
NOTE: This Technical Note has been . Please see the page for current documentation.retired Technical Notes

CONTENTS

GetVInfo

References

Downloadables

The high-level call (and its low-level
counterpart) may return
inaccurate results for when
running HFS.

GetVInfo

PBGetVInfo

freeBytes

[Sep 01 1987]

GetVInfo

The high-level File Manager call returns the number of free bytes on a volume as one of its parameters. Since
 is really only glue that fills in a parameter block for you and then calls , the values returned

from it are subject to the limitations (imposed for MFS) discussed in the File Manager chapter of
(p. 130): " : and , which are actually unsigned integers, are clipped to 31744

 () regardless of the size of the volume." This will be fixed in future versions of the glue (newer than MPW 2.0.2),
but for now, you need to call yourself instead, as shown below.

GetVInfo
GetVInfo PBGetVInfo

Inside Macintosh Volume
IV Warning IOVNmAlBlks ioVFrBlks
$7C00

PBHGetVInfo

The value that returns in () will thus be
 the actual number of free bytes on a volume. This isn't catastrophic, but can be highly inconvenient if you really need to

know how much free space is on a given volume.

GetVInfo freeBytes ioVFrBlks * ioVAlBlkSize less than or equal
to

 returned from does not reflect the actual total number of blocks on an HFS
disk, but rather only the blocks that are "available" for program use (it doesn't count blocks used for catalog
information).

Note:
IOVNmAlBlks PB[H]GetVInfo

Here are two functions (one in MPW Pascal, one in MPW C) that return the actual number of free bytes on a volume,
regardless of File System (if MFS is running, the call will actually generate a call which
will return the proper values for MFS volumes):

PBHGetVInfo PBGetVInfo

In MPW Pascal:

FUNCTION FreeSpaceOnVol(vRef:Integer; VAR freeBytes:Longint): OSErr;
TYPE
 {we need this to convert an unsigned integer to an unsigned
 longint}
 TwoIntsMakesALong = RECORD CASE Integer OF 1: (long: LongInt);
 2: (ints: ARRAY [0..1] OF Integer);
 END; {TwoIntsMakesALong}
VAR
 HPB : HParamBlockRec;
 convert : TwoIntsMakesALong;
 err : OSErr;

BEGIN {FreeSpaceOnVol}
 WITH HPB DO BEGIN {set up parameter block for the PBGetVInfo call}
 ioNamePtr := NIL; {we don't care about the name}
 ioVRefNum := vRef; {this was passed in as a parameter}
 ioVolIndex := 0; {use ioVRefNum only}
 END; {WITH}
 err := PBHGetVInfo(@HPB,false);
 FreeSpaceOnVol:= err; {return error from HGetVInfo}

{
This next section needs some explanation. ioVFrBlk is an unsigned integer.

If we were to assign it(or coerce it) to a longint, it would get sign extended
by MPW Pascal and would thus be negative. Since we don't want that, we use a
variant record that maps two integers into the space of one longint. The high
word (convert.ints[0]) is cleared in the first line, then the low word is
assigned the value of HPB.ioVFrBlk. The resulting longint (convert.long)
is now a correctly signed (positive) long integer representing the number
of free blocks. NOTE: this is only necessary if the number of free blocks
on a disk exceeds 32767 ($7FFF).
}
 IF err = 0 THEN BEGIN
 convert.ints[0] := 0;
 convert.ints[1] := HPB.ioVFrBlk;
 freeBytes:= convert.long * HPB.ioVAlBlkSiz;
 END ELSE BEGIN
 {PBHGetVInfo failed}
 freeBytes:= 0; {return this if the routine failed}
 END;
END; {FreeSpaceOnVol}

In MPW C:

OSErr freeSpaceOnVol(vRef,pfreeBytes)
short int vRef;
unsigned long int *pfreeBytes; /* C does this correctly!! */

{ /* freeSpaceOnVol */
 HVolumeParam HPB;
 OSErr err;

 HPB.ioNamePtr = 0L; /* we don't care about the name */
 HPB.ioVRefNum = vRef; /* this was passed in as a parameter */
 HPB.ioVolIndex = 0; /* use ioVRefNum only */
 err = PBHGetVInfo(&HPB,false);
 if (err == noErr)
 *pfreeBytes = (unsigned long int)HPB.ioVFrBlk * HPB.ioVAlBlkSiz;
 else
 pfreeBytes = 0L; / return this if the routine failed */
 return(err); /* function result */
} /* freeSpaceOnVol */

Back to top

References

File Manager

Back to top

Downloadables

Acrobat version of this Note (48K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

