Technical Note TN1041

Inside Macintosh: Files Errata

CONTENTS

Chapter 1 - Introduction toFile Management

FSpExchangeFi les and PBExchangeFi les - What is exchanged
Additional Considerations for GetV Info

Chapter 2 - FileManager

Pathname rules are not fullyexplained

Missing Row in Table 2-10

Description of default directoryupon launch wrong

Master Directory Blocks drXTEISize and drCTFISi ze field descriptions are wrong

Map records in map nodes occupy 492bytes (not 494 bytes)

Volume cache control bit in VCbAErb

Volume Control Blocks VCbXTAIBksS and vcbCTA I BKS field descriptions are wrong

dODrvSiz fields not used on 3.5"floppy disks

Clarification of 10F IAttrib bits inParamBlockRec, HParamBlockRec, and CInfoPBRec
i0ACUser is filler2 in some interface files

The VolMountInfoHeader datastructure includes flags word

i0oPosMode usage by PBRead and PBWr i te requests

Additional Considerations for GetVInfo

Parameter blocks have unnecessary ioComp letion field

Additional Special Considerationsfor PBHGetV Info

FSpGetFInfo does not work withdirectories

FSpSetFInfo does not work withdirectories
ESpExchangeFi les and PBExchangeFi les - What is exchanged

HOpenDF, PBHOpenDFE and the paramErr result code

Parameter blocks missing i OFVersNum field

Parameter blocks missing 10M i Scfield

PBGetCatlnfoioFDirlndex usage rules

Parameter blocks missing i ONamePtr field
ioForeignPriviDirlDisLongIntinPBGetForeignPrivs andPBSetForeignPrivs
Request execution order

Volume Parameter Variant offsetsare off by 2

Detecting if a volume isformatted Macintosh File System (MFES), Hierarchical FileSystem (HFS), or HFS Plus

PBXGetVol Info
PBGetXCatlnfo

Chapter 3 - Standard FilePackage

Activation Procedures Need to call TECal Text
Default Standard File currentdirectory
Listing 3-15 does not set SFScript field

Chapter 4 - AliasManager

ResolveAl ias updates minimalaliases
usrCanceledErr should beuserCanceledErr
KARMSearchMore and memory availableto Al iasFi I terProc warning

Chapter 5 - Disk InitializationManager

Extended Disklnitialization Package

Extended Disklnitialization User Interface
Extended Low-LevelDisk Initialization Routines
DIXFormat

DIXZero

DIReformat

Formatting HFS and HFS PlusVolumes

FurtherReferences

Downloadables

This Technote discusses known errors and omissions inInside Macintosh: Files.

Updated: [Feb 1 1999]

Chapter 1 - Introduction to File Management
FSpExchangeFi les and PBExchangeFiles - What is exchanged

Page 1-53, FSpExchangeFiles

See the discussion of this topic in the corrections for Chapter 2.

Additional Considerations for GetVInfo

Page 1-56, GetVInfo

See the discussion of this topic in the corrections for Chapter 2.

Back to top

Chapter 2 - File Manager

Pathname rules are not fully explained
Pages 2-27 through 2-28, Names and Pathnames
The following characteristics of Macintosh pathnames should be noted:

« A full pathname never begins with a colon, but must contain at least one colon.

« A partial pathname always begins with a colon separator except in the case where the file partial pathname is a simple
file or directory name.

« Single trailing separator colons in full or partial pathnames are ignored except in the case of full pathnames to
volumes.

« In full pathnames to volumes, the trailing separator colon is required.

« Consecutive separator colons can be used to ascend a level from a directory to its parent directory. Two consecutive
separator colons will ascend one level, three consecutive separator colons will ascend two levels, and so on. Ascending
can only occur from a directory; not a file.

To summarize, if the first character of a pathname is a colon, or if the pathname contains no colons, it must be a partial
pathname; otherwise, it is a full pathname.

Missing Row in Table 2-10
Page 2-35, Creating File System Specification Records

Add the following row to Table 2-10:

Working directory reference ||Directory |[Empty string or |[The target object is the directory specified by the
number ID NIL directory ID indirlD

Description of default directory upon launch wrong
Page 2-36, Manipulating the Default Volume and Directory
Replace the last sentence in the first paragraph with the following:

"When an application starts up, its default directory is set to the directory in which the application resides. Thereafter, the
application can designate any directory as its default directory."

Master Directory Blocks drXTFISize and drCTFISize field descriptions are wrong
Page 2-62, Master Directory Blocks

Change the field descriptions to:

|erTF|SiZG||The size (in bytes) of the extents overflow fiIe.|

|drCTF|SiZG||The size (in bytes) of the catalog file. |

Map records in map nodes occupy 492 bytes (not 494 bytes)

Page 2-69, Map Nodes

Replace the second and third paragraphs in the Map Nodes section with the following:

"A map node consists of a node descriptor and a single map record. The map record is a continuation of the map record
contained in the header node and occupies 492 bytes (512 bytes in the node, less 14 bytes for the node descriptor, 2 bytes
for each of the two record offsets at the end of the node, and rounded down to a multiple of a longword). (Note: The HFS file

system's B*-tree manager reads the bitmap information a longword at a time.) A map node can therefore contain mapping
information for an additional 3936 nodes.

If a B*-tree contains more than 5984 nodes (that is, 2048 + 3936, enough for around 25,000 files), the File Manager
uses a second map node, the node number of which is stored in the ndFLink field of the node descriptor of the first map node.
If more map nodes are required, each additional map node is similarly linked to the previous one."

Volume cache control bit in vcbAtrb

Page 2-79, Volume Control Blocks

Add the following bit definition to VCbAtrb for System 7.5 or later:

|Meaning

Set if the volume’s blocks should not be cached (System 7.5 and later only). This allows access to RAM disk volumes
10 ||to bypass the File Manager cache. It has the same affect as setting the noCache bit (bit 5 of i0PosMode) for all

File Manager reads and writes to the volume. Non-block aligned requests may still be accessed through the cache.

When a HFS volume is mounted with System 7.5 or later, the File Manager calls the disk driver with a "Return Drive Info"
_Control call (csCode=23). Then if there are no errors, it looks at the low-byte (bits 0-7) of cSParam to see if the

drive type is ramDiskType (16, $10) or romDiskType (17, $11) and if so, sets the vcbAtDontCache bit in the
VCB's VChATrb field. This allows access to RAM or ROM disk volumes to bypass the File Manager cache. It has the same
affect as setting the noCache bit (bit 5 of 10PosMode) for all File Manager reads and writes to the volume. Non-block
aligned requests may still be accessed through the cache.

Driver Note: Drivers should not directly modify the vcbAtDontCache bit in VCbATrb. If the driver is for a RAM or
ROM disk, it should support _Control csCode 23 and say that it is a RAM or ROM disk by returning ramDiskType
(16, $10) or romDiskType (17, $11) in the low-byte of csSParam. Other disk drivers should not set the
vcbAtDontCache bit because any future improvements made to the File Manager cache will be lost on those drives.

Volume Control Blocks VCbXTAIBks and vcbCTAIBKs field descriptions are wrong

Page 2-81, Volume Control Blocks

Change the field descriptions to:

|VCbXTA|BkS”The size (in allocation blocks) of the extents overflow file.|

|VCbCTA|BkS”The size (in allocation blocks) of the catalog file. |

dQDrvSiz fields not used on 3.5 floppy disks

Page 2-85, The Drive Queue

Note:
If the volume is a 3 1/2-inch floppy disk owned by the .Sony driver, the dQDrvSiz and

dQDrvSiz2 fields are not valid. To get the size of a 3 1/2-inch floppy disk owned by the .Sony
driver, first try the Return Format List (cSCode= 6) Status call and if Return Format List fails
with a sStatuskErr (-18), use DriveStatus and check the twoSideFmt field of the DrvSts
record to determine if the disk has 800 blocks (twoSideFmt = 0) or 1600 blocks
(twoSideFmt = -1). See the Technical Note "DV 17 - Sony Driver : What Your Sony Drives For
You" for more information concerning the Return Format List Status call.

Clarification of 1OFIAttrib bits in ParamBlockRec, HParamBlockRec, and CInfoPBRec

Page 2-90, Basic File Manager Parameter Block, field descriptions for the fi leParam variant.
Page 2-96, HFS Parameter Block, field descriptions for the i leParam variant.
Page 2-102, Catalog Information Parameter Blocks, field descriptions common to both variants.

For files, the bits in 1OFIATttrib have the following meanings:

|B_it“Meaning

EHSet if file is locked. Can be changed with the PBHSetFLock or PBHRstFLock functions.
|Reserved.

|Set if resource fork is open.

|Set if data fork is open.

|Set if directory. (Always clear for files.)

| Reserved.

Set if AppleShare server "copy-protects” the file. Set by the AppleShare foreign file system code when the server
sets the CopyProtect bit returned by afpGetFileDirParms.

|Set if file (either fork) is open. |

For directories, the bits in 10FIATEtrib have the following meanings:

|Meaning |

E| Set if the directory is locked. Can be changed with the PBHSetFLock or PBHRstFLock functions when volume is

shared.

|Reserved.

|Set if the directory is within a shared area of the directory hierarchy.

|Set if the directory is a share point that is mounted by some user.

|Set if directory. (Always set for directories.)

|Set if the directory is a share point. Can be set or cleared by PBShare and PBUnshare.

E’ | Reserved.
| Reserved.

i0ACUser is filler2 in some interface files

Page 2-100 and 2-103, Catalog Information Parameter Blocks
Page 2-191, PBGetCatlInfo

Note:
The 10ACUser field is at offset 31 ($1F) in the CInfoPBRec parameter block. In most versions

of the Files interfaces (Files.h, Files.p, etc.), the field at offset 31 is Fi l ler2. This problem is
fixed in newer versions of the Files interfaces.

The VolMountInfoHeader data structure includes flags word

Page 2-110, Volume Mounting Information Records

The VoIMountInfoHeader data structure has been extended to include a flags word. The data structure is now defined as:

struct VolMountlnfoHeader

{
short length; /* length of location data (including self) */
VolumeType media; /* type of media */
short flags; /* high-byte reserved for Apple, */
/* low-byte reserved for file system
specific use */
/* Variable length data follows */
};

In the flags word, bits 14 and 15 have been defined. All other bits in the high-byte of the flags word should be left clear.
Bits in the low-byte of the flags word are file- system specific. For example, the AppleShare foreign file system uses bit O
to determine if server greeting messages should be shown or suppressed.

Bit 15 in the flags word tells the file system that accepts a Vo lumeMount request if user interaction can be performed. If
Bit 15 is set, the file system must not perform user interaction. If Bit 15 is clear, the file system may perform user
interaction through the mechanism supplied by the File System Manager (FSM).

Bit 14 in the flags word allows a file system to indicate to the caller of VolumeMount that although the Vo lumeMount
request was successful, the Vo IMountInfo record passed needs to be updated. Programs should ensure bit 14 of the flags
word is clear before calling VolumeMount and if bit 14 is returned set, the VoIMountInfo record should be updated by
calling PBGetVolIMountiInfoSize and PBGetVolMountinfo. If VolumeMount is unsuccessful, bit 14 in the flags
word should be ignored.

Observant readers will note that the Alias Manager needs to use bits 14 and 15 in the flags word to interact with file
systems when responding to a MatchAl ias function call.

ioPosMode usage by PBRead and PBWrite requests

Page 2-121, PBRead
Page 2-122, PBWrite

The PBRead and PBWr i te functions give programs much more control over read and write operations than the high-level
FSRead and FSWr i te functions because PBRead and PBWr i te allow access to the ioPosMode field.

Bits 0 and 1 of ioPosMode indicate where to start reading or writing data in the file. The values allowed in 10PosMode to
set bits 0 and 1 are:

|constant ||va|ue||description |
|fSAtMark ”o ” i0PosOffset is ignored. Operation starts at current mark.|
|stromStart||1 ” i0PosOfTset is an offset from the beginning of file. |
|fSFr0mLEOF ”2 ” i0PosOffset is an offset from the logical end-of-file. |
|stromMark ”3 ” 10PosOffset is an offset from the current mark. |

Bits 4 and 5 of 10PosMode are cache usage hints passed on to the file system that handles requests to the volume the file is
on. Bit 4 is a request that the data be cached (i.e., please cache this). Bit 5 is a request that the data not be cached (i.e.,
please do not cache this). Bits 4 and 5 are mutually exclusive - only one should be set at a time. However, if neither is set,
then the program has indicated that it doesn't care if the data is cached or not. The values allowed in 10PosMode to set bits
4 and 5 are:

|constant ||va|ue||description |

|(no constant) ||O ||I don't care if this request is cached or not cached.l

|p|easeCaCheMaSk”16 ”Please, cache this request if possible. |

|nOCaCheMaSk ”32 ”Please, I'd rather you didn't cache this request. |

Note:
A particular file system may choose to ignore one or both of the cache usage hint bits. File systems
may cache when you set the noCache bit, may not cache when you set the pleaseCache bit, may

cache everything, or may cache nothing. However, if a program leaves both bits clear, then file
systems which do respect these bits have no way of knowing if the data being read or written will be
needed again by your program.

Bit 6 (rdVerify) of ioPosMode is a request that reads (not writes) come directly from the source of the data and be
verified against the data in memory. So, if a file system gets a read request with rdVer i fy set, it should flush any cache it

might have of that data and ask its data source (in the case of local volumes, that would be the disk driver) for the data
again. If the data source is a disk driver, then the file system should pass the rdVer iy request on to the disk driver and

the disk driver should do the same thing --flush any cache it has of that data (including any cache on the disk hardware)
and ask its source (the disk hardware) for the data again. The idea behind rdVerify is that a program could write data to a

volume, then ask the file system to compare the data from the disk volume to the data in the write buffer. The Finder uses
this technique when copying files only when copying files to floppy disks.

WARNING:
There's a bug in current version of the HFS file system that affects rdVer 1 Ty requests. Instead of

just comparing the data from a disk to the data in memory, the HFS file system actually reads any full
512-byte blocks in the request from the source device into the buffer overwriting the original data
instead of comparing it. In most cases, this is exactly the same data that was just written to the
device, but if any data corruption occurs because of media or hardware failures, your original write
data buffer could be corrupted. Your code can work around this problem by first making a copy of the
write data buffer, then performing the rdVer i Ty operation against the copy instead of the original

data buffer, and finally comparing the copy and original data buffers to ensure the data written is the
same as the data just read.

Bit 7 of 10PosMode is a request for newL ine mode. If bit 7 is set, then the high-byte of 10PosMode is the newL ine
character - even if that character is null ($00). When bit 7 is set, the read should stop when any one of these conditions is
met:

« 10ReqCount bytes have been read.

« End-of-file is reached.
« The newLine character has been read. If the newL ine character is found, it will be the last character put into

ioBuffer and 10ActCount will include it.

When using newL i ne mode, the HFS file system reads the file one block (512-bytes) at a time into a file system cache
block (not the user buffer pointed to by 10Buffer) and then copies the data into the user buffer one byte at a time looking
at each byte for the newL ine character. Since a file read with newL ine mode is read one block at a time, newL ine mode
is about the slowest way you can read a file.

Additional Considerations for GetVinfo
Page 2-137, GetVInfo

The drvNum parameter, which specifies the volume, can be a drive number, volume reference number, O (the default
volume), or a working directory number. The volName parameter must point to a Str27 buffer or must be set to NIL.
The FreeBytes parameter will not be accurate on volumes with over 2 GB of free space.

Parameter blocks have unnecessary 1oCompletion field

Page 2-142, PBOffLine

Page 2-219, PBGetVolMountInfoSize
Page 2-220, PBGetVolMountinfo
Page 2-223, PBVolumeMount

The parameter blocks for these routines unnecessarily list the 10Completion field as an input field. These routines can
only be executed synchronously, so the ioCompletion field is always ignored.

Additional Special Considerations for PBHGetVInfo
Page 2-145, PBHGetVInfo

Add these "Special Considerations':

If the value of 10Vol Index is negative, the File Manager uses 10ONamePtr and ioVRefNum in the standard way to
determine the volume. However, because PBHGetV Info returns the volume name in the buffer whose address you passed
in 1oNamePtr, your input pathname will be modified. If you don't want your input pathname modified, make a copy of it
and pass the copy to PBHGetV Info.

The volume name returned by PBHGetVInTo is not a full pathname to the volume because it does not contain a colon.

For compatibility with older programs, some values returned by PBHGetV Info are not what is stored in the volume's
Volume Control Block (VCB). Specifically:

« 10VNmAIBIks and 10VFIrBIK are pinned to values which when multiplied by 10VAIBIKSiz always are less than 2
Gigabytes.
« 10VNmAIBIks may not include the allocation blocks used by the catalog and extents overflow files.
« $4244 s returned in i0VSigWord for both HFS and HFS Plus volumes.
For unpinned total and free byte counts, and for the real 10VSigWord, use PBXGetVolinfo instead of PBHGetV Info.
FSpGetFInfo does not work with directories
Page 2-160, FSpGetFInfo
You can use the FSpGetF Info function to obtain the Finder information about a file, but not a directory.
FSpSetFInfo does not work with directories
Page 2-160, FSpSetFInfo
You can use the FSpSetF Info function to set the Finder information about a file, but not a directory.

FSpExchangeFi les and PBExchangeFiles - What is exchanged

Page 2-165, FSpExchangeFiles
Page 2-206, PBExchangeFiles

The FSpExchangeFi les function swaps the data in two files by changing the information in the volume's catalog and, if
either of the files are open, in the file control blocks. Specifically, the following changes are made:

The following fields in the two files' volume catalog entries are exchanged (as seen by PBGetCatInfo):

| ioFIStBIk ”The first allocation block of the data fork

[ioFILgLen |[The logical end-of-file of the data fork |
[1oFIPyLen |[The physical end-offile of the data fork |

| iOFlRStB"(”The first allocation block of the resource fork|

|iOF|RLgLen”The logical end-of-file of the resource fork |

|iOF|RPyLen”The physical end-of-file of the resource fork|

| ioFIMdDat ”The date and time of the last modification |

Both the data and resource forks of the two files are exchanged.

The following fields in any open file control blocks to the two files are exchanged:

|beF|Num”The file ID number |

|beDi rlD”The file's parent directory ID|

|beCName||The file's name |

Note:
Your application will have to swap any open reference numbers to the two files because the file's
name and parent directory ID are exchanged in the file control blocks.

Because other programs may have access paths open to one or both of the files exchanged, your application should have
exclusive read/write access permission (FSRdWrPerm) to both files before calling FSpExchangeFi les. Exclusive

read/write access to both files will ensure that FSpExchangeFi les doesn't affect another application because it
prevents other applications from obtaining write access to one or both of the files exchanged.

Note:
FSpExchangeFi les does not respect the file-locked attribute; it will perform the exchange even

if one or both of the files are locked. Obtaining exclusive read/write access to both files before calling
FSpExchangeFi les ensures that the files are unlocked because locked files cannot be opened with

write access.

HOpenDF, PBHOpenDF and the paramErr result code

Page 2-169, HOpenDF
Page 2-169, PBHOpenDF

If the HOpenDF or PBHOpenDF function fail with a paramErr result code (indicating that the HOpenDF or PBHOpenDF
function is not available), you should retry your request passing the same parameters to HOpen or PBHOpen. For
example:

error = HOpenDF(vRefNum, dirlD, fileName, permission, &refNum);
it (error == paramErr)

/* HOpenDF not supported, so try HOpen */
error = HOpen(vRefNum, dirlD, fileName, permission, &refNum);

}

Parameter blocks missing 10FVersNum field

Page 2-183, PBHOpenDF
Page 2-184, PBHOpenRF
Page 2-185, PBHOpen

Page 2-187, PBHCreate
Page 2-189, PBHDelete
Page 2-194, PBHGetFInfo
Page 2-196, PBHSetFInfo
Page 2-197, PBHSetFLock
Page 2-198, PBHRstFLock
Page 2-199, PBHRename

The parameter blocks are missing the 10FVersNum field. 10FVersNum should be initialized to zero because these calls
will fall through to the now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Parameter blocks missing ioMisc field

Page 2-183, PHHOpenDF
Page 2-184, PHHOpenRF
Page 2-185, PBHOpen

The parameter blocks are missing the 1O0Misc field. 10MiSC must be initialized to zero before calling PHHOpenDF,
PHHOpenRF, or PBHOpenN. Failure to initialize 10Mi SC to zero on some Macintosh models will cause the system to crash.

PBGetCatlInfo ioFDirlIndex usage rules
Page 2-191, PBGetCatlInfo
Change the description of PBGetCatlInfo's ioFDirIndex usage rules to:

The PBGetCatlInfo function selects a file or directory according to these rules:

« If the value of 1OFDirIndex is positive, iONamePtr is not used as an input parameter and PBGetCatInfo
returns information about the file or directory whose directory index is 10OFDir Index in the directory specified by
ioVRefNum and 1oDirID (this will be the root directory if 10VRefNum is a volume reference number or a drive
number and 10DirID is 0). If ioNamePtr is not NIL, then it must point to a Str31 buffer where the file or

directory name will be returned.
« If the value of 1OFDirIndex is 0, PBGetCatInfo returns information about the file or directory specified by

ioNamePtr in the directory specified by 10VRefNum and ioDir D (again, this will be the root directory if
i0VRefNum is a volume reference number or a drive number and 10Dir D is 0).

« If the value of 1OFDirIndex is negative, iONamePtr is not used as an input parameter and PBGetCatlInfo
returns information about the directory specified by 10VRefNum and ioDrDir 1D (again, this will be the root
directory if 10VReTNum is a volume reference number or a drive number and 10DrDir D is 0). If ioNamePtr is
not NIL, then it must point to a Str31 buffer where the directory name will be returned.

Parameter blocks missing 1oNamePtr field

Page 2-219, PBGetVolMountInfoSize
Page 2-220, PBGetVolMountinfo
Page 2-223,PBHGetLoglInlInfo

The parameter block is missing the 1o0NamePtr field. ioNamePtr and 10VReTNum are both used to specify the volume.
ioForeignPrivIDirlID is LongInt in PBGetForeignPrivs and PBSetForeignPrivs

Pages 2-233 and 2-234

The parameter blocks shows 10ForeignPrivIDirlD as aInteger when it is really a LongInt.

Request execution order

Page 2-239, new information after M\yCompletionProc

The File Manager, when the File Sharing or AppleShare file server is active, will execute requests in arbitrary order. That
means that if there is a request that depends on the completion of a previous request, it is an error for your program to
issue the second request until the completion of the first request. For example, issuing a write request and then issuing a
read request for the same data isn‘t guaranteed to read back what was written unless the read request isn't made until after
the write request completes.

Request order can also change if a call results in a disk switch dialog to bring an offline volume back online.
Volume Parameter Variant offsets are off by 2
Page 2-293, Assembly-Language Summary, Data Structures

The offsets for the Volume Parameter Variant are off by 2 starting at 10VCIpSiz because 10VAIBIKkSiz is a long, not a
word. So, the offset for 10VCIpSiz should be 52, the offset for 10AIBISt should be 56, etc.

Detecting if a volume is formatted Macintosh File System (MFS), Hierarchical File System (HFS), or
HFS Plus

Three volume formats have been supported by the Mac OS file system: MFS, HFS, and HFS Plus. System software 7.0
through Mac OS 8.0 supported the MFS and HFS volume formats. Mac OS 8.1 and later support HFS and HFS Plus volumes.
All three volume formats use the local File System ID, zero (0). So how do you tell them apart? By the volume's signature
word returned by PBXGetVolinfo (or PBHGetVInfo if PBXGetVol Info is not available) in the 10VSigWord field.

MFS volumes have a signature of $D2D7; HFS volumes have a signature of $4244; HFS Plus volumes have a signature of

$482B.

Important:
For compatibility with some programs, PBGetV Info and PBHGetVInfo return $4244 in ioVSigWord for

both HFS and HFS Plus volumes. You should always use PBXGetVol Info if it is available.

The following code can be used to get the volume signature and file system ID:

OSErr GetVSigWord(short vRefNum, short *vSigWord, short *fsid)
{

OSErr result;
long response;
XVolumeParam pb;

pb. ioVRefNum = vRefNum;

pb.ioXVersion = O; // this XVolumeParam version (0)
pb. ioNamePtr = NULL;
pb.iovVollndex = O; // use i10oVRefNum only

// 1s PBXGetVollInfo available?
ifT ((Gestalt(gestaltFSAttr, &response) == noErr) &&

((response & (1L << gestaltFSSupports2TBVols)) != 0))

result = PBXGetVol InfoSync(&pb);

{

// Yes,
b
else

so use it

// No, fall back on PBHGetVInfo
result = PBHGetVInfoSync((HParmBIkPtr)&pb) ;

3

// return the volume®s signature word and FSID
*vSigWord = pb.ioVSigWord;
*fsid = pb.ioVFSID;

// return the File Manager®"s result

return (result);

}

PBXGetVol Info

You can use the PBXGetVol Info function to get detailed information about a volume. It can report volume size
information for volumes up to 2 terabytes.

pascal OSErr PBXGetVolInfoSync(XVolumeParamPtr paramBlock);
pascal OSErr PBXGetVolInfoAsync(XVolumeParamPtr paramBlock);

paramBlock A pointer to an extended volume parameter block.
[XVolumeParan| I I
|-> ” ioCompletion ”PI’OCPtI’ ”Pointer to a completion routine |
|<_ ” ioResult ”OSEIT ”Result code of the function |
|<-> ” ioNamePtr ||StringPtr ”Pointer to the volume's name. |
s ioVRefNum short gr};?s:ééan\émir:f specification; on output, the volume
-> ioXVersion unsigned long zszEZifB§VolumeParam
|-> ” ioVol Index ”short ”Index used for indexing through all mounted volumes. |
|<- ” ioVCrDate ”unsigned long ”Date and time of initialization. |
|<- ” ioVLsMod ”unsigned long ”Date and time of last modification. |
|<- ” ioVAtrb ”short ”Volume attributes. |
|<- ” i1oVNmFIs ”unsigned short ”Number of files in the root directory. |
|<- ” ioVBitMap ”unsigned short ”First block of the volume bitmap. |
|<- ” ioVAllocPtr ”unsigned short ”Block where the next new file starts. |
|<- ” ioVNmAIBIks ”unsigned short ”Number of allocation blocks. |
|<- ” ioVAIBIKkSiz ”unsigned long ”Size of allocation blocks. |
|<- ” ioVCIpSiz ”unsigned long ”Default clump size. |
|<- ” i0AIBISt ”unsigned short ”First block in the volume block map. |
|<- ” 10VNXECNID ”unsigned long ”Next unused catalog node ID. |
|<- ” ioVFrBIk ”unsigned short ”Number of unused allocation blocks. |
|<- ” ioVSigWord ”unsigned short ”Volume signature. |
|<- ” ioVDrvinfo ”short ”Drive number. |
|<- ” ioVDRefNum ”short ”Driver reference number. |
|<- ” ioVFSID ”short ”File system ID for the file system handling this volume. |
|<- ” ioVBkUp ”unsigned long ”Date and time of last backup. |
|<- ” 1oVSegNum ”short ”Used internally. |
|<- ” ioVWrCnt ”unsigned long ”Volume write count. |
|<- ” ioVFilCnt ”unsigned long ”Number of files on the volume. |
|<- ” ioVDirCnt ”unsigned long ”Number of directories on the volume. |
|<- ” ioVFndriInfo ”[8] long ”Used by the Finder. |

|<- ” ioVTotal BytES”UnSigI'IEdWide”Total number of bytes on the volume. |

|<- ” ioVFreeBytes ”UnSigI'IEdWide”Number of free bytes on the volume. |

The PBXGetVol Info function returns information about the specified volume. It is similar to the PBHGetVInfo

function described in Inside Macintosh: Files except that it returns additional volume space information in 64-bit integers
and does not modify the information copied from the volume's Volume Control Block (VCB). Systems that support
PBXGetVol Info will have the gestaltFSSupports2TBVols bit setin the response returned by the

gestal tFSAttr Gestalt selector.

Assembly-Language Information

The trap macro and routine selector for PBXGetVol Info are:

|Trap macro ||Se|ector|

[_HFSDispatch|[$0012 |

Result Codes

|n0Err ”O ”Successful completion, no error occurred|

|nSVErI’ ||&endash;35||No such volume |

|pal’amEl’l’”&endash;SO”No default volume |

PBGetXCatlInfo

You can use the PBGetXCatInfo function to get the short name (MS-DOS format name) and ProDOS information for files
and directories.

pascal OSErr PBGetXCatlnfoSync(XCInfoPBPtr paramBlock);
pascal OSErr PBGetXCatlnfoAsync(XCInfoPBPtr paramBlock) ;

paramBlock Contains a pointer to a XCInfoPBRec.

[XCInfoPBRec|| I I

-~ ioCompletion ProcPtr Cont.ams a pointer to PBGetXCatInfoAsync's completion
routine.

|<- ” ioResult ||OSErr ”PBGetXCatI nTo places its result code into this field. |

-~ ioNamePtr StringPtr Contg!ns a pglnter to the object n.ame, or nilwhen 10DirlID
specifies a directory that's the object.

|—> ” ioVRefNum ”short ”Contains a volume specification. |
Contains a pointer to a Pascal string buffer (minimum 13 bytes).

<> ioShortNamePtr||StringPtr||PBGetXCatl nTo places the short name into the field referred to
by this parameter. i0ShortNamePtr cannot be nil.

|<- ” 10PDType ”short ”PBGetXCatI nTo places the ProDOS file type into this field. |
|<- ” 10PDAuUxType ”Iong ”PBGetXCatI nfo places the ProDOS auxiliary type into this field. |
|-> ” ioDirlD ”Iong ”Contains a directory ID. |

PBGetXCatInfo returns the short name (MS-DOS format name) and ProDOS file/auxiliary type information for files
and directories on volumes that support this function. Volumes that support PBGetXCatlInfo will have the
bHasShortName bit set in the VMATErib field returned by PBHGetVolParms.

For more information about short names and ProDOS file/auxiliary types, see Inside AppleTalk, second edition, Chapter 13
AppleTalk Filing Protocol, and the Apple Il File Type Notes.

Assembly-Language Information

The trap macro and routine selector for PBXGetVol Info are:

|Trap macro ||Se|ector|
[_HFSDispatch|[$003A |

Result Codes

|n0Err ”O ”Successful completion, no error occurred|

|nSVErI’ ||&endash;35||No such volume |

|fnfErr ||&endash;43||FiIe not found |

|pal’amErr”&endash;SO”No default volume |

|dil’NFErr”—120 ”Directory not found |

Back to top

Chapter 3 - Standard File Package
Activation Procedures Need to call TECal Text

Pages 3-30 to 3-31, Writing an Activation Procedure
Page 3-59, MyActivateProc

Pages 3-30 to 3-31 and 3-59 discuss activation of additional user interface elements in custom standard file dialogs. The
parts of that discussion that refer to having multiple edit-text items omit mention that it is necessary for the activation
procedure to call TECal Text, setmyTEHandle”™ _crOnly to 1, and call TESetSelect to work properly, as in the

code snippet below:

IF (activating) THEN

BEGIN
{Note DialogPeek not WindowPeek used}
dlgPeek : = DialogPeek(theDialog);

{Access TEHandle shared in common by all the editText }
{ items in the dialog. This field current at activate time.}
myTEHandle: = dlgPeek”.textH;

{Must redo lineStarts on activation}
TECalText(myTEHandle) ;

{Must set crOnly on activation}

myTEHandle™ _.crOnly : = 1;

{Ensure proper setting of selection}

myTECharLength : = myTEHandle™ _.telLength;

selectionLen : = myTEHandle™ _.selEnd - myTEHandle™ _selStart
+ 1;

ITf (myTECharLength > selectionLen) THEN
TESetSelect(0,myTECharLength,myTEHandle) ;
END;

Default Standard File current directory
Page 3-31, Setting the Current Directory
Replace the two bullet points with the following three bullet points:

« If the user launched your application directly (perhaps by double-clicking its icon in the Finder), the default
directory is the directory in which your application is located.

« If the user launched your application indirectly (perhaps by double-clicking one of your application's document
icons) and your application is high-level event aware, your application is passed the list of documents to open or
print in a KAEOpenDocument or KAEPrintDocument Apple event; there is no Finder information

(AppParmHandl e will be NIL) and the default directory is the directory in which your application is located.
« If the user launched your application indirectly (perhaps by double-clicking one of your application's document

icons) and your application is not high-level event aware, your application is passed Finder information and the
default directory is the directory of the last document in listed in the Finder information. The Finder information is
the data referenced by AppParmHandle and accessed by the Segment Loader routines CountAppFiles,
GetAppFiles, ClrAppFiles, and GetAppParms.

Listing 3-15 does not set sTScript field

Page 3-33, Listing 3-15, Setting the current directory

The code listing does not set the STScript field of the StandardFi leReply record when returning the pseudo-item
stHookChangeSelection. This can cause Standard File to always set the selection to the last file in the directory.
Adding the line:

myReplyPtr~.sfScript : = smSystemScript;

before the line:

MyDIgHook : = sfHookChangeSelection;

will fix the problem.

Back to top

Chapter 4 - Alias Manager

ResolveAlias updates minimal aliases

Page 4-19

At the bottom of page 4-19, it is stated that ResolveAl ias never updates a minimal alias. This is not true.

ResolveAl ias calls MatchAl ias to resolve the alias and if MatchAl ias returns with needsUpdate set to true,
then ResollveAl ias updates the alias by calling UpdateAl ias (which makes it a full alias) and returns with
wasChanged set to true. If you require that minimal aliases stay minimal aliases, you can either call MatchAl1as
(which does not update aliases),or you can create a copy of the alias record with HandToHand, pass the copy of the alias
record to ResolveAl ias, and then dispose of the (possibly updated) copy of the alias record.

usrCanceledErr should be userCanceledErr
Page 4-20, ResolveAlias 4-23, MatchAlias

Just a typo... the title of this says it all.

kARMSearchMore and memory available to AliasFilterProc warning

Page 4-23, MatchAlias
Page 4-25, MyMatchAliasFilter

Add this warning:

WARNING:

A call to MatchAl ias using the KARMSearchMore rule will result in a recursive search using
PBGetCatlInfo if the volume being searched doesn't support PBCatSearch. Your application
should insure there is a reasonable amount of stack space available before calling MatchAlias
using the KARMSearchMore rule, and if a AliasFilterProc is used, the Al iasFi lterProc

should not use large amounts of stack space. You can eliminate most stack usage in your
AliasFilterProc by passing a structure containing any large data structures the

AliasFilterProc might need in the yourDataPtr parameter to MatchAl ias.

Back to top

Chapter 5 - Disk Initialization Manager

Extended Disk Initialization Package

An extended Disk Initialization Package is available with System Software 7.5, with Macintosh PC Exchange 2.0 or later,
and with the File System Manager. The extended Disk Initialization Package includes three functions not found in Chapter 5
of Inside Macintosh: Files.

The existing application program interface to the Disk Initialization Package as described in Inside Macintosh: Files will
continue to be supported by the enhanced Disk Initialization Package. Applications which wish to initialize only Macintosh
disks will continue to work and will require no changes. However, if an application wants to initialize non-Macintosh disks,
it must use the new extended DI XFormat and DI1XZero calls.

The Extended Disk Initialization User Interface

The Finder and the Standard File Package both handle disk-inserted events for uninitialized disks by presenting a disk
initialization dialog box asking the user whether the disk should be ejected or initialized. Your application too can easily
call a Disk Initialization Manager routine that generates such a dialog box when the user inserts an invalid disk. Figure 5-1
illustrates the dialog box:

[0 This disk is unreadable by this Computer.
H Do vou want to initialize the disk?

Mame: untitied

Format: [Mac 05 Standard 1.4 MB i]

Initialize |

Figure 5-1. The disk initialization dialog box

The disk initialization dialog box allows the user to name and specify the format of the new disk. The appearance of the disk
initialization dialog box changes to reflect changing conditions. For example, the icon changes to show which drive contains
the disk. The Format menu items change to show what disk formats can be used with the disk and disk drive combination.
Also, the text of the dialog box changes according to what is wrong with the disk. The text might read "This disk's format
cannot be read by this drive" if the Disk Initialization Manager detects that the disk drive cannot use a disk's format (for
example, if a double-sided disk is inserted in a single-sided disk drive, or a high-density disk formatted using GCR instead
of MFM is inserted in an Apple SuperDrive).

Regardless of the initial appearance of the disk initialization dialog box, it disappears if the user clicks Eject or Cancel. If,
however, the user decides to initialize the disk, the text in the dialog box changes to warn the user that initialization erases
any previous data on the disk, as illustrated in Figure 5-2.

Initializing will erase all
information on this disk.

Figure 5-2. The disk initialization warning

If the user selects continue, the Disk Initialization Manager attempts to initialize it. If an error occurs and the
initialization fails, an alert box notifies the user, and the disk is ejected.

The extended Disk Initialization Manager also provides a mechanism for using the standard interface to reinitialize
(reformat) disks that are already formatted. (This mechanism is useful, for example, when the user wants to reinitialize a
disk with a different disk format.) The Finder takes advantage of this mechanism with its Erase Disk command, illustrated
in Figure 5-3. After the user selects the erase operation from this dialog box, the reinitialization begins immediately,
without further warnings. If desired, your application can use this same standard interface to allow users to reinitialize
mounted disks (other than the startup volume). Your application can customize the text to be displayed in such a dialog box.
Note that only a few utility applications actually need to provide users with this capability.

L Completely erase disk named
“eWorld Tour” {internal drive)?

Mame: eWorld Tour

Format: [Mac 05 Standard 1.4 MB i]

Figure 5-3. The Reformat dialog box

If you are writing a utility program such as a disk-copying application, you might wish to initialize new disks or
reinitialize valid disks without displaying the standard disk initialization dialog box. For example, your application might
allow users to initialize multiple disks without having to respond to the standard dialog box each time. The Disk
Initialization Manager provides low-level routines that allow you to do so. Unless you are writing a utility program of this
type, you don't need to use these routines.

Extended Low-Level Disk Initialization Routines

Extended programmatic interfaces to media formatting and volume initialization functions are required such that
applications may specify additional information for the overall formatting operation. This information corresponds to the
file system type and disk size information presented in the "Format" menu in the disk initialization dialog box described
above. The extended programmatic interface adds three new functions to the Disk Initialization Package: D IXFormat and
DIXZero (for extended DIFormat and D1Zero), and DIReformat.

WARNING:

Applications should insure that the extended Disk Initialization Package functions are present before
making the DIXFormat, DIXZero, or DIReformat calls. This is done by calling Gestalt with

the gestal tFSATLr selector. The extended Disk Initialization Package functions is available if the
Gestal t function returns a result of NOErT and the gestal tHasExtendedDiskInitbit (bit

6) is set in the response parameter. Due to the nature of older versions of the Disk Initialization
Package, making the extended requests when they are not available may cause a system crash.

The following code illustrates how you use Gestalt to determine if the extended Disk Initialization Package functions are
available.

Boolean HasExtendedDIFunctions(void)

{

long response;

if (CGestalt(gestaltFSAttr, &response) == noErr)
return ((response & (1L << gestaltHasExtendedDisklnit)) != 0);
else

return (false);

¥
DIXFormat

The DIXFormat function performs the same function as the D IFormat function except that drive size may be specified.

pascal OSErr DIXFormat(short drvNum, Boolean fmtFlag,
unsigned long fmtArg, unsigned long *actSize);

|dl’VNum ”Contains the driver number of the drive to format. |

|fth|ag||Contains a boolean value which specifies the meaning of the FmtArg parameter. |

If fmtFlag is true, FmtArg specifies the actual value to be passed to the disk driver in the csParam field
of the parameter block when the "format” _Control call is made to initialize the disk media. (The value is

an index into the size list. For an explanation of appropriate values for this parameter, see the Technical Note
"What Your Sony Drives For You".)

If fmtFlag is false, FmtArg specifies the desired size of the media in number of 512-byte blocks. The disk
fmtAr driver is called to get possible sizes and the values in an to attempt to match the requested size. If more than

one size list entry exists for the same size, the first entry in the list returned by the driver that best
matches the fmtArg parameter will be used. For more information about the size list, see the Technical Note
"What Your Sony Drives For You". If the specified size is larger than the largest size in the size list returned
by the driver, then the largest size will be used and that size is returned in actSize. If the specified size is
smaller than the smallest size in the size list returned by the driver, then the smallest size will be used and
that size is returned in actSize. For a specified value that is in between and without an exact match, the
value closest to and smaller than the requested size is used.

Contains a pointer to an unsigned long. Upon completion of a successful formatting operation, D IXFormat

actSize||places the actual size of the formatted media in number of 512-byte blocks into the field referred to by this
parameter.

The formatting of file systems requiring specific media formats should be done by specifying those media formats explicitly
and not by counting on disk size alone. Foreign file systems with specific media requirements should use the driver specific
information in the size list or should make appropriate driver _Status calls for additional information when called upon
to "evaluate the size list".

As in DIFormat, DIXFormat does not unmount the volume. You have to unmount the volume before issuing this call if
necessary. If the volume has not been unmounted, then DIXFormat will return volOnLinErr error.

Result Codes

|n0Err ”O ”No error |

|voIOnLinErr ||&endash;55 ”Volume is online |

||aStDSkErr. ..Ti rStDSkErr”&endash;64...—84||Range of low-level disk errors|

DIXZero

The DIXZero function performs the same function as the D1Zero function except that the file system, format result,
volume type, volume size and extended formatting information may be specified.

pascal OSErr DIXZero(short drvNum, ConstStr255Param volName,
short fsid, short mediaStatus,
short volTypeSelector, unsigned long volSize,
void *extendedInfoPtr);

|drVNum ”Contains the driver number of the drive to initialize. |
|VO IName ”Contains a pointer to a Pascal string which specifies the name of the volume. |
fsid Contains the ID of the file system whose format should be written to the disk. The file system ID

can be obtained using the File System Manager GetFSInfTo function.

Contains a flag to indicate the status of the disk media. Its value is the result code returned from
the DIVerify function. If mediaStatus is non-zero, then the disk contains bad sectors and

needs to be spared. If the file system specified doesn't support bad block sparing, the Disk

mediaStatus o - . .)
Initialization Package will just return this value as the function result. If the file system

supports bad block sparing, then the Disk Initialization Package will gather the defect list and
pass it to the file system.

volTypeSelecto I’”Contains the volume type selector if the foreign file system supports more than one volume type.

Contains the size in 512-byte blocks of the drive specified by drvNum. This is the size returned
in the actSize field by DIXFormat--the amount of space usable by a file system on the

volSize
specified drive as it is currently formatted. If the specified size doesn't match with the current
disk format size, DIXZero will return diCIVolSizeMismatchErr.
fsParams ”Contains a pointer to the foreign file system's extended formatting information, or nil.
WARNING:

Early versions of the DIXZero code calls the Dialog Manager with a nil Dial ogPtr when the value
passed in the mediaStatus parameter is not noErr. This will almost always cause a system crash.
You must check to ensure DI XZero supports bad block sparing before passing anything except
NOErr as the mediaStatus parameter. The following function,
DIXZeroSupportsBadBlocks, shows how to make sure D1 XZero supports bad block sparing.

Boolean DIXZeroSupportsBadBlocks(void)

{
enum
{
gestaltBugFixAttrsThree = “bugx”,
gestaltDIXZeroSupportsBadBlocks = 9
}:
long response;
if (CGestalt(gestaltBugFixAttrsThree , &response) == noErr)
return ((response & (1L << gestaltDIXZeroSupportsBadBlocks))
1= 0);
else
return (false);
}

As in DIZero, DIXZero does not unmount the volume but it will, however, mount the volume if the operation is
successful. You have to unmount the volume before issuing this call if necessary. If the volume is mounted when DIZeroor
DIXZero is called, then a VOIONLINErr error will be returned.

Result Codes

|noErr ”O ”No error |
diC	VO	SiZGMi5matChErr ”24 ”Specified volume size doesn't match with formatted disk size		
i0Err		&endash;36		l/0 error
paramErr	-50 ”Drive number specified is bad			
VO	OnLinEI’I’ ”—55 ”Volume is already online			
nSDI’VEI’I’ ”-56 ”No such drive				
fi rstDskErr. ..	aStDSkErr”—84...—64 ”Range of low-level disk errors			
memFuI IErr ”-108 ”Not enough memory				
DIReformat

The DIReformat function reformats disk volume.

pascal OSErr DIReformat(short drvNum, short fsid,
ConstStr255Param volName,
ConstStr255Param msgText) ;

|dFVNum ”Contains the driver number of the drive to format. |

Contains the ID of the file system whose format should be written to the disk. The file system ID can be
fsid obtained using the File System Manager GetFS I nfo function. (Use $0000 for the Macintosh HFS volume

format.)

|VO | Name”Contains a pointer to a Pascal string which specifies the name of the volume. |

Contains a pointer to a Pascal string which specifies the explanatory text to be displayed in the disk

msgText initialization dialog box.

In the past, reformatting disk was accomplished by calling the DlBadMount function with the high word of the

evitMessage parameter set to NOErT and the explanatory text was set with the ParamText function. The
DIReformat function provides the caller the ability to provide the explanatory text, the default file system ID, and the
default name for the reformatted disk.

Note:
The volume in the drive specified by drvNum must be mounted when calling D IReformat.

Result Codes

|n0Err ”O ”No error |
[diCINoMessageTextErr |28 [msgText was not provided

|i0E|’r ||&endash;36||l/0 error |
|paramErr ”-50 ”Drive number specified is bad |
|nsDrvErr ”-56 ”No such drive |
|fi rstDskErr. .. |aStDSkErr”—84...—64 ”Range of low-level disk errors|
|memFuI IErr ”-108 ”Not enough memory |

Formatting HFS and HFS Plus Volumes

The Disk Initialization Package provides several ways a program can initialize a disk drive for use by a file system. If the
drive is not a mounted file system volume, a program can call DIBadMount and let the Disk Initialization Package provide
the user interface with the disk initialization dialog box (see The Extended Disk Initialization User Interface). If the drive
is already formatted and mounted by the file system, a program can call DIReformat and let the Disk Initialization
Package provide the user interface with the Reformat dialog box. If a program wants to initialize or reinitialize a volume's
data structures with no user interface, if can use either DIZero or DIXZero. D1Zero always formats the disk as an HFS
volume. If you want to initialize a disk as an HFS Plus volume, or initialize a disk for use by a foreign file system, you must
use DIXZero. The rest of topic describes how to initialize a disk as an HFS or HFS Plus volume using D1 XZero.

The Tsid parameter tells DIXZero which file system to use to initialize a volume. For both HFS and HFS Plus volumes,
pass $0000 (the file system ID of the local file system) as the Fsid parameter.

The vol TypeSelector parameter is used to select between different volume types supported by a single file system.
Pass 1 as the VOl TypeSelector parameter to create an HFS volume; pass 2 as the Vol TypeSelector parameter to
create an HFS Plus volume.

The extended InfoPtr parameter is a pointer to an optional structure that adjusts how the volume is formatted. When
formatting an HFS volume, this should point to a structure of type HFSDefaults; for an HFS Plus volume, this should
point to a structure of type HFSPlusDefaul ts. Passing NIL as the extended InfoPtr parameter will cause the file
system's default values to be used.

HFSDefaults

struct HFSDefaults {
char sigWord[2]; /* signature word */

long abSize; /* allocation block size in bytes */
long clpSize; /* clump size in bytes */

long nxFreeFN; /* next free file number */

long DbtClpSize; /* B-Tree clump size in bytes */
short rsrvil; /* reserved */

short rsrv2; /* reserved */

short rsrv3; /* reserved */

}:
typedef struct HFSDefaults HFSDefaults;

The HFSDefaul ts structure allows you to change several of the parameters used when formatting an HFS volume. For
each of the fields, a value of zero or an invalid value indicates that the default value should be used.

Set sigWord to the bytes $4244 (‘BD").

The abSize field sets the volume's allocation block size. This value must be a multiple of 512 bytes. The default and
minimum value is the smallest multiple of 512 bytes greater than or equal to the volume size (in bytes) divided by 65535

($FFFP).

The clpSize field sets the volume's default clump size. This value is used when allocating space to extend a file; the

allocated space is rounded up to a multiple of the clump size if sufficient free space is available. The clump size should be a
multiple of the allocation block size. The default value is 4 times the allocation block size if the allocation block size is
256K or less, or equal to the allocation block size for larger allocation blocks.

The nxFreeFN field sets the drNxXtCNID field of the MDB. It is the starting value for catalog node IDs allocated to files and
folders on that volume. This value is actually an unsigned 32-bit integer. The default and minimum value is FsUsrCNID

(16), the minimum valid catalog node ID for user files and folders.

The btCIpSize field sets both the clump size and initial space allocated to the catalog and extents B-trees. This clump size

should be a multiple of the allocation block size. The default value varies by volume size, but is typically 1/128 of the
volume size.

HFSPlusDefaults

enum {
kHFSPlusDefaultsVersion = 1

}:

struct HFSPlusDefaults {
Ulntl6é version; /* version of this structure */
Uulntlé flags; /* currently undefined; pass zero */
UInt32 blockSize; /* allocation block size in bytes */
UInt32 rsrcClumpSize; /* clump size for resource forks */
UInt32 dataClumpSize; /* clump size for data forks */
UInt32 nextFreeFilelD; /* next free file number */
UInt32 catalogClumpSize; /* clump size for catalog B-tree */
UInt32 catalogNodeSize; /* node size for catalog B-tree */
UInt32 extentsClumpSize; /* clump size for extents B-tree */
UInt32 extentsNodeSize; /* node size for extents B-tree */

UInt32 attributesClumpSize; /* clump size for attributes B-tree */
UInt32 attributesNodeSize; /* node size for attributes B-tree */
UInt32 allocationClumpSize; /* clump size for allocation bitmap
file */
}:

typedef struct HFSPlusDefaults HFSPlusDefaults;

The HFSP lusDefaul ts structure allows you to change several of the parameters used when formatting a Sequoia volume.
For each of the fields, a value of zero or an invalid value indicates that the default value should be used.

The version field indicates the version of the HFSPlusDefaul ts structure you are passing. The current version is
KHFSPlusDefaultsVersion. If the value passed is larger than that recognized by the current implementation,
paramErr will be returned. Implementations will typically support older versions of HFSPlusDefaul ts.

The flags field is currently reserved. If you pass a value other than zero, paramErr will be returned.

The blockSize field sets the volume's allocation block size. Valid values are powers of two, and at least 512. The default

value varies with the volumes size &endash; 512 bytes for volumes 256 MB or smaller, up to 4KB for volumes over 1 GB.
If the volume's device supports the GetMedialnTo control call, then the default size will be greater than or equal to the
device's block size.

Note:
Future versions of the HFS Plus file system will be performance-optimized for 4KB allocation
blocks, so the default should be used unless there's a really good reason to override it.

The rsrcClumpSize and dataClumpSi ze fields set the default values for clump sizes for resource and data forks,

respectively. The value must be a multiple of the allocation block size. For both, the default value is four times the
allocation block size.

The nextFreeFilelD field sets the first catalog node ID to be assigned to newly created files and folders. The default and
minimum value is FSUSrCNID (16), the minimum valid catalog node ID for user files and folders.

The catalogClumpSize and extentsClumpSize fields set the clump size and initially allocated space for the catalog

and extents B-trees, respectively. For both, the default value varies by volume size, but is typically 1/128 of the volume
size.

The catalogNodeSi ze and extentsNodeSi ze fields set the size of the B-tree nodes for the catalog and extents B -
trees, respectively. Valid values are powers of two, up to and including 32,768 (32 K). The minimum and default size for
catalogNodeSize is 4 KB. The minimum size for extentsNodeSize is 512; the default is 1024.

Some Sample Code

This sample shows how to use DIReformat to reinitialize a disk using the standard interface. When DIReformat is
available, this code can be used instead of the code shown in Listing 5-2 on page 5-11 of Inside Macintosh: Files.

// Reinitializing a valid disk using the standard interface
OSErr ReformatDisk(short drvNum, ConstStr255Param msgText)

OSErr result;
Str255 volName;

short vRefNum;
long freeBytes;

DlLoad();

// Get the current volume name

result = GetVInfo(drvNum, volName, &vRefNum, &freeBytes);
if (result == noErr)

// Reformat using FSID $0000 (HFS or HFS Plus)
result = DIReformat(drvNum, 0x0000, volName, msgText);

}
DlUnload();
return (result);

}

This sample shows how to use DIXZero to reinitialize a disk without using the standard interface. It uses DIXZero so that
the volume can be initialized with HFS Plus if possible.

// Reinitializing a valid disk without using the standard interface
OSErr ReinitializeDisk(short drvNum, Boolean tryHFSPlus)
{

OSErr result;

Str255 volName;

short vRefNum;

long freeBytes;

short mediaStatus;

UInt32 actSize;

DlLoad();
// Get the current volume name
result = GetVInfo(drvNum, volName, &vRefNum, &freeBytes);
if (result == noErr)
{
// Unmount the volume
result = UnmountVol (NULL, vRefNum);
if (result == noErr)
{
// Format the disk. (nhote: the actual disk size
result = DIXFormat(drvNum, false, 0, &actSize);
if (result == noErr)

{
// Verify the disk and use the result as the mediaStatus
mediaStatus = (short)DIVerify(drvNum);
// Should we try formatting HFS Plus?
if (tryHFSPlus)
// Yes, initialize using HFS Plus
// (fsid = 0; volTypeSelector = 2)
// The extendedInfoPtr is NULL so the default volume
// characteristics are used.
result = DIXZero(drvNum, volName, O0x0000, mediaStatus, 2,
actSize, NULL);
}
// If HFS Plus wasn"t requested or the attempt with HFS Plus
// failed because the disk was too small (paramErr)
if ('tryHFSPlus || (result == paramErr))
// Initialize using HFS (fsid = 0; volTypeSelector = 1)
// The extendedInfoPtr is NULL so the default volume
// characteristics are used.
result = DIXZero(drvNum, volName, O0x0000, mediaStatus, 1,
actSize, NULL);
}
}

}

}

DlUnload();

return (result);
}

DIXZero DIXZero
the volume can be initialized with HFS Plus if possible.

// Initializing an uninitialized disk without using the

// standard interface

OSErr InitializeDisk(short drvNum, ConstStr255Param volName,
Boolean tryHFSPlus)

{

OSErr result;
short mediaStatus;
UInt32 actSize;

DlLoad();

// Format the disk

result = DIXFormat(drvNum, false, 0, &actSize);

if (result == noErr)

{
// Verify the disk and use the result as the mediaStatus
mediaStatus = (short)DIVerify(drvNum);

// Should we try formatting HFS Plus?
if (tryHFSPlus)
{
// Yes, initialize using HFS Plus
// (fsid = 0; volTypeSelector = 2)
// The extendedInfoPtr is NULL so the default volume
// characteristics are used.
result = DIXZero(drvNum, volName, O0x0000, mediaStatus, 2,
actSize, NULL);
}

// If HFS Plus wasn"t requested or the attempt with HFS Plus
// failed because the disk was too small (paramErr)
if ('tryHFSPlus || (result == paramErr))
{
// Initialize using HFS (fsid = 0; volTypeSelector = 1)
// The extendedInfoPtr is NULL so the default volume
// characteristics are used.
result = DIXZero(drvNum, volName, 0Ox0000, mediaStatus, 1,
actSize, NULL);
}

}
DlUnload();
return (result);

}

Back to top

References

File Manager Reference

Guide to the File System Manager

Back to top

Downloadables

E-Ei Acrobat version of this Note (220K). Download

Back to top

Change History

Overview
o Originally written in February 1995, as Technote 1041 -- Inside Macintosh: Files Errata.
e In June 1995, this Technote was updated to document more known errors and omissions.

o In February 1996, this Technote was updated to document more known errors and omissions.

In February 1999, this Technote was reformated and updated to include additional HFS Plus information.

Specific

Chapter 1 - Introduction to File Management

FSpExchangeFi les and PBExchangeFi les-- What is exchanged, February 1995
Additional Considerations for GetVInfo, February 1995

Chapter 2 - File Manager

Pathname rules are not fully explained, February 1995

Missing Row in Table 2-10, February 1995

Description of default directory upon launch wrong, February 1996

Master Directory Blocks drXTFISize and drCTFISize field descriptions are wrong, February 1995

Map records in map nodes occupy 492 bytes (not 494 bytes), February 1995
Volume cache control bit in VCbAtrb, June 1995

Volume Control Blocks VCbXTAIBKs and vcbCTAIBKs field descriptions are wrong, dQDrvSi z fields not used on

3.5" floppy disks, June 1995
February 1996
Clarification of 10FIAttrib bits in ParamBlockRec, HParamBlockRec, and CInfoPBRec, June 1995

10ACUser is filler2 in some interface files, June 1995

The VoIMountInfoHeader data structure includes flags word, February 1995
ioPosMode usage by PBRead and PBWr i te requests, June 1995

Additional Considerations for GetVInfo, February 1995

Additional Special Considerations for PBHGetVInfo, February 1995
FSpGetFInfo does not work with directories, February 1995

FSpSetFInfo does not work with directories, February 1995

HOpenDF, PBHOpenDF and the paramErr result code, February 1995
Parameter blocks missing 10FVersNum field, February 1995

Parameter blocks missing 10MiSc field, February 1995

PBGetCatlInfo 1oFDirIndex usage rules, February 1995

Parameter blocks missing 10NamePtr field, February 1995
ioForeignPrivIDirlDis Longlntin PBGetForeignPrivs and PBSetForeignPrivs, February 1995

Request execution order, February 1995

Volume Parameter Variant offsets are off by 2, February 1995

Detecting if a volume is formatted Macintosh File System (MFS), Hierarchical File System (HFS), or HFS Plus,
February 1999

PBXGetVol Info, February 1999

PBGetXCatlInfo, February 1999

Chapter 3 - Standard File Package

Activation Procedures Need to call TECal Text, February 1995

Default Standard File current directory, February 1995
Listing 3-15 does not set STScript field, February 1995

Chapter 4 - Alias Manager

ResolveAlias updates minimal aliases, February 1995
usrCanceledErr should be userCanceledErr, February 1995
kARMSearchMore and memory available to Al iasFi lterProc warning, February 1995

Chapter 5 - Disk Initialization Manager

Extended Disk Initialization Package, February 1995

Extended Disk Initialization User Interface, February 1999
Extended Low-Level Disk Initialization Routines, February 1999
DIXFormat, February 1999

DIXZero, February 1999
DIReformat, February 1999
Formatting HFS and HFS Plus Volumes, February 1999

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As| Development Kits | Sample Code

