
FL 17 - CreateResFile and the Poor Man's Search Path Page: 1

NOTE: This Technical Note has been retired. Please see the Technical Notes page for current documentation.

CONTENTS

CreateResFile

References

Downloadables

[Jan 01 1987]

CreateResFile

CreateResFile checks to see if a resource file with a given name exists, and if it does, returns a dupFNErr (-48)
error. Unfortunately, to do this check, CreateResFile uses a call that follows the Poor Man's Search Path (PMSP).

CreateResFile checks to see if a resource file with a given name exists, and if it does, returns a dupFNErr (-48)
error. Unfortunately, to do the check, CreateResFile calls PBOpenRF, which uses the Poor Man's Search Path
(PMSP). For example, if we have a resource file in the System folder named `MyFile' (and no file with that name in the
current directory) and we call CreateResFile('MyFile'), ResError will return a dupFNErr, since PBOpenRF
will search the current directory first, then search the blessed folder on the same volume. This makes it impossible to use
CreateResFile to create the resource file 'MyFile' in the current directory if a file with the same name already
exists in a directory that's in the PMSP.

To make sure that CreateResFile will create a resource file in the current directory whether or not a resource file
with the same name already exists further down the PMSP, call _Create (PBCreate or Create) before calling
CreateResFile:

 err := Create('MyFile',0,myCreator,myType);
 {0 for VRefNum means current volume/directory}
 CreateResFile('MyFile');
 err := ResError; {check for error}

In MPW C:

 err = Create("\pMyFile",0,myCreator,myType);
 CreateResFile("\pMyFile");
 err = ResError();

This works because _Create does not use the PMSP. If we already have `MyFile' in the current directory, _Create
will fail with a dupFNErr, then, if `MyFile' has an empty resource fork, CreateResFile will write a resource map,
otherwise, CreateResFile will return dupFNErr. If there is no file named 'MyFile' in the current directory,
_Create will create one and then CreateResFile will write the resource map.

Notice that we are intentionally ignoring the error from _Create, since we are calling it only to assure that a file named
M̀yFile' does exist in the current directory.

Please note that SFPutFile does not use the PMSP, but that FSDelete does. SFPutFile returns the

FL 17 - CreateResFile and the Poor Man's Search Path Page: 2

vRefNum/WDRefNum of the volume/folder that the user selected. If your program deletes a resource file before creating
one with the same name based on information returned from SFPutFile, you can use the following strategy to avoid
deleting the wrong file, that is, a file that is not in the directory specified by the vRefNum/WDRefNum returned by
SFPutFile, but in some other directory in the PMSP:

 VAR
 wher : Point;
 reply : SFReply;
 err : OSErr;
 oldVol : Integer;

 ...

 wher.h := 80; wher.v := 90;
 SFPutFile(wher,'','',NIL,reply);
 IF reply.good THEN BEGIN
 err := GetVol(NIL,oldVol); {So we can restore it later}
 err := SetVol(NIL,reply.vRefNum);{for the CreateResFile call}

 {Now for the Create/CreateResFile calls to create a resource file that
 we know is in the current directory}

 err := Create(reply.fName,reply.vRefNum,myCreator,myType);
 CreateResFile(reply.fName); {we'll use the ResError from this ...}

 CASE ResError OF
 noErr:{the create succeeded, go ahead and work with the new
 resource file -- NOTE: at this point, we don't know what's
 in the data fork of the file!!} ;
 dupFNErr: BEGIN {duplicate file name error}
 {the file already existed, so, let's delete it. We're
 now sure that we're deleting the file in the current directory}

 err:= FSDelete(reply.fName,reply.vRefNum);

 {now that we've deleted the file, let's create the new one,
 again, we know this will be in the current directory}

 err:= Create(reply.fName,reply.vRefNum,myCreator,myType);
 CreateResFile(reply.fName);
 END; {CASE dupFNErr}
 OTHERWISE {handle other errors} ;
 END; {Case ResError}
 err := SetVol(NIL,oldVol);{restore the default directory}
 END; {If reply.good}
 ...

In MPW C:

FL 17 - CreateResFile and the Poor Man's Search Path Page: 3

 Point wher;
 SFReply reply;
 OSErr err;
 short oldVol;

 wher.h = 80; wher.v = 90;
 SFPutFile(wher,"","",nil,&reply);
 if (reply.good)
 {
 err = GetVol(nil,&oldVol); /*So we can restore it later*/
 err = SetVol(nil,reply.vRefNum);/*for the CreateResFile call*/

 /*Now for the Create/CreateResFile calls to create a resource
 file that we know is in the current directory*/

 err = Create(&reply.fName,reply.vRefNum,myCreator,myType);
 CreateResFile(&reply.fName); /*we'll use the ResError
 from this ...*/

 switch (ResError())
 {
 case noErr:;/*the create succeeded, go ahead and work with the
 new resource file -- NOTE: at this point, we don't know what's
 in the data fork of the file!!*/
 break; /* case noErr*/
 case dupFNErr: /*duplicate file name error*/
 /*the file already existed, so, let's delete it.
 We're now sure that we're deleting the file in the
 current directory*/

 err= FSDelete(&reply.fName,reply.vRefNum);

 /*now that we've deleted the file, let's create the new one,
 again, we know this will be in the current directory*/

 err= Create(&reply.fName,reply.vRefNum,
 myCreator,myType);
 CreateResFile(&reply.fName);
 break; /*case dupFNErr*/
 default:; /*handle other errors*/
 } /* switch */
 err = SetVol(nil,oldVol);/*restore the default directory*/
 } /*if reply.good*/

Note:
OpenResFile uses the PMSP too, so you may have to adopt similar strategies to make sure that you are
opening the desired resource file and not some other file further down the PMSP. This is normally not a
problem if you use SFGetFile, since SFGetFile does not use the PMSP, in fact, SFGetFile does not open
or close files, so it doesn't run into this problem.

References

The File Manager

The Resource Manager

Technical Note M.FL.HFSRuminations

Back to top

FL 17 - CreateResFile and the Poor Man's Search Path Page: 4

Downloadables

Acrobat version of this Note (K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

