
CONTENTS

HFS numbers

Working Directories

When you can use HFS calls

ioDirId and ioFlNum

PBHGetVInfo

PBGetWDInfo and Register D1

References

Downloadables

This technical note contains some thoughts
concerning HFS.

[Jun 01 1986]

HFS numbers

A drive number is a small positive word (e.g., 3).

A (as opposed to a) is a small negative word (e.g.).VRefNum WDRefNum $FFFE

A is a large negative word (e.g.).WDRefNum $8033

A is a long word (e.g. 38). The root directory of an HFS volume always has a of 2.DirID dirID

Back to top

Working Directories

Normally an application doesn't need to open working directories (henceforth) using , since
returns a if the selected file is in a directory on a hierarchical volume and you are running HFS. There are
times, however, when opening a is desirable (see the discussion about below).

WDs PBOpenWD SFGetFile
WDRefnum

WD BootDrive

If you do open a , it should be created with an of `ERIK' () and it will be deallocated by the
Finder. Note that under MultiFinder, ioWDProcID will be ignored, so you should only use `ERIK'.

WD ioWDProcID $4552494B

 also creates with an of `ERIK'. If opens two files from the same directory
(during the same application), it will only create one working directory.
SFGetFile WDs ioWDProcID SFGetFile

There are no that refer to the root--the root directory of a volume is always referred to by a .WDRefnums vRefNum

Back to top

When you can use HFS calls

All of the HFS `H' calls, except for , can be made without regard to file system as long as you pass in a
pointer to an HFS parameter block. , (see the warnings in the File Manager chapter of

), , , , , , , ,
 and differ from their MFS counterparts only in that a can be passed in at offset .

PBHSetVInfo
PBHGetVol PBHSetVol Inside

Macintosh PBHOpen PBHOpenRF PBHCreate PBHDelete PBHGetFInfo PBHSetFInfo PBHSetFLock
PBHRstFLock PBHRename dirID $30

The only difference between, for example, and is that bit 9 of the trap word is set, which tells HFS to
use a larger parameter block. MFS ignores this bit, so it will use the smaller parameter block (not including the).
Remember that all of these calls will accept a in the field of the parameter block.

PBOpen PBHOpen
dirID

WDRefNum ioVRefNum

 returns more information than , so, if you're counting on getting information that is
returned in the HFS parameter block, but not in the MFS parameter block, you should check to see which file system is
PBHGetVInfo PBGetVInfo

active.

HFS-specific calls can only be made if HFS is active. These calls are: , , ,
, , , and . has no MFS

equivalent. If any of these calls are made when MFS is running, a system error will be generated. If or
 are called for an MFS volume, the function will return the error code -123 (wrong volume type). If

or are called on MFS volumes, it's just as if and were
called.

PBGetCatInfo PBSetCatInfo PBOpenWD
PBCloseWD PBGetFCBInfo PBGetWDInfo PBCatMove PBDirCreate PBHSetVInfo

PBCatMove
PBDirCreate
PBGetCatInfo PBSetCatInfo PBGetFInfo PBSetFInfo

Default volume

If HFS is running, a call to (before you've made any calls) will return the of your
application's parent directory in the parameter. If your application was launched by the user clicking on one or
more documents, the of those documents' parent directories are available in the field of the

 record returned from .

GetVol SetVol WDRefNum
vRefNum

WDRefNums vRefNum
AppFile GetAppFiles

If MFS is running, a call to (before you've made any calls) will return the of the volume your
application is on in the parameter. If your application was launched by the user clicking on one or more
documents, the of those documents' volume are available in the field of the record returned
from .

GetVol SetVol vRefNum
vRefNum

vRefNum vRefNum AppFile
GetAppFiles

BootDrive

If your application or desk accessory needs to get the of the "blessed folder" of the boot drive (for example, you
might want to store a configuration file there), it can not rely on the low-memory global (a word at)
to contain the correct value. If your application is the startup application, will contain the of the
directory/volume that your application is in (not the of the "blessed folder"); Your application could have
been from an application that has modified ; if you are a desk accessory, you might find that some
applications alter .

WDRefNum
BootDrive $210

BootDrive WDRefNum
WDRefNum

_Launched BootDrive
BootDrive

To get the "real" of the "blessed folder" that contains the currently open System file, you should call
SysEnvirons (discussed in). If that is impossible, you can do something like this (Note: if you are
running under MFS, always contains the of the volume on which the currently open System file is
located):

WDRefNum
Technical Note #129

BootDrive vRefNum

 ...
 CONST
 SysWDProcID = $4552494B; {"ERIK"}
 BootDrive = $210; {address of Low-Mem global BootDrive}
 FSFCBLen = $3F6; {address of Low-Mem global to
 distinguish file systems }
 SysMap = $A58; {address of Low-Mem global that
 contains system map reference number}

 TYPE
 WordPtr = ^Integer; {Pointer to a word(2 bytes)}
 ...

 FUNCTION HFSExists: BOOLEAN;

 Begin {HFSExists}
 HFSExists := WordPtr(FSFCBLen)^ > 0;
 End; {HFSExists}

 FUNCTION GetRealBootDrive: INTEGER;

 VAR
 MyHPB : HParamBlockRec;
 MyWDPB : WDPBRec;
 err : OSErr;
 sysVRef : integer; {will be the vRefNum of open system's vol}

 Begin {GetRealBootDrive}
 if HFSExists then Begin {If we're running under HFS... }

 {get the VRefNum of the volume that }
 {contains the open System File }
 err:= GetVRefNum(WordPtr(SysMap)^,sysVRef);

 with MyHPB do Begin
 {Get the "System" vRefNum and "Blessed" dirID}
 ioNamePtr := NIL;
 ioVRefNum := sysVRef; {from the GetVrefNum call}
 ioVolIndex := 0;

 End; {with}
 err := PBHGetVInfo(@MyHPB, FALSE);

 with myWDPB do Begin {Open a working directory there}
 ioNamePtr := NIL;
 ioVRefNum := sysVRef;
 ioWDProcID := SysWDProcID; {Using the system proc ID}
 ioWDDirID := myHPB.ioVFndrInfo[1];{ see Technote 67}
 End; {with}
 err := PBOpenWD(@myWDPB, FALSE);

 GetRealBootDrive := myWDPB.ioVRefNum;
 {We've got the real WD}
 End Else {we're running MFS}
 GetRealBootDrive := WordPtr(BootDrive)^;
 {BootDrive is valid under MFS}
 End; {GetRealBootDrive}

From MPW C:

/*"ERIK"*/
#define SysWDProcID 0x4552494B
#define BootDrive 0x210
/*address of Low-Mem global that contains system map reference number*/
#define SysMap 0xA58
#define FSFCBLen 0x3F6
#define HFSIsRunning ((*(short int *)(FSFCBLen)) > 0)

OSErr GetRealBootDrive(BDrive)
short int *BDrive;
{ /*GetRealBootDrive*/

 /*three different parameter blocks are used here for clarity*/
 HVolumeParam myHPB;
 FCBPBRec myFCBRec;
 WDPBRec myWDPB;
 OSErr err;
 short int sysVRef; /*will be the vRefNum of open system's vol*/

 if (HFSIsRunning)

 { /*if we're running under HFS... */

 /*get the vRefNum of the volume that contains the open System File*/
 myFCBRec.ioNamePtr= nil;
 myFCBRec.ioVRefNum = 0;
 myFCBRec.ioRefNum = *(short int *)(SysMap);
 myFCBRec.ioFCBIndx = 0;

 err = PBGetFCBInfo(&myFCBRec,false);
 if (err != noErr) return(err);
 /*now we need the dirID of the "Blessed Folder" on this volume*/
 myHPB.ioNamePtr = nil;
 myHPB.ioVRefNum = myFCBRec.ioFCBVRefNum;
 myHPB.ioVolIndex = 0;

 err = PBHGetVInfo(&myHPB,false);
 if (err != noErr) return(err);

 /*we can now open a WD for the directory that
 contains the open system file one will most likely
 already be open, so PBOpenWD will just return that WDRefNum*/
 myWDPB.ioNamePtr = nil;
 myWDPB.ioVRefNum = myHPB.ioVRefNum;
 myWDPB.ioWDProcID = SysWDProcID; /*'ERIK'*/
 /* see Technote # 67 [c has 0-based arrays]*/
 myWDPB.ioWDDirID = myHPB.ioVFndrInfo[0];

 err = PBOpenWD(&myWDPB,false);
 if (err != noErr) return err;

 *BDrive = myWDPB.ioVRefNum; /*that's all!*/

 } /* if (HFSIsRunning) */
 else
 *BDrive = *(short int *)(BootDrive);
 /*BootDrive is valid under MFS*/

 return noErr;
} /*GetRealBootDrive*/

The Poor Man's Search Path (PMSP)

If HFS is running, the PMSP is used for any file system call that can return a file-not- found error, such as ,
, , , etc. It is not used for indexed calls (that is, where is positive)

or when a file is created () or when a file is being moved between directories (). The PMSP is also
not used when a non-zero is specified.

PBOpen
PBClose PBDelete PBGetCatInfo ioFDirIndex

PBCreate PBCatMove
dirID

Here's a brief description of how the default PMSP works:

1. The directory that you specify (specified by or pathname) is searched; if the specified file is not found,
then

WDRefNum

2. the volume/directory specified by (low-memory global at) is searched IF it is on the same
volume as the directory you specified (see #1 above); if the specified file is not found, or the directory specified by

 is not on the same volume as the directory that you specified, then

BootDrive $210

BootDrive

3. if there is a "blessed folder" on the same volume as the directory you specified (see #1 above), it is searched. Please
note that if #2 above specifies the same directory as #3, then that directory is not searched twice. If no file is found,
then

4. is returned.fnfErr

Back to top

ioDirId and ioFlNum

Two fields of the record share the same location. and are both at offset from
the start of the parameter block. This causes a problem, since, in some calls (e.g.), a is passed in
and a file number is returned in the same field.

HParamBlockRec ioDirID ioFlNum $30
PBGetCatInfo dirID

Future versions of Apple's HFS interfaces will omit the designator, so, if you need to get the file number of a file,
it will be in the of the parameter block after you have made the call. If you are making successive calls that
depend on being set correctly, you must "reset" the field before each call. The program fragment in
Technical Note #68 does this.

ioFlNum
ioDirID

ioDirID ioDirID

Back to top

PBHGetVInfo

Normally, will be called specifying a . There are times, however, when you may make the call
and only specify a volume name. If this is so, there are a couple of things to look out for.

PBHGetVInfo vRefNum

Let's say that we have two volumes mounted: " " (the default volume) and " ". We also have a variable of type
called . We want to get information about , so we put a pointer to a string (let's call it

) in . The string is equal to " " (Please note the missing colon). We also initialize
 to 0. Then we make the call. We are very surprised to find out that we are returned an error of 0

 () and that the that we get back is not the of , but rather that of .

Vol1: Vol2:
HParamBlockRec MyHPB Vol2:
fName MyHPB.ioNamePtr fName Vol2
MyHPB.ioVRefNum
noErr ioVRefNum vRefNum Vol2: Vol1:

Here's what's happening: looks at the volume name, and sees that it is improper (it is missing a colon). So,
being a forgiving sort of call, it goes on to look at the field that you passed it (see pp. 99 of ,
vol. II). It sees a 0 there, so it returns information about the default volume.

PBHGetVInfo
ioVRefNum Inside Macintosh

If you want to get information about a volume, and you just have its name and you are not sure that the name is a proper
one, you should set to -32768 (). No or can be equal to . By
doing this, you are forcing to use the volume name and, if that name is invalid, to return a -35 error
(), "No such volume."

MyHPB.ioVRefNum $8000 vRefNum WDRefNum $8000
PBHGetVInfo

nsvErr

Back to top

PBGetWDInfo and Register D1

There was a problem with that sometimes caused the call to inaccurately report the of a directory.
It is fixed in System 3.2 and later. To be absolutely sure that you won't get stung by this, clear register ()
before a call to . You can do this either with an INLINE (Lisa Pascal and most C's) or with a short assembly-
language routine before the call to .

PBGetWDInfo dirID
D1 CLR.L D1

PBGetWDInfo
PBGetWDInfo

Back to top

References

The File Manager

Technical Note M.FL.ActiveFS -- Determining Which File System is Active

Technical Note M.FL.BlessedFolder -- Finding the "Blessed Folder"

Technical Note M.FL.SearchingVols -- Searching Volumes - Solutions and Problems

Back to top

Downloadables

Acrobat version of this Note (56K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

