
CONTENTS

New Hierarchical Tree Structure

Summary

References

Downloadables

This Technote describes changes to the
Apple Image Capture camera modules for
Mac OS X Update 10.1.3.

[Apr 16 2002]

New Hierarchical Tree Structure

Apple's Image Capture Architecture is based on two main elements: objects and properties (check the
 for additional information. Objects may contain a reference to other objects, forming a tree-structure, and

objects may own properties.

Image Capture SDK
documentation

The camera modules for Apple Image Capture on Mac OS X implemented only a flat (non-hierarchical) object structure. In
order to get all the images for a device, it was sufficient to simply call the function for the device
object (type) as follows:

ICAGetChildCount
ICAObject

. Old technique for walking the device treeListing 1

void ParseObjectHierarchy(ICAObject deviceObject)
{
 ICAGetChildCountPB getChildCountPB;
 OSErr err;

 memset(&getChildCountPB, 0, sizeof(ICAGetChildCountPB));
 getChildCountPB.object = deviceObject;
 /* get child count for this device */
 err = ICAGetChildCount(&getChildCountPB, nil);
 if (err == noErr)
 {
 UInt32 index;

 /* iterate over each child object */
 for (index = 0; index < getChildCountPB.count; ++index)
 {
 /* add your code to process each child object here... */
 }
 }

}

With Image Capture for Mac OS X Update 10.1.3, the flat structure has been changed to a new hierarchical
tree structure, so the above code is no longer sufficient to traverse the object hierarchy to locate all the objects for the
given device.

ICAObject

To get all the images/movies/audio files for a given device, there are now two options - you can walk the device tree by
issuing a series of functions calls, or you can use the

 function with the device object and obtain both a "data" array and a "tree"
dictionary of all the objects.

ICAGetChildCount/ICAGetNthChild
ICACopyObjectPropertyDictionary

Listing 2 below contains code showing how to walk the device tree by issuing a series of
 function calls:

ICAGetChildCount/
ICAGetNthChild

. New technique for walking the device treeListing 2

void ParseObjectHierarchy(ICAObject object)
{
 UInt32 imageCount;
 UInt32 imageCountIndex;

 imageCount = GetNumberOfChildrenForObject (object);
 /* iterate over the object hierarchy for the given parent object */
 for (imageCountIndex = 0; imageCountIndex <
 imageCount; ++imageCountIndex)
 {
 ICAObject childObject;
 ICAGetChildCountPB getChildCountPB;
 OSErr result;

 /* get the next child object */
 childObject = getNthChild(object, imageCountIndex);
 if (childObject == NULL)
 break;

 memset(&getChildCountPB, 0, sizeof(ICAGetChildCountPB));
 getChildCountPB.object = childObject;
 result = ICAGetChildCount(&getChildCountPB, nil);
 /* if child count = 0 we have no further children, so
 let's stop parsing the object hierarchy and grab
 the image data for this object */
 if (getChildCountPB.count == 0)
 {
 /* add your code to process the child object here.... */
 }
 else
 /* this object has children, so let's use the current
 object as the new parent and traverse the new hierarchy */
 {
 ParseObjectHierarchy (childObject);
 }
 }
}

Alternately, you can use the function with the device object. The
 function will return a Mac OS Core Foundation containing a

"data" array that represents the flattened structure (use either the or
's count method to get the number of files).

ICACopyObjectPropertyDictionary
ICACopyObjectPropertyDictionary CFDictionary

ICAObject CFArrayGetCount
NSDictionary

In addition, with Mac OS X Update 10.1.3 the returned dictionary will now contain a "tree" dictionary that represents the
entire hierarchical object tree.

Listing 3 below contains code showing how to get a list of all objects using the "data" array in the dictionary returned by
the function:ICACopyObjectPropertyDictionary

. Obtaining a list of all objects using the "data" array in the dictionary returned by the
.

Listing 3
ICACopyObjectPropertyDictionary

OSErr ParseDeviceObjects (ICAObject deviceObject)
{
 OSErr err = noErr;
 ICACopyObjectPropertyDictionaryPB dictionaryPB;
 CFDictionaryRef dict = NULL;
 CFArrayRef objectArray = NULL;
 CFIndex objectCount = 0, index;

 memset(&dictionaryPB, 0, sizeof(ICACopyObjectPropertyDictionaryPB));
 dictionaryPB.object = deviceObject;
 dictionaryPB.theDict = &dict;
 err = ICACopyObjectPropertyDictionary(&dictionaryPB, nil);
 if (err != noErr) goto bail;

 /* get 'data' dictionary */
 objectArray = (CFArrayRef)CFDictionaryGetValue(dict, CFSTR("data"));
 if (objectArray == NULL) goto bail;

 /* get object count */
 objectCount = CFArrayGetCount(objectArray);

 /* iterate over each object */
 for (index = 0; index < objectCount; ++index)
 {
 ICAObject object;
 CFDictionaryRef dictRef;
 CFNumberRef theValue;

 /* get the CFDictionaryRef for this object */
 dictRef = (CFDictionaryRef)CFArrayGetValueAtIndex (objectArray,index);

 /* You can use the CFShow function for debugging to
 dump all the key/value pairs for the CFDictionaryRef */
 CFShow(dictRef);

 /* now you can extract any of the values for this
 CFDictionaryRef. As an example, here's how
 to get the value corresponding to the "tsiz"
 key */
 theValue = (CFNumberRef)CFDictionaryGetValue(dictRef, CFSTR("tsiz"));
 if (theValue)
 {
 Boolean gotValue = false;
 SInt32 actualNumber;

 gotValue = CFNumberGetValue(theValue,
 kCFNumberSInt32Type,&actualNumber);

 }

 /* add your code to extract any additional values here... */
 }

 bail:
 if (dict != NULL)
 CFRelease(dict);

 return err;
}

Back to top

Summary

The Apple Image Capture camera modules have been changed with Mac OS X Update 10.1.3, and it is no longer sufficient to
simply call the function for the device object to obtain a list of all the objects for a given device.
Instead, developers will now need to use the techniques described in this note to parse the object hierarchy.

ICAGetChildCount

Back to top

References

Mac OS X Core Foundation Collection Services

Downloadables

Acrobat version of this Note (68K). Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

