
CONTENTS

Introduction

MP-Safe Routines by Manager

CarbonLib and MP

Summary

References

Downloadables

This technote lists all routines callable from
MP tasks under Multiprocessing Services 2.0
and higher. This list of routines is larger than
you might expect, and is growing steadily.
You may find some pleasant surprises in the
latest list.

This Note is directed at all developers with a
compute-bound or I/O-bound application. It is
now possible to do this type of work from MP
tasks, with potential performance and
power-saving benefits with both Mac OS 9
and Mac OS X.

 Updated: [Dec 21 2000]

Introduction

With the introduction of Multiprocessing Services 2.0 (Mac OS 8.6) and renewed availability of multiprocessor
hardware, many developers are reconsidering whether to adopt the preemptive and multiprocessor-aware threading
provided by Multiprocessing Services. Historically, the biggest obstacle to the adoption of Multiprocessing Services has
been the limited set of system routines that are callable from MP tasks. However, this set is steadily increasing and is now
sufficient for many real-world applications. This technote provides a list of MP-safe system routines, and when they
became MP-safe.

IMPORTANT:
The MP tasks provided by Multiprocessing Services 2.0 are not just for use on MP systems. They provide a
general purpose preemptive threading mechanism on all computers, even those with a single CPU. If your
application needs preemptive threads, you should consider using MP tasks. Specifically, if your code is either
compute-bound or I/O-bound, it's likely that adopting MP tasks will yield some combination of performance
benefits, power savings, and maintainability improvements.

WARNING:
This technote discusses Multiprocessing Services 2.0 (Mac OS 8.6) and higher exclusively. It does not cover
any issues related to Multiprocessing Services 1.x.

Most of the APIs listed in this technote are part of Carbon. Accessing an API through CarbonLib on traditional Mac OS does
not affect its MP-safeness: if the routine is MP-safe for an InterfaceLib-based application, it will also be MP-safe for a
CarbonLib-based one. All of the MP-safe routines listed here are MP-safe on all versions of Mac OS X.

This technote concentrates on routines that are callable from preemptive tasks on both Mac OS 9 and Mac OS X. Many Mac
OS X routines that are not part of Carbon, for example, the BSD file and network APIs, are MP-safe but are not described
here.

The list of MP-safe routines described in this technote supplants the list given in the Preemptive Task-Safe Mac OS
System Software Functions section of Adding Multitasking Capability to Applications Using Multiprocessing Services.

Back to top

MP-Safe Routines by Manager

MP-Safe Routines by Manager

This section lists all MP-safe routines, grouped by the manager that implements the routine. In cases where the
description refers to header files, it refers to Universal Interfaces 3.3.2. This list is accurate as of Mac OS 9.0.4.

Debugging

With MacsBug (version 6.6.3 or greater) installed, it is safe to call Debugger, DebugStr, and debugstr from MP
tasks.

Multiprocessing Services

All Multiprocessing Services routines are callable from MP tasks. Specifically, all the non-deprecated routine declared in
"Multiprocessing.h" are callable from MP tasks.

See Adding Multitasking Capability to Applications Using Multiprocessing Services for more details on these routines.

Memory Manager

The following Memory Manager routines are MP-safe: BlockMove, BlockMoveData, BlockMoveUncached,
BlockMoveDataUncached, BlockZero, and BlockZeroUncached.

See Inside Macintosh: Memory and Designing PCI Cards and Drivers for Power Macintosh Computers for more details on
these routines.

Driver Services

All of the atomic operations originally introduced in DriverServicesLib (and exported by InterfaceLib since Mac OS 8.5)
are MP-safe. Specifically, all of the routines declared in "DriverSynchronization.h" are MP-safe.

WARNING:
Do not use the PowerPC instructions Load Reserved (lwarx) and Store Conditional (stwcx) to implement
atomicity in your preemptively threaded application. As described in DTS Technote 1137 Disabling Interrupts
on the Traditional Mac OS, these instructions are non-portable and are tricky to use correctly across the full
spectrum of PowerPC implementations.

WARNING:
The DriverServicesLib queue manipulation routines (for example, PBEnqueue) are not MP-safe.

Most of the DriverServicesLib time measurement routines are MP-safe. This includes the routines UpTime,
AbsoluteToNanoseconds, AbsoluteToDuration, NanosecondsToAbsolute, DurationToAbsolute,
AddAbsoluteToAbsolute, SubAbsoluteFromAbsolute, AddNanosecondsToAbsolute,
AddDurationToAbsolute, SubNanosecondsFromAbsolute, SubDurationFromAbsolute,
AbsoluteDeltaToNanoseconds, AbsoluteDeltaToDuration, DurationToNanoseconds, and
NanosecondsToDuration. The routine DelayForHardware is MP-safe but you should use the routine
MPDelayUntil instead, because it yields better CPU utilitization and power savings.

All of the DriverServicesLib string manipulation routines are MP-safe. This includes the routines CStrCopy,
PStrCopy, CStrNCopy, PStrNCopy, CStrCat, PStrCat, CStrNCat, PStrNCat, PStrToCStr, CStrToPStr,
CStrCmp, PStrCmp, CStrNCmp, PStrNCmp, CStrLen, and PStrLen.

The DriverServicesLib routine BlockCopy is MP-safe.

See Designing PCI Cards and Drivers for Power Macintosh Computers for more details on these routines.

File Manager

In Mac OS 9.0 and above, it is safe to call the bulk of the File Manager API synchronously from an MP task. See the
Preemptive Task-Safe Mac OS System Software Functions section of Adding Multitasking Capability to Applications Using
Multiprocessing Services.

IMPORTANT:
See the section CarbonLib and MP for an important caveat.

WARNING:
Rather than test for a specific system software version, your application should test for this functionality by

calling Gestalt with the gestaltMPCallableAPIsAttr selector and checking the
gestaltMPFileManager bit in the response.

The File Manager is described in detail by a number of documents on the developer web site.

Device Manager

In Mac OS 9.0 and above it is safe to call core Device Manager routines synchronously from an MP task. See the
Preemptive Task-Safe Mac OS System Software Functions section of Adding Multitasking Capability to Applications Using
Multiprocessing Services.

IMPORTANT:
See the section CarbonLib and MP for an important caveat.

WARNING:
Rather than test for a specific system software version, your application should test for this functionality by
calling Gestalt with the gestaltMPCallableAPIsAttr selector and checking the
gestaltMPDeviceManager bit in the response.

See Inside Macintosh: Devices for more details on these routines.

Process Manager

In Mac OS 9.0 and above it is safe to call the Process Manager routine WakeUpProcess from an MP task.

IMPORTANT:
See the section CarbonLib and MP for an important caveat.

IMPORTANT:
This feature is very important if you need to communicate between MP tasks and your main thread. Imagine
you have a network server that does all of its core work in MP tasks. The main thread's only job is to start the
MP tasks and then block waiting for user interface events. It waits for events by calling WaitNextEvent
with a very large sleep time. This makes it friendly to other users of the CPU and maximizes power savings
when the server is not busy.

Now let's imagine that the server supports remote administration and some remote administration requests
must be performed by the main thread. A good example of this is a request to quit the server. The MP task
handling that request must wake up the main thread, even though the main thread is blocked inside a call to
WaitNextEvent. It can do this by calling WakeUpProcess.

WakeUpProcess is documented in Inside Macintosh: Processes.

Deferred Task Manager

In Mac OS 9.0 and above it is safe to call the Deferred Task Manager routine DTInstall from an MP task.

IMPORTANT:
See the section CarbonLib and MP for an important caveat.

IMPORTANT:
Do not underestimate the utility of this facility. It provides a general purpose low-latency communications
mechanism between MP tasks and any "blue" code that can be called at interrupt time. If you need to call an
interrupt-safe (but not MP-safe) routine from an MP task, you can use DTInstall to schedule a deferred
task to do the work. The OTMP library (discussed in the next section) uses this technique extensively.

DTInstall is documented in Inside Macintosh: Processes.

Open Transport

Many Open Transport utility routines are MP-safe. These routines are summarized in Tables 1 through 11.

 Table 1. MP-safe OT debugging utilities

Routine Comment

OTDebugStr

OTDebugBreak macro that calls OTDebugStr

OTDebugTest macro that calls OTDebugStr

OTAssert macro that calls OTDebugStr

OTDebugBreak2 macro that calls OTDebugStr

OTDebugTest2 macro that calls OTDebugStr

 Table 2. OT port reference manipulators

Routine Comment

OTCreatePortRef

OTGetDeviceTypeFromPortRef

OTGetBusTypeFromPortRef

OTGetSlotFromPortRef

OTSetDeviceTypeInPortRef

OTSetBusTypeInPortRef

OTCreateNuBusPortRef macro that calls OTCreatePortRef

OTCreatePCIPortRef macro that calls OTCreatePortRef

OTCreatePCCardPortRef macro that calls OTCreatePortRef

 Table 3. OT buffer manipulation

Routine Comment

OTInitBufferInfo macro

OTNextLookupBuffer macro

OTNextOption

OTFindOption

OPT_NEXTHDR macro

datamsg macro

OTBufferDataSize

OTReadBuffer

OTReleaseBuffer

StoreIntoNetbuf

StoreMsgIntoNetbuf

 Table 4. OT memory and string utilities

Routine Comment

OTMemcpy

OTMemcmp

OTMemmove

OTMemzero

OTMemset

OTStrLength

OTStrCopy

OTStrCat

OTStrEqual

 Table 5. OT list utilities

Routine Comment

OTGetLinkObject macro

OTLIFOEnqueue

OTLIFODequeue

OTLIFOStealList

OTReverseList still need mutual exclusion, see below

OTAddFirst still need mutual exclusion, see below

OTAddLast still need mutual exclusion, see below

OTRemoveFirst still need mutual exclusion, see below

OTRemoveLast still need mutual exclusion, see below

OTGetFirst still need mutual exclusion, see below

OTGetLast still need mutual exclusion, see below

OTIsInList still need mutual exclusion, see below

OTFindLink still need mutual exclusion, see below

OTRemoveLink still need mutual exclusion, see below

OTFindAndRemoveLink still need mutual exclusion, see below

OTGetIndexedLink still need mutual exclusion, see below

OTEnqueue

OTDequeue

 Table 6. OT atomic utilities

Routine Comment

OTAtomicSetBit

OTAtomicClearBit

OTAtomicTestBit

OTCompareAndSwapPtr

OTCompareAndSwap32

OTCompareAndSwap16

OTCompareAndSwap8

OTAtomicAdd32

OTAtomicAdd16

OTAtomicAdd8

OTClearLock macro

OTAcquireLock macro

OTSetFirstClearBit

OTClearBit

OTSetBit

OTTestBit

 Table 7. TCP/IP utilities

Routine Comment

SET_TOS macro

OTInitInetAddress

OTInitDNSAddress

OTInetStringToHost

OTInetHostToString

 Table 8. AppleTalk utilities

Routine Comment

IsAppleTalkEvent macro

OTCopyDDPAddress

OTInitDDPAddress

OTInitNBPAddress

OTInitDDPNBPAddress

OTCompareDDPAddresses

OTInitNBPEntity

OTGetNBPEntityLengthAsAddress

OTSetAddressFromNBPEntity

OTSetAddressFromNBPString

OTSetNBPEntityFromAddress

OTSetNBPName

OTSetNBPType

OTSetNBPZone

OTExtractNBPName

OTExtractNBPType

OTExtractNBPZone

 Table 9. Ethernet utilities

Routine Comment

OTCompare48BitAddresses macro

OTCopy48BitAddress macro

OTClear48BitAddress macro

OTCompare8022SNAP macro

OTCopy8022SNAP macro

OTIs48BitBroadcastAddress macro

OTSet48BitBroadcastAddress macro

OTIs48BitZeroAddress macro

 Table 10. Serial utilities

Routine Comment

OTSerialHandshakeData macro/inline

OTSerialSetErrorCharacter macro/inline

OTSerialSetErrorCharacterWithAlternate macro/inline

 Table 11. OT advanced utilities

Routine Comment

OTSetFirstClearBit

OTClearBit

OTSetBit

OTTestBit

OTCalculateHashListMemoryNeeds

OTInitHashList

OTAddToHashList still need mutual exclusion, see below

OTRemoveLinkFromHashList still need mutual exclusion, see below

OTIsInHashList still need mutual exclusion, see below

OTFindInHashList still need mutual exclusion, see below

OTRemoveFromHashList still need mutual exclusion, see below

OTGetRandomSeed

OTGetRandomNumber

OTInitGate

OTEnterGate

OTLeaveGate

Some of the Open Transport utility routines (those that manipulate OT lists and hash tables) are safe to call from an MP
task, but the underlying data structure is not re-entrant. These routines are tagged with the text "still need mutual
exclusion" in the tables above. If you call these routines from preemptive code, you must be sure to synchronize your
operations on any given object such that the object is not corrupted by re-entrant calls. One way to do this is to have each
MP task that operates on an object enter a critical section before calling OT and leave the critical section once OT returns.

The Open Transport routines listed above are inherently MP-safe, but do not let you send or received network data. They
are useful utilities only. If you wish to send or receive network data from an MP task, you must use the OTMP library.
Table 12 shows the appropriate OTMP routine to call for any given OT routine.

The OTMP library is available as DTS sample code. It requires Mac OS 9.0 or later. See the documentation that comes with
the library for more details on how to use it.

 Table 12. Routines supported by the OTMP library

Routine Needed OTMP Routine to Call

InitOpenTransportInContext use InitOpenTransportMPXInContext

InitOpenTransport use InitOpenTransportMPXInContext

CloseOpenTransportInContext use CloseOpenTransportMPXInContext

CloseOpenTransport use CloseOpenTransportMPXInContext

OTOpenEndpointInContext use OTMPXOpenEndpointQInContext

OTOpenEndpoint use OTMPXOpenEndpointQInContext

OTCloseProvider use OTMPXCloseProvider

OTIoctl use OTMPXIoctl

OTCancelSynchronousCalls use OTMPXCancelSynchronousCalls

OTGetEndpointInfo use OTMPXGetEndpointInfo

OTGetEndpointState use OTMPXGetEndpointState

OTLook use OTMPXLook

OTCountDataBytes use OTMPXCountDataBytes

OTGetProtAddress use OTMPXGetProtAddress

OTResolveAddress use OTMPXResolveAddress

OTBind use OTMPXBind

OTUnbind use OTMPXUnbind

OTConnect use OTMPXConnect

OTListen use OTMPXListen

OTAccept use OTMPXAccept

OTSndDisconnect use OTMPXSndDisconnect

OTRcvDisconnect use OTMPXRcvDisconnect

OTSndOrderlyDisconnect use OTMPXSndOrderlyDisconnect

OTRcvOrderlyDisconnect use OTMPXRcvOrderlyDisconnect

OTOptionManagement use OTMPXOptionManagement

OTRcv use OTMPXRcv

OTSnd use OTMPXSnd

OTSndUData use OTMPXSndUData

OTRcvUData use OTMPXRcvUData

OTRcvUDErr use OTMPXRcvUDErr

IMPORTANT:
See the section CarbonLib and MP for an important caveat.

Note:
The OTMP library does not provide an equivalent for the OTInetStringToAddress routine. This is a
deliberate omission. Most users of that routine would be better served by using AF_DNS addresses. See the
discussion of addressing in Inside Macintosh: Networking with Open Transport and the DTS sample code
OTSimpleDownloadHTTP for details.

Note:
The techniques used by the OTMP library to layer a synchronous MP-safe API on top of an asynchronous
interrupt-safe API are applicable to other problem domains, such as most traditional Mac OS I/O services.

Inside Macintosh: Networking with Open Transport is the core API reference for Open Transport.

Back to top

CarbonLib and MP

Due to a problem in current versions of the CarbonLib extension [2563553], many of the routines that were are
documented as MP-safe in Mac OS 9.0 and above are not MP-safe if any version of CarbonLib prior to version 1.2.5 is
installed. This problem affects both InterfaceLib and CarbonLib applications. If the user has run a CarbonLib application
since the system was booted, you will find that calling these routines from an MP task will crash the system.

IMPORTANT:
If your application uses the Multiprocessing Library routines, then you should ensure CarbonLib 1.2.5 (or
later) is installed.

This problem affects the following system services as they are described in this technote:

File Manager
Device Manager
Process Manager
Deferred Task Manager
OTMP

The OTMP sample code library contains an example of how you can detect the presence of a CarbonLib with this problem.

Back to top

Summary

The set of MP-safe system routines has been steadily growing since the release of Multiprocessing Services 2.0. With Mac
OS 8.6, only compute-bound applications could use MP tasks in a useful way. With Mac OS 9.0 and OTMP, the set of
MP-safe routines is now large enough to support most I/O-bound applications. The time has come to think about using MP
tasks in your application, and exploit the benefits available on both Mac OS 9 and X.

Back to top

References

Adding Multitasking Capability to Applications Using Multiprocessing Services

Inside Macintosh: Networking with Open Transport

Inside Macintosh: Processes

Inside Macintosh: Memory

Inside Macintosh: Devices

Designing PCI Cards and Drivers for Power Macintosh Computers

MacsBug releases

DTS Technote 1104 Interrupt-Safe Routines

DTS Technote 1137 Disabling Interrupts on the Traditional Mac OS

DTS sample code OTSimpleDownloadHTTP

Back to top

Downloadables

Acrobat version of this Note (124K). Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

