare two Unicode strings; produce a relative ordering
//
// IF RESULT
// --------------------------
// str1 < str2 => -1
// str1 = str2 => 0
// str1 > str2 => +1

TN 1150: HFS Plus Volume Format Page: 35

//
// The lower case table starts with 256 entries (one for each of the upper bytes
// of the original Unicode char). If that entry is zero, then all characters with
// that upper byte are already case folded. If the entry is non-zero, then it is
// the _index_ (not byte offset) of the start of the sub-table for the characters
// with that upper byte. All ignorable characters are folded to the value zero.
//
// In pseudocode:
//
// Let c = source Unicode character
// Let table[] = lower case table
//
// lower = table[highbyte(c)]
// if (lower == 0)
// lower = c
// else
// lower = table[lower+lowbyte(c)]
//
// if (lower == 0)
// ignore this character
//
// To handle ignorable characters, we now need a loop to find the next valid
// character. Also, we can't pre-compute the number of characters to compare;
// the string length might be larger than the number of non-ignorable characters.
// Further, we must be able to handle ignorable characters at any point in the
// string, including as the first or last characters. We use a zero value as a
// sentinel to detect both end-of-string and ignorable characters. Since the File
// Manager doesn't prevent the NULL character (value zero) as part of a filename,
// the case mapping table is assumed to map u+0000 to some non-zero value (like
// 0xFFFF, which is an invalid Unicode character).
//
// Pseudocode:
//
// while (1) {
// c1 = GetNextValidChar(str1) // returns zero if at end of string
// c2 = GetNextValidChar(str2)
//
// if (c1 != c2) break // found a difference
//
// if (c1 == 0) // reached end of string on both
// // strings at once?
// return 0; // yes, so strings are equal
// }
//
// // When we get here, c1 != c2. So, we just need to determine which one is
// // less.
// if (c1 < c2)
// return -1;
// else
// return 1;
//

SInt32 FastUnicodeCompare (register ConstUniCharArrayPtr str1, register ItemCount length1,
 register ConstUniCharArrayPtr str2, register ItemCount length2)
{
 register UInt16 c1,c2;
 register UInt16 temp;
 register UInt16* lowerCaseTable;

 lowerCaseTable = gLowerCaseTable;

TN 1150: HFS Plus Volume Format Page: 36

 while (1) {
 // Set default values for c1, c2 in case there are no more valid chars
 c1 = 0;
 c2 = 0;
 // Find next non-ignorable char from str1, or zero if no more
 while (length1 && c1 == 0) {
 c1 = *(str1++);
 --length1;
 if ((temp = lowerCaseTable[c1>>8]) != 0) // is there a subtable
 // for this upper byte?
 c1 = lowerCaseTable[temp + (c1 & 0x00FF)]; // yes, so fold the char
 }
 // Find next non-ignorable char from str2, or zero if no more
 while (length2 && c2 == 0) {
 c2 = *(str2++);
 --length2;
 if ((temp = lowerCaseTable[c2>>8]) != 0) // is there a subtable
 // for this upper byte?
 c2 = lowerCaseTable[temp + (c2 & 0x00FF)]; // yes, so fold the char
 }
 if (c1 != c2) // found a difference, so stop looping
 break;
 if (c1 == 0) // did we reach the end of both strings at the same time?
 return 0; // yes, so strings are equal
 }
 if (c1 < c2)
 return -1;
 else
 return 1;
}

/* The lower case table consists of a 256-entry high-byte table followed by
 some number of 256-entry subtables. The high-byte table contains either an
 offset to the subtable for characters with that high byte or zero, which
 means that there are no case mappings or ignored characters in that block.
 Ignored characters are mapped to zero.
 */

UInt16 gLowerCaseTable[] = {

 // High-byte indices (== 0 if no case mapping and no ignorables)

 // Full data tables omitted for brevity.
 // See the Downloadables section for URL to download the code.
};

Back to top

HFS Wrapper

An HFS Plus volume may be contained within an HFS volume in a way that makes the volume look like an HFS volume to systems
without HFS Plus support. This has a two important advantages:

1. It allows a computer with HFS (but no HFS Plus) support in ROM to start up from an HFS Plus volume. When creating the
wrapper, Mac OS includes a System file containing the minimum code to locate and mount the embedded HFS Plus volume and
continue booting from its System file.

2. It improves the user experience when an HFS Plus volume is inserted in a computer that has HFS support but no HFS Plus
support. On such a computer, the HFS wrapper will be mounted as a volume, which prevents error dialogs that might confuse the
user into thinking the volume is empty, damaged, or unreadable. The HFS wrapper may also contain a Read Me document to

TN 1150: HFS Plus Volume Format Page: 37

explain the steps the user should take to access their files.

The rest of this section describes how the HFS wrapper is laid out and how the HFS Plus volume is embedded within the wrapper.

IMPORTANT:
This section does not describe the HFS Plus volume format; instead, it describes additions to the HFS volume
format that allow an HFS Plus volume (or some other volume) to be embedded in an HFS volume. However, as
all Mac OS volumes are formatted with an HFS wrapper, all implementations should be able to parse the
wrapper to find the embedded HFS Plus volume.

Note:
An HFS Plus volume is not required to have an HFS wrapper. In that case, the volume will start at the first
sector of the disk, and the volume header will be at sector 2. However, Apple software currently initializes all
HFS Plus volumes with an HFS wrapper.

HFS Master Directory Block

An HFS volume always contains a Master Directory Block (MDB), in sector 2. The MDB is similar to an HFS Plus volume header. In
order to support volumes embedded within an HFS volume, several unused fields of the MDB have been changed, and are now used to
indicate the type, location, and size of the embedded volume.

What was formerly the drVCSize field (at offset $7C) is now named drEmbedSigWord. This two-byte field contains a unique
value that identifies the type of embedded volume. When an HFS Plus volume is embedded, drEmbedSigWord must be
kHFSPlusSigWord ('H+'), the same value stored in the signature field of an HFS Plus volume header.

What were formerly the drVBMCSize and drCtlCSize fields (at offset $7E) have been combined into a single field occupying four
bytes. The new structure is named drEmbedExtent and is of type HFSExtentDescriptor. It contains the starting allocation
block number (startBlock) where the embedded volume begins and number of allocation blocks (blockCount) the embedded
volume occupies. The embedded volume must be contiguous. Both of these values are in terms of the HFS wrapper's allocation blocks,
not HFS Plus allocation blocks.

Note:
The description of the HFS volume format in Inside Macintosh: Files describes these fields as being used to store
the size of various caches, and labels each one as "used internally".

To actually find the embedded volume's sectors on disk, an implementation must use the drAlBlkSiz and drAlBlSt fields of the
MDB. The drAlBlkSiz field contains the size (in bytes) of the HFS allocation blocks. The drAlBlSt field contains the offset, in
512-byte sectors, of the wrapper's allocation block 0 relative to the start of the volume.

IMPORTANT:
This embedding introduces a transform between HFS Plus sectors and sectors on the disk. The HFS Plus volume
exists on a virtual disk embedded within the real disk. When accessing an HFS Plus sector on an embedded disk,
an implementation must add the offset of the embedded disk to the sector number. Listing 2 shows how one might
do this.

static UInt32 HFSPlusSectorToDiskSector(UInt32 hfsPlusSector)
{
 UInt32 embeddedDiskOffset;

 embeddedDiskOffset = gMDB.drAlBlSt +
 gMDB.drEmbedExtent.startBlock * (drAlBlkSiz / 512)
 return embeddedDiskOffset + hfsPlusSector;
}

Listing 2. Sector transform for embedded volumes.

In order to prevent accidentally changing the files in the HFS wrapper, the wrapper volume must be marked as
software-write-protected by setting kHFSVolumeSoftwareLockBit in the drAtrb (volume attributes) field of the MDB. All
correct HFS implementations will prevent any changes to the wrapper volume.

To improve performance of HFS Plus volumes, the size of the wrapper's allocation blocks should be a multiple of the size of the HFS

TN 1150: HFS Plus Volume Format Page: 38

Plus volume's allocation blocks. In addition, the wrapper's allocation block start (drAlBlSt) should be a multiple of the HFS Plus
volume's allocation block size (or perhaps 4 KB, if the HFS Plus allocation blocks are larger). If these recommendations are followed,
the HFS Plus allocation blocks will be properly aligned on the disk. And, if the HFS Plus allocation block size is a multiple of the size
of the device's physical blocks, then blocking and deblocking at the device driver level will be minimized.

Allocating Space for the Embedded Volume

The space occupied by the embedded volume must be marked as allocated in the HFS wrapper's volume bitmap (similar to the HFS Plus
allocation file) and placed in the HFS wrapper's bad block file (similar to the HFS Plus bad block file). This doesn't mean the blocks
are actually bad; it merely prevents the HFS Plus volume from being overwritten by newly created files in the HFS wrapper, being
deleted accidentally, or being marked as free, usable space by HFS disk repair utilities.

The kHFSVolumeSparedBlocksMask bit of the drAtrb (volume attributes) field of the MDB must be set to indicate that the
volume has a bad blocks file.

Read Me and System Files

IMPORTANT:
This section is not part of the HFS Plus volume format. It describes how the existing Mac OS implementation of
HFS Plus creates HFS wrappers. It is provided for your information only.

As initialized by the Mac OS Disk Initialization Package, the HFS wrapper volume contains five files in the root folder.

Read Me -- The Read Me file, whose name is actually "Where_have_all_my_files_gone?", contains text explaining that this
volume is really an HFS Plus volume but the contents cannot be accessed because HFS Plus is not currently installed on the
computer. It also describes the steps needed to install HFS Plus support. Localized system software will also create a localized
version of the file with localized filename and text content.
System and Finder (invisible) -- The System file contains the minimum code to locate and mount the embedded HFS Plus
volume, and to continue booting from the System file in the embedded volume. The Finder file is empty; it is there to prevent
older versions of the Finder from de-blessing the wrapper's root directory, which would prevent booting from the volume.
Desktop DB and Desktop DF (invisible) -- The Desktop DB and Desktop DF files are an artifact of the way the files on the
wrapper volume are created.

In addition, the root folder is set as the blessed folder by placing its folder ID in the first SInt32 of the drFndrInfo (Finder
information) field of the MDB.

Back to top

Volume Consistency Checks

An HFS Plus volume is a complex data structure, consisting of many different inter-related data structures. Inconsistencies between
these data structures could cause serious data loss. When an HFS Plus implementation mounts a volume, it must perform basic
consistency checks to ensure that the volume is consistent. In addition, the implementation may choose to implement other, more
advanced, consistency checks.

Many of these consistency checks take a significant amount of time to run. While a safe implementation might run these checks every
time a volume is mounted, most implementations will want to rely on the correctness of the previous implementation that modified
the disk. The implementation may avoid unnecessary checking by determining whether the volume was last unmounted cleanly. If it
was, the implementation may choose to skip a consistency check.

An implementation can determine whether a volume was unmounted cleanly by looking at various flag bits in the volume header. See
Volume Attributes for details.

Next Catalog Node ID Consistency Check

For an HFS Plus volume to work correctly, it's vital that the nextCatalogID field of the volume header be greater than all CNIDs
currently used in the catalog file. The algorithm to ensure this is as follows.

The implementation must iterate through all the leaf nodes of the catalog file, looking for file and folder records, determining
the maximum CNID of any file or folder in the catalog.
Once it knows the maximum CNID value, the implementation must set nextCatalogID to a value greater than it.

TN 1150: HFS Plus Volume Format Page: 39

WARNING:
To prevent the loss of user data, an implementation must perform this check every time it mounts a volume that
wasn't unmounted cleanly. It is most important that an allocation block that is in use be marked in the allocation
file. It is less important that an allocation block that is not in use be cleared in the allocation file. If an
allocation block is marked as in-use by the allocation file, but not actually in use by any extent, then that
allocation block is really just wasting space; it isn't otherwise dangerous.

Allocation File Consistency Check

For an HFS Plus volume to work correctly, it's vital that any allocation block in use by file system structures be marked as allocated
in the allocation file. The algorithm to ensure this is as follows:

The implementation must first walk the allocation file, marking every allocation block as free. (This step can be skipped to
improve the performance of the consistency check. All that will happen is that some allocation blocks may have been marked
as in-use, though they are not really in use by any extent.)
The implementation must then mark the allocation blocks containing the first three sectors and the last two sectors as
allocated. These sectors are either reserved or used by the volume header.
The implementation must then mark the allocation blocks used by all extents in all special files (the catalog file, the extents
overflow file, the allocation file, the attributes file, and the startup file) as allocated. These extents are all described in the
volume header.
The implementation must then walk the leaf nodes of the catalog file, marking all allocation blocks used by extents in file
records (i.e., in the HFSPlusForkData structures for the data and resource forks).
The implementation must then walk the leaf nodes of the extents overflow file, marking all allocation blocks used by all
extents in all extent records as allocated.
The implementation must then walk the leaf nodes of the attributes file, marking all allocation blocks used by all extents
described in fork data attributes and extension attributes as allocated.

WARNING:
To prevent the loss of user data, an implementation must perform this check every time it mounts a volume that
wasn't unmounted cleanly.

Back to top

Summary

Volume format specifications are fun.

References

Inside Macintosh: Files, especially the Data Organization on Volumes section.

Algorithms in C , Robert Sedgewick, Addison-Wesley, 1992, especially the section on B-trees.

Change History

01-February-1999 Originally published.

01-March-1999 Updated to include a warning about initializing disks with a small allocation block size.

18-January-2000
Updated to clarify the allocation block usage and placement of the alternate volume
header on volumes where the disk size is not an even multiple of the allocation block
size.

Back to top

Downloadables

Acrobat version of this Note (48K). Download

FastUnicodeCompare.c (43 KB). Download

Back to top

TN 1150: HFS Plus Volume Format Page: 40

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

