
CONTENTS

Introduction
AEStream* Tips
Opening and Closing an Apple event Stream

AEStreamOpen
AEStreamClose

Writing Descriptors

AEStreamWriteAEDesc
AEStreamWriteDesc
AEStreamOpenDesc
AEStreamWriteData
AEStreamCloseDesc

Writing Lists

AEStreamOpenList
AEStreamCloseList

Writing Records

AEStreamOpenRecord
AEStreamCloseRecord
AEStreamSetRecordType
AEStreamWriteKeyDesc
AEStreamOpenKeyDesc
AEStreamWriteKey

Writing Apple Event Records

AEStreamOpenEvent
AEStreamCreateEvent
AEStreamOptionalParam

Downloadables

This Technote describes the
collection of APIs that can be used to
construct Apple event records and Apple
event descriptors using stream oriented
calling conventions. These APIs allow you to
use interesting and easy to maintain stream
oriented algorithms for creating complex
Apple event descriptor records.

AEStream*

The routines are not intended to be
a replacement for the other documented
Apple Event Manager APIs. Rather, they
supplement the other APIs and accomodate
different styles of programming. Together with
the other collection of Apple Event Manager
APIs, the routines make it simpler to
create Apple event descriptor records in a
wider variety of algorithms.

AEStream*

AEStream*

This Note is directed at application
developers interested in using stream oriented
algorithms for constructing complex Apple
event descriptors.

[Mar 29 2002]

Introduction

The routines allow you to append data to Apple event descriptor records in a way that is similar to opening and
writing data to a file. Once an has been opened, callers can append information to the stream using

* routines describing the resulting descriptor that should be created. The commands sent to the stream are
saved in the but they are not actually combined to create a descriptor record until the is
closed.

AEStream*
AEStreamRef

AEStream
AEStreamRef AEStreamRef

 An example illustrating how to make a simple descriptor..Listing 1

 AEStreamRef ref;
 char* p = "Hello World";

 /* open the stream */
 ref = ();
 if (ref != NULL) {

AEStreamOpen

 /* save a descriptor to the stream */
 err = (ref, typeChar, p, strlen(p));
 if (err == noErr) {

 /* close the stream gathering the contents
 into theNewDesc, a new descriptor */

 theNewDesc;
 err = (ref, &theNewDesc);
 if (err == noErr) {

 /* here we would use the new descriptor
 for some purpose */

 /* dispose of the descriptor once we're
 finished with it. */

(&theNewDesc);
 }
 } else {
 /* if an error occurred creating the descriptor,
 close the stream and discard the result. */

(ref, NULL);
 }
 }

AEStreamWriteDesc

AEDesc
AEStreamClose

AEDisposeDesc

AEStreamClose

In the simplest case, an can be used to create simple descriptor records as shown in . But, going
by this sample, it's not obvious that there is any advantage to using the calls rather than using a simple call to

 as shown in . And, it is true, in this particular case, there is no particular advantage to using the
 calls. However, in some similar circumstances the calls may prove to be a better choice than

simply calling .

AEStreamRef Listing 1
AEStream*

AECreateDesc Listing 2
AEStream* AEStream*

AECreateDesc

 An example illustrating how to make a simple descriptor using ..Listing 2 AECreateDesc

 char* p = "Hello World";
 err = (typeChar, p, strlen(p), &textDesc);AECreateDesc

Say, for example, the contents of the descriptor record are complex and can not be determined all at once, but you would
like to accumulate that data in sequence as the contents of the descriptor record. To create such a descriptor using

, you would have to accumulate the data yourself, collect it into a large contiguous block of memory, and
then copy the data to a descriptor by calling . However, the routines provide facilities for
performing these operations without having to maintain any additional house keeping information. As shown in ,
repeated calls to the routine can be used to build-up the contents of a descriptor record. Also,
when calling , there is no need to specify all of the information that will be included in the
descriptor at the same time (it could be collected across a number of calls in many different routines, for example).

AECreateDesc
AECreateDesc AEStream*

Listing 3
AEStreamWriteData

AEStreamWriteData

 An example illustrating how to build a simple descriptor, one letter at a time..Listing 3

 /* AddTextDesc adds a text descriptor containing the
 text in the string pointed to by theText to an AEStreamRef.
 It adds the text one character at a time illustrate how the
 AEStream* routines can be used to build up the data contents
 of descriptors incrementally. */

 AddTextDesc(AEStreamRef ref, char* theText) {
 char* p;

 err;

 /* start a descriptor of type text */
 err = (ref, typeChar);
 if (err == noErr) {

 /* add the string to the descriptor,
 one letter at a time */
 for (p=theText; *p; p++) {

 /* write a single character */
 err = (ref, p, 1);

OSStatus

OSStatus

AEStreamOpenDesc

AEStreamWriteData

 if (err != noErr) break;
 }
 if (err == noErr) {

 /* mark the end of the descriptor */
 err = (AEStreamRef ref);
 }
 }
 return err;
}

....

 AEStreamRef ref;
 ref = ();
 if (ref != NULL) {

 /* call our AddTextDesc to add a text descriptor to
 the AEStreamRef */
 err = AddTextDesc(ref, "Hello World");
 if (err == noErr) {

 theNewDesc;

 /* close the stream gathering the contents
 into theNewDesc, a new descriptor */
 err = (ref, &theNewDesc);
 if (err == noErr) {

 /* here we would use the new descriptor
 for some purpose */

 /* dispose of the descriptor once we're
 finished with it. */

(&theNewDesc);
 }
 } else {
 /* if an error occurred creating the descriptor,
 close the stream and discard the result. */

(ref, NULL);
 }
 }

AEStreamCloseDesc

AEStreamOpen

AEDesc

AEStreamClose

AEDisposeDesc

AEStreamClose

In the implementation of some algorithms, it may make more sense to incrementally build a descriptor record using
techiques similar to those used in . Similarly, you may use the routines to incrementally build

 structures and structures. For instance, to build a list , we simply bracket a
sequence of calls writing individual descriptors with calls to and . The

 routine defined in shows an example of how to use these routines to create a simple list
of text descriptors. And, as one may expect, it is perfectly acceptable to nest calls to and

to create lists inside of lists.

Listing 3 AEStream*
AEDescList AERecord AEDescList

AEStreamOpenList AEStreamCloseList
AddAListOfStrings Listing 4

AEStreamOpenList
AEStreamCloseList

 An example illustrating how to make a complex descriptor containing a list of strings..Listing 4

 /* AddAListOfStrings appends a single structure to
 the AEStreamRef containing a list of n descriptors of typeChar
 built using the array of string pointers provided in the strings
 parameter. */

 AddAListOfStrings(AEStreamRef ref, char** strings, long n) {
 err;

 long i;

 /* start collecting items into a list */
 err = (ref);
 if (err == noErr) {

 /* add all of our strings to the list
 using the routine defined in

 */
 for (i=0; i<n; i++) {
 err = (ref, strings[i]);

AEDescList

OSStatus
OSStatus

AEStreamOpenList

AddTextDesc
Listing 3

AddTextDesc

 if (err != noErr) break;
 }

 /* close the list */
 if (err == noErr) {
 err = (ref);
 }
 }
 return err;
}

 /* a list of strings we will use to create our
 descriptor list */
 char* gStringList[] = {
 "Hello World",
 "Apple events",
 "AEStream*",
 "one last string"
 };

 AEStreamRef ref;
 long i;

 err;

 /* open a stream */
 ref = ();
 if (ref != NULL) {

 /* add a descriptor containing list of strings to
 the AEStream */
 err = AddAListOfStrings(ref, gStringList,
 sizeof(gStringList)/sizeof(char*));

 /* close the AEStream, saving the new
 descriptor if no errors occurred */
 if (err == noErr) {

 theNewDesc;

 /* close the stream gathering the contents
 into theNewDesc, a new descriptor */
 err = (ref, &theNewDesc);
 if (err == noErr) {

 /* here we would use the new descriptor
 for some purpose */

 /* dispose of the descriptor once we're
 finished with it. */

(&theNewDesc);
 }
 } else {
 /* if an error occurred creating the descriptor,
 close the stream and discard the result. */

(ref, NULL);
 }
 }

AEStreamCloseList

OSStatus

AEStreamOpen

AEDesc

AEStreamClose

AEDisposeDesc

AEStreamClose

Similar techniques can be used to construct complex s and to add parameters to Apple event records. For the
most part, adding descriptors to records and parameters to Apple events proceeds in a similar fashion to creating a

; however, the routines have additional provisions that allow you to specify record types and
keywords associated with descriptors in records. Routines for creating records and adding elements to them are presented
later in this document.

AERecord

AEDescList AEStream*

Back to top

AEStream* Tips

Here are some key points to remember when using the routines:AEStream*

You create exactly one descriptor record between calls to and . Don't expect
 to automatically create a list for you if you write more than one descriptor between

and . If you want to create a list, then add the descriptors between calls to
and .

AEStreamOpen AEStreamClose
AEStream* AEStreamOpen

AEStreamClose AEStreamOpenList
AEStreamCloseList

Be careful to balance all of your calls. For every call to there must be a call to
, for every call there must be a corresponding
 call, and so on. As shown in the outline provided in , it is possible make complex

calling sequences to the routines to create complex nested structures.

The routines maintain state information that tracks the nesting of calls made to the library. This is
necessary for its own operation, but it also uses this information to report errors. If your calls to the library are not
balanced properly, will return an error when you try to close the

.

AEStreamOpenDesc
AEStreamCloseDesc AEStreamOpenList
AEStreamCloseList Listing 5

AEStream*

 An outline of a calling sequence illustrating how calls to can be nested to create a
complex Apple event descriptor.

.Listing 5 AEStream*

open a stream
 begin a list
 write a descriptor
 write a descriptor
 open a descriptor
 write some data
 write some data
 write some data
 write some data
 close the descriptor
 open a record
 set the record type
 write a key/descriptor pair
 write a key/descriptor pair
 close the record
 begin a list
 write a descriptor
 write a descriptor
 open a record
 set the record type
 write a key/descriptor pair
 write a key/descriptor pair
 close the record
 end a list
 write a descriptor
 end a list
close the stream -> a new descriptor

AEStream*

AEStreamClose errAEStreamBadNesting
AEStreamRef

Weigh other alternatives. Ask: will your code be simpler, more clear, and easier to maintain if you use the original
Apple Event Manager routines such as or the AEBuild* routines (see Technical Note)
instead of the routines? Using the routines may improve the clarity of some
implementations, but for others the routines may not be the best choice.

AECreateDesc TN2045
AEStream* AEStream*

AEStream*

Be sure to dispose of the descriptor record created by . It is your application's responsibility to
dispose of the record once it has finished using it.

AEStreamClose
AEDesc

Back to top

Opening and Closing an Apple event Stream

There are three routines that allow you to create and open a new for collecting commands that will be used
to create a new descriptor record when is called. should be used for creating records of
type , , and . The routine can be used to create new

 records and the routine can be used to open an existing record so
you can add parameters to it. No matter which routine you choose to open an , you must call

 to close the stream and collect all of the commands issued to the into the resulting
descriptor record.

AEStreamRef
AEStreamClose AEStreamOpen

AEDesc AEDescList AERecord AEStreamCreateEvent
AppleEvent AEStreamOpenEvent AppleEvent

AEStreamRef
AEStreamClose AEStreamRef

AEStreamOpen

AEStreamRef AEStreamOpen(void);

An or, if an error occurs, the value .
Result:

AEStreamRef NULL

 opens a new that you can use for collecting commands describing an Apple event
descriptor record. Once you have opened an you can call the other routines to describe the
format of the descriptor record you would like to create. The example provided in shows how you would call this
routine.

AEStreamOpen AEStreamRef
AEStreamRef AEStream*

Listing 1

Back to top

AEStreamClose

 AEStreamClose(
 AEStreamRef ref,

* desc);

OSStatus

AEDesc

Parameters:

 - An created by either , or
.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent

 - either a pointer to record where the sequence of items written to the
should be saved or the value . If this parameter is set to NULL, then will discard
the result and dispose of the (no matter what state it is in).

desc AEDesc AEStreamRef
NULL AEStreamClose
AEStreamRef

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

 closes and deallocates an created by calling one of the routines ,
 or . If a pointer to a descriptor is provided in the second parameter,

then the resulting descriptor record will be stored in that location. If the was created by
or , then the resulting descriptor will contain a complete Apple event.

AEStreamClose AEStreamRef AEStreamOpen
AEStreamCreateEvent AEStreamOpenEvent

AEStreamRef
AEStreamOpenEvent AEStreamCreateEvent

It is the calling application's responsibility to dispose of the descriptor record returned by
. Once you are finished with the descriptor record, you should dispose of it by calling
.

Note:

AEStreamClose
AEDisposeDesc

Providing a pointer in the parameter instructs to discard the result and dispose of the
 (no matter what state it is in). When you call in this way, you do not need to worry

about balancing nested calls to (such as, for example, and).
This can be particularly useful in error handling situations when you would like to dispose of the , but you
do not necessarily know anything about what state it is in.

NULL desc AEStreamClose
AEStreamRef AEStreamClose

AEStream* AEStreamOpenList AEStreamCloseList
AEStreamRef

All nested sequences of calls must be appropriately balanced before is called. That is to say, every
 call must have a corresponding call, every call

must have a corresponding call, and so on. Calling to close an
after nested calls have not been balanced properly will result in a error.

The example listing in illustrates how to call to obtain the resulting descriptor record and
how to call discarding the result after an error has occurred.

AEStreamClose
AEStreamOpenList AEStreamCloseList AEStreamOpenRecord

AEStreamCloseRecord AEStreamClose
AEStreamRef errAEStreamBadNesting

Listing 1 AEStreamClose
AEStreamClose

In the case where fails and returns an error, the record pointed to by the parameter
will be set to a descriptor of . Because of this, it is always safe to call on the descriptor
record returned by no matter what result code is returned.

AEStreamClose AEDesc desc
typeNull AEDisposeDesc

AEStreamClose

Back to top

Writing Descriptors

The routines include three different facilities that allow you to add individual descriptor records to an
.

AEStream*
AEStreamRef

0. , allows you to write a pre-built record (of any format) to an .
This allows you to take pre-assembled descriptors and build them into complex descriptor structures in much the
same way as you would use constants in any program.

AEStreamWriteAEDesc AEDesc AEStreamRef

1. lets you provide a data buffer and a that will be used to create the descriptor.AEStreamWriteDesc typeCode

2. The , , and calls allow you to create a
descriptor record by building up the data it contains incrementally. All of the data provided across multiple calls to

 is combined when the resulting descriptor record is created. The example shown in
 shows how to use these three calls to build a descriptor record incrementally.

AEStreamOpenDesc AEStreamWriteData AEStreamCloseDesc

AEStreamWriteData Listing
 3

These routines are described in this section. Keep in mind that all of these routines can be used to create individual
descriptor records (records). These same routines are used for adding descriptor records to and

 structures, but to do so calls to these routines must be bracketed by calls to
/ and / , respectively.

AEDesc AEDescList
AERecord
AEStreamOpenList AEStreamCloseList AEStreamOpenRecord AEStreamCloseRecord

AEStreamWriteAEDesc

 AEStreamWriteAEDesc(
 AEStreamRef ref,
 const *desc);

OSStatus

AEDesc

Parameters:

 - An created by either , or
.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent

 - a pointer to an record that should be copied into the .
 copies the immediately so there is no need to retain this storage

after calling .

desc AEDesc AEStreamRef
AEStreamWriteAEDesc AEDesc

AEStreamWriteAEDesc

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

 copies an entire existing Apple event descriptor record to the .AEStreamWriteAEDesc AEStreamRef

This routine useful in cases where you have a pre-assembled descriptor record that you would like to use in the descriptor
you are creating. For example, say you have a complex object specifier record that could be costly to create every time you
build a descriptor, but you would like to add it to many different descriptor records. In this case, it would be more efficient
to create the object specifier record at program start up time and then use it, much like a constant, again and again, in calls
to .AEStreamWriteAEDesc

Back to top

AEStreamWriteDesc

 AEStreamWriteDesc(
 AEStreamRef ref,

 newType,
 const void* data,
 Size length);

OSStatus

DescType

Parameters:

 - An created by either , or
.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent

 - A type code for the new being copied to the .newType AEDesc AEStreamRef

 - A pointer to a block of memory containing bytes of data that will be used in the new
 being copied to the . copies the data immediately so you

do not need to retain this memory after calling .

data length
AEDesc AEStreamRef AEStreamWriteDesc

AEStreamWriteDesc

 - The number of bytes pointed to by the data parameter.length

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

 allows you to provide a and a data buffer that will be used to create a descriptor
record. With this routine, you must provide all of the data that will be used in the descriptor record all at once. If you
would like to provide the data incrementally, then you should use the , , and

 calls (described next).

AEStreamWriteDesc typeCode

AEStreamOpenDesc AEStreamWriteData
AEStreamCloseDesc

Back to top

AEStreamOpenDesc

 AEStreamOpenDesc(
 AEStreamRef ref,

 newType);

OSStatus

DescType

Parameters:

 - An created by either , or
.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent

 - A type code for the new being copied to the .newType AEDesc AEStreamRef

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

Calling marks the beginning of a sequence of zero or more calls to . All of
the calls to made between calls to and will be
combined to create a descriptor with the specified in the call to . A call to

 may be followed by any number of calls and must be balanced with a call to
.

AEStreamOpenDesc AEStreamWriteData
AEStreamWriteData AEStreamOpenDesc AEStreamCloseDesc

typeCode AEStreamOpenDesc
AEStreamOpenDesc AEStreamWriteData
AEStreamCloseDesc

Back to top

AEStreamWriteData

 AEStreamWriteData(
 AEStreamRef ref,
 const void* data,
 Size length);

OSStatus

Parameters:

 - An created by either , or
. or must have been called on

this prior to calling .

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent AEStreamOpenDesc AEStreamOpenKeyDesc

AEStreamRef AEStreamWriteData

 - A pointer to a block of memory containing bytes of data that will be used in the new
 being copied to the . copies the data immediately so you

do not need to retain this memory after calling .

data length
AEDesc AEStreamRef AEStreamWriteData

AEStreamWriteData

 - The number of bytes pointed to by the data parameter.length

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

 appends data to the current descriptor record being defined in the . You can call
this routine any number of times to build up the data contents of a descriptor record incrementally. Calls to

must be preceded by either a call to or a call to
. After calling one or more times to define the data contents of a

descriptor record, you must call to complete the descriptor's definition and balance the preceding
call to either or . The example shown in shows how to call

.

AEStreamWriteData AEStreamRef

AEStreamWriteData AEStreamOpenDesc
AEStreamOpenKeyDesc AEStreamWriteData

AEStreamCloseDesc
AEStreamOpenDesc AEStreamOpenKeyDesc Listing 3

AEStreamWriteData

Back to top

AEStreamCloseDesc

 AEStreamCloseDesc(AEStreamRef ref);OSStatus

Parameters:

 - An created by either , or
. or must have been called on

this prior to calling .

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent AEStreamOpenDesc AEStreamOpenKeyDesc

AEStreamRef AEStreamCloseDesc

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

 is used to mark the end of a descriptor record being written to an . After calling
 one or more times to define the data contents of a descriptor record, you must call this routine to

complete the descriptor's definition and balance the preceding call to either or
. The example shown in shows how to call .

AEStreamCloseDesc AEStreamRef
AEStreamWriteData

AEStreamOpenDesc
AEStreamOpenKeyDesc Listing 3 AEStreamCloseDesc

Back to top

Writing Lists

Routines in this section are used to delimit a group of descriptor records that will be combined to create at
structure in the resulting descriptor.

AEDescList

AEStreamOpenList

 AEStreamOpenList(AEStreamRef ref);OSStatus

Parameters:

 - An created by either , or
.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

Calling marks the beginning of a sequence of zero or more descriptor definitions that will be
combined to create a single structure in the resulting descriptor record. Every call to

 must be balanced with a corresponding call to . The descriptors included in

AEStreamOpenList
AEDescList

AEStreamOpenList AEStreamCloseList

AEDescList

0. s defined using any of the three methods described in the section.AEDesc Writing Descriptors

1. s defined using the routines described in this section.AEDescList

2. s defined using the routines described in the section.AERecord Writing Records

Back to top

AEStreamCloseList

 AEStreamCloseList(AEStreamRef ref);OSStatus

Parameters:

 - An created by either , or
. must have been called on this prior to

calling .

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent AEStreamOpenList AEStreamRef

AEStreamCloseList

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

 is used to mark the end of a list started by calling to . Call this routine
after writing some descriptors to an to balance the preceding call to .
AEStreamCloseList AEStreamOpenList

AEStreamRef AEStreamOpenList

Back to top

Writing Records

Routines provided for writing structures are very similar to the set of routines provided for writing
 structures. The main difference is the routines for writing structures include provisions for

specifying type codes associated with and the keywords associated with record elements. For flexibility, the
 routines provide more than one way to specify these additional elements.

AERecord
AEDescList AERecord

AERecord
AEStream*

AEStreamOpenRecord

 AEStreamOpenRecord(
 AEStreamRef ref,

 newType);

OSStatus

DescType

Parameters:

 - An created by either , or
.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent

 - A type code for the new being copied to the . Sometimes
 (), but usually a different type is used.

newType AERecord AEStreamRef
typeAERecord 'reco'

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

Calling marks the beginning of a sequence of zero or more keyword/descriptor definitions that
will be combined to create a single structure in the resulting descriptor record. Every call to

 must be balanced with a corresponding call to . Each keyword/
descriptor definition is introduced with a call to either , , or

.

AEStreamOpenRecord
AERecord

AEStreamOpenRecord AEStreamCloseRecord
AEStreamWriteKeyDesc AEStreamOpenKeyDesc

AEStreamWriteKey

Back to top

AEStreamCloseRecord

 AEStreamCloseRecord(AEStreamRef ref);OSStatus

Parameters:

 - An created by either , or
. must have been called on this prior

to calling .

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent AEStreamOpenRecord AEStreamRef

AEStreamCloseRecord

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

 is used to mark the end of a record started by calling to . Call this
routine after writing some keyword/descriptor pairs to an to balance the preceding call to

.

AEStreamCloseRecord AEStreamOpenRecord
AEStreamRef

AEStreamOpenRecord

Back to top

AEStreamSetRecordType

 AEStreamSetRecordType(
 AEStreamRef ref,

 newType);

OSStatus

DescType

Parameters:

 - An created by either , or
.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent

 - A type code for the new currently being copied to the . Since
/ calls can be nested, this call will set the type for

the record associated with the most recent call.

newType AERecord AEStreamRef
AEStreamOpenRecord AEStreamCloseRecord

AEStreamOpenRecord

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

 can be called after to set the type of the being defined
to a different type than the type specified in the parameter to the call. In the case
where your code is creating nested records, will set the type of the associated
with the most recent call to . This routine can only be called between
and calls.

AEStreamSetRecordType AEStreamOpenRecord AERecord
newType AEStreamOpenRecord

AEStreamSetRecordType AERecord
AEStreamOpenRecord AEStreamOpenRecord

AEStreamCloseRecord

Back to top

AEStreamWriteKeyDesc

 AEStreamWriteKeyDesc(
 AEStreamRef ref,

 key,
 newType,

 const void* data,

OSStatus

AEKeyword
DescType

 Size length);

Parameters:

 - An created by either , or
. Since / calls can be

nested, this call will add a new / pair to the associated with the most
recent call.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent AEStreamOpenRecord AEStreamCloseRecord

AEKeyword AEDesc AERecord
AEStreamOpenRecord

 - The associated with the new being added to the current .key AEKeyword AEDesc AERecord

 - A type code for the new being copied to the .newType AEDesc AEStreamRef

 - A pointer to a block of memory containing bytes of data that will be used in the new
 being copied to the . copies the data immediately so

you do not need to retain this memory after calling .

data length
AEDesc AEStreamRef AEStreamWriteKeyDesc

AEStreamWriteKeyDesc

 - The number of bytes pointed to by the data parameter.length

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

Call to write a complete keyword/descriptor pair to an for inclusion in a
. This routine can only be called between and calls.

is analogous to the Apple Event Manager routine , and it is nearly the same
as (except it has an additional parameter). The sample shown in shows
how you could call this routine.

AEStreamWriteKeyDesc AEStreamRef
AERecord AEStreamOpenRecord AEStreamCloseRecord
AEStreamWriteKeyDesc AEPutParamPtr
AEStreamWriteDesc AEKeyword Listing 6

In the case where your code is creating nested records, will add a / pair
to the associated with the most recent call to or .

 can only be called while an is being written - it cannot be called to add
/ pairs to a while you are writing to a nested inside of that .

AEStreamWriteKeyDesc AEKeyword AEDesc
AERecord AEStreamOpenRecord AEStreamOpenEvent

AEStreamWriteKeyDesc AERecord
AEKeyword AEDesc AERecord AEDescList AERecord

Back to top

AEStreamOpenKeyDesc

 AEStreamOpenKeyDesc(
 AEStreamRef ref,

 key,
 newType);

OSStatus

AEKeyword
DescType

Parameters:

 - An created by either , or
. Since / calls can be

nested, this call will add a new / pair to the associated with the most
recent call.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent AEStreamOpenRecord AEStreamCloseRecord

AEKeyword AEDesc AERecord
AEStreamOpenRecord

 - The associated with the new / pair being added to the current
.

key AEKeyword AEKeyword AEDesc
AERecord

 - A type code for the new being copied to the .newType AEDesc AEStreamRef

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

Call to start the definition of a keyword/descriptor pair for inclusion in an .
 is the same as with the exception that it includes an

parameter that will be used as the element's keyword. You should use this routine when you would like to
provide the data associated with a keyword/descriptor pair in an incremental fashion with repeated calls to

. After calling you should call a number of
times to define the data contents for the descriptor before calling to complete the definition.

AEStreamOpenKeyDesc AERecord
AEStreamOpenKeyDesc AEStreamOpenDesc AEKeyword

AERecord

AEStreamWriteData AEStreamOpenKeyDesc AEStreamWriteData
AEStreamCloseDesc

In the case where your code is creating nested records, will begin a /
pair in the associated with the most recent call to or .

 can only be called while an is being written - it cannot be called to begin
/ pairs in a while you are writing to a nested inside of that .

AEStreamOpenKeyDesc AEKeyword AEDesc
AERecord AEStreamOpenRecord AEStreamOpenEvent

AEStreamOpenKeyDesc AERecord
AEKeyword AEDesc AERecord AEDescList AERecord

Back to top

AEStreamWriteKey

 AEStreamWriteKey(
 AEStreamRef ref,

 key);

OSStatus

AEKeyword

Parameters:

 - An created by either , or
.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent

 - The associated with the new / pair being added to the current
.

key AEKeyword AEKeyword AEDesc
AERecord

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

Call to start the definition of a keyword/descriptor pair for inclusion in an . This
routine only writes the keyword part of the definition and it must be followed by a sequence of calls that define
exactly one descriptor record. That descriptor can be any of the following:

AEStreamWriteKey AERecord
AEStream*

An defined using any of the three methods described in the section.AEDesc Writing Descriptors

An defined using the routines described in the section.AEDescList Writing Lists

An defined using the routines described in this section.AERecord

The sample shown in shows how you could call this routine.Listing 6

In the case where your code is creating nested records, will begin a / pair in
the associated with the most recent call to or .

 can only be called while an is being written - it cannot be called to begin
/ pairs in a while you are writing to a nested inside of that .

AEStreamWriteKey AEKeyword AEDesc
AERecord AEStreamOpenRecord AEStreamOpenEvent

AEStreamWriteKey AERecord
AEKeyword AEDesc AERecord AEDescList AERecord

Back to top

Writing Apple Event Records

The routines can be used to create complete Apple event records. can be used to
define a new record, and the routine can be used to supplement an existing one.
Since the contents of records are formatted the same as s, we use the same routines for filling in
the parameters as we use for adding elements. For Apple events, we use the routines

, , or defined in the
section. records include provisions for optional parameters. So that you can specify which of the
parameters you supply are optional, provides the call.

AEStream* AEStreamCreateEvent
AppleEvent AEStreamOpenEvent

AppleEvent AERecord
AERecord

AEStreamWriteKeyDesc AEStreamOpenKeyDesc AEStreamWriteKey Writing Records
AppleEvent

AEStream* AEStreamOptionalParam

AEStreamOpenEvent

AEStreamRef AEStreamOpenEvent(*event);AppleEvent

Parameters:

 - An existing Apple event record that you would like to add parameters to.event

An or, if an error occurs, the value .
Result:

AEStreamRef NULL

 allows you to open an existing record in an so you can use the
 routines to append additional parameters to the event. Once you have opened an event record the contents of the

event record are copied into the . When you have finished describing the parameters for the event record,
call to save them to an record. The example shown in illustrates how to call this
routine.

AEStreamOpenEvent AppleEvent AEStreamRef
AEStream*

AEStreamRef
AEStreamClose AppleEvent Listing 6

If there is not enough storage available to complete the operation, wi l l return and the
 parameter will remain unchanged. Otherwise, if successful, will return a vaild

 and the parameter will be set to a descriptor of . When you open an
record using , you must define the parameters using the same routines you would

use for adding keyword/descriptor pairs to records as described in the section together with the
routine described in this section.

AEStreamOpenEvent NULL
AppleEvent AEStreamOpenEvent
AEStreamRef AppleEvent typeNull
AppleEvent AEStreamOpenEvent

Writing Records
AEStreamOptionalParam

 An example illustrating how to call ..Listing 6 AEStreamOpenEvent

 event;
AEStreamRef ref;

 err;
char* p = "Hello World";
....
ref = (&event);
if (ref != NULL) {

 /* add a direct parameter */
 err = (ref, keyDirectObject, typeChar, p, strlen(p));
 if (err == noErr) {

 /* add another, optional parameter. */
 err = (ref, 'mine');
 if (err == noErr) {

 /* add all of our strings to the list
 using the routine defined in

 */
 err = (ref, "this is an optional parameter");
 if (err == noErr) {

 /* flag the parameter with the keyword 'mine' as an
 optional parameter. */
 err = (ref, 'mine');
 if (err == noErr) {

 /* close the stream */
 err = (ref, &event);
 if (err == noErr) {

 /* send the event */
 err = (&event, ...);

AppleEvent

OSStatus

AEStreamOpenEvent

AEStreamWriteKeyDesc

AEStreamWriteKey

AddTextDesc
Listing 3
AddTextDesc

AEStreamOptionalParam

AEStreamClose

AESend

 clears the contents of the structure passed to it and sets it to a descriptor
after it reads the into the . To copy the back into this variable after you are
finished writing parameters to it, call providing this same structure as the destination for the resulting
descriptor record.

AEStreamOpenEvent AppleEvent 'null'
AppleEvent AEStreamRef AppleEvent

AEStreamClose

Back to top

AEStreamCreateEvent

AEStreamRef AEStreamCreateEvent(

 clazz,
 id,
 targetType,

 const void* targetData,
 long targetLength,
 short returnID,
 long transactionID);

AEEventClass
AEEventID
DescType

Parameters:

 - The event class for the resulting Apple event.clazz

 - The event id for the resulting Apple event.id

 - The address type for the addressing information described in the next two parameters:
usually one of , , or

.

targetType
typeApplSignature typeProcessSerialNumber

typeKernelProcessID

 - A pointer to the address information.targetData

 - The number of bytes pointed to by the parameter.targetLength targetData

 - Usually, set to the value . See the Apple Event Manager
documentation for more information.
returnID kAutoGenerateReturnID

 - Usually, set to the value . See the Apple Event Manager
documentation for more information.
transactionID kAnyTransactionID

An or, if an error occurs, the value .
Result:

AEStreamRef NULL

 calls before calling to open an
 for adding parameters to the event.

AEStreamCreateEvent AECreateAppleEvent AEStreamOpenEvent
AEStreamRef

Back to top

AEStreamOptionalParam

 AEStreamOptionalParam(
 AEStreamRef ref,

 key);

OSStatus

AEKeyword

Parameters:

 - An created by either , or
.

ref AEStreamRef AEStreamOpen AEStreamCreateEvent
AEStreamOpenEvent

 - The associated with the any / pair being added to an
. or must precede any calls to

.

key AEKeyword AEKeyword AEDesc
AppleEvent AEStreamCreateEvent AEStreamOpenEvent
AEStreamOptionalParam

A numeric result code indicating the success of the call. A value of (zero) means the call succeeded.
Result:

noErr

The allows you to designate optional parameters (by) in
records. The sample shown in shows how you could call this routine.

AEStreamOptionalParam AEKeyword AppleEvent
Listing 6

Back to top

Downloadables

Acrobat version of this Note (104K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

