
CONTENTS

Avoid triple buffering

Simplify dirty region updates

Short-circuit QuickDraw's implicit LockPortBits

Don't flush to the screen more often than necessary

Summary

Downloadables

The windowing system on Mac OS X is
different from that of previous Mac OS
versions in several fundamental ways. The
primary difference where QuickDraw is
concerned is that drawing in a window port
ends up in the window's back buffer and not
on the screen. This shift and the underlying
changes in QuickDraw necessary to make it
possible have affected the performance
characteristics of QuickDraw drawing code in
some new and interesting ways. This
technote will discuss some of the trouble
spots and explain how to avoid them.

[Feb 13 2003]

Avoid triple buffering
Because drawing occurs in the window back buffer and not directly on the screen, most of the motivation for doing your
own double buffering is no longer present. In the past, it was sometimes necessary to composite your drawing into an
offscreen and then copy it onto the screen in one operation in order to avoid flickering and tearing.
With Mac OS X, that extra buffer is not only unnecessary, it will actually degrade performance due to the extra copy
required to move content from your offscreen to the window back buffer. Don't double buffer on Mac OS X.

GWorld CopyBits

Back to top

Simplify dirty region updates
In order for QuickDraw to know which parts of the window back buffer to flush to the screen, every call to QuickDraw
needs to record the region it dirties. When a drawing sequence consists of a number of small items contained within a
well-known larger area, it is usually best to dirty the whole region at once rather than having every QuickDraw routine
incrementally add to the dirty region. This way, you short-circuit the dirty region updating code inside each QuickDraw
routine.

Assuming all the small QuickDraw operations are enclosed in a bigger rectangular
region () , calling before making the first
QuickDraw drawing operation dirties the whole rectangle at once, eliminating the need for the smaller QuickDraw calls to
update the dirty region.

bigRectRegion QDSetDirtyRegion(port, bigRectRegion)

Setting the dirty region to a large rectangular region accomplishes two goals. First, it makes sure that the dirty region is
rectangular, which greatly simplifies any subsequent region operations. Second, the large region encompasses all of the
regions dirtied by the individual QuickDraw drawing calls, thus turning their dirty region updates into trivial intersection
checks of the regions' bounding rectangles.

This technique is particularly handy for speeding up the drawing of complex vector graphics.

2/13/03 1:15 PMMac OS X QuickDraw Performance

Page 1 of 3file://localhost/NOTES/localnero.apple.com/technotes/tn/tn2051.html

Back to top

Short-circuit QuickDraw's implicit LockPortBits
On Mac OS X, your window's back buffer is shared between your application and the window server. In order for your
application to access the back buffer contents, the window server must be locked out temporarily. Because QuickDraw
primitives are typically not bracketed by any sort of begin/end sequence, each QuickDraw routine needs to make sure the
port bits are locked by implicitly calling before drawing. When you make a large number of consecutive
QuickDraw calls, the cost of these implicit can add up significantly.

LockPortBits
LockPortBits

Luckily, calls to are nestable, thus allowing you to avoid having every QuickDraw routine lock and unlock
the port bits by bracketing your entire routine sequence with a pair:

LockPortBits
LockPortBits/UnlockPortBits

 calls can be nested and is smart enough to not redo all it's work if the port bits have
already been locked, so create a nesting bits by bracketing your entire routine
sequence with a pair to speed up the intervening QuickDraw calls:

LockPortBits LockPortBits
LockPortBits

LockPortBits/UnlockPortBits

LockPortBits(GetWindowPort(window))
// .. your QD drawing sequence ...
UnlockPortBits(GetWindowPort(window));

This ensures that the port bits are locked only once for the entire sequence of QuickDraw calls and
the nested implicit only increment/decrement a lock count. This way your app
incurs the cost of locking the bits once for the entire sequence instead of once per QuickDraw call, eliminating a large
performance bottleneck.

LockPortBits/UnlockPortBits

It is important to not keep the port bits locked for more than a second or two at the very most. The rest of the
system doesn't appreciate having the lock maintained any longer than absolutely necessary. If your drawing
sequence will take longer than a second or two, you will need to break up the sequence into separate segments,
each surrounded by its own / pair.

Note:

LockPortBits UnlockPortBits

You must not call any QuickTime APIs while using the port locking technique below. QuickTime's locking logic is
much more complicated than QuickDraw's. All sorts of bad things can and
w i l l happen i f you use / around calls to QuickTime.

WARNING:

LockPortBits UnlockPortBits

Back to top

Don't flush to the screen more often than necessary
For most applications, there is no need to flush more than 30 frames per second to obtain smooth animation. Flushing more
often only results in additional CPU overhead and may end up slowing down the desired animation.

To control when flushing occurs you want to use a time-based strategy aimed at providing 30 fps:

 /* for about 30 frames/sec */
const UInt32 kMinNanosecsBetweenFlushes = 1E9 / 30;

static AbsoluteTime sLastFlush = { 0, 0 };

....

AbsoluteTime curTime = UpTime();
Nanoseconds delta = AbsoluteDeltaToNanoseconds(curTime, sLastFlush);

2/13/03 1:15 PMMac OS X QuickDraw Performance

Page 2 of 3file://localhost/NOTES/localnero.apple.com/technotes/tn/tn2051.html

if (U64Compare(UnsignedWideToUInt64(delta),
 U64SetU(kMinNanosecsBetweenFlushes)) > 0)
{
 sLastFlush = curTime;
 QDFlushPortBuffer(port, NULL);
}

Back to top

Summary
Mac OS X introduced some new performance characteristics for QuickDraw drawing, but the information presented here
will help developers eliminate their graphics performance bottlenecks.

Back to top

Downloadables

Acrobat version of this Note (36K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

2/13/03 1:15 PMMac OS X QuickDraw Performance

Page 3 of 3file://localhost/NOTES/localnero.apple.com/technotes/tn/tn2051.html

