
CONTENTS

Overview

About the DataBrowser....
You call the DataBrowser, the DataBrowser calls you....
Data & the DataBrowser
Rows
Columns
Cells

Creating DataBrowser Controls

Defining Columns
Installing Columns
Installing Rows

Providing and Ordering your Data

Providing Data
Ordering Data

DataBrowser Call-back Routines

The DataBrowserCallbacks Structure
Routines for managing the DataBrowserCallbacks structure

Pre-defined Column Display Types

Icons
Text
Icons with Text
Time
Progress Indicators
Relevance Rank
Pop-up Menus

Defining Your Own Column Display Types

The DataBrowserCustomCallbacks Structure
Routines for managing the DataBrowserCustomCallbacks
structure

Browser Appearance and Behavior

Event Handling
Interesting Conditions
Scroll Bars
Selection Handling
Drag & Drop Processing
Forcing Redraw
Column and Cell Dimensions
List Background Color
In-place Text Editing
Edit Menu Commands
Context Sensitive Help
Contextual Menus

Managing Hierarchical Lists

Setting the Root Container
Setting the Disclosure Column

Downloadables

This Technote presents the Application
Programmer's Interface for the DataBrowser
control. This new control is available through
the Carbon API and was introduced in
CarbonLib 1.1. Carbon applications running
in Mac OS 8.6 or later with CarbonLib 1.1
can use the DataBrowser control.

The browser control is object oriented in
design, and conceptually it serves as a base
class that you can use to build your own
specialized lists. In its current implementation,
the DataBrowser is a small object-oriented
hierarchy with two different specializations
that are available for use in applications: the
column view and the list view. The column
view provides the multi-column hierarchical
navigation scheme appearing in the file
selection lists in Mac OS X. The list view
specialization provides a display scheme
similar to the one provided by the list
manager together with hierarchical display
capabilities as found in the Finder's list view.
This document discusses the list view
specialization of the browser control.

Using DataBrowser will ensure that your lists
adhere to the Macintosh Human Interface
Guidelines. It also ensures that users will find
your lists familiar and easy to understand
since they appear and behave in a way that is
consistent with the way lists appear and
behave in other applications. As well, the
DataBrowser does all of its drawing in
accordance with the appearance manager. As
a result, if your application uses the
DataBrowser to display lists, your lists will
always be drawn in a way that is consistent
with the current appearance settings, whether
on Mac OS 9 or Mac OS X. Most importantly,
this means that your application running in
Mac OS X and using the DataBrowser will
have the full benefits of Aqua appearance in
the lists it displays. DataBrowser does the
difficult user interface work for you, letting you
focus on the functionality of your application.

This note is directed at application developers
who are interested in using the DataBrowser
control in their applications.

 Updated: [Dec 05 2000]

Overview

This section provides a description of what the browser control is and definitions for key concepts used in the rest of this
document. The main points described in this section include how the DataBrowser interacts with your application, and how
both your application and the DataBrowser use ID numbers to reference items displayed in the browser control.

The DataBrowser is a list management utility that allows your application to provide complex lists that have built-in user
interaction functionality. provides an illustration of the DataBrowser control in action. Figure 1

 An illustration of the DataBrowser being used to display a list of files.Figure 1.

About the DataBrowser....

The DataBrowser is a user interface gadget used to display lists of items inside of windows in your application. The
DataBrowser replaces the older List Manager API and surpasses the List Manager API in many ways. Major features found
in the DataBrowser that were not supported in the List Manager include:

No limitation on the number of cells displayed in a list,

Built-in drag-and-drop handling,

Built-in display types for text, icons, checkboxes, pop-up menus, progress bars, relevance ranks, and sliders,

Support for contextual menus and context-sensitive help,

Built-in text editing for cells displaying text, and

Built-in hierarchical list support.

The DataBrowser's implementation is object oriented in nature. The List View discussed in this document is only one of the
many possible specializations of the DataBrowser's Table View. illustrates the object-oriented hierarchy
internal to the DataBrowser. For the purposes of this document, it is useful to be aware of this structure since some of the
routines defined for the Table View class can also be used in List View class.

Figure 2

 An illustration of the object-oriented hierarchy used inside of the browser control.Figure 2.

In the interfaces you will find routines that appear to reference different parts of this hierarchy. The routines discussed in
this document include both routines for the Table View class and routines for the List View class. Table View is really an
abstract class, and when you create a browser control of type List View, the List View object will have its own specialized
methods for all of the methods defined for the Table View class.

Back to top

You call the DataBrowser, the DataBrowser calls you....

The DataBrowser provides your application with sophisticated list display and interaction functionality that is both easy to
use and extensible in many ways. To allow this level of fidelity and control, the DataBrowser control uses callbacks to your
application at several points during processing where key choices in the interaction process are made. At the very least,
your application must provide a routine that allows the data browser to gain access to the information it displays.

Further discussion of how to provide your own callback routines for the DataBrowser control are discussed later in this
document starting in the section.DataBrowser Call-back Routines

Back to top

Data & the DataBrowser

The DataBrowser control can be used to display a single linear list of data items. When you provide a list of items for
display in a DataBrowser control, you do not provide the actual data that will be displayed. Instead, you provide a unique
32-bit ID number that your application can use to refer to the actual data. Whether you store the actual data in memory, on
disk, or across a network is entirely up to your application. The DataBrowser control uses these ID numbers when it is
drawing the list of items to ask your application for information about particular properties of the data items that are
being drawn in the display as that information is required.

 How numbers are used together with numbers to address
particular rows in a table.
Figure 3. Data ID Property ID

The values your application uses as data item ID numbers are entirely up to you. The only requirement is that the values
are non-zero. (The value is used internally by the Data Browser in a way similar to the pointer to indicate
that a row has no data item associated with it.) For example, some possibilities for data item ID numbers you may use are
pointer values, data file offsets, or 32-bit TCP/IP host addresses. Whenever the DataBrowser needs to display the data for
a particular data item, it will ask your application for the data associated with the data item ID number you provided.

zero NULL

Back to top

Rows

Each row in a table displayed by the DataBrowser control has a unique data item ID number associated with it, together with
some flags describing state information related to the row. provides a view of the values associated with each row
in a list displayed by the DataBrowser control.

Figure 4

 Information maintained by the DataBrowser for each row displayed in a DataBrowser
control.
Figure 4.

The selection state reflects the selection state of the item. The collapsed/uncollapsed state is used in hierarchical lists that
feature turn-down arrows that open sub-lists. These flags are read-only states associated with rows displayed in the list:
an application can query these values using DataBrowser routines.

 or
Any non-zero, 32-bit value uniquely identifying a data element being displayed in a list. Data ID
values map to rows in the tables displayed by the DataBrowser. Data ID values need not be in any
particular order, and the values used are entirely up to the application.

The constant is a special Data ID value used by the DataBrowser to mean
"none of the Data ID numbers currently stored in the browser control." Its usage is analogous to the

 pointer in C.

Definition 1. Data Element ID Data ID.

kDataBrowserNoItem

NULL

Concepts relating to specifying the Data ID numbers that will be used to display a list are discussed in the
section.

Adding Rows

Back to top

Columns

For every column that is to be displayed in a table, the application must provide a number of parameters governing how the
column will be displayed. One of these parameters is a non-zero, 32-bit value called the column's number.
Together with the data item ID number, property numbers are used to refer to individual cells in the table during callbacks
to the application. illustrates how the DataBrowser uses Property ID numbers together with numbers to
reference particular cells in the tables it displays. As with numbers, the values an application chooses to use as
Property ID numbers are completely arbitrary.

Property ID

Figure 3 Data ID
Data ID

Definition 2. Property ID.

Any non-zero, 32-bit unsigned integer value that uniquely identifies a column in a table being
displayed by the DataBrowser. Property ID numbers do not need to be ordered or sequential, and
the values used are entirely up to the application. Property ID values 0 through 1023 are reserved
by Apple for use in the DataBrowser control.

The constant is a special Property ID value used by the
DataBrowser to mean "none of the Property ID numbers (columns) currently stored in the browser
control." Its usage is analogous to the pointer in C.

kDataBrowserItemNoProperty

NULL

Other information an application provides when a column is being added to a table includes the column's title, formatting
information for the title, and some other parameters governing the format of the information displayed. provides
and expanded view of some of the information associated with a column.

Figure 5

 Information associated with each column.Figure 5.

Later sections will discuss this information in greater detail; however, at this point, it is worthwhile to take note of the
property display type that is associated with a column. For convenience, the DataBrowser pre-defines several display types
including strings, pop-up menus, icons, pictures, and buttons. It is also possible for applications to implement their own
custom display types through callback routines. We revisit this subject later in the and

 sections.
Defining Columns Defining Custom

Columns

Back to top

Cells

As shown in , particular cells displayed in the tables drawn by the DataBrowser control are addressed using a
combination of the assigned to the row and the assigned to the column.

Figure 3
Data ID Property ID

Definition 3. Cell.

A Data ID together with a Property ID uniquely identifies a cell in a table displayed by the
DataBrowser. A cell corresponds to a location inside of a Data Browser list that is at the intersection
of a row and a column.

Individual cells are used to display facets of the data items being displayed in a list. The method used to display the cell's
contents is governed by its .Property ID

The concepts presented in this section describe how the DataBrowser control represents data. It does not necessarily entail
that your application must use this same data model for the information it is displaying in a Data Browser control;
however, if an application has its own data model, then the application must provide the mapping between the structures
expected by the DataBrowser and its own internal representation. As will be shown in later sections, the DataBrowser
control has been designed to accommodate developers providing a mapping between their own data model and the data model
used by the DataBrowser.

Back to top

Creating DataBrowser Controls

This section discusses about how you can create and initialize a new DataBrowser control inside of your application. Basic
structures and operations for adding columns and rows to a browser control are discussed. The structures used to define

columns allow your application to provide columns that utilize any of the pre-defined display types such as checkboxes,
menus, icons, or text, while at the same time allowing you to design your own presentation mechanisms used when drawing
columns. illustrates how an application would add a column to a browser control.Listing 1

DataBrowser controls can be created using the routine. Once a control has been created,
applications can proceed to install their own custom callback routines, columns, and rows.

CreateDataBrowserControl

The CreateDataBrowserControl routine.

 OSStatus CreateDataBrowserControl(
 window,

 const Rect *boundsRect,
 DataBrowserViewStyle style,

 *outControl);

WindowRef

ControlRef

 - the window where the control should be placed.window

 - location where the control should appear in the window.boundsRect

 - the view style that should be used when the control is drawn. Currently, the only view
styles defined are and . This
document's primary focus is the type.

style
kDataBrowserListView kDataBrowserColumnView

kDataBrowserListView

 - if the control has been successfully created, then it will be returned in the
location referenced by this parameter.
outControl

When an application is finished with a DataBrowser control, it can call to release the memory
occupied by the control. If an application has allocated any special UPPs for use in the DataBrowser control, then it should
de-allocate these after disposing of all of the DataBrowser controls where they were installed.

DisposeControl

Back to top

Defining Columns

Columns have both a unique number associated with them along with information governing the appearance of
the information displayed in the column. This information is specified by an application in a

 structure. It is the application's responsibility to fill in all of the fields in this
structure before providing it to a DataBrowser control.

Property ID

DataBrowserListViewColumnDesc

The DataBrowserListViewColumnDesc Structure

enum {
 kDataBrowserListViewLatestHeaderDesc = 0
};

typedef struct
;

typedef struct DataBrowserListViewColumnDesc
 DataBrowserListViewColumnDesc;

typedef struct
 DataBrowserTableViewColumnDesc;

struct DataBrowserListViewColumnDesc {
 DataBrowserTableViewColumnDesc propertyDesc;

 headerBtnDesc;
};

struct {
 propertyID;
 propertyType;
 propertyFlags;

};

struct {
 UInt32 version; /* Use kDataBrowserListViewLatestHeaderDesc */

DataBrowserListViewHeaderDesc
DataBrowserListViewHeaderDesc

DataBrowserPropertyDesc

DataBrowserListViewHeaderDesc

DataBrowserPropertyDesc
DataBrowserPropertyID
DataBrowserPropertyType
DataBrowserPropertyFlags

DataBrowserListViewHeaderDesc

 UInt16 minimumWidth;
 UInt16 maximumWidth;

 SInt16 titleOffset;
 titleString;

 initialOrder;
 btnFontStyle;

 btnContentInfo;
};

CFStringRef
DataBrowserSortOrder
ControlFontStyleRec
ControlButtonContentInfo

. This field contains information about the property attached to the column. See
the description of the type for more information.
propertyDesc

DataBrowserPropertyDesc

. This field contains information about the appearance of the column heading.
See the description of the type for more information.
headerBtnDesc

DataBrowserListViewHeaderDesc

The DataBrowserPropertyDesc sub-record

The contains information about the associated with the column described in
the . Specific values that can be stored in this structure are described in the
following.

DataBrowserPropertyDesc Property ID
DataBrowserListViewColumnDesc

The DataBrowserPropertyDesc Structure

typedef struct DataBrowserPropertyDesc
 DataBrowserTableViewColumnDesc;

struct DataBrowserPropertyDesc {
 propertyID;

 DataBrowserPropertyType propertyType;
 propertyFlags;

};

DataBrowserPropertyID

DataBrowserPropertyFlags

. This field contains a 32-bit integer value that uniquely identifies this column. It
is the that your application uses to identify the column. This
number will also be used by the DataBrowser to identify the column in callbacks to your
application. The DataBrowser interfaces use the type for
Property ID values.

propertyID
Property ID Property ID

DataBrowserPropertyID

. This field contains a 32-bit value that indicates the type of data that
is to be displayed in the column. At the time of this writing, permissible values for use in this
field are as follows:

propertyType OSType

 - No associated data type; used.kDataBrowserCustomType custom callbacks

 - , , and .kDataBrowserIconType IconRef IconTransformType RGBColor

 - for displaying text.kDataBrowserTextType CFStringRef

 - or .kDataBrowserDateTimeType DateTime LongDateTime

 - .kDataBrowserCheckboxType ThemeButtonValue

 - Min, Max, and Value.kDataBrowserProgressBarType

 - Min, Max, and Value.kDataBrowserRelevanceRankType

 - Min, Max, and Value.kDataBrowserSliderType

 - displays pop-up menus.kDataBrowserpop-upMenuType MenuRef

 - and together as icons
with text.
kDataBrowserIconAndTextType IconRef CFStringRef

. This field contains a 32-bit integer value of type
 containing flags controlling the display or interaction

provided by this column. The following constants define mask values that can be used to set
particular flags in this field. All unused bits in this field are currently reserved for future use.

propertyFlags
DataBrowserPropertyFlags

 - this constant contains the default
property flags that should be used to initialize the field if no other
flags are required.

kDataBrowserDefaultPropertyFlags
propertyFlags

 - this flag is only used if the
field is set to the constant . When this flag is specified,
date values close to the current date will be displayed as relative dates.

kDataBrowserRelativeDateTime propertyType
kDataBrowserDateTimeType

 - this flag may be set if the values being
displayed in the column can be changed. If an application specifies this flag, then the
application must also provide a callbacks that allow the DataBrowser to both retrieve and
store data values displayed in this column.

kDataBrowserPropertyIsEditable

The DataBrowser requires the flag to be set in order to
enable editing of any changeable display type (namely checkboxes, pop-up menus, etc). Be sure
your application is setting the flag when defining
columns containing checkboxes, menus, and so forth.

Note:
kDataBrowserPropertyIsEditable

kDataBrowserPropertyIsEditable

The DataBrowserListViewHeaderDesc sub-record

 contains a number of fields describing the appearance of the column's title.
Specific contents of the fields in the structure are as follows:
DataBrowserListViewHeaderDesc

The DataBrowserListViewHeaderDesc Structure

struct DataBrowserListViewHeaderDesc {
 UInt32 version; /* Use kDataBrowserListViewLatestHeaderDesc */

 UInt16 minimumWidth;
 UInt16 maximumWidth;

 SInt16 titleOffset;
 titleString;

 initialOrder;
 btnFontStyle;

 btnContentInfo;
};

CFStringRef
DataBrowserSortOrder
ControlFontStyleRec
ControlButtonContentInfo

. The version field identifies the format of the structure. You should always set this
field to the value .
version

kDataBrowserListViewLatestHeaderDesc

. For resizable columns, this field contains the smallest width that the
column can be resized to. If the column is not resizable, then should be set to
the same value as .

minimumWidth
minimumWidth

maximumWidth

. For resizable columns, this field contains the largest width that the column
can be resized to. If the column is not resizable, then should be set to the
same value as .

maximumWidth
maximumWidth

minimumWidth

. This field contains an offset in pixels from the left side of the title column where
the title text will be drawn. Both the and the fields dictate
the alignment and offset (inset by default) of the content of the column when displaying one of
the pre-defined content types.

titleOffset
titleAlignment titleOffset

. This field contains the text that is to be drawn as the column's titled.
may be to indicate that no string is to be displayed.

titleString
titleString NULL

. This field contains a value of type .
 is the initial sort ordering presentation for the column when that column is

the current sort column. Once the DataBrowser is visible, the user may change this via direct
manipulation. Setting this value to anything other than
will map to . may be assigned one of
the following values:

initialOrder DataBrowserSortOrder
initialOrder

kDataBrowserOrderDecreasing
kDataBrowserOrderIncreasing initialOrder

 - this value is currently not supported.kDataBrowserOrderUndefined

 - means this column is to be sorted in ascending
order.
kDataBrowserOrderIncreasing

 - means this column is to be sorted in descending
order.
kDataBrowserOrderDecreasing

. Contains a structure of type . This
structure describes the contents of the column heading and how it should be drawn. Only text-
only and (& text) are supported.

btnContentInfo ControlButtonContentInfo

IconRef

. This field contains a structure of type that defines
the text style used for the column heading.
btnFontStyle ControlFontStyleRec

Installing Columns

Once an application has initialized the structure with all of the values it
requires, then the application can install the column in a DataBrowser control by calling the

 routine.

DataBrowserListViewHeaderDesc

AddDataBrowserListViewColumn

The AddDataBrowserListViewColumn routine

 OSStatus AddDataBrowserListViewColumn(
 browser,

 *columnDesc,
 UInt32 position);

ControlRef
DataBrowserListViewColumnDesc

 - a DataBrowser control created by the routine.browser CreateDataBrowserControl

 - a record of type with all of its fields
initialized to their appropriate values.
columnDesc DataBrowserListViewColumnDesc

 - refers to the position among the columns that are already installed in the
DataBrowser where this column should be inserted. To insert this column to the right of all
other columns, provide a very large value such as .

position

ULONG_MAX

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful. will be returned if the
record is not formatted correctly.

noErr
paramErr columnDesc

The routine assumes that the has been
set up by your application to describe the column being added to the list. The application must set all of the fields in this
record, including the reserved fields (that must be set to) before calling .

provides an example showing how you would go about adding a new column to a DataBrowser control.

AddDataBrowserListViewColumn DataBrowserListViewColumnDesc

-1 AddDataBrowserListViewColumn
Listing 1

. Adding a new column to a DataBrowser control.Listing 1

 columnDesc;

columnDesc.propertyDesc.propertyID = kCheckboxColumn;
columnDesc.propertyDesc.propertyType = ;
columnDesc.propertyDesc.propertyFlags = ;

columnDesc.headerBtnDesc.minimumWidth = 30;
columnDesc.headerBtnDesc.maximumWidth = 30;

columnDesc.headerBtnDesc.titleAlignment = teCenter;

columnDesc.headerBtnDesc.titleFontTypeID = kControlFontViewSystemFont;
columnDesc.headerBtnDesc.titleFontStyle = normal;
columnDesc.headerBtnDesc.titleOffset = 0;

columnDesc.titleString = CFStringCreateWithPascalString(
 CFAllocatorGetDefault(), "\p", kCFStringEncodingMacRoman);

(a_browser, &columnDesc, ULONG_MAX),

DataBrowserListViewColumnDesc

kDataBrowserCheckboxType
kDataBrowserDefaultPropertyFlags

AddDataBrowserListViewColumn

In this example, the column being added to the browser control will be a fixed-width column containing checkboxes. All of
the user interactions related to those checkboxes will be handled automatically be the browser control.

Back to top

Installing Rows

Adding rows to a DataBrowser control is simply a matter of providing a list of numbers that you would like to Data ID

display in the control. Routines for adding rows are described in the section below.Providing Data

Back to top

Providing and Ordering Your Data

As discussed earlier, the DataBrowser control itself does not store any of the data displayed in the list. The data itself is
provided by your application's routine that you provide in the structure.
Internally, though, the DataBrowser stores 32-bit key values that it passes to your routine that your
application can use to retrieve the data being requested. illustrates how your should translate
these ID numbers to look up and data values as requested by the DataBrowser. This section describes routines your
application can use to provide and modify the Data ID values being used by the DataBrowser control for displaying data.

clientDataCallback DataBrowserCallbacks
clientDataCallback

Listing 6 clientDataCallback

Providing Data

The and routines can be used to modify the list of
values that are being displayed in the list. In addition, by using ' parameter, an
application can construct a hierarchical list of items that can be displayed with turn-down arrows. For more information
about routines available for managing hierarchical lists, see the section section.

AddDataBrowserItems RemoveDataBrowserItems Data ID
AddDataBrowserItems container

Managing Hierarchical Lists

The AddDataBrowserItems routine.

 OSStatus AddDataBrowserItems(
 browser,

 container,
 UInt32 numItems,
 const *items,

 preSortProperty);

ControlRef
DataBrowserItemID

DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - if the items being installed are sub-items of another data element already
installed in the browser control, then this parameter should contain the of that data
element. Otherwise, if the items have no parent data element, then you can provide the constant

 as this argument. The parameter can be used to
construct hierarchical lists for display. adding an item to a container item will have
the side effect of opening that container item.

container
Data ID

kDataBrowserNoItem container
NOTE:

 - the number of items in the array pointed to by the items parameter.numItems

 - points to an array of unsigned long integers containing the numbers of items
that are to be added. If is set to , then the data browser will automatically
generate and add the numbers 1, 2, ..., to the browser control.

items Data ID
Note: items NULL
Data ID numItems

 - If the array of items have been sorted according to the sorting order
currently in use in one of the columns in the list being displayed, then you can use this
parameter to reference this column. This will allow the DataBrowser to skip the sorting step
if the values are already in the correct order.

preSortProperty

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

If the new items being added to the browser control will appear in the visible part of the list, then they will be drawn to the
screen. Applications constructing hierarchical lists must proceed in a top-down fashion when installing the Data IDs in
the browser control. Once a has been installed in a browser control, it is possible to associate a list of Data ID
numbers with it as sub-items.

Data ID

Adding items to an existing item (as the parent) means that the specified parent item must be
classified as a container. This means that when the DataBrowser asks for the

 of the specified parent item, the answer must be
. If your application does not provide this condition, then the call

will fail.

IMPORTANT:

kDataBrowserItemIsContainerProperty
true AddDataBrowserItems

 illustrates some possible ways you can go about adding a sequence of numbers to a browser control. Of
course, the numbers you decide to use in your application will depend on what is most appropriate for the particular data
set you are trying to display.

Listing 2 Data ID

. Adding a sequence of Data IDs (rows) to a browser control.Listing 2

#define kMyItemCount 22

 newitems[kMyItemCount];
 long i;

 /* add a bunch of generated ID
 numbers to the control */
 for (i = 0; i < kMyItemCount; i++) {
 /* Make some arbitrary ID value. The only
 requirement is that it be unique. */
 newitems[i] = (i<<12) + (4095 ^ i);
 }

(mybrowser, ,
 kMyItemCount, items,);

 /* instead of indexes or codes, let's use
 picture references. Of course, we're assuming we
 have a resource file set up with picture resources
 128, 129, ... */
 for (i = 0; i < kMyItemCount; i++) {
 newitems[i] = () GetResource('PICT', i+128);
 if (newitems[i] == NULL) { err = resNotFound; goto bail; }
 }

(some_other_browser, ,
 kMyItemCount, items,);

 /* let's just use the numbers 1, 2, ..., kMyItemCount. We
 only have kMyItemCount items to display, so why not just
 number them from 1 to kMyItemCount. In this case, we don't
 need to provide an array of ID numbers - the browser will
 generate them the ID numbers for us. */

(yet_another_browser, ,
 kMyItemCount, NULL,);

DataBrowserItemID

AddDataBrowserItems kDataBrowserNoItem
kDataBrowserItemNoProperty

DataBrowserItemID

AddDataBrowserItems kDataBrowserNoItem
kDataBrowserItemNoProperty

AddDataBrowserItems kDataBrowserNoItem
kDataBrowserItemNoProperty

The RemoveDataBrowserItems can be used to remove Data IDs from the list of numbers internally maintained by
the DataBrowser. If one of the Data IDs you provide refers to a container item that has a number of sub items, then those
sub-items will be removed from the list as well.

Data ID

The RemoveDataBrowserItems routine.

 OSStatus RemoveDataBrowserItems(
 browser,

 container,
 UInt32 numItems,
 const *items,

 preSortProperty);

ControlRef
DataBrowserItemID

DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - if the items being removed are sub-items of another data element already
installed in the browser control, then this parameter should contain the of that data
element. Otherwise, if the items have no parent data element, then you can provide the constant

 as this argument.

container
Data ID

kDataBrowserNoItem

 - the number of items in the array pointed to by the items parameter.numItems

 - points to an array of unsigned long integers containing the numbers of items
that are to be removed. If this parameter is set to , then all of the items will be removed.
If this parameter is , then all of the items in the container item referenced by the

 parameter will be removed. If is , then the numItems parameter is
ignored.

items Data ID
NULL

NULL
container items NULL

 - if the array of items has already been sorted, then set this parameter to
the of the column that has the same sorting order.
preSortProperty

Property ID

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The , the , and the routines
can be used to walk through the Data IDs your application has installed for the DataBrowser control.

GetDataBrowserItems GetDataBrowserItemCount ForEachDataBrowserItem

The GetDataBrowserItems routine.

 OSStatus GetDataBrowserItems(
 browser,

 container,
 Boolean recurse,

 state,
 Handle items);

ControlRef
DataBrowserItemID

DataBrowserItemState

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - to obtain a list of items displayed at the top level of the control's display, provide
the constant . Otherwise, to obtain a list of items that are organized
as sub-items of a container item, provide the container item's .

container
kDataBrowserNoItem

Data ID

 - When this parameter is true, will return a flattened
list of all of the data IDs stored in the DataBrowser as sub-items of container parameter. The
list will be created using a in-order traversal of the hierarchy maintained internally
by the DataBrowser.

recurse GetDataBrowserItems

Data ID

 - When this field is non-zero, only items with this state will be incorporated into the
result.
state

 - should contain a new zero-length handle. Upon return, the contents of this handle will
be set to contain an array of numbers for the items that match the criteria provided
by other parameters.

items
Data ID

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 is a powerful routine for gathering information about the items being displayed in a
DataBrowser during user interaction sequences. For example, to obtain a list of all of the selected items in a list, your
application would call the as shown in . The example to in

 calculates both the number of items in the selection and it creates a list of the Data ID numbers in the selection. If
your application is only interested in determining the number of items in the selection (and not the Data IDs of those
items), then you should use the routine as shown in .

GetDataBrowserItems

GetDataBrowserItems Listing 3 GetDataBrowserItems
Listing 3

GetDataBrowserItemCount Listing 4

. Obtaining a list of all of the selected items in a browser control.Listing 3

 Handle selectedItems;
 OSStatus err;
 UInt32 selectionCount;
 selectedItems = NewHandle(0);
 if (selectedItems == NULL) { err = memFullErr; goto bail; }
 err = (browser,

, /* start searching at the root item */
 true, /* recursively search all subitems */

, /* only return selected items */
 selectedItems);
 if (err != noErr) goto bail;
 selectionCount = (GetHandleSize(selectedItems) /
 sizeof());

GetDataBrowserItems
kDataBrowserNoItem

kDataBrowserItemIsSelected

DataBrowserItemID

This is a one-step call that provides a complete list of all of the items the user has highlighted in the browser control.

Note:

When the parameter to the is set to , the routine will
flatten an entire hierarchy into a single vector of numbers, but, when it does so, it does not
encode any information about that hierarchy into the list of returned numbers. If your
application requires the sort of functionality where it would like to save and restore a hierarchy of
Data IDs as they are displayed in a DataBrowser control, then you should build that functionality
yourself using combinations of the routines described in this section.

recurse GetDataBrowserItems true
Data ID

Data ID

The GetDataBrowserItemCount routine.

 OSStatus GetDataBrowserItemCount(
 browser,

 container,
 Boolean recurse,

 state,
 UInt32 *numItems);

ControlRef
DataBrowserItemID

DataBrowserItemState

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - to obtain a list of items displayed at the top level of the control's display, provide
the constant . Otherwise, to obtain a list of items that are organized
as sub-items of a container item, provide the container item's .

container
kDataBrowserNoItem

Data ID

 - When this parameter is true, will return the
number of all of the data IDs stored in the DataBrowser as sub-items of container parameter.
recurse GetDataBrowserItemCount

 - When this field is non-zero, only items with this state will be counted.state

 - The total number of items found is returned in the unsigned 32-bit integer
referenced by this parameter.
numItems

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The routine is useful for performing quick inquiries about the state of the items being
displayed in a browser control. For example, illustrates how you could go about finding out how many items are
selected in the browser control. This routine provides a fast efficient mechanism for an application to perform such
inquiries.

GetDataBrowserItemCount
Listing 4

. Counting the number of selected rows in a browser control.Listing 4

 UInt32 selectionCount;
 OSStatus err;
 err = (myBrowserControl,

, /* start searching at the root item */
 true, /* recursively search all subitems */

, /* only return selected items */
 &selectionCount);
 if (err != noErr) goto bail;
 if (selectionCount > 0) { ...

GetDataBrowserItemCount
kDataBrowserNoItem

kDataBrowserItemIsSelected

For enumerating the numbers stored in a DataBrowser control or performing some operation for each of those
items, your application can use the routine. One of the parameters to this routine is a
callback procedure that will be called for each of the numbers referenced by the other parameters to this routine.

Data ID
ForEachDataBrowserItem

Data ID

The ForEachDataBrowserItem routine.

typedef void (*DataBrowserItemProcPtr)(
 item,

 state,
 SInt32 clientData);

 typedef DataBrowserItemProcPtr DataBrowserItemUPP;

 OSStatus ForEachDataBrowserItem(
 browser,

DataBrowserItemID
DataBrowserItemState

ControlRef

 container,
 Boolean recurse,

 state,
 DataBrowserItemUPP callback,
 SInt32 clientData);

DataBrowserItemID

DataBrowserItemState

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - to have your callback called for all of the items displayed at the top level of the
control's display, provide the constant . Otherwise, to have your
callback called for all of the items that are organized as sub-items of a container item, provide
the container item's .

container
kDataBrowserNoItem

Data ID

 - When this parameter is true, will call the
callback routine for all of the data IDs stored in the DataBrowser as sub-items of container
parameter.

recurse ForEachDataBrowserItem

 - When this field is non-zero, only items with this state will be counted.state

 - a UPP referencing your callback routine. The
declaration above shows how this routine should be defined in your application. This routine
will be called for every currently stored in the browser control matching the criteria
you provide in the other parameters.

callback DataBrowserItemProcPtr

Data ID
ForEachDataBrowserItem

 - this is a reference value passed through to your callback routine. Its contents
are defined by the application.
clientData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The routine is especially useful for situations where you would like to enumerate and
perform some operation on some set of Data ID numbers. illustrates how your application could use the

 to perform some additional filtering when selecting Data ID numbers.
 is a powerful routine that allows your application to perform complex inquiries about the

Data IDs stored in a data browser control; however, before calling this routine for all of the inquiry operations required
by your application you should consider whether it would be more appropriate to call either or

.

ForEachDataBrowserItem
Listing 5

ForEachDataBrowserItem
ForEachDataBrowserItem

GetDataBrowserItems
GetDataBrowserItemCount

. Enumerating and acting on certain items in the selection.Listing 5

static Handle gCollector = NULL;
OSStatus gCoStatus = noErr;

/* in our item callback routine, we add any of the items
that satisfy some interesting criteria to the list of
data ID numbers we are accumulating in the handle
referenced by the global variable gCollector. */
static void MyDataBrowserItemProc(item,

 state, SInt32 clientData) {
 if (gCoStatus == noErr && clientData == 'Yeah') {
 if (SatisfiesSomeInterestingCriteria(item)) {
 gCoStatus = PtrAndHand(&item, gCollector, sizeof(item));
 }
}
}

....
 OSStatus err;
 DataBrowserItemUPP myItemProc;
 UInt32 selectionCount;

 gCoStatus = noErr;
 gCollector = NewHandle(0);
 if (gCollector == NULL) { err = memFullErr; goto bail; }

 /* set up our callback's routine descriptor */
 myItemProc = NewDataBrowserItemUPP(MyDataBrowserItemProc);
 if (myItemProc == NULL) { err = memFullErr; goto bail; }

 /* call our callback routine for every item that
 is currently a member of the selection. */
 err = (any_old_browser,

, /* start searching at the root item */

DataBrowserItemID
DataBrowserItemState

ForEachDataBrowserItem
kDataBrowserNoItem

 true, /* recursively search all subitems */
, /* call it for selected items */

 myItemProc, /* a reference to our callback */
 'Yeah'); /* our arbitrary and private parameter */
 if (err != noErr) goto bail;
 if ((err = gCoStatus) != noErr) goto bail;
 selectionCount = (GetHandleSize(selectedItems) /
 sizeof());

kDataBrowserItemIsSelected

DataBrowserItemID

To discover the state of a particular item, your application can call the routine. Using
this routine your application can find out if a cell is selected or if a container cell has been opened (i.e., the turn-down
arrow is in the down position).

GetDataBrowserItemState

The GetDataBrowserItemState routine.

 OSStatus GetDataBrowserItemState(
 browser,

 item,
 DataBrowserItemState *state);

ControlRef
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the row you are interested in. As discussed later in the
 section, the DataBrowser provides facilities for selecting and highlighting entire

rows of data, but it does not provide any facilities for selecting individual cells within rows.

item Data ID NOTE: Selection
Handling

 - various combinations of the following flags:state

 - has no state associated with it at this time.kDataBrowserItemNoState

 - is a member of the current selection.kDataBrowserItemIsSelected

 - disclosure open.kDataBrowserContainerIsOpen

 - Only true during a drag operation.kDataBrowserItemIsDragTarget

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Ordering Data

There are two sides to ordering the data displayed by the DataBrowser control. First, your application must provide a way
for the DataBrowser to compare items referenced by numbers based with a common number. That is
to say, your application must provide a method for comparing rows based on values displayed in particular columns. Your
application can do this by providing a comparison callback routine in the field of the

 structure. For more information providing a comparison routine, please refer to that section.

Data ID Property ID

compareCallback
DataBrowserCallbacks

The other side of ordering the data displayed by the DataBrowser is telling the browser control which column should be
used for sorting and in what order items should be presented (ascending or descending). For the most part, your
application should leave these settings up to the user. However, in situations where you would like to sort the values
displayed in the DataBrowser control explicitly, the following routines have been provided.

The sorting routine used by the DataBrowser is non destructive and it preserves the ordering of
elements that are equal across sorts. This means that if the list displayed is sorted based on column
1, and then you sort using column 2 and all of the Data IDs in column 2 map to the same value, then
the order of the list will not change.

Note:

 can be used to explicitly set the sorting order for the list. If the list has not been sorted
or the sorting order requested is not in effect, then the list with be sorted and re-drawn using the new sorting order. To
find out what sorting order is currently in effect, your application can call the routine.

SetDataBrowserSortOrder

GetDataBrowserSortOrder

The SetDataBrowserSortOrder routine.

 OSStatus SetDataBrowserSortOrder(
 browser,

 order);
ControlRef
DataBrowserSortOrder

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - this parameter should be set to one of the three following constant values:order

 - not supported.kDataBrowserOrderUndefined

 - ascending order.kDataBrowserOrderIncreasing

 - descending order.kDataBrowserOrderDecreasing

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserSortOrder routine.

 OSStatus GetDataBrowserSortOrder(
 browser,

 *order);
ControlRef
DataBrowserSortOrder

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - see the description of for the different values that
can be returned in the variable pointed to by this parameter.
order SetDataBrowserSortOrder

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

To designate a column that is used for the sorting operation, your application call
with the column's associated number. If the list is not currently sorted or if the list is currently sorted with
a different column, then the list will be resorted and re-drawn. The can be used to
discover the number of the column currently being used for sorting the list.

SetDataBrowserSortProperty
Property ID

GetDataBrowserSortProperty
Property ID

The SetDataBrowserSortProperty routine.

 OSStatus SetDataBrowserSortProperty(
 browser,

 property);
ControlRef
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the column used to sort the list.property Property ID

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserSortProperty routine.

 OSStatus GetDataBrowserSortProperty(
 browser,

 *property);
ControlRef
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the column being used to sort the list will be stored in the
variable pointed to by this parameter.
property Property ID

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The routine can be used to sort hierarchical lists of items. For information about
setting up a hierarchical list, refer to the section.

SortDataBrowserContainer
Managing Hierarchical Lists

The SortDataBrowserContainer routine.

 OSStatus SortDataBrowserContainer(
 browser,

 container,
 Boolean sortChildren);

ControlRef
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - to sort all of the items displayed at the top level of the control's display, provide
the constant . Otherwise, sort all of the items that are organized as
sub-items of a container item, provide the container item's .

container
kDataBrowserNoItem

Data ID

 - if this parameter is true, then all of the sub-items and sub-containers
organized within the container will be sorted.
sortChildren

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

DataBrowser Callback Routines

As discussed in the preliminary section discussing callbacks, ,
the DataBrowser control calls back to your application at key points during its execution either to request information
from your application or to notify your application of changing conditions. As the DataBrowser control was designed to
support many varied and complex scenarios of deployment, there are a large number of callback routines that your
application can provide. Keep in mind, though, it is not necessary for an application to provide its own definition for each
callback - only the ones actually required by an application need to be defined.

"You call the DataBrowser, the DataBrowser calls you...."

The DataBrowserCallbacks Structure

The structure is the structure your application must use to provide references to the
routines it would like the DataBrowser control to use when asking your application for information or notifying your
application about changing conditions. At the very least, your application must define its own
routine, but keep in mind, the functionality of the list will improve as you add more routines.

DataBrowserCallbacks

clientDataCallback

struct {
 UInt32 version; /* use kDataBrowserLatestCallbacks */
 union {
 struct {
 DataBrowserGetSetItemDataUPP ;
 DataBrowserCompareUPP ;

 DataBrowserItemNotificationUPP ;

 DataBrowserAddDragItemUPP ;
 DataBrowserAcceptDragUPP ;
 DataBrowserReceiveDragUPP ;
 DataBrowserPostProcessDragUPP ;

 DataBrowserGetHelpContentUPP ;
 DataBrowserGetContextualMenuUPP ;
 DataBrowserSelectContextualMenuUPP ;

DataBrowserCallbacks

clientDataCallback
compareCallback

itemNotificationCallback

addDragItemCallback
acceptDragCallback
receiveDragCallback

postProcessDragCallback

getHelpContentCallback
contextualMenuCallback

selectContextMenuCallback

 } v1;
 } u;
};

The client data callback is used for communicating data between the DataBrowser and your
application. When the DataBrowser needs to display a value for a particular cell, it will call your

 to request the data. If the user changes the value for a particular cell, the DataBrowser will call
your with a new copy of the data that you should use to replace your application's internal copy.

clientDataCallback.

clientDataCallback
clientDataCallback

DataBrowserGetSetItemDataUPP - the Client Data Callback.

 typedef OSStatus (*DataBrowserGetSetItemDataProcPtr)(
 browser,

 item,
 property,

 DataBrowserItemDataRef itemData,
 Boolean setValue);

 typedef DataBrowserGetSetItemDataProcPtr
 DataBrowserGetSetItemDataUPP;

ControlRef
DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the data row whose data is being requested in this call.item Data ID

 - the to be used in conjunction with the to locate the cell
whose data is being requested in this call. This value uniquely identifies the column.
property Property ID Data ID

 - a pointer to the data or to a data buffer prepared to receive the data.itemData

 - if is true, then your callback should replace its current copy of the
value associated with (,) with the value pointed to by . If

 to , then your application should store a copy of the value associated with
 (,) to the buffer pointed to by .

setValue setValue
item property itemData

setValue false
item property itemData

Returns an operating system result code describing the success of the operation. Your callback
should return the result code if the operation was successful.noErr

The data callback routine is the place where your application provides a mapping between numbers used to
identify rows in the list, numbers used to identify columns, and the actual data that should be displayed in any
particular cell. The DataBrowser will call your data callback routine with a Data ID and a Property ID. Your data callback
routine should respond by either saving or returning the appropriate value depending on the state of the
parameter. a simple example of how your application could implement a data callback routine.

Data ID
Property ID

setValue
Listing 6

. Example data callback routine.Listing 6

 /* MySimpleDataCallback is a simple data callback routine
 that would be used in a browser control displaying a list
 of generic document icons together with a list of checkboxes.
 The checkbox column is a mutable column. */
OSStatus MySimpleDataCallback(

 browser,
 itemID,

 property,
 DataBrowserItemDataRef itemData,
 Boolean changeValue) {

 myIcon;
 OSStatus err;

 /* start with a known state */
 myIcon = NULL;

 /* look at the property ID and decide what to do
 depending on what column we're dealing with... */
 if (property == kMyCheckboxColumn) {
 ThemeButtonValue buttonValue;

ControlRef
DataBrowserItemID
DataBrowserPropertyID

IconRef

 /* are we being asked to change the value
 we have in our own store or are we being
 asked to retried the value? You'll only
 have ask this question for mutable columns. */
 if (changeValue) {

 err = (itemData,
 &buttonValue);
 if (err != noErr) goto bail;

 /* NOTE: our internal storage lookup mechanism must
 map itemID numbers to the values stored for each
 button in the list. */
 err = StoreTheValueSomewhere(itemID, buttonValue);
 if (err != noErr) goto bail;

 } else {

 err = GetTheButtonValueFromSomewhere(itemID, &buttonValue);
 if (err != noErr) goto bail;

 err = (itemData,
 buttonValue);
 if (err != noErr) goto bail;
 }

 } else if (property == kMyIconOnlyColumn) {

 /* if the column is not mutable, then we
 can safely assume we are only being asked
 to retrieve the value. */
 err = (kOnSystemDisk, kSystemIconsCreator,
 kGenericDocumentIcon, &myIcon);
 if (err != noErr) goto bail;

 err = (itemData, myIcon);
 if (err != noErr) goto bail;

 ReleaseIconRef(myIcon);
 myIcon = NULL;

 } else {
 err = errDataBrowserPropertyNotSupported
 goto bail;
 }

 return noErr;

bail:
 if (myIcon != NULL) ReleaseIconRef(myIcon);
 return err;
}

GetDataBrowserItemDataButtonValue

SetDataBrowserItemDataButtonValue

GetIconRef

SetDataBrowserItemDataIcon

This routine will be called by the DataBrowser when it is ordering the values displayed in a column.
Your application should provide a comparison for all of the every property type your application presents that is capable
of being sorted.

compareCallback.

 typedef Boolean (*DataBrowserCompareProcPtr)(
 browser,

 itemOne,
 itemTwo,

 sortProperty);

 typedef DataBrowserCompareProcPtr DataBrowserCompareUPP;

ControlRef
DataBrowserItemID
DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the first row to be used in the comparison.itemOne Data ID

 - the of the second row to be used in the comparison.itemTwo Data ID

 - the number for the column being sorted.sortProperty Property ID

Your application's callback should return if the value of the data referenced by is
less than the value of the data referenced by , and it should return should return
if the value of the data referenced by is greater than or equal to the value of the data
referenced by . The comparison should only consider the values being displayed in the
column referenced by the in . Sorting is stable, so you can use
secondary and tertiary sorting. Each time a user clicks a column, the column will be sorted, but the
sort order of matching items will be preserved.

true itemOne
itemTwo false

itemOne
itemTwo

Property ID sortProperty

The item notification callback routine will be called by the DataBrowser to notify your
application of interesting conditions that it may wish to respond to. The kinds of conditions that your application will be
notified of are enumerated and defined in .

itemNotificationCallback.

Table 1

 typedef void (*DataBrowserItemNotificationProcPtr)(
 browser,

 item,
 DataBrowserItemNotification message);

 typedef DataBrowserItemNotificationProcPtr
 DataBrowserItemNotificationUPP;

ControlRef
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the row being identified by this call.item Data ID

 Possible values for this parameter are described in . message Table 1

 Notifications provided by the browser control.Table 1.

Constant Name Description

kDataBrowserItemAdded The specified item has been added to the browser.

kDataBrowserItemRemoved The specified item has been removed from the browser.

kDataBrowserEditStarted Starting an EditText session for specified item.

kDataBrowserEditStopped Stopping an EditText session for specified item.

kDataBrowserItemSelected Item has just been added to the selection set.

kDataBrowserItemDeselected Item has just been removed from the selection set.

kDataBrowserItemDoubleClicked The user double clicked on an item.

kDataBrowserContainerOpened Container has been opened.

kDataBrowserContainerClosing Container is about to close.

kDataBrowserContainerClosed Container has been closed.

kDataBrowserContainerSorting
Container is about to be sorted (lock any volatile
properties).

kDataBrowserContainerSorted
Container has been sorted (you may release any property
locks).

kDataBrowserTargetChanged The target has changed to the specified item.

kDataBrowserUserStateChanged The user has reformatted the view for the target.

kDataBrowserSelectionSetChangedThe selection set has been modified (net result may be
the same).

 Once the DataBrowser has determined it is beginning an outgoing drag, it iterates through all of
the selected items calling the . At this point, your application can add the items
drag inside of the routine. Your application's routine will be called

addDragItemCallback.
DataBrowserAddDragItemProcPtr

addDragItemCallback addDragItemCallback

after the has been created, but before is called. DataBrowser takes care of the imaging and
adds transparency for you, so there is no need to create or add your own transparency information to the drag reference.

DragReference TrackDrag

In this routine your application should add the item to the drag. Return from this routine to tell the DataBrowser to
add a transparent representation of the row to the drag image.

true

 typedef Boolean (*DataBrowserAddDragItemProcPtr)(
 browser,

 theDrag,
 item,

 *itemRef);

 typedef DataBrowserAddDragItemProcPtr DataBrowserAddDragItemUPP;

ControlRef
DragReference
DataBrowserItemID
ItemReference

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the drag reference being constructed by the DataBrowser.theDrag

 - this is the item ID of the item your application should add to the drag.item

 - this parameter is currently unused. You should set this parameter to point to an
 variable before calling this routine.

itemRef
ItemReference

If your callback returns , then the item will be added to the transparent drag image. If it
returns , it will not.

true
false

 As an incoming drag is moved over an item, this routine is called. If your routine returns ,
then the DataBrowser will draw the right highlighting and be prepared to receive a

 call.

acceptDragCallback. true

DataBrowserReceiveDragProcPtr

 typedef Boolean (*DataBrowserAcceptDragProcPtr)(
 browser,

 theDrag,
 item);

 typedef DataBrowserAcceptDragProcPtr DataBrowserAcceptDragUPP;

ControlRef
DragReference
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - a Drag Manager reference.theDrag

 - This is the item ID of the item the drag is being held over. If the drag is being held over
the list but not over any item, then item will contain the default target item ID for the list. The
default target item ID for the list is discussed in the section .

item

Setting the Root Container

Your callback should return if it is capable of accepting the drag in the location designated by
the item parameter.

true

 Your routine will be called to receive drags. In this routine, your
application should extract the items it needs from the drag and add them to the list in the location defined by the item
parameter.

receiveDragCallback. receiveDragCallback

 Boolean (*DataBrowserReceiveDragProcPtr) (
 browser,

 theDrag,
 item);

 typedef DataBrowserReceiveDragProcPtr
 DataBrowserReceiveDragUPP;

ControlRef
DragReference
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - a Drag Manager reference.theDrag

 - This is the item ID of the item the drag is being held over. If the drag is being held over
the list but not over any item, then item will contain the default target item ID for the list. The
default target item ID for the list is discussed in the section .

item

Setting the Root Container

Your callback should return if is successfully completes processing all of the information in true

the drag. Otherwise, it should return . If your callback returns , the zoom-back
animation will occur for the drag.

false false

Your application's routine will be called after a drag
command has been completed if any one of the drag processing callback routines you installed (,

, or) were called during the drag. Specifically, this routine will be
called if any one call to returns , and after all calls and

. Inside of your routine, your application should deallocate
any resources that were allocated when the other drag handlers were called. The will be
called immediately before the drag reference is deallocated by the DataBrowser so your application should not assume that
this structure will remain intact after this callback is made.

postProcessDragCallback. postProcessDragCallback
receiveDragCallback

acceptDragCallback addDragItemCallback
addDragItemCallback true acceptDragCallback

receiveDragCallback postProcessDragCallback
postProcessDragCallback

 typedef void (*DataBrowserPostProcessDragProcPtr)(
 browser,

 theDrag,
 OSStatus trackDragResult);

 typedef DataBrowserPostProcessDragProcPtr
 DataBrowserPostProcessDragUPP;

ControlRef
DragReference

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - a Drag Manager drag reference.theDrag

 - the result returned by trackDragResult TrackDrag

Returns an operating system result code describing the success of the operation. Your callback
should return the result code if the operation was successful.noErr

 - for Displaying Help Content.getHelpContentCallback

 typedef void (*DataBrowserGetHelpContentProcPtr)(
 browser,

 item,
 property,

 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent);

 typedef DataBrowserGetHelpContentProcPtr
 DataBrowserGetHelpContentUPP;

ControlRef
DataBrowserItemID
DataBrowserPropertyID

 - a Data Browser control created by a call to .browser CreateDataBrowserControl

 - the Data ID indentifying the row.item

 - the Property ID identifying the column.property

 - either or .inRequest kHMSupplyContent kHMDisposeContent

 - should be set to the content type provided in the record pointed to by
.

outContentProvided
ioHelpContent

 - a help content record containing the help information to be displayed.ioHelpContent

Returns an operating system result code describing the success of the operation. Your callback
should return the result code if the operation was successful.noErr

contextualMenuCallback.

 typedef void (*DataBrowserGetContextualMenuProcPtr)(
 browser,ControlRef

 *menu,
 UInt32 *helpType,

 *helpItemString,
 AEDesc *selection);

 typedef DataBrowserGetContextualMenuProcPtr
 DataBrowserGetContextualMenuUPP;

MenuRef

CFStringRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - Your callback should provide a in this parameter.menu MenuRef

 - set this variable to one of the values ,
, or . This value will be passed to

.

helpType kCMHelpItemNoHelp
kCMHelpItemAppleGuide kCMHelpItemOtherHelp
ContextualMenuSelect

 - The very first item that appears in the contextual menu. If you set this
value to , then the default "Help" string will be displayed.
helpItemString

Null

 - this will point to an empty and your callback should set this to your own
internal representation of the selection. This will be passed to .
selection AEDesc

ContextualMenuSelect

Returns an operating system result code describing the success of the operation. Your callback
should return the result code if the operation was successful.noErr

selectContextMenuCallback.

 typedef void (*DataBrowserSelectContextualMenuProcPtr)(
 browser,

 menu,
 UInt32 selectionType,
 SInt16 menuID,
 MenuItemIndex menuItem);

 typedef DataBrowserSelectContextualMenuProcPtr
 DataBrowserSelectContextualMenuUPP;

ControlRef
MenuRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the menu reference your application provided in its .menu contextualMenuCallback

 - returned from .selectionType ContextualMenuSelect

 - the menu ID of the menu selected. This field will be if no selection was made.menuID zero

 - the menu item number of the item selected.menuItem

Routines for managing the structureDataBrowserCallbacks

This section discusses operations on the structure as a whole; discussion of the meaning of its
constituent elements is provided later in this document. For your convenience, the field names listed above are linked to
those descriptions. In the simplest of cases, the is the only callback your application will need to
re-define.

DataBrowserCallbacks

clientDataCallback

Pointers to the callback routines used by a particular DataBrowser control can be accessed through the
 structure. The mechanism used for installing the callback routines for a Data Browser control

is analogous to the mechanism used for QuickDraw's routine: an application calls
 to set up a structure so it contains all of the standard

DataBrowser callback routines, then your application replaces the callbacks it wishes to customize with pointers to its own
routines.

DataBrowserCallbacks
SetStdProcs

InitDataBrowserCallbacks DataBrowserCallbacks

The InitDataBrowserCallbacks routine.

 OSStatus InitDataBrowserCallbacks(
* callbacks);DataBrowserCallbacks

 - a pointer to a structure. The version field of thecallbacks DataBrowserCallbacks

 structure must be set to the value
 before this routine is called.

DataBrowserCallbacks
kDataBrowserLatestCallbacks

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The routine initializes a structure so it contains
references to all of the default callback routines used by the DataBrowser control. After calling

, your application should replace the callback routines it wishes to customize with
references to its own routines.

InitDataBrowserCallbacks DataBrowserCallbacks

InitDataBrowserCallbacks

Once your application has installed references to its own callback routines in the structure, it
can install the new callbacks in a Data Browser control by calling the routine. This
routine replaces the structure currently being used by the control with the structure the
application provides as a parameter.

DataBrowserCallbacks
SetDataBrowserCallbacks

DataBrowserCallbacks

The SetDataBrowserCallbacks routine.

 OSStatus SetDataBrowserCallbacks(
 control,

 const *callbacks);
ControlRef

DataBrowserCallbacks

 - a DataBrowser control created by a call to .control CreateDataBrowserControl

 - a pointer to a structure.callbacks DataBrowserCallbacks

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

It is also possible to retrieve a copy of the structure that is currently being used by a
DataBrowser control. This can be done using the routine.

DataBrowserCallbacks
GetDataBrowserCallbacks

The GetDataBrowserCallbacks routine.

 OSStatus GetDataBrowserCallbacks(
 control,

 *callbacks);
ControlRef
DataBrowserCallbacks

 - a DataBrowser control created by a call to .control CreateDataBrowserControl

 - a pointer to a structure.callbacks DataBrowserCallbacks

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

When used in combination with the routine, provides a
mechanism in which an application can either temporarily override or replace one or more callbacks being used by a
DataBrowser control at particular points during processing.

SetDataBrowserCallbacks GetDataBrowserCallbacks

Back to top

Pre-defined Column Display Types

For convenience, the DataBrowser control provides a number of pre-defined display types that your application can use to
display different types of data. These are provided to reduce the coding overhead involved for displaying a number common
data types. Furthermore, facilities have been provided for developers who wish to provide their own display code for
drawing their data types in special ways.

 illustrates how you would go about creating a column of checkboxes for display in the DataBrowser. This was done Listing 1

by providing the as the property type in the
record passed to the routine. Columns that use any of the other pre-defined display
types can be created in the same way.

kDataBrowserCheckboxType DataBrowserListViewColumnDesc
AddDataBrowserListViewColumn

The DataBrowser requires the flag to be set in order to
enable editing of any changeable display type (namely checkboxes, pop-up menus, etc). Be sure
your application is setting the flag when defining
columns containing checkboxes, menus, and so forth.

Note:
kDataBrowserPropertyIsEditable

kDataBrowserPropertyIsEditable

The remaining parts of this section detail the various pre-defined display types provided by the DataBrowser. For
information about how to provide routines for doing your own drawing, refer to the section
that follows.

Custom Column Display Types

Back to top

Icons

To display a list of icons in a DataBrowser column, your application must define a property with the type
. Columns with the property type are used to display lists of

icons. For columns of this type, the DataBrowser control expects that your will provide an
referring to the icon that is to be drawn in a cell. It is also possible for your data callback routine to provide other
information used in drawing the icon such as a tint color and an icon transform type. Routines you can use for providing
this information are described in detail below.

kDataBrowserIconType kDataBrowserIconType
Data Callback Routine IconRef

The SetDataBrowserItemDataIcon routine

 OSStatus SetDataBrowserItemDataIcon (
 DataBrowserItemDataRef itemData,

 theData);IconRef

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - the icon reference for the icon that is to be displayed.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 should be called from inside of your to specify what icon is to
be drawn in a particular cell. This routine should only be called for columns that have been defined with either the

 property type or the property type. For more
information about s refer to the documentation.

SetDataBrowserItemDataIcon Data Callback Routine

kDataBrowserIconType kDataBrowserIconAndTextType
IconRef Icon Services

The SetDataBrowserItemDataIconTransform routine

 OSStatus SetDataBrowserItemDataIconTransform (
 DataBrowserItemDataRef itemData,

 theData);IconTransformType

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - the icon reference for the icon that is to be displayed.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 allows your application to specify that a special visual transformation is
to be applied to the icon when it is drawn. These transformations correspond to the various display states the Finder uses
when drawing icons.

SetDataBrowserItemDataIconTransform

The SetDataBrowserItemDataRGBColor routine

 OSStatus SetDataBrowserItemDataRGBColor (
 DataBrowserItemDataRef itemData,

 *theData);RGBColor

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - an RGB color record.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 allows your application to provide a color that will be used to tint the icon when
it is drawn. The effect provided by this facility is similar to the effect provided by the icon label transformation constants,
except this method allows your application to specify a specific color.

SetDataBrowserItemDataRGBColor

Back to top

Text

For displaying a list of textual strings, the DataBrowser defines the display type . When used,
this type tells the DataBrowser that the column is to be drawn as a list of Unicode-encoded strings. Core Foundation

s are used to represent the text data drawn in the column. Inside of your application's data callback routine,
call the routine to provide the text data that the DataBrowser is to display in the list.

kDataBrowserTextType

CFStringRef
SetDataBrowserItemDataText

The SetDataBrowserItemDataText routine

 OSStatus SetDataBrowserItemDataText (
 DataBrowserItemDataRef itemData,

 theData);CFStringRef

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a Core Foundation string reference.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 must be called from inside of an application's data callback routine when the cell
being drawing is inside of a column with either the property type or the

 property type. If the flag is set among
the for the column's property, then the text displayed in the column will be editable and
can be changed by the user. In these cases, your application can retrieve the modified text using the

 routine. The data browser will make its own internal copy of the
when this routine is called.

SetDataBrowserItemDataText
kDataBrowserTextType

kDataBrowserIconAndTextType kDataBrowserPropertyIsEditable
DataBrowserPropertyFlags

GetDataBrowserItemDataText CFStringRef

The GetDataBrowserItemDataText routine

 OSStatus GetDataBrowserItemDataText (
 DataBrowserItemDataRef itemData,

 *theData);CFStringRef

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a pointer to a location where a Core Foundation string reference will be returned.
On completion, this parameter will contain a newly created . Your application
must release this string reference once it is no longer needed.

theData
CFStringRef

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

If your data callback routine is called with the parameter set to , then that means that the text being
displayed in the cell referred to in the call has been modified. At that point, your application should call

 to retrieve the new text. Your application must release the once it is
no longer needed.

setValue true

GetDataBrowserItemDataText CFStringRef

Back to top

Icons with Text

To display a list of icons associated with text, your application must create a column with the property type
. After that, your application can use both the routines defined for icon columns and

the routines defined for text columns to define the contents for each cell.
kDataBrowserIconAndTextType

Back to top

Time

To display a list of date values, use the property type . Columns defined with this
property type are capable of date values returned by the date and time utilities routines. If the

 flag is specified among the for the column's
property, then the time will be displayed as a relative time value for times proximate to the current clock setting rather
than an absolute time value.

kDataBrowserDateTimeType

kDataBrowserRelativeDateTime DataBrowserPropertyFlags

The SetDataBrowserItemDataDateTime routine

 OSStatus SetDataBrowserItemDataDateTime (
 DataBrowserItemDataRef itemData,
 long theData);

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a 32-bit value representing the number of elapsed seconds elapsed since midnight
January 1, 1904.
theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 can be used to provide a 32-bit time value for display. The value displayed
should be encoded as the number of seconds elapsed since midnight January 1, 1904. For more information about date and
time encodings used in the Mac OS, refer to the documentation.

SetDataBrowserItemDataDateTime

Date and Time Measurement Utilities

The SetDataBrowserItemDataLongDateTime routine

 OSStatus SetDataBrowserItemDataLongDateTime (
 DataBrowserItemDataRef itemData,
 const *theData);LongDateTime

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a pointer to a 64-bit integer representing the number of seconds that have elapsed
since midnight January 1, 1904.
theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 can be used to provide a 64-bit time value for display. The valueSetDataBrowserItemDataLongDateTime

displayed should be encoded as the number of seconds elapsed since midnight January 1, 1904. For more information about
date and time encodings used in the Mac OS, refer to the documentation. Date and Time Measurement Utilities

If the flag has been set among the column's property flags, then the time will be
displayed as a relative time value for times proximate to the current clock setting.

kDataBrowserRelativeDateTime

checkboxes

Columns created with the property type will contain a list of checkboxes. Normally, to
allow editing, your application should set the flag among the

. Checkboxes displayed by the DataBrowser are capable of displaying three values defined
for the data type: , , . The
value displayed for the control is determined by the routine.

kDataBrowserCheckboxType
kDataBrowserPropertyIsEditable

DataBrowserPropertyFlags
ThemeButtonValue kThemeButtonOff kThemeButtonOn or kThemeButtonMixed

SetDataBrowserItemDataButtonValue

The SetDataBrowserItemDataButtonValue routine

 OSStatus SetDataBrowserItemDataButtonValue (
 DataBrowserItemDataRef itemData,
 ThemeButtonValue theData);

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a value representing the setting to display for the control.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

If the user has changed the value displayed by the control, then your callback routine will be called with the
parameter set to . At that point, your application can call the routine
to find out the new checkbox setting.

setValue
true GetDataBrowserItemDataButtonValue

The GetDataBrowserItemDataButtonValue routine

 OSStatus GetDataBrowserItemDataButtonValue (
 DataBrowserItemDataRef itemData,
 ThemeButtonValue *theData);

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a value representing the setting to display for the control.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Progress Indicators

To display a progress indicators in a column, your application must create a column with the property type
. Progress indicators are displayed using the standard appearance mercury/groove

visual analogy. Three values are used by the DataBrowser to determine the appearance of the progress indicators: the
minimum, maximum, and current value. Routines described in this section allow you to modify these values.

kDataBrowserProgressBarType

The SetDataBrowserItemDataValue routine

 OSStatus SetDataBrowserItemDataValue (
 DataBrowserItemDataRef itemData,

 SInt32 theData);

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a value representing the setting to display.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 sets the current value being displayed by the control. This value should be between
the minimum and maximum values specified by calling and

. Values displayed by a progress bar may vary inclusively between the minimum
and maximum values.

SetDataBrowserItemDataValue
SetDataBrowserItemDataMinimum

SetDataBrowserItemDataMaximum

The SetDataBrowserItemDataMinimum routine

 OSStatus SetDataBrowserItemDataMinimum (
 DataBrowserItemDataRef itemData,
 SInt32 theData);

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a value representing the minimum setting.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 determines the minimum bound for the values being displayed in the control.
Values displayed by a progress bar may vary inclusively between the minimum and maximum values.
SetDataBrowserItemDataMinimum

The SetDataBrowserItemDataMaximum routine

 OSStatus SetDataBrowserItemDataMaximum (
 DataBrowserItemDataRef itemData,
 SInt32 theData);

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a value representing the maximum setting.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 determines the maximum bound for the values being displayed in the control.
Values displayed by a progress bar may vary inclusively between the minimum and maximum values.
SetDataBrowserItemDataMaximum

Back to top

Relevance Rank

Relevance Ranks are drawn in a way similar to progress indicators using the familiar mercury/groove visual analogy.
Specifically, relevance ranks are drawn without the groove. Columns used to display relevance rankings are created with
the property type . Once your application has created a column for displaying
relevance rankings, the same routines used for setting values for progress indicators may be used to control its appearance.

kDataBrowserRelevanceRankType

Back to top

Pop-up Menus

Columns of pop-up menus can be created by adding new columns with the property
type. The routine can then be used to specify the menu that will be displayed as a
cell's pop-up menu.

kDataBrowserpop-upMenuType
SetDataBrowserItemDataMenuRef

The SetDataBrowserItemDataMenuRef routine

 OSStatus SetDataBrowserItemDataMenuRef (
 DataBrowserItemDataRef itemData,

 theData);MenuRef

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a menu reference designating the menu to display in the cell.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The routine can then be used to set the pop-up menu's value. When the user chooses
a command from one of your pop-up menus, your data callback routine will be called with the parameter set to

. At that time, your application can call the to determine the new value for the
pop-up menu.

SetDataBrowserItemDataValue
setValue

true GetDataBrowserItemDataValue

The GetDataBrowserItemDataValue routine

 OSStatus GetDataBrowserItemDataValue (
 DataBrowserItemDataRef itemData,
 SInt32 *theData);

 - the reference number that was passed to your .itemData itemData Data Callback Routine

 - a pointer to a 32-bit integer where the value should be stored.theData

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Defining Your Own Column Display Types

Columns created with the property type have no pre-defined display mechanism. It is
assumed that when such a column is created, the application will be providing the drawing routines used to display the
column. This section discusses the structures and routines an application uses to provide drawing routines for a custom
column.

kDataBrowserCustomType

Information presented in this section refers to the current state of these APIs. These APIs are
currently under review and are subject to change without notice. If you are using these APIs and you
have special requirements that they currently do not provide, then please feel free to and
let us know about your needs so we may give them consideration when we are looking at these APIs.

IMPORTANT

contact us

The DataBrowserCustomCallbacks Structure

For even greater control over the presentation of user interface elements displayed inside of DataBrowser views,
applications can use the structure. This structure provides callbacks for
implementing custom drawing and user interaction for special kinds of data an application displays.

DataBrowserCustomCallbacks

The DataBrowserCustomCallbacks Structure

struct DataBrowserCustomCallbacks {

 UInt32 version; /* use kDataBrowserLatestCustomCallbacks */

 union {
 struct {
 DataBrowserDrawItemUPP ;
 DataBrowserEditItemUPP ;
 DataBrowserHitTestUPP ;
 DataBrowserTrackingUPP ;

 DataBrowserItemDragRgnUPP ;
 DataBrowserItemAcceptDragUPP ;
 DataBrowserItemReceiveDragUPP ;
 } v1;
 } u;
};

/* Macro for initializing custom callback structure */
#define InitializeDataBrowserCustomCallbacks(callbacks, version) \
{ callbacks->version = version; \

(callbacks); }
and macro for setting version in the callbacks structure.

CustomDrawItemCallback
CustomEditTextCallback
CustomHitTestCallback
CustomTrackingCallback

CustomDragRegionCallback
CustomAcceptDragCallback
CustomReceiveDragCallback

InitDataBrowserCustomCallbacks

If your application would like to provide custom drawing for a column, it can do so by
providing its own . Whenever the DataBrowser needs to draw or redraw a cell in a custom
column, it will call this routine to draw the cell. When your is called the DataBrowser
will already have called and set the clipping region, the pen, and the font to appropriate settings for your
routine to begin drawing. Your drawing routine should not attempt to modify the clipping region, pen, port, or origin.

CustomDrawItemCallback.
CustomDrawItemCallback

CustomDrawItemCallback
EraseRect

 typedef void (*CustomDrawItemCallbackPtr)(
 browser,

 item,
 property,
 itemState,

 const Rect *theRect,
 SInt16 gdDepth,
 Boolean colorDevice);

 typedef CustomDrawItemCallbackPtr DataBrowserDrawItemUPP;

ControlRef
DataBrowserItemID
DataBrowserPropertyID
DataBrowserItemState

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the number for the item to be drawn.item Data ID

 - the number for the item to be drawn.property Property ID

 - the current state of the item being drawn. Possible values for this parameter are
listed in the description of the routine. Your application
should draw the cell in whatever way is appropriate for the state reflected by the value of this
parameter.

itemState
GetDataBrowserItemState

 - the bounding rectangle in local window coordinates where the cell should be drawn.theRect

 - the bit depth of the current QuickDraw GrafPort.gdDepth

 - if the current QuickDraw port is a color device.colorDevice true

When the DataBrowser has determined that the user would like to edit a text field, it will call
your callback to ask your application for both permission to perform the editing operation
and parameters used in the editing operation.

CustomEditTextCallback.
CustomEditTextCallback

 typedef Boolean (*CustomEditTextCallbackPtr)(
 browser,

 item,
 property,

ControlRef
DataBrowserItemID
DataBrowserPropertyID

 theString,
 Rect *maxEditTextRect,
 Boolean *shrinkToFit);

 typedef CustomEditTextCallbackPtr DataBrowserEditItemUPP;

CFStringRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the number for the item to be drawn.item Data ID

 - the number for the item to be drawn.property Property ID

 - a reference to the string that is to be edited.theString

 - if is turned on, this is the largest size the edit field can
grow in size. If the text grows beyond the size of the edit field, it will scroll inside of the field
as the user types (according to the Aqua user interface guidelines). If is

, this is the size of the edit field that will be used.

maxEditTextRect shrinkToFit

shrinkToFit
false

 - if you set this parameter to , then the DataBrowser will expand and
shrink the text editing box to match the width of the text appearing in the edit field. With this
version of the DataBrowser, this parameter is ignored and it always by
default.

shrinkToFit true

shrinkToFit true

If your application returns the value , then the DataBrowser will go ahead and perform the
editing operation. If your application returns the value , then no editing operation will occur.

true
false

When the DataBrowser is tracking the cursor and mouse clicks, it will call your application's
 to determine if the mouse is over any content that is selectable or draggable. If the mouse

position is over selectable or draggable content, then your routine should return .

CustomHitTestCallback.
CustomHitTestCallback

CustomHitTestCallback true

 Differentiation between a custom cell's content area and its background.Figure 6.

Your callback will be called by the DataBrowser to determine if the mouse is in the
selectable or draggable content area of your custom cell (the cell's content area - see). If the DataBrowser is
processing a mouse-down event, and the click is inside of the cell's content area then the DataBrowser will call your

; otherwise, it will begin processing the mouse-down event as the beginning of a marque
selection operation.

CustomHitTestCallback
Figure 6

CustomTrackingCallback

 typedef Boolean (*CustomHitTestCallbackPtr)(
 browser,

 itemID,
 property,

 const Rect *theRect,
 const Rect *mouseRect);

 typedef CustomHitTestCallbackPtr DataBrowserHitTestUPP;

ControlRef
DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the number for the row where the mouse is located.itemID Data ID

 - the number for the column where the mouse is located.property Property ID

 - the location of the cell's boundary rectangle on the screen in local window
coordinates.
theRect

 - contains the coordinates of the mouse. If the top left and bottom right mouseRect

coordinates of this rectangle are identical, then a single point is being tested. If they differ,
then the DataBrowser is testing to see if your custom item is inside of a marque selection (use

 or to determine if the selectable content of the custom cell is part of the
selection).
SectRect SectRgn

Your application should return a when either the mouse is located over the selectable or
draggable content part of the cell or the marque selection rectangle, provided in ,
intersects with the selectable or draggable content area of the cell.

true
*mouseRect

If you would like to provide custom drag-and-drop behavior inside of your application, then
you should provide a . Once the DataBrowser has determined that the mouse is being held
down over the selectable or draggable part of the cell (see), it will call your .
Your application can use the perform its own tracking such as highlighting a button, or
tracking the mouse over a pop-up palette.

CustomTrackingCallback.
CustomTrackingCallback

Figure 6 CustomTrackingCallback
CustomTrackingCallback

 typedef SInt16 (*CustomTrackingCallbackPtr)(
 browser,

 itemID,
 property,

 const Rect *theRect,
 Point startPt,
 EventModifiers modifiers);

 typedef CustomTrackingCallbackPtr DataBrowserTrackingUPP;

ControlRef
DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the number for the row where the mouse is located.itemID Data ID

 - the number for the column where the mouse is located.property Property ID

 - the cell's location in local window coordinates.theRect

 - the location of the mouse when the drag began.startPt

 - the state of the modifier keys as passed in the modifiers parameter to the
 routine.

modifiers
HandleControlClick

Your will only be called for mouse-down events and only after your
 has returned true. Your tracking procedure should do one of three

things:

CustomTrackingCallback
CustomHitTestCallback

1. Provide its own custom tracking behavior and animation and return the result . A result
of tells the DataBrowser that your application performed its own drag processing and no
further processing is required.

-1
-1

2. Return the value to indicate that nothing has been hit and no further processing
should take place.

zero

3. Return the value to tell the DataBrowser to continue processing the click in its own way.1

Once the DataBrowser has determined that it is going to begin a drag using the Drag
Manager, it will create a transparent drag image that will appear during the drag operation. When creating the transparent
drag image, it will call your application's routine to determine what part of the cell's
rectangle should be used when creating the transparent image. Normally, your callback should return the boundary region
for the cell's content area (see). The DataBrowser will use this region as a clipping region when it calls back to
your while it is generating the transparent drag image.

CustomDragRegionCallback.

CustomDragRegionCallback

Figure 6
CustomDrawItemCallback

 typedef void (*CustomDragRegionCallbackPtr)(
 browser,

 itemID,
 property,

 const Rect *theRect,
 dragRgn);

 typedef CustomDragRegionCallbackPtr DataBrowserItemDragRgnUPP;

ControlRef
DataBrowserItemID
DataBrowserPropertyID

RgnHandle

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the number for the row to be represented in the drag region.itemID Data ID

 - the number for the column to be represented in the drag region.property Property ID

 - the cell's location in local window coordinates.theRect

 - a reference to the region.dragRgn

Your application's should set the region passed in the parameter to the region
inside of that should be incorporated into the images used to create the transparent drag. This region is used to
crop the image data produced by the routine when creating the drag image. Your

 should set this region to the boundary of the content area inside of your custom cell.

CustomDragRegionCallback dragRgn
theRect

CustomDrawItemCallback
CustomDragRegionCallback

Set the region to the region used to pick up the transparent drag image. This region is used as a mask when passed to the
custom draw routine to generate the drag image. All of these routines draw and calculate inside the coordinates provided in

. Do not call in any of your drag callbacks.theRect SetOrigin

While processing a drag and the drag is held over one of your custom items, the
DataBrowser will call your application's routine to determine if your item can accept
the drag.

CustomAcceptDragCallback.
CustomAcceptDragCallback

 typedef UInt16 (*CustomAcceptDragCallbackPtr)(
 browser,

 itemID,
 property,

 const Rect *theRect,
 theDrag);

 typedef CustomAcceptDragCallbackPtr
 DataBrowserItemAcceptDragUPP;

ControlRef
DataBrowserItemID
DataBrowserPropertyID

DragReference

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the number for the target row.itemID Data ID

 - the number for the target column.property Property ID

 - the cell's location in local window coordinates.theRect

 - a Drag Manager drag reference.theDrag

The value returned by this routine is passed through to your application's
 in the parameter. Your application's

 will be called by the DataBrowser when a drag is moved over
your custom cell. If the cell cannot accept the drag, return . Otherwise, if the cell is an
acceptable drop location for the drag, return a non-zero value.

CustomReceiveDragCallback dragFlags
CustomAcceptDragCallback

zero

If your custom item has indicated that it can accept a drag from the
.

CustomReceiveDragCallback.
CustomAcceptDragCallback

 typedef Boolean (*CustomReceiveDragCallbackPtr)(
 browser,

 itemID,
 property,

 UInt16 dragFlags,
 theDrag);

 typedef CustomReceiveDragCallbackPtr
 DataBrowserItemReceiveDragUPP;

ControlRef
DataBrowserItemID
DataBrowserPropertyID

DragReference

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the number for the row where the drop occurred.itemID Data ID

 - the number for the column where the drop occurred.property Property ID

 - the drag flags provided by the Drag Manager.dragFlags

 - the Drag Manager drag reference.theDrag

Your should return if it successfully received the drag.
If it returns , then the zoom-back animation will occur.

CustomReceiveDragCallback true
false

Routines for managing the structureDataBrowserCustomCallbacks

As with the structure, a routine, , is provided that
allows applications to initialize a structure so that it contains references to all of the
default callback routines used by the DataBrowser.

DataBrowserCallbacks InitDataBrowserCustomCallbacks
DataBrowserCustomCallbacks

The InitDataBrowserCustomCallbacks routine.

 OSStatus InitDataBrowserCustomCallbacks(
 *callbacks);DataBrowserCustomCallbacks

 - a pointer to a structure. The version field
of the structure must be set to the value

 before this routine is called.

callbacks DataBrowserCustomCallbacks
DataBrowserCustomCallbacks

kDataBrowserLatestCustomCallbacks

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 fills in a structure with references to the
default callback routines used by the DataBrowser control. Once you have replaced the callbacks you wish to redefine with
references to your own routine, you can install your custom callbacks by calling .

InitDataBrowserCustomCallbacks DataBrowserCustomCallbacks

SetDataBrowserCustomCallbacks

The SetDataBrowserCustomCallbacks routine.

 OSStatus SetDataBrowserCustomCallbacks(
 browser,

 *callbacks);
ControlRef
DataBrowserCustomCallbacks

 - a Data Browser control created by a call to .control CreateDataBrowserControl

 - a pointer to a structure.callbacks DataBrowserCustomCallbacks

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 replaces the structure that is currently in
use by a DataBrowser control with the new structure referenced in the parameter.
SetDataBrowserCustomCallbacks DataBrowserCustomCallbacks

callbacks

The GetDataBrowserCustomCallbacks routine.

 OSStatus GetDataBrowserCustomCallbacks(
 browser,

* callbacks);
ControlRef
DataBrowserCustomCallbacks

 - a Data Browser control created by a call to .control CreateDataBrowserControl

 - a pointer to a structure.callbacks DataBrowserCustomCallbacks

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Applications wishing to either replace or temporarily override the callbacks that are currently being used by a
DataBrowser control can use the routine to retrieve a copy of theGetDataBrowserCustomCallbacks

 that is currently being used by a DataBrowser control.DataBrowserCustomCallbacks

Back to top

Browser Appearance and Behavior

This section provides an overview of programming issues related to the appearance of the browser control and its behavior
while processing user input. The bulk of the work needed to maintain these aspects of the browser control are managed for
you by the browser control itself; however, the browser control provides APIs and callbacks to notify your application of
key events and conditions during user interaction.

Event Handling

The DataBrowser is a control. As such, it does not require any special event handling beyond the Control Manager routines
 (, , , and) that your application will
normally call to manage controls. However, if your application has installed the default Carbon event handler for your
window, then even these calls are not necessary since the Carbon event manager will take care of these operations for you.

HandleControlClick HandleControlKey DrawControls IdleControls

 illustrates the general flow of control for mouse clicks received by the DataBrowser control. The DataBrowser
provides its own support for keyboard navigation and keyboard events. If the keyboard handling provided by the
DataBrowser is not appropriate for your application, then you may wish to filter keyboard input before calling

.

Figure 7

HandleControlKey

 The general flow of control for mouse-down and update events.Figure 7.

The DataBrowser provides an API your application can use to turn on and off mouse event handling for items displayed in
the list. When a browser control is set to inactive it will be drawn appropriately, and it will not accept mouse-down
events. The routine allows your application to control the active/inactive state of the
control.

SetDataBrowserActiveItems

The SetDataBrowserActiveItems routine.

 OSStatus SetDataBrowserActiveItems(

 browser,
 Boolean active);

ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - a boolean value containing the new active state for the items displayed in the list.active

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserActiveItems routine.

 OSStatus GetDataBrowserActiveItems(
 browser,

 Boolean *active);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the current active state of the items displayed in the list will be returned in the
boolean variable pointed to by this parameter.
active

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Interesting Conditions

The browser control can handle nearly all of the interface display and user interaction operations involved in displaying a
list in a window. However, the true power of the browser control comes from the fact that it calls back to your application
at key points during execution to provide notification of changing conditions that your application can act upon to perform
further processing. At the time of this writing, the DataBrowser provides the notifications shown in by calling
back to your application's routine (is located in the section describing the

 callback). Your application can provide a reference to its notification callback routine in the
 field of the structure.

Table 1
Notification Callback Table 1 Notification

Callback
itemNotificationCallback DataBrowserCallbacks

Back to top

Scroll Bars

The DataBrowser control provides a number of routines for controlling and managing the appearance of the scroll bars
displayed for the list. The routine can be used to scroll the list to any arbitrary
scrolling position. Normally, will be used in conjunction with the routine

 to restore the scrolling position of a list to the user's last scrolling position when
a window containing a scrollable DataBrowser control is being created.

SetDataBrowserScrollPosition
SetDataBrowserScrollPosition

GetDataBrowserScrollPosition

Your application should use and to save
and restore the scrolling position. These routines should not be used to scroll particular cells into the view. To do that,
your application should use the routine.

GetDataBrowserScrollPosition SetDataBrowserScrollPosition

RevealDataBrowserItem

The SetDataBrowserScrollPosition routine.

 OSStatus SetDataBrowserScrollPosition(
 browser,

 UInt32 top,
 UInt32 left);

ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the current vertical scrolling position will be set to the value provided in this
parameter.
top

 - the current horizontal scrolling position will be set to the value provided in this
parameter.
left

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserScrollPosition routine.

 OSStatus GetDataBrowserScrollPosition(
 browser,

 UInt32 *top,
 UInt32 *left);

ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the variable pointed to by this parameter will be set to the current vertical scrolling
position.
top

 - the variable pointed to by this parameter will be set to the current horizontal scrolling
position.
left

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

If the list your application would like to display is small and its coordinates do not extend beyond the bounds of the area
used to display the list, then it is possible for your application to turn of the display of scroll bars. The routine

 can be used to turn off either the horizontal or the vertical scroll bar. The routine
 is useful for determining if the browser control currently has scroll bars. For

example, you would only want to call the routine if the browser control
does not have a horizontal scroll bar.

SetDataBrowserHasScrollBars
GetDataBrowserHasScrollBars

AutoSizeDataBrowserListViewColumns

The SetDataBrowserHasScrollBars routine.

 OSStatus SetDataBrowserHasScrollBars(
 browser,

 Boolean horiz,
 Boolean vert);

ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - set this parameter to if the list should be displayed with a horizontal scroll bar.horiz true

 - set this parameter to if the list should be displayed with a vertical scroll bar.vert true

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserHasScrollBars routine.

 OSStatus GetDataBrowserHasScrollBars(
 browser,

 Boolean *horiz,
 Boolean *vert);

ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the variable pointed to by this parameter will be set to if the browser control
is being displayed with a horizontal scroll bar.
horiz true

 - the variable pointed to by this parameter will be set to if the browser control is
being displayed with a vertical scroll bar.
vert true

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Sometimes, it is desirable to place special placards or controls beside the horizontal scroll bars or above the vertical ones.
 provides an illustration of a placard displayed in the bottom left corner of a list to the left of the scroll bar. To

allow placement of such objects, the browser control provides the routines and
. Applications that would like to modify the scroll bar inset values used by the

browser control should always call to obtain the current settings. After modifying
the current inset settings, your application can then pass the new values back to .

Figure 8
GetDataBrowserScrollBarInset

SetDataBrowserScrollBarInset
GetDataBrowserScrollBarInset

SetDataBrowserScrollBarInset

 An example of a placard displayed at the bottom left of the list. As shown here, the scroll
bar is inset on its right-hand side to provide enough space for the placard.
Figure 8.

The SetDataBrowserScrollBarInset routine.

 OSStatus SetDataBrowserScrollBarInset(
 browser,

 Rect *insetRect);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the current inset settings your application would like the DataBrowser to use.
Your application should modify the inset settings returned by

 instead of assuming that the DataBrowser will set
them to any particular value.

insetRect

GetDataBrowserScrollBarInset

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

Use this to add placards or status panels beside above or below the scroll bars. Call
 before calling this routine.

noErr

GetDataBrowserScrollBarInset

The GetDataBrowserScrollBarInset routine.

 OSStatus GetDataBrowserScrollBarInset(
 browser,

 Rect *insetRect);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the current inset settings for the browser control's scroll bars will be returned
in the rectangle pointed to by this parameter. The left and right fields will contain the
horizontal inset values for the horizontal scroll bar, and the top and bottom fields will contain
the vertical inset values for the vertical scroll bar.

insetRect

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

 can be called to scroll any cell in the browser control into view.RevealDataBrowserItem

The RevealDataBrowserItem routine.

 OSStatus RevealDataBrowserItem(
 browser,

 item,
 propertyID,

 Boolean centerInView);

ControlRef
DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the item to display.item Data ID

 - the of the column to display.propertyID Property ID

 - if , then the DataBrowser will try to center the item in the display
area.
centerInView true

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Selection Handling

The DataBrowser control provides a complete set of routines for managing the cells currently contained in the selection.
The DataBrowser uses numbers to track which rows are in the selection. The current selection is represented as a
group of 32-bit numbers. Each refers to a row in the current selection (columns within rows are not
differentiated inside of selections).

Data ID
Data ID Data ID

The SetDataBrowserSelectionFlags routine.

 OSStatus SetDataBrowserSelectionFlags(
 browser,

 DataBrowserSelectionFlags selectionFlags);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - can be any combination of the following flag values:selectionFlags

 - This turns on or off the availability of the selection
marque. The marque will show up if the click was not on content, or the Option key is not
down and is on is off
and is off.

kDataBrowserDragSelect

kDataBrowserDragSelect kDataBrowserSelectOnlyOne
kDataBrowserNoDisjointSelection

 - allow only one item to be selected at once.kDataBrowserSelectOnlyOne

 - reset list before processing next selection
operation.
kDataBrowserResetSelection

 - allow use of command to toggle items in
and out of the selection.
kDataBrowserCmdTogglesSelection

 - prevent discontinuous selections.kDataBrowserNoDisjointSelection

 - enable multiple item selection without
holding down any modifier keys.
kDataBrowserAlwaysExtendSelection

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserSelectionFlags routine.

 OSStatus GetDataBrowserSelectionFlags(
 browser,

 DataBrowserSelectionFlags *selectionFlags);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - See the description of for more
information about the value that can be returned in this parameter.
selectionFlags SetDataBrowserSelectionFlags

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The IsDataBrowserItemSelected routine.

 Boolean IsDataBrowserItemSelected(
 browser,

 item);
ControlRef
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the item to be tested.item Data ID

Returns if the item specified by the provided in the item parameter is a member of
the current selection.

true Data ID

The SetDataBrowserSelectedItems routine.

 OSStatus SetDataBrowserSelectedItems(
 browser,

 UInt32 numItems,
 *items,

 DataBrowserSetOption operation);

ControlRef

DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the number of numbers stored in the array pointed to by the
parameter.
numItems Data ID items

 - an array of numbers.items Data ID

 - the operation to be performed on the current selection: operation

 - set the selection to the items specified in the array
pointed to by the parameter. Any previous selection is replaced and the list will
be re-drawn appropriately.

kDataBrowserItemsAssign
items

 - if any of the items specified in the array pointed to by
the parameter are in the current selection, then remove them from the selection.
For those items that are not in the selection, add them to the selection.

kDataBrowserItemsToggle
items

 - if any of the items specified in the array pointed to by
the items parameter are in the current selection, then remove them from the selection
and redraw their cells so they are not highlighted.

kDataBrowserItemsRemove

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Drag-and-Drop Processing

Normally, if you have installed the appropriate drag handling callback routines for a browser control, your application
will not have to make any special calls when the user performs drag-and-drop operations to and from the browser control.
However, the browser control has been designed with flexibility in mind and it can be customized to your application's
requirements. This section provides an overview of how you can easily add drag-and-drop capability to your application
using a browser control.

If the window containing the browser control contains other items capable of receiving drag-and-drop commands, then you
must turn off the Control Manager's automatic drag handling by calling

 before installing your own drag receive and accept
handlers using the Drag Manager APIs. Once you have done so, you can then handle your own drag operations and direct the
ones that belong to the browser control to the browser control using the and

 routines.

SetAutomaticControlDragTrackingEnabledForWindow

HandleControlDragTracking
HandleControlDragReceive

To provide outgoing drags your application must install an callback routine in the
 structure. The browser control calls your routine when it has

determined that it is appropriate to start a drag command. Inside of your routine your
application should add whatever information is appropriate for the drag command to the drag.

addDragItemCallback
DataBrowserCallbacks addDragItemCallback

addDragItemCallback

To receive drags, you application must install both an routine and a
routine in the structure. The function of these routines are analogous to the corresponding
Drag Manager accept-and-receive routines.

acceptDragCallback receiveDragCallback
DataBrowserCallbacks

To receive drags and drop commands destined for the list, but not dropped over any particular item in the list being
displayed, your application can set the default target ID for the list. Information about how to set the default target ID for a
browser control can be found in the section.Setting the Root Container

Back to top

Forcing Redraw

Once your application has made changes to some of the data referenced by the numbers and properties you have
installed in a data browser control, you will want tell the DataBrowser to update the display. To do this, you should call the

 routine referencing the numbers of those items that have changed.

Data ID

UpdateDataBrowserItems Data ID

The UpdateDataBrowserItems routine.

 OSStatus UpdateDataBrowserItems(
 browser,

 container,
 UInt32 numItems,
 const *items,

 preSortProperty,
 propertyID);

ControlRef
DataBrowserItemID

DataBrowserItemID
DataBrowserPropertyID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - The ID number of the container for the numbers referenced by the items
parameter.
container Data ID

 - the number of numbers referenced by the items parameter.numItems Data ID

 - a pointer to an array of numbers. If the value
appears anywhere in this array, then all of the rows will be updated.
items Data ID kDataBrowserNoItem

 - the sort order of the numbers referenced by the items
parameter. If the numbers referenced by the parameter are not sorted
according to any property, then your application should provide the value

 in this parameter.

preSortProperty Data ID
Data ID items

kDataBrowserNoProperty

 - the of the column that must be
. To update all columns for the items referenced

by the numbers referenced by the items parameter, set this parameter to
.

propertyID Property ID
kDataBrowserPropertyIsEditabled

Data ID
kDataBrowserNoItem

Returns an operating system result code describing the success of the operation. The code noErr

will be returned if the operation was successful.

Instead of forcing an update event to redraw the DataBrowser control contents, your application
should call the routine as this routine since it will also update any
internal caches that may have been allocated by the DataBrowser.

IMPORTANT

UpdateDataBrowserItems

Back to top

Column and Cell Dimensions

In this implementation of the DataBrowser, it is possible to use the routines
 to turn column headings on or off. To turn off the display of column

header buttons, call with a height parameter of . If you would
like to be able to turn the display of column headers on again after you have turned them off, then you can do so by
restoring their height to the value returned by before column header
buttons were turned off.

SetDataBrowserListViewHeaderBtnHeight
SetDataBrowserListViewHeaderBtnHeight zero

GetDataBrowserListViewHeaderBtnHeight

The SetDataBrowserListViewHeaderBtnHeight routine.

 OSStatus SetDataBrowserListViewHeaderBtnHeight(
 browser,

 UInt16 height);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - 0 turns off header buttons, use a saved value returned by
 to turn on buttons. No other values are

defined at this time.

height
GetDataBrowserListViewHeaderBtnHeight

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserListViewHeaderBtnHeight routine.

 OSStatus GetDataBrowserListViewHeaderBtnHeight(
 browser,

 UInt16 *height);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the current height of the header buttons area is returned in the variable pointed to
by this parameter.
height

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The routine allows your application to set all of the column widths to a
standard display width on the screen. When you call this routine, the DataBrowser will resize all of the columns in such a
way that they will fill the available space on the screen. is only available
if the horizontal scroll bar has been turned off. To turn scroll bars off, your application can call the

 routine.

AutoSizeDataBrowserListViewColumns

AutoSizeDataBrowserListViewColumns

SetDataBrowserHasScrollBars

The AutoSizeDataBrowserListViewColumns routine.

 OSStatus AutoSizeDataBrowserListViewColumns(

 browser);ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

To discover the window based coordinates of any part of a cell that is visible on the screen, your application can call the
 routine. Your application can then use these coordinates to perform special

drawing or calculations. The coordinates returned in the parameter will be the location of the requested part
relative to the window's top left corner.

GetDataBrowserItemPartBounds
*bounds

The GetDataBrowserItemPartBounds routine.

 OSStatus GetDataBrowserItemPartBounds(
 browser,

 item,
 property,

 DataBrowserPropertyPart part,
 Rect *bounds);

ControlRef
DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the identifying the cell's row.item Data ID

 - the identifying the cell's column.property Property ID

 - a constant value describing the part of the cell you would like to obtain information
about. The type of information requested will depend on the type of information being displayed
in the column. It is up to your application to ensure it is requesting the appropriate
information. The following constants may be provided in this parameter:

part

 - the outer boundary of the cell.kDataBrowserPropertyEnclosingPart

 - the content of the cell.kDataBrowserPropertyContentPart

 - the location of the disclosure
rectangle.
kDataBrowserPropertyDisclosurePart

 - the location where the text is drawn.kDataBrowserPropertyTextPart

 - the location where the icon is displayed.kDataBrowserPropertyIconPart

 - the location of the checkbox.kDataBrowserPropertyCheckboxPart

 - the location of the progress bar.kDataBrowserPropertyProgressBarPart

 - the location of the relevance rank.kDataBrowserPropertyRelevanceRankPart

 - a pointer to a rectangle where the coordinates will be returned.bounds

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful. If the cell is not visible (scrolled off the screen),
it will return an error.

noErr

ItemNotFound

Back to top

List Background Color

The background pattern used when drawing the list is determined by the Appearance Manager. When running under in the
Classic environment with platinum appearance, the list background will be shades of gray with the sort column drawn in a
darker shade. If you would prefer the background be drawn all white, then you can call

 with the parameter set to .
Currently, Aqua draws all lists with a plain white background.
SetDataBrowserListViewUsePlainBackground usePlainBackground true

The SetDataBrowserListViewUsePlainBackground routine.

 OSStatus SetDataBrowserListViewUsePlainBackground(
 browser,

 Boolean usePlainBackground);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - platinum only. Plain background uses all white background. False
uses shaded platinum background. Currently Aqua only supports plain white background. Call
this only if you do not want to have a shaded sort column.

usePlainBackground

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserListViewUsePlainBackground routine.

 OSStatus GetDataBrowserListViewUsePlainBackground(
 browser,

 Boolean *usePlainBackground);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the variable pointed to by this parameter will be set to if the
control is set to use a plain white background.
usePlainBackground true

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

In-place Text Editing

The DataBrowser control provides built-in text editing capability for columns with the display type
. Inside of these columns, it is possible to allow the user to click on a cell and begin editing the

text displayed in that cell. While a cell is open and the text is being edited, the browser control is said to have an editing
session open.

kDataBrowserTextType

Normally, if you create an editable text column, the DataBrowser will automatically manage edit sessions. However, if
your application requires special operations then the routines described in this section can be used. The routine

 can be used to open or close an editing session. And the routines
 and can be used manipulate the text in the edit field while

an edit session is open. To allow text editing to occur, your application follow these steps:

SetDataBrowserEditItem
SetDataBrowserEditText GetDataBrowserEditText

1. When creating the column you would like the edit text to appear in, set the
 for the column. This will allow modification of the values displayed in

the column.
kDataBrowserPropertyIsEditable

2. In your return the value when your callback receives an
 inquiry (i.e., call

 when you receive this inquiry). If your
application has more than one column containing editable text and you would like to know which property is about
to be edited, you can call the routine.

Data Callback Routine true
kDataBrowserItemIsEditableProperty
SetDataBrowserItemDataBooleanValue(itemData, true)

GetDataBrowserItemDataProperty

3. When the edit session is finished, your will be called again for the edited property with the
 argument set to . Your callback should extract the edited text string for the item/property by

calling . Your callback should then verify and decide either to accept or reject
the new string value before saving the new data into your application's private data store. (If your application
decides to reject the new text then you should provide an alert explaining why.)

Data Callback Routine
setValue true

GetDataBrowserItemDataText

The DataBrowser requires the flag to be set in order to
enable editing of any changeable display type (namely checkboxes, pop-up menus, etc). Be sure
your application is setting the flag when defining
columns containing checkboxes, menus, and so forth.

Note:
kDataBrowserPropertyIsEditable

kDataBrowserPropertyIsEditable

Once your application has responded true to the "May I edit this item?" query from the DataBrowser (which is only asked
of properties that have been flagged as editable), the DataBrowser will issue the following two notifications (to your

 callback):ItemNotification

 (you should lock down any data that might need to be locked, or manipulate your UI
as needed).
kDataBrowserEditStarted

 (the edit session and all transactions has finished, you may unlock any locked data,
or update your UI as needed).
kDataBrowserEditStopped

The remainder of this section describes the routines your application can use for selecting the current edit item and for
modifying the text in the current edit item.

The SetDataBrowserEditItem routine.

 OSStatus SetDataBrowserEditItem(
 browser,

 item,
 property);

ControlRef
DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the item to be edited.item Data ID

 - the of the column containing the item.property Property ID

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The routine can be used for beginning or ending an edit session for a text item. To begin an
editing session for a particular text cell, specify its data and number. To end an editing session, provide
either the Data ID or the number of another cell, or provide the constant as the

 number.

SetDataBrowserEditItem
Property ID

Property ID kDataBrowserNoItem
Data ID

The GetDataBrowserEditItem routine.

 OSStatus GetDataBrowserEditItem(
 browser,

 *item,
 *property);

ControlRef
DataBrowserItemID
DataBrowserPropertyID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl
 - the of the item that is being edited will be returned in the variable pointed to

by this parameter. If there is no cell being edited, this parameter will be set to
.

item Data ID

kDataBrowserNoItem

 - the of the column containing the item that is being edited will be
returned in the variable pointed to by this parameter. If there is no cell being edited, this
parameter will be set to .

property Property ID

zero

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The routines and allow your application to modify the
displayed contents of the text cell while it is being edited. These routines can only be called during an edit session and they
may be used to query, modify or replace the text as it is being typed by the user.

GetDataBrowserEditText SetDataBrowserEditText

The SetDataBrowserEditText routine.

 OSStatus SetDataBrowserEditText(
 browser,ControlRef

 text);CFStringRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - a . The DataBrowser will make its own internal copy of this reference
so it is safe to release your own internal reference after you call this routine.
text CFStringRef

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserEditText routine.

 OSStatus GetDataBrowserEditText(
 browser,

 text);
ControlRef
CFMutableStringRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - a . Your application must allocate this string and pass it to
the DataBrowser. The DataBrowser will set its contents to the current contents of the edit
session's text field.

text CFMutableStringRef

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Edit Menu Commands

The browser control manages the state of selection editing for you. Your application can discover if it is appropriate to
enable specific edit menu commands at any time by calling the routine. To execute
a specific editing command, call the routine.

EnableDataBrowserEditCommand
ExecuteDataBrowserEditCommand

The EnableDataBrowserEditCommand routine.

 Boolean EnableDataBrowserEditCommand(
 browser,

 DataBrowserEditCommand command);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - this parameter must be set to one of the following constant values:command

 - undo the last operation.kDataBrowserEditMsgUndo

 - cut the contents of the selection inside of the current
edit session to the clipboard.
kDataBrowserEditMsgCut

 - copy the contents of the selection inside of the current
edit session to the clipboard.
kDataBrowserEditMsgCopy

 - replace the contents of the selection inside of the
current edit session with the contents of the clipboard.
kDataBrowserEditMsgPaste

 - remove the contents of the selection inside of the
current edit session.
kDataBrowserEditMsgClear

 - select all of the text inside of the current edit
session.
kDataBrowserEditMsgSelectAll

Returns if the requested editing command can be performed by the DataBrowser control at
this time.

true

Currently, these editing commands will be available when an editable text field is open and being edited. If your application
has defined any custom display types that allow editing, editing commands will also be available when your callbacks
indicate editing is available.

The ExecuteDataBrowserEditCommand routine.

 OSStatus ExecuteDataBrowserEditCommand(
 browser,

 DataBrowserEditCommand command);
ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - a constant indicating what command should be performed. See the description of
 for a list of possible values for this parameter.

command
EnableDataBrowserEditCommand

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Context-Sensitive Help

Use the field of the structure. getHelpContentCallback DataBrowserCallbacks

Back to top

Contextual Menus

Use the and the fields of the
 structure.

contextualMenuCallback selectContextMenuCallback
DataBrowserCallbacks

Back to top

Managing Hierarchical Lists

As described in the section , it is possible to create complex hierarchical lists of
Data IDs for display in the DataBrowser control. Most of the DataBrowser routines have been designed with this mind.
Essentially, any of the DataBrowser routines with a "container" parameter, has special functionality available for
hierarchical lists. Some of those routines are described in other sections, but routines specifically designed for managing
hierarchical lists are described in this section.

Providing and Ordering your Data

Setting the Root Container

The root container designates the of the highest level of a hierarchy being displayed in a browser control. In some
routines, such as the drag-and-drop commands, this ID number is used to refer to the entire browser control rather than
any particular item. For example, if a user drags a selection across a DataBrowser control's content area and the mouse is
not positioned over any particular item, the DataBrowser will call the browser control's accept routine using the Root
Container's number.

Data ID

Data ID

The SetDataBrowserTarget routine.

 OSStatus SetDataBrowserTarget(
 browser,

 target);
ControlRef
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the ID that should be assigned as the default target ID for the browser control.target

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

In these circumstances, it is appropriate to respond as if the user is dragging a new item into the list or column. The Root
Container ID is also called the default container ID number. By default, the browser control's target ID number will be set
to Item ID will be . Your application can change this to a different value, if necessary.zero

The GetDataBrowserTarget routine.

 OSStatus GetDataBrowserTarget(
 browser,

 *target);
ControlRef
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - a pointer to a location where the currently assigned target ID will be returned.target

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Setting the Disclosure Column

The disclosure column contains the turn-down arrows that the user can use to navigate down into your data hierarchy. Use
the to designate the column where these turn-down arrows will
appear.

SetDataBrowserListViewDisclosureColumn

The SetDataBrowserListViewDisclosureColumn routine.

 OSStatus SetDataBrowserListViewDisclosureColumn(
 browser,

 DataBrowserTableViewColumnID column,
 Boolean expandableRows);

ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - if this is no column or the column doesn't exist, then there will be no disclosure
column.
column

 - if the row itself expands rather than opening up several sub-rows set
this parameter to . Currently this parameter is ignored.
expandableRows

true

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The GetDataBrowserListViewDisclosureColumn routine.

 OSStatus GetDataBrowserListViewDisclosureColumn(
 browser,

 DataBrowserTableViewColumnID *column,
 Boolean *expandableRows);

ControlRef

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - the of the column where the disclosure triangles are being displayed
will be returned in the variable pointed to by this parameter.
column Property ID

 - if the row itself expands rather than opening up several sub-rows, then
the variable pointed to by this parameter will be set to .
expandableRows

true

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Opening and Closing Containers

Normally, the user will navigate down into your hierarchy by activating the turn-down arrows themselves. But, under
some circumstances, such as when you are restoring the display to its last known state when opening a window, you will
want to explicitly set the turn-down display state for the container items displayed in the list. The routines described in
this section allow your application open and close container items in the display.

The OpenDataBrowserContainer routine.

 OSStatus OpenDataBrowserContainer(
 browser,

 container);
ControlRef
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - The of the container you would like to open.container Data ID

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

The CloseDataBrowserContainer routine.

 OSStatus CloseDataBrowserContainer(
 browser,

 container);
ControlRef
DataBrowserItemID

 - a DataBrowser control created by a call to .browser CreateDataBrowserControl

 - The of the container you would like to close.container Data ID

Returns an operating system result code describing the success of the operation. The code
will be returned if the operation was successful.

noErr

Back to top

Downloadables

Acrobat version of this Note (716K). Download

Back to top

Technical Notes by | | | |
 | | |

API Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

