
CONTENTS

Overview

Availability

Mapped File Forks

Mapped File Views

Process Ownership of File Mappings

File Mappings and System Shutdown

Memory Page Size

File Mapping APIs

Implementation Notes for Mac OS 9.1

Downloadables

This Technical Note discusses the new file
mapping APIs introduced in Mac OS 9.1.
These APIs allow applications to take
advantage of the virtual memory system to
supplement the virtual memory address
space available for their use. Using these
new APIs, not only is it possible for an
application to create and use its own private
blocks of virtual memory, but it is also
possible for an application to specify the data
files that will be used by the virtual memory
system as the backing store for the virtual
memory it allocates.

All developers interested in taking advantage
of the virtual memory system for
supplementing the addressable memory
available to their application or implementing
memory mapped access to large collections
of data stored on disk will want to read this
Technical Note.

[Jan 25 2001]

Overview

File mapping allows an application to take advantage of the virtual memory system and supplement the memory space
allocated for it with additional pageable memory. This mechanism works by implementing a direct one to one mapping
between the range of file mapped memory addresses allocated for the application and the contents of a file on disk. Once a
file mapped address range has been allocated for an application, the application can use that range of memory addresses as
if it were any other block of memory.

Terminology used in this document makes a
distinction between the contents of the file on disk
and the virtual contents of the file in memory. A
file that has been opened for use with these APIs is
referred to as a mapped file, and the particular
fork that is being used for file mapping is referred
to as the mapped file fork. The address range in
memory allocated by the virtual memory system
for your application's use is referred to as the
mapped file view.

There is a one to one correspondence between the
addresses within the mapped file view and offsets
into the section of the mapped file fork used for
file mapping purposes. Specifically, the lowest
address in the mapped file view will correspond to
the lowest offset into the mapped file fork and the
highest address in the mapped file view will
correspond to the highest offset into the mapped
file fork.

An application is free to use as many file mappings
as it requires. As well, file mappings can be
allocated and deallocated on the fly during
particular processing operations. For example,
say a particular function in an application
required access to a very large lookup table during
execution, but that function wasn't called very
often. In this case, the table could be stored in a

file rather than in memory and the function could open a read-only memory mapped view to the file and then access
elements in stored in the table in the file as if it were accessing a elements in an array stored in memory.

Availability

The gestaltFileMappingAttr Gestalt selector can be used to determine if the file mapping APIs are available.
Your application can use this selector to test for the availability of the file mapping APIs as follows:

 /* FileMappingAvailable returns true if the file mapping APIs
 discussed in this document are available for your application
 to use. */
Boolean FileMappingAvailable(void) {
 long response;
 if (Gestalt(gestaltFileMappingAttr, &response) != noErr)
 response = 0;
 return ((response & (1<<gestaltFileMappingPresent)) != 0);

}

The file mapping APIs are exported from InterfaceLib.

Back to top

Mapped File Forks

A file must be opened using OpenMappedFile before a mapped file view can be created. OpenMappedFile lets you to
specify the file to be opened, the fork to be opened, and the MappingPrivileges to be used when opening the file fork.
OpenMappedFile returns a BackingFileID that is used to identify the mapped file fork. OpenMappedFile fails if
the file fork cannot be opened with the MappingPrivileges requested.

While the mapped file fork is open, all other access paths to the file fork are denied regardless of the
MappingPrivileges requested. Mapped file forks cannot be accessed by way of the File Manager while the mapped file
fork is open. Likewise, file forks opened by the File Manager cannot be opened as mapped file forks.

Two variants of OpenMappedFile, FSpOpenMappedFile and OpenMappedScratchFile, are provided.
FSpOpenMappedFile allows applications to specify the file fork to be opened using a FSSpec instead of a FSRef.
OpenMappedScratchFile attempts to create and open a scratch file for use as a mapped file fork on a specified
volume. The data for a scratch file is only valid in an open mapped file view. When a mapped file view is created for a
scratch file, data on disk is not paged into memory. When a mapped file view for a scratch file is unmapped, changes are
not written from memory to disk.

A program can obtain information about an open mapped file fork using GetMappedFileInformation. A program can
obtain a list of open mapped file forks using GetNextMappedFile. A program can change the size of an open mapped file
fork using SetMappedFileSize.

When a program is finished using a mapped file fork, it must close the mapped file fork using CloseMappedFile. All
mapped file views using the BackingFileID must be closed before closing the mapped file fork. CloseMappedFile
deletes the scratch file after it is closed if the BackingFileID is for a scratch file.

Back to top

Mapped File Views

To access the data in a mapped file fork, a program must create a mapped file view by using MapFileView.
MapFileView lets you to specify the mapped file fork, the offset into the mapped file fork where the mapped file view
should start, the length of the mapped file view, the memory access level (FileViewAccess), the size of a excluded
range of bytes (a guard zone) to place adjacent to each end of the mapped file view, the optional characteristics of the
mapped file view (FileViewOptions), and the requested base address of the mapped file view. MapFileView returns
the base address of the mapped file view, the length of the mapped file view, and a FileViewID that identifies the mapped
file view.

A program can obtain the valid bits allowed in the FileViewAccess and FileViewOptions passed to MapFileView
using GetFileViewAccessOptions. A program can obtain information about a mapped file view using
GetFileViewInformation. A program can obtain the FileViewID for a specific address using
GetFileViewFromAddress. A program can obtain a list of mapped file views using GetNextView. A program can
change memory access level of a mapped file view using SetFileViewAccess. A program can change the backing base of
a mapped file view using SetFileViewBackingBase.

When a program is finished using a mapped file view, it must close the mapped file view using UnmapFileView. Any
modified memory in a mapped file view is written to the mapped file fork when the mapped file view is un-mapped unless
the mapped file fork is a scratch file created with OpenMappedScratchFile.

Back to top

Process Ownership of File Mappings

When a mapped file fork is opened, the current process becomes the owning process for that mapped file fork and all of its
mapped file views. The owning process is the only process that can change or un-map the mapped file views it owns, and
change or close the mapped file forks it owns. When the owning process terminates, all mapped file views created by that
process are unmapped, and all mapped file forks opened by a process are closed.

Process ownership may be overridden by specifying kNoProcessMappedFile in the MappingPrivileges when a
mapped file fork is opened. Mapped file forks opened with the kNoProcessMappedFile privilege are not owned by any
process.

IMPORTANT:
Programs using kNoProcessMappedFile must un-map mapped file views and close mapped file forks
when they are no longer needed. Failing to do so is a programming error and will cause the system to run out
of logical address space.

Back to top

File Mappings and System Shutdown

All mapped file views are unmapped and all mapped file forks are closed at the sdOnUnmount stage of the system
shutdown process. This means that the only safe time to use code or data stored in file mapped files opened with the File
Mapping programming interfaces is at or before the sdOnDrivers stage of the system shutdown process.

Back to top

Memory Page Size

The page size used by the file mapping APIs is the same as the page size used by the Virtual Memory Manager. This page
size can be determined by using the gestaltLogicalPageSize Gestalt selector.

Back to top

File Mapping APIs

This section presents the new file mapping APIs together with comments describing their usage.

Back to top

BackingFileID

A BackingFileID is used to access a mapped file fork.

typedef struct OpaqueBackingFileID *BackingFileID;

Back to top

MappingPrivileges

A set of flags that describe what operations can be performed on a mapped file fork.

typedef OptionBits MappingPrivileges;
enum {
 kInvalidMappedPrivileges = 0x00000000,
 kCanReadMappedFile = 0x00000001, /* mapped file fork
 has read access */
 kCanWriteMappedFile = 0x00000002, /* mapped file fork
 has write access */
 kNoProcessMappedFile = (long)0x80000000, /* mapped file fork
 and views are not
 tracked by process */
 kValidMappingPrivilegesMask =
 kCanReadMappedFile
 + kCanWriteMappedFile
 + kNoProcessMappedFile
};

kCanReadMappedFile - Allow the file fork to be mapped such that the memory can be read (this is required).

kCanWriteMappedFile - Allow the file fork to be mapped such that the memory can be written. If not set, then
the memory can be mapped read-only.

kNoProcessMappedFile - The mapped file fork and its mapped file views are not tracked by process ID.

Back to top

MappedFileAttributes

A set of flags returned by GetMappedFileInformation that describe the attributes of a mapped file fork.

typedef OptionBits MappedFileAttributes;
enum {
 kIsMappedScratchFile = 0x00000001 /* mapped file fork
 is scratch file */
};

kIsMappedScratchFile - Set when the mapped file fork is a scratch file created with

OpenMappedScratchFile.

Back to top

kMappedFileInformationVersion1

The version number of the MappedFileInformation struct.

enum {
 kMappedFileInformationVersion1 = 1 /* version 1 of
 MappedFileInformation */
};

Back to top

MappedFileInformation

Receives the information supplied by GetMappedFileInformation. The current version of this struct is
kMappedFileInformationVersion1.

struct MappedFileInformation {
 ProcessSerialNumber owningProcess; /* owning process */
 FSRef *ref; /* pointer to FSRef or NULL */
 HFSUniStr255 *forkName; /* pointer to HFSUniStr255 or NULL */
 MappingPrivileges privileges; /* mapping privileges */
 UInt64 currentSize; /* size in bytes */
 MappedFileAttributes attributes; /* attributes */
};
typedef struct MappedFileInformation MappedFileInformation;

owningProcess - The ProcessSerialNumber of the process that owns this mapped file fork.

ref - A pointer to a FSRef where the FSRef of the mapped file fork is returned, or NULL if the FSRef is not
needed.

forkName - A pointer to a HFSUniStr255 where the fork name of the mapped file fork is returned, or NULL if
the fork name is not needed.

privileges - The MappingPrivileges of the mapped file fork.

currentSize - The size, in bytes, of the mapped file fork.

attributes - The MappedFileAttributes of the mapped file fork.

IMPORTANT:
An application must set both the ref and forkName fields of MappedFileInformation structure before
calling GetMappedFileInformation.

Back to top

FileViewAccess

Values of type FileViewAccess represent allowable access to the memory in a mapped file view.

typedef OptionBits FileViewAccess;

enum {
 /* defined bit numbers */
 kFileViewAccessReadBit = 0, /* Reads allowed */

 kFileViewAccessWriteBit = 1, /* Writes allowed */

 kFileViewAccessExecuteBit = 2, /* Instruction execution
 permitted */

 /* masks */
 kFileViewAccessReadMask = /* Reads allowed */
 1L << kFileViewAccessReadBit,

 kFileViewAccessWriteMask = /* Writes allowed */
 1L << kFileViewAccessWriteBit,

 kFileViewAccessExecuteMask = /* Instruction execution permitted */
 1L << kFileViewAccessExecuteBit,
};

enum {
 /* special masks */
 kFileViewAccessExcluded = 0, /* All access is prohibited */

 kFileViewAccessReadOnly =
 kFileViewAccessReadMask
 | kFileViewAccessExecuteMask,

 kFileViewAccessReadWrite =
 kFileViewAccessReadMask
 | kFileViewAccessWriteMask
 | kFileViewAccessExecuteMask
};

Only three bits of FileViewAccess have been defined for use at the current time. All remaining bits are reserved by
Apple for future use. For convenience, most a number of masks have been provided that can be used in conjunction with the
binary-or operator (|) to produce desired FileViewAccess value. These masks are defined as follows:

kFileViewAccessReadMask - Memory in mapped file view can be read from.

kFileViewAccessWriteMask - Memory in mapped file view can be written to.

kFileViewAccessExecuteMask - Instruction execution from mapped file view is permitted (currently
unsupported).

kFileViewAccessExcluded - Absolutely no access is permitted. If any access occurs, then an exception will be
generated (currently unsupported).

kFileViewAccessReadOnly - Only read operations are permitted.

kFileViewAccessReadWrite - All types of access are permitted, including reading, writing, and instruction
execution.

Note:
All memory maintained by the Mac OS 9.1 Virtual Memory Manager is executable. As discussed in the
Implementation Notes for Mac OS 9.1 section, the only values defined for variables of type

FileViewAccess are kFileViewAccessReadOnly or kFileViewAccessReadWrite. Any other
FileViewAccess values used with the routines defined in this document will result in a paramErr.

Back to top

FileViewOptions

Values of type FileViewOptions specify desired characteristics of the mapped file view being created. At this time,
only kNilOptions is supported.

typedef OptionBits FileViewOptions;

Possible values that are defined for FileViewOptions include:

kNilOptions - no options.

Back to top

kMapEntireFork

Pass kMapEntireFork to MapFileView as the backingLength parameter to file map the entire contents of a file.

enum {
 kMapEntireFork = (-1)
};

Back to top

FileViewID

A FileViewID is used to access a mapped file view.

typedef struct OpaqueFileViewID* FileViewID;

Back to top

kFileViewInformationVersion1

The version number of the FileViewInformation struct.

enum {
 kFileViewInformationVersion1 = 1
 /* version 1 of MappedFileInformation */
};

Back to top

FileViewInformation

Receives the information supplied by GetFileViewInformation. The current version of this struct is
kFileViewInformationVersion1.

struct FileViewInformation {
 ProcessSerialNumber owningProcess; /* owning process */
 LogicalAddress viewBase; /* starting address of mapped file view */
 ByteCount viewLength; /* length of the mapped file view */
 BackingFileID backingFile; /* the mapped file fork */
 UInt64 backingBase; /* offset into mapped file fork */
 FileViewAccess access; /* the FileViewAccess */
 ByteCount guardLength; /* size of the guard ranges */
 FileViewOptions options; /* the FileViewOptions */
};
typedef struct FileViewInformation FileViewInformation;

owningProcess - The ProcessSerialNumber of the process that owns this mapped file view.

viewBase - The starting address of mapped file view.

viewLength - The length of the mapped file view.

backingFile - The BackingFileID of the mapped file fork.

backingBase - The offset into mapped file fork.

access - The FileViewAccess.

guardLength - The size of the guard ranges.

options - The FileViewOptions.

Back to top

OpenMappedFile

Opens a file fork with the privileges requested for use as backing storage.

OSErr OpenMappedFile(
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName, /* can be NULL */
 MappingPrivileges privileges,
 BackingFileID *backingFile);

ref - The file to map.

forkNameLength - The fork name length in Unicode characters.

forkName - The fork name in Unicode (NULL = data fork).

privileges - The requested MappingPrivileges.

backingFile - Receives a BackingFileID which you can use to access the mapped file fork.

result - An operating system result code: noErr, paramErr, vmMappingPrivilegesErr, or various File
Manager and Memory Manager errors.

The OpenMappedFile function opens the fork specified by the forkNameLength and forkName parameters of the
file specified by the ref parameter and returns a BackingFileID in the backingFile parameter. You can pass the
BackingFileID to other routines which accept a BackingFileID as an input parameter.

Note:
Additional information about the Mac OS 9.1 implementation of OpenMappedFile can be found in
Implementation Notes for Mac OS 9.1 section at the end of this document.

The privileges parameter specifies what operations you want to perform on the mapped file fork. Programs can request
either kCanReadMappedFile privileges, or both kCanReadMappedFile and kCanWriteMappedFile privileges.
To disable Process Manager tracking of the mapped file fork and its mapped file views, you may also request
kNoProcessMappedFile privileges.

Back to top

FSpOpenMappedFile

Opens a file fork with the privileges requested for use as backing storage.

OSErr FSpOpenMappedFile(
 const FSSpec *spec,
 Boolean mapResFork,
 MappingPrivileges privileges,
 BackingFileID *backingFile);

spec - The file to map.

mapResFork - Fork to map: false = data fork; true = resource fork.

privileges - The requested MappingPrivileges.

backingFile - Receives a BackingFileID which you can use to access the mapped file fork.

result - An operating system result code: noErr, paramErr, vmMappingPrivilegesErr, or various File
Manager and Memory Manager errors.

The FSpOpenMappedFile function opens the fork specified by the mapResFork parameter of the file specified by the
spec parameter and returns a BackingFileID in the backingFile parameter. You can pass the BackingFileID
to other routines which accept a BackingFileID as an input parameter.

Note:
Additional information about the Mac OS 9.1 implementation of FSpOpenMappedFile can be found in
Implementation Notes for Mac OS 9.1 section at the end of this document.

The privileges parameter specifies what operations you want to perform on the mapped file fork. Programs can
request either kCanReadMappedFile privileges, or both kCanReadMappedFile and kCanWriteMappedFile
privileges. To disable Process Manager tracking of the mapped file fork and its mapped file views, you may also request
kNoProcessMappedFile privileges.

Back to top

OpenMappedScratchFile

Creates and opens a scratch file with the privileges requested for use as backing storage.

OSErr OpenMappedScratchFile(
 FSVolumeRefNum volume,
 ByteCount fileSize,
 MappingPrivileges privileges,
 BackingFileID *backingFile);

volume - The volume where scratch file should be created or kFSInvalidVolumeRefNum to let the system
choose the volume.

fileSize - The size of the scratch file.

privileges - The requested MappingPrivileges.

backingFile - Receives a BackingFileID which you can use to access the mapped file fork.

result - An operating system result code: noErr, paramErr, vmMappingPrivilegesErr, or various File
Manager and Memory Manager errors.

The OpenMappedScratchFile function creates a file with the size specified by the fileSize parameter on the
volume specified by the volume parameter. If kFSInvalidVolumeRefNum is passed as the volume parameter, the
system code will choose the location of the file. OpenMappedScratchFile then opens the file and returns a
BackingFileID in the backingFile parameter. You can pass the BackingFileID to other routines which accept a
BackingFileID as an input parameter.

The privileges parameter specifies what operations you want to perform on the mapped file fork. Programs can request
either kCanReadMappedFile privileges, or both kCanReadMappedFile and kCanWriteMappedFile privileges.
To disable Process Manager tracking of the mapped file fork and its mapped file views, you may also request
kNoProcessMappedFile privileges.

Note:
The contents of the backing file created by OpenMappedScratchFile is undefined and are not initialized
for your application.

The data for a scratch file is only valid in an open mapped file view. When a mapped file view is first created for a scratch
file with MapFileView, data on disk is not paged into memory. When that mapped file view is unmapped with
UnmapFileView, changes are not flushed from memory to disk.

Back to top

CloseMappedFile

Closes a mapped file fork.

OSErr CloseMappedFile(BackingFileID backingFile);

backingFile - The mapped file fork to close.

result - An operating system result code: noErr, vmInvalidBackingFileIDErr,
vmInvalidOwningProcessErr, vmBusyBackingFileErr, or various File Manager errors.

The CloseMappedFile function closes the mapped file fork specified by the backingFile parameter.

All mapped file views using the BackingFileID must be closed before closing the mapped file fork. If the
BackingFileID is for a scratch file created with OpenMappedScratchFile, the scratch file is deleted by
CloseMappedFile after it is closed.

Back to top

GetMappedFileInformation

Returns information about a mapped file fork.

OSErr GetMappedFileInformation(
 BackingFileID backingFile,
 PBVersion version,
 MappedFileInformation *mappedFileInfo);

backingFile - The mapped file fork.

version - The version of the MappedFileInformation struct passed.

mappedFileInfo - A pointer to the MappedFileInformation struct where the information about a mapped
file fork is returned.

result - An operating system result code: noErr, paramErr, vmInvalidBackingFileIDErr, or various
File Manager errors.

IMPORTANT:
An application must set both the ref and forkName fields of MappedFileInformation structure before
calling GetMappedFileInformation.

The GetMappedFileInformation function returns information about the mapped file fork specified by the
backingFile parameter. The struct version of the mappedFileInfo parameter is passed in the version parameter.
The mapped file fork information is returned in the mappedFileInfo parameter.

Back to top

GetNextMappedFile

Gets a list of mapped file forks.

OSErr GetNextMappedFile(BackingFileID *backingFile);

backingFile -
Input: The last BackingFileID returned by GetNextMappedFile, or kInvalidID to get the first mapped
file fork.
Output: If noErr, receives the BackingFileID of the next mapped file fork.

result - An operating system result code: noErr, vmInvalidBackingFileIDErr, or
vmNoMoreBackingFilesErr.

The GetNextMappedFile function returns the BackingFileID of the mapped file fork next in the list of mapped file

forks. You can enumerate through the list of mapped file forks by passing kInvalidID as the backingFile parameter
and then repetitively calling GetNextMappedFile with the last BackingFileID returned until the result code
vmNoMoreBackingFilesErr is returned.

Back to top

SetMappedFileSize

Changes the size (logical end-of-file) of a mapped file fork.

OSErr SetMappedFileSize(
 BackingFileID backingFile,
 UInt16 positionMode,
 const SInt64 *positionOffset);

backingFile - The mapped file fork to change the size of.

positionMode - The base location for the new size: fsFromStart, or fsFromLEOF.

positionOffset - Pointer to a SInt64 which contains the offset of the size from the base.

result - An operating system result code: noErr, paramErr, or various File Manager errors.

The SetMappedFileSize function sets the logical end-of-file of the mapped file fork specified by backingFile. The
new logical end-of-file is specified by the positionMode and positionOffset parameters.

Note:
Additional information about the Mac OS 9.1 implementation of SetMappedFileSize can be found in
Implementation Notes for Mac OS 9.1 section at the end of this document.

Back to top

GetFileViewAccessOptions

Returns the valid FileViewAccess and FileViewOptions bits.

OSErr GetFileViewAccessOptions(
 FileViewAccess *access,
 FileViewOptions *options);

access - Receives the valid memory access flags.

options - Receives the valid view options.

result - An operating system result code: noErr, or paramErr.

The GetFileViewAccessOptions function returns the valid FileViewAccess and FileViewOptions bits.
Programs can use it to determine what FileViewAccess and FileViewOptions are available.

Back to top

MapFileView

Creates a mapped file view into a mapped file fork.

OSErr MapFileView(
 BackingFileID backingFile,
 const UInt64 *backingBase, /* can be NULL */
 ByteCount backingLength,
 FileViewAccess access,
 ByteCount guardLength,
 FileViewOptions options,
 LogicalAddress *viewBase,
 ByteCount *viewLength,
 FileViewID *theView);

backingFile - The mapped file fork to create a mapped file view from.

backingBase - Pointer to the offset into mapped file fork. Passing a NULL pointer is the same as passing an
offset of zero.

backingLength - The number of bytes to map, or kMapEntireFork to map from backingBase to the
mapped file fork's logical end-of-file. The backingBase parameter must be a whole multiple of the logical page size
(as determined using the gestaltLogicalPageSize Gestalt selector).

access - The FileViewAccess.

guardLength - The size, in bytes, of the excluded logical address ranges to place adjacent to each end of the
mapped file view.

options - The desired characteristics of the mapped file view.

viewBase -
Input: The requested viewBase.
Output: Receives the starting address of mapped file view.

viewLength - Receives the mapped file view length.

theView - Receives a FileViewID which you can use to access the mapped file view.

result - An operating system result code: noErr, paramErr, vmInvalidBackingFileIDErr,
vmInvalidOwningProcessErr, vmFileViewAccessErr, or various File Manager and Memory Manager
errors.

The MapFileView function creates a mapped file view into the mapped file fork specified by the backingFile
parameter. MapFileView returns a FileViewID in the theView parameter. You can pass the FileViewID to other
routines which accept a FileViewID as an input parameter.

Note:
Additional information about the Mac OS 9.1 implementation of MapFileView can be found in
Implementation Notes for Mac OS 9.1 section at the end of this document.

The backingBase and backingLength parameters specify what part of the mapped file fork will be mapped to
memory. The access parameter specifies the allowable access to the memory in a mapped file view. The guardLength
parameter specifies the size, in bytes, of the excluded logical address ranges to place adjacent to each end of the mapped file
view. The options parameter specifies the desired characteristics of the mapped file view. The viewBase parameter, as
an optional input, specifies the requested viewBase.

The backingBase parameter must be a whole multiple of the logical page size. If kMapEntireFork is passed as
backingLength, accesses past the mapped file fork's logical end-of-file will not cause exceptions, but will have
undefined behavior. Only accesses up to viewLength should be considered valid.

The starting address of the mapped file view is returned in the viewBase parameter. The length of the mapped file view
is returned in the viewLength parameter.

Back to top

UnmapFileView

Un-maps a mapped file view.

OSErr UnmapFileView(FileViewID theView);

theView - The mapped file view to un-map.

result - An operating system result code: noErr, vmInvalidFileViewIDErr,
vmInvalidOwningProcessErr, or various File Manager and Memory Manager errors.

The UnmapFileView function un-maps a mapped file view specified by the theView parameter from memory.

All modified memory is flushed to the mapped file fork before the mapped file view is unmapped unless the mapped file
view is to a scratch file.

Back to top

GetFileViewInformation

Returns information about a mapped file view.

OSErr GetFileViewInformation(
 FileViewID theView,
 PBVersion version,
 FileViewInformation *fileViewInfo);

theView - The mapped file view.

version - The version of the FileViewInformation struct passed.

fileViewInfo - A pointer to the FileViewInformation struct where the information about a mapped file
view is returned.

result - An operating system result code: noErr, paramErr, or vmInvalidFileViewIDErr.

The GetFileViewInformation function returns information about the mapped file view specified by the theView
parameter. The struct version of the fileViewInfo parameter is passed in the version parameter. The mapped file
view information is returned in the fileViewInfo parameter.

Back to top

GetFileViewFromAddress

Returns the FileViewID for a given address.

OSErr GetFileViewFromAddress(
 LogicalAddress address,
 FileViewID *theView);

address - The memory address.

theView - Receives a FileViewID for the given memory address.

result - An operating system result code: noErr, paramErr, or vmAddressNotInFileViewErr.

The GetFileViewFromAddress function returns the FileViewID for address specified in the address parameter.

Back to top

GetNextView

Gets a list of mapped file views.

OSErr GetNextFileView(FileViewID *theView);

theView -
Input: The last FileViewID returned by GetNextView, or kInvalidID to get the first mapped file view.
Output: If noErr, receives the FileViewID of the next mapped file view.

result - An operating system result code: noErr, paramErr, vmInvalidFileViewIDErr, or
vmNoMoreFileViewsErr.

The GetNextView function returns the FileViewID of the mapped file view next in the list of mapped file views. You
can enumerate through the list of mapped file views by passing kInvalidID as the theView parameter and then
repetitively calling GetNextView with the last FileViewID returned until the result code
vmNoMoreFileViewsErr is returned.

Back to top

SetFileViewAccess

Changes a mapped file view's FileViewAccess.

OSErr SetFileViewAccess(
 FileViewID theView,
 FileViewAccess access);

theView - The mapped file view.

accessLevel - The new FileViewAccess.

result - An operating system result code: noErr, paramErr, vmInvalidFileViewIDErr, or
vmFileViewAccessErr.

The SetFileViewAccess function changes the FileViewAccess of the mapped file view specified by the theView
parameter. The new FileViewAccess is specified by the accessLevel parameter.

Note:
Additional information about the Mac OS 9.1 implementation of SetFileViewAccess can be found in
Implementation Notes for Mac OS 9.1 section at the end of this document.

Back to top

SetFileViewBackingBase

Changes the backing base of a mapped file view.

OSErr SetFileViewBackingBase(
 FileViewID theView,
 const UInt64 *newBackingBase); /* can be NULL */

theView - The mapped file view.

newBackingBase - Pointer to the offset into mapped file fork. Passing a NULL pointer is the same as passing an
offset of zero.

result - An operating system result code: noErr, vmInvalidFileViewIDErr, or paramErr.

The SetFileViewBackingBase function changes the backing base of the mapped file view specified by theView. The
new backing base is specified by the newBackingBase parameter.

Note:
Additional information about the Mac OS 9.1 implementation of SetFileViewBackingBase can be found
in Implementation Notes for Mac OS 9.1 section at the end of this document.

Back to top

Implementation Notes for Mac OS 9.1

Mac OS 9.1 is the first implementation of the File Mapping APIs, and as such there are some limitations in the values that
may be provided as parameters to some of its routines. This section outlines these limitations.

Address Space Limitations

The Mac OS 9.1 Virtual Memory Manager provides a single address space of 1023 megabytes. Part of that address space is
used for main memory and pageable system data. The remainder of that address space is available for file mapping (both
CFM file mappings and mapped file views created with MapFileView). Thus, the size and number of mapped file views is
limited.

OpenMappedFile

Only the data fork can be opened for use as backing storage. paramErr is returned if you try to map a fork other
than the data fork.

The backing storage file is opened, but OpenMappedFile does not obtain exclusive access to that file. Instead,
MapFileView obtains exclusive access to the backing storage file when the file is mapped to memory.

FSpOpenMappedFile

Only the data fork can be opened for use as backing storage. paramErr is returned if you try to map a fork other
than the data fork.

The backing storage file is opened, but FSpOpenMappedFile does not obtain exclusive access to that file.
Instead, MapFileView obtains exclusive access to the backing storage file when the file is mapped to memory.

SetMappedFileSize

SetMappedFileSize is not implemented and always returns paramErr.

MapFileView

The entire file fork must be mapped (creating a mapped file view smaller than the entire file is not implemented).
Thus:

The backingBase parameter must be 0. paramErr is returned if backingBase is not 0.

The backingLength parameter must be kMapEntireFork. paramErr is returned if
backingLength is not kMapEntireFork.

The guardLength parameter is ignored in the 9.1 implementation.

The viewBase parameter is only used as an output variable in the 9.1 implementation - any value
provided in the variable pointed to by this parameter when MapFileView will be ignored.

The FileViewAccess parameter must be either kFileViewAccessReadOnly or
kFileViewAccessReadWrite. paramErr is returned if anything else is passed.

FileViewOptions must be kNilOptions (as reflected by GetFileViewAccessOptions). paramErr is
returned if anything else is passed.

The viewBase parameter as an input is currently ignored.

MapFileView will fail with opWrErr or permErr if exclusive access to the backing storage file cannot be
obtained.

SetFileViewAccess

The FileViewAccess parameter must be either kFileViewAccessReadOnly or
kFileViewAccessReadWrite. paramErr is returned if anything else is passed.

SetFileViewBackingBase

SetFileViewBackingBase is not implemented and always returns paramErr.

Back to top

Downloadables

Acrobat version of this Note (360K). Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

