
Contents
SQL-Programmer Batch Objects

Batch Object Concepts

SQL Server Batch Transactions

SQL-Programmer Batch Objects

Why use Batch Objects?

How to use Batch Objects

Batch Object Syntax

Examples of Using Batch Objects

Batch Objects and Security

The Future of Batch Objects

Batch Object Concepts
The concept of a batch has been around since the days of the first
mainframe computers.    Batch files and batch jobs have made their way
through all the innovations and improvements and much like a keyboard
have survived with the same basic principles.

A batch is generally a collection of commands which an operating system
or environment will play or execute for you.    The commands within a
batch job are usually required to be executed more than once; and
therefore they are saved for repeated use.    This is a real convenience
for the operator, or user who does not have to re-key in the commands,
wait for the first task to end to key in another command and so on.

Imagine we had a computer, and every time we started the computer up,
we wanted a set of commands to run automatically.    To accomplish this
we could create a file, and in this file we would enter each command   
which would run in the desired sequence.    Assuming the operating
system or environment had a method of    indicating to it the name of the
file to execute on start up, we could customize the environment to the
way we wanted it to work for us.    This "Batch Object" would save us
time and ensure consistency every time we needed to use our computer.

In the world of SQL Servers, "Batch Objects" are extremely useful. They
could be used to backup our system every day.    They could be used to
update information in our database coming in from external sources.   
They could even be used to reconstruct an entire database.    Further
more in development, we often need to reset our database back to a
virgin state. This may mean truncating tables; re-initializing data; re-
indexing; and dropping temporary work tables each time.    Smart
programmers develop "Batch Objects" to accomplish this.

SQL Server Batch Transactions
Microsoft SQL Server and Sybase SQL Server both support Batch
Concepts.    Most people familiar with these products are also familiar
with a utility called ISQL.    This utility permits SQL Server statements to
be grouped together in batches.    The server would process the batch of
commands and return results.    A batch of SQL Server statements is
terminated with a "GO" command which instructs the server to go ahead
and execute the preceding commands.    Multiple batches are often kept
in operating system files on the developer's workstation and on the file
server.    The statements before each "GO" are considered to be within
the same transaction.

The Batch Language of Microsoft SQL Server and Sybase SQL Server
supports many SQL extensions; including (IF ELSE, BEGIN, END,
WHILE, BREAK, CONTINUE, PRINT, GOTO, RETURN and DECLARE).
This is indicative of the recognition of batch processing as an important
element of SQL Server management.

Typically SQL Server developers and DBAs have several of these script
files which they've developed to perform a variety of tasks.    Some trivial
and others mission critical to the entire organization they represent.    In
an attempt to appeal to one's sense of responsibility, we ponder, Where
are these Files?    On your hard drive?, Are they safe?, Are they
documented?    Will I be able to come back to them in six months and
understand their inherent organization?

Even though most people in these positions of responsibility, truly do
care, and although they truly don't like having to manage these crucial
objects in such a rudimentary fashion ... What's the alternative?

    SQL-Programmer Batch Objects
SQL-Programmer has always upheld "Batch Object" concepts.    Users
enter SQL Server Batch Transactions directly into a FreeSQL! window,
execute them and view their results.    SQL-Programmer supports
importing ISQL compatible scripts into a FreeSQL! window, as well as
execution directly from an operating system file.

SQL-Programmer also supports the generation of scripts in the form of
SQL Server Batch Transactions, providing the ability to regenerate all or
portions of all the objects within a single or multi-server environment.

Although these features are extremely useful, and augment the
productivity of any SQL Server developer, or DBA, they still rely on
operating system files for the management and organization of the often
mission critical batch files.

In response to this significant problem SQL-Programmer has introduced
a new entity to the Microsoft SQL Server, and Sybase SQL Server
database environments which allows these transaction files to be stored
as programmable objects within the database.    This new entity is
appropriately named "Batch Object".

This invention provides developers and database administrators with an
integrated method of safely housing SQL Server batch transaction scripts
within the protected server environment.    Furthermore the organization
of the scripts can take on the inherent organization of the databases on
the server.

Now SQL Server developers and DBAs can create, edit, execute, drop,
backup and restore their SQL Server Batch Transactions in precisely the
same way as they manage all their other programmable objects, which in
many cases are of    no more importance.

Why use Batch Objects?
To deal with the question "Why use Batch Objects?" we should first
examine some possible uses for SQL Server Batch Transaction scripts.

Þ A script that truncates some tables.

Þ A script that re-indexes tables (Drops and Creates indexes).

Þ A script that performs complex data manipulation to roll up tables
from detailed transactions.

Þ A script that updates the statistics on all your tables pertinent
indexes.

Þ A script that contains all the appropriate grant and revoke commands
for all the objects in your database.

Þ A script that dumps all your databases to your dump device.

Þ A script you use as a template to create data and log devices,
databases, and sets database options.

Þ A script which runs Database Consistency Checker (DBCC) against
a set of specific tables to monitor them closely.

Þ A script that initializes table values.

Þ A script that recreates stored procedures in their proper order of
reference.

Þ A script that recreates a set of triggers.

Most Microsoft SQL Server and Sybase SQL Server developers have
scripts like these related to several databases, often spread between
their local workstation, and some tucked away area on the file server.   
Up until the emergence of SQL-Programmer Batch Objects this inferior
means has been the only alternative.

Rather than storing these scripts outside the server environment, it
makes much more sense to store them within the database they are
operating on.    Storing them on the database provides inherent
organization, accessibility and security.    Furthermore since SQL-
Programmer provides a state of the art environment for developing,
maintaining and executing these crucial SQL Server programs, there will
be a time and cost savings to the organization due to the intrinsic
productivity gains acquired by using SQL-Programmer.

SQL-Programmer expands the capability of the traditional SQL    Server
transaction batch, by allowing Batch Objects to be executed from within
other Batch Objects.    This allows developers to modularize their
scripting.    I.E. a script to drop and create a trigger, which is executed
from a script to drop and create a table which is executed from a script
which contains an execute batch object statement for each table.

Utilizing SQL-Programmer Batch Objects not only enhances the
functionality, it provides you with an integrated means of documenting all
your database programmable objects through the extensive SQL-
Programmer reporting facility.

SQL-Programmer's Check-In / Check-out facility also applies itself to
Batch Objects.    This means in multi-developer environments your scripts
are protected from inadvertent loss, and have a means of recording a
change history.

In summary you gain organization, safety, time, and considerable
functionality by using SQL-Programmer based Batch Objects.

How to use Batch Objects
Enabling the Use of Batch Objects

Creating New Batch Objects

Using Batch Objects via SQL-Programmer Access Manager

Enabling the Use of Batch Objects
Before any SQL-Programmer user can take advantage of "Batch
Objects", the SA must enable the option.    This is achieved via the SQL-
Programmer Access Manager.    The screen shot below illustrates a
command button on the Access Manager dialogue which is used to both
enable and disable Batch Objects.    When disabled the text on the button
reads "Enable Batch Objects" and when enabled the text reads "Disable
Batch Objects".

Enabling batch objects causes SQL-Programmer to create a table called
SQL_Programmer_Objects and a trigger called SFI_objects_triggger_iud
to be created.

Creating New Batch Objects
Creating a new Batch Object is performed from the SQL-Programmer
Workplace.    To create a new Batch Object click on the New button on
the Main Tool Bar.    Once done the following dialogue is presented.

In this dialogue select the SQL Server from the drop down list box at the
bottom of the dialogue, the database you wish to create the Batch Object
in, and Batch Object from the list of Objects.    You will then be presented
with a SQL-Programmer Edit window which is virtually the same as a
FreeSQL! Window.

Please notice the single line edit box containing the default name
"NewBatch".    The intention here is that this name be changed to one of
appropriate meaning.    All that's left to do is to code or import and save
the Batch Object.    The example below shows a Batch Object used to
create a new device.    The Batch Object has been named InitProd1 by
changing the name in the single line edit box.

To save your new Batch Object click the Save Button on the Main tool
bar.    You will then be informed that the Batch Object has been saved as
shown below.    Note that the Batch Object created will be created with
the user's name as the owner.    This could impact the execution of the
Batch Object.

If a Batch Object already exists in the selected database you will be
informed and given the choice to replace the existing object.    If you
choose to replace the existing object you will be informed that the object
has been replaced.    Otherwise you will be returned to the Edit window
where may change the name of the Batch Object and click the Save
button to save the Batch Object under the new name.

You may also create Batch Objects by opening a FreeSQL! window and
entering the Batch Object creation syntax or by simply recording your
SQL transaction statements and clicking on the save button.

Using Batch Objects via SQL-Programmer Access
Manager

Once Batch Objects have been enabled, they are accessible from the
SQL-Programmer Access Manager dialogue.    The "List Objects of Type"
drop down list box at the lower left hand corner of the dialogue contains
the "Batch Object" option.    Selecting this will result in a list of all the
Batch Objects known to the current database to be displayed.

To perform any operation on an existing batch object, simply click the
batch object(s) of choice in the Access Manager SQL Objects list and
use the Access Manager tool bar to invoke the desired operation.

To edit existing Batch Objects either double click on the desired batch
object or select it by single clicking it and click on edit in the Access
Manager Tool Bar.    The selected Batch Object contents will be returned
to a SQL-Programmer Batch Objects edit window as described for
creating Batch Objects above.

Batch Object Syntax
A special syntax has been added to accommodate Batch Objects which
are created in ISQL fashion.    The following outlines the Batch Object
syntax which should be followed for creating, dropping and executing
Batch Objects in batches. The [...] designate optional entries.

Pay particular attention to the "endbatch"    keyword which should
accompany each create command.    This is used to enable SQL-
Programmer to distinguish between the traditional "GO" command which
will often be found within a batch and the end of the Create Batch
transaction.    The SQL-Programmer Script Generator will make use of
this "endbatch" keyword when scripting Batch Objects.

Related Topics:
Create Batch

Execute Batch

Drop Batch

Create Batch
Syntax create batch [owner.]batch_name

sql_statements

endbatch

owner

Is the owner of the created batch.    If the owner is not specified, the user
name of the creator will be used as the default.    If one is provided it
must be a valid user in the database where the batch is created.

If the creator of the batch is the 'dbo' of the database there is no
restriction as far as the specified owner.    If the 'dbo' wants to create a
batch that can be executed by all the users in the database, the owner
name must be "publicbatch".

If the creator of the batch is not 'dbo' of the database, only his own user
name may be specified, any other user name specified will generate an
error.

batch_name

This is the name of the object.    The batch_name is case sensitive if the
SQL Server is case sensitive.    The batch_name follows the standard
convention for identifiers in SQL Server, that is the first character must be
an alphabetic character, the symbol _(underscore) may be used, and the
length of the batch_name must not exceed 30 characters.

sql_statements

These are TRANSACT SQL statements or other SQL-Programmer Batch
Object statements.

endbatch

This is used to signal the end of the Batch Object.

Execute Batch
Syntax execute batch [owner.]batch_name

owner

"owner" is the owner of the batch.    If the owner is not specified, the user
name of the user requesting a Batch Object execution will be used as the
default during the execution of the statement.    If owner is provided it
must be a valid user in the database where the statement is executed.

If the user requesting the execution is the 'dbo' of the database there is
no restriction as to which Batch Objects may be executed.

If the user is not 'dbo' of the database, only Batch Objects created with
the user's name or those Batch Objects created as 'publicbatch' may be
executed.

batch_name

This is the name of the object.    The batch_name is case sensitive if the
SQL Server is case sensitive.    The batch_name follows the standard
convention for identifiers in SQL Server, that is the first character must be
an alphabetic character, the symbol _(underscore) may be used, and the
length of the batch_name must not exceed 30 characters.

There are no limits to the number of nested levels of Batch Objects.    You
can nest CREATE statements such that a Batch Object could create,
execute or drop other Batch Objects.

There must be exactly one space between the CREATE and BATCH, the
BATCH and batch_name.

Drop Batch
Syntax drop batch [owner.]batch_name

owner

"owner" is the owner of the batch.    If the owner is not specified, the user
name of the user requesting a drop will be used as the default during the
execution of the statement.    If owner is provided it must be a valid user
in the database where the statement is executed.

If the user requesting the drop is the 'dbo' of the database there is no
restriction as to which Batch Objects may be dropped.    Only the 'dbo'
can drop 'publicbatch' Batch Objects.

If the user is not 'dbo' of the database, only Batch Objects created using
the user's name may be specified, any other user name specified will
generate an error.

batch_name

This is the name of the object.    The batch_name is case sensitive if the
SQL Server is case sensitive.    The batch_name follows the standard
convention for identifiers in SQL Server, that is the first character must be
an alphabetic character, the symbol _(underscore) may be used, and the
length of the batch_name must not exceed 30 characters.

There must be exactly one space between the DROP and BATCH, the
BATCH and batch_name

Examples of Using Batch Objects

Executing Batch Objects Within Batch Objects

The following Batch Object Code is used to Drop and Create a Table.   
Having a script to drop and create a table is nothing new to Microsoft
SQL Server and Sybase SQL Server developers.    These people are
also aware, and they never forget, that dropping a table also
automatically, without warning drops the indexes and the triggers
associated with that table.    Many of these people will therefore also
have scripts to recreate the indexes and triggers.    In some cases scripts
to recreate the table with the triggers and    indexes will exist bundled
together and separate scripts will exist to recreate the indexes and
triggers respectively.    This causes maintenance nightmares if for
example the trigger code changes.

Related Topics:
Batch Object: employee_table

Batch Object:    employee_type_empid

Batch Object: employee_ndx_employee_ind

Batch Object: employee_trig_employee_insupd

Batch Object : employee_permissions

Batch Object: employee_table
/* Script to drop and create the employee table with all it's
associated objects */

execute batch dbo.employee_type_empid /* to create the table we need
the type empid */

GO

PRINT 'CREATING TABLE : dbo.employee'

GO

if exists (select * from dbo.sysobjects where id = Object_id('dbo.employee') and
type in ('U','S'))

begin

drop table dbo.employee

end

GO

create table dbo.employee (

emp_id    empid not null

constraint PK_emp_id

primary key nonclustered constraint CK_emp_id

check ((emp_id like '[A-Z][A-Z][A-Z][1-9][0-9][0-9][0-9][0-9][FM]') or

(emp_id like '[A-Z]-[A-Z][1-9][0-9][0-9][0-9][0-9][FM]')),

fname    varchar(20) not null,

minit    char(1) null,

lname    varchar(30) not null,

job_id    smallint    default (1) not null

references pubs.dbo.jobs(job_id),

job_lvl    tinyint    default (10) not null,

pub_id    char(4)    default ('9952') not null

references pubs.dbo.publishers(pub_id),

hire_date    datetime    default (getdate()) not null)

GO

execute batch dbo.employee_ndx_employee_ind

GO

execute batch dbo.emp_trig_employee_insupd

GO

execute batch dbo.employee_permissions

GO

Batch Object:    employee_type_empid
/* Script to create the empid datatype */

PRINT 'CREATING DATA TYPE : empid'

GO

if not exists (select * from dbo.systypes where name = 'empid')

begin

execute sp_addtype empid, 'char(9)', nonull

end

GO

Batch Object: employee_ndx_employee_ind
/* Script to drop and create the employee_ind index */

PRINT 'CREATING INDEX ON TABLE : dbo.employee'

GO

if exists (select * from sysindexes where id = object_id('dbo.employee') and
keys1 != null and name ='employee_ind')

begin

drop index employee.employee_ind

end

GO

create clustered index employee_ind

on dbo.employee (lname, fname, minit)

GO

Batch Object: employee_trig_employee_insupd
 /* Script to drop and create the employee_insupd trigger */

PRINT 'CREATING TRIGGER : dbo.employee_insupd'

GO

if exists (select * from dbo.sysobjects where id =
Object_id('dbo.employee_insupd') and type = 'TR')

begin

drop trigger dbo.employee_insupd

end

GO

create trigger dbo.employee_insupd

/* ************************ employee trigger ************************ */

/* Because CHECK constraints can only reference the column(s)

on which the column- or table-level constraint has

been defined, any cross-table constraints (in this case,

business rules) need to be defined as triggers.

Employee job_lvls (on which salaries are based) should be within

the range defined for their job. To get the appropriate range,

the jobs table needs to be referenced. This trigger will be

invoked for INSERT and UPDATES only. For information about

triggers, see the Microsoft SQL Server Transact-SQL Reference. */

ON employee

FOR INSERT, UPDATE

AS

/* Get the range of level for this job type from the jobs table. */

DECLARE @min_lvl tinyint,

@max_lvl tinyint,

@emp_lvl tinyint,

@job_id smallint

SELECT @min_lvl = min_lvl,

@max_lvl = max_lvl,

@emp_lvl = i.job_lvl,

@job_id = i.job_id

FROM employee e, jobs j, inserted i

WHERE e.emp_id = i.emp_id AND i.job_id = j.job_id

IF (@job_id = 1) and (@emp_lvl <> 10)

BEGIN

RAISERROR ('Job id 1 expects the default level of 10.',16,-1)

ROLLBACK TRANSACTION

END

ELSE

IF NOT (@emp_lvl BETWEEN @min_lvl AND @max_lvl)

BEGIN

RAISERROR ('The level for job_id:%d should be between %d and %d.',

16, -1, @job_id, @min_lvl, @max_lvl)

ROLLBACK TRANSACTION

END

GO

Batch Object : employee_permissions
/* Script to reestablish permissions on the employee table */

PRINT 'CREATING PERMISSIONS ON : dbo.employee'

GO

Revoke all on dbo.employee from public

GO

Grant Delete, Insert, References, Select, Update

on dbo.employee

to guest

GO

Batch Objects and Security
· SQL-Programmer Batch Objects are protected globally by the access

security built into both Microsoft SQL Server and Sybase SQL
Server.

· The SQL-Programmer user must have login rights to the server and
access rights to the database housing the Batch Objects.

· The dbo can create objects specifying the user name "publicbatch",
thereby implicitly granting the general SQL-Programmer population
execute privileges to the batch.

· Users other than the dbo can create Batch Objects with their own
user name only.

· Users other than the dbo can only execute Batch Objects created by
them, or created by the dbo with the "publicbatch" user name.

· Users other than    the dbo can only drop Batch Objects they have
created.

· The dbo can drop or execute any Batch Object created in the
database regardless of the user name the Batch Object was created
under.

NB When the SA enables batch objects, the SQL_Programmer_Objects table used

to manage the Batch Objects is created.    The default rights to this table are as

follows;

Revoke all on SQL_Programmer_Objects to Public

 Grant Select on SQL_Programmer_Objects to Public

Grant Insert on    SQL_Programmer_Objects to Public

Grant Delete on SQL_Programmer_Objects to Public

Grant Update on SQL_Programmer_Objects to Public

If the SA does not want to allow certain users the rights to create Batch Objects,

the privilege to insert into the SQL_Programmer_Objects table must be revoked

to the users not requiring this ability.

Although these rights are granted to these tables.    No direct Insert, Update,

Delete interface is permitted to the SQL_Programmer_Objects table.

The Future of Batch Objects
The tremendous advantage in organization, functionality, productivity, and security offered by using SQL-
Programmer Batch Objects will indubitably drive the need to further the capabilities surrounding their use.

SFI, the creator of SQL-Programmer has responded to the needs of Microsoft SQL Server and Sybase
SQL Server developers by providing state of the art products aimed at the sole purpose of increasing
developer productivity.    The invention of Batch Objects is consistent with this purpose.    SFI will continue
to improve the Batch Object environment.

Currently available from SFI is "BSQL", a command line interface mechanism which allows Batch
Objects to be executed from outside the SQL-Programmer environment.    This facility permits Batch
Object execution to be scheduled using scheduling tools such as AT (NT's built in scheduler).    "BSQL" is
an NT and Windows 95 ready, 32 bit EXE which is executed from a command line with input parameters
similar to ISQL and BCP.    "BSQL" will also output results to parameter specified output and log files.

Coming soon from SFI is "SQL-Agenda" a graphical Remote Batch Object Scheduler (RBOS).    This
SQL-Programmer sister product will offer Microsoft SQL Server and Sybase SQL Server DBAs and
developers a sophisticated means to schedule the execution of Batch Objects managed within their SQL
Server environments.

SQL-Programmer will continue to offer the functionality to justify the claim of being    "The Only Complete
Development Environment for SYBASE and Microsoft SQL Server Programmers".    Look for the
next major release of SQL-Programmer to have even more Batch Object management functionality.

