
TN 2000: PCI expansion ROMs and You Page: 1

CONTENTS

PCI Basics

Reading an expansion ROM

From Open Firmware

From Traditional Mac OS

Summary

References

Downloadables

During development, a developer may want to
confirm that the expansion ROM on a plug in
PCI card is present and accessible. Dumping
out the expansion ROM using the Open
Firmware User Interface or Display Name
Registry and PCI Peek under Traditional Mac
OS is an easy way to confirm the ROMs
existence and contents.

This Technote describes two techniques for
reading the contents of a PCI expansion
ROM. The first technique uses various Open
Firmware words in the Open Firmware User
Interface. The second technique uses Display
Name Registry, PCI Peek, and MacsBug to
read an expansion ROM from the Traditional
Mac OS. PCI Peek and Display Name
Registry are available as part of the PCI DDK.

Reading an expansion ROM from Mac OS X
or from the Classic environment under Mac
OS X is not covered in this Technote.

This Note is directed mainly at developers of
PCI plug in cards for Traditional Mac OS.

 Updated: [Jan 12 2001]

PCI Basics

Header Types

PCI cards must support a standard Configuration Space header. As of this writing there are three different types of headers
supported. The header type is indicated by the value in the Header Type register in Configuration Space. In certain headers
there is an Expansion ROM Base Address Register (BAR) indicating the presence (or absence) of an expansion ROM:

TN 2000: PCI expansion ROMs and You Page: 2

Header Type Header Type register Expansion ROM BAR offset
Zero 0x00 0x30
One 0x01 0x38
Two 0x02 Not supported

Header Type Zero is used for most PCI devices, like SCSI cards, Ethernet adapters, etc. Header Type One is used for
PCI-to-PCI bridges, such as connecting your Macintosh to an expansion chassis to provide more PCI slots. Header Type
Two is used for PCI-to-Cardbus bridges. Cardbus bridges do not currently support an expansion ROM BAR.

Back to top

Reading an expansion ROM

You can read the expansion ROM on a PCI card in two ways: using Open Firmware or using PCI Peek
and MacsBug under traditional Mac OS. Here're the basic steps you'll need to accomplish to read an
expansion ROM:

1. Find out if the PCI card of interest has an expansion ROM
2. Enable the ROM
3. Map the ROM into memory (Open Firmware only)
4. Enable Memory Space access to the card
5. Dump the ROM

Back to top

Reading an expansion ROM from Open Firmware

1) Find out if the PCI card has an expansion ROM

To find out if the card has an expansion ROM we need to look at the Configuration Space header. Move down the
device-tree to the card's node and look at the properties there using the .properties word. You should see something
like this:

TN 2000: PCI expansion ROMs and You Page: 3

0 > .properties
vendor-id 00001000
device-id 00000004
revision-id 00000003
class-code 00010000
interrupts 00000001
min-grant 00000008
max-latency 00000040
devsel-speed 00000001
name pci1000,4
compatible pci1000,4
 pciclass,010000
reg 00011800 00000000 00000000 00000000 00000000
 01011810 00000000 00000000 00000000 00000100
 02011814 00000000 00000000 00000000 00000100
 02011830 00000000 00000000 00000000 00008000
assigned-addresses 81011810 00000000 00001000 00000000 00000100
 82011830 00000000 80888000 00000000 00008000
 82011814 00000000 80880000 00000000 00000100

(For an in-depth description of these properties see PCI Bus Binding to Open Firmware Rev. 2.1 (PDF file))

Notice the first long word in the "reg" property. This is the Configuration Space address of the device. We can use this
address to look at the Header Type register in the Configuration header of the device. The parent of our PCI plug in
card is, in general, a PCI-PCI bridge. We need to open our parent so we can read the Header Type register in
Configuration Space:

 ok
0 > " .." find-device open ok
1 > . ffffffff
 ok
0 >

Here the string " .." refers to our parent device. Calling find-device makes our parent the active package, and calling
open prepares it for further use. After we call open we need to check the return value on the stack to see if the open
was successful. We display the top stack item using the . word. A return value of 0xffffffff indicates success (true),
and a return value of 0 indicates failure (false). Once we have our parent node open we can read the Header Type
register:

0 > 1180e config-b@ ok
1 > . 0
 ok
0 >

The address 1180e is the Configuration Space address we want to read. The word config-b@ reads a byte from this
address. The . word displays the top item on the stack, which is the Header Type register. Since this is a Header Type

TN 2000: PCI expansion ROMs and You Page: 4

Zero, we know the expansion ROM BAR is at offset 0x30.

Looking at the assigned-addresses property we see an entry for a register at offset 0x30:

"assigned-addresses" property
82011830 00000000 80888000 00000000 00008000

(The low-byte of the first long word indicates the offset in Configuration Space)

So we know there is an expansion ROM that has been assigned a base address of 0x80888000 and is 0x8000 bytes
long.

2) Enable the ROM

Bit 0 of the expansion ROM BAR enables the address decoder for the ROM. We can set bit 0 by reading in the BAR,
OR-ing in 0x01 and writing this value to the BAR:

0 > 11830 dup config-l@ 1 or swap config-l! ok

3) Map the ROM into memory (Open Firmware only)

Since we're in Open Firmware, we need to manually map in the expansion ROM so we can read it. We can do this by
using the do-map word. The base address assigned by Open Firmware can be found in the assigned-addresses property
for the BAR:

82011830 00000000 80888000 00000000 00008000

The third long word, 0x80888000, is the address we want. The last long word, 0x00008000, is the length of the
ROM. We can map in the ROM like this:

0 > 80888000 dup 8000 28 do-map ok
0 >

The do-map word creates an address translation. We pass it a physical address (80888000), a virtual address (the
same address, put on the stack by the dup word), a length (8000), and a parameter (28). The do-map word then
calls the map method of the MMU to create the translation.

4) Enable Memory Space access to the card

By default, Open Firmware turns off Memory and I/O space accesses to plug-in cards. We can enable Memory space
accesses by setting bit 1 of the command register (offset 0x04) in Configuration Space:

TN 2000: PCI expansion ROMs and You Page: 5

0 > 11804 dup config-w@ 2 or swap config-w! ok
0 >

5) Dump the ROM

Now assuming all has gone well we can us the base address and length of the ROM with the dump word to see the
contents of the ROM:

0 > 80888000 100 dump
80888000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
80888010: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
80888020: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
80888030: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
80888040: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
80888050: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
80888060: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
80888070: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
80888080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
80888090: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
808880a0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
808880b0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
808880c0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
808880d0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
808880e0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................:
808880f0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff :................: ok
0 >

Back to top

Reading an expansion ROM from Traditional Mac OS

To dump an expansion ROM using the Traditional Mac OS, you'll need 3 tools: Display Name Registry, PCIPeek,
and MacsBug.

First you'll need to know the name of your device. Use Display Name Registry to find the name of your device. PCI
plug-in cards will appear under the Devices:device-tree:pci:pci-bridge node. You'll need the name of your device
(or its unit address) to access the device using PCIPeek.

Once you find the name of your device, launch PCIPeek. You can use PCIPeek to spy on and manipulate PCI devices.
When you launch PCIPeek, a bunch of text will scroll by. This text includes descriptions of the commands that
PCIPeek understands and the devices that it found. (Hopefully, one of the devices is yours.)

You should see this prompt:

Enter new node name =>

TN 2000: PCI expansion ROMs and You Page: 6

Type in the name of your device. You should then get an output something like this:

Enter new node name => pci1000,4
Node info:
 Name: pci1000,4
 Slot: J10
 Unit-Address: 11800
 Bus Number: 1
 Device Number: 3
 Function Number: 0
>

This shows the name of your device, the slot it's in, and the unit-address. (The Bus Number, Device Number, and
Function Number are encoded as part of the unit-address. For an in-depth description of the unit-address see PCI
Bus Binding to Open Firmware Rev. 2.1 section 2.2 "Address Formats and Representations" (PDF file).)

Now that we've selected the device, let's look at the Configuration Space header. Enter c and press return. You
should get a dump of the entire Configuration Space header like this:

> c
Vendor ID = 1000 | 0x00
Device ID = 0004 | 0x02
Command = 0004 | 0x04
Status = 0200 | 0x06
Revision ID = 03 | 0x08
Class Code = 010000 | 0x09
Cache line size = 00 | 0x0C
Latency = 10 | 0x0D
Header type = 00 | 0x0E
BIST = 00 | 0x0F
Base addr 0 = 00001401 | 0x10
Base addr 1 = 80880000 | 0x14
Base addr 2 = 00000000 | 0x18
Base addr 3 = 00000000 | 0x1C
Base addr 4 = 00000000 | 0x20
Base addr 5 = 00000000 | 0x24
Cardbus CIS Ptr = 00000000 | 0x28
Subsys Vendor ID = 0000 | 0x2C
Subsys ID = 0000 | 0x2E
ROM base = 80888000 | 0x30
Reserved = 00000000 | 0x34
Reserved = 00000000 | 0x38
Interrupt line = 00 | 0x3C
Interrupt pin = 01 | 0x3D
Min_Gnt = 08 | 0x3E
Max_Lat = 40 | 0x3F
>

TN 2000: PCI expansion ROMs and You Page: 7

1) Find out if the PCI card has an expansion ROM

PCIPeek knows something about Configuration Space. As you can see in this example, it has correctly identified
this as a Header Type Zero. Note that it shows us a ROM base field at offset 0x30: this is the base address of the
ROM. Notice also that what it doesn't show us is the length of the ROM. We can find the length by looking at the
reg or assigned-addresses property for the device using Display Name Registry.

2) Enable the ROM

We enable the ROM by setting bit 0 in the ROM base register. You can do this in PCIPeek by using the slc
command (set long configuration):

>slc 11830 80888001
>

Now if you use the c command you'll see that bit 0 of the ROM base register is set.

4) Enable Memory Space access to the card

You can enable Memory space access by setting bit 1 of the Command register (the Command field shown using
the c command). You can do this using the swc command (set word configuration):

>swc 11804 6
>

5) Dump the ROM

Here MacsBug is your friend. Note the base address of the ROM (the ROM base field). Break into MacsBug. Type
dm <ROM address> 100 and you'll see the first 0x100 bytes of the ROM:

TN 2000: PCI expansion ROMs and You Page: 8

NMI
dm 80888000 100
 Displaying memory from 80888000

 80888000 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 80888010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 80888020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 80888030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 80888040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 80888050 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 80888060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 80888070 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 80888080 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 80888090 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 808880A0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 808880B0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 808880C0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 808880D0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 808880E0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
 808880F0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Back to top

Summary

An expansion ROM is an optional ROM that PCI card developers can build into their devices. An
expansion ROM can contain various drivers: FCode drivers are required for any devices that wish to
participate in the boot process, for example display cards, SCSI, or ATA cards. A native driver
('ndrv') is used to control a PCI card under Mac OS. By having an FCode and/or native driver
('ndrv') in an expansion ROM a PCI card can achieve true "Plug 'n' Play" compatibility.

References

PCI Bus Binding to Open Firmware Rev. 2.1 (PDF file)

PCI System Architecture, Fourth Edition, published by MindShare, Inc.
ISBN: 0-201-30974-2

Back to top

Downloadables

TN 2000: PCI expansion ROMs and You Page: 9

Acrobat version of this Note (96K) Download

PCI DDK 3.0 (3000K) Download

Back to top

Technical Notes by API | Date | Number | Technology | Title

Developer Documentation | Technical Q&As | Development Kits | Sample Code

