
TN1071: Working with Multiprocessing Services Page: 1

CONTENTS

Overview

Access to Multiprocessing Services

Preemptive Tasks

Intertask Communications

Queues

Event Groups

Interrupt-Level Communications

Example: sending a message to an interrupt task

Resource Management

Semaphores

Critical regions

Tips & Tricks

References

Downloadables

This Technote discusses some techniques for
use with Apple's Multiprocessing Services
Library. Methods for sharing information
between tasks are discussed and several
examples are provided that show how to
implement the techniques discussed.

This Technote is primarily directed at
developers interested in using Apple's
Multiprocessing Services routines.

 Updated: [Mar 20 2000]

Overview

Multiprocessing Services provides a set of routines that allow an application to create separate threads of execution called
preemptive tasks. Preemptive tasks run simultaneously with the rest of the operating system and are given processor
time based on an interrupt-driven scheduling algorithm. Unlike thread manager tasks, the execution of preemptive tasks
does not rely on other tasks explicitly yielding processor time by calling either the Event Manager routine
WaitNextEvent or the Thread Manager routine YieldToAnyThread.

Tasks are preemptively scheduled using whatever processors are available to the system. It is not necessary for a machine
to be equipped with more than one processor for an application to take advantage of the preemptive process scheduling
facilities provided by Multiprocessing Services. Even if a machine is only equipped with one processor, it is possible for
an application to schedule and run many simultaneous preemptive tasks.

TN1071: Working with Multiprocessing Services Page: 2

Multiprocessing Services provides facilities for creating and scheduling tasks along with routines for communicating
between tasks. Although access to operating system resources is limited from preemptive tasks, at the time of this
writing, it is possible for tasks to allocate memory, make synchronous file manager calls, call deferred tasks, and make
remote calls the operating system.

Back to top

Access to Multiprocessing Services

For your application to use Multiprocessing Services, your application must be linked with either CarbonLib or the
Multiprocessing Services shared library, "MPLibrary". For best results, when linking with "MPLibrary", your
application should use weak links to the Multiprocessing Services routines and then use the MPLibraryIsLoaded
function call to determine if the library is available for your application to use. If MPLibraryIsLoaded returns true,
then your application can use the Multiprocessing Services routines and perform preemptive multitasking operations.
Otherwise, when MPLibraryIsLoaded returns false, your application should use single threaded processing
techniques.

All applications using the Multiprocessing Services routines should call the MPLibraryIsLoaded routine to determine
if Multiprocessing Services is available. This is for two reasons:

1. MPLibraryIsLoaded may perform some initialization operations that must be done before other Multiprocessing
Services calls can be made.

2. Although CarbonLib exports the symbols required to link your application with Multiprocessing Services, that does
not necessarily imply that those routines are available in the context where CarbonLib is running. The call to
MPLibraryIsLoaded will tell your application if those routines are available for your application to use.

Note:
Developers linking with CarbonLib who would like to call the routine DTInstall from a preemptive task,
should make sure that CarbonLib 1.0.2 or later is installed at runtime.

Back to top

Preemptive Tasks

Preemptive tasks are single parameter routines that return a result of type OSStatus. Once a task has been created it
will run preemptively until it returns a result or until it is explicitly terminated. Tasks are free to perform any type of
processing operations they require, however do not have access to the 680x0 emulator. Therefore, it is not possible to
place calls to operating system routines that may make use of the 680x0 emulator. A listing of specific Operating system
routines that can be called by tasks can be found in the document Adding Multitasking Capability to Applications Using
Multiprocessing Services.

Listing 1 shows a simple task that creates a SimpleText file containing 1000 lines of text containing the string "Hello
World\n". In this task, a number of the "safe" file manager calls are used to create a file, open its data fork, and write a
bunch of strings to the file. When called, this task will run in the background (during mouse clicks, menu selections, et
cetera) until it completes. During that time, the application that created this task (and all other applications) will be free
to perform any other processing operations it desires.

TN1071: Working with Multiprocessing Services Page: 3

OSStatus ExampleTask(void *parameter) {
 FSSpec *theFile;
 short refnum;
 Boolean created;
 long i;

 /* the parameter is a FSSpec pointer */
 theFile = (FSSpec *) parameter;

 /* set up locals */
 refnum = 0;
 created = false;

 /* create a file */
 err = FSpCreate(theFile, 'ttxt', 'TEXT', smSystemScript);
 if (err != noErr) goto bail;
 created = true;

 /* open the file for writing */
 err = FSpOpenDF(theFile, fsRdWrPerm, &refnum);
 if (err != noErr) goto bail;

 /* write out the string 1000 times*/
 for (i=0; i<1000; i++) {
 err = FSWrite(refnum, (count = 12, &count), "Hello World\n");
 if (err != noErr) goto bail;
 }

 /* close the file and leave */
 FSClose(refnum);
 return noErr;

bail:
 if (refnum != 0) FSClose(refnum);
 if (created) FSpDelete(theFile);
 return err;
}

Listing 1. A task that creates a SimpleText file containing the string "Hello World\n".

The single parameter passed to a task is provided by the caller when the task is created using the MPCreateTask
routine. As shown in listing 1 and 2, oftentimes the parameter passed to a task will be a pointer to a structure containing
information relevant to the operations the task has been designed to perform. In Listing 1, the task assumes that the
parameter is a pointer to a FSSpec record that refers to a file the task should create. The code snippet shown in Listing 2
illustrates how to pass a pointer to a FSSpec record to the task when calling the MPCreateTask routine.

TN1071: Working with Multiprocessing Services Page: 4

OSStatus err;
FSSpec targetFile;
MPTaskID taskID;

 /* make a file spec for the target file */
err = FSMakeFSSpec(0, 0, "\pExample File", &targetFile);

 /* if the file does not exist, call the task to create it */
if (err == fnfErr) {

 /* create the task */
 err = MPCreateTask(ExampleTask,
 &targetFile, /* the parameter passed to the task */
 0, /* use the default stack size - 4K */
 0, /* no notification queue */
 NULL, NULL, /* result parameters - unused */
 0, /* no special task flags */
 &taskID);
}

Listing 2. A small sequence of statements that calls the ExampleTask from Listing 1.

Of course, callers will want to know the result codes returned by the tasks they create. To allow for this, Multiprocessing
Services provides a mechanism where the result code returned by the task can be passed back to the caller. However, this
cannot be done directly as often the time required for a task to execute cannot be determined beforehand. So, to allow
Multiprocessing Services to pass back the result returned by the task to its caller, it is possible to designate a queue, by
providing it as a parameter to the MPCreateTask call, that will be used for communicating the task's result back to the
caller. Figure 3 illustrates how one would set up such a queue and provide it as a parameter to MPCreateTask.

TN1071: Working with Multiprocessing Services Page: 5

OSStatus err;
FSSpec targetFile;
MPTaskID taskID;
MPQueueID taskQueue;

 /* create a queue for the task to communicate
 results back to the caller */
err = MPCreateQueue(&taskQueue);
if (err != noErr) goto your_error_handler;

 /* make a file spec for the target file */
err = FSMakeFSSpec(0, 0, "\pExample File", &targetFile);

 /* if the file does not exist, call the task to create it */
if (err == fnfErr) {

 /* create the task */
 err = MPCreateTask(ExampleTask,
 &targetFile, /* the parameter passed to the task */
 0, /* use the default stack size - 4K */
 taskQueue, /* the task's notification queue */
 NULL, NULL, /* first 64 bits of result */
 0, /* no special task flags */
 &taskID);

}

Listing 3. A sequence of statements that calls the Example task shown in Listing 1. This listing illustrates
how to provide a task notification queue when a task is created so the result code returned by the task can be
discovered after the task has completed.

If a task notification queue is provided as a parameter to the MPCreateTask routine, then this queue will be used to
communicate any result codes returned by the task to its caller. As shown in Listing 4, the task's result code is returned in
the third MPWaitOnQueue result parameter.

 Boolean complete;
 OSStatus err;

 complete = (MPWaitOnQueue(taskQueue,
 NULL, NULL, /* first 64 bits of result from MPCreateTask */
 (void**) &err, /* the result code returned by the task */
 kDurationImmediate) == noErr);

 if (complete) {
 /* the task is complete and has returned the error code
 that has been copied into err... */

Listing 4. Using a task's notification queue to find the result code returned by the task.

Task notification queues are necessary in some cases. For instance, calling MPTerminateTask does not immediately
destroy a task, nor does it stop the task from executing. Instead, MPTerminateTask will schedule the task for

TN1071: Working with Multiprocessing Services Page: 6

termination. The actual operations involved in terminating the task will happen as soon as the task scheduler is able to
remove the task from the active task queue. As such, a task may remain executing for some time after
MPTerminateTask has been called. But, once the task has been stopped and disposed of, Multiprocessing Services will
notify the caller of this fact by placing a result in the task's notification queue. It will not be safe for the caller to assume
the task is not running until this result arrives.

In general, MPTerminateTask should be avoided and only used in exceptional circumstances. Well-written tasks and
Multiprocessing Services clients should never need to use this routine. However, in unusual circumstances where it is
necessary to terminate a task by calling MPTerminateTask, you must use a task notification queue to determine when
the task has actually terminated.

Back to top

Intertask Communications

Multiprocessing services provides a number of facilities that can be used for communication between tasks. These
facilities and how they can be used are discussed in this section. Whenever possible, applications should use these methods
for communication between tasks. Other methods, such as polling global variables, are inefficient and often lead to
difficult-to-track-down bugs. The methods discussed in this section are fast, efficient, and they provide a well-defined set
of operations for passing messages or communicating state information between tasks.

Queues

Queues are first-in-first-out message buffers designed for passing 96-bit messages between tasks. Each message is
formatted as a group of three 32-bit integers. The format of the data passed between tasks is entirely up to the
programmer. Here, the only requirement is that all tasks accessing the same queue agree on the format of the data being
stored in the queue.

Inserting and extracting elements is an atomic operation - many tasks can try to extract the next message from a given
queue, but only one will successfully obtain it.

Listing 5 illustrates how a queue can be used to pass commands to a server task for background processing. Here, the
server task extracts messages from a queue and then it performs processing operations based on a dispatching mechanism.

TN1071: Working with Multiprocessing Services Page: 7

enum {
 kRunLongComplexTask,
 kQuickTask,
 kShutDown
};

OSStatus ExampleServerTask(void *parameter) {
 MPQueueID commandQueue;
 Boolean processingCommands;
 long theCommand, param1, param2;

 /* task parameter is the command queue ID */
 commandQueue = (MPQueueID) parameter;

 /* set up locals */
 processingCommands = true;
 err = noErr;

 /* process commands */
 while (processingCommands) {

 /* get the next command from the queue */
 err = MPWaitOnQueue(commandQueue,
 (void**) &theCommand, /* the first parameter is the command */
 (void**) ¶m1, /* the next two parameters are arguments.. */
 (void**) ¶m2,
 kDurationForever);
 if (err != noErr) break;

 /* process the command */
 switch (theCommand) {

 case kRunLongComplexTask:
 PerformSomeComplexAction(param1, param2);
 break;

 case kQuickTask:
 PerformSomeSimpleAction(param1, param2);
 break;

 case kShutDown:
 processingCommands = false;
 break;
 }
 }
 /* release the command queue */
 MPDeleteQueue(commandQueue);

 /* any result codes will be returned in the task's
 notification queue. See listing 4 for an example
 showing how to retrieve this result code. */
 return err;
}

TN1071: Working with Multiprocessing Services Page: 8

Listing 5. A sample server task receiving commands by way of a queue.

The server task shown in listing 5 assumes that messages placed in the queue have a particular format. Specifically, the
first 32-bit integer is a command selector and the next two 32-bit integers are additional parameters that may or may
not be used in command processing. As the server task assumes this will be the format for all messages placed in the
queue, it is useful to have a single routine that formats queue entries according to this agreed upon format when sending
messages to the server task. The routine shown in Listing 6 provides this mechanism.

MPQueueID gServerCommandQueue;

OSStatus SendCommandToServerTask(long theCommand, long param1, long param2) {
 return MPNotifyQueue(gServerCommandQueue,
 (void*) theCommand, /* the first parameter is the command */
 (void*) param1, /* the next two parameters are arguments... */
 (void*) param2);
}

Listing 6. A routine for sending commands to the server task shown in listing 5.

Often it is best to "wrap" the routine used to place commands in a server task's command queue in this manner rather than
calling MPNotifyQueue directly to send commands to the server task. Adding the additional layer of abstraction reduces
code maintenance requirements should the format of the messages in the queue change.

Event Groups

Event groups are the fastest method available for communications between tasks. An event group is a 32-bit integer. Each
bit in that integer is used to represent an individual event. Event groups can be used as a mechanism for sending simple
boolean messages to tasks. When used in this way, each bit in the event group represents a message.

Unlike queues, where messages are received one at a time, it is possible that several "event" messages may be received
simultaneously in one call to MPWaitForEvent. In other words, several events may accumulate in an event group
between calls to MPWaitForEvent. As a result, code responsible for decoding and responding to events returned by
MPWaitForEvent must be aware of the fact that more than one event may be returned by any given call. The event
handler shown in listing 7 illustrates an appropriate way to handle event groups returned by MPWaitForEvent.

/* each event is defined as a single bit in the event group. */
enum {
 kDanglingPointerDetected = (1<<0),
 kUnlockedHandleSighted = (1<<1),
 kResEditDetected = (1<<2),
 kSelfDestruct = (1<<3)
};

OSStatus ExampleEventHandlerTask(void *parameter) {
 MPEventID eventGroup;
 Boolean processingEvents;
 MPEventFlags theFlags;

 /* task parameter is an event group */
 eventGroup = (MPEventID) parameter;

 /* set up locals */
 processingEvents = true;

TN1071: Working with Multiprocessing Services Page: 9

 err = noErr;

 /* process events */
 while (processingEvents) {

 /* get the next event */
 err = MPWaitForEvent(eventGroup, &theFlags, kDurationForever);
 if (err != noErr) break;

 /* more than one flag may be set in each
 event we retrieve. As such, we do separate
 processing for each flag, but we do not
 assume that flags are mutually exclusive. */

 if ((theFlags & kDanglingPointerDetected) != 0) {
 ShieldsUp();
 }

 if ((theFlags & kUnlockedHandleSighted) != 0) {
 PhasersOnStun();
 }

 if ((theFlags & kResEditDetected) != 0) {
 EngageHelmets();
 }

 if ((theFlags & kSelfDestruct) != 0) {
 processingEvents = false;
 }
 }
 /* release the event group */
 MPDeleteEvent(eventGroup);

 /* any result codes will be returned in the task's
 notification queue. See listing 4 for an example
 showing how to retrieve this result code. */
 return err;
}

Listing 7.A sample server task receiving commands by way of an event group.

As event groups are the fastest method for passing messages between tasks, their use should always be considered. If the
messages your task is designed to handle do not need to be processed in any particular order, then event groups are
probably the best method for sending commands to your task. On the other hand, if the commands you are sending to your
task must be processed in a definite order (or you must send additional data along with the command), then you should use
a queue to send commands to your task.

Back to top

Interrupt-Level Communications

Often it is desirable to communicate between code running at different execution levels. For example, an application may
want to send information from its main thread to a task. This section discusses the issues involved in communications
between different types of tasks and it provides an example illustrating how a preemptive task can send messages to an
interrupt-level task. For the purposes of this discussion, we will define the following three task types and discuss

TN1071: Working with Multiprocessing Services Page: 10

methods that can be used to communicate between them:

1. Interrupt Level. This describes any thread of execution that occurs as a result of an interrupt, including hardware
interrupt handlers and Deferred tasks running in the classic cooperative environment.

2. System-Task Level . This describes the classic application's main thread of execution and Thread Manager tasks.

3. Preemptive-Task Level. This refers to a thread of execution, a preemptive task, created by Multiprocessing Services.

Table 1 lists the various methods that can be used for communicating between tasks running at different execution levels.
Perhaps the most complex of the types of communication that can be done here is sending a message from a preemptive task
to a classic interrupt-level task. The other ones are straight forward, but, as this one is complex, a sample of how it can
be done is provided in listing 8, listing 9, and listing 10.

Table 1. Methods for communicating between different execution levels for Mac OS applications.

 The Destination Task is operating at:

The Source Task
is operating at: Interrupt Level System-Task Level Preemptive-Task Level

Interrupt Level
Use the Enqueue routine
to add messages to an
O.S. queue, use the
Dequeue routine poll for
messages in the interrupt
routine.

Use the Enqueue
routine to add messages
to an O.S. queue, use the
Dequeue routine to poll
for messages.

Call MPNotifyQueue to
add messages to the queue
and call
MPWaitOnQueue to
extract messages.
MPSetQueueReserve
must be called to ensure
there is space in the queue
before adding messages to
it at interrupt time.

System-Task Level

Any queue mechanism
will do. The nature of
system-task level ensures
mutual exclusion
between threads
operating at this level.

Call MPNotifyQueue to
add messages to the queue
and call
MPWaitOnQueue to
extract messages.

Preemptive-Task
Level

Call Enqueue from a
deferred task to insert
messages into an
O.S. queue, use the
Dequeue routine to poll
for messages in the
interrupt routine.

Use MPNotifyQueue
to add messages to a
queue, and use the
MPWaitOnQueue
(specifying an immediate
duration) to poll the
queue for messages.

Example: sending a message to an interrupt task

In this example, message records are kept in two queues: the unused message buffers available are kept in a
Multiprocessing Services queue and the message buffers containing data to be read by the interrupt task are stored in an
O.S. Queue. Whenever the preemptive task needs to send a message to the interrupt routine, it can extract an unused
message buffer from the Multiprocessing Services queue, copy some data to it, and then place the buffer in the O.S. Queue.
The current implementation of Multiprocessing Services does not allow preemptive tasks to call Enqueue directly so
instead this sample calls Enqueue from a deferred task that is installed by the preemptive task.

The interrupt routine extracts messages from the O.S. Queue and once it has finished with a message, it places the message
back into the Multiprocessing Services queue so it can be used again by the preemptive task. Listing 8 contains the steps
needed to set up the structures and variables used in this example.

#define kMaxMessages 20

TN1071: Working with Multiprocessing Services Page: 11

#define kMessageSize 256

 /* the MessageRecord structure is defined as the
 primary mechanism to storing messages. */

typedef struct MessageRecord MessageRecord;
typedef MessageRecord, *MessageRecPtr;
struct MessageRecord {

 /* os queue element field at offset zero. It's
 placed here so we can easily coerce a MessageRecPtr
 to a QElemPtr and vice versa. */
 QElem qLinkField;

 /* deferred task record we will used for
 adding this record to the os queue.*/
 DeferredTask eltTask;

 /* the message buffer */
 unsigned char messageData[kMessageSize];
};

 /* pointer to the storage area we're using for messages */
MessageRecPtr gMsgStorage;

 /* a queue of free buffers */
MPQueueID gFreeMessageQueue;

 /* our message queue */
QHdr gMessageOSQueue;

 /* deferred task upp */
DeferredTaskUPP gInstallMessageDT;

/* InstallBufferDT is the deferred task we use
 for installing messages. This routine assumes
 that its parameter is a pointer to the message
 record that is to be installed. */
static pascal void InstallBufferDT(long dtParam) {
 MessageRecPtr theElt;

 /* get a pointer to the message */
 theElt = (MessageRecPtr) dtParam;

 /* initialize its fields */
 theElt->qLinkField.qLink = NULL;
 theElt->qLinkField.qType = 0;

 /* add the message to the message queue */

TN1071: Working with Multiprocessing Services Page: 12

 Enqueue((QElemPtr) theElt, &gMessageOSQueue);

 /* in some cases, it may be useful to do
 additional processing at this point. For
 instance, you may wish to restart a send
 operation that ran out of data, etc... */
}

/* SetUpInstallUPP is a remote procedure call used to
 set up the universal procedure pointer for the
 deferred task. This is done in a remote procedure
 call as the NewDeferredTaskUPP call is not listed
 as a macro/call that can be made from preemptive tasks.*/
static void *SetUpInstallUPP(void *parameter) {

 gInstallMessageDT = NewDeferredTaskUPP(InstallBufferDT);

 return NULL;
}

/* InitMessageQueue is called to set up the message queue
 and related variables. The purpose of this routine is
 to illustrate what steps need to be done to prepare
 for sending messages from a preemptive task to an interrupt
 task using an O.S. Queue. */
OSStatus InitMessageQueue(void) {
 OSStatus err;
 long i;
 MessageRecPtr rover;

 /* initialize our variables */
 gFreeMessageQueue = 0;
 MPBlockClear(&gMessageOSQueue, sizeof(gMessageOSQueue));

 /* allocate our message storage */
 gMsgStorage = (MessageRecPtr) MPAllocateAligned(
 sizeof(MPSBufferElement) * kMaxMessages,
 kMPAllocateDefaultAligned,
 kMPAllocateClearMask);
 if (gMsgStorage == NULL) { err = memFullErr; goto bail; }

 /* allocate the free message queue */
 err = MPCreateQueue(&gFreeMessageQueue);
 if (err != noErr) goto bail;

 /* pre-allocate kMaxMessages slots in the queue */
 err = MPSetQueueReserve(gFreeMessageQueue, kMaxMessages);
 if (err != noErr) goto bail;

 /* add message records to the free message queue */
 for (rover = gMsgStorage, i=0; i < kMaxMessages; i++, rover++) {

TN1071: Working with Multiprocessing Services Page: 13

 err = MPNotifyQueue(gFreeMessageQueue, (void*) rover, NULL, NULL);
 if (err != noErr) goto bail;
 }

 /* set up the upp for the install deferred task */
 MPRemoteCall(SetUpInstallUPP, NULL, kMPOwningProcessRemoteContext);

 /* done */
 return noErr;
bail:
 if (gFreeMessageQueue != 0) MPDeleteQueue(gFreeMessageQueue);
 if (gMsgStorage != NULL) MPFree(gMsgStorage);
 return err;
}

Listing 8. Setting up variables and storage for sending messages to an interrupt task using an O.S. queue.

Once the necessary structures and variables have been set up, sending a message from a preemptive task to an interrupt
task is simply a matter of obtaining a message buffer from the free message buffer queue, copying some data to it, and then
calling the InstallBufferDT deferred task to install the message in the O.S. Queue. This method will not require any
storage allocations inside of the preemptive task or inside of the interrupt-level task (where that is not possible), but it
provides a reasonably dynamic method for passing information between the two routines. Also, if all of the message buffers
are currently in the O.S. queue, the call to MPWaitOnQueue shown in listing 9 will wait until such a time as when the
interrupt task places a buffer into the free message buffer queue.

OSStatus SendMessageToInterruptTask(unsigned char *message) {
 MessageRecPtr theMessage;
 OSStatus err;

 /* get a message from the free queue */
 err = MPWaitOnQueue(gFreeMessageQueue,
 (void **) &theMessage,
 NULL, NULL, kDurationForever);
 if (err != noErr) return err;

 /* copy the data to the message record */
 MPBlockCopy(message, theMessage->messageData, kMessageSize);

 /* call the deferred task to install it */
 theMessage->eltTask.qLink = NULL;
 theMessage->eltTask.qType = dtQType;
 theMessage->eltTask.dtFlags = 0;
 theMessage->eltTask.dtAddr = gInstallMessageDT;
 theMessage->eltTask.dtParam = (long) theMessage;
 theMessage->eltTask.dtReserved = 0;
 err = DTInstall(&theMessage->eltTask);

 /* done */
 return err;
}

Listing 9. Sending a message from a preemptive task to an interrupt task using an O.S. Queue.

TN1071: Working with Multiprocessing Services Page: 14

Inside of the interrupt routine, messages can be extracted from the queue using the Dequeue routine. Once the message
has been processed, the interrupt task can call MPNotifyQueue to add the message back into the free message buffer
queue so it will be available to the preemptive task. Listing 10 illustrates one way an interrupt routine would extract
messages from the O.S. Queue and return them to the free message buffer queue once they are no longer needed.

 MessageRecPtr theMessage;
 theMessage = (MessageRecPtr) gMessageOSQueue.qHead;
 if (theMessage != NULL) {
 if (Dequeue((QElemPtr) theMessage, &gMessageOSQueue) == noErr) {

 /* perform some operations using the message... */

 /* add the message back into the free queue */
 MPNotifyQueue(gFreeMessageQueue, (void*) theMessage, NULL, NULL);
 }
 }

Listing 10. Receiving a message from a preemptive task inside of an interrupt task.

Back to top

Resource Management

Oftentimes when many preemptive tasks are engaged in a complex task, there must be a mechanism in place to ensure the
number of tasks attempting to utilize a limited number of resources does not outnumber the actual number of resources
available. For example, if we have ten tasks and two printers, and each one of those tasks must print from time to time,
then a mechanism must be in place to ensure that no more than two tasks will be using the printers at any given time.

Semaphores

Semaphores allow you to restrict access to resources in a way that ensures that only a certain number of tasks may access
a particular resource at any given time.

Critical regions

Critical regions are a special type of semaphore that allow you to restrict access to a particular resource (section of code)
to a single execution thread.

Back to top

Tips & Tricks

If there is a need to call a toolbox routine from an preemptive task, first check to see if the toolbox routine is
interrupt safe. If it is, then call it using a deferred task rather than using a remote procedure call. Deferred tasks
have a lower latency time than remote procedure calls. As a result, your code will run quicker and will not be
subject to any of the unpredictable delays associated with using remote procedure calls.

With the above tip in mind, it is worth mentioning that most of Open Transport can be called from deferred tasks.

Avoid using global variables for sharing information between tasks. Doing so can lead to bugs that are difficult to
track down. Use the routines provided by Multiprocessing services to share data between tasks.

With Multiprocessing Services 2.1 and later, it is safe to call MPSignalSemaphore and MPSetEvent at
interrupt time. It is also possible to call MPNotifyQueue at interrupt time if MPSetQueueReserve has been

TN1071: Working with Multiprocessing Services Page: 15

called to reserve sufficient space in the queue.

Event groups are the fastest way to send information between tasks. Always consider the possibility of using them
instead of queues.

Task implementation and design should assume that other tasks are running simultaneously. When there are
resources that are shared between tasks, access to them should be controlled using the resource management
facilities.

Back to top

References

Multiprocessing SDK.
Multiprocessing Services Online Documentation.

Back to top

Downloadables

Acrobat version of this Note (K). Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

