
TN 1063: IM: Processes, Time Manager Addenda Page: 1

CONTENTS

Some Basic Time Manager Rules

Setting Up tmReserved

About tmWakeup

The Microseconds Alternative

Undeferred Time Manager Task

The Native Time Manager

Time Manager Errors

Summary

References

Change History

Downloadables

This technote discusses a number of Time
Manager issues that are not covered in the
Time Manager chapter of Inside Macintosh:

Processes .

This Note is intended for all developers who
want to do time measurement using the Time
Manager routines.

 Updated: [Sep 01 1996]

Some Basic Time Manager Rules

When programming with the Time Manager, it is important to observe the following rules:

For each Time Manager task that you insert (using InsTime or InsXTime), you must remove the same Time
Manager task (using RmvTime) once and only once.
While your Time Manager task is inserted (that is, between InsTime and RmvTime), you can prime the task
multiple times. For example, the sequence InsTime, PrimeTime, fire, PrimeTime, fire, PrimeTime, fire,
RmvTime is perfectly legal. Some developers always insert, prime and remove their Time Manager tasks. While
legal, this is unnecessarily inefficient.
If you remove a Time Manager task (using RmvTime), you must insert it again (using InsTime or InsXTime)
before priming it.
If you have primed a Time Manager task, you must not prime it again until it fires. This is explicitly called out in
Inside Macintosh: Processes, page 3-11. If you need to cancel a Time Manager task, simply remove it using
RmvTime. If you need to reschedule a Time Manager task, remove it, then reinsert it, then prime it again.
Don't use InsXTime unless you want drift free timing. A common mistake is to install a drift free Time Manager
task (using InsXTime), prime it for 1 second, let it fire, and then, 5 minutes later, prime it again for another
1 second. The task fires immediately because it was installed as a drift free task. To avoid this behavior, simply

TN 1063: IM: Processes, Time Manager Addenda Page: 2

use the original InsTime call.

This rules are not new; they are all explicitly or implicitly described in Inside Macintosh: Processes . However, recent
systems now enforce these rules more strictly. If you break these rules, you may see one of the following symptoms:

The system crashes with a dsVMDeferredFuncTableFull (112) system error.
The system freezes because low-memory is trashed (prior to System 7.5.5).
The system bus errors because of a fatal page fault.
PrimeTime returns qErr (-1) when you attempt to prime a task that isn't installed.
Timer Manager tasks not firing at the right time.

Note:
"Timer.h" defines the various Time Managers routines as void functions, which prevents you from getting the
error result from PrimeTime. See Time Manager Errors for instructions on how to get this error result.

Back to top

Setting Up tmReserved

On page 3-8 of Inside Macintosh: Processes , it clearly states that both tmWakeUp and tmReserved should be set to 0
(as shown in Listing 1) prior to the first call to InsXTime when using the extended Time Manager.

theTMTask.tmWakeUp = 0;
theTMTask.tmReserved = 0;
InsXTime((QElemPtr)&theTMTask);
PrimeTime((QElemPtr)&theTMTask, 2000);

Listing 1. Set both tmWakeUp and tmReserved to 0 before calling InsXTime.

If you do want to do some time measurement, then you have to call RmvTime to get the current value of tmCount, which
leads later to a new call to InsXTime, and a call to PrimeTime with a 0 delay which has a special meaning in that case.
Although it appears, after much reading, rather clear that you leave the current value of tmWakeUp untouched in the
TMTask structure, you can't be sure what to do about the value of tmReserved.

The truth is that prior to October, 1992 (System Software 7.1), you didn't care, but it's more of a concern now, since
Apple slightly modified the behavior of the Time Manager to deal with performance issues.

If you use code like that in Listing 2 and leave tmReserved untouched, then after 127 calls your extended time task is
converted into a non-extended time task (for a good but can't-be-disclosed reason) which, being waked up with a 0 delay
PrimeTime (which has no special meaning for a non-extended time task), will suddenly be called and called again --
more frequently than it should be.

// WARNING: Don't use this code!
RmvTime((QElemPtr)&theTMTask);
remaining = theTMTask.tmCount;
InsXTime((QElemPtr)&theTMTask);
PrimeTime((QElemPtr)&theTMTask, 0);
// WARNING: Don't use this code!

Listing 2. Typical code for measuring time using the Time Manager.

So, if you perform that kind of time measurement, change your code to that shown in Listing 3.

TN 1063: IM: Processes, Time Manager Addenda Page: 3

RmvTime((QElemPtr)&theTMTask);
remaining = theTMTask.tmCount;
theTMTask.tmReserved = 0;
InsXTime((QElemPtr)&theTMTask);
PrimeTime((QElemPtr)&theTMTask, 0);

Listing 3. Correct code for measuring time using the Time Manager.

Since the Time Manager, prior to System Software 7.1, doesn't care about tmReserved, then you can set tmReserved
to 0 before each call to InsXTime without checking the system version. You still have, of course, to ensure that the Time
Manager you're using is the extended one (the response to gestaltTimeMgrVersion is
gestaltExtendedTimeMgr (3) or greater).

Back to top

About tmWakeUp

The following sentence, also on page 3-8 in Inside Macintosh: Processes, is incorrect: "The tmWakeUp field contains the
time at which the Time Manager task specified by tmAddr was last executed (or 0 if it has not yet been executed)." It
should say: "The tmWakeUp field contains the time at which the Time Manager task specified by tmAddr is scheduled to
be executed (or 0 if it has not yet been primed)."

Note:
Since the format of that field is undocumented and used internally by the Time Manager, developers are strongly
discouraged anyway from performing any kind of calculation or comparison on the value of this field, since that
format could change in the future.

Back to top

The Microseconds Alternative

Another way to perform time measurement would be to use the Microseconds call, which is much easier to use and less
likely to change in the future.

pascal void Microseconds(UnsignedWide *microseconds);

Listing 4. The prototype for Microseconds.

TN 1063: IM: Processes, Time Manager Addenda Page: 4

Important:
Microseconds has a reputation for being inconveniently slow. Many developers have run performance tests
and noticed that Microseconds can take over 10 microseconds to execute. Prior to the advent of the native
Time Manager, Microseconds had a number of performance problems:

It was implemented in 68K code.
It relied on a time base which is very slow to access on modern computers.
The algorithm was somewhat convoluted.
It was patched by various system components.

The native Time Manager has significantly improved the performance of Microseconds. However, for best
performance, your application should use the UpTime routine. UpTime is layered directly on top of the
PowerPC Time Base Register (TBR) and is both faster and more accurate than Microseconds.

UpTime is exported by InterfaceLib on all computers running Mac OS 8.5 and higher, and by
DriverServicesLib on all PCI-based computers regardless of the system version.

Back to top

Undeferred Time Manager Tasks

This section describes an optimization that you might want to employ when using the Time Manager in the presence of
virtual memory (VM). Most developers will not be interested in this; however, all users of the Time Manager should heed
the following warning.

WARNING:
Because there is an extremely remote possibility that the memory you have allocated for your Time
Manager task contains the special value listed below, if you want to ensure the behavior defined in
Inside Macintosh: Memory, you should always clear the qLink field in the TMTask before
installing it.

As described in Inside Macintosh: Memory, Time Manager tasks are automatically deferred by the Virtual Memory
(VM) system to avoid fatal page faults. This was done for backward compatibility with existing applications that use the
Time Manager, but it can seriously increase the latency between when the timer expires and when your Time Manager task
executes.

For more information about interactions between the Time Manager and VM, see Technote 1094 Virtual Memory
Application Compatibility.

For example, if you schedule a Time Manager task to execute at time X and, at time (X - delta) some process takes a page
fault, your Time Manager task will not be called until time (X + Y - delta), where Y is the time required to field a page
fault. If the page fault causes the hard disk to seek, Y could be as great as the hard disk's average seek time, approximately
10 ms. If you are trying to use the Time Manager to measure time in microseconds , this could be a problem.

There is a way you can install Time Manager tasks so the callback is not deferred by VM; however, before using this
technique, you should be aware of its dangers. Because VM does not defer these special Time Manager tasks, it is possible
for them to fire when paging is not safe. To avoid fatal page faults, you must ensure:

The TMTask record is held for the entire time the Time Manager task is installed (see Listing 5).
The code for the timer task and any data it references is held. If the code for your timer task is stored in a code
resource, you can use the snippet from Listing 6 to make sure it is held. If your timer task code is not in a code
resource, it's very difficult to ensure that it and its data are held.
You timer task code only calls system routines that are guaranteed to meet the above requirement -- this
typically means only that routines that are known to be interrupt-safe.

HoldMemory(&theTask, sizeof(TMTask));

Listing 5. Holding the Time Managertask itself.

TN 1063: IM: Processes, Time Manager Addenda Page: 5

// Ensure the code doesn't move in logical memory
HLock(ttaskCodeHandle);
// Ensure the code is held in physical memory and cannot be paged to disk
HoldMemory(*ttaskCodeHandle, GetResourceSizeOnDisk(ttaskCodeHandle));

Listing 6. A source code listing showing some code that helps to explain my idea....

WARNING:
If you fail to meet these requirements, you will cause a fatal page fault and crash the system.

If you call InsTime or InsXTime with the qLink field set to $65616461, the VM patch on the Time Manager will
recognize your special requirements and execute your timer task as soon as it fires, regardless of whether paging is safe
or not.

Back to top

The Native Time Manager

In late 1999, Apple introduced a new implementation of the Time Manager, known as the native Time Manager. The native
Time Manager has the following features:

It publishes the same programming interface as the extended Time Manager.
It is implemented as PowerPC native code.
It uses the PowerPC Time Base Register (TBR) and Decrementer register (DEC) as its time source. Prior to the
introduction of the native Time Manager, all timing was done using the timer registers in the VIA (6522 Versatile
Interface Adapter) or, more accurately, the VIA cell in the system's I/O ASIC. This change yields both more
accurate timing and faster execution time.
The Microseconds call is also implemented in terms of TBR, so the Time Manager and Microseconds are
synchronized.

The native Time Manager is available on all ROM-in-RAM CPUs running Mac OS 9 or later, and on CPUs with the Uni-N
ASIC running Mac OS 8.6. The best way to detect the presence of the native Time Manager is to call Gestalt with the
gestaltTimeMgrVersion selector and look for the result gestaltNativeTimeMgr.

Note:
The definition of gestaltNativeTimeMgr, shown below, is missing from Universal Interfaces 3.3.2 and
below[2474617].

enum {
 gestaltNativeTimeMgr = 4 /* native Time Manager is present */
};

Listing 7. "Gestalt.h" additions for the native Time Manager.

Developer Consequences

The native Time Manager publishes exactly the same programming interface as the extended Time Manager, so the
developer consequences of the new implementation should be minimal. The following sections describe the gotchas we have
seen so far.

Testing for Time Manager Features

When testing whether a particular Time Manager feature is available, always compare the result of
gestaltTimeMgrVersion with the "greater than" operator rather than the "equals" operator. For example, the code

TN 1063: IM: Processes, Time Manager Addenda Page: 6

in Listing 8 tests whether the features of the extended Time Manager are available. If you test for equality, your code will
do the wrong thing when the native Time Manager is available.

static Boolean HaveExtendedTimeManager(void)
{
 UInt32 response;

 return (Gestalt(gestaltTimeMgrVersion,
 (SInt32 *) &response) == noErr)
 && (response >= gestaltExtendedTimeMgr);
}

Listing 8. Detecting the extended Time Manager.

Error Results

The native Time Manager can return an error in cases where previous versions of the Time Manager never did. It is
important that you check and handle error results from calls to the Time Manager. See Time Manager Errors for details.

Back to top

Time Manager Errors

Since its initial release, the Time Manager's routines have always been defined to return an error result in register D0
(see Inside Macintosh IV , page 300). However, the high-level glue for calling these routines has never exposed these
error results. This is particularly problematic for the native Time Manager, which can return an error in cases where
previous versions of the Time Manager never did.

Apple has addressed this problem by defining new high-level interfaces for the Time Manager. The prototypes for the new
routines are shown below.

extern pascal OSErr InstallTimeTask (QElemPtr tmTaskPtr);
extern pascal OSErr InstallXTimeTask(QElemPtr tmTaskPtr);
extern pascal OSErr PrimeTimeTask (QElemPtr tmTaskPtr, long count);
extern pascal OSErr RemoveTimeTask (QElemPtr tmTaskPtr);

Listing 9. New Time Manager high-level glue.

These routines are identical to the original Time Manager routines except that they return an error result. The routines
were first exported by in Universal Interfaces 3.3, however they were only callable from 68K code. Calling these routines
from PowerPC code required two extra steps.

Mac OS 9.0.4 exports these routines from InterfaceLib.
A future version (post-UI 3.3.2) of Universal Interfaces will include an InterfaceLib stub library that includes
these routines.

You can simulate these routines for PowerPC code running on earlier systems by writing your own CFM glue. See DTS
Technote 1127 In Search of Missing Links for the gory details. However, an easier solution is to use the glue provided by
the MoreInterfaceLib module of the DTS sample code library MoreIsBetter.

Back to top

Summary

The following points explain what you should and should not do in working with the Time Manager.

TN 1063: IM: Processes, Time Manager Addenda Page: 7

Always follow the basic rules.
Always set tmReserved to 0 before calling InsXTime.
Set tmWakeUp to 0 before the first call to InsXTime, never look at it or modify it (except to set it to 0 in some
cases, no other value is acceptable) afterwards.
tmCount is only valid after a call to RmvTime.
Always clear qLink before calling InsXTime.
Microseconds is good alternate way to measure elapsed time.
Always check Time Manager error results.

References

Inside Macintosh: Processes , Chapter 3, The Time Manager

Denis G. Pelli's Web page

DTS Technote 1127 In Search of Missing Links

DTS Technote 1194 Mac OS 9.0.4

Back to top

Change History

September 1996 Originally written to elaborate on tmReserved and tmWakeUp.

March 1999 Updated to include information about undeferred Time Manager tasks.

September 1999 Updated to reiterate some basic Time Manager rules. Also made some minor
clarifications and cosmetic changes.

July 2000 Updated to describe the native Time Manager and Time Manager errors.

Back to top

Downloadables

Acrobat version of this Note (K). Download

Back to top

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

