
FL 26 - Lock, Unlock the Range Page: 1

CONTENTS

Introduction

Local Versus AppleShare

One Way To Lock, Two Ways To Unlock

What Range Did I Just Lock?

An Off By EOF Bug

Summary

References

Downloadables

This Technical Note discusses the
_PBLockRange and _PBUnlockRange routines;
how they act on local and shared volumes
and why you should not set the ioPosMode
field to fsFromLEOF in the parameter block for
those routines when accessing a file on an
AppleShare volume.

[Apr 01 1988]

Introduction

A file can be opened with a shared read and write permission (ioPermssn = fsRdWrShPerm) to allow several users to
share the data in that file. (When a file is opened more than once, each open is considered a different "user".) When you, as
a user of a shared file, need to modify a portion of the file (for example, a record in a database), it is usually very
desirable to make that portion of the file unavailable to otherusers while you are making your changes. The
_PBLockRange call is provided to lock a portion or range of bytes of the file. _PBUnlockRange can be called later to
unlock the portion of a file locked with _PBLockRange. If you have read the File Manager chapters of Inside Macintosh IV
and V, you know all of that, but there are a few things that it doesn't tell you, and that is the topic of this Note.

Back to top

Local Versus AppleShare

_PBLockRange and _PBUnlockRange do nothing when used on files that are on a local HFS (or MFS) volume unless
local file sharing is in effect under System Software 7.0. The two routines do not return any errors and they do not lock or
unlock a range of bytes. Following is a way to verify that _PBLockRange works on an open file:

FL 26 - Lock, Unlock the Range Page: 2

 {Start with an open file}
 WITH theParmBlk DO
 BEGIN
 {ioRefNum from open call}
 ioCompletion := NIL;
 ioReqCount := 1; {lock a single byte}
 ioPosMode := fsFromStart; {at the beginning of the file}
 ioPosOffset := 0;
 END;
 theErr := PBLockRange(@theParmBlk, FALSE); {lock the byte - ignore error}
 theErr := PBLockRange(@theParmBlk, FALSE); {lock it again}
 IF theErr = afpRangeOverlap {see if PBLockRange locked it the first time}
 THEN
 BEGIN
 RangeLockPresent := TRUE; {Range was locked}
 theErr := PBUnlockRange(@theParmBlk, FALSE); {unlock the locked byte}
 END;
 ELSE RangeLockPresent := FALSE; {Range was not locked}

Luckily, _PBLockRange and _PBUnlockRange work when used on files that are on a shared volume (i.e., AppleShare)
where the possibility of shared access usually comes up much more often. When _PBLockRange and _PBUnlockRange
are used on a file on a shared volume, both calls are translated into an AppleTalk Filing Protocol (AFP) call,
FPByteRangeLock. The FPByteRangeLock call locks or unlocks a specified range of bytes within an open fork.

Note:
With System Software 7.0, file sharing can be started or stopped with the Sharing Setup Control Panel while
your application is running. If file sharing is stopped, AppleTalk AFP specific attributes on local volumes,
including locked ranges, become invalid. ThebHasPersonalAccessPrivileges bit in the vMAttrib
longword returned by _PBHGetVolParms can be used to check the current state of file sharing on local
volumes.

Back to top

One Way To Lock, Two Ways To Unlock

The File Manager only gives one way to lock a range of bytes of a file, the _PBLockRange routine. However, there are
two ways to unlock a locked range of bytes of a file. The obvious method of unlocking a range of bytes is the
_PBUnlockRange routine; the not so obvious method is to close the file. When a file is closed, all locked ranges held by a
user of the file are unlocked.

The range of bytes unlocked by _PBUnlockRange must be the exact same range locked by a _PBLockRange call; you
cannot unlock a portion of a locked range nor can you unlock portions of a file that are not locked. If, for some reason, you
need to unlock a range you have locked and you do not know where the range started or how long the range is, you must
close the file to unlock the range.

Back to top

What Range Did I Just Lock?

A range of bytes may be locked relative to the beginning or the end of the file, however AFP's FPByteRangeLock call
only lets you unlock a range of bytes relative to the beginning of the file. If a range of bytes is successfully locked with the
FPByteRangeLock call, then a reply packet containing RangeStart, the number of the first byte of the range just
locked (i.e., the offset from the beginning of the fork) is returned to FPByteRangeLock. That offset allows an
application to set a lock when the application does not know the exact end of file (which can often happen when sharing a

FL 26 - Lock, Unlock the Range Page: 3

file) and later know what range to unlock.

This brings us to an interesting fact: _PBLockRange does not return the number of the first byte of the range just locked
to your application. The reply packet containing RangeStart is returned by FPByteRangeLock, but _PBLockRange
does not return it to your application. That would make it impossible to really know what range you just locked if the
range locked were relative to the end of file. However, the Macintosh does not use the file server's end of file. Instead, the
file's logical end of file is retrieved from the server when the file is opened and that local copy of end of file is used
whenever the ioPosMode field is set to fsFromLEOF (the current logical end of file can be retrieved with
_PBGetEOF).

Back to top

An Off By EOF Bug

With Macintosh System Software 6.0.7 and earlier, the _PBLockRange call's parameters are incorrectly translated to
the parameters passed to the AFP FPByteRangeLock call. When ioPosMode field is set to fsFromLEOF the offset
parameter sent is equal to the offset supplied to the _PBLockRange call plus what your system locally thinks is the
current EOF. This would work correctly except that the Start/EndFlag in the FPByteRangeLock call's parameter
list is set to End (relative to end of file) which means that the range locked is EOF bytes further out than that for which
you asked.

The problem can be avoided under System Software 6.0.7 and earlier by using fsFromStart, fsAtMark, or
fsFromMark for the ioPosMode field. System Software 7.0 fixes the bug by setting the Start/EndFlag in the
FPByteRangeLock call's parameter list to Start (relative to beginning of file) when ioPosMode is set to
fsFromLEOF.

Back to top

Summary

Remember, _PBLockRange does not do anything on local unshared volumes, and if you use _PBLockRange under
Macintosh System Software 6.0.7 or earlier, never set ioPosMode to fsFromLEOF.

Back to top

References

Inside Macintosh , Volumes IV & VI, The File Manager

Inside Macintosh , Volume V, File Manager Extensions In a Shared Environment

Inside AppleTalk , AppleTalk Filing Protocol

Back to top

Downloadables

Acrobat version of this Note (K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

