
CONTENTS

Overview

Plug-in discovery and registration

Messages in Detail

Callback APIs

References

Downloadables

This Note is directed at application developers
who want to create visual plug-ins for iTunes
1.1 and later versions. (This feature is not
supported in iTunes 1.0.)

If you received this documentation as part of
the "iTunes Visual plug-ins SDK" package,
you should check on for an
updated version.

Apple's web site

All of the code contained in this
documentation can be found in the iTunes
Visual plug-ins Sample Code provided in the
SDK which is available on the sdk page at

.Apple's web site

We'd like to hear about your finished Visual
plug-in. Send information about it, and the
Visual plug-in itself if you like, to

.itunesvisuals@mac.com

 [Jun 26 2001]

Overview

When the user clicks on the Visual Effects button in iTunes, custom visual special effects appear.

. Visual Effects buttonFigure 1

For ease of implementation across different architectures, iTunes plug-ins are shared libraries that export a single entry
point. In addition, plug-ins do not link against the iTunes application. Instead, a callback function pointer is provided to
your plug-in during initialization, and the iTunes API calls are implemented via that function.

iTunes sends messages to your plug-in to tell it when to initialize and clean up, when the user turns visual effects on and
off, when the window is resized, when the user starts or stops playing music, etc. When visual effects are on, iTunes will
forward keyboard, mouse, and update events for the visual effects window to your plug-in. Messages are described in more
detail below.

While music is playing, iTunes sends render messages that include waveform data (sound samples) corresponding to the
music that is currently playing, and a spectrum analysis of the samples. During registration, your plug-in indicates the
number of channels of waveform and spectrum data it wants, and how often it wants to receive render messages.

During registration, your plug-in indicates if it wants to receive idle messages. Idle messages are sent periodically
whether music is playing or not. When the music stops, you can draw in response to idle messages to fade out your visual
effects smoothly.

Your plug-in can have preferences that get stored in the iTunes preferences file. The iTunes API includes functions to
access your plug-in's preferences. iTunes sends the configure message when the user clicks on the options button to tell
you to show your settings dialog.

All messages are sent at system task level, the level at which most application code runs. The functions in the iTunes API
must also be called from system task level. Calling them from any other level, e.g., from a preemptive task or deferred
task level, is not supported. See for more info about execution levels.Technote 1104

Back to top

Plug-in discovery and registration

iTunes recursively scans the plug-ins folder, which is located beside the iTunes application itself on Mac OS 9, and at
~/Library/iTunes/iTunes Plug-ins/ (and /Library/iTunes/iTunes Plug-ins/ if that directory exists) on Mac OS X, and
only that folder, for plug-ins. On Mac OS 9, iTunes recognizes shared library files of type 'hvpl' as visual plug-ins. On
Mac OS X, iTunes recognizes plug-ins packaged as bundles with 'hvpl'. That means that you
have to distribute the same plug-in in two different formats, one as a shared library and one as a bundle, if you want it to
be recognized by iTunes on both Mac OS 9 and Mac OS X. We recommend using iTunes' creator "hook" as the file or bundle
signature so it gets an icon and kind string consistent with the other iTunes plug-ins.

CFBundlePackageType

A visual plug-in sample code is provided both in Mac OS 9 and Mac OS X formats in the iTunes Visual Plug-in SDK.

A plug-in library exports a single entry point. The name of the exported function depends on how the plug-in is packaged.
If the plug-in is a single file CFM shared library, the entry point must be the CFM main entry point and the function name
does not matter. If a bundled plug-in is CFM based, the name of the entry point must be "iTunesPluginMain". If a bundled
plug-in is Mach-O, the name of the entry point must be "iTunesPluginMainMachO".

For each plug-in found, iTunes sends a message to the entry point mentioned above, which is
referred to as the plug-in "main" entry point in this SDK. A single plug-in file or bundle can contain multiple plug-ins. To
support this, the plug-in main entry point must register each of the contained plug-ins when it receives the

, which will be sent only once.

kPluginInitMessage

kPluginInitMessage

To register a visual plug-in, you call , passing a pointer to your visual plug-in
message handler function. All messages are sent to this handler function, starting with

, which is sent immediately upon registration.

PlayerRegisterVisualPlugin
kVisualPlugin...

kVisualPluginInitMessage

It is not necessary to unregister visual plug-ins. When it's time to shut down, a
will be sent to your visual plug-in message handler, and then a will be sent your plug-in's
main entry point.

kVisualPluginCleanupMessage
kPluginCleanupMessage

For compatibility with future versions of iTunes, if your plug-in receives a message it does not recognize, it should
return .unimpErr

Back to top

Messages in Detail

1. Plug-in main entry point messages

These messages are sent to your plug-in main entry point, which has the following signature:

OSStatus main(OSType message, PluginMessageInfo * messageInfo, void * refCon);

message

what message is being sent

messageInfo

a pointer to additional parameters, if any.

refCon

the value you returned in will be passed back in this parameter.PluginInitMessage.refCon

This table lists the plug-in main entry point messages and corresponding variants. Messages that
have no additional parameters are listed as "n/a"; you should ignore for those messages.

PluginMessageInfo
messageInfo

message messageInfo->u

kPluginInitMessage PluginInitMessage

kPluginCleanupMessage n/a

kPluginIdleMessage n/a

kPluginInitMessage

This message is sent to your plug-in library at launch time. You should register your plug-ins by calling
, described below, when you get this message. Then fill in the and

fields of the before returning.
PlayerRegisterVisualPlugin options refCon

PluginInitMessage

is a :messageInfo->u PluginInitMessage

struct PluginInitMessage {
 UInt32 majorVersion; /* Input */
 UInt32 minorVersion; /* Input */

 void * appCookie; /* Input */
 ITAppProcPtr appProc; /* Input */

 OptionBits options; /* Output */
 void * refCon; /* Output */
};

majorVersion minorVersion

the version of the iTunes API implemented by the iTunes application.

appCookie appProc

parameters to be passed to the callback APIs

options

the currently defined options are intended for use by device plug-ins. Visual plug-ins should set this field to zero

refCon

the value you return here will be passed back as the parameter in future calls to your main entry pointrefCon

kPluginCleanupMessage

This message is sent to your plug-in when iTunes is about to quit.

kPluginIdleMessage

This message is intended for use by device plug-ins. Visual plug-ins that want idle time register for
, described below.kVisualPluginIdleMessage

2. Visual plug-in messages

A visual plug-in message handler has the following signature:

OSStatus VisualPluginHandler(OSType message,
 VisualPluginMessageInfo * messageInfo, void * refCon);

message

what message is being sent.

messageInfo

a pointer to additional parameters, if any.

refCon

the value you returned in will be passed back in this parameter.VisualPluginInitMessage.refCon

This table lists the visual plug-in messages and corresponding variants. Messages that
have no additional parameters are listed as "n/a", you should ignore for those messages.

VisualPluginMessageInfo
messageInfo

message messageInfo->u

kVisualPluginInitMessage VisualPluginInitMessage

kVisualPluginCleanupMessage n/a

kVisualPluginIdleMessage n/a

kVisualPluginConfigureMessage n/a

kVisualPluginEnableMessage n/a

kVisualPluginDisableMessage n/a

kVisualPluginShowWindowMessage VisualPluginShowWindowMessage

kVisualPluginHideWindowMessage n/a

kVisualPluginSetWindowMessage VisualPluginSetWindowMessage

kVisualPluginRenderMessage VisualPluginRenderMessage

kVisualPluginUpdateMessage n/a

kVisualPluginPlayMessage VisualPluginPlayMessage

kVisualPluginChangeTrackMessage VisualPluginChangeTrackMessage

kVisualPluginStopMessage n/a

kVisualPluginSetPositionMessage VisualPluginSetPositionMessage

kVisualPluginPauseMessage n/a

kVisualPluginUnpauseMessage n/a

kVisualPluginEventMessage VisualPluginEventMessage

kVisualPluginInitMessage

This message is sent right after you register your plug-in with . For this message
only, the parameter will be the value you returned in

. Fill in the and fields of the
 before returning.

PlayerRegisterVisualPlugin
refCon

PlayerRegisterVisualPluginMessage.registerRefCon options refCon
VisualPluginInitMessage

 is a :messageInfo->u.visualPluginInitMessage VisualPluginInitMessage

struct VisualPluginInitMessage {
 UInt32 messageMajorVersion; /* Input */
 UInt32 messageMinorVersion; /* Input */
 NumVersion appVersion; /* Input */

 void * appCookie; /* Input */
 ITAppProcPtr appProc; /* Input */

 OptionBits options; /* Output */
 void * refCon; /* Output */
};

messageMajorVersion
messageMinorVersion

the version of the iTunes API implemented by the iTunes application.

appVersion

the version of iTunes that is running.

appCookie
appProc

The plug-in should copy these two fields into its private data since it will need to pass them as parameters to all the iTunes
APIs described below.

options

currently there are no options defined, so your plug-in must set this to zero.

refCon

the value returned in this field will be passed as the parameter in subsequent calls to the visual plug-in handler.
Your plug-in can use this for anything it chooses, typically to store a pointer to data which is allocated in the init message.
The sample code uses this technique to recover the pointer to its private data in its visual plug-in handler.

refCon

kVisualPluginCleanupMessage

This message is sent when iTunes is about to quit. You should free any resources allocated by your visual plug-in at this
time.

kVisualPluginIdleMessage

This message is sent periodically if the plug-in requests idle messages. Do this by setting the
 option in the field.kVisualWantsIdleMessages PlayerRegisterVisualPluginMessage.options

kVisualPluginConfigureMessage

This message is sent when the user clicks on the Options button at the top right of the iTunes window. Enable the Options
button (and this message) by setting the option in the

 field. The sample code shows how to implement a settings dialog
for configuration, incuding how to access your resource fork and when to call to handle
events.

kVisualWantsConfigure
PlayerRegisterVisualPluginMessage.options

PlayerHandleMacOSEvent

kVisualPluginEnableMessage

kVisualPluginDisableMessage

iTunes currently enables all loaded visual plug-ins. Your plug-in should simply return for these messages.noErr

kVisualPluginShowWindowMessage

Sent when visual effects are turned on. At this point, the plug-in should allocate any large buffers it needs.

 is a :messageInfo->u.showWindowMessage VisualPluginShowWindowMessage

struct VisualPluginShowWindowMessage {
 CGrafPtr port; /* Input */
 Rect drawRect; /* Input */
 OptionBits options; /* Input */
};

port

the port to draw into. The plug-in should remember this since it is not sent with render or update messages.

drawRect

the rect to draw into. The plug-in should remember this since it is not sent with render or update messages.

options

the only option currently defined is , it's set when you are in full screen mode.kWindowIsFullScreen

kVisualPluginHideWindowMessage

This message is sent when visual effects are turned off. Your plug-in should free any large buffers allocated in the course
of rendering here.

kVisualPluginSetWindowMessage

This message is sent when the user resizes the iTunes window or toggles full screen mode. It is conceptually the same as a
 followed by a with the new window

info, but your plug-in may be able to handle this combined message more efficiently.
kVisualPluginHideWindowMessage kVisualPluginShowWindowMessage

kVisualPluginRenderMessage

This message is sent periodically when music is playing, at a rate specified during registration.

 is a :messageInfo->renderMessage VisualPluginShowWindowMessage

struct VisualPluginRenderMessage {
 RenderVisualData * renderData; /* Input */
 UInt32 timeStampID; /* Input */
};

struct RenderVisualData {
 UInt8 numWaveformChannels;
 UInt8 waveformData[kVisualMaxDataChannels][kVisualNumWaveformEntries];

 UInt8 numSpectrumChannels;
 UInt8 spectrumData[kVisualMaxDataChannels][kVisualNumSpectrumEntries];
};

renderData->numWaveformChannels

The number of channels of waveform data included. This will be the number you requested during registration.

renderData->waveformData

The most significant 8 bits of the sound samples that are currently playing. The values range from 0 to 255, where 128 is
the midpoint (AC zero value).

renderData->numSpectrumChannels

The number of channels of spectrum data included. This will be the number you requested during registration.

renderData->spectrumData

This is a 512-point Fast Fourier Transform of the waveform data.

kVisualPluginUpdateMessage

This message is sent in response to an update event. The visual plug-in should update into its remembered port. This will
only be sent if the plug-in's window is showing, i.e. in between and

 messages.
kVisualPluginShowWindowMessage

kVisualPluginHideWindowMessage

kVisualPluginPlayMessage

This message is sent when iTunes starts playing a track. Your plug-in should copy any track info it wants to display.

 is a :messageInfo->u.playMessage VisualPluginPlayMessage

struct VisualPluginPlayMessage {
 ITTrackInfo * trackInfo; /* Input */
 ITStreamInfo * streamInfo; /* Input */
 SInt32 volume; /* Input */

 UInt32 bitRate; /* Input */

 SoundComponentData soundFormat; /* Input */
};

kVisualPluginChangeTrackMessage

This message is sent when the information about a track changes, e.g., when the user edits track info, or when iTunes
begins playing a different track. Your plug-in should copy any track info it wants to display.

 is a :messageInfo->u.changeTrackMessage VisualPluginChangeTrackMessage

struct VisualPluginChangeTrackMessage {
 ITTrackInfo * trackInfo; /* Input */
 ITStreamInfo * streamInfo; /* Input */
};

kVisualPluginStopMessage

This message is sent when the music stops playing.

kVisualPluginSetPositionMessage

This message is sent when iTunes changes the elapsed time position within a track. A plug-in that shows the elapsed time
would use this.

 is a :messageInfo->u.setPositionMessage VisualPluginSetPositionMessage

struct VisualPluginSetPositionMessage {
 UInt32 positionTimeInMS; /* Input */
};

kVisualPluginPauseMessage kVisualPluginUnpauseMessage

iTunes does not currently use pause or unpause. A pause in iTunes is handled by stopping and remembering the position.
Your plug-in should simply return for these messages.noErr

kVisualPluginEventMessage

This message is sent when the user generates an event that could be handled by your plug-in. If your plug-in handles the
event, it should return . Otherwise it should return .noErr unimpErr

 is a :messageInfo->u.eventMessage VisualPluginEventMessage

struct VisualPluginEventMessage {
 EventRecord * event; /* Input */

};

Back to top

Callback APIs

As mentioned in the overview, plug-ins do not link against iTunes. Instead, the first two parameters of all of the iTunes
APIs are a cookie and a callback function pointer. These are provided to your plug-in in the init messages. The glue code in
iTunesAPI.c takes care of marshaling parameters and calling iTunes for you, so you don't have to worry about the details.

OSStatus PlayerRegisterVisualPlugin (void *appCookie, ITAppProcPtr appProc,
 PlayerMessageInfo *messageInfo);

Register your visual plug-in with when you receive . Pass
a variant of as the parameter.
The fields are explained in the comments below:

PlayerRegisterVisualPlugin kPluginInitMessage
PlayerRegisterVisualPluginMessage PlayerMessageInfo messageInfo

 /* PlayerRegisterVisualPluginMessage.options */

enum {
 /* set to enable kVisualPluginIdleMessage */
 kVisualWantsIdleMessages = (1L << 3),

 /* set to enable kVisualPluginConfigureMessage */
 kVisualWantsConfigure = (1L << 5)
};

struct PlayerRegisterVisualPluginMessage {
 /* Displayed in the Visual menu,
 also used to id prefs data*/
 Str63 name;
 /* See above enum */
 OptionBits options;

 /* Identifies the plug-in */
 OSType creator;

 /* Version number of the plug-in */
 NumVersion pluginVersion;

 /* Handler for the plug-in's messages */
 VisualPluginProcPtr handler;

 /* RefCon for the plug-in's handler */
 void *registerRefCon;

 /* How often to render, in milliseconds
 (0xFFFFFFFF = as often as possible) */
 UInt32 timeBetweenDataInMS;

 UInt32 numWaveformChannels; /* 0-2 waveforms requested */
 UInt32 numSpectrumChannels; /* 0-2 spectrums requested */

 SInt16 minWidth; /* Minimum resizeable width */
 SInt16 minHeight; /* Minimum resizeable height */

 SInt16 maxWidth; /* Maximum resizeable width */
 SInt16 maxHeight; /* Maximum resizeable height */

 UInt16 minFullScreenBitDepth; /* 0 = Any */
 UInt16 maxFullScreenBitDepth; /* 0 = Any */

 /* Reserved (should be zero) */
 UInt16 windowAlignmentInBytes;
};

OSStatus PlayerIdle (
 void *appCookie,
 ITAppProcPtr appProc);

Your plug-in should call to give time to iTunes if it engages in a lengthy process.PlayerIdle

void PlayerShowAbout(
 void *appCookie,
 ITAppProcPtr appProc);

Show the "About iTunes" window.

void PlayerOpenURL (
 void *appCookie,
 ITAppProcPtr appProc,
 SInt8 * urlString,
 UInt32 length);

Tell iTunes to open a URL. The parameter is not a Pascal string or a C string; its length is specified by the
 parameter.

urlString
length

OSStatus PlayerGetPluginData (
 void *appCookie,
 ITAppProcPtr appProc,
 void *dataPtr,
 UInt32 dataBufferSize,
 UInt32 *dataSize);

Read data identified by your plug-in's name from the iTunes preferences file. This can be used to store your plug-in's
preferences as a single block of data. Your plug-in's name is specified in

.PlayerRegisterVisualPluginMessage.name

OSStatus PlayerSetPluginData (
 void *appCookie,
 ITAppProcPtr appProc,
 void *dataPtr,
 UInt32 dataSize);

Save data identified by your plug-in's name from the iTunes preferences file. This can be used to store your plug-in's
preferences as a single block of data. Your plug-in's name is specified in

.PlayerRegisterVisualPluginMessage.name

OSStatus PlayerGetPluginNamedData (
 void *appCookie,
 ITAppProcPtr appProc,
 ConstStringPtr dataName,
 void *dataPtr,
 UInt32 dataBufferSize,
 UInt32 *dataSize);

Read data identified by and your plug-in's name from the iTunes preferences file. This can be used to store
your plug-in's preferences, with each preference field stored separately. Your plug-in's name is specified in

.

dataName

PlayerRegisterVisualPluginMessage.name

OSStatus PlayerSetPluginNamedData (
 void *appCookie,
 ITAppProcPtr appProc,
 ConstStringPtr dataName,
 void *dataPtr,
 UInt32 dataSize);

Save data identified by and your plug-in's name from the iTunes preferences file. This can be used to store dataName

your plug-in's preferences, with each preference field stored separately. Your plug-in's name is specified in
.PlayerRegisterVisualPluginMessage.name

OSStatus PlayerHandleMacOSEvent (
 void *appCookie,
 ITAppProcPtr appProc,
 const EventRecord *theEvent,
 Boolean *eventHandled);

Ask iTunes to handle an event. The sample code uses this in its .SettingsDialogFilterProc

OSStatus PlayerGetPluginFileSpec(
 void *appCookie,
 ITAppProcPtr appProc,
 FSSpec *pluginFileSpec);

Return your plug-in's . For bundled plug-ins, this will be the of the bundle.FSSpec FSSpec

OSStatus PlayerSetFullScreen (
 void *appCookie,
 ITAppProcPtr appProc,
 Boolean fullScreen);

Tell iTunes to enter or exit full screen mode. If your plug-in wants to behave like a screen saver it could use this.

OSStatus PlayerSetFullScreenOptions (
 void *appCookie,
 ITAppProcPtr appProc,
 SInt16 minBitDepth,
 SInt16 maxBitDepth,
 SInt16 preferredBitDepth,
 SInt16 desiredWidth,
 SInt16 desiredHeight);

Specify bit depth and resolution for subsequent uses of full screen mode. If your plug-in has a user interface for setting
these options, call this to update the values from what you specified in .PlayerRegisterVisualPluginMessage

Back to top

References

iTunes Visual plug-ins SDK package

iTunes Visual plug-ins Sample Code

Back to top

Downloadables

Acrobat version of this Note (136K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

