TN 1092 - A Print Loop That Cares... The Sequel Page: 1

Technical Note TN1092

A Printing Loop That Cares - The Sequel

CONTENTS This Technote, originally Technote PR 10 - A
Printing Loop That Cares , discusses how and
ite Ol vy o Lsermilige Pt why your application should add a generic

printing loop in order to be compatible with
today's printer drivers.

The New Way: a C Print Loop

Checking For Error Conditions While Printing
This revised Technote reflects the current
Macintosh Printing Manager and discusses
Summary proper opening and closing of the Macintosh
Printing Manager with calls to Propen and
PrClose. It also shows how your application
Change History should handle errors at print time and lists the
latest error codes.

Error Messages

References

Downloadables

5 J Updated: [Feb 11 1997]

The Old Way of Handling Printing

In the past (pre-System 7), Apple recommended that developers call PrOpen at the beginning of your application and
PrClose at the end before returning to the Finder. This recommendation was appropriate when your application only had to
deal with a single printer driver. However, as more printers became available on the market, it became important that your
application took into account the presence of other launched applications and multiple printer drivers.

For instance, the user could open the Chooser at any time and change the current printer driver without the current
application’s knowledge. If an application followed the old philosophy and a user changed the current printer driver while
running the application, the next time the user attempted to print, the wrong driver would be open, the Printing Manager would
not be able to find the necessary resources, and the user would get an error.

The original Technote described a method of printing that allowed applications to circumvent all of these problems; this revised
Note shows you an even better method.

Back to top
The New Way: a C Print Loop

The following code snippet, PrintStufT, represents a simple print loop that your application should use to print. It works as
follows:

1. It callsall of the necessary Print Manager callsto print adocument.

2. It checksPrError after each Print Manager call.

3. If anerrorisfound, al of the Print Manager open calls (i.e., PrOpen, PrOpenDoc...) have a corresponding close call
before posting an error.

You should use the error-checking method in Step #3 to make sure the Print Manager closes properly and that all temporary

memory is released.

Note:

Apple Developer Technical Support currently recommends that applications open and close the printer driver
each time your application uses the Printing Manager. We also highly recommend appropriate error checking,
as demonstrated in this snippet of code.

The PrintStuff Print Loop

void PrintStuff

GrafPtr oldPort;

short copies,
firstPage,
lastPage,
numberOfCopies,

printmgrsResFile,
realNumberOfPagesinDoc,
pageNumber,

TN 1092 - A Print Loop That Cares... The Sequel

PrintError;
THPrint thePrRecHdl ;
TPPrPort thePrPort;

TPrStatus theStatus;
GetPort(&oldPort);
thePrRecHdl = (THPrint) NewHandle (sizeof (TPrint));

/**
Check to make sure that the memory manager did not produce an error
when it allocated the print record handle and make sure it did not pass
back a nil handle.

**/

iT (thePrRecHdl '= NULL && MemError() == noErr)
Propen(Q;
if (PrError() == noErr)
{

/** Save the current resource file (i.e., the printer driver®s) so

the driver will not lose its resources upon return from the pldleProc.
**/

printmgrsResFile = CurResFile();

PrintDefaul t(thePrRecHdl);

if (PrError() == noErr)
{

it (PrStiDialog(thePrRecHdl))

{

/**
DetermineNumberOfPagesinDoc determines the number of pages
contained in the document by comparing the size of the
document with rPage from the TPrinfo record (Inside
Macintosh: Imaging With QuickDraw p.9-46).
It returns the number of pages required to print the
document for the currently selected printer.

**/

realNumberOfPagesinDoc = DetermineNumberOfPagesinDoc
((**thePrRecHdl) .prinfo.rPage);

if (PrJobDialog(thePrRecHdl))

{
/**
Get the number of copies of the document that the
user wants printed from iCopies of the TPrJob record
(Inside Macintosh: Imaging With QuickDraw p.9-47).
**/

numberOfCopies = (**thePrRecHdl) .prJob.iCopies;

/**
Get the First and last pages of the document that
were requested to be printed by the user from FstPage
and iLastPage from the TPrJob record (Inside
Macintosh: Imaging With QuickDraw p.9-47).

**/

FirstPage = (**thePrRecHdl).prJob. iFstPage;
lastPage = (**thePrRecHdl) .prJob.iLstPage;

/**
Print "all"™ pages in the print loop
**/
(**thePrRecHdl) .prJob. iFstPage = 1;
(**thePrRecHdl) .prJob. iLstPage = 9999;

/**
Determine the "real”™ number of pages contained in the
document. Without this test, you would print 9999 pages.
**/

iT (realNumberOfPagesinDoc < lastPage)
lastPage = realNumberOfPagesinDoc;

Page: 2

TN 1092 - A Print Loop That Cares... The Sequel

Page: 3

PrintingStatusDialog = GetNewDialog(rPrintingDialoglD,
nil, (WindowPtr) -1);

/**
Print the number of copies of the document
requested by the user from the Print Job Dialog-

**/
for (copies = 1; copies <= numberOfCopies; copies++)
{
/**
Install a pointer to your pldle proc in my print record.
*x
/
(**thePrRecHdl) .prJdob.pldleProc = checkMyPrintDialogButton();
/**
Restore the resource file to the printer driver®s.
*x
/

UseResFile(printmgrsResFile);
thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);

if (PrError() == noErr)
{

/**
Print the range of pages of the document
requested by the user from the Print Job Dialog.
**/
pageNumber = firstPage;
while (pageNumber <= lastPage && PrError() == noErr)
{

/**
IT we"ve crossed a 128-page boundary,
close the current print file, send it
to the printer if necessary, and open a
new document.

**/

iT ((pageNumber - FirstPage) % iPFMaxPgs == 0)
{
iT (pageNumber != FfirstPage)
{
PrCloseDoc(thePrPort);
1T (((**thePrRecHdl) .prJdob.bJDocLoop ==

bSpoolLoop) && (PrError() == noErr))
PrPicFile(thePrRecHdl, nil, nil, nil,

&theStatus);
thePrPort = PrOpenDoc(thePrRecHdl, nil,
nil);

3
¥

PrOpenPage(thePrPort, nil);
if (PrError() == noErr)
{

/**

rPage (Inside Macintosh: Imaging With
QuickDraw p.9-46) is the printable area
for the currently selected printer. By
passing the current port to the draw
routine, enables your app to use the
same routine to draw to the screen and
the printer®"s GrafPort.

**/

DrawStuff ((**thePrRecHdl).prinfo.rPage,

(GrafPtr) thePrPort, pageNumber);

}

PrClosePage(thePrPort);
pageNumber++;
} /** End pageNumber loop **/

}
PrCloseDoc(thePrPort);
} /** End copies loop **/

TN 1092 - A Print Loop That Cares... The Sequel

/**
The printing job is being canceled by the request of the
user from the Print Style Dialog or the Print Job Dialog.-
PrError will be set to PrAbort to tell the Print Manager
to abort the current printing job.

**/
else
PrSetError (iPrAbort); /** cancel from the job dialog **/
3
else

PrSetError (iPrAbort); /** cancel from the style dialog **/

¥

1T (((**thePrRecHdl) .prJob.bJDocLoop == bSpoolLoop) && (PrError() == noErr))
PrPicFile(thePrRecHdl, nil, nil, nil, &theStatus);

/**
Grab the printing error —- once you close the Printing Manager,
PrError doesn®"t return a valid result anymore.

**/

PrintError = PrError();
PrClose();

/**
You do not want to report any printing errors until you have fallen
through the printing loop. This will make sure that ALL of the Print
Manager®™s open calls have their corresponding close calls, thereby
enabling the Print Manager to close properly and that all temporary
memory allocations are released.
**/
if (PrintError != noErr)
PostPrintingErrors (PrintError);

}

iT (thePrRecHdl != NULL)
DisposeHandle((Handle) thePrRecHdl);

iT (PrintingStatusDialog != NULL)
DisposeDialog(PrintingStatusDialog);

SetPort(oldPort);
} /** PrintStuff **/

Back to top
Checking For Error Conditions While Printing

Your application should always check for error conditions while printing. You can do this by calling PrError. PrError
returns errors from the Printing Manager (and some AppleTalk and OS errors) that may occur during printing.

As the previous example code demonstrates, your application should call PrError after each call to a Printing Manager
function or procedure. By consistently checking PrError after each call, your application will be able to catch any errors
created at print time and be able to report them to your user via a dialog box.

Some General Error-Handling Guidelines
The following section provides you with some general error-handling guidelines:

® Don't call PrError within your pldle procedure; errors that occur while it is executing are usually temporary and
serve only as internal flags for communication within the printer driver -- they are not intended for the application. If
you discover that you need to abort printing while in your idle procedure, set a flag to signal yourself, and check your
flag after each Printing Manager function. If the flag is set, you can exit in the same manner as if an error occurred.

® On detecting an error after the completion of a printing routine, stop drawing at that point, and proceed to the next
procedure to close any previously made open calls. For example, if you detect an error after calling PrOpenDoc, skip
to the next PrCloseDoc. Or, if you get an error after calling PrOpenPage, skip to the next PrClosePage and
PrCloseDoc. Remember that if you have called PrOpen, then you must call the corresponding PrClose to ensure
that printing closes properly and that all temporary memory allocations are released and returned to the heap.

® Don't display any alert or dialog boxes to report an error until the end of the printing loop. Once at the end, check for
the error again; if there is no error, assume that printing completed normally. If the error is still present, alert the
user.

This procedure -- not displaying any alerts or dialog boxes -- is important for two reasons.

1. If you display a dialog box in the middle of the printing loop, it could cause errors that can terminate an

Page: 4

TN 1092 - A Print Loop That Cares... The Sequel Page: 5

otherwise normal job. For example, if the printer is an AppleTalk printer, the connection can be terminated
abnormally, since the driver would be unable to respond to AppleTalk requests received from the printer while
the dialog box was waiting for input from the user. If the printer does not hear from the Macintosh within a
certain period of time (currently 300-600 seconds), it times out, assuming that the Macintosh is no longer
there, which results in a prematurely broken connection, causing another error to which the application must
respond.

2. The driver may have already displayed its own dialog box in response to an error. In this instance, the driver
posts an error to let the application "know" that something went wrong and it should abort printing. For
example, in older LaserWriter drivers, when the driver detected that the Laser Prep version which was being
downloaded to the LaserWriter was different than the version the user was trying to print with, it displayed the
appropriate dialog box informing the user of the situation and gave him or her the option of reinitializing the
printer. If the user chose to cancel printing, the driver posted an error to let the application "know" that it
needed to abort, but since the driver had already taken care of the error by displaying a dialog box, the error
was reset to zero before the printing loop was complete. Your application should check for the error again at the
end of the printing loop, and if it still indicates an error, your application can then display the appropriate
dialog box.

® |f you're using PrGeneral, be prepared to receive the following errors: NoSuchRsl, OpNotImpl, and
resNotFound. In all three cases, your application should be prepared to continue printing without using the features
of that particular opcode.

In the case of the resNotFound error, however, it means the current printer driver does not support PrGeneral.
This lack of support should not be a problem for your application, but your application needs to be prepared to deal with
this error. If you receive a resNotFound error from PrError, clear the error with a call to PrSetError(0);
otherwise, PrError might still contain this error the next time you check it, which would prevent your application
from printing.

Cancelling or Pausing the Printing Process

If you install a procedure for handling requests to cancel printing, with an option to pause the printing process, beware of
timeout problems when printing to network printers. Communication between the Macintosh and a networked printer must be
maintained to prevent a job or a wait timeout. If there is no communication for a period of time (roughly 300-600 seconds),
the printer times out and the print job terminates due to a wait timeout. Or, if the print job requires more than ten minutes to
print, the print job terminates due to a job timeout. Since there is no good method to determine to what type of printer an
application is printing, it is probably a good idea to document in your ReadMe the possibility of a network printer timing out for
a user who chooses to select “pause” for five minutes or more.

Back to top
Error Messages

The Printing Manager reports the error messages covered in this section. If an error that does not belong to the Printing
Manager occurs, the Printing Manager puts it into low memory, where it can be retrieved with a call to PrError, and
terminates the printing loop, if necessary. As already documented, if you encounter an error in the middle of a printing loop,

don't jump out; fall through the loop and let the Printing Manager terminate properly.

The most common error encountered is -41 01, which is generated if the selected LaserWriter is not available on the network.
Since this error is so common, it's a good idea to display a dialog box requesting the user to select a printer from the Chooser
when this error is encountered.

Common Printing Manager and System Errors

The following table shows you common printing manager and system error codes.

[Error Codd|Constant |[Description |
[0 |[noErr |[No error |
|28 ||[don't know] | g:/b/gﬁtaﬁrg% ::sQoTn.C gg}op rrgg‘md s:)iagtlij:ggge inside QuickDraw [not uncommon if you're calling |
[128 |[iPrAbort |[Abort the printing process (result of Command-period) |
[-1 |[iPrsavePFi I|[Problem saving print file |
[-17 |[controlErr |[Unimplemented Control call |
[-27 |[i10Abort |[1/0 problems |
-108 |[iMemFul IErr|[Not enough heap space |

PrGeneral Errors
PrGeneral is declared like this in C:
pascal void PrGeneral (Ptr pData);

The pData parameter is a pointer to a record called TGnIData. The first eight bytes comprise a header shared
by all the PrGeneral calls:

struct TGnlData {
short i0pCode;
short iError;
long IReserved;

};

TN 1092 - A Print Loop That Cares... The Sequel

After each call to PrGeneral, your application should check the value in the IError field. The possible result

codes that can be returned are:

[Error Codd|Constant |[Description |
[0 |[noErr |[No Error |
[1 |[NoSuchRsI " |[Unsupported Resolution |
[2 |[opNotImpl |[Unsupported Opcode |
[-192 |[resNotfound|[The current printer driver does not support PrGeneral |

For further information on PrGeneral, you should read Pete 'Luke’ Alexander's article, "Meet PrGeneral,”

in develop 3.

LaserWriter Driver Family Errors

[Error Codéd|Description

I
[-4101 |[Printer not found or closed. |
[-4100 |[Connection just closed. |
[-4099 |[Write request too big. |
[-4098 |[Request alreadly active. |
[-4097 |[Bad connection refnum. |
[-4096 |[No free Connect Control Blocks (CCBs) available,

LaserWriter 8 Internal Errors

Note:

The following error codes are internal LaserWriter 8 errors. They are useful for debugging, but your
application should NOT try to interpret or use these error codes during runtime.

|-8998|[errNotAKey

||Cou| dn't find akey for the desired font number.

|-8997|[errFaceListBad

|[(NO LONGER USED)

|-8996|[errSizeListBad

||Thesize list was not consistent with the face list.

|-8995|[errFontNotFound

||A font query reply didn't match any of the PostScript fonts.

|-8994||errUnknownPSLevel

answer we didn't expect.

[-8993|[errinLineTimeout

||We got tired of waiting for aresponse from the printer.

|-8991||errNoProcSetRes

|
|
|
|
| We asked for the printer's PostScript level and got an |
|
|

While generating PostScript prolog, we couldn't find the
resource containing the needed procedure sets.

|-8990||errBadSpoo IFileVersion

While foreground printing (pre-LW8.4) we read the spool
file, and the header information was not good.

|-8989||errCou IdNotMakeNumberedFil ename| Couldn't make aunique spoal file name by adding numberS|

to the base name. We ran out of numbers.

|-8987|(errPSFi IeName

||While saving PS to disk, the filename was bad. |

|-8986|[errBi tmapFontMissing

||Wetried to build a 1-bit bitmap, but failed.

|-8985|[errDidNotDownloadFont

||The PS outline couldn't be found, and there's no 'sfnt'.

|-8984||errBadConve rterindex

to Disk" popup.

|-8983|[errspoolFolderIsAFile

|[(NO LONGER USED)

|-8982|[errPSFi leNameNul I

|[(NO LONGER USED)

|-8981[errNullIColorinfo

|
|
| Couldn't find the entry matching the selection in the " Save |
|
|
|

|[etColor was called with aNULL handle.

-8980||errNoPagesSpooled

The app made aPrOpenDoc call and PrCloseDoc, but
didn't print any pages.

|-8979[errBadConverterID

||The PDEF we wanted to run asaconverter wasn't there. |

|-8978|[errNoPattern

||We couldn't find or make a pixpat. |

|-8977|[errPSStateUnderFlow

||We tried to pop the topmost graphics state. Oops! |

-8976(|errChanneINotBinary

Application wants binary data (viaPrGeneral), but the
actual channel to the printer isn't binary.

|-8975||errPri nterNotLevel2

Application wantsto use Level 2 PS, but the printer's not hi
toLevel 2.

|-8974|errBadFontKeyType

||The type of afont was not PS, TT or bitmap. |

-8973|[errFunctionNotAvailable

|[(NO LONGER USED)

|-8972||errNULLFormatStri ng

was null.

|-8971||errNotAFolderAI ias

||The format string passed to an internal printf-like function |

Thediasthat should point to the "Print Monitor
Documents' folder isn't pointing to afolder.

Page: 6

TN 1092 - A Print Loop That Cares... The Sequel Page: 7

|-8970||er rMissingPAPA || The PAPA resource we looked for isn' there.

The current printer does not have an entry in the printer
database - usually because it hasn't been set up.

|-8969||errM issingPrinterinfo

|-8968|[er runsupportedDestColorhode || The output colorspace isn't supported.
|-8967|[errUnknownColorUsage |[(NO LONGER USED)
|-8966][errunsupportedCodec || Compressed pixmap wants a codec we can't deal with.
|-8965|[errInvalidPPD || Tried to open the PPD and couldn't.

|-8964||errBadCo lorSync2Comment ||The ColorSync2 PicComment wants a 4-byte sdlector and

we encountered a datasize < 4 bytes.
|-8963|[errBadFlattenRefCon ||Colorsync gave us aNULL refcon in the flatten proc.

A single glyph either didn't end on a4-byte boundary (a
bug in the font) or was greater than 64k.

|-8962||errG lyphsDontFit

|-8961|[errGenericComponentErr || Generic error

|-8960||errUnsupp0rtedStream | ;h;pgfg;lean type passed into agiven library call isnot
-8959[errProfileNotinList |[Theinternal temporary profile list went bad.
-8958|[errUninitializedPort |[Uninitialized port

|-8957|[errHintWrongSize ||One of the converter's hints was an unexpected size.
|-8956||errSyStemProfi IeNotFound | Vﬁ\’;{”ﬁ;%#fgco' orSync, but couldn't find the defauilt
|-8955|[errCFM_EnablerNotPresent ||wete trying to use CFM-68K, but the enabler's not there.
|-8954|[errCouldNotIDArchitecture |

-8953	[errPSStreamNul 10utProc		Got abad function pointer for the output routine.
-8952	[errTriedToWriteNul IBuffer		This should never happen.
-8951	[errWhoTookThatOutBuffer		We had a buffer that's gone now. This seems bad.
-8950][errMoreDataToFlush		There's still datato be dealt with.	

|-8160|[zoomRangeErr |
|-8152|[noPrepErr |
|-8151[prepMismatchErr |
|-8150|[noChosenPrinterErr |

PostScript error during transmission of data to printer.
-8133||generalPSErr Most often caused by a bug in the PostScript code being
downloaded.
|-8132|[manualFeedTOErr |[Timeout occurred. |

[-8131][Printer not responding. |

Back to top

Summary

That's all there is to it. Now your application can print properly with the Macintosh Printing Manager by
adhering to the rules specified in this Note and by handling error messages appropriately.

Back to top
References
Inside Macintosh: Imaging With QuickDraw , Chapter 9

StdFileSaver sample code, available on the Developer CD Series: Tool Chest Edition.

Technote PRO2: Device-Independent Printing by Ginger Jernigan.

develop 3: "Meet PrGeneral, the Trap That Makes the Most of the Printing Manager" by Pete "Luke™ Alexander.
develop 27: "Print Hints: The All-New LaserWriter Driver Version 8.4" by Dave Polaschek.

Back to top

Change History

Originally written in October 1990, as Technote PR10 -- A Printing Loop That

01-October-1990
Cares...

01-January-1994 Revised as Technote PR10 -- A Printing Loop That Cares... with new text and code.

Technote updated to reflect the current Macintosh Printing Manager and to use C code.
11-February-1997 The Pascal code was removed. Updated error codes were also added to the Error
Messages section.

TN 1092 - A Print Loop That Cares... The Sequel Page: 8
Back to top

Downloadables
ﬁ Acrobat version of this Note (K) Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

