

CONTENTS

Overview

Carbon
CFM & Mach-O
Mac OS 9 Packages & Mac OS X Bundles
Preemption & Multitasking
File Organization
Sharing code
Background-only Applications
Shared Memory
Process to Process Communications

User Experience

Aqua User Interface
Apple Help

Custom Code Resources

Custom Controls (CDEFs)
Custom List Definitions (LDEFs)
Custom Menus (MDEFs)
Custom Windows (WDEFs)

System Extensions & Control Panels

ADB Patching
Contextual Menu Modules
Drivers use I/O Kit
jGNEFilter
Patching Traps

Special Issues

Backwards-Compilable Coding for Applications
Backwards Compilable Coding for xDEFs
Double-Buffered Windows
Special Folders and File Permissions

Common Coding Changes

Opaque Structures
Code Resources
QuickDraw Globals
The Scrap Manager

Quick Lookup Table
Downloadables

This Technical Note describes how to move
existing applications to Mac OS X and where
equivalent functionality found in existing
applications and other software can be
implemented in Mac OS X.

Included in this discussion is a section
describing techniques developers can employ
in their source base to allow them to compile
their applications for both pre-Carbon and
Carbon execution environments. This is a
useful strategy for developers who must both
keep their products up to date with current
technology and continue to support
customers with legacy equipment.

A quick lookup table is provided at the end of
this document that allows for quick access to
information related to various technologies.

This Technical Note is directed at application
developers who have existing software
designed for use with System 7, Mac OS 8, or
Mac OS 9 that must also work with
Mac OS X.

 Updated: [Oct 5 2000]

Overview

This section provides a general overview of important high- level concepts that must be considered when moving your
applications to Mac OS X.

Moving Your Code to Mac OS X

Technical Note TN2003

Carbon

It will be possible for existing applications to run in Mac OS X inside of the Classic environment. But, these applications
will not be able to take full advantage of the features provided by Mac OS X until they have been re-compiled as Carbon
applications.

Carbon is Apple's new API set for Mac OS applications and it is a subset of selected APIs that were previously offered in
Mac OS 9 together with a rich new set of APIs.

For more information about the Carbon APIs, please refer to the online Carbon documentation at the address:
http://developer.apple.com/carbon/.

Back to top

CFM & Mach-O

Mac OS X supports two runtime models, CFM and Mach-O. Because neither Mac OS 8 nor Mac OS 9 supports the Mach-O
runtime model, a single binary application capable of running on both Mac OS X and Mac OS 8/9 must be compiled as a CFM
application. Conversely, applications needing direct access to mach kernel, or BSD services, will either have to build as
Mach-O binaries or adopt a CFBundle strategy to call the underlying Mach-O compiled routines.

For more information about the Mac OS X runtime model, please refer to the Mac OS X System Overview book.

Back to top

Mac OS 9 Packages & Mac OS X Bundles

In Mac OS X, both the Mac OS 9 package format and the new Mac OS X bundle format are used to provide the
folder-as-object user interface in the Desktop application. Using this packaging method, a folder containing a number of
file system objects behaves as if it were a single file in the Desktop application's windows. Documentation for the new
Mac OS X bundle format can be found in the Mac OS X system overview. This document can be obtained at the address:
http://developer.apple.com/techpubs/macosx/macosx.html

The Mac OS 9 package format is described in Technical Note 1188, "Packages in Mac OS 9" located at the address
http://developer.apple.com/technotes/tn/tn1188.html, and the Mac OS X bundle format is described in the Mac OS X
System Overview book.

As both the Mac OS 9 package model and the Mac OS X bundle format use folders, it is possible to format a folder that is
both a Mac OS 9 package and a Mac OS X bundle. Such a folder should adhere to the Mac OS X bundle specification, but
Mac OS 9 files should be located in a sub directory with the ":Contents:MacOSClassic:" sub-folder.

Back to top

Preemption & Multitasking

The older "polling for events" model imposed by WaitNextEvent is no longer necessary under Mac OS X. Carbon and
Cocoa applications running in Mac OS X can use the new Carbon Event model that will allow or more efficient use of
processor time. With Carbon Events, the event model has changed: instead of your application polling for events to discover
changing conditions it must respond to, your application is called upon as events you wish to respond to arise.

As well, Carbon provides a suite of Multiprocessing APIs you can use for creating your own symmetrically scheduled
preemptive tasks (At the time of this writing, not all of the Carbon APIs can be called from preemptive tasks. See the
Multiprocessing API documentation for more information).

Documentation for Carbon Events can be found in the Carbon SDK, and documentation for Apple's Multiprocessing APIs can
be found in the Multiprocessing SDK.

Back to top

File Organization

Mac OS X and Carbon are designed to operate on single-forked files with filename extensions, as well as traditional Mac OS
dual-forked files containing a type and creator.

Back to top

Sharing Code

The Code Fragment Manager is fully implemented in Mac OS X's Carbon APIs. As well, Mac OS X implements a new method
for sharing code called frameworks . Frameworks are libraries packaged in Mac OS X bundles. Frameworks are essentially
shared libraries packaged along with the headers that are related to the software in that shared code.

Frameworks are described in the Mac OS X System Overview book.

Back to top

Background-only Applications

Background-only applications are fully supported. Furthermore, in many cases, it may be desirable to implement
background-only applications as Mach-O executables for better access to system resources (so they function as daemon
processes).

Back to top

Shared Memory

Using shared memory areas for communications between applications will is possible for applications running in the
Mac OS X environment; however, as Mac OS X uses separate protected memory partitions for each application, additional
work is required to implement sharing memory between applications.

NOTE: Carbon applications also have access to the Core Foundation notification facilities for sending small-event type
notifications between processes. Additionally, Carbon applications compiled as Mac OS X Mach-O binaries have access to
the BSD APIs for sharing memory.

Back to top

Process to Process Communications

The PPC ToolBox is not available to Carbon applications. Here, equivalent functionality is provided by the Apple Event
Manager. Any code that uses the PPC ToolBox should be changed so it uses the Apple Event Manager instead.

NOTE: Carbon applications also have access to the Core Foundation notification facilities for sending small event type
notifications between processes. And, Carbon applications compiled as Mac OS X Mach-O binaries have access to the
Mach-O style messaging.

Back to top

User Experience

The Macintosh has always been known as being easier, friendlier, and more consistent to use and Mac OS X takes this
standard to a whole new level with a refined and enhanced user interface - Aqua. Users, and reviewers, will expect your
application to take full advantage of Aqua and one of the best ways to accomplish this is for you to adhere to the new Aqua
Human Interface Guidelines.

Aqua User Interface

If your application has been compiled as a Carbon application and it uses standard system controls and Appearance Manager
routines for drawing its user interface, then your application will be able to display the Aqua user interface when running
on Mac OS X.

As you move your application to Mac OS X, take the time to refresh your product's interface. Doing so will allow you to
deliver an awesome user experience which will help differentiate your product and make you stand out from the crowd.

For more information about adopting Aqua in your applications, please refer to the Adopting Aqua documentation that can be
found at the address: http://developer.apple.com/techpubs/macosx/.

Back to top

Apple Help

Delivering your help content to users in a consistent and compelling manner is a key part of a well designed user
experience within your product. The best way to achieve this is by using Apple Help, the HTML-based Help system for
Mac OS X applications.

AppleGuide and Balloon Help are no longer supported and Apple Help is the only help solution for Mac OS X. Apple Help is
based on HTML 3.2, allowing you to author you content using popular 3rd party web authoring products, and also builds on
many of Apple's core technologies like QuickTime, AppleScript, URL Access, Internet Config, VTwin, HTML Rendering
Library and Carbon.

For more information about using Apple Help, refer to the Apple Help Documentation Page, the Apple Help Technical Q&As,
and the Apple Help Technology Page.

Back to top

Custom Code Resources

Custom code resources are no longer used by Carbon applications. In their place, your application must use new APIs for
creating custom controls, custom windows, custom menus, and custom lists. These new APIs are discussed below.

Custom Controls (CDEFs)

Custom control definition procedures are no longer compiled into separate stand-alone code resources. Under Carbon, the
control definition procedure should be compiled into your application and you should use the CreateCustomControl
routine to create controls that use the custom definition procedure.

Normally, since the control definition routine you pass to CreateCustomControl uses the same calling conventions as
the older as the CDEF routine, moving your code to Carbon will simply involve re-compiling the code resource into your
application and switching to using the CreateCustomControl routine when creating controls that use the custom
drawing method.

Developers interested in maintaining a cross-compilable Carbon/pre-Carbon source base can use the method outlined
below in the Backwards Compilable Coding for xDEFs section.

Back to top

Custom List Definitions (LDEFs)

Custom list definitions now use the CreateCustomList API. In many cases, though, it may be desirable to use the new
Data Browser control in places where the list manager was used in the past. The Data Browser control is available to
Carbon applications in both Mac OS 9 and Mac OS X.

Back to top

Custom Menus (MDEFs)

Custom menus now use the CreateCustomMenu API.

Back to top

Custom Windows (WDEFs)

Custom windows now use the CreateCustomWindow API. It is no longer necessary to store window definition
procedures in separate code resources. Listings 1 and 2 illustrate how to implement a window definition routine and how
to create a window that uses it.

 static pascal long SimpleFrameDef(short varCode, WindowRef window,
 short message, long param)
 {
 #pragma unused(varCode)

 switch (message)
 {
 case kWindowMsgGetFeatures:
 (OptionBits) param = kWindowCanGetWindowRegion
 | kWindowDefSupportsColorGrafPort;
 return 1;

 case kWindowMsgGetRegion:
 {
 GetWindowRegionRec* rgnRec = (GetWindowRegionRec*) param;

 if (rgnRec->regionCode == kWindowContentRgn
 || rgnRec->regionCode == kWindowStructureRgn)
 {
 Rect portBounds;
 GetWindowBounds(window, kWindowGlobalPortRgn,
 &portBounds);
 RectRgn(rgnRec->winRgn, &portBounds);

 if (rgnRec->regionCode == kWindowStructureRgn)
 InsetRgn(rgnRec->winRgn, -1, -1);
 }
 return noErr;
 }

 case kWindowMsgDraw:
 {
 Rect portBounds;
 GetWindowBounds(window, kWindowGlobalPortRgn, &portBounds);
 InsetRect(&portBounds, -1, -1);
 FrameRect(&portBounds);
 break;
 }

 case kWindowMsgHitTest:
 return wInContent;

 default:
 break;
 }

 return 0;
 }

Listing 1. Code listing for a window definition routine.

Using the window definition routine shown in Listing 1, you can create a new window that uses the definition by calling the
CreateCustomWindow routine. An example illustrating how this can be done is shown in Listing 2.

 WindowDefSpec defSpec;
 WindowRef floater;

 defSpec.defType = kWindowDefProcPtr;
 defSpec.u.defProc = NewWindowDefUPP(SimpleFrameDef);

 SetRect(&bounds, 10, 60, 200, 200);
 CreateCustomWindow(&defSpec, kFloatingWindowClass,
 kWindowStandardFloatingAttributes,
 &bounds, &floater);
 ShowWindow(floater);

Listing 2. Code listing illustrating how to create a window that uses the window definition
procedure defined in Listing 1.

Back to top

System Extensions & Control Panels

System Extensions & Control Panels should be implemented as applications in Mac OS X. In Mac OS 9, they should be
implemented as APPE- and APPC-type applications. The following provides an overview of some facilities commonly used
by System Extensions & Control Panels and their status in Mac OS X.

ADB Patching

The ADB Manager is not supported in Mac OS X.

Back to top

Contextual Menu Modules

Contextual Menu Modules (CMM) are supported in Mac OS X; however, the older SOM object format is not used. For the
system to load your CMM, it must be saved as a CFM plug-in in the Contextual Menu Items subfolder. (The exact location of
this folder can be determined by calling FindFolder with the kContextualMenuItemsFolderType selector.)

Back to top

Drivers use I/O Kit

The older Mac OS device driver APIs documented in Inside Macintosh:Devices and Drivers is no longer supported.
Developers interested in creating drivers for use in Mac OS X must use the new device driver APIs. Currently these APIs
are available as a part of the Mac OS X developer tools installation (relevant headers can be found in the IOKit and Kernel
frameworks).

For information about Mac OS X driver development, consult the I/O Kit documentation either on the Mac OS X installation
at /Developer/Documentation/Kernel or the Mac OS X Developer Documentation Web site
http://developer.apple.com/techpubs/macosx/.

Also, the I/O Kit source code is available for download from Apple's Darwin public source Web site
http://www.publicsource.apple.com. The projects containing I/O Kit are xnu (containing the kernel) and IOKitUser
(containing IOKitLib).

Back to top

jGNEFilter

The jGNEFilter is not supported in Mac OS X.

Back to top

Patching Traps

Mac OS X does not contain a trap table.

Back to top

Special Issues

Other special issues to consider when moving your product to Mac OS X are discussed in this section.

Backwards-Compilable Coding for Applications

It is possible to maintain a backwards-compatible code base that can be compiled for either Carbon or pre-Carbon
environments. This section is intended for developers who would like to support customers using pre-Carbon systems
while at the same time keeping their source base up to date with the latest Carbon headers.

To compile for pre-Carbon execution, use the following steps:

Make sure you are using Universal Interfaces 3.3.2 or later. The most recent version of the Universal Interfaces
can be found at the address http://developer.apple.com/sdk/index.html.

Set the compile time symbols OPAQUE_TOOLBOX_STRUCTS and to ACCESSOR_CALLS_ARE_FUNCTIONS to
equal one (1).

Link with CarbonAccessors.o and whatever other libraries you require.

Use the compile time variable TARGET_API_MAC_CARBON to control compilation of Carbon specific parts of
your program.

IMPORTANT
While CarbonAccessors.o will allow you to maintain a source base for your product that can be
compiled as either a CarbonLib application or as an InterfaceLib application, it does not
allow InterfaceLib applications to use any of the routines that are only available in
CarbonLib. If you have any problems using CarbonAccessors.o, please bring them to our
attention using Apple's bug reporting web page at
http://developer.apple.com/bugreporter/index.html.

And then to compile your application as a Carbon application, use the following steps:

Make sure you are using Universal Interfaces 3.3.2 or later.

Set the compile time symbol TARGET_API_MAC_CARBON equal one (1).

Link with CarbonLib and whatever other libraries you require.

Use the compile time variable TARGET_API_MAC_CARBON to control compilation of Carbon specific parts of
your program.

Include a 'carb' ID=0 resource in the application's resource fork.

In most cases, the minimal requirements for creating a Carbon and pre-Carbon compilable source base for your
application will involve adding the conditional statements shown in listing 3 to your program's main routine.

#if ! TARGET_API_MAC_CARBON
#ifndef __MWERKS__
QDGlobals qd; /* QuickDraw globals */
#endif
#endif

int main(void) {

#if ! TARGET_API_MAC_CARBON
 SetApplLimit(GetApplLimit());
 MaxApplZone();
 InitGraf(&qd.thePort);
 InitFonts();
 InitWindows();
 TEInit();
 InitMenus();
 InitDialogs(0);
#endif
 InitCursor();
 . . .

Listing 3. Code listing illustrating some of the necessary pre-processor time for creating a
Carbon/pre-Carbon cross-compilable application.

In the majority of cases, once an application has been Carbonized and the above compile time structures have been included
in the application, it will be possible to compile the application as a pre-Carbon application for System 7 through
System 8, a CFM Carbon application for System 8.1, Mac OS 9.x and Mac OS X, and as a Mach-O Carbon application for
Mac OS X. Be aware, though, APIs provided in the Carbon interfaces will only be available if they are implemented in the
environment where the application is running.

The code shown in listing 3 represents the minimum compiler exclusions for cross compilable Carbon/pre-Carbon code.
Depending on what parts of the operating system your application uses there may be additional places where additional
compilation exclusions must be placed in your source files. The most obvious places are as follows:

The initialization statements, as shown in listing 3.

Calls to SystemClick.

Calls related to managing the Apple menu such as OpenDeskAcc and AddResMenu (In Carbon applications, the
Apple menu is managed for you).

Places where you use custom code resources such as CDEFs, LDEFs, WDEFs, et cetera. A technique for maintaining
cross-Carbon compilable code is presented in the Backwards-Compilable Coding for xDEFs section in the Custom
Code Resources section.

Back to top

Backwards-Compilable Coding for xDEFs

It is possible to maintain a backwards-compatible code base that creates and uses custom definition procedures. This
section provides a LDEF sample illustrating how to do this.

For Carbon applications, definition routines are stored in the application's executable. They are not stored as separate code
resources as they were in previous system versions. In this example, the definition routine is stored in the application's
code for both the pre-Carbon build and the Carbon build. In the pre-Carbon build, instead of storing the code for the
definition routine in the code resource, the code resource contains a single jump instruction that jumps to the routine
stored in the application. Listing 4 shows a C declaration that illustrates the format of the jump instruction saved in the
code resource and Figure 1 illustrates how this resource should appear in a ResEdit window.

#if ! TARGET_API_MAC_CARBON

#define kPatchResID 128
#define kPatchResTYPE 'LDEF'

#pragma options align=mac68k
typedef struct {
 short jmpabs; /* 4EF9 */
 ListDefUPP theUPP; /* 00000000 */
} **PatchResource;
#pragma options align=reset

#endif

Listing 4. Type definition used for accessing the LDEF resource.

When your application is compiled as a Carbon application, this resource will be ignored. And, as the space it occupies is
negligible, there is no harm in leaving it in your resource fork.

Figure 1. The contents of the LDEF resource as displayed in a ResEdit window.

Inside of your application, provide the code for the definition routine itself. In most cases, prototypes for these routines
have not changed in Carbon so no special compile time switches are required in the definition procedure itself.

Listing 5 illustrates how one would go about using a custom list definition compiled using this method. In Mac OS 9, the
code resource is set up to point to the definition procedure defined inside of the application and the list is created using the
older LNew routine. When the application is compiled as a Carbon application, it does not use the LDEF resource. Instead,
it provides a reference to the list definition procedure in a call to CreateCustomList.

 /* the list definition procedure */

static pascal void HListDataLDEF(short lMessage,
 Boolean lSelect, Rect* lRect, Cell lCell, short lDataOffset,
 short lDataLen, ListHandle lHandle) {

 . . .

}

 . . .

 ListHandle theList; /* storage for the list */

 . . .

#if TARGET_API_MAC_CARBON

 /* Carbon applications use the CreateCustomList API */
 ListDefSpec theSpec;
 theSpec.defType = kListDefUserProcType;
 theSpec.u.userProc = NewListDefProc(HListDataLDEF);
 CreateCustomList(bounds, &dataBounds, cSize, &theSpec,
 theWindow, true, hasGrow, false, true, &theList);

#else

 /* pre-Carbon applications set the address in the LDEF
 to a routine descriptor referring to their list
 definition routine. */
 PatchResource gLDEFrsrc;
 gLDEFrsrc = (PatchResource) GetResource(kPatchResTYPE, kPatchResID);
 (**gLDEFrsrc).theUPP = NewListDefProc(HListDataLDEF);
 theList = LNew(bounds, &dataBounds, cSize, kPatchResID,
 theWindow, true, hasGrow, false, true);

#endif

Listing 5. Creating a list that uses a custom list definition routine.

Back to top

Double-Buffered Windows

The screen in Mac OS X is double-buffered for you. For normal drawing and responding to update events, you will not have
to do any special drawing. However, in some circumstances it may be necessary for you to ask the system explicitly to
draw the contents of your window to the display. Listing 6 illustrates how this can be done.

 CGrafPtr thePort;
 WindowPtr theWindow;

 thePort = GetWindowPort(theWindow);

 /* flush the entire port */
 if (QDIsPortBuffered(thePort))
 QDFlushPortBuffer(thePort, NULL);

 /* flush part of the port */
 if (QDIsPortBuffered(thePort)) {
 RgnHandle theRgn;
 theRgn = NewRgn();
 /* local port coordinates */
 SetRectRgn(theRgn, 10, 10, 100, 30);
 QDFlushPortBuffer(thePort, theRgn);
 DisposeRgn(theRgn);
 }

Listing 6. Flushing a window's grafport's contents to the screen.

IMPORTANT
Items that are drawn in a Carbon window will only be auto-flushed to the screen if the application
directly or indirectly calls the event loop (RunApplicationEventLoop, WaitNextEvent, GetNextEvent,
TrackMouseLocation, et al.).

If your application is trying to update a window without calling the event loop (for example,
drawing items in a splash window during program startup), then it is your application's
responsibility to make sure items drawn in the window are flushed to the screen (by calling
QDFlushPortBuffer).

Back to top

Special Folders and File Permissions

The FindFolder routine is fully supported under Mac OS X and it should be used to locate special folders designated by
the system. As there may be dramatic differences between the locations of some of these folders in Mac OS X relative to
their location in previous system releases, the volume and directory information returned by FindFolder is now the
only supported way to discover a special folder's location.

Developers should be aware that different users may have different file access permission for files located in these special
directories. For information about how to ensure your application will be able to operate under these conditions, please
refer to the Multiple Users Info Kit located at the address:
ftp://ftp.apple.com/developer/Technical_Documentation/MultipleUsers_Info_Kit_R3/.

Back to top

Common Coding Changes

This section discusses the common changes that must be made in an application when moving it to Carbon.

Opaque Structures

Most toolbox structures are now opaque. This means it is no longer possible to access them directly and they can only be
accessed by way of accessor routines.

Back to top

Code Resources

Custom Code Resources such as CDEFs, WDEFs, and LDEFs are no longer used. There are new mechanisms in place that
allow you to implement these features. Ways of using these mechanisms are described in the Custom Code Resources
section.

Back to top

QuickDraw Globals

QuickDraw global variables are no longer accessed using structure references. Instead, when you access these globals you
must use accessor routines.

 long GetQDGlobalsRandomSeed(void);

 BitMap * GetQDGlobalsScreenBits(BitMap *screenBits);

 Cursor *GetQDGlobalsArrow(Cursor *arrow);

 Pattern *GetQDGlobalsDarkGray(Pattern *dkGray);

 Pattern *GetQDGlobalsLightGray(Pattern *ltGray);

 Pattern *GetQDGlobalsGray(Pattern *gray);

 Pattern *GetQDGlobalsBlack(Pattern *black);

 Pattern *GetQDGlobalsWhite(Pattern *white);

 CGrafPtr GetQDGlobalsThePort(void);

 void SetQDGlobalsRandomSeed(long randomSeed);

 void SetQDGlobalsArrow(const Cursor *arrow);

Listing 8. New QuickDraw globals accessor routines.

Back to top

The Scrap Manager

The Scrap Manager APIs have been expanded to provide enhanced functionality. One of the most interesting features of the
new Scrap Manager is the ability for an application to specify promised flavors that it does not need to provide until a
client application requests the data for the promised scrap flavor. Obviously, this allows applications to offer a richer
selection of scrap types without incurring additional processing requirements.

Back to top

Quick Lookup Table

The table provided in this section map provides information about where to look for pre-existing Mac OS APIs or the
functionality provided by those APIs in Mac OS X. Items marked as supported are provided as Carbon APIs unless marked
otherwise.

Mac OS 7/8/9 technology Where to find similar functionality in Mac OS X

Alias Manager The Alias Manager is supported under Carbon. See the Alias
Manager Carbon Specification for details.

Appearance Manager
Continue using the Appearance Manager in Carbon. When doing so
you'll get the new Aqua look for free. See the Appearance Manager
Carbon Specification for details.

Apple Event Manager

Fully supported. Can be used to send Apple events between
Classic, Cocoa, and Carbon. Can no longer be used for sending
events to remote machines. See the Apple Event Manager Carbon
Specification for details.

Apple Filing Protocol (AFP)

Developers using the PBControl or NAFPCommand calls to
send AFP packets to an AppleShare Server who wish to access
these services in Mac OS X will have to revise their products to
use the new AFP APIs provided by the
AppleShareClientCore framework. This framework is
available for both Carbon and Cocoa applications compiled as
Mach-O binaries. The AFP Datastream APIs defined in
AppleShareClientCore/afpDataStream.h provide the
same functionality as the older APIs.

Apple Game Sprockets Look for equivalent functionality in other managers. See the
Apple Game Sprockets Carbon Specification for details.

Apple Guide Not supported. Developers should move their help facilities to
Help Viewer Help Books.

Apple Help Viewer The Apple Help Viewer is still supported.

Apple Shared Library Manager Not supported.

Apple Type Services for Unicode Supported. See the ATSUI Carbon Specification for details.

AppleScript Fully supported. See the Open Scripting Architecture Carbon
Specification for details.

AppleShare
Use the new AFP APIs provided by the
AppleShareClientCore framework.

Code Fragment Manager Supported. See the Code Fragment Manager Carbon Specification
for details.

Collection Manager The Collection Manager is supported under Carbon. See the
Component Manager Carbon Specification for details.

ColorSync Manager Fully supported.

Communications Toolbox Not supported.

Component Manager Fully supported. See the Component Manager Carbon
Specification for details.

Contextual Menu Manager Supported. SOM CMMs are no longer supported.

Control Manager Supported.

Control Panels Not supported. Use applications instead.

Control Strip Put them in the dock.

Cursor Utilities

Cursor utilities are fully supported in Mac OS X. In addition, it
is no longer necessary for developers to display their own
custom animated tasks while an application is waiting for a
lengthy operation to complete. Mac OS X will automatically
display the animated spinning rainbow disk cursor whenever the
frontmost task is blocked.

Date, Time, and Measurement
Utilities Fully supported.

Dialog Manager
Supported. Some routines have been removed. See the Dialog
Manager Carbon Specification for details.

Disk Initialization Manager Not supported. Now done using the Desktop (a.k.a., Finder).

Display Manager Supported. See the Display Manager Carbon Specification for
details.

Drag Manager Supported. See the Drag Manager Carbon Specification for
details.

Edition Manager Not supported.

Event Manager

Supported.

A new event model has been introduced called "Carbon Events."
Some documentation can be found on the CarbonLib SDK.

Exception Manager Not supported.

File Manager

The File Manager is supported under Carbon; however, some
parts of the File Manager's API have been removed. Specifically,
the concept of "Working Directory" is no longer supported under
Carbon. Instead of using working directories, applications should
always refer to file system entities and should use explicit name,
volume, and directory IDs.

It is suggested that developers begin using the new HFS Plus
API's for accessing the file system. See the File Manager
documentation for more information about the new HFS Plus
API's.

File System Manager
The File System Manager is no longer supported under Carbon or
Mac OS X. For this functionality in Mac OS X, you must
implement Virtual File System (VFS) plugin Mach-O extension.

Find By Content / Sherlock Supported.

Finder Interface

In Mac OS X, the application that provides user interaction with
the file system is called the Desktop. This application replaces
the functionality of the Finder application shipping with
previous system releases.

Traditional Finder resources and information are recognized by
the Desktop application. Moreover, the Desktop recognizes
Mac OS 9 packages.

Mac OS X includes a richer application bundling scheme that is
documented in the Mac OS X System Overview book.

Folder Manager

Locations for special folders maintained by the system may be
dramatically different when your application is running in
Mac OS X; hence, it is essential that your application rely on
both the volume reference number and directory ID returned by
FindFolder when identifying the locations of these special
folders.

It is also important that your application recognize the fact that
access permissions for files located in these folders may vary
from user to user. For more information and references to
further documentation, please refer to the Special Folders and
File Permissions section of this technical note.

Font Manager Supported.

FontSync Supported.

Gestalt Manager Supported.

Help Manager
Balloon Manager has been replaced with help tags. Carbon
applications will use this new Apple Help API, defined in
MacHelp.h. See the Apple Help Carbon Specification for details.

HTML Rendering Library Fully supported under Carbon. See the HTML Rendering Library
Carbon Specification for details.

Icon Services and Utilities Supported.

Imaging (ATSUI) Supported.

Installer Not supported. There is a new installer mechanism for Mac OS X.

Interfaces & Libraries 3.3.2.

List Manager Supported. New data browser control is now available, making it
easier to display lists with a consistent "look."

Locales Supported.

Location Manager Not supported.

Low Memory Accessors

Accessor functions are now the only way to access low-memory
globals. Attempting to access low-memory globals in some other
way may result in an addressing error.

Many of these have been dropped. See the Low-Memory Accessors
Carbon Specification for details.

Mac OS USB Supported.

MacApp Being ported.

Macintosh Programmer's
Workshop (MPW) Can be used in the Classic environment.

MacsBug Can be used in the Classic environment.

Mathematical and Logical Utilities MathLib's functionality is exported from CarbonLib.

Memory Manager

Supported. Some changes in how memory is handled. Most
notably application's heap space can grow dynamically and is no
longer fixed. (Carbon and Cocoa apps only.) See the Memory
Manager Carbon Specification for details.

Menu Manager Supported.

Mixed Mode Manager Not supported.

MRJ Supported. Should be Java 1.2 or later.

Multilingual Text Editor Supported.

Multiprocessing Services Supported.

Multiple Users
APIs associated with Multiple Users are not supported. However,
the concept of user levels and login levels are supported.

Navigation Services Supported.

Network Services Location (NSL)
Manager

Supported.

Notification Manager
Supported. See the Notification Manager Carbon Specification for
details.

Offscreen Graphics Worlds Supported. See the QuickDraw Manager Carbon Specification for
details.

Open Transport Supported. Some APIs have been removed. See the Open
Transport Carbon Specification for details.

Open GL Supported.

Package Manager Not supported.

Palette Manager Supported. See the Palette Manager Carbon Specification for
details.

PCI Driver Development Kit See IOKit.

Picture Utilities Supported.

PPC Toolbox
The PPC Toolbox is not implemented in Carbon. Instead, you
should use the Apple Event Manager for sending information
between processes.

Printing Manager
New API for the printing manager. Current docs are on the
Carbon SDK. See the Printing Manager Carbon Specification for
details.

Process Manager Supported.

Queue Utilities Supported.

QuickDraw Supported. Cannot used Quartz from CFM applications, but you
can if you recompile them as Mach-O binaries.

QuickDraw 3D Not supported.

QuickDraw Text Supported.

QuickTime The QuickTime APIs are provided in CarbonLib.

ResEdit Works in Classic. Can crash with certain operations.

Resource Manager Supported. See the Resource Manager Carbon Specification for
details.

Scrap Manager Supported, but with new APIs. Documented in the Carbon SDK.

Script Manager Supported.

Shutdown Manager
Not supported. Applications requiring this functionality should
use the kAEQuitApplication event instead.

Sound Manager Supported.

Speech Recognition Manager Supported.

Speech Synthesis Manager Supported.

Start Manager
Not supported. There are no extensions, so extension loading
order is not important.

Telephone Manager Not supported.

Text Encoding Conversion Manager Supported.

Text Services Manager Supported.

Text Utilities Supported.

TextEdit Supported.

Thread Manager Supported.

Time Manager Supported.

Translation Manager Supported.

Trap Manager Not supported.

Unicode Utilities Supported.

URL Access Manager Supported.

Vertical Retrace Manager Not supported. Use the Time Manager instead.

Virtual Memory Manager Not supported.

Window Manager Supported.

Back to top

Downloadables

Acrobat version of this Note (200K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

