
Writing Tool Session Overview

A writing tool session is initiated with a writing tool by the client
application. In most cases, this occurs when the user selects the tool from
a menu within the client. After the writing tool has been loaded into
memory it becomes the foreground application. It presents the user
interface and sends the appropriate queries and commands to the client
application. The client replies with the queried information or fulfills the
writing tool commands. The API defines a writing tool session between a
single client document or window and a single writing tool window.
Multiple sessions between clients and writing tools must be managed by
the individual applications.

The following sections describe the steps necessary to execute a writing
tool session. Installation of the writing tool into the client must take place
before the session can begin. This gives the client access to information
that enables it to initiate execution of the writing tool. The API defines a
group of messages that are used to process the text of the client. There are
message groups which handle the initialization between the tool and the
client, determine the parameters of operation for the session, and handle
the transfer of writing tool specific data. Additional groups handle the
transmission of text from the client to the writing tool, text correction, and
editing during the session. A final group handles the termination of the
writing tool session.

Installation and Initiation

The Writing Tools API defines the minimum set of platform-independent
requirements for implementation. These are: writing tool installation, user
selection, writing tool location, writing tool communication, and writing
tool service identification. UNIX-specific information necessary for
installation is contained in UNIX Platform-Specific Information later in
this section.

The installation process consists of appending information to a global file
or database that is accessible to all writing tools and clients. Each tool

Initiating a Writing Tool Session27

writes one record to this file for each logically separate writing tool
service. However, it should not add entries for functions within a single
writing tool. For example, if a writing tool acts as both a speller and a
thesaurus, these two functions may appear as separate menu items. The
client will use the corresponding information for each function. However,
if the speller contains options to verify the current word or the entire
document, separate menu items for word and document checking should
not appear within the client.

User selection means that the client has the information necessary to
provide access to the writing tool through its user interface. This could
include menu strings, long descriptions, button names, and so forth.

The client must also be able to locate the writing tool. This information
may take the form of a network address or a disk path to the executable.

The writing tool communication requirement allows clients and writing
tools to converse through inter-process communication. Examples of this
information are process names and addresses.

The writing tool service information describes the writing tool service type
to both the client and the writing tool. If a writing tool supports multiple
functions, it must be able to determine which function is desired by the
user. The client may also wish to search the file for a specific writing tool
function. This information should also be available.

Sending Writing Tools API Messages

The Writing Tools API is implemented as a layered communication
protocol. The highest level of this protocol is the C-callable interface. C
functions are defined for sending and receiving API messages.

The first set of functions is used for sending API command messages,
which are messages that don’t require a response from the other
application. The Writing Tool Command messages all have a WTC_
prefix. Writing tools use the wtcTlSend() function, while clients call the
wtcClSend() function.

28Initiating a Writing Tool Session

The next set of functions are used for query messages. The Writing Tool
Query messages expect a corresponding reply from the other application
and begin with a WTQ_ prefix. Writing tools use the wtqTlSend()
function, and clients use the wtqClSend() function. These functions also
contain parameters to store the Writing Tool Response messages, which all
have a WTR_ prefix.

Applications define a callback function to receive Writing Tools API
messages. Writing tools define the wtTlReceive() function, while clients
define the wtClReceive() function. These functions receive both
command and query messages. Replies to query messages are stored in
message buffers provided to the application as part of the function call.

Initiating a Writing Tool Session29

Platforms may define additional C functions as needed to support
communication or other aspects of the Writing Tools API.

Initiating a Writing Tool Session

The writing tool session is initiated when the client sends the WTC_INIT
message to the writing tool. This may occur in response to a
WTC_RQINIT message from the writing tool, or by the user selecting the
writing tool from a client menu.

30Initiating a Writing Tool Session

The WTC_INIT
Message

The client application initiates a writing tool session by sending the
writing tool a WTC_INIT message. This message indicates the desired
mode of execution for the writing tool, as well as the version of the API
under which the client operates.

The WTC_RQINIT
Message

Some writing tools or operating platforms may support or require a
writing tool to be able to initiate the writing tool session. The writing tool
does this by sending the client a WTC_RQINIT message. This message is
very dependent on operating system functionality, but should contain the
information the client needs to initiate the writing tool session.

Customizing API Communication

After the writing tool has received the WTC_INIT message, it may send
messages that customize the parameters of communication. These include
the WTQ_INFOBLOCK message and the WTQ_UNITINFO message.
These messages are normally sent only once at the beginning of each
writing tool session. However, during client activation, the user may
modify some of the information that has been sent to the writing tool. The
writing tool will receive notification when this occurs, and may then re-
issue these messages to request the updated information. If the writing
tool wishes to operate by the default parameters of the API it does not
need to send these messages.

The
WTQ_INFOBLOCK
Message

The writing tool sends a general setup information block in the
WTQ_INFOBLOCK query message. The general setup information
includes the mode of text representation, supported tool data areas, and

Initiating a Writing Tool Session31

user interface languages available, as well as other initialization
parameters.

The
WTR_INFOBLOCK
Message

32Initiating a Writing Tool Session

The client replies to the query with a WTR_INFOBLOCK message with
information indicating what options are available for this writing tool
session.

The WTQ_UNITINFO
Message

The WTQ_UNITINFO message requests information on the text units
available in the client. This is for the purpose of presenting the user with
the appropriate menu choices. If a writing tool does not need this
information, this message does not need to be sent.

The WTR_UNITINFO
Message

The client replies with the WTR_UNITINFO message. The parameters to
this message indicate which units are supported by the client, which units
are currently available, and which unit the client considers to be the
default unit.

Tool Data Areas

The writing tool data areas allow writing tools to store data specific to
their product with the client application. Data may be stored in a general
client product area, in the client’s current document area, or at the client’s
cursor position. The client specifies which of these storage modes it
supports in the tdamode field of the WTR_INFOBLOCK reply message.
The writing tool requests a tool data area by sending a
WTQ_READTOOLDATA query message. The client returns the data
using a WTR_READTOOLDATA reply message. The writing tool uses
the WTQ_WRITETOOLDATA command to transfer a tool data area to the
client. The client replies with the WTR_WRITETOOLDATA message.

Tool Data Storage Modes
The Writing Tools API defines three storage modes for writing tool data.

User Editing33

The first of these modes specifies that the data is stored in a product area
independent of the current document. This data can then be retrieved
during any writing tool session with that client. This area is useful for
client-specific setup information.

The second mode specifies that the data is stored in a document data area.
For instance, WordPerfect will store a document-specific supplemental
dictionary in this area for the WordPerfect Speller.

The third mode specifies that the tool data is stored at the current cursor
location. A reference to the tool data area will be sent as a document
object in the text and codes buffer, but only if the current text mode allows
for formatting and object information. This area allows writing tools to
store notes or other information at any location in a document. Tool data
for this mode may create a visual marker in the client’s document. It may
also be specified as temporary to the writing tool session, or as a
permanent part of the document. This type of tool data may also be used
to mark sections of text as belonging to the writing tool.

Text Transmission

The writing tool initializes a text query with the client with the
WTQ_TEXTBLOCK message. The client returns the text with the
WTR_TEXTBLOCK message. The writing tool may use the
WTQ_NEXTTEXTBLOCK message to request subsequent text blocks in
the same query.

The WTQ_TEXTBLOCK message contains parameters that specify the
text the writing tool wishes to process. This specification is given in terms
of the units designated by the client in the WTQ_UNITINFO query.

The WTR_TEXTBLOCK message contains information regarding the text

34User Editing

it is transmitting to the client. The text is also returned. If all requested
text is returned in the reply message the complete flag is set. Otherwise,
the writing tool sends the WTQ_NEXTTEXTBLOCK messages to request
the next block of text. This continues until all blocks have been sent.

Certain file formats may support a form of text objects. Text objects are
references to larger portions of the text that are not contained in the normal
text stream. For example, a font change code might be contained in the
normal text stream, but the details of the new font might not. Writing
tools can use the WTQ_READTEXTOBJECT message to request this
information. The client replies with the WTR_READTEXTOBJECT
reply. Similarly, the WTQ_WRITETEXTOBJECT message allows the
tool to replace or append to the object. The client replies with the
WTR_WRITETEXTOBJECT message.

Text Correction

The API defines text locations in terms of an API cursor position. This
cursor is not related to the input cursor location of the client. After each
text block is returned, the API cursor is at the end of that text block.

At any time during a query, the writing tool may wish to make additions or
corrections to the text. The tool must first specify the position at which
the change will take place. It does this using the WTQ_GOTO message.

The WTQ_HILITE and WTQ_DEHILITE messages instruct the client
application to add or remove highlighting from the client’s document
window. Highlighting takes place at the API cursor location.

The WTQ_REPLACE message is used to replace text in the client buffer.
The message specifies how many bytes (in terms of the current text
format) should be deleted from the client’s edit buffer. It also transmits a
buffer of text to be added to the client’s buffer. The client responds with
the WTR_REPLACE message. The writing tool may use the
WTQ_UNDOREPLACE message to undo the last replacement.

User Editing

User Editing35

36User Editing

In the text correction stage discussed above, the client’s document is
corrected through API messages. This method is suitable for localized
corrections. There are instances, however, when the user will wish to make
larger-scale revisions to the text without completely terminating the
writing tool session. The Writing Tools API allows the user to make
editing changes in the client document and then return to the writing tool
session with only minimal interruption in the information flow.

The user initiates editing within the client by making it the foreground
application. The writing tool may also initiate this action with the
WTC_RQCLACTIVE message. When the client receives control, it sends
the WTC_CLACTIVE message to inform the writing tool. The user makes
the changes, then brings the writing tool to the foreground again. The
writing tool sends a WTQ_TLACTIVE message to the client. The client
replies with the WTR_TLACTIVE message, informing the writing tool of
changes made during the editing session. If supported by the platform,
applications also send messages upon losing activation. Writing tools
send the WTC_TLINACTIVE message, while clients send the
WTC_CLINACTIVE message.

The parameters in the WTC_CLACTIVE message inform the writing tool
of the action it should take. This may be to keep its window visible during
the editing session, or to hide in the background. Clients may send this
message multiple times to change among the various states of the writing
tool. The WTC_CLACTIVE message may also inform the writing tool
that it should regain activation.

When the writing tool regains control, it sends a WTQ_TLACTIVE
message to the client. The client responds with a WTR_TLACTIVE
message. The parameters to this message specify which blocks have been
changed by the user editing, and if anything has changed that would
require new information blocks to be passed to the writing tool.

Termination

Termination of the writing tool session is always completed by the writing
tool. The tool accomplishes this by sending the WTC_TLTERM

Termination37

command message. After this message is sent, no other writing tool
communication can take place.

When the client wishes to terminate the session, it sends the
WTC_RQTLTERM message to the writing tool. The writing tool may
then send any number of messages, such as the
WTQ_WRITETOOLDATA message, before terminating the conversation
with a WTC_TLTERM message.

38Termination

