
SQL*Plus User's Guide and Reference

Preface

Introduction

Learning SQL*Plus Basics

Manipulating Commands

Formatting Query Results

Accessing SQL Databases

Command Reference

COPY Command Messages and Codes

Release 3.2 Enhancements

SQL*Plus Limits

SQL Command List

Security

SQL*Plus Commands from Earlier Releases

Glossary

Info
SQL*Plus User's Guide and Reference,    Release 3.2
Part No. A31553-1
Copyright E 1995 Oracle Corporation
All rights reserved.    Printed in the U.S.A.
Contributing Author:    Frank Rovitto
Contributors:    Larry Baer, Lisa Colston, Roland Kovacs, Karen Denchfield-Masterson, Alison Holloway,
Christopher Jones, Anita Lam, Nimish Mehta, Bud Osterberg, Richard Rendell, Farokh Shapoorjee, Larry
Stevens, Andre Touma
This software was not developed for use in any nuclear, aviation, mass transit,    medical, or other
inherently dangerous applications. It is the customer's responsibility to take all appropriate measures to
ensure the safe use of such applications if the programs are used for such purposes.
This software/documentation contains proprietary information of Oracle Corporation; it is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright law.   
Reverse engineering of the software is prohibited.
If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense,
then it is delivered with Restricted Rights and the following legend is applicable:
Restricted Rights Legend    Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer
Software (October 1988).
Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.
If this software/documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with �Restricted Rights", as defined in FAR 52.227-14, Rights in Data -
General, including Alternate III (June 1987).
The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.
CASE Designer, CASE Dictionary, Oracle, SQL* Forms, SQL*Plus, and SQL*ReportWriter are registered
trademarks , and CASE Generator, Oracle Graphics, Oracle*Mail, and PL/SQL are trademarks of Oracle
Corporation.
Lotus and 1-2-3 are trademarks of Lotus Development Corporation.
All other products or company names are used for identification purposes only, and may be trademarks of
their respective owners.

SQL*Plusâ User's Guide and Reference

Release 3.2

Part No. A31553-1

Preface

The SQL*Plus (pronounced "sequel plus") User's Guide and Reference introduces the SQL*Plus program
and its uses. It also provides a detailed description of each SQL*Plus command.

Audience

This Guide addresses business and technical professionals who have a basic understanding of the SQL
database language. If you do not have any familiarity with this database tool, you should refer to the
Oracle7 Server SQL Language Reference Manual. If you plan to use the PL/SQL database language in
conjunction with SQL*Plus, refer to the PL/SQL User's Guide and Reference for information on using
PL/SQL.

How to Use this Guide

Refer to the following tables for a list of topics covered by this Guide, a description of each topic, and the
number of the chapter that covers the topic.

PART IUnderstanding SQL*Plus

Topic Description Chapter
Number

Introduction
Gives an overview of SQL*Plus, instructions on
using this Guide, and information on what you
need to run SQL*Plus.

1

Learning SQL*Plus
Basics

Explains how to start SQL*Plus and enter and
execute commands. You learn by following step-
by-step examples using sample tables.

2

Manipulating
Commands

Also through examples, helps you learn to edit
commands, save them for later use, and write
interactive commands.

3

Formatting Query
Results

Explains how you can format columns, clarify
your report with spacing and summary lines,
define page dimensions and titles, and store and
print query results. Also uses step-by-step
examples.

4

Accessing
Databases

Tells you how to connect to default and remote
databases, and how to copy data between
databases and between tables on the same
database. Includes one example.

5

PART II    Reference

Topic Description Chapter
Number

Command
Reference

Gives you a SQL*Plus command summary
and detailed descriptions of each SQL*Plus
command in alphabetical order.

6

COPY Command
Messages and

Lists copy command error messages, their
causes, and appropriate actions for error
recovery.

Appendix A

Codes

Release
3.2Enhancements

Describes enhancements to SQL*Plus in
Release 3.2.

Appendix B

SQL*Plus Limits
Lists the maximum values for elements of
SQL*Plus.

Appendix C

SQL Command List
Provides a list of major SQL commands and
clauses.

Appendix D

Security
Explains how to restrict users' access to
certain SQL*Plus and SQL commands.

Appendix E

SQL*Plus
Commands from
Earlier Releases

Provides information on SQL*Plus
commands from earlier Releases.

Appendix F

Glossary
Defines technical terms associated with
Oracle and SQL*Plus.

Glossary

Related Publications

Related documentation includes the following publications:

· SQL*Plus Quick Reference

· PL/SQL User's Guide and Reference

· SQL*Module User's Guide and Reference

· Oracle7 Server SQL Language Reference Manual

· Oracle7 Server Concepts Manual

· Oracle7 Server Administrator's Guide

· Oracle7 Server Application Developer's Guide

· Oracle7 Server Distributed Databases Manual

· Oracle7 Server Utilities User's Guide

· Oracle7 Server Messages Manual

· Oracle7 Server Migration Guide

· Oracle7 Server Reference Manual

· Oracle7 Server Tuning Guide

· Oracle7 Parallel Server Manual

· Programmer's Guide to the Oracle Call Interface

· Programmer's Guide to the Oracle Precompilers

· Programmer's Guide to the Oracle Pro*C Precompiler

· Pro*COBOL Supplement to the Oracle Precompilers Guide

· Oracle installation and user's manual(s) provided for your operating system

Your Comments Are Welcome

Oracle Corporation values and appreciates your comments as an Oracle user and reader of the manuals.
As we write, revise, and evaluate, your opinions are the most important input we receive. At the back of
this manual is a Reader's Comment Form that we encourage you to use to tell us both what you like and
what you dislike about this (or other) Oracle manuals. If the form is not at the end of this manual, or if you
would like to contact us, please use the following addresses and phone numbers.

For documentation questions/comments, contact:

SQL*Plus Documentation Manager
Research & Development
Oracle Systems Australia Pty Ltd
324 St. Kilda Road
Melbourne    VIC    3004
Australia
+61 3 685 9100 (telephone)
+61 3 699 1259 (fax)

For product questions/comments, contact:

SQL*Plus Product Manager
Research & Development
Oracle Systems Australia Pty Ltd
324 St. Kilda Road
Melbourne    VIC    3004
Australia
+61 3 685 9100 (telephone)
+61 3 699 1259 (fax)

Understanding SQL*Plus

Introduction
This chapter introduces you to SQL*Plus, covering the following topics:

· overview of the SQL*Plus program

· definition of basic concepts

· explanation of who can use SQL*Plus

· description of other programs you can use with Oracle

· command syntax conventions used in this Guide

· sample tables you will use

· equipment, software, and information you need to run SQL*Plus

Overview of SQL*Plus

You can use the SQL*Plusprogram in conjunction with the SQLdatabase language and its procedural
language extension, PL/SQL. The SQL database language allows you to store and retrieve data in
Oracle. PL/SQL allows you to link several SQL commands through procedural logic.

SQL*Plus enables you to manipulate SQL commands and PL/SQL blocks, and to perform many
additional tasks as well. Through SQL*Plus, you can

· enter, edit, store, retrieve, and run SQL commands and PL/SQL blocks

· format, perform calculations on, store, and print query results in the form of reports

· list column definitions for any table

· access and copy data between SQL databases

· send messages to and accept responses from an end user

Basic Concepts

The following definitionsexplain concepts central to SQL*Plus:

command
An instruction you give SQL*Plus or Oracle.

block
A group of SQL and PL/SQL commands related to one another through procedural logic.

table
The basic unit of storage in Oracle.

query
A SQL command (specifically, a SQL SELECT command) that retrieves information from
one or more tables.

query results
The data retrieved by a query.

report
Query results formatted by you through SQL*Plus commands.

Who Can Use SQL*Plus

The SQL*Plus, SQL, and PL/SQL command languages are powerful enough to serve the needs of users
with some database experience, yet straightforward enough for new users who are just learning to work
with Oracle.

The design of the SQL*Pluscommand language makes it easy to use. For example, to give a column
labelled ENAME in the database the clearer heading "Employee", you might enter the following
command:

COLUMN ENAME HEADING EMPLOYEE

Similarly, to list the column definitions for a table called EMP, you might enter this command:

DESCRIBE EMP

Other Ways of Working with Oracle

Oracle serves as the foundation for a complete set of CASE, application development, and office
automation tools. These tools support every phase of a system's development and life cycle, from
analysis and design through implementation and maintenance.

CASE CASE Designer a systems analysis and design tool
CASE Dictionary a repository of data rules

CASE Generators a suite of application generators

Application Development
Oracle*Forms a screen builder

SQL*Menu a menu builder

SQL*ReportWriter a report builder

Oracle Graphics a chart builder

Oracle Card a multimedia development environment

SQL*TextRetrieval a text search system

PL/SQL a client-server procedural language

Oracle Precompilers programming language interfaces

Office Automation
Oracle*Mail an electronic messaging system

Oracle Data Browser a graphical query tool

Using this Guide

This Guide gives you information on SQL*Plus that applies to all operating systems. Some aspects of
SQL*Plus, however, differ on each operating system. Such operating-system-specific details are covered
in the Oracle installation and user's manual(s) provided for your system.Use these operating-system-
specific manuals in conjunction with the SQL*Plus User's Guide and Reference.

Throughout this Guide, examples showing how to enter commands use a common command syntax and
a common set of sample tables. Both are described below. You will find the conventions for command
syntax particularly useful when referring to the reference portion of this Guide.

Conventions for Command Syntax

The following two tables describe the notation and conventionsfor commandsyntaxused in this Guide.

Feature Example Explanation

uppercase
BTITLE Enter text exactly as spelled; it need

not be in uppercase.

lowercase italics
column A clause value; substitute an

appropriate value.

words with specific
meanings

c A single character.

char A CHAR value¾ a literal in single   
quotes¾ or an expression with a
CHAR value.

d or e A date or an expression with a DATE
value.

expr An unspecified expression.

m or n A number or an expression with    a
NUMBER value.

text A CHAR constant with or without
single quotes.

variable A user variable (unless the text
specifies another variable type).

Table 1 - 1.   
Commands, Terms,
and Clauses

Other words are explained where used if their meaning is not explained by context.

Feature Example Explanation

vertical bar
| Separates alternative syntax

elements that may be optional or
mandatory.

brackets
[OFF|ON] One or more optional items. If two

items appear separated by |, enter
one of the items separated by |. Do
not enter the brackets or |.

braces
{OFF|ON} A choice of mandatory items; enter

one of the items separated by |. Do

not enter the braces or |.

underlining
{OFF|ON} A default value; if you enter

nothing, SQL*Plus assumes the
underlined value.

ellipsis
n... Preceding item(s) may be repeated

any number of times.

Table 1 - 2.   
Punctuation

Enter other punctuation marks (such as parentheses) where shown in the command syntax.

Sample Tables

Many of the concepts and operations in this Guide are illustrated by a set of sampletables.These tables
contain personnel records for a fictitious company. As you complete the exercises in this Guide, imagine
that you are personnel director for this company.

The exercises make use of the information in two sample tables:

EMP
Contains information about the employees of the sample company.

DEPT
Contains information about the departments in the company.

Figure 1 - 1 and Figure 1 - 2 show the information in these tables.

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ----- -------- ---- ----------- ------ ------ ------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 30
 7788 SCOTT ANALYST 7566 09-DEC-82 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
 7876 ADAMS CLERK 7788 12-JAN-83 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

Figure 1
- 1.   
EMP
Table

DEPTNO DNAME LOC
--------- ------------- -----------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Figure 1 - 2.   
DEPT Table

What You Need to Run SQL*Plus

To run SQL*Plus, you need hardware, software, operating-system-specific information, a username and
password, and access to one or more tables.

Hardware and Software

Oracle and SQL*Plus can run on many different kinds of computers. Your computer's operating system
manages the computer's resources and mediates between the computer hardware and programs such as
SQL*Plus. Different computers use different operating systems. For information about your computer's
operating system, see the documentation provided with the computer.

Before you can begin using SQL*Plus, both Oracle and SQL*Plus must be installed on your computer.
Note that in order to take advantage of the enhancements in SQL*Plus Release 3.2, you must have
Oracle7 Release 7.2. For a list of SQL*Plus Release 3.2 enhancements, see Appendix B.

If you have multiple users on your computer, your organization should have a Database
Administrator(called a DBA) who supervises the use of Oracle.

The DBA is responsible for installing Oracle and SQL*Plus on your system. If you are acting as DBA, see
the instructions for installing Oracle and SQL*Plus in the Oracle installation and user's manual(s) provided
for your operating system.

Information Specific to Your Operating System

A few aspects of Oracle and SQL*Plus differ from one type of host computer and operating system to
another. These topics are discussed in the Oracle installation and user's manual(s), published in a
separate version for each host computer and operating system that SQL*Plus supports.

Keep a copy of your Oracle installation and user's manual(s) available for reference as you work through
this Guide. When necessary, this Guide will refer you to your installation and user's manual(s).

Username and Password

When you start SQL*Plus, you will need a usernamethat identifies you as an authorized Oracle user and
a passwordthat proves you are the legitimate owner of your username. The demonstration username,
SCOTT, and password, TIGER, may be set up on your system during the installation procedure. In this
case, you can use the Oracle username SCOTT and password TIGER with the EMP and DEPT tables
(Figure 1 - 1 and Figure 1 - 2).

Multi-User Systems

If several people share your computer's operating system, your DBA can set up your SQL*Plus username
and password. You will also need a system username and password to gain admittance to the operating
system. These may or may not be the same ones you use with SQL*Plus.

Single-User Systems

If only one person at a time uses your computer, you may be expected to perform the DBA's functions for

yourself. In that case, you can use the Oracle username SCOTT and password TIGER. If you want to
define your own username and password, see the Oracle7 Server SQL Language Reference Manual.

Access to Sample Tables

Each table in the database is "owned" by a particular user. You may wish to have your own copies of the
sample tablesto use as you try the examples in this Guide. To get your own copies of the tables, see your
DBA or run the Oracle-supplied command file namedDEMOBLD(you run this file from your operating
system, not from SQL*Plus).

When you have no more use for the sample tables, remove them by running another Oracle-supplied
command file namedDEMODROP. For instructions on how to run DEMOBLD and DEMODROP, see the
Oracle installation and user's manual(s) provided for your operating system.

Learning SQL*Plus Basics

This chapter helps you learn the basics of using SQL*Plus, including the following topics:

· using the keyboard

· starting and leaving SQL*Plus

· running SQL commands, PL/SQL blocks, and SQL*Plus commands

· understanding variables that affect running commands

· saving changes to the database automatically

· stopping a command while it is running

· collecting timing statistics on commands you run

· running host operating system commands and SQL*Forms forms

· listing a table definition

· listing a PL/SQL definition

· controlling the display

· interpreting error messages

Read this chapter while sitting at your computer and try out the examples shown. Before beginning, make
sure you have access to the sample tables described in Chapter 1.

Getting Started

To begin using SQL*Plus, you must first become familiar with the functions of several keys on your
keyboard and understand how to start and leave SQL*Plus.

Using the Keyboard

Several keys on your keyboard have special meaning in SQL*Plus.Table 2 - 1 lists these keys.

See your Oracle installation and user's manual(s) for your operating system to learn which physical key
performs each function on the keyboard commonly used with your host computer.

Note: A SQL*Plus key may perform different functions when pressed in other products or the operating
system.

Fill in each blank in Table 2 - 1 with the name of the corresponding keyboard key. Then locate each key
on your keyboard.

SQL*PlusKey
Name

Keyboard Key
Name

Function

[Return]
___________ End a line of input.

[Backspace]
___________ Move cursor left one character to

correct an error.

[Pause]
___________ Suspend program operation and

display of output.

[Resume]
___________ Resume program operation and output

[Pause].

[Cancel]
___________ Halt program operation; return to the

SQL*Plus command prompt.

[Interrupt]
___________ Exit SQL*Plus and return to the host

operating system.

Table 2 - 1.   
SQL*Plus Special
Keys and their
Functions

Starting SQL*Plus

Now that you have identified important keys on your keyboard, you are ready to start SQL*Plus.

Example 2-1Starting SQL*Plus

This example shows you how to startSQL*Plus. Follow the steps shown.

1. Make sure that Oracle has been installed on your computer.

2. Turn on your computer (if it is off) and log on to the host operating system (if required). If you are
already using your computer, you need not log off or reset it. Simply exit from the program you are
using (if any).

You should see one or more characters at the left side of the screen. This is the operating
system'scommand prompt, which signals that the operating system is ready to accept a command.
In this Guide the operating system's prompt will be represented by a dollar sign ($). Your computer's
operating system prompt may be different.

3. Enter the command SQLPLUSand press [Return]. This is an    operating system command that
starts SQL*Plus.

Note: Some operating systems expect you to enter commands in lowercase letters. If your system
expects lowercase, enter the SQLPLUS command in lowercase.

$ SQLPLUS

SQL*Plus displays its version number, the date, and copyright information, and prompts you for your
username (the text displayed on your system may differ slightly):

SQL*Plus: Version 3.2 - Production on Fri April 10 09:39:26 1995

Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.

Enter user-name:

4. Enter yourusernameand press [Return]. SQL*Plus displays the prompt "Enter password:".

5. Enter your passwordand press [Return] again. For your protection, your password does not appear
on the screen.

The process of entering your username and password is called logging in. SQL*Plus displays the
version of Oracle to which you connected and the versions of available tools such as PL/SQL.

Next, SQL*Plusdisplays the SQL*Plus command prompt:

SQL>

The command prompt indicates that SQL*Plus is ready to accept your commands.

If SQL*Plus does not start, you should see a message meant to help you correct the problem. For further
information, refer to the Oracle7 Server Messages and Codes manual for Oracle messages, or to your
operating system manual for system messages.

Shortcuts to Starting SQL*Plus

When you startSQL*Plus, you can enter your username and password, separated by a slash (/), following
the command SQLPLUS. For example, if your username is SCOTT and your password is TIGER, you
can enter

$ SQLPLUS SCOTT/TIGER

and press [Return]. You can also arrange to log in to SQL*Plus automatically when you log on to your
host operating system. See the Oracle installation and user's manual(s) provided for your operating
system for details.

Leaving SQL*Plus

When you are done workingwith SQL*Plusand wish to return to the operating system, enter the
EXITcommand at the SQL*Plus command prompt.

Example 2-2Exiting SQL*Plus

To leave SQL*Plus, enter the EXIT command at the SQL*Plus command prompt:

SQL> EXIT

SQL*Plus displays the version of Oracle from which you disconnected and the versions of tools available
through SQL*Plus. After a moment you will see the operating system prompt.

Before continuing with this chapter, follow steps 3, 4, and 5 of Example 2-1 to start SQL*Plus again.
Alternatively, log in using the shortcut shown under "Shortcuts to Starting SQL*Plus" above.

Entering and Executing Commands

Entering Commands

Your computer's cursor, or pointer (typically an underline, a rectangular block, or a slash), appears after
the command prompt. The cursor indicates the place where the next character you type will appear on
your screen.

To tell SQL*Plus what to do, simply type the command you wish to enter. Usually, you separate the words
in a command from each other by a spaceor tab. You can use additional spaces or tabs between words, if
you wish, to make your commands more readable.

Note: You will see examples of spacing and indentation throughout this Guide. When you enter the
commands in the exercises, you do not have to space them as shown, but you may find them clearer to
read if you do.

You can entercommands in capitals or lowercase. For the sake of clarity, all table names, column names,
and commands in this Guide appear in capital letters.

You can enter three kinds of commandsat the command prompt:

· SQL commands, for working with information in the database

· PL/SQL blocks, also for working with information in the database

· SQL*Plus commands, for formatting query results, setting options, and editing and storing SQL
commands and PL/SQL blocks

The manner in which you continue a command on additional lines, end a command, or execute a
command differs depending on the type of command you wish to enter and run. Examples of how to run
and execute these types of commands are found on the following pages.

Getting Help

To get online help for SQL*PLUS commands, type HELP at the command prompt followed by the name of
the command. For example:

SQL>HELP ACCEPT

If you get a response indicating that help is not available, consult your database administrator. For more
details about the help system, see the HELP command in Chapter 6.

Executing Commands

After you enter the command and direct SQL*Plus to execute it, SQL*Plus processes the command and
redisplays the command prompt, indicating that you can enter another command.

Running SQL Commands

The SQL commandlanguage enables you to manipulate data in the database. See your Oracle7 Server
SQL Language Reference Manual for information on individual SQL commands.

Example 2-3Entering a SQL Command

In this example, you will enter and execute a SQL command to display the employee number, name, job,
and salary of each employee in the sample table EMP.

1. At the command prompt, enter the first line of the command:

SQL> SELECT EMPNO, ENAME, JOB, SAL

If you make a mistake, use [Backspace] to erase it and re-enter. When you are done, press [Return]
to move to the next line.

2. SQL*Plus will display a "2", the prompt for the second line. Enter the second line of the command:

2 FROM EMP WHERE SAL < 2500;

The semicolon(;)means that this is the end of the command. Press [Return]. SQL*Plus processes
the command and displays the resultson the screen:

 EMPNO ENAME JOB SAL
---------- ------------ ---------- ----------
 7369 SMITH CLERK 800
 7499 ALLEN SALESMAN 1600
 7521 WARD SALESMAN 1250
 7654 MARTIN SALESMAN 1250
 7782 CLARK MANAGER 2450
 7844 TURNER SALESMAN 1500
 7876 ADAMS CLERK 1100
 7900 JAMES CLERK 800
 7934 MILLER CLERK 1300

9 rows selected
SQL>

After displaying the results and the number of rows retrieved, SQL*Plus displays the command
prompt again. If you made a mistake and therefore did not get the results shown above, simply re-
enter the command.

The headings may be repeated in your output, depending on the setting of a system variable called
PAGESIZE. Whether you see the message concerning the number of records retrieved depends on
the setting of a system variable called FEEDBACK. You will learn more about system variables later
in this chapter in the section "Variables that Affect Running Commands". To save space, the number
of records selected will not be shown in the rest of the examples in this Guide.

Understanding SQL Command Syntax

Just as spoken language has syntax rulesthat govern the way we assemble words into sentences,
SQL*Plus has syntax rules that govern how you assemble words into commands.You must follow these
rules if you want SQL*Plus to accept and execute your commands.

Dividing a SQL Command into Separate Lines     You can divide your SQL commandinto separate lines
at any points you wish, as long as individual words are not split between lines. Thus, you can enter the
query you entered in Example 2-3 on one line:

SQL> SELECT EMPNO, ENAME, JOB, SAL FROM EMP WHERE SAL < 2500;

You can also enter the query on several lines:

SQL> SELECT
 2 EMPNO, ENAME, JOB, SAL
 3 FROM EMP
 4 WHERE SAL < 2500;

In this Guide, you will find most SQL commands divided into clauses, one clause on each line. In
Example 2-3, for instance, the SELECT and FROM clauses were placed on separate lines. Many people
find this most convenient, but you may choose whatever line division makes your command most
readable to you.

Ending a SQL Command     You can end a SQL commandin one of three ways:

· with a semicolon (;)

· with a slash (/) on a line by itself

· with a blank line

A semicolon (;)tells SQL*Plus that you want to run the command. Type the semicolon at the end of the
last line of the command, as shown in Example 2-3, and press [Return]. SQL*Plus will process the
command and store it in the SQL buffer (see "The SQL Buffer" below for details). If you mistakenly press
[Return] before typing the semicolon, SQL*Plus will prompt you with a line number for the next line of your
command. Type the semicolon and press [Return] again to run the command.

Note: You cannot enter a comment (/* */) on the same line on which you enter a semicolon.

A slash (/)on a line by itself also tells SQL*Plus that you wish to run the command. Press [Return] at the
end of the last line of the command. SQL*Plus prompts you with another line number. Type a slash and
press [Return] again. SQL*Plus will execute the command and store it in the buffer (see "The SQL Buffer"
below for details).

A blank linetells SQL*Plus that you have finished entering the command, but do not want to run it yet.
Press [Return] at the end of the last line of the command. SQL*Plus prompts you with another line
number.

Press [Return] again; SQL*Plus now prompts you with the SQL*Plus command prompt. SQL*Plus does
not execute the command, but stores it in the SQL buffer (see "The SQL Buffer" below for details). If you
subsequently enter another SQL command, SQL*Plus overwrites the previous command in the buffer.

Creating Stored Procedures    Stored procedures are PL/SQL functions, packages, or procedures. To
create stored procedures, you use SQL CREATE commands. The following SQL CREATE commands are
used to create stored procedures:

· CREATE FUNCTION

· CREATE PACKAGE

· CREATE PACKAGE BODY

· CREATE PROCEDURE

· CREATE TRIGGER

Entering any of these commands places you in PL/SQL mode, where you can enter your PL/SQL
subprogram (see also "Running PL/SQL Blocks" in this chapter). When you are done typing your PL/SQL
subprogram, enter a period (.) on a line by itself to terminate PL/SQL mode. To run the SQL command
and create the stored procedure, you must enter RUN or slash (/). A semicolon (;) will not execute these
CREATE commands.

When you use CREATE to create a stored procedure, a message appears if there are compilation errors.
To view these errors, you use SHOW ERRORS. For example:

SQL> SHOW ERRORS PROCEDURE ASSIGNVL

See Chapter 6 for a description of the SHOW command.

To execute a PL/SQL statement that references a stored procedure, you can use the EXECUTE
command. EXECUTE runs the PL/SQL statement that you enter immediately after the command. For
example:

SQL> EXECUTE :ID := EMP_MANAGEMENT.GET_ID('BLAKE')

See Chapter 6 for a description of the EXECUTE command.

The SQL Buffer

The area where SQL*Plus stores your most recently entered SQL command or PL/SQL block is called the
SQL buffer. The command or block remains there until you enter another. Thus, if you want to edit or
rerun the current SQL command or PL/SQL block, you may do so without re-entering it. See Chapter 3 for
details about editing or rerunning a command or block stored in the buffer.

SQL*Plus does not store the semicolon or the slash you type to execute a command in the SQL buffer.

Note: SQL*Plus commands are not stored in the SQL buffer.

Executing the Current SQL Command or PL/SQL Block from the Command Prompt

You can run (or rerun) the current SQL commandor PL/SQL blockby entering the RUNcommand or the
slash(/) commandat the command prompt. The RUNcommand lists the SQL command or PL/SQL block in
the bufferbefore executing the command or block; the slash (/)command simply runs the SQL command
or PL/SQL block.

Running PL/SQL Blocks

You can also use PL/SQLsubprograms (called blocks) to manipulate data in the database. See your
PL/SQL User's Guide and Reference for information on individual PL/SQL statements.

To enter a PL/SQL subprogram in SQL*Plus, you need to be in PL/SQL mode. You are placed in PL/SQL
mode when

· You type DECLARE or BEGIN at the SQL*Plus command prompt. After you enter PL/SQL
mode in this way, type the remainder of your PL/SQL subprogram.

· You type a SQL command (such as CREATE FUNCTION) that creates a stored procedure.

After you enter PL/SQL mode in this way, type the stored procedure you want to create.

SQL*Plus treats PL/SQLsubprograms in the same manner as SQL commands, except that a semicolon(;)
or a blank line does not terminate and execute a block. Terminate PL/SQL subprograms by entering a
period (.) by itself on a new line.

SQL*Plus stores the subprograms you enter at the SQL*Plus command prompt in the SQL buffer.
Execute the current subprogram by issuing a RUN or slash (/) command. Likewise, to execute a SQL
CREATE command that creates a stored procedure, you must also enter RUN or slash (/). A semicolon (;)
will not execute these SQL commands as it does other SQL commands.

SQL*Plus sends the complete PL/SQL subprogram to Oracle for processing (as it does SQL commands).
See your PL/SQL User's Guide and Reference for more information.

You might enter and execute a PL/SQL subprogram as follows:

SQL> DECLARE
 2 x NUMBER := 100;
 3 BEGIN
 4 FOR i IN 1..10 LOOP
 5 IF MOD (i, 2) = 0 THEN --i is even
 6 INSERT INTO temp VALUES (i, x, 'i is even');
 7 ELSE
 8 INSERT INTO temp VALUES (i, x, 'i is odd');
 9 END IF;
 10 x := x + 100;
 11 END LOOP;
 12 END;
 13 .
SQL> /

PL/SQL procedure successfully completed.

When you run a subprogram, the SQL commands within the subprogram may behave somewhat
differently than they would outside of the subprogram. See your PL/SQL User's Guide and Reference for
detailed information on the PL/SQL language.

Running SQL*Plus Commands

You can use SQL*Plus commands to manipulate SQL commands and PL/SQL blocks and to format and
print query results. SQL*Plus treats SQL*Plus commandsdifferently than SQL commands or PL/SQL
blocks. For information on individual SQL*Plus commands, refer to the following chapters of this Guide.

To speed up command entry, you can abbreviate many SQL*Plus commandsto one or a few letters.
Abbreviations for some SQL*Plus commands are described along with the commands in Chapters 3, 4,
and 5. For abbreviations of all SQL*Plus commands, refer to the command descriptions in Chapter 6.

Example 2-4Entering a SQL*Plus Command

This example shows how you might enter a SQL*Plus command to change the format used to display the
column SAL of the sample table EMP.

1. On the command line, enter this SQL*Plus command:

SQL> COLUMN SAL FORMAT $99,999 HEADING SALARY

If you make a mistake, use [Backspace] to erase it and re-enter. When you have entered the line,
press [Return]. SQL*Plus notes the new format and displays the SQL*Plus command prompt again,
ready for a new command.

2. Enter the RUN command to re-run the most recent query (from Example 2-3). SQL*Plus
reprocesses the query and displays the results:

SQL> RUN
1 SELECT EMPNO, ENAME, JOB, SAL
2* FROM EMP WHERE SAL < 2500
 EMPNO ENAME JOB SALARY
-------- ------------- ---------- --------
 7369 SMITH CLERK $800
 7499 ALLEN SALESMAN $1,600
 7521 WARD SALESMAN $1,250
 7654 MARTIN SALESMAN $1,250
 7782 CLARK MANAGER $2,450
 7844 TURNER SALESMAN $1,500
 7876 ADAMS CLERK $1,100
 7900 JAMES CLERK $800
 7934 MILLER CLERK $1,300

The COLUMN command formatted the column SAL with a dollar sign ($) and a comma (,) and gave it a
new heading. The RUN command then reran the query of Example 2-3, which was stored in the buffer.
SQL*Plus does not store SQL*Plus commands in the SQL buffer.

Understanding SQL*Plus Command Syntax

SQL*Plus commands have a different syntaxfrom SQL commands or PL/SQL blocks.

Continuing a Long SQL*Plus Command on Additional Lines       You can continue a long SQL*Plus
commandby typing a hyphenat the end of the line and pressing [Return]. If you wish, you can type a
space before typing the hyphen. SQL*Plus displays a right angle-bracket (>) as a prompt for each
additional line. For example:

SQL> COLUMN SAL FORMAT $99,999 -
> HEADING SALARY

Ending a SQL*Plus Command       You do not need to end a SQL*Plus commandwith a semicolon. When
you finish entering the command, you can just press [Return]. If you wish, however, you can enter a
semicolon at the end of a SQL*Plus command.

Variables that Affect Running Commands

The SQL*Plus command SETcontrols many variables¾ called system variables¾ the settings of which
affect the way SQL*Plus runs your commands. System variables control a variety of conditions within
SQL*Plus, including default column widths for your output, whether SQL*Plus displays the number of
records selected by a command, and your page size. System variables are also called SET command
variables.

The examples in this Guide are based on running SQL*Plus with the system variables at their default
settings. Depending on the settings of your system variables, your output may appear slightly different
than the output shown in the examples. (Your settings might differ from the default settings if you have a

SQL*Plus LOGIN file on your computer.)

For more information on system variables and their default settings, see the SET command in Chapter 6.
For details on the SQL*Plus LOGIN file, refer to the section "Setting Up Your SQL*Plus Environment"
under "Saving Commands for Later Use" in Chapter 3 and to the SQLPLUS command in Chapter 6.

To list the current setting of a SET command variable, enter SHOWfollowed by the variable name at the
command prompt. See the SHOW command in Chapter 6 for information on other items you can list with
SHOW.

Saving Changes to the Database Automatically

Throughthe SQL DML commands UPDATE, INSERT, and DELETE¾ which can be used independently or
within a PL/SQL block¾ specify changes you wish to make to the information stored in the database.
These changes are not made permanent until you enter a SQL COMMITcommand or a SQL DCL or DDL
command (such as CREATE TABLE), or use the autocommit feature. The SQL*Plus autocommit feature
causes pending changes to be committed after a specified number of successful SQL DML transactions.
(A SQL DML transaction is either an UPDATE, INSERT, or DELETE command, or a PL/SQL block.)

You control the autocommit feature with the SQL*Plus SETcommand's AUTOCOMMITvariable. It has
these forms:

SET AUTOCOMMIT ON
Turns autocommit on.

SET AUTOCOMMIT OFF
Turns autocommit off (the default).

SET AUTOCOMMIT n
Commits changes after n SQL commands or PL/SQL blocks.

Example 2-5Turning Autocommit On

To turn the autocommit feature on, enter

SQL> SET AUTOCOMMIT ON

Until you change the setting of AUTOCOMMIT, SQL*Plus will automatically commit changes from each
SQL command or PL/SQL block that specifies changes to the database. After each autocommit,
SQL*Plus displays the following message:

commit complete

When the autocommit feature is turned on, you cannot roll back changes to the database.

To commit changes to the database after a number of SQL DML commands or PL/SQL blocks, for
example, ten, enter

SQL> SET AUTOCOMMIT 10

SQL*Plus counts SQL DML commands and PL/SQL blocks as they are executed and commits the
changes after the tenth SQL DML command or PL/SQL block.

Note: For this feature, a PL/SQL block is regarded as one transaction, regardless of the actual number of
SQL commands contained within it.

To turn the autocommit feature off again, enter the following command:

SQL> SET AUTOCOMMIT OFF

To confirm that AUTOCOMMIT is now set to OFF, enter the following SHOW command:

SQL> SHOW AUTOCOMMIT
autocommit OFF

For more information, see the AUTOCOMMIT variable of the SET command in Chapter 6.

Stopping a Command while It Is Running

Supposeyou have displayed the first page of a 50 page report and decide you do not need to see the rest
of it. Press [Cancel]. (Refer to Table 2 - 1 at the beginning of this chapter to see how [Cancel] is labelled
on your keyboard.) SQL*Plus will stop the display and return to the command prompt.

Note: Pressing [Cancel] will not stop the printing of a file that you have sent to a printer with the OUT
clause of the SQL*Plus SPOOL command. (You will learn about printing query results in Chapter 4.) You
can stop the printing of a file through your operating system; see your operating system manuals for
information.

Collecting Timing Statistics on Commands You Run

Use the SQL*Plus command TIMINGto collect and display data on the amount of computer resources
used to run one or more commandsor blocks. TIMING collects data for an elapsed period of time, saving
the data on commands run during the period in a timer. See TIMING in Chapter 6 and the Oracle
installation and user's manuals provided for your operating system for more information.

To delete all timers, enter CLEAR TIMING at the command prompt.

Running Host Operating System Commands

You can execute a host operating systemcommandfrom the SQL*Plus command prompt. This is useful
when you want to perform a task such as listing existing host operating system files.

To run a host operating system command, enter the SQL*Plus command HOSTfollowed by the host
operating system command. For example, this SQL*Plus command runs a host command, DIRECTORY
*.SQL:

SQL> HOST DIRECTORY *.SQL

When the host command finishes running, the SQL*Plus command prompt appears again.

Running SQL*Forms Forms

If the RUNFORM option was enabled during SQL*Plus installation, you can also run a
SQL*Formsformfrom the SQL*Plus command prompt. To run a form, enter the SQL*Plus command
RUNFORMfollowed by the form name:

SQL> RUNFORM myform

Getting Help

While you use SQL*Plus, you may find that you need to list column definitions for a table, or start and
stop the display that scrolls by. You may also need to interpret error messages you receive when you
enter a command incorrectly or when there is a problem with Oracle or SQL*Plus. The following sections
describe how to get help for those situations.

Listing a Table Definition

To see the definitions of each column in a given table, use the SQL*Plus DESCRIBEcommand.

Example 2-6Using the DESCRIBE Command

To list the column definitions of the three columns in the sample table DEPT, enter

SQL> DESCRIBE DEPT

The following output results:

Name Null? Type
------------------------------- ------- ----------
DEPTNO NOT NULL NUMBER(2)
DNAME CHAR(14)
LOC CHAR(13)

Note: DESCRIBE accesses information in the Oracle data dictionary. You can also use SQL SELECT
commands to access this and other information in the database. See your Oracle7 Server SQL Language
Reference Manual for details.

Listing PL/SQL Definitions

To see the definition of a function or procedure, use the SQL*Plus DESCRIBE command.

Example 2-7Using the DESCRIBE Command

To list the definition of a function called AFUNC, enter

SQL> DESCRIBE afunc

The following output results:

FUNCTION afunc RETURNS NUMBER
Argument Name Type In/Out Default?
--------------- -------- -------- ---------
F1 CHAR IN
F2 NUMBER IN

Controlling the Display

Suppose that you wish to stop and examine the contents of the screen while displaying a long reportor
the definition of a table with many columns. Press [Pause].(Refer to Table 2 - 1 to see how [Pause] is
labelled on your keyboard.) The display will pause while you examine it. To continue, press [Resume].

If you wish, you can use the PAUSEvariable of the SQL*Plus SETcommand to have SQL*Plus pause after
displaying each screen of a query or report. Refer to SET in Chapter 6 for details.

Interpreting Error Messages

If SQL*Plus detects an error in a command, it will try to help you out by displaying an error message.

Example 2-8Interpreting an ErrorMessage

For example, if you misspell the name of a table while entering a command, an error message will tell you
that the table or view does not exist:

SQL> DESCRIBE DPT
Object does not exist.

You will often be able to figure out how to correct the problem from the message alone. If you need further
explanation, take one of the following steps to determine the cause of the problem and how to correct it:

· If the error is a numbered error for the SQL*Plus COPY command, look up the message in
Appendix A of this Guide.

· If the error is a numbered error beginning with the letters "ORA", look up the message in the
Oracle7 Server Messages and Codes manual or in the Oracle installation and user's manual(s)
provided for your operating system to determine the cause of the problem and how to correct it.

· If the error is unnumbered, look up correct syntax for the command that generated the error in
Chapter 6 of this Guide for a SQL*Plus command, in the Oracle7 Server SQL Language
Reference Manual for a SQL command, or in the PL/SQL User's Guide and Reference for a
PL/SQL block. Otherwise, contact your DBA.

Manipulating Commands
This chapter helps you learn to manipulate SQL*Plus commands, SQL commands, and PL/SQL blocks. It
covers the following topics:

· editing a SQL*Plus command

· using SQL*Plus commands to list and modify the command currently stored in the buffer

· editing commands with a system editor

· creating and modifying command files to hold commands for later use

· retrieving and running command files

· saving SQL*Plus environment settings

· writing interactive commands that include user variables and substitution variables

· passing parameters to a command file

· bind variables

Read this chapter while sitting at your computer and try out the examples shown. Before beginning, make
sure you have access to the sample tables described in Chapter 1.

Editing Commands

Because SQL*Plus does not store SQL*Plus commands in the buffer, you edit a SQL*Plus
commandentered directly to the command prompt by using [Backspace] or by re-entering the command.

You can use a number of SQL*Plus commands to edit the SQL commandor PL/SQL blockcurrently stored
in the buffer. Alternatively, you can use a host operating system editor to edit the buffer contents.

Table 3 - 1 shows several SQL*Plus commands that allow you to examine or change the command in the
buffer without re-entering the command.

Command Abbreviation Purpose

APPENDtext
A text adds text at the end of a line

CHANGE/old/new
C /old/new changes old to new in a line

CHANGE /text
C /text deletes text from a line

CLEARBUFFER
CL BUFF deletesall lines

DEL
(none) deletes the current line

DEL n
(none) deletes line n

DEL *
(none) deletes the current line

DEL LAST
(none) deletes the last line

DEL m n
(none) deletes a range of lines (m to n)

INPUT
I adds one or more lines

INPUT text
I text adds a line consisting of text

LIST
L lists all linesin the SQL buffer

LIST n
L n or n lists line n

LIST *
L * lists the current line

LIST LAST
L LAST lists the last line

LIST m n
L m n lists a range of lines (m to n)

Table 3 - 1.    SQL*Plus
Editing Commands

You will find these commands useful if you mistype a command or wish to modify a command you have
entered.

Listing the Buffer Contents

Any editing command other than LIST and DEL affects only a single line in the buffer. This line is called
the current line. It is marked with an asterisk when you list the current commandor block.

Example 3-1Listing the Buffer Contents

Suppose you want to list the current command. Use the LIST command as shown below. (If you have
EXITed SQL*Plus or entered another SQL command or PL/SQL block since following the steps in
Example 2-3, perform the steps in that example again before continuing.)

SQL> LIST
 1 SELECT EMPNO, ENAME, JOB, SAL
 2* FROM EMP WHERE SAL < 2500

Notice that the semicolon you entered at the end of the SELECT command is not listed. This semicolonis
necessary to mark the end of the command when you enter it, but SQL*Plus does not store it in the SQL
buffer. This makes editing more convenient, since it means you can add a new line to the end of the
buffer without removing a semicolon from the line that was previously the last.

Editing the Current Line

The SQL*Plus CHANGEcommand allows you to editthe current line. Various actions determine which
lineis the current line:

· LISTa given line to make it the current line.

· When you LISTor RUNthe command in the buffer, the last line of the command becomes the
current line. (Using the slash (/) command to run the command in the buffer does not affect the
current line, however.)

· If you get an errormessage, the line containing the error automatically becomes the current line.

Example 3-2Making an Error in Command Entry

Suppose you try to select the DEPTNO column but mistakenly enter it as DPTNO. Enter the following
command, purposely misspelling DEPTNO in the first line:

SQL> SELECT DPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO = 10;

You see this message on your screen:

SELECT DPTNO, ENAME, SAL
 *
ERROR at line 1:
ORA-0904: invalid column name

Examine the error message; it indicates an invalid column name in line 1 of the query. The asterisk shows
the point of error¾ the mistyped column DPTNO.

Instead of re-entering the entire command, you can correct the mistake by editing the command in the
buffer. The line containing the error is now the current line. Use the CHANGE command to correct the
mistake. This command has three parts, separated by slashes or any other non-alphanumeric character:

· the word CHANGE or the letter C

· the sequence of characters you want to change

· the replacement sequence of characters

The CHANGE command finds the first occurrence in the current line of the character sequence to be
changed and changes it to the new sequence. If you wish to re-enter an entire line, you do not need to
use the CHANGE command:    re-enter the line by typing the line number followed by a space and the
new text and pressing [Return].

Example 3-3Correcting the Error

To change DPTNO to DEPTNO, change the line with the CHANGE command:

SQL> CHANGE /DPTNO/DEPTNO

The corrected line appears on your screen:

1* SELECT DEPTNO, ENAME, SAL

Now that you have corrected the error, you can use the RUN command to run the command again:

SQL> RUN

SQL*Plus lists the command, and then runs it:

1 SELECT DEPTNO, ENAME, SAL
2 FROM EMP
3* WHERE DEPTNO = 10
 DEPTNO ENAME SALARY
------- ---------- -------
 10 CLARK $2,450
 10 KING $5,000
 10 MILLER $1,300

Note that the column SAL retains the format you gave it in Example 2-4. (If you have left SQL*Plus and
started again since performing Example 2-4, the column has reverted to its original format.)

For information about the significance of case in a CHANGE command and on using wildcards to specify
blocks of text in a CHANGE command, refer to CHANGE in Chapter 6.

Adding a New Line

To inserta new lineafter the current line, use the INPUTcommand.

To insert a line before line 1, enter a zero ("0") and follow the zero with text. SQL*Plus inserts the line at
the beginning of the buffer and that line becomes line 1.

SQL> 0 SELECT EMPNO

Example 3-4 Adding a Line

Suppose you want to add a fourth line to the SQL command you modified in Example 3-3. Since line 3 is
already the current line, enter INPUT (which may be abbreviated to I) and press [Return]. SQL*Plus
prompts you for the new line:

SQL> INPUT
 4

Enter the new line. Then press [Return]. SQL*Plus prompts you again for a new line:

 4 ORDER BY SAL
 5

Press [Return] again to indicate that you will not enter any more lines, and then use RUN to verify and
rerun the query.

Appending Text to a Line

To add textto the end of a linein the buffer, use the APPENDcommand:

1. Use the LIST command (or just the line number) to list the line you want to change.

2. Enter APPEND followed by the text you want to add. If the text you want to add begins with a blank,
separate the word APPEND from the first character of the text by two blanks: one to separate
APPEND from the text, and one to go into the buffer with the text.

Example 3-5 Appending Text to a Line

To append a space and the clause DESC to line 4 of the current query, first list line 4:

SQL> LIST 4
 4* ORDER BY SAL

Next, enter the following command (be sure to type two spaces between APPEND and DESC):

SQL> APPEND DESC
 4* ORDER BY SAL DESC

Use RUN to verify and rerun the query.

Deleting Lines

To delete linesin the buffer, use the DELcommand:

1. Use the LIST command (or just the line numbers) to list the lines you want to delete.

2. Enter DEL with an optional clause.

Suppose you want to delete the current line to the last line inclusive. Use the DEL command as shown
below.

SQL> DEL * LAST

DEL makes the following line of the buffer (if any) the current line.

For more information, see DEL in Chapter 6.

Editing Commands with a System Editor

Your host computer's operating systemhas one or more text editorsthat you can use to create and edit
host system files.Text editors perform the same general functions as the SQL*Plus editing commands, but
you may find them more familiar.

You can run your host operating system's default text editor without leaving SQL*Plus by entering the
EDITcommand:

SQL> EDIT

EDIT loads the contents of the bufferinto your system's default text editor. You can then edit the text with
the text editor's commands. When you tell the text editor to save edited text and then exit, the text is
loaded back into the buffer.

Toload the buffer contents into a text editor other than the default, use the SQL*Plus DEFINEcommand to
define a variable, _EDITOR, to hold the name of the editor. For example, to define the editor to be used
by EDIT as EDT, enter the following command:

SQL> DEFINE _EDITOR = EDT

You can also define the editor to be used by EDIT in your user or site profile. See "Setting Up Your
SQL*Plus Environment" in Chapter 3 and DEFINE and EDIT in Chapter 6 for more information.

Saving Commands for Later Use

Through SQL*Plus, you can store one or more commands in a file, called a command file.After you create
a command file, you can retrieve, edit, and run it. Use command files to save commands for use over
time, especially complex commands or PL/SQL blocks.

Storing Commands in Command Files

You can store one or more SQL commands, PL/SQL blocks, and SQL*Plus commands in command files.
You create a command file within SQL*Plus in one of three ways:

· enter a command and save the contents of the buffer

· use INPUT to enter commands and then save the buffer contents

· use EDIT to create the file from scratch using a host system text editor

Because SQL*Plus commands are not stored in the buffer, you must use one of the latter two methods to
save SQL*Plus commands.

Creating a Command File by Saving the Buffer Contents

To savethe current SQL commandor PL/SQL blockfor later use, enter theSAVEcommand. Follow the
commandwith a filename:

SQL> SAVE file_name

SQL*Plus adds the extension SQL to the filename to identify it as a SQL query file. If you wish to save the
command or block under a name with a different file extension, type a period at the end of the filename,
followed by the extension you wish to use.

Note that within SQL*Plus, you separate the extension from the filename with a period. Your operating
system may use a different character or a space to separate the filename and the extension.

Example 3-6Saving the Current Command

First, LIST the buffer contents to see your current command:

SQL> LIST
 1 SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO = 10
 4* ORDER BY SAL DESC

If the query shown is not in your buffer, re-enter the query now. Next, enter the SAVE command followed
by the filename DEPTINFO:

SQL> SAVE DEPTINFO
Created file DEPTINFO

You can verify that the command fileDEPTINFO exists by entering the SQL*Plus HOSTcommand followed
by your host operating system's file listing command:

SQL> HOST your_host's_file_listing_command

You can use the same method to save a PL/SQL block currently stored in the buffer.

Creating a Command File by Using INPUT and SAVE

If you use INPUTto enter your commands,you can enter SQL*Plus commands (as well as one or more
SQL commands or PL/SQL blocks) into the buffer. You must enter the SQL*Plus commands first, and the
SQL command(s) or PL/SQL block(s) last¾ just as you would if you were entering the commands directly
to the command prompt.

You can also store a set of SQL*Plus commands you plan to use with many different queries by
themselves in a command file.

Example 3-7Saving Commands Using INPUT and SAVE

Suppose you have composed a query to display a list of salespeople and their commissions. You plan to
run it once a month to keep track of how well each employee is doing. To compose and save the query
using INPUT, you must first clear the buffer:

SQL> CLEARBUFFER

Next, use INPUT to enter the command (be sure not to type a semicolon at the end of the command):

SQL> INPUT
 1 COLUMN ENAME HEADING SALESMAN
 2 COLUMN SAL HEADING SALARY FORMAT $99,999
 3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
 4 SELECT EMPNO, ENAME, SAL, COMM
 5 FROM EMP
 6 WHERE JOB = 'SALESMAN'
 7

The zero at the end of the format model for the column COMM tells SQL*Plus to display a zero instead of
a blank when the value of COMM is zero for a given row. Format models and the COLUMN command are
described in more detail in Chapter 4.

Now use the SAVEcommand to store your query in a filecalled SALES with the extension SQL:

SQL> SAVE SALES
Created file SALES

Note that you do not type a semicolonat the end of the query; if you did include a semicolon, SQL*Plus
would attempt to run the buffer contents. The SQL*Plus commands in the buffer would produce an error
because SQL*Plus expects to find only SQL commands in the buffer. You will learn how to run a
command file later in this chapter.

To input more than one SQL command, leave out the semicolons on all the SQL commands. Then, use
APPEND to add a semicolon to all but the last command. (SAVE appends a slash to the end of the file
automatically; this slash tells SQL*Plus to run the last command when you run the command file.)

To input more than one PL/SQL block, enter the blocks one after another without including a period or a
slash on a line between blocks. Then, for each block except the last, list the last line of the block to make
it current and use INPUT in the following form to insert a slash on a line by itself:

INPUT /

Creating Command Files with a System Editor

You can also create a command filewith a host operating system text editor by entering EDITfollowed by
the name of the file, for example:

SQL> EDIT SALES

Like the SAVE command, EDIT adds the filename extension SQL to the name unless you type a period
and a different extension at the end of the filename. When you save the command file with the text editor,
it is saved back into the same file.

You must include a semicolon at the end of each SQL command and a period on a line by itself after each
PL/SQL block in the file. (You can include multiple SQL commandsand PL/SQL blocks.)

When you create a command file using EDIT, you can also include SQL*Plus commands at the end of the
file. You cannot do this when you create a command file using the SAVE command because SAVE
appends a slash to the end of the file. This slash would cause SQL*Plus to run the command file twice,
once upon reaching the semicolon at the end of the last SQL command (or the slash after the last PL/SQL
block) and once upon reaching the slash at the end of the file.

Placing Comments in Command Files

You can enter commentsin a command filein one of three ways:

· using the SQL*Plus REMARK command

· using the SQL comment delimiters, /* ... */

· using ANSI/ISO (American National Standards Institute/International Standards Organization)
comments, --

Anything that is identified in one of these ways as a comment is not parsed or executed by SQL*Plus.

Note: You cannot enter a comment on the same line on which you enter a semicolon.

Using the REMARK Command

Use the REMARKcommand on a line by itself in the command file, followed by commentson the same
line. To continue the comments on additional lines, enter additional REMARK commands. Do not place a
REMARK command between different lines of a single SQL command.

REMARK Commissions report
REMARK to be run monthly.
COLUMN ENAME HEADING SALESMAN
COLUMN SAL HEADING SALARY FORMAT $99,999
COLUMN COMM HEADING COMMISSION FORMAT $99,990
REMARK Includes only salesmen.
SELECT EMPNO, ENAME, SAL, COMM
FROM EMP
WHERE JOB = 'SALESMAN'

Using /*...*/

Enter the SQL commentdelimiters, /*...*/, on separate lines in your command file, on the same line as a
SQL command, or on a line in a PL/SQL block. The comments can span multiple lines, but cannot be
nested within one another:

/* Commissions report
to be run monthly. */
COLUMN ENAME HEADING SALESMAN
COLUMN SAL HEADING SALARY FORMAT $99,999
COLUMN COMM HEADING COMMISSION FORMAT $99,990
SELECT EMPNO, ENAME, SAL, COMM
FROM EMP
WHERE JOB = 'SALESMAN' /* Includes only salesmen. */

If you enter a SQL comment directly at the command prompt, SQL*Plus does not store the comment in
the buffer.

Using --

You can use ANSI/ISO "--"style commentswithin SQL statements, PL/SQL blocks, or SQL*Plus
commands. Since there is no ending delimiter, the comment cannot span multiple lines. For PL/SQL and
SQL, enter the comment after a command on a line or on a line by itself:

-- Commissions report to be run monthly
DECLARE --block for reporting monthly sales

For SQL*Plus commands, you can only include "--" style comments if they are on a line by themselves.
For example, these comments are legal:

--set maximum width for LONG to 777
SET LONG 777
-- set the heading for ENAME to be SALESMAN
COLUMN ENAME HEADING SALESMAN

These comments are illegal:

SET LONG 777 -- set maximum width for LONG to 777
SET -- set maximum width for LONG to 777 LONG 777

If you entered the following SQL*Plus command, it would be treated as a comment and would not be
executed:

-- SET LONG 777

Retrieving Command Files

If you want to place the contents of a command file in the buffer, you must retrieve the command from the
filein which it is stored. You can retrieve a command file using the SQL*Plus command GET.

Just as you can save a query from the buffer to a file with the SAVE command, you can retrieve a query

from a fileto the buffer with the GETcommand:

SQL> GET file_name

When appropriate to the operating system, SQL*Plus adds a period and the extension SQL to the
filename unless you type a period at the end of the filename followed by a different extension.

Example 3-8Retrieving aCommand File

Suppose you need to retrieve the SALES file in a later session. You can retrieve the file by entering the
GET command. To retrieve the file SALES, enter

SQL> GET SALES
 1 COLUMN ENAME HEADING SALESMAN
 2 COLUMN SAL HEADING SALARY FORMAT $99,999
 3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
 4 SELECT EMPNO, ENAME, SAL, COMM
 5 FROM EMP
 6* WHERE JOB = 'SALESMAN'

SQL*Plus retrieves the contents of the file SALES with the extension SQL into the SQL buffer and lists it
on the screen. Then you can edit the command further. If the file did not contain SQL*Plus commands,
you could also execute it with the RUN command.

Running Command Files

The    STARTcommand retrieves a command fileand runs the command(s) it contains. Use STARTto run a
command filecontaining    SQL commands, PL/SQL blocks, and/or SQL*Plus commands. Follow the word
START with the name of the file:

START file_name

If the file has the extension SQL, you need not add the period and the extension SQL to the filename.

Example 3-9Running aCommand File

To retrieve and run the command stored in SALES.SQL, enter

SQL> START SALES

SQL*Plus runs the commands in the file SALES and displays the results of the commands on your
screen, formatting the query results according to the SQL*Plus commands in the file:

 EMPNO SALESMAN SALARY COMMISSION
---------- ---------- -------- ----------
 7499 ALLEN $1,600 $300
 7521 WARD $1,250 $500
 7654 MARTIN $1,250 $1,400
 7844 TURNER $1,500 $0

To see the commands as SQL*Plus "enters" them, you can set the ECHOvariable of the SETcommand to
ON. The ECHO variable controls the listing of the commands in command files run with the START, @
and @@ commands. Setting the ECHO variable to OFF suppresses the listing.

You can also use the @ ("at" sign)command to run a command file:

SQL> @SALES

The @command lists and runs the commands in the specified command filein the same manner as
START. SET ECHO affects the @ command as it affects the START command.

START, @ and @@ leave the last SQL command or PL/SQL block in the command file in the buffer.

Running a Command File as You Start SQL*Plus

To run a commandfileas you start SQL*Plus, use one of the following four options:

· Follow the SQLPLUS command with your username, a slash, your password, a space, @, and
the name of the file:

SQLPLUS SCOTT/TIGER @SALES

SQL*Plus starts and runs the command file.

· Follow the SQLPLUScommandand your username with a space, @,and the name of the file:

SQLPLUS SCOTT @SALES

SQL*Plus prompts you for your password, starts, and runs the command file.

· Include your username as the first line of the file. Follow the SQLPLUS command with @ and
the filename. SQL*Plus prompts for your password, starts, and runs the file.

· Include your username, a slash (/), and your password as the first line of the file. Follow the
SQLPLUS command with @ and the filename. SQL*Plus starts and runs the file.

Nesting Command Files

To run a series of command filesinsequence, first create a command file containing several START
commands, each followed by the name of a command file in the sequence. Then run the command file
containing the START commands. For example, you could include the following START commands in a
command filenamed SALESRPT:

START Q1SALES
START Q2SALES
START Q3SALES
START Q4SALES
START YRENDSLS

Note: The @@ command may be useful in this example. See the @@ command in Chapter 6 for more
information.

Modifying Command Files

You can modify an existing command file in two ways:

· using the EDIT command

· using GET, the SQL*Plus editing commands, and SAVE

To edit an existing commandfilewith the EDITcommand, follow the word EDIT with the name of the file.
For example, to edit an existing filenamed PROFIT that has the extension SQL, enter the following
command:

SQL> EDIT PROFIT

Remember that EDIT assumes the file extension SQL if you do not specify one.

To edit an existing fileusing GET, the SQL*Plus editing commands, and SAVE, first retrieve the file with
GET, then edit the file with the SQL*Plus editing commands, and finally save the file with the SAVE
command.

Note that if you want to replace the contents of an existing command file with the command or block in
the buffer, you must use the SAVEcommand and follow the filename with the word REPLACE. For
example:

SQL> GET MYREPORT
 1* SELECT * FROM EMP
SQL> C/*/ENAME, JOB
 1* SELECT ENAME, JOB FROM EMP
SQL> SAVE MYREPORT REPLACE
Wrote file MYREPORT

If you want to append the contents of the buffer to the end of an existing command file, use the
SAVEcommand and follow the filename with the word APPEND:

SQL> SAVE file_name APPEND

Exiting from a Command File with a Return Code

If your commandfilegenerates a SQL error while running from a batchfile on the host operating system,
you may want to abort the command file and exit with a return code. Use the SQL*Pluscommand
WHENEVER SQLERRORto do this; see WHENEVER SQLERROR in Chapter 6 for more information.

Similarly, the WHENEVER OSERROR command may be used to exit if an operating system error occurs.
See WHENEVER OSERROR in Chapter 6 for more information.

Setting Up Your SQL*Plus Environment

You may wish to set up your SQL*Plusenvironment in a particular way (such as showing the current time
as part of the SQL*Plus command prompt) and then reuse those settings with each session. You can do
this through a host operating system file called LOGINwith the file extension SQL (also called your User
Profile). The exact name of this file is system dependent; see the Oracle installation and user's manual(s)
provided for your operating system for the precise name.

You can add any SQL commands, PL/SQL blocks, or SQL*Plus commands to this file; when you start
SQL*Plus, it automatically searches for your LOGIN file (first in your local directory and then on a system-
dependent path) and runs the commands it finds there. (You may also have a Site Profile. See the
SQLPLUS command in Chapter 6 for more information on the relationship of Site and User Profiles.)

Modifying Your LOGIN File

You can modify your LOGIN file just as you would any other command file. You may wish to add some of
the following commands to the LOGIN file:

SET COMPATIBILITY
Followed by V6 or V7, sets compatibility to the version of Oracle you specify. Setting
COMPATIBILITY to V6 allows you to run command files created with Version 6 of Oracle.

SET NUMFORMAT
Followed by a number format (such as $99,999), sets the default format for displaying
numbers in query results.

SET PAGESIZE
Followed by a number, sets the number of lines per page.

SET PAUSE
Followed by ON, causes SQL*Plus to pause at the beginning of each page of output
(SQL*Plus continues scrolling after you enter [Return]). Followed by text, sets the text to
be displayed each time SQL*Plus pauses (you must also set PAUSE to ON).

SET TIME
Followed by ON, displays the current time before each command prompt.

See the SET command in Chapter 6 for more information on these and other SET command variables
you may wish to set in your SQL*Plus LOGIN file.

Writing Interactive Commands

The following features of SQL*Plus make it possible for you to set up commandfilesthat allow end-user
input:

· defining user variables

· substituting values in commands

· using the START command to provide values

· prompting for values

Defining User Variables

You can define variables, called user variables,for repeated use in a single command file by using the
SQL*Plus command DEFINE. Note that you can also define user variablesto use in titles and to save you
keystrokes (by defining a long string as the value for a variable with a short name).

Example 3-10Defining a User Variable

To define a user variable EMPLOYEE and give it the value "SMITH", enter the following command:

SQL> DEFINE EMPLOYEE = SMITH

To confirm the definition of the variable, enter DEFINE followed by the variable name:

SQL> DEFINE EMPLOYEE

SQL*Plus lists the definition:

DEFINE EMPLOYEE = "SMITH" (CHAR)

To list all user variabledefinitions, enter DEFINE by itself at the command prompt. Note that any user
variable you define explicitly through DEFINE takes only CHAR values (that is, the value you assign to
the variable is always treated as a CHAR datatype). You can define a user variable of datatype NUMBER
implicitly through the ACCEPT command. You will learn more about the ACCEPT command later in this
chapter.

To delete a user variable, use the SQL*Plus command UNDEFINEfollowed by the variable name.

Using Substitution Variables

Suppose you want to write a query like the one in SALES (see Example 3-7) to list the employees with
various jobs, not just those whose job is SALESMAN. You could do that by editing a different CHAR value
into the WHERE clause each time you run the command, but there is an easier way.

By using a substitution variablein place of the value SALESMAN in the WHERE clause, you can get the
same results you would get if you had written the values into the command itself.

A substitution variable is a user variablename preceded by one or two ampersands(&). When SQL*Plus
encounters a substitution variable in a command, SQL*Plus executes the command as though it
contained the value of the substitution variable, rather than the variable itself.

For example, if the variable SORTCOL has the value JOB and the variable MYTABLE has the value EMP,
SQL*Plus executes the commands

SQL> BREAK ON &SORTCOL
SQL> SELECT &SORTCOL, SAL
 2 FROM &MYTABLE
 3 ORDER BY &SORTCOL;

as if they were

SQL> BREAK ON JOB
SQL> SELECT JOB, SAL
 2 FROM EMP
 3 ORDER BY JOB;

(The BREAK command suppresses duplicate values of the column named in SORTCOL; BREAK is
discussed in Chapter 4.)

Where and How to Use Substitution Variables

You can use substitution variablesanywhere in SQL and SQL*Plus commands, except as the first word
entered at the command prompt. When SQL*Plus encounters an undefined substitution variable in a
command, SQL*Plus prompts you for the value.

You can enter any string at the prompt, even one containing blanks and punctuation. If the SQL command
containing the reference should have quote marks around the variable and you do not include them there,
the user must include the quotes when prompted.

SQL*Plus reads your response from the keyboard, even if you have redirected terminal input or output to
a file. If a terminal is not available (if, for example, you run the command file in batch mode), SQL*Plus
uses the redirected file.

After you enter a value at the prompt, SQL*Plus lists the line containing the substitution variable twice:   
once before substituting the value you enter and once after substitution. You can suppress this listing by
setting the SETcommand variable VERIFYto OFF.

Example 3-11Using Substitution Variables

Create a command filenamed STATS, to be used to calculate a subgroup statistic (the maximum value)
on a numeric column:

SQL> CLEAR BUFFER
SQL> INPUT
 1 SELECT &GROUP_COL,
 2 MAX(&NUMBER_COL) MAXIMUM
 3 FROM &TABLE
 4 GROUP BY &GROUP_COL
 5
SQL> SAVE STATS
Created file STATS

Now run the command file STATS and respond as shown below to the prompts for values:

SQL> @STATS
Enter value for group_col: JOB
old 1: SELECT &GROUP_COL,
new 1: SELECT JOB,
Enter value for number_col: SAL
old 2: MAX(&NUMBER_COL) MAXIMUM
new 2: MAX(SAL) MAXIMUM
Enter value for table: EMP
old 3: FROM &TABLE
new 3: FROM EMP
Enter value for group_col: JOB
old 4: GROUP BY &GROUP_COL
new 4: GROUP BY JOB

SQL*Plus displays the following output:

JOB MAXIMUM
---------- ----------
ANALYST 3000
CLERK 1300
MANAGER 2975
PRESIDENT 5000
SALESMAN 1600

If you wish to append characters immediately after a substitution variable, use a period to separate the
variable from the character. For example:

SQL> SELECT * FROM EMP WHERE EMPNO='&X.01';
Enter value for X: 123

will be interpreted as

SQL> SELECT * FROM EMP WHERE EMPNO='12301';

Avoiding Unnecessary Prompts for Values

Supposeyouwanted to expand the file STATS to include the minimum, sum, and average of the "number"
column. You may have noticed that SQL*Plus prompted you twice for the value of GROUP_COL and
once for the value of NUMBER_COL in Example 3-11, and that each GROUP_COL or NUMBER_COL
had a single ampersand in front of it. If you were to add three more functions¾ using a single ampersand
before each¾ to the command file, SQL*Plus would prompt you a total of four times for the value of the
number column.

You can avoid being reprompted for the group and number columns by adding a second ampersand in
front of each GROUP_COL and NUMBER_COL in STATS. SQL*Plus automatically DEFINEs any
substitution variable preceded by two ampersands, but does not DEFINE those preceded by only one
ampersand. When you have DEFINEd a variable, SQL*Plus substitutes the value of variable for each
substitution variablereferencing variable (in the form &variable or &&variable). SQL*Plus will not prompt
you for the value of variable in this session until you UNDEFINE variable.

Example 3-12Using Double Ampersands

To expand the command file STATS using double ampersands and then run the file, first suppress the
display of each line before and after substitution:

SQL> SET VERIFY OFF

Now retrieve and edit STATS by entering the following commands:

SQL> GET STATS
 1 SELECT &GROUP_COL,
 2 MAX(&NUMBER_COL) MAXIMUM
 3 FROM &TABLE
 4 GROUP BY &GROUP_COL
SQL> 2
 2* MAX(&NUMBER_COL) MAXIMUM
SQL> APPEND ,
 2* MAX(&NUMBER_COL) MAXIMUM,
SQL> C /&/&&
 2* MAX(&&NUMBER_COL) MAXIMUM,
SQL> I
 3i MIN(&&NUMBER_COL) MINIMUM,
 4i SUM(&&NUMBER_COL) TOTAL,
 5i AVG(&&NUMBER_COL) AVERAGE
 6i
SQL> 1
 1* SELECT &GROUP_COL,
SQL> C /&/&&
 1* SELECT &&GROUP_COL,
SQL> 7
 7* GROUP BY &GROUP_COL
SQL> C /&/&&
 7* GROUP BY &&GROUP_COL
SQL> SAVE STATS2
created file STATS2

Finally, run the command file STATS2 and respond to the prompts for values as follows:

SQL> START STATS2
Enter value for group_col: JOB
Enter value for number_col: SAL
Enter value for table: EMP

SQL*Plus displays the following output:

JOB MAXIMUM MINIMUM TOTAL AVERAGE
---------- ---------- ---------- ---------- ---------
ANALYST 3000 3000 6000 3000
CLERK 1300 800 4150 1037.5
MANAGER 2975 2450 8275 2758.33333
PRESIDENT 5000 5000 5000 5000
SALESMAN 1600 1250 5600 1400

Note that you were prompted for the values of NUMBER_COL and GROUP_COL only once. If you were
to run STATS2 again during the current session, you would be prompted for TABLE (because its name
has a single ampersand and the variable is therefore not DEFINEd) but not for GROUP_COL or
NUMBER_COL (because their names have double ampersands and the variables are therefore
DEFINEd).

Before continuing, set the system variable VERIFY back to ON:

SQL> SET VERIFY ON

Restrictions

You cannot use substitution variablesin the buffer editing commands, APPEND, CHANGE, DEL, and
INPUT, nor in other commands where substitution would be meaningless, such as REMARK. The buffer
editing commands, APPEND, CHANGE, and INPUT, treat text beginning with "&" or "&&" literally, as any
other text string.

System Variables

The following system variables, specified with the SQL*Plus SET command, affect substitution variables:

SET DEFINE
Defines the substitution character (by default the ampersand "&") and turns substitution
on and off.

SET ESCAPE
Defines an escape character you can use before the substitution character. The escape
character instructs SQL*Plus to treat the substitution character as an ordinary character
rather than as a request for variable substitution. The default escape character is a
backslash (\).

SET VERIFY ON
Lists each line of the command file before and after substitution.

SET CONCAT
Defines the character that separates the name of a substitution variable or parameter
from characters that immediately follow the variable or parameter¾ by default the period
(.).

Refer to SET in Chapter 6 for more information on these system variables.

Passing Parameters through the START Command

You can bypass the prompts for valuesassociated with substitution variables by passing values to
parametersin a command filethrough the STARTcommand.

You do this by placing an ampersand(&) followed by a numeral in the command file in place of a
substitution variable. Each time you run this command file, START replaces each &1 in the file with the
first value (called an argument) after STARTfilename, then replaces each &2 with the second value, and
so forth.

For example, you could include the following commands in a command file called MYFILE:

SELECT * FROM EMP
WHERE JOB='&1'
AND SAL=&2

In the following START command, SQL*Plus would substitute CLERK for &1 and 7900 for &2 in the
command file MYFILE:

SQL> START MYFILE CLERK 7900

When you use arguments with the START command, SQL*Plus DEFINEs each parameter in the
command file with the value of the appropriate argument.

Example 3-13Passing Parameters through START

To create a new command file based on SALES that takes a parameter specifying the job to be displayed,
enter

SQL> GET SALES
 1 COLUMN ENAME HEADING SALESMAN
 2 COLUMN SAL HEADING SALARY FORMAT $99,999
 3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
 4 SELECT EMPNO, ENAME, SAL, COMM
 5 FROM EMP
 6* WHERE JOB = 'SALESMAN'
SQL> CHANGE /SALESMAN/&1
 6* WHERE JOB = '&1'
SQL> 1
 1* COLUMN ENAME HEADING SALESMAN
SQL> CHANGE /SALESMAN/&1
 1* COLUMN ENAME HEADING &1
SQL> SAVE ONEJOB
Created file ONEJOB

Now run the command with the parameter CLERK:

SQL> START ONEJOB CLERK

SQL*Plus lists the line of the SQL command that contains the parameter, before and after replacing the
parameter with its value, and then displays the output:

old 3: WHERE JOB = '&1'
new 3: WHERE JOB = 'CLERK'
 EMPNO CLERK SALARY COMMISSION
--------- ---------- ---------- ----------
 7369 SMITH $800
 7876 ADAMS $1,100
 7900 JAMES $950
 7934 MILLER $1,300

You can use any number of parameters in a command file. Within a command file, you can refer to each
parameter any number of times, and can include the parameters in any order.

Note: You cannot use parameters when you run a command with RUN or slash (/). You must store the
command in a command file and run it with START or @.

Before continuing, return the column ENAME to its original heading by entering the following command:

SQL> COLUMN ENAME CLEAR

Communicating with the User

Three SQL*Plus commands¾ PROMPT, ACCEPT, and PAUSE¾ help you communicate with the end
user. These commands enable you to send messages to the screen and receive input from the user,
including a simple [Return]. You can also use PROMPT and ACCEPT to customize the prompts for values
SQL*Plus automatically generates for substitution variables.

Prompting for and Accepting User Variable Values

Through PROMPTand ACCEPT, you can send messages to the end user and accept values as end-user
input. PROMPT simply displays a messageyou specify on-screen; use it to give directions or information
to the user. ACCEPT prompts the user for a valueand stores it in the user variableyou specify. Use
PROMPT in conjunction with ACCEPT when your prompt for the value spans more than one line.

Example 3-14 Prompting for and Accepting Input

To direct the user to supply a report title and to store the input in the variable MYTITLE for use in a
subsequent query, first clear the buffer:

SQL> CLEAR BUFFER

Next, set up a command file as shownbelow:

SQL> INPUT
 1 PROMPT Enter a title up to 30 characters long.
 2 ACCEPT MYTITLE PROMPT 'Title: '
 3 TTITLE LEFT MYTITLE SKIP 2
 4 SELECT * FROM DEPT
 5
SQL> SAVE PROMPT1
Created file PROMPT1

The TTITLE command sets the top title for your report. This command is covered in detail in Chapter 4.

Finally, run the command file, responding to the prompt for the title as shown:

SQL> START PROMPT1
Enter a title up to 30 characters long.
Title: Department Report as of 1/1/95

SQL*Plus displays the following output:

Department Report as of 1/1/95
 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Before continuing, turn the TTITLE command you entered in the command file off as shown below:

SQL> TTITLE OFF

Customizing Prompts for Substitution Variable Values

If you want to customize the prompt for a substitution variable value, use PROMPTand ACCEPTin
conjunction with the substitution variable, as shown in the following example.

Example 3-15Using PROMPT and ACCEPT in Conjunction with Substitution Variables

As you have seen in Example 3-14, SQL*Plus automatically generates a prompt for a value when you
use a substitution variable. You can replace this prompt by including PROMPT and ACCEPT in the
command file with the query that references the substitution variable. To create such a file, enter the

commands shown:

SQL> CLEAR BUFFER
buffer cleared
SQL> INPUT
 1 PROMPT Enter a valid employee number
 2 PROMPT For example: 7123, 7456, 7890
 3 ACCEPT ENUMBER NUMBER PROMPT 'Emp. no.: '
 4 SELECT ENAME, MGR, JOB, SAL
 5 FROM EMP
 6 WHERE EMPNO = &ENUMBER
 7
SQL> SAVE PROMPT2
Created file PROMPT2

Next, run the command file. SQL*Plus prompts for the value of ENUMBER using the text you specified
with PROMPT and ACCEPT:

SQL> START PROMPT2
Enter a valid employee number
For example: 7123, 7456, 7890
Emp. No.:

Try entering characters instead of numbers to the prompt for "Emp. No.":

Emp. No.: ONE
"ONE" is not a valid number
Emp. No.:

Because you specified NUMBERafter the variable name in the ACCEPTcommand, SQL*Plus will not
accept a non-numeric value. Now enter a number:

Emp. No.: 7521
old 3: WHERE EMPNO = &ENUMBER
new 3: WHERE EMPNO = 7521

SQL*Plus displays the following output:

ENAME MGR JOB SALARY
---------- ---------- --------- ----------
WARD 7698 SALESMAN $1,250

Sending a Message and Accepting [Return] as Input

If you want to display a message on the user's screen and then have the user enter [Return] after reading
the message, use the SQL*Plus command PAUSE. For example, you might include the following lines in
a command file:

PROMPT Before continuing, make sure you have your account card.
PAUSE Press RETURN to continue.

Clearing the Screen

If you want to clear the screenbefore displaying a report (or at any other time), include the SQL*Plus

CLEARcommand with its SCREENclause at the appropriate point in your command file, using the
following format:

CLEAR SCREEN

Before continuing to the next chapter, reset all columns to their original formats and headings by entering
the following command:

SQL> CLEAR COLUMNS

Using Bind Variables

Suppose that you want to be able to display the variables you use in your PL/SQL subprograms in
SQL*Plus or use the same variables in multiple subprograms. If you declare a variable in a PL/SQL
subprogram, you cannot display that variable in SQL*Plus. Use a bind variable in PL/SQL to access the
variable from SQL*Plus.

Bind variables are variables you create in SQL*Plus and then reference in PL/SQL. If you create a bind
variable in SQL*Plus, you can use the variable as you would a declared variable in your PL/SQL
subprogram and then access the variable from SQL*Plus. You can use bind variables for such things as
storing return codes or debugging your PL/SQL subprograms.

Because bind variables are recognized by SQL*Plus, you can display their values in SQL*Plus or
reference them in other PL/SQL subprograms that you run in SQL*Plus.

Creating Bind Variables

You create bind variables in SQL*Plus with the VARIABLE command. For example

VARIABLE ret_val NUMBER

This command creates a bind variable named ret_val with a datatype of NUMBER. See VARIABLE in
Chapter 6. (To list all of the bind variables created in a session, type VARIABLE without any arguments.)

Referencing Bind Variables

You reference bind variables in PL/SQL by typing a colon (:) followed immediately by the name of the
variable. For example

:ret_val := 1;

This command assigns a value to the bind variable named ret_val.

Displaying Bind Variables

To display the value of a bind variable in SQL*Plus, you use the SQL*Plus PRINT command. For example

PRINT ret_val

This command displays a bind variable named ret_val. See PRINT in Chapter 6.

Example 3-16 Creating, Referencing, and Displaying Bind Variables

To declare a local bind variable named id with a datatype of NUMBER, enter

VARIABLE id NUMBER

Next, put a value of "1" into the bind variable you have just created:

BEGIN
:id := 1;
END;

If you want to display a list of values for the bind variable named id, enter

PRINT id

Try creating some new departments using the variable:

EXECUTE :id := dept_management.new('ACCOUNTING','NEW YORK')
EXECUTE :id := dept_management.new('RESEARCH','DALLAS')
EXECUTE :id := dept_management.new('SALES','CHICAGO')
EXECUTE :id := dept_management.new('OPERATIONS','BOSTON')
PRINT id
COMMIT

Note: dept_management.new refers to a PL/SQL function, "new", in a package (dept_management). The
function "new" adds the department data to a table.

Formatting Query Results
This chapter explains how to format your query results to produce a finished report. This chapter covers
the following topics:

· changing column headings

· formatting NUMBER, CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and Trusted Oracle
columns

· copying, listing, and resetting column display attributes

· suppressing duplicate values and inserting space for clarity

· calculating and printing summary lines (totals, averages, minimums, maximums, and more)

· listing and removing spacing and summary line definitions

· setting page dimensions

· placing titles at the top and bottom of each page

· displaying column values and the current date or page number in your titles

· listing and suppressing page title definitions

· sending query results to a file or printer

Read this chapter while sitting at your computer and try out the examples shown. Before beginning, make
sure you have access to the sample tables described in Chapter 1.

Formatting Columns

Through the SQL*Plus COLUMNcommand, you can change the column headings and reformat the
columndata in your query results.

Changing Column Headings

When displaying column headings, you can either use the default heading or you can change it using the
COLUMN command. The sections below describe how the default headings are derived and how you can
alter them with the COLUMN command.

Default Headings

SQL*Plus uses column or expression names as default column headingswhen displaying query results.
Column names are often short and cryptic, however, and expressions can be hard to understand.

Changing Default Headings

Youcan define a more useful column heading with the HEADINGclause of the COLUMNcommand, in the
format shown below:

COLUMN column_name HEADING column_heading

See the COLUMN command in Chapter 6 for more details.

Example 4-1Changing a Column Heading

To produce a report from EMP with new headings specified for DEPTNO, ENAME, and SAL, enter the
following commands:

SQL> COLUMN DEPTNO HEADING Department
SQL> COLUMN ENAME HEADING Employee
SQL> COLUMN SAL HEADING Salary
SQL> COLUMN COMM HEADING Commission
SQL> SELECT DEPTNO, ENAME, SAL, COMM
 2 FROM EMP
 3 WHERE JOB = 'SALESMAN';

SQL*Plus displays the following output:

Department Employee Salary Commission
---------- ---------- ---------- ----------
 30 ALLEN 1600 300
 30 WARD 1250 500
 30 MARTIN 1250 1400
 30 TURNER 1500 0

Note: The new headings will remain in effect until you enter different headings, reset each column's
format, or exit from SQL*Plus.

To change a column headingto two or more words, enclose the new heading in single or double quotation
marks when you enter the COLUMN command. To display a column headingon more than one line, use a

vertical bar (|) where you want to begin a new line. (You can use a character other than a vertical bar by
changing the setting of the HEADSEPvariable of the SETcommand. See SET in Chapter 6 for more
information.)

Example 4-2Splitting a Column Heading

To give the column ENAME the heading EMPLOYEE NAME and to split the new heading onto two lines,
enter

SQL> COLUMN ENAME HEADING 'Employee|Name'

Now rerun the query with the slash (/) command:

SQL> /

SQL*Plus displays the following output:

 Employee
Department Name Salary Commission
---------- ---------- ---------- ----------
 30 ALLEN 1600 300
 30 WARD 1250 500
 30 MARTIN 1250 1400
 30 TURNER 1500 0

To change the character used to underline each column heading, set the UNDERLINEvariable of the
SETcommand to the desired character.

Example 4-3Setting the Underline Character

To change the character used to underline headings to an equal sign and rerun the query, enter the
following commands:

SQL> SET UNDERLINE =
SQL> /

SQL*Plus displays the following results:

 Employee
Department Name Salary Commission
========== ========== ========== ==========
 30 ALLEN 1600 300
 30 WARD 1250 500
 30 MARTIN 1250 1400
 30 TURNER 1500 0

Now change the underline character back to a dash:

SQL> SET UNDERLINE '-'

Note: You must enclose the dash in quotation marks; otherwise, SQL*Plus interprets the dash as a
hyphen indicating you wish to continue the command on another line.

Formatting NUMBER Columns

When displaying NUMBER columns, you can either accept the SQL*Plus default display width or you can
change it using the COLUMN command. The sections below describe the default display and how you
can alter the default with the COLUMN command.

Default Display

A NUMBER column's width equals the width of the heading or the width of the FORMAT plus one space
for the sign, whichever is greater. If you do not explicitly use FORMAT, then the column's width will always
be at least the value of SET NUMWIDTH.

SQL*Plus normally displays numbers with as many digits as are required for accuracy, up to a standard
display width determined by the value of the NUMWIDTH variable of the SET command (normally 10).

You can choose a different format for any NUMBERcolumnby using a format model in a
COLUMNcommand. A format model is a representation of the way you want the numbers in the column to
appear, using 9's to represent digits.

Changing the Default Display

The COLUMN command identifies the column you want to format and the model you want to use, as
shown below:

COLUMNcolumn_name FORMATmodel

Use format modelsto add commas, dollar signs, angle brackets (around negative values), and/or leading
zeros to numbers in a given column. You can also round the values to a given number of decimal places,
display minus signs to the right of negative values (instead of to the left), and display values in
exponential notation.

To use more than one format model for a single column, combine the desired models in one COLUMN
command (see Example 4-4). For a complete list of format models and further details, see the COLUMN
command in Chapter 6.

Example 4-4 Formatting a NUMBER Column

To display SAL with a dollarsign, acomma, and the numeralzeroinstead of a blank for any zero values,
enter the followingcommand:

SQL> COLUMN SAL FORMAT $99,990

Now rerun the current query:

SQL> /

SQL*Plus displays the following output:

 Employee
Department Name Salary Commission
---------- ---------- ---------- ----------
 30 ALLEN $1,600 300
 30 WARD $1,250 500
 30 MARTIN $1,250 1400
 30 TURNER $1,500 0

Use a zero in your format model, as shown above, when you use other formats such as a dollar sign and
wish to display a zero in place of a blank for zero values.

Note: The format model will stay in effect until you enter a new one, reset the column's format, or exit
from SQL*Plus.

Formatting CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and Trusted
Oracle Columns

When displaying CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and Trusted Oracle columns, you can
either accept the SQL*Plus default display width or you can change it using the COLUMN command. The
sections below describe the defaults and how you can alter the defaults with the COLUMN command.

Default Display

The default width of CHARand VARCHAR2 (VARCHAR) columns is the width of the column in the
database. (VARCHAR2 requires Oracle7.)

The display width of LONGcolumnsdefaults to the value of the LONGCHUNKSIZEvariable of the
SETcommand.

For Oracle7, the default width and format of unformatted DATE columns in SQL*Plusis derived from the
NLS parameters in effect. Otherwise, the default format width is A9. With Oracle Version 6, the default
width for DATE columns is nine characters. For more information on formatting DATE columns, see the
FORMAT clause of the COLUMN command in Chapter 6.

The default display width for the Trusted Oracle datatypes MLSLABEL and RAW MLSLABEL is the width
defined for the column in the database or the width of the column heading, whichever is longer. (Note that
the default display width for a Trusted Oracle column named ROWLABEL is 15.)

Note: The default justification for CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and Trusted Oracle
columns is left justification.

Changing the Default Display

You can change the displayed width of a CHAR, VARCHAR2(VARCHAR), LONG,    DATE,or Trusted
Oraclecolumn by using the COLUMNcommand with a format model consisting of the letter A (for
alphanumeric) followed by a number representing the width of the column in characters.

Within the COLUMN command, identify the column you want to format and the model you want to use:

COLUMNcolumn_name FORMATmodel

If you specify a width shorter than the columnheading, SQL*Plus truncates the heading. If you specify a
width for a LONG column, SQL*Plus uses the LONGCHUNKSIZE or the specified width, whichever is
smaller, as the column width. See the COLUMN command in Chapter 6 for more details.

Example 4-5 Formatting a Character Column

To set the width of the column ENAME to four characters and rerun the current query, enter

SQL> COLUMN ENAME FORMAT A4
SQL> /

SQL*Plus displays the results:

 Empl
Department Name Salary Commission
---------- ---- ---------- ----------
 30 ALLE $1,600 300
 N

 30 WARD $1,250 500
 30 MART $1,250 1400
 IN

 30 TURN $1,500 0
 ER

Note: The format model will stay in effect until you enter a new one, reset the column's format, or exit
from SQL*Plus. ENAME could be a CHAR or VARCHAR2 (VARCHAR) column.

If the WRAPvariable of the SETcommand is set to ON (its default value), the employee nameswrap to the
next line after the fourth character, as shown in Example 4-5. If WRAP is set to OFF, the namesare
truncated (cut off) after the fourth character.

The system variable WRAP controls all columns; you can override the setting of WRAP for a given
column through theWRAPPED, WORD_WRAPPED, andTRUNCATEDclauses of theCOLUMNcommand.
See COLUMN in Chapter 6 for more information on these clauses. You will use the WORD_WRAPPED
clause of COLUMN later in this chapter.

Note: The column heading is truncated regardless of the setting of WRAP or any COLUMN command
clauses.

Now return the column to its previous format:

SQL> COLUMN ENAME FORMAT A10

Copying Column Display Attributes

When you want to give more than one columnthe same display attributes, you can reduce the length of
the commands you must enter by using the LIKEclause of the COLUMNcommand. The LIKE clause tells
SQL*Plus to copy the display attributes of a previously defined column to the new column, except for
changes made by other clauses in the same command.

Example 4-6Copying a Column's Display Attributes

To give the column COMM the same display attributes you gave to SAL, but to specify a different
heading, enter the following command:

SQL> COLUMN COMM LIKE SAL HEADING Bonus

Rerun the query:

SQL> /

SQL*Plus displays the following output:

 Employee
Department Name Salary Bonus
---------- ---------- ---------- ----------
 30 ALLEN $1,600 $300
 30 WARD $1,250 $500
 30 MARTIN $1,250 $1,400
 30 TURNER $1,500 $0

Listing and Resetting Column Display Attributes

To list the current display attributes for a given column, use the COLUMNcommand followed by the
column name only, as shown below:

COLUMN column_name

To list the current display attributes for all columns, enter the COLUMNcommand with no column names
or clauses after it:

COLUMN

To reset the display attributes for a columnto their default values, use the CLEARclause of the
COLUMNcommand as shown below:

COLUMN column_name CLEAR

To reset the attributes for all columns, use the COLUMNSclause of the CLEARcommand.

Example 4-7Resetting Column Display Attributes to their Defaults

To reset all columns' display attributes to their default values, enter the following command:

SQL> CLEAR COLUMNS
columns cleared

You may wish to place the command CLEAR COLUMNS at the beginning of every command file to
ensure that previously entered COLUMN commands will not affect queries you run in a given file.

Suppressing and Restoring Column Display Attributes

You can suppress and restore the display attributes you have given a specific column. To suppress a
column'sdisplay attributes, enter a COLUMNcommand in the following form:

COLUMNcolumn_name OFF

The OFF clause tells SQL*Plus to use the default display attributes for the column, but does not remove
the attributes you have defined through the COLUMN command. To restore the attributes you defined
throughCOLUMN, use the ON clause:

COLUMNcolumn_name ON

Printing a Line of Characters after Wrapped Column Values

As you have seen, by default SQL*Plus wraps column values to additional lines when the value does not
fit within the column width. If you want to insert a record separator(a line of charactersor a blank line) after
each wrapped line of output (or after every row), use the RECSEPand RECSEPCHARvariables of the
SETcommand.

RECSEP determines when the line of characters is printed:    you set RECSEP to EACH to print after
every line, to WRAPPED to print after wrapped lines, and to OFF to suppress printing. The default setting
of RECSEP is WRAPPED.

RECSEPCHAR sets the character printed in each line. You can set RECSEPCHAR to any character.

You may wish to wrap whole words to additional lines when a columnvalue wraps to additional lines. To
do so, use the WORD_WRAPPEDclause of the COLUMNcommand as shown below:

COLUMN column_name WORD_WRAPPED

Example 4-8Printing a Line of Characters after Wrapped Column Values

To print a line of dashes after each wrapped column value, enter the following commands:

SQL> SET RECSEP WRAPPED
SQL> SET RECSEPCHAR '-'

Now restrict the width of the column LOC and tell SQL*Plus to wrap whole words to additional lines when
necessary:

SQL> COLUMN LOC FORMAT A7 WORD_WRAPPED

Finally, enter and run the following query:

SQL> SELECT * FROM DEPT;

SQL*Plus displays the results:

 DEPTNO DNAME LOC
---------- --------------- ----------
 10 ACCOUNTING NEW
 YORK

 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

If you set RECSEP to EACH, SQL*Plus prints a line of characters after every row (after every department,
for the above example).

Before continuing, set RECSEP to OFF to suppress the printing of record separators:

SQL> SET RECSEP OFF

Clarifying Your Report with Spacing and Summary Lines

When you use an ORDER BYclause in your SQLSELECTcommand, rows with the same value in the
ordered column (or expression) are displayed together in your output. You can make this outputmore
useful to the user by using the SQL*Plus BREAKand COMPUTE commands to create subsets of records
and add space and/or summary lines after each subset.

The column you specify in a BREAKcommand is called a break column. By including the break column in
your ORDER BY clause, you create meaningful subsets of records in your output. You can then add
formatting to the subsets within the same BREAK command, and add a summary line (containing totals,
averages, and so on) by specifying the break column in a COMPUTEcommand.

For example, the following query, without BREAK or COMPUTE commands,

SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE SAL < 2500
 4 ORDER BY DEPTNO;

produces the following unformatted results:

 DEPTNO ENAME SAL
-------- ---------- ---------
 10 CLARK 2450
 10 MILLER 1300
 20 SMITH 800
 20 ADAMS 1100
 30 ALLEN 1600
 30 JAMES 950
 30 TURNER 1500
 30 WARD 1250
 30 MARTIN 1250

To make this report more useful, you would use BREAK to establish    DEPTNO as the break column.
Through BREAK you could suppress duplicate values in DEPTNO and place blank lines or begin a new
page between departments. You could use BREAK in conjunction with COMPUTE to calculate and print
summary lines containing the total (and/or average, maximum, minimum, standard deviation, variance, or
count of rows of) salary for each department and for all departments.

Suppressing Duplicate Values in Break Columns

The BREAKcommand suppressesduplicate values by default in the column or expression you name.
Thus, to suppress the duplicate values in a column specified in an ORDER BY clause, use the BREAK
command in its simplest form:

BREAKON break_column

Note: Whenever you specify a column or expression in a BREAKcommand, use an ORDER BY clause
specifying the same column or expression. If you do not do this, the breaks may appear to occur
randomly.

Example 4-9 Suppressing Duplicate Values in a Break Column

To suppress the display of duplicate department numbers in the query results shown above, enter the

following commands:

SQL> BREAK ON DEPTNO
SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE SAL < 2500
 4 ORDER BY DEPTNO;

SQL*Pus displays the following output:

 DEPTNO ENAME SAL
---------- ----------- ---------
 10 CLARK 2450
 MILLER 1300
 20 SMITH 800
 ADAMS 1100
 30 ALLEN 1600
 JAMES 950
 TURNER 1500
 WARD 1250
 MARTIN 1250

Inserting Space when a Break Column's Value Changes

You can insert blank lines or begin a new page each time the value changes in the break column. To
insert n blank lines, use the BREAKcommand in the following form:

BREAKON break_column SKIPn

To skip a page, use the command in this form:

BREAKON break_column SKIP PAGE

Example 4-10Inserting Space when a Break Column's Value Changes

To place one blank line between departments, enter the following command:

SQL> BREAK ON DEPTNO SKIP 1

Now rerun the query:

SQL> /

SQL*Plus displays the results:

 DEPTNO ENAME SAL
---------- ----------- ---------
 10 CLARK 2450
 MILLER 1300

 20 SMITH 800
 ADAMS 1100

 30 ALLEN 1600
 JAMES 950
 TURNER 1500
 WARD 1250
 MARTIN 1250

Inserting Space after Every Row

You may wish to insert blank lines or a blank page after every row. To skip n lines after every row, use
BREAKin the following form:

BREAKON ROWSKIPn

To skip a page after every row, use

BREAKON ROW SKIP PAGE

Note: SKIP PAGE does not cause a physical page break unless you have also specified NEWPAGE 0.

Using Multiple Spacing Techniques

Supposeyou have more than one column in your ORDER BY clause and wish to insert space when each
column's value changes. Each BREAKcommand you enter replaces the previous one. Thus, if you want
to use different spacing techniques in one report or insert space after the value changes in more than one
ordered column, you must specify multiple columns and actions in a single BREAKcommand.

Example 4-11 Combining Spacing Techniques

First, add another column to the current query:

SQL> L
 1 SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE SAL < 2500
 4* ORDER BY DEPTNO
SQL> 1 SELECT DEPTNO, JOB, ENAME, SAL
SQL> 4 ORDER BY DEPTNO, JOB

Now, to skip a page when the value of DEPTNO changes and one line when the value of JOB changes,
enter the following command:

SQL> BREAK ON DEPTNO SKIP PAGE ON JOB SKIP 1

To show that SKIP PAGE has taken effect, create a TTITLE with a page number, enter

SQL> TTITLE COL 35 FORMAT 9 'Page:' SQL.PNO

Run the new query to see the results:

SQL> /

 Page: 1
 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 10 CLERK MILLER 300

 MANAGER CLARK 2450

 Page: 2
 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 20 CLERK SMITH 800
 ADAMS 1100

 Page: 3
 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 30 CLERK JAMES 950

 SALESMAN ALLEN 1600
 TURNER 1500
 WARD 1250
 MARTIN 1250

Listing and Removing Break Definitions

You can list your current break definitionby entering the BREAKcommand with no clauses:

BREAK

You can removethe current break definition by entering the CLEARcommand with the BREAKSclause:

CLEAR BREAKS

You may wish to place the command CLEAR BREAKS at the beginning of every command file to ensure
that previously entered BREAK commands will not affect queries you run in a given file.

Computing Summary Lines when a Break Column's Value Changes

If youorganize the rows of a report into subsets with the BREAKcommand, you can perform various
computations on the rowsin each subset. You do this with the functions of the SQL*Plus
COMPUTEcommand. Use the BREAK and COMPUTEcommands together in the following forms:

BREAK ON break_column
COMPUTEfunction LABEL label_name OFcolumn column column
... ONbreak_column

You can include multiple break columns and actions, such as skipping lines in the BREAK command, as
long as the column you name after ON in the COMPUTE command also appears after ON in the BREAK
command. To include multiple break columns and actions in BREAK when using it in conjunction with

COMPUTE, use these commands in the following forms:

BREAK ON break_column_1 SKIP PAGE ON break_column_2 SKIP 1
COMPUTE function LABEL label_name OF column column column
... ON break_column_2

The COMPUTE command has no effect without a corresponding BREAK command.

You can COMPUTE on NUMBER columns and, in certain cases, on all types of columns. See COMPUTE
in Chapter 6 for details.

The following table lists compute functions and their effects:

Function Effect

SUM
Computesthe sum of the values in the column.

MINIMUM
Computesthe minimum value in the column.

MAXIMUM
Computesthe maximum value in the column.

AVG
Computesthe average of the values in the column.

STD
Computesthe standard deviation of the values in the column.

VARIANCE
Computesthe variance of the values in the column.

COUNT
Computesthe number of non-null values in the column.

NUMBER
Computesthe number of rows in the column.

Table 4 - 1.   
Compute
Functions

The function you specify in the COMPUTE command applies to all columns you enter after OF and before
ON. The computed values print on a separate line when the value of the ordered column changes.

Labels for ON REPORT and ON ROW computations appear in the first column; otherwise, they appear in
the column specified in the ON clause.

You can change the compute label by using COMPUTE LABEL. If you do not define a label for the
computed value, SQL*Plus prints the unabbreviated function keyword.

The compute label can be suppressed by using the NOPRINT option of the COLUMN command on the
break column. See the COMPUTE command in Chapter 6 for more details.

Example 4-12 Computing and Printing Subtotals

To compute the total of SAL by department, first list the current BREAK definition:

SQL> BREAK
break on DEPTNO skip 0 page nodup
 on JOB skip 1 nodup

Now enter the following COMPUTE command and run the current query:

SQL> COMPUTE SUM OF SAL ON DEPTNO
SQL> /

SQL*Plus displays the following output:

 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 10 CLERK MILLER 1300

 MANAGER CLARK 2450
********** ********* ----------
sum 3750

 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 20 CLERK SMITH 800
 ADAMS 1100
********** ********* ----------
sum 1900

 DEPTNO JOB ENAME SAL
---------- --------- ---------- ----------
 30 CLERK JAMES 950

 SALESMAN ALLEN 1600
 TURNER 1500
 WARD 1250
 MARTIN 1250
********** ********* ----------
sum 6550

To compute the sum of salaries for departments 10 and 20 without printing the compute label:

SQL> COLUMN DUMMY NOPRINT
SQL> COMPUTE SUM OF SAL ON DUMMY
SQL> BREAK ON DUMMY SKIP 1
SQL> SELECT DEPTNO DUMMY, DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO <= 20
 4 ORDER BY DEPTNO;

SQL*Plus displays the following output:

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 KING 5000
 10 CLARK 2450
 10 MILLER 1300

 8750

 20 JONES 2975
 20 FORD 3000
 20 SMITH 800
 20 SCOTT 3000
 20 ADAMS 1100

 10875

To compute the salaries at the end of the report:

SQL> COLUMN DUMMY NOPRINT
SQL> COMPUTE SUM OF SAL ON DUMMY
SQL> BREAK ON DUMMY
SQL> SELECT NULL DUMMY, DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO <= 20
 4 ORDER BY DEPTNO;

SQL*Plus displays the following output:

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 KING 5000
 10 CLARK 2450
 10 MILLER 1300
 20 JONES 2975
 20 FORD 3000
 20 SMITH 800
 20 SCOTT 3000
 20 ADAMS 1100

 19625

Note: The format of the column SAL controls the appearance of the sum of SAL, as well as the individual
values of SAL. When you establish the format of a NUMBER column, you must allow for the size of sums
you will include in your report.

Computing Summary Lines at the End of the Report

You can calculate and print summary linesbased on all values in a column by using BREAKand
COMPUTEin the following forms:

BREAKON REPORT
COMPUTEfunction LABEL label_name OF column column column
... ON REPORT

Example 4-13 Computing and Printing a Grand Total

To calculate and print the grand total of salaries for all salesmen and change the compute label, first enter
the following BREAK and COMPUTE commands:

SQL> BREAK ON REPORT
SQL> COMPUTE SUM LABEL TOTAL OF SAL ON REPORT

Next, enter and run a new query:

SQL> SELECT ENAME, SAL
 2 FROM EMP
 3 WHERE JOB = 'SALESMAN';

SQL*Plus displays the results:

ENAME SAL
---------- --------
ALLEN 1600
WARD 1250
MARTIN 1250
TURNER 1500
********** --------
TOTAL 5600

To printa grand total (or grand average, grand maximum, and so on) in addition to subtotals (or sub-
averages, and so on), include a break column and an ON REPORT clause in your BREAKcommand.
Then, enter one COMPUTEcommand for the break column and another to compute ON REPORT:

BREAK ON break_column ON REPORT
COMPUTE function LABEL label_name OF column ON break_column
COMPUTE function LABEL label_name OF column ON REPORT

Computing Multiple Summary Values and Lines

You can compute and print the same type of summaryvalue on different columns. To do so, enter a
separate COMPUTEcommand for each column.

Example 4-14 Computing the Same Type of Summary Value on Different Columns

To print the total of salaries and commissions for all salesmen, first enter the following COMPUTE
command:

SQL> COMPUTE SUM OF SAL COMM ON REPORT

You do not have to enter a BREAK command; the BREAK you entered in Example 4-13 is still in effect.
Now, add COMM to the current query:

SQL> 1 SELECT ENAME, SAL, COMM

Finally, run the revised query to see the results:

SQL> /

ENAME SAL COMM
---------- -------- ----------
ALLEN 1600 300
WARD 1250 500
MARTIN 1250 1400
TURNER 1500 0
********** -------- ----------
sum 5600 2200

You can also print multiple summary lineson the same break column. To do so, include the function for
each summary line in the COMPUTEcommand as follows:

COMPUTE function LABEL label_name function
 LABEL label_name function LABEL label_name ...
 OF column ON break_column

If you include multiple columns after OF and before ON, COMPUTE calculates and prints values for each
column you specify.

Example 4-15 Computing Multiple Summary Lines on the Same Break Column

To compute the average and sum of salaries for the sales department, first enter the following BREAK
and COMPUTE commands:

SQL> BREAK ON DEPTNO
SQL> COMPUTE AVG SUM OF SAL ON DEPTNO

Now, enter and run the following query:

SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO = 30
 4 ORDER BY DEPTNO, SAL;

SQL*Plus displays the results:

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 WARD 1250
 MARTIN 1250
 TURNER 1500
 ALLEN 1600
 BLAKE 2850
********** ----------
avg 1566.66667
sum 9400

Listing and Removing COMPUTE Definitions

You can list your current COMPUTEdefinitions by entering the COMPUTE command with no clauses:

COMPUTE

You can remove all the COMPUTE definitions by entering the CLEARcommand with the
COMPUTESclause.

Example 4-16 Removing COMPUTE Definitions

To remove all COMPUTEdefinitions and the accompanying BREAK definition, enter the following
commands:

SQL> CLEAR BREAKS
breaks cleared
SQL> CLEAR COMPUTES
computes cleared

You may wish to place the commands CLEAR BREAKS and CLEAR COMPUTES at the beginning of
every command file to ensure that previously entered BREAK and COMPUTE commands will not affect
queries you run in a given file.

Defining Page Titles and Dimensions

The word page refers to a screenful of information on your display or a page of a spooled (printed) report.
You can place top and bottom titles on each page, set the number of lines per page, and determine the
width of each line.

Setting the Top and Bottom Titles

As you have already seen, you can set a titleto display at the top of each page of a report. You can also
set a title to display at the bottom of each page. The TTITLEcommand defines the top title; the
BTITLEcommand defines the bottom title.

A TTITLE or BTITLE command consists of the command name TTITLE or BTITLE followed by one or
more clauses specifying a position or format and a CHAR value you wish to place in that position or give
that format. You can include multiple sets of clauses and CHAR values:

TTITLE position_clause(s) char_value position_clause(s) char_value ...

or

BTITLE position_clause(s) char_value position_clause(s) char_value ...

The most often used clauses of TTITLEand BTITLE are summarized in the following table. For
descriptions of all TTITLE and BTITLE clauses, see the discussion of TTITLE in Chapter 6.

Clause Example Description

COLn
COL 72 Makes the next CHAR value

appear in the specified column of
the line.

SKIPn
SKIP 2 Skips to a new line n times. If n is

greater than 1, n-1 blank lines
appear before the next CHAR
value.

LEFT
LEFT Left-aligns the following CHAR

value.

CENTER
CENTER Centers the following CHAR value.

RIGHT
RIGHT Right-aligns the following CHAR

value.

Table 4 - 2.   
Often-Used
Clauses of
TTITLE and
BTITLE

Example 4-17Placing a Top and Bottom Title

To put titles at the top and bottom of each page of a report, enter

SQL> TTITLE CENTER -
> 'ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT'
SQL> BTITLE CENTER 'COMPANY CONFIDENTIAL'

Now run the current query:

SQL> /

SQL*Plus displays the following output:

 ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT
 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850

 COMPANY CONFIDENTIAL

Positioning Title Elements

The report in the preceding exercise might look more attractive if you give the company name more
emphasis and place the type of report and the department name on either end of a separate line. It may
also help to reduce the linesize and thus center the titlesmore closely around the data.

You can accomplish these changes by adding some clauses to the TTITLEcommand and by resetting the
system variable LINESIZE, as the following example shows.

Example 4-18 Positioning Title Elements

To redisplay the personnel report with a repositioned top title, enter the following commands:

SQL> TTITLE CENTER 'A C M E W I D G E T' SKIP 1 -
> CENTER ================ SKIP 1 LEFT 'PERSONNEL REPORT' -
> RIGHT 'SALES DEPARTMENT' SKIP 2
SQL> SET LINESIZE 60
SQL> /

SQL*Plus displays the results:

 A C M E W I D G E T
 ====================
PERSONNEL REPORT SALES DEPARTMENT

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850
 COMPANY CONFIDENTIAL

The LEFT, RIGHT, and CENTERclauses place the following values at the beginning, end, and center of
the line. The SKIPclause tells SQL*Plus to move down one or more lines.

Note that there is no longer any space between the last row of the results and the bottom title. The last
line of the bottom title prints on the last line of the page. The amount of space between the last row of the
report and the bottom titledepends on the overall page size, the number of lines occupied by the top title,
and the number of rows in a given page. In the above example, the top title occupies three more lines
than the top title in the previous example. You will learn to set the number of lines per page later in this
chapter.

To always print n blank lines before the bottom title, use the SKIPn clause at the beginning of the
BTITLEcommand. For example, to skip one line before the bottom title in the example above, you could
enter the following command:

BTITLE SKIP 1 CENTER 'COMPANY CONFIDENTIAL'

Indenting a Title Element

You can use the COLclause in TTITLEor BTITLE to indent the titleelement a specific number of spaces.
For example, COL 1 places the following values in the first character position, and so is equivalent to
LEFT, or an indent of zero. COL 15 places the title element in the 15th character position, indenting it 14
spaces.

Exercise 4-19Indenting a Title Element

To print the company name left-aligned with the report name indented five spaces on the next line, enter

SQL> TTITLE LEFT 'ACME WIDGET' SKIP 1 -
> COL 6 'SALES DEPARTMENT PERSONNEL REPORT' SKIP 2

Now rerun the current query to see the results:

SQL> /
ACME WIDGET
 SALES DEPARTMENT PERSONNEL REPORT

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850

 COMPANY CONFIDENTIAL

Entering Long Titles

If you need to enter a title greater than 500 characters in length, you can use the SQL*Plus command
DEFINE to place the text of each line of the title in a separate user variable:

SQL> DEFINE LINE1 = 'This is the first line...'
SQL> DEFINE LINE2 = 'This is the second line...'
SQL> DEFINE LINE3 = 'This is the third line...'

Then, reference the variables in your TTITLE or BTITLE command as follows:

SQL> TTITLE CENTER LINE1 SKIP 1 CENTER LINE2 SKIP 1 -
> CENTER LINE3

Displaying the Page Number and other System-Maintained Values in Titles

You can display the current page numberand other system-maintainedvalues in yourtitleby entering a
system value name as a title element, for example:

TTITLE LEFT system-maintained_value_name

There are five system-maintained values you can display in titles, the most commonly used of which is
SQL.PNO(the current page number). Refer to the TTITLE command in Chapter 6 for a list of system-
maintained values you can display in titles.

Example 4-20 Displaying the Current Page Number in a Title

To display the current page number at the top of each page, along with the company name, enter the
following command:

SQL> TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' SQL.PNO SKIP 2

Now rerun the current query:

SQL> /

SQL*Plus displays the following results:

ACME WIDGET PAGE: 1

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850

 COMPANY CONFIDENTIAL

Note that SQL.PNO has a format ten spaces wide. You can change this format with the FORMATclause of
TTITLE(or BTITLE).

Example 4-21 Formatting a System-Maintained Value in a Title

Tocloseup the space between the word PAGE: and the page number, re-enter the TTITLE command as
shown:

SQL> TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' FORMAT 999 -
> SQL.PNO SKIP 2

Now rerun the query:

SQL> /

SQL*Plus displays the following results:

ACME WIDGET PAGE: 1

 DEPTNO ENAME SAL
---------- ---------- ----------
 30 JAMES 950
 30 WARD 1250
 30 MARTIN 1250
 30 TURNER 1500
 30 ALLEN 1600
 30 BLAKE 2850

 COMPANY CONFIDENTIAL

Listing, Suppressing, and Restoring Page Title Definitions

To list a page titledefinition, enter the appropriate title command with no clauses:

TTITLE
BTITLE

To suppress a titledefinition, enter:

TTITLEOFF
BTITLE OFF

These commands cause SQL*Plus to cease displaying titles on reports, but do not clear the current
definitions of the titles.You may restore the current definitions by entering

TTITLEON
BTITLE ON

Displaying Column Values in Titles

Youmay wish to create a master/detail reportthat displays a changing master columnvalue at the top of
each page with the detail query results for that value below. You can reference a column value in a top
title by storing the desired value in a variable and referencing the variable in a TTITLEcommand. Use the
following form of the COLUMNcommand to define the variable:

COLUMN column_name NEW_VALUEvariable_name

You must include the master column in an ORDER BYclause and in a BREAKcommand using the SKIP
PAGE clause.

Example 4-22Creating a Master/Detail Report

Suppose you want to create a report that displays two different managers' employee numbers, each at
the top of a separate page, and the people reporting to the manager on the same page as the manager's
employee number. First create a variable, MGRVAR, to hold the value of the current manager's employee
number:

SQL> COLUMN MGR NEW_VALUE MGRVAR NOPRINT

Because you will display the managers' employee numbers in the title, you do not want them to print as
part of the detail. The NOPRINTclause you entered above tells SQL*Plus not to print the columnMGR.

Next, include a label and the value in your page title, enter the proper BREAK command, and suppress
the bottom title from the last example:

SQL> TTITLE LEFT 'Manager: ' MGRVAR SKIP 2
SQL> BREAK ON MGR SKIP PAGE
SQL> BTITLE OFF

Finally, enter and run the following query:

SQL> SELECT MGR, ENAME, SAL, DEPTNO
 2 FROM EMP
 3 WHERE MGR IN (7698, 7839)
 3 ORDER BY MGR;

SQL*Plus displays the following output:

Manager: 7698

ENAME SAL DEPTNO
---------- -------- ----------
ALLEN 1600 30
WARD 1250 30
TURNER 1500 30
MARTIN 1250 30
JAMES 950 30

Manager: 7839

ENAME SAL DEPTNO
---------- -------- ----------
JONES 2975 20
BLAKE 2850 30
CLARK 2450 10

If you want to print the value of a columnat the bottom of the page, you can use the COLUMNcommand in
the following form:

COLUMNcolumn_name OLD_VALUEvariable_name

SQL*Plus prints the bottom title as part of the process of breaking to a new page¾ after finding the new
value for the master column. Therefore, if you simply referenced the NEW_VALUE of the master column,
you would get the value for the next set of detail. OLD_VALUE remembers the value of the master
column that was in effect before the page break began.

Displaying the Current Date in Titles

You can, of course, dateyour reports by simply typing a value in the title. This is satisfactory for ad hoc
reports, but if you want to run the same report repeatedly, you would probably prefer to have the date
automatically appear when the report is run. You can do this by creating a variable to hold the current
date.

To create the variable (in this example named _DATE), you can add the following commands to your
SQL*Plus LOGINfile:

SETTERMOUTOFF
BREAKON TODAY
COLUMNTODAYNEW_VALUE_DATE
SELECTTO_CHAR(SYSDATE, 'fmMonth DD, YYYY') TODAY
FROM DUAL;
CLEAR BREAKS
SET TERMOUT ON

When you start SQL*Plus, these commands place the value of SYSDATE(the current date) into a variable
named _DATE. To display the current date, you can reference _DATE in a title as you would any other
variable.

The date format model you include in the SELECT command in your LOGIN file determines the format in
which SQL*Plus displays the date. See your Oracle7 Server SQL Language Reference Manual for more
information on date format models. For more information about the LOGIN file, see "Modifying Your
LOGIN File" in Chapter 3.

You can also enter these commands interactively at the command prompt; see COLUMN in Chapter 6 for
an example.

Setting Page Dimensions

Typically, a page of a report contains the number of blank line(s) set in the NEWPAGE variable of the SET
command, a top title, column headings, your query results, and a bottom title. SQL*Plus displays a report
that is too long to fit on one page on several consecutive pages, each with its own titles and column
headings. The amount of data SQL*Plus displays on each page depends on the current page dimensions.

The default pagedimensionsused by SQL*Plus are shown below:

· number of lines before the top title: 1

· number of lines per page, from the top title to the    bottom of the page: 24

· number of characters per line: 80

Youcan change these settings to match the size of your computer screen or, for printing, the size of a
sheet of paper.

You can change the page lengthwith the system variable PAGESIZE. For example, you may wish to do so
when you print a report, since printed pages are customarily 66 lines long.

To set the number of lines between the beginning of each page and the top title, use the
NEWPAGEvariable of the SETcommand:

SET NEWPAGE number_of_lines

If you set NEWPAGE to zero, SQL*Plus skips zero lines and displays and prints a formfeedcharacter to
begin a new page. On most types of computer screens, the formfeed character clears the screen and
moves the cursor to the beginning of the first line. When you print a report, the formfeed character makes
the printer move to the top of a new sheet of paper, even if the overall page length is less than that of the
paper.

To set the number of lines on a page, use the PAGESIZEvariable of the SETcommand:

SET PAGESIZE number_of_lines

You may wish to reduce the linesize to center a title properly over your output, or you may want to
increase linesize for printing on wide paper. You can change the linewidth using the LINESIZEvariable of
the SETcommand:

SET LINESIZE number_of_characters

Example 4-23Setting Page Dimensions

To set the page size to 66 lines, clear the screen (or advance the printer to a new sheet of paper) at the
start of each page, and set the linesize to 32, enter the following commands:

SQL> SET PAGESIZE 66
SQL> SET NEWPAGE 0
SQL> SET LINESIZE 32

Now enter and run the following commands to see the results:

SQL> TTITLE CENTER 'ACME WIDGET PERSONNEL REPORT' SKIP 1 -
> CENTER '10-JAN-89' SKIP 2
SQL> COLUMN DEPTNO HEADING DEPARTMENT
SQL> COLUMN ENAME HEADING EMPLOYEE
SQL> COLUMN SAL FORMAT $99,999 HEADING SALARY
SQL> SELECT DEPTNO, ENAME, SAL
 2 FROM EMP
 3 ORDER BY DEPTNO;

SQL*Plus displays a formfeed followed by the query results:

 ACME WIDGET PERSONNEL REPORT
 10-JAN-89

DEPARTMENT EMPLOYEE SALARY
---------- ---------- ----------
 10 CLARK $2,450
 10 KING $5,000
 10 MILLER $1,300
 20 SMITH $800
 20 ADAMS $1,100
 20 FORD $3,000
 20 SCOTT $3,000
 20 JONES $2,975
 30 ALLEN $1,600
 30 BLAKE $2,850
 30 MARTIN $1,250
 30 JAMES $950
 30 TURNER $1,500
 30 WARD $1,250

Now reset PAGESIZE, NEWPAGE, and LINESIZE to their default values:

SQL> SET PAGESIZE 24
SQL> SET NEWPAGE 1
SQL> SET LINESIZE 80

To list the current values of these variables, use the SHOWcommand:

SQL> SHOW PAGESIZE
pagesize 24
SQL> SHOW NEWPAGE
newpage 1
SQL> SHOW LINESIZE
linesize 80

Through the SQL*Plus command SPOOL, you can store you query results in a file or print them on your
computer's default printer.

Sending Results to a File

To store the resultsof a query in a file¾ and still display them on the screen¾ enter the SPOOL command
in the following form:

SPOOLfile_name

SQL*Plus stores all information displayed on the screen after you enter the SPOOL command in the file
you specify.

Storing and Printing Query Results

Send your query results to a file when you want to edit them with a word processor before printing or
include them in a letter, memo, or other document.

To store the results of a query in a file¾ and still display them on the screen¾ enter the SPOOL command
in the following form:

SPOOL file_name

If you do not follow the filename with a period and an extension, SPOOL adds a default file extension to
the filename to identify it as an output file. The default varies with the host operating system; on most
hosts it is LST or LIS. See the Oracle installation and user's manual(s) provided for your operating system
for more information.

SQL*Plus continues to spool information to the file until you turn spooling off, using the following form of
SPOOL:

SPOOLOFF

Creating a Flat File

When moving data between different software products, it is sometimes necessary to use a "flat" file (an
operating system file with no escape characters, headings, or extra characters embedded). For example,
if you do not have SQL*Net, you need to create a flat file for use with SQL*Loader when moving data
from Oracle Version 6 to Oracle7.

To create a flat file with SQL*Plus, you first must enter the following SET commands:

SET NEWPAGE 0
SET SPACE 0
SET LINESIZE 80
SET PAGESIZE 0
SET ECHO OFF
SET FEEDBACK OFF
SET HEADING OFF

After entering these commands, you use the SPOOL command as shown in the previous section to
create the flat file.

The SET COLSEP command may be useful to delineate the columns. For more information, see the SET
command in Chapter 6.

Sending Results to a Printer

To print query results, spool them to a file as described in the previous section. Then, instead of using
SPOOL OFF, enter the command in the following form:

SPOOLOUT

SQL*Plus stops spooling and copies the contents of the spooled file to your host computer's standard
(default) printer. SPOOL OUT does not delete the spool file after printing.

Example 4-24Sending Query Results to a Printer

To generate a final report and spool and print the results, create a command filenamed EMPRPT
containing the following commands.

First, use EDIT to create the command file with your host operating system text editor. (Do not use INPUT
and SAVE, or    SQL*Plus will add a slash to the end of the file and will run the command file twice¾ once
as a result of the semicolon and once due to the slash.)

SQL> EDIT EMPRPT

Next, enter the following commands into the file, using your text editor:

SPOOL TEMP
CLEAR COLUMNS
CLEAR BREAKS
CLEAR COMPUTES

COLUMN DEPTNO HEADING DEPARTMENT
COLUMN ENAME HEADING EMPLOYEE
COLUMN SAL HEADING SALARY FORMAT $99,999

BREAK ON DEPTNO SKIP 1 ON REPORT
COMPUTE SUM OF SAL ON DEPTNO
COMPUTE SUM OF SAL ON REPORT

SET PAGESIZE 21
SET NEWPAGE 0
SET LINESIZE 30

TTITLE CENTER 'A C M E W I D G E T' SKIP 2 -
LEFT 'EMPLOYEE REPORT' RIGHT 'PAGE:' -
FORMAT 999 SQL.PNO SKIP 2

BTITLE CENTER 'COMPANY CONFIDENTIAL'

SELECT DEPTNO, ENAME, SAL
FROM EMP
ORDER BY DEPTNO;

SPOOL OUT

If you do not want to see the output on your screen, you can also add SET TERMOUT OFF to the
beginning of the file and SET TERMOUT ON to the end of the file. Save the file (you automatically return
to SQL*Plus). Now, run the command file EMPRPT:

SQL> @EMPRPT

SQL*Plus displays the output on your screen (unless you set TERMOUT to OFF), spools it to the file
TEMP, and sends the contents of TEMP to your default printer:

 A C M E W I D G E T

EMPLOYEE REPORT PAGE: 1

DEPARTMENT EMPLOYEE SALARY
---------- ---------- --------
 10 CLARK $2,450
 KING $5,000
 MILLER $1,300
********** --------
sum $8,750

 20 SMITH $800
 ADAMS $1,100
 FORD $3,000
 SCOTT $3,000
 JONES $2,975

********** --------
sum $10,875

 COMPANY CONFIDENTIAL

 A C M E W I D G E T

EMPLOYEE REPORT PAGE: 2

DEPARTMENT EMPLOYEE SALARY
---------- ---------- --------
 30 ALLEN $1,600
 BLAKE $2,850
 MARTIN $1,250
 JAMES $900
 TURNER $1,500
 WARD $1,250
********** --------
sum $9,400
********** --------
sum $29,025

 COMPANY CONFIDENTIAL

Accessing SQL Databases
This chapter explains how to access databases through SQL*Plus, and discusses the following topics:

· connecting to the default database

· connecting to a remote database

· copying data between different databases

· copying data between tables on the same database

Read this chapter while sitting at your computer and try out the example shown. Before beginning, make
sure you have access to the sample tables described in Chapter 1.

Connecting to the Default Database

In order to access data in a given database, you must first connect to the database. When you start
SQL*Plus, you normally connect to your default Oracledatabaseunder the username andpassword you
enter while starting. Once you have logged in, you can connect under a different usernamewith the
SQL*Plus CONNECTcommand. The usernameand passwordmust be valid for the database.

For example, to connect the username TODD to the default database using the password FOX, you could
enter

SQL> CONNECT TODD/FOX

If you omit the username and password, SQL*Plus prompts you for them. You also have the option of
typing only the username following CONNECT and omitting the password (SQL*Plus then prompts for the
password). Because CONNECT first disconnects you from your current database, you will be left
unconnected to any database if you use an invalid username and password in your CONNECT
command.

You can disconnect the username currently connected to Oraclewithout leavingSQL*Plus by entering the
SQL*Plus command DISCONNECTat the SQL*Plus command prompt.

The default database is configured at an operating system level by setting operating system environment
variables, symbols or, possibly, by editing an Oracle specific configuration file. Refer to your Oracle
documentation for your operating system for more information.

Connecting to a Remote Database

Many large installations run Oracle on more than one computer. Such computers are often connected in a
network, which permits programs on different computers to exchange data rapidly and efficiently.
Networked computers can be physically near each other, or can be separated by large distances and
connected by telecommunication links.

Databases on other computers or databases on your host computer other than your default database are
called remote databases.You can access remote databases if the desired database has SQL*Net and
both databases have compatible network drivers.

You can connect to a remote database in one of two ways:

· from within SQL*Plus, using the CONNECT command

· as you start SQL*Plus, using the SQLPLUS command

Connecting to a Remote Database from within SQL*Plus

To connectto a remote database using CONNECT, include a SQL*Net database specification in the
CONNECT command in one of the following forms (the usernameand password you enter must be valid
for the databasetowhich you wish to connect):

· CONNECT SCOTT@database_specification

· CONNECT SCOTT/TIGER@database_specification

SQL*Plus prompts you for a passwordas needed, and connects you to the specified database. This
database becomes the default database until you CONNECT again to another database, DISCONNECT,
or leave SQL*Plus.

When you connect to a remote database in this manner, you can use the complete range of SQL and
SQL*Plus commands and PL/SQL blocks on the database.

The exact string you enter for the databasespecificationdepends upon the SQL*Net protocolyour
computer uses. For more information, see CONNECT in Chapter 6 and the SQL*Net manual appropriate
for your protocol, or contact your DBA.

Connecting to a Remote Database as You Start SQL*Plus

To connect to a remote database when you start SQL*Plus, include the SQL*Net databasespecificationin
your SQLPLUScommand in one of the followingforms:

· SQLPLUS SCOTT@database_specification

· SQLPLUS SCOTT/TIGER@database_specification

You must use a usernameandpasswordvalid for the remote database and substitute the appropriate
database specificationfor the remote database. SQL*Plus prompts you for username and password as
needed, starts SQL*Plus, and connects you to the specified database. This database becomes the
default database until you CONNECT to another database, DISCONNECT, or leave SQL*Plus.

Once again, you can manipulate tables in the remote database directly after you connect in this manner.

Note: Do not confuse the @ symbol of the connect string with the @ command used to run a command
file.

Copying Data from One Database to Another

Use the SQL*Plus COPYcommand to copydatabetween databasesand between tableson the same
database. With the COPY command, you can copy data between databases in the following ways:

· copy data from a remote database to your local database

· copy data from your local (default) database to a remote database (on most systems)

· copy data from one remote database to another remote database (on most systems)

Note: In general, the COPY command was designed to be used for copying data between Oracle and
non-Oracle databases. You should use SQL commands (CREATE TABLE AS and INSERT) to copy data
between Oracle databases.

Understanding COPY Command Syntax

Youenter the COPY command in the following form:

COPY FROM database TO database action -
 destination_table (column_name, column_name, -
 column_name ...) USING query

Here is asampleCOPYcommand:

COPY FROM SCOTT/TIGER@BOSTONDB -
 TO TODD/FOX@CHICAGODB -
 CREATE NEWDEPT (DNUMBER, DNAME, CITY)-
 USING SELECT * FROM DEPT

To specify a database in the FROMor TOclause, you must have a validusernameand passwordfor the
local and remote database(s) and know the appropriate databasespecification(s).COPY obeys Oracle
security, so the username you specify must have been granted access to tables for you to have access to
tables. For information on what databases are available to you, contact your DBA.

When you copy to your local database from a remote database, you can omit the TO clause. When you
copy to a remote database from your local database, you can omit the FROM clause. When you copy
between remote databases, you must include both clauses.

The COPYcommand behaves differently based on whether the destination tablealready exists and on the
action clause you enter (CREATE in the example above). See "Controlling Treatment of the Destination
Table" later in this chapter.

By default, the copiedcolumns have the same names in the destination table that they have in the source
table. If you want to give new names to the columnsin the destination table, enter the new names in
parentheses after the destination table name. If you enter any column names, you must enter a name for
every column you are copying.

Note: To enable the copying of data between Oracle and non-Oracle databases, NUMBER columns are
changed to DECIMAL columns in the destination table. Hence, if you are copying between Oracle
databases, a NUMBER column with no precision will be changed to a DECIMAL(38) column. When
copying between Oracle databases, you should use SQL commands (CREATE TABLE AS and INSERT)
or you should ensure that your columns have a precision specified.

The USINGclause specifies a querythat namesthe source table and specifiesthe data that COPYcopies to
the destination table. You can use any form of the SQL SELECTcommand to select the data that the
COPY command copies.

Here is an example of a COPYcommand that copies only two columns from the source table, and copies
only those rows in which the value of DEPTNO is 30:

SQL> COPY FROM SCOTT/TIGER@BOSTONDB -
> REPLACE EMPCOPY2 -
> USING SELECT ENAME, SAL -
> FROM EMPCOPY -
> WHERE DEPTNO = 30

You may find it easier to enter and edit long COPY commands in command files rather than trying to enter
them directly at the command prompt.

Controlling Treatment of the Destination Table

You control the treatment of the destination tableby entering one of four control clauses¾ REPLACE,
CREATE, INSERT, or APPEND.

The REPLACEclausenames the table to be createdin the destination database and specifies the following
actions:

· If the destination table already exists, COPY drops the existing table and replaces it with a table
containing the copied data.

· If the destination table does not already exist, COPY creates it using the copied data.

You can use the CREATEclause to avoid accidentally writing over an existing table. CREATEspecifies the
following actions:

· If the destination table already exists, COPY reports an error and stops.

· If the destination table does not already exist, COPY creates the table using the copied data.

Use INSERTto insertdata into an existing table. INSERT specifies the following actions:

· If the destination table already exists, COPY inserts the copied data in the destination table.

· If the destination table does not already exist, COPY reports an error and stops.

Use APPENDwhen you want to insertdata in an existing table, or create a new table if the destination
table does not exist. APPEND specifies the following actions:

· If the destination table already exists, COPY inserts the copied data in the destination table.

· If the table does not already exist, COPY creates the table and then inserts the copied data in
it.

Example 5-1Copying from a Remote Database to Your Local Database Using CREATE

To copy EMP from a remote database into a table called EMPCOPY on    your own database, enter the
following command:

Note: See your DBA for an appropriate username, password, and databasespecificationfor a remote
computer that contains a copy of EMP.

SQL> COPY FROM SCOTT/TIGER@BOSTONDB -
> CREATE EMPCOPY -
> USING SELECT * FROM EMP

SQL*Plus displays the following messages:

Array fetch/bind size is 20. (arraysize is 20)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)

SQL*Plus then creates the table EMPCOPY, copies the rows, and displays the following additional
messages:

Table EMPCOPY created.
 14 rows selected from SCOTT@BOSTONDB.
 14 rows inserted into EMPCOPY.
 14 rows committed into EMPCOPY at DEFAULT HOST connection.

In this COPY command, the FROM clause directs COPY to connect you to the database with the
specification D:BOSTON-MFG as SCOTT, with the password TIGER.

Notice that you do not need a semicolon at the end of the command; COPY is a SQL*Plus command, not
a SQL command, even though it contains a query. Because most COPY commands are longer than one
line, you must use a hyphen (-), optionally preceded by a space, at the end of each line except the last.

Interpreting the Messages that COPY Displays

The first three messages displayed by COPYshow the values of SET command variables that affect the
COPYoperation. The most important one is LONG, which limits the length of a LONG column's value.
(LONG is a datatype, similar to CHAR.) If the source table contains a LONG column, COPY truncates
values in that column to the length specified by the system variable LONG.

The variable ARRAYSIZElimitsthe number of rows that SQL*Plus fetches from the database at one time.
This number of rows makes up a batch. The variable COPYCOMMITsetsthe number of batches after
which COPY commits changes to the database. (If you set COPYCOMMIT to zero, COPY commits
changes only after all batches are copied.) For more information on the variables of the SET command,
including how to change their settings, see SET in Chapter 6.

After listing the three system variables and their values, COPY tells you if a table was dropped, created,
or updated during the copy. Then COPY lists the number of rows selected, inserted, and committed.

Specifying Another User's Table

You can refer to another user's tablein a COPYcommand by qualifying the table name with the username,
just as you would in your local database, or in a query with a database link.

For example, to make a local copy of a table named DEPT, owned by the username ADAMS on the
database associated with the SQL*Net connect string BOSTONDB, you would enter

SQL> COPY FROM SCOTT/TIGER@BOSTONDB -
> CREATE EMPCOPY2 -
> USING SELECT * FROM ADAMS.DEPT

Of course, you could get the same result by instructing COPY to log in to the remote database as
ADAMS. You cannot do that, however, unless you know the password associated with the username
ADAMS.

Copying Data between Tables on One Database

You can copydatafrom one tableto another in a single database(local or remote). To copy between tables
in your local database, specify your own usernameand passwordand the databasespecificationfor your
local database in either a FROM or a TO clause (omit the other clause):

SQL> COPY FROM SCOTT/TIGER@MYDATABASE -
> INSERT EMPCOPY2 -
> USING SELECT * FROM EMP

To copy between tables on a remote database, include the same username, password, and database
specification in the FROM and TO clauses:

SQL> COPY FROM SCOTT/TIGER@BOSTONDB -
> TO SCOTT/TIGER@BOSTONDB -
> INSERT EMPCOPY2 -
> USING SELECT * FROM EMP

Reference

Command Reference
This chapter contains descriptions of SQL*Plus commands, listed alphabetically. Use this chapter for
reference only. Each description contains the following parts:

Purpose
Discusses the basic use(s) of the command.

Syntax
Shows how to enter the command. Refer to Chapter 1 for an explanation of the syntax
notation.

Terms and Clauses
Describes the function of each term or clause appearing in the syntax.

Usage Notes
Provides additional information on how the command works and on uses of the
command.

Examples
Gives one or more examples of the command.

A summary table that lists and briefly describes SQL*Plus commands precedes the individual command
descriptions.

To access online help for SQL*Plus commands, you can type HELP followed by the command name at
the SQL command prompt. For example:

SQL> HELP ACCEPT

If you get a response that help is unavailable, consult your database administrator. See the HELP
command for more information.

You can continue a long SQL*Plus commandby typing a hyphenat the end of the line and pressing
[Return]. If you wish, you can type a space before typing the hyphen. SQL*Plus displays a right angle-
bracket (>) as a prompt for each additional line.

You do not need to end a SQL*Plus commandwith a semicolon. When you finish entering the command,
you can just press [Return]. If you wish, however, you can enter a semicolon at the end of a SQL*Plus
command.

SQL*Plus CommandSummary

Command Description

@
Runs the specified command file.

@@
Runs a nested command file.

/
Executes the SQL command or PL/SQL block.

ACCEPT
Reads a line of input and stores it in a given user variable.

APPEND
Adds specified text to the end of the current line in the buffer.

BREAK
Specifies where and how formatting will change in a report, or
lists the current break definition.

BTITLE
Places and formats a specified title at the bottom of each
report page, or lists the current BTITLE definition.

CHANGE
Changes text on the current line in the buffer.

CLEAR
Resets or erases the current value or setting for the specified
option, such as BREAKS or COLUMNS.

COLUMN
Specifies display attributes for a given column, or lists the
current display attributes for a single column or for all
columns.

COMPUTE
Calculates and prints summary lines, using various standard
computations, on subsets of selected rows, or lists all
COMPUTE definitions.

CONNECT
Connects a given username to Oracle.

COPY
Copies data from a query to a table in a local or remote
database.

DEFINE
Specifies a user variable and assigns it a CHAR value, or lists
the value and variable type of a single variable or all
variables.

DEL
Deletes one or more lines of the buffer.

DESCRIBE
Lists the column definitions for the specified table, view, or
synonym or the specifications for the specified function or
procedure.

DISCONNECT
Commits pending changes to the database and logs the
current username off Oracle, but does not exit SQL*Plus.

EDIT
Invokes a host operating system text editor on the contents of
the specified file or on the contents of the buffer.

EXECUTE
Executes a single PL/SQL statement.

EXIT
Terminates SQL*Plus and returns control to the operating
system.

GET
Loads a host operating system file into the SQL buffer.

HELP
Accesses the SQL*Plus help system.

HOST
Executes a host operating system command without leaving
SQL*Plus.

INPUT
Adds one or more new lines after the current line in the buffer.

Lists one or more lines of the SQL buffer.

LIST

PAUSE
Displays an empty line followed by a line containing text, then
waits for the user to press [Return], or displays two empty
lines and waits for the user's response.

PRINT
Displays the current value of a bind variable.

PROMPT
Sends the specified message or a blank line to the user's
screen.

REMARK
Begins a comment in a command file.

RUN
Lists and executes the SQL command or PL/SQL block
currently stored in the SQL buffer.

RUNFORM
Invokes a SQL*Forms application from within SQL*Plus.

SAVE
Saves the contents of the SQL buffer in a host operating
system file (a command file).

SET
Sets a system variable to alter the SQL*Plus environment for
your current session.

SHOW
Shows the value of a SQL*Plus system variable or the current
SQL*Plus environment.

SPOOL
Stores query results in an operating system file and,
optionally, sends the file to a printer.

SQLPLUS
Starts SQL*Plus from the operating system prompt.

START
Executes the contents of the specified command file.

TIMING
Records timing data for an elapsed period of time, lists the
current timer's title and timing data, or lists the number of
active timers.

TTITLE
Places and formats a specified title at the top of each report
page, or lists the current TTITLE definition.

UNDEFINE
Deletes one or more user variables that you defined either
explicitly (with the DEFINE command) or implicitly (with an
argument to the START command).

VARIABLE
Declares a bind variable that can be referenced in PL/SQL.

WHENEVER
OSERROR

Exits SQL*Plus if an operating system command generates
an error.

WHENEVER
SQLERROR

Exits SQL*Plus if a SQL command or PL/SQL block
generates an error.

@ ("at" sign)

Purpose

Runs the specified command file.

Syntax

@ file_name[.ext] [arg...]

Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext]
Representsthe command fileyou wish to run. If you omit ext, SQL*Plus assumes the
default command-file extension (normally SQL). For information on changing the default
extension, see the SUFFIX variable of the SET command in this chapter.

When you enter @ file_name.ext, SQL*Plus searches for a file with the
filename and extension you specify in the current default directory. If SQL*Plus
does not find such a file, SQL*Plus will search a system-dependent path to find
the file. Some operating systems may not support the path search. Consult the
Oracle installation and user's manual(s) provided for your operating system for
specific information related to your operating system environment.

arg...
Representdata items you wish to pass to parametersin the command file.If you enter one
or more arguments, SQL*Plus substitutes the values into the parameters(&1, &2, and so
forth) in the command file. The first argument replaces each occurrence of &1, the
second replaces each occurrence of &2, and so forth.

The @ command DEFINEs the parameters with the values of the arguments; if
you run the command file again in this session, you can enter new arguments
or omit the arguments to use the current values.

For more information on using parameters, refer to the subsection "Passing
Parameters through the START Command" under "Writing Interactive
Commands" in Chapter 3.

Usage Notes

You can include in a command file any command you would normally enter interactively (typically, SQL,
SQL*Plus commands, or PL/SQL blocks).

An EXIT or QUIT command used in a command file terminates SQL*Plus.

The @command functions similarly to START.

If the START command is disabled (see "Disabling SQL*Plus, SQL, and PL/SQL Commands" in Appendix
E), this will also disable the @ command. See START in this chapter for information on the START
command.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the @ command is issued. A
workaround for this is to add another SQLTERMINATOR. See the SQLTERMINATOR variable of the SET
command in this chapter for more information.

Example

To run a command filenamed PRINTRPT with the extension SQL, enter

SQL> @PRINTRPT

To run a command filenamed WKRPT with the extension QRY, enter

SQL> @WKRPT.QRY

@@ (double "at" sign)

Purpose

Runs a nested command file. This command is identical to the @ ("at" sign) command except that it looks
for the specified command file in the same path as the command file from which it was called.

Syntax

@@ file_name[.ext]

Terms and Clauses

Refer to the following for a description of the term or clause:

file_name[.ext]
Representsthe nested command fileyou wish to run. If you omit ext, SQL*Plus assumes
the default command-file extension (normally SQL). For information on changing the
default extension, see the SUFFIX variable of the SET command in this chapter.

When you enter @@file_name.ext within a command file, SQL*Plus searches
for a file with the filename and extension you specify in the same path as the
command file. If SQL*Plus does not find such a file, SQL*Plus will search a
system-dependent path to find the file. Some operating systems may not
support the path search. Consult the Oracle installation and user's manual(s)
provided for your operating system for specific information related to your
operating system environment.

Usage Notes

You can include in a command file any command you would normally enter interactively (typically, SQL or
SQL*Plus commands).

An EXIT or QUIT command used in a command file terminates SQL*Plus.

The @@command functions similarly to START.

If the START command is disabled, this will also disable the @@ command. See START in this chapter
for further information on the START command.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the @@ command is issued. A
workaround for this is to add another SQLTERMINATOR. See the SQLTERMINATOR variable of the SET
command in this chapter for more information.

Example

Suppose that you have the following command filenamed PRINTRPT:

SELECT * FROM EMP
@EMPRPT
@@ WKRPT

When you START PRINTRPT and it reaches the @ command, it looks for the command filenamed
EMPRPT in the current working directory and runs it. When PRINTRPT reaches the @@ command, it
looks for the command filenamed WKRPT in the same path as PRINTRPT and runs it.

/ (slash)

Purpose

Executes the SQL commandor PL/SQL block currently stored in the SQL buffer.

Syntax

/

Usage Notes

You can enter a slash (/) at the command prompt or at a line number prompt of a multi-line command.

The slash command functions similarly to RUN, but does not list the command in the buffer on your
screen.

Executing a SQL command or PL/SQL block using the slash command will not cause the current line
number in the SQL buffer to change unless the command in the buffer contains an error. In that case,
SQL*Plus changes the current line number to the number of the line containing the error.

Example

To see the SQL command(s) you will execute, you can list the contents of the buffer:

SQL> LIST
 1* SELECT ENAME, JOB FROM EMP WHERE ENAME = 'JAMES'

Enter a slash (/) at the command prompt to execute the command in the buffer:

SQL> /

For the above query, SQL*Plus displays the following output:

ENAME JOB
---------- ---------
JAMES CLERK

ACCEPT

Purpose

Reads a line of inputand stores it in a given user variable.

Syntax

ACC[EPT] variable [NUM[BER]|CHAR|DATE] [FOR[MAT] format] [DEF[AULT]
default] [PROMPT text|NOPR[OMPT]] [HIDE]

Terms and Clauses

Refer to the following list for a description of each term or clause:

variable
Represents the name of the variable in which you wish to store a value. If variable does
not exist, SQL*Plus creates it.

NUM[BER]
Makes the datatype of variable the datatype NUMBER. If the reply does not match the
datatype, ACCEPT gives an error message and prompts again.

CHAR
Makes the datatype of variable the datatype CHAR. The maximum CHAR length limit is
240 bytes. If a multi-byte character set is used, one CHAR may be more than one byte in
size.

DATE
Makes reply a valid DATE format. If the reply is not a valid DATE format, ACCEPT gives
an error message and prompts again. The datatype is CHAR.

FOR[MAT]
Specifies the input format for the reply. If the reply does not match the specified format,
ACCEPT gives an error message and prompts again for a reply. The format element must
be a text constant such as A10 or 9.999. See the COLUMN command in this chapter for a
complete list of format elements.

Oracle date formats such as 'dd/mm/yy' are valid when the datatype is DATE.
DATE without a specified format defaults to the Oracle NLS_DATE_FORMAT of
the current session. See the Oracle7 Server Administrator's Guide and the SQL
Language Reference Guide for information on Oracle date formats.

DEF[AULT]
Sets the default value if a reply is not given. The reply must be in the specified format if
defined.

PROMPT text
Displays text on-screen before accepting the value of variable from the user.

NOPR[OMPT]
Skips a line and waits for input without displaying a prompt.

HIDE
Suppresses the display as you type the reply.

To display or reference variables, use the DEFINE command. See the DEFINE command in this chapter
for more information.

Examples

To display the prompt "Password:    ", place the reply in a CHAR variable named PSWD, and suppress the
display, enter

SQL> ACCEPT pswd CHAR PROMPT 'Password: ' HIDE

To display the prompt "Enter weekly salary:    " and place the reply in a NUMBER variable named
SALARY with a default of 000.0, enter

SQL> ACCEPT salary NUMBER FORMAT '999.99' DEFAULT '000.0' -
> PROMPT 'Enter weekly salary: '

To display the prompt "Enter date hired:    " and place the reply in a DATE variable named HIRED with the
format "dd/mm/yy" and a default of "01/01/94", enter

SQL> ACCEPT hired DATE FORMAT 'dd/mm/yy' DEFAULT '01/01/94'-
> PROMPT 'Enter date hired: '

To display the prompt "Enter employee lastname:    " and place the reply in a CHAR variable named
LASTNAME, enter

SQL> ACCEPT lastname CHAR FORMAT 'A20' -
> PROMPT 'Enter employee lastname: '

APPEND

Purpose

Adds specified textto the end of the current linein the SQL buffer.

Syntax

A[PPEND] text

Terms and Clauses

Refer to the following for a description of the term or clause:

text
Represents the text you wish to append. If you wish to separate text from the preceding
characters with a space, enter two spaces between APPEND and text.

To APPEND text that ends with a semicolon, end the command with two
semicolons (SQL*Plus interprets a single semicolon as an optional command
terminator).

Examples

To append a space and the column name DEPT to the second line of the buffer, make that line the current
line by listing the line as follows:

SQL> 2
 2* FROM EMP,

Now enter APPEND:

SQL> APPEND DEPT
SQL> 2
 2* FROM EMP, DEPT

Notice the double space between APPEND and DEPT. The first space separates APPEND from the
characters to be appended; the second space becomes the first appended character.

To append a semicolon to the line, enter

SQL> APPEND ;;

SQL*Plus appends the first semicolon to the line and interprets the second as the terminator for the
APPEND command.

BREAK

Purpose

Specifies where and how formatting will change in a report, such as

· suppressing display of duplicate values for a given column

· skipping a line each time a given column value changes

· printingCOMPUTEd figures each time a given column value changes or at the end of the report
(see also the COMPUTE command)

Also lists the current BREAK definition.

Syntax

BRE[AK] [ON report_element [action [action]]] ...

where:

report_element
Requires the following syntax:

{column|expr|ROW|REPORT}

action
Requires the following syntax:

[SKI[P] n|[SKI[P]] PAGE] [NODUP[LICATES]|DUP[LICATES]]

Terms and Clauses

Refer to the following list for a description of each term or clause:

ON column [action
[action]]

When you include action(s), specifies action(s) for SQL*Plus to take whenever a break
occurs in the specified column (called the break column). (column cannot have a table or
view appended to it. To achieve this, you can alias the column in the SQL statement.) A
break is one of three events:

· a change in the value of a column or expression

· the output of a row

· the end of a report

When you omit action(s), BREAK ON column suppresses printing of duplicate
values in column and marks a place in the report where SQL*Plus will perform
the computation you specify in a corresponding COMPUTE command.

You can specify ON column one or more times. If you specify multipleON
clauses, as in

SQL> BREAK ON DEPTNO SKIP PAGE ON JOB -
> SKIP 1 ON SAL SKIP 1

the first ON clause represents the outermost break (in this case, ON DEPTNO)
and the last ON clause represents the innermost break (in this case, ON SAL).

SQL*Plus searches each row of output for the specified break(s), starting with
the outermost break and proceeding¾ in the order you enter the clauses¾ to
the innermost. In the example, SQL*Plus searches for a change in the value of
DEPTNO, then JOB, then SAL.

Next, SQL*Plus executes actions beginning with the action specified for the
innermost break and proceeding in reverse order toward the outermost break
(in this case, from SKIP 1 for ON SAL toward SKIP PAGE for ON DEPTNO).
SQL*Plus executes each action up to and including the action specified for the
first occurring break encountered in the initial search.

If, for example, in a given row the value of JOB changes¾ but the values of
DEPTNO and SAL remain the same¾ SQL*Plus skips two lines before printing
the row (one as a result of SKIP 1 in the ON SAL clause and one as a result of
SKIP 1 in the ON JOB clause).

Whenever you use ON column, you should also use an ORDER BYclause in
the SQL SELECTcommand. Typically, the columns used in the BREAK
command should appear in the same order in the ORDER BY clause (although
all columns specified in the ORDER BY clause need not appear in the BREAK
command). This prevents breaks from occurring at meaningless points in the
report. The following SELECT command produces meaningful results:

SQL> SELECT DEPTNO, JOB, SAL, ENAME
 2 FROM EMP
 3 ORDER BY DEPTNO, JOB, SAL, ENAME;

All rows with the same DEPTNO print together on one page, and within that
page all rows with the same JOB print in groups. Within each group of jobs,
jobs with the same SAL print in groups. Breaks in ENAME cause no action
because ENAME does not appear in the BREAK command.

ON expr [action
[action]]

When you include action(s), specifies action(s) for SQL*Plus to take when the value of
the expression changes.

When you omit action(s), BREAK ON expr suppresses printing of duplicate
values of expr and marks a place in the report where SQL*Plus will perform the
computation you specify in a corresponding COMPUTE command.

You can use an expression involving one or more table columns or an alias
assigned to a report column in a SQL SELECTor SQL*Plus COLUMNcommand.
If you use an expression in a BREAK command, you must enter expr exactly as
it appears in the SELECT command. If the expression in the SELECT
command is a+b, for example, you cannot use b+a or (a+b) in a BREAK
command to refer to the expression in the SELECT command.

The information given above for ON column also applies to ON expr.

ON ROW [action
[action]]

When you include action(s), specifies action(s) for SQL*Plus to take when a SQL
SELECTcommand returns a row. The ROW break becomes the innermost break
regardless of where you specify it in the BREAK command. You should always specify an
action when you BREAK on a row.

ON REPORT [action]
Marks a place in the report where SQL*Plus will perform the computation you specify in a
corresponding COMPUTE command. Use BREAKON REPORT in conjunction with
COMPUTE to print grand totals or other "grand" computed values.

The REPORT break becomes the outermost break regardless of where you

specify it in the BREAK command.

Note that SQL*Plus will not skip a page at the end of a report, so you cannot
use BREAK ON REPORT SKIP PAGE.

Refer to the following list for a description of each action:

SKI[P] n
Skips n lines before printing the row where the break occurred.

[SKI[P]] PAGE
Skips the number of lines that are defined to be a page before printing the row where the
break occurred. The number of lines per page can be set via the PAGESIZE clause of the
SET command. Note that PAGESIZE only changes the number of lines that SQL*Plus
considers to be a page. Therefore, SKIP PAGE may not always cause a physical page
break, unless you have also specified NEWPAGE 0. Note also that if there is a break
after the last row of data to be printed in a report, SQL*Plus will not skip the page.

NODUP[LICATES]
Prints blanks rather than the value of a break column when the value is a duplicate of the
column's value in the preceding row.

DUP[LICATES]
Prints the value of a break column in every selected row.

Enter BREAKwith no clauses to list the current break definition.

Usage Notes

Each new BREAK command you enter replaces the preceding one.

To remove the BREAK command, use CLEAR BREAKS.

Example

To produce a report that prints duplicate job values, prints the average of SAL and inserts one blank line
when the value of JOB changes, and additionally prints the sum of SAL and inserts another blank line
when the value of DEPTNO changes, you could enter the following commands. (The example selects
departments 10 and 30 and the jobs of clerk and salesman only.)

SQL> BREAK ON DEPTNO SKIP 1 ON JOB SKIP 1 DUPLICATES
SQL> COMPUTE SUM OF SAL ON DEPTNO
SQL> COMPUTE AVG OF SAL ON JOB
SQL> SELECT DEPTNO, JOB, ENAME, SAL FROM EMP
 2 WHERE JOB IN ('CLERK', 'SALESMAN')
 3 AND DEPTNO IN (10, 30)
 4 ORDER BY DEPTNO, JOB;

The following output results:

DEPTNO JOB ENAME SAL
--------- --------- ---------- ---------
 10 CLERK MILLER 1300
 ********* ---------
 avg 1300

********** ----------
sum 1300

 30 CLERK JAMES 1045
 ********* ----------
 avg 1045

 SALESMAN ALLEN 1760
 SALESMAN MARTIN 1375
 SALESMAN TURNER 1650
 SALESMAN WARD 1375
 ********* ----------
 avg 1540

********** ----------
sum 7205

BTITLE

Purpose

Places and formats a specified titleat the bottom of each reportpage or lists the current BTITLE definition.

For a description of the old form of BTITLE, see Appendix F.

Syntax

BTI[TLE] [printspec [text|variable] ...]|[OFF|ON]

Terms and Clauses

Refer to the TTITLE command for additional information on terms and clauses in the BTITLE command
syntax.

Enter BTITLE with no clauses to list the current BTITLEdefinition.

Usage Notes

If you do not enter a printspec clause before the first occurrence of text, BTITLE left justifies the text.
SQL*Plus interprets BTITLE in the new form if a valid printspec clause (LEFT, SKIP, COL, and so on)
immediately follows the command name.

Examples

To set a bottom title with CORPORATE PLANNING DEPARTMENT on the left and a date on the right,
enter

SQL> BTITLE LEFT 'CORPORATE PLANNING DEPARTMENT' -
> RIGHT '11 Mar 1988'

To set a bottom title with CONFIDENTIAL in column 50, followed by six spaces and a date, enter

SQL> BTITLE COL 50 'CONFIDENTIAL' TAB 6 '11 Mar 88'

CHANGE

Purpose

Changes the first occurrence of text on the current line in the buffer.

Syntax

C[HANGE] sepchar old [sepchar [new [sepchar]]]

Terms and Clauses

Refer to the following list for a description of each term or clause:

sepchar
Represents any non-alphanumeric character such as "/" or "!". Use a sepchar that does
not appear in old or new. You can omit the space between CHANGE and the first
sepchar.

old
Represents the text you wish to change. CHANGE ignores case in searching for old. For
example,
CHANGE /aq/aw

will find the first occurrence of "aq", "AQ", "aQ", or "Aq" and change it to "aw".
SQL*Plus inserts the new text exactly as you specify it.

If old is prefixed with "...", it matches everything up to and including the first
occurrence of old. If it is suffixed with "...", it matches the first occurrence of old
and everything that follows on that line. If it contains an embedded "...", it
matches everything from the preceding part of old through the following part of
old.

new
Represents the text with which you wish to replace old. If you omit new and, optionally,
the second and third sepchars, CHANGE deletes old from the current line of the buffer.

Usage Notes

CHANGE changes the first occurrence of the existing specified text on the current line of the buffer to the
new specified text. The current line is marked with an asterisk (*) in the LIST output.

You can also use CHANGE to modify a line in the buffer that has generated an Oracle error. SQL*Plus
sets the buffer's current line to the line containing the error so that you can make modifications.

To re-enter an entire line, you can type the line number followed by the new contents of the line. If you
specify a line number larger than the number of lines in the buffer and follow the number with text,
SQL*Plus adds the text in a new line at the end of the buffer. If you specify zero ("0") for the line number
and follow the zero with text, then SQL*Plus inserts the line at the beginning of the buffer (that line
becomes line 1).

Examples

Assume the current line of the buffer contains the following text:

4* WHERE JOB IS IN ('CLERK','SECRETARY','RECEPTIONIST')

Enter the following command:

SQL> C /RECEPTIONIST/GUARD/

The text in the buffer changes as follows:

4* WHERE JOB IS IN ('CLERK','SECRETARY','GUARD')

Or enter the following command:

SQL> C /'CLERK',.../'CLERK')/

The original line changes to

4* WHERE JOB IS IN ('CLERK')

Or enter the following command:

SQL> C /(...)/('COOK','BUTLER')/

The original line changes to

4* WHERE JOB IS IN ('COOK','BUTLER')

You can replace the contents of an entire line using the line number. This entry

SQL> 2 FROM EMP e1

causes the second line of the buffer to be replaced with

FROM EMP e1

Note that entering a line number followed by a string will replace the line regardless of what text follows
the line number. Thus,

SQL> 2 c/old/new/

will change the second line of the buffer to be

2* c/old/new/

CLEAR

Purpose

Resets or erases the current value or setting for the specified option.

Syntax

CL[EAR] option ...

where option represents one of the following clauses:

BRE[AKS]
BUFF[ER]
COL[UMNS]
COMP[UTES]
SCR[EEN]
SQL
TIMI[NG]

Terms and Clauses

Refer to the following list for a description of each term or clause:

BRE[AKS]
Removes the break definitionset by the BREAKcommand.

BUFF[ER]
Clears text from the buffer. CLEAR BUFFER has the same effect as CLEAR SQL, unless
you are using multiple buffers (see SET BUFFER in Appendix F).

COL[UMNS]
Resets column display attributes set by the COLUMN command to default settings for all
columns. To reset display attributes for a single column, use the CLEAR clause of the
COLUMN command.

COMP[UTES]
Removes all COMPUTE definitions set by the COMPUTEcommand.

SCR[EEN]
Clears your screen.

SQL
Clears the text from SQL buffer. CLEAR SQL has the same effect as CLEAR BUFFER,
unless you are using multiple buffers (see SET BUFFER in Appendix F).

TIMI[NG]
Deletes all timers created by the TIMINGcommand.

Examples

To clear breaks, enter

SQL> CLEAR BREAKS

To clear column definitions, enter

SQL> CLEAR COLUMNS

COLUMN

Purpose

Specifies display attributes for a given column, such as

· text for the column heading

· alignment of the column heading

· format for NUMBER data

· wrapping of column data

Also lists the current display attributes for a single column or all columns.

Syntax

COL[UMN] [{column|expr} [option ...]]

where option represents one of the following clauses:

ALI[AS] alias
CLE[AR]
FOLD_A[FTER]
FOLD_B[EFORE]
FOR[MAT] format
HEA[DING] text
JUS[TIFY] {L[EFT]|C[ENTER]|C[ENTRE]|R[IGHT]}
LIKE {expr|alias}
NEWL[INE]
NEW_V[ALUE] variable
NOPRI[NT]|PRI[NT]
NUL[L] text
OLD_V[ALUE] variable
ON|OFF
WRA[PPED]|WOR[D_WRAPPED]|TRU[NCATED]

Terms and Clauses

Enter COLUMNfollowed by column or expr and no other clauses to list the current display attributes for
only the specified column or expression. Enter COLUMNwith no clauses to list all current columndisplay
attributes.

Refer to the following list for a description of each term or clause:

{column|expr}
Identifies the data item (typically, the name of a column) in a SQL SELECTcommand to
which the column command refers. If you use an expression in a COLUMN command,
you must enter expr exactly as it appears in the SELECT command. If the expression in
the SELECT command is a+b, for example, you cannot use b+a or (a+b) in a COLUMN
command to refer to the expression in the SELECT command.

If you select columns with the same name from different tables, a COLUMN
command for that column name will apply to both columns. That is, a COLUMN
command for the column ENAME applies to all columns named ENAME that
you reference in this session. COLUMN ignores table name prefixes in
SELECT commands. Also, spaces are ignored unless the name is placed in

double quotes.

To format the columns differently, assign a unique alias to each column within
the SELECT command itself (do not use the ALIAS clause of the COLUMN
command) and enter a COLUMN command for each column's alias.

ALI[AS] alias
Assigns a specifiedalias to a column, which can be used to refer to the column in BREAK,
COMPUTE, and other COLUMN commands.

Note: A SQL*Plus alias is different from a SQL alias. See the Oracle7 Server
SQL Language Reference Manual for further information on the SQL alias.

CLE[AR]
Resets the display attributes for the columnto default values.

To reset the attributes for all columns, use the CLEAR COLUMNS command.

FOLD_A[FTER]
Inserts a carriage return after the column heading and after each row in the column.
SQL*Plus does not insert an extra carriage return after the last column in the SELECT
list.

FOLD_B[EFORE]
Inserts a carriage return before the column heading and before each row of the column.
SQL*Plus does not insert an extra carriage return before the first column in the SELECT
list.

FOR[MAT] format
Specifies the display format of the column. The format specification must be a text
constant such as A10 or $9,999¾ not a variable.

Character Columns The default width of CHAR and VARCHAR2 (VARCHAR)
columns is the width of the column in the database. SQL*Plus formats CHAR
and VARCHAR2 (VARCHAR) data left-justified. If a value does not fit within the
column width, SQL*Plus wraps or truncates the character string depending on
the setting of SET WRAP. The width cannot exceed 32,767 or the value set with
SET MAXDATA. (VARCHAR2 requires Oracle7.)

A LONGcolumn's width defaults to the value of SET LONGCHUNKSIZE or SET
LONG, whichever one is smaller.

A Trusted Oracle column of datatype MLSLABEL or RAW MLSLABEL defaults
to the width defined for the column in the database or the length of the column's
heading, whichever is longer. The default display width for a Trusted Oracle
column of datatype ROWLABEL is 15.

To change the width of a CHAR,VARCHAR2 (VARCHAR), LONG, or Trusted
Oracle column to n, use FORMAT An. (A stands for alphanumeric.) If you
specify a width shorter than the column heading, SQL*Plus truncates the
heading.If you specify a width for a LONG column, SQL*Plus uses the
LONGCHUNKSIZE or the specified width, whichever is smaller, as the column
width.

DATE Columns For Oracle7, the default width and format of unformatted DATE
columns in SQL*Plus is derived from the NLS parameters in effect. Otherwise,
the default width is A9. In Oracle7, the NLS parameters may be set in your
database parameter file or may be environment variables or an equivalent
platform-specific mechanism. They may also be specified for each session with
the ALTER SESSION command. (See the documentation for the Oracle7
Server for a complete description of the NLS parameters).

You can change the format of any DATE column using the SQL function
TO_CHAR in your SQL SELECT statement. You may also wish to use an
explicit COLUMN FORMAT command to adjust the column width.

When you use SQL functions like TO_CHAR, Oracle automatically allows for a
very wide column.

To change the width of a DATE column to n, use the COLUMN command with
FORMAT An. If you specify a width shorter than the column heading, the
heading is truncated.

NUMBER Columns To change a NUMBER column's width, use FORMAT
followed by an element as specified in Table 6 - 1.

Element Example(s) Description

9
9999 Number of "9"s specifies number of significant digits

returned. Blanks are displayed for leading zeroes
and for a value of zero.

0
0999
9990

Displays a leading zero or a value of zero in this
position as a 0, rather than as a blank.

$
$9999 Prefixes value with dollar sign.

B
B9999 Displays a zero value as blank, regardless of "0"s in

the format model.

MI
9999MI Displays "-" after a negative value. For a positive

value, a trailing space is displayed.

S
S9999 Returns "+" for positive values and "-" for negative

values in this position.

PR
9999PR Displays a negative value in <angle brackets>. For

a positive value, a leading and trailing space is
displayed.

D
99D99 Displays the decimal character in this position,

separating the integral and fractional parts of a
number.

G
9G999 Displays the group separator in this position.

C
C999 Displays the ISO currency symbol in this position.

L
L999 Displays the local currency symbol in this position.

, (comma)
9,999 Displays a comma in this position.

. (period)
99.99 Displays a period (decimal point) in this position,

separating the integral and fractional parts of a
number.

V
999V99 Multiplies value by 10n, where n is the number of

"9"s after the "V".

EEEE
9.999EEEE Displays value in scientific notation (format must

contain exactly four "E"s).

RN or rn
RN Displays upper- or lowercase Roman numerals.

Value can be an integer between 1 and 3999.

DATE
DATE Displays value as a date in MM/DD/YY format; used

to format NUMBER columns that represent Julian
dates.

Table 6 - 1.    Number Formats

The MI and PR format elements can only appear in the last position of a

number format model. The S format element can only appear in the first or last
position.

If a number format model does not contain the MI, S or PR format elements,
negative return values automatically contain a leading negative sign and
positive values automatically contain a leading space.

A number format model can contain only a single decimal character (D) or
period (.), but it can contain multiple group separators (G) or commas (,). A
group separator or comma cannot appear to the right of a decimal character or
period in a number format model.

SQL*Plus formats NUMBER data right-justified. A NUMBER column's width
equals the width of the heading or the width of the FORMAT plus one space for
the sign, whichever is greater. If you do not explicitly use FORMAT, then the
column's width will always be at least the value of SET NUMWIDTH.

If a value does not fit within the column width, SQL*Plus indicates overflow by
displaying a # (pound sign) in place of each digit the width allows.

With all number formats, SQL*Plus rounds each value to the specified number
of significant digits.

HEA[DING] text
Defines a columnheading. If you do not use a HEADING clause, the column's heading
defaults to column or expr. If text containsblanks or punctuation characters, you must
enclose it with single or double quotes. Each occurrenceof the HEADSEP character (by
default, '|') begins a new line. For example,
COLUMN ENAME HEADING 'Employee |Name'

would produce a two-line column heading. See the HEADSEP variable of the
SET command in this chapter for information on changing the HEADSEP
character.

JUS[TIFY] {L[EFT]|
C[ENTER]|C[ENTRE]|
R[IGHT]}

Aligns the heading. If you do not use a JUSTIFY clause, headings for NUMBER columns
default to RIGHT and headings for other column types default to LEFT.

LIKE {expr|alias}
Copiesthe display attributes of another column or expression (whose attributes you have
already defined with another COLUMN command). LIKE copies only attributes not
defined by another clause in the current COLUMN command.

NEWL[INE]
Starts a new line before displaying the column's value. NEWLINE has the same effect as
FOLD_BEFORE.

NEW_V[ALUE]
variable

Specifiesa variable to hold a columnvalue. You can reference the variable
inTTITLEcommands. Use NEW_VALUE to display column values orthedatein the top title.
You must include the column in a BREAK command with the SKIP PAGE action. The
variable name cannot contain a pound sign (#).

NEW_VALUE is useful for master/detail reportsin which there is a new master
record for each page. For master/detail reporting, you must also include the
column in the ORDER BY clause. See the example at the end of this command
description.

For information on displaying a column value in the bottom title, see COLUMN
OLD_VALUE. Refer to TTITLE for more information on referencing variables in
titles. See COLUMN FORMAT for details on formatting and valid format
models.

NOPRI[NT]|PRI[NT]
Controls the printing of the column (the column heading and all the selected values).
NOPRINTturnsthe printing of the column off. PRINTturnsthe printing of the column on.

NUL[L] text
Controls the text SQL*Plus displays for null values in the given column. The default is a
white space. SET NULL controls the text displayed for all null values for all columns,
unless overridden for a specific column by the NULL clause of the COLUMN command.

OLD_V[ALUE]
variable

Specifiesa variable to hold a column value.You can reference the variable
inBTITLEcommands. Use OLD_VALUE to display column values in the bottom title. You
must include the column in a BREAK command with the SKIP PAGE action.

OLD_VALUE is useful for master/detail reportsin which there is a new master
record for each page. For master/detail reporting, you must also include the
column in the ORDER BY clause.

For information on displaying a column value in the top title, see COLUMN
NEW_VALUE. Refer to TTITLE for more information on referencing variables in
titles.

ON|OFF
Controls the status of display attributes for a column. OFFdisables the attributes for a
columnwithout affecting the attributes' definition. ONreinstates the attributes.

WRA[PPED]|
WOR[D_WRAPPED]|
TRU[NCATED]

Specifies how SQL*Plus will treat a CHAR, VARCHAR2, LONG, or DATE string that is too
wide for a column. WRAPPED wrapsthe string within the column bounds, beginning new
lines when required. When WORD_WRAP is enabled, SQL*Plus left justifies each new
line, skipping all leading whitespace (for example, returns, newline characters, tabs and
spaces), including embedded newline characters. Embedded whitespace not on a line
boundary is not skipped. TRUNCATED truncatesthe string at the end of the first line of
display.

Usage Notes

You can enter any number of COLUMN commands for one or more columns. All column attributes set for
each column remain in effect for the remainder of the session, until you turn the column OFF, or until you
use the CLEAR COLUMN command. Thus, the COLUMN commands you enter can control a column's
display attributes for multiple SQL SELECT commands.

When you enter multiple COLUMN commands for the same column, SQL*Plus applies their clauses
collectively. If several COLUMN commands apply the same clause to the same column, the last one
entered will control the output.

Examples

To make the ENAME column 20 characters wide and display EMPLOYEE NAME on two lines at the top,
enter

SQL> COLUMN ENAME FORMAT A20 HEADING 'EMPLOYEE |NAME'

To format the SAL column so that it shows millions of dollars, rounds to cents, uses commas to separate
thousands, and displays $0.00 when a value is zero, you would enter

SQL> COLUMN SAL FORMAT $9,999,990.99

To assign the alias NET to a column containing a long expression, to display the result in a dollar format,
and to display <NULL> for null values, you might enter

SQL> COLUMN SAL+COMM+BONUS-EXPENSES-INS-TAX ALIAS NET
SQL> COLUMN NET FORMAT $9,999,999.99 NULL '<NULL>'

Note that the example divides this column specification into two commands. The first defines the alias
NET, and the second uses NET to define the format.

Also note that in the first command you must enter the expression exactly as you entered it (or will enter
it) in the SELECT command. Otherwise, SQL*Plus cannot match the COLUMN command to the
appropriate column.

To wrap long values in a column named REMARKS, you can enter

SQL> COLUMN REMARKS FORMAT A20 WRAP

For example:

CUSTOMER DATE QUANTITY REMARKS
---------- --------- -------- --------------------
123 25-AUG-86 144 This order must be s
 hipped by air freigh
 t to ORD

If you replace WRAP with WORD_WRAP, REMARKS looks like this:

CUSTOMER DATE QUANTITY REMARKS
---------- --------- -------- ---------------------
123 25-AUG-86 144 This order must be
 shipped by air freight
 to ORD

If you specify TRUNCATE, REMARKS looks like this:

CUSTOMER DATE QUANTITY REMARKS
---------- --------- -------- --------------------
123 25-AUG-86 144 This order must be s

Inorder to print the currentdateand the name of each job in the top title, enter the following. (For details on
creating a date variable, see "Displaying the Current Date in Titles" under "Defining Page Titles and
Dimensions" in Chapter 4.)

SQL> COLUMN JOB NOPRINT NEW_VALUEJOBVAR
SQL> COLUMN TODAY NOPRINT NEW_VALUE DATEVAR
SQL> BREAK ON JOB SKIP PAGE ON TODAY
SQL> TTITLE CENTER 'Job Report' RIGHT DATEVAR SKIP 2 -
> LEFT 'Job: ' JOBVAR SKIP 2
SQL> SELECT TO_CHAR(SYSDATE, 'MM/DD/YY') TODAY,
 2 ENAME, JOB, MGR, HIREDATE, SAL, DEPTNO
 3 FROM EMP WHERE JOB IN ('CLERK', 'SALESMAN')
 4 ORDER BY JOB, ENAME;

Your two page report would look similar to the following report, with "Job Report" centered within your
current linesize:

 Job Report 08/01/94

Job: CLERK

ENAME MGR HIREDATE SAL DEPTNO
---------- ------- --------- ----------- ----------
ADAMS 7788 14-JAN-87 1100 20
JAMES 7698 03-DEC-81 950 30
MILLER 7782 23-JAN-82 1300 10
SMITH 7902 17-DEC-80 800 20

 Job Report 08/01/94

Job: CLERK

ENAME MGR HIREDATE SAL DEPTNO
---------- ------- --------- ----------- ----------
ALLEN 7698 20-JAN-81 1600 30
MARTIN 7698 03-DEC-81 950 30
MILLER 7782 23-JAN-82 1300 10
SMITH 7902 17-DEC-80 800 20

To change the default format of DATE columns to 'YYYY-MM-DD', you can enter

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD';

The following output results:

Session altered

To display the change, enter a SELECT statement, such as:

SQL> SELECT HIREDATE
 2 FROM EMP
 3 WHERE EMPNO = 7839;

The following output results:

HIREDATE

1981-11-17

See the Oracle7 Server SQL Language Reference Manual for information on the ALTER SESSION
command.

Note that in a SELECT statement, some SQL calculations or functions, such as TO_CHAR, may cause a
column to be very wide. In such cases, use the FORMAT option to alter the column width.

COMPUTE

Purpose

Calculatesand prints summary lines, using various standard computations, on subsets of selected rows,
or lists all COMPUTE definitions. (For details on how to create summaries, see "Clarifying Your Report
with Spacing and Summary Lines" in Chapter 4.)

Syntax

COMP[UTE] [function [LAB[EL] text] ... OF {expr|column|alias} ... ON
{expr|column|alias|REPORT|ROW} ...]

Terms and Clauses

Refer to the following list for a description of each term or clause:

function ...
Represents one of the functions listed in Table 6-2. If you specify more than one function,
use spaces to separate the functions.

Function Computes Applies to Datatypes

AVG
Average of non-null values NUMBER

COU[NT]
Count of non-null values all types

MAX[IMUM]
Maximum value NUMBER, CHAR,VARCHAR2

(VARCHAR)

MIN[IMUM]
Minimum value NUMBER, CHAR,VARCHAR2

(VARCHAR)

NUM[BER]
Count of rows all types

STD
Standard deviation of non-null
values

NUMBER

SUM
Sum of non-null values NUMBER

VAR[IANCE]
Variance of non-null values NUMBER

Table 6 - 2.   
COMPUTE
Functions

LAB[EL] text
Defines the label to be printed for the computed value. If no LABEL clause is used, text
defaults to the unabbreviated function keyword. If text contains spaces or punctuation,
you must enclose it with single quotes. The label prints left justified and truncates to the
column width or linesize, whichever is smaller. The maximum length of a label is 500
characters.

The label for the computed value appears in the break column specified. To
suppress the label, use the NOPRINT option of the COLUMN command on the
break column.

If you repeat a function in a COMPUTE command, SQL*Plus issues a warning
and uses the first occurrence of the function.

With ON REPORT and ON ROW computations, the label appears in the first
column listed in the SELECT statement. The label can be suppressed by using
a NOPRINT column first in the SELECT statement. When you compute a
function of the first column in the SELECT statement ON REPORT or ON ROW,
then the computed value appears in the first column and the label is not
displayed. To see the label, select a dummy column first in the SELECT list.

OF {expr|column|
alias}...

Specifies the column(s) or expression(s) you wish to use in the computation. (column
cannot have a table or view appended to it. To achieve this, you can alias the column in
the SQL statement.) You must also specify these columns in the SQL SELECTcommand,
or SQL*Plus will ignore the COMPUTE command.

If you use a SQL SELECT list alias, you must use the SQL alias in the
COMPUTE command, not the column name. If you use the column name in this
case, SQL*Plus will ignore the COMPUTE command.

If you do not want the computed values of a column to appear in the output of a
SELECT command, specify that column in a COLUMN command with a
NOPRINT clause. Use spaces to separate multiple expressions, columns, or
aliases within the OF clause.

In the OF clause,you can refer to an expression or function reference in the
SELECT statement by placing the expression or function reference in double
quotes. Column names and aliases do not need quotes.

ON {expr|column|
alias|REPORT|
ROW} ...

Specifies the event SQL*Plus will use as a break. (column cannot have a table or view
appended to it. To achieve this, you can alias the column in the SQL statement.)
COMPUTE prints the computed value and restarts the computation when the event
occurs (that is, when the value of the expression changes, a new ROW is fetched, or the
end of the report is reached).

If multiple COMPUTE commands reference the same column in the ON clause,
only the last COMPUTE command applies.

To reference aSQL SELECT expression or function reference in an ON clause,
place the expression or function reference in quotes. Column names and
aliases do not need quotes.

Enter COMPUTE without clauses to list all COMPUTE definitions.

Usage Notes

In order for the computations to occur, the following conditions must all be true:

· One or more of the expressions, columns, or column aliases you reference in the OF clause
must also be in the SELECT command.

· The expression, column, or column alias you reference in the ON clause must occur in the
SELECT command and in the most recent BREAKcommand.

· If you reference either ROW or REPORT in the ON clause, also reference ROW or REPORT in
the most recent BREAK command.

To remove all COMPUTE definitions, use the CLEAR COMPUTES command.

Examples

To subtotal the salary for the "clerk", "analyst", and "salesman" job classifications with a compute label of

"TOTAL", enter

SQL> BREAK ON JOB SKIP 1
SQL> COMPUTE SUM LABEL 'TOTAL' OF SAL ON JOB
SQL> SELECT JOB, ENAME, SAL
 2 FROM EMP
 3 WHERE JOB IN ('CLERK', 'ANALYST', 'SALESMAN')
 4 ORDER BY JOB, SAL;

The following output results:

JOB ENAME SAL
--------- ---------- ----------
ANALYST SCOTT 3000
 FORD 3000
********* ----------
TOTAL 6000

CLERK SMITH 800
 JAMES 950
 ADAMS 1100
 MILLER 1300
********* ----------
TOTAL 4150

SALESMAN WARD 1250
 MARTIN 1250
 TURNER 1500
 ALLEN 1600
********* ----------
TOTAL 5600

To calculate the total of salaries less than 1,000 on a report, enter

SQL> COMPUTE SUM OF SAL ON REPORT
SQL> BREAK ON REPORT
SQL> COLUMN DUMMY HEADING ''
SQL> SELECT ' ' DUMMY, SAL, EMPNO
 2 FROM EMP
 3 WHERE SAL < 1000
 4 ORDER BY SAL;

The following output results:

 SAL EMPNO
--- ---------- -----------
 800 7369
 950 7900

sum 5350

To compute the average and maximum salary for the accounting and sales departments, enter

SQL> BREAK ON DNAME SKIP 1
SQL> COMPUTE AVG LABEL 'Dept Average' -
> MAX LABEL 'Dept Maximum' -
> OF SAL ON DNAME
SQL> SELECT DNAME, ENAME, SAL
 2 FROM DEPT, EMP
 3 WHERE DEPT.DEPTNO = EMP.DEPTNO
 4 AND DNAME IN ('ACCOUNTING', 'SALES')
 5 ORDER BY DNAME;

The following output results:

DNAME ENAME SAL
-------------- ---------- ----------
ACCOUNTING CLARK 2450
 KING 5000
 MILLER 1300
************** ----------
Dept Average 2916.66667
Dept Maximum 5000

SALES ALLEN 1600
 WARD 1250
 JAMES 950
 TURNER 1500
 MARTIN 1250
 BLAKE 2850
************** ----------
Dept Average 1566.66667
Dept Maximum 2850

To compute the sum of salaries for departments 10 and 20 without printing the compute label:

SQL> COLUMN DUMMY NOPRINT
SQL> COMPUTE SUM OF SAL ON DUMMY
SQL> BREAK ON DUMMY SKIP 1
SQL> SELECT DEPTNO DUMMY, DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO <= 20
 4 ORDER BY DEPTNO;

SQL*Plus displays the following output:

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 KING 5000
 10 CLARK 2450
 10 MILLER 1300

 8750

 20 JONES 2975
 20 FORD 3000
 20 SMITH 800
 20 SCOTT 3000
 20 ADAMS 1100

 10875

If, instead, you do not want to print the label, only the salary total at the end of the report:

SQL> COLUMN DUMMY NOPRINT
SQL> COMPUTE SUM OF SAL ON DUMMY
SQL> BREAK ON DUMMY
SQL> SELECT NULL DUMMY, DEPTNO, ENAME, SAL
 2 FROM EMP
 3 WHERE DEPTNO <= 20
 4 ORDER BY DEPTNO;

SQL*Plus displays the following output:

 DEPTNO ENAME SAL
---------- ---------- ----------
 10 KING 5000
 10 CLARK 2450
 10 MILLER 1300
 20 JONES 2975
 20 FORD 3000
 20 SMITH 800
 20 SCOTT 3000
 20 ADAMS 1100

 19625

CONNECT

Purpose

Connectsa given usernametoOracle.

Syntax

CONN[ECT] [logon]

where:

logon
Requires the following syntax: username[/password][@database_specification]|/

Terms and Clauses

Refer to the following list for a description of each term or clause:

username[/password]
Represent the usernameand passwordwith which you wish to connect to Oracle. If you
omit username and password, SQL*Plus prompts you for them. If you enter a slash (/) or
simply enter [Return] to the prompt for username, SQL*Plus logs you in using a default
logon (see "/" below).

If you omit only password, SQL*Plus prompts you for password. When
prompting, SQL*Plus does not display password on your terminal screen.

/
Represents a defaultlogon using operating system authentication. You cannot enter a
database_specification if you use a default logon. In a default logon, SQL*Plus typically
attempts to log you in using the username OPS$name, where name is your operating
system username. See the Oracle7 Server Administrator's Guide for information about
operating system authentication.

database
specification

Consists of a SQL*Net connection string. The exact syntax depends upon the SQL*Net
communications protocol your Oracle installation uses. For more information, refer to the
SQL*Net manual appropriate for your protocol or contact your DBA. SQL*Plus does not
prompt for a databasespecification, but uses your default databaseif you do not include a
specification.

Usage Notes

CONNECT commits the current transaction to the database, disconnects the current username from
Oracle, and reconnects with the specified username.

Examples

To connect across SQL*Net using username SCOTT and password TIGER to the database known by the
SQL*Net alias as FLEETDB, enter

SQL> CONNECT SCOTT/TIGER@FLEETDB

To connect using username SCOTT, letting SQL*Plus prompt you for the password, enter

SQL> CONNECT SCOTT

COPY

Purpose

Copies the data from a query to a tablein a localor remotedatabase.

Syntax

COPY {FROM username[/password]@database_specification| TO
username[/password]@database_specification| FROM
username[/password]@database_specification TO
username[/password]@database_specification} {APPEND|CREATE|INSERT|REPLACE}
destination_table [(column, column, column ...)] USING query

Terms and Clauses

Refer to the following list for a description of each term or clause:

username[/password]
Represent the Oracleusername/password youwish to COPY FROM and TO. In the FROM
clause, username/password identifies the source of the data; in the TO clause,
username/password identifies the destination. If you do not specify password in either the
FROM clause or the TO clause, SQL*Plus will prompt you for it. SQL*Plus suppresses
the display of your response to these prompts.

database_specificat
ion

Consists of a SQL*Net connection string. You must include a database_specification
clause in the COPY command. In the FROM clause, database_specification represents
the database at the source; in the TO clause, database_specification represents the
database at the destination. The exact syntax depends upon the SQL*Net
communications protocol your Oracle installation uses. For more information, refer to the
SQL*Net manual appropriate for your protocol or contact your DBA.

destination_table
Represents the table you wish to create or to which you wish to add data.

(column, column,
column, ...)

Specifies the names of the columnsin    destination_table. You must enclose a name in
double quotes if it contains lowercase letters or blanks.

If you specify columns, the number of columns must equal the number of
columns selected by the query. If you do not specify any columns, the copied
columns will have the same names in the destination table as they had in the
source if COPY creates destination_table.

USING query
Specifies a SQLquery(SELECTcommand) determiningwhichrows and columns COPY
copies.

FROM
username[/password]
@database_specifica
tion

Specifies the username, password, and database    that contains the data to be copied. If
you omit the FROM clause, the source defaults to the database to which SQL*Plus is
connected (that is, the database that other commands address). You must include a
FROM clause to specify a source database other than the default.

TO
username[/password]
@database_specifica
tion

Specifies the database containing the destination table. If you omit the TO clause, the
destination defaults to the database to which SQL*Plus is connected (that is, the
database that other commands address). You must include a TO clause to specify a
destination database other than the default.

APPEND
Insertsthe rows from query into destination_table if the table exists. If destination_table
does not exist, COPY creates it.

CREATE
Inserts the rows from query into destination_table after first creating the table. If
destination_table already exists, COPY returns an error.
Inserts the rows from query into destination_table. If destination_table does not exist,

INSERT COPY returns an error. When using INSERT, the USING query must select one column
for each column in the destination_table.

REPLACE
Replaces destination_table and its contents with the rows from query. If destination_table
does not exist, COPY creates it. Otherwise, COPY drops the existing table and replaces it
with a table containing the copied data.

Usage Notes

To enable the copying of data between Oracle and non-Oracle databases, NUMBER columns are
changed to DECIMAL columns in the destination table. Hence, if you are copying between Oracle
databases, a NUMBER column with no precision will be changed to a DECIMAL(38) column. When
copying between Oracle databases, you should use SQL commands (CREATE TABLE AS and INSERT)
or you should ensure that your columns have a precision specified.

The SQL*Plus SET variable LONG limits the length of LONG columns that you copy. If any LONG
columns contain data longer than the value of LONG, COPY truncates the data.

SQL*Plus performs a commit at the end of each successful COPY. If you set the SQL*Plus SET variable
COPYCOMMITto a positive value n, SQL*Plus performs a commit after copying every n batches of
records. The SQL*Plus SET variable ARRAYSIZEdetermines the size of a batch.

Some operating environments require that database specifications be placed in double quotes.

Examples

The following command copies the entire EMP table to a table named WESTEMP. Note that the tables
are located in two different databases. If WESTEMP already exists, SQL*Plus replaces the table and its
contents. The columns in WESTEMP have the same names as the columns in the source table, EMP.

SQL> COPY FROM SCOTT/TIGER@HQ TO JOHN/CHROME@WEST -
> REPLACE WESTEMP -
> USING SELECT * FROM EMP

The following command copies selected records from EMP to the database to which SQL*Plus is
connected. SQL*Plus creates SALESMEN through the copy. SQL*Plus copies only the columns EMPNO
and ENAME, and at the destination names them EMPNO and SALESMAN.

SQL> COPY FROM SCOTT/TIGER@HQ -
> CREATE SALESMEN (EMPNO,SALESMAN) -
> USING SELECT EMPNO, ENAME FROM EMP -
> WHERE JOB='SALESMAN'

DEFINE

Purpose

Specifies a user variable and assigns it a CHAR value, or lists the value and variable type of a single
variable or all variables.

Syntax

DEF[INE] [variable]|[variable = text]

Terms and Clauses

Refer to the following list for a description of each term or clause:

variable
Represents the user variable whose value you wish to assign or list.

text
Represents the CHAR value you wish to assign to variable. Enclose text in single quotes
if it contains punctuation or blanks.

variable = text
Defines (names) a user variable and assigns it a CHAR value.

Enter DEFINE followed by variable to list the value and type of variable. Enter DEFINE with no clauses to
list the values and types of all user variables.

Usage Notes

DEFINEd variables retain their values until one of the following events occurs:

· you enter a new DEFINE command referencing the variable

· you enter an UNDEFINEcommand referencing the variable

· you enter an ACCEPTcommand referencing the variable

· you reference the variable in the NEW_VALUE or OLD_VALUE clause of the
COLUMNcommand and reference the column in a subsequent SQL SELECTcommand

· you EXIT SQL*Plus

Whenever you run a stored query or command file, SQL*Plus substitutes the value of variable for each
substitution variablereferencing variable (in the form &variable or &&variable). SQL*Plus will not prompt
you for the value of variable in this session until you UNDEFINE variable.

Note that you can use DEFINEto define the variable, _EDITOR, which establishes the host system editor
invoked by the SQL*Plus EDIT command.

If you continue the value of a DEFINEd variable on multiple lines (using the SQL*Plus command
continuation character), SQL*Plus replaces each continuation character and carriage return you enter
with a space in the resulting variable. For example, SQL*Plus interprets

SQL> DEFINE TEXT = 'ONE-
> TWO-
> THREE'

as

SQL> DEFINE TEXT = 'ONE TWO THREE'

Examples

To assign the value MANAGER to the variable POS, type:

SQL> DEFINE POS = MANAGER

If you execute a command that contains a reference to &POS, SQL*Plus will substitute the value
MANAGER for &POS and will not prompt you for a POS value.

To assign the CHAR value 20 to the variable DEPTNO, type:

SQL> DEFINE DEPTNO = 20

Even though you enter the number 20, SQL*Plus assigns a CHAR value to DEPTNO consisting of two
characters, 2 and 0.

To list the definition of DEPTNO, enter

SQL> DEFINE DEPTNO
DEFINE DEPTNO = "20" (CHAR)

This result shows that the value of DEPTNO is 20.

DEL

Purpose

Deletes one or more lines of the buffer.

Syntax

DEL [n|n m|n *|n LAST|*|* n|* LAST|LAST]

Terms and Clauses

Refer to the following list for a description of each term or clause:

n
Deletes linen.

n m
Deletes linesn through m.

n *
Deletes line n through the current line.

n LAST
Deletes line n through the last line.

*
Deletesthecurrentline.

* n
Deletes the current line through line n.

* LAST
Deletes the current line through the last line.

LAST
Deletes the lastline.

Enter DEL with no clauses to delete the current line of the buffer.

Usage Notes

DEL makes the following line of the buffer (if any) the current line. You can enter DEL several times to
delete several consecutive lines.

Note: DEL is a SQL*Plus command and DELETE is a SQL command. For more information about the
SQL DELETE command, see the Oracle7 Server SQL Language Reference Manual.

Examples

Assume the SQL buffer contains the following query:

1 SELECT ENAME, DEPTNO
2 FROM EMP
3 WHERE JOB = 'SALESMAN'
4* ORDER BY DEPTNO

To make the line containing the WHERE clause the current line, you could enter

SQL> LIST 3
 3* WHERE JOB = 'SALESMAN'

followed by

SQL> DEL

The SQL buffer now contains the following lines:

1 SELECT ENAME, DEPTNO
2 FROM EMP
3* ORDER BY DEPTNO

To delete the second line of the buffer, enter

SQL> DEL 2

The SQL buffer now contains the following lines:

1 SELECT ENAME, DEPTNO
2* ORDER BY DEPTNO

DESCRIBE

Purpose

Liststhe column definitions for the specified table, view, or synonym or the specifications for the specified
function or procedure.

Syntax

DESC[RIBE] {[user.]table[@database_link_name] [column]|
[user.]object[.subobject]}

Terms and Clauses

Refer to the following list for a description of each term or clause:

user
Represents the user who owns table or object. If you omit user, SQL*Plus assumes you
own table or object.

table
Represents the table, view, or synonym you wish to describe.

database_link_name
Consists ofthedatabase link name corresponding to the database where table exists. For
more information on which privileges allow access to another table in a different schema,
refer to the Oracle7 Server SQL Language Reference Manual.

column
Represents the column in table you wish to describe.

object
Represents the function or procedure you wish to describe. If you want to describe a
procedure that is in a package, object is the name of the package.

subobject
Represents the function or procedure in a package you wish to describe.

Usage Notes

The descriptionfor tables, views, and synonyms contains the following information:

· each column's name

· whether or not null values are allowed (NULL or NOT NULL) for each column

· datatype of columns, for example, NUMBER, CHAR, VARCHAR2 (VARCHAR), LONG, DATE,
MLSLABEL, RAW MLSLABEL, RAW, LONGRAW, or ROWID

· precision of columns (and scale, if any, for a numeric column)

When you do a DESCRIBE, VARCHAR columns are returned with a type of VARCHAR2.

The descriptionfor functions and procedures contains the following information:

· the type of PL/SQL object (function or procedure)

· the name of the function or procedure

· the type of value returned (for functions)

· the argument names, types, whether they are input or output, and default values, if any

Example

To describe the table EMP, enter

SQL> DESCRIBE EMP

DESCRIBE lists the following information:

Name Null? Type
------------------------------ -------- ------------
EMPNO NOT NULL NUMBER(4)
ENAME CHAR(10)
JOB JOB(9)
MGR NUMBER(4)
HIREDATE DATE
SAL NUMBER(7,2)
COMM NUMBER(7,2)
DEPTNO NUMBER(2)

To describe a procedure called CUSTOMER_LOOKUP, enter

SQL> DESCRIBE customer_lookup

DESCRIBE lists the following information:

PROCEDURE customer_lookup
Argument Name Type In/Out Default?
---------------------- -------- -------- ---------
CUST_ID NUMBER IN
CUST_NAME VARCHAR2 OUT

To describe the procedure APROC in the package APACK, enter

SQL> DESCRIBE apack.aproc

DESCRIBE lists the following information:

PROCEDURE apack.aproc
Argument Name Type In/Out Default?
---------------------- -------- -------- ---------
P1 CHAR IN
P2 NUMBER IN

DISCONNECT

Purpose

Commitspending changes to the databaseand logs the current username out of Oracle, but does not exit
SQL*Plus.

Syntax

DISC[ONNECT]

Usage Notes

Use DISCONNECT within a command file to prevent user access to the database when you want to log
the user out of Oracle but have the user remain in SQL*Plus. Use EXIT or QUIT to log out of Oracle and
return control to your host computer's operating system.

Example

Your command file might begin with a CONNECT command and end with a DISCONNECT, as shown
below.

SQL> GET MYFILE
 1 CONNECT ...
 .
 .
 .
 .
15* DISCONNECT

EDIT

Purpose

Invokesa host operating systemtext editoron the contents of the specified fileor on the contents of the
buffer.

Syntax

ED[IT] [file_name[.ext]]

Terms and Clauses

Refer to the following for a description of the term or clause:

file_name[.ext]
Represents the file you wish to edit (typically a commandfile).

Enter EDIT with no filename to edit the contents of the SQL bufferwith the host operating system text
editor.

Usage Notes

If you omit the file extension, SQL*Plus assumes the default command-file extension (normally SQL). For
information on changing the default extension, see the SUFFIX variable of the SET command in this
chapter.

The user variable, _EDITOR, contains the name of the text editor invoked by EDIT. You can change the
text editor by changing the value of _EDITOR. See DEFINE for information about changing the value of a
user variable. If _EDITOR is undefined, EDIT attempts to invoke the default host operating system editor.

EDIT alone places the contents of the SQL buffer in a file by default named AFIEDT.BUF (in your current
working directory) and invokes the text editor on the contents of the file. If the file AFIEDT.BUF already
exists, it is overwritten with the contents of the buffer. You can change the default filename by using the
SET EDITFILE command. For more information about setting a default filename for the EDIT command,
see the EDITFILE variable of the SET command in this chapter.

Note: The default file, AFIEDT.BUF, may have a different name on some operating systems.

If you do not specify a filename and the buffer is empty, EDIT returns an error message.

To leave the editing session and return to SQL*Plus, terminate the editing session in the way customary
for the text editor. When you leave the editor, SQL*Plus loads the contents of the file into the buffer.

Example

To edit the file REPORT with the extension SQL using your host operating system text editor, enter

SQL> EDIT REPORT

EXECUTE

Purpose

Executesa single PL/SQL statement. The EXECUTE command is often useful when you want to execute
a PL/SQL statement that references a stored procedure. For more information on PL/SQL, see your
PL/SQL User's Guide and Reference.

Syntax

EXEC[UTE] statement

Terms and Clauses

Refer to the following for a description of the term or clause:

statement
Represents a PL/SQL statement.

Usage Notes

If your EXECUTE command cannot fit on one line because of the PL/SQL statement, use the SQL*Plus
continuation character (a hyphen) as shown in the example below.

The length of the command and the PL/SQL statement cannot exceed the length defined by SET
LINESIZE.

Examples

The following EXECUTE command assigns a value to a bind variable:

SQL> EXECUTE :n := 1

The following EXECUTE command runs a PL/SQL statement that references a stored procedure:

SQL> EXECUTE -
:ID := EMP_MANAGEMENT.HIRE('BLAKE','MANAGER','KING',2990,'SALES')

Note that the value returned by the stored procedure is being placed in a bind variable, :ID. For
information on how to create a bind variable, see the VARIABLE command in this chapter.

EXIT

Purpose

Terminates SQL*Plus and returns control to the operating system.

Syntax

{EXIT|QUIT} [SUCCESS|FAILURE|WARNING|n|variable] [COMMIT|ROLLBACK]

Terms and Clauses

Refer to the following list for a description of each term or clause:

{EXIT|QUIT}
Can be used interchangeably (QUITis a synonym for EXIT).

n
Represents an integer you specify as the return code.

variable
Represents a user-defined or system variable (but not a bind variable), such as
SQL.SQLCODE. EXIT variable exits with the value of variable as the return code.

SUCCESS
Exits normally.

FAILURE
Exits with a return code indicating failure.

WARNING
Exits with a return code indicating warning.

COMMIT
Saves pending changes to the database before exiting.

ROLLBACK
Executes a ROLLBACK statement and abandons pending changes to the database
before exiting.

EXIT with no clauses commits and exits with a value of SUCCESS.

Usage Notes

EXIT allows you to specify an operating system return code. This allows you to run SQL*Plus command
files in batch mode and to detect programmatically the occurrence of an unexpected event. The manner
of detection is operating system specific. See the Oracle installation and user's manual(s) provided for
your operating system for details.

The key words SUCCESS, WARNING, and FAILURE represent operating-system-dependent values. On
some systems, WARNING and FAILURE may be indistinguishable.

Note: SUCCESS, FAILURE, and WARNING are not reserved words.

The range of operating system return codes is also restricted on some operating systems. This limits the
portability of EXIT n and EXIT variable between platforms. For example, on UNIX there is only one byte of
storage for return codes; therefore, the range for return codes is limited to zero to 255.

If you make a syntax error in the EXIT options or use a non-numeric variable, SQL*Plus performs an EXIT
FAILURE COMMIT.

For information on exiting conditionally, see the WHENEVER SQLERROR and WHENEVER OSERROR
commands later in this chapter.

Example

The following example commits all uncommitted transactions and returns the error code of the last
executed SQL command or PL/SQL block:

SQL> EXIT SQL.SQLCODE

The location of the return code depends on your system. Consult your DBA for information concerning
how your operating system retrieves data from a program. See TTITLE in this chapter for more
information on SQL.SQLCODE.

GET

Purpose

Loadsa host operating system fileinto the SQL buffer.

Syntax

GET file_name[.ext] [LIS[T]|NOL[IST]]

Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext]
Representsthe file you wish to load (typically a command file).

LIS[T]
Lists the contents of the file.

NOL[IST]
Suppresses the listing.

Usage Note

If you do not specify a file extension, SQL*Plus assumes the default command-file extension (normally
SQL). For information on changing the default extension, see the SUFFIX variable of the SET command
in this chapter.

If part of the filename you are specifying contains the word list or the word file, you need to put the name
in double quotes.

The operating system file should contain a single SQL statement or PL/SQL block. The statement should
not be terminated with a semicolon.

If a SQL*Plus command or more than one SQL statement or PL/SQL block is loaded into the SQL buffer
from an operating system file, an error occurs when the RUN or slash (/) command is used to execute the
buffer.

The GET command can be used to load files created with the SAVE command. See the SAVE command
in this chapter for more information.

Example

To load a file called YEARENDRPT with the extension SQL into the buffer, type

SQL> GET YEARENDRPT

HELP

Purpose:

Accesses the SQL*Plus help system.

Syntax

HELP [topic]

Terms and Clauses

Refer to the following for a description of the term or clause:

topic
Represents a SQL*Plus help topic. This can be a SQL*Plus command (e.g., COLUMN), a
SQL statement (e.g., INSERT), a PL/SQL statement (e.g., IF), or another topic in the help
system (e.g., comparison operators).

Enter HELP without topic to get help on the help system.

Usage Notes

You can only enter one topic after HELP. You can abbreviate the topic (e.g., COL for COLUMN). However,
if you enter only an abbreviated topic and the abbreviation is ambiguous, SQL*Plus will display help for all
topics that match the abbreviation. For example, if you entered

SQL> HELP COMP

SQL*Plus would display help on COMPUTE followed by help on comparison operators.

If you get a response indicating that help is not available, consult your database administrator.

Example

To see a list of SQL*Plus commands and PL/SQL and SQL statements, enter

SQL> HELP COMMANDS

HOST

Purpose

Executesa host operating system commandwithout leaving SQL*Plus.

Syntax

HO[ST] [command]

Terms and Clauses

Refer to the following for a description of the term or clause:

command
Represents a host operating system command.

Enter HOST without command to display an operating system prompt. You can then enter multiple
operating system commands. For information on returning to SQL*Plus, refer to the Oracle installation
and user's manual(s) provided for your operating system.

Usage Notes

With some operating systems, you can use a "$" (VMS), "!" (UNIX), or another character instead of
HOST. See the Oracle installation and user's manual(s) provided for your operating system for details.

You may not have access to the HOST command, depending on your operating system. See the Oracle
installation and user's manual(s) provided for your operating system or ask your DBA for more
information.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the HOST command is issued.
A workaround for this is to add another SQLTERMINATOR. See the SQLTERMINATOR variable of the
SET command in this chapter for more information on the SQLTERMINATOR.

Example

To execute an operating system command, ls *.sql, enter

SQL> HOST ls *.sql

INPUT

Purpose

Adds one or more new linesof text after the current line in the buffer.

Syntax

I[NPUT] [text]

Terms and Clauses

Refer to the following for a description of the term or clause:

text
Represents the text you wish to add. To add a single line, enter the text of the line after
the command INPUT, separating the text from the command with a space. To begin the
line with one or more spaces, enter two or more spaces between INPUT and the first non-
blank character of text.

To add several lines, enter INPUT with no text. INPUTprompts you for each line. To leave INPUT, enter a
null (empty) line.

Usage Notes

If you enter a line number at the command prompt larger than the number of lines in the buffer, and follow
the number with text, SQL*Plus adds the text in a new lineat the end of the buffer. If you specify zero (0)
for the line number and follow the zero with text, then SQL*Plus inserts the lineat the beginning of the
buffer (that line becomes line 1).

Examples

Assume the SQL buffer contains the following command:

1 SELECT ENAME, DEPTNO, SAL, COMM
2 FROM EMP

To add an ORDER BY clause to the query, enter

SQL> LIST 2
 2* FROM EMP
SQL> INPUT ORDER BY ENAME

LIST 2 ensures that line 2 is the current line. INPUT adds a new line containing the ORDER BY clause
after the current line. The SQL buffer now contains the following lines:

1 SELECT ENAME, DEPTNO, SAL, COMM
2 FROM EMP
3* ORDER BY ENAME

To add a two-line WHERE clause, enter

SQL> LIST 2
 2* FROM EMP
SQL> INPUT
 3 WHERE JOB = 'SALESMAN'
 4 AND COMM 500
 5

INPUT prompts you for new lines until you enter an empty line. The SQL buffer now contains the following
lines:

1 SELECT ENAME, DEPTNO, SAL, COMM
2 FROM EMP
3 WHERE JOB = 'SALESMAN'
4 AND COMM 500
5 ORDER BY ENAME

LIST

Purpose

Listsone or more lines of the SQL buffer.

Syntax

L[IST] [n|n m|n *|n LAST|*|* n|* LAST|LAST]

Terms and Clauses

Refer to the following list for a description of each term or clause:

n
Lists linen.

n m
Lists linesn through m.

n *
Lists line n through the current line.

n LAST
Lists line n through the last line.

*
Liststhecurrentline.

* n
Lists the current line through line n.

* LAST
Lists the current line through the last line.

LAST
Lists the lastline.

Enter LIST with no clauses to list all lines.

Usage Notes

The lastline listedbecomes the new current line (marked by an asterisk).

Example

To list the contents of the buffer, enter

SQL> LIST

You will see a listing of all lines in the buffer, similar in form to the following example:

 1 SELECT ENAME, DEPTNO, JOB
 2 FROM EMP
 3 WHERE JOB = 'CLERK'
 4* ORDER BY DEPTNO

The asterisk indicates that line 4 is the current line.

To list the second line only, enter

SQL> LIST 2

You will then see this:

 2* FROM EMP

To list the current line (now line 2) to the last line, enter

SQL> LIST * LAST

You will then see this:

 2 FROM EMP
 3 WHERE JOB = 'CLERK'
 4* ORDER BY DEPTNO

PAUSE

Purpose

Displaysan empty line followed by a line containing text, then waits for the user to press [Return], or
displays two empty lines and waits for the user's response.

Syntax

PAU[SE] [text]

Terms and Clauses

Refer to the following for a description of the clause or term:

text
Represents the text you wish to display.

Enter PAUSE followed by no text to display two empty lines.

Usage Notes

Because PAUSE always waits for the user's response, it is best to use a message that tells the user
explicitly to press [Return].

PAUSE reads input from the terminal (if a terminal is available) even when you have designated the
source of the command input as a file.

For information on pausing between pages of a report, see the PAUSE variable of the SET command
later in this chapter.

Example

To print "Adjust paper and press RETURN to continue." and to have SQL*Plus wait for the user to press
[Return], you might include the following PAUSE command in a command file:

SET PAUSE OFF
PAUSE Adjust paper and press RETURN to continue.
SELECT ...

PRINT

Purpose

Displaysthe current value of bind variables. For more information on bind variables, see your PL/SQL
User's Guide and Reference.

Syntax

PRI[NT] variable ...

Terms and Clauses

Refer to the following for a description of the clause or term:

variable ...
Represents the names of the bind variables whose values you wish to display.

Usage Notes

To display automatically bind variables referenced in a successful PL/SQL block or used in an EXECUTE
command, use the AUTOPRINT clause of the SET command. For more information, see the SET
command in this chapter.

Bind variables are created using the VARIABLE command. For more information, see the VARIABLE
command in this chapter.

You can control the formatting of the PRINT output just as you would query output. For more information,
see the formatting techniques described in Chapter 4.

Example

The following example illustrates a PRINT command:

SQL> VARIABLE n NUMBER
SQL> BEGIN
 2 :n := 1;
 3 END;
SQL> PRINT n
 N

 1

PROMPT

Purpose

Sendsthe specified messageor a blank line to the user's screen.

Syntax

PROMPT [text]

Terms and Clauses

Refer to the following for a description of the term or clause:

text
Represents the text of the message you wish to display. If you omit text, PROMPT
displays a blank line on the user's screen.

Usage Notes

You can use this command in command files to give information to the user.

Example

The following example shows the use of PROMPT in conjunction with ACCEPT in a command file called
ASKFORDEPT. ASKFORDEPT contains the following SQL*Plus and SQL commands:

PROMPT
PROMPT Please enter a valid department
PROMPT For example: 10, 20, 30, 40
ACCEPT NEWDEPT NUMBER PROMPT 'DEPT:> '
SELECT DNAME FROM DEPT
WHERE DEPTNO = &NEWDEPT

Assume you run the file using START or @:

SQL> @ASKFORDEPT

SQL*Plus displays the following prompts:

Please enter a valid department
For example: 10, 20, 30, 40
DEPT:>

You can enter a department number at the prompt DEPT:>. By default, SQL*Plus lists the line containing
&NEWDEPT before and after substitution, and then displays the department name corresponding to the
number entered at the DEPT:> prompt.

REMARK

Purpose

Begins a commentin a command file.SQL*Plus does not interpret the comment as a command.

Syntax

REM[ARK]

Usage Notes

The REMARK command must appear at the beginning of a line, and the comment ends at the end of the
line. A line cannot contain both a comment and a command.

For details on entering comments in command files using the SQL comment delimiters, /* ... */, or the
ANSI/ISO comment delimiter, -- ..., refer to "Placing Comments in Command Files" in Chapter 3.

Example

The following command file contains some typical comments:

REM COMPUTE uses BREAK ON REPORT to break on end of table.
BREAK ON REPORT
COMPUTE SUM OF "DEPARTMENT 10" "DEPARTMENT 20" -
"DEPARTMENT 30" "TOTAL BY JOB" ON REPORT
REM Each column displays the sums of salaries by job for
REM one of the departments 10, 20, 30.
SELECT JOB,
 SUM(DECODE(DEPTNO, 10, SAL, 0)) "DEPARTMENT 10",
 SUM(DECODE(DEPTNO, 20, SAL, 0)) "DEPARTMENT 20",
 SUM(DECODE(DEPTNO, 30, SAL, 0)) "DEPARTMENT 30",
 SUM(SAL) "TOTAL BY JOB"
FROM EMP
GROUP BY JOB

RUN

Purpose

Lists and executes the SQL commandor PL/SQL block currently stored in the SQL buffer.

Syntax

R[UN]

Usage Notes

RUN causes the last line of the SQL buffer to become the current line.

The slash command (/)functions similarly to RUN, but does not list the command in the SQL buffer on
your screen.

Example

Assume the SQL buffer contains the following query:

SELECT DEPTNO FROM DEPT

To RUN the query, enter

SQL> RUN

The following output results:

1* SELECT DEPTNO FROM DEPT

 DEPTNO

 10
 20
 30
 40

RUNFORM

Purpose

Invokes a SQL*Forms applicationfrom within SQL*Plus.

Note: You have access to this command only if your site chose this option while installing SQL*Plus.

Syntax

RUNFORM [options] form_name

Usage Notes

The RUNFORM syntax is the same in both SQL*Plus and SQL*Forms.    If you are already in SQL*Plus,
you can invoke a form more quickly in this manner than by invoking a form from the system prompt
because you avoid a separate Oracle logon. See your SQL*Forms Operator's Guide for details on the
correct syntax.

Note that when you use RUNFORM from within SQL*Plus, you may not specify a username/password
(you retain your current connection to Oracle). If you wish to use a different username/password, use the
SQL*Plus CONNECT command to connect to the desired Oracle username prior to issuing the
RUNFORM command.

Example

To run a form named MYFORM, enter

SQL> RUNFORM MYFORM

SAVE

Purpose

Savesthe contentsof the SQL bufferina host operating system file (a commandfile).

Syntax

SAV[E] file_name[.ext] [CRE[ATE]|REP[LACE]|APP[END]]

Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext]
Specifies the command filein which you wish to save the buffer's contents.

CRE[ATE]
Creates the file if the file does not exist.

REP[LACE]
Replaces the contents of an existing file. If the file does not exist, REPLACE creates the
file.

APP[END]
Adds the contents of the buffer to the end of the file you specify.

Usage Notes

If you do not specify an extension, SQL*Plus assumes the default command-file extension (normally
SQL). For information on changing this default extension, see the SUFFIX variable of the SET command
in this chapter.

If you wish to SAVE a file under a name identical to a SAVE command clause (CREATE, REPLACE, or
APPEND), you must specify a file extension.

When you SAVE the contents of the SQL buffer, SAVE adds a line containing a slash (/) to the end of the
file.

If the filename you specify is the word file, you need to put the name in single quotes.

Example

To save the contents of the buffer in a filenamed DEPTSALRPT with the extension SQL, enter

SQL> SAVE DEPTSALRPT

To save the contents of the buffer in a filenamed DEPTSALRPT with the extension OLD, enter

SQL> SAVE DEPTSALRPT.OLD

SET

Purpose

Sets a system variable to alter the SQL*Plus environment for your current session, such as

· the display width for NUMBER data

· the display width for LONG data

· enabling or disabling the printing of column headings

· the number of lines per page

Syntax

SET system_variable value

where system_variable value represents a system variablefollowed by a value, as shown below:

ARRAY[SIZE] {20|n}
AUTO[COMMIT] {OFF|ON|IMM[EDIATE]|n}
AUTOP[RINT] {OFF|ON}
BLO[CKTERMINATOR] {.|c}
CLOSECUR[SOR] {OFF|ON}
CMDS[EP] {;|c|OFF|ON}
COLSEP {_|text}
COM[PATIBILITY] {V6|V7|NATIVE}
CON[CAT] {.|c|OFF|ON}
COPYC[OMMIT] {0|n}
COPYTYPECHECK {OFF|ON}
CRT crt
DEF[INE] {'&'|c|OFF|ON}
ECHO {OFF|ON}
EDITF[ILE] [path] file_name[.ext]
EMBEDDED {OFF|ON}
ESC[APE] {\|c|OFF|ON}
FEED[BACK] {6|n|OFF|ON}
FLAGGER {OFF|ENTRY|INTERMED[IATE]|FULL}
FLU[SH] {OFF|ON}
HEA[DING] {OFF|ON}
HEADS[EP] {||c|OFF|ON}
LIN[ESIZE] {80|n}
LONG {80|n}
LONGC[HUNKSIZE] {80|n}
MAXD[ATA] n
NEWP[AGE] {1|n}
NULL text
NUMF[ORMAT] format
NUM[WIDTH] {10|n}
PAGES[IZE] {24|n}
PAU[SE] {OFF|ON|text}
RECSEP {WR[APPED]|EA[CH]|OFF}
RECSEPCHAR {_|c}
SERVEROUT[PUT] {OFF|ON} [SIZE n]
SHOW[MODE] {OFF|ON}
SQLC[ASE] {MIX[ED]|LO[WER]|UP[PER]}
SQLCO[NTINUE] {> |text}
SQLN[UMBER] {OFF|ON}
SQLPRE[FIX] {#|c}
SQLP[ROMPT] {SQL>|text}
SQLT[ERMINATOR] {;|c|OFF|ON}
SUF[FIX] {SQL|text}
TAB {OFF|ON}
TERM[OUT] {OFF|ON}
TI[ME] {OFF|ON}
TIMI[NG] {OFF|ON}
TRIM[OUT] {OFF|ON}
TRIMS[POOL] {ON|OFF}
UND[ERLINE] {-|c|ON|OFF}
VER[IFY] {OFF|ON}
WRA[P] {OFF|ON}

Terms and Clauses

Refer to the following list for a description of each term, clause, or system variable:

ARRAY[SIZE] {20|n}
Sets the number ofrows¾ called a batch¾ that SQL*Plus will fetch from the database at
one time. Valid values are 1 to 5000. A large value increases the efficiency of queries and
subqueries that fetch many rows, but requires more memory. Values over approximately
100 provide little added performance. ARRAYSIZE has no effect on the results of
SQL*Plus operations other than increasing efficiency.

AUTO[COMMIT] {OFF|
ON|IMM[EDIATE]|n}

Controls when Oracle commits pending changes to the database. ON commits pending
changes to the database after Oracle executes each successful INSERT, UPDATE, or
DELETE command or PL/SQL block. OFF suppresses automatic committing so that you
must commit changes manually (for example, with the SQL command COMMIT).
IMMEDIATE functions in the same manner as the ON option. n commits pending changes
to the database after Oracle executes n successful SQL INSERT, UPDATE, or DELETE
commands or PL/SQL blocks. n cannot be less than zero or greater than 2,000,000,000.
The statement counter is reset to zero after successful completion of

· n INSERT, UPDATE or DELETE commands or PL/SQL blocks

· a commit

· a rollback

· a SET AUTOCOMMIT command

Note: For this feature, a PL/SQL block is considered one transaction,
regardless of the actual number of SQL commands contained within it.

AUTOP[RINT] {OFF|
ON}

Sets the automatic PRINTing of bind variables. ON or OFF controls whether SQL*Plus
automatically displays bind variables (referenced in a successful PL/SQL block or used in
an EXECUTE command). For more information about displaying bind variables, see the
PRINT command in this chapter.

BLO[CKTERMINATOR]
{.|c}

Sets the non-alphanumeric character used to end PL/SQL blocksto c. To execute the
block, you must issue a RUN or / (slash) command.

CLOSECUR[SOR] {OFF|
ON}

Sets the cursor usage behavior. ON or OFF sets whether or not the cursor will close and
reopen after each SQL statement. This feature may be useful in some circumstances to
release resources in the database server.

CMDS[EP] {;|c|OFF|
ON}

Sets the non-alphanumeric character used to separate multiple SQL*Plus commands
entered on one line to c. ON or OFF controls whether you can enter multiple commands
on a line; ON automatically sets the command separator character to a semicolon (;).

COLSEP { |text}
Sets the text to be printed between SELECTed columns. If the COLSEP variable contains
blanks or punctuation characters, you must enclose it with single quotes. The default
value for text is a single space.

In multi-line rows, the column separator does not print between columns that
begin on different lines. The column separator does not appear on blank lines
produced by BREAK ... SKIP n and does not overwrite the record separator.
See SET RECSEP in this chapter for more information.

COM[PATIBILITY]
{V6|V7|NATIVE}

Specifies the version of Oracle to which you are currently connected. Set
COMPATIBILITY to V6 for Oracle Version 6 or V7 for Oracle7. Set COMPATIBILITY to
NATIVE if you wish the database to determine the setting (for example, if connected to
Oracle7, compatibility would default to V7). COMPATIBILITY must be correctly set for the
version of Oracle to which you are connected; otherwise, you will be unable to run any
SQL commands. Note that you can set COMPATIBILITY to V6 when connected to
Oracle7. This enables you to run Oracle Version 6 SQL against Oracle7.

Setting COMPATIBILITY to V6 and V7 affects how SQL*Plus handles character
data. Setting COMPATIBILITY to V6 causes SQL*Plus to treat CHAR column
values as variable-length character strings. Setting COMPATIBILITY to V7

causes SQL*Plus to treat CHAR column values as fixed-length character
strings and VARCHAR2 (VARCHAR) column values as variable-length
character strings. See the Oracle7 Server documentation for a list of changes
from Version 6 to Oracle7.

CON[CAT] {.|c|OFF|
ON}

Sets the character you can use to terminate a substitution variablereference if you wish to
immediately follow the variable with a character that SQL*Plus would otherwise interpret
as a part of the substitution variable name. SQL*Plus resets the value of CONCAT to a
period when you switch CONCAT on.

COPYC[OMMIT] {0|n}
Controls the number of batches after which the COPY command commits changes to the
database.    COPY commitsrows to the destination database each time it copies n row
batches. Valid values are zero to 5000. You can set the size of a batch with the
ARRAYSIZE variable. If you set COPYCOMMIT to zero, COPY performs a commit only at
the end of a copy operation.

COPYTYPECHECK {OFF|
ON}

Sets the suppression of the comparison of datatypes while inserting or appending to
tables with the COPY command. This is to facilitate copying to DB2, which requires that a
CHAR be copied to a DB2 DATE.

CRT crt
Changes thedefault CRT file used in the SQL*Plus RUNFORM command. To return to the
original default (before CRT was set), set CRT to nothing by entering two double quotes
("") for crt.

If you want to use NEW.CRT during a form invocation on a system where the
default CRT is OLD.CRT, you can either invoke the form by

SQL> RUNFORM -c NEW form_name

or

SQL> SET CRT NEW
SQL> RUNFORM form_name

The second method stores the CRT option so that you do not need to respecify
it for subsequent RUNFORM commands during the same SQL*Plus session.

DEF[INE] {&|c|OFF|
ON}

Sets the character used to prefix substitution variables to c. ON or OFF controls whether
SQL*Plus will scan commands for substitution variables and replace them with their
values. ON changes the value of c back to the default '&', not the most recently used
character. The setting of DEFINE to OFF overrides the setting of the SCAN variable. For
more information on the SCAN variable, see the SET SCAN command in    Appendix F

ECHO {OFF|ON}
Controls whether the START command lists each command in a command file as the
command is executed. ON lists the commands; OFF suppresses the listing.

EDITF[ILE]
file_name[.ext]

Sets the default filename for the EDIT command. For more information about the EDIT
command, see EDIT in this chapter.

You can include a path and/or file extension. For information on changing the
default extension, see the SUFFIX variable of this command. The default
filename and maximum filename length are operating system specific.

EMBEDDED {OFF|ON}
Controls where on a page each report begins. OFF forces each report to start at the top
of a new page. ON allows a report to begin anywhere on a page. Set EMBEDDED to ON
when you want a report to begin printing immediately following the end of the previously
run report.

Note: When you use SET EMBEDDED ON and change the pagesize with SET
PAGESIZE n, SQL*Plus finishes the current page using the existing pagesize
setting and, if required, begins a new page with the new pagesize setting.

Note: When you use a BTITLE with SET EMBEDDED ON, the second and

subsequent SELECT statements will always begin on a new page. This is
because SQL*Plus has no input read ahead. Since SQL*Plus cannot anticipate
whether you will enter another SELECT statement or, for example, EXIT,
SQL*Plus has to complete processing all output from the first SELECT
statement before it reads the next command. This processing includes printing
the BTITLE. Therefore, given two SELECT statements, SQL*Plus prints the
final BTITLE of the first SELECT statement before it processes the second. The
second SELECT statement will then begin at the top of a new page.

ESC[APE] {\|c|OFF|
ON}

Defines the character you enter as the escape character. OFF undefines the escape
character. ON enables the escape character. ON changes the value of c back to the
default "\".

You can use the escape character before the substitution character (set through
SET DEFINE) to indicate that SQL*Plus should treat the substitution character
as an ordinary character rather than as a request for variable substitution.

FEED[BACK] {6|n|
OFF|ON}

Displays the number of records returned by a query when a query selects at least n
records. ON or OFF turns this display on or off. Turning feedback ON sets n to 1. Setting
feedback to zero is equivalent to turning it OFF.

FLAGGER {OFF|ENTRY|
INTERMED[IATE]|
FULL}

Checks to make sure that SQL statements conform to the ANSI/ISO SQL92 standard. If
any non-standard constructs are found, the Oracle Server flags them as errors and
displays the violating syntax. This is the equivalent of the SQL language ALTER
SESSION SET FLAGGER command.

You may execute SET FLAGGER even if you are not connected to a database.
FIPS flagging will remain in effect across SQL*Plus sessions until a SET
FLAGGER OFF (or ALTER SESSION SET FLAGGER = OFF) command is
successful or you exit SQL*Plus.

When FIPS flagging is enabled, SQL*Plus displays a warning for the
CONNECT, DISCONNECT, and ALTER SESSION SET FLAGGER commands,
even if they are successful.

The SET FLAGGER and ALTER SESSION SET FLAGGER commands require
Oracle7 Release 7.1 or greater.

FLU[SH] {OFF|ON}
Controls when output is sent to the user's display device. OFF allows the host operating
system to buffer output. ON disables buffering.

Use OFF only when you run a command file non-interactively (that is, when you
do not need to see output and/or prompts until the command file finishes
running). The use of FLUSH OFF may improve performance by reducing the
amount of program I/O.

HEA[DING] {OFF|ON}
Controls printing of column headingsin reports. ON prints column headingsin reports;
OFF suppresses column headings.

HEADS[EP] {||c|OFF|
ON}

Defines the character you enter as the heading separator character. The heading
separator character cannot be alphanumeric or white space. You can use the heading
separator character in the COLUMN command and in the old forms of BTITLE and
TTITLE to divide a column heading or title onto more than one line. ON or OFF turns
heading separation on or off. When heading separation is OFF, SQL*Plus prints a
heading separator character like any other character. ON changes the value of c back to
the default "\".

LIN[ESIZE] {80|n}
Sets the total number of characters that SQL*Plus displays on one line before beginning
a new line. It also controls the position of centered and right-aligned text in TTITLE and
BTITLE. You can define LINESIZE as a value from 1 to a maximum that is system
dependent. Refer to the Oracle installation and user's manual(s) provided for your
operating system.
Sets maximum width (in characters) for displaying and copying LONG values. For

LONG {80|n} Oracle7, the maximum value of n is 2 gigabytes. For Oracle Version 6, the maximum is
32,767.

LONGC[HUNKSIZE]
{80|n}

Sets the size (in characters) of the increments in which SQL*Plus retrieves a LONG
value. When retrieving a LONG value, you may want to retrieve it in increments rather
than all at once because of memory size restrictions. Valid values are 1 to whatever has
been set with MAXDATA. LONGCHUNKSIZE applies only to Oracle7.

MAXD[ATA] n
Sets the maximum total row width that SQL*Plus can process. The default and maximum
values of n are system dependent. Consult the Oracle installation and user's manual(s)
provided for your operating system or your DBA for details.

NEWP[AGE] {1|n}
Sets the number of blank lines to be printed between the beginning of each page and the
top title. A value of zero sends a formfeedbetween pages and clears the screen on most
terminals.

NULL text
Sets the textthat represents a null value in the result of a SQL SELECT command. Use
the NULL clause of the COLUMN command to override the setting of the NULL variable
for a given column.

NUMF[ORMAT] format
Sets the default format for displayingnumbers. Enter a number format for format. For
number format descriptions, see the FORMAT clause of the COLUMN command in this
chapter.

NUM[WIDTH] {10|n}
Sets the default width for displaying numbers.

PAGES[IZE] {24|n}
Setsthe number of lines in each page. You can set PAGESIZE to zero to suppress all
headings, page breaks, titles, the initial blank line, and other formatting information.

PAU[SE] {OFF|ON|
text}

Allows you to control scrolling of your terminal when running reports. ON causes
SQL*Plus to pause at the beginning of each page of report output. You must press
[Return] after each pause. The text you enter specifies the text to be displayed each time
SQL*Plus pauses. If you enter multiple words, you must enclose text in single quotes.

You can embed terminal-dependent escape sequences in the PAUSE
command. These sequences allow you to create inverse video messages or
other effects on terminals that support such characteristics.

RECSEP {WR[APPED]|
EA[CH]|OFF}
RECSEPCHAR { |c}

Displayor print record separators. A record separator consists of a single line of the
RECSEPCHAR (record separating character) repeated LINESIZE times.

RECSEPCHAR defines the record separating character. A single space is the
default.

RECSEP tells SQL*Plus where to make the record separation. For example, if
you set RECSEP to WRAPPED, SQL*Plus prints a record separator only after
wrapped lines. If you set RECSEP to EACH, SQL*Plus prints a record
separator following every row. If you set RECSEP to OFF, SQL*Plus does not
print a record separator.

SERVEROUT[PUT]
{OFF|ON} [SIZE n]

Controls whether to display the output (that is, DBMS_OUTPUT.PUT_LINE) of stored
procedures or PL/SQL blocks in SQL*Plus. OFF suppresses the output of
DBMS_OUTPUT.PUT_LINE; ON displays the output.

SIZE sets the number of bytes of the output that can be buffered within the
Oracle7 Server. The default for n is 2000. n cannot be less than 2000 or greater
than 1,000,000.

Output is always formatted in the same way as using WORD_WRAPPED on a
column. See the COLUMN command in this chapter for more information on
WORD_WRAPPED.

Note: The output is displayed synchronously after the stored procedure or

PL/SQL block has been executed by the Oracle7 Server.

For more information on DBMS_OUTPUT.PUT_LINE, see your Oracle7 Server
Application Developer's Guide.

SHOW[MODE] {OFF|ON}
Controls whether SQL*Plus lists the old and new settings of a SQL*Plus system
variablewhen you change the setting with SET. ON lists the settings; OFF suppresses the
listing. SHOWMODE ON has the same behavior as the obsolete SHOWMODE BOTH.

SQLC[ASE] {MIX[ED]|
LO[WER]|UP[PER]}

Converts the case of SQL commands and PL/SQL blocks just prior to execution.
SQL*Plus converts all text within the command, including quoted literals and identifiers,
as follows:

· uppercase if SQLCASE equals UPPER

· lowercase if SQLCASE equals LOWER

· unchanged if SQLCASE equals MIXED

SQLCASE does not change the SQL buffer itself.

SQLCO[NTINUE] {> |
text}

Sets the character sequence SQL*Plus displays as a prompt after you continue a
SQL*Plus command on an additional line using a hyphen (-).

SQLN[UMBER] {OFF|
ON}

Sets the prompt for the second and subsequent lines of a SQL command or PL/SQL
block. ON sets the prompt to be the line number. OFF sets the prompt to the value of
SQLPROMPT.

SQLPRE[FIX] {#|c}
Sets the SQL*Plus prefix character. While you are enteringa SQL command or PL/SQL
block, you can enter a SQL*Plus command on a separate line, prefixed by the SQL*Plus
prefix character. SQL*Plus will execute the command immediately without affecting the
SQL command or PL/SQL block that you are entering. The prefix character must be a
non-alphanumeric character.

SQLP[ROMPT] {SQL>|
text}

Sets the SQL*Plus command prompt.

SQLT[ERMINATOR] {;|
c|OFF|ON}

Sets the character used to end and execute SQL commandsto c. OFF means that
SQL*Plus recognizes no command terminator; you terminate a SQL command by
entering an empty line. ON resets the terminator to the default semicolon (;).

SUF[FIX] {SQL|text}
Sets the default file extension that SQL*Plus uses in commands that refer to command
files. SUFFIX does not control extensions for spool files.

TAB {OFF|ON}
Determines how SQL*Plus formats white space in terminal output.OFF uses spaces to
format white space in the output. ON uses the TAB character. TAB settings are every
eight characters. The default value for TAB is system dependent.

Note: This option applies only to terminal output. Tabs will not be placed in
output files.

TERM[OUT] {OFF|ON}
Controls the display of output generated by commands executed from a command file.
OFF suppresses the display so that you can spool output from a command file without
seeing the output on the screen. ON displays the output. TERMOUT OFF does not affect
output from commands you enter interactively.

TI[ME] {OFF|ON}
Controls the display of the current time. ON displays the current time before each
command prompt. OFF suppresses the time display.

TIMI[NG] {OFF|ON}
Controls the display of timing statistics. ON displays timing statistics on each SQL
command or PL/SQL blockrun. OFF suppresses timing of each command. For
information about the data SET TIMING ON displays, see the Oracle installation and
user's manual(s) provided for your operating system.Refer to the TIMING command for
information on timing multiple commands.
Determines whether SQL*Plus allows trailing blanks at the end of each displayed line. ON

TRIM[OUT] {OFF|ON} removes blanks at the end of each line, improving performance especially when you
access SQL*Plus from a slow communications device. OFF allows SQL*Plus to display
trailing blanks. TRIMOUT ON does not affect spooled output.

TRIMS[POOL] {ON|
OFF}

Determines whether SQL*Plus allows trailing blanks at the end of each spooled line. ON
removes blanks at the end of each line. OFF allows SQL*Plus to include trailing blanks.
TRIMSPOOL ON does not affect terminal output.

UND[ERLINE] {-|c|
ON|OFF}

Sets the character used to underline column headingsin SQL*Plus reports to c. ON or
OFF turns underlining on or off. ON changes the value of c back to the default "-".

VER[IFY] {OFF|ON}
Controls whether SQL*Plus lists the text of a SQL statement or PL/SQL command before
and after SQL*Plus replaces substitution variables with values. ON lists the text; OFF
suppresses the listing.

WRA[P] {OFF|ON}
Controls whether SQL*Plus truncates the display of a SELECTed row if it is too long for
the current line width. OFF truncatesthe SELECTed row; ON allows the SELECTed row to
wrapto the next line.

Use the WRAPPED and TRUNCATED clauses of the COLUMN command to
override the setting of WRAP for specific columns.

Usage Notes

SQL*Plus maintains system variables (also called SET command variables) to allow you to establish a
particular environment for a SQL*Plus session. You can change these system variables with the SET
command and list them with the SHOW command.

SET ROLE and SET TRANSACTION are SQL commands (see the Oracle7 Server SQL Language
Reference Manual for more information). When not followed by the keywords TRANSACTION or ROLE,
SET is assumed to be a SQL*Plus command.

Examples

The following examples show sample uses of selected SET command variables.

CMDSEP

To specify a TTITLE and format a column on the same line:

SQL> SET CMDSEP +
SQL> TTITLE LEFT 'SALARIES' + COLUMN SAL FORMAT $9,999
SQL> SELECT ENAME, SAL FROM EMP
 2 WHERE JOB = 'CLERK';

The following output results:

SALARIES
ENAME SAL
---------- -------
SMITH $800
ADAMS $1,100
JAMES $950
MILLER $1,300

COLSEP

To set the column separator to "|":

SQL> SET COLSEP '|'
SQL> SELECT ENAME, JOB, DEPTNO
 2 FROM EMP
 3 WHERE DEPTNO = 20;

The following output results:

ENAME |JOB | DEPTNO

SMITH |CLERK | 20
JONES |MANAGER | 20
SCOTT |ANALYST | 20
ADAMS |CLERK | 20
FORD |ANALYST | 20

COMPATIBILITY

To run a command file, SALARY.SQL, created with Version 6 of Oracle, enter

SQL> SET COMPATIBILITY V6
SQL> START SALARY

After running the file, reset compatibility to V7 to run command files created with Oracle7:

SQL> SET COMPATIBILITY V7

Alternatively, you can add the command SET COMPATIBILITY V6 to the beginning of the command file,
and reset COMPATIBILITY to V7 at the end of the file.

ESCAPE

If you define the escape character as an exclamation point (!), then

SQL> SET ESCAPE !
SQL> ACCEPT v1 PROMPT 'Enter !&1:'

displays this prompt:

Enter &1:

HEADING

To suppress the display of column headings in a report, enter

SQL> SET HEADING OFF

If you then run a SQL SELECT command,

SQL> SELECT ENAME, SAL FROM EMP
 2 WHERE JOB = 'CLERK';

the following output results:

ADAMS 1100
JAMES 950
MILLER 1300

LONG

To set the maximum width for displaying and copying LONG values to 500, enter

SQL> SET LONG 500

The LONG data will wrap on your screen; SQL*Plus will not truncate until the 501st character.

LONGCHUNKSIZE

To set the size of the increments in which SQL*Plus retrieves LONG values to 100 characters, enter

SQL> SET LONGCHUNKSIZE 100

The LONG data will be retrieved in increments of 100 characters until the entire value is retrieved or the
value of SET LONG is reached.

SERVEROUTPUT

To enable the display of DBMS_OUTPUT.PUT_LINE, enter

SQL> SET SERVEROUTPUT ON

The following example shows what happens when you execute an anonymous procedure with SET
SERVEROUTPUT ON:

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE('Task is complete');
 3 END;
 4 /
Task is complete.

PL/SQL procedure successfully completed.

The following example shows what happens when you create a trigger with SET SERVEROUTPUT ON:

SQL> CREATE TRIGGER SERVER_TRIG BEFORE INSERT OR UPDATE -
> OR DELETE
 2 ON SERVER_TAB
 3 BEGIN
 4 DBMS_OUTPUT.PUT_LINE('Task is complete.');
 5 END;
 6 /
Trigger created.
SQL> INSERT INTO SERVER_TAB VALUES ('TEXT');
Task is complete.
1 row created.

SQLCONTINUE

To set the SQL*Plus command continuation prompt to an exclamation point followed by a space, enter

SQL> SET SQLCONTINUE '! '

SQL*Plus will prompt for continuation as follows:

SQL> TTITLE 'YEARLY INCOME' -
! RIGHT SQL.PNO SKIP 2 -
! CENTER 'PC DIVISION'
SQL>

SUFFIX

To set the default command-file extension to UFI, enter

SQL> SET SUFFIX UFI

If you then enter

SQL> GET EXAMPLE

SQL*Plus will look for a filenamed EXAMPLE with an extension of UFI instead of EXAMPLE with an
extension of SQL.

SHOW

Purpose

Showsthe value of a SQL*Plus system variable or the current SQL*Plus environment.

Syntax

SHO[W] option

where option represents one of the following terms or clauses:

system_variable
ALL
BTI[TLE]
ERR[ORS] [{FUNCTION|PROCEDURE|PACKAGE|PACKAGE BODY|
      TRIGGER|VIEW} name]
LABEL
LNO
PNO
REL[EASE]
SPOO[L]
SQLCODE
TTI[TLE]
USER

Terms and Clauses

Refer to the following list for a description of each term or clause:

system_variable
Represents any system variable set by the SET command.

ALL
Lists the settings of all SHOW options, except ERRORS and LABEL, in alphabetical
order.

BTI[TLE]
Shows the current BTITLE definition.

ERR[ORS]
[{FUNCTION|
PROCEDURE|PACKAGE|
PACKAGE BODY|
TRIGGER|VIEW} name]

Shows the compilation errors of a stored procedure (includes stored functions,
procedures, and packages). After you use the CREATE command to create a stored
procedure, a message is displayed if the stored procedure has any compilation errors. To
see the errors, you use SHOW ERRORS.

When you specify SHOW ERRORS with no arguments, SQL*Plus shows
compilation errors for the most recently created or altered stored procedure.
When you specify the type (function, procedure, package, package body,
trigger, or view) and the name of the PL/SQL stored procedure, SQL*Plus
shows errors for that stored procedure. For more information on compilation
errors, see your PL/SQL User's Guide and Reference.

SHOW ERRORS output displays the line and column number of the error
(LINE/COL) as well as the error itself (ERROR). LINE/COL and ERROR have
default widths of 8 and 65, respectively. You can alter these widths using the
COLUMN command.
Shows the security level for the current session. For more information, see your Trusted

LABEL Oracle Administrator's Guide.

LNO
Shows the current line number (the position in the current page of the display and/or
spooled output).

PNO
Shows the current page number.

REL[EASE]
Shows the release number of Oracle that SQL*Plus is accessing.

SPOO[L]
Shows whether output is being spooled.

SQLCODE
Shows the value of SQL.SQLCODE (the SQL return code of the most recent operation).

TTI[TLE]
Shows the current TTITLE definition.

USER
Shows the username under which you are currently accessing SQL*Plus.

Example

To list the current LINESIZE, enter

SQL> SHOW LINESIZE

If the current linesize equals 80 characters, SQL*Plus will give the following response:

linesize 80

The following example illustrates how to create a stored procedure and then show its compilation errors:

SQL> CREATE PROCEDURE ASSIGNVL AS BEGIN zzzzzzz; END;
 2 /
Warning: Procedure created with compilation errors.
SQL> SHOW ERRORS PROCEDURE ASSIGNVL

LINE/COL ERROR
-------- ---
1/30 PLS-00313: 'zzzzzzz' not declared in this scope
1/30 PL/SQL: Statement ignored

Note: Since the procedure ASSIGNVL was the most recently created/altered stored procedure, you could
just type SHOW ERRORS with no arguments to see its compilation errors.

SPOOL

Purpose

Storesqueryresultsin an operating system file and, optionally, sends the file to a printer.

Syntax

SPO[OL] [file_name[.ext]|OFF|OUT]

Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext]
Represents the nameof the file to which you wish to spool. SPOOL followed by file_name
begins spooling displayed output to the named file. If you do not specify an extension,
SPOOL uses a default extension (LST or LIS on most systems).

OFF
Stops spooling.

OUT
Stops spooling and sends the file to your host computer's standard (default) printer.

Enter SPOOL with no clauses to list the current spooling status.

Usage Notes

To spool output generated by commands in a command file without displaying the output on the screen,
use SET TERMOUT OFF. SET TERMOUT OFF does not affect output from commands run interactively.

Examples

To record your displayed output in a filenamed DIARY using the default file extension, enter

SQL> SPOOL DIARY

To stop spooling and print the file on your default printer, type

SQL> SPOOL OUT

SQLPLUS

Purpose

StartsSQL*Plusfrom the operatingsystemprompt.

Syntax

SQLPLUS [[-S[ILENT]] [logon] [start]]|-?

where:

logon
Requires the following syntax:

username[/password][@database_specification]|/|/NOLOG

start
Allows you to enter the name of a commandfileand arguments. SQL*Plus passes the
arguments to the command file as though you executed the file using the SQL*Plus
START command. The start clause requires the following syntax:

@file_name[.ext][arg ...]

See the START command in this chapter for more information.

Terms and Clauses

You have the option of entering logon. If you do not specify logon and do specify start, SQL*Plus
assumes that the first line of the command file contains a valid logon. If neither start nor logon are
specified, SQL*Plus prompts for logon information.

Refer to the following list for a description of each term or clause:

username[/password]
Represent the usernameand password with which you wish to start SQL*Plus and
connect to Oracle. If you omit username and password, SQL*Plus prompts you for them.
If you enter a slash (/) or simply enter [Return] to the prompt for username, SQL*Plus logs
you in using a default logon (see "/" below).

If you omit only password, SQL*Plus prompts you for password. When
prompting, SQL*Plus does not display password on your terminal screen.

/
Represents a defaultlogon using operating system authentication. You cannot enter a
database_specification if you use a default logon. In a default logon, SQL*Plus typically
attempts to log you in using the username OPS$name, where name is your operating
system username. See the Oracle7 Server Administrator's Guide for information about
operating system authentication.

/NOLOG
Establishes no initial connection to Oracle. Before issuing any SQL commands, you must
issue a CONNECT command to establish a valid logon. Use /NOLOG when you want to
have a SQL*Plus command file prompt for the username, password, or database
specification. The first line of this command file is not assumed to contain a logon.

database_specificat
ion

Consists of a SQL*Net connection string. The exact syntax depends upon the SQL*Net
communications protocol your Oracle installation uses. For more information, refer to the
SQL*Net manual appropriate for your protocol or contact your DBA.

-S[ILENT]
Suppresses all SQL*Plus information and prompt messages, including the command
prompt, the echoing of commands, and the banner normally displayed when you start
SQL*Plus. Use SILENT to invoke SQL*Plus within another program so that the use of
SQL*Plus is invisible to the user.

-?
Makes SQLPLUS displayits currentversion and level number and then returns control to
the operating system. Do not enter a space between the hyphen (-) and the question

mark (?).

Usage Notes

The SQL*Plus command may be known by a different name under some operating systems, for example,
plus32. See your SQL*Plus installation documentation for further information on your specific operating
system.

SQL*Plus supports a Site Profile, a SQL*Plus command file created by the database administrator. This
file is generally named GLOGIN with an extension of SQL. SQL*Plus executes this command file
whenever any user starts SQL*Plus and SQL*Plus establishes the Oracle connection. The Site Profile
allows the DBA to set up SQL*Plus environment defaults for all users at a particular site; users cannot
directly access the Site Profile. The default name and location of the Site Profile depend on your system.
Site Profiles are described in more detail in the Oracle installation and user's manual(s) provided for your
operating system.

SQL*Plus also supports a User Profile, executed after the Site Profile. SQL*Plus searches for a filenamed
LOGIN with the extension SQL in your current directory. If SQL*Plus does not find the file there, SQL*Plus
will search a system-dependent path to find the file. Some operating systems may not support this path
search.

If you fail to log in successfully to SQL*Plus because your username or password is invalid or some other
error, SQL*Plus will return an error status equivalent to an EXIT FAILURE command. See the EXIT
command in this chapter for further information.

Examples

To start SQL*Plus with username SCOTT and password TIGER, enter

SQLPLUS SCOTT/TIGER

To start SQL*Plus, as above, and to make POLICY the default database (where POLICY is a valid
SQL*Net database connection string), enter

SQLPLUS SCOTT/TIGER@POLICY

To start SQL*Plus with username SCOTT and password TIGER and run a command filenamed STARTUP
with the extension SQL, enter

SQLPLUS SCOTT/TIGER @STARTUP

Note the space between TIGER and @STARTUP.

START

Purpose

Executesthe contents of the specified command file.

Syntax

STA[RT] file_name[.ext] [arg ...]

Terms and Clauses

Refer to the following list for a description of each term or clause:

file_name[.ext]
Representsthe commandfileyou wish to execute. The file can contain any command that
you can run interactively.

If you do not specify an extension, SQL*Plus assumes the default command-file
extension (normally SQL). For information on changing this default extension,
see the SUFFIX variable of the SET command in this chapter.

When you enter START file_name.ext, SQL*Plus searches for a file with the
filename and extension you specify in the current default directory. If SQL*Plus
does not find such a file, SQL*Plus will search a system-dependent path to find
the file. Some operating systems may not support the path search. Consult the
Oracle installation and user's manual(s) provided for your operating system for
specific information related to your operating system environment.

arg ...
Representdata items you wish to pass to parametersin the command file. If you enter one
or more arguments, SQL*Plus substitutes the values into the parameters(&1, &2, and so
forth) in the command file. The first argument replaces each occurrence of &1, the
second replaces each occurrence of &2, and so forth.

The START command DEFINEs the parameters with the values of the
arguments; if you START the command file again in this session, you can enter
new arguments or omit the arguments to use the old values.

For more information on using parameters, refer to the subsection "Passing
Parameters through the START Command" under "Writing Interactive
Commands" in Chapter 3.

Usage Notes

The @ ("at" sign)and @@ (double "at" sign)commands function similarly to START. Disabling the START
command in the Product User Profile also disables the @ and @@ commands. See the @ and @@
commands in this chapter for further information on these commands.

The EXIT or QUIT commands in a command file terminate SQL*Plus.

Example

A filenamed PROMOTE with the extension SQL, used to promote employees, might contain the following
command:

SELECT * FROM EMP
WHERE MGR=&1 AND JOB='&2' AND SAL>&3;

To run this command file, enter

SQL> START PROMOTE 7280 CLERK 950

SQL*Plus then executes the following command:

SELECT * FROM EMP
WHERE MGR=7280 AND JOB='CLERK' AND SAL>950;

TIMING

Purpose

Recordstiming data for an elapsed period of time, lists the current timer's name and timing data, or lists
the number of active timers.

Syntax

TIMI[NG] [START text|SHOW|STOP]

Terms and Clauses

Refer to the following list for a description of each term or clause:

START text
Sets up a timer and makes text the name of the timer. You can have more than one active
timer by STARTing additional timers before STOPping the first; SQL*Plus nests each new
timer within the preceding one. The timer most recently STARTed becomes the current
timer.

SHOW
Lists the current timer's name and timing data.

STOP
Lists the current timer's name and timing data, then deletesthe timer. If any other timers
are active, the next most recently STARTed timer becomes the current timer.

Enter TIMING with no clauses to list the number of active timers.

Usage Notes

You can use this data to do a performance analysis on any commands or blocks run during the period.

For information about the data TIMING displays, see the Oracle installation and user's manual(s)
provided for your operating system.Refer to SET TIMING ON for information on automatically displaying
timing data after each SQL command or PL/SQL block you run.

To delete all timers, use the CLEAR TIMING command.

Examples

To create a timer named SQL_TIMER, enter

SQL> TIMING START SQL_TIMER

To list the current timer's title and accumulated time, enter

SQL> TIMING SHOW

To list the current timer's title and accumulated time and to remove the timer, enter

SQL> TIMING STOP

TTITLE

Purpose

Places and formatsa specified titleatthe top of each report page or lists the current TTITLE definition. The
old form of TTITLE is used if only a single word or string in quotes follows the TTITLE command.

For a description of the old form of TTITLE, see TTITLE in Appendix F.

Syntax

TTI[TLE] [printspec [text|variable] ...]|[OFF|ON]

where printspec represents one or more of the following clauses used to place and format the text:

COL n
S[KIP] [n]
TAB n
LE[FT]
CE[NTER]
R[IGHT]
BOLD
FORMAT text

Terms and Clauses

Refer to the following list for a description of each term or clause. These terms and clauses also apply to
the BTITLE command.

text
Represents the title text. Enter text in single quotes if you wish to place more than one
word on a single line.

variable
Represents a user variableor any of the following system-maintainedvalues:

· SQL.LNO (current line number)

· SQL.PNO (current page number)

· SQL.RELEASE (current Oracle release number)

· SQL.SQLCODE (current error code)

· SQL.USER (current username)

To print one of these values, reference the appropriate variable in the title. You
can format variable with the FORMAT clause.

OFF
Turns the titleoff (suppresses its display) without affecting its definition.

ON
Turns the titleon (restores its display). When you define a top title, SQL*Plus
automatically sets TTITLE to ON.

COL n
Indentstocolumn n of the current line (backward if column n has been passed). "Column"
in this context means print position, not table column.

S[KIP] [n]
Skips to the start of a new line n times; if you omit n, one time; if you enter zero for n,
backward to the start of the current line.

TAB n
Skips forward n columns (backward if you enter a negative value for n). "Column" in this
context means print position, not table column.

LE[FT],CE[NTER],
andR[IGHT]

Left-align, center, and right-align data on the current line respectively. SQL*Plus aligns
following data items as a group, up to the end of the printspec or the next LEFT,
CENTER, RIGHT, or COL command. CENTER and RIGHT use the SET LINESIZE value
to calculate the position of the data item that follows.

BOLD
Prints data in bold print. SQL*Plus represents bold print on your terminal by repeating the
data on three consecutive lines. On some operating systems, SQL*Plus may instruct your
printer to print bolded text on three consecutive lines, instead of bold.

FORMAT text
Specifies a format model that determines the format of following data items, up to the
next FORMAT clause or the end of the command. The format model must be a text
constant such as A10 or $999. See COLUMN FORMAT for more information on
formatting and valid format models.

If the datatype of the format model does not match the datatype of a given data
item, the FORMAT clause has no effect on that item.

If no appropriate FORMAT model precedes a given data item, SQL*Plus prints
NUMBER values according to the format specified by SET NUMFORMAT or, if
you have not used SET NUMFORMAT, the default format. SQL*Plus prints
DATE values according to the default format.

Refer to the FORMAT clause of the COLUMN command in this chapter for
more information on default formats.

Usage Notes

If you do not enter a printspec clause before the first occurrence of text, TTITLE left justifies the text.
SQL*Plus interprets TTITLE in the new form if a valid printspec clause (LEFT, SKIP, COL, and so on)
immediately follows the command name.

Enter TTITLE with no clauses to list the currentTTITLEdefinition.

See COLUMN NEW_VALUE for information on printing column and DATE values in the top title.

You can use any number of constants and variables in a printspec. SQL*Plus displays the constants and
variables in the order you specify them, positioning and formatting each constant or variable as specified
by the printspec clauses that precede it.

The length of the title you specify with TTITLE cannot exceed 2400 characters.

The continuation character (a hyphen) will not be recognized inside a single-quoted title text string. To be
recognized, the continuation character must appear outside of the quotes, as follows:

SQL> TTITLE CENTER 'Summary Report for' -
> 'the Month of May'

Examples

To define "Monthly Analysis" as the top title and to left-align it, to center the date, to right-align the page
numberwith a three-digit format, and to display "Data in Thousands" in the center of the next line, enter

SQL> TTITLE LEFT 'Monthly Analysis' CENTER '11 Mar 88' -
> RIGHT 'Page:' FORMAT 999 SQL.PNO SKIP CENTER -
> 'Data in Thousands'

The following title results:

Monthly Analysis 11 Mar 88 Page: 1
 Data in Thousands

To suppress the top title display without changing its definition, enter

SQL> TTITLE OFF

UNDEFINE

Purpose

Deletes one or more user variables that you defined either explicitly (with the DEFINE command) or
implicitly (with an argument to the START command).

Syntax

UNDEF[INE] variable ...

Terms and Clauses

Refer to the following for a description of the term or clause:
variable Represents the name of the user variable you wish to delete. One or
more user variables may be deleted in the same command.

Example

To undefine a user variable named POS, enter

SQL> UNDEFINE POS

To undefine two user variables named MYVAR1 and MYVAR2, enter

SQL> UNDEFINE MYVAR1 MYVAR2

VARIABLE

Purpose

Declaresa bind variable that can then be referenced in PL/SQL. For more information on bind variables,
see "Using Bind Variables" in Chapter 3. For more information about PL/SQL, see your PL/SQL User's
Guide and Reference.

VARIABLE without arguments displays a list of all the variables declared in the session. VARIABLE
followed only by a variable name lists that variable.

Syntax

VAR[IABLE] [variable [NUMBER|CHAR|CHAR (n)|VARCHAR2 (n)| REFCURSOR]]

Terms and Clauses

Refer to the following list for a description of each term or clause:

variable
Represents the name of the bind variable you wish to create.

NUMBER
Creates a variable of type NUMBER with a fixed length.

CHAR
Creates a variable of type CHAR (character) with a length of one.

CHAR (n)
Creates a variable of type CHAR with a maximum length of n, up to 255.

VARCHAR2 (n)
Creates a variable of type VARCHAR2 with a maximum length of n, up to 2000.

REFCURSOR
Creates a variable of type REFCURSOR.

Usage Notes

Bind variables may be used as parameters to stored procedures, or may be directly referenced in
anonymous PL/SQL blocks.

To display the value of a bind variable created with VARIABLE, use the PRINT command. For more
information, see the PRINT command in this chapter.

To automatically display the value of a bind variable created with VARIABLE, use the SET AUTOPRINT
command. For more information, see the SET AUTOPRINT command in this chapter.

Bind variables cannot be used in the COPY command or SQL statements, except in PL/SQL blocks.
Instead, use substitution variables.

SQL*Plus REFCURSOR bind variables may be used to reference PL/SQL 2.2 Cursor Variables, allowing
PL/SQL output to be formatted by SQL*Plus. For more information on PL/SQL Cursor Variables, see your
PL/SQL User's Guide and Reference.

When you execute a VARIABLE command, SQL*Plus opens a cursor for each REFCURSOR bind
variable. SQL*Plus closes the cursor after completing a PRINT statement for that bind variable, or on exit.
Subsequent PL/SQL blocks referencing the REFCURSOR bind variable in an OPEN ... FOR statement
will automatically open the cursor. For more information on the PL/SQL auto-open feature, see your

PL/SQL User's Guide and Reference.

SQL*Plus formatting commands such as BREAK, COLUMN, COMPUTE and SET may be used to format
the output from PRINTing a REFCURSOR.

A REFCURSOR bind variable may not be PRINTed more than once without re-executing the PL/SQL
OPEN ... FOR statement.

Examples

The following example illustrates creating a bind variable and then setting it to the value returned by a
function:

SQL> VARIABLE id NUMBER
SQL> BEGIN
 2 :id := emp_management.hire
 3 ('BLAKE','MANAGER','KING',2990,'SALES');
 4 END;

The bind variable named id can be displayed with the PRINT command or used in subsequent PL/SQL
subprograms.

The following example illustrates automatically displaying a bind variable:

SQL> SET AUTOPRINT ON
SQL> VARIABLE a REFCURSOR
SQL> BEGIN
 2 OPEN :a FOR SELECT * FROM DEPT ORDER BY DEPTNO;
 3 END;
 4 /

PL/SQL procedure successfully completed.

DEPTNO DNAME LOC
-------- ------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

In the above example, there is no need to issue a PRINT command to display the variable.

The following example creates some variables and then lists them:

SQL> VARIABLE id NUMBER
SQL> VARIABLE txt CHAR (20)
SQL> VARIABLE myvar REFCURSOR
SQL> VARIABLE
variable id
datatype NUMBER

variable txt
datatype CHAR(20)

variable myvar
datatype REFCURSOR

The following example lists a single variable:

SQL> VARIABLE txt
variable txt
datatype CHAR(20)

The following example illustrates producing a report listing individual salaries and computing the
departmental and total salary cost:

SQL> VARIABLE RC REFCURSOR
SQL> DECLARE
 2 TYPE EMPSALTYPE IS RECORD (DNAME VARCHAR2(14),
 3 ENAME VARCHAR2(10),
 4 SAL NUMBER(7));
 5 TYPE RCT IS REF CURSOR RETURN EMPSALTYPE;
 6 LOC_RC RCT;
 7 BEGIN
 8 LOC_RC := :RC;
 9 OPEN LOC_RC FOR SELECT DNAME, ENAME, SAL
 10 FROM EMP, DEPT
 11 WHERE EMP.DEPTNO = DEPT.DEPTNO
 12 ORDER BY EMP.DEPTNO, ENAME;
 13 END;
 14 /

PL/SQL procedure successfully completed.

SQL> SET PAGESIZE 100 FEEDBACK OFF
SQL> TTITLE LEFT '*** Departmental Salary Bill ***' SKIP 2
SQL> COLUMN SAL FORMAT $999,990.99 HEADING 'Salary'
SQL> COLUMN DNAME HEADING 'Department'
SQL> COLUMN ENAME HEADING 'Employee'
SQL> COMPUTE SUM LABEL 'Subtotal:' OF SAL ON DNAME
SQL> COMPUTE SUM LABEL 'Total:' OF SAL ON REPORT
SQL> BREAK ON DNAME SKIP 1 ON REPORT SKIP 1
SQL> PRINT RC

*** Departmental Salary Bill ***

Department Employee Salary
-------------- ------------ ----------
ACCOUNTING CLARK $2,450.00
 KING $5,000.00
 MILLER $1,300.00
************** ----------
Subtotal: $8,750.00

RESEARCH ADAMS $1,100.00
 FORD $3,000.00
 JONES $2,975.00
 SCOTT $3,000.00
 SMITH $800.00
************** ----------
 $10,875.00

SALES ALLEN $1,600.00
 BLAKE $2,850.00
 JAMES $950.00
 MARTIN $1,250.00
 TURNER $1,500.00
 WARD $1,250.00
************** ----------
Subtotal: $9,400.00

Total: $29,025.00

WHENEVER OSERROR

Purpose

ExitsSQL*Plusif an operatingsystem erroroccurs (such as a file I/O error).

Syntax

WHENEVER OSERROR {EXIT [SUCCESS|FAILURE|n|variable] [COMMIT|ROLLBACK]|
CONTINUE [COMMIT|ROLLBACK|NONE]}

Terms and Clauses

Refer to the following list for a description of each term or clause:

EXIT [SUCCESS|
FAILURE|n|variable]

Directs SQL*Plus to exit as soon as an operating system error is detected. You can also
specify that SQL*Plus return a success or failure code, the operating system failure code,
or a number or variable of your choice. See EXIT in this chapter for details.

CONTINUE
Turns off the EXIT option.

COMMIT
Directs SQL*Plus to execute a COMMIT before exiting or continuing and save pending
changes to the database.

ROLLBACK
Directs SQL*Plus to execute a ROLLBACK before exiting or continuing and abandon
pending changes to the database.

NONE
Directs SQL*Plus to take no action before continuing.

Usage Notes

If you do not enter the WHENEVER OSERROR command, the default behavior of SQL*Plus is to
continue and take no action when an operating system error occurs.

Examples

The commands in the following command filecause SQL*Plus to exit and COMMIT any pending changes
if a failure occurs when writing to the output file:

WHENEVER OSERROR EXIT SQL.OSCODE COMMIT
SPOOL MYLOG
UPDATE EMP SET SAL = SAL*1.1
COPY TO SCOTT/TIGER@HQDB -
REPLACE EMP -
USING SELECT * FROM EMP
SPOOL OUT
SELECT SAL FROM EMP

WHENEVER SQLERROR

Purpose

Exits SQL*Plus if a SQLcommandor PL/SQL block generates an error.

Syntax

WHENEVER SQLERROR {EXIT [SUCCESS|FAILURE|WARNING|n|variable] [COMMIT|
ROLLBACK]|CONTINUE [COMMIT|ROLLBACK|NONE]}

Terms and Clauses

Refer to the following list for a description of each term or clause:

EXIT [SUCCESS|
FAILURE|WARNING|n|
variable]

Directs SQL*Plus to exit as soon as it detects a SQL command or PL/SQL block error
(but after printing the error message). The EXIT clause of WHENEVER SQLERROR
follows the same syntax as the EXIT command. See EXIT in this chapter for details.

CONTINUE
Turns off the EXIT option.

COMMIT
Directs SQL*Plus to execute a COMMIT before exiting or continuing and save pending
changes to the database.

ROLLBACK
Directs SQL*Plus to execute a ROLLBACK before exiting or continuing and abandon
pending changes to the database.

NONE
Directs SQL*Plus to take no action before continuing.

Usage Notes

The WHENEVER SQLERROR command is triggered by SQL command or PL/SQL block errors, and not
by SQL*Plus command errors.

If you do not enter the WHENEVER SQLERROR command, the default behavior of SQL*Plus is to
continue and take no action when a SQL error occurs.

Examples

The commands in the following command filecause SQL*Plus to exit before the COPY command and
return the SQL error code if the SQL UPDATE command fails:

WHENEVER SQLERROR EXIT SQL.SQLCODE
UPDATE EMP SET SAL = SAL*1.1
COPY TO SCOTT/TIGER@D:BETHESDA -
REPLACE EMP -
USING SELECT * FROM EMP
WHENEVER SQLERROR CONTINUE

COPY Command Messages and Codes
This appendix lists error messages generated by the COPYcommand. For error messages generated by
Oracle, refer to the Oracle7 Server Messages Manual.

CPY0002:

Illegal or missing APPEND, CREATE, INSERT, or REPLACE option

Cause:

An internal COPY function has invoked COPY with a create option (flag) value that is out of range.

Action:

Please contact your Oracle Customer Support representative.

CPY0003:

Internal Error: logical host number out of range

Cause:

An internal COPY function has been invoked with a logical host number value that is out of range.

Action:

Please contact your Oracle Customer Support representative.

CPY0004:

Source and destination table and column names don't match

Cause:

On an APPEND operation or an INSERT (when the table exists), at least one column name in the
destination table does not match the corresponding column name in the optional column name list or in
the SELECT command.

Action:

Respecify the COPY command, making sure that the column names and their respective order in the
destination table match the column names and column order in the optional column list or in the SELECT
command.

CPY0005:

Source and destination column attributes don't match

Cause:

On an APPEND operation or an INSERT (when the table exists), at least one column in the destination
table does not have the same datatype as the corresponding column in the SELECT command.

Action:

Respecify the COPY command, making sure that the datatypes for items being selected agree with the
destination. You can use TO_DATE, TO_CHAR, and TO_NUMBER to make conversions.

CPY0006:

Select list has more columns than destination table

Cause:

On an APPEND operation or an INSERT (when the table exists), the number of columns in the SELECT
command is greater than the number of columns in the destination table.

Action:

Respecify the COPY command, making sure that the number of columns being selected agrees with the
number in the destination table.

CPY0007:

Select list has fewer columns than destination table

Cause:

On an APPEND operation or INSERT (when the table exists), the number of columns in the SELECT
command is less than the number of columns in the destination table.

Action:

Respecify the COPY command, making sure that the number of columns being selected agrees with the
number in the destination table.

CPY0008:

More column list names than columns in the destination table

Cause:

On an APPEND operation or an INSERT (when the table exists), the number of columns in the column
name list is greater than the number of columns in the destination table.

Action:

Respecify the COPY command, making sure that the number of columns in the column list agrees with
the number in the destination table.

CPY0009:

Fewer column list names than columns in the destination table

Cause:

On an APPEND operation or an INSERT (when the table exists), the number of columns in the column
name list is less than the number of columns in the destination table.

Action:

Respecify the COPY command, making sure that the number of columns in the column list agrees with
the number in the destination table.

Release 3.2 Enhancements
SQL*Plus Release 3.2 provides a number of enhancements over previous releases of SQL*Plus. This
appendix describes the enhancements for SQL*Plus Release 3.2.

SQL*Plus Release 3.2 Enhancements

SQL*Plus Release 3.2 is a superset of SQL*Plus Release 3.1.

To exploit SQL*Plus Release 3.2 fully, you need Oracle7 Release 7.2. SQL*Plus Release 3.2 gives you
the following capabilities:

· The ACCEPT command has three new clauses, DATE, FORMAT, and DEFAULT.

· The COMPUTE command has an optional LABEL clause. This clause defines the label to be
printed for the computed value.

· The DEL command has added functionality. DEL now deletes a range of lines from the SQL
buffer.

· If you fail to log in successfully to SQL*Plus because your username or password is invalid or
some other error, SQL*Plus returns an error status equivalent to an EXIT FAILURE command.

· The PRINT command now has the option of printing multiple variables in the same command.

· The SHOW ALL command lists all options in alphabetical order.

· The SET AUTOCOMMIT can now commit after a specified number of statements.

· The SET command now has an AUTOPRINT clause. The AUTOPRINT clause sets whether
SQL*Plus automatically displays all bind variables referenced in a successful PL/SQL block or
used in an EXECUTE command.

· The SET command now has a COLSEP clause. The COLSEP clause sets the text to be printed
between SELECTed columns.

· The SET command now has an EDITFILE clause. The EDITFILE clause sets the default
filename for the EDIT command.

· The SET command now has a TRIMSPOOL clause. The TRIMSPOOL clause determines
whether SQL*Plus allows trailing blanks at the end of each spooled line.

· The UNDEFINE VARIABLE command has the option of undefining multiple user variables in
the same command.

· The VARIABLE command now has a REFCURSOR clause. The REFCURSOR clause creates
a variable of type REFCURSOR.

SQL*Plus Limits
Table C-1, on the following page, lists the limit, or maximum value, of each of the SQL*Pluselements
shown. The limits shown are valid for most operating systems.

Item Limit

filename length
system dependent

username length
30 bytes

user variable name length
30 bytes

user variable value length
240 characters

command-line length
2500 characters

length of a LONG value entered
through SQL*Plus

LINESIZE value

LINESIZE
system dependent

LONGCHUNKSIZE value (requires
Oracle7)

MAXDATA value

MAXDATA value
system dependent

output line size
system dependent

line size after variable substitution
3,000 characters (internal only)

number of characters in a COMPUTE
command label

500 characters

number of lines per SQL command
500 (assuming 80 characters per line)

maximum PAGESIZE
50,000 lines

total row width
60,000 characters for VMS; otherwise,
32,767 characters

maximum ARRAYSIZE
5000 rows

maximum number of nested command
files

20 for VMS, CMS, Unix;    otherwise, 5

maximum page number
99,999

maximum PL/SQL error message size
2K (Oracle7) 512 Bytes (Oracle Version
6)

maximum ACCEPT character string
length

240 Bytes

Table C - 1.

SQL Command List
Table D-1, on the following page, lists major SQL commands.Refer to the Oracle7 Server SQL Language
Reference Manual for full documentation of these commands.

Major SQL Commands and Clauses

ALTER
LOCK TABLE

ANALYZE*
NOAUDIT

AUDIT
RENAME

COMMENT
REVOKE

COMMIT
ROLLBACK

CREATE
SAVEPOINT

DELETE
SELECT

DROP
SET ROLE*

EXPLAIN
SET TRANSACTION

GRANT
TRUNCATE*

INSERT
UPDATE

* Requires Oracle7

Table D - 1.    SQL Command List

Security
This appendix describes the available methods for controlling access to database tables and SQL*Plus
commands. The available methods for security fall into two broad categories:

· SQL*Plus PRODUCT_USER_PROFILE table

· roles

PRODUCT_USER_PROFILE Table

Various Oracle products use PRODUCT_USER_PROFILE, a table in the SYSTEM account, to provide
product-level security that supplements the user-level security provided by the SQL GRANT and
REVOKE commands and user roles. (SET ROLE requires Oracle7.)

Overview

DBAs can use PRODUCT_USER_PROFILE to disable certain SQL and SQL*Plus commands in the
SQL*Plus environment on a per-user basis. SQL*Plus¾ not Oracle¾ enforces this security. DBAs can
even restrict access to the GRANT, REVOKE, and SET ROLE commands to control users' ability to
change their database privileges.

You can create PRODUCT_USER_PROFILE by running the command file named V7PUP with the
extension SQL. The exact format of the file extension and the location of the file are system dependent.
See the Oracle installation and user's manual(s) provided for your operating system or your DBA for more
information.

SQL*Plus reads restrictions from PRODUCT_USER_PROFILE when a user logs in to SQL*Plus and
maintains those restrictions for the duration of the session. Changes to PRODUCT_USER_PROFILE will
only take effect the next time the affected users log in to SQL*Plus.

Table Structure

The PRODUCT_USER_PROFILE table consists of the following columns:

PRODUCT NOT NULL CHAR (30)

USERID
 CHAR(30)

ATTRIBUTE
 CHAR(240)

SCOPE
 CHAR(240)

NUMERIC_VALUE
 NUMBER(15,2)

CHAR_VALUE
 CHAR(240)

DATE_VALUE
 DATE

LONG_VALUE
 LONG

Description and Use of Columns

Refer to the following list for the descriptions and use of each column in the PRODUCT_USER_PROFILE
table:

Product
Must contain the product name (in this case "SQL*Plus"). You cannot enter wildcards or
NULL in this column. Also notice that the product name SQL*Plus must be specified in
mixed case, as shown, in order to be recognized.

Userid
Must contain the username (in uppercase) of the user for whom you wish to disable the
command. To disable the command for more than one user, use SQL wild cards (%) or

make multiple entries. Thus, all of the following entries are valid:

· SCOTT

· CLASS1

· CLASS% (all users whose names start with CLASS)

· % (all users)

Attribute
Must contain the name (in uppercase) of the SQL, SQL*Plus, or PL/SQL command you
wish to disable (for example, GET). If you are disabling a role, it must contain the
character string "ROLES". You cannot enter a wildcard. See "Administration" below for a
list of SQL and SQL*Plus commands you can disable. See "Roles" below for information
on how to disable a role.

Scope
SQL*Plus ignores this column. It is recommended that you enter NULL in this column.
Other products may store specific file restrictions or other data in this column.

Numeric_Value
SQL*Plus ignores this column. It is recommended that you enter NULL in this column.
Other products may store numeric values in this column.

Char_Value
Must contain the character string"DISABLED" to disable a SQL, SQL*Plus, or PL/SQL
command. If you are disabling a role, it must contain the name of the role you wish to
disable. You cannot use a wildcard. See "Roles" below for information on how to disable a
role.

Date_Value
SQL*Plus ignores this column. It is recommended that you enter NULL in this column.
Other products may store DATE values in this column.

Long_Value
SQL*Plus ignores this column. It is recommended that you enter NULL in this column.
Other products may store LONG values in this column.

Administration

The DBA username SYSTEM owns and has all privileges on PRODUCT_USER_PROFILE. (When
SYSTEM logs in, SQL*Plus does not read PRODUCT_USER_PROFILE. Therefore, no restrictions apply
to user SYSTEM.)    Other Oracle usernames should have only SELECT access to this table, which allows
a view of restrictions of that username and those restrictions assigned to PUBLIC. The command file
PUPBLD, when run, grants SELECT access on PRODUCT_USER_PROFILE to PUBLIC.

Disabling SQL*Plus, SQL, and PL/SQL Commands

To disable a SQL or SQL*Plus command for a given user, insert a row containing the user's username in
the Userid column, the command name in the Attribute column, and DISABLED in the Char_Value
column.

The Scope, Numeric_Value, and Date_Value columns should contain NULL. For example:

PRODUCT--

USERID-

ATTRIBUTE-

SCOPE-

NUMERIC
VALUE---

CHAR
VALUE----

DATE
VALUE---

SQL*Plus
SCOTT HOST DISABLED

SQL*Plus
% INSERT DISABLED

SQL*Plus
% UPDATE DISABLED

% DELETE DISABLED

SQL*Plus

To re-enable commands, delete the row containing the restriction.

You can disable the following SQL*Plus commands:

· EDIT

· EXECUTE

· EXIT

· GET

· HOST (or your operating system's alias for HOST, such as $ on VMS and ! on UNIX)

· QUIT

· RUN

· SAVE

· SET (see note below)

· SPOOL

· START

Note: Disabling the SQL*Plus SET command will also disable the SQL SET ROLE and SET
TRANSACTION commands. Disabling the SQL*Plus START command will also disable the SQL*Plus @
and @@ commands.

You can also disable the following SQL commands:

· ALTER

· ANALYZE (requires Oracle7)

· AUDIT

· CONNECT

· CREATE

· DELETE

· DROP

· GRANT

· INSERT

· LOCK

· NOAUDIT

· RENAME

· REVOKE

· SELECT

· SET ROLE (requires Oracle7)

· SET TRANSACTION

· TRUNCATE (requires Oracle7)

· UPDATE

· VALIDATE (only for Oracle V6)

You can also disable the following PL/SQL commands:

· BEGIN

· DECLARE

Note: Disabling BEGIN and DECLARE does not prevent the use of the SQL*Plus EXECUTE command.
EXECUTE must be disabled separately.

Disabling SET ROLE

From SQL*Plus, users can submit any SQL command. In certain situations, this can cause security
problems. Unless you take proper precautions, a user could use SET ROLE to access privileges obtained
via an application role. With these privileges, they might issue SQL statements from SQL*Plus that could
wrongly change database tables.

To prevent application users from accessing application roles in SQL*Plus, you can use
PRODUCT_USER_PROFILE to disable the SET ROLE command. This allows a SQL*Plus user only
those privileges associated with the roles enabled when they started SQL*Plus. For more information
about the creation and usage of user roles, see your Oracle7 Server SQL Language Reference and
Oracle7 Server Administrator's Guide.

Disabling Roles

To disable a role for a given user, insert a row in PRODUCT_USER_PROFILE containing the user's
username in the Userid column, "ROLES" in the Attribute column, and the role name in the Char_Value
column.

Note: When you enter "PUBLIC" or "%" for the Userid column, you disable the role for all users. You
should only use "%" or "PUBLIC" for roles which are granted to "PUBLIC". If you try to disable a role that
has not been granted to a user, none of the roles for that user are disabled.

The Scope, Numeric_Value, and Date_Value columns should contain NULL. For example:

PRODUCT--

USERID-

ATTRIBUTE-

SCOPE-

NUMERIC
VALUE---

CHAR
VALUE----

DATE
VALUE---

---- --- ----

SQL*Plus
SCOTT ROLES ROLE1

SQL*Plus
PUBLIC ROLES ROLE2

During login, these table rows are translated into the command

SET ROLE ALL EXCEPT ROLE1, ROLE2

To ensure that the user does not use the SET ROLE command to change their roles after login, you can
disable the SET ROLE command. See "Disabling SET ROLE" earlier in this appendix.

To re-enable roles, delete the row containing the restriction.

Roles

To provide for the security of your database tables in Oracle7 using SQL commands, you can create and
control access to roles. By creating a role and then controlling who has access to it, you can ensure that
only certain users have access to particular database privileges.

Overview

Roles are created and used with the SQL CREATE, GRANT, and SET commands:

· To create a role, you use the CREATE command. You can create roles with or without
passwords.

· To grant access to roles, you use the GRANT command. In this way, you can control who has
access to the privileges associated with the role.

· To access roles, you use the SET ROLE command. If you created the role with a password, the
user must know the password in order to access the role.

For more information about roles, see your Oracle7 Server SQL Language Reference, your Oracle7
Server Administrator's Guide, and your Oracle7 Server Concepts Manual.

SQL*Plus Commands from Earlier Releases
This appendix covers earlier versions of some SQL*Plus commands. These older commands still function
within SQL*Plus, but SQL*Plus provides newer commands that have improved functionality.

BTITLE (old form)

Purpose

Displays a title at the bottom of each report page.

Syntax

BTI[TLE] text

Usage Notes

The old form of BTITLE offers formatting features more limited than those of the new form, but provides
compatibility with UFI (a predecessor of SQL*Plus). The old form defines the bottom title as an empty line
followed by a line with centered text. Refer to TTITLE (old form) in this appendix for more details.

COLUMN DEFAULT

Purpose

Resets the display attributes for a given column to default values.

Syntax

COL[UMN] {column|expr} DEF[AULT]

Usage Notes

Has the same effect as COLUMN CLEAR.

DOCUMENT

Purpose

Begins a block of documentation in a command file.

Syntax

DOC[UMENT]

Usage Notes

For information on the current method of inserting comments in a command file, refer to the section
"Placing Comments in Command Files" under "Saving Commands for Later Use" in Chapter 3 and to
REMARK in Chapter 6.

After you type DOCUMENT and enter [Return], SQL*Plus displays the prompt DOC> in place of SQL>
until you end the documentation. The "pound" character (#) on a line by itself ends the documentation.

If you have set DOCUMENT to OFF, SQL*Plus suppresses the display of the block of documentation
created by the DOCUMENT command. (See SET DOCUMENT later in this appendix.)

NEWPAGE

Purpose

Advances spooled output n lines beyond the beginning of the next page.

Syntax

NEWPAGE [1|n]

Usage Notes

Refer to the NEWPAGE variable of the SET command in Chapter 6 for information on the current method
for advancing spooled output.

SET BUFFER

Purpose

Makes the specified buffer the current buffer.

Syntax

SET BUF[FER] {buffer|SQL}

Usage Notes

Initially, the SQL buffer is the current buffer. SQL*Plus does not require the use of multiple buffers; the
SQL buffer alone should meet your needs.

If the buffer name you enter does not already exist, SET BUFFER defines (creates and names) the buffer.
SQL*Plus deletes the buffer and its contents when you exit SQL*Plus.

Running a query automatically makes the SQL buffer the current buffer. To copy text from one buffer to
another, use the GET and SAVE commands. To clear text from the current buffer, use CLEAR BUFFER.
To clear text from the SQL buffer while using a different buffer, use CLEAR SQL.

SET DOCUMENT

Purpose

Displays or suppresses blocks of documentation created by the DOCUMENT command.

Syntax

SET DOC[UMENT] {OFF|ON}

Usage Notes

SET DOCUMENT ON causes blocks of documentation to be echoed to the screen. Set DOCUMENT OFF
suppresses the display of blocks of documentation.

See DOCUMENT in this appendix for information on the DOCUMENT command.

SET SCAN

Purpose

Controls scanning for the presence of substitution variables and parameters. OFF suppresses processing
of substitution variables and parameters; ON allows normal processing.

Syntax

SET SCAN {OFF|ON}

Usage Notes

ON functions in the same manner as SET DEFINE ON.

SET SPACE

Purpose

Sets the number of spaces between columns in output. The maximum value of n is 10.

Syntax

SET SPACE {1|n}

Usage Notes

The SET SPACE 0 and SET COLSEP '' commands have the same effect. This command is obsoleted by
SET COLSEP, but you can still use it for backward compatibility. You may prefer to use COLSEP because
the SHOW command recognizes COLSEP and does not recognize SPACE.

SET TRUNCATE

Purpose

Controls whether SQL*Plus truncates or wraps a data item that is too long for the current line width.

Syntax

SET TRU[NCATE] {OFF|ON}

Usage Notes

ON functions in the same manner as SET WRAP OFF, and vice versa. You may prefer to use WRAP
because the SHOW command recognizes WRAP and does not recognize TRUNCATE.

TTITLE (old form)

Purpose

Displays a title at the top of each report page.

Syntax

TTI[TLE] text

Usage Notes

The old form of TTITLE offers formatting features more limited than those of the new form, but provides
compatibility with UFI (a predecessor of SQL*Plus). The old form defines the top title as a line with the
date left-aligned and the page number right-aligned, followed by a line with centered text and then a blank
line.

The text you enter defines the title TTITLE will display.

SQL*Plus centers text based on the size of a line as determined by SET LINESIZE. A separator character
(|) begins a new line; two line separator characters in a row (||) insert a blank line. You can change the
line separator character with SET HEADSEP.

You can control the formatting of page numbers in the old forms of TTITLE and BTITLE by defining a
variable named "_page". The default value of _page is the formatting string "page &P4". To alter the
format, you can DEFINE _page with a new formatting string as follows:

SQL> SET ESCAPE / SQL> DEFINE _page = 'Page /&P2'

This formatting string will print the word "page" with an initial capital letter and format the page number to
a width of two. You can substitute any text for "page" and any number for the width. You must set escape
so that SQL*Plus does not interpret the ampersand (&) as a substitution variable. See the ESCAPE
variable of the SET command in Chapter 6 for more information on setting the escape character.

SQL*Plus interprets TTITLE in the old form if a valid new-form clause does not immediately follow the
command name.

If you want to use CENTER with TTITLE and put more than one word on a line, you should use the new
form of TTITLE documented in the Reference portion of this Guide.

Example

To use the old form of TTITLE to set a top title with a left-aligned date and right-aligned page number on
one line followed by SALES DEPARTMENT on the next line and PERSONNEL REPORT on a third line,
enter

SQL> TTITLE 'SALES DEPARTMENT|PERSONNEL REPORT'

GLOSSARY

A
account        An authorized user of an operating system or a product (such as Oracle Server or

SQL*Forms). Depending on the operating system, may be referred to as ID, User ID, login, etc.
Accounts are often created and controlled by a system administrator.

alias        In SQL, a temporary name assigned to a table, view, column, or value within a SQL statement,
used to refer to that item later in the same statement or in associated SQL*Plus commands.

alignment        The way in which data is positioned in a field. It may be positioned to the left, right, center,
flush/left, flush/right, or flush/center of the defined width of a field.

anonymous block        A PL/SQL program unit that has no name and does not require the explicit
presence of the BEGIN and END keywords to enclose the executable statements.

argument      A data item following the command-file name in a START command. The argument supplies
a value for a parameter in the command file.

array processing        Processing performed on multiple rows of data rather than one row at a time. In
some Oracle utilities such as SQL*Plus, Export/Import, and the precompilers, users can set the
size of the array; increasing the array size often improves performance.

ASCII      A convention for using digital data to represent printable characters. ASCII is an acronym for
American Standard Code for Information Interchange.

autocommit      A feature unique to SQL*Plus that enables SQL*Plus to automatically commit changes to
the database after every successful execution of a SQL command or PL/SQL block. Setting the
AUTOCOMMIT variable of the SET command to ON enables this feature. Setting the
AUTOCOMMIT variable to n enables this feature after every n successful INSERT, UPDATE or
DELETE commands or PL/SQL blocks.

B
bind reference        A reference to a parameter used to replace a single literal value (e.g., a character

string, number, or date) appearing anywhere in a PL/SQL construct or a SQL SELECT statement.
For a bind reference, you must precede the parameter name with a colon (:).

bind variable        A variable in a SQL statement that must be replaced with a valid value, or the address
of a value, in order for the statement to successfully execute.

bit        The smallest unit of data. A bit only has two possible values, 0 or 1. Bits can be combined into
groups of eight called bytes; each byte represents a single character of data. See also byte.

block      In PL/SQL, a group of SQL and PL/SQL commands related to each another through procedural
logic.

body      A report region that contains the bulk of the report (text, graphics, data, and computations).
break        An event, such as a change in the value of an expression, that occurs while SQL*Plus

processes a query or report. You can direct SQL*Plus to perform various operations, such as
printing subtotals, whenever specified breaks occur.

break column      A column in a report that causes a break when its value changes and for which the user
has defined break operations.

break group        A group containing one or more break columns.
break hierarchy        The order in which SQL*Plus checks for the occurrence of breaks and triggers the

corresponding break operations.
break order        Indicates the order in which to display a break column's data. Valid options are

Ascending and Descending.
break report        A report that divides rows of a table into "sets", based on a common value in the break

column.
buffer      An area where the user's SQL statements or PL/SQL blocks are temporarily stored. The SQL

buffer is the default buffer. You can edit or execute commands from multiple buffers; however,
SQL*Plus does not require the use of multiple buffers.

byte        A group of eight sequential bits that represents a letter, number, or symbol (i.e., character).
Treated as a unit of data by a computer.

C
CHAR datatype      An Oracle datatype provided for ANSI/ISO compatibility. A CHAR column is a fixed-

length column and can contain any printable characters, such as A, 3, &, or blanks, and can have
from 1 to 255 characters or can be null.

character      A single location on a computer system capable of holding one alphabetic character or
numeric digit. One or more characters are held in a field. One or more fields make up a record,
and one or more records may be held in a file or database table.

character string      A group of sequential letters, numerals, or symbols, usually comprising a word or
name, or portion thereof.

clause      A part of a SQL statement that does not constitute the full statement; for example, a "WHERE
clause".

client      A user, software application, or computer that requests the services, data, or processing of
another application or computer (the "server"). In a two-task environment, the client is the user
process. In a network environment, the client is the local user process and the server may be local
or remote.

column      A vertical space in a database table that represents a particular domain of data. A column has
a column name and a specific datatype. For example, in a table of employee information, all of the
employees' dates of hire would constitute one column. A record group column represents a
database column.

column expression      An expression in a SELECT statement that defines which database column(s) are
retrieved. It may be a column name or a valid SQL expression referencing a column name.

column heading      A heading created for each column appearing in a report.
command      An instruction to or request of a program, application, operating system, or other software,

to perform a particular task. Commands may be single words or may require additional phrases,
variously called arguments, options, parameters, and qualifiers. Unlike statements, commands
execute as soon as you enter them. ACCEPT, CLEAR, and COPY are examples of commands in
SQL*Plus.

command file      A file containing a sequence of commands that you can otherwise enter interactively.
The file is saved for convenience and re-execution. Command files are often called by operating-
system specific names. In SQL*Plus, you can execute the command file with the START, @ or
@@ commands.

command line      A line on a computer display on which typed in commands appear. An example of a
command line is the area next to the DOS prompt on a personal computer. See also prompt.

command prompt      The text, by default SQL>, with which SQL*Plus requests your next command.
comment      A language construct for the inclusion of explanatory text in a program, the execution of

which remains unaffected.
commit      To make permanent changes to data (inserts, updates, deletes) in the database. Before

changes are committed, both the old and new data exist so that changes can be stored or the data
can be restored to its prior state.

computation      Used to perform runtime calculations on data fetched from the database. These
calculations are a superset of the kinds of calculations that can be done directly with a SELECT
statement. See also formula column.

computed column      See computation.
configuration      In SQL*Net, the set of instructions for preparing network communications, as outlined in

the SQL*Net documentation.
configuration files        Files that are used to identify and characterize the components of a network.

Configuration is largely a process of naming network components and identifying relationships
among those components.

connect      To identify yourself to Oracle by entering your username and password in order to gain access
to the database. In SQL*Plus, the CONNECT command allows you to log off Oracle and then log
back on with a specified username.

connect string      The set of parameters, including a protocol, that SQL*Net uses to connect to a specific
Oracle instance on the network.

current line      In an editor, such as the SQL*Plus editor, the line in the current buffer that editing
commands will currently affect.

D
database      A set of operating system files, treated as a unit, in which an Oracle Server stores a set of

data dictionary tables and user tables. A database requires three types of files: database files,
redo log files, and control files.

database administrator (DBA)      (1) A person responsible for the operation and maintenance of an
Oracle Server or a database application. The database administrator monitors its use in order to
customize it to meet the needs of the local community of users. (2) An Oracle username that has
been given DBA privileges and can perform database administration functions. Usually the two
meanings coincide. There may be more than one DBA per site.

database link        An object stored in the local database that identifies a remote database, a
communication path to the remote database, and optionally, a username and password for it.
Once defined, a database link can be used to perform queries on tables in the remote database.
Also called DBlink. In SQL*Plus, you can reference a database link in a DESCRIBE or COPY
command.

database object      Something created and stored in a database. Tables, views, synonyms, indexes,
sequences, clusters, and columns are all examples of database objects.

database specification      An alphanumeric code that identifies a database, used to specify the database
in SQL*Net operations and to define a database link. In SQL*Plus, you can reference a database
specification in a COPY, CONNECT, or SQLPLUS command.

database string      A string of SQL*Net parameters used to indicate the network prefix, the host system
you want to connect to, and the system ID of the database on the host system.

Data Control Language (DCL)      The category of SQL statements that control access to the data and to
the database. Examples are the GRANT and REVOKE statements. Occasionally DCL statements
are grouped with DML statements.

Data Definition Language (DDL)      The category of SQL statements that define or delete database
objects such as tables or views. Examples are the CREATE, ALTER, and DROP statements.

data dictionary      A comprehensive set of tables and views automatically created and updated by the
Oracle Server, which contains administrative information about users, data storage, and privileges.
It is installed when Oracle is initially installed and is a central source of information for the Oracle
Server itself and for all users of Oracle. The tables are automatically maintained by Oracle. It is
sometimes referred to as the catalog.

Data Manipulation Language (DML)      The category of SQL statements that query and update the
database data. Common DML statements are SELECT, INSERT, UPDATE, and DELETE.
Occasionally DCL statements are grouped with DML statements.

data security      The mechanisms that control the access and use of the database at the object level. For
example, data security includes access to a specific schema object and the specific types of
actions allowed for each user on the object (e.g., user SCOTT can issue SELECT and INSERT
statements but not DELETE statements using the EMP table). It also includes the actions, if any,
that are audited for each schema object.

datatype      (1) A standard form of data. The Oracle datatypes are CHAR, VARCHAR2, DATE, NUMBER,
LONG, RAW, and LONG RAW; however, the Oracle Server recognizes and converts other
standard datatypes. (2) A named set of fixed attributes that can be associated with an item as a
property. Data typing provides a way to define the behavior of data.

DATE datatype      A standard Oracle datatype used to store date and time data. Standard date format is
DD-MMM-YY, as in 01-JAN-89. A DATE column may contain a date and time between January 1,
4712 BC to December 31, 4712 AD.

DBA      See Database Administrator.
DCL      See Data Control Language.
DDL      See Data Definition Language.
default      A clause or option value that SQL*Plus uses if you do not specify an alternative.
default database      See local database.
directory      On some operating systems, a named storage space for a group of files. It is actually one file

that lists a set of files on a particular device.
display format      See format.
display width      The number of characters or spaces allowed to display the values for an output field.
DML      See Data Manipulation Language (DML).

DUAL table      A standard Oracle database table named DUAL, which contains exactly one row. The
DUAL table is useful for applications that require a small "dummy" table (the data is irrelevant) to
guarantee a known result, such as "true."

E
editor      A program that creates or modifies files.
end user      The person for whom a system is being developed; for example, an airline reservations clerk

is an end user of an airline reservations system. See also SQL*Plus.
error message      A message from a computer program (e.g., SQL*Plus) informing you of a potential

problem preventing program or command execution.
expression      A formula, such as SALARY + COMMISSION, used to calculate a new value from existing

values. An expression can be made up of column names, functions, operators, and constants.
Formulas are found in commands or SQL statements.

extension      On some operating systems, the second part of the full file specification. Several standard
file extensions are used to indicate the type or purpose of the file, as in file extensions of SQL,
LOG, LIS, EXE, BAT, and DIR. Called file type on some operating systems.

F
file      A collection of data treated as a unit, such as a list, document, index, note, set of procedures, etc.

Generally used to refer to data stored on magnetic tapes or disks. See also filename, extension,
and file type.

filename      The name component of a file specification. A filename is assigned by either the user or the
system when the file itself is created. See also extension and file type.

file type      On some operating systems, the part of the filename that usually denotes the use or purpose
of the file. See extension.

format      Columns contain information in one of four types; users can specify how they want a query to
format information it retrieves from character, number, date, or long columns. For example, they
can choose to have information of type date appear as 14/08/90, or Tuesday Fourteenth August
1990, or any other valid date format.

format model      A clause element that controls the appearance of a value in a report column. You specify
predefined format models in the COLUMN, TTITLE, and BTITLE commands' FORMAT clauses.
You can also use format models for DATE columns in SQL date conversion functions, such as
TO_DATE.

form feed      A control character that, when executed, causes the printer to skip to the top of a new sheet
of paper (top of form). When SQL*Plus displays a form feed on most terminals, the form feed
clears the screen.

formula column      Manually-created column that gets its data from a PL/SQL procedure, function, or
expression, user exit, SQL statement, or any combination of these.

function      A PL/SQL subprogram that executes an operation and returns a value at the completion of the
operation. A function can be either built-in or user-named. Contrast with procedure.

H
heading      In SQL*Plus, text that names an output column, appearing above the column. See also

column heading.
host computer      The computer from which you run SQL*Plus.

J
Julian date      An algorithm for expressing a date in integer form, using the SQL function JDATE. Julian

dates allow additional arithmetic functions to be performed on dates.
justification      See alignment.

L
label    Defines the label to be printed for the computed value in the COMPUTE command. The maximum

length of a COMPUTE label is 500 characters.
local database      The database that SQL*Plus connects to when you start SQL*Plus, ordinarily a

database on your host computer. Also called a default database. See also remote database.
log in (or log on)      To perform a sequence of actions at a terminal that establishes a user's

communication with the operating system and sets up default characteristics for the user's terminal
session.

log off (or log out)      To terminate interactive communication with the operating system, and end a
terminal session.

logon string      A user-specified command line, used to run an application that is connected to either a
local or remote database. The logon string either explicitly includes a connect string or implicitly
uses a default connect string.

LONG datatype      One of the standard Oracle datatypes. A LONG column can contain any printable
characters such as A, 3, &, or a blank, and can have any length from 0 to 2 Gigabytes.

N
network        A group of two or more computers linked together through hardware and software to allow

the sharing of data and/or peripherals.
null        A value that means, "a value is not applicable" or "the value is unknown". Nulls are not equal to

any specific value, even to each other. Comparisons with nulls are always false.
NULL value      The absence of a value.
NUMBER datatype      A standard Oracle datatype. A NUMBER column can contain a number, with or

without a decimal point and a sign, and can have from 1 to 105 decimal digits (only 38 digits are
significant).

O
operating system      The system software that manages a computer's resources, performing basic tasks

such as allocating memory and allowing computer components to communicate.
Oracle RDBMS      The relational database management system (RDBMS) developed by Oracle

Corporation. Components of the RDBMS include the kernel and various utilities for use by
database administrators and database users.

Oracle Server      The relational database management system (RDBMS) sold by Oracle Corporation.
Components of Oracle Server include the kernel and various utilities for use by DBAs and
database users.

output      Results of a report after it is run. Output can be displayed on a screen, stored in a file, or printed
on paper.

output file      File to which the computer transfers data.

P
packages      A method of encapsulating and storing related procedures, functions, and other package

constructs together as a unit in the database. While packages provide the database administrator
or application developer organizational benefits, they also offer increased functionality and
database performance.

page      A screen of displayed data or a sheet of printed data in a report.
parameter      A substitution variable consisting of an ampersand followed by a numeral (&1, &2, etc.). You

use parameters in a command file and pass values into them through the arguments of the START
command.

password      A secondary identification word (or string of alphanumeric characters) associated with a
username. A password is used for data security and known only to its owner. Passwords are
entered in conjunction with an operating system login ID, Oracle username, or account name in
order to connect to an operating system or software application (such as the Oracle database).
Whereas the username or ID is public, the secret password ensures that only the owner of the
username can use that name, or access that data.

PL/SQL      The Oracle procedural language extension of SQL. PL/SQL combines the ease and flexibility
of SQL with the procedural functionality of a structured programming language, such as
IF ...THEN, WHILE, and LOOP. Even when PL/SQL is not stored in the database, applications can
send blocks of PL/SQL to the database rather than individual SQL statements, thereby reducing
network traffic.

procedure      A set of SQL and PL/SQL statements grouped together as an executable unit to perform a
very specific task. Procedures and functions are nearly identical; the only difference between the
two is that functions always return a single value to the caller, while procedures do not return a
value to the caller.

prompt      (1) A message from a computer program that instructs you to enter data or take some other
action. (2) Word(s) used by the system as a cue to assist a user's response. Such messages
generally ask the user to respond by typing some information in the adjacent field. See also
command line.

Q
query      A SQL SELECT statement that retrieves data, in any combination, expression, or order. Queries

are read-only operations; they do not change any data, they only retrieve data. Queries are often
considered to be DML statements.

query results      The data retrieved by a query.

R
RAW datatype      A standard Oracle datatype, a RAW data column may contain data in any form,

including binary. You can use RAW columns for storing binary (non-character) data.
RDBMS (Relational Database Management System)      An Oracle Version 6 (and earlier) term. Refers

to the software used to create and maintain the system, as well as the actual data stored in the
database. See also Relational Database Management System, Server, Oracle Server and Oracle
RDBMS.

record      A synonym for row; one row of data in a database table, having values for one or more
columns.

Relational Database Management System (RDBMS)      An Oracle Version 6 (and earlier) term. A
computer program designed to store and retrieve shared data. In a relational system, data is
stored in tables consisting of one or more rows, each containing the same set of columns. Oracle
is a relational database management system. Other types of database systems are called
hierarchical or network database systems.

remark      In SQL*Plus, a comment you can insert into a command file with the REMARK command.
remote computer      A computer on a network other than the local computer.
remote database      A database other than your default database, which may reside on a remote

computer; in particular, one that you reference in the CONNECT, COPY, and SQLPLUS
commands.

report      (1) The results of a query. (2) Any output, but especially output that has been formatted for quick
reading. In particular, output from SQL*Plus, SQL*Report, or SQL*ReportWriter.

reserved word      (1) A word that has a special meaning in a particular software or operating system. (2)
In SQL, a set of words reserved for use in SQL statements; you cannot use a reserved word as
the name of a database object.

roles      Named groups of related privileges that are granted to users or other roles.
rollback      To discard pending changes made to the data in the current transaction using the SQL

ROLLBACK command. You can roll back a portion of a transaction by identifying a savepoint.
row      (1) Synonym for record; one row of data in a database table, having values for one or more

columns. Also called tuple. (2) One set of field values in the output of a query. See also column.

S
security level      The combination of a hierarchical classification and a set of non-hierarchical

compartments that represent the sensitivity of information.
select      To fetch rows from one or more database tables using a query (the SQL statement SELECT).
SELECT list      The list of items that follow the keyword SELECT in a query. These items may include

column names, SQL functions, constants, pseudo-columns, calculations on columns, and aliases.
The number of columns in the result of the query will match the number of items in the SELECT
list.

SELECT statement      A SQL statement that specifies which rows and columns to fetch from one or more
tables or views. See also SQL statement.

Server      Oracle software that handles the functions required for concurrent, shared data access to an
Oracle database. The server portion receives and processes SQL and PL/SQL statements
originating from client applications. The computer that manages the server portion must be
optimized for its duties.

session      The time after a username connects to an Oracle database and before disconnecting, and the
events that happen in that time.

SET command variable      See system variable.
spooling      Sending or saving output to a disk storage area. Often used in order to print or transfer files.

The SQL*Plus SPOOL command controls spooling.
SQL (Structured Query Language)      The internationally accepted standard for relational systems,

covering not only query but also data definition, manipulation, security and some aspects of
referential integrity. See also Data Manipulation (DML) language, Data Definition (DDL) language,
and Data Control (DCL) language.

SQL buffer      The default buffer containing your most recently entered SQL command or PL/SQL block.
SQL*Plus commands are not stored in the SQL buffer.

SQL command      See SQL statement.
SQL script      A file containing SQL statements that you can run in SQL*Plus to perform database

administration quickly and easily.
SQL statement      A complete command or statement written in the SQL language. Synonymous with

statement (SQL).
SQL*Forms      A non-procedural tool for creating, maintaining, and running full-screen, interactive

applications (called "forms") in order to see and change data in an Oracle database. A fourth-
generation language for creating interactive screens for use in block-mode, character-mode or bit
mapped environments. It has a define time and a runtime component.

SQL*Loader      An Oracle tool used to load data from operating system files into Oracle database tables.
SQL*Net      An Oracle product that works with Oracle Server and enables two or more computers that run

the Oracle Server to exchange data through a third-party network. SQL*Net supports distributed
processing and distributed database capability. SQL*Net is an "open system" because it is
independent of the communications protocol, and users can interface SQL*Net to many network
environments.

SQL*Plus      An interactive SQL-based language for data manipulation, data definition and the definition
of access rights for an Oracle database. Often used as an end-user reporting tool.

statement (SQL)      A SQL statement, and analogous to a complete sentence, as opposed to a phrase.
Portions of SQL statements or commands are called expressions, predicates, or clauses.    See
also SQL statement.

string      Any sequence of words or characters on a line.
substitution variable      In SQL*Plus, a variable name or numeral preceded by one or two ampersands

(&). Substitution variables are used in a command file to represent values to be provided when the
command file is run.

subtotal      In a report, a total of values in a number column, taken over a group of rows that have the
same value in a break field.    See also summary.

summary      Summaries, or summary columns, are used to compute subtotals, grand totals, running
totals, and other summarizations of the data in a report.

summary line      A line in a report containing totals, averages, maximums, or other computed values. You
create summary lines through the BREAK and COMPUTE commands.

syntax      The orderly system by which commands, qualifiers, and parameters are combined to form valid

command strings.
system administrator      A person responsible for operation and maintenance of the operating system of

a computer.
system editor      The text editor provided by the operating system.
SYSTEM username      One of two standard DBA usernames automatically created with each database

(the other is SYS). The Oracle user SYSTEM is created with the password MANAGER. The
SYSTEM username is the preferred username for DBAs to use when performing database
maintenance.

system variable      A variable that indicates status or environment, which is given a default value by
Oracle or SQL*Plus. Examples are LINESIZE and PAGESIZE. Use the SQL*Plus commands
SHOW and SET to see and alter system variables.

T
table      The basic unit of storage in a relational database management system. A table represents entities

and relationships, and consists of one or more units of information (rows), each of which contains
the same kinds of values (columns). Each column is given a column name, a datatype (such as
CHAR, VARCHAR2, DATE, or NUMBER), and a width (the width may be predetermined by the
datatype, as in DATE). Once a table is created, valid rows of data can be inserted into it. Table
information can then be queried, deleted, or updated. To enforce defined business rules on a
table's data, integrity constraints and triggers can also be defined for a table.

table alias      A temporary substitute name for a table, defined in a query and only good during that query.
If used, an alias is set in the FROM clause of a SELECT statement and may appear in the
SELECT list. See also alias.

text editor      A program run under your host computer's operating system that you use to create and edit
host system files and SQL*Plus command files containing SQL commands, SQL*Plus commands,
and/or PL/SQL blocks.

timer      An internal storage area created by the TIMING command.
title      One or more lines that appears at the top or bottom of each report page. You establish and format

titles through the TTITLE and BTITLE commands.
transaction      A logical unit of work that comprises one or more SQL statements executed by a single

user. According to the ANSI/ISO SQL standard, with which Oracle is compatible, a transaction
begins with the user's first executable SQL statement. A transaction ends when it is explicitly
committed or rolled back by the user.

truncate      To discard or lose one or more characters from the beginning or end of a value, whether
intentionally or unintentionally.

Trusted Oracle7      Oracle Corporation's multi-level secure database management system product. It is
designed to provide the high level of secure data management capabilities required by
organizations processing sensitive or classified information. Trusted Oracle7 is compatible with
Oracle base products and applications, and supports all of the functionality of standard Oracle7. In
addition, Trusted Oracle7 enforces mandatory access control, including data labeling, across a
wide range of multi-level secure operating system environments.

type      A column contains information in one of four types: character, date, number or long. The
operations users can perform on the contents of a column depend on the type of information it
contains. See also format.

U
USERID      A command line argument that allows you to specify your Oracle username and password

with an optional SQL*Net address.
username      The name by which a user is known to the Oracle server and to other users. Every

username is associated with a private password, and both must be entered to connect to an
Oracle database. See also account.

user variable      A variable defined and set by you explicitly with the DEFINE command or implicitly with
an argument to the START command.

V
VARCHAR      An Oracle Corporation datatype. Specifically, this datatype functions identically to the

Oracle7 VARCHAR2 datatype (see definition below). However, Oracle Corporation recommends
that you use VARCHAR2 instead of VARCHAR because Oracle Corporation may change the
functionality of VARCHAR in the future.

VARCHAR2      An Oracle Corporation datatype. Specifically, it is a variable-length, alpha-numeric string
with a maximum length of 2000 characters. If data entered for a column of type VARCHAR2 is less
than 2000 no spaces will be padded;    the data is stored with a length as entered. If data entered
is more than 2000, an error occurs. (Note: This datatype is identical to the Oracle Version 6 CHAR
datatype, except that its maximum length is 2000 instead of 255.)

variable      A named object that holds a single value. SQL*Plus uses bind substitution, system, and user
variables.

W
width      The width of a column, parameter, or layout object. Width is measured in characters; a space is

a character.
wrapping      A reporting or output feature in which a portion of text is moved to a new line when the entire

text does not fit on one line.

