
Writing Tools C-Callable Functions

Providing a set of C-callable functions allows the Writing Tools API to
present a consistent programming interface across platforms. These
functions fall into three categories: sending a command message with
wtcClSend() and wtcTlSend(), sending a query message with
wtqClSend() and wtqTlSend(), and receiving a message with
wtClReceive() and wtTlReceive().

Writing Tools C-Callable Functions36

wtcClSend

A writing tool client uses the wtcClSend() function to send a writing tool
command message to the writing tool. No response is expected. All
messages sent using this command should have a WTC_ prefix.

Prototype
WTSTATUS wtcClSend (

WTCOMM comm,
WTMSGID inmsgid,
WTBUFP inmsg,
WTSIZE inmsgsize,
WTBUFP inbuf,
WTSIZE inbufsize);

Parameters

comm

Platform-specific writing tool communications information.

inmsgid

The Writing Tools API message ID.

inmsg

A pointer to the buffer containing the structure corresponding to the
message ID.

inmsgsize

The size in bytes of the input message structure.

inbuf

A pointer to the buffer containing any variable-length data related to the
message.

inbufsize

The size in bytes of the input message data buffer.

37Writing Tools C-Callable Functions

Return Values

Returns WTS_OK if the message was sent. If there was a problem in
sending the message, the appropriate member of the WTSTATUS type will
be returned.

Example

The following example sends the WTC_INIT message to a writing tool.

WTCINIT initmsg;

initmsg.msgid = WTC_INIT;
initmsg.action = WTM_NORMAL;
initmsg.version = WTAPI_VERSION;

return wtcClSend(comm, WTC_INIT, (WTBUFP)&initmsg, sizeof(WTCINIT), 0, 0);

wtClReceive

Called by the Writing Tools API message layer when a writing tools
message is sent to the writing tool client.

Prototype
WTSTATUS wtClReceive (

WTCOMM comm,
WTMSGID inmsgid,
WTBUFP inmsg,
WTBUFP inbuf,
WTBUFP rtmsg,
WTBUFP rtbuf,
WTSIZEP rtbufsizep);

Parameters

comm

Platform-specific writing tool communications information.

inmsgid

The Writing Tools API message ID.

Writing Tools C-Callable Functions38

inmsg

A pointer to the buffer containing the message structure.

inbuf

A pointer to the buffer containing the message variable-length data.

rtmsg

A pointer to the buffer to contain the return message structure.

rtbuf

A pointer to the buffer to contain the return message variable-length data.

rtbufsizep

A pointer to the buffer to hold the actual size of the return message
variable-length data. This should be set to zero if no data is returned in
rtbuf.

Return Values

Returns WTS_OK if the message was sent. If there was a problem in
sending the message, the appropriate member of the WTSTATUS type will
be returned.

Example

In the following code fragment, a wtClReceive() function receives a
WTQ_INFOBLOCK message.

WTSTATUS wtClReceive(WTCOMM comm, WTMSGID inmsg, WTBUFP inmsg,
WTBUFP inbuf, WTBUFP rtmsg, WTBUFP rtbuf, WTSIZEP rtbufsizep)

{
WTSTATUS status;

rtbufsizep = 0; / set to zero */

switch (inmsg)
{

case WTQ_INFOBLOCK:
status = wtqInfoBlockReceive(inmsg, rtmsg, rtbuf);
*rtbufsizep = ((WTRINFOBLOCKP)rtmsg)->winsize;
break;

}

39Writing Tools C-Callable Functions

return status;
}

wtcTlSend

A writing tool uses the wtcTlSend() function to send a writing tool
command message to the writing tool client. No response is expected. All
messages sent using this command should have a WTC_ prefix.

Prototype
WTSTATUS wtcTlSend (

WTCOMM comm,
WTMSGID inmsgid,
WTBUFP inmsg,
WTSIZE inmsgsize,
WTBUFP inbuf,
WTSIZE inbufsize);

Parameters

comm

Platform-specific writing tool communications information.

inmsgid

The Writing Tools API message ID.

inmsg

A pointer to the buffer containing the structure corresponding to the
message ID.

inmsgsize

The size in bytes of the input message structure.

inbuf

Writing Tools C-Callable Functions40

A pointer to the buffer containing any variable-length data related to the
message.

inbufsize

The size in bytes of the input message data buffer.

Return Values

Returns WTS_OK if the message was sent. If there was a problem in
sending the message, the appropriate member of the WTSTATUS type will
be returned.

Example

The following example sends the WTC_RQINIT message to a writing
tool.

WTCRQINIT initmsg;

initmsg.msgid = WTC_RQINIT;
initmsg.newdoc = WT_TRUE;
initmsg.size = 0;

return wtcTlSend(comm, WTC_INIT, (WTBUFP)&initmsg, sizeof(WTCINIT), 0, 0);

wtqClSend

A writing tool client uses the wtqClSend() function to send a writing tool
query message to the writing tool. An appropriate response is expected
from this command. The writing tool fills in the corresponding reply
message buffers that have been provided. The message is then returned by
the API. Applications do not call a function to send a reply. All messages
sent using this command should have a WTQ_ prefix and all replies
should have a WTR_ prefix.

Prototype
WTSTATUS wtqClSend (

WTCOMM comm,
WTMSGID inmsgid,
WTBUFP inmsg,

41Writing Tools C-Callable Functions

WTSIZE inmsgsize,
WTBUFP inbuf,
WTSIZE inbufsize,
WTMSGID rtmsgid,
WTBUFP rtmsg,
WTSIZE rtmsgsize,
WTBUFP rtbuf,
WTSIZE rtbufsize);

Parameters

comm

Platform-specific writing tool communications information.

inmsgid

The Writing Tools API message ID.

inmsg

A pointer to the buffer containing the structure corresponding to the input
message ID.

inmsgsize

The size in bytes of the input message structure.

inbuf

A pointer to the buffer containing any variable-length data related to the
input message.

inbufsize

The size in bytes of the input message data buffer.

rtmsgid

The Writing Tools API message ID of the return message.

rtmsg

A pointer to the buffer containing the structure corresponding to the return
message ID.

rtmsgsize

The size in bytes of the return message structure.

Writing Tools C-Callable Functions42

rtbuf

A pointer to the buffer containing any variable-length data related to the
return message.

rtbufsize

The size in bytes of the return message data buffer.

Return Values

Returns WTS_OK if the message was sent. If there was a problem in
sending the message, the appropriate member of the WTSTATUS type will
be returned.

wtqTlSend

A writing tool uses the wtqTlSend() function to send a writing tool query
message to the writing tool client. An appropriate response is expected
from this command. The writing tool client fills in the corresponding reply
message buffers that have been provided. The message is then returned by
the API. Applications do not call a function to send a reply. All messages
sent using this command should have a WTQ_ prefix and all replies
should have a WTR_ prefix.

Prototype
WTSTATUS wtqTlSend (
WTCOMM comm,
WTMSGID inmsgid,
WTBUFP inmsg,
WTSIZE inmsgsize,
WTBUFP inbuf,
WTSIZE inbufsize,
WTMSGID rtmsgid,
WTBUFP rtmsg,
WTSIZE rtmsgsize,
WTBUFP rtbuf,
WTSIZE rtbufsize);

Parameters

43Writing Tools C-Callable Functions

comm

Platform-specific writing tool communications information.

inmsgid

The Writing Tools API message ID.

inmsg

A pointer to the buffer containing the structure corresponding to the input
message ID.

inmsgsize

The size in bytes of the input message structure.

inbuf

A pointer to the buffer containing any variable-length data related to the
input message.

inbufsize

The size in bytes of the input message data buffer.

rtmsgid

The Writing Tools API message ID of the return message.

rtmsg

A pointer to the buffer containing the structure corresponding to the return
message ID.

rtmsgsize

The size in bytes of the return message structure.

rtbuf

A pointer to the buffer containing any variable-length data related to the
return message.

rtbufsize

The size in bytes of the return message data buffer.

Writing Tools C-Callable Functions44

Return Values

Returns WTS_OK if the message was sent. If there was a problem in
sending the message, the appropriate member of the WTSTATUS type will
be returned.

Example

The following example requests the current paragraph from the writing
tool client.

WTQTEXTBLOCK qtbmsg;
WTRTEXTBLOCK rtbmsg;
WTBUF text[500];
WTSTATUS status;

qtbmsg.msgid = WTQ_TEXTBLOCK;
qtbmsg.fromtext = WTU_PARAGRAPH;
qtbmsg.frompos = WTP_REL;
qtbmsg.fromloc = 0;
qtbmsg.totext = WTU_PARAGRAPH;
qtbmsg.topos = WTP_REL;
qtbmsg.toloc = 0;
qtbmsg.qtype = WTB_INIT;
qtbmsg.containers = WT_FALSE;
qtbmsg.size = 500;

status = wtqTlSend(comm, WTQ_TEXTBLOCK, (WTBUFP)&qtbmsg,
sizeof(WTQTEXTBLOCK), 0, 0, WTR_TEXTBLOCK,
(WTBUFP)&rtbmsg, sizeof(WTRTEXTBLOCK), &text, 500);

wtTlReceive

Called by the Writing Tools API message layer when a writing tool
message is sent to the writing tool.

Prototype
WTSTATUS wtTlReceive (

WTCOMM comm,
WTMSGID inmsgid,
WTBUFP inmsg,
WTBUFP inbuf,
WTBUFP rtmsg,
WTBUFP rtbuf,
WTSIZEP rtbufsizep);

45Writing Tools C-Callable Functions

Parameters

comm

Platform-specific writing tool communications information.

inmsgid

The Writing Tools API message ID.

inmsg

A pointer to the buffer containing the message structure.

inbuf

A pointer to the buffer containing the message variable-length data.

rtmsg

A pointer to the buffer to hold the return message structure.

rtbuf

A pointer to the buffer to hold the return message variable-length data.

rtbufsizep

A pointer to the buffer to hold the actual size of the return message
variable-length data. This should be set to zero if no data is returned in
rtbuf.

Return Values

Returns WTS_OK if the message was sent. If there was a problem in
sending the message, the appropriate member of the WTSTATUS type will
be returned.

Enumerated Types

The enumerated types in the WTAPI allow message parameters to be set
to a specific value within a set of values. Each type used in the API is

Writing Tools C-Callable Functions46

described below. These enumerated types define the parameters used in
both the C-callable interface and the API message structures.

WTMSGID
An enumerated list of all writing tool messages. These messages, their
use, and associated message structures are covered individually in WTAPI
Messages later in this section .

Members

WTC_NOMESSAGE

Message zero is not an API message.

WTC_RQINIT

Request API initialization.

WTC_INIT

Initialize API communication.

WTQ_INFOBLOCK

Request the client information block.

WTR_INFOBLOCK

Return the infomation block.

WTQ_UNITINFO

Request text unit infomation.

WTR_UNITINFO

Return unit infomation.

WTQ_READTOOLDATA

Request a tool data area.

WTR_READTOOLDATA

Return a tool data area.

47Writing Tools C-Callable Functions

WTQ_WRITETOOLDATA

Write a tool data area.

WTR_WRITETOOLDATA

Acknowledge tool data area write.

WTQ_TEXTBLOCK

Request a text block.

WTQ_NEXTTEXTBLOCK

Request the next text block.

WTR_TEXTBLOCK

Return a text block.

WTQ_READTEXTOBJECT

Request a text object.

WTR_READTEXTOBJECT

Return a text object.

WTQ_WRITETEXTOBJECT

Write a text object.

WTR_WRITETEXTOBJECT

Acknowledge text object written.

WTQ_GOTO

Go to an API position.

WTR_GOTO Acknowledge new position.

WTQ_HILITE Highlight an area.

Writing Tools C-Callable Functions48

WTR_HILITE Acknowledge highlight.

WTQ_DEHILITE Dehighlight an area.

WTR_DEHILITE Acknowledge dehighlight.

WTQ_REPLACE Replace text in a text block.

WTQ_UNDOREPLACE

Undo the last replace.

WTR_REPLACE Acknowledge replacement.

WTC_RQCLACTIVE Request client activation.

WTC_CLACTIVE Client was activated.

WTC_CLINACTIVE Client was deactivated.

WTC_TLINACTIVE Tool was deactivated.

WTQ_TLACTIVE Tool was reactivated.

WTR_TLACTIVE Update tool on text query status.

WTC_RQTLTERM Client notifies tool of termination request.

WTC_TLTERM Tool terminates session.

WTSTATUS

A list of completion values returned by Writing Tools API functions and
used in API messages.

Members

WTS_OK

OK status.

49Writing Tools C-Callable Functions

WTS_NOMEMORY

Not enough memory.

WTS_COMERROR

Error in WTAPI communication.

WTS_BADREQUEST

Bad WTAPI request message.

WTS_CLIENTERROR

Client internal error.

WTS_USER

User intervention.

WTS_QUITAPI

Termination requested.

WTS_TOOLBUSY

Writing tool is busy.

WTS_NOTSUPPORTED

API request is not supported.

WTBOOL

Used for Boolean conditions.

Members

WT_FALSE

False condition or flag.

WT_TRUE

True condition or flag.

Writing Tools C-Callable Functions50

WTPOS

Used to direct the positioning of the Writing Tools API cursor for
subsequent actions. This position is not necessarily the same as the
client’s cursor or insertion point.

Members

WTP_REL

Relative to the last position.

WTP_BEG

Positioning from the block beginning.

WTP_END

Positioning from the block end.

WTMODE

Used in the WTC_INIT message to invoke the writing tool in a specific
mode of execution. Allowing the client to invoke the writing tool in one
of several modes causes the tool to appear to the user as an integral part of
the client.

Members

WTM_NORMAL

Normal execution.

WTM_SETUP

Setup mode.

WTM_HELP

Help mode.

WTTOOL

51Writing Tools C-Callable Functions

Designates the general classification for the writing tool. As new types of
writing tools are made available, WordPerfect Corporation will register
them to avoid numbering conflicts.

Members

WTT_DEFAULT

Default writing tool type.

WTT_SPELLER

Spell checking.

WTT_THESAURUS

Thesaurus lookup.

WTT_GRAMMAR

Grammar checking.

WTT_DICTIONARY

Dictionary definitions.

WTT_HYPHENATION

Word hyphenation.

WTT_STATISTICS

Statistical analysis.

WTT_PHONETIC

Phonetic analysis.

WTT_SYNTAX

Syntactical analysis/compilation.

WTT_INPUT

Input method.

Writing Tools C-Callable Functions52

WTT_TRANSLATOR

Language translation.

WTTBQTYPE

Used in the qtype parameter of the WTQ_TEXTBLOCK query.

Using the WTB_INIT value indicates that a new query should be started.

The WTB_RESUME value is used to request the next value in the text
query. It is equivalent to sending the WTQ_NEXTTEXTBLOCK
message.

It is not necessary that the client and the writing tool have the same
definition of the language boundary elements used in the text query.
Because of this, the client may assume that it has sent all text necessary to
complete the request. However, the writing tool may require additional
text. Instead of initiating a new query, the writing tool may send another
WTQ_TEXTBLOCK message, using the WTB_EXTEND value. It also
sets the “to” positioning fields to extend the query boundary.

The writing tool may also have reason to request that a query be restarted
without starting from the top boundary of the query. By using the
WTB_ROLLBACK value, the query can be rolled back to a specific block
in the query.

53Writing Tools C-Callable Functions

Members

WTB_INIT

Initialize a new query.

WTB_RESUME

Resume the query in progress.

WTB_EXTEND

Extend the query lower bound.

WTB_ROLLBACK

Roll the query back to a block.

WTENDBLOCK

Used in the WTR_TEXTBLOCK message to specify the reason the text
buffer ended at a particular position.

Members

WTE_FULL

Text block buffer is full.

WTE_ENDQUERY

End of the query was reached.

WTE_NEWCONTAINER

Starting a nested text container.

WTE_ENDCONTAINER

End of current text container.

WTE_LANGCHANGE

Language change encountered.

Symbolic Constants54

WTE_ERROR

Error encountered.

Symbolic Constants

These include mask definitions for bit fields used in the Writing Tools
API.

WTAPI_VERSION

The WTAPI_VERSION constant contains the API version under which
the application was developed. Writing Tools and clients use this
information to simplify compatibility problems among different API
versions.

The constant contains the major API revision number in the high byte and
the minor version number in the low byte (major * 256 + minor).
Applications use this information to determine whether the applications
can communicate. API versions that differ only in the minor version are
forward and backward compatible.

WTDAMODE

The writing tool data areas allow writing tools to store data specific to
their product with the client application. The Writing Tools API defines
three storage modes for writing tool data. The WTDAMODE type is a bit
field in which the first three bits correspond to these three modes. The
next four bits correspond to control cursor tool data area attributes. The
table below summarizes this information. A more detailed explanation of
the bits follows the table.

Definition Value Description

WTD_PRODUCT 0x0001 The data is stored in a product area
independent of the current document.

WTD_DOCUMENT 0x0002 The data is stored in a document data
area.

WTD_CURSOR 0x0004 The data is stored at the current cursor

55Symbolic Constants

Definition Value Description

location.

WTD_VISIBLE 0x0008 The client should put a visible marker at
the location of the tool data.

WTD_TEMPORARY 0x0010 The tool data should be kept only for the
current writing tool session.

WTD_START 0x0020 Start of a block of writing tool text in
client.

WTD_END 0x0040 End of a block of writing tool text in
client.

Writing Tool Data Storage Modes
Setting the WTD_PRODUCT bit (0x0001) specifies that the data is stored
in a product area independent of the current document. This data can then
be retrieved during any writing tool session with that client. This area is
useful for client-specific setup information.

Setting the WTD_DOCUMENT bit (0x0002) specifies that the data is
stored in a document data area. WordPerfect will store a document-
specific supplemental dictionary in this area for the WordPerfect Speller.

Setting the WTD_CURSOR bit (0x0004) specifies that the tool data is
stored at the current cursor location. A reference to the tool data area will
be sent as a document object in the text and codes buffer, but only if the
current text mode allows for formatting and object information. This area
allows writing tools to store notes or other information at any location in a
document.

Tool Data Area Cursor Control
The next four bits apply only to tool data areas at the cursor.

The WTD_VISIBLE bit (0x0008) is set if the client should put a visible
marker at the location of the tool data. Otherwise, the presence of the tool
data at the cursor is not shown on the document screen.

The WTD_TEMPORARY bit (0x0010) is set if the writing tool data
should be kept at that location only for the current writing tool session.
Otherwise, the data is kept at the cursor location for use in subsequent

Symbolic Constants56

writing tool sessions.

The WTD_START bit (0x0020) and WTD_END bit (0x0040) are used to
mark a section of text in the client as belonging to the writing tool.

WTTEXT

Used to designate the different text formats used in the Writing Tools API.
It is not necessary for a writing tool or a client to support all possible text
representations. However, all applications should support the
WTX_NATIVE type. The following values are defined:

Definition Value Description

WTX_NATIVE 0x00000001 Native operating system format

WTX_STYLE 0x00000002 Native operating system format with
style information

WTX_UNICODE 0x00000004 Unicode

reserved 0x00000008

WTX_WPWRD 0x00000010 WordPerfect word string format

WTX_WP6 0x00000020 WordPerfect 6.x document format

reserved 0x00000040

reserved 0x00000080

WTX_RTF 0x00000100 Microsoft RTF

WTUNIT

Used by the WTR_UNITINFO message to specify the text units that are
available in the client application. The first 16 bits of this field will be pre-
defined by the Writing Tools API. The last 16 may be defined by the
client application, if needed. The following definitions are currently used.

Definition Value Description
WTU_DEFUNIT 0x00000000 Default client text unit

WTU_SELECTION 0x00000001 User-selected text

WTU_CHAR 0x00000002 Character units

57Symbolic Constants

Definition Value Description
WTU_WORD 0x00000004 Word units

WTU_LINE 0x00000008 Line units

WTU_SENTENCE 0x00000010 Sentence units

WTU_PARAGRAPH 0x00000020 Paragraph units

WTU_PAGE 0x00000040 Page units

WTU_DOCUMENT 0x00000080 Document units

WTU_ENTRYBOX 0x00000100 Text entry box units

WTACTION

Used in activation messages. The writing tool sends its current state to the
client in the WTC_TLINACTIVE message as it is deactivated. The client
sets the writing tool state in the WTC_CLACTIVE and
WTC_CLINACTIVE messages.

When bit 0 is clear, the writing tool is suspended (WTA_SUSPEND).
Setting this bit causes the writing tool to resume activity
(WTA_RESUME).

Bit 1 is clear when the writing tool’s input window is in front of the client
window (WTA_FRONT). Setting the bit with the WTA_BACK constant
puts the writing tool window behind the client.

Bit 2 determines whether or not the tool window is visible to the user. The
WTA_SHOW constant specifies that the window is visible, although it
may be partially or fully covered by other windows. The WTA_HIDE
constant means the window is hidden or invisible to the user.

Bit 3 is clear when the writing tool appears as a window
(WTA_WINDOW). If the tool appears as an icon, bit 3 is set
(WTA_ICON).

WTINFO

Sent in the newinfo parameter of the WTR_TLACTIVE message. It is
used to inform the writing tool what non-text information was changed
during the client editing session.

Symbolic Constants58

The WTI_INFOBLOCK bit is set when the tool should request a new
INFOBLOCK. This would happen, for example, if the user saved the
current document under a new name.

The WTI_UNITINFO bit is set when the tool should send another
WTQ_UNITINFO message. This would be necessary if the user went to a
part of the text where units different than the original units were
supported.

Platform-Specific Types

These types are used by the Writing Tools API, but are defined on a
platform-specific level.

WTCOMM

An ID or struct * that contains the platform-specific information necessary
for WTAPI communication.

WTBUF, WTBUFP

Equivalent to type char and char *. Buffers (arrays) of these types are
used to hold WTAPI messages and data.

WTSIZE, WTSIZEP

Equivalent to type unsigned int and unsigned int *. Long integers may be
used on some platforms.

WTCOUNT,
WTCOUNTP

Equivalent to type signed int and signed int *. Long integers may be used
on some platforms.

59Symbolic Constants

BIT FIELDS

The WTACTION, WTDAMODE, and WTINFO types are defined as 16-
bit fields. The WTTEXT type and WTUNIT type are defined as 32-bit
fields.

WTLANG,
WTLANGP

WTLANG is a structure that contains a language designation. WTLANGP
is a pointer to this structure. The fields in this structure are defined as
follows:

script script of text (byte)

language language of text (byte)

region region (dialect) of text (word)

WTAPI Messages

This section contains descriptions of Writing Tools API messages.
Platform-independent parameters are covered. For each message we
present the message structure, a description of this message, the defined
types associated with this message, parameter descriptions, a description
of any variable-length data that accompanies the message. The structure
name for each message is the same as the enumerated type name with all
underscores removed.

WTC_CLACTIVE

The client sends the WTC_CLACTIVE message to the writing tool
whenever it becomes active or wishes to change the action of the writing
tool.

Structure
typedef struct

Symbolic Constants60

{
WTMSGID msgid;
WTACTION action;

} WTCCLACTIVE;

Types

WTCCLACTIVE

A structure containing the WTC_CLACTIVE message.

WTCCLACTIVEP

A pointer to the WTCCLACTIVE structure.

Members

msgid

WTC_CLACTIVE.

action

The action that the writing tool should take upon receipt of this message.

Data

None.

WTC_CLINACTIVE

The client sends the WTC_CLINACTIVE message whenever it loses
activation.

Structure
typedef struct
{

WTMSGID msgid;
WTACTION action;

} WTCCLINACTIVE;

Types

61Symbolic Constants

WTCCLINACTIVE

A structure containing the WTC_CLINACTIVE message.

WTCCLINACTIVEP

A pointer to the WTCCLINACTIVE structure.

Members

msgid

WTC_CLINACTIVE.

action

The action that the writing tool should take upon receipt of this message.

Data

None.

WTC_INIT

Sent after any operating-system-dependent functions have taken place,
such as loading the application into memory and establishing a
communication link. The client sends the WTC_INIT message to initiate a
conversation with a writing tool.

Structure
typedef struct
{

WTMSGID msgid;
WTMODE mode;
int version;
Window windowClient;

} WTCINIT;

Types

WTCINIT

Symbolic Constants62

A structure containing the WTC_INIT message.

WTCINITP

A pointer to the WTCINIT structure.

Members

msgid

WTC_INIT.

mode

Specifies the desired execution mode of the writing tool. When the user
selects the writing tool from the client’s tool menu, it invokes the writing
tool in WTNORMAL mode, specifying normal writing tool execution.
The writing tool may also appear in a client’s Preferences menu. Selecting
a tool from this location would cause the client to invoke the tool in
WTSETUP mode. This allows the user to access writing tool preferences
from within the client. Similarly, the user may wish to get help on a
writing tool. The client can invoke the tool in WTHELP mode, indicating
that the tool should present a help list to the user.

version

Contains the WTAPI version that the client uses.

windowClient

The window ID of the client application window. This parameter is
specific to the UNIX platform.

Data

None.

WTC_RQCLACTIVE

A request for the client to become the active application. This allows the
user to make editing changes directly in the client's edit buffer.

Structure

63Symbolic Constants

typedef struct
{

WTMSGID msgid;
} WTCRQCLEDIT;

Types

WTCRQCLACTIVE

A structure containing the WTC_RQCLACTIVE message.

WTCRQCLACTIVEP

A pointer to the WTCRQCLACTIVE structure.

Members

msgid

WTC_RQCLACTIVE.

Data

None.

WTC_RQINIT

The writing tool sends the WTC_RQINIT message to request that the
client initiate a writing tool session. This message allows a writing tool to
request initiation of a writing tool session.

Structure
typedef struct
{

WTMSGID msgid;
WTBOOL newdoc;
WTSIZE size;

} WTCRQINIT;

Types

Symbolic Constants64

WTCRQINIT

A structure containing the WTC_RQINIT message.

WTCRQINITP

A pointer to the WTCRQINIT structure.

Members

msgid

WTC_RQINIT.

newdoc

This parameter is set to WT_TRUE if the client should open a new
(empty) document for the session. A WT_FALSE value indicates that the
current document should be used.

size

If this value is non-zero, the writing tool has specified a document on disk
for the writing tool session.

Data

The pathname to the document to be opened as the object of the writing
tool session may be sent. The size of the path name is indicated by the
size parameter. The path may specify an existing or a new file.

WTC_RQTLTERM

The client sends a WTC_RQTLTERM message to notify the writing tool
that it wishes to terminate the writing tool session.

Structure
typedef struct
{

WTMSGID msgid;
} WTCRQTLTERM;

Types

65Symbolic Constants

WTCRQTLTERM

A structure containing the WTC_RQTLTERM message.

WTCRQTLTERMP

A pointer to the WTCRQTLTERM structure.

Members

msgid

WTC_RQTLTERM.

Data

None.

WTC_TLINACTIVE

The writing tool sends the WTC_TLINACTIVE message whenever it
loses activation.

Structure
typedef struct
{

WTMSGID msgid;
WTACTION action;

} WTCTLINACTIVE;

Types

WTCTLINACTIVE

A structure containing the WTC_TLINACTIVE message.

WTCTLINACTIVEP

A pointer to the WTCTLINACTIVE structure.

Members

Symbolic Constants66

msgid

WTC_TLINACTIVE.

action

The actions the writing tool is currently taking.

Data

None.

WTC_TLTERM

The writing tool sends a WTC_TLTERM message to communicate the
termination of the writing tool session.

Structure
typedef struct
{

WTMSGID msgid;
} WTCTLTERM;

Types

WTCTLTERM

A structure containing the WTC_TLTERM message.

WTCTLTERMP

A pointer to the WTCTLTERM structure.

Members

msgid

WTC_TLTERM.

Data

67Symbolic Constants

None.

Symbolic Constants68

