
TN 1192: ATA Interface Modules Page: 1

CONTENTS

Introduction

Core Concepts

ATA Manager Additions

AIM Packaging

AIM Entry Points

AIM Action Function Codes

AIM Support Routines

References

Downloadables

This Technote describes how to write a
device driver for an ATA host bus controller,
known as an ATA Interface Module, or AIM.
An AIM is the ATA equivalent of the SCSI
Interface Module (SIM). It does not control a
device on the ATA bus, but implements a
standard hardware abstraction for the bus
itself.

AIMs operate at the very lowest level of the
traditional Mac OS I/O subsystem, which
makes them hard to write and hard to debug.
Only experienced Mac OS device driver
writers should consider developing an AIM.

This Note is directed at developers of ATA
host bus controller cards (typically PCI or
CardBus).

 Updated: [Dec 06 1999]

Introduction

This technote describes how to write a Mac OS device driver for ATA host bus controller hardware. Such a driver is known as an
ATA Interface Module, or AIM. In some respects it is the ATA equivalent to the more commonly known SCSI Interface Module
(SIM).

This technote is divided into two sections. This section, and the Core Concepts sections which follows it, represent the
introductory material. They describe high-level issues with writing AIMs; understanding these sections is critical to writing a
reliable AIM. The remaining sections are reference material. They describe how you can register an ATA bus with ATA Manager,
how you should package your AIM so that it is recognized by ATA Manager, what entry points ATA Manager expects you AIM to
implement, the list of function codes your AIM's action routine must support, and some support routines that ATA Manager
exports to support AIM implementation.

IMPORTANT:
AIMs are only supported by ATA Manager 4.0 and above. Development of third-party ATA buses is not
supported on older versions of ATA Manager. Device 0/1 support is not available on some early ATA
Manager 4.0 systems; however, your AIM should always support device 0/1 operations.

Before You Begin

Before you consider developing an AIM, you should be familiar with the following concepts:

TN 1192: ATA Interface Modules Page: 2

The native driver model, as described in Designing PCI Cards and Drivers for Power Macintosh Computers.
The Mac OS ATA programming interface, as described in ATA Device Software for Macintosh Computers and amended by
the ATA Device 0/1 Software Developer's Guide and DTS Technote 1098 ATA Device Software Guide Additions and
Corrections.
The ATA bus protocol; ANSI NCITS 317-1998 AT Attachment - 4 with Packet Interface Extension is a good reference.

You will also need the following:

"ATA.h" from the latest version of Universal Headers.
If that version of "ATA.h" does not include the AIM-related declarations described in this technote, you will need the
"ATAExtras.h" header file that is included with this technote. [2404935]
Similarly, if the libraries included with Universal Headers does not include ATAManager stub library, you will need
the one included here.
Information about your bus controller from your hardware vendor.

Back to top

Core Concepts

Before starting your AIM, you should be familiar with some fundamental concepts, as described in the following sections.

Theory of Operation

AIMs represent an abstraction of an ATA bus. Your AIM isolates the ATA Manager and its clients from the specific details of your
ATA bus controller hardware. For instance, an ATA bus may be part of a PC Card slot, or perhaps reside on a PCI card, or may
even be integrated as part of a system chipset. Each physical ATA controller will have specific requirements for how it is
addressed, what cycle times are supported and how they are programmed, how interrupts from the controller are routed to the
system, and so on. By bundling the hardware-specific details of the ATA controller in a plug-in software module, the ATA
Manager presents a consistent interface for drivers and applications to communicate with ATA and ATAPI devices.

All of the operations which directly touch the hardware in any manner are handled by your AIM. This includes:

describing the features of the bus controller, primarily the supported I/O modes and cycle times, and controlling those
features
preparing physical DMA transfer buffers and building DMA programs for those buffers
alignment issues
reading and writing the device's task file registers
writing ATAPI command packets
handling ATA and ATAPI transfer operations
servicing hardware interrupts
timing out failed bus transactions
resetting the bus

Current versions of ATA Manager will only dispatch a single request for a single device on the bus controlled by your AIM at any
given time. Overlapped ATA/ATAPI features are not currently supported. AIMs written to the specification in this document will
never be expected to handle concurrent requests.

In general, your AIM should be interrupt-driven. It should do as much work as it can on a request, then return to the ATA
Manager pending an interrupt from the hardware. For instance, when you receive a request to read data, you would set your
AIM's internal flags as needed, write the task file to the device, and then return to ATA Manager. When the device is ready to
transfer data, it will assert an interrupt which will call your AIM's hardware interrupt handler. Your AIM would then call
ATAFamBusEventForAIM to queue a secondary handler and return from the hardware interrupt handler. ATA Manager will
then call your AIM's MyHandleBusEvent function where you would complete the data transfer, clear your AIM's internal
flags, and call ATAFamIODone. It is important that all your cleanup be done before calling ATAFamIODone, because ATA
Manager may call you with another request during ATAFamIODone. Also, your AIM's MyHandleBusEvent function may be
called immediately when calling ATAFamBusEventForAIM. Other than these two cases, the AIM will not be called
reentrantly.

There are some limits on the controller hardware that can be supported by an AIM:

Each ATA bus must be capable of simultaneous operation, independent of any other ATA bus. If an ATA controller chip
implements two bus controllers, but they share common wiring or a DMA engine such that only one bus can be active at
a time, then only one bus may be supported under ATA Manager. ATA Manager has no synchronization mechanism
between buses.

TN 1192: ATA Interface Modules Page: 3

ATA controllers incapable of generating interrupts are not supported.
PCI ATA controllers which operate only in x86 "legacy mode" (that is, they hard-decode only the lower-address bits
and cannot be relocated in PCI space) are not supported. However, it is possible to support addressing the controller in
either memory or PCI I/O space.

Global Variables

Your AIM should allocate its per-bus global variables in a memory block (typically allocated use PoolAllocateResident)
and use ATA Manager's per-AIM refCon facility to track its globals.

The reason to use the refCon (rather than C extern and static variables, which are stored in your fragment's data
section) is that the ATA Manager has a facility to update your AIM to a newer version "on the fly." The process, described below,
involves closing the CFM connection to the older version of your AIM and replacing it with a connection to the newer version. If
you had important data in the older AIM's data section, that data is lost when the data section is disposed as part of closing the
CFM connection. In contrast, ATA Manager explicitly passes the refCon to the new version of your AIM.

Note:
An AIM is a native driver ('ndrv') and shares many of the properties of native drivers in general.
One of these properties is that your AIM is instantiated once for each instance of your ATA hardware
on the machine (technically, one per ATA node in the Name Registry). Therefore you can store
per-bus global variables in your data section, and you will automatically get one copy of these global
variables per bus.

However, you should avoid using this strategy for per-bus global variables for the reason described above.

It is acceptable to use your data section for global variables as long as you have a strategy for passing them between versions.
You could, for example, store the data primarily in you data section, push it into the AIM's refCon memory block when your
AIM is suspended, and restore it to your data section when your AIM is resumed. Or you might choose to pass data between
versions of your AIM via Name Registry properties. However, both of these techniques are significantly more convoluted than
using the AIM's refCon, hence the recommendation to just use the refCon approach.

Regardless of how you allocate your global variables, you must ensure that they are held resident in memory (in the virtual
memory sense). All of the techniques described above guarantee this.

Finally, your AIM should use PowerPC structure alignment for its global variables. This has two advantages:

1. If you do atomic operations on a global variable, PowerPC alignment ensures that the variable is aligned appropriate.
2. PowerPC alignment yields better performance for native code than 68K alignment.

AIM Update Process

As mentioned above, the ATA Manager has a process for updating your AIM to a newer version "on the fly," without shutting the
bus down. The ATA Manager accomplishes this in a 7 step process:

1. Open a CFM connection to the new AIM
2. Wait for all pending AIM requests to terminate
3. Block any new AIM requests from starting
4. Call the old AIM's suspend routine (MyAIMSuspend)
5. Call the new AIM's resume routine (MyAIMResume), passing it the refCon from the old AIM
6. Unblock the AIM to allow bus operations to continue
7. Close the CFM connection to the old AIM

There are a number of important things about this process to keep in mind.

The ATA Manager finds replacement AIMs by matching the Name Registry node name to the nameInfoStr field of the
DriverType structure of its driver description. In order for your AIM to be updated, these names much match
exactly.
In addition, the ATA Manager will only update an AIM if the version field of the DriverType structure of its driver
description is newer than the version of the existing AIM.
You must structure your per-bus globals such that they can be passed from one version of your AIM to the next. Some
suggested techniques are:

Using your AIM's refCon to store a pointer to your per-bus storage simplifies the process of passing

TN 1192: ATA Interface Modules Page: 4

this information between versions. See the previous section for more details.
Put the version number of your AIM in your per-bus storage so that the newer AIM knows which older
version it is taking over from (and can compensate for known bugs, oversights, and so on).
Include some "reserved" fields in your per-bus storage to give future versions of your AIM some room
for expansion.
You can also use Name Registry properties to pass information between versions of your AIM.

AIM resume routines are not defined to return an error code. You should design your AIM so that its resume routine
cannot fail.

AIM Synchronization Model

As long as you follow one simple rule, the ATA Manager takes care of most of the synchronization problems in writing an AIM.
The rule is:

Note:
When your AIM is called by anyone other than ATA Manager, you must synchronize with ATA Manager
by posting a bus event.

Posting a bus event (ATAFamBusEventForAIM) is a the way your AIM informs ATA Manager that its bus event handler
(MyAIMHandleBusEvent) should be called. ATA Manager queues the bus event and eventually calls the bus event handler
when it is safe to do so.

If you follow this rule, ATA Manager guarantees that it will never call your AIM on more than one thread of execution at a time.
So as long as you're executing within the context of a routine that is called by ATA Manager, you can access global variables
without worrying about synchronization issues.

An obvious example of where this is useful is for handling interrupts. As a rule, your AIM will service I/O requests as a state
machine. When ATA Manager calls your AIM to start a request (MyAIMAction), your AIM will start an asynchronous I/O
operation and then return to ATA Manager. When the asynchronous operation completes, your hardware will interrupt the
processor, and system software will execute your interrupt service routine. This interrupt service routine executes at
hardware interrupt time. If you access your global variables from it, you must worry about synchronizing that access with
lower execution levels. The solution is for your AIM to post a bus event. ATA Manager will defer calling your bus event handler
(MyAIMHandleBusEvent) until it can guarantee that it is the only thread of execution running inside your AIM. Your bus
event handler can therefore safely access global variables without worrying about synchronization.

IMPORTANT:
Your interrupt service routine must perform the following tasks as quickly as possible:

Identify the source of the interrupt.
If the interrupt is from your device, clear the source of the interrupt and post a bus event.

The bulk of the work in handling an interrupt should be done in your bus event handler.

If your AIM's hardware is hosted on a PCI bus, you must be sure to handle hardware interrupts in an expansion chassis friendly
fashion. See DTS Technote 1135 Dealing with PCI Expansion Chassis Problems for details.

Controllers which contain two ATA buses which share a single PCI interrupt must extend the interrupt source tree so that each
ATA bus has a separate interrupt node. Typically this is done in your AIM's initialization routine.

A less obvious example of the use of bus events is to handle timeouts. If your AIM implements timeouts using the system timer
service (SetInterruptTimer), the timer routine will be executed at hardware interrupt time. Your AIM can avoid
synchronization problems by posting this event as a bus event as well.

Note:
ATA Manager uses the bus event mechanism to both guarantee synchronization and to defer the
processing of bus events until interrupts are enabled (by way of a secondary interrupt). You should
not rely on ATA Manager's use of secondary interrupts. Older versions of ATA Manager implemented
this using a deferred task, and the implementation might change again in the future.

In addition to guaranteeing that only one thread of execution can be running inside your AIM at any point in time, the ATA
Manager also guarantees to dispatch only a single request to your AIM at a time. Between the point when ATA Manager dispatches
a request (by calling MyAIMAction) and the point when your AIM completes it (by calling ATAFamIODone), ATA Manager

TN 1192: ATA Interface Modules Page: 5

will not dispatch any further requests to your AIM. Instead, it will queue these requests on its internal queues. This "one
request at a time" guarantee is in recognition of the fact that the ATA bus architecture does not support parallel overlapped
requests and that, by guaranteeing this, ATA Manager simplifies your life.

Both of the synchronization guarantees described in this section are defined on a bus-by-bus basis. If your AIM is multiply
instantiated on the system, and those instances share common data, you must be careful to synchronize access to that common
data.

Finally, ATA Manager also handles enabling and disabling of user code (in the virtual memory sense) for you. Readers who are
familiar with SIMs (the equivalent to AIMs for SCSI buses) know that they are required to call EnteringSIM and
ExitingSIM whenever they enter or leave the SIM. AIM developers are not required to jump through that particular hoop
because the ATA Manager knows when non-reentrant portions of the AIM are executing (because the non-reentrant parts of the
AIM are always executed as a result of the ATA Manager calling the AIM) and so it can enable and disable user code
appropriately.

ATA I/O Modes

This section explains one of the trickier aspects of the ATA Manager's API for setting transfer modes and timings. In addition to
the discussion here, you should read the ATA Device Software for Macintosh Computers (and its errata, DTS Technote 1098 ATA
Device Software Guide Additions and Corrections) carefully to fully understand how ATA client software expects your AIM to
handle transfer modes and timings.

Prior to ATA Manager 3.0, which was the first version of the ATA Manager to support DMA transfers, transfer modes were
specified as absolute numbers. Thus, a value of 2 for a transfer mode meant PIO mode 2. Starting with ATA Manager 3.0,
transfer modes were specified as bitmaps. Thus a value of 1 meant transfer mode 0, a value of 2 meant transfer mode 1, and so
on. The ataModeType field of the ATAReqBlock determines which mode this request is in.

This is important to remember when trying to establish the correct timing mode on the ATA bus. For example, the flag bit
mATAFlagUseConfigSpeed has different meanings depending on the value of the ataModeType field. If the
ataModeType field is set to kATAModeAbsolute (pre-ATA Manager 3.0) then the flag bit mATAFlagUseConfigSpeed
indicates whether to use timing values for the mode last set with a Set Driver Configuration request, or to use timing values for
the PIO mode specified in the field ataPBIOSpeed. If the ataModeType field is set to kATAModeBitmap (ATA Manager 3.0
and above) then the flag bit mATAFlagUseConfigSpeed should always be set. If so, your AIM must use the bus mode (PIO,
singleword DMA, multiword DMA, UltraDMA) and timing values that were stored from the last Set Driver Configuration
request. If mATAFlagUseConfigSpeed is not set, your AIM should execute the request at the slowest possible transfer
speed.

AIMs versus SIMs

In many respects, AIMs are architecturally similar to SCSI Interface Modules (SIMs), the name given to host bus controller
drivers in the Mas OS SCSI architecture. The following table compares various features of AIMs and SIMs.

Feature AIM SIM

Single Thread Yes No

Single Request Yes No

Interrupt Polling Yes Yes

Enable/Disable User Code No Yes

Per-Bus Storage Maintained by ATA Manager Maintained by SCSI Manager

Per-Request Storage Single request, therefore put per-request data in
per-bus globals

Allocated by client as part of SCSI parameter
block

Update "on the fly" Yes Not provided by SCSI Manager

'ndrv' Required Possible, but not required

Back to top

ATA Manager Additions

ATA Manager 4.0 defines two new ATA Manager function codes to be used with the ataManager system call. The new functions

TN 1192: ATA Interface Modules Page: 6

are defined below. The codes are used to add and remove ATA buses, respectively.

enum {
 kATAMgrAddATABus = 0x93,
 kATAMgrRemoveATABus = 0x94
};

IMPORTANT:
If your AIM is loaded from an expansion ROM on a card, you do not need to register it manually with
ATA Manager. At startup time, ATA Manager will search the Name Registry for ATA nodes and
automatically register an ATA bus for any node with an available AIM. ATA Manager considers any
node whose "device_type" property is kATADeviceType ("ata\15\0") to be an ATA node.

For compatibility reasons, ATA Manager also recognizes nodes of type "ide\0". New AIMs should use always kATADeviceType.

Adding an ATA Bus

To add an ATA bus to ATA Manager, you must call the ataManager system call, passing in a parameter block of type
ataAddATABus.

struct ataAddATABus {
 ataPBHeader * ataPBLink;
 UInt16 ataPBQType;
 UInt8 ataPBVers;
 UInt8 ataPBReserved;
 Ptr ataPBReserved2;
 ProcPtr ataPBCallbackPtr;
 OSErr ataPBResult;
 UInt8 ataPBFunctionCode;
 UInt8 ataPBIOSpeed;
 UInt16 ataPBFlags;
 SInt16 ataPBReserved3;
 UInt32 ataPBDeviceID;
 UInt32 ataPBTimeOut;
 Ptr ataPBClientPtr1;
 Ptr ataPBClientPtr2;
 UInt16 ataPBState;
 UInt16 ataPBSemaphores;
 SInt32 ataPBReserved4;
 RegEntryIDPtr ataNameRegEntry;
 CFragConnectionID connID;
 UInt32 busID;
 UInt8 flags;
 UInt8 socketType;
 Ptr iconData;
 Ptr stringData;
};
typedef struct ataAddATABus ataAddATABus;

The fields have the following meaning:

TN 1192: ATA Interface Modules Page: 7

ataPBLink
ataPBQType
ataPBVers
ataPBReserved
ataPBReserved2
ataPBCallbackPtr
ataPBResult
ataPBFunctionCode
ataPBIOSpeed
ataPBFlags
ataPBReserved3
ataPBDeviceID
ataPBTimeOut
ataPBClientPtr1
ataPBClientPtr2
ataPBState
ataPBSemaphores
ataPBReserved4

Standard ATA Manager parameter block header. See ATA Device Software for Macintosh Computers for details. You must
initialize ataPBFunctionCode to kATAMgrAddATABus, ataPBVers to kATAPBVers2.

ataNameRegEntry
You must set this to the Name Registry node of the ATA bus which you wish to add. The ATA Manager will use Driver
Loader Library to locate your native driver (AIM) for this bus. See AIM Packaging for more information about how your
native driver must be structured.

connID
Reserved. You must set this field to zero and ignore any value returned.

busID
On successful completion of the request, the ATA Manager sets this field to the ATA bus ID of the newly created ATA bus.

flags
You must set this to the bus flags for this bus. The possible flags are defined below. The undefined flag bits are reserved;
you must set them to zero.

socketType
You must set this to the ATA socket type of the bus using one of the constants defined in "ATA.h" (currently one of
kATASocketInternal, kATASocketMB, or kATASocketPCMCIA).

iconData
You must set this to either a pointer to a black and white icon (256 bytes of data in 'ICN#' format) that represents the ATA
bus, or to nil if there is no such icon. ATA Manager makes a copy of the data, so you can dispose of it when the call
completes.

stringData
You must set this to either a pointer to a string that describes the location of the ATA bus, or to nil if you do not wish to
supply a location. The string is a C string (zero terminated) of at most 31 characters in the system script encoding; longer
strings will be truncated by ATA Manager. ATA Manager makes a copy of the data, so you can dispose of it when the call
completes.

In response to this request, the ATA Manager opens your AIM and creates the internal data structures necessary for it to track
the AIM and its attached devices. As part of processing this call, the ATA Manager calls your AIM's initialization routine
(MyAIMInit), which must probe your bus for attached devices. If your AIM's initialization routine returns an error, the ATA
Manager cleans up and completes the request with that error. If your AIM's initialization routine succeeds and indicates that
devices are attached to the bus, ATA Manager will issue kATAUpdateEvent and kATAOnlineEvent events for each device.

The possible flags for the flags field of the ataAddATABus structure are defined below.

enum {
 mATANoDMAOnBus = 0x80
};

TN 1192: ATA Interface Modules Page: 8

The meaning of these flags is:

mATANoDMAOnBus
If this flag is set, the bus the ATA Manager's kATAMgrBusInquiry function will indicate that the bus does not support
DMA, even if your AIM indicates that it does. This allows the bus expert which registers this bus to override AIM defaults
for DMA support. The actual effect of this flag is that the ATA Manager clears the ataSingleDMAModes,
ataMultiDMAModes and ataUltraDMAModes fields returned by your AIM in response to a kATAFnBusInquiry
request before returning those fields as part of the client's kATAMgrBusInquiry request.

You must issue this request at system task time.

Removing an ATA Bus

To remove an ATA bus, you must call the ataManager system call, passing in a parameter block of type ataAddATABus.

struct ataRemoveATABus {
 ataPBHeader * ataPBLink;
 UInt16 ataPBQType;
 UInt8 ataPBVers;
 UInt8 ataPBReserved;
 Ptr ataPBReserved2;
 ProcPtr ataPBCallbackPtr;
 OSErr ataPBResult;
 UInt8 ataPBFunctionCode;
 UInt8 ataPBIOSpeed;
 UInt16 ataPBFlags;
 SInt16 ataPBReserved3;
 UInt32 ataPBDeviceID;
 UInt32 ataPBTimeOut;
 Ptr ataPBClientPtr1;
 Ptr ataPBClientPtr2;
 UInt16 ataPBState;
 UInt16 ataPBSemaphores;
 SInt32 ataPBReserved4;
 UInt32 busID;
 RegEntryIDPtr ataNameRegEntry;
};
typedef struct ataRemoveATABus ataRemoveATABus;

The fields have the following meaning:

ataPBLink
ataPBQType
ataPBVers
ataPBReserved
ataPBReserved2
ataPBCallbackPtr
ataPBResult
ataPBFunctionCode
ataPBIOSpeed
ataPBFlags
ataPBReserved3
ataPBDeviceID

TN 1192: ATA Interface Modules Page: 9

ataPBTimeOut
ataPBClientPtr1
ataPBClientPtr2
ataPBState
ataPBSemaphores
ataPBReserved4

Standard ATA Manager parameter block header. See ATA Device Software for Macintosh Computers for details. You must
initialize ataPBFunctionCode to kATAMgrRemoveATABus, ataPBVers to kATAPBVers2.

busID
Reserved. You must set this field to zero and ignore any value returned.

ataNameRegEntry
You must set this to the Name Registry node of the ATA bus which you wish to add.

In response to this request the ATA Manager will remove the ATA bus associated with the Name Registry node specified in
ataNameRegEntry. The ATA Manager executes the following steps:

1. It calls your AIM's action routine (MyAIMAction) with the kATAFnKillIO function code, to indicate that your AIM
should stop processing the current request.

2. It completes any pending I/O requests (including the current one) for your AIM with the nsDrvErr error code.
3. It calls your AIM's device light routine (MyAIMDeviceLight) to turn off the device's light.
4. It issues the kATARemovedEvent event for each device on your bus.
5. It calls your AIM's close routine (MyAIMClose), ignoring any error result.
6. It disposes of the resources it used to track the bus and releases its CFM connection to your AIM.

You may issue this request at any execution level, although if you issue it at anything other than system task level the ATA
Manager's connection to the AIM is not closed until a future system task time.

Back to top

AIM Packaging

An AIM is packaged as a native driver ('ndrv'). For ATA Manager to load your AIM, it must be available to the Driver Loader
Library. See Designing PCI Cards and Drivers for Power Macintosh Computers for more information on how Driver Loader
Library finds native drivers.

Your AIM must export two named entry global variables:

TheDriverDescription -- This is the standard native driver description.
ThePluginDispatchTable -- This contains information specific to ATA Manager.

The structure of these global variables is described in the following sections.

TheDriverDescription

An AIM must export the standard native driver description structure under the name "TheDriverDescription". An example of
how your AIM should fill out this structure is given below.

TN 1192: ATA Interface Modules Page: 10

01 extern DriverDescription TheDriverDescription = {
02
03 // Signature
04
05 kTheDescriptionSignature,
06 kInitialDriverDescriptor,
07
08 // Driver Type
09
10 {
11 "\pMyAIMName",
12 kmajorRev, kminorAndBugRev, kstage, knonRelRev,
13 },
14
15 // OS Runtime Requirements of Driver
16
17 {
18 kDriverIsUnderExpertControl,
19 "\pMyAIMName",
20 },
21
22 // Service Category List
23
24 // Only one service category required
25
26 1,
27
28 // First Service Category
29
30 kServiceCategoryATA,
31 0,
32 1, 0, 0, 0
33 };

Some parts of this definition deserve further explanation.

Line 11
You must set the nameInfoStr field of the DriverType structure to the name of the Name Registry node your driver
controls. This allows the Driver Loader Library, and hence the ATA Manager, to associate your driver with the appropriate
hardware.

Line 12
You must set the version field of the DriverType structure the version number of your driver. This allows the Driver
Loader Library to load the latest version of your driver if more than one happens to be installed. It also allows the ATA
Manager to replace an initial ROM-based AIM with a newer file-based AIM once the File Manager is available.

Line 18
AIMs are explicitly loaded by the ATA Manager (the expert), so you must set the driverRuntime flags of the
DriverOSRuntime structure to kDriverIsUnderExpertControl.

Line 19
The driverName field of the DriverOSRuntime structure is typically used to hold the unit table name of the driver. As
AIMs are not installed in unit table, this field is not significant. You should set to the same string you used in Line 11.

Lines 26 through 32
AIMs are required to export at least one service category, namely kServiceCategoryATA. This allows the ATA
Manager to check that it correctly matched the AIM to the Name Registry node. The other fields of the
DriverServiceInfo structure are reserved for future versions of the ATA Manager; you must initialize them as shown.

ThePluginDispatchTable

TN 1192: ATA Interface Modules Page: 11

In addition to the standard drive description, you AIM must export a plugin dispatch table under the name
"ThePluginDispatchTable". The ATAPluginDispatchTable type describes the format of this table.

struct ATAPluginDispatchTable {
 ATAPluginHeader header;
 ATAPluginInit init;
 ATAPluginClose close;
 ATAPluginAction action;
 ATAPluginHandleBusEvent busEvent;
 ATAPluginPoll poll;
 ATAPluginEjectDevice eject;
 ATAPluginDeviceLight light;
 ATAPluginDeviceLock lock;
 ATAPluginSuspend suspend;
 ATAPluginResume resume;
};
typedef struct ATAPluginDispatchTable ATAPluginDispatchTable;

typedef OSStatus ATAPluginInit(ATAInitInfo *pb);
typedef OSStatus ATAPluginClose(UInt32 refCon, RegEntryIDPtr aimRegEntry);
typedef void ATAPluginAction(UInt32 refCon, ATAReqBlock *pb);
typedef void ATAPluginHandleBusEvent(UInt32 refCon, UInt32 aimData);
typedef Boolean ATAPluginPoll(UInt32 refCon, UInt32 interruptLevel, UInt32 *aimData);
typedef void ATAPluginEjectDevice(UInt32 refCon);
typedef void ATAPluginDeviceLight(UInt32 refCon, UInt32 whichDevice, UInt32 lightState);
typedef void ATAPluginDeviceLock(UInt32 refCon, UInt32 whichDevice, UInt32 lockState);
typedef void ATAPluginSuspend(UInt32 refCon);
typedef void ATAPluginResume(UInt32 refCon);

The fields have the following meaning:

header
A header which describes the version of the overall plugin dispatch table. See below.

init
You must set this to a pointer to your AIM's initialization routine (MyAIMInit).

close
You must set this to a pointer to your AIM's close routine (MyAIMClose).

action
You must set this to a pointer to your AIM's action routine (MyAIMAction).

busEvent
You must set this to a pointer to your AIM's bus event handler routine (MyAIMHandleBusEvent).

poll
You must set this to a pointer to your AIM's interrupt poll routine (MyAIMPoll).

eject
You must set this to a pointer to your AIM's eject routine (MyAIMEjectDevice) or nil if your AIM does not have an
eject routine.

light
opt You must set this to a pointer to your AIM's device light routine (MyAIMDeviceLight) or nil if your AIM does not
have an eject routine.

lock
You must set this to a pointer to your AIM's device lock routine (MyAIMDeviceLock) or nil if your AIM does not have
an eject routine.

suspend
You must set this to a pointer to your AIM's suspend routine (MyAIMSuspend).

TN 1192: ATA Interface Modules Page: 12

resume
You must set this to a pointer to your AIM's resume routine (MyAIMResume).

The ATAPluginHeader, as defined below, structure describes the version of the overall plugin dispatch table.

struct ATAPluginHeader {
 NumVersion headerVersion;
 NumVersion dispatchVersion;
 UInt32 reservedA;
 UInt32 reservedB;
};
typedef struct ATAPluginHeader ATAPluginHeader;

enum {
 kATAPluginVersion = 0x00000001,
 kATAPluginCurrentVersion = kATAPluginVersion
};

The fields have the following meaning:

headerVersion
You must set this to the version number of your AIM, as defined above.

dispatchVersion
If your AIM conforms to this version of the specification, you must set this field to kATAPluginVersion.

reservedA
Reserved. You must set this to zero.

reservedB
Reserved. You must set this to zero.

Note:
ATA Manager does not currently look at the dispatchVersion field. Moreover, Apple's AIMs do not
currently set this field correctly. Because of this confusion, any future version of ATA Manager that
implements an extended plug-in interface will not use this field to determine which version of the
plug-in interface that your AIM conforms to.

Back to top

AIM Entry Points

Your AIM must implement a number of routines and export those routines to the ATA Manager via the plugin dispatch table. This
section describes these routines in detail.

MyAIMInit

extern OSStatus MyAIMInit(ATAInitInfo *aimInit);

aimInit A pointer to an ATAInitInfo parameter block, described below.

result An error code; see below for details.

The ATA Manager calls your AIM's initialization routine to commence operations on the ATA bus controlled by your AIM. This

TN 1192: ATA Interface Modules Page: 13

routine is called when an ATA bus is registered with ATA Manager. Your AIM must allocate any private resources it needs
(typically per-bus storage), install its interrupt handler, initialize its hardware, probe the bus for attached devices (and
determine whether they are ATA or ATAPI), and return information about those devices to the ATA Manager. Depending on your
hardware, your AIM may need to reset the ATA bus to determine if any devices are attached.

Your AIM must also create child Name Registry nodes for the attached ATA devices. The nodes must have at least the following
properties:

The "name" property must be set to either "ata-disk" or "atapi-disk".
The "device_type" property must be set to "block".
The "device_id" property must be set to a UInt32 that contains the ATA bus ID and device ID (in the same format as the
ataPBDeviceID field of ATA Manager parameter blocks).

Your AIM initialization routine must not issue any commands to the ATA device.

Your AIM's initialization routine receives the address of an ATAInitInfo parameter block as a parameter. The parameter
block contains both input and output fields.

struct ATAInitInfo {
 UInt32 busID;
 ATADevInfo FirstDevice;
 ATADevInfo SecondDevice;
 RegEntryIDPtr aimRegEntry;
 UInt32 refCon;
};
typedef struct ATAInitInfo ATAInitInfo;

The fields have the following meaning:

busID
ATA Manager sets this to the ATA bus ID it has assigned to the new bus that is being registered.

FirstDevice
Your AIM must initialize this structure to hold information about the first device on the ATA bus. See below for a
description of the ATADevInfo structure. If the bus supports ATA devices 0 and 1, and device 1 is present but device 0
isn't, your AIM should set this structure to represent device 1 and set SecondDevice to indicate that no second device is
attached.

SecondDevice
Your AIM must initialize this structure to hold information about the second device on the ATA bus.

aimRegEntry
The ATA Manager sets this to the Name Registry node of the ATA bus which is being registered.

refCon
Your AIM may set this field to any 32-bit value, typically a pointer to your per-bus storage. The ATA Manager will pass
this value as a parameter (typically named refCon) whenever it calls your other AIM entry points.

IMPORTANT:
The AIMInitInfo data structure and the structures it points to are deallocated as soon as your AIM
returns from MyAIMInit. If you wish to retain access to this data, you must copy it to your own
storage. Specifically, you should make a copy of the RegEntryID pointed to by aimRegEntry.
Copying the RegEntryIDPtr is not sufficient!

The ATADevInfo structure holds information about a specific ATA device on a bus. Your

TN 1192: ATA Interface Modules Page: 14

struct ATADevInfo {
 UInt8 devType;
 SInt8 devID;
};
typedef struct ATADevInfo ATADevInfo;

enum {
 kATAInvalidDeviceID = -1,
 kATADevice0DeviceID = 0,
 kATADevice1DeviceID = 1
};

The fields have the following meaning:

devType
Your AIM must set this field to indicate the type of the attached device. Possible ATA device types are listed in "ATA.h"
(current kATADeviceUnknown, kATADeviceATA, kATADeviceATAPI, and kATADeviceReserved).

devID
Your AIM must set this field to indicate the ATA device ID of the attached device. Possible device IDs are
kATAInvalidDeviceID, kATADevice0DeviceID and kATADevice1DeviceID.

If your AIM wants to indicate that no ATA device is attach, it must set devType to kATADeviceUnknown and devID to
kATAInvalidDeviceID.

If your AIM initialization routine returns an error, or it indicates that there are no devices on the bus, ATA Manager fails the
request to register the ATA bus, unloads your AIM, and dispose of all references to it.

IMPORTANT:
It is especially important to take note of the circumstances under which your AIM will be unloaded
when extending the interrupt source tree for multiple bus controllers that share an interrupt.
Remember, your buses may be initialized in any order. The first instance of an AIM that successfully
initializes should extend the interrupt tree and store the child interrupt nodes for each bus in the
Name Registry. When the second bus is initialized, it can look in the Name Registry to determine
whether the interrupt tree has been extended or not.

Suggested result codes include:

noErr Initialization successful.
memFullErr Unable to allocate private data.
nsDrvErr No device detected on node
paramErr Bad parameter
nrInvalidNodeErr Invalid Name Registry node
nrNotFoundErr A required property was not found in the Name Registry node
ATAInitFail Initialization failed

This routine is always be called at system task time.

MyAIMClose

extern OSStatus MyAIMClose(UInt32 refCon, RegEntryIDPtr aimRegEntry);

TN 1192: ATA Interface Modules Page: 15

refCon A pointer to your per-bus storage, as returned by MyAIMInit

aimRegEntry The Name Registry node of the ATA bus which is being deregistered.

result An error code; see below for details.

The ATA Manager calls your AIM's close routine to terminate operations on the ATA bus controlled by your AIM. This routine is
called when an ATA bus is deregistered with ATA Manager. Your AIM must shut down its hardware, remove any interrupt
handlers, and release any resources it owns. This will be the last request that a particular instance of your AIM will receive.

Any error code returned by your AIM is ignored. You should structure your AIM such that its close routine can not fail.

This routine will always be called at system task time.

MyAIMAction

extern void MyAIMAction(UInt32 refCon, ATAReqBlock *pb);

refCon A pointer to your per-bus storage, as returned by MyAIMInit

pb A pointer to an ATAReqBlock parameter block, described below.

The ATA Manager calls your AIM's action routine to perform a transaction on the ATA bus. The ATAReqBlock parameter block
specifies the action to perform and the place to store the results. The meaning of many of the fields is dependent on the
ataFunctionCode field, which specifies exactly what operation is to be performed. Each function code is described in detail
in AIM Action Function Codes.

TN 1192: ATA Interface Modules Page: 16

struct ATAReqBlock {
 UInt32 connectionID;
 UInt32 MsgID;
 ATAResult * result;
 ATADiagResult * DiagResult;
 ATABusInfo * busInfo;
 ATADevConfig * devConfig;
 ATADataObject ioObject;
 ataTaskFile ataPBTaskFile;
 ATAPICmdPacket packetCBD;
 Duration Timeout;
 UInt32 BusID;
 SInt8 DevID;
 UInt8 ataFunctionCode;
 UInt32 AbortID;
 UInt32 ataPBLogicalBlockSize;
 UInt32 ataPBFlags;
 UInt32 reserved;
 struct ATAReqBlock * nextREQ;
 OSStatus ataPBResult;
 UInt8 ataPBErrorRegister;
 UInt8 ataPBStatusRegister;
 UInt32 ataPBactualXferCount;
 UInt32 ataPBState;
 UInt32 ataPBSemaphores;
 UInt8 XferType;
 UInt8 ataModeType;
 UInt8 ataPBIOSpeed;
 UInt8 reserved2;
 UInt16 reserved3;
};
typedef struct ATAReqBlock ATAReqBlock;

Unless otherwise stated, a field is has the same meaning for all function codes (except kATAFnKillIO). The fields have the
following meaning:

connectionID
Reserved. You must not modify this field or depend on its contents.

MsgID
Reserved. You must not modify this field or depend on its contents.

result
This field is used to hold the result of an AIM action. This field is a structure (ATAResult), not a simple 'ioResult'
value, but the fields of the structure are only relevant to the kATAFnExecIO function code. The only field relevant to the
other function codes is ataResult field, but your AIM does not need to explicitly set this field because ATAFamIODone
does it for you.

DiagResult
This field is significant only for the kATAFnRegAccess function code and is described along with that function code.

busInfo
This field is significant only for the kATAFnBusInquiry function code and is described along with that function code.

devConfig
This field is significant only for the kATAFnGetDriveConfig and kATAFnSetDriveConfig function codes and is
described along with those function codes.

ioObject
This field is significant only for the kATAFnExecIO and kATAFnDriveIdentify function codes and is described
along with those function codes.

ataPBTaskFile

TN 1192: ATA Interface Modules Page: 17

This field is significant only for the kATAFnExecIO function code and is described along with that function code.
packetCBD

This field is significant only for the kATAFnExecIO function code and is described along with that function code.
Timeout

The ATA Manager sets this field to a timeout (in milliseconds) for the request. It derives the value from the
ataPBTimeOut field of the client's request, or sets it to a default value (currently 31000) if ataPBTimeOut was zero.

BusID
ATA Manager sets up this field to the bus ID of the ATA bus on which to perform the action. It derives this value from
ataPBDeviceID field of the client's request. Typically your AIM ignores this field because the bus is already uniquely
identified by the per-bus storage pointed to by the refCon passed to AIMAction.

DevID
ATA Manager sets up this field to either kATADevice0DeviceID or kATADevice1DeviceID to describe which
device on the ATA bus to act upon. It derives this value from the ataPBDeviceID field of the client's request.

ataFunctionCode
ATA Manager sets up this field to describe the action that the AIM should take. AIM Action Function Codes lists the
defined function codes.

AbortID
ATA Manager does not use this field except insofar as to initialize it to zero. Your AIM can use this field as it sees fit.

ataPBLogicalBlockSize
This field is significant only for the kATAFnExecIO function code and is described along with that function code.

ataPBFlags
The ATA Managers sets this field to the value of the ataPBFlags field of the client's request. Your AIM is expected to
read this field and act on the flags it contains.

reserved
Reserved. You must not modify this field or depend on its contents.

nextREQ
ATA Manager does not use this field except insofar as to initialize it to zero. Your AIM can use this field as it sees fit.

ataPBResult
ATA Manager does not use this field except insofar as to initialize it to zero. Your AIM can use this field as it sees fit,
although typically it is used to hold a temporary result.

ataPBErrorRegister
ATA Manager does not use this field except insofar as to initialize it to zero. Your AIM can use this field as it sees fit,
although typically it is used as temporary storage for the error register.

ataPBStatusRegister
ATA Manager does not use this field except insofar as to initialize it to zero. Your AIM can use this field as it sees fit,
although typically it is used as temporary storage for the status register.

ataPBactualXferCount
ATA Manager does not use this field except insofar as to initialize it to zero. Your AIM can use this field as it sees fit,
although typically it is used as temporary storage for the transfer count.

ataPBState
ATA Manager does not use this field except insofar as to initialize it to zero. Your AIM can use this field as it sees fit,
although typically it is used to track the state of the request.

ataPBSemaphores
ATA Manager does not use this field except insofar as to initialize it to zero. Your AIM can use this field as it sees fit,
although typically it is used to hold flags that indicate the status of the request.

XferType
ATA Manager does not use this field except insofar as to initialize it to zero. Your AIM can use this field as it sees fit,
although typically it is used to hold the I/O transfer type (PIO, single-word DMA, multi-word DMA).

ataModeType
ATA Manager sets up this field to indicate whether the ataPBIOSpeed field contains an absolute value
(kATAModeAbsolute) or a bitmap of possible values (kATAModeBitmap). It derives this value from the ataPBVers
field of the client request; absolute mode is used only if the parameter block is less than version 3. See ATA I/O Modes for
more information about how your AIM should interpret this and the ataPBIOSpeed field.

ataPBIOSpeed
ATA Manager sets this field to the ataPBIOSpeed field of the client's request.

reserved2
Reserved. You must not modify this field or depend on its contents.

reserved3
Reserved. You must not modify this field or depend on its contents.

Each field is described in more detail with the appropriate function code.

TN 1192: ATA Interface Modules Page: 18

Your AIM typically processes an action request using a state machine. When it receives the action request, it initializes the state
machine and starts the first (asynchronous) step of processing the request. It then returns control to the ATA Manager. When
the first step is complete, the hardware generates an interrupt and the AIM's interrupt service routine is called. It notifies ATA
Manager of the bus event by calling ATAFamBusEventForAIM. ATA Manager then calls the AIM's bus event handler routine
(MyAIMHandleBusEvent), which starts the next (asynchronous) step of processing the request. When the last step is done,
the AIM calls ATAFamIODone. ATA Manager completes the original client's request and then calls the AIM to start the next
request.

This routine may be called at any execution level.

MyAIMHandleBusEvent

extern void MyAIMHandleBusEvent(UInt32 refCon, UInt32 aimData);

refCon A pointer to your per-bus storage, as returned by MyAIMInit

aimData The bus event type, as passed in to ATAFamBusEventForAIM or returned from MyAIMPoll; AIM
Synchronization Model for more details

The ATA Manager calls your AIM's bus event handler routine to handle events detected on your bus. Typically these events are
interrupts from your bus's interrupt hardware. Your AIM informs ATA Manager of these events in one of two ways:

When an interrupt occurs (and is not masked), your interrupt service routine is called. Your interrupt service
routine must inform ATA Manager of the bus event by calling ATAFamBusEventForAIM and then return.
When interrupts are masked (or otherwise deferred), ATA Manager calls your AIM's interrupt poll routine
(MyAIMPoll) to poll for masked interrupts. If the interrupt poll routine detects an interrupt, it returns an
indicative status to ATA Manager.

Regardless of how it informs ATA Manager of the bus event, your AIM can provide a bus event type which indicates what type of
bus event occurred. The ATA Manager passes the same bus event type back to the bus event handler in the aimData parameter.
Typically this bus event type is used to distinguish the type of bus event that has occurred. For example, your AIM might use a
value of 1 to indicate that a DMA interrupt has occurred and a value of 2 to indicate that an I/O interrupt has occurred. ATA
Manager does not interrupt this value.

Typically your AIM responds to a bus event by moving the current I/O request to the next state. For example, if the current I/O
request is waiting for an I/O completion bus event, your AIM would respond to that bus event by calling ATAFamIODone to
inform ATA Manager that the I/O request is complete. On the other hand, if the current I/O request is not complete, your AIM
would respond by setting up the next asynchronous I/O operation.

This routine may be called at any execution level. It is typically executed with interrupts enabled (either from a deferred task
or a secondary interrupt) but that is not guaranteed.

MyAIMPoll

extern Boolean MyAIMPoll(UInt32 refCon,
 UInt32 interruptLevel,
 UInt32 *aimDataPtr);

TN 1192: ATA Interface Modules Page: 19

refCon A pointer to your per-bus storage, as returned by MyAIMInit.

interruptLevel The current 68K interrupt mask: a value from 0 to 7.

aimDataPtr If your AIM detected a bus event, it should set the value pointed to by this parameter to the type
of bus event that occurred; see AIM Synchronization Model for more details.

result True if the AIM detected a bus event, otherwise false.

The ATA Manager calls your AIM's interrupt poll routine when it detects that a synchronous I/O request is blocked because
interrupts are masked (or otherwise deferred). Your AIM must look at its interrupt hardware to determine if there is an
interrupt pending. If there is, your AIM must set the memory pointed to by aimDataPtr to the type of bus event associated
with that interrupt (see AIM Synchronization Model for more details on bus event types) and return true. If there is no
interrupt pending, your AIM must return false.

The interruptLevel parameter is a convenience only. Your AIM may use this value to determine which interrupt sources to
check. For example, if your AIM receives device interrupts at level 2 and DMA interrupts at level 4, and the current
interruptLevel is 3, it need not check the status of the DMA interrupt line because that interrupt is not being masked.

This routine may be called at any execution level.

Background Material

Under the Mac OS I/O system architecture, it is possible for the system to take a page fault in three hard-to-handle cases:

inside an interrupt handler (for example, Sound Manager callbacks are made directly from a sound hardware interrupt
handler, but applications must be able to take page faults in these callbacks)
when interrupts are masked (for example, the OS Utilities routine Enqueue will set the interrupt mask to 7 and then
manipulate queue headers, which may be paged out)
when critical system resources are busy (for example, the ATA Manager typically defers processing of bus events until
secondary interrupt time, but secondary interrupts are serialized and a page fault from a hardware interrupt handler
while an unrelated secondary interrupt was running would deadlock the system)

Page faults result in synchronous disk driver I/O requests. If the underlying I/O hardware requires interrupts to complete an
I/O request, and interrupts are masked or otherwise deferred when the page fault happens, the system will deadlock.

In order to avoid this deadlock, the system polls for interrupts during any "sync wait" loop which occurs while interrupts are
masked (or otherwise deferred). Given that the system has no knowledge of your AIM's interrupt architecture, it calls your
AIM's interrupt poll routine to accomplish this polling.

See DTS Technote 1094 Virtual Memory Application Compatibility and DTS Q&A DV 34 Secondary Interrupts on the Page Fault
Path for more details about this technique.

MyAIMEjectDevice

extern void MyAIMEjectDevice(UInt32 refCon);

refCon A pointer to your per-bus storage, as returned by MyAIMInit

The ATA Manager calls your AIM's eject routine in response to a kATAMgrDriveEject request.

IMPORTANT:
This routine ejects the entire ATA bus, not simply the media from a device on the bus. The distinction
is a subtle but important one. An example of an AIM that implements the eject routine is the built-in
PC Card AIM, which ejects the PC Card in response to this call.

If your ejection hardware is asynchronous, this operation should simply start the ejection operation. If an asynchronous
ejection operation is not complete by the time the ATA bus is deregistered, your close routine (MyAIMClose) is responsible
for waiting until it is.

TN 1192: ATA Interface Modules Page: 20

This routine is optional. If your AIM does not support this function, it should set the appropriate plugin dispatch table entry to
nil.

This routine may be called at any execution level.

MyAIMDeviceLight

extern void MyAIMDeviceLight(UInt32 refCon,
 UInt32 whichDevice,
 UInt32 lightState);

refCon A pointer to your per-bus storage, as returned by MyAIMInit

whichDevice The ATA socket type of the device, derived from the socketType field of the ataAddATABus
structure used to register the bus

lightState The state in which to set the light: one of the constants given below

The ATA Manager calls your AIM's device light routine to turn on and off the activity light, if any, associated with your AIM.
Typically the ATA Manager enables the activity light in response to a device driver request (the driver sets the
mATAFlagLEDEnable flag in the ataPBFlags field of the parameter block it passes to the ataManager system call).

The constants for the lightState parameter are defined below.

enum {
 kATADeviceLightOff = 0x00,
 kATADeviceLightOn = 0x01
};

An example of an AIM that implements this routine is the media bay AIM for PowerBook computers, where it controls the LED
on the media bay device.

This routine is optional. If your AIM does not support this function, it should set the appropriate plugin dispatch table entry to
nil.

This routine may be called at any execution level.

MyAIMDeviceLock

extern void MyAIMDeviceLock(UInt32 refCon,
 UInt32 whichDevice,
 UInt32 lockState);

TN 1192: ATA Interface Modules Page: 21

refCon A pointer to your per-bus storage, as returned by MyAIMInit

whichDevice The ATA socket type of the device, derived from the socketType field of the ataAddATABus
structure used to register the bus

lockState Whether the device is locked or not; one of the constants given below

The ATA Manager calls your AIM's device lock routine to lock and unlock the hardware associated with your AIM. A locked device
cannot be ejected by the user. The ATA Manager locks and unlocks the AIM based on the mATApcLockUnlock flag in the
atapcValid field of the ataDevConfiguration parameter block supplied to a kATAMgrSetDrvConfiguration
request.

The constants for the lockState parameter are defined below.

enum {
 kATADeviceUnlock = 0x00,
 kATADeviceLock = 0x01
};

An example of an AIM that implements this routine is the built-in PC Card AIM, which prevents users from ejecting the PC
Card if it has been locked.

This routine is optional. If your AIM does not support this function, it should set the appropriate plugin dispatch table entry to
nil.

This routine may be called at any execution level.

MyAIMSuspend

extern void MyAIMSuspend(UInt32 refCon);

refCon A pointer to your per-bus storage, as returned by MyAIMInit

The ATA Manager calls your AIM's suspend routine as part of the process of updating an AIM to a newer version. See AIM Update
Process for more details.

Your AIM must "disconnect" itself from all system callbacks except those directly associated with the ATA Manager. This
includes:

interrupt handlers
timer tasks
power management callbacks

This allows the ATA Manager to unload the code associated with the older version of your AIM. Your AIM must not dispose of the
per-bus storage associated with refCon. ATA Manager will pass the same refCon to the resume routine of the newer AIM,
which is responsible for "reconnecting" the AIM to the system.

The ATA Manager guarantees that it will not call your AIM from the beginning of your suspend routine until your resume
routine returns.

This routine will always be called at system task time.

MyAIMResume

TN 1192: ATA Interface Modules Page: 22

extern void MyAIMResume(UInt32 refCon);

refCon A pointer to your per-bus storage, as returned by MyAIMInit

The ATA Manager calls your AIM's resume routine as part of the process of updating an AIM to a newer version. See AIM Update
Process for more details.

Your AIM must "redisconnect" itself to all system callbacks which were disconnected by the suspend routine. This includes:

interrupt handlers
timer tasks
power management callbacks

Your AIM is required to continue operations using the per-bus storage inherited from the older version and pointed to by
refCon. If the format of your per-bus storage changes between versions, your resume routine must convert from the old to
the new format.

The ATA Manager guarantees that it will not call your AIM from the beginning of your suspend routine until your resume
routine returns.

This routine will always be called at system task time.

Back to top

AIM Action Function Codes

When ATA Manager calls your AIM's action routine (MyAIMAction), it sets the ataFunctionCode field of the
ATAReqBlock parameter block to a value which identifies the type of operation to be performed. The possible function codes
are listed below:

enum {
 kATAFnNOP = 0x00,
 kATAFnExecIO = 0x01,
 kATAFnBusInquiry = 0x02,
 kATAFnQRelease = 0x03,
 kATAFnCmd = 0x04,
 kATAFnAbort = 0x05,
 kATAFnBusReset = 0x06,
 kATAFnRegAccess = 0x07,
 kATAFnDriveIdentify = 0x08,
 kATAPIFnExecIO = 0x09,
 kATAPIFnCmd = 0x0A,
 kATAFnGetDriveConfig = 0x0B,
 kATAFnSetDriveConfig = 0x0C,
 kATAFnKillIO = 0x0D
};

The following sections describe each function code in detail. If your AIM receives a request with a function code it does not
recognize, it should fail the request with a status of paramErr.

No Operation (kATAFnNOP)

TN 1192: ATA Interface Modules Page: 23

This is a "no operation" request. ATA Manager should never issue this request to your AIM. If it does, your AIM should
immediately complete the request successfully by calling ATAFamIODone with a status of noErr.

Execute I/O (kATAFnExecIO)

ATA Manager issues this request to your AIM as the result of a client's kATAMgrExecIO request. Your AIM is expected to
execute the specified I/O transaction to the specified device on the specified bus. The bulk of the ATAReqBlock is set up as
described above; only the fields specific to this request are described here.

The structure of the result field of the ATAReqBlock is shown below.

struct ATAResult {
 OSStatus ataResult;
 SInt8 ataStatusRegister;
 SInt8 ataErrorRegister;
 UInt32 actualXferCount;
 ataTaskFile * TaskFile;
};
typedef struct ATAResult ATAResult;

The fields have the following meaning:

ataResult
The overall error result for the request. Unlike the other fields in the ATAResult structure, this field is relevant for all
function codes. Your AIM must not explicitly set this field because ATAFamIODone does it for you.

ataStatusRegister
For execute I/O requests, your AIM must set this field to the contents of the ATA status register. When you complete the
request, ATA Manager copies this field to the ataPBStatusRegister field of the client's parameter block.

ataErrorRegister
For execute I/O requests, your AIM must set this field to the contents of the ATA error register. When you complete the
request, ATA Manager copies this field to the ataPBErrorRegister field of the client's parameter block.

actualXferCount
For execute I/O requests, your AIM must set this field to number of bytes actually transferred. When you complete the
request, ATA Manager copies this field to the ataPBActualTxCount field of the client's parameter block.

TaskFile
For execute I/O requests, your AIM must copy the current contents of the ATA task file to the structure pointed to by this
field, if it is not nil. Typically you copy this directly from the ataPBTaskFile field of the ATAReqBlock. ATA
Manager does not currently look at this field.

The structure of the ioObject field of the ATAReqBlock is shown below.

struct ATADataObject {
 UInt8 * ioBuf;
 UInt32 Count;
};
typedef struct ATADataObject ATADataObject;

The meaning of the fields in the ATADataObject structure are dependent on whether scatter/gather is enabled for this
request. Scatter/gather is enabled if mATAFlagUseScatterGather is set in the ataPBFlags for the request. If
scatter/gather is not enabled, the fields have the following meaning:

TN 1192: ATA Interface Modules Page: 24

ioBuf
ATA Manager sets this field to point to the start of the data buffer for the transfer.

Count
ATA Manager sets this field to the count of the number of bytes to transfer.

If scatter/gather is enabled, the fields have the following meaning:

ioBuf
ATA Manager sets this field to point to an array of IOBlock structures (defined in "ATA.h"). Your AIM should transfer
the data between the device and the scatter/gather buffer defined by this array.

Count
ATA Manager sets this field to the number of IOBlock structures in the array pointed to by ioBuf.

The ataPBTaskFile field of the ATAReqBlock has the same structure as the ataPBTaskFile field of the ataIOPB
(defined in "ATA.h"). Before issuing an execute I/O request to your AIM, ATA Manager copies, without interpretation, the task
file from the client's ataIOPB to the ataPBTaskFile field of the ATAReqBlock. [It does, however, force the
mATADriveSelect bit of the ataTFSDH field of the task file based on the devID field of the ATAReqBlock.] When your
AIM completes the request, the ATA Manager copies the ataPBTaskFile field back to the client's ataIOPB.

The packetCBD field of the ATAReqBlock has the same structure as the ATAPICmdPacket type defined in "ATA.h". By
default, the ATA Managers clears this field before issuing an execute I/O request to your AIM. However, if the client issued an
ATAPI request (mATAFlagProtocolATAPI was set in the ataPBFlags and ataPBPacketPtr was not nil), ATA Manager
copies the ATAPICmdPacket pointed to by ataPBPacketPtr into the packetCBD field of the ATAReqBlock.

For execute I/O requests, the ATA Manager sets the ataPBLogicalBlockSize field of the ATAReqBlock to
ataPBLogicalBlockSize field of the client's request.

Bus Inquiry (kATAFnBusInquiry)

ATA Manager issues this request to your AIM as the result of a client's kATAMgrBusInquiry request. Your AIM is expected to
return information about the specified ATA bus. The bulk of the ATAReqBlock is set up as described above; only the fields
specific to this request are described here.

The structure of the busInfo field of the ATAReqBlock is shown below:

struct ATABusInfo {
 UInt8 ataPIOModes;
 UInt8 ataSingleDMAModes;
 UInt8 ataMultiDMAModes;
 UInt8 ataUltraDMAModes;
 UInt32 ataIOPBsize0;
 UInt32 ataIOPBsize1;
 SInt8 ataContrlType[16];
 NumVersion ataHBAversion;
 UInt32 reserved3;
};
typedef struct ATABusInfo ATABusInfo;

The fields have the following meaning:

ataPIOModes
Your AIM must set this field to a bit mask representing the PIO transfer modes it supports. On completion of the request,
ATA Manager copies this field into the ataPIOModes field of the client's request.

ataSingleDMAModes
Your AIM must set this field to a bit mask representing the singleword DMA transfer modes it supports. On completion of

TN 1192: ATA Interface Modules Page: 25

the request, ATA Manager copies this field into the ataSingleDMAModes field of the client's request (unless the bus was
registered with the mATANoDMAOnBus flag, in which case this field is ignored and the ATA Manager clears the
ataSingleDMAModes field of the client's request).

ataMultiDMAModes
Your AIM must set this field to a bit mask representing the multiword DMA transfer modes it supports. On completion of
the request, ATA Manager copies this field into the ataMultiDMAModes field of the client's request (unless the bus was
registered with the mATANoDMAOnBus flag, in which case this field is ignored and the ATA Manager clears the
ataMultiDMAModes field of the client's request).

ataUltraDMAModes
Your AIM must set this field to a bit mask representing the UltraDMA transfer modes it supports. On completion of the
request, ATA Manager copies this field into the ataUltraDMAModes field of the client's request (unless the bus was
registered with the mATANoDMAOnBus flag, in which case this field is ignored and the ATA Manager clears the
ataUltraDMAModes field of the client's request).

ataIOPBsize0
Your AIM must set this field to kATADefaultBlockSize (512). This field was originally intended to hold the size of
an ATA sector on device 0, but developments in the ATA standard (namely ATAPI) have obviated the need for this
information.

ataIOPBsize1
Your AIM must set this field to kATADefaultBlockSize (512). This field was originally intended to hold the size of
an ATA sector on device 1, but developments in the ATA standard (namely ATAPI) have obviated the need for this
information.

ataContrlType
Your AIM may set this field to any value, including characters or binary data. The field is intended as a mechanism to report
a vendor or model name, or other data for identification or diagnostic purposes. If you do not implement this functionality,
you should clear the entire field. On completion of the request, ATA Manager copies this field into the ataContrlType
field of the client's request.

ataHBAversion
Your AIM must put its version number in this field. On completion of the request, ATA Manager copies this field into the
ataHBAversion field of the client's request.

reserved3
Reserved. You must not modify this field or depend on its contents.

I/O Queue Release (kATAFnQRelease)

Requests of this type should never be passed through to your AIM. Your AIM should treat this as an unrecognized function code.

ATA Command (kATAFnCmd)

Requests of this type should never be passed through to your AIM. Your AIM should treat this as an unrecognized function code.

Abort Command (kATAFnAbort)

Requests of this type should never be passed through to your AIM. Your AIM should treat this as an unrecognized function code.

Reset ATA Bus (kATAFnBusReset)

ATA Manager issues this request to your AIM as the result of a client's kATAMgrBusReset request. Your AIM is expected to
reset the specified ATA bus. The ATAReqBlock is set up as described above; there are no fields specific to this request.

Register Access (kATAFnRegAccess)

ATA Manager issues this request to your AIM as the result of a client's kATAMgrRegAccess request. Your AIM is expected to
read or write the specified ATA registers. The bulk of the ATAReqBlock is set up as described above; only the fields specific to
this request are described here.

IMPORTANT:
Your AIM must determine whether to read or write the ATA registers based on the
mATAFlagIOWrite flag in the ataPBFlags field of the ATAReqBlock.

The structure of the DiagResult field of the ATAReqBlock is shown below.

TN 1192: ATA Interface Modules Page: 26

struct ATADiagResult {
 UInt16 ataRegMask;
 OSStatus ataResult;
 UInt16 ataDataReg;
 UInt8 ataTFFeatures;
 UInt8 ataTFCount;
 UInt8 ataTFSector;
 UInt8 ataTFCylinderLo;
 UInt8 ataTFCylinderHi;
 UInt8 ataTFSDH;
 UInt8 ataTFCommand;
 UInt8 ataAltStatDevCnt;
};
typedef struct ATADiagResult ATADiagResult;

The fields have the following meaning:

ataRegMask
The ATA Manager sets bits in this field to indicate which registers to read or write. The bit mask are defined in "ATA.h"
(mATAAltSDevCValid, mATAStatusCmdValid, mATASDHValid, and so on).

ataResult
Reserved. You must not modify this field or depend on its contents.

ataDataReg
For a write operation, your AIM must write this field to the ATA data register (always a 16-bit write) if mATADataValid
is set in ataRegMask. For a read operation, your AIM must read the ATA data register (always a 16-bit read) and put it in
this field if mATADataValid is set in ataRegMask.

ataTFFeatures
For a write operation, your AIM must write this field to the ATA error register if mATAErrFeaturesValid is set in
ataRegMask. For a read operation, your AIM must read the ATA features register and put it in this field if
mATAErrFeaturesValid is set in ataRegMask.

ataTFCount
For a write operation, your AIM must write this field to the ATA sector count register if mATASectorCntValid is set in
ataRegMask. For a read operation, your AIM must read the ATA sector count register and put it in this field if
mATASectorCntValid is set in ataRegMask.

ataTFSector
For a write operation, your AIM must write this field to the ATA sector number register if mATASectorNumValid is set
in ataRegMask. For a read operation, your AIM must read the ATA sector number register and put it in this field if
mATASectorNumValid is set in ataRegMask.

ataTFCylinderLo
For a write operation, your AIM must write this field to the ATA cylinder low register if mATACylinderLoValid is set
in ataRegMask. For a read operation, your AIM must read the ATA cylinder low register and put it in this field if
mATACylinderLoValid is set in ataRegMask.

ataTFCylinderHi
For a write operation, your AIM must write this field to the ATA cylinder high register if mATACylinderHiValid is set
in ataRegMask. For a read operation, your AIM must read the ATA cylinder high register and put it in this field if
mATACylinderHiValid is set in ataRegMask.

ataTFSDH
For a write operation, your AIM must write this field to the ATA SDH register if mATASDHValid is set in ataRegMask.
For a read operation, your AIM must read the ATA SDH register and put it in this field if mATASDHValid is set in
ataRegMask.

ataTFCommand
For a write operation, your AIM must write this field to the ATA command register if mATAStatusCmdValid is set in
ataRegMask. For a read operation, your AIM must read the ATA status register and put it in this field if

TN 1192: ATA Interface Modules Page: 27

mATAStatusCmdValid is set in ataRegMask.
ataAltStatDevCnt

For a write operation, your AIM must write this field to the ATA device control register if mATAAltSDevCValid is set in
ataRegMask. For a read operation, your AIM must read the ATA alternate status register and put it in this field if
mATAAltSDevCValid is set in ataRegMask.

Drive Identify (kATAFnDriveIdentify)

ATA Manager issues this request to your AIM as the result of a client's kATAMgrDriveIdentify request. Your AIM is
expected to execute an ATA drive identify command (kATAcmdDriveIdentify). This request is very similar to a standard
execute I/O request except for the following:

Your AIM must force the I/O to be byte swapped (typically by setting mATAFlagByteSwap in ataPBFlags).
Your AIM must always attempt to transfer 512 bytes (typically by overwriting the Count field of the ioObject with
512).
Your AIM must always use a 512 byte logical block size (typically be overwriting ataPBLogicalBlockSize with
512).
Your AIM must issue an ATA drive identify command (typically by overwriting the ataTFCommand field of the
ataPBTaskFile with kATAcmdDriveIdentify and the ataTFSDH of the ataPBTaskFile with
mATASectorSize).

Once it has modified the parameter block in this way, your AIM can simply pass this request through to the execute I/O logic.

Execute ATAPI I/O (kATAPIFnExecIO)

Requests of this type should never be passed through to your AIM. Your AIM should treat this as an unrecognized function code.

ATAPI Command (kATAPIFnCmd)

Requests of this type should never be passed through to your AIM. Your AIM should treat this as an unrecognized function code.

Get Drive Configuration (kATAFnGetDriveConfig)

ATA Manager issues this request to your AIM as the result of a client's kATAMgrGetDrvConfiguration request. Your AIM
is expected to return information about a device's current configuration. The bulk of the ATAReqBlock is set up as described
above; only the fields specific to this request are described here.

The structure of the devConfig field of the ATAReqBlock is shown below.

TN 1192: ATA Interface Modules Page: 28

struct ATADevConfig {
 SInt32 ataConfigSetting;
 UInt8 ataPIOSpeedMode;
 UInt8 reserved;
 UInt16 atapcValid;
 UInt16 ataRWMultipleCount;
 UInt16 ataSectorsPerCylinder;
 UInt16 ataHeads;
 UInt16 ataSectorsPerTrack;
 UInt16 ataSocketNumber;
 UInt8 ataSocketType;
 UInt8 ataDeviceType;
 UInt8 atapcAccessMode;
 UInt8 atapcVcc;
 UInt8 atapcVpp1;
 UInt8 atapcVpp2;
 UInt8 atapcStatus;
 UInt8 atapcPin;
 UInt8 atapcCopy;
 UInt8 atapcConfigIndex;
 UInt8 ataSingleDMASpeed;
 UInt8 ataMultiDMASpeed;
 UInt16 ataPIOCycleTime;
 UInt16 ataMultiCycleTime;
 UInt8 ataUltraDMASpeed;
 UInt8 reserved2;
 UInt16 ataUltraCycleTime;
 UInt16 Reserved1[5];
};
typedef struct ATADevConfig ATADevConfig;

The fields have the following meaning:

ataConfigSetting
Your AIM must set this field to indicate the device configuration settings currently in use. The possible values are defined in
ATA Device Software for Macintosh Computers. On completion of the request, ATA Manager copies this field into the
ataConfigSetting field of the client's request.

ataPIOSpeedMode
Your AIM must set this field to indicate which PIO models are enabled for this device. On completion of the request, ATA
Manager copies this field into the ataPIOSpeedMode field of the client's request.

reserved
Reserved. You must not modify this field or depend on its contents.

atapcValid
Reserved. You must not modify this field or depend on its contents. On completion of the request, ATA Manager updates
the mATApcLockUnlock flag to indicate whether the device is currently locked.

ataRWMultipleCount
ataSectorsPerCylinder
ataHeads
ataSectorsPerTrack

Reserved. Your AIM must set these fields to zero. On completion of the request, ATA Manager copies this field into the
corresponding fields of the client's request.

ataSocketNumber
Reserved. You must not modify this field or depend on its contents. This field was used in previous versions of ATA
Manager (which handled much of the PC Card socket configuration internally) but is now obsolete, replaced by
functionality in PC Card Manager.

ataSocketType
Your AIM should ignore this field; on completion, ATA Manager will set it based on your AIM's socket type.

TN 1192: ATA Interface Modules Page: 29

ataDeviceType
Your AIM must set this to the type of the device (for example, kATADeviceATA or kATADeviceATAPI) specified by
the devID and busID fields of the ATAReqBlock. Typically your AIM returns a copy of the information it derived
during initialization (MyAIMInit) On completion of the request, ATA Manager copies this field into the
ataDeviceType field of the client's request.

atapcAccessMode
Reserved. You must not modify this field or depend on its contents. This field is obsolete with ATA Manager 4.0. It was
previously defined to support different access modes for PC Card devices but that support was never implemented.

atapcVcc
atapcVpp1
atapcVpp2
atapcStatus
atapcPin
atapcCopy
atapcConfigIndex

Reserved. You must not modify these fields or depend on their contents. These fields were used in previous versions of
ATA Manager (which handled much of the PC Card socket configuration internally) but are now obsolete, replaced by
functionality in PC Card Manager.

ataSingleDMASpeed
Your AIM must set this field to indicate which singleword DMA speeds are enabled for this device. On completion of the
request, ATA Manager copies this field into the ataSingleDMASpeed field of the client's request.

ataMultiDMASpeed
Your AIM must set this field to indicate which multiword DMA speeds are enabled for this device. On completion of the
request, ATA Manager copies this field into the ataMultiDMASpeed field of the client's request.

ataPIOCycleTime
Your AIM must set this field to the current minimum cycle time (in milliseconds) for mode 3 or greater PIO transfers. On
completion of the request, ATA Manager copies this field into the ataPIOCycleTime field of the client's request.

ataMultiCycleTime
Your AIM must set this field to the current minimum cycle time (in milliseconds) for multiword DMA transfers. On
completion of the request, ATA Manager copies this field into the ataMultiCycleTime field of the client's request.

ataUltraDMASpeed
Your AIM must set this field to indicate which UltraDMA speeds are enabled for this device. On completion of the request,
ATA Manager copies this field into the ataUltraDMASpeed field of the client's request.

reserved2
Reserved. You must not modify this field or depend on its contents.

ataUltraCycleTime
Your AIM must set this field to the current minimum cycle time (in milliseconds) for UltraDMA transfers. On completion
of the request, ATA Manager copies this field into the ataUltraCycleTime field of the client's request.

Reserved1
Reserved. You must not modify this field or depend on its contents.

Set Drive Configuration (kATAFnSetDriveConfig)

ATA Manager issues this request to your AIM as the result of a client's kATAMgrSetDrvConfiguration request. Your AIM
is expected to set the device's current configuration based on the supplied parameter block. The bulk of the ATAReqBlock is
set up as described above; only the fields specific to this request are described here.

IMPORTANT:
To understand how your AIM should interpret the various I/O mode and cycle time fields of this
request, see the ATA I/O section, earlier in this document.

The devConfig field of the ATAReqBlock is defined above. For a kATAFnSetDriveConfig request, the fields have the
following meaning:

ataConfigSetting
The ATA Manager sets this field to required device configurations settings. The value is derived from the
ataConfigSetting field of the client request. The possible values are defined in ATA Device Software for Macintosh
Computers. Your AIM must act on these configuration settings for all subsequent I/O operations.

ataPIOSpeedMode
The ATA Manager sets this field to required PIO speed mode for the device. The value is derived from the

TN 1192: ATA Interface Modules Page: 30

ataPIOSpeedMode field of the client request. Your AIM must use this PIO speed for all subsequent PIO transfers.
reserved

Reserved. You must not modify this field or depend on its contents.
atapcValid

Reserved. You must not modify this field or depend on its contents. This field was used in previous versions of ATA
Manager (which handled much of the PC Card socket configuration internally) but is now obsolete, replaced by
functionality in PC Card Manager. Note that ATA Manager still honors the mATApcLockUnlock flag in this field by
calling your device lock (MyAIMDeviceLock) routine as part of handling a kATAMgrSetDrvConfiguration request.

ataRWMultipleCount
ataSectorsPerCylinder
ataHeads
ataSectorsPerTrack

Reserved. You must not modify this field or depend on its contents.
ataSocketNumber

Reserved. You must not modify this field or depend on its contents. This field was used in previous versions of ATA
Manager (which handled much of the PC Card socket configuration internally) but is now obsolete, replaced by
functionality in PC Card Manager.

ataSocketType
Reserved. You must not modify this field or depend on its contents.

ataDeviceType
Reserved. You must not modify this field or depend on its contents.

atapcAccessMode
Reserved. You must not modify this field or depend on its contents. This field is obsolete with ATA Manager 4.0. It was
previously defined to support different access modes for PC Card devices but that support was never implemented.

atapcVcc
atapcVpp1
atapcVpp2
atapcStatus
atapcPin
atapcCopy
atapcConfigIndex

Reserved. You must not modify these fields or depend on their contents. These fields were used in previous versions of
ATA Manager (which handled much of the PC Card socket configuration internally) but are now obsolete, replaced by
functionality in PC Card Manager.

ataSingleDMASpeed
The ATA Manager sets this field to the required singleword DMA speed modes for the device. The value is derived from
the ataSingleDMASpeed field of the client request. It is only valid if ataModeType is kATAModeBitmap. Your
AIM may use these speeds for all subsequent singleword DMA transfers.

ataMultiDMASpeed
The ATA Manager sets this field to the required multiword DMA speed modes for the device. The value is derived from the
ataMultiDMASpped field of the client request. It is only valid if ataModeType is kATAModeBitmap. Your AIM
may use these speeds for all subsequent multiword DMA transfers.

ataPIOCycleTime
The ATA Manager sets this field to the required maximum PIO cycle time for the device. The value is derived from the
ataPIOCycleTime field of the client request. It is only valid if ataModeType is kATAModeBitmap. Your AIM may
use this, or a slower time, for subsequent PIO transfers.

ataMultiCycleTime
The ATA Manager sets this field to the required maximum multiword DMA cycle time for the device. The value is derived
from the ataMultiCycleTime field of the client request. It is only valid if ataModeType is kATAModeBitmap.
Your AIM may use this, or a slower time, for subsequent multiword DMA transfers.

ataUltraDMASpeed
The ATA Manager sets this field to the required UltraDMA speed modes for the device. The value is derived from the
ataUltraDMASpeed field of the client request. It is only valid if ataModeType is kATAModeBitmap. Your AIM
may use these speeds for all subsequent UltraDMA transfers.

reserved2
Reserved. You must not modify this field or depend on its contents.

ataUltraCycleTime
The ATA Manager sets this field to the required maximum UltraDMA cycle time for the device. The value is derived from
the ataUltraCycleTime field of the client request. It is only valid if ataModeType is kATAModeBitmap. Your
AIM may use this, or a slower time, for subsequent UltraDMA transfers.

Reserved1

TN 1192: ATA Interface Modules Page: 31

Reserved. You must not modify this field or depend on its contents.

Kill Current I/O (kATAFnKillIO)

The ATA Manager issues this request to your AIM as part of the process of removing your ATA bus. You AIM must respond to this
request by terminating any hardware transaction on the ATA bus. This is an immediate request: your AIM must complete the
request before returning from its action routine (MyAIMAction) and must not call ATAFamIODone for the request.

IMPORTANT:
kATAFnKillIO is different from other action requests in that none of the standard ATAReqBlock
fields are set up for kATAFnKillIO. The only valid field in the ATAReqBlock for a
kATAFnKillIO request is the function code itself (ataFunctionCode).

Back to top

AIM Support Routines

This section describes the AIM support routines exported by the ATA Manager for convenience of AIMs. Your AIM must use the
routines described below to signal the ATA Manager that certain events have occurred.

ATAFamIODone

extern void ATAFamIODone(ATAReqBlock *theReq, OSStatus result);

theReq The action request to complete

result The final status of the request, either noErr or a negative error code

Your AIM must call this routine to inform ATA Manager that the AIM action request is complete. ATA Manager executes the
following steps:

1. It copies information from the AIM request block (theReq) into the client's ATA request block.
2. If stores result in the ataResult field of the client's request block.
3. It calls the client's completion routine, if one was supplied.
4. It dispatches the next ATA request, if any, to the AIM's action routine.

You must call this routine from the context of your AIM's action routine (MyAIMAction) or its bus event handler
(MyAIMHandleBusEvent).

ATAFamBusEventForAIM

extern void ATAFamBusEventForAIM(UInt32 busID, UInt32 aimData);

busID The ATA bus on which the event occurred

aimData
The bus event type; the ATA Manager does not interpret this value, it simply passes it back to your
AIM's bus event handler (MyAIMHandleBusEvent)

Your AIM must call this routine when it wants to scheduled its bus event handler (MyAIMHandleBusEvent) to be executed.
Typically it does this from a hardware interrupt handler. ATA queues the bus event and calls your AIM's bus event handler at the
next opportune moment.

TN 1192: ATA Interface Modules Page: 32

See AIM Synchronization Model for an in-depth discussion of why this is both necessary and convenient.

You may call this routine at any execution level.

References

Designing PCI Cards and Drivers for Power Macintosh Computers

ATA Device Software for Macintosh Computers

ATA Device 0/1 Software Developer's Guide

DTS Technote 1098 ATA Device Software Guide Additions and Corrections.

ANSI NCITS 317-1998 AT Attachment - 4 with Packet Interface Extension

DTS Technote 1094 Virtual Memory Application Compatibility

DTS Q&A DV 34 Secondary Interrupts on the Page Fault Path

Back to top

Downloadables

Acrobat version of this Note (128K). Download

AIM Interfaces and Libraries (8 KB) Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

