PhxLnk

PhxLnk

COLLABORATORS
TITLE :
PhxLnk
ACTION NAME DATE SIGNATURE
WRITTEN BY July 20, 2024
‘ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

PhxLnk

Contents

1 PhxLnk

1.1 PhxLnk V4.20 (24-Dec-95) o o e

1.2 Introduction

1.3 History since V3.00 L e e e
14 INStructionS e e e e e e e
1.5 Sytem Requirements L e e
1.6 Starting PhxLnk o L e e
1.7 Description of command line parameters e e e e e e e e e e e
1.8 Linker Symbols e

1.9 Small Data
1.10 Known Bugs
1.11 My Address

PhxLnk

Chapter 1

PhxLnk

1.1 PhxLnk V4.20 (24-Dec-95)

l N o/ A

/) Ay A Y S A

\/ Phantasm’s
P hx 1L nk v4.20

AMIGA-DOS Module Linker

Contents

Introduction
History since V3
Instructions
Bugs
Author’s Address

1.2 Introduction

PhxILnk was written in pure assembler-code, assembled with
with BLink (first version) and PhxLnk itself. It supports
standard Amiga-DOS linker (like BLink), except of overlay
tic link vectors (ALV).

PhxLnk is FREEWARE and copyright © 1992,93,94,95 by Frank

Volker Barthelmann.
Commercial usage of this program is strictly forbidden!

1.3 History since V3.00

PhxAss and linked
all features of a
hunks and automa-

Wille and

PhxLnk

2/7

v4.20

V4.

V4

V4.

V4.

V4.

V4.

V4.

17

.16

15

10

03

02

00

(20-Dec-95)

(24-May-95)

(18-May-95)

(19-Mar-95)
(21-Feb-95)

(09-Feb-95)

(25-Jan-95)

(18-Nov-94)

Since v4.20 there are two versions of PhxLnk.
One for 0S2.x and the other for 0S3.x. This
splitting is a result of the intensive usage
of MemPool functions, which are part of the
exec.library under 0S3.x (the 0S2.x version
gets their MemPool functions from amiga.lib).
The MemPool adaption was done by Volker Bar-—
thelmann <volker@vb.franken.de>. It enables
library-linking with a multiple speed.

There were some crashes, when empty sections,
which contained some required XDEFs, were
automatically removed. The only possibility
to prevent it was by setting the PRESERVE/S
switch.

Partial support for the SLink (SAS/C). PhxLnk

defines ctors and dtors as NULL to avoid
errors during linking. Complete SLink-support
may follow in a later release. (if somebody needs
it :-)

Fixing the bug with __ MERGED sections in V4.10
generated a new one in the ’'normal’ small data
mode.

The shortening of sections, as introduced in
V4.00, doesn’t work very well.

PhxILnk can generate RELOC32SHORT blocks.
Linking of __MERGED sections had a bug.

When PhxLnk discovers a read error, while reading
a '@’"-file, it crashed.

PhxLnk can read the object and library names from
one or several files.

PhxLnk V4.00 requires 0S2.04 as a minimum. As a
result it offers the standard ReadArgs () —-Command
Line parsing and is much shorter.

DEBUG Hunk blocks are treated the same way as with
SAS/C’s BLink, which gives the possibility to gene-
rate load files for a Source Level Debugger.

The latest version of the PowerVisor Debugger,
V1.42, unfortunately has still some problems with
BLinked programs, consisting of several source
files, so there is a compatibility switch, called
PVCOMPAT.

The new argument DEFINE (see CLI Parameters)

gives the possibility to define an absolute Linker-
Symbol (quite similar to the small data symbols sup-
plied by PhxLnk).

By utilitzing the new switch BLINKCOMPAT PhxLnk
will treat small data modules the same way like
SAS/C’s BLink does.

Data and Bss sections, which were named "__ MERGED",

PhxLnk

V3.10

v3.05

v3.01

v3.00

1.4

1.5

will be coalesced into a small data section (with-
out having to specify the SMALLDATA switch).

Zero bytes at the end of a Code or Data section will
be ignored, which shortens the resulting load file.
Because that doesn’t work under Kickstart 1.x, there
is a compatibility switch called KICKI1.

(04-Aug-94) Fixed a bug with catastrophic proportions, which
sometimes appeared when linking with libraries.
To be honest: I don’t think, that one of the pre-
V3.10 versions are safe enough to link libraries ;-)
PhxLnk was completely localized. Until now, german
and polish catalogs are available.
Documentation was converted into Amiga-Guide format.

(31-Jul-94) Fixed a linker-library bug: Sometimes sections of a
library, though not included, appeared in
HUNK_HEADER with random length.
HUNK_RELOC and HUNK_SYMBOL of zero length will no
longer be included.

(22-Jan-94) Because of massive changes in V3.00, there was a
little bug with the name of the output file.

(18-Jan-94) Fixed many problems with library linking, which
could lead to a FreeMemoryTwice Guru (or even
worse) .
Some linker symbols of Lattice/SAS (_LinkerDB,
_ BSSBAS, __ _BSSLEN) and DICE (__RESIDENT,__ DATA_BRAS,
_ DATA_LEN,__ _BSS_LEN) are supported.
The special library format of Lattice/SAS, using
HUNK_LIB and HUNK_INDEX, is also supported. PhxLnk
converts them into standard library format.

Instructions

Requirements
Starting PhxLnk
Parameters
Linker Symbols
Small Data

Sytem Requirements

Since PhxLnk V4.00 you smustx have 0S2.04 (V37) as a minimum. This makes
PhxILnk much shorter, faster and easier for me to code. I don’t think that
this limitation (which is a progress in my eyes) doesn’t hurt anybody
nowadays, 1if you use your Amiga for more than just playing :-) (even my
good old A1000 has 0S3.1 installed).

PhxLnk is tested with the following configurations:
A4000(68040), 2 Chip, 16 Fast, 0S3.1

PhxLnk 477

A1000(68010), 0.5 Chip, 2 Fast, 0S3.1

1.6 Starting PhxLnk

Normally, PhxLnk is started from your shell. You should copy PhxLnk
from the 0S2.x directory, if you have 0S2.x installed, or from the
0S3.x directory otherwise, and copy it to C: or define a path or link.
The 0S2.x version will run on 0S3.x Amigas too, but it’s a bit larger.

Format: PhxLnk [FROM] {<object module|library module>}
[TO <output file>] [SMALLCODE] [SMALLDATA] [NODEBUG] [CHIP]
[PRESERVE] [PVCOMPAT] [BLINKCOMPAT] [KICK1] [MAXSECTS=<n>]
[DEFINE "<symbol>[=value] [, <symbol>...]"]

Template: FROM/M,TO/K,SC=SMALLCODE/S, SD=SMALLDATA/S, ND=NODEBUG/S,CHIP/S,
PRESERVE/S, PV=PVCOMPAT/S, B=BLINKCOMPAT/S, K1=KICK1/S,
MAXSECTS/K/N, DEF=DEFINE/K

Starting PhxLnk with no argument or with a single ’"?’ will display a short
description. For a more precise description, refer to Parameters.

There are three types of modules which can be linked:

o Object modules with extension ".o" or ".obj" which normally consist of
one unit. PhxLnk also links object modules with several units.
o Library modules with extension ".l1ib" which can consist of any number of

units. PhxLnk will only include units, if at least one ext_def-symbol is
referenced in an object module unit or in an already included library
unit.

o Lattice/SAS Extended Library modules (also with ".1lib" extension). They
are translated into the standard library format by PhxLnk (not a very
good solution - but it works).

Names with another extension will be rejected.

The module names can appear in any order, provided the first is an object
module which contains the startup code.

IMPORTANT!

Load files created by PhxLnk are NOT Kickstart 1l.x compatible by default!
PhxLnk deletes zero bytes at the end of a section and tries to use the
much shorter RELOC32SHORT blocks, unless you set the KICK1l switch.

1.7 Description of command line parameters

FROM/M All parameters without a keyword specify the names of the
object and library modules to link. For valid name exten-—
sions refer to Starting PhxLnk.

Names which start with an '@’ specify the name of an ascii

file, which contains object and library names (or even more
"@’s, 1if you like). These names can be separated by blanks,
tabs, linefeeds or whatever you want. ’'"’ are supported.

PhxLnk

5/7

TO/K

CHIP/S

PRESERVE/S

B=BLINKCOMPAT/S

K1=KICK1l/S

SC=SMALLCODE/S

SD=SMALLDATA/S

ND=NODEBUG/ S

PV=PVCOMPAT/S

Determines the name of the output file to be produced. If not
specified, the output file has the name of the first module
without its extension. Example:

"PhxLnk progl.o prog2.o c.lib m.lib" will generate a load
file with the name "progl".

This switch forces all sections to be loaded to Chip memory.

The normal case is, that PhxLnk removes all section with
zero length to save memory. Choose this switch, if you want
to preserve empty sections.

PhxInk will be compatible to BLink, when linking small data
modules. That means, that if the small data section is
smaller than 32k, PhxLnk will use a small data pointer
(_LinkerDB) which points to the beginning of this section
instead 32766 bytes into it. As a result all near-offsets
will start with 0 instead -32766.

PhxILnk creates a load file which is compatible to Kick-
start 1.x. That will prevent PhxLnk from deleting zero-
bytes at the end of a section or trying to generate
these nice RELOC32SHORT blocks.

Normally only the sections with the same type and name will
be coalesced. This switch makes PhxLnk to ignore the names
of Code sections and to produce one large Code sections.
Usually SMALLCODE is chosen, when using the small code model
with your assembler or compiler.

As with SMALLCODE the section names are ignored, but now for
all Data and Bss sections. Important: Data and Bss will not
be mixed. This large section will contain first all Data and
then all Bss sections.

Because the Bss part has no definite contents (only zeros),
only the Data part will be stored. The size of Bss is stored
together with the Data size in the load file’s header.

Since 052.0 the Bss part will be initialized to zero, when
it’s loaded (e.g. by LoadSegment ()). But beware (!!), this
is not the case with Kickstart 1.x!

If you don’t want to see your programs crash on some Kick
1.3 dinosaurs, I recommend to clear the Bss part manually by
using the special Linker-symbols _DATA_BAS_, _DATA_LEN_ and
_BSS_LEN_ (refer to Linker Symbols for more information).
All references to symbols of this Small Data section will

be calculated as if the Bss sections were directly behind
the Data.

You should use this switch, when compiling/assembling your
code with Small Data model enabled.

The HUNK_SYMBOL and HUNK_DEBUG blocks, which contain infor-
mations for a debugger will not be included in the output
file.

This switch activates the PowerVisor compatibility mode,
which is necassary when using Source Level Debugging in-
formations in your program. Unfortunately the author of

PhxLnk

6/7

PowerVisor, Jorrit Tyberghein, currently does not plan a
new release.

MAXSECTS/K/N Determines the maximum number of sections per unit. The

default value ist 16, which should be enough for most cases.

DEF=DEFINE/K Defines an absolute Linker Symbol. Definition of multiple
symbols must be seperated by commas. Don’t forget the to
embed the whole term, which follows DEFINE, in quotes
(because of some problems with ReadArgs()) !

1.8 Linker Symbols

The linker itself creates some ext_def ($0lxxxxxx) and ext_abs ($02xxxxxx)
symbols which will be needed by the startup code of a program using the
Small Data model.

_DATA_BAS_ (ext_def) Base address of the small-data section.
_DATA_LEN_ (ext_abs) Length of the Data-part of the small-data section.
_BSS_LEN__ (ext_abs) Length of the Bss—-part of the small-data section.

For compatibility with Lattice/SAS or DICE you may also use these symbols:

Lattice/SAS:

_LinkerDB (ext_def) This symbol can be used to initialize your small
data base register. Normally it will point 32766 bytes into the
small data section, but when the BLink compatibility switch
was selected and the small data area is smaller than 32k,
it will point to its beginning.

__BSSBAS (ext_def) Base address of the Bss-part of the small-data
section.

__BSSLEN (ext_abs) Length of the Bss-part in longwords.

___ctors and ____dtors are always zero.

DICE:

_ DATA_BAS (ext_def) Base address of the small-data section.

__DATA_LEN (ext_abs) Length of the Data-part of the small-data section in
longwords.

__BSS_LEN (ext_abs) Length of the Bss-part of the small-data section in
longwords.

__ RESIDENT (ext_abs) Always zero.

1.9 Small Data

Small-data symbols can be accessed in a range of 65534 ($fffe) bytes. When
a symbol is outside of this range, the linker will display an error.

The small data model must be initialized by the startup code. When you’re
using A4 as small data pointer, the initialization would look like this:

xref _DATA_BAS__ ; _DATA_BAS_ is a linker symbol

PhxLnk 717

lea _DATA_BAS_+32766,a4 ; a4 always points to the mid. of small data

1.10 Known Bugs

o If the output file has more than 1000 sections there could be a
stack overflow :-)

If any bugs or questions occur, please write to

My Address

1.11 My Address

Standard Mail:
Frank Wille
Auf dem Dreische 45
32049 Herford
GERMANY

Electronic Mail:
frank@phoenix.owl.de

/17
/17
/17
— /77
AR /17
NN/
\N\N///

\XX/ AMIGA FOREVETR !

	PhxLnk
	PhxLnk V4.20 (24-Dec-95)
	Introduction
	History since V3.00
	Instructions
	Sytem Requirements
	Starting PhxLnk
	Description of command line parameters
	Linker Symbols
	Small Data
	Known Bugs
	My Address

