

CONTENTS

Overview

Checking Availability of Exclusive File Access

Common Workarounds

Mac OS X Solutions

Implementing Advisory Locking

References

Downloadables

This document discusses the issues
surrounding obtaining exclusive file access in
current versions of Mac OS X and how it
differs from classic Mac OS. Exclusive file
access is an issue which affects all Mac OS X
developers, Carbon, Cocoa, Java, and BSD.

[May 01 2002]

Overview

Opening a file from classic Mac OS (pre Mac OS X) with fsWrPerm, fsRdWrPerm, or the default fsCurPerm, meant
that any other application trying to open that same file with write access would not be able to do so. Usually an
fsRdWrPerm error would be returned when other attempts were made to open the file for write access, though attempts
to open such a file for read only access would succeed. This default behavior allows for one "writer" and multiple "readers"
of the file.

Mac OS X's BSD subsystem does not enforce file read/write privileges in the same way as classic Mac OS. Opening a file for
writing does not ensure other processes can not write to the same file. The default behavior of BSD allows for multiple
"writers" to a single file. In the current implementation, all of the File Manager calls in Mac OS X call through to the
underlying BSD file system. As a result, opening a file via PBHOpenDF, PBHOpenRF, PBHOpen, PBOpenFork,
FSOpenFork, HOpen, etc. on a local volume and passing in a permissions value of fsCurPerm, fsWrPerm, or
fsRdWrPerm does not guarantee exclusive file access on Mac OS X. On Mac OS X subsequent Open calls to open a file with
write permission may succeed without error. Similarly the PBLockRange() routines may not actually guarentee byte
ranges cannot be modified by other processes. Because these routines may return without error, you should check the
availability of exclusive file access before making any assumptions about the underlying file access. If the 'supports
advisory locks' feature is not available your application will not know if the file is already in use by another application.

AppleShare servers and Personal File Sharing on Mac OS X do enforce exclusive file access and range locking for volumes
accessed over the network. However, this functionality is only available when accessing files over a networked file sharing
connection and is not available to applications running on the server itself.

Guidelines for working with non-exclusivity

We realize that many applications rely on the behavior of the classic Mac OS File Manager to prevent multiple applications
from writing to the same file (or to control write access through byte range locking). Since that behavior is not
implemented in all versions of Mac OS X, some common workarounds that you may wish to use in your code are described
below.
BSD was designed without exclusive locks in order to prevent denial of service attacks in which one process opens a file
with an exclusive lock which may be required by another process, effectively blocking the other process.

Checking Availability of Exclusive File Access

Mac OS X will enforce exclusive file access, i.e. one writer and many readers of a file, through it's application
frameworks, Carbon, Cocoa, and Java, by enforcing BSD advisory locks as though they are exclusive. The 'supports
advisory locks' feature is defined if both the OS and file system for the volume in question support advisory locks. In this
case, the default behavior of the application frameworks is to open files with exclusive access when opened as writable.
Applications built on these frameworks automatically get this functionallity and do not need to be modified. When the
conditions are met to support exclusive file access, PBLockRange will also call down through to the BSD advisory locks.
Since PBLockRange will be based on BSD advisory locks at this point, range locks can be applied to local files as well as
those on file servers.

Since not all versions of Carbon on Mac OS X support exclusive file access nor do all file systems support BSD advisory
locks, you should check a couple things before making assumptions about the underlying file access behavior. You should

Exclusive File Access in Mac OS X

Technical Note TN2037

only assume these features are available if the gestalt bit, gestaltFSSupportsExclusiveLocks, as well as the
GetVolParms bit, bSupportsExclusiveLocks, are both set. For instance, the Carbon Framework File Manager
routines support advisory locks by default when SupportsExclusiveFileAccess returns true.

#ifndef gestaltFSSupportsExclusiveLocks
 #define gestaltFSSupportsExclusiveLocks 15
 #define bSupportsExclusiveLocks 18
#endif

Boolean SupportsExclusiveFileAccess(short vRefNum)
{
 OSErr err;
 GetVolParmsInfoBuffer volParmsBuffer;
 HParamBlockRec hPB;
 long response;
 Boolean exclusiveAccess = false;

 err = Gestalt(gestaltSystemVersion, &response);
 if ((err == noErr) && (response < 0x01000))
 {
 err = Gestalt(gestaltMacOSCompatibilityBoxAttr, &response);
 if ((err != noErr)
 || ((response & (1 << gestaltMacOSCompatibilityBoxPresent)) == 0))
 return(true); // Running on Mac OS 9, not in Classic
 }

 err = Gestalt(gestaltFSAttr, &response);
 if ((err == noErr)
 && (response & (1L << gestaltFSSupportsExclusiveLocks)))
 {
 hPB.ioParam.ioVRefNum = vRefNum;
 hPB.ioParam.ioNamePtr = NULL;
 hPB.ioParam.ioBuffer = (Ptr) &volParmsBuffer;
 hPB.ioParam.ioReqCount = sizeof(volParmsBuffer);
 err = PBHGetVolParmsSync(&hPB);
 if (err == noErr)
 exclusiveAccess =
 (volParmsBuffer.vMExtendedAttributes
 & (1L << bSupportsExclusiveLocks)) != 0;
 }

 return(exclusiveAccess);
}

To check if a volume supports byte range locking via PBLockRange you should check the bHasOpenDeny bit returned
from GetVolParms. See Technical Note FL37 for more information about PBLockRange details.

 hPB.ioParam.ioVRefNum = vRefNum;
 hPB.ioParam.ioNamePtr = NULL;
 hPB.ioParam.ioBuffer = (Ptr) &volParmsBuffer;
 hPB.ioParam.ioReqCount = sizeof(volParmsBuffer);
 err = PBHGetVolParmsSync(&hPB);
 if (err == noErr)
 supportsByteRangeLocking =
 (volParmsBuffer.vMAttrib & (1L << bHasOpenDeny)) != 0;

Back to top

Common Workarounds

The following two techniques are frequently used to work around this issue on platforms that do not enforce exclusive file
access:

Lockfiles

A common approach used by many developers is to create a "lockfile" in the same directory as the file being opened.
Whenever opening a file, "foo", for instance, with write access you first try to create a lockfile, "foo.lock", in the same
location. If the file creation fails because the file already exists, you assume "foo" is already open by another application.
Upon closing "foo" the application is also responsible for deleting "foo.lock". A strength of this technique is it only makes
one assumption about the underlying file system: the file creation operation is atomic. The obvious weakness is that since
there is no OS support for this method, each application is responsible for implementing its own lock file mechanism, and
there are no agreed upon standards or conventions for the naming of lock files

The included sample, GrabBag, implements a variation of this "lockfile" technique. Not only does it create the lockfile, it
stores its ProcessSerialNumber in the file. Before opening a file, the code checks if a lockfile exists, and if it does,
verifies the PSN in the file is valid. This helps guard against files being left in a locked state in the event of an application
crash.

IMPORTANT:
Workarounds should be requalified with a system supporting the 'supports advisory locks' feature. It will be
announced when it becomes available.

Edit a Copy

Another work around relies on operating on a unique copy of the file. When a file is opened for editing, a duplicate of the
file is created in the /tmp directory with a unique name, and opened. When the user tries to save the document, the
modification date of the original is matched against the date cached during the open of the file. If it has changed, you know
the file was modified.

Back to top

Mac OS X Solutions

BSD Advisory Locking

Although Mac OS X's BSD subsystem does not implement provisions for exclusive write access, (i.e. mandatory locks), it
does provide advisory locks. An advisory lock is a voluntary locking mechanism in which the underlying file system
maintains a linked list of record locks. As long as your application and other applications respect the locks, only one
application at a time will have write access to a particular file. Since these locks are voluntary it is the
choice/responsibility of the application developer to respect or ignore advisory locks. If you would like to use advisory
locks, this can be done by following the instructions later in this document. By accessing files through the application
frameworks (Carbon, Cocoa, Java), in versions of the OS supporting the advisory locks feature in frameworks, this will
be provided automatically if you use the framework's file access methods.

IMPORTANT:
All applications should respect and use advisory locks.

Applications that call BSD file I/O functions directly will not gain this behavior for free, and therefore should be revised
to set and respect advisory locks by specifying the appropriate flags when opening a file.

i.e. You should evaluate changing calls from:

 fd = open("./foo", O_RDWR);

to:

 fd = open("./foo", O_RDWR + O_EXLOCK + O_NONBLOCK);

- Where, O_EXLOCK means Atomically obtain an exclusive lock, and O_NONBLOCK means Do not block on
open or for data to become available or Do not wait for the device or file to be ready or available.

Back to top

Implementing Advisory Locking

Anywhere you are calling the System.framework version of open(2) with write access, you should modify the
parameters to include the "O_EXLOCK + O_NONBLOCK" flags, and handle errors being returned, where they may have
succeeded in the past. The open(2) call will then fail if the file has already been opened for exclusive access by another
process.

Advisory locks are associated with a process and a file. This has two implications:

When a process terminates all its locks are released.

Whenever a descriptor is closed, any locks on the file referenced by that descriptor are released.

Implementing Byte Range Locking

BSD also provides advisory byte range locking support through the fcntl() function. By using advisory locking, your
application will be able to work in a cooperative manner with Carbon, Classic, and other applications in the future. In
these circumstances, files should be opened with the O_EXLOCK set and then ranges locked through the fcntl() call.

Stevens' "Advanced Programming in the Unix Environment" (page 367) describes some techniques for using the Unix
service fcntl() to lock portions of a file for reading and writing. (Stevens, 1999, p. 367)

WARNING:
A file lock request which is blocked can be interrupted by a signal. In this case the lock operation returns
EINTR. Thus you may think you got a lock when you really did not. A solution is to block signals when locking.
Another solution is to test the value returned by the lock operation and relock if the value is EINTR. Another
solution, which we adopt here, is to do nothing about it.

Record Locking is the term normally used to describe the ability of a process to prevent other processes from modifying a
region of a file while the first process is reading or modifying that portion of the file. BSD provides access to its record
locking mechanism through the fcntl function:

 #include <sys/types.h>
 #include <unistd.h>
 #include <fcntl.h>

 /*
 * Returns:
 * -1 on error
 */
 int fcntl(int filedes, int cmd, ... /* struct flock *flockptr */);

We'll start with the third argument (flockptr), which points to a flock structure:

struct flock {
 short l_type; /* F_RDLCK (shared read lock), or
 * F_WRLCK (shared write lock), or
 * F_UNLCK (unlocking a region)
 */
 off_t l_start; /* offset in bytes, relative to l_whence */
 short l_whence; /* SEEK_SET: file's offset is set to
 * l_start bytes from beginning of file
 * SEEK_CUR: file's offset is set to its current
 * value plus the l_start (which can
 * be + or -)
 * SEEK_END: file's offset is set to the size of
 * the file plus the l_start (which can
 * be + or -)
 */
 off_t l_len; /* length of region, in bytes
 * special case: if (l_len == 0), it means that
 * the lock extends to the largest possible
 * offset of the file. This allows us to lock a
 * region starting anywhere in the file, up
 * through and including any data that is
 * appended to the file
 */
 pid_t l_pid; /* returned when cmd = F_GETLK */
}

This structure describes:

The type of lock desired (i.e. read lock, write lock, unlock)

The starting byte offset of the region being locked or unlocked (l_start and l_whence)

The size of the region (l_len)

To lock an entire file, set l_start and l_whence to point to the beginning of the file (i.e. l_start= 0, l_whence=
SEEK_SET), and specify a length (l_len) of 0.

Any number of processes can have a shared read lock on a given byte, but only one process can have an exclusive write lock
on a given byte. To obtain a read lock the descriptor must be open for reading, and the region cannot have an exclusive
write lock. To obtain a write lock the descriptor must be open for writing, and the region cannot have an exclusive write
lock nor any read locks.

Now, we will describe the second parameter (cmd) for fcntl. The possible commands and what they mean are described
in the following table:

Command Meaning

F_GETLK Determine if the lock described by flockptr is blocked by some other lock. If a lock exists
that would prevent ours from being created, the information on that existing lock overwrites
the information pointed to by flockptr. If no lock exists that would prevent ours from being
created, the structure pointed to by flockptr is left unchanged except for the l_type
member, which is set to F_UNLCK.

F_SETLK Set the lock described by flockptr. If we are unable to obtain a lock (because of previous
locks already granted for the region) then fcntl returns -1 and errno is set to either
EACCES or EAGAIN.

F_SETLKW This command is a blocking version of F_SETLK (the W in the command means "wait"). If the
requested read lock or write lock cannot be granted because another process currently has
some part of the requested region locked, the calling process is put to sleep. This sleep is
interrupted is a signal is caught.

Be aware that testing for a lock with F_GETLK and then trying to obtain that lock with F_SETLK or F_SETLKW is not an
atomic operation. We have no guarantee that between the two fcntrl calls some other process won't come in and obtain
the same lock.

To save ourselves the trouble of allocating a flock structure and filling in all the elements each time, Stevens defines the
function lock_reg and a number of macros that call it. Notice that the macros shorten the number of parameters by two,
and save us from having to remember the F_* constants mentioned above.

#define read_lock(fd, offset, whence, len) \
 lock_reg (fd, F_SETLK, F_RDLCK, offset, whence, len)

#define readw_lock(fd, offset, whence, len) \
 lock_reg (fd, F_SETLKW, F_RDLCK, offset, whence, len)

#define write_lock(fd, offset, whence, len) \
 lock_reg (fd, F_SETLK, F_WRLCK, offset, whence, len)

#define writew_lock(fd, offset, whence, len) \
 lock_reg (fd, F_SETLKW, F_WRLCK, offset, whence, len)

#define un_lock(fd, offset, whence, len) \
 lock_reg (fd, F_SETLK, F_UNLCK, offset, whence, len)

pid_t lock_test(int, int , off_t , int , off_t);

#define is_readlock(fd, offset, whence, len) \
 lock_test(fd, F_RDLCK, offset, whence, len)
#define is_writelock(fd, offset, whence, len) \
 lock_test(fd, F_WRLCK, offset, whence, len)

int lock_reg(int fd, int cmd, int type, off_t offset, int whence, off_t len)
{
 struct flock lock;

 lock.l_type = type; /* F_RDLCK, F_WRLCK, F_UNLCK */
 lock.l_start = offset; /* byte offset, relative to l_whence */
 lock.l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
 lock.l_len = len; /* #bytes (0 means to EOF) */

 return (fcntl(fd, cmd, &lock));
}

pid_t lock_test(int fd, int type, off_t offset, int whence, off_t len)
{
 struct flock lock;
 lock.l_type = type; /* F_RDLCK or F_WRLCK */
 lock.l_start = offset; /* byte offset relative to l_whence */
 lock.l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
 lock.l_len = len; /* #bytes (0 means to EOF) */
 if (fcntl(fd,F_GETLK,&lock) < 0){
 perror("fcntl"); exit(1);}
 if (lock.l_type == F_UNLCK)
 return (0); /* false, region is not locked by another process */
 return (lock.l_pid); /* true, return pid of lock owner */
}

There are three important rules regarding automatic inheritance and release of record locks:

Locks are associated with a process and a file. When a process terminates, all its locks are released. Whenever a
descriptor is closed, any locks on the file referenced by that descriptor for that process are released.

Locks are never inherited by the child across a fork (otherwise we could end up with two processes sharing a
write lock)

Locks may be inherited by a new program across an exec. This is not required by BSD and is therefore machine
dependent

Back to top

References

Stevens, Richard W. (1999). Advanced Programming in the Unix Environment
Massachusetts: Addison Wesley Longman, Inc.
ISBN: 0201563177

Back to top

Downloadables

Acrobat version of this Note (68K) Download

GrabBag, a Carbon application demonstrating the use of "lockfiles" (200 K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

