
Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 95

GETTING STARTED WITH VBA

VBA user-defined function procedure that you
could use in Column D as easily as any of Excel’s
built-in functions. The procedure follows the line-
by-line outline of the commission schedule, and
uses two different VBA decision-making methods:
SELECT CASE, and IF...THEN...ELSE.

First, in the blank Module1 screen, define the
function, including parameters that will be passed.
Add a comment line beginning with an apostrophe
so you’ll know later what this function does:

Function CalcCommission(Item, Units, Amount)
'This function calculates commissions

Next, add the routines to calculate the
portion of the commission based on amount, and
store the calculation in a variable called
AmountComm. A SELECT CASE statement ex-

ecutes one of several groups of statements, depending on the value of an
expression. The statement determines the amount in which CASE fits,
and then performs the calculation only for that CASE:

'first calculate the Amount Commission
Select Case Amount
Case Is < 100
 AmountComm = Amount * 0.02
Case 100 To 500
 AmountComm = Amount * 0.03
Case Else
 AmountComm = Amount * 0.05
End Select

Now you can calculate the portion of the commission based on units,
and store the calculation in a variable called UnitComm. The
IF...THEN...ELSE statement conditionally executes a group of state-
ments, depending on the value of an expression. It evaluates the IF
expression to see if it is true. If the expression is true, it performs the next
statement. Otherwise it skips to the statement after the ELSE statement:

'now calculate the Unit Commission
If Left$(Item, 1) = "Y" Then
 UnitComm = Units * 2

ou’ve just loaded Microsoft’s new Excel
5.0 on your computer and you’re surfing
through the menus to see what’s new. SOMETIMES

THE BEST WAY
TO GET

SOMETHING
DONE IS TO WRITE

YOUR OWN
PROCEDURE.

WRITING USER-DEFINED
FUNCTIONS IN VBA

I

You select Module from the Macro submenu of the
Insert menu, and your familiar spreadsheet changes
to a white screen with a strange new Visual Basic
Toolbar! If you’re not sure what to do next, you’ve
come to the right place.

It’s a little scary when you first see that strange
Toolbar. But if you have ever prepared a new
spreadsheet in Excel you already know most of
what you need to know to get started as a VBA
programmer. If you’ve ever written an Excel macro,
you have a real head start. And if you already know
Visual Basic, you’ll love some of the new features
built into VBA.

Excel 5 is extremely powerful: Microsoft has
gone to a lot of trouble to build in the features that
most people need. Try the new Pivot Tables to analyze some data, or
experiment with Custom Auto-Fill to easily fill a range with your own
lists. You can do almost anything you need to do without ever clicking
the Module menu item.

But there are times when the best way, and sometimes the only way,
to get something done is to write your own procedure that does exactly
what you want. You don’t have to be a programmer to do this. Microsoft
has made it easy with the Macro Recorder.

But how do you know if a particular task should be done in VBA? In
order to determine this, I usually analyze the task in question in terms of
its decision-making characteristics and repetition of functions.

Most complex spreadsheets are full of formulas that make decisions.
If you’ve worked with spreadsheets you’ve seen those big IF statements
that take up the whole width of the screen and require that all the
parentheses are in the right spot. Those IF statements are hard to read and
hard to debug. I find it much easier to write down what I want to do than
to type that huge IF statement.

For example, suppose you have spreadsheet designed to calculate the
commission on the sale of an item. Column A contains the item code,
Column B contains the units sold, and Column C contains the dollar
amount. You need to calculate the commission according to a commis-
sion schedule, and put the commission in column D. The commission
schedule is:

2% if the amount is less than $100
3% for amounts between $100 and $500
5% for amounts over $500
plus a bonus of $1 for each unit sold
unless the item code begins with a "Y" which gets a $2 bonus.

I’ll leave it to you to figure out the complex IF statement you’d need
to put into Column D. I prefer VBA because it lets me stay away from
those big IF statements. I’ll walk you through the process of writing a

Chris Barlow learned Basic with Professors Kemeny and Kurtz at
Dartmouth College. He develops Visual Basic applications for Sun
Hydraulics’ SunOpTech Group, and with co-author Ken Henderson he
wrote an application that was a finalist in the first Windows Open
Contest. Contact Chris at Sun Hydraulics—SunOpTech Group, 1500
West University Parkway, Sarasota, Florida, 34243; or by phone, 813-
351-9183; fax, 813-355-4497; or CompuServe, 76446,1370.

by Chris Barlow

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 97

GETTING STARTED WITH VBA

Else
 UnitComm = Units * 1
End If

The final step is to set the name of the Function equal to the total of
AmountComm and UnitComm. This returns the calculated commission
into the proper cell:

'now return value in Function name
CalcCommission = AmountComm + UnitComm
End Function

Your first user-defined function is complete and ready to insert into
your worksheet. Move to Column D, click on Insert and select Function
from the menu to pop up the Function Wizard (see Figure 1). The new
function is listed along with Excel’s built-in functions as a user-defined
function. When you select CalcCommission, Function Wizard will help
you fill in the parameters one at a time—just click on the appropriate cell
on the worksheet.

The easiest way to understand what these statements do is to watch
them execute in the code window. Move to Module1 and put the cursor
on the first line of the CalcCommission function. Press F9 to set a
breakpoint, which will stop the execution at that point. Return to the
worksheet and press F9 again to recalculate the worksheet. The code
window will reappear with the cursor stopped at the breakpoint.

Now Press F8 to single-step through the procedure. You can see the
value of any variable by placing the cursor on that variable and pressing
Shift-F9. You’ll be able to see how different groups of statements are
executed based on the value of the conditions.

Whenever you need to change a result based on different conditions,
user-defined functions are much easier to work with than a long IF
statement. Take a look at the code for the CalcCommission function and
compare it to an IF statement that does the same thing. Which is clearer?
Which would you rather pick up six months from now to make a
correction?

PLAY IT AGAIN
The second thing I look for when deciding to write a VBA procedure is
repetition. Do I need to perform the same steps over and over? Program-
mers call this looping, and there are three different sets of VBA state-
ments you can use to stop the loop, depending on how you want it
stopped.

The FOR...NEXT statement is the simplest loop. It will repeat a group
of statements a certain number of times. Try typing this in Module1:

Sub TestFORLoop()
For i = 1 To 10
 MsgBox CStr(i * i)
Next
End Sub

Now place the cursor on the first line of this procedure and press F5
to run the procedure. You’ll see ten message boxes showing the squares
of the numbers from 1 to 10.

The DO...LOOP and WHILE...WEND statements are usually used to
repeat a group of statements while checking for a certain condition. The
DO...LOOP repeats a block of statements while a condition is true or until
a condition becomes True. The WHILE...WEND statement executes a
series of statements as long as a given condition is true.

 Type the following in Module1:

Sub TestLoops()
Do
 i = i + 1
 MsgBox CStr(i * i)
Loop Until i = 5

While i < 10
 i = i + 1
 MsgBox CStr(i * i)
Wend
End Sub

Now place the cursor on the first line of this procedure and press F5
to run the procedure. You’ll see another ten message boxes—the first five
from the DO loop and the second five from the WHILE loop.

Often these loops are combined with the SELECT CASE or
IF...THEN...ELSE conditional statements to check each cell in a range
for a certain value, and take action based on that value.

For example, Excel 5 now offers rich text formatting of cells: you can
combine different fonts within a single cell. Excel 5 also lets you set up
custom number formats for cells. But these custom formats can’t make
use of this rich text formatting. You can write a procedure that will
provide a custom format for special circumstances so that you can learn
more about conditions and loops.

Suppose you want to check a selected range of cells, boldface any
Commissions that are greater than 20, and add the word “Note,” in red
underlined italics, to the first column as an indication that these items
should be reviewed. Start by listing what you need to do:

check the Commission column in each row in a selected range
if the Commission > 20 then

make the commission Bold and add Note to the Item
then loop back and do the next row

The first step is to determine how Excel makes the Commission font
bold and adds the red italicized and underlined word to the first column.
You could search through the Excel manuals and help file to figure out
the proper code, but I always let the Macro Recorder do the translating
for me.

Select New Macro item from the Macro Record submenu of the Tools
Record menu. Name the new macro “FigureOutCode” and click on
“OK.”

Move to the Comm column and select Font=Bold from the Format
Cells submenu. Then move to the Item column and type “Note,”
highlight it with the mouse, and select Font=Italic, Underline=Single,
and Color=Red from the Format Cells submenu. Click on the Stop
Recording button and look at the generated code, which is excerpted
below:

Sub FigureOutCode()
 Range("D6").Select
 With Selection.Font

Rely on Wizards. Notice how the Function Wizard shows the
return value after you fill in the arguments.FIGURE 1

GETTING STARTED WITH VBA

98 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

 .FontStyle = "Bold"
 End With
 Range("A6").Select
 ActiveCell.FormulaR1C1 = "CBEA Note"
 With ActiveCell.Characters_

(Start:=5, Length:=5).Font
 .FontStyle = "Italic"
 .Underline = xlSingle
 .ColorIndex = 3
 End With
End Sub

Doesn’t the Macro Recorder make it easy? The Macro Recorder even
uses the WITH-END WITH statements to make the code easier to read
and faster to execute.

You can see how to apply rich text formats to a cell, and you have
some code that you’ll be able to paste into your new procedure.

Now you can start writing the procedure to perform special format-
ting. In Module1, move the cursor below the CalcCommission function
and type:

Sub CheckCommInRange()
'this marks a selected range of Item,Units,
'Amount,Comm to highlight

' items with high commission

'first put the selected range in an object
Set CheckRange = Selection

Because you want to perform an action but you don’t need to return
a value, you will use a Sub procedure instead of a Function procedure.
Also, you must assign the current selection to an object to use in the loop.

The repetition in this procedure comes from a FOR...NEXT loop that
steps through each row in the selected range, and uses the user-defined
function CheckComm to make a decision.

If the Commission is greater than 20, the loop will call another user-
defined procedure, HighlightRow, to do the formatting:

'then begin our loop to go through each row

For Each CheckRow In CheckRange.Rows
 'decide whether this row needs highlighting

 If CheckComm(CheckRow.Cells(1, 4), 20) Then
 'perform special highlighting for this row
 HighlightRow CheckRow
 End If
Next
'now go back and repeat for each row
End Sub

Although this could be done in a single procedure, it is common to
break such actions into different procedures to make them easier to
understand.

The next step is to add the two new user-defined procedures. You’ll
use a function procedure for the first procedure because a value must be
returned. The CheckComm function returns true if the commission is
over a given value.

The function receives two parameters: a cell object so it can check its
Value property, and the upper limit for commissions. If the commission
is greater than the parameter Over, then the value of this function will be
true and this row should be highlighted:

Function CheckComm(CheckCell, Over)
'this returns True if this cell is
'over the given value

If CheckCell.Value > Over Then
 CheckComm = True
Else
 CheckComm = False
End If
End Function

The final step is to write the procedure to highlight a row. The Macro
Recorder has given you most of the code for this procedure—simply
change the code to use your variables.

In this case, a Sub procedure will perform an action and
pass the procedure to a Row object called HRow as its only parameter:

Sub HighlightRow(HRow)
'this bolds the Commission and adds Note to Item
'first set Comm column to Bold
HRow.Cells(1, 4).Font.FontStyle = "Bold"
'then get length of Item
StartPos = Len(HRow.Cells(1, 1).Value) + 1
'add word " Note" to Item
HRow.Cells(1, 1).Value = HRow.Cells(1, 1).Value _

& " Note"
'now do rich text format of just the added characters
With HRow.Cells(1, 1).Characters(Start:=StartPos, Length:= 5).Font
 .FontStyle = "Italic"
 .Underline = xlSingle
 .Color = RGB(255, 0, 0)
End With
End Sub

Now that your procedures are complete, you can test them. Move to
the worksheet and use the mouse to select several rows. Then select
Macro from the Tools menu and click on CheckCommInRange. Click on
Run to run the procedure, or click on Step to watch the execution line by
line.

I’ve used both Sub and Function procedures in VBA to do some
things that would be difficult or confusing to do in Excel. Each of these
procedures makes decisions based on the value of certain expressions.

Now you know how to repeat certain groups of statements in
procedure loops. This is a good start on the road to becoming a VBA
programmer. I’ve uploaded the WorkBook with these procedures to the
Excel forum on CompuServe. Download it, give it a try, and send me your
questions and suggestions. n

