
102 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

PROGRAMMING TECHNIQUES

SystemHand Critical Stop
SystemQuestion Question
SystemStart Windows Start

For example, you can specify a sound file such
as “c:\windows\chord.wav,” or use
“SystemDefault” to play whatever sound the user
has defined for that event in the Control Panel. In
fact, by adding your own event definitions to the
[Sounds] section of WIN.INI, you can allow your
end users to redefine the sounds used exclusively
by your application. One example of this technique
is America Online for Windows, which adds to
your [Sounds] section with events such as “Wel-
come,” “Goodbye,” and “You Have Mail.” If you
don’t like the sounds defined for these events, you
can assign new sounds for them in the Control
Panel.

The second parameter, wFlags%, defines various options available
with SndPlaySound:

Flag Description
SND_SYNC Play sound synchronously and return only

when sound ends.
SND_ASYNC Play sound asynchronously and return

immediately
after sound starts.

SND_NODEFAULT Do not play the default sound if
lpszSoundName$
is not found.

SND_LOOP Play sound continuously until SndPlaySound is
called again with lpszSoundName$ set to
NULL. When looping sounds
with this flag, you must also specify
SND_ASYNC.

SND_NOSTOP Return immediately if a sound is currently
playing.

If the sound was played successfully, the function returns True (-1).
If the sound was not found, or if the SND_NOSTOP flag was specified

and users, you might want to spice up your appli-
cations with a little sound or two.

If you have VB 2.0 Professional Edition or
later, you can use the MCI.VBX custom control to
play sounds through a sound board or Microsoft’s
PC-Speaker driver (more on the PC-Speaker driver
later). While the MCI control provides a number of
convenient services and sports an attractive cas-
sette deck-style interface, it can be overkill if you
simply want to play sound files without user inter-
action, or trigger the system event sounds defined
in the Windows Control Panel.

The SndPlaySound API function from the
MMSYSTEM.DLL file included with Windows
3.1 and the Microsoft Multimedia Extensions for
Windows 3.0 allows you to play sounds without using a custom control.
By avoiding the MCI control, your application will use less resources and
will not require you to distribute MCI.VBX.

In case you were wondering, MCI.VBX also makes calls to
MMSYSTEM.DLL, so this technique is simply a case of eliminating the
middle man.

To use the SndPlaySound function in your application (for all
versions of VB), add the following Declare statement and Constants to
your global or code module:

Declare Function SndPlaySound Lib "MMSYSTEM.DLL" _
(ByVal lpszSoundName$, ByVal wFlags%) _
As Integer

' Flags used by SndPlaySound:
Global Const SND_SYNC = &H0000
Global Const SND_ASYNC = &H0001
Global Const SND_NODEFAULT = &H0002
Global Const SND_LOOP = &H0008
Global Const SND_NOSTOP = &H0010

The first parameter, lpszSoundName$, specifies the name of the
sound to play. This can be a wave audio file name (*.WAV) or a system
event name as defined in the [Sounds] section of the WIN.INI file. While
you can configure the system event sounds through the Sound section of
the Windows Control Panel, note that the actual system event names are
different than the ones that appear in the Control Panel. The standard
event names are:

Name To Use With SndPlay Sound Name In Control Panel
SystemAsterisk Asterisk
SystemDefault Default Beep
SystemExclamation Exclamation
SystemExit Windows Exit

ow that multimedia is firmly entrenched
in the hearts and minds (not to mention
eyes and ears) of Windows programmers WINDOWS 3.1 API

LETS YOU
ADD SOUND
WITHOUT

USING THE VB 2.0
MCI CUSTOM

CONTROL.

Spice Up Your Apps
With Multimedia

I

by Mark Novisoff
and Craig Leach

Mark Novisoff is the founder and president of MicroHelp Inc., and is the
creator of several VB add-on products. His company sells products for
VB, QuickBasic, PDS, and Windows. Mark is also a contributing editor
to Visual Basic Programmer’s Journal. You can contact Mark at 4359
Shallowford Industrial Parkway, Marietta, Georgia, 30066.

Craig Leach is senior executive vice president of Capitol Information
Service Inc. in Trenton, New Jersey and has written commercial and
custom software in Basic since 1983. Contact Craig on CompuServe at
70244,2634.

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 103

PROGRAMMING TECHNIQUES

codes such as {Enter} or {Tab}. These codes are too numerous to list here
and may be found under the SendKeys statement in your VB documen-
tation and online help.

The wait parameter determines when your program regains control
after the SendKeys statement is executed. If wait is True, all of the
keystrokes in the keytext string must be processed by the active window
before control is returned to your program. If wait is False or omitted,
your program gains control as soon as the keystrokes are sent—even if
they are waiting to be processed. The following example shows how to
use SendKeys to send keystrokes from your program back to itself
(similar to playing a macro):

Sub Command1_Click ()
' When this button is clicked, set the focus to
' a text box on the current form and "automatically"
' type a string in the text box:
Text 1.SetFocus
Keystrokes$ = "This was typed by SendKeys.{Enter}"
' The {Enter} code above is processed as the Enter
' key; the code itself does not appear
' in the text box.
SendKeys Keystrokes$

End Sub

If you want to send keystrokes to another Windows application, you
must first activate the other application’s window. If you are running the
other application via the Shell statement, specify the Shell windowstyle
parameter as 1, 3, 5, or 9 to give the Shelled application the focus. For
example:

Sub Command2_Click ()
' Activate the Notepad application and
' give it the focus:
x% = Shell("notepad.exe", 1)
' Send keystrokes to Notepad and wait for processing
SendKeys "Sending keys to Notepad from _

VB!{Enter}", True
' Instruct Notepad to save the file:
' %F = Alt-F File Menu
' S = Save File option
' c:filename.ext = name entered in Save As box
' {Enter} = Enter
SendKeys "%FSc:filename.ext{Enter}", True
' Activate our program again
AppActivate App.Title

End Sub

If the other application is already running and you know its title (it
appears in the Windows Task List), you can set the focus to that
application with the AppActivate statement, as in this example:

Sub Command3_Click ()
 ' Display the Help/About box in the Program Manager:
 AppActivate "Program Manager"
 ' Send Alt-H and A; wait for processing:
 SendKeys "%HA", True
End Sub

As mentioned, there are some exceptions to the displayable charac-
ters you may include in the keytext parameter. The following characters
have special meaning to the SendKeys statement:

+ ̂ % ~ () [] { }

If you wish to include these characters in your string, you must
enclose them in braces, as in {%} and {+}. In addition, SendKeys may
report an “Illegal function call” if one of the following is not enclosed in

and a sound was already playing, the function returns False (0).
The following example shows how easy it is to play a standard system

event sound, as well as a specific wave sound file:

Sub Command1_Click ()
wFlags% = SND_SYNC Or SND_NODEFAULT
' Play the sound currently assigned to
' the "SystemQuestion" event in WIN.INI:
x% = SndPlaySound("SystemQuestion", wFlags%)
' Play a specific wave file:
x% = SndPlaySound("c:\windows\chord.wav", wFlags%)

End Sub

Because we specified two sounds back to back, the SND_SYNC flag
was used to prevent the first sound from being interrupted by the second
sound. When playing only a single sound (such as playing the
“SystemQuestion” or “SystemAsterisk” sound immediately before in-
voking the MsgBox function), use the SND_ASYNC flag to return
immediately to the next statement in your program while the sound is still
playing.

If you don’t have an MCI-compatible sound board at your disposal,
you can achieve a crude approximation with your PC’s internal speaker
by using Microsoft’s PC-Speaker driver (SPEAKER.DRV). This driver
is available from CompuServe, the Microsoft Download Service (206-
936-6735), and other online services. Although Microsoft has stated that

the PC-Speaker driver is not compatible with the MCI control and the
Windows 3.1 Media Player “applet,” you can use it with the SndPlaySound
function.

Finally, if you insist on using your lowly PC speaker to play sounds
and want full MCI-compatibility, check out Aristosoft’s Wired For
Sound—its speaker driver is functionally equivalent to Microsoft’s
SPEAKER.DRV but will also work with MCI.VBX, Media Player, and
others.

KEYWORD OF THE ISSUE: SENDKEYS
If you need to control another Windows application but don’t want to
wrestle with messy Dynamic Data Exchange commands, the SendKeys
statement may be a workable alternative. Simply stated, SendKeys sends
one or more keystrokes to the active window (your program or another
Windows application) as if they had been entered at the keyboard. The
syntax for SendKeys is as follows:

SendKeys keytext [,wait]

The keytext parameter is a string containing a list of keystrokes to send
to the active window. With a few exceptions (which we’ll cover below),
this string may contain any displayable characters (A-Z, 0-9, etc.). For
nondisplayable characters such as Enter or Tab, you must use special

THE SND_SYNC FLAG
PREVENTS THE FIRST SOUND
FROM BEING INTERRUPTED
BY THE SECOND SOUND.

104 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

PROGRAMMING TECHNIQUES

Go to next
page.

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 105

PROGRAMMING TECHNIQUES

Go to next
page.

braces:

•An unmatched parenthesis () or brace { }.
•A bracket [].
•Braces containing an undefined character sequence,

such as {abc}.

SendKeys has other limitations to consider. First, keystrokes sent
with SendKeys are case sensitive. Some applications may not process
uppercase and lowercase versions of the same letter in the same manner.
For example, if you send “%f” (lowercase f) to Word for Windows 2.0,
the keystrokes are interpreted as Alt-F (which displays the File Menu).
If you send “%F” (uppercase F), Word interprets the keystrokes as Alt-
Shift-f (lowercase f), which does not display the File Menu.

Second, keystrokes sent with SendKeys must be exact. Naturally, if
you fail to supply keystrokes to an application when further input is
required, the application will continue to wait for the appropriate input.
For example, the Notepad example will work correctly the first time it is
executed. But on the second attempt, the file “c:filename.ext” already
exists, and therefore Notepad will ask if you want to overwrite an existing
file with that name. Since our SendKeys string does not include a
response to the overwrite prompt, Notepad has not actually saved the file
when our SendKeys statement has finished executing.

Finally, SendKeys can cause mouse problems with IBM PS/2s
running under Windows 3.0. Microsoft has confirmed that when the
SendKeys statement is executed in Windows 3.0 on an IBM PS/2 Model
50, Model 50z, Model 60, or Model 80, Windows behaves erratically
when you move the mouse. Fortunately, this problem has been corrected
in Windows 3.1.

106 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

PROGRAMMING TECHNIQUES

QUIRK: WHEN “TRUE” IS NOT EQUAL TO “NOT
FALSE”
Once upon a time, it was necessary for Basic programmers to create True
and False variables at the start of each program (True/False are now
reserved words in VBWin/VBDOS, with the values already defined for
you). If you are still performing this ancient ritual in QB/PDS, be sure to
set True equal to -1. Otherwise, you may run into this quirk:

' Example for QB/PDS only:
DefInt A-Z
True = 1 ' Notice this is not -1
False = 0
Value = True
If Value = Not False Then

Print "Value is True"
Else

Print "Value is False"
End If

If you think this example would display “Value is True,” you’re
wrong. Basic evaluates “Not False” as -1, which is not equal to the True
value (1) defined at the top of the program. Therefore, the line “If Value
= Not False Then” is actually evaluated as “If 1 = -1 Then.” n

