

CONTENTS

The loss of the APIs

Why the were removed

What they did

How they can be replaced

SndStartFilePlay

SndRecordToFile and SPBRecordToFile

Summary

References

Downloadables

This Technote describes the removal of the
SndPlayDoubleBuffer and other APIs from the
Carbon API set and what can be done to
make existing sound code based on these
now-defunct APIs Carbon compatible.

This Note is directed at application developers
who have code that calls functions that are
not in the Carbon Sound Manager and who
want to move that code over to Carbon.

[June 12 2002]

The loss of the APIs

These sound functions are not in Carbon:

SndControl
SndStartFilePlay
SndPauseFilePlay
SndStopFilePlay
SndPlayDoubleBuffer
MACEVersion
Comp3to1
Exp1to3
Comp6to1
Exp1to6
AudioGetVolume
AudioSetVolume
AudioGetMute
AudioSetMute
AudioSetToDefaults
AudioGetInfo
AudioGetBass
AudioSetBass
AudioGetTreble
AudioSetTreble
AudioGetOutputDevice
AudioMuteOnEvent
SndRecordToFile
SPBRecordToFile

These SndCommand numbers are not supported by the Carbon Sound Manager:

initCmd
freeCmd
totalLoadCmd
loadCmd
freqDurationCmd
restCmd
freqCmd
ampCmd
timbreCmd
getAmpCmd
waveTableCmd
phaseCmd
rateCmd
continueCmd
doubleBufferCmd
getRateCmd
sizeCmd /*obsolete command*/
convertCmd /*obsolete MACE command*/

If you have code that relies on any of the above calls or SndCommands, you will have to rewrite it if you want to make
your application Carbon compatible. This Note will describe how to duplicate the functionality of these APIs with
Carbon-compatible code.

Back to top

Why they were removed

The low-level calls were removed because there are better, more compatible, ways of accomplishing what these calls
accomplished. In some cases, the calls had ceased to be useful so their removal should not affect any modern code base.

The high-level calls, SndStartFilePlay, SPBRecordToFile, etc., were removed because their functionality is
largely subsumed by QuickTime. Using QuickTime in place of these routines should increase the functionality of your
program (for instance, you will be able to play a more varied list of sound files) without adding much work or code to your
existing code base.

The SndCommands were removed because they either operate on non-wave data which is no long supported, or there are
newer SndCommands that supercede their functionality.

Back to top

What they did

This is a brief description of what these functions did. For a complete description, see Inside Macintosh: Sound.

SndControl
In Sound Manager 2.0 this returned information about the sound hardware.

SndStartFilePlay
Starts a file playing from disk. This function is basically a wrapper around SndPlayDoubleBuffer.

SndPauseFilePlay
Toggles the playing state of a file that is being played by SndStartFilePlay.

SndStopFilePlay
Stops a sound that is being played by SndStartFilePlay.

SndPlayDoubleBuffer
Plays a sound by first playing one buffer of audio and then a second, allowing the alternate buffer to be
filled in from disk (or wherever) while the other buffer plays. Allows large sound files to be played with
only a minimum use of RAM.

MACEVersion
Gets the version of the MACE compressor/decompressor.

Comp3to1
Compresses a sound with MACE 3:1.

Exp1to3
Decompresses a sound compressed with MACE 3:1.

Comp6to1
Compresses a sound with MACE 6:1.

Exp1to6
Decompresses a sound compressed with MACE 6:1.

AudioGetVolume
Called by the Sound Manager to get an output component's volume.

AudioSetVolume
Called by the Sound Manager to set an output component's volume.

AudioGetMute
Called by the Sound Manager to get the mute state of an output component.

AudioSetMute
Called by the Sound Manager to set the mute state of an output component.

AudioSetToDefaults
Called by the Sound Manager to return an output component to its defaults.

AudioGetInfo
Called by the Sound Manager to get information about an output component.

AudioGetBass
Called by the Sound Manager to get an output component's bass volume.

AudioSetBass
Called by the Sound Manager to set an output component's bass volume.

AudioGetTreble
Called by the Sound Manager to get an output component's treble volume.

AudioSetTreble
Called by the Sound Manager to set an output component's treble volume.

AudioGetOutputDevice
Not documented.

AudioMuteOnEvent
Not documented.

SndRecordToFile
Records sound data to a file in a synchronous operation.

SPBRecordToFile
Records sound data to a file, optionally doing it asynchronously.

initCmd
Not documented.

freeCmd
Not documented.

totalLoadCmd
Sent using the obsolete SndControl function, it reported the total CPU load factor for all existing sound
activity and for a new sound channel having the initialization parameters specified in param2.

loadCmd
Sent using the obsolete SndControl function, it reported the percentage of CPU processing power that
the sound channel specified in param2 would require.

freqDurationCmd
Play the note specified in param2 for the duration specified in param1.

freqCmd
Change the frequency (or pitch) of a sound. If no sound is currently playing, then freqCmd causes the
Sound Manager to begin playing indefinitely at the frequency specified in param2. Could be used to loop a
sampled-sound data sound installed with a soundCmd.

restCmd
Rest a channel for a specified duration.

ampCmd
Change the amplitude (or loudness) of a sound.

timbreCmd
Change the timbre (or tone) of a sound currently being defined using square-wave data.

getAmpCmd
Determine the current amplitude (or loudness) of a sound.

waveTableCmd
Install a wave table as a voice in the specified channel.

phaseCmd
Not documented.

rateCmd
Set the rate of a sampled sound that is currently playing, thus effectively altering its pitch and duration.
Your application can set a rate of 0 to pause a sampled sound that is playing. The new rate is set to the value
specified in param2, which is interpreted relative to 22 kHz.

continueCmd
Not documented.

doubleBufferCmd
This is the command used by SndPlayDoubleBuffer.

getRateCmd
Determine the sample rate of the sampled sound currently playing. The current rate of the channel is
returned in a Fixed variable whose address you pass in param2 of the sound command. The values
returned are always relative to the 22 kHz sampling rate, as with the rateCmd sound command.

sizeCmd /*obsolete command*/
Not documented.

convertCmd /*obsolete MACE command*/
Not documented.

Back to top

How they can be replaced

SndControl
This call was made obsolete by Sound Manager 3.0 and should be replaced by calls to Gestalt.

SndStartFilePlay
Can be mimicked with QuickTime.

SndPauseFilePlay
When using QuickTime, use QuickTime's control commands.

SndStopFilePlay
When using QuickTime, use QuickTime's control commands.

SndPlayDoubleBuffer
Can be mimicked with bufferCmd and callBackCmd, or to some extent, QuickTime.

MACEVersion
This call should never be needed. The current version of MACE is 1.0.2 and it hasn't changed in years.

Comp3to1
Can be replaced with the appropriate calls to the SoundConverter APIs.

Exp1to3
Can be replaced with the appropriate calls to the SoundConverter APIs.

Comp6to1
Can be replaced with the appropriate calls to the SoundConverter APIs.

Exp1to6
Can be replaced with the appropriate calls to the SoundConverter APIs.

AudioGetVolume
Can be replaced with SoundComponentGetInfo and the siHardwareVolume selector.

AudioSetVolume
Can be replaced with SoundComponentSetInfo and the siHardwareVolume selector.

AudioGetMute
Can be replaced with SoundComponentGetInfo and the siHardwareMute selector.

AudioSetMute
Can be replaced with SoundComponentSetInfo and the siHardwareMute selector.

AudioSetToDefaults
No replacement.

AudioGetInfo
Can be replaced with calls to SoundComponentGetInfo and the appropriate selectors.

AudioGetBass
Can be replaced with SoundComponentGetInfo and the siHardwareBass selector.

AudioSetBass
Can be replaced with SoundComponentSetInfo and the siHardwareBass selector.

AudioGetTreble
Can be replaced with SoundComponentGetInfo and the siHardwareTreble selector.

AudioSetTreble
Can be replaced with SoundComponentSetInfo and the siHardwareTreble selector.

AudioGetOutputDevice
No replacement.

AudioMuteOnEvent
No replacement.

SndRecordToFile
Can be mimicked with Sequence Grabber (QuickTime).

SPBRecordToFile
Can be mimicked with appropriate calls SPBRecord and PBWriteAsync for the asynchronous case.
QuickTime can also be used to replace it.

initCmd
No replacement.

freeCmd
No replacement.

totalLoadCmd
No replacement, but it was not accurate or useful starting with Sound Manager 3.1.

loadCmd
No replacement, but it was not accurate or useful starting with Sound Manager 3.1.

freqDurationCmd
Replace the pitch shift functionality with rateMultiplierCmd.

freqCmd
Replace the pitch shift and duration functionality with rateMultiplierCmd. You can no longer loop a
sound. To loop a sound play it over and over again using bufferCmd and callBackCmd.

restCmd
No replacement as square wave data sound and wave table data sound are not supported by the Carbon Sound
Manager.

ampCmd
Use volumeCmd instead.

timbreCmd
No replacement as square wave data sound and wave table data sound are not supported by the Carbon Sound
Manager.

getAmpCmd

waveTableCmd
No replacement as wave table data sound are not supported by the Carbon Sound Manager.

phaseCmd
No replacement.

rateCmd
Use rateMultiplierCmd instead.

continueCmd
No replacement.

doubleBufferCmd
This is the command used by SndPlayDoubleBuffer. No direct replacement. You can use bufferCmd
and callBackCmd to simulate, see Replacing SndPlayDoubleBuffer below.

getRateCmd
Use getRateMultiplierCmd instead.

sizeCmd /*obsolete command*/
No replacement.

convertCmd /*obsolete MACE command*/
No replacement.

Back to top

Replacing SndPlayDoubleBuffer

Replacing SndPlayDoubleBuffer is a bit tricky because of the subtle ways it does its work. Replacing it a simple
stream of bufferCmds and callBackCmds does not do exactly the same thing for code that was expecting the real
SndPlayDoubleBuffer.

This is because the real SndPlayDoubleBuffer call is a single command in the sound channel's queue, a
doubleBufferCmd, but the replacement is two commands. Furthermore, the doubleBufferCmd stays in the channel's
queue until the sound is done playing, but the bufferCmd and callBackCmd are constantly being added and removed.
This is an issue for any commands that might be waiting in the queue after the doubleBufferCmd and the code that relies
on those commands being after the doubleBufferCmd. This doesn't immediately kill the prospect of simulating
SndPlayDoubleBuffer, but it means that the work is a little more complicated for the simulating code.

The first issue is that information about the currently playing sound will need to be kept for each sound channel. This
information is kept by the Sound Manager when using the real SndPlayDoubleBuffer.

// Structs
struct PerChanInfo {
 QElemPtr qLink; /* next queue entry */
 short qType; /* queue type = 0 */
 short stopping;
 #if DEBUG
 OSType magic;
 #endif
 SndCallBackUPP usersCallBack;
 SndDoubleBufferHeader theParams;
 CmpSoundHeader soundHeader;
};
typedef struct PerChanInfo PerChanInfo;
typedef struct PerChanInfo * PerChanInfoPtr;

// Globals
 Boolean gNMRecBusy;
 NMRecPtr gNMRecPtr;
 QHdrPtr gFreeList;
 Ptr gSilenceTwos;
 Ptr gSilenceOnes;

The queue structure is used to keep track of the per-channel sound information, such as the format of the sound, the
parameters to SndPlayDoubleBuffer, the callback function that was originally in the sound channel (before the
simulating code users it for its own use) and some housekeeping information. This queue structure will allow us to enqueue
the channel information using PBEnqueue at interrupt time so that at task time we can dispose of the per-channel
structure and associated memory.

The simulation has to set up its simple state machine and the first buffer of sound has to be played. That code looks like this:

// This function is only callable at system task time.
// Note: CarbonSndPlayDoubleBuffer calls NewPtrClear,
// which is only callable at system task time,

// this means that CarbonSndPlayDoubleBuffer itself
// is only callable at system task time.
OSErr CarbonSndPlayDoubleBuffer (SndChannelPtr chan,
 SndDoubleBufferHeaderPtr theParams) {
 OSErr err;
 CompressionInfo compInfo;
 PerChanInfoPtr perChanInfoPtr;
 SndCommand playCmd;
 SndCommand callBack;

 if (nil == chan) {
 err = badChannel;
 goto exit;
 }

 if (nil == theParams) {
 err = paramErr;
 goto exit;
 }

 if (nil == gFreeList) {
 // This can't ever be disposed since we don't know when
 // we might need to use it (at interrupt time)
 gFreeList = (QHdrPtr)NewPtrClear (sizeof (QHdr));
 err = MemError ();
 if (noErr != err) goto exit;
 }

 if (nil == gSilenceOnes) {
 short i;
 // This can't ever be disposed since we don't know when
 // we might need to use it (at interrupt time)
 gSilenceOnes = NewPtr (kBufSize);
 err = MemError ();
 if (noErr != err) goto exit;
 for (i = 0; i < kBufSize; i++) {
 gSilenceOnes[i] = (char)0x80;
 }
 }

 if (nil == gSilenceTwos) {
 // This can't ever be disposed since we don't know when
 // we might need to use it (at interrupt time)
 gSilenceTwos = NewPtrClear (kBufSize);
 err = MemError ();
 if (noErr != err) goto exit;
 }

 if (nil == gNMRecPtr) {
 // This can't ever be disposed since we don't know when
 // we might need to use it (at interrupt time)
 gNMRecPtr = (NMRecPtr)NewPtr (sizeof (NMRec));
 err = MemError ();
 if (noErr != err) goto exit;

 // Set up our NMProc info that will dispose of most
 // (but not all) of our memory
 gNMRecPtr->qLink = nil;
 gNMRecPtr->qType = 8;
 gNMRecPtr->nmFlags = 0;
 gNMRecPtr->nmPrivate = 0;
 gNMRecPtr->nmReserved = 0;
 gNMRecPtr->nmMark = nil;
 gNMRecPtr->nmIcon = nil;
 gNMRecPtr->nmSound = nil;
 gNMRecPtr->nmStr = nil;
 gNMRecPtr->nmResp = NewNMProc (NMResponseProc);
 gNMRecPtr->nmRefCon = 0;
 }

 perChanInfoPtr = (PerChanInfoPtr)NewPtr (sizeof (PerChanInfo));
 err = MemError ();
 if (noErr != err) goto exit;

 // Init basic per channel information
 perChanInfoPtr->qLink = nil;
 perChanInfoPtr->qType = 0; // not used
 perChanInfoPtr->stopping = 0;
 #if DEBUG
 perChanInfoPtr->magic = 'SANE';
 #endif

 perChanInfoPtr->theParams = *theParams;
 // Have to remember the user's callback function from the sound because
 // we are going to overwrite it with our own callback function.
 perChanInfoPtr->usersCallBack = chan->callBack;

 // Set up the sound header for the bufferCmd that will be used to play
 // the buffers passed in by the SndPlayDoubleBuffer call.

 perChanInfoPtr->soundHeader.samplePtr =
 (Ptr)(theParams->dbhBufferPtr[0]->dbSoundData);
 perChanInfoPtr->soundHeader.numChannels =
 theParams->dbhNumChannels;
 perChanInfoPtr->soundHeader.sampleRate =
 theParams->dbhSampleRate;
 perChanInfoPtr->soundHeader.loopStart = 0;
 perChanInfoPtr->soundHeader.loopEnd = 0;
 perChanInfoPtr->soundHeader.encode = cmpSH;
 perChanInfoPtr->soundHeader.baseFrequency = kMiddleC;
 perChanInfoPtr->soundHeader.numFrames =
 (unsigned long)theParams->dbhBufferPtr[0]->dbNumFrames;
 // perChanInfoPtr->soundHeader.AIFFSampleRate = 0; // unused
 perChanInfoPtr->soundHeader.markerChunk = nil;
 perChanInfoPtr->soundHeader.futureUse2 = nil;
 perChanInfoPtr->soundHeader.stateVars = nil;
 perChanInfoPtr->soundHeader.leftOverSamples = nil;
 perChanInfoPtr->soundHeader.compressionID =
 theParams->dbhCompressionID;
 perChanInfoPtr->soundHeader.packetSize =
 (unsigned short)theParams->dbhPacketSize;
 perChanInfoPtr->soundHeader.snthID = 0;
 perChanInfoPtr->soundHeader.sampleSize =
 (unsigned short)theParams->dbhSampleSize;
 perChanInfoPtr->soundHeader.sampleArea[0] = 0;

 // Is the sound compressed? If so, we need to treat
 // theParams as a SndDoubleBufferHeader2Ptr.
 if (0 != theParams->dbhCompressionID) {
 // Sound is compressed
 err = GetCompressionInfo (theParams->dbhCompressionID,
 ((SndDoubleBufferHeader2Ptr)theParams)->dbhFormat,
 theParams->dbhNumChannels,
 theParams->dbhSampleSize,
 &compInfo);
 if (noErr != err) goto exitDispose;

 perChanInfoPtr->soundHeader.format = compInfo.format;
 } else {
 // Sound is not compressed
 perChanInfoPtr->soundHeader.format = kSoundNotCompressed;
 }

 playCmd.cmd = bufferCmd;
 playCmd.param1 = 0; // unused
 playCmd.param2 = (long)&perChanInfoPtr->soundHeader;

 callBack.cmd = callBackCmd;
 callBack.param1 = 0; // which buffer to fill, 0 buffer, 1, 0, ...
 callBack.param2 = (long)perChanInfoPtr;

 // Install our callback function pointer straight into
 // the sound channel structure
 if (nil == gCarbonSndPlayDoubleBufferCallBackUPP) {
 gCarbonSndPlayDoubleBufferCallBackUPP =
 NewSndCallBackProc (CarbonSndPlayDoubleBufferCallBackProc);
 }

 chan->callBack = gCarbonSndPlayDoubleBufferCallBackUPP;

 if (nil == gCarbonSndPlayDoubleBufferCleanUpUPP) {
 #if !TARGET_API_MAC_CARBON
 gCarbonSndPlayDoubleBufferCleanUpUPP =
 NewSndCallBackProc (CarbonSndPlayDoubleBufferCleanUpProc);
 #endif
 }

 err = SndDoCommand (chan, &playCmd, true);
 if (noErr != err) goto exitDispose;

 err = SndDoCommand (chan, &callBack, true);
 if (noErr != err) goto exitDispose;

exit:
 return err;

exitDispose:
 if (nil != perChanInfoPtr)
 DisposePtr ((Ptr)perChanInfoPtr);
 goto exit;
}

In Carbon there is no UPP for the SndDoubleBackProc, but that's OK. Since all code in Carbon is PowerPC, and this code
will be compiled into the calling program (therefore not needing to worry about CFM<->Mach-O calling conventions) the
SndDoubleBackProc will just be treated as a regular C function pointer.

The callback function that tells the user's code to refill the now empty buffer and begins playing the alternate buffer looks

like this:

static pascal void CarbonSndPlayDoubleBufferCallBackProc
 (SndChannelPtr theChannel, SndCommand * theCallBackCmd) {
 SndDoubleBufferHeaderPtr theParams;
 SndDoubleBufferPtr emptyBuf;
 SndDoubleBufferPtr nextBuf;
 PerChanInfoPtr perChanInfoPtr;
 SndCommand playCmd;

 perChanInfoPtr = (PerChanInfoPtr)(theCallBackCmd->param2);
 #if DEBUG
 if (perChanInfoPtr->magic != 'SANE')
 DebugStr("\pBAD in CarbonSndPlayDoubleBufferCallBackProc");
 #endif
 if (true == perChanInfoPtr->stopping) goto exit;

 theParams = &(perChanInfoPtr->theParams);

 // The buffer that just played and needs to be filled
 emptyBuf = theParams->dbhBufferPtr[theCallBackCmd->param1];

 // Clear the ready flag
 emptyBuf->dbFlags ^= dbBufferReady;

 // This is the buffer to play now
 nextBuf = theParams->dbhBufferPtr[!theCallBackCmd->param1];

 // Check to see if it is ready, or if we have to wait a bit
 if (nextBuf->dbFlags & dbBufferReady) {
 perChanInfoPtr->soundHeader.numFrames =
 (unsigned long)nextBuf->dbNumFrames;
 perChanInfoPtr->soundHeader.samplePtr = Ptr)(nextBuf->dbSoundData);

// Flip the bit telling us which buffer is next
theCallBackCmd->param1 = !theCallBackCmd->param1;

// If this isn't the last buffer, call the user's fill routine
 if (!(nextBuf->dbFlags & dbLastBuffer)) {
 #if TARGET_API_MAC_CARBON
 // Declare a function pointer to the user's double back proc
 void (*doubleBackProc)(SndChannel*, SndDoubleBuffer*);

 // Call user's double back proc
 doubleBackProc = (void*)theParams->dbhDoubleBack;
 (*doubleBackProc) (theChannel, emptyBuf);
 #else
 CallSndDoubleBackProc (theParams->dbhDoubleBack, theChannel, emptyBuf);
 #endif
 } else {
 // Call our clean up proc when the last buffer finishes
 theChannel->callBack = gCarbonSndPlayDoubleBufferCleanUpUPP;
 }
 } else {
 // We have to wait for the buffer to become ready.
 // The real SndPlayDoubleBuffer would play a short bit of silence
 // waiting for the user to read the audio from disk,
 // so that's what we do here.
 #if DEBUG
 DebugStr ("\p buffer is not ready!");
 #endif
 // Play a short section of silence so that we can check the
 // ready flag again
 if (theParams->dbhSampleSize == 8) {
 perChanInfoPtr->soundHeader.numFrames =
 (UInt32)(kBufSize / theParams->dbhNumChannels);
 perChanInfoPtr->soundHeader.samplePtr = gSilenceOnes;
 } else {
 perChanInfoPtr->soundHeader.numFrames =
 (UInt32)(kBufSize / (theParams->dbhNumChannels *
 (theParams->dbhSampleSize / 8)));
 perChanInfoPtr->soundHeader.samplePtr = gSilenceTwos;
 }
 }

 // Insert our callback command
 InsertSndDoCommand (theChannel, theCallBackCmd);

 // Play the next buffer
 playCmd.cmd = bufferCmd;
 playCmd.param1 = 0;
 playCmd.param2 = (long)&(perChanInfoPtr->soundHeader);
 InsertSndDoCommand (theChannel, &playCmd);

exit:
 return;
}

There is a further callback function that runs only once the application has signaled that we have played the last buffer of
its data. This function queues the per-channel sound information so that the Notification Manager callback can dispose of the
per-channel memory.

static pascal void CarbonSndPlayDoubleBufferCleanUpProc
 (SndChannelPtr theChannel, SndCommand * theCallBackCmd) {
 PerChanInfoPtr perChanInfoPtr;

 perChanInfoPtr = (PerChanInfoPtr)(theCallBackCmd->param2);
 #if DEBUG
 if (perChanInfoPtr->magic != 'SANE') DebugStr("\pBAD in
 CarbonSndPlayDoubleBufferCleanUpProc");
 #endif

 // Put our per channel data on the free queue so we can
 // clean up later
 Enqueue ((QElemPtr)perChanInfoPtr, gFreeList);

 // Have to put the user's callback proc back so
 // they get called when the next buffer finishes
 theChannel->callBack = perChanInfoPtr->usersCallBack;

 // Have to install our Notification Manager routine so that
 // we can clean up the gFreeList
 if (!OTAtomicSetBit (&gNMRecBusy, 0)) {
 NMInstall (gNMRecPtr);
 }
}

The next issue is that because the simulating code will not be called once the sound has finished, it doesn't have a good
opportunity to clean up after itself because it will be called at interrupt time when it wants to dispose of the associated
memory for the completed sound. This can be partially alleviated by using the Notification Manager to dispose of most of the
memory, but there is no easy way to clean up the Notification Manager record that is allocated for this.

The Notification Manager callback code looks like this:

static pascal void NMResponseProc (NMRecPtr nmReqPtr) {
 PerChanInfoPtr perChanInfoPtr;
 OSErr err;

 NMRemove (nmReqPtr);
 gNMRecBusy = false;

 do {
 perChanInfoPtr = (PerChanInfoPtr)gFreeList->qHead;
 if (nil != perChanInfoPtr) {
 err = Dequeue ((QElemPtr)perChanInfoPtr, gFreeList);
 if (noErr == err) {
 DisposePtr ((Ptr)perChanInfoPtr);
 }
 }
 } while (nil != perChanInfoPtr && noErr == err);
}

Because existing code will assume that once it has called SndPlayDoubleBuffer that it can install a callBackCmd
without affecting the playing of the sound, the code replacing SndPlayDoubleBuffer must insert its bufferCmds and
callBackCmds at the head of the sound queue. This means directly manipulating the sound channel's command queue.

The code to do that looks like:

static void InsertSndDoCommand (SndChannelPtr chan, SndCommand * newCmd) {
 if (-1 == chan->qHead) {
 chan->qHead = chan->qTail;
 }

 if (1 <= chan->qHead) {
 chan->qHead--;
 } else {
 chan->qHead = chan->qLength - 1;
 }

 chan->queue[chan->qHead] = *newCmd;
}

This also means that SndDoImmediate must be wrapped so as to allow the original code to use the quietCmd as it
always has. Here is code that shows how to wrap SndDoImmediate to make sure that a quietCmd stops the sound and

calls the correct function for any callBackCmd that might have been installed after the call to
SndPlayDoubleBuffer.

// Remember this routine could be called at interrupt time,
// so don't allocate or deallocate memory.
OSErr MySndDoImmediate (SndChannelPtr chan, SndCommand * cmd) {
 PerChanInfoPtr perChanInfoPtr;

 // Is this being called on one of the sound channels we are manipulating?
 // If so, we need to pull our callback out of the way so
 // that the user's commands run
 if (nil != gFreeList && gCarbonSndPlayDoubleBufferCallBackUPP ==
 chan->callBack) {
 if (quietCmd == cmd->cmd || flushCmd == cmd->cmd) {
 // We know that our callBackCmd is the first item in the queue
 // if this is our channel
 perChanInfoPtr = (PerChanInfoPtr)
 (chan->queue[chan->qHead].param2);
 #if DEBUG
 if (perChanInfoPtr->magic != 'SANE')
 DebugStr("\pBAD in MySndDoImmediate");
 #endif
 perChanInfoPtr->stopping = true;
 Enqueue ((QElemPtr)perChanInfoPtr, gFreeList);
 if (! OTAtomicSetBit (&gNMRecBusy, 0)) {
 NMInstall (gNMRecPtr);
 }
 chan->callBack = perChanInfoPtr->usersCallBack;
 }
 }

 return (SndDoImmediate (chan, cmd));
}

Back to top

SndStartFilePlay

If you use SndStartFilePlay to play sound resources (resources of type 'snd ') using limited amounts of memory
(rather than loading the entire sound into memory and playing it), your only solution is to write a wrapper around the
CarbonSndPlayDoubleBuffer code using ReadPartialResource to extract only a portion of the sound resource
at a time.

QuickTime doesn't give you the option of playing a resource handle whose data hasn't been completely loaded. QuickTime will
play a sound resource, but it expects that the resource has been fully loaded into memory.

If you use SndStartFilePlay to play sound files from disk, this is probably a good fit for QuickTime. You can even have
QuickTime start playing the sound from a specific time, just like SndStartFilePlay, though you have to poll to know
when the sound is done, there is no QuickTime callback for this information.

The code to have QuickTime play a file from disk looks like:

 OSErr err;
 Movie theSound;
 short fileRefNum;

 err = OpenMovieFile (&theSpec, &fileRefNum, fsRdPerm);

 if (noErr == err) {
 err = NewMovieFromFile (&theSound, fileRefNum, 0, nil,
 newMovieActive, nil);
 }

 if (noErr == err) {
 GoToBeginningOfMovie (theSound);
 }

 if (noErr == err) {
 StartMovie (theSound);
 }

 if (noErr == err) {
 while (!IsMovieDone (theSound) {
 MoviesTask (theSound, 0);
 }
 }

This code will open a file on disk, pointed to by a FSSpec, and play it synchronously from the beginning of the sound to the
end. SndStartFilePlay required you to already have the file open and pass it a file reference number, so you probably
already have a FSSpec to the file you want to play.

If you want to start the sound at some place other than the start, you would use QuickTime's SetMovieTime function to set
the current time in the movie.

If you want to play the sound asynchronously, then you will need to make theSound a global and in your main event loop
call MoviesTask about every quarter of a second to keep the movie running with any glitches. What this implies is that if
you cannot call MoviesTask, for instance, because your user is holding down the mouse button and you are inside a call to
TrackDrag, then the sound will stop. If that is unacceptable, then you will probably want to convert to using the
CarbonSndPlayDoubleBuffer code which does not require task time to continue playing a sound.

Back to top

SndRecordToFile and SPBRecordToFile

If you use SndRecordToFile to record sound to disk, the easiest way to convert to Carbon is to use QuickTime. The
following code shows how you would use QuickTime's Sequence Grabber to record audio in a synchronous manner.

 SGChannel sgSoundChan;
 ComponentInstance sgSoundComp;
 short numChannels,
 sampleSize;
 OSType compressionType,
 inputSource;

 err = SGInitialize (sgSoundComp);

 if (err == noErr) {
 err = SGNewChannel (sgSoundComp, SoundMediaType, &sgSoundChan);
 }

 if (err == noErr) {
 err = SGSetChannelUsage (sgSoundChan, seqGrabRecord);
 }

 if (err == noErr) {
 err = SGSetSoundInputRate (sgSoundChan, sampleRate);
 }

 if (err == noErr) {
 err = SGSetSoundInputParameters
 (sgSoundChan, sampleSize, numChannels, compressionType);
 }

 if (err == noErr) {
 err = SPBSetDeviceInfo
 (SGGetSoundInputDriver (sgSoundChan),
 siOSTypeInputSource, &inputSource);
 }

 if (err == noErr) {
 err = SGSoundInputDriverChanged (sgSoundChan);
 }

 if (err == noErr) {
 err = SGSetDataOutput (sgSoundComp, &theSpec, seqGrabToDisk);
 }

 if (err == noErr) {
 err = SGStartRecord (sgSoundComp);
 }

 if (err == noErr) {
 EventRecord event;
 Boolean done = false;

 while (!done && err == noErr) {
 WaitNextEvent (mDownMask | keyDownMask, &event, 6, nil);
 err = SGIdle (sgSoundComp);
 switch (event.what) {
 case mouseDown:
 case keyDown:
 done = true;
 break;
 }
 }
 err = SGStop (sgSoundComp);
 }

 if (sgSoundComp != nil) {
 err = CloseComponent (sgSoundComp);
 }

If you would prefer to use the Sequence Grabber's user interface to have the user configure the recording (which is
recommended if you don't have your own interface already) then you can skip the calls to SGSetSoundInputRate,
SGSetSoundInputParameters, and SPBSetDeviceInfo with the siOSTypeInputSource selector, and

SGSoundInputDriverChanged and replace them all with a single call to SGSettingsDialog.

If you want to record asynchronously (something that SndRecordToFile will not do but SPBRecordToFile would),
then you will need to make sgSoundComp a global and call SGIdle from your main event loop at least once every quarter
of a second.

One nice feature of using the Sequence Grabber to record is that it will record in any compression format currently
installed on the Mac. It does not limit you to only MACE 3:1 and MACE 6:1 compression.

Back to top

Summary

Many of the Sound Manager functions not in Carbon were not used and so their loss will not cause any difficulties. For the
other functions, QuickTime and a little extra Sound Manager Carbon compatible code is all that is required.

Since QuickTime is very easy to use (at least in these cases) and has most of the functionality of the non-Carbon Sound
Manager calls, converting your code to use QuickTime when converting the rest of your code to Carbon should not be
difficult.

For those applications that made heavy use of SndPlayDoubleBuffer and required its interrupt driven nature to
deliver uninterrupted audio, the CarbonSndPlayDoubleBuffer and associated functions allow you to do this with a
minimum of change to your existing code base.

Back to top

References

Carbon Developer Documentation

Technote 1108: Unknown Sound Features

Technote 1048: Some Sound Advice: Getting the Most Out of the Sound Manager

Inside Macintosh: Sound

Back to top

Downloadables

Acrobat version of this Note (96K). Download

CarbonSndPlayDoubleBuffer code Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

