
11
CHAPTER

Communications
Programming
Visual Basic is known as a useful tool for prototyping, for developing client-server applications and for
general rapid application development. But what are its capabilities when it comes to creating
communication applications? Can Visual Basic be considered a serious tool for communication
programming? The answer is yes. With its MSComm custom control and support for DDE, OLE and
MAPI, Visual Basic provides a well rounded suite of communication tools. In this chapter, we’ll be looking
at the variety of applications which demonstrate the various communication capabilities that Visual Basic
possesses.

The examples in this chapter demonstrate:

Developing communication programs using the MSComm control.

Using DDE to access Windows applications.

Creating DDE server applets.

Making use of NetDDE.

Tapping the capabilities of MAPI.

Communication Applications with Visual Basic
In the beginning, Visual Basic was viewed as a tool for developing simple Windows applications. Typically,
these were applications with a very limited scope. A project would involve a few forms, a module and a
couple of custom controls. Visual Basic was the tool that allowed the novice to create Windows programs.

As Visual Basic matured, additional functionality was provided. Third parties, eager to profit from the
success of VB, created a wide spectrum of custom controls. Microsoft has extended Visual Basic’s capabilities
with every release since and Visual Basic can now be used to produce large, feature-rich Windows
applications.

As Visual Basic has gained acceptance as a development language for a variety of business applications, one
of its most powerful features has received little attention: its communication capabilities. Visual Basic offers a
full set of tools which can be used for developing applications that make use of various types of
communication functionality. This includes:

Serial port communication, either with or without a modem.

Interapplication communication using DDE or OLE.

Network communication to another application using NetDDE.

Electronic mail by interfacing with MAPI compliant mail systems.

In this chapter, we will be looking at all of these capabilities with the exception of OLE which is covered in-
depth elsewhere in this book.

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
Serial Port Communications
Included with Visual Basic Professional Edition is the communications custom control, MSComm. This
control provides you with an easy way to utilize the serial ports of your PC. While it's simple to use, it's
also powerful.

With the MSComm control, you can implement serial communication in two ways:

By manually polling serial ports.

By responding to communication events.

To demonstrate the use of the MSComm control, we'll look at an example program which implements a
simple phone dialer. While this application is limited in functionality, it demonstrates the primary functions
of the MSComm control.

A Simple Phone Dialer
The following diagram shows where the MSComm control fits in to the picture.

You'll find the example as Simpdial.vbp from the \Chap11\Dial_Ocx subdirectory on the disc. Use the
project window to display frm_Simple_Dialer. On this form, you'll see the text box which will be used to
accept the phone number to dial and the
command button labeled Dial which starts dialing
the phone. The communication control is visible
only at design-time.
370

CHAPTER 11 COMMUNICATIONS PROGRAMMING
Configuring the Dialer
Before you run this application, you'll probably need to make two modifications in the Form_Load
procedure. The MSComm control has two properties, one of which specifies a serial port and the other, the
settings of that port. You may need to change these lines, as shown below, to match your system
configuration:

Private Sub Form_Load()

 com_Phone.CommPort = 3
 com_Phone.Settings = "19200,N,8,1"

End Sub

The CommPort property needs to be set to match the port to which your modem is connected. The
Settings property is a string that should be set to match the baud rate, parity, data bits and stop bits as
needed by your modem. Each of these should be separated by a comma, as you can see from the code.

In a fully functional application, you would want to handle this configuration in a more appropriate manner.
For our purposes, though, this method provides a better understanding of how the MSComm control
functions.

Once you have set the application running, type in a phone number to dial, including any necessary prefix
and click on the Dial command button. Your phone number will be dialed while the status bar is updated
with the progress of the call.

What's Happening?
Using the MSComm custom control involves two steps:

1 Configuring the control

2 Writing to and reading from the control.

Configuration of the control is handled in the Form_Load and Dial_Phone procedures. The MSComm
properties could be directly set at design time, but it's more typical to configure them at run-time, as this
allows the application greater flexibility for different combinations of computers and modems.

The actual operation of dialing the phone is initiated in the click procedure for the Dial command button.
The procedure begins by verifying that something has been entered in the phone number text box. This is a
very simple check and doesn’t begin to address the possible options for verifying a number. You could
modify this application to accept only numbers and certain punctuation, or make use of characters (as in 1-
800-GET-WROX) or other combinations. For our purposes, a simple check for existence will suffice.

Private Sub cmd_Dial_Click()
 Dim dialing_mode As String * 1
 Dim number_to_dial As String
 Dim response As Integer
 Dim time_to_wait As Integer

' Check to see if a phone number has been entered.
 If (txt_Phone_Number.Text = "") Then
 response = MsgBox("No phone number was provided with dialing action."ÃÃ

, 48, "Dialing Error")
371

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
 Exit Sub
 End If

A common routine Dial_Phone is called to perform the physical dialing. It makes use of five parameters:

Number to dial.

The MSComm control to use.

Mode of dialing, either 'T' for touch-tone or 'P' for pulse.

A control on the calling application's form which can be used to display the status of the
dialing operation.

The time to wait in seconds for the modem to respond to the dialing operation.

' Define the parameters to use when dialing the phone.
 dialing_mode = "T"
 number_to_dial = txt_Phone_Number.Text
 time_to_wait = 155

' Initiate the dial.
 Call Dial_Phone(number_to_dial, com_Phone, dialing_mode, pn3_Status,ÃÃ

 time_to_wait)

End Sub

The Dial_Phone procedure is designed as a common routine which can be included into any project that
requires simple phone dialing capabilities.

Sub Dial_Phone(phone_number As String, com_control As Control,ÃÃ
 dialing_mode As String, status_control As Control,ÃÃ
 time_to_wait As Integer)

' In addition to supplying the two controls mentioned above an object that
' is part of your UI needs to have its click event contain the following
' line:
'
' dialing_in_process = False
'
' This will be used to disconnect the modem once the phone has been dialed
' and the user has picked up the phone.

 Const COMMA = 44
 Const NUMBER_0 = 48
 Const NUMBER_9 = 57

 Dim beginning_time As Long
 Dim cnt As Integer
 Dim current_time As Long
 Dim modem_command_string As String
 Dim no_punct_phone_number As String
 Dim response_from_modem As String

It begins by removing any characters in the phone number that are neither the numbers 0 through 9 or a
comma, which is the Hayes command for pause. You'll find that the pause character will have additional
uses as you create more complex phone dialers.
72

CHAPTER 11 COMMUNICATIONS PROGRAMMING

w

' Build string to perform the "dialing". First remove any unwanted
' characters (anything but 0-9 and "," - the Hayes pause character.).
 no_punct_phone_number = ""
 For cnt = 1 To Len(phone_number)
 Select Case Asc(Mid$(phone_number, cnt, 1))

' Current character is a number.
 Case NUMBER_0 To NUMBER_9
 no_punct_phone_number = no_punct_phone_number & Mid$(phone_numberÃÃ

, cnt, 1)

' Current character is a comma.
 Case COMMA
 no_punct_phone_number = no_punct_phone_number & Mid$(phone_numberÃÃ

, cnt, 1)

' Anything else is ignored.
 End Select
 Next cnt

After all unwanted characters have been removed from the phone number string, it's combined with the
Hayes command for dialing a number. Here the parameter dialing_mode is concatenated with the dialing
command.

modem_command_string = "ATD" & dialing_mode & no_punct_phone_number & ";"ÃÃ
 & vbCr

With all of the preparation completed, the serial port is opened using the MSComm property PortOpen.
This property is used to set and return the state of a COM port. We use an On Error statement in
conjunction with this command to trap any problems encountered while opening the port.

' Open the COM port.
 On Error Resume Next
 status_control = "Opening COM port..."
 com_control.PortOpen = True
 If (Err) Then
 status_control = "Error opening port. Please check modem andÃÃ

 configurations."
 Exit Sub
 End If

You communicate with the MSComm control through the use of the Input and Output properties. Here
we start by resetting the InBufferCount property to 0. This property contains the number of characters
aiting in the receive buffer. By setting InBufferCount to 0 you are, in effect, clearing the receive buffer.

com_control.InBufferCount = 0

Finally, we're ready to perform the physical dialing of the phone. To accomplish this, we load our dialing
command string into the Output property. This results in the string being written to the transmit buffer of
the MSComm control.

' Dial the phone.
 status_control = "Dialing number..."
 com_control.Output = modem_command_string
373

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
After the dialing command has been transmitted to the modem via the communication control, we wait for
a receipt of message signal. Hayes-compatible modems respond with "OK".

Polling vs Events

In the next section, we'll look at one of the two ways to interact with the MSComm control. At the start of
the chapter, we noted that MSComm provides two methods for handling communication:

Polling the control either continuously, on regular intervals, or at critical times in your
application.

Through the use of the MSComm control’s OnComm event.

In this example, we're using the polling method, due to the simplicity of the application. In more complex
communication programs, you may find that the use of the OnComm event is more suitable.

To poll the communication control, we simply loop and check the InBufferCount property. If there’s
anything in the buffer, it's added to a response string. This string in turn is checked for the "OK" message.

' Check for an "OK" (literally) back from the modem.
' This is the expected response in this situation. We will loop until
' this occurs.
 dialing_in_process = True
 Call Get_Time_In_Seconds(beginning_time)

 Do While dialing_in_process
 DoEvents
 If (com_control.InBufferCount > 0) Then
 response_from_modem = response_from_modem + com_control.Input
 If (InStr(response_from_modem, "OK")) Then
 Beep
 status_control = "Dialing completed. Pick up phone and click onÃÃ

 form."

After the phone has been successfully dialed and the call is being processed, we need a method to transfer
the call from this application’s control to the user. This is accomplished through the use of the global
variable dialing_in_process and a click event. The process that is occurring here is:

1 The modem dials the phone.

2 Modem waits for an OK response.

3 When it receives the OK, the modem signal causes the program to inform the user that the line
is up through a status message.

4 Modem waits for the user to acknowledge that they have picked up the phone’s receiver by
clicking on the form. This closes down the modem.

To signal periods when the application is ready to receive information from the user, we add the following
line of code to the click event of an object of our demo application:

dialing_in_process = False

When the user clicks on the form, the global variable is set to False, so the following simple loop in the
Dial_Phone procedure completes, as does the larger dialing loop.
74

CHAPTER 11 COMMUNICATIONS PROGRAMMING
 ' When we get here, the phone has been dialed and the modem has
 ' acknowledged that it was completed. This little loop simply waits
 ' for the user to pick up the phone and click on the form.
 Do While dialing_in_process
 DoEvents
 Loop
 End If
 End If

At the same time as we are monitoring the input buffer for a response, we monitor the time that has elapsed
since the dialing command was initiated. If we've waited longer than the time_to_wait parameter, then
the dialing operation is aborted.

 Call Get_Time_In_Seconds(current_time)
 If (current_time > beginning_time + time_to_wait) Then
 status_control = "Modem not responding. Dialing aborted."
 com_control.PortOpen = False
 Exit Sub
 End If
 Loop

Shutting Down

The final function to perform when control is transferred from our application to the user, is to disconnect
from the modem and close the COM port. Sending the Hayes command "ATH;" causes the modem to
disconnect. The port is closed by setting the PortOpen property of the MSComm control to False.

' Disconnect the modem.
 status_control = "Disconnecting from phone..."
 com_control.Output = "ATH;" + vbCr

' Check for an "OK" or "ERROR" (literally) back from the modem. This is
' the expected response in this situation. We will loop until this
' occurs.
 response_from_modem = ""
 Do While (InStr(response_from_modem, "OK") = 0) AndÃÃ

 (InStr(response_from_modem, "ERROR") = 0)
 response_from_modem = response_from_modem & com_control.Input
 DoEvents
 Loop
 status_control = "Disconnected from phone..."
 DoEvents

' Close the COM port.
 com_control.PortOpen = False

 If unload_the_form Then
 Unload com_control.Parent
 End If

End Sub

The user may try to unload the form while execution is in the loop that tries to dial the number. The code
in this procedure references controls on the form, meaning that if the form is unloaded, it will be reloaded
again. We need to make sure that this procedure has a method of unloading the form, or else the program
will never end. We achieve this using the global flag unload_the_form and the following code in the
QueryUnload event of the form:
375

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
' If we are trying to dial, set the flags so that the loop
' will end and the form will be unloaded by the code in mod_Dialing
 If dialing_in_process Then
 If UnloadMode <> vbFormCode Then
 unload_the_form = True
 dialing_in_process = False
 Cancel = True
 End If
 End If

End Sub

Summary
While this is a very simple example of using the MSComm control, it demonstrates its basic functionality
and use. Several points that are critical parts of a successful communication application that were shown here
are:

Communications programs can be affected by numerous extraneous situations. Error handling is
a critical part of all successful applications using the MSComm control.

Since much of the interaction with the communication control is hidden from the user, you
must incorporate a method for updating status information for the user as a communication
process progresses.

If polling techniques are used by your application, you must allow time for other events to
occur by strategic use of the DoEvents command.

Communicating with DDE
Modem-based system-to-system communications isn't the only sort of communication necessary in a modern
computing environment. Windows and its multitasking environment make it possible to communicate
between applications. We've already extensively covered one method for this communication: OLE. In this
section we'll examine the other major method: dynamic data exchange, or DDE.

With DDE you can link applications, allowing the transfer of data. DDE lets you establish a conversation
between two applications. The application that initiates the conversation is referred to as the destination. The
target of the DDE conversation is referred to as the source. Although, as we'll see, it does allow for two way
communication, DDE is primarily a method of requesting information. Data tends to flow from source to
destination.

To establish a DDE conversation, the destination application must specify:

The name of the source application: an example would be Word, Excel or even another Visual
Basic program.

The topic of the conversation such as a document, spreadsheet or object relating to the source
application.

The item of the conversation: this could be a bookmark, spreadsheet cell or control.
76

CHAPTER 11 COMMUNICATIONS PROGRAMMING
The type of conversation: these are commonly referred to as links. There are three types of
links: automatic, manual and notify. With an automatic link, the destination application is
updated automatically whenever the item changes on the source. In manual link mode, the
source application only sends an update when requested by the destination application. With a
notify link, the source notifies the destination whenever an item changes but does not send the
value unless asked.

You've already seen a glimpse of DDE in action when we used it to bring up the Find File dialog from the
drag-and-drop example in Chapter 4. In the following sections, you'll see several more examples which use
DDE from Visual Basic.

DDE_Dial: A Simple Use of DDE
DDE_Dial is a simple example that demonstrates how Visual Basic can be used to create both a server and
destination application. You'll find the code for this example in the \Chap11\DDE_Dial subdirectory on
the disc.

We'll begin by looking at the server application, DDE_Dial.vbp. This program makes use of the same
dialing routines presented earlier in this chapter to provide a simple phone dialer which can be activated via
DDE. In fact, DDE_Dial.vbp is almost exactly the same as SimpDial.vbp that you saw earlier, except
for three important differences:

The LinkMode property of the main form was set to Source

The LinkTopic property of the main form was set to frm_DDE_Dial.

Some code was added to the txt_Phone_Number_Change event procedure so that the
number would be dialed whenever the text in the phone number box was changed.

In this new incarnation, I've made the form smaller. If you enlarge it again, you'll see
that it contains the same controls as the original.

As with the previous dialing example, before you run this application you’ll probably need to make
modifications to the CommPort and Settings properties used. The settings are located in the Form_Load
section of frm_DDE_Dial. You may need to change the lines shown below to match your system
configuration:

com_Phone.CommPort = 2
com_Phone.Settings = "2400,n,8,1"

Testing DDE_Dial
To test DDE_Dial, we must create a client application, Testdial.vbp . The test program will accept a
phone number from the user and, when instructed, will transfer the number to DDE_Dial for processing.

If you run the program, you'll see that both the
test client and the server application have been
started. Enter a number in the text box on the
client form and click the Dial button. The
number will be sent via DDE from the client to
DDE_Dial, which will process the request and
notify you of dialing progress through the panel
on the server application.
377

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
What's Happening?
When the test program starts, it establishes a DDE link with DDE_Dial in its Form_Load procedure. We
link the text box control, txt_Phone_Number, in the test application to the text box control (coincidentally
also called txt_Phone_Number) in the server application. By setting its LinkTopic, LinkItem and
LinkMode, a DDE link is created between itself and DDE_Dial.

The value used to set the LinkTopic property should be in the form: source application plus the pipe
character "|", followed by the data group in the source application. In this case, the application name is the
name of the project, DDEDIAL, and the data group name is the LinkTopic property of the source form,
frm_DDE_Dial.

The LinkItem property is set equal to the name of the text box control on the source application. It
should be noted that even though the text box controls on both the source and destination applications have
the same name, txt_Phone_Number, in the code below we are referring to the control on the source
application.

LinkMode refers to the mode of operation that will be used with this DDE conversation. In this example,
we’ve used the manual mode. This means that no data will be transferred between applications unless
requested.

Private Sub Form_Load()
 Const DDE_NO_APP = 282
 Dim return_value As Long

' Establish link with DDE dialer.
 On Error GoTo Start_DDE_Dial
 txt_Phone_Number.LinkMode = vbLinkNone
 txt_Phone_Number.LinkTopic = "DDEDIAL|frm_DDE_Dial"
 txt_Phone_Number.LinkItem = "txt_Phone_Number"
 txt_Phone_Number.LinkMode = vbLinkManual
 On Error GoTo 0
 Exit Sub

For a DDE conversation to be established, the source application must be running. While there are several
methods for handling this situation, I believe that the one I've used here works best. By setting an error
handler at the top of the Form_Load procedure, we'll trap errors that occur as a result of the absence of
the server application. In the error handler we check the cause of the error. If it’s the result of the server not
being available, the Shell statement is used to launch the server. For any DDE applications you create, you
will need to perform something similar to this to verify that your server is accessible.

' Error handle for use during establishing of link.
' If error resulted from the source app not currently
' running, start the source app.
Start_DDE_Dial:
 If (Err = DDE_NO_APP) Then
 return_value = Shell(App.Path & "\Ddedial.exe", 1)
 Resume
 Else
 MsgBox Error(Err)
 End
 End If
End Sub
78

CHAPTER 11 COMMUNICATIONS PROGRAMMING
When the Form_Load procedure is executed a link is established between the text control
txt_Phone_Number on frm_Test_Dial and the text control txt_Phone_Number on the form
frm_DDE_Dial as shown in the diagram below:

When the user enters a phone number and clicks the Dial command button, the following procedure is
executed. Using the LinkPoke method the destination application transfers the value in its
txt_Phone_Number control to the source application’s txt_Phone_Number control. The change event
procedure for the source application’s text control is then executed and the number is dialed.

Private Sub cmd_Dial_Click()
 On Error Resume Next
 txt_Phone_Number.LinkPoke
End Sub

You can see that using the LinkPoke method makes it possible to transfer data from the destination to the
source.

Summary
While this is a very simple example of using Visual Basic to create both a DDE source and destination
program, it’s demonstrated the principle steps involved in a DDE conversation.

In the next example, we’ll look at another set of DDE applications where both the source and destination
programs are created using Visual Basic. The DDE conversation will be more elaborate, with data being
transferred in both directions between the two applications.

DDECalendar
The previous example demonstrated how you can use DDE to create an applet, a single purpose program
which can be incorporated into a wide spectrum of applications. In this example, we’ll create another small
utility - a date selection utility which provides a calendar from which the user can pick a date. This utility
will accept and return dates using DDE, and you can use it with any application which can function as a
DDE destination.
379

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
You can move between months using the single arrow buttons. The double arrow buttons move forward and
back a year at a time. Dates are selected by double-clicking.

DDECalendar, like DDE_Dial is a DDE server application. As such, it isn’t designed for use independently
of a destination application. While DDECalendar at least has a user interface which can be manipulated, it’s
still designed to work in conjunction with other programs.

What's Happening?
The calendar program begins by performing some standard initialization activities. The form is centered and
tooltips are enabled. Under 16-bit Windows, a call to the procedure Make_System_Modal defines the
calendar program as the current system modal window. This restricts the user to working only with the
calendar until a date is selected. A call to Build_Calendar configures the calendar’s interface to a specific
month.

Private Sub Form_Load()

' Setup the form before we begin.
 Center_Form Me
 Load frm_ToolTip
 #If Win16 Then
 Call Make_System_Modal(Me.hWnd)
 #End If

' Display calendar for todays date.
 current_date = Now
 Call Build_Calendar(current_date, current_day, current_month,ÃÃ

 current_year, days_in_month, day_of_first)

End Sub

The Make_System_Modal procedure uses an API call, located in the file mod_Calendar, to set the
specified window as system modal. The declaration is in the (General) (declarations) section of that
file.

Option Explicit
#If Win16 Then
 Declare Function SetSysModalWindow Lib "User" (ByVal hWnd As Integer)ÃÃ

You can find this example in the \Chap11\DDECalen
subdirectory on the disk in the form of the two projects
Calendar.vbp and Demo.vbp. To see the server in
action, load and run Calendar.vbp. It should appear
as shown below, although the month and date will
vary, depending upon your PC’s clock.
380

CHAPTER 11 COMMUNICATIONS PROGRAMMING
 As Integer
#End If

Sub Make_System_Modal(ByVal form_hWnd As Integer)
 Dim return_value As Integer
 #If Win16 Then
 return_value = SetSysModalWindow(form_hWnd)
 #End If
End Sub

The function just takes the handle of the window to make system modal as its only parameter.

Build_Calendar
This procedure configures the calendar interface to represent a specific month. It performs date calculations
to determine the number of days in a month and the first date of the month.

Sub Build_Calendar(current_date As Date, current_day As Integer,ÃÃ
 current_month As Integer, current_year As Integer,ÃÃ
 days_in_month As Integer, day_of_first As Integer)

 Dim calendar_index As Integer
 Dim first_of_month As Variant
 Static previous_day As Integer
 Static previous_month As Integer
 Static previous_year As Integer

' Get numeric values for the date passed.
 current_day = Day(current_date)
 current_month = Month(current_date)
 current_year = Year(current_date)

At the beginning of the procedure, a check is made to determine if the specified month is already displayed.
If so, there’s no reason to regenerate the month.

If (current_month <> previous_month) Or (current_year <> previous_year)ÃÃ
 Then

If either the year or month have changed, then we need to redisplay the month on the calendar. We begin
by showing the month and year in the calendar's caption. Then a simple Select Case statement
determines the number of days in the current month.

 frm_Calendar.Caption = Format(current_date, "mmmm, yyyy")

' Determine the number of days in the current month.
 Select Case current_month
 Case 1, 3, 5, 7, 8, 10, 12
 days_in_month = 31
 Case 4, 6, 9, 11
 days_in_month = 30
 Case 2
 If ((current_year Mod 4) = 0) Then
 days_in_month = 29
 Else
 days_in_month = 28
 End If
 End Select
381

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
The day of the week on which the first day of the month falls is determined by using two Visual Basic
functions: DateSerial and Weekday. DateSerial takes three arguments year, month and day and
returns a date that can be stored in a variable of Variant data type or the new Date data type introduced
with VB4. Once we've obtained a date for the first of the current month, we can pass this to the Weekday
function which returns the day of the week that this date falls on.

' Determine day of week for first of month.
 first_of_month = DateSerial(current_year, current_month, 1)
 day_of_first = WeekDay(first_of_month)

Finally, we're ready to display the new calendar. First, the existing calendar is cleared. Then the new dates
are loaded into the captions of the labels.

' Clear the days currently on the calendar.
 For calendar_index = 0 To 36
 With frm_Calendar
 .lbl_Day(calendar_index).Caption = ""
 .lbl_Day(calendar_index).BorderStyle = 0
 .lbl_Day(calendar_index).FontBold = False
 .lbl_Day(calendar_index).ForeColor = vbBlack
 End With
 Next calendar_index

' Load the days for the current month.
 For calendar_index = 1 To days_in_month
 frm_Calendar.lbl_Day(calendar_index + day_of_first - 2).CaptionÃÃ

 = Str(calendar_index)
 Next calendar_index

The current date is saved to use as a comparison the next time this routine is called. This keeps the
calendar display from being updated unnecessarily.

' Save the day, month, year combinations for next time.
previous_day = current_day
previous_month = current_month
previous_year = current_year

The following Else branch is used when the calendar display already contains the correct month and year
and the user just changes the day. In this case, all that has to be done is to clear the currently highlighted
date.

Else

' Clear the current highlighted day.
 With frm_Calendar
 .lbl_Day(previous_day + day_of_first - 2).BorderStyle = 0
 .lbl_Day(previous_day + day_of_first - 2).FontBold = False
 .lbl_Day(previous_day + day_of_first - 2).ForeColor = vbBlack
 End With

' Save the day for the next time.
 previous_day = current_day

End If
82

CHAPTER 11 COMMUNICATIONS PROGRAMMING
Now, whichever branch the program took, all that remains is to highlight the current day.

' Highlight the current day.
 With frm_Calendar
 .lbl_Day(current_day + day_of_first - 2).BorderStyle = 1
 .lbl_Day(current_day + day_of_first - 2).FontBold = True
 .lbl_Day(current_day + day_of_first - 2).ForeColor = vbRed
 End With
End Sub

Controlling Movement Between Dates
Whether the user chooses to change the selected date by clicking on it, or by using the command buttons
at the top of the calendar, the code uses the same VBA function DateAdd to change the current date.

DateAdd allows you to perform 'date math'. It adds the specified interval of time to a date and returns the
new date. The first parameter determines what interval to use (days months, years, etc.); the second
parameter determines how many of the interval to add; and the last parameter is the date which you wish
to add things to. It makes the job of moving between months, years and days very simple. Once the new
date has been found, the calendar is refreshed by a call to the Build_Calendar procedure which we
examined earlier.

Here you can see the code for the click events of the label array that makes up the calendar and the
command buttons that alter the year and month. The click events for the Previous Year and Previous
Month buttons are identical to those for the Next Year and Next Month buttons except that the second
parameter is -1.

Private Sub lbl_Day_Click(Index As Integer)
 current_date = DateAdd("y", Index - current_day - day_of_first + 2,ÃÃ

 current_date)
 Call Build_Calendar(current_date, current_day, current_month,ÃÃ

 current_year, days_in_month, day_of_first)
End Sub

Private Sub cmd_Next_Month_Click()
 txt_Date.SetFocus
 current_date = DateAdd("m", 1, current_date)
 Call Build_Calendar(current_date, current_day, current_month,ÃÃ

 current_year, days_in_month, day_of_first)
End Sub

Private Sub cmd_Next_Year_Click()
 txt_Date.SetFocus
 current_date = DateAdd("yyyy", 1, current_date)
 Call Build_Calendar(current_date, current_day, current_month,ÃÃ

 current_year, days_in_month, day_of_first)
End Sub

The procedure for the Today button simply uses the Now function to determine the current date.

Private Sub cmd_Today_Click()
 txt_Date.SetFocus
 current_date = Now
 Call Build_Calendar(current_date, current_day, current_month,ÃÃ
383

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
 current_year, days_in_month, day_of_first)
End Sub

The DDE Interface
DDECalendar accepts a date to display on startup via DDE. The text box control txt_Date (hidden well
off the edge of frm_Calendar) is used with the DDE link. Anytime that the value of this control changes
the calendar is updated. This functionality allows the calendar to be called with an existing start date that
may be different from the current date.

Private Sub txt_Date_Change()
 current_date = txt_Date.Text
 Call Build_Calendar(current_date, current_day, current_month,ÃÃ

 current_year, days_in_month, day_of_first)
End Sub

The txt_Date control is also used to pass the new date to the destination application so when a new date
is selected via a double click by the user, we put it into the text box. You'll see how this is used in the
following calendar demo program:

Private Sub lbl_Day_DblClick(Index As Integer)
 txt_Date.Text = Format(current_date, "mmmm d, yyyy")
 Unload Me
End Sub

Testing DDECalendar
Testing DDECalendar is handled by a demo destination application, Demo.vbp. The test program consists
of two text box controls which are used to retrieve a beginning and ending date from DDECalendar.

If you run the program, you'll see the form shown below and you'll also note that the server application,
DDECalendar, has been started. Find a date and select it by double clicking. The calendar will be removed
and the selected date will be deposited in the Start Date text box on the demo program. Move to the End
Date text box. Again, the DDECalendar will be displayed so that you can select another date and the End
Date box will be updated.

To demonstrate how dates can be passed in both directions between the demo program and DDECalendar
click again on the Start Date text box. Note how the calendar starts up with the initial date set to the date
from the Start Date text box

What's Happening?
The only code in frm_Demo is contained in the GotFocus event procedures for the two text boxes.

Private Sub txt_End_Date_GotFocus()
 Call Get_Date(txt_End_Date)
End Sub

Private Sub txt_Start_Date_GotFocus()
 Call Get_Date(txt_Start_Date)
End Sub
84

CHAPTER 11 COMMUNICATIONS PROGRAMMING
When the demo program starts, the GotFocus event for the Start Date text box triggers establishment of a
connection with DDECalendar. The procedure Get_Date handles the DDE communication. This procedure
is identical in structure to the DDEDialer demo example with one exception. Here, not only do we send the
current date to the source program using LinkPoke, but we also set it so that the date will be returned by
setting the LinkMode to vbAutomatic. In this mode, whenever the linked item changes on the source
application it will automatically be returned to our destination application.

The process of events that occurs during this DDE conversation is:

1 An attempt is made to establish a conversation with the source application.

2 If the source isn’t running, it’s started.

3 The current value of the date text box on the destination program is sent to the source program using
LinkPoke.

4 An automatic link is established between the appropriate destination text box and the txt_Date text box
control on the source program.

5 On 16-bit systems the source program, being set to system modal, is in control until the user selects a date by
double clicking.

6 When the user selects a date it’s loaded into the txt_Date control on the source application. Since this control
is linked to the destination program, the date’s transferred to the appropriate text box on the destination
application.

Sub Get_Date(date_control As Control)
 Const DDE_NO_APP = 282
 Dim return_value As Long

' Load the calendar utility, pass the current value of the destination
' object to the calendar and then wait for the new value to be returned.
 On Error GoTo Start_Calendar
 date_control.LinkMode = vbLinkNone
 date_control.LinkTopic = "Calendar|frm_Calendar"
 date_control.LinkItem = "txt_Date"
 date_control.LinkMode = vbLinkManual
 date_control.LinkPoke
 date_control.LinkMode = vbLinkAutomatic
 Exit Sub

This error handler is identical to the previous DDE demo. It’s used to handle the situation where the source
DDE application is not currently loaded.

' An error was encountered trying to access the calendar utility.
' Check the error and handle accordingly.
Start_Calendar:
 If (Err = DDE_NO_APP) Then
 return_value = Shell(App.Path & "\calendar.exe", 1)
 Resume
 Else
 MsgBox Error(Err)
385

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
 End
 End If

End Sub

Conclusion
This example displays how to use the primary functions of DDE to transfer data both ways during a
conversation. It shows the differences between the automatic and manual link modes and how they’re used
to add DDE functionality to a Visual Basic application.

DDE to Excel
In the previous two sections, you were shown examples of how you can use Visual Basic to create both
server and destination applications. While this capability in itself can add significant functionality to your
programs, DDE can also be used to interface with other applications. This section contains an example
which uses DDE with Microsoft Excel.

The task of this example is to create a sign-out log for a car pool. We’ll use an Excel workbook containing
twelve sheets, one for each month of a year. On each sheet there’s a row for each day of the month and a
column for one of ten types of vehicles that are available to the employees.

Note this example requires Microsoft Excel to be loaded on your PC.

The Car Request application, Car_rqst.vbp found in the \Chap11\DDEExcel subdirectory on the disk,
uses two principle forms, a splash form and the primary interface form. Unlike the previous two examples,
where the server applications were fairly small and loaded quickly, starting Excel can be time consuming so
the splash form is intended to pacify the user during this process. To create a splash form that will load
quickly you need to keep the number of controls to a minimum.

When Excel has finished loading, the splash form is unloaded and the Car Request form is displayed.
DDECalendar is automatically launched when Car Request is loaded so that you can select a date for
reserving a car by double clicking on a date. The calendar will be removed and the selected date will be
deposited in the Date text box.

Entering the Employee's Name
Before a car can be requested, an employee name must be entered. Typically, this would be a good situation
to use a combo box, where the user would be restricted to selecting from a specific list of names, but for
the purpose of our example a text box is sufficient.
86

CHAPTER 11 COMMUNICATIONS PROGRAMMING
Specifying Seating and Storage Space
You specify the minimum requirements for your vehicle by using the two combo boxes located at the
bottom of the form. Only vehicles which meet your requirements will be available to select from.

Building a List of Vehicles
Before you can select a car you must build a list of available vehicles. Once you have entered the date,
storage and seating requirements, click the Find available cars button to populate the Car drop-down listbox
with the cars that are available on your chosen date and which meet the minimum requirements.

Try changing the seating and storage requirements and rebuild the list of available cars. Note how the list
varies depending upon the date and your parameters.

Reserving a Car
When you have built a list of available vehicles based upon your requirements, you are ready to reserve
your selection. Pick a vehicle from those available in the drop-down list box and reserve it by clicking the
Take car button.

What's Happening?
The Car Request program begins with the loading of the splash form, frm_Splash. In the Form_Load
procedure for that form, we center the form and then force its display. If the form was not explicitly
displayed it would not be shown until after the startup procedure was completed, which would defeat the
purpose intended for the splash form. The DoEvents statement allows time for Windows to display the
form.

Private Sub Form_Load()
' Display the splash form.
 Center_Form Me
 Me.Show
 DoEvents

Various global variables are initialized at this point. If you’re running the 16-bit version, you’ll probably need
to alter EXCEL_PATH so that it matches the path to Excel on your system. Otherwise, you should be able to
leave everything as it is.

' Setup the Location of the Excel Spreadsheet.
 DATA_FILE = "[car_rqst.xls]"
 DATA_FILE_ONLY = App.Path & "\car_rqst.xls"
 #If Win32 Then
 EXCEL_PATH = GetRegistrySetting(HKEY_LOCAL_MACHINE, "Software\ÃÃ

Microsoft\Windows\CurrentVersion\App Paths\Excel.exe", "")
 #ElseIf Win16 Then
 ' Modify this for your own system
 EXCEL_PATH = "C:\Office\Excel\Excel.exe"
 #End If

Once the splash form is displayed a check is made to determine whether Excel is running. This procedure
will load Excel if necessary, and load the appropriate spreadsheet for our application.

 Check_For_Excel

End Sub
387

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
The procedure Check_for_Excel, found in mod_Car_Request, performs several functions. It begins by
attempting to establish a DDE link to Excel. Using the same error handling techniques as demonstrated in
the previous DDE examples, it will trap link errors and start Excel if it isn’t running.

Sub Check_For_Excel()
 Const DDE_NO_APP = 282
 Dim return_value As Long

' Set up a DDE link to Excel.
 On Error GoTo Start_Excel_Now

 With frm_Splash
 .txt_Link.LinkMode = vbLinkNone
 .txt_Link.LinkTimeout = 10
 .pn3_Status.Caption = " Establishing link to Excel."
 .txt_Link.LinkTopic = "Excel|system"
 .txt_Link.LinkMode = vbLinkManual
 .txt_Link.LinkMode = vbLinkNone
 .txt_Link.LinkTimeout = -1
 .txt_Link.LinkMode = vbLinkManual
 End With

Once a link has been established to Excel, the default spreadsheet is closed using the LinkExecute
method. While this step is not critical to the operation of this example, it demonstrates the usefulness of the
method.

 On Error GoTo 0
 frm_Splash.txt_Link.LinkExecute "[Close(False)]"

The status panel located at the bottom of the splash form keeps the user informed as to the progress of the
load procedure. By updating this panel the user knows that events are occurring. We then use the
LinkExecute method again to open the spreadsheet we use for keeping track of the available cars.

On Error GoTo Start_Excel_Now
 With frm_Splash
 .pn3_Status.Caption = " Loading car request spreadsheet."
 .txt_Link.LinkExecute "[Open(""" & DATA_FILE_ONLY & """)]"
 .pn3_Status.Caption = " Excel ready, starting app."
 End With

Finally, with Excel running and the appropriate spreadsheet loaded, we’re ready to begin. All that’s left to
do is to remove the splash form and load the Car Request main form.

' Everything is ready so remove the splash form and display the main form.
 Unload frm_Splash
 Load frm_Car_Request
 Exit Sub

The error handling routine at the bottom of this procedure is identical to those discussed in the previous
DDE examples.

' An error was encountered trying to access Excel.
' Check the error and handle accordingly.
Start_Excel_Now:
 If (Err = DDE_NO_APP) Then
 frm_Splash.pn3_Status.Caption = " Excel not running. Starting Excel."
388

CHAPTER 11 COMMUNICATIONS PROGRAMMING
 return_value = Shell(EXCEL_PATH, vbMinimizedNoFocus)
 Resume
 Else
 MsgBox Error(Err)
 End
 End If

End Sub

The Form_Load procedure for the Car Request form is very simple. It begins by initializing tooltips for the
form’s toolbar. It then initializes the combo boxes for available cars, seating and storage.

Private Sub Form_Load()
 Dim row_index As Integer

' Setup the form before we begin.
 Load frm_ToolTip
 Me.Show
 DoEvents

' Load seating options.
 With cmb_Seating
 .AddItem "2"
 .AddItem "3"
 .AddItem "4"
 .AddItem "5"
 .AddItem "6"
 .AddItem "7"
 .ListIndex = 0
 End With

' Load storage options.
 With cmb_Storage
 .AddItem "Small"
 .AddItem "Medium"
 .AddItem "Large"
 .ListIndex = 0
 End With

' Load available cars options.
 cmb_Car.AddItem "None"
 cmb_Car.ListIndex = 0

End Sub

The first control on frm_Car_Request is the date text box as it has a TabIndex property of zero. The
effect of this action is that when the Car Request form is loaded the date text control receives the focus. The
GotFocus event associated with that text box triggers establishment of a connection with DDECalendar as
shown in the previous example. This combination of configurations and events results in a date being
solicited when the program is initiated.

Private Sub txt_Date_GotFocus()
 DoEvents
 Call Get_Date(txt_Date)
End Sub
389

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
After a date has been selected, the Car Request form should
appear as shown here. This is the first time since initiation of
the program that the user has complete control over the
application. Up to this point the program has been controlled
by the splash form and DDECalendar.

When any of the three combo boxes for the car type, seating or storage are selected by clicking or tabbing,
the Clear_Car_List procedure in mod_Car_Request is executed. The purpose of this procedure is to
reset the list of available cars whenever any of the requirements are modified.

Sub Clear_Car_List()
' Simply resets the car list anytime one of the request criteria
' has changed.
 With frm_Car_Request.cmb_Car
 .Clear
 .AddItem "None"
 .ListIndex = 0
 End With
End Sub

As explained earlier, the user must first build the list of available cars before selecting a car by clicking the
Find available cars button. It would probably have been better to build this list in the DropDown event of
the Cars combo box. When the button is clicked, the procedure for that event calls the
Get_Available_Cars procedure which interacts with the Excel spreadsheet to generate the car list.

Sub cm3_Find_Cars_Click ()
cmb_Car.Clear
Call Get_Available_Cars(txt_Date.Text)
cmb_Car.ListIndex = 0

End Sub

The procedure Get_Available_Cars involves the most complex DDE conversations of this application. It
begins by establishing a link with the worksheet for the appropriate month. Several text box controls, hidden
by locating them off of the edge of the form’s view, are used for the DDE links. By looping through each of
the columns for the requested date, we can determine which cars are available. Whenever the cell for a
specific date (row) and vehicle (column) is empty then it’s available.

Sub Get_Available_Cars(ByVal requested_date As String)
 Dim column_index As Integer
 Dim storage_class As Integer

' Check the availability of each car for the given day.
 For column_index = 2 To 12
 With frm_Car_Request.txt_Available
390

CHAPTER 11 COMMUNICATIONS PROGRAMMING
 .LinkMode = vbLinkNone
 .LinkTopic = "Excel|" & DATA_FILE & month_of_request
 .LinkItem = "R" & Trim(Str(date_of_request + 1)) & "C" &ÃÃ

 Trim(Str(column_index))
 .LinkMode = vbLinkAutomatic
 .LinkMode = vbLinkNone
 End With

When a car is found, its specifications are checked to determine if it meets the minimal seating and storage
requirements. Seating and storage capacities are kept at the bottom of the column for each car on a
worksheet.

' If the specified car is available check if it meets minimum seating
' and storage requirements. If so, add it to the list.
 If (Asc(Left(frm_Car_Request.txt_Available.Text, 1)) = 13) Then

' Get seating specs.
 With frm_Car_Request.txt_Seating
 .LinkMode = vbLinkNone
 .LinkTopic = "Excel|" & DATA_FILE & month_of_request
 .LinkItem = "R34" & "C" & Trim(Str(column_index))
 .LinkMode = vbLinkAutomatic
 .LinkMode = vbLinkNone
 End With

' If car meets the seating specs check its storage specs.
 If (Val(frm_Car_Request.txt_Seating) >= Val(frm_Car_Request.ÃÃ

cmb_Seating.List(frm_Car_Request.cmb_Seating.ListIndex))) Then
 With frm_Car_Request.txt_Storage
 .LinkMode = vbLinkNone
 .LinkTopic = "Excel|" & DATA_FILE & month_of_request
 .LinkItem = "R35" & "C" & Trim(Str(column_index))
 .LinkMode = vbLinkAutomatic
 .LinkMode = vbLinkNone
 End With

 Select Case Left$(frm_Car_Request.txt_Storage,ÃÃ
 Len(frm_Car_Request.txt_Storage) - 2)

 Case "Small"
 storage_class = 0
 Case "Medium"
 storage_class = 1
 Case "Large"
 storage_class = 2
 End Select

When a vehicle is found to be both available and also meets the minimum storage and seating requirements,
it’s added to the available car list. Before adding a name, it must be trimmed of a trailing tab delimitation.
The real trick here is that we make use of the ItemData property of the list box to store the column index
for each vehicle. If this feature wasn’t utilized, we would have to search the list of cars by looping through
the Excel spreadsheet using DDE, looking for a match every time we went to reserve a car.

' If the car meets the storage specs add it to the list.
 If (storage_class >= frm_Car_Request.cmb_Storage.ListIndex) Then
 With frm_Car_Request
 .txt_Car.LinkMode = vbLinkNone
391

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
 .txt_Car.LinkTopic = "Excel|" & DATA_FILE & month_of_request
 .txt_Car.LinkItem = "R1" & "C" & Trim(Str(column_index))
 .txt_Car.LinkMode = vbLinkAutomatic
 .cmb_Car.AddItem Left(frm_Car_Request.txt_Car,ÃÃ

 Len(frm_Car_Request.txt_Car) - 2)
 .cmb_Car.ItemData(frm_Car_Request.cmb_Car.NewIndex) =ÃÃ

 column_index
 .txt_Car.LinkMode = vbLinkNone
 End With
 End If
 End If
 End If
 Next column_index

End Sub

Clearly, the list of available cars will vary depending upon your criteria.

All that's left is to reserve a car. This is performed by clicking on the Take car command button. The click
event procedure for this control reserves the selected vehicle. It begins by confirming that all data necessary
for reserving a car is available.

Private Sub cm3_Take_Car_Click()
 Dim date_of_request As Integer

' Verify that a name has been entered.
 If (Len(txt_Name.Text) = 0) Then
 Beep
 txt_Name.SetFocus
 Exit Sub
 End If

' Verify that a car is available.
 If (cmb_Car.List(cmb_Car.ListIndex) = "None") Then
 Beep
 cmb_Car.SetFocus
 Exit Sub
 End If

Once this has been determined, the reservation is performed. The coordinates for the Excel cell to fill for
the reservation are determined by using the month, date and ItemData property of the Cars combo box.
A link is established with the cell and its value is updated using the LinkPoke method.

' Reserve the selected car.
 date_of_request = Val(Format$(txt_Date.Text, "dd"))
 With txt_Name
 .LinkMode = vbLinkNone
 .LinkTopic = "Excel|" & DATA_FILE & month_of_request
 .LinkItem = "R" & Trim(Str(date_of_request + 1)) & "C" &ÃÃ

 Trim(cmb_Car.ItemData(cmb_Car.ListIndex))
 .LinkMode = vbLinkManual
 .LinkPoke
 End With

Finally, using the Save_Data procedure, the spreadsheet is saved with our new reservation.
92

CHAPTER 11 COMMUNICATIONS PROGRAMMING
' Save the spreadsheet with the new addition.
 Save_Data

End Sub

Save_Data utilizes the LinkExecute method to instruct Excel to save the workbook.

Sub Save_Data()
' Issues command to save the car request spreadsheet.
 With frm_Car_Request.txt_Month
 .LinkMode = vbLinkNone
 .LinkTopic = "Excel|" & DATA_FILE_ONLY
 .LinkMode = vbLinkManual
 .LinkExecute "[Save]"
 End With
End Sub

Summary
This simple Visual Basic to Excel DDE example shows the power and extendibility that is available through
the utilization of other Windows applications with your programs.

You may be wondering why we've covered DDE when it's an aging technology being pushed aside by OLE
as the standard means of data exchange and program control. There are three main reasons:

Many applications support DDE, but not OLE.

DDE is probably the simplest method for continuously updating data between applications.

You can use DDE across a network in a way that you can’t use OLE, unless you have the
help of the Enterprise edition of Visual Basic.

Let's take a look now at how DDE handles network communication.

NetDDE
NetDDE, just like it sounds, is Dynamic Data Exchange over a network. Once set up it is essentially the
same as the DDE we’ve already seen, but before you can use it there are a number of steps that need to be
performed to get NetDDE working. You'll need to meet all of the following conditions before the example
will work.

A network adapter and appropriate networking software needs to be installed on at least two
machines linked via a LAN. The network must include NetBEUI as one of its protocols.

The source application must be registered in the HKEY_LOCAL_MACHINE/Software/Microsoft/
NetDDE/DDE Shares section of the Registry in Windows 95, or in the [DDEShares] section of
System.ini in Windows for Workgroups.

The source application should be located somewhere in the server machine's path or an entry
for it should be added to the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\App Paths section of the
Registry.

NetDDE.exe must be started so that DDE communication can be transported over the
network.
393

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
For our example \Chap11\Chatter\Chatter.vbp, you can find a sample Registry file in the project
directory called Chatter.reg. You can merge this with your Registry by simply double-clicking it in
Explorer.

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NetDDE\DDE Shares\CHATTER]
"Additional item count"=hex:00,00,00,00
"Application"="chatter"
"Item"=""
"Password1"=""
"Password2"=""
"Permissions1"=hex:1f,00,00,00
"Permissions2"=hex:00,00,00,00
"Topic"="chatter"

Note that frm_Chatter was set up as a DDE source with a LinkTopic of "Chatter".

To register an application in the DDE Shares section of the Registry, you must provide at least three pieces
of information: an alias in the form of a Registry key which you'll use to refer to the source application in
code; and Registry values for both the application (executable) name and the link topic. In addition, you can
also specify restrictions on the use of your server. For example, you can prevent users from using LinkPoke
on your DDE server or specify that they must provide a password to access it. We'll just use the basic items
in this application.

Network Chatter
Network Chatter shows how you can use
NetDDE to create a communication
application that allows users to converse with
each other over a network. This is similar to
the Chat application that comes with
Windows. If you run the application, after
making sure the requirements listed above
have been met, you'll see the form shown
below. The text boxes are blank apart from
the one displaying the name of your
computer. Use the handshake button to bring
up a form that allows you to enter the name
of the machine that you want to connect to.

Enter a machine name of another computer on
the network that also has Chatter.exe installed
then press OK. Chatter will attempt to attach to
the specified computer.
394

CHAPTER 11 COMMUNICATIONS PROGRAMMING
If the computer doesn't have NetDDE running or if Chatter isn't in that computer's path, nothing much will
happen, otherwise Chatter will be started on the machine you specified and a message will be passed to it
requesting a conversation. If the user of that machine agrees to a conversation, they should click the
handshake button and they will see the form shown above with the name of the calling machine already
entered. Pressing the OK button will connect them to the caller so that a two-way conversation can ensue by
typing into the Sent Text box and reading the messages in the Received Text box.

When either user has finished they can terminate the conversation either by closing the Chatter application
down or by clicking the Stop button.

What's Happening?
The program begins with Sub Main located in mod_Chatter. This procedure ensures that NetDDE is
running on our machine. Although we can't make sure that it's running on our target machine, we can at
least make sure that it's running on our own.

Sub main()
Dim return_code As Long

 On Error Resume Next
 return_code = Shell("netdde.exe", vbHide)
 frm_Chatter.Show
 On Error GoTo 0
End Sub

The Form_Load procedure for frm_Chatter centers the form and retrieves the computer name using the
GetComputerName API function. This API call is 32-bit only so if you need to use this code on 16-bit
Windows, I'm afraid you'll have to find your own alternative.

Option Explicit
#If Win32 Then
 Private Declare Function GetComputerName Lib "kernel32" AliasÃÃ

 "GetComputerNameA" (ByVal lpBuffer As String, nSize As Long)ÃÃ
 As Long

#End If

Function Get_Computer_Name() As String
Dim return_code As Long
Dim computer_name As String
Dim computer_name_length As Long

 computer_name_length = 255
 computer_name = String$(computer_name_length, "J")

' Get the current computer's name and return it.
 return_code = GetComputerName(computer_name, computer_name_length)
 Get_Computer_Name = Left$(computer_name, computer_name_length)

End Function

Once loaded, the application will sit there until the user presses a button or another machine attempts to
connect to this one. We'll look through the connection process from the point of view of a user who's
initiating the conversation.
395

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
The user starts to initiate a conversation by pressing the handshake button. This shows
frm_Get_Username. Once the destination computer name has been entered, the user will press the OK
button. The click procedure for this button adds the destination computer's name to the text box on the
main form and calls that forms Open_NetDDE method to start the conversation.

Private Sub cmd_OK_Click()
' Place the destination computer name in the main form's computer name
' text box.
 frm_Chatter.txt_Dest_Comp_Name.Text = UCase$(txt_Dest_Comp_Name.Text)
 frm_Chatter.Open_NetDDE frm_Chatter.txt_Dest_Comp_Name.Text
 Unload Me
End Sub

The Open_NetDDE procedure starts by performing a few initializations to let the user know that a
potentially lengthy process is about to occur.

Public Function Open_NetDDE(dest_computer_name As String) As Boolean
Dim retry_count As Integer

 If dest_computer_name = "" Then
 Exit Function
 End If

 On Error Resume Next
 Screen.MousePointer = vbHourglass
 DoEvents

 Open_NetDDE = False
 retry_count = 0
 Err = 0

 pn3_status.Caption = "Attempting to connect to computer: " &ÃÃ
 dest_computer_name

At this stage, the function enters a loop to try and get the other machine to respond. It uses the same
principle that we’ve seen earlier: it attempts a link and checks for errors. If it detects an error, the link is
canceled and it attempts to create a new one by looping back to the top. It will only make ten attempts to
link successfully.

Do While (retry_count < 10)
 txt_Received.LinkTopic = "\\" + dest_computer_name + "\NDDE$|CHATTER"
 txt_Received.LinkItem = "txt_Sent"
 txt_Received.LinkMode = vbLinkAutomatic

 If Err <> 0 Then
 ' Cancel the connection, add 1 to the retry count and try again
 txt_Received.LinkMode = vbLinkNone
 retry_count = retry_count + 1

Note the format that we’re using for the LinkTopic property. In general, you should use
"\\machine_name\NDDE$|application_share_name" as the topic for your NetDDE links where
machine_name is the name of the machine that you would like to run a particular application, and
application_share_name is the alias for that application declared in the NetDDE section of that
machine's Registry.
96

CHAPTER 11 COMMUNICATIONS PROGRAMMING
If the link is opened successfully, then we have succeeded in linking our txt_Received text box to the
other machine's txt_Sent text box. Since we have used an automatic link, whenever the other user types
something into their upper text box, we will automatically receive it in our lower text box. At the moment,
we could have a one-way conversation with us on the receiving end, but to establish a two way conversation
we need to get the other user to link to us.

We do this by poking a text string into the other machine's txt_Received box requesting a conversation.
This is accomplished by establishing a link between the txt_Command_Output text box on this machine
and the txt_Received text box on the other, using LinkPoke to pass the string and then breaking the
link.

 Else
 ' We have a connection so set Open_NetDDE to True
 Open_NetDDE = True
 ' Pass our computer name
 With txt_Command_Output
 .LinkTopic = "\\" + dest_computer_name + "\NDDE$|CHATTER"
 .LinkItem = "txt_Received"
 .LinkMode = vbLinkAutomatic
 .Text = "Chat with " & Get_Computer_Name() & "?"
 .LinkPoke
 .LinkMode = vbLinkNone
 End With

We then link the same text box to the txt_Command_Input box on the other machine and pass it a
command string telling it that we'd like to initiate a conversation, and passing it our computer name.

 ' Pass the initiate message
 With txt_Command_Output
 .LinkTopic = "\\" + dest_computer_name + "\NDDE$|CHATTER"
 .LinkItem = "txt_Command_Input"
 .LinkMode = vbLinkAutomatic
 .Text = "Initiate" & Get_Computer_Name()
 .LinkPoke
 .LinkMode = vbLinkNone
 End With

 pn3_status.Caption = "DDE successful"
 Exit Do
 End If

 ' reset the vb error code to clear.
 Err = 0
 Loop

 Screen.MousePointer = vbDefault
 On Error GoTo 0

End Function

The change event for the command input box on the other machine is triggered when we pass it our
computer name. This procedure puts the name that we pass into the destination computer box on
frm_Get_Username so that if the user agrees to the conversation, they won't need to type in the computer
name themselves when they bring up that form by pressing the handshake button.
397

3

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
Private Sub txt_Command_Input_Change()
' Are we being asked to terminate the chat?
 If InStr(txt_Command_Input.Text, "Terminate") Then
 ' Are we the one asking for the termination
 If (Mid$(txt_Command_Input.Text, 10) = txt_Source_Comp_Name.Text) Then
 Exit Sub
 Else
 Disconnect_NetDDE
 End If
 End If

' Is a Chat being initiated?
 If InStr(txt_Command_Input.Text, "Initiate") Then
 ' Are we doing the initiating?
 If (Mid$(txt_Command_Input.Text, 9) = txt_Source_Comp_Name.Text) Then
 Exit Sub
 Else
 frm_Get_Username.txt_Dest_Comp_Name.Text =ÃÃ

 Mid$(txt_Command_Input.Text, 9)
 End If
 End If
End Sub

If the other user does agree to the conversation, they’ll connect to us in exactly the same way as we
connected to them: they’ll link their receive text box so that it automatically receives the text from our send
text box, and so a two-way link is created with Chatter acting both as a destination and as a source on each
machine.

This conversation will continue until either of the parties decides to end it either by closing their application
or clicking the Stop button. In either case, the cm3_Disconnect_Click procedure is executed.

Private Sub cm3_Disconnect_Click()
 Notify_Termination
 Disconnect_NetDDE
End Sub

The first procedure called sends some text from the txt_Command_Output text box of the closing
machine to the txt_Command_Input box of the other, notifying it of the termination of the conversation.
As you can see from the code in the txt_Command_Input_Change procedure shown above, this will
cause the other application to execute the Disconnect_NetDDE procedure too. We need to make sure that
this happens, so that the other machine doesn't continue to receive text from our send text box. The
Disconnect_NetDDE procedure just makes sure that all possible links to the other machine's Chatter
program are closed.

Private Function Disconnect_NetDDE() As Boolean
 If txt_Dest_Comp_Name.Text = "" Then
 Exit Function
 End If

 On Error Resume Next
 DoEvents
 pn3_status.Caption = "Attempting to disconnect from other machine."

 txt_Dest_Comp_Name.Text = ""

' Clear the sent text box.
98

CHAPTER 11 COMMUNICATIONS PROGRAMMING
 txt_Sent.Text = ""

 txt_Source_Comp_Name.Text = ""
 txt_Source_Comp_Name.LinkPoke

' cancel the NetDDE connection
 txt_Source_Comp_Name.LinkMode = vbLinkNone

' Disconnect the received text box.
 txt_Received.LinkMode = vbLinkNone
 txt_Received.Text = ""

 txt_Command_Input.LinkMode = vbLinkNone
 txt_Command_Output.LinkMode = vbLinkNone

 Disconnect_NetDDE = False
 On Error GoTo 0
 txt_Source_Comp_Name.Text = Get_Computer_Name()
 pn3_status.Caption = "Disconnected from other machine."

End Function

Summary
You can see that DDE is a very useful tool, despite the rise of OLE. The fact that NetDDE allows you to
execute and communicate with applications running on other machines makes it more useful still. Although
our application is a fairly trivial one, you can use these NetDDE techniques to create your own network
applications with very little effort.

Communicating with MAPI
MAPI is the Messaging Application Programming Interface, an API that lets you take advantage of the
facilities of any MAPI-compliant mail systems on your users' systems. By using the MAPI functions or
MAPI controls with Visual Basic, you can write code to integrate your own applications with your users'
existing mail system, allowing you to perform all sorts of mail manipulation tasks from your own code.

In this next section, we’re going to mail-enable the MicroPost application that we created earlier in the
book. We'll do this using the MAPI Session and MAPIMessages controls supplied with the Professional
edition of Visual Basic 4. Before we do this, you'll need a MAPI mail system on your machine to test it. If
you don't already have a MAPI mail system on your machine, you can install one by installing Microsoft
Mail that comes with Windows NT, Windows for Workgroups or Windows 95. On Windows 95, you'll have
to install Exchange to get Microsoft Mail. Once your mail system is installed and configured you can test
the new version of MicroPost, even if you can only send mail to yourself.

MicroPost Mail
You'll find MicroPost Mail in the \Chap11\MPstMail\ subdirectory on the disc. If you run the project
Mpstmail.vbp, you'll see that relatively little has changed since the first version; all of the original features
remain. In addition, the main form has gained three menu items: Connect to E-mail, Get a Note from E-
mail, and Disconnect from E-mail while each of the notes has gained a single menu item: Mail.
399

4

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
Before you can use any of the mail facilities that MicroPost Mail offers, you need to connect to your e-mail
system by clicking the Connect to E-mail item in the Notes menu of the main form. This will bring up the
standard login screen for your mail system, allowing you to choose a mail profile or enter a password as
necessary.

Once connected to your mail system, the other menu items that were previously disabled become enabled
so that you can perform mail operations on your notes. Hitting the Mail item on one of your notes allows
you to send it to anyone you choose, and clicking on the Get a Note from E-mail item on the main form
lets you choose one of the messages in your in-box to turn into a MicroPost note. When you've finished
with the mail system, you can disconnect by hitting the Disconnect from E-mail menu item or just close the
application.

What's Happening?
We'll begin our look behind the scenes by seeing how we connect to the mail system. The click event for
this menu item just calls the procedure Connect_to_Mail_System located in frm_Micropost.

Private Sub mnu_Notes_Connect_Mail_Server_Click()
 Connect_to_Mail_System
End Sub

Connecting to MAPI
Connecting to a MAPI mail system is as easy as using the SignOn method of the MAPISession control,
mps_Login. If it fails to connect to the user's mail system, an error will be generated which we can trap
and handle appropriately. Otherwise, we need to extract the SessionID from the MAPISession control and
pass it to the MAPIMessages control, mpm_Micropost. This ensures that both controls are working with
the same mail session.

Sub Connect_to_Mail_System()
Dim response As Integer

 On Error Resume Next
 Err = 0
' Attempt to connect to a mail server
 mps_Login.SignOn
 If Err = 0 Then
 mpm_Micropost.SessionID = mps_Login.SessionID
 mail_enabled = True
 Else
 response = MsgBox("Error when attempting to make" & Chr(vbKeyReturn)ÃÃ

 & Chr(10) & "a connection to E-Mail system.", vbOKOnly +ÃÃ
 vbDefaultButton1 + vbInformation + vbApplicationModal, "MailÃÃ
 Login")

 mail_enabled = False
 End If

Once we've determined whether we've opened a mail session, then we can call the Enable_Mail_Menus
procedure to enable and disable the menu items relating to mail depending on our success.

 Enable_Mail_Menus mail_enabled
 On Error GoTo 0
End Sub
00

CHAPTER 11 COMMUNICATIONS PROGRAMMING
Here, once again, you can see how useful the visible_notes collection has been.

Sub Enable_Mail_Menus(ByVal enabled_status As Boolean)
 Dim note_object As frm_Note

' Enable/disable main form mail menu items.
 mnu_Notes_Connect_Mail_Server.Enabled = Not (enabled_status)
 mnu_Notes_Disconnect_Mail_Server.Enabled = enabled_status
 mnu_Notes_Get_Mail_Note.Enabled = enabled_status

' Enable/disable mail menu item on all Visible Notes.
 For Each note_object In visible_notes
 If enabled_status Then
 note_object.EnableMail
 Else
 note_object.DisableMail
 End If
 Next note_object

End Sub

Signing Off
The procedure to disconnect from the mail system is even simpler as it only uses the SignOff method of
the mps_Login MAPISession control. This procedure is called from the menu item click event and the
Unload procedure of the main form.

Sub Disconnect_from_Mail_System()
 On Error Resume Next
' Disconnect from Mail Server
 mps_Login.SignOff

' Disable/Enable Mail menu items.
 mail_enabled = False
 Enable_Mail_Menus mail_enabled
 On Error GoTo 0
End Sub

Mailing the Notes
The mailing of individual notes is achieved through the new MailMe method provided for them. Although
we only call it from the note that's to be sent, the fact that it's a Public method means that it offers
additional flexibility. For example, it would only take a few lines of code to send all the notes:

Public Sub MailMe()
' Mail current note.
 With frm_MicroPost.mpm_Micropost
 .Compose
 .MsgNoteText = txt_Note.Text
 .MsgSubject = Me.Caption
 .Send True
 End With
End Sub
401

4

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
The Compose method of the
MAPIMessages control indicates
that we’re composing a new
message. We set the text of the
message to be the text of the
note that is to be sent and set
its subject from the Caption of
the note by configuring the
MsgNoteText and
MsgSubject properties of the
control. The Send method
sends the note, with the
parameter determining whether
the send message dialog should
be displayed. Since we need to
find out who the message
should go to, and we don't
intend to create our own dialog
in order to get this information,
we use True as the parameter
so that the dialog is displayed.

Retrieving a Message
Retrieving a message and creating a note from it is just as easy. This requires us to add a new form to the
project, frm_Get_Mail_Note, from which the user can choose a message to make into a note. The
Form_Load procedure for this form just centers the form and calls the Load_Mail procedure also located
within this form.

Private Sub Form_Load()
 Center_Form Me
 Load_Mail
End Sub

Load_Mail begins by configuring the mpm_Micropost control to retrieve the messages in the order they
were received by setting the FetchSorted property to True. Setting this property to False would
retrieve the messages in the sort order specified by the user's Inbox. You can also use the FetchMsgType
and FetchOnlyUnread properties to further define the messages to be fetched.

The Fetch method actually retrieves the messages and populates the control's message set.

Sub Load_Mail()
Dim count As Integer

' Get all the Notes from the selected mail system and place them in the
' list box.
 On Error Resume Next
 Err = 0
 frm_MicroPost.mpm_Micropost.FetchSorted = True
 frm_MicroPost.mpm_Micropost.Fetch
 lst_Mail_Notes.Clear
02

CHAPTER 11 COMMUNICATIONS PROGRAMMING
Displaying Messages
The number of messages can be read from the MsgCount property of the MAPIMessages control, and
information can be extracted from a message set by setting the control's MsgIndex property to the desired
number and reading any of a number of properties relating to the message.

In the code below, you can see that we’re using the MsgIndex property to loop through all of the messages
in the message set, and add the sender name (MsgOrigDisplayName) and the subject (MsgSubject) of
each message to the list from which the user can pick a message to display. We store the MsgIndex as the
ItemData property of each list item so that we can easily retrieve whichever message the user chooses to
display.

 For count = 0 To frm_MicroPost.mpm_Micropost.MsgCount - 1
 frm_MicroPost.mpm_Micropost.MsgIndex = count
 lst_Mail_Notes.AddItem frm_MicroPost.mpm_Micropost.MsgOrigDisplayNameÃÃ

 & " " & vbTab & frm_MicroPost.mpm_Micropost.MsgSubject
 lst_Mail_Notes.ItemData(lst_Mail_Notes.NewIndex) = count
 Next count
 On Error GoTo 0

End Sub

When the user chooses a message, we create a new note for it in the cm3_Okay_Click procedure as
shown below. This is essentially the same as the Create_New_Note procedure found in mod_Micropost,
except that we use the MsgSubject of the chosen note to configure the title and the MsgNoteText
property for the text of the note.

Private Sub cm3_Okay_Click()
' Add a New Note based on the selected mail message.
 frm_MicroPost.mpm_Micropost.MsgIndex =ÃÃ

 lst_Mail_Notes.ItemData(lst_Mail_Notes.ListIndex)
 With note
 .note_ID = 0
 .Title = frm_MicroPost.mpm_Micropost.MsgSubject
 .Top = defaults_SET("Top")
 .Left = defaults_SET("Left")
 .Height = defaults_SET("Height")
 .Width = defaults_SET("Width")
 .FontName = defaults_SET("Font_Name")
 .FontSize = defaults_SET("Font_Size")
 .FontBold = defaults_SET("Font_Bold")
 .FontItalic = defaults_SET("Font_Italic")
 .FontUnderline = defaults_SET("Font_Underline")
 .FontStrikeThrough = defaults_SET("Font_StrikeThrough")
 .ForeColor = defaults_SET("ForeColor")
 .BackColor = defaults_SET("BackColor")
 .Memo = frm_MicroPost.mpm_Micropost.MsgNoteText
 End With

' Store the note.
 Save_Note

' Display the note.
 Call Add_A_Note

 Unload Me
End Sub
403

4

REVOLUTIONARY GU
ID

E

T
H
E

VISUAL BASIC 4 PROFESSIONAL
As you can see from this example, mail-enabling your applications is a simple task with the MAPISession
and MAPIMessages controls. These controls are more flexible than we have shown here, allowing you to
build more of the mail functions into your own user interface, but most of the time you’ll probably want to
use the user's existing mail interface, as that is what they'll feel comfortable with.

If you're worried about the slight overhead incurred by using an OCX rather than raw code, then instead of
the MAPI controls, you could call the MAPI functions directly just as you would any other API functions.
You can find documentation for these functions in the MSDN/VB Starter Kit under Product
Documentation\SDKs\Simple MAPI SDK. You won't find the declarations for the MAPI functions in the
Win32api.txt file, but if you really need to use these functions directly, the documentation in the Starter
Kit does contain the declarations in Visual Basic format.

Summary
This chapter has shown several different methods of extending your applications through the use of Visual
Basic’s communication capabilities. While, typically, we think of the serial port when discussing
communication programs, in this chapter you were exposed to a variety of ways to add functionality to your
programs through the use of communication techniques. Along the way you were shown how to:

Work with your PC’s serial port using the MSComm control.

Develop Visual Basic DDE destination and server applications.

Use NetDDE to work with other Windows programs across network.

Extend your applications with the power of MAPI.
04

