Technical Note TN2031

Java Runtime Properties for Mac OS X

CONTENTS

Java Application Properties for Mac OS X

Required Application Properties
Application Launch Properties
Graphical Application Properties

- Enabling Hardware Acceleration
"Macintosh" Application Properties

Setting Application Properties

Command-Line Execution
".app' Execution Using Project Builder
".app' Execution Using MRJAppBuilder

Summary

Downloadables

This Technote describes the various
Macintosh-specific runtime properties that can
be given to a Java application running on
Mac OS X. The properties vary in function
from feeding required information to a
packaged '.app' Java application wrapper, to
making a Java application more Mac-like.
Various methods of specifying these
properties to a given application are also
discussed.

The information in this Technote applies to
Java development on Mac OS X 10.1.3 or
later, with Java 1.3.1 Update 1, and the
December 2002 Developer Tools versions of
Project Builder or MRJAppBuilder.

[May 23 2001]

Java Application Properties for Mac OS X

Java applications on Mac OS X can be supplemented with a number of exclusive runtime properties to enhance their user
experience. These properties can be specified via command-line, or, in the case of a packaged ‘.app’ Java application, they
are typically specified in one of two files: MRJApp .properties, and Info.plist.

The properties in question are described in the tables below. The "Default” column in the tables represents the default values
that the runtime assumes if no value is specified by you when packaging your application. They can be grouped into three

main categories: required, graphics, and Macintosh properties.

Back to top

Required Application Properties

The properties listed in Table 1 need to be present and legally defined in order for a ".app’ Java application to launch

properly. They are needed to resolve the application's main class and locate all of your application’s required libraries. If not

present, or defined with improper values, the Java runtime will likely reply with a number of errors on launch.

Please note that these properties are written for you by default if your application is created in ProjectBuilder. If you choose

not to use Project Builder, you must define the properties yourself (see Setting Application Properties). These properties
are not necessary if you are launching your application using the command-line Java executable.

Table 1. Required application properties.

Property || Default || Function

) R R B Specify the fully-qualified class
com.apple.mrj.application.main none name of the class containing the
application's main() method.

) R R Specify file system paths to all
com.apple.mrj.application.classpath || none required codebases (directories
and/or JAR files).

Note: See Table 5 for dictionary equivalents of these properties using Project Builder.

Back to top

Application Launch Properties

The properties listed in Table 2 allow developers to apply traditional command-line startup properties to Java applications
on Mac OS X.

Table 2. Java launch properties for Mac OS X

Property || Default || Function
Space-separated list of
arguments which are
com.apple.mrj.application.parameters none parsed to build the
String[] passed to
main

- _ _ _ _ Sets the current
com.apple.mrj.application.workingdirectory || none working directory for

the application.

)))) Space-separated list of
com.apple.mrj.application.vm.options none options to VM (e.g
-Xms2m)

Note: See Table 5 for dictionary equivalents of these properties using Project Builder.

Back to top

Graphical Application Properties

Enabling Hardware Acceleration: Hardware Acceleration for Swing and 2D graphics is still in pre-release form, and
the Java 1.3.1 Update 1 has changed the property requirements since this tech note was written. Please consult the 1.3.1
Update 1 Release Notes for information on enabling hardware acceleration in your Java apps.

Back to top

"Macintosh™ Application Properties

The properties listed in Table 4 are are all optional, and provide Mac-like or other general look-and-feel enhancements to
your application without any additional code. Properties marked with an asterisk (*) only have effect when using the Aqua
look and feel in Swing applications.

Table 4. Java Macintosh properties for Mac OS X

Property Default ||

Function

com.apple.macos.useScreenMenuBar * false

Puts Swing menus in the Mac OS menu
bar, if using the Aqua look and feel.
Java applications created with Project
Builder will have this set to true

com.apple.macos.use-file-dialog-packages false

If set to true, causes
java.awt.FileDialog to treat
application (.app) bundles and
installer (.pkg) packages as files
instead of folders, and will not allow
navigation into them. See Tech Note
2042 for JFileChooser

equivalents

com.apple.macos.smallTabs * false

If set to true, tabs will assume a
smaller font size which in effect will
shrink the overall size of each tab. The
Agua HI Guidelines dictate that tabs
should have two possible sizes

com.apple.mrj.application.apple.menu.about.name || none

If defined, an "About ..." command will
be added to the top of the application
menu, and can be detected by
registering a
com.apple.mrj.AboutHandler
Java applications created with Project
Builder will have this set to inital
name of your project

Causes resizable window’s grow-box

H F F H to intrude into AWT/Swing content (if
com.apple.mrj.application.growbox. intrudes true turned off, bottom of window is pushed
down 15 pixels).
com.apple.mrj.application.live-resize false || Enables live resizing of windows.
Back to top

Setting Application Properties

The properties listed in the table above can be implemented in three different ways, depending on the tools you are using and
the means in which you wish to deploy the application: using the command-line, or, in the case of a .app packaging, the
MRJApp.properties and Info.plist files. For more information on app packaging beyond the following sections, please refer to

the Application Packaging section of Inside Mac OS X: System Overview.

Back to top

Command-Line Execution

Mac OS X provides the standard JDK command line tools for developers. Therefore, when launching an unpackaged Java
application from the command line, the two required properties listed above in Table 1 should not be used, in favor of the
standard command-line specification of the classpath and main class. The other (optional) runtime properties can be applied

to a command-line Java application using the —-D flag when executing the program:

duke% java -cp lib/MyJar.jar -Dcom.apple.mrj.application.growbox. intrudes=false \

-Dcom.apple.macos-useScreenMenuBar=true MySampleApp

Note that you can also specify a Dock icon and name for your unpackaged application from the command line, using the format

-Xdock parameter:

duke% java -cp lib/MyJar.jar -Xdock:name="My Groovy Java \
App" -Xdock: icon=myhome/mylcon.icns MySampleApp

Note that the name and icon parameters are specified using separate —XdocK directives. This is a change from the original
convention, where name and icon were specified with one —XdocK directive and separated by a colon. The new format has
been adopted to prevent problems with application names that contain a colon. If a name is not specified, the name of the
application's main class will appear as the Application Menu title. If an icon is not specified, the generic Java application
icon will appear on the dock. As with a regular Mac OS X application, the desired icon must be a .icns file. Values with spaces
can be wrapped in double-quotes, or escaped using a backslash (\), so that they are read properly. Only the first of each
value (icon, name) will be read by the VM launcher.

Back to top

".app" Execution Using Project Builder (Info.plist)

If you are using Project Builder to develop your Java application, a good deal of work is done for you in terms of setting the
aforementioned properties, as well as fully generating and packaging the double-clickable *.app" executable for your
application.

When you name and start your project in ProjectBuilder, the properties for the application's main class and classpath are
automatically generated for you. The classpath property in particular will be continuously updated as you add and remove
.class and .jar files from your project. If, however, you change the name of your main class, you will need to change the
respective property manually.

When Project Builder packages your Java application into a double-clickable *.app" file, it places the Java runtime
properties listed above in an Info.plist file contained within the .app package. This file is parsed and fed into the runtime
when the application is launched.

The Info.plist file is standard for Mac OS X applications, and is generated by Project Builder from the project's "Application
Settings"; as of Project Builder 1.1, Java application projects should contain a Java dictionary among the list of properties.
To add or change runtime properties in Project Builder at design-time:

1. Select "Edit Active Target" from the Project Window

2. Click the "Application Settings" tab

3. Click the "Expert" button

4. Click the triangle next to "Java" to expand the Java Properties list

Figure 1 shows the Expert Application Settings pane from Project Builder.

davigation - Fird Bulld Dehbug 508 ‘Window Help 40 Mon
b=y oy " P TR

Show Info xi
I— .
Add Files LHA | Fi bl s WA 4 0 Doy
v @ruga M Frameworke.. CKF 8
F tepcaoe Seribgs | Erconatiss
= Hew Croup RN = _:. . o
rpis Lapan
 Wew Sty
Mew Target,,
Propatty U W
it New Bulld Style _'I” rx it
1":3" Hew Eulld Phase 3 J.::r: gt
¥ =
AN i Acive Targel [CRE
o sirieg =04
i Jhcsioary .
Ciacss Farhy “Sirirg & RIRMARTEIT) G Tedr jar
Wavlass Siring 5 CogwBsTes
whrogemes Dictionary "
e apahe Sirieg .

Sirieg & CrpwRnaTem
Sirieg & false C

£, pake el Aol
Pk i
77 01 ke] apdbcation |- esize Sirieg = e =

Figure 1. Editing Java runtime properties in Project Builder.

As mentioned above, the use of an Info.plist file as of Project Builder 1.1 has provided dictionary replacements for many of
the properties above. Those properties, their dictionary counterparts, and alternative means of specifying values are listed
below in Table 5 for easy reference.

Table 5. Info.plist representation of Java runtime properties

Property || Dictionary Key || Format

com.apple.mrj.application.main MainClass ?::r‘lengi original

Same as original

H F F (colon-separated
com.apple.mrj.application.classpath ClassPath string). or array

of strings

Same as original

H A A (space-separated
com.apple.mrj.application.parameters Arguments string). or array

of strings

com.apple.mrj.application.workingdirectory || WorkingDirectory ?:2513 original

Same as original

- - - = = (space-separated
com.apple.mrj.application.vm.options VMOptions string), or array

of strings

The Info.plist file also makes two other keys available:

® Jar: Entered as a string path to the application jar file. Intended as a replacement for using java -jar at the
command line.

® BJAVAROOT: Entered as a string path to the location of the Java classes inside the application package. If this key is
not specified, $JAVAROOT defaults to $APP_PACKAGE/Contents/Resources/Java. Can be used to shorten
string definitions for the Jar, ClassPath, Arguments, Properties, WorkingDirectory, and
VMOptions keys.

® BAPP_PACKAGE: Entered as a string path to the location of the *.app* file. Similar to $JAVAROOT in use, and
function. Necessary when specifying files outside of the .app package.

Note that $JAVAROOT and $APP_PACKAGE are only expanded by the Java launcher, and are not usable from Java code.
Traditional system properties should be used to make this sort of data available to your Java application.

Additionally, the com.apple.macos.useScreenMenuBar property is initialized to true, and the
com.apple.mrj.application.apple.menu.about.name property is initialized to the name of your project when
using ProjectBuilder. All other properties will need to be added following the above steps.

To edit the runtime properties of an application already built with Project Builder:

1. Holding the Control key, click on the application’s icon.

2. Select "Show Package Contents".

3. Open the "Contents" folder.

4. Open the Info.plist file in PropertyListEditor, located under /Developer/Applications, or with a text editor.

Note that Project Builder 10.0 (which shipped with the original release of Mac OS X) created an MRJApp.properties file,
which was editable using the Files tab. While use of MRJApp.properties will still work at runtime on Mac OS X 10.1,
ProjectBuilder has adopted the Info.plist method for Java projects in order to better comply with Mac OS X application
standards.

Please refer to the System Overview documentation for more on using and creating Info.plist files.

Back to top

".app' Execution Using MRJAppBuilder (MRJApp.properties)

The MRJAppBuilder utility is used to package a pre-built Java application into a ".app’ file, allowing it to launch with a
double-click. It is provided for developers who are not using Project Builder, but wish to have a Java application that can be
launched in a manner similar to other Mac OS X applications. MRJAppBuilder is located in /Developer/Applications.

Unlike Project Builder, MRJAppBuilder has not yet been updated to use the Info.plist file for storing Java runtime
properties and still places them inside an MRJApp.properties file. The MRJApp.properties file contains one property per
line and is written as plain text. Lines may be commented out, causing them to be ignored at runtime, with a # at the start of
the line.

A Java project created in versions of Project Builder prior to 1.1 will still open in version 1.1, and MRJApp.properties can
be edited using the Files pane. To edit the runtime properties of a Java application built using MRJApp.properties:

1. Holding the Control key, click on the application’s icon.

Select "Show Package Contents".

Open the "Contents" folder.

Open the "Resources™ folder.

Open the MRJApp.properties file in a text editor.

arwN

Remember that MRJAppBuilder will be updated to use Info.plist-based properties in the future. Applications using
MRJApp.properties also have a number of shortcomings which those using Info.plist do not:

® Arguments to main, since they are space-separated, may not contain embedded spaces (Info.plist allows for this by
using an array of strings).

® |f a MRJApp.properties based Java application package is launched from the command line, additional command line
arguments are ignored.

® The $APP_PACKAGE property is not expanded when used in com.apple.mrj.application.parameters.

Back to top
Summary

This Technical Note has discussed the many runtime properties at a Java developer's disposal on Mac OS X, as well as the
three main methods of using them: command-line, Info.plist, and MRJApp.properties. These properties can be edited at
design-time using ProjectBuilder or post-build using instructions given above.

Back to top
Downloadables
j’ﬂ Acrobat version of this Note (108K) Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

