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Performance tuning is a critical part of all 
application development. Customers don't 
like sluggish applications, and are willing to 
vote with their money. The good news is that 
small changes in an application can result in 
solid increases in the overall performance. 
This technote attempts to gather a significant 
amount of lore on tuning Mac OS 
applications for the best possible 
performance.

 Updated: [Sep 20 1999]

Introduction

The first step to optimizing your application is to define your goals. Are you trying to improve overall performance of the 
application, or are their specific features in the application that are critical enough to need separate performance tuning? 
Is there a minimum acceptable performance level? How can it be measured? The more detail you can put into your goals, 
the easier it will be to determine how to improve your application.

When defining your goals, you need to determine your target platforms. An iMac with 32 megabytes of memory will behave 
significantly differently than PowerMac G3 with 256 megabytes of memory. You should determine at least one low-end and 
one high-end configuration, and use these configurations in all of your performance-tuning efforts.

Programmers are routinely bad at guessing where the bottlenecks are in their code. While you should be thinking about 
optimization during the design process, you will want to focus your optimization efforts on the sections of code that 
contribute the largest amount to your total execution time. So, the next step in optimizing your code is to instrument your 
code and generate data that measures the execution of your code. Later on, we'll cover some of the tools that are available, 
and discuss when each might be useful.

After you've determined the bottlenecks in your code, the next step is to analyze your accumulated data and determine 
exactly why that particular code is slow. It might be slow because it is calling the operating system, or it could be an 
incorrect choice of algorithms, or even poorly generated assembly code. Understanding the exact behavior of your code is 
critical to changing the code correctly.

Low-hanging fruit are simple flaws in the code that can provide immediate performance improvements if repaired. One 
common example here would be making multiple system calls when only a single set of calls is necessary. This could be 
setting QuickDraw port variables inside a loop, or it could simply be accidentally calling the same function twice.

After this, the next major place to optimize your code is in the algorithms. This technote covers both Macintosh hardware 
and Mac OS technologies, so that you can understand how different algorithms may be affected by the underlying system. 

Memory management plays a key role in any algorithms you choose to implement in your code. Good memory management 
in an application can often mean orders of magnitude in performance.

Parallelism is becoming more common in modern computer architectures. With multiprocessor Power Macintoshes 
already in the marketplace, and Power Macintoshes with AltiVec shipping in the future, you should look at ways to exploit 
parallelism in your algorithms. 

Finally, if the application performance still suffers, specific functions can be hand-optimized in C or assembly language to 
produce more efficient code.

One golden rule of optimization is to hide the work where the user doesn't notice it. For example, if the user is not 
currently performing any actions, your code could precalculate data that may be used in the future. This significantly 
reduces the time required to actually perform the task. For example, many chess programs are computing their next move 
while waiting for the player to decide on their move. This significantly reduces the perceived time the computer takes to 
make a move.



This technote describes techniques and algorithms without regard to other considerations, such as flexibility in design, 
ease of coding, ease of debugging, and so on. As such, they may be inappropriate except in areas of the application where 
performance is most critical.
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Analysis Tools

As described above, it is critical to analyze your application to determine exactly where your program is spending the 
majority of its time. It is also important to understand exactly why your application is spending its time in that section of 
the code. Why is almost more important than where, because it will suggest the changes required to improve the code.

With this in mind, let's look at some of the tools that are available, and their best uses.

Metrowerks Profiler

CodeWarrior ships with a built-in profiling package that makes it simple to profile your code. Just turn on  in 
the  options, make a couple of simple changes to your code, and compile.

Profiling
Project

The Metrowerks Profiler provides a summary of all of the calls in your application, how many times they were called, and 
the total amount of time spent in each call. It also keeps track of the shortest and longest times each function call was made.

This is a good tool for getting an overall sense of where your application is spending its time. The summary information can 
quickly give you the top 5 or 10 functions where the application is spending most of its time.

The Metrowerks Profiler doesn't give you any information on how much time you are spending inside the operating system, 
nor does it really provide the context in which the function calls were made. That is, you can tell that  was called 
987,200 times, but you don't really know when, or by whom, without performing additional code inspection.

Foo

Still, this profiler is an excellent place to start when looking to optimize your application.

Instrumentation Library

Apple ships a complete SDK that allows you to wire up any application to log trace events. These trace events are stored in a 
file that can be parsed by the Instrumentation Viewer, and displayed in a number of different formats. In addition to 
summary information, you can also see a time-based progression that shows any subset of the events you wish to see.

The typical way that this is used is to log a trace event at the beginning and end of a function. The instrumentation viewer 
translates this into a picture that shows the exact time spent in that function.

 - Logging a trace eventFigure 1

One advantage this mechanism has is that you can see exactly when or where events certain events took place in relation to 
others. For example, you could see exactly how long a function spends before calling another function, then see how long it 
takes when that function returns. This gives us more detailed information on exactly where each function spends its time, 
rather than a simple summary.

Other types of events can be logged as well. For example, in addition to start and stop events, you can log middle events at 
various points. This is useful for functions that are easily broken into different sections. This allows each section of the 
function to be timed separately. In addition to time information, an application can also log its own numeric information. 
For example, a memory allocator could log the amount of memory requested by each call. This would allow additional 
analysis to be performed to determine the frequency of different memory requests.

All this flexibility comes with some cost. It takes additional effort to set up the Instrumentation Profiler, because the 
support is not automatically in the compiler. Generally speaking, this can be done by running a tool ( ) on an 
existing binary, and having it instrument a list of CFM imports or exports. This can also be done by directly adding code to 
your application, which is something that will have to be done in any case to obtain more sophisticated information.

MrPlus



In short, the instrumentation library is particularly useful once you see where your hot spots are, because you can then 
drill down and analyze the hot spot in detail, and determine exactly what is being called (in the OS or in your own code), 
how often, and for how long.

The instrumentation library is available on the Apple SDK web page.

http://developer.apple.com/sdk
ftp://ftp.apple.com/developer/Development_Kits/Instrumentation_SDK.hqx

4PM

The 604 and G3 processors include performance-monitoring features that allow an application to record statistics about 
its execution. Similarly, the MPC106 PCI controller used on the iMac and 1999 G3 models can also monitor and log 
detailed performance information.

4PM is a program and a shared library that allows an application to monitor a set of performance statistics. Most of these 
performance statistics are related to processor-specific features, such as cache misses or PCI performance. As we'll see 
when we talk about memory issues, some of these are crucial things to consider to get the fastest possible applications.

While 4PM can be used to examine the overall performance, the shared library adds the capability to selectively start and 
stop the monitor functions from within your application. So, if you've used the Instrumentation Library to determine the 
hot spots inside your application, and it isn't readily obvious why your code is running slower than normal, 4PM could be 
used to provide additional details on how your code is executing.

4PM isn't a great tool for examining the application as a whole, but it can provide valuable information to understanding 
why a section of code is running poorly.

http://developer.apple.com/tools

SIM_G4

Motorola has created a cycle-accurate simulator of the G4 processor that can test the execution of a block of code under 
different starting conditions. For example, you could test a snippet of code with both hot and cold caches and compare the 
performance characteristics.

SIM_G4 works by creating a trace file using tracing features on the PowerPC processor. This trace file is imported into 
SIM_G4, and then those instructions can be simulated to give you a representation of how your code passed through the 
various processor pipeline stages. This tool is particularly useful for understanding how your instructions are scheduled 
and executed. As such, it is essential for scheduling assembly code to run on the G4 processor.

The G4 is different enough from the earlier processors that scheduling for the G4 may not transfer back to the earlier 
processors. So, while this tool is useful, it will not solve all your problems. 

Detailed information about using SIM_G4 is available on the . SIM_G4 is only made available as part of the 
Apple Developer seeding program.

AltiVec web page

Build Your Own Tools

Occasionally, you'll find that the existing tools don't provide enough details on what is actually happening in a program. In 
those cases, it is valuable to design your own tools to accumulate data on the operation of your code.

When designing any subsystem of your code, you should think about the types of information you need to understand the 
operation of that subsystem. Importantly, this information serves a second purpose: debugging that section of the code when 
there is a problem.

While any specifics are up to the individual application, the most common thing to log is state changes and parameters that 
were passed to that code. Note that simple state changes and parameters are easy to log with Instrumentation Library; you 
only need to write your own logging for complex systems.
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The Macintosh Architecture

PowerPC processors are very efficient at processing data, so much so that memory, not the processor, is often the 
bottleneck in Mac OS applications. Slow memory accesses can completely stall the processor so that little work is being 
performed.

Code that exhibits poor memory characteristics will run at speeds no faster than main memory or, even worse, at the 
speed of virtual memory reading from a hard disk. Clearly, allocation and utilization of memory are critical to achieving 
the best possible performance in an application.

Programming in a high-level language hides the complexities of the memory subsystems on modern computers, in order to 
make it easier to write applications. Unfortunately, this is not an advantage when doing performance tuning. Understanding 
exactly how the memory system works is key to writing code that will work with the memory system rather than against 
it. To understand this, we're going to discuss the architecture of the Mac in detail. We'll first introduce some common 
architectural concepts; the following section will cover the Macintosh in detail. This technote can only give a brief 
introduction to computer architectures; for a more detailed discussion, see the .References

Most computer programs tend to exhibit patterns of memory accesses, which is usually referred to as . 
 refers to memory accesses that appear adjacent to an access you just completed; this is common when reading 

locality Spatial 
Locality



different pieces of data from a C struct.  refers to multiple memory accesses to the same section of 
memory; in other words, if you just read something from memory, you are likely to read it again in the near future.

Temporal locality

Modern computer architectures use a hierarchical memory model to take advantage of spatial and temporal locality. This 
model is built on  A cache is a smaller block of memory that can be accessed faster than the level it sits on top of. 
When a block of memory is loaded from the lower levels of the hierarchy, it is copied into the cache. Future accesses to the 
same memory will retrieve the data from the cache, which means the processor is less likely to stall waiting for something 
to be fetched from memory. Processors are increasing in speed faster than memory technologies, so multiple levels of 
cache are becoming more common.

caches.

 - Memory hierarchyFigure 2

When the block of data is not available in a particular level of memory, that is known as a . A cache miss is 
actually slower than the original transaction would have been in a single-level memory system.

cache miss

Clearly, to take best advantage of a cache, you want to reduce the number of cache misses by taking advantage of locality in 
your application. Some areas of memory can be marked  so that the processor will always fetch them from main 
memory. This can sometimes be very useful when the data is infrequently accessed. 

uncached

Caches can be designed in a number of different ways, so we need to discuss some of the parameters that affect a cache's 
operations. These include:

Size
Cacheline size
Set Associativity
Replacement Strategy
Write-policy/Cache coherency

Increasing the size of the cache increases the probability that previously accessed data will still be in the cache the next 
time the processor attempts to access it.

Caches are organized into blocks of data, called . When the processor executes a load instruction, it must fetch 
one or more cachelines of data in order to fill the request. Cachelines are generally larger than the size of the processor's 
registers; they need to be large enough to take advantage of spatial locality without taxing the lower levels of the memory 
subsystem. 

cachelines

 describes where a new cacheline can be stored in the cache. In a  cache, a new 
cacheline can be stored into any available cacheline inside the cache. Most processor caches are not fully associative 
because of the small amount of time available to search such a cache. An  associative cache means that the cacheline 
has  locations that it could theoretically be placed inside the cache. For example, an eight-way associative cache means 
that any particular block of memory can only be placed in one of eight different cache blocks inside the cache. We'll discuss 
exactly how this works later on when we discuss the PowerPC processor.

Set associativity full-associative

n-way
n

If there are no empty cachelines available when the processor attempts to load a new cacheline, one of the current 
cachelines must be thrown out. This is known as a . Most processors use a 

 (LRU) strategy, but others are possible.
replacement strategy least-recently

 used

When the processor wants to modify the data stored inside a cacheline, the  determines exactly how this 
write is performed. A  cache writes the data both into the cacheline and into the lower levels of the 
memory subsystem. The cacheline and memory will always stay in sync; they are said to be . If that 
cacheline must be discarded to make room for newer data, then the processor doesn't need to do any additional work. A

 cache defers writes until that block is needed for newer data. When the block is removed from the cache, it is 
written out to memory. Copy-back caches are generally faster, but require additional synchronization if multiple 
processors attempt to access the same block of memory. If a processor attempts to access a cacheline of memory held by 
another processor, it must retrieve the modified data and not the original cacheline from main memory. This may require 
the cacheline to be written back to main memory, or the processors may be able to communicate directly with one another.

write-policy
write-through

cache coherent

copy-back

A Look at the iMac

To put this in perspective, we'll examine the iMac/333 in detail. Although ultimately this information will be dated as the 
Macintosh continues to evolve, it is useful to look at a specific example and how its memory system is architected. For all 
Macintoshes, the best way to understand the machine is to read the developer note for the specific machine you are 
targeting.



 - Memory RegistersFigure 3

Registers

The G3 processor has 32 integer and 32 floating point registers. Generally, any value stored in a register is immediately 
available to instructions executed by the processor, making this the fastest memory subsystem on the iMac. Clearly, 
anything that will be accessed repeatedly should stay in a register if possible. Register allocation is usually controlled by 
the compiler, but the source code can include hints as to what should be placed in a register. For crucial sections of code, 
assembly language may be able to beat the register allocation performed by the compiler.

L1 Cache

The L1 caches are located inside the G3 processor, and any register can be loaded from the L1 cache in two processor 
cycles. Importantly, multiple load instructions can be pipelined for an overall throughput of 1 load per cycle. In other 
words, if an application knows that a piece of data is in the cache, it can dispatch a load and expect the data to be there two 
cycles later.

The L1 cache is actually two separate caches: 32K for data and 32K for instructions. Each cache is eight-way associative 
with 32 byte cachelines. This means that effectively there are eight 4K rows, which are split into 128 different 
cachelines.

 - L1 cachelinesFigure 4

Whenever a memory access is made, the bottom 12 bits of the address determine exactly where to look in the cache. Of 
these 12 bits, the top 7 bits [20..26] determine which column to examine, and the bottom 5 bits [27..31] determine 
which part of the cacheline to read into the register.

 - Memory accessFigure 5

When a memory access is made, the specific column is searched in all eight rows simultaneously to see if the required data 
is already in the cache. If the data isn't in one of those cachelines, then one of those cachelines is flushed out to the L2 cache 
(using a pseudo-LRU algorithm), and the new data will be loaded into that cacheline.

L2 Cache

The L2 cache on the iMac/333 is a 512K, two-way set associative cache with 64 byte cachelines, for a total of 8,192 
entries. Typically, the access time to the L2 cache is about 10 to 15 cycles. Inside the L2 cache, bits 14 through 25 of the 
address will be used to determine which column can hold our data. Because the rows are much longer, there is less chance 
of two transactions overlapping inside the L2 cache; this is good because collisions will tend to flush useful data outside of 
the cache sooner.



 - L2 cacheFigure 6

The L2 cache holds both instructions and data, so both may be fighting for resources - but only when the code is large 
enough to spill outside the L1 cache.

Main Memory

When the information isn't available inside the L2 cache, then we must fetch it from main memory. Main memory accesses 
usually take about twice as long as accesses inside the L2 cache. The memory used in the iMac is SDRAM, which is organized 
so that adjacent reads from that memory in a short period of time will be more efficient than completely random reads. The 
same code transformations that improve caching will also help to maximize SDRAM performance.

Virtual Memory

Up to this point, we've ignored virtual memory, so now we'll look at it in detail. Mac OS organizes virtual memory into
 that are 4K in size. A page table is stored in main memory that maps logical pages to the actual physical pages in 

memory. When a page is requested that is not presently in memory, it is loaded from disk, possibly ejecting another page 
back to disk. Virtual memory can be seen to act exactly like a cache.

pages

Given that the page maps are stored in main memory, it might appear that each load and store instruction is going to cause 
multiple memory transactions - first to read the page table, and then to fetch the actual data. To avoid this, the G3 
processor keeps a cache of the most recent page accesses. This cache is known as the , 
or TLB. This cache is much smaller than the ones we saw for the L1 and L2 caches; a 128-entry, two-way set associative 
cache. Bits 14 through 19 of the address are used to look up the entries in the TLB.

Translation Lookaside Buffers

 - Translation Lookaside BuffersFigure 7

A TLB miss will cause a significant penalty in accessing that block of memory. Worse, if you repeatedly access pages that 
are not located in memory, repeated page faults will slow the Macintosh down to the speed of the hard disk, about a million 
times slower than RAM accesses.

Access Strategies

You probably didn't want to know how the iMac's memory subsystems work; you really want to know how to write your 
application so that it accesses memory as quickly as possible. Clearly, the goal is to spend as much time working inside the 
L1 cache, where memory accesses are fast and predictable, and as little time as possible in the other memory subsystems. 
The good news is that we can apply most of our effort to optimizing the L1 cache performance; all the other layers will 
benefit from those optimizations automatically.

Steps to optimize code performance:

Align your data.
Reducing cache misses is more important than reducing the number of instructions executed.
Don't give in to code bloat; code has to be read from memory as well.
Use the lowest stride possible; a unit stride is ideal.
Avoid large strides are powers of 2.
Work on data sets that will fit inside the L1 cache for as long as possible.
Use VM functions to explicitly page your data.
Use cache instructions to explicitly manage how your data is cached.
Watch out for hidden memory accesses.
PCI memory is special, so you can't do things the same way.
Avoid writing to the same block of memory from two different preemptive tasks.

Alignment

Whenever possible, all forms of data should be aligned to their natural size boundary. For example, a 32-bit long should 
have an address that is a multiple of 4. A 64-bit floating point double should be aligned to an 8-byte address. AltiVec 
registers should be aligned to a 16-byte boundary.

If an application doesn't properly align a variable, it will take a penalty every time it executes a load or store on that 
section of memory. For integer instructions, the penalty is one cycle. Remember, floating point doubles; the G3 processor 
does not handle alignment in hardware. Instead, an exception occurs and the alignment is handled in software. This works 
correctly, but at a  performance penalty, and should always be avoided.severe

AltiVec registers can only be loaded or stored on aligned boundaries. When an load or store generated for one of the AltiVec 
registers is performed, the bottom four bits of the address are ignored completely. This ensures that all loads and stores 
are aligned in memory, but requires the programmer to perform the alignment manually. If you need to read or write 
misaligned data using the altivec registers, consult the  or the AltiVec Programming Environments 
Manual.

Apple AltiVec web page



While aligned loads and stores will always fall inside a cacheline, misaligned data can straddle two different cache lines, or 
even two different virtual memory pages. This can result in additional performance penalties as more data is loaded into 
the caches or from disk.

Whenever possible, align both your reads and writes. If you have to choose one to align first, align the reads, since most 
code stalls on reads, not writes.

If you allocate a data structure using PowerPC alignment conventions, then the structure will automatically be padded 
correctly to maintain proper alignment. However, if your structure includes doubles or vector registers, at least one must 
appear at the beginning of the struct to maintain proper alignment.

The standard C function  does not guarantee any sort of alignment. Mac OS 8.6 aligns all handles and pointer blocks 
to a 16-byte boundary. If you need to align your own data, allocate a larger block of memory and calculate an aligned 
pointer to write into it. You need to save the old pointer so that you can properly dispose of the memory block when you are 
done with it.

malloc

#define alignPtrToBoundary(myPtr,align) (((myPtr)+(align)-1) & ~((align)-1))

enum
{
 cacheSize = 32,
 vmPageSize = 4096
};

Ptr savePtr, thePtr;

savePtr = NewPtr (mySize + cacheSize);
thePtr = alignPtrToBoundary(savePtr,cacheSize);

Choosing Stride Values and a Memory Access Pattern

The  is the offset between consecutive memory accesses in your code. A good rule of thumb is to choose the natural 
length of the item being fetched (a ). For example, the unit stride of an array of  would be 4 bytes. 
The unit stride would only touch a new cacheline after every eight loads. Contrast this with a 32-byte stride, which would 
touch a new cacheline for each load.

stride
unit stride UInt32s

If you can't choose a unit stride, you should try to choose a stride that is no larger than a cacheline. Once you choose a 
larger stride, you may skip cachelines, leaving a percentage of the cache unused. Larger stride values that are powers of 2 
will use a dramatically smaller portion of the cache. For example, look back at the . If we chose a 
stride of 4096, we would be walking  through the cache, using a total of 8 cachelines in the L1 cache. This 
would actually use less than 1% of the L1 cache, and 2% of the L2 cache. However a stride value of 4092, only 4 bytes 
lower, will use the entire cache. However, large strides are always bad because they will cause many virtual memory 
pages to be touched, resulting in many page faults.

diagram of the L1 cache
vertically

This technote comes with an application named . Given a stride value, it will simulate the cache 
utilization for the L1 and L2 caches on an iMac, as well as giving an approximate idea of the TLB usage. It gives the 
percentage utilization as well as how many iterations before you will begin to evict data from the cache.

Cacheline Optimizer

You should optimize your cache utilization for the data that is used most frequently. For example, let's assume we've got an 
array of data records on which we need to search and perform operations.

struct Foo
{
 int key
 int[7] data;
};

Foo records[kDataSize];

for (loop = 0; loop < kDataSize; loop++)
{
 if (records[loop].key == keyValue)
 {
  PerformAction(&records[loop]);
 }
}

This code has a stride of 32 bytes; we actually load a cacheline every time we iterate on the search loop. Unless we 
frequently hit inside the loop, we are actually wasting most of the cacheline on unused data. Instead, this structure could be 
transformed into a pair of arrays, one for the keys and one for the data.



struct Foo
{
 int[7] data;
}

Foo  records[kDataSize];
int  keys[kDataSize];

for (loop = 0; loop < kDataSize; loop++)
{
 if (keys[loop] == keyValue)
 {
  PerformAction(&records[loop]);
 }
}

This results in no wasted space in the cache; we only load data into the cache when we successfully find a key. A test on the 
code above showed that the second set of search code executes in roughly 60% of the time of the first test.

Another common example is multidimensional arrays. Array accesses should always start with the innermost dimension, 
working outwards. For example, the following array could be accessed in two different ways:

float matrix[1024][1024];

/* Stride = 4 */
for (loopX = 0; loopX < 1024; loopX++)
 {
   for (loopY = 0; loopY < 1024; loopY++)
   {
     sum = sum + matrix[x][y]; 
    }
 }
 /* Stride = 4096 */
for (loopY = 0; loopY < 1024; loopY++)
{
 for (loopX = 0; loopX < 1024; loopX++)
 {
   sum = sum + matrix[x][y]; 
 }
}

In the first case, we have a unit stride, with the best possible cache utilization. The second case gives us a power of 2 
stride, giving extremely poor L1 and L2 cache utilization. In this particular case, the first set of code will run about five 
times faster than the second.

High Performance Computing (see ) discusses a number of access patterns for optimizing cache utilization of 
arrays and is a useful place to look for more ideas on transforming your data.

References

When talking about data, we can't ignore lookup tables. Lookup tables used to be a very efficient way to perform 
computations, but the processors have become much faster than the memory systems, so it if often faster to do the 
calculations than to rely on a lookup table. Lookup tables are generally only efficient for small tables that are accessed 
extremely frequently inside a tight inner loop. Large tables, or tables that are accessed infrequently will only result in 
displacing other data from the caches.

Temporal Locality

We've seen how choosing a good stride value improves the spatial locality of a block of code. However, temporal locality is 
equally important. A block of code should work on data in relatively small chunks, and work on those chunks for as long as 
possible before moving on to other data. Ideally, those chunks should fit inside the L1 cache, to absolutely minimize the 
time spent operating on the data.

For example, the following code performs three different functions on our data structure.

struct record
{
 int data[8];
};



enum
{
 kNumberRecords = 262144
};
record  entries[kDataSize];

for (loop= 0; loop < kNumberRecords; loop++)
{
 foo(&entries[loop]);
}
for (loop= 0; loop < kNumberRecords; loop++)
{
 bar(&entries[loop]);
}
for (loop= 0; loop < kNumberRecords; loop++)
{
 baz(&entries[loop]);
}

This code is inefficient because the function walks an eight-megabyte block of data. This is large enough to completely fill 
the L1 and L2 caches. Since we walk each function separately, this code will completely reload the L1 and L2 caches in each 
loop. Under cramped memory conditions, it will also thrash the virtual memory system as well.

Instead, this code should perform all three functions on a block of data before moving on to the next one.

for (loop= 0; loop < kDataSize; loop++)
{
 foo(&entries[loop]);
 bar(&entries[loop]);
 baz(&entries[loop]);
}

This will not evict any data from the L1 cache until all three functions have been executed, resulting in about 1/3 the 
memory accesses of the first example.

The example above shows no dependencies in the code. Most real-world examples exhibit dependencies between different 
blocks of code. The goal is to calculate as far ahead as possible without evicting useful data out of the L1 cache. For example, 
if  required the previous four data records, we would want to perform a few calculations of  before starting into 
the single combined loop.
bar foo()

A safe number is generally half the size of the L1 cache; this allows for other data and global variables to have space in the 
cache.

Optimizing Virtual Memory Usage

If you optimize your data to fit in the L1 caches, you have already optimized your code to work efficiently with the Mac OS 
virtual memory system. For example, a block of code executing on a four-byte stride will only incur one page fault every 
1,024 iterations. In many cases you can provide additional hints to the Mac OS to further improve your virtual memory 
performance.

Starting in Mac OS 8.1, there are a set of functions that allow you to prepage VM pages into and out of memory. Complete 
documentation is in , but to summarize: Technote 1121, "Mac OS 8.1"

 - pulls a set of pages in from the disk.MakeMemoryResident

 - flushes a set of pages out to disk and marks those pages as available to the VM system.MakeMemoryNonResident

 - flushes a set of pages out to disk, but leaves them resident in memory.FlushMemory

 - marks a set of pages as clean, so that they will not be written out to disk.ReleaseMemoryData

For example, let's revisit our previous example. We know the code is about to walk an eight-megabyte block of memory 
linearly. In the worst case, all of our data is currently on disk and we'd take 2,048 page faults to bring in this data and 
operate on it. Disk and file system overhead will make this operation slow, even though we optimized our memory accesses 
appropriately. However, we know we're going to walk the entire block, so we can prepage the information in.

struct record
{
 int data[8];
};



enum
{
 kNumberRecords = 262144
};
record  entries[kDataSize];

MakeMemoryResident (&entries, kNumberRecords * sizeof (record));
for (loop= 0; loop < kNumberRecords; loop++)
...

This code hints to the operating system, allowing these pages to be read into memory in much larger chunks. For a piece of 
code similar to the above test, this roughly doubled the VM performance. Importantly, adding this function call is only 
useful if the data has likely been previously paged to disk; otherwise, this just adds a small amount of overhead to the 
function.

Similarly, if the application has modified a large chunk of data, it can call  and allow the system to write 
these pages out to disk efficiently. In many cases, the operating system already combines adjacent dirty pages, but adding a 
hint can be a good idea. The places where you want to use this are less obvious and using  improperly can 
actually reduce performance, by initiating writes that may never have happened otherwise. 

FlushMemory

FlushMemory

 is a more extreme version of , since it allows that entire range of VM pages 
to be used to satisfy new VM requests. It should only be used for data that isn't going to be used again for a while.
MakeMemoryNonResident FlushMemory

Finally, if the application has a chunk of data that doesn't need to be stored to disk (because the entire page of data will be 
recreated next time it is needed), then the pages can be invalided via  and then made non-resident 
using the  calls. This eliminates unnecessary writes to disk and also provides virtual 
memory pages to the system that it can use to satisfy page faults. This can prevent useful information from being paged out 
by mistake.

ReleaseMemoryData
MakeMemoryNonResident

Working With the Cache

The PowerPC processor has a number of instructions that allow a program to hint to the processor about its cache 
utilization, much like the function calls we just described for virtual memory. The G4 processor has more advanced 
streaming instructions that allow even further optimizations to be made. This note will only cover the instructions that 
are available on the G3 processor; information on the cache streaming architecture is available on Apple's AltiVec web 
page.

Hinting to the processor allows it to use spare memory bandwidth to prefetch new data before it is needed by the processor. 
Under the best circumstances, where computations and loading are balanced perfectly, this can result in a doubling of the 
actual performance of your code.

Compilers will not automatically emit these instructions; you need either to write assembly language or use special 
compiler intrinsics to add these instructions to your code.

 - data cache block touchdcbt

The dcbt instruction hints to the processor that you will be using information from a particular block of memory in the 
near future. If the processor has spare memory bandwidth, it can use them to fetch this data so that it is ready immediately 
when you need it. This instruction will not cause page faults or other exceptions.

If we look at our previous example, we found that our record fit exactly into a cacheline. If our records were aligned to a 
cache boundary, we could use a  instruction to prefetch the next record while we're performing calculations on the 
current record. When the calculation and load times are comparable, this can result in a 100% speed increase.

dcbt

This instruction is only useful when the number of calculations is large enough that there are idle memory cycles and when 
our data is usually not already in the L1 cache. For something like a simple memory to memory copy, there are no 
calculations to overlap with the  instruction, so this is just a waste of processor cycles. If the data is already in the 
L1 cache, then again, we're just adding additional unnecessary cycles.

dcbt

Cache touch instructions have a very significant effect on the G4 processors, often doubling the available memory 
bandwidth.  instructions and their more powerful stream-based counterparts should always be considered when 
optimizing code specifically for the G4 processor.

dcbt

data cache block zerodcbz - 

The  instruction is not a hint to the processor. Given a memory address, it calculates the correct cacheline, writing 
that data out exactly as for any other cacheline operation. However, while a load or store instruction would fetch data from 
memory to fill the cacheline, the  instruction just fills in the cacheline with zeros. This instruction should only be 
used on data that has been properly aligned, because otherwise you might wipe out useful data by mistake.

dcbz

dcbz

Beyond being the most efficient way to clear cacheable memory, this instruction offers another tangible benefit. If a block 
of code is going to completely overwrite a cacheline of data, then it should explicitly clear that cacheline before filling it. 



For example, the following code fills a one-megabyte block of memory with data.

UInt32 ptr;

for (loop = 0; loop < 1024*1024; loop++)
{
 *((UInt32 *)(ptr+loop)) = 0xFFFFFFFFUL;
}

When the first write is done into a cacheline, the write stalls until the cacheline is loaded from main memory. This read is 
completely unnecessary since the code is going to overwrite the entire contents of the cacheline. For our one-megabyte 
record, this is 32,768 loads from memory that we didn't need to make!

Instead, we could write this code to use the  instruction.dcbz

/* assumes this data is aligned to a cacheline boundary */
UInt32 ptr;
for (loop = 0; loop < 1024*1024; loop+=32)
{
 _dcbz (loop, ptr);
 /* this could certainly be unrolled for speed */
 for (loop2 = loop; loop2 < loop+8; loop2++)
 {
  *((UInt32 *)(ptr+loop2))  = 0xFFFFFFFFUL;
 }
}

This code explicitly clears the cacheline and then fills it with the new data. By clearing it, we've eliminated a significant 
amount of load bandwidth, in some cases more than doubling the overall throughput in memory.

The  instruction should only be used on cacheable memory. For uncacheable or write-through cacheable memory, it 
generates a processor exception that handles it correctly, but is much slower than clearing those bytes by hand.

dcbz

 - data cache block flush
 - data cache block invalidate

dcbf
dcbi

The  instruction pushes a cacheline of data completely out of the L1 and L2 caches, and marks that cacheline as 
unused. The  instruction just marks a cacheline as unused, without pushing any data across the bus.

dcbf
dcbi

Explicitly flushing data that won't be used in the near future makes those cachelines available for other incoming data. This 
might prevent useful data from being purged from the caches by mistake. Like the  function, 
it should be used sparingly, since it initiates memory bus traffic that may not have otherwise been necessary. In addition, 
any block flushed in this fashion must be completely reloaded from main memory, resulting in considerably worse 
memory performance.

MakeMemoryNonResident

The  instruction allows you to mark cache lines of data that do not need to be written to main memory. This is a useful 
hint to provide for transient data that must be completely recalculated anyway. While the  instruction helped reduce 
unnecessary loads performed by the processor, the  instruction minimizes extraneous writes.

dcbi
dcbz

dcbi

Let's say we had a piece of code that is going to recalculate a chunk of data every time could use  instructions to clear 
the cachelines, and  instructions to prevent them from being written to main memory. This will eliminate any 
extraneous processor bandwidth from being generated for this chunk of memory, at the cost of a few cycles in this code.

dcbz
dcbi

Hidden Ways Applications Touch Memory

Most applications access memory in places the programmers never realized. Compilers often generate unnecessary loads 
and stores to keep certain variables synchronized between a register and main memory. Global variables can also add 
additional data into the cache. This section discusses a few ways that this can result and suggests methods to avoid it.

Global variables are stored in the data portion of a shared library and are accessed via a lookup table (known as the ). 
Whenever an application accesses a global variable, it must first look up the address of that variable in the TOC. So, any 
global is accessed with at least two load instructions. If a global is accessed multiple times in a function, the compiler may 
cache the global's address in a register. However, this will leave this register unavailable for other computations.

TOC

Let's put this in perspective. A function that accesses eight global variables may use anywhere from eight to sixteen 
registers to hold global data, trading off additional registers for fewer reloads of the address. The large number of registers 
being used means that more registers must be saved and restored when entering and exiting the function. And finally, all of 



the TOC lookups mean additional cachelines of data being loaded into the L1 cache. For the above code, the worse case would 
be where each TOC entry is in a different cacheline.

Globals that are declared as  types are not immune to the problems listed above. Applications that use  for 
simple integer types should consider using enumerated types, in the same fashion as the Apple Universal Interfaces.

const const

There are a few ways that an application can work around the above problem. The easiest is to declare a related set of 
globals into a single struct. This causes all of the globals to share a single TOC entry, and also allocates the data adjacent in 
memory, which improves the cacheability of the global information. Because they share a single TOC entry, a single TOC 
address lookup can be used to the entire set of globals, with no additional penalties over the standard case in the compiler. 
Using our example above, 8 globals would fit into 9 registers; one that holds the address retrieved from the TOC, and 8 to 
hold the actual globals. This model of using a single address to look up a set of globals is close to the model used for globals 
used on Windows, so those of you creating cross-platform code should find that this gives you good performance.

Another important consideration is the scoping of the global. If the global is only used in a single function, or inside a 
single implementation file, be sure to scope it as a static variable inside the function or file. This offers the compiler 
additional information it can use when optimizing the code.

Even with both of these mechanisms being used, many accesses to globals will still generate load and store instructions, 
even when the data hasn't changed in memory. This is known as ; the compiler can't always determine if two 
different pointers aren't pointing at the same memory, so it gives up and assumes memory is accurate and the register is 
not.

aliasing

By creating a local variable, and assigning the global's value to it, you explicitly tell the compiler that this variable is 
scoped for a given function and it won't change. If you do modify the global, you can copy the value back at the end of the 
function. Obviously this only works if the function doesn't call another function that will change the value of the global. 
Like most optimizations, this is best used inside a tight inner loop, where extraneous memory accesses to a single memory 
location are just wasted cycles.

These same techniques can be applied in other places as well. Values stored inside a structure or C++ class, or anything 
referenced via a pointer, will suffer the same aliasing problems as a global variable. Caching frequently used items into 
local variables explicitly tells the compiler and allow it to produce better code. Always scope variables as tightly as 
possible in order to let the compiler aggressively schedule register usage, preventing unnecessary registers from being 
saved and restored to the stack.

When programming a function in this manner, it is useful to think of the function as a machine that takes a bunch of data, 
stores it in registers, crunches everything inside registers, and then stores it out to memory. While doing calculations, it 
isn't touching memory, offering more bandwidth to other parts of the Mac.

PCI Memory

PCI memory transactions are much slower than those going to main memory, so applications which write data to PCI must 
be optimized more closely than those that touch main memory. The iMac ships with a 33mhz PCI bus, while the '99 G3 and 
G4 systems ship with 66mhz PCI and AGP. When writing data over PCI, we want to reduce PCI transaction overhead and 
maximize the number of PCI cycles spent writing data.

Cacheable PCI memory works identically to main memory; the only difference is the slower time to burst cache lines 
across PCI bus. Because of this, all of the guidelines for L1 and L2 cache management are more critical, because code that 
thrashes the L1 and L2 caches will be reduced to the speed of PCI reads and writes.

However, many devices on PCI are non-cacheable and require additional work on the part of the programmer. One common 
case is a video frame buffer, which must be non-cacheable in order to ensure that pixel updates happen immediately. If you 
are writing data to non-cacheable PCI memory, you should follow the following guidelines:

Avoid loads from PCI whenever possible.
Always align your loads and stores to PCI memory.
Round your loads and stores to at least 4 byte boundaries.
Use the floating point registers or vector registers to copy data.

Misalignment penalties when writing to PCI are extremely high, and it is always worth spending additional instructions to 
explicitly align a block of data before posting it over PCI. One easy way to do this is to create a buffer on the stack and write 
your unaligned data into the buffer. Then, write this buffer over PCI using double or vector registers. This buffer could be 
aligned with caches, and explicitly cleared and invalided, as discussed in the caching section.

When working on a frame buffer, don't write one- or two-byte quantities if you can gather larger sets of writes - a one- 
or two-byte transaction takes just as long as writing out a four-byte word. If you can, round all your writes to four-byte 
boundary (minimum) and write out longs.

As an example, the worse case would be code that alternates writing one byte, and then skipping one byte. If we write each 
byte separately, we are effectively writing to each four-byte block twice. If we round each byte to a four-byte boundary on 
either side and gather adjacent writes, we immediately half the number of PCI data writes we are making to the buffer. 
This requires the intermediate unchanged pixels to be coherent with what is presently stored in PCI memory.

In actuality, writing four bytes at a time does not offer the best performance. When larger chunks of data are being 
written, code should use the floating point registers to move 64 bits at a time. This reduces the PCI transaction overhead, 
resulting in a 50% gain in speed over writing longs. On machines with AltiVec, writing aligned data with vector registers 
will result in speeds more than twice that of an equivalent set of integer loads and stores.

Multiprocessing

Multiprocessing adds an entirely new set of issues to worry about. On the positive side, each processor has its own L1 
caches, which allow larger data sets to be stored in L1 cache simultaneously. However, multiple processors will share L2 
cache and main memory, which means the processors are competing for a sparse amount of bandwidth.



If your code has already been optimized to make efficient use of the L1 cache, then the load on the L2 and memory 
subsystems will be lower and your application will automatically have better MP performance.

When possible, a multithreaded application should never write to the same cacheline of data from multiple preemptive 
tasks simultaneously. While this will give acceptable performance on single processor systems, a multiprocessor system 
will cause a lot of overhead keeping cache coherency between the processors. This overhead is reduced on the G4 processor, 
but is still worth avoiding.

Instead, divide your work into multiple sections that don't overlap in memory and give each section to a thread. Each 
section should follow the rules for spatial and temporal locality.

Back to top

Mac OS Optimization Strategies

Having examined the memory system on the current Macintoshes and how it affects the organization of your data, we will 
now turn to the discussion of how to optimize your code to work with the Mac OS. Applications can't change the code in the 
Mac OS, but they can change how they call the Mac OS. An understanding of how different components of the Mac OS operate 
will help determine the correct algorithms and strategies to use in your code.

Basic OS Optimizations

Don't spend a lot of time rewriting basic operations, such as memory moves or string routines. Instead, you should rely on 
the low-level operating system services or , which implements the C library functions. (Apple can optimize 
each routine for a specific hardware configuration to maximize performance.) You should avoid bypassing these routines 
except in cases where you can provide a significant improvement in speed; by using your own code, you may end up 
running slower on future processors. In addition, your code has to be loaded separately into the caches from the system's 
code, resulting in other code being evicted from the caches.

StdCLib

Similarly, you should avoid embedding any runtime libraries directly into your application binary; instead, link to
. Using  results in only a single copy of the library being loaded into memory at one time, improving 

virtual memory and caching performance. Applications that embed runtime libraries in their code will have their own 
copies of the libraries, again, evicting other information from the system caches.

StdCLib StdCLib

So, initially, when you need a service, you should determine whether the system already has a function that implements 
that feature. If it does, you should use it, and only replace it when you absolutely must.

When might you need to replace a routine? Let's look at an example.  is a general purpose memory copy 
function in the Mac OS. It will copy aligned or unaligned data of any size. It correctly deals with overlapping memory 
blocks. It is very fast, but because of its flexibility, it must perform a number of tests before it can start copying data.

BlockMoveData

If 90% of your  calls are for small, aligned blocks, you can probably beat  by writing 
a smaller copy routine that eliminates all of the testing overhead of .

BlockMoveData BlockMoveData
BlockMoveData

Generally speaking, the easiest way to avoid system overhead is to make fewer system calls on larger chunks of data. We'll 
see this in a few places throughout the rest of this section.

Finally, while many pieces of the Mac OS run natively, other functions are still implemented in 68K code. 68K code runs 
significantly slower than PowerPC code. The 68K emulator tends to fill the L1 and L2 caches with data, evicting useful data 
out of the caches.

Optimizing the Event Loop

One place applications often lose time is inside their event loop. Every time you call , you are giving up 
a lot of CPU cycles to other applications. Because these other applications are getting time, they are also flushing your code 
and data from the caches on the processor. This breaks the temporal locality of your code and data, slowing down your 
processing. In general, if you have calculations to perform, you should keep the CPU for as long as possible while still 
maintaining a responsive user interface.

WaitNextEvent

Studies have shown most users expect the frontmost window to be the most responsive, and to complete work faster. For 
example, the current Finder uses significantly more time when the frontmost window is a Copy progress dialog; the user is 
waiting for this copy to complete. Applications should adopt the following guidelines:

Use preemptive or cooperative threads to perform calculations.
Calculate for a fixed period of time rather than a fixed number of iterations.
Adjust the event loop dynamically at runtime.

Starting with Mac OS 8.6, preemptive tasking is available to all applications, all of the time, and is accessed through 
improvements to the Multiprocessor API. In fact, the entire Mac OS cooperative environment is now run as a single 
preemptive task, and is no longer tied to a specific processor.

Preemptive tasks are still limited in what they are allowed to call; calling any 68K code or most operating system 
functions is not allowed, making them useful primarily for computational activities. Cooperative threads are also useful in 
this regard, but they can also take advantage of toolbox calls.

When  is called under the new environment, your application actually sleeps for the sleep time you 
provide it, unless an event is received for your application. If all applications are sleeping, this allows the Mac OS task to 
block completely, giving the processors completely to other preemptive tasks, and also allowing power saving features to 

WaitNextEvent



be enabled, extending battery life on PowerBooks. So, if you are doing most of your work in preemptive tasks, then a high 
sleep value is preferred, because you want those tasks to get as much time as possible. On the other hand, if you are doing 
most of your work in cooperative threads, you want to use a small sleep value. Otherwise, you are spending most of your 
time sleeping and very little of it performing computations.

If you are performing calculations inside your  loop, you don't want to perform a fixed number of 
iterations. As processors get faster, the time spent in your code ends up being smaller, and the time spent calling

 will increase. Instead, time your computations using  or one of the other clocks, and only 
give up time when an event has come in or your time has expired. The sleep and work times should be adjusted dynamically 
based on the amount of work you have to do, and whether or not your application is in the foreground or the background. 
The following event loop demonstrates this:

WaitNextEvent

WaitNextEvent TickCount

enum
{
 kMaxSleep = 65535L
};

bool  gAppRunning;
bool  gAppForeground;
bool  gThreaded;
bool  gComputations;

int   gComputeThreadsActive;     // how many compute threads we have
int   gAppleEventsSent;           // how many Apple Events we've sent
int   gPendingAppleEventReplies; // how many Apple Events we need to reply to

long  CalculateWorkInterval(); 
long  CalculateSleepInterval();
bool  AppPerformingComputations();
bool  EventsPending();

void SHEventloop(void)
{
 OSStatus  theErr = noErr;
 UInt32  nextTimeToCheckForEvents;
 EventRecord anEvent;
 gAppRunning = true;
 gAppForeground = true;
 gComputations = false;
 gComputeTheadsActive = 0;
 gPendingAppleEventReplies = 0;
 do
 {
  nextTimeToCheckForEvents = TickCount() + CalculateWorkInterval();
  while (AppPerformingComputations() &&
      !EventsPending() &&
      (nextTimeToCheckForEvents > TickCount()) )
   continue;

  // retrieve an event, if one is pending, and handle it.  An error here
  // implies a fatal error in the application.

  (void) WaitNextEvent (everyEvent,&anEvent,
    CalculateSleepInterval(), AppCursorRegion());
  theErr = AppHandleEvent(&anEvent);

 } while ((theErr == noErr) && gAppRunning);
}

int CalculateWorkInterval()
(
 /*
 A more sophisticated version of the code could notice the last
 time a keyboard or mouse event came in, and adjust these work
 numbers up if the machine has been idle for a while
 */

 /*
 if we're in the background, and no one else wants data from us,
 we should return control as soon as possible.
 */



 if (!gAppForeGround && (gPendingAppleEventReplies == 0))
  return 0;
 /* 
 if we're waiting on data from other applications, 
 we'll only take a small time slice because we want 
 those applications to have time to respond to our requests.
 */
 if (gAppleEventsSent > 0)
  return 2;
 /*
 We're frontmost, we don't need anything from anyone else.  Take
 a big chunk of time to perform computations.  If we run out
 of computations, the work loop falls through to calling WaitNextEvent.

 If we're handling text, we should modify this code to not take more
 time than GetCaretTime. 
 See .
 */

 return 15;
)

int CalculateSleepInterval()
(
 // if no work to do, sleep for as long as possible.

 if ((gComputations == false) &&
  (gComputeThreadsActive == 0) &&
  (gPendingAppleEventReplies == 0))
  return kSHMaxSleep;
 /*
 If we're waiting on replies from other apps or if we're in the background
 we want to sleep for a while to give other applications time to do some
 work.  Otherwise, we'll sleep for a small bit of time.
 */

 if (gAppForeGround && (gAppleEventsSent == 0))
  return 1;
 else
  return 10;
)

bool EventsPending()
{
 EventRecord ignored;
 return (OSEventAvail (everyEvent, &ignored) || CheckUpdate (&ignored));
}

bool AppPerformingComputations
{
 if (gComputations)
  PerformComputations();
 if (gComputeThreadsActive > 0)
  YieldToAnyThread();
 return (gComputations || (gComputeThreadsActive > 0));
}

Inside Macintosh: Macintosh Toolbox Essentials, p. 2-86

This code always attempts to perform calculations at least once through each event loop, calling out to cooperative threads 
as necessary. Once all work is completed or an event comes in, the code falls through and calls  to 
service the event, or sleep.

WaitNextEvent

The event loop dynamically alters the time it uses for sleeping and waking based on whether it is in the foreground, 
whether it has any cooperative work to complete, and whether it has sent or received any apple events. For this code to 
work properly,  should return time back to the event loop periodically - rarely more 
than a tick or two of time per call.

AppPerformingComputations

Using functions to calculate the work and sleep intervals allows complete customization of the event loop. For example, 
applications could dynamically increase the work interval and decrease the sleep interval based on the number of 
computational tasks they are currently performing. Games will want to maximize the amount of time used for work, and 
spend most of their time in . An application that is sitting idle (with no mouse or 
keyboard motion) could dynamically increase the amount of time spent performing work.

AppPerformingComputations

Applications that don't need time should sleep for as long as possible. This provides the maximum amount of time to other 



applications, and also allows preemptive tasks to get a larger share of the processor. If no tasks need time on the machine, 
the processor can go to sleep, conserving power on portable systems.

Applications with animated displays (e.g., a blinking caret in a text editing application) should choose a sleep value that 
permits them to update their graphics often enough. See Inside Macintosh: Macintosh Toolbox Essentials, p. 2-86.

Memory Manager

We've already talked about some of the hidden costs of accessing memory. However, allocating and deallocating memory can 
also take a significant amount of time. Macintosh heaps become inefficient when large number of memory blocks are 
allocated on them. The memory manager has to walk the heap and move blocks around to make room for new allocations, 
causing large amounts of memory thrashing.

When you need to allocate a large number of small objects, you should allocate small number of handles or pointers, and 
suballocate all of your other objects inside that block. The CodeWarrior MSL libraries use a suballocator mechanism for 
C++  and  operations, so you can use these libraries or roll your own suballocators. Doing this can result in 
orders of magnitude improvements in your application's memory allocations and deallocations.

new delete

Be wary when allocating system data structures. Many items allocated by the operating system are composed of multiple 
objects, each of which is a separate pointer or handle block. For example, a  is composed of a , a

, and a ; in total, about 27 handles are generated every time you call . An game that 
allocated a separate  for every frame of animation would quickly fill the heap with a large number of unnecessary 
handles. Allocating a single  to hold all of the frames of animation significantly reduces the number of allocations 
performed by the operating system. (In this example, allocating the  as a vertical strip is more cache friendly 
than a wide, horizontal strip of images.)
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Files

File system optimizations are often overlooked, and are a critical way to make a different in application performance. A 
few simple optimizations can double or triple the speed of your file system code. 

, discusses file system performance in detail; this note will touch on some of the important 
points found in that note.

Technote FL16, "File Manager 
Performance and Caching"

Buffer file I/O into larger chunks rather than small reads.
Align file accesses to 512-byte boundaries.
Organize data so that it can be read from the file sequentially.
Hint to the file system whether or not it should cache the data.
Use asynchronous calls to process files in parallel with computation.

The file system introduces a fair amount of overhead to retrieve data from a file, so the key to improving file system 
performance is to request data in large, aligned chunks. Reading individual shorts, ints and floats directly from the file 
system is highly inefficient. A better solution is to buffer your file I/O. Read an 8K chunk from the file into a block of 
RAM, and then read the individual bytes from the buffer. This reduces the number of times the application accesses the file 
system, resulting in dramatic system performance.

Included with this technote is a piece of code, , that implements a buffered file system on top of the Mac OS 
file system.

CBuffFileStream

In order to maximize the benefits of buffered file I/O, you must organize your data so that it can be read from the file 
sequentially. Random access reads and writes will still work, but at a slight performance penalty. In a sense, your buffer 
is a cache that holds recently accessed data; accessing data with similar spatial locality will be faster than random accessed 
memory.

Organizing the data can be done by reordering the file, or it can be done by generating a separate index to the file. This 
index can be sorted into a sequential order that can be used by the loading code to bring in all of the individual pieces of 
data. Assembling the data at the other end of the transaction will be more complex in this case, however.

Once the data has been reorganized sequentially, increasing the size of the read-ahead buffer will further improve 
performance. The application can also prefetch the next buffer of data asynchronously, since it knows that it will be using 
this data. Under the right conditions, where computations and file loading are roughly equal, this can double the 
performance of your application.

Also, when loading large files, you are not likely to be rereading that data immediately. You should use the parameter 
block-based calls and hint to the file system not to cache those blocks. This will save time (because the file system doesn't 
make an extra copy of the data) and will also keep useful data inside the disk cache.

Resources

Resources are a critical part of any Macintosh application, and are thus a crucial topic to discuss when optimizing a 
Macintosh application. Before we discuss ways to tune performance of resources, it is useful to discuss the mechanics of 
the resource manager.

Resource forks are just a file with a very specific format. Resources are just chunks of data with a specific type and ID. All 
of the information about the resources in a particular file are stored in an index, known as the resource map. An 
application can have multiple resource files opened at once. The resource files are kept in the order that they will be 
searched; this is known as the resource chain.

When an application makes a call to , the Resource Manager starts at the top of the chain, and searches the 
resource map of the first resource file. If that resource exists in the file, then that resource is loaded from the file into a 
new handle in memory. Otherwise, the Resource Manager will try each other resource fork in the chain, until it finds the 
resource (or returns a  error). Once a resource has been loaded into memory, subsequent calls 
to the resource manager will recognize this and not load the data from disk a second time.

GetResource

resource not found



Clearly, if you have a lot of resource files open, this searching process could take a long time. Worse, searching large 
resource maps will flush your own data from the caches. Clearly, we want to do two things; first, make searching as 
efficient as possible, and second, minimize the actual amount of disk access the resource manager has to make.

Here are some immediate guidelines for optimizing resource usage in an application:

Preload frequently used resources and lock them down.
Never release a resource you use frequently. Mark it purgeable instead.
Never release a resource fork you may need in the near future.
Don't search the entire chain; use single-depth resource calls.
Don't put too few or too many resources in a particular resource fork.
When designing new resources, choose a single large resource over a group of resources.

If your application's resource fork has frequently used resources, you should set the preload and locked flags on those 
resources. They will be loaded low into the heap when the application is first launched and will always be available when 
the application needs them. Since users expect a small delay when the application is launched, this resource time is hidden 
from the user. 

You should never release any resource you expect to use again in the near future. When you call , the 
system will be forced to reload the resource from disk. Instead, by marking the resource as purgeable, you only need to 
reload the resource if it has been purged from memory.  will explicitly check to see if the resource needs 
to be reloaded and will load it if necessary.

GetResource

LoadResource

Similarly, opening a resource fork is a costly operation, with multiple file reads and a lot of preparation work on the 
resource map in RAM. You should avoid closing any resource fork that you may use in the near future.

As mentioned earlier, searching the resource chain is a lengthy operation that touches a significant amount of data. If you 
know the specific resource file, you should explicitly set the resource file and use a shallow search of that file (e.g.,

 instead of ). This limits the amount of files searched and keeps more of your data inside 
the caches.
Get1Resource GetResource

Similarly, you don't want to put too many resources into a single file. A resource fork cannot be larger than 16 megabytes 
in size. In addition, the absolute maximum is 2,727 resources; the actual maximum will vary based on the number of 
different resource types in the fork. All resource manager searches are performed linearly, so the more resources there 
are in a file, the longer it will take to search that fork for a resource.

On the other hand, putting too few resources into a file can result in many more forks being open on the machine. Mac OS 
can only have a limited numbers of files open at one time. Also, if you make a call to the regular resource manager 
routines, it will search the entire resource chain.

Custom resources should be created as a single complex resource rather than using a large number of smaller associated 
resources. This will improve searching, both because the list of resources is smaller and because fewer searches are being 
executed.

Optimizing Resource Fork Layout

The resource fork format is flexible and documented, and this allows some additional optimizations to be made. The 
Resource Manager organizes the data into three basic sections: the , which holds the locations of the 
other two forks, the , which stores information on all resources in the fork, and the , 
which contains all of the actual data. These sections are usually organized so that it is easy for the Resource Manager to 
modify the fork on disk. However, a fork that is expected to be read-only can be reorganized on disk to optimize opening and 
searching the fork. This provides significant benefits when those files are read off of slower media (e.g., CD-ROMs), but 
are always useful.

resource header
resource map resource data

In order to perform these optimizations, you need to have a profile of how frequently you load each resource, and which 
resources you load at the same time.

Move the resource map so that it immediately follows the resource header.
Sort the resource map in order of frequency of use.
Organize the resource data so that resources used together are adjacent.

When the resource fork is opened, the header is read in, and then the system uses the offsets found there to read in the 
resource map. This results in multiple file-system reads to different parts of the file system cache. If the resource map 
immediately follows the header, then fewer file seeks are necessary and the resource fork can be prepared faster.

As mentioned earlier, the resource map is searched linearly, first by resource type and then by name/resource ID. 
Resources that are loaded frequently should be sorted so that they appear at the beginning of the list; resources that are 
almost never used should be moved to the end of the search path. This will improve search times and reduce the effect the 
Resource Manager has on the cache.

Finally, since resource data will be loaded into the file system caches, you can reorganize the data so that resources that 
are frequently used together are adjacent in the file (generally, in the same 512-byte block). While the first resource 
loaded will result in a file system call, the other resources will already be in the cache and load much faster. Resources 
that are infrequently used, and don't work with any other resources should be moved elsewhere in the file. This will 
improve the file cache utilization.

QuickDraw

Macintosh applications tend to have very detailed user interfaces, and thus spend a lot of time inside QuickDraw. This 
section discusses ways to improve QuickDraw performance and suggest places where bypassing QuickDraw may be more 
valuable. Optimizing QuickDraw is complicated by hardware acceleration and where your  are located in memory.PixMaps

All Macintoshes ship today ship with hardware-accelerated QuickDraw. However, most hardware accelerators can only 



accelerate calls when the images are being rendered directly into VRAM. Offscreen  are currently only created in 
regular memory, so most QuickDraw calls will be accelerated when being drawn to a window and software rendered when 
being drawn to an offscreen . Hardware accelerated blitters will almost always beat any software blitter.

GWorlds

GWorld

However, this ignores the overhead of QuickDraw to get to the actual drawing code. When a QuickDraw call is made, a large 
complex structure is created that describes the blit. This structure includes any explicit parameters as well as implicit 
parameter information (usually, the current port and ). This structure is then passed on to each registered 
accelerator on the machine, who examine the structure and determine if they can accelerate that call. If no accelerator will 
accept the call, then the software blitter will perform the work. Generating the drawing variables and determining the 
blitter takes a fair amount of time, and will tend to thrash the caches.

GDevice

Finally, copying data from system memory to VRAM is bottlenecked by the PCI bus. This tends to affect copying large
 with  more than if affects simple shape drawing (e.g., ).PixMaps CopyBits PaintRect

When an application needs to do sophisticated compositing, it is often better to do this drawing into an offscreen 
and then copy the final results to the screen. By matching this  to the window, the application can guarantee 
QuickDraw will choose an efficient blitter to copy the data to the screen. When copying this data to VRAM, a hardware 
accelerator will probably DMA this data directly over PCI, which still allows a system memory to VRAM copy to run faster 
than a software blitter. To get the best speed out of QuickDraw blits, you should match the pixel format, color tables, and 
pixel alignment. You should also perform simple copies with black as the foreground color and white as the background 
color. Not doing any of these will result in a less efficient blitter being run inside QuickDraw.

GWorld
GWorld

Custom blitters are an option, but think carefully before you really try to beat QuickDraw. Hardware accelerators will 
usually beat a custom blitter for any significantly sized blit. However, for small blits, the overhead of QuickDraw means 
that a specialized blitter can beat QuickDraw. "Large" and "small" can change depending on the version of the OS and the 
underlying graphics hardware, so they are left intentionally vague. For best results, you should compare QuickDraw and 
the custom blitter at runtime and choose whichever one is faster.

When writing a blitter, you should read the memory section of this technote closely, since understanding the memory 
systems will be key to optimal blitter performance. In addition, the custom blitter should be as specialized as possible; the 
more general the blitter, the less likely it is that you'll be able to beat QuickDraw.

QuickDraw 3D RAVE and OpenGL

RAVE and OpenGL have less overhead than QuickDraw and are a good choice when speed is critical. Generally, commands are 
either dispatched immediately to the hardware or are buffered. Buffering usually allows more efficient utilization of PCI 
bandwidth.

, covers RAVE optimizations in detail, but most 3D hardware-
accelerated applications are limited by one of three major areas:
Technote 1125, "Building a 3D application that calls RAVE"

Pixel Fill Rate
PCI Bandwidth
Hardware state changes

The pixel fill rate is a limitation of the 3D hardware. In general, this is a measure of the clock speed of the graphics 
processor and the number of pixels it can issue on each clock cycle. The larger the frame buffer gets, the more pixels will 
need to be filled. In other words, if pixel fill rate was the only bottleneck in an application, then rendering a 1280x960 
buffer would take four times as long as rendering a 640x480 context. In general, once the pixel fill rate has been reached, 
there is little that can be done to improve the speed of the graphics engine.

All state changes and geometry must be sent to the 3D accelerator over the PCI bus. Thus, the amount of bandwidth defines 
the upper limit on the number of polygons that can be passed across the hardware. Large state changes (such as loading new 
textures) will reduce the amount of bandwidth available for geometry.

Finally, the graphics hardware needs to be configured differently for each graphics mode. In addition to the necessary 
bandwidth required to communicate a state change, there is usually a time delay for reconfiguring the hardware.

Don't throw every polygon at the rasterizer; cull information as early as possible.
Use different levels of detail in all of your geometry.
Use strips and fans.
Minimize the number of state changes.
Minimize the number of texture downloads.
Use multitexturing to implement multipass algorithms.
Use compiled vertex arrays.

The fastest way to draw a piece of geometry is not to draw it at all. Rather than sending every polygon to the programming 
interface, you should use a higher-level algorithm to eliminate objects that aren't visible to the user. For example, 
QuickDraw 3D allows a bounding box to be specified for a piece of geometry; if the bounding box is inside the viewing area, 
then no other calculations need to be done for that entire geometry. Similarly, many games use BSP trees or portals to cull 
sections of the world. Not drawing a piece of geometry results in fewer vertices being passed to the hardware, and also may 
reduce or eliminate other state changes in the hardware.

You should tailor the number of polygons used to draw an object to the size of the object in the scene. Rendering a fully 
detailed model in the distance may result in triangles that are smaller than a pixel in size. This is a waste of bandwidth; 
instead, a lower-detail geometry should be used. Similarly, creating geometry with shared vertices will also use 
bandwidth more efficiently. For example, sending 12 triangles to the hardware is normally 36 vertices worth of data. 
However, if those triangles are arranged in a strip (where every two triangles share an adjacent edge), then the entire 
strip can be specified with only 14 vertices, for a better than 2 to 1 savings in space.

When possible, you should sort rendering based on the graphics mode being used. This will reduce the number of state 
changes being made in the hardware. The more time you spend in a particular mode, the less time you are spending 
changing the state, and the more time you are spending actually rendering polygons.



Textures are a special form of state change that are worth discussing in more detail. Loading a texture onto the hardware is 
a significant drain on the available bandwidth. For example, if we assume that a vertex is 32 bytes, then loading a 
256x256x32 bit texture is the equivalent of 8,192 vertices! In addition, there is usually a limited amount of VRAM 
available to hold textures, so textures will need to be removed from the card to make room for other textures.

Like other state changes, sorting your polygon data based on the textures used will help to minimized the amount of times 
you change the texture. OpenGL uses a least-recently used (LRU) algorithm for determining which textures to throw out. If 
you use the same texture order every time you draw a frame, you'll actually get poor performance, because your textures 
are always being thrown out before you need them. Instead, alternate your texture rendering order so that every other 
frame is drawn backwards through the sort order. 

When changing textures in GL, use  rather than recreating the texture. This reduces the amount of time 
required to copy the texture into VRAM, since all of the information has already been generated. Similarly, if you are 
updating an existing texture, use the  call to change the texture data; this reduces the amount of 
information required to update the texture.

glBindTexture

glTexSubImage

Finally, if possible, make sure you are providing the textures to the hardware in a format they support natively. This 
eliminates any costly conversions to a native format.

Finally, Apple has implemented two extensions to OpenGL. Multitexturing allows a multi-pass rendering algorithm to be 
rendered in a single pass. This reduces the amount of PCI bandwidth required to render a polygon, and also uses the fill rate 
more efficiently. Similarly, compiled vertex arrays are a mechanism that allows the application to tell OpenGL that a 
vertex list is not going to change. This allows OpenGL to efficiently pack this information into the command buffer for 
rendering. Using compiled vertex arrays and  calls offer extremely efficient performance.glDrawElements

Networking

Optimizing network operations is covered in detail in Technote 1059, "On Improving Open Transport Network Server 
Performance."

Sound

The key to optimizing sound code on the Macintosh is to optimize your sound formats to the hardware of the machine. If 
your sound doesn't directly match the sound hardware, the sound manager instantiates additional sound components to 
convert your sound to the correct hardware characteristics; this introduces latency into your sound playing as well as 
using additional CPU time. See .Inside Macintosh:Sound, Chapter 5

In order to reduce the latency of the sound being played back, you should optimize your buffers to the buffer size of the 
hardware. You can find out the native sample type and buffer size by creating a channel, playing a sound on it, and then 
calling  on the output component.GetSoundOutputInfo

/*
 Returns the size of the output buffer in bytes.
*/
static long GetSoundOutputBufferSize (Component outputDevice, short
sampleSize, short numChannels, UnsignedFixed sampleRate) {
 SoundComponentData outputFormat;
 OSErr    err;
 SndChannelPtr  chan   = nil;
 SndCommand   cmd;
 ExtSoundHeader  sndHeader;
 long    bufSize   = 0;

 err = SndNewChannel (&chan, 0, 0, nil);

 sndHeader.samplePtr = nil;
 sndHeader.numChannels = numChannels;
 sndHeader.sampleRate = sampleRate;
 sndHeader.loopStart = 0;
 sndHeader.loopEnd = 0;
 sndHeader.encode = extSH;
 sndHeader.baseFrequency = kMiddleC;
 sndHeader.numFrames = 0;
 sndHeader.markerChunk = nil;
 sndHeader.instrumentChunks = nil;
 sndHeader.AESRecording = nil;
 sndHeader.sampleSize = sampleSize;
 sndHeader.futureUse1 = 0;
 sndHeader.futureUse2 = 0;
 sndHeader.futureUse3 = 0;
 sndHeader.futureUse4 = 0;
 sndHeader.sampleArea[0] = 0;

 // This really isn't needed since the Sound Manager currently ignores this value.
 UnsignedFixedTox80 (sampleRate, &sndHeader.AIFFSampleRate);



 // Get the sound channel setup so we can query it.
 cmd.cmd = soundCmd;
 cmd.param2 = (long)&sndHeader;
 err = SndDoCommand (chan, &cmd, true);

 if (err == noErr) {
  err = GetSoundOutputInfo (outputDevice, siHardwareFormat, &outputFormat);
 }

  bufSize = outputFormat.sampleCount * (sampleSize / 8) * numChannels;
 return (bufSize);
}

Time Manager

Time manager tasks are deferred by the virtual memory system so that page faults can be taken inside a task. If you can 
guarantee that both the data and code for a time manager task are held resident in memory, you can make your tasks run 
more efficiently and accurately. See , for details.Technote 1063, "Time Manager Addenda"
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Optimizing C code

Most of the discussions in this technote have been algorithmic in nature: places where the choice of algorithm affects how 
you call the operating system or access memory. While algorithmic changes will get you the most significant 
improvements, additional improvements are possible by simple changes to the C code. These changes are often just hints 
giving the compiler additional information that allows it to emit more efficient code. These types of changes are most useful 
inside computation intensive bottlenecks, but can be useful in just about any C code.

Scoping Variables

Whenever possible, scope variables as tightly as possible. Compilers perform lifetime analysis on every variable in order 
to allocate the actual PowerPC registers to the variables. Scoping a variable more tightly helps the compiler by allowing it 
to reuse the same registers for multiple local variables inside a function.

Making a global variable static restricts it to a single source file or function. Either of these allows the compiler to 
perform additional optimizations on that global variable. And as mentioned earlier, temporarily assigning a static variable 
to a local variable further restricts the scoping, allowing the compiler to further improve the compiled code. 

Basic Blocks

Most instruction scheduling is performed on basic blocks. A basic block is a set of instructions that are not interrupted by 
any branch instructions. A key goal in optimizing C code is to increase the size of the basic blocks so that the compiler has 
more instructions to schedule.

Code Copying

Code copying is one way to increase the size of a basic block. It involves taking the same piece of code and copying it into 
multiple places inside the source.

For example, let's assume I had the following code, where (b), (c), and (d) are relatively small code blocks.

   if (a)
   {
      b
   }
   else
   {
      c
   }
   d

Since  is a small block, copying it into both conditions of the if statement will increase the size of both basic blocks.d

   if (a)



   {
      b
      d
   }
   else
   {
       c
      d
   }

This type of operation is less useful when copying a large number of instructions, because it tends to add more cache 
overhead.

Loop Unrolling

Loop unrolling is a simple form of parallelism that both reduces the amount of loop overhead and increases the size of the 
basic block. Loop unrolling involves simply duplicating the inner loop multiple times. For example, take the following loop:

for (loop = 0; loop < 1000; loop++)
{
 a[i] = b[i]+c[i]*d[i];
}

This loop is a perfect place to exploit parallelism because none of the results rely on the previous set of calculations. We 
can unroll this loop twice and get:

for (loop = 0; loop< 1000; loop +=4)
{
 a[i] = b[i]+c[i]*d[i];
 a[i+1] = b[i+1]+c[i+1]*d[i+1];
 a[i+2] = b[i+2]+c[i+2]*d[i+2];
 a[i+3] = b[i+3]+c[i+3]*d[i+3];
}

First, the loop overhead on this loop will be much smaller than regular loop. Second, we now have four sets of instructions 
that can be scheduled against each other. While one set of calculations may be stalled, another may be executed. Loop 
unrolling tends to avoid stalls caused by waiting on a particular instruction unit.

Most of the benefits of unrolling a loop will be found on the first two iterations. Unrolling larger loops or loops with many 
local variables is often counterproductive. Because each variable is duplicated, excess variables may be written into main 
memory, significantly hindering performance. In addition, this can significantly increase the size of the code, resulting in 
more code needing to be loaded into the instruction cache.

Note that loops that can be unrolled should also be examined for places to support vectorization or multiprocessing.

When unrolling a loop, don't continuously increment pointers. Instead, use array accesses and a single increment 
instruction. This will result in a tighter loop and less unnecessary instructions.

Eliminating Branches

After memory accesses, branches are the next most common place where the PowerPC will stall. Minimizing the number of 
branches in a code increases the size of basic blocks and reduces the opportunities for branch prediction penalties.

First, the common path through the code should be as efficient as possible. Code that rarely executes should be placed at the 
end of the function, or in an entirely different function. This will prevent rare code from being prefetched into the 
instruction caches.

When possible, perform calculations without branching. For example, the  function is often calculated using a 
ternary operator in C.

abs()

long abs_branch (long i)
{
 return ((i>=0) ? i : (0-i));
}

00000000: 2C030000  cmpwi    r3,0
00000004: 41800008  blt      *+8                     ; $0000000C
00000008: 48000008  b        *+8                     ; $00000010



0000000C: 7C6300D0  neg      r3,r3
00000010: 4E800020  blr

If this function were inlined, it would have two branches, which would break basic blocks and offer opportunities for 
mispredicted branches. However, this code can be implemented without branching. The following code is based on an 
assembly snippet from the :PowerPC Compiler Writer's Guide

long abs_nobranch (long i)
{
 long sign, temp, result;
 sign = i >> 31;
 temp = i ^ sign;
 result = temp - sign;
 return result;
}

00000000: 7C64FE70  srawi    r4,r3,31
00000004: 7C602278  xor      r0,r3,r4
00000008: 7C640050  subf     r3,r4,r0
0000000C: 4E800020  blr

This version of the code eliminates all branching and combines two adjacent basic blocks, resulting in more efficient code. 
Similarly, checking to see if a value falls within a range can be reduced to a single branch.

bool InRange(int value, int min, int max)
{
    return ((unsigned) (value - min) <= (unsigned) (max - min));
}

AltiVec offers compare and select instructions that offer greater flexibility in generating code. For a sequence of code, two 
different result vectors can be calculated (one for success and one for failure). A third vector is used to hold the results of 
a compare instruction. Finally, a select instruction uses the compare results to choose between the success and failure 
cases. In addition to the added parallelism, this code executes without any branches.

For example, the following code combines a set of 16-bit source pixels with 16-bit destination pixels using compare and 
select. It uses the top bit of the 16-bit pixel as a mask. Wherever the bit is 1, we replace the destination pixel with the 
source. This code sets 8 pixels at a time without having to do any comparisons.

// generate a vector of all zeros.
vxor  vZero, vZero, vZero

lvx  vSourcePixels, 0, rSourcePtr
lvx   vDestPixels, 0, rDestPtr 

//Since any pixel with the bit set is effectively a negative number, 
//we compare against zero to generate the mask.

vcmpgtsh vMask, vZero, vSourcePixels
vsel  vDestPixels, vSourcePixels, vMask
stvx  vDestPixels, 0, rDestPtr

If you cannot eliminate a branch, place as many instructions as you can between the branch and the condition it is testing 
against. This ensures that no branch prediction will occur, eliminating any costly penalties for a mispredicted branch.

Back to top

PowerPC Assembly

A working knowledge of PowerPC assembly is useful when optimizing applications for Power Macintosh. While it is rarely 
essential for anything to be written in PowerPC instructions, it is always useful to disassemble the code generated by the 
compiler. SIM_G4 will also take the actual code being executed and provide you instruction-by-instruction details about 



how your code is executing.

If you need that last 10% out of a particular function, then you might consider writing it directly in assembly language. 
Assembly language is also useful when you need to get at instructions that the compiler won't normally generate.

The key to writing efficient PowerPC assembly language programs is to perform optimizations and use instruction 
sequences that the compiler will not normally generate. The following section describes a few useful code examples that the 
compilers will not generate. Also discussed are other areas you should consider when writing your own assembly functions.

Before writing any assembly language code, you should read the appropriate processor manuals along with the 
.

PowerPC 
Compiler Writer's Guide

Special Load and Store Instructions

The PowerPC instruction set provides load and store instructions that automatically perform byte swapping. If you are 
frequently loading and storing data in little endian format, these instructions will be faster than the macros provided in 
Universal Headers (Endian.h).

The update forms of a load or store will access memory at the offset and updates the address register to point to the same 
memory location. This allows a tighter loop to be generated by eliminating unnecessary addition instructions. However, 
don't go overboard with these update instructions as too many of them in a row can stall the processor.

Condition Registers

The condition register is 32 bits wide and can hold results for up to eight different compares at once. Any compare whose 
value is not going to change should be placed in one of the condition registers and left there for as long as possible. Some 
compilers do a poor job of separating compares and branches; leaving a value in the condition register means that branches 
will always be predicted correctly.

If you have a large number of bit flags, compilers often generate a separate rotate instruction for each test. Since the 
rotate and branch are often not separated, this must be branch predicted, with the potential misprediction penalties.

Instead, move as many flag bits into the condition register as possible and test on the bits manually. 

UInt32 options;

mtcrf 3,options // move the bottom 8 bits of options into CR6-7

bf 31, foo  // if flag 0 is false, skip
...

bf 30, bar  // if flag 1 is false, skip 
...

bt 29, baz  // if flag 2 is true, skip
...

This is more efficient than what most compilers will generate, and also allows the GPR that holds the options flag to be 
reused for other purposes.

Another example is to move the bottom bits of a counter into the condition registers. This is useful for unrolled loops and 
loops which copy bytes of data. For example, the following code will move 16 bytes at a time, and then use the condition 
register bits to move the remaining 15 bytes.

; r3 = source
; r4 = destination
; r5 = number of bytes

rlwinm. r6,r5,28,4,31  ; how many 16 byte blocks to move
mtcrf  1, r5   ; move bottom 4 bits into CR7
ble   move8  ; no blocks to move, finish the last 15 bytes

; perform the unrolled loop, moving 16 bytes at a time.
; this loop ignores alignment

loop: 

subi.  r6, r6, 1   ; loop counter
lwz  r7, 0(r3)
cmplwi r6,$0000   ; are we done looping
lwz  r8, 4(r3)
lwz  r9, 8(r3)



lwz  r10, 12(r3)
addi  r3,r3,16
stw  r7,0(r4)
stw  r8,4(r4)
stw  r9,8(r4)
stw  r10,12(r4)
addi  r4, r4, 16
bne  loop

move8:
bf  28, move4
lwz  r7, 0(r3)
lwz  r8, 4(r3)
addi   r3,r3,8
stw  r7,0(r4)
stw  r8,4(r4)
addi  r4, r4, 8

move4:
bf  29,
lwz  r7, 0(r3)
addi  r3,r3,4
stw  r7,0(r4)
addi  r4, r4, 4

move2:
bf  30, move1
lhz  r7, 0(r3)
addi  r3,r3,2
sth  r7,0(r4)
addi  r4, r4, 2

move1:
bflr  31
lbz  r7, 0(r3)
stb  r7, 0(r4)
blr

To summarize, the condition register fields can hold bit flags and other useful data, simplifying the compare-branch 
portions of your code, and freeing up general purpose registers that compilers might allocate to hold flag data.

Counter Register

The PowerPC architecture includes a dedicated counter register, which can be set to a fixed number of iterations. One big 
advantage of the counter register is that it always predicts correctly, so that mispredicted branches do not happen. For 
example, the byte-copying code could have used the following code instead:

rlwinm. r6,r5,28,4,31  ; how many 16 byte blocks to move
mtctr  r6   ; move into the counter
ble  move8  ; no blocks to move, finish the last 15 bytes

; perform the unrolled loop, moving 16 bytes at a time.
; this loop ignores alignment

loop: 
lwz  r7, 0(r3)
lwz  r8, 4(r3)
lwz  r9, 8(r3)
lwz  r10, 12(r3)
addi  r3,r3,16
stw  r7,0(r4)
stw  r8,4(r4)
stw  r9,8(r4)
stw  r10,12(r4)
addi  r4, r4, 16
bdnz  loop

However, some loops aren't always going to benefit from using the counter register. Branches can usually be folded out by 
the processor, effectively executing an additional instruction on that cycle. The  instruction, however, must update 
the counter register, so it takes up a reservation station and must be completed in order.

BDNZ

Decrementing and testing a register can be faster if both the decrement and compare instructions can be scheduled into an 



otherwise empty pipeline slots. For example, the original loop described above was dominated by the load-store unit, so 
the integer unit is relatively dormant. In this case, we can schedule the decrement, compare and branch for free. This loop 
also only takes one more instruction than the counter version of the loop.

So, the counter register is best used in loops where other registers are scarce, or where there aren't enough instructions 
to hide the decrement and branch.

The counter register is also used as the destination for a branch. This is very useful when you want to precalculate a code 
path outside of a loop, because inside the loop you can quickly branch to an efficient implementation of that function.

Function Calling and Pointer Glue

The PowerPC-calling conventions are designed around high-level languages like C and Pascal. In addition, they have to be 
flexible when dealing with pointers to functions, since those functions could exist in either the application or another 
shared library.

Within assembly code, many of these ABI restrictions can be relaxed. For example, the standard cross-TOC glue is 
normally invoked when going through a function pointer:

  lwz  r0,0(r12)
  stw  RTOC,r20(SP)
  mtctr  0
  lwz  RTOC,4(r12)
  bctr

However, when the function being called is in the same library, the RTOC values will never change; we can simplify this 
glue code to the minimum possible:

  lwz  r0,0(r12)
  mtctr  0
  bctr

A leaf function can use any unused registers in R3 through R10 without having to save their values off to memory. 
Similarly, registers R11 and R12 are normally used as environment glue by the compiler. In an assembly function, these 
registers are also available for the function to use however it wishes.

As mentioned earlier, the ABI is designed around a high-level language like C or Pascal. This limits the ABI to a single 
return value being passed back to the caller via a register. If multiple values need to be returned, then the additional 
values must be passed through memory. An assembly language program can define its own functions with its own ABI. 
While it must adhere to the stack frame design, a custom ABI could allow for additional input and output parameters to be 
stored in registers. This significantly reduces the number of memory transactions and can improve performance.

Rotate Instructions

The rotate instructions on the PowerPC processor are very powerful and should be used to pack and unpack data. Most C 
compilers now emit these instructions aggressively, but understanding them is important for producing efficient PowerPC 
assembly functions.
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Technote 1121, "Mac OS 8.1"

Taking Extreme Advantage of PowerPC

Performance Tuning

Balance Of Power: Advanced Performance Profiling

Balance of Power: Enhancing PowerPC Native Speed

Balance of Power: Tuning PowerPC Memory Usage

Chiropractic for Your Misaligned Data

PowerPC Assembly Language:

PowerPC Compiler Writer's Guide (ISBN: 0-9649654-0-2)

MPC 750 RISC Microprocessor User's Manual (Motorola, MPC750UM/AD) (PDF File)

MPC 750 RISC Microprocessor User's Manual Errata (Motorola, MPC750UM/AD) (PDF FIle)

PowerPC Microprocessor Family: The Programming Environments for 32-bit Microprocessors (PDF File)

PowerPC Microprocessor Family: The Programmer's Reference Guide (PDF file)

Apple's AltiVec Page

Balance of Power: Introducing PowerPC Assembly Language

Understanding the PowerPC Architecture

Understanding PowerPC Assembly Language

Back to top

Downloadables

Acrobat version of this Note (432K). Download

Optimization Sample Code (CBuffFileStream and Cacheline Optimizer). Download
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