
FL 31 - Searching Volumes--Solutions and Problems Page: 1

CONTENTS

Introduction

Searching MFS Volumes

Searching HFS Volumes

Searching in a Multi-user/Multiprocess Environment

Summary

References

Downloadables

This Technical Note discusses the
PBCatSearch function and tells why it should
be used. It also provides simple algorithms for
searching both MFSand HFS volumes and
discusses the problems with indexed search
routines.

This note includes information on PBCatSearch
and notes the problems with indexed search
routines. Thanks to John Norstad at
Northwestern University for pointing out some
of the shortcomings of the indexed search
routines. Thanks to the System 7 engineering
team for adding PBCatSearch.

[October 01 1988]

Introduction

It may be necessary to search the volume hierarchy for files or directories with specific characteristics. Generally
speaking, your application should avoid searching entire volumes because searching can be a very time-consuming
process on a large volume. Your application should rely instead on files being in specific directories (the same directory
as the application, or in one of the system-related folders that can be found with FindFolder) or on having the user find
files with Standard File.

Searching MFS Volumes

Under MFS, indexed calls to PBGetFInfo return information about all files on a given volume. Under HFS, the same
technique returns information only about files in the current directory. Here's a short code snippet showing how to use
PBGetFInfo to list all files on an MFS volume:

FL 31 - Searching Volumes--Solutions and Problems Page: 2

 PROCEDURE EnumMFS (theVRefNum: Integer);
 { search the MFS volume specified by theVRefNum }
 VAR
 pb: ParamBlockRec;
 itemName: Str255;
 index: Integer;
 err: OSErr;
 BEGIN
 WITH pb DO
 BEGIN
 ioNamePtr := @itemName;
 ioVRefNum := theVRefNum;
 ioFVersNum := 0;
 END;
 index := 1;
 REPEAT
 pb.ioFDirIndex := index;
 err := PBGetFInfoSync(@pb);
 IF err = noErr THEN
 BEGIN
 { do something useful with the file information in pb }
 END;
 index := index + 1;
 UNTIL err <> noErr;
 END;

As noted in Macintosh Technical Note #66, a directory signature of $D2D7 means a volume is an MFS volume, while a
directory signature of $4244 means the volume is an HFS volume.

Searching HFS Volumes

Fast, Reliable Searches Using PBCatSearch

The fastest and most reliable way to search an HFS volume's catalog is with the File Manager's PBCatSearch function.
PBCatSearch returns a list of FSSpec records to files or directories that match the search criteria specified by your
application. However, PBCatSearch is not available on all volumes or under all versions of the File Manager. Volumes
that support PBCatSearch can be identified using the PBHGetVolParms function. (See the following code.) Versions of
the File Manager that support PBCatSearch can be identified with the gestaltFSAttr Gestalt selector and
gestaltFullExtFSDispatching bit as shown in the following code:

FL 31 - Searching Volumes--Solutions and Problems Page: 3

 FUNCTION HasCatSearch (vRefNum: Integer): Boolean;
 { See if volume specified by vRefNum supports PBCatSearch }
 VAR
 pb: HParamBlockRec;
 infoBuffer: GetVolParmsInfoBuffer;
 attrib: LongInt;

 BEGIN
 HasCatSearch := FALSE; { default to no PBCatSearch support }
 IF GestaltAvailable THEN { See Inside Macintosh Volume VI, Chapter 3 }
 IF Gestalt(gestaltFSAttr, attrib) = noErr THEN
 IF BTst(attrib, gestaltFullExtFSDispatching) THEN
 BEGIN { this version of the File Manager can call PBCatSearch }
 WITH pb DO
 BEGIN
 ioNamePtr := NIL;
 ioVRefNum := vRefNum;
 ioBuffer := @infoBuffer;
 ioReqCount := sizeof(infoBuffer);
 END;
 IF PBHGetVolParmsSync(@pb) = noErr THEN
 IF BTST(infoBuffer.vMAttrib, bHasCatSearch) THEN
 HasCatSearch := TRUE; { volume supports PBCatSearch }
 END;
 END;

Note:
File servers that support the AppleTalk Filing Protocol (AFP) version 2.1 support PBCatSearch. That
includes volumes and directories shared by System 7 File Sharing and by the AppleShare 3.0 file server.
Although AFP version 2.1 supports PBCatSearch, the fsSBNegate bit is not supported in the
ioSearchBits field. Using PBCatSearch to ask the file server to perform the search is usually faster than
using the recursive indexed search described in the next section.

PBCatSearch should be used if it is available because it is usually much faster than a recursive search. For example,
the search time for finding all files and directories on a recent Developer CD was around 18 seconds with PBCatSearch.
It took 6 minutes and 36 seconds with a recursive indexed search. How long do you want the users of your application to
wait?

PBCatSearch can be used to collect a list of FSSpec records to all items on a volume by setting ioSearchBits in the
parameter block to 0.

Recursive Indexed Searches Using PBGetCatInfo

When PBCatSearch is not available, an application must resort to a recursive indexed search. There are a couple of
potential problems with a recursive indexed search; a recursive indexed search can use up a lot of stack space and the
volume directory structure can change in the multi-user/multiprocess Macintosh environment. The example code in this
note addresses the stack space problem, but for reasons explained later, does not address problems caused by multiple
users or processes changing the volume directory structure during a recursive search.

The default stack space on the Macintosh can be as small as 8K; therefore, the recursive indexed search example shown in
this Note encloses the actual recursive routine in a shell that can hold most of the variables needed, which dramatically
reduces the size of the stack frame. This example uses only 26 bytes of stack space each time the routine recurses. That is,
it could search 100 levels deep (pretty unlikely) and use only 2600 bytes of stack space.

Please notice that when the routine comes back from recursing, it has to clear the nonlocal variable err to noErr, since

FL 31 - Searching Volumes--Solutions and Problems Page: 4

the reason the routine came back from recursing is that PBGetCatInfo returned an error:

 EnumerateCatalog(myCPB.ioDrDirID);
 err := noErr; {clear error return on way back}

Please notice also that you must set myCPB.ioDrDirId each time you call PBGetCatInfo, because if
PBGetCatInfo gets information about a file, it returns ioFlNum (the file number) in the same location that
ioDrDirID previously occupied.

Be sure to check bit 4, the fifth least significant bit, when you check the file attributes bit to see if you've got a file or a
folder. The following routine uses MPW Pascal's BTST function to check that bit. If you use the Toolbox bit manipulation
routines (e.g., BitTst), remember to order the bits in reverse order from standard 68000 notation.

Here is the routine in MPW Pascal:

PROCEDURE EnumerShell (vRefNumToSearch: Integer; { the vRefNum to search}
 dirIDToSearch: LongInt); { the dirID to search }
 VAR
 itemName: Str63;
 myCPB: CInfoPBRec;
 err: OSErr;

 {-----}

 PROCEDURE EnumerateCatalog (dirIDToSearch: LongInt);
 CONST
 ioDirFlgBit = 4;
 VAR
 index: Integer;
 BEGIN { EnumerateCatalog }
 index := 1;
 REPEAT
 WITH myCBP DO
 BEGIN
 ioFDirIndex := index;
 ioDrDirID := dirIDToSearch; { we need to do this every }
 { time through }
 filler2 := 0; { Clear the ioACUser byte if search is }
 { interested in it. Nonserver volumes }
 { won't clear it for you and the value }
 { returned is meaningless. }
 END;
 err := PBGetCatInfo(@myCPB, FALSE);
 IF err = noErr THEN
 IF BTST(myCPB.ioFlAttrib, ioDirFlgBit) THEN
 BEGIN { we have a directory }

 { do something useful with the directory information }
 { in myCPB }

 EnumerateCatalog(myCPB.ioDrDirID);
 err := noErr; {clear error return on way back}
 END

FL 31 - Searching Volumes--Solutions and Problems Page: 5

 ELSE
 BEGIN { we have a file }

 { do something useful with the file information }
 { in myCPB }

 END;
 index := index + 1;
 UNTIL (err <> noErr);
 END; { EnumerateCatalog }

 {-----}

 BEGIN { EnumerShell }
 WITH myCPB DO
 BEGIN
 ioNamePtr := @itemName;
 ioVRefNum := vRefNumToSearch;
 END;
 EnumerateCatalog(dirIDToSearch);
 END; { EnumerShell }

In MPW C:

 /* the following variables are globals */
 HFileInfo gMyCPB; /* for the PBGetCatInfo call */
 Str63 gItemName; /* place to hold file name */
 OSErr gErr; /* the usual */

/*---*/

 void EnumerateCatalog (long int dirIDToSearch)
 { /* EnumerateCatalog */

 short int index=1;
 do
 {
 gMyCPB.ioFDirIndex= index;
 gMyCPB.ioDirID= dirIDToSearch; /* we need to do this every time */
 /* through, since GetCatInfo */
 /* returns ioFlNum in this field */
 gMyCPB.filler2= 0; /* Clear the ioACUser byte if search is */
 /* interested in it. Nonserver volumes won't */
 /* clear it for you and the value returned is */
 /* meaningless. */
 gErr= PBGetCatInfo(&gMyCPB,false);
 if (gErr == noErr)
 {
 if ((gMyCPB.ioFlAttrib & ioDirMask) != 0)
 { /* we have a directory */

 /* do something useful with the directory information */
 /* in gMyCPB */

FL 31 - Searching Volumes--Solutions and Problems Page: 6

 EnumerateCatalog(gMyCPB.ioDirID); /* recurse */
 gErr = noErr; /* clear error return on way back */
 }
 else
 { /* we have a file */

 /* do something useful with the file information */
 /* in gMyCPB */

 }
 }
 ++index;
 } while (gErr == noErr);
 } /* EnumerateCatalog */

/*---*/

 EnumerShell(short int vRefNumToSearch, long int dirIDToSearch)

 { /* EnumerShell */
 gMyCPB.ioNamePtr = gItemName;
 gMyCPB.ioVRefNum = vRefNumToSearch;
 EnumerateCatalog(dirIDToSearch);
 } /* EnumerShell */

Please make sure that you are running under HFS before you use this routine (see Technical Note #66). You can search
the entire volume by specifying a starting directory ID of fsRtDirID, the root directory constant. You can do partial
searches of a volume by specifying a starting directory ID other than fsRtDirID.

Searching in a Multi-user/Multiprocess Environment

Volumes can be shared by multiple users accessing a file server or multiple processes running on a single Macintosh. Each
user or process with access to such a shared volume may be able to make changes to the volume's catalog at any time.
Changes in a volume's catalog in the middle of a search can cause two problems:

Files and directories renamed or moved by another user or process can be entirely missed or found multiple times
by a search routine.
A search routine can easily lose track of its position within the hierarchical directory structure when files or
directories are created, deleted, or renamed by another user or process.

A volume searched with a single call to PBCatSearch ensures that all parts of the volume are searched without another
user or process changing the volume's catalog. However, a single call to PBCatSearch may not be possible or practical
because of the number of matches you expect, or because you may want to set a time limit on the search so that the user
can cancel a long search. PBCatSearch returns a catChangedErr (-1304) and no matches when the catalog of a
volume is changed by another user or process in a way that might affect the current search. The search can be continued
with the CatPositionRec returned with the catChangedErr error, but at the risk of missing catalog entries or
finding duplicate catalog entries.

Things aren't so nice for search routines based on indexed File Manager calls. The File Manager won't notify you when a
volume's catalog has changed. In fact, there are several ways the catalog can change that are very difficult to detect and
correct for. Since methods that attempt to resynchronize an indexed search and find all catalog entries that might be
missed or found multiple times when the catalog changes do not work for all cases, those methods are not discussed in this
Technical Note. The following paragraphs describe why some changes are very difficult to detect.

There are three changes you can make to the contents of a directory that change the list of files and directories returned by
an indexed search: creating, deleting, and renaming. Directories of an HFS volume are always sorted alphabetically, so

FL 31 - Searching Volumes--Solutions and Problems Page: 7

when a file or subdirectory is deleted from a directory, any directory entries after it bubbles up to fill the vacated entry
position; when a file or subdirectory is created, it is inserted into the list and all entries after it bubbles down one
position. When a file or subdirectory is renamed, it is removed from its current position and moved into its alphabetically
correct position. The first two changes, creating and deleting, can be detected only at the parent directory level. That's
because a creation or deletion changes only the modification date of the parent directory but not the modification date of any
of the parent directory's ancestors. Renaming a file or subdirectory does not change the modification date of the file or
subdirectory renamed or the modification date its parent directory, but it does change the order of files and subdirectories
found by an indexed search.

With this in mind, here are a couple of examples that are very difficult to detect.

The first example shows a file, Dashboard, moved (by another user or process) with PBCatMove from the CDevs
subdirectory to the Control Panels subdirectory. (See figures 1 and 2.) At the time of the move, the search routine has
just finished recursively looking through the Development directory and is ready to recursively search the Games
directory. After the move, two directories, CDevs and Control Panels, have new modification dates but no change is seen at
the root directory of My Disk. There is nothing to immediately tell the search routine something has changed (except for
the volume modification date which may or may not mean the directory structure has changed), so the search will see
Dashboard twice. If the move were in the opposite direction, from Control Panels to CDevs, Dashboard would be missed by
the search routine.

Figure 1. Before Dashboard Is Moved With PBCatMove

FL 31 - Searching Volumes--Solutions and Problems Page: 8

Figure 2. After Dashboard Is Moved With PBCatMove

The second example (see Figures 3 and 4) shows a directory, Toys, renamed (by another user or process) with
PBHRename to Games. At the time of the move, the search routine has seen the files Aardvark and Letter and is looking at
the third object in the directory, the file Résumé. After the move, the index pointer is still pointing at the third object but
now the third object is the file Letter, a file that has already been seen by the search. This change cannot be detected by
looking at the parent directory's modification date because PBHRename does not change any modification dates. However,
this change can be detected by checking to see if the index pointer still points to the same file or directory. The search
routine could re-index through the directory to find the Résumé file again and start searching from there, but what about
the directory that was renamed? The search routine either must miss it (and its contents) or it must repeat the search of
the entire directory to ensure nothing is missed.

Figure 3. Before Toys Is Renamed With PBHRename

FL 31 - Searching Volumes--Solutions and Problems Page: 9

Figure 4. After Toys Is Renamed to Games With PBHRename

As these examples show, a change during a search of a hierarchical directory structure with indexed File Manager calls
involves the risk of missing catalog entries or finding duplicate catalog entries. If your application depends on seeing all
items on a volume at least once and only once, you should make the users of your application aware of the problems
associated with indexed searches and suggest to them ways to make sure the volume's catalog is not changed during the
indexed search. Here's a good suggestion you could make to the user: do not use other programs during the search. Other
programs may create, delete, or rename files during the search.

Summary

You should always use PBCatSearch to search a volume if it is available. If PBCatSearch isn't available and you must
use an indexed search, be aware that it is difficult to ensure that you do not miss some catalog entries or see some catalog
entries multiple times during your search.

References

Inside Macintosh , Volume IV, The File Manager

Inside Macintosh , Volume V, File Manager Extensions in a Shared Environment

Inside Macintosh , Volume VI, The Finder Interface

Inside Macintosh , Volume VI, The File Manager

Technical Note M.FL.ActiveFS -- Determining Which File System Is Active

Technical Note M.FL.PBSharePBUnshare -- PBShare, PBUnshare, and PBGetUGEntry

Back to top

Downloadables

Acrobat version of this Note (60K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

