
CONTENTS

Introduction
AEBuilding Descriptor Records

AEBuildDesc
AEBuildError
vAEBuildDesc

AEBuilding Apple Event Records

AEBuildAppleEvent
AEBuildParameters
AEPrintDescToHandle

Descriptor-String Syntax

Data Types
Type Coercion

Complex Data Types

Lists
Records

Parameter Substitution
Using AEPrint* with gdb
Descriptor-String Grammar
Downloads

This Technote describes the * suite of
routines and the simple Apple event
description language they accept. Also
discussed is the routine along with
how it can be used inside of gdb.

AEBuild

AEPrint

The * suite of routines provide simple
to use and easy to maintain facilities for
constructing complex Apple event structures
in memory for sending information to other
applications. provides a symmetrical
pretty printer routine for viewing complex
Apple event structures as strings formatted
using the same syntax as the strings *
is able to read.

AEBuild

AEPrint

AEBuild

This Note is directed at application
developers who make extensive use of
sophisticated Apple event structures in their
applications.

[Mar 21 2002]

Introduction

The * routines provide a very simple translation service for converting specially formatted strings into complex
Apple event descriptors. Normally, creating complex Apple event descriptor records requires a large number of calls to the
Apple event Manager routines to build up the descriptor piece by piece. The * routines allow you to consolidate
all of the calls required to construct a complex Apple event descriptor into a single system call that creates the desired
structure as directed by a format string that you provide.

AEBuild

AEBuild

 provides a symmetrical pretty printer routine for displaying the contents of Apple event descriptor records.
Strings created by are of the same format as strings accepted by . can be very useful for
viewing the contents of Apple event descriptor records when you are debugging your Apple event routines.

AEPrint
AEPrint AEBuild AEPrint

In many ways, the * routines are very much like the standard C library's * suite of routines. The
syntax for the 'format' string that you provide is very simple and allows for the substitution of data items into the Apple
event descriptors being created. The remainder of this document describes the * suite of routines and descriptor-
string syntax that can be used with them.

AEBuild printf

AEBuild

Back to top

AEBuilding Descriptor Records

AEBuildDesc

 provides a facility for compiling descriptor-strings into Apple event descriptor records
 (). Parameters are described below:
AEBuildDesc AEBuild
AEDescs

OSStatus AEBuildDesc(
* dst,

 AEBuildError* error, /* can be NULL */
 const char* src,
 ...);

AEDesc

Parameters:

 - A pointer to an record where the resulting descriptor should be stored.dst AEDesc

 - A pointer to a structure where additional information about any errors that
occur will be saved. This is an optional parameter and the value may be provided in its place if this
information is not required.

error AEBuildError
NULL

 - An format string describing the record to be created.src AEBuild AEDesc

 - A variable number of parameters as required by the format string provided in the parameter.... src

A numeric result code indicating the success of the call. A value of
(zero) means the call succeeded. The parameter can be used to discover information about other errors.

Result:
AEBuildDesc AEBuildSyntaxNoErr

error

Back to top

AEBuildError

 defines a structure that can be passed to the * routines to discover additional error
information. The * routines accept a pointer to this structure in an optional error parameter. While debugging a
descriptor string you may wish to use this parameter to get more complete information about errors found in your
descriptor-strings. The structure is declared as follows:

AEBuildError AEBuild
AEBuild

AEBuildError

typedef UInt32 AEBuildErrorCode;

struct AEBuildError {
 AEBuildErrorCode fError;
 UInt32 fErrorPos;
};
typedef struct AEBuildError AEBuildError;

The purpose of this structure is to provide additional information about errors that occur during parsing of a descriptor-
string. The field will contain one of the values shown in , and the field will contain the
character position in the string where the error was noticed by the parser.

fError Table 1 fErrorPos

 Extended error codes..Table 1 AEBuild

Constant Name Value Description

AEBuildSyntaxNoErr 0 (No error)

AEBuildSyntaxBadToken 1 Illegal character

AEBuildSyntaxBadEOF 2 Unexpected end of format string

AEBuildSyntaxNoEOF 3 Unexpected extra stuff past end

AEBuildSyntaxBadNegative 4 "-" not followed by digits

AEBuildSyntaxMissingQuote 5 Missing close "'"

AEBuildSyntaxBadHex 6 Non-digit in hex string

AEBuildSyntaxOddHex 7 Odd # of hex digits

AEBuildSyntaxNoCloseHex 8 Missing $ or "»"

AEBuildSyntaxUncoercedHex 9 Hex string must be coerced to a type

AEBuildSyntaxNoCloseString 10 Missing closing quote

AEBuildSyntaxBadDesc 11 Illegal descriptor

AEBuildSyntaxBadData 12 Bad data value inside (...)

AEBuildSyntaxNoCloseParen 13 Missing ")" after data value

AEBuildSyntaxNoCloseBracket 14 Expected "," or "]"

AEBuildSyntaxNoCloseBrace 15 Expected "," or "}"

AEBuildSyntaxNoKey 16 Missing keyword in record

AEBuildSyntaxNoColon 17 Missing ":" after keyword in record

AEBuildSyntaxCoercedList 18 Cannot coerce a list

AEBuildSyntaxUncoercedDoubleAt 19 "@@" substitution must be coerced

Back to top

vAEBuildDesc (varargs version)

The vAEBuildDesc routine allows you to encapsulate calls to in your own wrapper routines. You pass
 a reference to a previously defined, variable argument parameter list to use with the

descriptor-string. The file defines macros for declaring and using the data type.
provides the same functionality as .

AEBuildDesc
vAEBuildDesc va_list

<stdarg.h> va_list vAEBuildDesc
AEBuildDesc

OSStatus vAEBuildDesc(
* dst,

* error, /* can be NULL */
 const char* src,
 va_list args);

AEDesc
AEBuildError

Parameters:

 - A pointer to an record where the resulting descriptor should be stored.dst AEDesc

 - A pointer to a structure where additional information about any errors that
occur will be saved. This is an optional parameter and the value may be provided in its place if this
information is not required.

error AEBuildError
NULL

 - An format string describing the record to be created.src AEBuild AEDesc

 - A value referencing the variable length argument list to be used by .args va_list vAEBuildDesc

A numeric result code indicating the success of the call. A value of
(zero) means the call succeeded. The parameter can be used to discover information about other errors.

Result:
AEBuildDesc AEBuildSyntaxNoErr

error

All of the other * routines that accept a variable length parameter list also include a include a varargs version
with ' ' in place of the variable length parameter list (' '). For simplicity, we only mention these
routines in following sections rather than providing complete definitions and descriptions, as they are the same as their
corresponding variable argument equivalents.

AEBuild
va_list args ...

Back to top

AEBuilding Apple Event Records

The syntax of the formatting string for an entire Apple event (as passed to) is almost identical to
that used to represent the contents of an Apple event record, without the curly braces. The event is defined as a sequence of
name-value pairs, with optional parameters preceded with a tilde () character. The routine can
be used to build an entire Apple event record, and the routine can be used to add additional
parameters to an existing Apple event record. These two routines are described in this section.

AEBuildAppleEvent

~ AEBuildAppleEvent
AEBuildParameters

AEBuildAppleEvent

You can use the routine to construct an entire Apple event record in a single call. It is very
similar in function to the routine, except in addition to creating the record, it
also constructs the parameters for the event from the last three arguments. For more information about the

 routine, see the Apple Event Manager documentation.

AEBuildAppleEvent
AECreateAppleEvent AppleEvent

AECreateAppleEvent

OSStatus AEBuildAppleEvent(
 theClass,

 theID,
 addressType,

 const void* addressData,
 long addressLength,
 short returnID,
 long transactionID,

* result,
* error, /* can be NULL */

 const char* paramsFmt,
 ...);

NOTE: AEBuildAppleEvent has a varargs equivalent
 named vAEBuildAppleEvent.

AEEventClass
AEEventID
DescType

AppleEvent
AEBuildError

Parameters:

 - The event class for the resulting Apple event.theClass

 - The event id for the resulting Apple event.theID

 - The address type for the addressing information described in the next two parameters:
usually one of , , or

.

addressType
typeApplSignature typeProcessSerialNumber

typeKernelProcessID

 - A pointer to the address information.addressData

 - The number of bytes pointed to by the parameter.addressLength addressData

 - Usually, set to the value . See the Apple Event Manager
documentation for more information.
returnID kAutoGenerateReturnID

 - Usually, set to the value . See the Apple Event Manager
documentation for more information.
transactionID kAnyTransactionID

 - A pointer to an record where the resulting descriptor should be stored.result AEDesc

 - A pointer to a structure where additional information about any errors that
occur will be saved. This is an optional parameter and the value may be provided in its place if this
information is not required.

error AEBuildError
NULL

 - An format string describing the record to be created.paramsFmt AEBuild AppleEvent

 - A variable number of parameters as required by the format string provided in the
parameter.
... paramsFmt

A numeric result code indicating the success of the call. A value of
(zero) means the call succeeded. The parameter can be used to discover information about other errors.

Result:
AEBuildDesc AEBuildSyntaxNoErr

error

The identifier for the direct parameter in an Apple event record is four minus signs . The minus sign
has special meaning in strings, and it should always be enclosed in single quotes when it is used to
identify the direct parameter for an Apple event in a descriptor string.

IMPORTANT:
'----'

AEBuild

 provides an example of how you can use the routine to create an Open Documents Apple
event. The event created in the sample targets the Finder application, using its creator code ().
Listing 1 AEBuildAppleEvent

'MACS'

 An example of how to create an Open Documents Apple event using the
routine.

.Listing 1 AEBuildAppleEvent

 first_file, second_file;
const OSType finderSignature = 'MACS';
AliasHandle

 event;
OSErr err;

 file1ref;
 file2spec;

 /* Construct the aliases...*/
err = (NULL, &file1ref, &first_file);
if (err == noErr) {

 err = (NULL, &file2spec, &second_file);
 if (err == noErr) {

 err = (
 kCoreEventClass, kAEOpenDocuments,
 typeApplSignature, &finderSignagure, sizeof(finderSignature),
 kAutoGenerateReturnID, kAnyTransactionID,
 &event, /* event to be created */
 NULL, /* no error information required */
 "'----':[alis(@@), alis(@@)]", /* format string */
 first_file, /* param for 1st @@ */
 second_file); /* param for 2nd @@ */

AppleEvent

FSRef
FSSpec

FSNewAlias

NewAlias

AEBuildAppleEvent

Back to top

AEBuildParameters

 can be called one or more times to add additional parameters or attributes to an existing Apple
event record. The Apple event record should already have been created through either a call to or

. For more information about the routine, see the Apple Event Manager
documentation.

AEBuildParameters
AECreateAppleEvent

AEBuildAppleEvent AECreateAppleEvent

OSStatus AEBuildParameters(
* event,
* error, /* can be NULL */

 const char* format,
 ...);

NOTE: AEBuildParameters has a varargs equivalent
 named vAEBuildParameters.

AppleEvent
AEBuildError

Parameters:

 - A pointer to an record where the new parameters should be added.event AppleEvent

 - A pointer to a structure where additional information about any errors that
occur will be saved. This is an optional parameter and the value may be provided in its place if this
information is not required.

error AEBuildError
NULL

 - An format string describing the parameters to be added.format AEBuild AppleEvent

 - A variable number of parameters as required by the format string provided in the
parameter.
... format

A numeric result code indicating the success of the call. A value of
 (zero) means the call succeeded. The parameter can be used to discover

information about other errors.

Result:
AEBuildParameters

AEBuildSyntaxNoErr error

Back to top

AEPrintDescToHandle

 provides a pretty printer facility for Apple event descriptor records. Information describing
an record is returned formatted in the special * syntax. This facility is especially useful for looking at
the contents of Apple event records sent by other applications and for debugging the Apple event descriptors created by your
own application. Here is the definition for :

AEPrintDescToHandle
AEDesc AEBuild

AEPrintDescToHandle

OSStatus AEPrintDescToHandle(
 const * desc,
 Handle* result);

AEDesc

Parameters:

 - A pointer to the Apple event descriptor record that should be printed out.desc

 - A pointer to a location where a newly created Memory Manager ' ' containing the
descriptor-string should be stored.
result Handle

A numeric result code indicating the success of the call. A value of
 (zero) means the call succeeded.

Result:
AEPrintDescToHandle

AEBuildSyntaxNoErr

When is asked to print an , an , or an , then the format of the
printed output will match the input expected by . When printing, tries to
identify that have been coerced to different types and prints them as coerced records. Other structures that
cannot be identified are dumped as hexadecimal data. For example, here is the output for a list
of three items:

AEPrintDescToHandle AEDesc AERecord AEDescList
AEBuildDesc AEPrintDescToHandle

AERecords
AEPrintDescToHandle

["Mac OS X", 'null'(), 44]

 records, though, are printed in a slightly different format. Here, the event class and event ID are printed at
the beginning of a string, the parameter list is printed as a record in curly braces, and attributes are printed with their
identifiers preceded by ampersand characters. For example, here is output for an Open
Documents Apple Event:

AppleEvent

AEPrintDescToHandle

aevt\odoc{ ----:"Mac OS X",
 &addr:psn (0000000000040001),
 &subj:'null'(),
 &csig:magn(00010000) }

The printed output produced for records is different than they syntax accepted by the * suite of
routines and this output cannot be used as input to .

AppleEvent AEBuild
AEBuildAppleEvent

Back to top

Descriptor-String Syntax

Descriptor-strings are provided as null terminated c-style strings. Older instantiations of this library used some special
MacRoman characters for some language symbols. These are still supported but new 7-bit ASCII alternatives have been
added in addition to these older characters. Forward moving code should use the new preferred 7-bit ASCII characters.

Data Types

Four basic data types are provided in the descriptor-string syntax: integer, four-letter type codes, text strings, and
hexadecimal data. shows some examples of these types as expressed in the language.Table 2

 Basic data types..Table 2 AEBuild

Type Examples
Type code of

created
AEDesc Description

Integer
1234
-5678

 or'shor'
'long'

A sequence of decimal digits optionally preceded by a minus
sign. Integers that are between and are
converted to descriptors of type .
Values outside of that range are converted to

. If your implementation requires
specific numeric types, you should always specify coercion.

-32768 32767
typeShortInteger

typeLongInteger

Type
Codes

whos
longint
'long'
m

(use
coercion to
change to

)

'enum'

'type'

A type code must begin with a letter and is followed by any
number of non-AEBuild-syntax characters. Only the first
four characters are used: the type code will be truncated or
padded with spaces to create a four character code.

If enclosed in single quotes, then it may contain special
AEBuild-syntax characters.

Definitions for many of the type codes used by applications and
system software can be found in the system header files: <
AEDataModel.h>, <AERegistry.h>, and <AppleEvents.h>.

String
"A String"
"Multiple lines
are okay."

'TEXT'
Any sequence of characters between double quotes. The created

descriptor record will not include a terminating null
character.
'TEXT'

Hex
Data

$4170706C65$
$ 0102 03ff
e b 6 c $

?? (must be
coerced to some
type)

An even number of hex digits between dollar signs. Whitespace
is ignored. Hex data has no inherent type. As a result, it must
be coerced to some type whenever it is used.

Watch out for type codes that contain special characters like commas, parentheses, braces, or non-trailing
spaces, or that begin with a special character like . These characters are used by as part of its
syntax. If you need to use any of these special characters in a type code, then enclose the type code in single
quotes.

IMPORTANT:

'-' AEBuild

Back to top

Type Coercion

Any of the basic data types shown in (except for hex data) has its own inherent data type associated with it that
defines the type of the descriptor record that is created. If you would like a descriptor of a different type containing the
same data, you can direct * to create it by using the coercion syntax. The components of a coercion are the desired
type code and the basic data type you would like to use. These items are provided in the following format (the desired type
code followed by the basic data type enclosed in parentheses):

Table 2

AEBuild

 <desired type code> <data of any type> ()

Directing to perform a type coercion of this kind does not call any installed coercion handlers (the exception
being the numeric coercions). Rather, it directs to create a descriptor record containing exactly the same data
but with a different type. Here are some examples:

AEBuild
AEBuild

 sing(123)
 type(line)
 hexd("a string")
 'blob'($4170706C65$)
 'utxt'($0048 0045 004C 004C 004F$)

Installed Apple event coercion handlers are only called for numeric types (this is the only case where an

 error can be returned). All other coercions do nothing more than set the descriptor
type field in the resulting descriptor record.
errAECoercionFail AEBuild

You can use coercion to create empty (or) descriptor records by using one of the following syntax forms. All of
these create empty descriptor records with zero length data.

'null'

 null()
 'null'()
 ()

The last form, , though less explicit, can be used to create an empty or null descriptor.()

Back to top

Complex Data Types

Apple event descriptors may contain two types of complex data structures containing, potentially, many other Apple event
descriptor records. Lists, as the name suggests, contain a list of descriptor records. Records, contain a group of name-
value pairs where the names are four letter type codes and the values are descriptor records. Both of these complex types
are enclosed in Apple event descriptor records and so they may be used in a recursive fashion. That is to say, lists may
contain lists or records and records may contain records or lists. The next two sections describe AEBuild declarations for
these types in greater detail.

Lists

Apple event list descriptors contain zero or more Apple event descriptors. There is no requirement that they all be of the
same type or even of the same format. In descriptor-strings, a list of descriptors is specified by providing a,
possibly empty, list of comma separated descriptor records enclosed in square brackets.

AEBuild

 <descriptor> <descriptor>... [,]

This syntax will create a descriptor record (an record with the type). Here are some
examples of valid descriptor-strings defining lists:

AEDescList AEDesc 'list'
AEBuild

[123, -456, "et cetera"]
[sing(1234), long(CODE)]
[["wheels", "within wheels"]]
[sing(1234), long(CODE), [[123, -456, "et cetera"], "within wheels"]]
[]

It is not possible to coerce a list to any other type - the descriptor type of a list is always set to .
descriptor-strings that include attempts to coerce a list to another type will not work.

'list' AEBuild

Back to top

Records

A descriptor record is a group of name-value pairs in no particular order. In each name-value pair, the name is
represented as a four letter type code and the value can be any valid descriptor. In descriptor-string syntax an

 is declared as a comma separated list of name-value pairs enclosed in curly brackets:
AEBuild

AERecord

 <name> <value>, <name> <value>... { : : }

Names and associated values are separated by colon characters. By default, a record's type is set to , but a ':' 'reco'

record can be coerced to any type by preceding it's definition with the type code that should be used for the record:

 <type code> <name> <value> <name> <value>... { : , : }

Here are some examples of descriptor-strings containing valid declarations:AEBuild AERecord

{x: 100, y:-100}
{'origin': {x: 100, y:-100}, extent: {x: 500, y:500},
 cont: [1, 5, 25]}
{}
rang{ star: 5, stop: 6}

The default type of a record is . You can coerce a record structure to any type by preceding it with a type code. For
example:

'reco'

 rang{ star: 5, stop: 6}

It is common for to be coerced to another type such as or , but you should avoid coercing
 to common data types such as or as that will confuse other applications and even facilities

like .

AERecords 'indx' 'whos'
AERecords 'long' 'TEXT'

AEPrint

Back to top

Parameter Substitution

The * suite of routines provides a powerful set of two substitution operators that can be used to read optional
arguments provided to the * routines. Using a method very similar to the facility provided by the standard-C
library's routine, all of the * routines accept an descriptor-string together with a variable
length parameter list. Arguments in the variable length parameter list are incorporated into the resulting descriptor
record according to the placement of substitution operators in the descriptor-string.

AEBuild
AEBuild

printf AEBuild AEBuild

AEBuild

Substitution operators may be placed in an descriptor-string in any place where a descriptor could be defined.
The type of value created (and the type of parameter expected) depends on the context of the substitution operator in the

 descriptor-string. Normally, the coercion operator applied to the substitution operator will determine the type
of the descriptor created and the type of data expected as a command line parameter.

AEBuild

AEBuild

The special substitution operators are and . details how these operators are interpreted by .'@' '@@' Table 3 AEBuild

 Coercions and argument type requirements..Table 3

Type
Coercion
Specified

Type of
parameter
expected

Example Comments

No coercion *AEDesc
 mydesc;

AEBuild(..., "@",
 &mydesc);

AEDesc A plain will be replaced with a
descriptor parameter. cannot be
specified in this case.

'@'
'@@'

Numeric
(bool, shor,
long, sing,
doub, exte)

short, short,
long, float,
short double,
double

AEBuild([....]
 "long(@)",
 44);

numeric types are provided 'as is' on the
command line.

TEXT char*
AEBuild([....]
 "TEXT(@)",
 "hello world");

A pointer to a null-terminated C string. The
 ' ' will be replaced with a
descriptor of type containing all of
the text (except for the terminating zero
byte) from the C-string. cannot be
specified in this case.

TEXT(@)
'TEXT'

'@@'

Any other type

either a
(length,
pointer) pair
or a .Handle

MyType myVar;
AEBuild([....]
 "myst(@)",
 sizeof(myVar),
 &myVar);

Data for will be read from two
parameters: a long integer value specifying
the number of bytes followed by a pointer to
the bytes. If is provided, the data will
be read from a Carbon Memory Manager
'Handle' value provided as a parameter.

'@'

'@@'

Back to top

Using AEPrint* with gdb

When you are writing event handlers and AppleScript scripts, it is often useful to know the format of the Apple events that
are sent between applications. This section shows how you can use the routine in to view
the format of the events sent from a Mac OS X application.

AEPrintDescToHandle gdb

 provides a facility that allows you to call a routine. In this example, the script shown in is used to
call to prettyprint records to 's terminal. The example presented herein
assumes that this script is saved in a file named 'gdb-aedesc'; but, if you would like to have this script loaded automatically
every time you start , then you can save it in your file.

gdb 'call' Listing 2
AEPrintDescToHandle AppleEvent gdb

gdb ~/.gdbinit

 A gdb script for pretty printing records..Listing 2 AEDesc

define aedesc
 call (void *) malloc(4)
 set $aed_malloc=$
 call (long) ($arg0, $aed_malloc)
 if $ == 0
 printf "desc @ %p = {\n type = '%.4s'\n storage (%p) = %s\n}\n", \
 $arg0, $arg0, ((long *) $arg0)[1], **(char ***) $aed_malloc
 call (void) (*(char ***) $aed_malloc)
 else
 printf "aedesc failed: error %d.\n", $
 end
 call (void) free($aed_malloc)
end

AEPrintDescToHandle

DisposeHandle

Let's assume we are running the Script Editor in Mac OS X and we have typed the script shown in into one of its
windows, checked the syntax a few times, and run it a few times to verify that it is working correctly. And, after running it
a few times we would like to find out more information about the Apple events that are being sent when this script runs.

Listing 3

 A simple script..Listing 3

tell application "Finder"
 activate
 open "Mac OS X"
end tell

The log of a terminal session shown in illustrates how we can use the aedesc script to find out more
information about the Apple events that the Script Editor is sending when we run the script. Comments that have been added
to the script are preceded with characters.

Listing 4 gdb

'##'

 gdb session log..Listing 4

 ## in a terminal window, start up gdb
[neithermac:/] apple% gdb
GNU gdb 5.0-20001113 (Apple version gdb-203) ([....] GMT 2001) (UI_OUT)
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain

conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "powerpc-apple-macos10".

 ## read in our aedesc script. I usually type 'source ' then drag
 ## and drop the file icon for the script into the terminal window,
 ## but you can also add the script to your gdb configuration
 ## (see 'man gdb'). the script defines the command 'aedesc' that
 ## we can use to call to pretty print descriptors.
(gdb) source /Users/apple/gdb-aedesc

 ## next we attach to the Script Editor's process. It has process
 ## id 1312 that we established before our gdb session. you can
 ## look up the process id for running process using 'top -l'
 ## or 'ps -aux'
(gdb) attach 1312
Reading symbols for shared libraries . done
Reading symbols for shared libraries
.................... done
[Switching to process 1312 thread 0x1603]

 ## then, set a breakpoint on AESend so we can trap outgoing events
(gdb) break AESend
Breakpoint 1 at 0x731ddbec

 ## and tell gdb to allow the Script Editor to continue running.
(gdb) continue
Continuing.

 ## now, with the Script Editor we switch back and click on the
 ## 'run' button to run the script.

 ## we break on the the activate event
Breakpoint 1, 0x731ddbec in AESend ()

 ## ask the script to pretty print our descriptor (in $r3)
(gdb) aedesc $r3
$1 = (void *) 0x1bb8310
$2 = 0
desc @ 0xbfffe398 = {
 type = 'aevt'
 storage (0x150d858) = misc\actv{ &addr:psn (0000000000040001),
 &subj:'null'(), &csig:magn(00010000) }
}

 ## and tell gdb to allow the Script Editor to continue running.
(gdb) continue
Continuing.

 ## we break on the the open document event
Breakpoint 1, 0x731ddbec in AESend ()

 ## ask the script to pretty print our descriptor (in $r3)
(gdb) aedesc $r3
$3 = (void *) 0x16ea1c0
$4 = 0
desc @ 0xbfffe2c8 = {
 type = 'aevt'
 storage (0x150d858) = aevt\odoc{ ----:"Mac OS X",
 &addr:psn (0000000000040001), &subj:'null'(),
 &csig:magn(00010000) }
}

 ## and tell gdb to allow the Script Editor to continue running.
(gdb) continue
Continuing.

AEPrintDescToHandle

This same technique can be used to look at Apple events being sent by any Mac OS X application.

Back to top

Descriptor-String Grammar

What follows is a grammar definition for descriptor-strings.Backus Naur Form (BNF) AEBuild

NOTE: comments inserted amongst rules are preceded by '#' characters.
They are not part of the BNF.

syntax rules for
AEBuild-apple-event-expression ::= <event-keyword-list>

event-keyword-list - list of zero or more event-keyword-pairs
separated by commas
event-keyword-list ::= <event-keyword-pair> , <event-keyword-list>
event-keyword-list ::= <event-keyword-list>
event-keyword-list ::=

event-keyword-pair an identifier object pair - preceded
by a tilde ~ to indicate an optional parameter
event-keyword-pair ::= ~ <identifier> : <object>
event-keyword-pair ::= <identifier> : <object>

#syntax rules for
AEBuild-expression ::= <object>

object ::= <data> # Single ; shortcut for (data)
object ::= <structure> # un-coerced structure
object ::= <identifier> <structure> # coerced to some other type

structure ::= (<data>) # Single
structure ::= [<object-list>] # type
structure ::= { <keyword-list> } # type

comma separated list of zero or more objects
object-list ::= <object-list> , object>
object-list ::= <object>
object-list ::=

comma separated list of zero or more keyword/value pairs
keyword-list ::= <keyword-list> , <keyword-pair>
keyword-list ::= <keyword-pair>
keyword-list ::=
keyword-pair ::= <identifier> : <object> # keyword/value pair

@ and @@ are special tokens used for reading AEBuild
parameters in to descriptors as they are constructed
data ::= @ # read data from AEBuild parameter
data ::= @@ # read data from AEBuild Handle parameter
data ::= <integer> # 'shor' or 'long' unless coerced
data ::= <identifier> # a 4-char type code ('type') unless coerced
data ::= <string> # unterminated text: 'TEXT' type unless coerced
data ::= <hex-string> # raw hex data; must be coerced to some type!
data ::= # empty null data, useful for 'null()' coercions

integer ::= - <number>
integer ::= <number>
number ::= <number> <digit>
number ::= <digit>
digit ::= 0 .. 9

no spaces allowed inside of identifers unless they
are enclosed in single quotes. identifiers
are always padded (with spaces) or truncated to
exactly 4 characters by AEBuild and friends.
identifier ::= <first-ident-letter> <ident-letter-list>
identifier ::= ' <any-letter letter-list> ' # straight quotes (preferred)

AEBuildAppleEvent

AEBuildDesc

AEDesc

AEDesc
AEDescList
AERecord

identifier ::= ‘ <any-letter letter-list> ‘ # curly quotes
ident-letter-list ::= <ident-letter-list> <ident-letter>
ident-letter-list ::= <ident-letter>
ident-letter-list ::=
first-ident-letter ::= alphabetic characters

special AEBuild language characters cannot be included inside
of identifiers. To use identifiers containing them, enclose
the identifer in single quotes.
ident-letter ::= any printable character excluding spaces
 and special AEBuild characters

string ::= " <letter-list> " # straight double quotes (preferred)
string ::= “ <letter-list> ” # curly double quotes
letter-list ::= <letter-list> <any-letter>
letter-list ::= <any-letter>
letter-list ::=
any-letter ::= any printable character including spaces
 and special AEBuild characters.

hex-strings may contain white space between digits
so feel free to add them for formatting
hex-string ::= $ <hex-digit-list> $ # dollarsign quotes (preferred)
hex-string ::= « <hex-digit-list> » # french quotes
hex-digit-list ::= <hex-digit-list> <hex-digit-pair>
hex-digit-list ::= <hex-digit-pair>
hex-digit-list ::=
hex-digit-pair ::= <hex-digit> <hex-digit>
hex-digit ::= digits 0 .. 9 or letters A .. F (case insensitive)

Back to top

Downloadables

Acrobat version of this Note (64K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

