
TN 1111: Programmatic Mounting of AppleShare Volumes Page: 1

CONTENTS

Introduction

AppleShare Clients 3.0 - 3.6.5

AppleShare Client 3.7

Summary

References

Downloadables

This Technote shows how to mount an
AppleShare volume using the PBVolumeMount
call.

 Updated: [Feb 06 1998]

Introduction

The AppleShare Client implements the PBVolumeMount trap to allow developers to mount volumes programmatically. There are two
ways to use the PBVolumeMount call to mount volumes. There is new functionality added to the PBVolumeMount call by AppleShare
Client 3.7 that allows for mounting servers over TCP/IP as well as AppleTalk.

The first method is best used when you are remounting a volume that has been mounted by the user. Identify the volume that you wish to
remount and call GetVolMountInfoSize to get the size of the Vol Mount Block that you will need to allocate. Allocate the
memory for the Vol Mount Block and call GetVolMountInfo to get the block filled in. When you wish to remount the volume call
PBVolumeMount with the Vol Mount Block created earlier. You will need to store the password separately as
GetVolMountInfo will not return password information. The Alias manager uses this method to mount server volumes from aliases.

The second method entails creating your own Vol Mount Block, filling in the fields yourself and calling PBVolumeMount. This
method gives great flexibility but is rather complex. I advise looking at the code in the MoreFiles Sample Code. (see the References
section)

Snippet #1: Finding the version of the AppleShare Client

const short kASver_3_5 = 1;
const short kASver_3_6 = 2;
const short kASver_3_6_1 = 3;
const short kASver_3_6_2 = 4;
const short kASver_3_6_3 = 5; // incld. 3.6.3, 3.6.4, 3.6.5
const short kASver_3_7 = 6; // incld. 3.7.1
const short kASver_3_7_2 = 7;

short ClientVersion(void)
{
 long result;
 OSError theError = noErr;

 theError = Gestalt('afps',&result);
 if(!theError)
 {
 return(result & 0x0000ffff);
 }
 return 0;
}

Back to top

AppleShare Clients 3.0 - 3.6.5

AppleShare clients prior to version 3.7 mount volumes over AppleTalk only. The More Files sample code has a good example of using the
PBVolumeMount() call to mount a volume given a server name and password. For maximum compatibility set the UAMType field of
the AFPVolMountInfo struct to 1 for guest login or 3 for login using a password.

TN 1111: Programmatic Mounting of AppleShare Volumes Page: 2

struct AFPVolMountInfo {
 short length; /* length of location data (including self) */
 VolumeType media; /* type of media */
 short flags; /* bits for no messages, no reconnect */
 SInt8 nbpInterval; /* NBP Interval parameter (IM2, p.322) */
 SInt8 nbpCount; /* NBP Interval parameter (IM2, p.322) */
 short uamType; /* User Authentication Method */
 short zoneNameOffset; /* short positive offset from start of
 struct to Zone Name */
 short serverNameOffset; /* offset to pascal Server Name string */
 short volNameOffset; /* offset to pascal Volume Name string */
 short userNameOffset; /* offset to pascal User Name string */
 short userPasswordOffset; /* offset to pascal User Password string */
 short volPasswordOffset; /* offset to pascal Volume Password string */
 char AFPData[176]; /* variable length data may follow */
};
typedef struct AFPVolMountInfo AFPVolMountInfo;

Back to top

AppleShare Client 3.7

AppleShare Client 3.7 has several new features dealing with volume mounting:

Mounting volumes over TCP/IP
Option to use the AppleShare Client login and Volume Select dialogs
Support for Custom User Authentication Modules (UAMs) in PBVolumeMount

PBVolumeMount with AFPXVolMountInfo

As you can see, the AFPXVolMountInfo structure is an extension of the AFPVolMountInfo structure defined above. The three new
fields and two new flag bits allow the developer to specify the information needed to support TCP/IP and UAMs. The 3.7 Client will also
support the old AFPVolMountInfo struct.

From the latest Files.h:

TN 1111: Programmatic Mounting of AppleShare Volumes Page: 3

/* AFPXVolMountInfo is the new AFP volume mount info record,
requires the 3.7 AppleShare Client */

struct AFPXVolMountInfo {
 short length; /* length of location data (including self) */
 VolumeType media; /* type of media */
 short flags; /* bits for no messages, no reconnect */
 SInt8 nbpInterval; /* NBP Interval parameter (IM2, p.322) */
 SInt8 nbpCount; /* NBP Interval parameter (IM2, p.322) */
 short uamType; /* User Authentication Method type */
 short zoneNameOffset; /* short positive offset from start of struct
 to Zone Name */
 short serverNameOffset; /* offset to pascal Server Name string */
 short volNameOffset; /* offset to pascal Volume Name string */
 short userNameOffset; /* offset to pascal User Name string */
 short userPasswordOffset; /* offset to pascal User Password string */
 short volPasswordOffset; /* offset to pascal Volume Password string */
 short extendedFlags; /* extended flags word */
 short uamNameOffset; /* offset to a pascal UAM name string */
 short alternateAddressOffset; /* offset to Alternate Addresses in tagged format */
 char AFPData[176]; /* variable length data may follow */
};
typedef struct AFPXVolMountInfo AFPXVolMountInfo;

typedef AFPXVolMountInfo * AFPXVolMountInfoPtr;

/* volume mount flags */

enum {
 volMountNoLoginMsgFlagBit = 0, /* Input to VolumeMount: If set, the file
 system */
 volMountNoLoginMsgFlagMask = 0x0001, /* should suppresss any log-in message/greeting
 dialog */
 volMountExtendedFlagsBit = 7, /* Input to VolumeMount: If set, the mount
 info is a */
 volMountExtendedFlagsMask = 0x0080, /* AFPXVolMountInfo record for 3.7 AppleShare
 Client */
 volMountInteractBit = 15, /* Input to VolumeMount: If set, it's OK for
 the file system */
 volMountInteractMask = 0x8000, /* to perform user interaction to mount the
 volume */
 volMountChangedBit = 14, /* Output from VoumeMount: If set, the volume
 was mounted, but */
 volMountChangedMask = 0x4000, /* the volume mounting information record
 needs to be updated. */
 volMountFSReservedMask = 0x00FF, /* bits 0-7 are defined by each file system
 for its own use */
 volMountSysReservedMask = 0xFF00 /* bits 8-15 are reserved for Apple system use */
};

enum {
 kAFPExtendedFlagsAlternateAddressMask = 1 /* bit in AFPXVolMountInfo.extendedFlags
 that means alternateAddressOffset is used*/
};

TN 1111: Programmatic Mounting of AppleShare Volumes Page: 4

In order to use the new features of the PBMountVolume trap you must set the extendedFlagsBit in the flagsword of the
AFPXVolMountInfo structure, and use the new VMIB definition. Each of the offset fields specifies a 16 bit offset from the beginning
of the struct to the data in question. To leave a string field empty you need to have the offset "point" to an empty string. You cannot just
leave the offset = 0.

To have the AppleShare Client put up the login dialog, set the volMountInteractBit in the flags word. Make sure you have an A5
world and have initialized QuickDraw and the DialogManager before making this call with the bit set. You also must have this bit set if
you are using a UAM other than the standard Apple ones. AppleShare Client 3.7.2 and later: If you leave the volume name blank in the
AFPXVolMountInfo structure, the Client will put up the volume select window, allowing the user to choose which volumes to mount.

The uamNameOffset offset specifies an offset to a pascal string denoting the User Authentication MOdule (UAM) to use for this
connection. You must also set the uamType field. The UAM name string is explained below

TN 1111: Programmatic Mounting of AppleShare Volumes Page: 5

The Alternate Address offset specifies an offset to a block of tagged data, containing IP addresses. The Block begins with a version byte and
a count byte, followed by up to 255 tagged addresses, see below for the format. The current version byte is 0x00.

Connecting to an IP address

To connect to a server over TCP/IP, you need to copy the IP address into an address tag and put the address tag into the Alternate Address
field. A server name is still required, though it is not currently used. If you also specify a zone name the Client will fall back to
AppleTalk if it cannot connect via TCP/IP, it will set the volMountChangedBit in the flags word if it falls back. An example
Alternate Address field for address 128.0.10.1 would look like this:

0x00 0x01 0x08 0x02 0x80 0x00 0x0A 0x01 0x02 0x24

The client would use this address to connect to the default AFP over TCP/IP port 548 on the machine denoted by the address 128.0.10.1.

Tagged data for Addresses.

The new tagged data format accommodates changes in address formats, which will allow this client to support new addressing standards
such as IPv6 (IPNG) without changing the interface. The first byte of the Alternate Address area is a version byte, currently set to 0. It
is followed by an AFPAlternateAddress structure (defined below). The reason that the version byte is not included in the
AFPAlternateAddress structure is that the AFPAlternateAddress structure is also used in the ServerInfo reply message in
AFP 2.2.

Each Data Item consists of a length byte followed by a tagID byte followed by up to 254 bytes of data. ie | len | tag | up to 254 bytes of
data |

The 3.7 Client understands the following tags:

Length tagID Description

0x06 0x01 Basic IP address; 4 bytes, no port number
0x08 0x02 IP address with Port; 4 bytes address, 2 bytes port

The length byte specifies the length of the whole tag, including the length byte. All fields are in network byte order. (MSB first)

From the latest Files.h (which is a part of the Universal Interfaces & Libraries v3.0.1):

enum { /* constants for use in AFPTagData.fType field*/
 kAFPTagTypeIP = 0x01,
 kAFPTagTypeIPPort = 0x02,
 kAFPTagTypeDDP = 0x03 /* Currently unused*/
};

enum { /* constants for use in AFPTagData.fLength field*/
 kAFPTagLengthIP = 0x06,
 kAFPTagLengthIPPort = 0x08,
 kAFPTagLengthDDP = 0x06
};

struct AFPTagData {
 UInt8 fLength; /* length of this data tag including the fLength field */
 UInt8 fType;
 UInt8 fData[1]; /* variable length data */
};
typedef struct AFPTagData AFPTagData;

struct AFPAlternateAddress {
 UInt8 fAddressCount;
 UInt8 fAddressList[1]; /* actually variable length packed set of AFPTagData */
};
typedef struct AFPAlternateAddress AFPAlternateAddress;

Mounting a Volume using a Custom UAM

A UAM is a code resource with a single entrypoint that takes a selector. It lives in a file of type 'uams'. It is used to extend the
AppleShare Client, allowing it to connect to third party servers using different authentication schemes. UAMs usually put up password
and volume select dialogs, and thus require that the volMountInteractBit be set in the flags word of the VolMountInfo block.
UAMs are stored the "AppleShare Folder" at the top level of the System folder.

To use a Third-Party UAM for authentication, use the new VMIB definition (with the extendedFlagsBit set in the flags word), put
the UAM type from the 'uamg' id 0 resource (from the UAM file) in the uamType field, and put the UAM Name into the VMIB at the
uamNameOffset. Then call PBVolumeMount().

You must make sure that you have an A5 world and have called InitGraf and InitDialogs, before making the PBVolumeMount
call. Third-Party UAMs are currently (AppleShare Client 3.7.2 and earlier) limited to connecting over AppleTalk only.

UAMName

TN 1111: Programmatic Mounting of AppleShare Volumes Page: 6

This is the AFP protocol name for the UAM, from the 'uamn' id 1 resource in the UAM file. It is a Pascal string.

Note:
All structures must be 68k aligned.

Back to top

Summary

The new PBVolumeMount interface gives the devloper a great deal of options in mounting AppleShare File Servers. PBVolumeMount
can put up login and volume select dialogs. It can use custom UAMs in the same manner as the AppleShare Client when called through the
Chooser. It can connect to the server using AppleTalk or TCP/IP.

Back to top

References

MoreFiles Sample Code

Technote 1106: Borrowed AFP Sessions

AFP 2.2 specification (41K PDF).

Back to top

Downloadables

Acrobat version of this Note (K). Download

Technical Notes by API | Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

