
TN 1199: USB Printer Sharing Compatibility Page: 1

CONTENTS

Introduction

Printer Name in the Chooser

Name Registry Properties

Handling Errors

Control and Status Calls

Gestalt Information

Summary

References

Downloadables

This Technote describes how USB printer
driver developers can make their drivers
compatible with USB Printer Sharing.

For printer drivers that support it, USB Printer
Sharing provides transparent sharing of
printers across a TCP/IP network (including
AirPort) and is a significant added benefit for
users. By paying attention to a few simple
guidelines, printer driver developers can
ensure that their drivers work seamlessly with
USB Printer Sharing while retaining the ability
to use custom csCodes, pass pointers to
private data, and display the correct printer
name in the Chooser.

This Note is directed at USB printer driver
developers who want their drivers to be
compatible with USB Printer Sharing.

 Updated: [Jun 19 2000]

Introduction

USB Printer Sharing operates by breaking the local link between a printer driver and its USB printer class driver. The
link between these two drivers is traditionally made using a pair of device drivers having entries in both the unit table and
the name registry. USB Printer Sharing creates a pair of device drivers on the client. The client printer driver sends
commands to these device drivers as it normally would, but instead of passing the commands to a local printer class driver,
the USB Printer Sharing device drivers send the commands over the network using TCP/IP to a server Macintosh. The
serving Macintosh takes the commands off the wire and invokes the device drivers on the server.

TN 1199: USB Printer Sharing Compatibility Page: 2

A Typical USB Printer Driver

A USB Printer Driver Running with USB Printer Sharing

In order for USB Printer Sharing to work correctly on the client Macintosh, it must export a name registry entry from the
serving Macintosh into the name registry on the client Macintosh. When the name registry is transferred, USB Printer
Sharing tries to maintain the properties from the serving Macintosh. For compatibility reasons, however, there are
certain properties that are not transferred. These properties are:

name
privateData
read
write

The most basic compatibility problem occurs when the name registry contains properties whose data contains pointers into
the serving Macintosh's memory. When this data is transferred to the client Macintosh, these pointers are no longer valid

TN 1199: USB Printer Sharing Compatibility Page: 3

and when software on the client tries to dereference the pointers, the Macintosh will either crash or the printer driver
will get incorrect data. See Control and Status Calls for a way around this problem. In addition to the properties listed
above, the USB Printer Sharing software will not transfer a property whose name ends with '.private'. For example,
the property 'mydata.private' will not be sent from the server to the client's name registry. Printer software can use
the '.private' suffix naming convention in order to prevent properties with pointers from being sent across the wire.

Back to top

Printer Name in the Chooser

If a printer driver follows the USB DDK printer driver example, the printer names shown in the Chooser will be taken
from the name registry. This is the recommended method for determining the name of a particular printer. There is a
maximum length of 31 characters for name registry names, however, and the names created by USB Printer Sharing (a
concatenation of the printer name, " on ", and the Computer name as set in the File Sharing control panel) can easily exceed
this length. In order to make this full printer name available to printer drivers, the USB Printer Sharing software adds a
property, usbps.name, that contains the entire printer name and can be up to 66 characters in length.

Back to top

Name Registry Properties

Any unique name registry properties created by the USB Printer Sharing software, as opposed to those simply transferred
from machine to machine by the Printer Sharing software, will be prefixed by 'usbps.'. Currently there are two such
properties:

usbps.name - The full name of the printer
usbps.url - The url for the remote printer

Back to top

Handling Errors

It is important that printer drivers check the errors returned from device driver calls, both those immediately returned
and those in the ioResult field of the IOParam block for asynchronous calls. Because of the network nature of USB
Printer Sharing, errors (such as host unreachable) are much more common than local USB errors. Printer drivers should
be prepared for these errors. In particular, a printer driver should be prepared for an open error as a result of their first
read or write transaction. When the device driver is opened, USB Printer Sharing begins to connect with the remote
printer, but it returns from open before this potentially long operation is completed. When the printer driver calls read
or write, USB Printer Sharing may take that opportunity to return an error indicating that the open failed.

Back to top

Control and Status Calls

In order for USB Printer Sharing to work, it needs to translate a device driver call made on a local Macintosh into a set of
network packets that can be decoded and sent to a device driver on the server side. Using pointers in calls to the local device
driver can cause problems as they reference memory on the local machine and these pointers are not valid on the server.
USB Printer Sharing knows how to handle the buffer pointers that are part of the device driver read and write calls, but
control and status can be problematic. USB Printer Sharing special cases the following status call csCodes and knows how
to dereference the pointers inherent in these calls:

TN 1199: USB Printer Sharing Compatibility Page: 4

kDrvrCentronicsStatus
kDrvr1284IdString
kDrvrSoftReset
kDrvrNumDevices

In order for USB Printer Sharing to support your custom csCodes, you can define any number of csCodes for USB
Printer Sharing to handle using one of two methods: Direct or Indirect.

Direct:

In the Direct method, USB Printer Sharing looks for drvrOut.csCodes2 and drvrIn.csCodes2 entries in the Name
Registry. If either is found, its data is taken as an array of shorts representing the extended csCodes that are Direct
csCodes. The Printer Class driver supports these with the following protocol: the csParam[] array contains 11
shorts that are treated as 22 bytes of raw data, starting at address &csParam[0]. Please note that USB Printer Sharing
does not handle pointers in the Direct case. Do not include pointers in the 22 bytes of raw data. If you need to pass
pointer-based data, use the Indirect method described below.

Indirect:

In the Indirect method, USB Printer Sharing looks for drvrOut.csCodes1 and drvrIn.csCodes1 entries in the
Name Registry. If either is found, its data is taken as an array of shorts representing the extended csCodes that are
Indirect csCodes. The Printer Class driver supports these with the following protocol:

Data Address Data
Size

Data Type Description

&csParam[0] 4 bytes pointer A pointer to a buffer that is passed from
a device manager client to a device
driver (i.e., the printer class driver).

&csParam[2] 4 bytes unsigned
long

The actual size of the data buffer pointed
to by csParam[0]. This value is
passed over to the Server in the case of
drvrOut.csCodes1 and back to the
Client in the case of
drvrIn.csCodes1.

&csParam[4] 4 bytes pointer A pointer to a buffer that is to receive
data returned from the printer class
driver.

&csParam[6] 4 bytes unsigned
long

The maximum size of the data that can be
returned in the buffer pointed to by
csParam[4]. Upon return, this value
is updated to indicate the actual number
of bytes that were copied into the buffer.

Notes:

The four bytes beginning at csParam[0] point to a buffer that is passed from a device manager client to a device
driver (i.e., the printer class driver).
The four bytes beginning at csParam[2] are the actual size of the data pointed to by csParam[0].
If csParam[0] is NULL or csParam[2] is 0, then no data is passed from the client to the server.

TN 1199: USB Printer Sharing Compatibility Page: 5

The four bytes beginning at csParam[4] point to a buffer that is to receive data returned from the printer class
driver.
The four bytes beginning at csParam[6] are the maximum size of the data that can be returned in csParam[4].
If csParam[4] is NULL or csParam[6] is 0, then no data will be copied back from the server to the client.
The pointers to the buffers in csParam[0] and csParam[4] may overlap.

To add this capability to the sample PrinterClassDriver, insert the following pieces of code.

In PrinterClassDriver.c's RegisterDevice() add:

static short ourCSCodes[] = { 200, 201, 202 };
RegEntryID self;
OSErrerr = noErr;

...
if (err == noErr)
err = RegistryPropertyCreate(&self, "drvrOut.csCodes1",
&ourCSCodes, sizeof (ourCSCodes));
if (err == noErr && pPrinterPB->printerProtocol
 != kUSBPrinterUnidirectionalProtocol)
err = RegistryPropertyCreate(&self, "drvrIn.csCodes1",
&ourCSCodes, sizeof (ourCSCodes));
...

In usbprint.c's DRVRStatus() add:

switch (pb->csCode)
{
case kDrvrCentronicsStatus:
...
case 200:
case 201:
case 202:
 // do something useful here
...
}

In PrinterClassDriver.c's ControlStatusRequests() add:

TN 1199: USB Printer Sharing Compatibility Page: 6

switch(((CntrlParam *) pb)->csCode)
{
case kDrvrCentronicsStatus:
...
case 200:
case 201:
case 202:
 // do something useful here
 break;
...
}

Back to top

Gestalt Information

The Gestalt Selector for USB Printer Sharing is 'zak ' and it returns the version number of the running server. The
version number is encoded in the low order word in the same manner as the system software version, e.g., for 1.0 it would
be 0x0100 and for version 1.2.3 it would be 0x0123. The upper two bits in the high order word are used as flags to
indicate the current state of USB Printer Sharing.

If the bit 0x80000000 is set, then USB Printer Sharing is running.
If the bit 0x40000000 is set, then USB Printer Sharing was installed at boot time.
A Gestalt error means that USB Printer Sharing is not installed.

Here are the constants to use for the above values:

Constant Value

kServerSignature 'zak '

gestaltUSBPrinterSharingVersion kServerSignature

gestaltUSBPrinterSharingVersionMask 0x0000FFFF

gestaltUSBPrinterSharingAttr kServerSignature

gestaltUSBPrinterSharingAttrMask 0xFFFF0000

gestaltUSBPrinterSharingAttrRunning 0x80000000

gestaltUSBPrinterSharingAttrBooted 0x40000000

Back to top

TN 1199: USB Printer Sharing Compatibility Page: 7

Summary

By paying attention to these simple guidelines, printer driver developers can ensure that their drivers work seamlessly
with USB Printer Sharing while retaining the ability to use custom csCodes and pass pointers to private data.

References

Apple's Printing Technologies

Current USB DDK

Back to top

Downloadables

Acrobat version of this Note (K). Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

