
FL 30 - Resolving Alias Files Quietly Page: 1

CONTENTS

Introduction

Keeping Quiet

Quiet Calls

MPW Pascal

MPW C

References

Downloadables

ResolveAliasFile always presents the user
identity dialog when mounting remote
volumes. This Technical Note offers an
alternative function,
ResolveAliasFileMountOption, which uses the
previously undocumented FollowFinderAlias
trap to resolve alias files only if the target is on
a volume that has been mounted. Also
included is an IsAliasFile routine for
identifying alias files.

A new routine, ResolveAliasWithMountFlags,
was introduced with Mac OS 8.5.
ResolveAliasWithMountFlags is identical to
ResolveAlias with the exception that it
provides the mountFlags parameter allowing
callers to suppress disk switch alerts. The
mountFlags parameter can be set to
kResolveAliasFileNoUI to prevent any user
interaction, including disk switch alerts, while
the alias is being resolved. See Technote Mac
OS 8.5 Technote: Part IX for usage details.

[May 01 1992]

Introduction

Finder alias files are one aspect of the Macintosh human interface considered "reserved for users." The internal format of
Finder alias files is intentionally undefined because it is subject to change and because Finder alias files should be neither
created nor altered by applications. The Finder is the user's domain, and Finder alias files are a user convenience.

Most applications do not need to take special steps to accommodate Finder alias files. They are resolved by the Finder before they
are passed to an application in an Open Documents Apple event, as well as by the Standard File Package when it creates the reply
record. Occasionally an application may need to resolve alias files manually. That is normally done by calling
ResolveAliasFile, as documented in Chapter 9 of Inside Macintosh Volume VI.

If a Finder alias file resolves to an item on an unmounted remote volume, ResolveAliasFile will attempt to mount the
volume to resolve the alias. For servers, this will bring up the user identity dialog box shown on page 7-24 of Inside
Macintosh Volume VI. For removable volumes, this will raise the "Please insert..." dialog. Presentation of a dialog may be
inappropriate for the application. For example, a Standard File hook procedure that quietly opens the selected file in order to
offer a preview of its contents would not want the dialog presented whenever the user selects an alias to a remote item.

Back to top

Keeping Quiet

FL 30 - Resolving Alias Files Quietly Page: 2

The ResolveAliasFileMountOption function listed below allows an application to resolve a Finder alias file only if the
alias file's target is on a currently mounted volume. If the target is unavailable and the mountRemoteVols parameter is
false, ResolveAliasFileMountOption returns the error nsvErr. ResolveAliasFileMountOption operates like
ResolveAliasFile if mountRemoteVols is true. ResolveAliasFileMountOption updates the alias file if
necessary, and returns fnfErr if the alias file is part of a circular chain.

ResolveAliasFileMountOption uses the previously undocumented trap FollowFinderAlias to resolve the alias
file's 'alis' resource. This is preferable to passing the 'alis' to MatchAlias because it makes no assumptions about how
the alias was created or how it should be resolved. Finder aliases may actually be relative aliases rather than direct aliases. In
any case, FollowFinderAlias will take the steps necessary to resolve them properly.

FollowFinderAlias should not be used except when necessary to resolve the 'alis' resource of a Finder alias file. Aliases
created by applications should be resolved with the Alias Manager calls ResolveAlias and MatchAlias.

Note:
FollowFinderAlias is used internally by Apple Computer, Inc. It has not been tested for use by application
software. While we do not anticipate any problems, it is the responsibility of the developer to ensure that it
operates appropriately and reliably for their application.

ResolveAliasFileMountOption uses the function IsAliasFile, also listed below, to determine if a file is an alias file.
In keeping with the interface of ResolveAliasFile, IsAliasFile will indicate if the specified item is a folder rather
than a file.

Back to top

Quiet Calls

To determine if an FSSpec points to an alias file, a folder, or neither, use IsAliasFile.

FUNCTION IsAliasFile(fileFSSpec: FSSpec;
 VAR aliasFileFlag: BOOLEAN;
 VAR folderFlag: BOOLEAN): OSErr;

IsAliasFile simply calls PBGetCatInfo to check if the FSSpec's target has its directory or isAlias bits set. These are
described in Inside Macintosh Volume IV, page 122, and Inside Macintosh Volume VI, page9-36.

To resolve an alias file without any dialogs appearing, use ResolveAliasFileMountOption.

FUNCTION ResolveAliasFileMountOption(VAR fileFSSpec: FSSpec;
 resolveAliasChains: BOOLEAN;
 VAR targetIsFolder: BOOLEAN;
 VAR wasAliased: BOOLEAN;
 mountRemoteVols: BOOLEAN): OSErr;

The first four parameters of ResolveAliasFileMountOption are the same as those of ResolveAliasFile.
fileFSSpec is the specification for a file, alias file, or folder. resolveAliasChains should be true if the resolution
should follow down a chain of alias files. targetIsFolder is a return parameter that is set if the fileFSSpec points to or
resolves to a folder. wasAliased returns true if the input fileFSSpec was for an alias file.

If the mountRemoteVols parameter is true, ResolveAliasFileMountOption will attempt to mount a volume if
necessary to resolve an alias file, making the call equivalent to ResolveAliasFile. If mountRemoteVols is false and the
file spec is for an alias file that resolves to a volume not currently mounted, the call will return nsvErr rather than attempt
to mount it.

The FollowFinderAlias trap is intended only for resolving alias records obtained from Finder alias files.

FL 30 - Resolving Alias Files Quietly Page: 3

FUNCTION FollowFinderAlias(fromFile: FSSpecPtr;
 alias: AliasHandle;
 logon: BOOLEAN;
 VAR target: FSSpec;
 VAR wasChanged: BOOLEAN): OSErr;

 INLINE $700F,$A823; { MOVEQ #$0F,D0; _AliasDispatch; }

fromFile is a pointer to a file for a first attempt at a relative resolution; pass a pointer to the alias file's FSSpec for this. alias
is a handle to the alias record taken from the alias file's resources. If logon is true, the alias manager will attempt to mount a
volume if necessary to complete the resolution. target will be the FSSpec found by the resolution. If wasChanged is true
following the call, FollowFinderAlias has updated the alias record, and the caller should call ChangedResource and
WriteResource if the updated record is to be saved in the resource file.

FollowFinderAlias does a single resolution; it does not follow a chain of alias files. FollowFinderAlias returns the
same errors as MatchAlias.

Back to top

MPW Pascal

 {*------------------*
 | IsAliasFile |
 ------------------}

 FUNCTION IsAliasFile(fileFSSpec: FSSpec;
 VAR aliasFileFlag: BOOLEAN;
 VAR folderFlag: BOOLEAN): OSErr;
 { sets aliasFileFlag if the FSSpec points to an alias file;
 sets folderFlag if the FSSpec points to a folder }

 CONST
 kAliasFileBit = 15; { bit of FInfo.fdFlags indicating alias file }
 kDirBit = 4; { bit of CInfoPBRec.ioFlAttrib indicating directory }

 VAR
 myCInfoPBRec: CInfoPBRec;
 retCode: OSErr;

 BEGIN
 { if called from C we could accidentally be passed nil parameters }
 IF (@fileFSSpec = NIL) OR (@aliasFileFlag = NIL) OR (@folderFlag = NIL) THEN
 BEGIN
 IsAliasFile := paramErr;
 Exit(IsAliasFile);
 END;

 aliasFileFlag := FALSE;
 folderFlag := FALSE;

 { get the item's catalog information }
 WITH myCInfoPBRec DO
 BEGIN
 ioCompletion := NIL;
 ioNamePtr := @fileFSSpec.name;
 ioVRefNum := fileFSSpec.vRefNum;
 ioFDirIndex := 0;
 ioDirID := fileFSSpec.parID;
 ioFVersNum := 0; { MFS compatibility; see Technote #204 }
 END;

FL 30 - Resolving Alias Files Quietly Page: 4

 retCode := PBGetCatInfoSync(@myCInfoPBRec);

 IF retCode = noErr THEN

 { set aliasFileFlag if the item is not a directory and the
 aliasFile bit is set }
 BEGIN
 IF BTst(myCInfoPBRec.ioFlAttrib, kDirBit) THEN
 folderFlag := TRUE
 ELSE IF BTst(myCInfoPBRec.ioFlFndrInfo.fdFlags, kAliasFileBit) THEN
 aliasFileFlag := TRUE;
 END;

 IsAliasFile := retCode;
 END;

 {*-----------------------------*
 | ResolveAliasFileMountOption |
 -----------------------------}

 FUNCTION ResolveAliasFileMountOption(VAR fileFSSpec: FSSpec;
 resolveAliasChains: BOOLEAN;
 VAR targetIsFolder: BOOLEAN;
 VAR wasAliased: BOOLEAN;
 mountRemoteVols: BOOLEAN): OSErr;

 { ResolveAliasFileMountOption operates identically to ResolveAliasFile,
 except that if mountRemoteVols is false, no attempt will be made to
 resolve aliases that point to items on non-local volumes }

 { if mountRemoteVols is false, ResolveAliasFileMountOption returns nsvErr if
 fileFSSpec points to an unmounted volume }

 { this routine requires the Alias Manager, available under System 7 }

 CONST
 kAliasFileBit = 15; { bit of FInfo.fdFlags indicating alias file }
 kMaxChains = 10; { maximum number of aliases to resolve before giving up }

 VAR
 myResRefNum, chainCount: INTEGER;
 alisHandle: Handle;
 initFSSpec: FSSpec;
 updateFlag, foundFlag, wasAliasedTemp, specChangedFlag: BOOLEAN;
 retCode: OSErr;

 FUNCTION FollowFinderAlias(fromFile: FSSpecPtr;
 alias: AliasHandle;
 logon: BOOLEAN;
 VAR target: FSSpec;
 VAR wasChanged: BOOLEAN): OSErr;

 INLINE $700F,$A823; { MOVEQ #$0F,D0; _AliasDispatch; }

 { FollowFinderAlias resolves an alias taken from a Finder alias file,
 updating the alias record (but not the alias resource in the file) if
 necessary.

 Warning: This trap is used internally by Apple Computer, Inc.
 It has not been tested for use by application software.

FL 30 - Resolving Alias Files Quietly Page: 5

 While we do not anticipate any problems, it is the responsibility
 of the developer to ensure that it operates appropriately and
 reliably for their application.

 fromFile is a pointer to a file for a first attempt at a relative search
 (pass the alias file's FSSpec); alias is a handle for the alias record
 taken from the file's resources; the alias manager will attempt to mount
 a volume if logon is TRUE; target is the found FSSpec; wasChanged is set
 to TRUE if the alias record needs updating.

 FollowFinderAlias does a single resolution; it does not follow a chain of
 alias files.

 FollowFinderAlias returns the same errors as MatchAlias. }
 BEGIN { ResolveAliasFileMountOption }

 { check parameters }
 IF (@fileFSSpec = NIL) OR (@targetIsFolder = NIL) OR (@wasAliased = NIL) THEN
 BEGIN
 ResolveAliasFileMountOption := paramErr;
 Exit(ResolveAliasFileMountOption);
 END;

 initFSSpec := fileFSSpec; { so FSSpec can be restored in case of error }
 chainCount := kMaxChains; { circular alias chain protection }
 targetIsFolder := FALSE;
 foundFlag := FALSE;
 specChangedFlag := FALSE; { in case of error, restore file spec if it changed }
 myResRefNum := -1; { resource file not open }

 { loop through chain of alias files }
 REPEAT

 chainCount := chainCount - 1;

 { check if FSSpec is an alias file or a directory }
 { note that targetIsFolder => NOT wasAliased }
 retCode := IsAliasFile(fileFSSpec, wasAliased, targetIsFolder);
 IF (retCode <> noErr) OR (NOT wasAliased) THEN Leave; { break from loop }

 { get the resource file reference number }
 myResRefNum := FSpOpenResFile(fileFSSpec, fsCurPerm);
 retCode := ResError;
 IF myResRefNum = -1 THEN Leave;

 { the first 'alis' resource in the file is the appropriate alias }
 alisHandle := Get1IndResource(rAliasType, 1);
 retCode := ResError;
 IF alisHandle = NIL THEN Leave;

 { load the resource explicitly in case SetResLoad(FALSE) }
 LoadResource(alisHandle);
 retCode := ResError;
 IF retCode <> noErr THEN Leave;

 retCode := FollowFinderAlias(@fileFSSpec, AliasHandle(alisHandle),
 mountRemoteVols, fileFSSpec, updateFlag);
 { FollowFinderAlias returns nsvErr if volume not mounted }

 IF retCode = noErr THEN
 BEGIN

FL 30 - Resolving Alias Files Quietly Page: 6

 IF updateFlag THEN
 { the resource in the alias file needs updating }
 BEGIN
 { we don't care if these cause errors, which they may
 do if we don't have write permission }
 ChangedResource(alisHandle);
 WriteResource(alisHandle);
 END;

 specChangedFlag := TRUE; { in case of error, restore file spec }

 retCode := IsAliasFile(fileFSSpec, wasAliasedTemp, targetIsFolder);

 IF retCode = noErr THEN
 { we're done unless it was an alias file and we're
 following a chain }
 foundFlag := NOT (wasAliasedTemp AND resolveAliasChains);
 END;

 CloseResFile(myResRefNum);
 myResRefNum := -1;

 UNTIL (retCode <> noErr) OR (chainCount = 0) OR (foundFlag);

 { return file not found error for circular alias chains }
 IF (chainCount = 0) AND (NOT foundFlag) THEN retCode := fnfErr;

 { if error occurred, close resource file and restore the original FSSpec }

 IF myResRefNum <> -1 THEN CloseResFile(myResRefNum);
 IF (retCode <> noErr) AND (specChangedFlag) THEN fileFSSpec := initFSSpec;

 ResolveAliasFileMountOption := retCode;
 END;

Back to top

MPW C

 /*-------------*
 | IsAliasFile |
 -------------/

 pascal OSErr IsAliasFile(const FSSpec *fileFSSpec,
 Boolean *aliasFileFlag,
 Boolean *folderFlag)
 /* sets aliasFileFlag if the FSSpec points to an alias file;
 sets folderFlag if the FSSpec points to a folder */

 {
 CInfoPBRec myCInfoPBRec;
 OSErr retCode;

 if (fileFSSpec == nil || aliasFileFlag == nil || folderFlag == nil)
 return paramErr;

 *aliasFileFlag = *folderFlag = false;

 /* get the item's catalog information */
 myCInfoPBRec.hFileInfo.ioCompletion = nil;

FL 30 - Resolving Alias Files Quietly Page: 7

 myCInfoPBRec.hFileInfo.ioNamePtr = &fileFSSpec->name;
 myCInfoPBRec.hFileInfo.ioVRefNum = fileFSSpec->vRefNum;
 myCInfoPBRec.hFileInfo.ioDirID = fileFSSpec->parID;
 myCInfoPBRec.hFileInfo.ioFVersNum = 0; /* MFS compatibility, see TN #204 */
 myCInfoPBRec.hFileInfo.ioFDirIndex = 0;

 retCode = PBGetCatInfoSync(&myCInfoPBRec);

 /* set aliasFileFlag if the item is not a directory and the
 aliasFile bit is set */

 if (retCode == noErr) {
 /* check directory bit */
 if ((myCInfoPBRec.hFileInfo.ioFlAttrib & ioDirMask) != 0)
 *folderFlag = true;

 /* check isAlias bit */
 else if ((myCInfoPBRec.hFileInfo.ioFlFndrInfo.fdFlags & 0x8000) != 0)
 *aliasFileFlag = true;
 }

 return retCode;
 }

 /*-------------------*
 | FollowFinderAlias |
 -------------------/

 pascal OSErr FollowFinderAlias(const FSSpec *fromFile,
 AliasHandle alias,
 Boolean logon,
 FSSpec *target,
 Boolean *wasChanged)

 = {0x700F, 0xA823}; /* MOVEQ #$0F,D0; _AliasDispatch; */

 /* FollowFinderAlias resolves an alias taken from a Finder alias file,
 updating the alias record (but not the alias resource in the file) if
 necessary.

 Warning: This trap is used internally by Apple Computer, Inc.
 It has not been tested for use by application software.
 While we do not anticipate any problems, it is the responsibility
 of the developer to ensure that it operates appropriately and
 reliably for their application. */

 /*-----------------------------*
 | ResolveAliasFileMountOption |
 -----------------------------/

 pascal OSErr ResolveAliasFileMountOption(FSSpec *fileFSSpec,
 Boolean resolveAliasChains,
 Boolean *targetIsFolder,
 Boolean *wasAliased,
 Boolean mountRemoteVols)
 {
 /* maximum number of aliases to resolve before giving up */
 #define MAXCHAINS 10

 short myResRefNum;

FL 30 - Resolving Alias Files Quietly Page: 8

 Handle alisHandle;
 FSSpec initFSSpec;
 Boolean updateFlag, foundFlag, wasAliasedTemp, specChangedFlag;
 short chainCount;
 OSErr retCode;

 if (fileFSSpec == nil || targetIsFolder == nil || wasAliased == nil)
 return paramErr;

 initFSSpec = *fileFSSpec; /* so FSSpec can be restored in case of error */
 chainCount = MAXCHAINS; /* circular alias chain protection */
 myResRefNum = -1; /* resource file not open */

 *targetIsFolder = foundFlag = specChangedFlag = false;

 /* loop through chain of alias files */
 do {
 chainCount--;

 /* check if FSSpec is an alias file or a directory */
 /* note that targetIsFolder => NOT wasAliased */

 retCode = IsAliasFile(fileFSSpec, wasAliased, targetIsFolder);
 if (retCode != noErr || !(*wasAliased)) break;

 /* get the resource file reference number */
 myResRefNum = FSpOpenResFile(fileFSSpec, fsCurPerm);
 retCode = ResError();
 if (myResRefNum == -1) break;

 /* the first 'alis' resource in the file is the appropriate alias */
 alisHandle = Get1IndResource(rAliasType, 1);
 retCode = ResError();
 if (alisHandle == nil) break;

 /* load the resource explicitly in case SetResLoad(FALSE) */
 LoadResource(alisHandle);
 retCode = ResError();
 if (retCode != noErr) break;

 retCode = FollowFinderAlias(fileFSSpec, (AliasHandle) alisHandle,
 mountRemoteVols, fileFSSpec, &updateFlag);
 /* FollowFinderAlias returns nsvErr if volume not mounted */

 if (retCode == noErr) {

 if (updateFlag) {
 /* the resource in the alias file needs updating */
 ChangedResource(alisHandle);
 WriteResource(alisHandle);
 }

 specChangedFlag = true; /* in case of error, restore file spec */

 retCode = IsAliasFile(fileFSSpec, &wasAliasedTemp, targetIsFolder);
 if (retCode == noErr)
 /* we're done unless it was an alias file and we're following a chain */
 foundFlag = !(wasAliasedTemp && resolveAliasChains);

 }

FL 30 - Resolving Alias Files Quietly Page: 9

 CloseResFile(myResRefNum);
 myResRefNum = -1;

 } while (retCode == noErr && chainCount > 0 && !foundFlag);

 /* return file not found error for circular alias chains */
 if (chainCount == 0 && !foundFlag) retCode = fnfErr;

 /* if error occurred, close resource file and restore the original FSSpec */

 if (myResRefNum != -1) CloseResFile(myResRefNum);
 if (retCode != noErr && specChangedFlag) *fileFSSpec = initFSSpec;

 return retCode;
 }

Back to top

References

Inside Macintosh , Volume VI, Alias Manager

Inside Macintosh , Volume VI, Finder Interface, pp. 9-29 to 9-32

Back to top

Downloadables

Acrobat version of this Note (K) Download

Back to top

Technical Notes by Date | Number | Technology | Title
Developer Documentation | Technical Q&As | Development Kits | Sample Code

