
CONTENTS

typeFileURL Defined

When to use typeFileURL

Creating a typeFileURL from a Navigation Services reply

Creating a file referenced by a typeFileURL

Advanced routines for using typeFileURL

Downloadables

This Technote describes the proposed
data format and discusses how

to use this data type to pass references to files
between applications in Mac OS X. This new
data type provides a convenient way to pass
references to files that have yet to be created
between applications running in Mac OS X.

typeFileURL

[Jun 07 2001]

The data type is not suitable for encoding information about files in Mac OS X. Most importantly, s cannot
encode long or Unicode file names such as those used in the Mac OS X file system. In addition, Directory ID numbers and
volume reference numbers are application specific in Mac OS X. This means that a directory ID number or volume
reference number used in one application will not have any meaning for another applications. records include
volume reference numbers, directory ID numbers, and do not contain sufficient space for long file names. As a result,

 do not provide suitable encoding for storing references to files or for passing references to files between
applications in Mac OS X.

FSSpec FSSpec

FSSpec

FSSpec

For the most part, records encoded in Apple events provide suitable remedy for the shortcomings of
records, except for one case - references to files that have yet to be created. In these cases, the proposed is
the best way to provide a such a pre-determined file reference.

Alias FSSpec
typeFileURL

Users will expect to be able to use longer file names in Mac OS X, and the new Navigation Services routines will allow
them to do this. Most importantly, for the purposes of this document, it should be noted that calls to have
been replaced with the / calling sequence that allows a user to provide a
longer, Unicode file name that is returned in a . This document discusses how this information can be packaged
up for transmission between applications and transmission within Apple event factored applications.

NavPutFile
NavCreatePutFileDialog NavDialogRun

CFString

typeFileURL Defined

In a nutshell, is a core-foundation URL encoded to a stream of bytes in UTF8 format. This is the suggested
data type to use when your application would like to create a reference to a file that has yet to be created. Furthermore,
there are a number of other good reasons to use this type; depending on your processing requirements, you may wish to use
this data type in a number of different circumstances. Here are some properties and features of the data
format:

typeFileURL

typeFileURL

 and require deterministic reference and cannot refer to files that have yet to be created.
 uses the weak "by name" style reference provided by URLs, and as such is quite capable of providing

pre-determined references to files.

typeAlias typeFSRef
typeFileURL

 provides facilities encoding of special characters in directory and file names including '/', ':', and
Unicode characters.
typeFileURL

It is the same data format as the Drag Flavor. This flavor is attached to drag references containing HFS
flavors. It is used internally by the Drag Manager as follows:

'furl'

1. In the sending application: when a HFS flavor is added to a drag item, the drag manager encodes a flavor
in the drag item referencing the same file.

'furl'

2. In the receiving application: The flavor is decoded and used to update the record's fields in the
HFS flavor before it is passed to the receiving application.

'furl' FSSpec

Here, there result is that an application can use the HFS flavors directly without worrying about stale directory ID
numbers of volume reference numbers. But, as well, an application that uses the data type may use
the encoded flavor directly, instead of using the HFS flavor.

typeFileURL
'furl'

URLs provided by Core Foundation encode mount-point information. As such, references are capable
of distinguishing between volumes with the same name.

typeFileURL

 does not encode any process-specific information such as volume reference numbers or directory ID
numbers. As such, it is valid to pass this format from process to process.
typeFileURL

 are static non persistent references. That is, if a is created that references a file and
that file is later moved, the will no longer reference that file. For this type of functionality, you
should consider using the format.

typeFileURL typeFileURL
typeFileURL

typeAlias

The routines shown in listing 1 provide a functional definition for the format. These routines can be used
to convert Apple event descriptor records containing data into Core Foundation URLs. Core Foundation URLs
themselves provide clear reference to files that can be used by applications.

typeFileURL
typeFileURL

 /* encode -> AEDesc
 FURLDescFromCFURL encodes a Core Foundation URL into a
 Apple event descriptor record and returns a pointer to
 the descriptor record. If an error occurs, NULL is
 returned. */
AEDesc * FURLDescFromCFURL(AEDesc *furlDesc, CFURLRef url) {
 CFDataRef theData;
 OSStatus err;
 AEDesc *furlResult;

 /* set up locals to a known state */
 furlResult = NULL;

 /* encode the URL to a UTF8 data string */
 theData = CFURLCreateData(nil, url, kCFStringEncodingUTF8, true);
 if (theData != NULL) {

 /* put the data into the descriptor */
 err = AECreateDesc('furl', CFDataGetBytePtr(theData),
 CFDataGetLength(theData), furlDesc);

 /* if successful, set the result */
 if (err == noErr) {
 furlResult = furlDesc;
 }
 /* release the local buffer */
 CFRelease(theData);
 }
 /* return a pointer to the furl descriptor */
 return furlResult;
}

 /* decode -> CFURL
 FURLDescToCFURL decodes an Apple event descriptor record
 containing a furl descriptor and returns a Core Foundation
 URL. If an error occurs, NULL is returned. */
CFURLRef FURLDescToCFURL(AEDesc *furlDesc) {
 Ptr dataPtr;
 Size bytecount;
 CFURLRef url;
 OSStatus err;

 /* set up locals to a known state */
 url = NULL;

 /* verify the type is correct */
 if (furlDesc->descriptorType == 'furl') {

 /* count the bytes in the descriptor */
 bytecount = AEGetDescDataSize(furlDesc);

 /* allocate a local buffer for the bytes */
 dataPtr = malloc(bytecount);
 if (dataPtr != NULL) {

 /* copy the bytes from the descriptor */
 err = AEGetDescData(furlDesc, dataPtr, bytecount);
 if (err == noErr) {

 /* create a Core Foundation URL */
 url = CFURLCreateWithBytes(nil, dataPtr, bytecount,
 kCFStringEncodingUTF8, nil);

 }
 /* deallocate the local buffer */
 free(dataPtr);
 }
 }
 /* return the new URL */
 return url;
}

Routines illustrating how to encode and decode Apple event descriptor records. These
routines provide a functional definition for this data type.
Listing 1. 'furl'

These are runtime data types used by applications for communications of file locations. As such, a definition of the binary
format for this type is not provided in this document. However, developers who are interested in discovering the exact
details of the binary encoding used for this data type should consult the Core Foundation documentation.

Back to top

When to use typeFileURL

The was specifically designed to allow reference to files that have yet to be created. As such, its primary
function is to allow file naming and reference in "Save As..." style Apple events sent between and within applications.

typeFileURL

In an application that has been factored and sends Apple events to itself for processing in response to user interface
commands, the is a necessary encoding mechanism as the traditional encoding schemes not sufficient for
encoding references to files that have yet to be created in Mac OS X.

typeFileURL

An illustration showing how the format is used to encode references to files in
Apple events. Note: in a factored application, both the sending application and the receiving application are one
and the same.

Figure 1. typeFileURL

Back to top

Creating a typeFileURL from a Navigation Services reply

Naturally, the first step in the process illustrated in Figure 1 is retrieving a Core Foundation URL from the Navigation
Services reply that references the file that should be created. In Mac OS X, the Navigation Services reply record returned
by a / sequence will contain a referring to the folder where the
new file should be created in the first record in contained in the 's

 field, and the name of the new file will contained in the referred to by the field.
Listing 2 illustrates one way this can be done.

NavCreatePutFileDialog NavDialogRun FSRef
AEDesc AEDescList NavReplyRecord

selection CFString saveFileName

 /* GetCFURLFromNavReply returns a URL referencing a file that
 is yet to be created in response to a
 NavCreatePutFileDialog/NavDialogRun sequence */
CFURLRef GetCFURLFromNavReply(const NavReplyRecord * navReply) {
 OSStatus err;
 FSRef parentFSRef;
 CFURLRef parentURLRef, fullURLRef;
 AEKeyword theAEKeyword;
 DescType typeCode;
 Size actualSize;

 /* ensure locals are in a known state */
 fullURLRef = NULL;

 /* get the FSRef referring to the parent directory */
 err = AEGetNthPtr(&navReply->selection, 1, typeFSRef,
 &theAEKeyword, &typeCode, &parentFSRef, sizeof(FSRef), &actualSize);
 if (err == noErr) {

 /* convert the FSRef into a Core Foundation URL */
 parentURLRef = CFURLCreateFromFSRef(NULL, &parentFSRef);
 if (parentURLRef != NULL) {

 /* add the file name to the end of the url */
 fullURLRef = CFURLCreateCopyAppendingPathComponent(NULL,
 parentURLRef, navReply->saveFileName, false);

 /* release the path to the parent */
 CFRelease(parentURLRef);
 }
 }
 /* return the reference to the new URL */
 return fullURLRef;
}

An example of how one could generate a Core Foundation URL from a Navigation Services reply
record returned by a / sequence.
Listing 2.

NavCreatePutFileDialog NavDialogRun

Once the file reference has been encoded as a CFURL, a routine such as (see Listing 1) can be used
to encode it into a Apple event descriptor record as an formatted descriptor. Once it has been converted into this
format, it is ready for transport in an Apple event.

FURLDescFromCFURL
'furl'

Back to top

Creating a file referenced by a typeFileURL

For decoding an Apple event descriptor record containing a your application would use a technique similar
to the one presented in the routine shown in Listing 1. This will provide a CFURL referencing the file
that is to be created, which in turn can be used to generate both a reference to the directory (where the file should be
created), and the name of the file to create. These items can then be passed to , shown in Listing
3, to perform the file creation operation. Once the file has been created, it can be referenced using a record.

typeFileURL
FURLDescToCFURL

FSCreateFileUnicode
FSRef

 /* CreateFileUsingCFURL creates the file referenced by
 the CFURL using the supplied catalog parameters. */
OSStatus CreateFileUsingCFURL(

 FSRef *newFileReference,
 CFURLRef url,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo * catalogInfo) {

 CFURLRef parentURL;
 CFStringRef fileNameRef;
 FSRef parentDirectory;
 UniCharPtr nameStringPtr;
 OSStatus err;

 /* set locals to a known state */
 err = coreFoundationUnknownErr;

 /* get the url to the parent directory */
 parentURL = CFURLCreateCopyDeletingLastPathComponent(NULL, url);
 if (parentURL != NULL) {

 /* convert the URL to a FSRef */
 if (CFURLGetFSRef(parentURL, &parentDirectory)) {

 /* get the leaf name from the URL */
 fileNameRef = CFURLCopyLastPathComponent(url);
 if (fileNameRef != NULL) {

 /* get the leaf name from the URL */
 nameStringPtr = CFStringGetCharactersPtr(fileNameRef);
 if (nameStringPtr != NULL) {

 /* create the file */
 err = FSCreateFileUnicode(
 &parentDirectory,
 CFStringGetLength(fileNameRef),
 nameStringPtr,
 whichInfo, catalogInfo,
 newFileReference, NULL);
 }
 /* release the file name */
 CFRelease(fileNameRef);
 }
 }
 /* release the parent url */
 CFRelease(parentURL);
 }
 /* return the status value */
 return err;
}

An example of how one could create a file referenced by a CFURL using the
 routine.

Listing 3.
FSCreateFileUnicode

Back to top

Advanced routines for using typeFileURL

Sample code presented in this document was chosen for illustration and was designed to present ideas. More advanced users
may wish to consult sample code listings provided in the attached download file These source files include examples showing
how to:

Implement Apple event coercion handlers for automatic conversion to/from ,
, , , typeFSS, typeFSRef, typeAlias, and

typeFileURL typeChar
typeStyledText typeUnicodeText cFile typeObjectSpecifier

Utility routines for using typeFileURL records in Apple event records.

Back to top

Downloadables

Acrobat version of this Note (72K) Download

Sample code listings (12K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

