gﬁ Technical Note TN2042

Tailoring Java Applications for Mac OS X

CONTENTS This Technical Note describes techniques and
methods that Java developers on Mac OS X

can employ to provide a "complete Macintosh
experience" in their Java applications on Mac
OS X. ltis also intended for Java developers

from other platforms looking to bring their

Detecting a Macintosh Client

Using Cocoa-Java

Pure Java Compatibility Tips

Mac OS X, Swing, and Aqua
JDesktopPane and Multiple Document Interface

Swing Menus and Menu ltems

Contextual Menus

Placing and Painting Components

Windows With Scrollbars (Using JScrollPanes)

File Dialogs in Aqua

Macintosh-Specific Tailoring

Using a Macintosh Menubar

The Window Menu

The Application Menu
Accommodating the Application Menu
Additional MRJ Handlers

Launching Java Applications

Setting A Dock Icon

existing applications to Mac OS X as
flawlessly as possible.

The topics below will address what you as a
developer can do to alter appearances and
behaviors unique to the Java environment, so
that it will be a better "Mac OS X citizen."
Some of the areas involve simple property file
changes, while others involve better Java API
choices or explicit programmatic changes to
the Ul. Nearly all of these changes can be
applied in a manner that will not adversely
affect your application's behavior on other
platforms, thereby retaining the portability that

Java provides.

Summary
Downloadables The topics discussed are available for use as
\e s of Java 1.3.1 Update 1 for Mac OS X 10.1.3,

and the current developer tools.

May 23 2002

Detecting a Macintosh Client

Some of the suggestions made in this Technical Note suggest that you make conditional API calls or placement of Ul
components. The most common (and intuitive) method of finding out the operating system you are running on is checking
the 0S.Nname System property. This, however, involves correct parsing of the String-based result, which is subject to

error, especially if Apple chooses to change the way this property is set. The more reliable (and simpler) means of
finding out if your Java client is a Mac is by checking the mrj .version property:

System.getProperty(*'mrj.version');

This property is set automatically by the JVM on all Mac OS X systems. The test is simple: if the returned Stringis not
null, you're running on a Mac! This is the method we recommend you employ if you need to confirm that you are running
on a Macintosh.

Additionally, many of the forthcoming suggestions are specific to Apple's Aqua interface. In other words, there are things
you are enabling/disabling that you may not want to in the Java (Metal) or Motif look and feel's for Swing. The best way to
verify that Aqua is currently the active look and feel is to call

UIManager . getSystemLookAndFeelClassName()

and compare the result to

UIManager .getLookAndFeel () -getClass() -getName ()

Combined with the mr j . version check, this is an abstract and clean way of finding out if you are using Aqua (first check
if you're on a Mac, then check that the system look and feel is the same as the current running look and feel). It doesn't
require knowledge of the class name that Apple uses for its Aqua look and feel, and therefore guarantees that your logic will
always work, even if Apple decides to change the name or package of the look and feel class.

Back to top

Using Cocoa-Java

The quickest and most obvious means of making a Java application as Mac-like as possible is to build your application
using Cocoa-Java. This will allow you to employ Interface Builder for quick WYSIWYG design of your Ul, complete with
recommended component spacing and sizing. Cocoa-Java controls also offer things that Swing or AWT do not, such as quick
movie embedding and true "floating" toolbar windows.

Of course, employing Cocoa-Java will remove the portability aspect of your Java application. While this Technical Note is
more focused on pure-Java applications, Cocoa-Java is worth mentioning because, if you are choosing to use it for your
user interface, it is important to NOT mix Cocoa- and Carbon-based components in your application. Within the scope of
Java, this includes:

® Swing / AWT Components, including Java events
® QuickTime for Java components
® JDirect calls

The main reason for this is that Carbon and Cocoa use different run-loops, which will conflict with one another if mixed in
the same application. The QuickTime for Java bullet may seem discouraging at first, but most of the simple QuickTime
functionality required by Macintosh applications (opening and playing various media files) can be obtained through the
com.apple.cocoa.application.NSMovie class.

With that said, the remainder of this Technical Note will deal with Swing- and AWT-based "Pure Java" applications.

Back to top

Pure Java Compatibility Tips

The first half of this Technical Note covers simple changes or decisions you can make in your pure Java application which
do not involve Mac-specific APIs or properties, but rather things to keep in mind in order to make your single codebase
support Mac OS X just as well as other platforms.

Back to top
Mac OS X, Swing, and Aqua

The Aqua user interface for Mac OS X is much different from those of other platforms, including Java itself. The presence
of an Aqua pluggable look and feel for Swing is obviously a huge step in making your Swing applications more Mac-like.
It's also a free one: short of explicit changes in your own code, Mac OS X employs the Aqua look and feel for a Swing
application at launch time by default.

The existence of Aqua as a look and feel leads to our first simple guideline: use Swing as the Ul for your Java apps! There
are many fundamental benefits that Swing provides over AWT as-is: access to Aqua removes nearly the only advantage that
AWT could hold. Furthermore, mixing of lightweight and heavyweight components can have undesirable performance and
drawing effects in your application.

In addition to modeling your application using Swing, it is best to avoid explicitly setting the look and feel in your Java
code. If you need to change the look and feel of your application on different platforms, it would be both more elegant and
simpler to override the swing.defaultlaf Java property for your application. See Technical Q&A 1059 for more on

setting the look and feel of a Swing application on Mac OS X.

Despite automatic adoption of the Aqua appearance, there are still areas and disciplines that fall in the hands of the
developer to provide a full Macintosh experience. Many of the guidelines for this Technical Note were modeled after the
Aqua Human Interface Guidelines (PDF) from the Apple Developer web site. Examples of some small but important details
covered in the guidelines include:

® Keeping scrollbars visible at all times (see below)

® Choosing and designing "Popup Menus" (JComboBoxes)
® Graying (disabling) menu items

® Reserved keyboard menu item shortcuts

It is strongly suggested that you review this document for particulars regarding user interface design on the Macintosh.
We did!

Back to top

JDesktopPanes and Multiple Document Interface

Nearly all Macintosh applications are made up of numerous, free-floating, independent windows. While these windows
remain within the context of the application, they are not contained within a parent "backing window" that serves as the
bounds of the application on the screen. This is something that differentiates the Macintosh from other platforms, and
should be considered when designing an application with more than one window.

For this reason, we would recommend against the use of the javax.swing.JDesktopPane class, which employs the
restrictive backing-window MDI model, for your application’s main Ul, unless absolutely necessary. An exception would
be a Java application which requires a floating toolbar-like entity (described by Swing as an "Internal Utility Window"")
which constantly remains on top of all other windows in the application, regardless of focus. Java currently has no means
of providing this other than by using JDesktopPane. You may also want to consider designing a more platform-neutral
Ul with a single dynamic container, similar to what Java applications like JBuilder or LimeWire utilize.

If you are bringing your MDI-based application to the Macintosh from another platform, you may find that it is impossible
to provide the user experience you've built without a layered-pane structure. In this case, it may be better to keep your
Ul as-is. The decision will be up to you as a developer.

As a side note, you can implement toolbar- and palette-style controls using Cocoa-Java. However, use of Cocoa-Java would
eliminate portability, and prevent you from using Swing or AWT components.

We also understand that JDesktopPane-based apps are typically the only way to provide a single menubar that can

control multiple windows within a given application (a paradigm that exists in the Mac OS with free-floating windows),
and that this can be the driving force for choosing an MDI-based Ul. The section below discusses alternatives to MDI and
solutions to the multiple-frame problem in Swing.

Back to top

Swing Menus and Menu ltems

Another difficulty in cross-platform Java Ul development is that shortcuts and appearances for menu items tend to vary
between platforms. Unfortunately, many Java programmers write their applications only with the current development
platform in mind, and explicitly specify the appropriate modifier or trigger in their code. This provides difficulty in
porting your application from platform to platform, as well as risking misinterpretation of what the platform's
appropriate triggers are.

Fortunately, there are much more elegant solutions to creating these actions on a given platform, and furthermore,
they're portable!

Menu Shortcuts. Menu shortcuts are often set by a developer with an explicit java.awt .KeyStroke specification.
This becomes complicated when moving to a new platform with a different shortcut modifier, because new KeyStrokes

will need to be conditionally created based on the current client platform. The solution here is to make use of the following
AWT method:

Java.awt.Toolkit.getMenuShortcutKeyMask()
When calling this method, the current platform's Toolkit implementation will return the proper mask for you. The work

of checking for the current platform and then guessing which key is correct is done for you with this single call! Listing 1
demonstrates this below.

Listing 1. Using getMenuShortcutKeyMask() to simplify menu shortcuts.

JMenultem jmi = new JMenultem(‘'Copy');

/*
// Before the wonders of TN2042, all I could do was this!
String vers = System.getProperty(*'os.name').toLowerCase();
if (s-indexOf("'windows™) I= -1) {
Jmi .setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C, Event.CTRL_MASK));
} else if (s.indexOf("mac™) != -1) {
Jmi _setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C, Event_META MASK));
3

*/
// This one line works for all platforms where "c® iIs copy

Jmi _setAccelerator(KeyStroke.getKeyStroke(KeyEvent._VK_C,
Toolkit.getDefaultToolkit() -getMenuShortcutkKeyMask()));

Just about every common action on the Macintosh has a keyboard equivalent that uses the command key as at least one of
the modifiers, if not the sole modifier. Unfortunately, other platforms are not as consistent, and you may have some
keyboard shortcuts that use the "Alt" key, for example. Since the above call only returns one generalized mask, there may
still be a need to do conditional setting of key shortcuts based on the host platform. The fact that most Mac keyboard
equivalents use Command will make your life a bit easier if you're bringing your application over to Windows and are
worried about representing actions correctly on this platform. For a solid list of the most common and reserved shortcuts,
check out the keyboard equivalents section of the Aqua HI Guidelines.

Since the ALT_MASK modifier evaluates to the Option key on the Mac, Ctrl-Alt masks set for Windows would immediately
become Cmd-Opt masks if you used getMenuShortcutKeyMask() in conjunction with ALT _MASK.

Menu Mnemonics. Unlike other platforms, Mac OS X (Aqua) does not provide menu mnemonics, or single-key shortcuts
to menus (using the Alt key) and menu items (once the parent menu is opened). Mnemonics usually appear as a single
underlined letter in the menu[item]'s name. Macintosh applications have never used menu mnemonics, and we suggest
applying mnemonics in a platform-sensitive manner in your code if possible, such as a single setMnemonics() method
that is conditionally called when constructing your GUI.

Menu Item Icons. Like mnemonics, menu item icons are also available via Swing - and functional on Mac OS X - but not
a standard part of Aqua's HI Guidelines. In the interest of making your Macintosh Java application look like a Carbon or
Cocoa app, you may also want to apply these icons conditionally based on platform.

For more on checking which platform your application is running on, please see the Detecting a Macintosh Client section.

Back to top

Contextual Menus

Since most platforms support contextual menus in one form or another there should be no problem in putting contextual
menus in your Java application (Java refers to them as PopupMenus, which is the Aqua term for what Java calls
JComboBo0OX). The situation can become complicated across platforms, though, if one assumes that contextual menus are
explicitly triggered the same way, or at the same time. On Windows, for example, the right mouse button is the standard
trigger for contextual menus. With the standard Macintosh (one button) mouse, contextual menus are brought up by a
Control-click.

Note:
A third-party multi-button mouse on a Mac will not pose a problem, as the right button is typically mapped to
a Control-click action by the driver.

These are two very different cases, which could result in fragmented and conditional code like the menu example above. One
thing is common, however: a mouse click. To ensure that your program is interpreting the proper contextual menu

trigger, regardless of platform, we again turn to the AWT to do the interpreting for us by using the following instance
method:

Java.awt.event.MouseEvent. isPopupTrigger() The method is defined in MOouseEvent because you're going
to activate the context menu through a MouseL i stener on a given component when a MouseEvent on that component is
detected. The key here, is how and when to detect the proper event:

Listing 2. Using isPopupTrigger () to detect context menu activation.

JLabel label = new JLabel ("'l have a popup menu!'");

label .addMouseListener(new MouseAdapter(){
public void mousePressed(MouseEvent e) {
evaluatePopup(e);
¥

public void mouseReleased(MouseEvent e) {
evaluatePopup(e);
}

private void evaluatePopup(MouseEvent e) {

iT (e.isPopupTrigger(Q)) {
// show the popup menu...
}

}
DF

Note that the above example checks 1SPopupTrigger () on both MOUSE_PRESSED and MOUSE_RELEASED events.
This is because on the Macintosh, the popup trigger is set on MOUSE_PRESSED, while Windows sets it on
MOUSE_RELEASED. For portability, both cases should be handled.

Back to top

Placing and Painting Components

Swing Uls are constructed by combining often-complicated nestings of containers and components. When working on a
single platform, a developer can easily lose sight of what his or her Ul design may look like on other platforms. As the
term suggests, different look and feel's look and feel differently. Font sizes, button sizes and shapes, background and
foreground colors, etc. can all vary differently between different look and feel's on different platforms. It is this fact that
makes it extremely important to use abstracted and general methods to place, size, and paint your components.

Layout Managers. Using layout managers may be a no-brainer for many developers, but many programmers do attempt
to fine-tune their applications by setting explicit X and Y coordinates for their controls. If, at any point, such an
application is run under a new look and feel, and/or on another platform, this can result in a disasterous Ul, riddled with
components painting on top of each other and running off the edge of a container, among other things. It is generally unsafe
to assume that placing buttons and controls at explicit coordinates is portable, as different sizes for controls across look
and feel's can cause your Ul to suddenly look nothing like what you intended. The use of AWT layout managers solves this
problem by making use of abstracted location constants (relative grid coordinates in GridLayout, directional in
BorderLayout, etc.). The exact placement of these controls will be determined by the layout manager while taking the
sizes of each individual component into account, yet still maintaining their placement within the container relative to one
another.

Component Sizes. Setting explicit component sizes can also be a dangerous habit. Each look and feel is likely to have
different font styles and sizes. These font sizes will most certainly affect the required size of the component containing the
text, and moving explicitly-sized components to a new look and feel with a larger font size can cause big problems. The
safest means of keeping your Ul components a proper, minimal size in a portable manner is to simply call

myComponent.setSize(myComponent.getPreferredSize());

where myComponent is your Ul component object. Most layout maangers and containers respect a component's preferred
size, making this call unnecessary in many cases. As your Ul becomes more complicated, however, you may find this call
handy for containers with many child components.

Component Colors. Since a given look and feel tends to have universal coloring and styling for most, if not all of its
controls, developers may be tempted to create custom components which match the look and feel of standard Ul classes.
This is perfectly legal, but the careless developer may be setting an explicit color which they think matches well with the
current look and feel. Changing the look and feel may result in a very odd-looking button somewhere in the container. The
best way of ensuring that your custom control matches well with other standard components is to query the UlManager
class for the desired colors or icons. A perfect example of this would be a custom Window object that contained some
standard lightweight components but wants to paint its uncovered background to match that of the rest of the application's
containers and windows. To do this, the developer would call:

myPanel . setBackground(UIManager.getColor("'window'™))

This will return the color appropriate for the current look and feel. The other advantage of using these standard methods is
that they will also provide more specialized backgrounds and icons that are not easily reconstructed (such as the striped
background used for Aqua containers and windows, which is what the above call will return).

Back to top

Windows With Scrollbars (Using JScrollPanes)

One specific example of Ul design recommended by the Aqua HI Guidelines involves windows that use scrollbars to navigate
their contents. By default, a Swing JFrame has no scrollbars, regardless of how it is resized. The easiest way to provide
scrollable content in a frame is to place your frame's components inside a JScrol IPane, which can then be added to the
parent frame. In the default behavior of JScroll IPane, however, vertical and horizontal scrollbars only appear if they
are necessary - in other words, if not all content in the pane is visible. While this may be consistent with some platforms,
it contradicts the Aqua HI Guidelines which suggest that a window that may become scrollable show its scrollbars at all
times. This is to prevent the confusing Ul of scrollbars appearing and disappearing as needed, which creates the illusion of
the window's viewable area shrinking and expanding. We suggest that if you are using a JScrol IPane in your Java

application, set the JScrol IPane's scrollbar policy to always display the scrollbars, even when disabled. Listing 3
demonstrates how this can be done with the standard Java API.

Listing 3. Setting JScrol IBar policies to match Aqua HI Guidelines.

JScrollPane jsp = new JScrollPane();
Jsp-setVerticalScrolIBarPolicy(JScrol IPane.VERTICAL_SCROLLBAR_ALWAYS) ;
Jsp-setHorizontalScrol IBarPolicy(JScrol IPane.HORIZONTAL_SCROLLBAR_ALWAYS);

You can of course choose to do this conditionally based on the host platform, as the AS_NEEDED (default) policy may more

closely resemble other platforms. Such a change may just go unnoticed on other platforms with fewer Ul specifications.
Ultimately the choice is up to the developer. Keep in mind that while always visible, the scrollbars will appear solid and
without scrollers if the entire JScrol 1Pane®s content is visible (see window behavior in the Finder for a quick

example).
Back to top
File Dialogs in Aqua

The jJava.awt.FileDialog and Javax.swing.JFileChooser classes are the two main mechanisms to create
quick and easy access to the file system for the user of your Java application. JFi leChooser is the newer, abstracted,
more-customizable successor to the older, native-derived AWT Fi leDial0g. Each has its advantage over the other.

In the interest of making your application look as "native” as possible, it is typically recommended that developers use the
AWT FileDialog classes to present file access to the user. The difference between the two is especially visible when

using Aqua on Mac OS X, where file dialogs in Carbon and Cocoa applications use a "column" style of navigation. This is
adopted automatically by the AWT Fi leDialog, while the Swing JFi leChooser uses a navigation style different than

that of typical Mac OS X Applications. However, the many functional advantages of JFi leChooser may outweigh this

suggestion. The choice is up to the developer. Please note that there is no consequence to mixing a heavyweight
FileDialog with an otherwise-Swing application, as the dialog is modal and will always draw on top of the other visible

components.

Handling .pkg and .app files. Handling Mac OS X application bundles and installer packages inside your Java
application is an additional concern. Since a .app or a .pkg file is technically a directory, Java applications using
JFileChooser or FileDialog may initially recognize them as such and allow inappropriate navigation. Apple has

provided properties for both of these classes that can be used to control how .app bundles as well as .pkg install packages
(both actually directories) should be handled.

FileDialog. The AWT FileDialog class can be set to treat .pkg and .app files as non-navigable using the system
runtime property

com.apple.macos.use-file-dialog-packages

Possible values are true (treats .pkg and .app as files) and False (as folders, the default behavior). The property can
be set using the standard mechanisms for runtime system properties as explained in Tech Note 2031, and once set will be
applied to all Fi leDialog instances. This allows for developers to alter their AWT dialogs for Aqua without any code

change. If your appliction requires different instances to behave differently, you can either set the property to true or

false at runtime as necessary using System.setProperty(), or you can make use of the per-instance client
properties in JFi leChooser.

JFileChooser. There are two properties for dictating the treatment of .app and .pkg files when using JFi leChooser.

Both properties need to be set programmatically in your application (you will need to make changes to your code). The
properties for .pkg installer packages and .app application bundles, respectively, are

JFileChooser.packagelsTraversable
JFileChooser.appBundlelsTraversable

Possible values for these properties are always (treat as folders, the default behavior) and never (treat as files). To
set these properties globally for all instances of JFi leChooser in your application, use UIManager .put().
Alternatively, you can set them on a per-instance basis via the putClientProperty() instance method inherited from
JComponent

There are a few known issues that currently exist with using these properties:

e setting JFi leChooser .packagelsTraversable to never will currently do so for both .pkg and .app files
e setting JFi leChooser .appBundlelsTraversable to never will cause packagelsTraversable to be
ignored, effectively causing the default behavior of navigable .pkg files in JFileChooser.

In other words, you may currently use these properties to make only .app files, or both .app and .pkg files, navigable.
Note:

The JFi leChooser properties only have an effect when using the Aqua look and feel in Swing, since it is the
only look and feel which Apple controls.

Back to top

Macintosh-Specific Tailoring

The next few sections discuss changes or design decisions you can make to your Java application with the specific goal of
making it as close as possible to an Aqua-compliant Mac OS X application. Some of these changes will have no effect on
other platforms, while others may require conditional packaging or execution of code in your application for multiple
platforms.

Back to top

Using a Macintosh Menubar

One difference between the Java Ul model and that of the Macintosh is that in Swing, the application's menubar is applied
on a per-frame (window) basis. Similar to the Windows model, the menubar appears directly under the frame's titlebar.
This is different from the Macintosh model, where the application has a single "screen™ menubar which controls all of the
app's windows. To quickly solve this problem, a runtime property has been added:

com.apple.macos.useScreenMenuBar

This property can have a value of true or false; if undefined, the standard Java behavior equivalent to a value of
Falseis used. When read by the Java runtime at application startup, a given JFrame's JMenuBar will be placed at the

top of the screen, where a Macintosh user would expect it to be. Since this is a simple runtime property that must be used
by the host VM, setting it in your application will have no effect on other platforms that will not even check for it.

It is important to note that a JMenuBar attached to a JDial og will not appear at the top of the screen as expected when

setting this property, but rather inside the dialog (as if the property were not set). You will notice that by default the
parent JFrame's menubar shows through disabled when a JDiallog without a menubar is focused.

If you find the need to attach menus to a dialog window, you may want to reconsider your Ul - a dialog should be
informational or present the user with a simple decision. A window with enough functionality to necessitate a menubar
may be better off existing as a JFrame.

A quick run-through on enabling the screen menu bar is also available from Q&A 1003.

Unfortunately, this only solves part of the problem (visual placement); the fundamental issue of "one menubar per
window" still exists. In other words, the menu will appear at the top of the screen, but only when the specific window it
was assigned to is in focus. If your application has multiple windows, and a window other than the one holding the menubar
is focused, the menubar will vanish! The Aqua HI Guidelines state that the menubar should always be visible in an

application; even an insignificant window such as an alert dialog should still show the menubar (though you may want to
disable the menus).

There are a few ways around this problem, but the most popular involves creating and using a menu factory which will
generate an identical menubar for each free frame in your application. This way, when focus changes to each frame, it will
still have a menubar attached at the top of the screen.

Back to top

The Window Menu

One of the directives in the Aqua HI Guidelines is that all Mac OS X applications should provide a Window menu to keep
track of all currently open windows. Implementing such a feature in Java Swing is not impossible, but it requires, among
other things, making use of the previous two suggestions in this Technical Note (Macintosh menubar, free-floating
frames). While you can implement a Window menu without these two prerequisites, they all work hand-in-hand in
allowing your Java app to be as Mac-like as possible. Similar to the "global menubar" issue, Swing's current architecture
makes it difficult to have multiple menus and menu items that are constantly updated and synched with the current state of
the application. Through the use of Actions and PropertyChangelListeners, however, most of this functionality can
be achieved with what is available today.

A Window menu should contain a list of currently active (visible) windows, with the corresponding menu item checked if a
given window is currently selected to the foreground. Likewise, selection of a given Window menu item should result in the
corresponding window being brought to the front. New windows should be added to the menu, while closed windows should
be removed. The ordering of the menu items is typically the order in which the windows appeared (See the Aqua HI
Guidelines for a full explanation).

Back to top

The Application Menu

Any Java application that uses AWT/Swing, or is packaged in a double-clickable .app file, will automatically be launched
with an Application Menu similar to native applications on Mac OS X. This application menu, by default, contains the full
name of the main class as the title. This name can be changed using the
com.apple.mrj.application.apple.menu.about.name application property, or the —Xdock :name
command-line property. According to the Mac OS X Aqua HI Guidelines, the name you specify in the application menu
should be no longer than 16 characters. See the Technical Note on Java Runtime Properties for Mac OS X and the Aqua HI
Guidelines for more.

The next step to customizing your application menu is to actually have your own handling code called when an item in the
application menu is selected. Apple has provided a means for this through special Java interfaces in the com.apple.mrj
package. Each interface has a special callback method that is called when the appropriate application menu item is selected.
As of the Java 1.3.1 Update 1 for Mac OS X, the following callback interfaces for the application menu are available:

o MRJAboutHandler - Allows the program to react to selection of the About <appname=>... menu item
® MRJPrefsHandler - For the Preferences... menu item
e MRJQuitHandler - For final clean-up logic when the Quit <appname> menu item is selected.

r

& BrNLGl File Edit
About TestApp...

Preferences...

Services |

Hide TestApp 38H
Hide Others
Show All

Quit TestApp %0

Figure 1. Application menu for a Java application on Mac OS X.

To handle a given application menu item:

1. Implement the appropriate handler interface

2. Define the appropriate "handler" method in your implementation (handleAbout(), handlePrefs(),
handleQuit())

3. Register your handler using the appropriate static methods in the com.apple.mrj.MRJApplicationUtils
class (registerAboutHandler(), registerPrefsHandler(), registerQuitHandler())

To see an example of these implementations, simply open a new Java Swing Application in Project Builder. There is also a
Technical Q&A demonstrating proper use of the MRIJQuitHandler in Mac OS X 10.1 and 10.2 (Jaguar).

Back to top

Accommodating the Application Menu

We have already discussed the addition of the application menu to Java applications on Mac OS X, and how to take advantages
of the menu items within it. If your application is to be deployed on other platforms, where preferences/quit/about access
will need to be placed elsewhere on the menubar (in a "File" or "Edit" menu, for example), you may want to make this
placement conditionally. While it would not be harmful to have two different "Preferences™ menu items, or an "Exit" menu
item as well as the MRJ "Quit" item, for example, it may be less confusing to Mac users if the items familiar to the
application menu were there and nowhere else. This is a minor change that can make a large difference in the look and feel
of your Mac OS X Java application.

Back to top

Additional MRJ Handlers

In addition to the interfaces provided for handling of the application menu, the current Java release on Mac OS X provides
two functional and supported MRJ Handlers:

® MRJOpenApplicationHandler - respond to an "Open Application" Apple Event
® MRJOpenDocumentHandler - respond to double-clicking a supported document or a drag onto the app's icon

These handler interfaces are intended to enhance a Java application's behavior in the Mac OS X Finder, and are utilized in
the same manner as the application menu interfaces described above. Registering the file types your application can open
from the Finder using MRJOpenDocumentHandler is done with additional keys at the top level of the Info.plist file of an
application bundle, in the same manner as Cocoa or Carbon applications. Please see the CFBundleDocumentTypes section of
the Bundle Keys documentation for more.

Back to top

Launching Java Applications

Perhaps the most immediate and obvious aspect of the Macintosh experience is that an application should be launched via a
double-clickable icon, or package. In the interest of being a "good Mac OS X citizen", a Java application should not require
use of the command line to be launched. There are a few ways to make your Java application double-clickable for the end
user:

® Project Builder: The easiest way to make a double-clickable Java application is to start your project from the
beginning using Project Builder. An .app package will be constructed around your java libraries automatically
during the build process. Project Builder is installed with the Mac OS X Developer Tools.

® MRJAppBuilder: This is probably the most attractive method for applications already written using other tools
and/or on other platforms. MRJAppBuilder will take all required Jar files and arguments and construct an .app
package for Mac OS X. It is installed with the Mac OS X Developer Tools.

® Java Web Start: Beginning with Mac OS X 10.1, Java Web Start was installed with the system. Web Start is a
fantastic way of deploying your applications in a simple manner over the web, with a simple click of a web link. In
its current implementation, a JNLP file is saved to the user's downloads directory which can be double-clicked,
triggering Web Start to launch the application, and even download a newer version if one is available at the
original URL. For more about Web Start, see Sun's website or open up Java Web Start (located in
/Applications/Utilities/) and try out the sample application.

® Manifest Files: If your application is fully contained in a single Jar file, with a proper manifest file defining
the main class, the jar itself can simply be double-clicked in the Mac OS X Finder to launch the application.

The .app approach, of course, is the most Mac-like means of packaging your Java application.

Setting a Dock Icon

Any application that launches under Mac OS X has a corresponding icon in the Finder Dock. This goes for graphical Java
applications on Mac OS X, as well as non-graphical apps which are packaged in a .app bundle. A default Java icon is
provided for placement in the Dock, but a developer can specify a custom icon for his/her Java application using one of two
methods:

1. Terminal: use the —-XDock: icon launch argument
2. Bundle (.app): include a . icns file in the bundle's Contents/Resources/ directory

This means that applications deployed using double-clickable jar files cannot customize their Dock icon, which is why it is
recommended that the other deployment mechanisms listed above be considered. Unfortunately, because of the way Java
Web Start launches its applications, it is currently impossible to do this via Java Web Start as well.

For more on the —XDoOcCK argument, please see the Technical Note on Java Runtime Properties for Mac OS X.

Back to top

Summary

This Technical Note has glanced upon the areas in which a developer can bring the user experience advantages of Mac OS X
to Java applications running on the platform. From runtime properties, to compatibility best-practices, to Mac-specific
tuning and tweaks, we hope developers will be able to take advantage of what's available to make Java applications on Mac
OS X look as "at-home™" as possible.

Back to top

Downloadables
|/| Acrobat version of this Note (68K). Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As| Development Kits | Sample Code

