
UNIX Open API
●●●●●●●●●●●●●●●●●●●

UOAPI Overview

Changes made to WordPerfect for UNIX for the 7 version made it
necessary to change the application programming interface as well. For
example, both the character-based and graphical versions of WP 7 now
have fully tokenized commands. The interface is now called the UNIX
Open Application Programming Interface, or UOAPI. The WP 5.1
interface was known as the third-party interface.

The design of the UOAPI lets software developers write programs that
interface directly with WP 7. (This same application interface will
eventually be available for all 7-level WordPerfect Corporation products
for UNIX.)

The two main parts of the interface specification are detection and
communication. First, WP 7 must be able to detect that another program
wants to interface with it. Once communication is established, the other
program monitors, and perhaps modifies, the user input to WP 7. All user-
generated commands are first converted to tokens (numeric command
representations) and then passed to the interface program. The interface
program can return the token unaltered, tell WP 7 to delete the token, or
replace the token with a different token.

In addition to all the token commands, there are special tokens for getting
status information and setting variables in WP 7. The polling token is
particularly important. Normally an interface program is initiated by some
user-generated token. However, there are times when an application
wishes to automate WP 7, where no user interaction would take place.
This is what the polling token is used for. When WP 7 is inactive, it will
pass a special token to the interface program so that the interface program
can perform a task while there is no user input.

Some tokens require added information. For example, the retrieve file
token needs the name of the file to be retrieved. This extra information is
contained in the token’s parameters. Some tokens have no parameters
while others have many.

All of the codes covered in this documentation are documented in bytes.
For example, a short integer value (16-bit value) is defined as two bytes
because of the different versions of UNIX available. All 16-bit and larger
tokens/parameters are in Intel order. In this order the low byte of the value

comes first, then the high byte comes second. Some versions of UNIX
follow this order and some versions follow the reverse order. Always use
the Intel format when passing data larger than one byte.

Programming
Concerns

Since character-based WP 7 is not designed to work in the background,
redirecting standard input and output may cause problems. The table
below describes the conditions that exist while character-based WP 7 is
running.

Condition Description

standard in WP turns off the mapping of carriage return to line feed and
disables the line discipline (meaning that it doesn’t wait for a
new line to complete the read).

standard out WP disables all character conversions.

The minimum number of characters read is set to 1 and the default delay
between characters is set to zero-hundredths of a second.

On machines that have pseudo TTYs, WP 7 turns off parity generation and
forces an 8-bit character.

GUI WP 7 does not do text I/O except for a few startup error messages.
Redirecting standard input and output will not accomplish anything, and
may also cause problems. GUI WP 7 can be run as an icon with the
standard -iconic command line switch.

Word Strings

A WordPerfect word string consists of 2-byte characters using the
WordPerfect character sets. Each character is stored in Intel order (low-
order byte first). The high byte identifies the WP character set the
character belongs to. The low byte is the number of the character in that
character set. The string must be terminated by a 2-byte null.

The WordPerfect zero character set contains all the standard ASCII
characters. To reference standard ASCII characters, set the high byte to
zero and the low byte to the standard ASCII code. You can view the
WordPerfect character sets by selecting Character from the Insert menu in
WP 7.

13Detection

Detection

There are two startup methods for UOAPI programs. The UOAPI
program can be specified in an initialization file called wpthird.ini and
started by WP 7, or the UOAPI program can start WP 7 using a special
command line switch. If a UOAPI program uses the command line method
to start WP 7, WP 7 will not execute the programs from the wpthird.ini file.
Both methods are explained below. (Both of these methods are the same
as they were for the WP 5.1 interface.)

Initialization File
Method

If WP 7 is started without the -third option, it reads the wpthird.ini file to
determine if any UOAPI programs need to be started. The wpthird.ini file
is found in the shlib10 directory under the WordPerfect installation
directory. The wpthird.ini file is a text file that contains a line for each
UOAPI program, formatted as shown below:

logical_name:path/filename

logical_name is some arbitrary identifier of the program that could
indicate its name or function. path is the path of the executable file.
filename is the filename of the executable file. An example is:

grammar:/usr/local/bin/gcheck

In this example the logical_name is “grammar.” The path is
“/user/local/bin” and the filename is “gcheck”. The logical_name allows
you to have two or more entries in the wpthird.ini file that reference the
same executable. This is done by using a different logical_name in each
reference. This allows an executable to perform different functions based
upon the name by which it is called.

WP 7 executes each UOAPI program in turn, using the path from the
wpthird.ini file. WP 7 passes two command line parameters to the UOAPI
program. The parameters are the file descriptors of the pipes to use for
communication with WP 7 and are accessible to the UOAPI program as
argv[1] and argv[2]. The UOAPI program “reads” the descriptor argv[1]

Detection14

for communications from WP 7 and “writes” to the descriptor argv[2] to
send communications to WP 7. The descriptors are ASCII strings and must
be converted to integers for use in read() and write() system calls.

The only way multiple UOAPI programs can be detected by WP 7 is when
they are called through the wpthird.ini file. The maximum number of
UOAPI programs that can be put in the wpthird.ini file is eight.

Command Line
Method

Before starting WP 7, the UOAPI program needs to use the pipe() system
call to create two pipes for passing messages back and forth with WP 7.

The UOAPI program then uses the fork() and exec() system calls to start
WP 7. The pipe handles are given to WP 7 as command line arguments.
To accomplish this, add the following to the command line when your
program starts WP 7:

-third xxxxx,yyyyy

15Detection

The table below describes the arguments shown in the command line.

Argument Description

xxxxx The ASCII representation of pipe handle value that WP 7 uses
to read messages from the UOAPI program.

yyyyy The ASCII representation of pipe handle value that WP 7 uses
to send messages to the UOAPI program.

Communication

Like its WP 5.1 counterpart, the WP 7 interface works on a cause and
affect relationship between itself and your UOAPI program. Your UOAPI
program cannot send a communication to WP 7 unless it has first received
some communication from WP 7.

Another important fact about interface communication is that the
information packets sent through the pipes do not come in one complete
chunk. They come piece by piece. In each case, the first field of the
packet data indicates the total length of the remaining packet data. This
field only indicates the length of the remaining packet data and not its own
length. Make sure you always use the block read/write functions supplied
in the sample UOAPI program (see Program Files later in this section), or
similar functions, to get and send pipe information. These functions wait
until all of the information in a given communication has been delivered
before handing the communication to your interface program. (The WP
5.1 interface worked in this same way.)

Initializing

The first communication sent to the UOAPI program is an initialization
packet. The figure and table below describe the packet format.

Total

Length
Token

Name

Length
Name Product Major Minor

Language

Code 1

Language

Code 2

Communication16

Name Size Description

Total Length 2 bytes Two bytes stored in Intel order that indicate
the total length of the remaining packet data.

Token 2 bytes Two bytes stored in Intel order that contain
THIRD_INIT_TOK. This token value
identifies the initialization packet.

Name Length 2 bytes Two bytes stored in Intel order that indicate
the length of the name field.

Name Variable Null-terminated byte string that contains the
logical name of the UOAPI program as read
from the wpthird.ini file.

Product 1 byte One byte identifying the WordPerfect
application that started the UOAPI program
(3 = GUI WP 7,
4 = character-based 7).

Major Version 1 byte One byte identifying the major version of the
WordPerfect application. (The major version
number of WP 7 = 6.)

Minor Version 1 byte One byte identifying the minor version of the
WordPerfect application (The minor version
number of WP 7 = 0.)

Language Code 1 1 byte First byte of the 2-byte language string
identifying the language of the current
invocation of WP 7 (“u” for US English).

Language Code 2 1 byte Second byte of the 2-byte language string
identifying the language of the current
invocation of WP 7 (“s” for US English).

If your UOAPI program calls WP 7 using the command line method, the
string value in the Name field of the initialization packet will be "exec".

After receiving the initialization packet, the UOAPI program
acknowledges it can communicate by returning a data packet. The figure

17Communication

and table below describe the format of the data packet.

Total

Length

Low

Bound

High

Bound

Name Size Description

Total Length 2 bytes Two bytes stored in Intel order indicating the total
length of the data following (always 4).

Low Bound 2 bytes Two bytes stored in Intel order indicating the lower
bound of the token range the UOAPI program
wants to see.

High Bound 2 bytes Two bytes stored in Intel order indicating the upper
bound of the token range the UOAPI program
wants to see.

If the UOAPI program does not want to communicate with the
WordPerfect application, it sets the length to 4 and both the low and the
high bound values to zero. For example, if your program wants to
communicate only with the character-based version of WP 7, you should
use this method to avoid the GUI version.

If your UOAPI program needs to see all tokens, it should set the total
length to 4, the low bound to 0 and the upper bound to 0xFFFF.

Setting the token bounds appropriately can affect performance
significantly. It helps WP 7 to avoid incurring the Inter-process
Communication (IPC) overhead associated with sending unnecessary
tokens to the UOAPI program.

Token Handling

After every keystroke, menu selection, or mouse event, the UOAPI
program receives a token data packet from WP 7. Each token data packet
consists of a Total Length field followed by a token and the token’s

Communication18

parameters, if any. The figure and table below describe the format of a
token data packet.

Total

Length
Token

Parameter

Data Size

Parameter

Count
Parameter

Name Size Description

Total Length 2 bytes Two bytes stored in Intel order indicating
the total length of the remaining packet
data.

Token 2 bytes Two bytes stored in Intel order containing a
WP 7 token.

Parameter Data
Size

2 bytes Number of bytes of parameter data
(includes the Parameter Count field and the
Parameter field).

Parameter Count 2 bytes Number of parameters in the Parameter
field (field doesn’t exist if parameter data
size is 0).

Parameters Variable Token’s parameters (field doesn’t exist if
parameter data size is 0).

The UOAPI program examines each token data packet and returns a token
data packet to WP 7 using the same format. The UOAPI program can
pass the data back unchanged, replace the token with another token, or
delete the token. UOAPI programs can replace tokens by simply
returning the token data packet of the new token. To delete a token, the
UOAPI program returns a token data packet with the Total Length field
set to zero.

If WP 7 is communicating with multiple UOAPI programs, it does so
according to a specific sequence. The order in which the UOAPI programs
appear in the wpthird.ini file determines the sequence of communication.
When a token is generated in WP 7, it sends a token data packet to the
first UOAPI program in the sequence. When WP 7 receives a token data
packet from the first UOAPI program it sends it to the second UOAPI

19Communication

program, and so forth until the sequence is completed. WP 7 will execute
the token returned by the last UOAPI program. If any UOAPI program
deletes a token, the sequence is ended with that UOAPI program. WP 7
will not send a token data packet where the Total Length field is zero. WP
7 never sends or receives multiple token data packets and each packet
contains only one token. If your UOAPI program needs to send multiple
commands to WP 7 it should send a token instructing WP 7 to run a file
macro.

For example, three UOAPI programs have been loaded by WP 7 from the
wpthird.ini file. WP 7 passes a token (token data packet) to UOAPI:1.
UOAPI:1 processes the token, and passes it back to WP 7. WP 7 passes
this token to UOAPI:2. UOAPI:2 deletes the token. When UOAPI:2
passes its empty token data packet to WP 7, WP 7 ends the sequence at
that point. UOAPI:3 will never have the empty token data packet passed
to it.

This type of command (token) handling is similar to that of the WP 5.1
interface. However there are two major differences. The WP 5.1 interface
passed tokens for GUI WP and key codes for character-based WP. WP 7
passes all commands as tokens in both the character-based and GUI
versions. The second difference is the number of tokens that can be
passed. WP 5.1 could pass multiple tokens in one communication. All WP
7 token data packets have only one token.

Polling

When WP 7 is idle it will send a polling token to the UOAPI program.
This gives the UOAPI program the ability to control WP 7 without normal
user input. The polling token is formatted as a normal token data packet
with the value THIRD_POLLING_TOK in the Token field and zero in the
Parameter Data Size field. The UOAPI program can return the polling
token unchanged or replace it with another token. WP 5.1 did not have
polling.

Manipulating
Variables

WP 7 has two types of variables, system variables and merge variables.
System variables are set by WP 7 and can be read using macros, merges
and UOAPI programs. They provide information about the current status
of WP 7. Merge variables can be created, set, and read by macros, merges

Communication20

and UOAPI programs. Merge variables can be used to pass information
between macros and UOAPI programs. The UserFunction macro
command can also be used to pass information from a macro to a UOAPI
program. See WordPerfect’s online Macros Help for more information the
UserFunction macro command. (online Macros Help can be accessed by
selecting Macro from the Help menu.)

Reading System Variables
WP 5.1 passed each communication to your interface with 32 state bits as
the second field of the communication. These state bits had basic
information about the status of WP 5.1. For example, a macro is running,
the main editing screen is active, or one of the 9 main editing screens is
active. You could also send the {SYSTEM} macro command, followed
by information telling WP what system information you wanted, to WP
through the chain of interface programs. When WP executed this macro
command, it would return the requested information back through the
chain of interface programs to your interface program.

In WP 7, UOAPI programs can get all status information about WP 7
through system variables. For example, your program can test if printing
is in progress, if WP 7 is in an edit structure (headers and footers), if
Block is active, what the current text attribute is, what the current page
number is, and so on. All system variable read requests are passed
directly to WP 7 and all responses are passed directly back to the
requesting UOAPI program.

To access system variable data, UOAPI programs send a data packet to
WP 7 formatted as shown in the figure and table below.

Total

Length

Get

System

Variable

Token

System

Variable

Token

21Communication

Name Size Description

Total Length 2 bytes Two bytes stored in Intel order indicating the
total length of the remaining packet data.

Get System
Variable Token

2 bytes Set to THIRD_GET_SYSTEM_TOK.

System Variable
Token

2 bytes Token value of the desired system variable.

In response to the Get System Variable request, UOAPI programs receive
a data packet formatted as shown in the figure and table below.

Total

Length

Get

System

Variable

Token

System

Variable

Token

Parameter

Data Size

Parameter

Count

Token

Parameters

Name Size Description

Total Length 2 bytes Two bytes stored in Intel order indicating
the total length of the remaining packet
data.

Get System Variable
Token

2 bytes Set to THIRD_GET_SYSTEM_TOK.

System Variable
Token

2 bytes Token value of the system variable being
returned.

Parameter Data Size 2 bytes Number of bytes of parameter data
(includes the parameter count and
parameter fields.)

Parameter Count 2 bytes Number of parameters in the parameters
field.

Parameters Variable The token parameter values.

Communication22

If the variable is not accessible, the Parameter Data Size field will be
zero.

Reading Merge Variables
Variables can be created in WP 7 and assigned an initial value. They can
be set and read by merges, macros, and UOAPI programs. They were
called merge variables in WP 5.1. In WP 7, they are called merge
variables or persistent variables.

WP 7 merge variables are not purged from memory when macros or a
merge has ended. They exist from the time they are created until WP 7
terminates. This enables communication between UOAPI programs,
merges and macros. For example, a UOAPI program can read and set
merge variables from the open application interface, and have them persist
through macros and merges.

To get the value of a merge variable, a UOAPI program sends a data
packet to WP 7. The figure and table below describe the packet format.

Total

Length

Get Merge

Variable

Token

Merge

Variable

Name

Name Size Description

Total Length 2 bytes Two bytes stored in Intel order indicating
the total length of the remaining packet
data.

Get Merge Variable
Token

2 bytes Set to THIRD_GET_MERGE_TOK.

Merge Variable
Name

Variable Null-terminated word string containing
the name of the desired merge variable.

23Communication

In response to the Get Merge Variable request, the UOAPI program will
receive a data packet. The figure and table below describe the data packet
format.

Total

Length

Get Merge

Variable

Token

Merge

Variable

Name

Name Size Description

Total Length 2 bytes Two bytes stored in Intel order indicating
the total length of the remaining packet
data.

Get Merge Variable
Token

2 bytes Set to THIRD_GET_MERGE_TOK.

Merge Variable
Value

Variable Null-terminated word string containing
the value of the desired merge variable.

If the requested variable does not exist, a null value will be returned in the
Merge Variable Value field.

Setting Merge Variables
UOAPI programs can set merge variables from the open application
interface by sending a data packet to WP 7. The figure and table below
describe the packet format.

Total

Length

et Merge

Variable

Token

Merge

Variable

Name

Merge

Variable

Value

Name Size Description

Total Length 2 bytes Two bytes stored in Intel order indicating the

Communication24

Name Size Description

total length of the remaining packet data.

Get Merge
Variable Token

2 bytes Set to THIRD_SET_MERGE_TOK.

Merge Variable
Name

Variable Null-terminated word string containing the
name of the desired merge variable.

Merge Variable
Value

Variable Null-terminated word string containing the
value of the desired merge variable.

In response to the Set Merge Variable request, the UOAPI program will
receive a data packet. The figure and table below describe the packet
format.

Total

Length

Set Merge

Variable

Token

Success

Name Size Description

Total Length 2 bytes Two bytes stored in Intel order that indicating
the total length of the remaining packet data.

Set Merge
Variable Token

2 bytes Set to THIRD_SET_MERGE_TOK.

Success 1 byte One byte indicating the success of the set
operation. Zero for success or one for failure.

25Communication

Terminating

When the user exits, WP 7 sends a token data
packet containing THIRD_EXIT_TOK in the
token field. The UOAPI program should use
this as the signal to terminate.

IMPORTANT: Character-based WP 7 saves
standard in, standard out, and other system
information as it was at the time WP 7 was
executed. When WP 7 terminates, it does not
reset this information, but restores it to the
settings it saved at the start of execution. This
is particularly important for UOAPI programs
using the command line method to call
WordPerfect

Program Files

The WordPerfect for UNIX Software
Developer’s Kit diskette contains a sample
program that uses the interface described above
to communicate with WP 7. The uoapi.c
program is a sample UOAPI program written in
the C programming language.

All of the WP 7-specific data and all of the
legal tokens have been defined in the uoapi.h
file. This file can also be found on the UNIX
SDK diskette. Use this file to put tokens into
your UOAPI programs.

The UWPMRS.WP file is a WP 7 document file
that documents each of the legal WP 7 tokens,
their purpose, their parameters, and parameter
format. This file can also be found on the

Program Files26

UNIX SDK diskette.

Token parameters generally follow the format
described in the table below.

Size Description
1 byte Type of data to follow as defined in M_TYPE_MASK. See

below.

Variable Parameter data.

This format would be repeated for each
parameter of a given token. The actual data
and type for each parameter of a token is
documented in UWPMRS.WP. The table below
describes the M_TYPE_MASK field of the
parameter information.

M_TYPE_MASK Size of Following Data

M_WSBYTE 1 byte (signed).

M_WUBYTE 1 byte.

M_WCHAR 1 byte (character).

M_WSWORD 2 bytes (signed short integer).

M_WUWORD 2 bytes (unsigned short integer).

M_WSDWORD 4 bytes (signed long integer).

M_WUDWORD 4 bytes (unsigned long integer).

M_SWPU 4 bytes (signed).

M_WPU 4 bytes.

M_WPCSTRING Variable (Null-terminated word string format).

M_STRING Variable (Null-terminated ASCII string format).

M_FLOAT 8 bytes (real number, the data type is double in host specific format).

Like all previous data, information larger than 1
byte is stored in Intel order. M_SWPU and
M_WPU types mean the value of the data to

27Program Files

follow is in WordPerfect units. A WordPerfect
unit is defined as one 1200th of an inch.

Program Files28

