

Introduction

1 Object-Oriented Programming in Visual Basic 4
2 Introduction to the Win32 API
3 Jet 3.0 Database Engine
4 Data Access Objects
5 Database Management Using the ODBC API
6 Using Visual Basic as a Multimedia Front-End
7 Introducing 32-Bit OLE 2.1
8 Programming MAPI
9 Anatomy of a Client/Server Project
10 Visual C++
11 VBX versus OCX
12 Porting Your Existing Apps to Visual Basic 4
13 The New User Interface of Visual Basic 4
14 Put Your Code Into Overdrive
15 Programming the Web

 16 The Leszynski Naming Conventions for Microsoft
Visual Basic

 17 Creating Visual Basic Naming Conventions
 18 Using Remote Data Objects

19 Remote Automation
By Roger Jennings

Roger Jennings is a consultant specializing in Windows
database and multimedia applications. He is the author of
Que's Unveiling Windows 95; Using Windows Desktop Video,
Special Edition; Discover Windows 3.1 Multimedia and Access
for Windows Hot Tips; and was a contributing author to Que's
Using Windows 95, Special Edition; Excel Professional
Techniques; Killer Windows Utilities; and Using Visual Basic
3. He has written two other books about creating database
applications with Access and Visual Basic, co-authored a
book on using Microsoft Visual C++ for database development,
is a contributing editor of Visual Basic Programmer's
Journal, and has written articles for the Microsoft
Developer Network News and the MSDN CD-ROMs. Roger is a
principal of OakLeaf Systems, a Northern California software
development and consulting firm; you may contact him via
CompuServe (ID 70233,2161), on the Internet
(70233.2161@compuserve.com), or on The Microsoft Network
(Roger_Jennings).

 Introducing 32-Bit OLE 2.1

Object Linking and Embedding has come a long, long way from
its beginnings as a built-in element of early versions of
Microsoft PowerPoint. Subsequently, 16-bit Microsoft Office
applications for Windows 3 adopted OLE 1.0 as their primary
method of inter-process communication, supplementing
Clipboard copy-and-paste applications and DDE. Windows 3.1
added OLE 1.0 services (provided by OLECLI.DLL and
OLESVR.DLL) as a basic component of the Windows graphical
user interface. In 1993, Microsoft introduced 16-bit OLE
2.0, which added a variety of new features to OLE 1.0
through a collection of seven DLLs stored in
\WINDOWS\SYSTEM. The most important of the OLE 2.0 additions
were in-place activation and editing of embedded objects,
nested embedded objects, the ability to drag and drop
objects into compound documents, and OLE Automation. In just
a couple of years, OLE Automation has proven to be the most
important feature of OLE 2x.

Visual Basic 3 provided the MSOLE2.VBX custom control and a
helper DLL, MSOLEVBX.DLL, to provide basic OLE 2.0 container
capabilities. Visual Basic 3 also supported the client side
of OLE Automation with its CreateObject and GetObject
functions. At the time of Visual Basic 3's release, there
were no commercial OLE Automation server applications, which
explains the lack of real-world OLE Automation code examples
in the Visual Basic 3 Programmer's Guide. Visio Corporation
(then Shapeware) introduced the first OLE Automation server;
Microsoft quickly followed with Excel 5.0, Word 6.0, and
Project 4. Access 2.0, an OLE Automation client, included
support for a prototype version of today's OLE (Custom)
Controls.

Windows 95, Windows NT 3.51, and 32-bit OLE 2.1 eliminate
many of the problems associated with the initial
implementations of 16-bit OLE 2.0. The most vexing problem
for users of OLE 2.0 has been Out of Memory messages when
attempting to link or embed objects created with Microsoft
Office mega-apps, such as Word and Excel. The 32-bit OLE 2.1
also promises improved performance as applications are
upgraded and tuned to take full advantage of 32-bit
operating system features, such as multithreading and (under
Windows NT 3.51+) symmetrical multiprocessing. Ultimately,
Network OLE will eliminate the single-workstation
orientation of OLE 2.1.

This chapter provides an overview of Visual Basic 4's role
as an OLE 2.1 client application. All the examples in this
chapter are 32-bit, because the future of OLE is inexorably
tied to Microsoft's 32-bit operating systems. The majority
of the examples, however, are equally applicable to 16-bit
Visual Basic applications and 16-bit OLE 2.0 servers. The
chapter begins with a definition of important OLE 2x terms,
explains the registration of OLE servers in the Windows 95
and Windows NT Registry, goes on to describe how to use the
OLE container control and insertable object controls in a
variety of scenarios, and concludes with an introduction to
the client side of 32-bit OLE Automation.

 Defining OLE 2.1 Terms

Getting a grip on OLE 2.1 requires an updated glossary of
OLE terminology. Following are definitions of the most
important of the current OLE 2x buzz words:

• Component Object Model (COM) is Microsoft's
infrastructure for code modules (called objects) that
are independent of programming languages and computer
platforms. COM is oriented to C++ programming on
Intel PCs, but Windows NT 3.51+ also supports COM on
MIPS, DEC Alpha, and PowerPC RISC systems. COM
defines a set of interfaces, implemented as a virtual
table (Vtbl), that points to entries in member
function tables. COM requires that all objects
support the IUnknown interface, which has AddRef ,
 Release , and QueryInterface member functions. The
 AddRef and Release functions maintain a count of the
number of instances of the object in use. The
 QueryInterface function returns information on the
capabilities of the object. COM is implemented by
Compobj.dll under Windows 95 and Compob32.dll under
Windows NT. OLE is Microsoft's high-level COM
implementation.

• OLE Documents allow an application to share data
created by another OLE-enabled application. A
document that contains data created within another
application is called a compound document, which can
be stored in a compound file. (OLE 1.0 called
compound documents destination documents.) Data can
be embedded in an OLE Document or created by a link
to a file containing the data. Embedded data is
contained entirely within the OLE Document, whereas
liked data relies on an external file. Monikers
(IMoniker interface) identify and manage references
to embedded or linked OLE objects, including their
data element(s). Uniform data transfer allows objects
that implement the IDataObject interface to pass data

via the Windows Clipboard, through OLE drag-and-drop
methods, and within a compound document.

• Container applications, previously called OLE client
applications, are capable of displaying and
manipulating OLE Documents. The 16-bit and 32-bit
versions of Microsoft Excel, Word, Access,
PowerPoint, Project, and Visual Basic 4 are OLE
container applications.

• Local servers are executable applications that are
capable of embedding or linking objects within a
container application's OLE Document. Local servers,
as the name implies, must reside on the same computer
as the container application. Local servers are
classified as full servers, which provide both
linking and embedding capabilities, and mini-servers,
which only can embed data in a compound document and
don't open or save files. Most container applications
are local servers; however, neither Visual Basic 4 or
Access are local servers. Microsoft Graph 5.0 is an
example of a mini-server.

• Automation servers expose programmable objects for
manipulation by client applications that include an
(OLE) Automation-compliant programming language, such
as VBA. The Automation client usually is, but need
not be, an OLE container application. An Automation
server can be implemented as an in-process .dll,
which shares the same address space as the Automation
client, or an out-of-process .exe, which uses LRPCs
(Lightweight Remote Procedure Calls) to communicate
with the Automation client. Access 95 and Schedule+,
although not local servers, are automation servers.
Visual Basic 4 is capable of creating both in-process
and out-of-process local Automation servers as well
as remote Automation servers.

• OLE Custom Controls, are a special class of in-
process Automation server that also expose events.
You can add an OLE Control to any container
application, but events exposed by the control are
accessible only to container applications such as
Visual Basic 4 and Access 2.0/95, which are
specifically designed to act as OLE Control
containers. Future versions of Microsoft Office
applications, plus authoring applications for The
Microsoft Network and the Internet (codenamed
Blackbird during the beta cycle), are expected to
support OLE Controls. Chapter 11, "VBX versus OCX,"
describes OLE Controls in detail.

• Remote Automation servers, also called Remote
Automation Objects (RAOs), are out-of-process
Automation servers that communicate via Remote
Procedure Calls (RPCs) with networked Automation
clients. Visual Basic 4 is the first programming
language to be capable of creating RAOs. RAO
technology in Visual Basic 4 is the precursor to
Network OLE. One of the most important applications
for RAOs is developing three-tier client/server
database applications, where an RAO (called a LOBject
for Line-of-Business object) is used in the middle
tier to implement business rules. RAOs are one of the
subjects of Chapter 18, "Using Remote Data Objects."

One of the objectives of COM is create component
applications, which are made up of a combination of local
servers, plus in-process or out-of-process automation
servers to implement high-end features. The mega-apps that
comprise the Microsoft Office software suite are logical
candidates for componentizing. As an example, you might want
to incorporate only the basic functionality of an Excel
worksheet or use Word as a minimal word processor in a
Visual Basic application. Although you don't need all the
features of either Excel or Word, the present versions of
these Microsoft productivity applications are monolithic.
Large, monolithic applications require a long time to load
and consume resources big time. Componentizing best-selling
applications raises the specter of licensing individual
pieces of highly profitable mainstream software; thus it may
be some time before you see "pieceware" versions of
Microsoft productivity applications.

Note

To qualify for use of Microsoft's trademarked
"Designed for Windows 95" logo, 32-bit Windows
applications must support OLE 2x containers,
objects, or both containers and objects. This
requirement, which does not apply to utilities
or applications that run exclusively in full-
screen mode, is sure to increase the number and
variety of OLE servers and, to a lesser extent,
OLE container applications. The level of
required OLE support depends on whether an
application uses files. Applications that use
files must support OLE drag and drop. Support
for in-place activation, compound files, and OLE
Automation is "strongly recommended," but not
mandatory.

 Interoperating with 16-Bit and 32-Bit OLE Applications

OLE 2.1 running under Windows 95 and Windows NT provides
support for interoperability of 16-bit and 32-bit by a
process called thunking. Following are the rules for using
16-bit and 32-bit OLE objects with container applications:

• 32-bit OLE 2x container applications can embed or
link objects created by 16-bit OLE local servers,
including OLE 1.0 servers.

• 16-bit OLE 1.0 container (client) applications cannot
embed or link objects created by 32-bit OLE 2x local
servers. 16-bit OLE 2.0 containers can (or should be
able to) embed or link objects created with 32-bit
OLE 2x local servers by thunking.

• 32-bit OLE 2x clients can call 16-bit out-of-process
Automation servers, and vice versa. All Automation
servers are OLE 2x objects. Out-of-process servers
that have custom interfaces, however, must have the
same "bitness."

• In-process OLE .dlls and OLE Controls must have the
same "bitness." Thus separate 16-bit and 32-bit
versions of OLE Controls are provided with Visual
Basic 4.

Note

Windows 3.1+, Windows 95, and Windows NT 3.5+
use different thunking processes (Universal,
Flat, and Generic, respectively.) For further
information on the thunking process for OLE 2x
operations, see the "Thunk Layer Operation"
chapter of the OLE Programmer's Reference in the
Win32 SDK.

 Registering OLE Servers

All OLE servers, including Automation servers and OLE
Controls, must be registered before you can use them.
Windows 3.1+ registers OLE servers in its registration
database, REG.DAT. Windows 95 and Windows NT uses the
Registry (System.dat), a more robust version of REG.DAT, to
store information about the location and capabilities of OLE

servers. Well-behaved OLE servers of all types are self-
registering on installation and should de-register
themselves as part of the uninstall process required for
compliance with the "Designed for Windows 95" logo
guidelines. All OLE servers aren't likely to be well-
behaved, so you should be familiar with methods of checking,
editing, and deleting registry entries. The following two
sections describe how to use Windows 95's Registry Editor
and the Regsvr32.exe application.

 Using Windows 95's Registry Editor

Familiarity with the Windows 95 and/or Windows NT registry
is a must for 32-bit Visual Basic 4 developers. As an
example, if you manually move an OLE server's executable
file (instead of uninstalling and reinstalling the
application), you must alter the contents of the Registry to
reflect the new well-formed path to the server. You launch
Windows 95's Registry Editor, Regedit.exe, from the
\Start\Programs\Accessories\System Tools menu. Unlike
Windows 3.1's REGEDIT.EXE, you do not need to specify
verbose mode with a /v command-line switch to display
detailed Registry entries. Windows 95's Registry Editor uses
the Explorer model to display the hierarchy of Registry
entries, which is much more complex than that of Windows
3.1+'s REG.DAT.

OLE 2 server registration takes place in the
 HKEY_CLASSES_ROOT\CLSID hive of the Registry. CLSID (Class
ID) is a 32-character GUID (Globally-Unique IDentifier) that
uniquely identifies each OLE 2 server. To check the
registration data for an OLE server, launch the Registry
Editor and choose Edit, Find to open the Find dialog. Type
the executable file name, including the extension, in the
Find What text box and click the Find Next button. Press F3
to bypass file extension association entries until Regedit
reaches the ...\CLSID hive. Figure 7.1 shows the primary
 LocalServer32 entry for Excel 95 (version 7.0), Microsoft
 Excel Sheet . If the entry does not point to the current
location of the server, double-click the string ("AB") icon
to open the Edit String dialog. Edit the Value Data string
as required to specify the new location for both the 32-bit
 LocalServer32 and 16-bit LocalServer values, unless you want
to use Excel 5.0 for testing 16-bit container applications.

In addition to the CLSID for Excel 95's Sheet object (ProgID
 = Excel.Sheet.5), there are successive CLSID entries for
Excel Chart (ProgID = Excel.Chart.5), and Application
objects, each of which points to d :\ path \excel.exe . ProgID
is an abbreviation for Programmatic ID, the name of the
object used with Visual Basic's CreateObject () function for
creating an instance of an Automation server object.
Launching Excel 95 as an Automation server requires adding
the /Auto command-line parameter to preclude its window from
appearing and to prevent addition of the Microsoft Excel
item to the taskbar. If you change the location of a server,
you need to alter each incidence of the server location
string in the Registry. Unfortunately, the Registry Editor
doesn't have an Edit, Replace menu choice.

Note

Windows 3.1+'s REGEDIT.EXE (opened with the /V
parameter for verbose mode) and Windows NT's
3.5's Regedt32.exe use similar entries to
specify the location of OLE servers. Only
Windows 95's Regedit.exe, however, includes the
full-featured Edit, Find feature described in
this section. You must manually locate entries
for server registration in Windows 3.1+ and
Windows NT 3.5+. The hierarchy of Registry hives
in Windows NT is quite similar to that of
Windows 95.

Regsvr32.exe, which is included with Visual Basic 4, is a
command-line application that adds, updates, or deletes
registry entries for OLE servers, including OLE Controls.
You must use Regsvr32.exe to install OLE Controls that don't
come with an installation application; many shareware and
freeware OLE Controls don't include a setup feature. To
register an OLE server, use the following syntax in the Open
text box of Windows 95's Run dialog:

 regsvr32.exe d :\ path \ oleserver . ext

The preceding syntax example assumes that Regsvr32.exe is
located in the \Windows, \Windows\System, or another folder
on the current DOS path. Figure 7.2 shows the message box
that appears when registration of an OLE Control, in this
case the Lenel MediaDeveloper L_dvid32.ocx described in the
preceding chapter, is successful. The conventional location

for Regsvr32.exe, OLE Controls, and Automation servers you
create with Visual Basic 4 is the \Windows\System folder.

If you want to remove an OLE 2x server or intend to move an
OLE 2x server to a new location, take advantage of
Regsvr32.exe's capability to unregister a server. The server
must be present for unregistration to work, so don't delete
or move the server's file until you execute the following
command line:

 regsvr32.exe /u d :\ path \ oleserver . ext

Figure 7.3 shows the somewhat strange message you receive
when unregistering a server. You can repeatedly register
and/or unregister servers with no ill effects. Unregistering
a server you move to a new location is useful to ensure that
all the registration data is updated.

 Using Visual Basic 4 to Create OLE Container Applications

Like Visual Basic 3, Visual Basic 4 includes an OLE
container control. Unlike Visual Basic 3's MSOLE2.VBX,
Visual Basic 4's OLE Control is intrinsic; it automatically
appears in the toolbox when you launch Visual Basic 4. The
OLE container control is a "wrapper" object that provides a
set of properties, methods, and events, which are applicable
to a wide variety of embedded and linked objects. The
following sections describe the features of the OLE
container control and how to use the OLE container control
to embed or link a variety of OLE objects.

 Working with the OLE Container Control

Visual Basic 4's OLE container control is capable of
displaying and manipulating documents created by any OLE
full server or mini-server, including OLE 1.0 servers.
Adding an OLE container control to a Visual Basic 4 form is
similar to creating a compound document with any other OLE
container application, such as Microsoft Excel or Word. In
the case of Visual Basic 4, the form, rather than an Excel
worksheet or Word document, is the container document. An
Access 2.0/95 form with an unbound object frame control also
is a container document. When you add an OLE container
control to a Visual Basic form, the standard OLE 2.0 Insert
Object dialog appears, as shown in figure 7.4. The Object
Type list displays each OLE local server registered by your

computer. The following two sections describe how to embed
or link documents with the OLE container control.

 Embedding Objects in the OLE Container Control

To create a new (empty) embedded instance of an object, with
the Create New option selected, pick the server to create
the object from the Object Type list and click OK.
Alternatively, you can double-click the Object Type item. An
empty Excel 95 worksheet embedded in a form with the OLE
container control initially appears, as shown in figure 7.5.
The empty worksheet object is activated for in-place
editing, superimposed over the presentation of the object.
The presentation of an OLE object is a static Windows
metafile that displays an object's data when the object is
not activated. In design mode, the embedded object grafts
all or a part of its menu structure to the form; embedded
objects don't display the server's File menu choice. Menus
grafted from OLE servers don't appear in run mode unless you
add a menu bar to your form and set the NegotiateMenus
property of the form to True (the default).

To activate the worksheet object, double-click the
presentation surface. Alternatively, with the mouse pointer
over the presentation surface, click the right mouse button
to open a pop-up menu that displays the verbs applicable to
the object. Most servers offer Edit and Open choices; Edit
activates the object in place, and Open opens the server's
window. Figure 7.6 illustrates an Excel worksheet activated
in run mode. A menu bar with a single File menu choice is
added to the form to enable grafted menu negotiation. (The
"Lenel MediaDeveloper Controls" section of chapter 6, ”Using
Visual Basic as a Multimedia Front-End," describes the menu
grafting and negotiation process for OLE Controls. Excel's
row and column headers, scroll bars, and sheet tab(s) appear
as frame adornments. You must provide a margin at the top
and to the left of the OLE container control to accommodate
Excel's frame adornments. You can enter data in the empty
activated worksheet and use many of Excel's grafted menu
choices to manipulate the embedded object. The eight sizing
handles allow you to adjust the size of the activated object
within the limit of the size of the OLE container control.
Pressing Esc deactivates the object and displays its
presentation in the OLE container control (see fig. 7.7).

Tip

If you want to activate the OLE object when your
form opens, apply the appropriate DoVerb
 (vbOLE Constant) method to the object in the
 Form_Activate event handler. The DoVerb method
is one of the subjects of the "Properties and
Methods of the OLE Container Control" section,
later in this chapter. Activating the control
from the Form_Activate event, rather than the
 Form_Load event, displays the form and the
presentation of the object while the server
loads. Depending on the speed of the user's PC
and free system resources available, opening the
object's server can take an appreciable amount
of time.

Note

The OLE 2x specification's state diagram for
embedded objects requires that a single click
outside the surface of the activated object must
deactivate the object. Clicking the surface of
the form (outside the OLE container control)
doesn't deactivate the object in run mode. If
your form contains one or more controls in
addition to the OLE container control, you can
use the Form_Click event handler to apply the
SetFocus method to another control. If you don't
want another control to appear on your form, add
to the form a small PictureBox control with no
border and a ForeColor value that matches the
ForeColor property value of your form. Apply the
SetFocus method to the PictureBox and then to
the OLE container control, as in the following
example:

You also can embed an object based on data contained in a
server file. When the Insert Object dialog appears upon
adding an OLE container control to a form, click the Create
from File option button to display the file version of the
Insert Object dialog. Click the Browse button to select in
the Browse dialog the file that contains the data. The file
extension association contained in the
 HKEY_LOCAL_MACHINE\ROOT hive of the Registry identifies the
appropriate server for the document. Figure 7.8 illustrates
selection of a Word 95 document. (Although Word 95 is

version 7.0, Word objects are classified as Microsoft Word
6.0 documents to maintain backward compatibility with 16-bit
Word 6.0 and 32-bit Word for Microsoft NT.) When you click
OK, the upper-left corner of your document appears in Word's
Page Layout presentation. (Normal and Outline view are not
available when embedding Word documents.)

When you activate the Word object, either by double-clicking
the OLE container or by a Form_Activate event handler,
Word's toolbars appear as sizable floating toolbars and the
Word menu is grafted to your form's menu, as shown in figure
7.9. Unlike Excel, Word 95 doesn't provide frame adornments
for navigating the document; you must use the cursor
positioning keys to maneuver to a specific location in the
Word document.

Note

The OLE container control exhibits several
anomalies with embedded Excel 95 worksheets. For
example, Word's toolbars appear as floating
toolbars after you activate an embedded Word 95
document object, but Excel 95's toolbars do not
appear on activation. Although the Formula Bar
choice appears when you open Excel's View menu,
the Formula Bar does not appear, except for a
brief flash below the menu bar. Activating
embedded Excel 95 worksheets created from .xls
files results in peculiar appearance in the OLE
container, especially if Excel's AutoFormat
method has been applied to the worksheet. One of
the problems with activating in Visual Basic 4
Excel 95 worksheets based on files is described
in the Microsoft Knowledge Base document
Q129793, "BUG: Excel Displays Only First Column
in Embedded Worksheet."

The extent to which you can manipulate activated embedded
document objects within the OLE container control is
dependent on capabilities contributed by the server. Each
OLE 2x server has its own set of features and idiosyncrasies
when used to embed objects in compound documents.
Idiosyncrasies, in particular, confuse users who expect the
embedded object to behave in an OLE container control
exactly as the object behaves when opened in its server

application or when inserted as an object in a conventional
container document. Thus you're likely to find that opening
the server's window, rather than in-place activation, is the
better design approach, especially when dealing with
documents based on files. Substitute the vbOLEOpen constant
for vbOLEUIActivate as the argument of the DoVerb method in
your Form_Activate event handler to open the server's
window.

 Linking Objects to the OLE Container Control

When you embed an object with an OLE container control, the
object's data is contained in the form. Other applications
cannot access the embedded data, other than by Clipboard
operations with an active instance of the object. When you
compile a project, the embedded data is incorporated in the
project's .exe file. Very large embedded objects, such as
spreadsheets with many rows and column, full-screen color
bitmaps, or multimedia (.wav and .avi) files, can have a
profound effect on the .exe file's size. The solution to
these problems is to link the file to the OLE container
object. Linking only embeds a pointer file; like embedding
an object from a file, the file extension determines the OLE
server that is used to open the file. The linked file may be
located on a server, and you can create a link to a part of
a file, such as a range of cells in an Excel worksheet, a
paragraph of a Word document, or a particular segment of a
multimedia file.

Creating an object linked to an OLE container control is
similar to embedding an object from a file. Select the
Create from File option, select the file that contains the
data you want to link, and mark the Link check box (see fig.
7.10.) Click OK to create the link. When you run your form,
the presentation appears as shown in figure 7.11. Double-
click the surface of the OLE container control to open Excel
95's window, or use the right mouse button to display the
pop-up verb menu; choosing either Edit or Open from the verb
menu launches Excel 95 and displays Excel's window.

By default, the server opens in a normal window of modest
dimensions (see fig. 7.12). All the server's menu choices
are available when you open the server's main window,
including the File menu, so you don't need to include a menu
bar on your form.

When you create a link to a file, the path to and name of
the file appears as the value of the SourceDoc property. 32-
bit Visual Basic 4 supports long file names and Uniform
Naming Convention (UNC) for files located on servers. Thus
you can use \\ ServerName \ ShareName \ FileName.ext as the value
of the SourceDoc property. UNC file names eliminate Invalid
 link messages when server shares are mapped to workstation
drive letters, which may change from user to user.

You can specify a subset of the data in the linked file to
appear in the presentation window by specifying a data
identifier in the SourceItem property text box. For Excel
spreadsheets, you use row-column (R#C#:R#C#) syntax or a
named range; Word documents use Bookmarks to specify a
particular block of text. An alternative method is to open
the file in the server's window, select the cells or text
you want to link, and copy the selection to the Clipboard.
Right-click the OLE container control, and choose Delete
Object from the pop-up menu; then open the pop-up menu
again, and choose Paste Special to open the Paste Special
dialog. Select the Paste Link option (see fig. 7.13,) and
click the OK button to re-create the link. When you open the
server's window, the selected cells or text is selected
automatically (see fig. 7.14).

Note

When you change a link by typing a new value for
the SourceDoc property or alter the value of the
 SourceItem property, a Delete Current Link
message box appears. Click Yes to delete the
existing link; then right-click the container
control to open the pop-up menu. Choose Create
Link to re-create the link to the new file
and/or data item. If you want to change only the
 SourceItem property, delete the data item
extension (such as !R1C1:R12:C6) from the
 SourceDoc value; then retype the data item
identifier in the SourceItem property text box.

 Properties and Methods of the OLE Container Control

The preceding sections describe the most commonly used
properties and methods of the OLE container control. Online
help for the OLE container control provides (in most cases)
the information you need to set property values and apply
methods programmatically. Following are some of the changes

to OLE container control methods and properties between
Visual Basic 3 and 4:

• The Action property of the Visual Basic 3 OLE
container custom control is replaced by methods of
the Visual Basic 4 OLE container control. The Action
property is retained for backward compatibility; new
OLE applications should use the methods that
correspond to the 14 Action constants. (Search online
help for the Action property of the OLE container
control for the methods.)

• The Verb property of Visual Basic 3 is replaced with
the DoVerb method, although you can still use the
 Verb property and its numeric arguments with existing
code. The syntax of the DoVerb method is
 ole Name . DoVerb(vbOLE Constant) , where vbOLE Constant is
one of seven intrinsic constants whose value ranges
from 0 to [nd]6. The vbOLEHide constant ([nd]3) hides
the server's window after you choose the Open option
of an embedded control or apply the DoVerb method
with the vbOLEOpen ([nd]2) constant. When the server
is hidden, the presentation of the object is hatched
with diagonal lines. Using the vbOLEShow constant
([nd]1) activates an embedded object in-place, as
does vbOLEUIActivate ([nd]4).

• The Zoom and Stretch values of the SizeMode property
seldom are useful in real-world applications other
than displaying bitmapped and vector images. Large
spreadsheets or other documents are illegible when
 Zoom ed or Stretch ed. Using the AutoSize value, which
causes the control to fit its content, often makes
the size of the OLE container control larger than the
form.

• OLEDropAllowed is a new property that, when set to
 True , enables the OLE container control to act as a
target for OLE drag-and-drop operations. OLE drag and
drop is the subject of the next section.

 Implementing OLE Drag and Drop with the OLE Container
Control

To obtain the right to apply Microsoft's "Designed for
Windows 95" logo to an application that uses files, the
application must support the OLE drag-and-drop feature of
Windows 95. OLE drag and drop lets you drag the icon of a
file that's supported by a local OLE server from My Computer
or Explorer and drop it on the surface of an OLE container
control. The new object created by the drag-and-drop process
replaces the object, if any, in the OLE container control.
If you drag a desktop shortcut to a file supported by an OLE

server, an icon representing the shortcut appears in the OLE
container control. You double-click the shortcut to open the
server's window to edit the shortcut's file.

To enable an OLE container object as an OLE drag-and-drop
target in run mode, set the value of the OLEDropAllowed
property to True (the default is False) and set the value of
the OLETypeAllowed property to Linked (only), Embedded
(only), or Either (0 , 1 , or 2 , respectively). In design
mode, you can use the OLE container control as an OLE drop
target without setting OLEDropAllowed to True . Figure 7.15
shows a linked Excel 95 worksheet created by dragging the
Dtv_toc.xls file icon from Windows' Explorer to an OLE
Control container in run mode.

Note

The presentation of a link that you create in
run mode does not appear when you return to
design mode. To make the presentation appear in
design mode, right-click the OLE container
control and choose Create Link from the pop-up
menu.

 Binding the OLE Container Control to an OLE Object Field

Like many of Visual Basic 4's other OLE Controls, the OLE
container control is data-enabled, letting you display OLE
objects linked to or embedded in OLE Object fields of Access
tables. Visual Basic 3's OLE Control was not data-enabled,
so displaying objects contained in Access OLE Object fields
involved a substantial amount of code to deal with Access's
"OLE wrapper." When you bind the OLE container control to an
OLE Object field, the control behaves much the same as
Access's bound object frame control. For most Visual Basic 4
developers, displaying OLE Objects in tables of .mdb files
is the most common application for the OLE container
control.

To bind a Visual Basic 4 OLE container control to a field of
Access's OLE Object type, add a Data control to a form, set
the value of the DatabaseName property to point to an Access
.mdb file, such as Northwind.mdb, that contains a table with
an OLE Object field, and then choose the table with the OLE
Object field as the RecordSource of the Data control. Add an
OLE container control to the form; then click Cancel when
the Insert Object dialog appears to create an empty control.

Connect the DataSource property of the OLE container control
to the Data control, and select the OLE Object field for the
 DataField property. Figure 7.16 shows a simple form that
displays the contents of the Photo, Notes, LastName, and
FirstName fields of Northwind.mdb's Employees table. No code
is required to create the form shown in figure 7.16. Double-
clicking the bitmapped presentation opens the Windows Paint
application to let you edit the image.

 Writing and Reading OLE Data Files

Embedded OLE objects you create or modify in OLE container
controls in run mode are not persistent; the content is lost
when you return to design mode or close your executable
application. You can save the presentation and data of an
embedded OLE object or the presentation and link pointer of
a linked OLE object with the OLE container's SaveToFile
method. The following code saves an embedded OLE object in
an OLE container named oleExcelSheet to the Sheet1.ole file
when you choose File, Save from the form's menu:

 Private Sub mnuFileSave_Click()

 Dim intFileNum As Integer

 intFileNum = FreeFile

 Open "Sheet1.ole" For Binary As #intFileNum

 oleExcelSheet . SaveToFile intFileNum

 Close #intFileNum

 End Sub

The file is saved in OLE stream format. Reading the data
from an OLE file created by the preceding subprocedure and
updating the presentation requires use of the ReadFromFile
method, as in the following example:

 Private Sub mnuFileOpen_Click()

 Dim intFileNum As Integer

 intFileNum = FreeFile

 'Open the file

 Open "Sheet1.ole" For Binary As #intFileNum

 oleExcelSheet . ReadFromFile intFileNum

 Close #intFileNum

 'Update the presentation

 oleExcelSheet . DoVerb (vbOLEUIActivate)

 picEmpty . SetFocus

 oleExcelSheet . SetFocus

 End Sub

The last three lines of code update the static presentation
to display the data from the file by momentarily activating
the embedded Excel worksheet object. The picEmpty picture

box control serves as a control to which focus is set
temporarily to deactivate the OLE container control.

 Insertable Objects

As noted in the "Working with the OLE Container Control"
section earlier in the chapter, Visual Basic 4 forms are OLE
containers. You can prove this by embedding an insertable
object directly in a form, rather than into an OLE Control.
Visual Basic 4's online help defines an insertable object as
"[a]n object of an application, such as a Microsoft Excel
Worksheet, that is a type of custom control." Visual Basic 4
forms are simple OLE containers that support operations such
as grafted menus (menu negotiation) and in-place activation,
but most insertable objects don't provide a window to
display the object's presentation.

You can add buttons representing insertable objects to
Visual Basic 4's toolbox from the Custom Controls dialog.
Marking only the Insertable Objects check box results in a
list of objects identical to those in the Object Type list
of the Insert Object dialog (see fig. 7.17). Like OLE
Controls, the items you check are appended to the toolbox
when you click the OK button. The default name of an
insertable object is derived from its object type: Excel
objects are Sheet1 or Chart1, and a Media Player object is
named mplayer1.

Insertable objects that support in-place activation, such as
Excel Worksheet and Chart objects, graft their menus to
Visual Basic 4 menu bars when activated. Figure 7.18 shows
insertable Media Player and Excel Chart objects added to a
form; the Chart object is activated for editing. Unlike OLE
Controls, insertable objects have only a generic property
set and a few events that are common to all control objects.
Insertable objects do not support methods, except two
generic methods, SetFocus and Move . Insertable objects
created by OLE Automation servers, however, have an Object
property that you can use to program the insertable object.
Thus the primary application for today's insertable objects
is to provide a visual presentation for programmable
objects. Programming objects exposed by OLE Automation
servers is the subject of the remaining sections of this
chapter.

 Creating Integrated Applications with OLE Automation
Servers

OLE 2.0 introduced the concept of OLE servers that expose
programmable objects for manipulation by OLE Automation
client applications. An OLE Automation client need not be a
container application, because an invisible instance of the
OLE Automation server handles manipulation of its
programmable objects. Any application that incorporates VBA
is an OLE Automation client, and all members of the
Professional Edition of Office 95 are OLE Automation
servers. (Microsoft Word 6.0 and Word 95 are not full-
fledged OLE Automation servers, but the Word.Basic object
exposed by these versions of Word lets you manipulate Word
documents with Word Basic commands.) An OLE Automation
server need not be an OLE full server; Access 95 is an
example of an OLE Automation server that cannot contribute
objects to a compound document created by an OLE container
application because Access 95 is not an OLE 2x full server
or mini-server.

Excel 5.0 was the first product to incorporate VBA as an
application programming language and to expose objects as an
OLE Automation out-of-process server. Visual Basic 3, which
predated the retail release of Excel 5.0, was the first OLE
Automation client. Today, most of Microsoft's software
offerings to the business community are OLE Automation
servers or are in the process of being updated to expose
programmable objects. Microsoft's competitors, such as
Novell and Lotus, were adding OLE Automation to their
forthcoming 32-bit productivity software suites when this
book went to press. When Microsoft releases the next major
upgrade to Windows NT 3.51+, presently code-named Cairo, 32-
bit OLE Automation will become a basic component of the
Windows operating system.

The following sections discuss the basics of programming
predefined hierarchies of objects exposed by commercial
full-server applications. As noted in the "Defining OLE 2.1
Terms" section near the beginning of this chapter, Visual
Basic 4 lets you create your own in-process and out-of-
process local Automation servers, plus remote Automation
servers. Chapter 19, "Remote Automation," discusses out-of-
process servers that you can access over a network.

 Exposing Object Properties and Methods with Type Libraries
and References

The Microsoft OLE 2.0 Programmer's Reference defines
properties of programmable objects as "member function pairs

that that set or return information about the state of an
object, such as whether or not an object is visible."
Methods are single member functions "that perform an action
on an object, such as resizing it or causing it to evaluate
member data." OLE Automation interfaces provide access to
the collection of member functions through the IDispatch ,
 IEnumVariant , ITypeLib , and ITypeInfo interfaces. The
 IDispatch and IEnumVariant interfaces access to individual
objects and object collections, respectively. ITypeLib
supplies information about the objects exposed by the
Automation server, and ITypeInfo provides details about the
properties and methods of each object. The purpose of
 ITypeLib and ITypeInfo interfaces, which are not mandatory,
is to assist object programmers by providing information
about the exposed objects with object browsers.

VBA introduced the use of references to type libraries
supplied with OLE Automation servers. Type libraries for
out-of-process servers use .olb and .tlb extensions; many
in-process OLE DLLs, such as DAO3032.dll, have self-
contained type libraries. (Most OLE Controls use .oca type
libraries to speed loading of the control.) VBA also adds an
object browser that lists the exposed objects, plus the
properties and methods of each object. Another advantage of
using a type library is that the Visual Basic
interpreter/compiler checks the syntax of your OLE
Automation code in design mode. Visual Basic 3 and Access
2.0 detect errors in OLE Automation source code only when
the code is executed in run mode.

To make a type library visible in Visual Basic 4's object
browser and accessible by the VBA interpreter/compiler, you
create a reference to the type library in the References
dialog that opens when you choose Tools, References. The
names and locations of type libraries appear in Registry
entries. Figure 7.19 shows the References dialog listing
type libraries in the Available References list. To make a
type library accessible to Visual Basic 4 and the object
browser, you must mark the check box to the left of the
library name and then click OK to close the References
dialog.

Visual Basic creates some references, such as those for
insertable object controls, automatically. You must add
references to object libraries of applications such as
Microsoft Excel, Access, Word, and Project manually. (Word
95's Word95 Objects for ACCESS type library exposes only the
few methods of the Word95Access object needed for mail-merge

applications.) Once you've added references to the server
applications you plan to use, information contained in the
referenced type libraries is accessible from the object
browser. Objects contained in your current Visual Basic 4
project appear as the default entry in the Libraries/Modules
drop-down list of the object browser. To display the
objects, methods, properties, and constants defined in an
OLE Automation type library, open the Libraries/Modules list
and pick the appropriate library. Figure 7.20 shows the
extraordinary syntax for the ChartWizard method of the Chart
object of the MSGraph5 OLE Automation mini-server. Clicking
the ? button displays the help file for object, method, or
property. (The ChartWizard method, which is used by Access
95 and Excel 95, is not documented in the online help file
for Microsoft Graph 5.0, but The Excel 95 VBA help file has
a topic that covers the ChartWizard method).

Note

Special type libraries for insertable objects
used as controls contained in Visual Basic 4
forms are temporary type library files named
VB####.tmp, which are stored in your
\Windows\Temp folder. #### represents an
arbitrarily assigned four-character hexadecimal
number. As an example, the type library for an
insertable Graph object (named MSGraphCtrl)
might be VB4290.tmp. Type libraries for
insertable objects expose the standard set of
properties and methods applicable to all Visual
Basic 4 controls that are created from
insertable objects. A .tmp control type library
does not enumerate the object(s) exposed by the
OLE Automation server.

Unlike OLE Controls, programmable OLE objects do not expose
events. If you link or embed a programmable object in an OLE
container control, events such as Updated are triggered by
the control, not by the server object contained in the
control. All arguments and return values of methods and
properties for exposed objects are of the Variant data type
for compatibility with the IEnumVariant interface.

 Creating and Manipulating Programmable Objects

The easiest way to experiment with programmable OLE objects
is to add an insertable object or OLE container control to a

form and then write code in the debug window to manipulate
the control's Object property. An Excel Sheet object linked
to an OLE container control or an MSChartCtl insertable
object control is a good starting point for learning the
basics of OLE Automation client programming. Figure 7.21
illustrates use of the debug window to modify the default
chart that appears when you add an MSChartCtl control to a
form. You gain access to the programmable aspects of the
control through the Chart1.Object.Application.Chart object.
The presentation of the insertable chart object changes as
you alter the values of the Chart object's properties in the
debug window.

To minimize the amount of typing necessary to refer to the
 Chart object, create a pointer to the Chart object by
declaring an object variable in the declarations section of
your form and then setting a pointer to the Chart object in
the Form_Load event handler, as in the following example:

 Option Explicit

 Private chtTest As Object

 Private Sub Form_Load()

 Set chtTest = Chart1 . Object . Application . Chart

 End Sub

After creating a pointer to the Chart object, you use the
new object variable in statements such as those as shown in
figure 7.22. The last five statements in the debug window of
figure 7.22 are equivalent to the With ... End With structure
in the following code:

 Private Sub Form_Load()

 Set chtTest = Chart1 . Object . Application . Chart

 With chtTest

 . HasTitle = True

 . ChartTitle . Text = "Sales by Territory"

 . ChartTitle . Font . Size = 18

 . ChartTitle . Font . Italic = True

 . Type = xlBar

 End With

 End Sub

Note

Documentation for the objects, methods, and
functions of Graph5.exe in the MSGraph.hlp file
is limited, to be charitable. Excel 95's online

help has substantially more information on the
object hierarchy of MSGraph5, plus the
properties and methods of MSGraph5 objects. Type
Chart Object in the Index page of Help Topics:
Microsoft Excel dialog to display the starting
point for Chart objects. MSGraph5 is of limited
utility as a Visual Basic 4 graphing tool
because you cannot gain direct access to the
 Datasheet object that stores data values for the
 Chart object. Graph5.exe expects source data
from a specified range of an Excel worksheet or
from an application, such as Access, in Excel's
native BIFF format.

Getting and setting the cell values of an Excel Sheet object
linked to an OLE container control uses a similar approach.
Setting a pointer to a Sheet object exposed by Excel
requires the following code:

 Option Explicit

 Dim xlsTOC As Object

 Private Sub Form_Load()

 Set xlsTOC = _

 oleExcelLink . Object . Application . Workbooks(1) . Sheets(1)

 End Sub

Examples of getting and setting the properties of a Sheet
object in the debug window appear as shown in figure 7.22.
Changes to cell values are reflected in the presentation. To
close the invisible instance of Excel, you apply the Quit
method to the Application object, which causes a Save
changes? message box to appear, if you make changes to the
 Sheet object. You can bypass saving changes and the message
box by executing xlsTOC.Parent . Saved = True to clear the
dirty flag prior to executing xlsTOC . Application . Quit .

 Using VBA's CreateObject and GetObject Functions

If you don't want to display an object's presentation on
your form, you can create object variables with the
 CreateObject or GetObject function. To use either of these
functions, first declare an object variable in the
declarations section of a form or module. CreateObject is
related to inserting an empty object of a type chosen in the
Insert Object dialog, and GetObject parallels the Insert
from File option of the Insert Object dialog. The
generalized syntax of these two functions is:

 Set obj Variable = CreateObject (" AppName.ObjType ")

 Set obj Variable = GetObject ([" d :\ path \ filename.ext "], [" AppName.ObjType "])

The AppName.ObjType argument consists of the application
name and the object type you want to create or open, such as
 Word.Basic for Word 6.0/95 or Excel.Sheet for Excel 5.0/95.
The AppName.ObjType argument is optional for the GetObject
function if the file extension specifies, through an
association entry in the Registry, the particular object
type you want. In most cases, you don't need to use the
second object. If you omit GetObject 's d :\ path \ filename.ext
argument, you must provide the AppName.ObjType argument for
an open instance of the application and object type.

The following code example populates a list box, lstFeeds ,
with the first 100 unduplicated items from a list of
satellite wildfeeds (unscheduled programming) contained in a
Wildfeed.xls file. The program names appear in column A of
the worksheet, beginning at row 2.

 Option Explicit

 Private xlsFeeds As Object

 Private Sub Form_Activate()

 Dim intCtr As Integer

 Dim strProgram As String

 lstPrograms . Clear

 Set xlsFeeds = GetObject ("e:\vb4\wildfeed . xls")

 For intCtr = 2 To 101

 strProgram = xlsFeeds . Range("A" & CStr (intCtr)) . Value

 If lstPrograms . ListCount = 0 Then

 lstPrograms . AddItem strProgram

 ElseIf lstPrograms . List(lstPrograms . ListCount - 1) _

 <> strProgram Then

 lstPrograms . AddItem strProgram

 End If

 lstPrograms . Refresh

 Next intCtr

 xlsFeeds . Parent . Saved = True

 xlsFeeds . Application . Quit

 Set xlsFeeds = Nothing

 End Sub

Adding the preceding code to the Form_Activate event handler
and executing the lstPrograms.Refresh statement in the
 For ... Next loop lets you watch the list box fill with the
entries as they are retrieved from the Wildfeeds worksheet.
Setting xlsFeeds to Nothing frees resources associated with
the xlsFeeds object.

Tip

If you're performing complex operations on
another application's programmable objects and
the application supports VBA, you can speed
operation of your client application by writing
a VBA function in the server application and
calling the function from your Visual Basic 4
code. Communication with out-of-process servers
is by Lightweight Remote Procedure Calls
(LRPCs), which are very slow in comparison to
execution of VBA code contained in a server
application module. Writing as much VBA code as
possible in the server application makes the
testing process easier and faster, too. The Run
method of Excel's Application object lets you
execute from Visual Basic 4 a function written
in Excel VBA. For more information on the Run
method, search Excel 95's online help.

 Expanding Your Use of Visual Basic 4 to Create OLE
Automation Client Applications

Getting the most out of integrated applications requires
familiarity with the hierarchies of objects exposed by OLE
Automation servers. Excel 95 exposes more than 100 objects
and object collections. The Word.Basic pseudo-object lets
you use a multitude of sometimes-arcane Word Basic commands.
(VBA's capability to use named arguments makes dealing with
Word Basic commands much easier than Visual Basic 3 code.)
Publishing limitations preclude adding code examples to this
chapter for all of today's OLE Automation servers, but the
preceding examples should serve to get you started writing
VBA code to create large-scale integrated productivity
applications.

 Summary

Microsoft is betting the future of its Microsoft Office
productivity software suite, the BackOffice server suite,
and upgrades to the Windows 95 and Windows NT operating
systems on the Component Object Model and 32-bit OLE 2.1+.
This chapter emphasizes use of Visual Basic 4's 32-bit OLE
container control in conjunction with OLE Automation objects
exposed by Excel 95 and Word 95. As Windows 95 and Windows
NT 3.51+ gain momentum, virtually all mainstream Windows
applications will include OLE full server and Automation
features. Today's OLE mega-servers are heavy-hitters in the
resource department; future versions are likely to be
replaced by fully-componentized applications that let you
pick the feature set you need for your Visual Basic 4+ OLE

client applications. When members of Microsoft Office 95,
the Blackbird authoring tools for MSN and the Internet, and
other best-selling softwar are upgraded to include OLE
Control container features, the market for 32-bit OLE
Controls will expand by at least an order of magnitude. As
this chapter demonstrates, however, you can use today's OLE
full server, mini-servers, and Automation severs, both in-
process and out-of-process, to create useful 32-bit OLE 2.1
component applications with Visual Basic 4.

(a)7...1
 Introducing 32-Bit OLE 2.1 ..1

 Defining OLE 2.1 Terms...2
 Interoperating with 16-Bit and 32-Bit OLE Applications...5
 Registering OLE Servers ...6

 Using Windows 95's Registry Editor...6
 Registering and Unregistering OLE Servers with Regsvr32.exe..8

 Using Visual Basic 4 to Create OLE Container Applications...9
 Working with the OLE Container Control...9

 Embedding Objects in the OLE Container Control ...9
 Linking Objects to the OLE Container Control ..13
 Properties and Methods of the OLE Container Control ...15

 Implementing OLE Drag and Drop with the OLE Container Control ..16
 Binding the OLE Container Control to an OLE Object Field ..17
 Writing and Reading OLE Data Files..18
 Insertable Objects ..19

 Creating Integrated Applications with OLE Automation Servers ...20
 Exposing Object Properties and Methods with Type Libraries and References21
 Creating and Manipulating Programmable Objects ...23
 Using VBA's CreateObject and GetObject Functions...25
 Expanding Your Use of Visual Basic 4 to Create OLE Automation Client Applications26

 Summary..27

	The Official VBPJ Guide to Visual Basic 4
	Table of contents
	Chapter 7 Introduction to 32-bit OLE

