
You can also use the application to create and edit a property list. The
application can be found on Mac OS X in Developer/Applications provided you have installed the Developer Tools. We
recommend that you use the PropertyListEditor to create the text for your 'plst'.

CONTENTS

What is a 'plst' (property list) resource?

How do I make a 'plst' resource?

What keys should I use?

A sample 'plst'

Additional Notes & Comments

References

Downloadables

This Technote describes the resource
for Carbon-based applications.

'plst'

This note is directed at anyone who is
creating a single-binary Carbon CFM
application.

[Feb 07 2001]

What is a (property list) resource?'plst'

1. A resource provides the information that previously resided in the 'vers', , , , and
 resources of pre-Mac OS X systems. In fact, on Mac OS X, the information in a resource supersedes

the information in the old-style resources.

'plst' 'open' 'FREF' 'BNDL'
'kind' 'plst'

2. A resource is only useful to a single binary CFM Carbon application running on Mac OS X. A
resource is ignored on pre-Mac OS X systems. Therefore you need to maintain your , , ,

, and resources if you plan to also run on pre-Mac OS X systems.

'plst' 'plst'
'vers' 'open' 'FREF'

'BNDL' 'kind'

3. A resource must be of ID 0.'plst'

4. The resource is a single executable's equivalent of a bundled application's Info.plist file.'plst'

Back to top

How do I make a resource?'plst'

You can easily create a resource by hand. A resource is a list of key/value pairs which you can paste into
a resource in your application. For example, you can create a new resource of type with ResEdit, and
paste in the complete XML plist description. We recommend that you use the XML format for your resource.

'plst' 'plst'
'plst' 'plst'

'plst'

Although there is no 'plst' resource template, you could also add the contents of your 'plst' file to your project by reading it
in with the following line in any .r file:

read 'plst' (0) "MyFile.plist"

If the .r and .plist files are not in the same folder make sure that you use a full or relative path.

PropertyListEditor PropertyListEditor

The utility "pl" is also available on Mac OS X. You can use "pl" to check the construction of your property list. Usage of this
tool in the Terminal application would be, for example:

pl yourPropertyListFile

Back to top

What keys should I use?

Single-file (non-bundled) applications should define the following keys:

CFBundleIdentifier

CFBundleName
CFBundlePackageType
CFBundleSignature
CFBundleVersion
CFBundleShortVersionString
CFBundleLongVersionString
CFBundleIconFile
NSHumanReadableCopyright
NSAppleScriptEnabled

The (file type) and (creator) must match the type and creator of your
executable binary.

CFBundlePackageType CFBundleSignature

LaunchServices uses the key in the same way it would the presence of an 'aete' resource to
determine whether a Classic or single-file CFM app with plst is scriptable.

NSAppleScriptEnabled

Optional, but highly recommended keys:

LSPrefersCarbon
LSPrefersClassic
LSRequiresCarbon
LSRequiresClassic

Only one of the above four keys makes sense for a given app. In the absence of any specific declaration in the
 for one of these four keys, the key is "ON" by default if the app has a 0

resource but the "LSRequiresCarbon" key is "ON" by default if the app does not have a 0 resource.

Note:

'plst' LSPrefersCarbon 'carb'
'carb'

The and keys allow the user to override, via the Mac OS X Finder's Show Info
"Open in the Classic environment" check-box, the developer-provided default, while the and

 keys do not.

LSPrefersCarbon LSPrefersClassic
LSRequiresCarbon

LSRequiresClassic

If your application supports documents, it can also define an entry per document type that includes the following:

 - Extensions for this file type
 - OSTypes for this file type

 - Resource ID for the icon for this file type
 - User visible name for this file type, i.e., the kind string used by the Finder and others.
 - Role of the application for this file type (Editor/Viewer)

 - This document type is a package, whether defined by a or
. "Off" by default. Applications that claim package types for documents (such as .rtfd for

TextEdit and .pbproj for Project Builder) should add this key (with Boolean value Yes).

CFBundleTypeExtensions
CFBundleTypeOSTypes
CFBundleTypeIconFile
CFBundleTypeName
CFBundleTypeRole
LSTypeIsPackage CFBundleOSType
CFBundleFileExtension

Back to top

A sample 'plst'

Here's a sample resource that SimpleText might have:'plst'

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist SYSTEM "file://localhost/System/Library/DTDs/PropertyList.dtd">
<plist version="0.9">
<dict>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleIdentifier</key>
 <string>com.apple.SimpleText</string>
 <key>CFBundleName</key>
 <string>Simple Text</string>

 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleSignature</key>
 <string>ttxt</string>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>LSPrefersCarbon</key>
 <true/>
 <key>CFBundleVersion</key>
 <string>1.4</string>
 <key>CFBundleShortVersionString</key>
 <string>1.4</string>
 <key>CFBundleLongVersionString</key>
 <string>1.4, Copyright 1985-2001 Apple Computer</string>
 <key>CFBundleIconFile</key>
 <string>128</string>
 <key>NSAppleScriptEnabled</key>
 <string>Yes</string>
 <key>NSHumanReadableCopyright</key>
 <string>Copyright (c) 1985-2001 Apple Computer</string>
 <key>CFBundleDocumentTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeOSTypes</key>
 <array>
 <string>TEXT</string>
 </array>
 <key>CFBundleTypeIconFile</key>
 <string>129</string>
 <key>CFBundleTypeName</key>
 <string>Text document</string>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>txt</string>
 <string>text</string>
 </array>
 <key>CFBundleTypeRole</key>
 <string>Editor</string>
 </dict>
 <dict>
 <key>CFBundleTypeOSTypes</key>
 <array>
 <string>ttro</string>
 </array>
 <key>CFBundleTypeIconFile</key>
 <string>130</string>
 <key>CFBundleTypeName</key>
 <string>Read Only document</string>
 <key>CFBundleTypeRole</key>
 <string>Viewer</string>
 </dict>
 <dict>
 <key>CFBundleTypeOSTypes</key>
 <array>
 <string>PICT</string>
 </array>
 <key>CFBundleTypeIconFile</key>
 <string>131</string>
 <key>CFBundleTypeName</key>
 <string>PICT document</string>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>pict</string>
 </array>
 <key>CFBundleTypeRole</key>
 <string>Viewer</string>
 </dict>
 </array>
</dict>
</plist>

Back to top

Additional Notes & Comments

 and CFBundleIconFile CFBundleTypeIconFile

The and values refer to resource ids. If your app were
packaged as a bundle, rather than a single binary app, the values would refer to .icns files within your bundle. You may
need to log out/log in to Mac OS X to see the result of modifications to these and other keys.

CFBundleIconFile CFBundleTypeIconFile 'icns'

 of CFBundleTypeOSTypes CFBundleDocumentTypes

As stated in TN 1085, "Using the Drag Manager to Interact with and Manipulate File System Entities", the
 and the fileType and tell the Finder that your application will accept folders and volumes

dropped onto your application's icon. These types are also honored as valid , however there is no
need to specify creator because only type is used to determine whether a file is accepted. This is similar to placing an
extension on a document and specifying that extension as a value.

fileCreator
'MACS' 'fold' 'disk'

CFBundleTypeOSTypes

CFBundleTypeExtension

CFBundleInfoDictionaryVersion

The key is simply the version of the info dictionary format itself, so that in case
Apple ever decides to change this format in the future we will be able to distinguish old from new. The value for this key
should be 6.0

CFBundleInfoDictionaryVersion

CSResourcesFileMapped

The key causes the CFBundle to open the resource fork as a mapped read-only file; attempts
to write to this file would fail with a seg fault. There are two memory footprint advantages to adopting this key. The first is
that the resource-map is not copied into memory (the in-file map is just used). The second one is that all handles are
special handles that just point to the file mapped data (instead of an allocated copy). This key is a boolean, and by default its
value is false.

CSResourcesFileMapped

The resource'carb'

An empty (0-byte length) resource of ID 0 was an early method of informing Mac OS X that the application
possessing the resource was a Carbon application. The resource supersedes the resource,
except in one case: on Mac OS 9.1, the Process Manager will arrange for increased stack and heap memory for a Carbon
application provided the application possesses a 0 resource.

'carb'
'carb' 'plst' 'carb'

'carb'

Back to top

References

You can find information related to this topic in the Mac OS X Release Notes for and , and in the
 book, and in Core Foundation documentation concerning .

InfoPlists CFBundles System
Overview CFBundles

A good place to start for information about XML is the website.www.XML.com

Back to top

Downloadables

Acrobat version of this Note (116K). Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

