
36 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

D O S S H E L L

S e e N e x t P a g e

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 37

D O S S H E L L

B Y T O N Y E L L I O T

f you’re like most programmers, you
create polished user interfaces. You
make sure that the colors are well bal-
anced and pleasing to the eye, and that

anything the user needs to do is only a key press
or mouse click away. It’s frustrating to lose
control of your meticulously handcrafted screen
displays when you SHELL out to a DOS (or
other) command-line utility. During the SHELL,
these utilities can cause your display to wrap
around and scroll, temporarily destroying all of
your hard work. Wouldn’t it be great if you
could confine the output of such utilities to a
predefined window on the screen during a
SHELL? After hearing several programmers
complain about this problem, I created a solu-
tion. The DosWindow routine described here
lets you control the screen display during a
SHELL and add a first-class professional touch
to your applications.

Before I discuss how this routine works,
consider the organization of operating system
software and ROM BIOS services. There are
at least three software layers in every PC:
BIOS, DOS, and application programs.

At the lowest level, there’s the system hard-
ware. This includes all the IC chips and circuit
boards that make up your computer. Generally
speaking, there can be literally hundreds of

An assembly-language routine lets you SHELL to a predefined window for
maximum control of your DOS user interface.

Tony Elliott is Vice President and General
Manager of EllTech Development Inc. and
author of several add-ons for Basic, including
E-Tree Plus, Printer Plus, Compression Plus,
and Fax Plus. He can be contacted at 4374
Shallowford Industrial Parkway, Marietta,
Georgia, 30066, or on CompuServe at
76220,2575.

I

Hooking an Interrupt. This complete assembly-language routine allows you to create
a predefined window while SHELLing from QB, PDS, VBDOS, or PB. Making this

routine work requires intercepting all calls made to interrupt &H29 and &H10 during the SHELL.

CONTINUED ON NEXT PAGE.

S H E L L S h i n e s

i n D O S W i n d o w

LISTING 1

38 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

D O S S H E L L

machine-language instructions required just to
put a single character on your video display.
And to make matters more complicated, these
steps can vary from one hardware configura-
tion to another. Realizing this early on, IBM
created the specifications for a group of soft-
ware subroutines called Basic Input Output
System, or BIOS.

The BIOS specification defines the inter-
rupt numbers and parameters used to control
everything from disk I/O and printer services to
keyboard handling and screen display. Manu-
facturers that want to produce PC-compatible
motherboards, video cards, and other types of
hardware must also include a set of BIOS
functions, usually stored in ROM or a device
driver, that conform to the IBM specifications.
These functions act as the software layer be-
tween the operating system and the hardware.
For example, if I want to switch the current
video adapter into the 80-by-25 color mode
from assembly language, I don’t need to know
all the low-level steps required by the specific
video card I’m using; I simply use BIOS inter-
rupt &H10 service. The video card manufac-
turer has provided a group of interrupt &H10
functions designed specifically for his card.
This approach makes life much easier.

The software layer above the BIOS is the
operating system: DOS. DOS provides memory
management, file and directory organization,
program loading and termination services, and
much more. For example, the BIOS provides
services for reading and writing individual
sectors on a hard disk, and DOS provides the
higher-level organization that keeps track of
where on disk the files are stored, and so forth.
In other words, when manipulation of hard-
ware devices is necessary, DOS functions will
usually call BIOS routines instead of manipu-
lating the hardware directly. This approach
prevents DOS from becoming dependent on
one specific brand of hardware. The software
layer above DOS is an application program.
Application programs can use DOS and even
BIOS services to handle keyboard input, screen
I/O, file I/O, and other operations.

Knowing the sequence of events that tran-
spire when an application prints a string allows
us to write a routine like DosWindow. For
example, when most DOS command-line utili-
ties want to print a character, they use the DOS
“fast put character” function (interrupt &H29).
This function simply writes a character to the
screen at the current cursor location and moves
the cursor to the next character position. It also
processes the carriage return (ASCII 10) and
line feed (ASCII 13) characters, and manipu-
lates the cursor accordingly when these charac-
ters are encountered. Interrupt &H29 doesn’t
access the video hardware directly. It makes
calls to the video BIOS interrupt &H10 ser-
vices to get the current cursor location, print the
character, move the cursor to the next position,
and to scroll the screen when necessary.

In order to make the DosWindow routine
work, you must intercept all calls made to

LISTING 1. CONTINUED FROM PREVIOUS PAGE.

CONTINUED ON NEXT PAGE.

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 39

D O S S H E L L

LISTING 1. CONTINUED FROM PREVIOUS PAGE.

CONTINUED ON NEXT PAGE.

40 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

D O S S H E L L

LISTING 1. CONTINUED FROM PREVIOUS PAGE.
Back% and Fore% represent a set of Basic
background and foreground color values (as
used with the COLOR statement), Colr% can
be calculated as follows:

Colr% = (Back% OR (Fore% AND 16) \ 2)_
* 16 + (Fore% AND 15)

The LineWrap% parameter is used to deter-
mine if the DosWindow routine wraps or trun-
cates a line that’s wider than the defined win-
dow. Truncating generally provides a more
readable display within a DosWindow. Pass a
value of -1 to wrap text or 0 to truncate text.

Once the routines are declared, all you have
to do is invoke the DosWindow% function
immediately before your SHELL statement and
call RemoveDosWindow immediately upon
returning from the SHELL. Listing 2 contains
a small example program called
DWTEST.BAS.

Remember, the DosWindow routine can
control the output of programs only when they
use DOS or BIOS services to display data.
Because Basic’s PRINT statement uses direct
video writes instead of BIOS and DOS services
(direct writes are faster), DosWindow will not
be able to control its output. There is a way
around this: instead of using a regular PRINT
statement in a program you want to SHELL,
OPEN the CON (console) device and print
through it. For example:

OPEN "CON" FOR OUTPUT AS #1
PRINT #1, "This text is routine _
through the BIOS and"
PRINT #1, "is trapable by the _
DosWindow routine!"
CLOSE #1

There you have it. Once you’ve integrated
the DosWindow routine with your application,
you can SHELL to the predefined window and
maintain control of your user interface. To
download the this code, call my BBS at 404-
928-7111 and download a file called
DOSWIN.EXE. It is a self-extracting archive
that contains everything you need. n

Polish Your Shell. This sample program generates screen output to test your
image when SHELLing to a pre-defined window.

interrupt &H29 and interrupt &H10 during the
SHELL. The interception of an interrupt ser-
vice is referred to as “hooking an interrupt.”
While these interrupts are hooked, the
DosWindow routine makes sure that all cursor
positioning requests are kept within the bounds
of a predefined window, that the desired color
attribute is used to display data within the
window, and that attempts to clear (CLS) or
scroll the screen affect only the contents of the
window (Listing 1). If an application requests
an interrupt &H10 service that my routine isn’t
prepared to handle, the original interrupt &H10
service routine will handle it.

It’s easy to use the DosWindow routine
from Quick Basic, Basic PDS, VBDOS, or
PowerBasic 3.0. Just add the following declara-
tions to the top of the Basic program module
that will be calling the DosWindow routines:

Declare Function DosWindow% (BYVAL_
TopRow%, BYVAL LeftCol%, _
BYVAL BottomRow%, BYVAL _
RightCol%, BYVAL Colr%, _
BYVAL LineWrap%)

Declare Function RemoveDosWindow ()

If you are using PowerBasic 3.0, you’ll need
one additional line:

$Link “DOSWIN.OBJ”

When declaring the routines, don’t forget
the BYVALs! If you leave them out, unpredict-
able results will occur!

The parameters TopRow%, LeftCol%,
BottomRow%, and RightCol% define the up-
per-left and bottom-right corners of the win-
dow. Colr% defines the color attribute used
when displaying data within the window. When

LISTING 2

