
FL 37 - You Want Permission to do What?!! Page: 1

CONTENTS

Permission Models

Change History

References

Downloadables

This note gives an in-depth explanation of the
File Manager and AFP permission models
used by the File Manager to open files. It also
tells how a File Sharing or AppleShare file
server implements the AFP permission model
on the server Macintosh.

[Apr 01 199]

Permission Models

First there were the original four File Manager open permissions: whatever permission is currently allowed, read only
permission, write only permission, and exclusive read/write permission. Shared read/write permission was added with
the HFS version of the File Manager. AppleShare introduced AppleTalk Filing Protocol (AFP) deny-mode permissions and
the translation of standard File Manager permissions to AFP deny-mode permissions. System 7 added one more piece to our
permissions pie; local File Sharing and AppleShare permissions. There are also several foreign file systems which use
other permission models. This note gives an explanation of each permission model and gives some code that may make your
application more robust.

The original four File Manager permissions are simple to understand and simple to use. The four permissions available
under this model are:

Table 1a. The Original Four Permissions

Using the original permission set, the File Manager gives only one access path to a file fork the permission to write. The
File Manager decides whether permission to write will be granted based on what permissions other already open access
paths may have and the current lock state of the file. The File Manager does not deny new read access paths to a file fork.

When the hierarchical version of the File Manager was introduced, shared read/write permission was added to the original
four permissions. This permission allows multiple access paths to be opened for both reading and writing to a file fork.

FL 37 - You Want Permission to do What?!! Page: 2

Table 1b. Shared Read/Write Permission

As noted in Inside Macintosh: Files on page 2-8, "Shared read/write permission allows multiple access paths for writing
and reading. It is safe to have multiple read/write paths open to a file only if there is some way of locking a portion of the
file before writing to that portion of the file." The PBLockRange and PBUnlockRange functions provide the
mechanism to lock a portion of a file. However, range locking is usually provided only by foreign file systems where
shared file access is fully supported. See Inside Macintosh: Files , Inside AppleTalk, and Technical Note FL 26 - Lock,
Unlock the Range, for more information on range locking and a method for determining whether PBLockRange and
PBUnlockRange are supported on a particular file.

To summarize, with the original File Manager permission model you can always get an access path with read permission
to a file. The File Manager will only deny write permission if the file is locked or if another access path to the file already
has permission to write. Shared read/write permission allows multiple read and write access paths to a file, but should
not be used unless range locking is available. Access to a file can be reduced to the following table.

Current File Access State

file is locked; other access paths
to file may or may not be open

file is not locked; no other access
paths are open

file is not locked and all other open
access paths
are read only access

file is not locked and another open
access path has write access

file is not locked and other open
access paths are read/write shared
access

Permission Requested

fsCurPerm
fsRdPerm
fsWrPerm
fsRdWrPerm
fsRdWrShPerm

fsCurPerm
fsRdPerm
fsWrPerm
fsRdWrPerm
fsRdWrShPerm

fsCurPerm
fsRdPerm
fsWrPerm
fsRdWrPerm
fsRdWrShPerm

fsCurPerm
fsRdPerm
fsWrPerm
fsRdWrPerm
fsRdWrShPerm

fsCurPerm
fsRdPerm
fsWrPerm
fsRdWrPerm
fsRdWrShPerm

Permission Granted

read
read
none (permErr)
none (permErr)
none (permErr)

read/write
read
read/write
read/write
read/write/shared

read/write
read
read/write
read/write
read/write/shared

none (opWrErr)
read
none (opWrErr)
none (opWrErr)
none (opWrErr)

none (opWrErr)
read
none (opWrErr)
none (opWrErr)
read/write/shared

Table 2. File Manager Synchronization Rules

An open with write permission request (fsCurPerm, fsWrPerm, fsRdWrPerm, or fsRdWrShPerm) does not fail on a
locked volume and the write bit in ioFCBFlags returned by PBGetFCBInfo will be set indicating that data can be written
to the file. As noted in Inside Macintosh: Files on page 2-8, you won't discover this until you receive an error (either
vLckdErr or wPrErr) on the first call that attempts to write to the file or change the file's logical or physical
end-of-file. You can preflight for this condition by calling PBHGetVInfo and checking the hardware and software locked
bits in ioVAtrb.

FL 37 - You Want Permission to do What?!! Page: 3

Warning:
Even though the Open calls return the ioRefNum of an existing access path when the call fails with opWrErr,
that ioRefNum should never be used unless your application owns that particular access path to the file. If
another application or process owns that particular access path to the file, it could close it at any time and then
if the File Control Block (FCB) is reused due to another file being opened, you could be accessing the wrong file!
Even if you own the original access path, you should be very careful, because calls you make to the file could
change the file's mark (which will be shared).

The permission model used by AppleTalk Filing Protocol (AFP) is designed to work i n an environment where several
different users could share access to a file concurrently. An application opening a file on an AFP file server or a file
system that supports AFP's permission model can specify an access mode (read, write, read/write, or none) and a deny
mode (deny-read, deny-write, deny-read/write, or deny-none). The synchronization rules using AFP's permission model
can be summarized in the following table (borrowed from the File sharing modes section in chapter 13 of Inside
AppleTalk). A dot indicates a new open call has succeeded; otherwise, it has failed.

Figure 1. AFP Synchronization Rules

Note that in addition to the synchronization rules listed above, an attempt to open a file on an AFP volume can fail if write
access is requested and the file is "locked" (the AFP WriteInhibit file attribute is set for the file).

Volumes that support AFP deny-mode permissions and thus, the PBHOpenDeny and PBHOpenRFDeny functions, can be
identified by checking the bHasOpenDeny bit returned in the vMAttrib field by PBHGetVolParms. You should use the
PBHOpenDeny and PBHOpenRFDeny functions if you really want to ensure the access permission and deny-mode
permission you request is what you get. PBHOpenDeny and PBHOpenRFDeny are not retried in any way. If the file
cannot be opened because of a deny conflict, the error afpDenyConflict is returned and ioRefNum is set to zero.

If you don't want to special case volumes that support AFP deny-mode permissions, you can use the File Manager
permissions described in the previous section of this Note. The next section of this Note describes how File Manager
permissions are translated to AFP deny-mode permissions.

AppleShare (and other AFP file servers) use the AppleTalk Filing Protocol (AFP) deny-mode permissions exclusively. So
that applications using classic File Manager permissions will work, the foreign file system used by AppleShare (on each
workstation) translates classic File Manager permissions into the AFP deny-mode permissions.

To keep applications from damaging each other's files, the basic rule of file access (in translating permissions for
AppleShare volumes) was changed to "single writer OR multiple readers, but not both." Because of this change, two
applications cannot both have access to the same file unless both are read only; this eliminates the danger of reading from a
file when it is inconsistent.

FL 37 - You Want Permission to do What?!! Page: 4

Note:
This change in the basic rule currently applies only to AppleShare volumes. Should a future version of the File
Manager incorporate this change for local volumes, then an application expecting to get more than one path to a
file (with at least one read/write) will fail.

The AppleShare foreign file system is used to access volumes on AppleShare and other AFP file servers. Files opened by a
workstation must access the file on the AppleShare volume through an AFP access path maintained by the foreign file
system. In some situations (as you'll see later), the AFP access path from a single workstation to the server may be shared
by two or more open File Manager access paths on that workstation. In those cases, the File Manager will only allow one of
the File Manager access paths write permission. A File Manager access path is an access path between an application and a
file on either a local HFS volume or on a volume accessed by an foreign file system.

The following table shows how the classic permissions described in the File Manager are translated into the AFP
deny-mode permissions.

Table 3. Translation of File Manager Permissions to AFP deny-mode Permissions on a Remote Volume

fsRdPerm acts as you would expect: browsing access is achieved if there is no existing write access path to the file.

For fsCurPerm, you also get what you'd expect: "whatever is available" has always meant "read/write if you can,
otherwise, read only". The deny portions of the translation are important for enforcing the updated basic rule of file
access: if there's an existing read or write access path to a file being opened with fsCurPerm, the first set of
permissions will fail; the second set, browsing access, will then succeed only if there is no existing write access path to
the file.

fsRdWrPerm is also retried as read-only, to simulate the case where a file is being opened from a locked disk.
Elsewhere, it's pointed out that fsRdWrPerm is granted even if the volume is locked, and that an error won't be returned
until a PBWrite (or PBSetEOF or PBAllocate) call is made. The same is now true for a read-only folder on an
AppleShare volume.

FL 37 - You Want Permission to do What?!! Page: 5

Note:
Changing access privileges of a folder does not change the access established for an open path to a file in that
folder. This is unlike the case where you eject a disk, remove the hardware lock, and can then write to an open
file on it.

When the System 7 File Sharing or AppleShare file server is on, shared volumes on your Macintosh can be accessed by
both the local user and remote users. So, what permission model is used? File Manager or AFP deny-mode permissions?
The answer is both!

To a remote user, your system looks like any other AFP file server on the network. When a remote user opens a file on
your system, they are always opening the file using AFP deny-mode permissions. However, the local user is running in a
hybrid environment and can use either the File Manager permission model or the AFP deny-mode permission model.

When a local user opens a file using the File Manager permission model, everything works just like it does when file
sharing is off, unless the file is already open using deny-mode permissions. Deny-mode permissions take precedence over
File Manager permissions.

When File Sharing is on and a new local open call is made using File Manager permissions, the call is made and deny-mode
permissions are added for synchronizing with remote users. If no remote users have the file open, then the call acts just
as it would without File Sharing. If a remote user has the file open, then the deny-mode permissions are used. (Note:
afpAccessDenied is returned instead of permErr when a file is locked and File Sharing is on.) Here's the translation
used when a remote user has the file open and deny-permissions must be respected:

Table 4. Translation of File Manager Permissions to AFP deny-mode Permissions on a Local Shared Volume when a
Remote User has the File Open

One task the File Sharing extension performs when a user turns File Sharing on is assign deny-mode permissions to all
open files. The following table shows how the deny-mode permissions are assigned to open files.

Table 5. File Manager to Deny-mode Permission Translation

What happens when a user turns File Sharing off? Things revert to the File Manager permissions. However, there's the
slight problem of translating the sixteen AFP permissions to the five File Manager permissions. Here's another table that
shows what happens when you turn File Sharing off.

FL 37 - You Want Permission to do What?!! Page: 6

Table 6. Deny-mode to File Manager Permission Translation

Foreign file systems that access non-Macintosh systems probably do not use the File Manager or AFP permission models
on the host system. However, those foreign file systems must still map their permission model to one of the two
permission models supported by the File Manager. An application should use the PBGetForeignPrivs and
PBSetForeignPrivs functions provided by the System 7 File Manager if it needs to directly manipulate the
permissions of a non-Macintosh permission model. See Inside Macintosh: Files and contact the publisher of the foreign
file system for more information.

That's a good question (at least I thought it was when I asked myself). You know what permissions you'll get if the volume
the file is on supports AFP deny-mode permissions and you used PBHOpenDeny or PBHOpenRFDeny. The chances of
getting what you ask for are somewhat slimmer if you use File Manager permissions to open a file. There two ways to deal
with this problem.

The first method is to try with the permissions you want and if that fails, keep retrying asking for fewer permissions
until you succeed (or decide to give up). The idea here is you know what permissions you want before you open a file and if
you don't get it, you get to decide what to try next. The OpenAware routines in the Developer Technical Support
MoreFiles sample code can be used for that purpose because it attempts to give you the AFP deny-mode permissions you
request and if it cannot, it tries to give you the equivalent File Manager permissions.

The OpenAware routines let you deal with one permission model, the more complete deny-mode permission model. The
following constants can be used to specify deny-mode permissions.

FL 37 - You Want Permission to do What?!! Page: 7

/*
** Deny mode permissions for use with the HOpenAware, HOpenRFAware,
** FSpOpenAware, and FSpOpenRFAware functions.
*/

enum
{
 dmNone = 0x0000,
 dmNoneDenyRd = 0x0010,
 dmNoneDenyWr = 0x0020,
 dmNoneDenyRdWr = 0x0030,
 dmRd = 0x0001, /* Single writer, multiple readers; the readers
*/
 dmRdDenyRd = 0x0011,
 dmRdDenyWr = 0x0021, /* Browsing - equivalent to fsRdPerm */
 dmRdDenyRdWr = 0x0031,
 dmWr = 0x0002,
 dmWrDenyRd = 0x0012,
 dmWrDenyWr = 0x0022,
 dmWrDenyRdWr = 0x0032,
 dmRdWr = 0x0003, /* Shared access - equivalent to fsRdWrShPerm */
 dmRdWrDenyRd = 0x0013,
 dmRdWrDenyWr = 0x0023, /* Single writer, multiple readers; the writer
*/
 dmRdWrDenyRdWr = 0x0033 /* Exclusive access - equivalent to fsRdWrPerm
*/
};

Here is a self-contained version of the HOpenAware function (it makes no calls to other functions in the MoreFiles
l ibrary).

/*
** A self-contained version of HOpenAware. See MoreFiles for the real thing.
*/

pascal OSErr HOpenAware(short vRefNum,
 long dirID,
 ConstStr255Param fileName,
 short denyModes,
 short *refNum)
{
 HParamBlockRec pb;
 OSErr result;
 GetVolParmsInfoBuffer volParmsInfo;

 refNum = 0; / default */

 /* Get volume attributes */
 /* This preflighting is needed because Foreign File Access based file systems
*/
 /* don't return the correct error result to the OpenDeny call */

 pb.ioParam.ioNamePtr = (StringPtr)fileName; /* might be a full pathname */
 pb.ioParam.ioVRefNum = vRefNum;
 pb.ioParam.ioBuffer = (Ptr)&volParmsInfo;
 pb.ioParam.ioReqCount = sizeof(GetVolParmsInfoBuffer);
 result = PBHGetVolParmsSync(&pb);
 if ((result == noErr) || (result == paramErr))
 {

FL 37 - You Want Permission to do What?!! Page: 8

 /* paramErr is OK, it just means this volume doesn't support GetVolParms
*/

 if ((result == noErr) &&
 ((volParmsInfo.vMAttrib & (1L << bHasOpenDeny)) != 0))
 {
 /* OpenDeny is supported, so use it */

 pb.ioParam.ioMisc = NULL;
 pb.fileParam.ioFVersNum = 0;
 pb.fileParam.ioNamePtr = (StringPtr)fileName;
 pb.fileParam.ioVRefNum = vRefNum;
 pb.fileParam.ioDirID = dirID;
 pb.accessParam.ioDenyModes = denyModes;
 result = PBHOpenDenySync(&pb);
 *refNum = pb.ioParam.ioRefNum;
 }
 else
 {
 /* OpenDeny isn't supported, so try File Manager Open functions */

 result = noErr; /* result back to noErr */

 if ((denyModes & dmWr) != 0)
 {
 /* If request includes write permission, then see if the volume
*/
 /* is locked by hardware or software. The HFS file system doesn't
*/
 /* check for this when a file is opened - you only find out later
*/
 /* when you try to write and the write fails with a wPrErr */
 /* or a vLckdErr. */

 Str255 tempPathname;

 pb.volumeParam.ioVRefNum = vRefNum;
 /* Make a copy of the fileName and */
 /* use the copy so fileName isn't trashed */
 BlockMoveData(fileName, tempPathname, fileName[0] + 1);
 pb.volumeParam.ioNamePtr = (StringPtr)tempPathname;
 pb.volumeParam.ioVolIndex = -1; /* use ioNamePtr/ioVRefNum */
 result = PBHGetVInfoSync(&pb);

 if (result == noErr)
 {
 if ((pb.volumeParam.ioVAtrb & 0x0080) != 0)
 {
 result = wPrErr; /* volume locked by hardware */
 }
 else if ((pb.volumeParam.ioVAtrb & 0x8000) != 0)
 {
 result = vLckdErr; /* volume locked by software */
 }
 }
 }

 if (result == noErr) /* are we still OK? */
 {
 pb.ioParam.ioMisc = NULL;
 pb.fileParam.ioFVersNum = 0;

FL 37 - You Want Permission to do What?!! Page: 9

 pb.fileParam.ioNamePtr = (StringPtr)fileName;
 pb.fileParam.ioVRefNum = vRefNum;
 pb.fileParam.ioDirID = dirID;

 /* Set File Manager permissions to closest thing possible */
 pb.ioParam.ioPermssn = ((denyModes == dmWr) ||
 (denyModes == dmRdWr)) ?
 (fsRdWrShPerm) :
 (denyModes % 4);

 result = PBHOpenDFSync(&pb); /* Try OpenDF */
 if (result == paramErr)
 result = PBHOpenSync(&pb); /* OpenDF not supported, try
Open */
 *refNum = pb.ioParam.ioRefNum;
 }
 }
 }

 return (result);
}

Another way to know what permissions you have is to open the file and then check to see what permissions you actually
received (some people find it's easier to ask for forgiveness than to ask for permission). You can use the following routine
to see what File Manager permissions you received after you've opened a file.

/*
** This function returns the File Manager permissions of an open file
** specified by refNum. Any errors are returned in the function result.
** If the result is noErr, then permission will contain fsRdPerm, fsRdWrPerm,
** or fsRdWrShPerm.
*/
pascal OSErr GetPermission(short refNum,
 short *permission)
{
 OSErr result;
 FCBPBRec fcbPB;
 HParamBlockRec pb;
 GetVolParmsInfoBuffer buffer;

 enum
 {
 fcbFlgWMask = 0x0100, /* write permissions bit in FCBFlags */
 fcbFlgSMask = 0x1000, /* shared-write bit in FCBFlags */
 vcbWrProtMask = 0x8080, /* hardware and software locked bits */
 /* in vcbAtrb */
 userWriteACAccess = 0x04000000 /* user has write access to directory */
 };

 /* Get the access path info from the FCB */
 fcbPB.ioNamePtr = NULL;
 fcbPB.ioVRefNum = 0;
 fcbPB.ioRefNum = refNum; /* check this access path */
 fcbPB.ioFCBIndx = 0;
 result = PBGetFCBInfoSync(&fcbPB);
 if (result == noErr)
 {
 /* Now, look at ioFCBFlags to see what the File Manager thinks */
 /* it can do with this file */

FL 37 - You Want Permission to do What?!! Page: 10

 if ((fcbPB.ioFCBFlags & fcbFlgSMask) != 0)
 {
 /* shared bit is set in the FCB */
 permission = fsRdWrShPerm; / shared bit is set in the FCB */
 }
 else if ((fcbPB.ioFCBFlags & fcbFlgWMask) != 0)
 {
 /* Write bit is set in the FCB, but a locked volume or */
 /* a read-only folder could squelch that idea. */

 /* First, see if the volume supports AFP access control. */
 pb.ioParam.ioNamePtr = NULL;
 pb.ioParam.ioVRefNum = fcbPB.ioFCBVRefNum;
 pb.ioParam.ioBuffer = (Ptr)&buffer;
 pb.ioParam.ioReqCount = sizeof(buffer);
 result = PBHGetVolParmsSync(&pb);
 if ((result == noErr) &&
 ((buffer.vMAttrib & (1L << bAccessCntl)) != 0))
 {
 /* Use GetDirAccess to see if we can really write */
 pb.accessParam.ioNamePtr = NULL;
 pb.accessParam.ioVRefNum = fcbPB.ioFCBVRefNum;
 pb.fileParam.ioDirID = fcbPB.ioFCBParID;
 result = PBHGetDirAccessSync(&pb);
 if (result == noErr)
 {
 if ((pb.accessParam.ioACAccess & userWriteACAccess) != 0
)
 {
 /* this user has folder write access */
 *permission = fsRdWrPerm;
 }
 else
 {
 /* this user hasn't folder write access */
 *permission = fsRdPerm;
 }
 }
 }
 else
 {
 /* GetVolParms isn't supported or */
 /* the volume doesn't support AFP access control */

 /* Check for locked volume that will prevent writes */
 pb.volumeParam.ioNamePtr = NULL;
 pb.volumeParam.ioVRefNum = fcbPB.ioFCBVRefNum;
 pb.volumeParam.ioVolIndex = 0; /* use ioVRefNum only */
 result = PBHGetVInfoSync(&pb);
 if (result == noErr)
 {
 if ((pb.volumeParam.ioVAtrb & vcbWrProtMask) != 0)
 {
 /* locked volume, it can't really write */
 *permission = fsRdPerm;
 }
 else
 {
 /* real write access */
 *permission = fsRdWrPerm;
 }

FL 37 - You Want Permission to do What?!! Page: 11

 }
 }
 }
 else
 {
 /* write bit wasn't set in FCB */
 *permission = fsRdPerm;
 }
 }

 return (result);
}

By understanding the information provided in this Technical Note and the routines in the Apple Developer Support sample
code MoreFiles, you should be able to get the access you require when you open a file.

Change History

01-September-1991 Originally written.

01-Apri l-1999 Updated to reflect correct fsCurPerm permission results in Table 2.

References

Inside Macintosh: Files , File Manager

Inside AppleTalk, second edition , AppleTalk Filing Protocol

Technical Note FL 6 - HFS Elucidations

Technical Note FL 26 - Lock, Unlock the Range

MoreFiles sample code

Back to top

Downloadables

Acrobat version of this Note (760K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

