
CONTENTS

Chapter 1 - Introduction toFile Management

 and - What is exchangedFSpExchangeFiles PBExchangeFiles
Additional Considerations for GetVInfo

Chapter 2 - FileManager

Pathname rules are not fullyexplained
Missing Row in Table 2-10
Description of default directoryupon launch wrong
Master Directory Blocks and field descriptions are wrongdrXTFlSize drCTFlSize
Map records in map nodes occupy 492bytes (not 494 bytes)
Volume cache control bit invcbAtrb
Volume Control Blocks and field descriptions are wrongvcbXTAlBks vcbCTAlBks

 fields not used on 3.5"floppy disksdQDrvSiz
Clarification of bits in and ioFlAttrib ParamBlockRec, HParamBlockRec, CInfoPBRec

 is in some interface filesioACUser filler2
The datastructure includes flags wordVolMountInfoHeader

 usage by and requestsioPosMode PBRead PBWrite
Additional Considerations for GetVInfo
Parameter blocks have unnecessary fieldioCompletion
Additional Special Considerationsfor PBHGetVInfo

 does not work withdirectoriesFSpGetFInfo
 does not work withdirectoriesFSpSetFInfo

 and - What is exchangedFSpExchangeFiles PBExchangeFiles
, and the result codeHOpenDF PBHOpenDF paramErr

Parameter blocks missing fieldioFVersNum
Parameter blocks missing fieldioMisc

 usage rulesPBGetCatInfoioFDirIndex
Parameter blocks missing fieldioNamePtr

 is in and ioForeignPrivIDirID LongInt PBGetForeignPrivs PBSetForeignPrivs
Request execution order
Volume Parameter Variant offsetsare off by 2
Detecting if a volume isformatted Macintosh File System (MFS), Hierarchical FileSystem (HFS), or HFS Plus
PBXGetVolInfo
PBGetXCatInfo

Chapter 3 - Standard FilePackage

Activation Procedures Need to callTECalText
Default Standard File currentdirectory
Listing 3-15 does not set fieldsfScript

Chapter 4 - AliasManager

 updates minimalaliasesResolveAlias
 should beuserCanceledErrusrCanceledErr
 and memory availableto warningkARMSearchMore AliasFilterProc

Chapter 5 - Disk InitializationManager

Extended DiskInitialization Package
Extended DiskInitialization User Interface
Extended Low-LevelDisk Initialization Routines
DIXFormat
DIXZero
DIReformat

Formatting HFS and HFS PlusVolumes

FurtherReferences

Downloadables

This Technote discusses known errors and omissions in .Inside Macintosh: Files

 Updated: [Feb 1 1999]

Chapter 1 - Introduction to File Management

 and - What is exchangedFSpExchangeFiles PBExchangeFiles

Page 1-53, FSpExchangeFiles

See the in the corrections for Chapter 2.discussion of this topic

Additional Considerations for GetVInfo

Page 1-56, GetVInfo

See the in the corrections for Chapter 2.discussion of this topic

Back to top

Chapter 2 - File Manager

Pathname rules are not fully explained

Pages 2-27 through 2-28, Names and Pathnames

The following characteristics of Macintosh pathnames should be noted:

A full pathname never begins with a colon, but must contain at least one colon.
A partial pathname always begins with a colon separator except in the case where the file partial pathname is a simple
file or directory name.
Single trailing separator colons in full or partial pathnames are ignored except in the case of full pathnames to
volumes.
In full pathnames to volumes, the trailing separator colon is required.
Consecutive separator colons can be used to ascend a level from a directory to its parent directory. Two consecutive
separator colons will ascend one level, three consecutive separator colons will ascend two levels, and so on. Ascending
can only occur from a directory; not a file.

To summarize, if the first character of a pathname is a colon, or if the pathname contains no colons, it must be a partial
pathname; otherwise, it is a full pathname.

Missing Row in Table 2-10

Page 2-35, Creating File System Specification Records

Add the following row to Table 2-10:

Working directory reference
number

Directory
ID

Empty string or
NIL

The target object is the directory specified by the
directory ID in dirID

Description of default directory upon launch wrong

Page 2-36, Manipulating the Default Volume and Directory

Replace the last sentence in the first paragraph with the following:

"When an application starts up, its default directory is set to the directory in which the application resides. Thereafter, the
application can designate any directory as its default directory."

Master Directory Blocks and field descriptions are wrongdrXTFlSize drCTFlSize

Page 2-62, Master Directory Blocks

Change the field descriptions to:

drXTFlSize The size (in bytes) of the extents overflow file.

drCTFlSize The size (in bytes) of the catalog file.

Map records in map nodes occupy 492 bytes (not 494 bytes)

Page 2-69, Map Nodes

Replace the second and third paragraphs in the Map Nodes section with the following:

"A map node consists of a node descriptor and a single map record. The map record is a continuation of the map record
contained in the header node and occupies 492 bytes (512 bytes in the node, less 14 bytes for the node descriptor, 2 bytes
for each of the two record offsets at the end of the node, and rounded down to a multiple of a longword). (Note: The HFS file
system's B*-tree manager reads the bitmap information a longword at a time.) A map node can therefore contain mapping
information for an additional 3936 nodes.

If a B*-tree contains more than 5984 nodes (that is, 2048 + 3936, enough for around 25,000 files), the File Manager
uses a second map node, the node number of which is stored in the ndFLink field of the node descriptor of the first map node.
If more map nodes are required, each additional map node is similarly linked to the previous one."

Volume cache control bit in vcbAtrb

Page 2-79, Volume Control Blocks

Add the following bit definition to for System 7.5 or later: vcbAtrb

Bit Meaning

10
Set if the volume's blocks should not be cached (System 7.5 and later only). This allows access to RAM disk volumes
to bypass the File Manager cache. It has the same affect as setting the bit (bit 5 of) for all
File Manager reads and writes to the volume. Non-block aligned requests may still be accessed through the cache.

noCache ioPosMode

When a HFS volume is mounted with System 7.5 or later, the File Manager calls the disk driver with a "Return Drive Info"
 call (=23). Then if there are no errors, it looks at the low-byte (bits 0-7) of to see if the

drive type is (16, $10) or (17, $11) and if so, sets the bit in the
VCB's field. This allows access to RAM or ROM disk volumes to bypass the File Manager cache. It has the same
affect as setting the bit (bit 5 of) for all File Manager reads and writes to the volume. Non-block
aligned requests may still be accessed through the cache.

_Control csCode csParam
ramDiskType romDiskType vcbAtDontCache

vcbAtrb
noCache ioPosMode

Driver Note: Drivers should not directly modify the bit in . If the driver is for a RAM or
ROM disk, it should support 23 and say that it is a RAM or ROM disk by returning
(16, $10) or (17, $11) in the low-byte of . Other disk drivers should not set the

 bit because any future improvements made to the File Manager cache will be lost on those drives.

vcbAtDontCache vcbAtrb
_Control csCode ramDiskType

romDiskType csParam
vcbAtDontCache

Volume Control Blocks and field descriptions are wrongvcbXTAlBks vcbCTAlBks

Page 2-81, Volume Control Blocks

Change the field descriptions to:

vcbXTAlBks The size (in allocation blocks) of the extents overflow file.

vcbCTAlBks The size (in allocation blocks) of the catalog file.

 fields not used on 3.5" floppy disksdQDrvSiz

Page 2-85, The Drive Queue

If the volume is a 3 1/2-inch floppy disk owned by the .Sony driver, the and
 fields are not valid. To get the size of a 3 1/2-inch floppy disk owned by the .Sony

driver, first try the Return Format List (= 6) Status call and if Return Format List fails
with a (-18), use and check the field of the
record to determine if the disk has 800 blocks (= 0) or 1600 blocks
 (= -1). See the Technical Note "DV 17 - Sony Driver : What Your Sony Drives For
You" for more information concerning the Return Format List Status call.

Note:
dQDrvSiz

dQDrvSiz2
csCode

statusErr DriveStatus twoSideFmt DrvSts
twoSideFmt

twoSideFmt

Clarification of bits in , , and ioFlAttrib ParamBlockRec HParamBlockRec CInfoPBRec

Page 2-90, Basic File Manager Parameter Block, field descriptions for the variant.
Page 2-96, HFS Parameter Block, field descriptions for the variant.
Page 2-102, Catalog Information Parameter Blocks, field descriptions common to both variants.

fileParam
fileParam

For files, the bits in have the following meanings: ioFlAttrib

Bit Meaning

0 Set if file is locked. Can be changed with the or functions.PBHSetFLock PBHRstFLock

1 Reserved.

2 Set if resource fork is open.

3 Set if data fork is open.

4 Set if directory. (Always clear for files.)

5 Reserved.

6
Set if AppleShare server "copy-protects" the file. Set by the AppleShare foreign file system code when the server
sets the bit returned by .CopyProtect afpGetFileDirParms

7 Set if file (either fork) is open.

For directories, the bits in have the following meanings: ioFlAttrib

Bit Meaning

0
Set if the directory is locked. Can be changed with the or functions when volume is
shared.

PBHSetFLock PBHRstFLock

1 Reserved.

2 Set if the directory is within a shared area of the directory hierarchy.

3 Set if the directory is a share point that is mounted by some user.

4 Set if directory. (Always set for directories.)

5 Set if the directory is a share point. Can be set or cleared by and .PBShare PBUnshare

6 Reserved.

7 Reserved.

 is filler2 in some interface filesioACUser

Page 2-100 and 2-103, Catalog Information Parameter Blocks
Page 2-191, PBGetCatInfo

The field is at offset 31 in the parameter block. In most versions
of the Files interfaces (Files.h, Files.p, etc.), the field at offset 31 is . This problem is
fixed in newer versions of the Files interfaces.

Note:
ioACUser ($1F) CInfoPBRec

filler2

The data structure includes flags wordVolMountInfoHeader

Page 2-110, Volume Mounting Information Records

The data structure has been extended to include a flags word. The data structure is now defined as: VolMountInfoHeader

struct VolMountInfoHeader
{
 short length; /* length of location data (including self) */
 VolumeType media; /* type of media */
 short flags; /* high-byte reserved for Apple, */
 /* low-byte reserved for file system
 specific use */
 /* Variable length data follows */
};

In the flags word, bits 14 and 15 have been defined. All other bits in the high-byte of the flags word should be left clear.
Bits in the low-byte of the flags word are file- system specific. For example, the AppleShare foreign file system uses bit 0
to determine if server greeting messages should be shown or suppressed.

Bit 15 in the flags word tells the file system that accepts a request if user interaction can be performed. If
Bit 15 is set, the file system must not perform user interaction. If Bit 15 is clear, the file system may perform user
interaction through the mechanism supplied by the File System Manager (FSM).

VolumeMount

Bit 14 in the flags word allows a file system to indicate to the caller of that although the
request was successful, the record passed needs to be updated. Programs should ensure bit 14 of the flags
word is clear before calling and if bit 14 is returned set, the record should be updated by
calling and . If is unsuccessful, bit 14 in the flags
word should be ignored.

VolumeMount VolumeMount
VolMountInfo
VolumeMount VolMountInfo

PBGetVolMountInfoSize PBGetVolMountInfo VolumeMount

Observant readers will note that the Alias Manager needs to use bits 14 and 15 in the flags word to interact with file
systems when responding to a function call.MatchAlias

 usage by and requestsioPosMode PBRead PBWrite

Page 2-121, PBRead
Page 2-122, PBWrite

The and functions give programs much more control over read and write operations than the high-level
 and functions because and allow access to the ioPosMode field.

PBRead PBWrite
FSRead FSWrite PBRead PBWrite

Bits 0 and 1 of ioPosMode indicate where to start reading or writing data in the file. The values allowed in to
set bits 0 and 1 are:

ioPosMode

constant value description

fsAtMark 0 is ignored. Operation starts at current mark.ioPosOffset

fsFromStart 1 is an offset from the beginning of file.ioPosOffset

fsFromLEOF 2 is an offset from the logical end-of-file.ioPosOffset

fsFromMark 3 is an offset from the current mark.ioPosOffset

Bits 4 and 5 of are cache usage hints passed on to the file system that handles requests to the volume the file is
on. Bit 4 is a request that the data be cached (i.e., please cache this). Bit 5 is a request that the data not be cached (i.e.,
please do not cache this). Bits 4 and 5 are mutually exclusive - only one should be set at a time. However, if neither is set,
then the program has indicated that it doesn't care if the data is cached or not. The values allowed in to set bits
4 and 5 are:

ioPosMode

ioPosMode

constant value description

(no constant) 0 I don't care if this request is cached or not cached.

pleaseCacheMask 16 Please, cache this request if possible.

noCacheMask 32 Please, I'd rather you didn't cache this request.

A particular file system may choose to ignore one or both of the cache usage hint bits. File systems
may cache when you set the bit, may not cache when you set the bit, may
cache everything, or may cache nothing. However, if a program leaves both bits clear, then file
systems which do respect these bits have no way of knowing if the data being read or written will be
needed again by your program.

Note:

noCache pleaseCache

Bit 6 () of is a request that reads (not writes) come directly from the source of the data and be
verified against the data in memory. So, if a file system gets a read request with set, it should flush any cache it
might have of that data and ask its data source (in the case of local volumes, that would be the disk driver) for the data
again. If the data source is a disk driver, then the file system should pass the request on to the disk driver and
the disk driver should do the same thing --flush any cache it has of that data (including any cache on the disk hardware)
and ask its source (the disk hardware) for the data again. The idea behind is that a program could write data to a
volume, then ask the file system to compare the data from the disk volume to the data in the write buffer. The Finder uses
this technique when copying files only when copying files to floppy disks.

rdVerify ioPosMode
rdVerify

rdVerify

rdVerify

There's a bug in current version of the HFS file system that affects requests. Instead of
just comparing the data from a disk to the data in memory, the HFS file system actually reads any full
512-byte blocks in the request from the source device into the buffer overwriting the original data
instead of comparing it. In most cases, this is exactly the same data that was just written to the
device, but if any data corruption occurs because of media or hardware failures, your original write
data buffer could be corrupted. Your code can work around this problem by first making a copy of the
write data buffer, then performing the operation against the copy instead of the original
data buffer, and finally comparing the copy and original data buffers to ensure the data written is the
same as the data just read.

WARNING:
rdVerify

rdVerify

Bit 7 of is a request for mode. If bit 7 is set, then the high-byte of is the
character - even if that character is null (). When bit 7 is set, the read should stop when any one of these conditions is
met:

ioPosMode newLine ioPosMode newLine
$00

 bytes have been read.ioReqCount
End-of-file is reached.
The character has been read. If the character is found, it will be the last character put into

 and will include it.
newLine newLine

ioBuffer ioActCount

When using mode, the HFS file system reads the file one block (512-bytes) at a time into a file system cache
block (not the user buffer pointed to by) and then copies the data into the user buffer one byte at a time looking
at each byte for the character. Since a file read with mode is read one block at a time, mode
is about the slowest way you can read a file.

newLine
ioBuffer

newLine newLine newLine

Additional Considerations for GetVInfo

Page 2-137, GetVInfo

The parameter, which specifies the volume, can be a drive number, volume reference number, 0 (the default
volume), or a working directory number. The parameter must point to a buffer or must be set to NIL.
The parameter will not be accurate on volumes with over 2 GB of free space.

drvNum
volName Str27

freeBytes

Parameter blocks have unnecessary fieldioCompletion

Page 2-142,
Page 2-219,
Page 2-220,
Page 2-223,

PBOffLine
PBGetVolMountInfoSize
PBGetVolMountInfo
PBVolumeMount

The parameter blocks for these routines unnecessarily list the field as an input field. These routines can
only be executed synchronously, so the field is always ignored.

ioCompletion
ioCompletion

Additional Special Considerations for PBHGetVInfo

Page 2-145, PBHGetVInfo

Add these "Special Considerations":

If the value of is negative, the File Manager uses and in the standard way to
determine the volume. However, because returns the volume name in the buffer whose address you passed
in , your input pathname will be modified. If you don't want your input pathname modified, make a copy of it
and pass the copy to .

ioVolIndex ioNamePtr ioVRefNum
PBHGetVInfo

ioNamePtr
PBHGetVInfo

The volume name returned by is not a full pathname to the volume because it does not contain a colon.PBHGetVInfo

For compatibility with older programs, some values returned by are not what is stored in the volume's
Volume Control Block (VCB). Specifically:

PBHGetVInfo

 and are pinned to values which when multiplied by always are less than 2
Gigabytes.
ioVNmAlBlks ioVFrBlk ioVAlBlkSiz

 may not include the allocation blocks used by the catalog and extents overflow files.ioVNmAlBlks
 is returned in for both HFS and HFS Plus volumes.$4244 ioVSigWord

For unpinned total and free byte counts, and for the real , use instead of .ioVSigWord PBXGetVolInfo PBHGetVInfo

 does not work with directoriesFSpGetFInfo

Page 2-160, FSpGetFInfo

You can use the function to obtain the Finder information about a file, but not a directory.FSpGetFInfo

 does not work with directoriesFSpSetFInfo

Page 2-160, FSpSetFInfo

You can use the function to set the Finder information about a file, but not a directory.FSpSetFInfo

 and - What is exchangedFSpExchangeFiles PBExchangeFiles

Page 2-165,
Page 2-206,

FSpExchangeFiles
PBExchangeFiles

The function swaps the data in two files by changing the information in the volume's catalog and, if
either of the files are open, in the file control blocks. Specifically, the following changes are made:

FSpExchangeFiles

The following fields in the two files' volume catalog entries are exchanged (as seen by): PBGetCatInfo

ioFlStBlk The first allocation block of the data fork

ioFlLgLen The logical end-of-file of the data fork

ioFlPyLen The physical end-of-file of the data fork

ioFlRStBlk The first allocation block of the resource fork

ioFlRLgLen The logical end-of-file of the resource fork

ioFlRPyLen The physical end-of-file of the resource fork

ioFlMdDat The date and time of the last modification

Both the data and resource forks of the two files are exchanged.

The following fields in any open file control blocks to the two files are exchanged:

fcbFlNum The file ID number

fcbDirID The file's parent directory ID

fcbCName The file's name

Your application will have to swap any open reference numbers to the two files because the file's
name and parent directory ID are exchanged in the file control blocks.

Note:

Because other programs may have access paths open to one or both of the files exchanged, your application should have
exclusive read/write access permission () to both files before calling . Exclusive
read/write access to both files will ensure that doesn't affect another application because it
prevents other applications from obtaining write access to one or both of the files exchanged.

fsRdWrPerm FSpExchangeFiles
FSpExchangeFiles

 does not respect the file-locked attribute; it will perform the exchange even
if one or both of the files are locked. Obtaining exclusive read/write access to both files before calling

 ensures that the files are unlocked because locked files cannot be opened with
write access.

Note:
FSpExchangeFiles

FSpExchangeFiles

, and the result codeHOpenDF PBHOpenDF paramErr

Page 2-169,
Page 2-169,

HOpenDF
PBHOpenDF

If the or function fail with a result code (indicating that the or
function is not available), you should retry your request passing the same parameters to or . For
example:

HOpenDF PBHOpenDF paramErr HOpenDF PBHOpenDF
HOpen PBHOpen

 error = HOpenDF(vRefNum, dirID, fileName, permission, &refNum);
 if (error == paramErr)
 {
 /* HOpenDF not supported, so try HOpen */
 error = HOpen(vRefNum, dirID, fileName, permission, &refNum);
 }

Parameter blocks missing fieldioFVersNum

Page 2-183,
Page 2-184,
Page 2-185,
Page 2-187,
Page 2-189,
Page 2-194,
Page 2-196,
Page 2-197,
Page 2-198,
Page 2-199,

PBHOpenDF
PBHOpenRF
PBHOpen
PBHCreate
PBHDelete
PBHGetFInfo
PBHSetFInfo
PBHSetFLock
PBHRstFLock
PBHRename

The parameter blocks are missing the field. should be initialized to zero because these calls
will fall through to the now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

ioFVersNum ioFVersNum

Parameter blocks missing ioMisc field

Page 2-183,
Page 2-184,
Page 2-185,

PHHOpenDF
PHHOpenRF
PBHOpen

The parameter blocks are missing the field. must be initialized to zero before calling ,
, or . Failure to initialize to zero on some Macintosh models will cause the system to crash.

ioMisc ioMisc PHHOpenDF
PHHOpenRF PBHOpen ioMisc

 usage rulesPBGetCatInfo ioFDirIndex

Page 2-191, PBGetCatInfo

Change the description of 's usage rules to: PBGetCatInfo ioFDirIndex

The function selects a file or directory according to these rules: PBGetCatInfo

If the value of is positive, is not used as an input parameter and
returns information about the file or directory whose directory index is in the directory specified by

 and (this will be the root directory if is a volume reference number or a drive
number and is 0). If is not NIL, then it must point to a buffer where the file or
directory name will be returned.

ioFDirIndex ioNamePtr PBGetCatInfo
ioFDirIndex

ioVRefNum ioDirID ioVRefNum
ioDirID ioNamePtr Str31

If the value of is 0, returns information about the file or directory specified by
 in the directory specified by and (again, this will be the root directory if
 is a volume reference number or a drive number and is 0).

ioFDirIndex PBGetCatInfo
ioNamePtr ioVRefNum ioDirID
ioVRefNum ioDirID
If the value of is negative, is not used as an input parameter and
returns information about the directory specified by and (again, this will be the root
directory if is a volume reference number or a drive number and is 0). If is
not NIL, then it must point to a buffer where the directory name will be returned.

ioFDirIndex ioNamePtr PBGetCatInfo
ioVRefNum ioDrDirID

ioVRefNum ioDrDirID ioNamePtr
Str31

Parameter blocks missing fieldioNamePtr

Page 2-219,
Page 2-220,
Page 2-223,

PBGetVolMountInfoSize
PBGetVolMountInfo
PBHGetLogInInfo

The parameter block is missing the field. and are both used to specify the volume.ioNamePtr ioNamePtr ioVRefNum

 is in and ioForeignPrivIDirID LongInt PBGetForeignPrivs PBSetForeignPrivs

Pages 2-233 and 2-234

The parameter blocks shows as a Integer when it is really a .ioForeignPrivIDirID LongInt

Request execution order

Page 2-239, new information after MyCompletionProc

The File Manager, when the File Sharing or AppleShare file server is active, will execute requests in arbitrary order. That
means that if there is a request that depends on the completion of a previous request, it is an error for your program to
issue the second request until the completion of the first request. For example, issuing a write request and then issuing a
read request for the same data isn't guaranteed to read back what was written unless the read request isn't made until after
the write request completes.

Request order can also change if a call results in a disk switch dialog to bring an offline volume back online.

Volume Parameter Variant offsets are off by 2

Page 2-293, Assembly-Language Summary, Data Structures

The offsets for the Volume Parameter Variant are off by 2 starting at because is a long, not a
word. So, the offset for should be 52, the offset for should be 56, etc.

ioVClpSiz ioVAlBlkSiz
ioVClpSiz ioAlBlSt

Detecting if a volume is formatted Macintosh File System (MFS), Hierarchical File System (HFS), or
HFS Plus

Three volume formats have been supported by the Mac OS file system: MFS, HFS, and HFS Plus. System software 7.0
through Mac OS 8.0 supported the MFS and HFS volume formats. Mac OS 8.1 and later support HFS and HFS Plus volumes.
All three volume formats use the local File System ID, zero (0). So how do you tell them apart? By the volume's signature
word returned by (or if is not available) in the field.
MFS volumes have a signature of ; HFS volumes have a signature of ; HFS Plus volumes have a signature of

.

PBXGetVolInfo PBHGetVInfo PBXGetVolInfo ioVSigWord
$D2D7 $4244

$482B

For compatibility with some programs, and return in for
both HFS and HFS Plus volumes. You should always use if it is available.

Important:
PBGetVInfo PBHGetVInfo $4244 ioVSigWord

PBXGetVolInfo

The following code can be used to get the volume signature and file system ID:

OSErr GetVSigWord(short vRefNum, short *vSigWord, short *fsid)
{
 OSErr result;
 long response;
 XVolumeParam pb;

 pb.ioVRefNum = vRefNum;
 pb.ioXVersion = 0; // this XVolumeParam version (0)
 pb.ioNamePtr = NULL;
 pb.ioVolIndex = 0; // use ioVRefNum only
 // Is PBXGetVolInfo available?
 if ((Gestalt(gestaltFSAttr, &response) == noErr) &&

 ((response & (1L << gestaltFSSupports2TBVols)) != 0))
 {
 // Yes, so use it
 result = PBXGetVolInfoSync(&pb);
 }
 else
 {
 // No, fall back on PBHGetVInfo
 result = PBHGetVInfoSync((HParmBlkPtr)&pb);
 }
 // return the volume's signature word and FSID
 *vSigWord = pb.ioVSigWord;
 *fsid = pb.ioVFSID;
 // return the File Manager's result
 return (result);
}

PBXGetVolInfo

You can use the function to get detailed information about a volume. It can report volume size
information for volumes up to 2 terabytes.

PBXGetVolInfo

pascal OSErr PBXGetVolInfoSync(XVolumeParamPtr paramBlock);
pascal OSErr PBXGetVolInfoAsync(XVolumeParamPtr paramBlock);

paramBlock A pointer to an extended volume parameter block.

XVolumeParam

-> ioCompletion ProcPtr Pointer to a completion routine

<- ioResult OSErr Result code of the function

<-> ioNamePtr StringPtr Pointer to the volume's name.

<-> ioVRefNum short On input, a volume specification; on output, the volume
reference number.

-> ioXVersion unsigned long
Version of
(value = 0).

XVolumeParam

-> ioVolIndex short Index used for indexing through all mounted volumes.

<- ioVCrDate unsigned long Date and time of initialization.

<- ioVLsMod unsigned long Date and time of last modification.

<- ioVAtrb short Volume attributes.

<- ioVNmFls unsigned short Number of files in the root directory.

<- ioVBitMap unsigned short First block of the volume bitmap.

<- ioVAllocPtr unsigned short Block where the next new file starts.

<- ioVNmAlBlks unsigned short Number of allocation blocks.

<- ioVAlBlkSiz unsigned long Size of allocation blocks.

<- ioVClpSiz unsigned long Default clump size.

<- ioAlBlSt unsigned short First block in the volume block map.

<- ioVNxtCNID unsigned long Next unused catalog node ID.

<- ioVFrBlk unsigned short Number of unused allocation blocks.

<- ioVSigWord unsigned short Volume signature.

<- ioVDrvInfo short Drive number.

<- ioVDRefNum short Driver reference number.

<- ioVFSID short File system ID for the file system handling this volume.

<- ioVBkUp unsigned long Date and time of last backup.

<- ioVSeqNum short Used internally.

<- ioVWrCnt unsigned long Volume write count.

<- ioVFilCnt unsigned long Number of files on the volume.

<- ioVDirCnt unsigned long Number of directories on the volume.

<- ioVFndrInfo [8] long Used by the Finder.

<- ioVTotalBytes UnsignedWide Total number of bytes on the volume.

<- ioVFreeBytes UnsignedWide Number of free bytes on the volume.

The function returns information about the specified volume. It is similar to the
function described in except that it returns additional volume space information in 64-bit integers
anddoes not modify the information copied from the volume's Volume Control Block (VCB). Systems that support

 will have the bit set in the response returned by the
selector.

PBXGetVolInfo PBHGetVInfo
Inside Macintosh: Files

PBXGetVolInfo gestaltFSSupports2TBVols
gestaltFSAttr Gestalt

Assembly-Language Information

The trap macro and routine selector for are: PBXGetVolInfo

Trap macro Selector

_HFSDispatch $0012

Result Codes

noErr 0 Successful completion, no error occurred

nsvErr &endash;35 No such volume

paramErr &endash;50 No default volume

PBGetXCatInfo

You can use the function to get the short name (MS-DOS format name) and ProDOS information for files
and directories.

PBGetXCatInfo

pascal OSErr PBGetXCatInfoSync(XCInfoPBPtr paramBlock);
pascal OSErr PBGetXCatInfoAsync(XCInfoPBPtr paramBlock);

paramBlock Contains a pointer to a XCInfoPBRec.

XCInfoPBRec

-> ioCompletion ProcPtr Contains a pointer to 's completion
routine.

PBGetXCatInfoAsync

<- ioResult OSErr places its result code into this field.PBGetXCatInfo

-> ioNamePtr StringPtr Contains a pointer to the object name, or nil when
specifies a directory that's the object.

ioDirID

-> ioVRefNum short Contains a volume specification.

<-> ioShortNamePtr StringPtr
Contains a pointer to a Pascal string buffer (minimum 13 bytes).

 places the short name into the field referred to
by this parameter. cannot be nil.
PBGetXCatInfo

ioShortNamePtr

<- ioPDType short places the ProDOS file type into this field.PBGetXCatInfo

<- ioPDAuxType long places the ProDOS auxiliary type into this field.PBGetXCatInfo

-> ioDirID long Contains a directory ID.

 returns the short name (MS-DOS format name) and ProDOS file/auxiliary type information for files
anddirectories on volumes that support this function. Volumes that support will have the

 bit set in the field returned by .

PBGetXCatInfo
PBGetXCatInfo

bHasShortName vMAttrib PBHGetVolParms

For more information about short names and ProDOS file/auxiliary types, see , second edition, Chapter 13
AppleTalk Filing Protocol, and the Apple II File Type Notes.

Inside AppleTalk

Assembly-Language Information

The trap macro and routine selector for are: PBXGetVolInfo

Trap macro Selector

_HFSDispatch $003A

Result Codes

noErr 0 Successful completion, no error occurred

nsvErr &endash;35 No such volume

fnfErr &endash;43 File not found

paramErr &endash;50 No default volume

dirNFErr -120 Directory not found

Back to top

Chapter 3 - Standard File Package

Activation Procedures Need to call TECalText

Pages 3-30 to 3-31, Writing an Activation Procedure
Page 3-59, MyActivateProc

Pages 3-30 to 3-31 and 3-59 discuss activation of additional user interface elements in custom standard file dialogs. The
parts of that discussion that refer to having multiple edit-text items omit mention that it is necessary for the activation
procedure to call , set to 1, and call to work properly, as in the
code snippet below:

TECalText myTEHandle^^.crOnly TESetSelect

IF (activating) THEN
 BEGIN
 {Note DialogPeek not WindowPeek used}
 dlgPeek : = DialogPeek(theDialog);

 {Access TEHandle shared in common by all the editText }
 { items in the dialog. This field current at activate time.}
 myTEHandle: = dlgPeek^.textH;

 {Must redo lineStarts on activation}
 TECalText(myTEHandle);

 {Must set crOnly on activation}
 myTEHandle^^.crOnly : = 1;

 {Ensure proper setting of selection}
 myTECharLength : = myTEHandle^^.teLength;
 selectionLen : = myTEHandle^^.selEnd - myTEHandle^^.selStart
 + 1;
 If (myTECharLength > selectionLen) THEN
 TESetSelect(0,myTECharLength,myTEHandle);
 END;

Default Standard File current directory

Page 3-31, Setting the Current Directory

Replace the two bullet points with the following three bullet points:

If the user launched your application directly (perhaps by double-clicking its icon in the Finder), the default
directory is the directory in which your application is located.
If the user launched your application indirectly (perhaps by double-clicking one of your application's document
icons) and your application is high-level event aware, your application is passed the list of documents to open or
print in a or Apple event; there is no Finder information
(will be NIL) and the default directory is the directory in which your application is located.

kAEOpenDocument kAEPrintDocument
AppParmHandle

If the user launched your application indirectly (perhaps by double-clicking one of your application's document
icons) and your application is not high-level event aware, your application is passed Finder information and the
default directory is the directory of the last document in listed in the Finder information. The Finder information is
the data referenced by and accessed by the Segment Loader routines ,

, , and .
AppParmHandle CountAppFiles

GetAppFiles ClrAppFiles GetAppParms

Listing 3-15 does not set fieldsfScript

Page 3-33, Listing 3-15, Setting the current directory

The code listing does not set the field of the record when returning the pseudo-item
. This can cause Standard File to always set the selection to the last file in the directory.

Adding the line:

sfScript StandardFileReply
sfHookChangeSelection

myReplyPtr^.sfScript : = smSystemScript;

before the line:

MyDlgHook : = sfHookChangeSelection;

will fix the problem.

Back to top

Chapter 4 - Alias Manager

 updates minimal aliasesResolveAlias

Page 4-19

At the bottom of page 4-19, it is stated that never updates a minimal alias. This is not true.ResolveAlias

 calls to resolve the alias and if returns with set to true,
then updates the alias by calling (which makes it a full alias) and returns with

 set to true. If you require that minimal aliases stay minimal aliases, you can either call
(which does not update aliases),or you can create a copy of the alias record with , pass the copy of the alias
record to , and then dispose of the (possibly updated) copy of the alias record.

ResolveAlias MatchAlias MatchAlias needsUpdate
ResolveAlias UpdateAlias

wasChanged MatchAlias
HandToHand

ResolveAlias

 should beusrCanceledErr userCanceledErr

Page 4-20, 4-23, ResolveAlias MatchAlias

Just a typo... the title of this says it all.

 and memory available to warningkARMSearchMore AliasFilterProc

Page 4-23,
Page 4-25,

MatchAlias
MyMatchAliasFilter

Add this warning:

A call to using the rule will result in a recursive search using
 if the volume being searched doesn't support . Your application

should insure there is a reasonable amount of stack space available before calling
using the rule, and if a is used, the
should not use large amounts of stack space. You can eliminate most stack usage in your

 by passing a structure containing any large data structures the
 might need in the parameter to .

WARNING:

MatchAlias kARMSearchMore
PBGetCatInfo PBCatSearch

MatchAlias
kARMSearchMore AliasFilterProc AliasFilterProc

AliasFilterProc
AliasFilterProc yourDataPtr MatchAlias

Back to top

Chapter 5 - Disk Initialization Manager

Extended Disk Initialization Package

An extended Disk Initialization Package is available with System Software 7.5, with Macintosh PC Exchange 2.0 or later,
and with the File System Manager. The extended Disk Initialization Package includes three functions not found in Chapter 5
of .Inside Macintosh: Files

The existing application program interface to the Disk Initialization Package as described in will
continue to be supported by the enhanced Disk Initialization Package. Applications which wish to initialize only Macintosh
disks will continue to work and will require no changes. However, if an application wants to initialize non-Macintosh disks,
it must use the new extended and calls.

Inside Macintosh: Files

DIXFormat DIXZero

The Extended Disk Initialization User Interface

The Finder and the Standard File Package both handle disk-inserted events for uninitialized disks by presenting a disk
initialization dialog box asking the user whether the disk should be ejected or initialized. Your application too can easily
call a Disk Initialization Manager routine that generates such a dialog box when the user inserts an invalid disk. Figure 5-1
illustrates the dialog box:

. The disk initialization dialog boxFigure 5-1

The disk initialization dialog box allows the user to name and specify the format of the new disk. The appearance of the disk
initialization dialog box changes to reflect changing conditions. For example, the icon changes to show which drive contains
the disk. The Format menu items change to show what disk formats can be used with the disk and disk drive combination.
Also, the text of the dialog box changes according to what is wrong with the disk. The text might read "This disk's format
cannot be read by this drive" if the Disk Initialization Manager detects that the disk drive cannot use a disk's format (for
example, if a double-sided disk is inserted in a single-sided disk drive, or a high-density disk formatted using GCR instead
of MFM is inserted in an Apple SuperDrive).

Regardless of the initial appearance of the disk initialization dialog box, it disappears if the user clicks Eject or Cancel. If,
however, the user decides to initialize the disk, the text in the dialog box changes to warn the user that initialization erases
any previous data on the disk, as illustrated in Figure 5-2.

. The disk initialization warningFigure 5-2

If the user selects continue, the Disk Initialization Manager attempts to initialize it. If an error occurs and the
initialization fails, an alert box notifies the user, and the disk is ejected.

The extended Disk Initialization Manager also provides a mechanism for using the standard interface to reinitialize
(reformat) disks that are already formatted. (This mechanism is useful, for example, when the user wants to reinitialize a
disk with a different disk format.) The Finder takes advantage of this mechanism with its Erase Disk command, illustrated
in Figure 5-3. After the user selects the erase operation from this dialog box, the reinitialization begins immediately,
without further warnings. If desired, your application can use this same standard interface to allow users to reinitialize
mounted disks (other than the startup volume). Your application can customize the text to be displayed in such a dialog box.
Note that only a few utility applications actually need to provide users with this capability.

. The Reformat dialog boxFigure 5-3

If you are writing a utility program such as a disk-copying application, you might wish to initialize new disks or
reinitialize valid disks without displaying the standard disk initialization dialog box. For example, your application might
allow users to initialize multiple disks without having to respond to the standard dialog box each time. The Disk
Initialization Manager provides low-level routines that allow you to do so. Unless you are writing a utility program of this
type, you don't need to use these routines.

Extended Low-Level Disk Initialization Routines

Extended programmatic interfaces to media formatting and volume initialization functions are required such that
applications may specify additional information for the overall formatting operation. This information corresponds to the
file system type and disk size information presented in the "Format" menu in the disk initialization dialog box described
above. The extended programmatic interface adds three new functions to the Disk Initialization Package: and

 (for extended and), and .
DIXFormat

DIXZero DIFormat DIZero DIReformat

Applications should insure that the extended Disk Initialization Package functions are present before
making the , , or calls. This is done by calling with
the selector. The extended Disk Initialization Package functions is available if the

 function returns a result of and the (bit
6) is set in the response parameter. Due to the nature of older versions of the Disk Initialization
Package, making the extended requests when they are not available may cause a system crash.

WARNING:

DIXFormat DIXZero DIReformat Gestalt
gestaltFSAttr

Gestalt noErr gestaltHasExtendedDiskInitbit

The following code illustrates how you use to determine if the extended Disk Initialization Package functions are
available.

Gestalt

Boolean HasExtendedDIFunctions(void)
{
 long response;

 if (Gestalt(gestaltFSAttr, &response) == noErr)
 return ((response & (1L << gestaltHasExtendedDiskInit)) != 0);
 else
 return (false);
}

DIXFormat

The function performs the same function as the function except that drive size may be specified.DIXFormat DIFormat

pascal OSErr DIXFormat(short drvNum, Boolean fmtFlag,
 unsigned long fmtArg, unsigned long *actSize);

drvNum Contains the driver number of the drive to format.

fmtFlag Contains a boolean value which specifies the meaning of the parameter.fmtArg

fmtArg

If is true, specifies the actual value to be passed to the disk driver in the field
of the parameter block when the "format" call is made to initialize the disk media. (The value is
an index into the size list. For an explanation of appropriate values for this parameter, see the Technical Note
"What Your Sony Drives For You".)

fmtFlag fmtArg csParam
_Control

If is false, specifies the desired size of the media in number of 512-byte blocks. The disk
driver is called to get possible sizes and the values in an to attempt to match the requested size. If more than
one size list entry exists for the same size, the first entry in the list returned by the driver that best
matches the parameter will be used. For more information about the size list, see the Technical Note
"What Your Sony Drives For You". If the specified size is larger than the largest size in the size list returned
by the driver, then the largest size will be used and that size is returned in . If the specified size is
smaller than the smallest size in the size list returned by the driver, then the smallest size will be used and
that size is returned in . For a specified value that is in between and without an exact match, the
value closest to and smaller than the requested size is used.

fmtFlag fmtArg

fmtArg

actSize

actSize

actSize
Contains a pointer to an unsigned long. Upon completion of a successful formatting operation,
places the actual size of the formatted media in number of 512-byte blocks into the field referred to by this
parameter.

DIXFormat

The formatting of file systems requiring specific media formats should be done by specifying those media formats explicitly
and not by counting on disk size alone. Foreign file systems with specific media requirements should use the driver specific
information in the size list or should make appropriate driver calls for additional information when called upon
to "evaluate the size list".

_Status

As in , does not unmount the volume. You have to unmount the volume before issuing this call if
necessary. If the volume has not been unmounted, then will return error.

DIFormat DIXFormat
DIXFormat volOnLinErr

Result Codes

noErr 0 No error

volOnLinErr &endash;55 Volume is online

lastDskErr...firstDskErr &endash;64...-84 Range of low-level disk errors

DIXZero

The function performs the same function as the function except that the file system, format result,
volume type, volume size and extended formatting information may be specified.

DIXZero DIZero

pascal OSErr DIXZero(short drvNum, ConstStr255Param volName,
 short fsid, short mediaStatus,
 short volTypeSelector, unsigned long volSize,
 void *extendedInfoPtr);

drvNum Contains the driver number of the drive to initialize.

volName Contains a pointer to a Pascal string which specifies the name of the volume.

fsid Contains the ID of the file system whose format should be written to the disk. The file system ID
can be obtained using the File System Manager function.GetFSInfo

Contains a flag to indicate the status of the disk media. Its value is the result code returned from
the function. If is non-zero, then the disk contains bad sectors and
needs to be spared. If the file system specified doesn't support bad block sparing, the Disk

DIVerify mediaStatus

mediaStatus
Initialization Package will just return this value as the function result. If the file system
supports bad block sparing, then the Disk Initialization Package will gather the defect list and
pass it to the file system.

volTypeSelector Contains the volume type selector if the foreign file system supports more than one volume type.

volSize

Contains the size in 512-byte blocks of the drive specified by . This is the size returned
in the field by --the amount of space usable by a file system on the
specified drive as it is currently formatted. If the specified size doesn't match with the current
disk format size, will return .

drvNum
actSize DIXFormat

DIXZero diCIVolSizeMismatchErr

fsParams Contains a pointer to the foreign file system's extended formatting information, or nil.

Early versions of the code calls the Dialog Manager with a nil when the value
passed in the parameter is not noErr. This will almost always cause a system crash.
You must check to ensure supports bad block sparing before passing anything except

 as the parameter. The following function,
, shows how to make sure supports bad block sparing.

WARNING:

DIXZero DialogPtr
mediaStatus

DIXZero
noErr mediaStatus
DIXZeroSupportsBadBlocks DIXZero

Boolean DIXZeroSupportsBadBlocks(void)
{
 enum
 {
 gestaltBugFixAttrsThree = 'bugx',
 gestaltDIXZeroSupportsBadBlocks = 9
 };
 long response;

 if (Gestalt(gestaltBugFixAttrsThree , &response) == noErr)
 return ((response & (1L << gestaltDIXZeroSupportsBadBlocks))
 != 0);
 else
 return (false);
}

As in , does not unmount the volume but it will, however, mount the volume if the operation is
successful. You have to unmount the volume before issuing this call if necessary. If the volume is mounted when or

 is called, then a error will be returned.

DIZero DIXZero
DIZero

DIXZero volOnLinErr

Result Codes

noErr 0 No error

diCIVolSizeMismatchErr 24 Specified volume size doesn't match with formatted disk size

ioErr &endash;36 I/O error

paramErr -50 Drive number specified is bad

volOnLinErr -55 Volume is already online

nsDrvErr -56 No such drive

firstDskErr...lastDskErr -84...-64 Range of low-level disk errors

memFullErr -108 Not enough memory

DIReformat

The function reformats disk volume.DIReformat

pascal OSErr DIReformat(short drvNum, short fsid,
 ConstStr255Param volName,
 ConstStr255Param msgText);

drvNum Contains the driver number of the drive to format.

fsid
Contains the ID of the file system whose format should be written to the disk. The file system ID can be
obtained using the File System Manager function. (Use for the Macintosh HFS volume
format.)

GetFSInfo $0000

volName Contains a pointer to a Pascal string which specifies the name of the volume.

msgText Contains a pointer to a Pascal string which specifies the explanatory text to be displayed in the disk
initialization dialog box.

In the past, reformatting disk was accomplished by calling the function with the high word of theDIBadMount

 parameter set to and the explanatory text was set with the function. The
 function provides the caller the ability to provide the explanatory text, the default file system ID, and the

default name for the reformatted disk.

evtMessage noErr ParamText
DIReformat

The volume in the drive specified by must be mounted when calling .
Note:

drvNum DIReformat

Result Codes

noErr 0 No error

diCINoMessageTextErr 28 was not providedmsgText

ioErr &endash;36 I/O error

paramErr -50 Drive number specified is bad

nsDrvErr -56 No such drive

firstDskErr...lastDskErr -84...-64 Range of low-level disk errors

memFullErr -108 Not enough memory

Formatting HFS and HFS Plus Volumes

The Disk Initialization Package provides several ways a program can initialize a disk drive for use by a file system. If the
drive is not a mounted file system volume, a program can call and let the Disk Initialization Package provide
the user interface with the disk initialization dialog box (see). If the drive
is already formatted and mounted by the file system, a program can call and let the Disk Initialization
Package provide the user interface with the Reformat dialog box. If a program wants to initialize or reinitialize a volume's
data structures with no user interface, if can use either or . always formats the disk as an HFS
volume. If you want to initialize a disk as an HFS Plus volume, or initialize a disk for use by a foreign file system, you must
use . The rest of topic describes how to initialize a disk as an HFS or HFS Plus volume using .

DIBadMount
The Extended Disk Initialization User Interface

DIReformat

DIZero DIXZero DIZero

DIXZero DIXZero

The parameter tells which file system to use to initialize a volume. For both HFS and HFS Plus volumes,
pass (the file system ID of the local file system) as the parameter.

fsid DIXZero
$0000 fsid

The parameter is used to select between different volume types supported by a single file system.
Pass 1 as the parameter to create an HFS volume; pass 2 as the parameter to
create an HFS Plus volume.

volTypeSelector
volTypeSelector volTypeSelector

The parameter is a pointer to an optional structure that adjusts how the volume is formatted. When
formatting an HFS volume, this should point to a structure of type ; for an HFS Plus volume, this should
point to a structure of type . Passing NIL as the parameter will cause the file
system's default values to be used.

extendedInfoPtr
HFSDefaults

HFSPlusDefaults extendedInfoPtr

HFSDefaults

struct HFSDefaults {
 char sigWord[2]; /* signature word */
 long abSize; /* allocation block size in bytes */
 long clpSize; /* clump size in bytes */
 long nxFreeFN; /* next free file number */
 long btClpSize; /* B-Tree clump size in bytes */
 short rsrv1; /* reserved */
 short rsrv2; /* reserved */
 short rsrv3; /* reserved */
};
typedef struct HFSDefaults HFSDefaults;

The structure allows you to change several of the parameters used when formatting an HFS volume. For
each of the fields, a value of zero or an invalid value indicates that the default value should be used.

HFSDefaults

Set to the bytes ('BD').sigWord $4244

The field sets the volume's allocation block size. This value must be a multiple of 512 bytes. The default and
minimum value is the smallest multiple of 512 bytes greater than or equal to the volume size (in bytes) divided by 65535
().

abSize

$FFFF

The field sets the volume's default clump size. This value is used when allocating space to extend a file; the
allocated space is rounded up to a multiple of the clump size if sufficient free space is available. The clump size should be a
multiple of the allocation block size. The default value is 4 times the allocation block size if the allocation block size is
256K or less, or equal to the allocation block size for larger allocation blocks.

clpSize

The field sets the field of the MDB. It is the starting value for catalog node IDs allocated to files and
folders on that volume. This value is actually an unsigned 32-bit integer. The default and minimum value is

nxFreeFN drNxtCNID
fsUsrCNID

(16), the minimum valid catalog node ID for user files and folders.

The field sets both the clump size and initial space allocated to the catalog and extents B-trees. This clump size
should be a multiple of the allocation block size. The default value varies by volume size, but is typically 1/128 of the
volume size.

btClpSize

HFSPlusDefaults

enum {
 kHFSPlusDefaultsVersion = 1
};

struct HFSPlusDefaults {
 UInt16 version; /* version of this structure */
 UInt16 flags; /* currently undefined; pass zero */
 UInt32 blockSize; /* allocation block size in bytes */
 UInt32 rsrcClumpSize; /* clump size for resource forks */
 UInt32 dataClumpSize; /* clump size for data forks */
 UInt32 nextFreeFileID; /* next free file number */
 UInt32 catalogClumpSize; /* clump size for catalog B-tree */
 UInt32 catalogNodeSize; /* node size for catalog B-tree */
 UInt32 extentsClumpSize; /* clump size for extents B-tree */
 UInt32 extentsNodeSize; /* node size for extents B-tree */
 UInt32 attributesClumpSize; /* clump size for attributes B-tree */
 UInt32 attributesNodeSize; /* node size for attributes B-tree */
 UInt32 allocationClumpSize; /* clump size for allocation bitmap
 file */
};
typedef struct HFSPlusDefaults HFSPlusDefaults;

The structure allows you to change several of the parameters used when formatting a Sequoia volume.
For each of the fields, a value of zero or an invalid value indicates that the default value should be used.

HFSPlusDefaults

The version field indicates the version of the structure you are passing. The current version is
. If the value passed is larger than that recognized by the current implementation,

 will be returned. Implementations will typically support older versions of .

HFSPlusDefaults
kHFSPlusDefaultsVersion
paramErr HFSPlusDefaults

The flags field is currently reserved. If you pass a value other than zero, will be returned.paramErr

The field sets the volume's allocation block size. Valid values are powers of two, and at least 512. The default
value varies with the volumes size &endash; 512 bytes for volumes 256 MB or smaller, up to 4KB for volumes over 1 GB.
If the volume's device supports the control call, then the default size will be greater than or equal to the
device's block size.

blockSize

GetMediaInfo

Future versions of the HFS Plus file system will be performance-optimized for 4KB allocation
blocks, so the default should be used unless there's a really good reason to override it.

Note:

The and fields set the default values for clump sizes for resource and data forks,
respectively. The value must be a multiple of the allocation block size. For both, the default value is four times the
allocation block size.

rsrcClumpSize dataClumpSize

The field sets the first catalog node ID to be assigned to newly created files and folders. The default and
minimum value is (16), the minimum valid catalog node ID for user files and folders.

nextFreeFileID
fsUsrCNID

The and fields set the clump size and initially allocated space for the catalog
andextents B-trees, respectively. For both, the default value varies by volume size, but is typically 1/128 of the volume
size.

catalogClumpSize extentsClumpSize

The and fields set the size of the B-tree nodes for the catalog and extents B -
trees, respectively. Valid values are powers of two, up to and including 32,768 (32 K). The minimum and default size for

 is 4 KB. The minimum size for is 512; the default is 1024.

catalogNodeSize extentsNodeSize

catalogNodeSize extentsNodeSize

Some Sample Code

This sample shows how to use to reinitialize a disk using the standard interface. When is
available, this code can be used instead of the code shown in Listing 5-2 on page 5-11 of .

DIReformat DIReformat
Inside Macintosh: Files

// Reinitializing a valid disk using the standard interface
OSErr ReformatDisk(short drvNum, ConstStr255Param msgText)
{
 OSErr result;
 Str255 volName;

 short vRefNum;
 long freeBytes;

 DILoad();
 // Get the current volume name
 result = GetVInfo(drvNum, volName, &vRefNum, &freeBytes);
 if (result == noErr)
 {
 // Reformat using FSID $0000 (HFS or HFS Plus)
 result = DIReformat(drvNum, 0x0000, volName, msgText);
 }
 DIUnload();
 return (result);
}

This sample shows how to use to reinitialize a disk without using the standard interface. It uses so that
the volume can be initialized with HFS Plus if possible.

DIXZero DIXZero

// Reinitializing a valid disk without using the standard interface
OSErr ReinitializeDisk(short drvNum, Boolean tryHFSPlus)
{
 OSErr result;
 Str255 volName;
 short vRefNum;
 long freeBytes;
 short mediaStatus;
 UInt32 actSize;

 DILoad();
 // Get the current volume name
 result = GetVInfo(drvNum, volName, &vRefNum, &freeBytes);
 if (result == noErr)
 {
 // Unmount the volume
 result = UnmountVol(NULL, vRefNum);
 if (result == noErr)
 {
 // Format the disk. (note: the actual disk size
 result = DIXFormat(drvNum, false, 0, &actSize);
 if (result == noErr)
 {
 // Verify the disk and use the result as the mediaStatus
 mediaStatus = (short)DIVerify(drvNum);

 // Should we try formatting HFS Plus?
 if (tryHFSPlus)
 {
 // Yes, initialize using HFS Plus
 // (fsid = 0; volTypeSelector = 2)
 // The extendedInfoPtr is NULL so the default volume
 // characteristics are used.
 result = DIXZero(drvNum, volName, 0x0000, mediaStatus, 2,
 actSize, NULL);
 }

 // If HFS Plus wasn't requested or the attempt with HFS Plus
 // failed because the disk was too small (paramErr)
 if (!tryHFSPlus || (result == paramErr))
 {
 // Initialize using HFS (fsid = 0; volTypeSelector = 1)
 // The extendedInfoPtr is NULL so the default volume
 // characteristics are used.
 result = DIXZero(drvNum, volName, 0x0000, mediaStatus, 1,
 actSize, NULL);
 }
 }
 }
 }
 DIUnload();
 return (result);
}

the volume can be initialized with HFS Plus if possible.
DIXZero DIXZero

// Initializing an uninitialized disk without using the
// standard interface
OSErr InitializeDisk(short drvNum, ConstStr255Param volName,
 Boolean tryHFSPlus)
{
 OSErr result;
 short mediaStatus;
 UInt32 actSize;

 DILoad();
 // Format the disk
 result = DIXFormat(drvNum, false, 0, &actSize);
 if (result == noErr)
 {
 // Verify the disk and use the result as the mediaStatus
 mediaStatus = (short)DIVerify(drvNum);

 // Should we try formatting HFS Plus?
 if (tryHFSPlus)
 {
 // Yes, initialize using HFS Plus
 // (fsid = 0; volTypeSelector = 2)
 // The extendedInfoPtr is NULL so the default volume
 // characteristics are used.
 result = DIXZero(drvNum, volName, 0x0000, mediaStatus, 2,
 actSize, NULL);
 }

 // If HFS Plus wasn't requested or the attempt with HFS Plus
 // failed because the disk was too small (paramErr)
 if (!tryHFSPlus || (result == paramErr))
 {
 // Initialize using HFS (fsid = 0; volTypeSelector = 1)
 // The extendedInfoPtr is NULL so the default volume
 // characteristics are used.
 result = DIXZero(drvNum, volName, 0x0000, mediaStatus, 1,
 actSize, NULL);
 }
 }
 DIUnload();
 return (result);
}

Back to top

References

File Manager Reference

Guide to the File System Manager

Back to top

Downloadables

Acrobat version of this Note (220K). Download

Back to top

Change History

Overview

Originally written in February 1995, as Technote 1041 -- Inside Macintosh: Files Errata.

In June 1995, this Technote was updated to document more known errors and omissions.

In February 1996, this Technote was updated to document more known errors and omissions.

Chapter 1 - Introduction to File Management

Chapter 2 - File Manager

Chapter 3 - Standard File Package

Chapter 4 - Alias Manager

Chapter 5 - Disk Initialization Manager

In February 1999, this Technote was reformated and updated to include additional HFS Plus information.

Specific

 and -- What is exchanged, February 1995FSpExchangeFiles PBExchangeFiles
Additional Considerations for , February 1995GetVInfo

Pathname rules are not fully explained, February 1995
Missing Row in Table 2-10, February 1995
Description of default directory upon launch wrong, February 1996
Master Directory Blocks and field descriptions are wrong, February 1995drXTFlSize drCTFlSize
Map records in map nodes occupy 492 bytes (not 494 bytes), February 1995
Volume cache control bit in , June 1995vcbAtrb
Volume Control Blocks and field descriptions are wrong, fields not used on
3.5" floppy disks, June 1995

vcbXTAlBks vcbCTAlBks dQDrvSiz

February 1996
Clarification of bits in , , and , June 1995ioFlAttrib ParamBlockRec HParamBlockRec CInfoPBRec

 is in some interface files, June 1995ioACUser filler2
The data structure includes flags word, February 1995VolMountInfoHeader

 usage by and requests, June 1995ioPosMode PBRead PBWrite
Additional Considerations for , February 1995GetVInfo
Additional Special Considerations for , February 1995PBHGetVInfo

 does not work with directories, February 1995FSpGetFInfo
 does not work with directories, February 1995FSpSetFInfo

, and the result code, February 1995HOpenDF PBHOpenDF paramErr
Parameter blocks missing field, February 1995ioFVersNum
Parameter blocks missing field, February 1995ioMisc

 usage rules, February 1995PBGetCatInfo ioFDirIndex
Parameter blocks missing field, February 1995ioNamePtr

 is in and , February 1995ioForeignPrivIDirID LongInt PBGetForeignPrivs PBSetForeignPrivs
Request execution order, February 1995
Volume Parameter Variant offsets are off by 2, February 1995
Detecting if a volume is formatted Macintosh File System (MFS), Hierarchical File System (HFS), or HFS Plus,
February 1999

, February 1999PBXGetVolInfo
, February 1999PBGetXCatInfo

Activation Procedures Need to call , February 1995TECalText
Default Standard File current directory, February 1995
Listing 3-15 does not set field, February 1995sfScript

 updates minimal aliases, February 1995ResolveAlias
 should be , February 1995usrCanceledErr userCanceledErr
 and memory available to warning, February 1995kARMSearchMore AliasFilterProc

Extended Disk Initialization Package, February 1995
Extended Disk Initialization User Interface, February 1999
Extended Low-Level Disk Initialization Routines, February 1999

, February 1999DIXFormat
, February 1999DIXZero

, February 1999DIReformat
Formatting HFS and HFS Plus Volumes, February 1999

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

