FL 27 - Mixing HFS and C File I70 Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

Technical Note FL27

Mixing HFS and C File1/0

CONTENTS This Technical Note discusses the problem of
mixing calls to the Macintosh file system with
Problems with Communication Between HFS and C calls to MPW C Iibrary file I/O routines.

You Were Warned

[Aug 01 1989]

References

Downloadables

Problems with Communication Between HFS and C

Frequently, developers want to use both Macintosh file I7/0 and C file 1/0. Developers who do this must keep in mind that
they are combining two distinct file representations (the Macintosh and ANSI C). The only limitation on mixing HFS and C
I/0 functions is that they cannot be mixed on the same open file. There are three reasons why this cannot be done.

First, there is no routine that maps between a C FILE struct (returned by fopen()) to an HFS TReTNum (needed to call
HFS functions). Similarly, there is no call to create a FILE struct given an TRefNum returned by FSOpen(). Thus,
there is no way that the information from an fopen() call could be used to do a fsread().

Second, even if the first problem were solved, the C libraries eventually call the HFS file system, but keep some internal
state information. So, if you call HFS directly (say, SetFPos()), the C file system has no way of knowing a call was

made and, therefore, doesn't update its state information.

Similarly, there is no mechanism for synchronizing the C library's buffers. For example, you perform an fwrite()
with some number of characters which get put into a buffer without flushing it. Then you perform an FSWrite() with
something else. Neither the C library nor HFS are aware that the other has written to the file.

Simply put, you cannot make HFS calls on a file opened with Fopen() or fdopen(); you cannot use C library 170 on a

file opened under HFS. However, here are some points to consider when manipulating the same file using both C and HFS.
Keep in mind this isn't frequently done; there may be problems of which we are unaware.

One obvious problem is keeping track of the working directory. Be sure to save and restore the current working directory
when moving between HFS and C 1/0 calls.

Following is an example routine, which mixes HFS and C I/0. Notice that it doesn't really solve the problem of mixing the
two file systems, but rather it shows how to use Topen() with standard file (working directories or directory IDs) in

general.

HardRockCocoJoe()
{

Point where;

FL 27 - Mixing HFS and C File I70 Page: 2

char *prompt = "\pWe Are Here"';
char *fname = '"\pHardRockCocoJoe"';
FileFilterProcPtr fileFilter = NULL;
short numTypes = 1;

SFTypeList typelList;

DIgHookProcPtr digHook = NULL;

SFReply reply;

OSErr result;

FILE *TheFile;

short fileNum;

long numofChars = 10;

short currentVRefNum;

(void) GetVol(NULL, é¤tVRefNum);

result = FSOpen(fname, currentVRefNum, &FileNum);
if (result = 0) {
/* error checking */

s
else {
result = FSWrite(fileNum, &numofChars, "from MaclO™);
it (result 1= 0) {
/* error checking */
3
s

(void) FSClose(FileNum);

where.h = 80;
where.v = 90;
typeList[0] = "TEXT";

SFGetFile (where, prompt, fileFilter, numTypes, typelList, dlgHook, &reply);

result = SetVol(reply.fName, reply.vRefNum /* from sfgetfile */);
it (result = 0){

/* error check */
by

p2cstr(reply.fName);

TheFile = fopen (reply.fName, "at+'");
fprintf (TheFile, "\nfromC\n');
fclose (TheFile);

result = SetVol(NULL, currentVRefNum);
if (result = 0){

/* error check */
s

result = FSOpen(fname, currentVRefNum, &FileNum);
ifT (result = 0){

/* error check */
bs

else {
numofChars = 12;

FL 27 - Mixing HFS and C File I70 Page: 3

SetFPos(fileNum, fsFromLEOF, 0);
result = FSWrite (FileNum, &numofChars, "from MaclO 2');
if (result !'=0) {
/* error check */
be

Assuming the user chooses HardRockCocoJoe from the Standard File dialog box, the result of this routine is a file called
HardRockCocoJoe, which contains the following data:

from MaclO
fromC
from MaclO 2

By keeping track of the working directory, you can work with HFS file I/0 and C 1/0. Of course, if you are working with
many files, it could be a problem keeping track of the correct paramBlock and expensive to open and close the files each

time you switch.

Another approach would be to construct a pathname from the Macintosh file system that could be passed to the C I/0
functions. Technical Note #238, Getting a Full Pathname, goes into complete detail as to how this is done using either a
working directory or VRefNum and Dir ID. But, this solution has serious drawbacks and is not recommended. One
problem is that you have to manually create the pathname as a string and stuff the needed folder separators into that
string. The current separator, the colon (:), may change in the future. A bigger problem is the length of the pathname.
Currently, it can only be 256 characters, and that may be hard for you to guarantee. Lastly, there could be a problem if
the user should change the directory or rename a file.

Back to top

You Were Warned

Be aware that you are responsible for any file problems you may have mixing HFS and C file I/0. If it can be avoided, by
all means, avoid it.

Back to top
References

Inside Macintosh , Volume |, The Standard File Package
Inside Macintosh , Volume IV, The File Manager

Technical Note M.FL.FullPathName - Getting a Full Pathname

Back to top
Downloadables
jzi Acrobat version of this Note K) Download

Back to top

FL 27 - Mixing HFS and C File I70 Page: 4

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

