

CONTENTS

Introduction

Getting Started

The Image Description

The Offscreen

Setting up the Sequence

Decompressing a Frame

Asynchronous Decompression

Accessing the Pixels

Ending the Sequence

Setting up the Sequence - Sample function

Ending the Sequence - Sample function

References

Downloadables

This technical note discusses using
Decompression Sequences to decompress
DV frames to an RGB offscreen destination,
for the purpose of accessing each frames
pixels directly.

The same steps can be applied to any
QuickTime supported compressed image
format represented by an Image Description.
The compressed image data can be sourced
from a QuickTime Movie, the Sequence
Grabber or from an application supplied
buffer.

[Apr 11 2002]

Introduction

The overall procedure of decompression single DV frames from a buffer, to an RGB offscreen, then accessing the pixels
directly is straightforward, especially if you don't care about scheduled decompression. However, there are a couple of
different ways to go about it. You could for example, treat each frame as a single image, and use DecompressImage or
FDecompressImage to decompress the "single-frame" into a pixel map. While this is fine for a single image, it is not
the fastest way to decompress a series of images of the same format, sharing a common image description represented by
the ImageDescription structure.

A more efficient method is the use of a Decompression Sequence.

The Image Compression Manager provides a set of APIs allowing developers to decompress sequences of images sharing a
common image description. Each image in the sequence is referred to as a frame. A decompression sequence is started by
calling DecompressSequenceBeginS, and each frame in the sequence is processed by calling
DecompressSequenceFrameWhen. Upon completion, the sequence is closed with a call to CDSequenceEnd. Checking the
status of the current operation can be done by calling CDSequenceBusy. There are also a number of DSequence Parameter
APIs allowing the manipulation of the parameters controlling the decompression sequence, these include the source
rectangle, transformation matrix and accuracy to name a few.

Getting Started:

Determine where to decompress the image, build an image description describing the source data, decide how much of the
image to decompress, and build a mapping matrix for the operation. These parameters must be specified in the call to
DecompressSequenceBeginS when making a decompression request.

The destination is specified as a graphics port and the image source size is described by a rectangle, in the coordinate
system of the source image. NULL can be used to specify the entire source image. To support transformations such as
scaling to a destination of a different size, specify a matrix describing how the image is to be mapped into the destination
graphics port.

IMPORTANT:
If your code passes in a smaller (eg. quarter-size) source rectangle with the intention of drawing cropped
unscaled DV to a smaller (eg. quarter-size) destination, a DV-specific bug in QuickTime 5 will cause this
decompression request to be misinterpreted, scaling the frame to fit. The correct interpretation of this
request is to draw the top-left corner of the DV frame cropped at normal size.

This bug will be fixed in QuickTime 6. If your code was behaving as intended because of this bug, make sure to
fix your code to use a matrix in the call to DecompressSequenceBeginS, scaling the frame to fit the offscreen
gworld. This approach will work in all versions of QuickTime.

You can figure out the size of the source image by examining the image description structure associated with the image or

Decompressing DV frames and accessing the pixels

Technical Note TN2044

if you are intimately familiar with the image data you can create the image description yourself. The image description
structure contains information defining the characteristics of the compressed image or sequence. One image description
structure may be associated with one or more compressed frames. See Figure 1.

For a detailed discussion regarding the representation of uncompressed Y´CbCr video in an Image Description structure,
including Image Description Extensions refer to Ice Floe #19.

The ImageDescription:

Create an Image Description for your compressed data. See Listing 1.

struct ImageDescription {
 long idSize; // total size of ImageDescription including extra data
 // (CLUTs and other per sequence data)
 CodecType cType; // what kind of codec compressed this data
 long resvd1; // reserved for Apple use
 short resvd2; // reserved for Apple use
 short dataRefIndex; // set to zero
 short version; // which version is this data
 short revisionLevel; // what version of that codec did this
 long vendor; // whose codec compressed this data
 CodecQ temporalQuality; // what was the temporal quality factor
 CodecQ spatialQuality; // what was the spatial quality factor
 short width; // how many pixels wide is this data
 short height; // how many pixels high is this data
 Fixed hRes; // horizontal resolution
 Fixed vRes; // vertical resolution
 long dataSize; // if known, the size of data for this
 // image descriptor
 short frameCount; // number of frames this description
 // applies to
 Str31 name; // name of codec (in case not installed)
 short depth; // what depth is this data (1-32) or
 // (33-40 grayscale)
 short clutID; // clut id or if 0 clut follows
 // or -1 if no clut
};

Figure 1. Image Description structure.

// Create an Image Description describing the compressed data,
// you are responsible for disposing of the returned handle.
// Modify the Image description values to deal with any other
// compressed data formats - for example PAL (kDVCPALCodecType)
ImageDescriptionHandle MakeImageDescriptionForNTSCDV(void)
{
 ImageDescriptionHandle hImageDescription = NULL;

 hImageDescription =
 (ImageDescriptionHandle)
 NewHandleClear(sizeof(ImageDescription));

 if (NULL != hImageDescription) {
 (**hImageDescription).idSize = sizeof(ImageDescription);
 (**hImageDescription).cType = kDVCNTSCCodecType;

 // DV has no temporalQuality
 (**hImageDescription).temporalQuality = 0;
 (**hImageDescription).spatialQuality = codecNormalQuality;
 (**hImageDescription).width = 720;
 (**hImageDescription).height = 480;
 (**hImageDescription).hRes = 72 << 16;
 (**hImageDescription).vRes = 72 << 16;
 (**hImageDescription).frameCount = 1;
 (**hImageDescription).depth = 24;
 (**hImageDescription).clutID = -1;
 }

 return hImageDescription;
}

Listing 1. Create an Image Description describing the compressed data.

The Offscreen:

Use QTNewGWorld to create an offscreen to decompress into. See Figure 2. Developers should note 24-bit
(k24RGBPixelFormat) is not the best destination for the DV Codec, 32-bit (k32ARGBPixelFormat) is a more
efficient (faster) destination.

Make a 32-bit RGB offscreen. See Listing 2.

OSErr QTNewGWorld(
 GWorldPtr *offscreenGWorld, // on return, a pointer to the GWorld
 OSType PixelFormat; // the new GWorlds pixel format
 const Rect *boundsRect, // boundary and port rectangle
 CTabHandle cTable, // a ColorTable - NULL for default
 GDHandle aGDevice, // a GDevice - set to NULL
 GWorldFlags flags); // flags - set to 0 for default

Figure 2. QTNewGWorld API.

// Make a 32bit GWorld for the decompression destination -
// - 720 x 480 for DV. This function locks the pixel map
OSErr MakeGWorld(short inWidth, short inHeight,
 GWorldPtr *outDestGWorld)
{
 Rect theBounds = {0, 0};

 OSErr err = noErr;

 theBounds.right = inWidth;
 theBounds.bottom = inHeight;
 *outDestGWorld = NULL;

 err = QTNewGWorld(outDestGWorld, // return a pointer to
 // the offscreen
 k32ARGBPixelFormat, // the new GWorlds pixel
 // format
 &theBounds, // boundry and port rect
 // for the offscreen PixMap
 NULL, // handle to a ColorTable
 NULL, // handle to a GDevice
 0); // flags

 if (noErr == err)
 // call LockPixels to prevent the base address for
 // an offscreen pixel image from being moved while you
 // draw into or copy from its pixel map
 LockPixels(GetGWorldPixMap(*outDestGWorld));

 return err;
}

Listing 2. Make a 32-bit GWorld for the decompression destination.

Setting up the Sequence:

Perform the setup required to decompress an image sequence by calling the Image Compression Manager's
DecompressSequenceBeginS function. See Figure 3. While DecompressSequenceBegin can also be used, it has
been superseded by DecompressSequenceBeginS.

The DecompressSequenceBeginS call is used to initiate the sequence and specifies many of the parameters that
control the sequence-decompression operation. The Image Compression Manager allocates system resources necessary for
the operation, and returns a ImageSequence ID (seqID) uniquely identifying the sequence.

Start a decompression sequence. See Listing 3.

OSErr DecompressSequenceBeginS(
 ImageSequence *seqID, // returns a unique seqID
 ImageDescriptionHandle desc, // description of
 // compressed data
 Ptr data, // pointer to the compressed
 // data for preflight
 long dataSize, // size of the data buffer.
 CGrafPtr port, // the destination port
 GDHandle gdh, // GDevice for the destination
 const Rect *srcRect, // portion of image to
 // decompress
 MatrixRecordPtr matrix, // transformation to apply
 // during decompress
 short mode, // graphics transfer mode
 // for the operation
 RgnHandle mask, // mask applied during
 // decompression
 CodecFlags flags, // intermediate buffer
 // allocation flags
 CodecQ accuracy // desired accuracy
 // for the operation
 DecompressorComponent codec); // decompressor to use -
 // - can be special identifier

Figure 3. DecompressionSequenceBeginS API.

// Signal the beginning of the process of decompressing a
// sequence of frames Using codecHighQuality for the CodecQ
// parameter tells the decompressor to render at the highest
// image quality that can be achieved with reasonable
// performance. Using a lower CodecQ setting may be useful
// is speed is the priority.
OSErr MakeDecompressionSequence(
 ImageDescriptionHandle inImageDescription,
 GWorldPtr inDestGWorld, ImageSequence *outSeqID)
{
 Rect theSrcBounds = {0, 0};
 Rect theDestBounds;
 MatrixRecord rMatrix;

 *outSeqID = 0;

 if (NULL == inImageDescription) return paramErr;

 // *** IMPORTANT NOTE DV SOURCE ONLY ***
 // If your code passes in a smaller (eg. quarter-size) source
 // rectangle with the intention of drawing cropped unscaled DV to a
 // smaller (eg. quarter-size) destination, a DV-specific bug in
 // QuickTime 5 will cause this decompression request to be
 // misinterpreted, scaling the frame to fit. The correct
 // interpretationof this request is to draw the top-left corner
 // of the DV frame cropped at normal size. This bug will be
 // fixed in QuickTime 6. If your code was behaving as intended
 // because of this bug, make sure to fix your code to use a
 // matrix in the call to DecompressSequenceBeginS, scaling the
 // frame to fit the offscreen gworld. This approach will work
 // in all versions of QuickTime.
 // *************************************

 // create a transformation matrix to scale from the source bounds
 // to the destination bounds. Using NULL for the source rectangle
 // in the call to DecompressSequenceBeginS indicates we want to
 // decompress the entire source image
 GetPortBounds(inDestGWorld, &theDestBounds);
 theSrcBounds.right = (*inImageDescription)->width;
 theSrcBounds.bottom = (*inImageDescription)->height;

 RectMatrix(&rMatrix, &theSrcBounds, &theDestBounds);

 return DecompressSequenceBeginS(
 outSeqID, // pointer to field to receive
 // unique ID for sequence
 inImageDescription, // handle to image description
 // structure
 NULL, // pointer to compressed image
 // data (used

 // for preflight)
 0, // image data size
 inDestGWorld, // port for the DESTINATION image
 NULL, // grahics device handle, if
 // port is set, set
 // this to NULL
 NULL, // source rectangle defining
 // the portion of the image
 // to decompress - NULL for
 // the entire source image
 &rMatrix, // transformation matrix
 srcCopy, // transfer mode specifier
 (RgnHandle)NULL, // clipping region in dest.
 // coordinate system to use as
 // a mask
 0, // flags
 codecHighQuality, // accuracy in decompression
 anyCodec); // compressor identifier or
 // special identifiers
 // ie. bestSpeedCodec
}

Listing 3. Signal the beginning of the process of decompressing a sequence of frames.

Use the GWorldPtr returned from QTNewGWorld as the destination port parameter. Using codecHighQuality for
the CodecQ parameter tells the the decompressor to render at the highest image quality that can be achieved with
reasonable performance. Using a lower CodecQ setting may be useful is speed is the priority.

Decompressing a Frame:

Once the sequence has started, each frame in the sequence is queued up for decompression by calling
DecompressSequenceFrameS or DecompressSequenceFrameWhen. See Figure 4. The unique ImageSequence
ID returned from DecompressSequenceBeginS is passed in as the first parameter.

OSErr DecompressSequenceFrameWhen(
 ImageSequence seqID, // unique segID
 Ptr data, // pointer to
 // compressed data
 long dataSize, // size of the data
 // buffer
 CodecFlags inFlags, // control flags
 CodecFlags *outFlags, // status flags
 ICMCompletionProcRecordPtr asyncCompletionProc, // async completion
 // proc record
 const ICMFrameTimeRecord *frameTime); // frame time
 // information

Figure 4. DecompressSequenceFrameWhen API.

The Image Compression Manager manages the decompression operation, calls the appropriate codec component to do the
work and the frame is decompressed to the location specified in the DecompressSequenceBeginS call.

Decompress a frame. See Listing 4.

// A simple wrapper around DecompressSequenceFrameWhen
// Ignores in and out flags, no completion proc or
// frameTime specified - decompression operation will
// happen immediately
OSErr DecompressFrameNow(ImageSequence inSequenceID,
 Ptr inBuffer, long inBufferSize)
{
 return DecompressSequenceFrameWhen(inSequenceID,
 inBuffer, inBufferSize, 0, NULL, NULL, NULL);
}

Listing 4a . Simple wrapper around DecompressSequenceFrameWhen.

// You could use a structure like this to keep track of per
// frame information
typedef struct {
 ImageSequence seqID; // decompression
 // sequence ID
 Ptr pSrcBuffer; // pointer to
 // compressed data
 long bufSize; // compressed image
 // data size
 ICMCompletionProcRecordPtr
 pCompletionProc; // pointer to a
 // ICMCompletionProcRecord
 Boolean isDestDone; // is the ICM done
 // with the dest?
 OSErr rc; // return code
} FrameRecord, *FrameRecordPtr, **FrameRecordHdl;

// Another way to wrap DecompressSequenceFrameWhen
// FrameRecordPtr assumes some type of data structure
// associated with your application which keeps track
// of per frame information
OSErr DecompressFrame(FrameRecordPtr inFrame)
{
 if (inFrame->pCompletionProc) {
 // if we set up a completion proc, store the frame
 // so it can be pulled out when we get called
 inFrame->pCompletionProc->completionRefCon = (long)inFrame;
 }

 return DecompressSequenceFrameWhen(inFrame->seqID,
 inFrame->pSrcBuffer, inFrame->bufSize,
 0, NULL, inFrame->pCompletionProc, NULL);
}

Listing 4b. Another wrapper around DecompressSequenceFrameWhen.

Asynchronous Decompression:

Decompression can be performed asynchronously by specifying a completion function along with a RefCon in a
ICMCompletionProcRecord. See Figure 5a. In this case, make sure not to read the decompressed image until the
decompressor indicates that the operation is complete by calling your completion function with the
codecCompletionDest flag set. See Listing 5.

The completion function may be called multiple times and must be interrupt safe. Passing in NULL for the
asyncCompletionProc specifies synchronous decompression.

Additionally, DecompressSequenceFrameWhen allows you to schedule decompression by passing in a pointer to a
ICMFrameTimeRecord. See Figure 5b. This structure contains parameters specifying the frame's time information,
including the time at which the frame should be decompressed, its duration, and the playback rate. When implementing
scheduled decompression make sure to also implement the ICMCompletionProc discussed above. This parameter can
be NULL, in which case the decompression operation will happen immediately.

// Specifies an image compression completion callback
struct ICMCompletionProcRecord {
 ICMCompletionUPP completionProc; // UPP accessing your
 // ICMCompletionProc
 long completionRefCon; // refcon for use by
 // the callback
};
typedef struct ICMCompletionProcRecord
 ICMCompletionProcRecord;
typedef ICMCompletionProcRecord *
 ICMCompletionProcRecordPtr;

// Called by a compressor component upon completion
// of an asynchronous operation
typedef void (*ICMCompletionProcPtr) (OSErr result,
 short flags, long refcon);
void MyICMCompletionProc(
 OSErr result // result of current operation
 short flags // flags indicating which part
 // of the operation is complete
 long refcon); // refcon specified in the
 // ICMCompletionProcRecord

Figure 5a. ICMCompletionProcRecord and ICMCompletionProc

// Contains a frame's time information for scheduled
// asynchronous decompression operations.
struct ICMFrameTimeRecord {
 wide value; // time the frame is to be displayed
 long scale; // units for the frame's display time
 void * base; // the time base
 long duration; // duration the frame is displayed
 // must be in the same units as
 // specified by the scale field.
 // 0 if duration is unknown
 Fixed rate; // the time base's effective rate
 long recordSize; // size of this structure
 long frameNumber; // 0 if the frame number is not known
 long flags; // flags
 wide virtualStartTime; // conceptual start time
 long virtualDuration; // conceptual duration
};

Figure 5b. ICMFrameTimeRecord

// Sample ICM decompression completion procedure
// This procedure simply checks the status of the codecCompletionDest
// flag which indicates that the Image Compression Manager is done
// with the destination buffer FrameRecordPtr assumes some type of
// data structure associated with your application which keeps
// track of per frame information
// Note: This function may be called multiple times and must be
// interrupt safe
static pascal void DecompressionDone(OSErr inResult,
 short inFlags, long inRefCon)
{
 FrameRecordPtr theFrame = (FrameRecordPtr)inRefCon;

 if (noErr == inResult) {
 if (codecCompletionDest & inFlags) {

 // the ICM is done with the destination
 theFrame->isDestDone = true;

 ...
 }
 }

 theFrame->rc = inResult;
}

Listing 5. Sample ICM Decompression Completion Procedure

Accessing the Pixels:

To access the pixels directly, use GetGWorldPixMap to obtain the PixMapHandle from your destination GWorld, then
call GetPixBaseAddr which returns a pointer to the beginning of a pixel image.

GetPixRowBytes or QTGetPixMapHandleRowBytes can be used to retrieve the rowBytes value (the distance, in
bytes, from the beginning of one row of the image data to the beginning of the next row of the image data) for a pixel map
accessed by a handle, while QTGetPixMapPtrRowBytes will do the same for a pixel map accessed by a pointer. See
Figure 6.

Remember to always call LockPixels to prevent the base address for an offscreen pixel image from being moved while
you draw into or copy from its pixel map.

// You could use a structure like this for convenience
// to cast the 32bit pixel map as an array of pixels.
typedef struct {
 UInt8 alpha; // alpha component
 UInt8 red; // red component
 UInt8 green; // green component
 UInt8 blue; // blue component
} ARGBPixelRecord, *ARGBPixelPtr, **ARGBPixelHdl;

PixMapHandle hPixMap = GetGWorldPixMap(myDestGWorld);
long theRowBytes = QTGetPixMapHandleRowBytes(hPixMap);
Ptr pPixels = GetPixBaseAddr(hPixMap);

Figure 6. Accessing Pixels directly

Sequence setup function. See Listing 6.

Ending the Sequence:

After the entire sequence is decompressed, end the process by calling the CDSequenceEnd. Pass in the unique image
sequence ID. See Figure 7.

Sequence end function. See Listing 7.

OSErr CDSequenceEnd(ImageSequence seqID);

Figure 7. CDSequenceEnd API

// Sample function demonstrating how one might go about setting up a
// decompression sequence
// Long winded assignments are used for the purpose of this sample
// MyAppObjectPtr assumes some type of data structure associated with
// your application which keeps track of all the important bits
OSErr SetupDecompressionSequenceForDV(MyAppObjectPtr inAppObject)
{
 ImageDescriptionHandle hImageDescription = NULL;
 GWorldPtr theGWorld = NULL;
 ImageSequence theSequenceID = 0;
 PixMapHandle hPixMap = NULL;
 long theRowBytes = 0;
 Ptr pPixels = NULL;

 OSErr err = noErr;

 hImageDescription = MakeImageDescriptionForDV();
 err = MemError();

 if (hImageDescription) {
 // the GWorld does not have to be the exact same size as
 // the compressed image
 err = MakeGWorld(&theGWorld,
 (*desc)->width, (*desc)->height);
 if (err) goto bail;

 err = MakeDecompressionSequence(hImageDescription,
 theGWorld, &theSequenceID);
 if (err) goto bail;

 // get the BaseAddress and RowBytes for the pixels
 hPixMap = GetGWorldPixMap(theGWorld);
 pPixels = GetPixBaseAddr(hPixMap);
 theRowBytes = QTGetPixMapHandleRowBytes(hPixMap);

 // this is what we need
 inAppObject->dSeqID = theSequenceID;
 inAppObject->pGWorld = theGWorld;
 inAppObject->pPixels = pPixels;
 inAppObject->rowBytes = theRowBytes;
 }

bail:
 if (hImageDescription)
 DisposeHandle((Handle)hImageDescription);

 return err;
}

Listing 6. Sample function demonstrating setting up a decompression sequence.

// Sample function demonstrating how one might go about ending
// a decompression sequence MyAppObjectPtr assumes some type of
// data structure associated with your application which keeps
// track of all the important bits
OSErr EndDecompressionSequenceForDV(MyAppObjectPtr inAppObject)
{
 OSErr err = noErr;

 // end the decompression sequence
 if (0 != inAppObject->dSeqID) {
 err = CDSequenceEnd(inAppObject->dSeqID);
 inAppObject->dSeqID = 0;
 }

 // dispose of the GWorld
 if (NULL != inAppObject->pGWorld)
 DisposeGWorld(inAppObject->pGWorld);

 inAppObject->pGWorld = NULL;
 inAppObject->pPixels = NULL;
 inAppObject->rowBytes = 0;

 return err;
}

Listing 7. Sample function demonstrating ending a decompression sequence.

Back to top

References:

QTNewGWorld

ImageDescription Structure

ImageDescription

Working with Image Descriptions

DecompressSequenceBeginS

DecompressSequenceFrameWhen

ICMCompletionProcRecord

ICMCompletionProc

ICMFrameTimeRecord

Working with Sequences

Image Compression Manager

Decompressing Sequences

Changing Sequence-Decompression Parameters

Back to top

Downloadables

Acrobat version of this Note (76K). Download

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

