
Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 85

OLE EXPERT

C7 = Loan_amount
C8 = Annual_interest_rate
C9 = Term_in_years
C10 = Payments_per_year
C14 = Calculated_payment

Here’s a code sample that opens
AMORTIZE.XLS, plugs in values for the vari-
ables, and pops up the calculated payment in a
message box (it is also straightforward to bring
back the whole table, if desired):

Dim APPXL As object
Dim XL As object
Dim ws As object

Set APPXL = GetObject(, "Excel.Application")
Set XL = APPXL.Application

XL.WorkBooks.Open "F:\TEMP\AMORTIZE.XLS"
Set ws = XL.ActiveSheet
ws.Range("Loan_amount").Value = 100000
ws.Range("Annual_interest_rate").Value = .075
ws.Range("Term_in_years").Value = 30
ws.Range("Payments_per_year").Value = 12
MsgBox Format$(ws.Range("Calculated_payment")._

Value, "currency"), , "Payment"
XL.Workbooks(1).[Close] (False)

Set ws = Nothing
Set XL = Nothing
Set APPXL = Nothing

There's one line in this sample I'd like to draw your attention to:

XL.Workbooks(1).[Close] (False)

Even though the workbook was opened via “WorkBooks.Open,” it
can’t be closed from VB via a corresponding “WorkBooks(1).Close.”
Trying to do this results in the message “Method not applicable for this
object.” The problem is that, in VB, the Close method is only applicable
to a database. To force VB to pass the Close method on to Excel for
evaluation, enclose it in brackets. In cases that require brackets—or
example, using the Show, AddItem, and RemoveItem methods—it is
often a requirement that the parameters be enclosed in parentheses.

EXCEL DIALOGS

icrosoft Excel version 5.0 provides de-
velopers with a rich library of program-
mable objects. In previous versions of THE OLE

AUTOMATION
INTERFACE IS

STRONGER, FASTER,
AND MORE POWERFUL

THAN
DDE EVER WAS.

Control Excel 5.0 With OLE
Automation

I

Excel, much of this functionality was there but
unexposed to applications outside Excel. With
Excel 5.0, Microsoft has implemented an OLE
Automation interface that makes it possible to
create and manipulate objects inside Excel from
other applications. This feature is especially attrac-
tive to Visual Basic programmers because it allows
access to Excel’s library of objects, which is prob-
ably second to none for building spreadsheet appli-
cations.

Perhaps you’re wondering whether the OLE
Automation interface is capable, and if you’ll run
into any of the performance issues that plagued
developers who tried in the past to integrate appli-
cations using DDE. Well, the interface is the method
by which VBA is integrated into its host application and the answer is that
the OLE Automation interface is truly capable—it’s a stronger, faster,
and more powerful interface than DDE ever was.

EXCEL REGISTRATION
You may already be familiar with the Windows registration database
where OLE objects are registered. This file, which you can view using the
REGEDIT.EXE utility included with Windows, stores a variety of
information of interest to programmers wishing to integrate applications
using OLE and OLE Automation (while the list is useful, it is also
necessary to understand how objects are contained by and accessed
through other objects—see Figure 1).

While the Windows registration database will be a topic by itself in
a future column, there are a couple of points that you should be aware of
now. First, under 16-bit Windows the registration database is limited to
64K for keys and 64K for values. Excel 5.0 registers 130 different objects
for exposure to OLE Automation and Microsoft Graph 5.0 (shipped with
Excel 5.0) registers another 38; together they consume 20K of that heap.
These entries are needed to do type checking for early-bound method
invocations performed in the VB (and VBA) design environment.

Second, there are a couple of possible syntaxes for referencing Excel
in CreateObject and GetObject functions: “Excel.Application.5” will
always give you Excel 5; “Excel.Application” will always give you the
default VBA-aware installation of Excel on the system, which would
usually be the most recent version.

This will only be useful after Excel version 6.0 ships, but should be
kept in mind for forward compatibility.

USING AN EXCEL SPREADSHEET
You are probably already familiar with Excel’s spreadsheets. Figure 2
shows the AMOR-TIZE.XLS worksheet included with the Excel samples.
The important variables (and their cell locations and predefined range
names) in calculating an amortization table are:

by Keith R. Pleas

Keith R. Pleas is an independent system consultant. He is the author of
the forthcoming book, Implementing DDE & OLE, from Ziff-Davis
Press. He can be reached via CompuServe at 72331,2150, or via the
Internet at keithp@curlew.wa.com.

If you can build your user interface within Excel, why work with VB at
all? Well, the differences between VB and VBA are most apparent in the
user interface. In the first release of VBA, there are no forms or control;
likewise, there is no place to plug in the add-on custom controls that are
so much a part of VB.

And if you have no controls, it stands to reason you have no control
events. Instead, VBA (again, this is only in the first release) program-
matically builds the user interface using the host application’s tools.
Instead of VB forms, you have Excel dialogs that are constructed on
dialog sheets and can contain a variety of traditional Windows controls.
And you can (sort of) write event code and attach it to the “controls,”
though the method for doing this is nowhere near as straightforward as
it is for VB.

Assuming that you’re already familiar with the forms capabilities of

VB, here’s a list of the major restrictions and limitations of using Excel
dialogs for your user interface.

 I’m not trying to discourage you from using them, but you might
appreciate knowing about the roadblocks before you run into them:

•All dialogs are application modal.
•Excel doesn’t respond to DDE or OLE messages when a dialog is

showing or a menu is dropped down.
•You are limited to one dialog per sheet (though a workbook can

have many).
•Moving a control in code (must be done before the dialog is shown)

actually moves it on the dialog sheet (analogous to VB’s design
environment).

•Dialogs don’t really go away until the calling subroutine ends
(they’re just hidden).

•Only two dialogs can be displayed at the same time; anything more
(or if the dialogs are complex) runs out of stack space.

•Because of the stack space issue, dialogs must be chained together
using OnTime events to kick off subsequent macros.

•The OnTime event involves a tolerance factor. If you miss it for
some reason (perhaps your system is busy with another task),
you’re dead. In addition, you can have only one OnTime event
running at any given time. Further, because Windows timers
require callbacks (which are unavailable in Excel, much as they are
in native VB) you can’t use Windows APIs to get additional timer
capabilities.

•When a dialog is showing, you can’t move a control on it.
•Text boxes are limited to 255 characters.
•Only one macro can be assigned to a control. For example, buttons

have only a Click event, and list boxes only a select event.
•The text box Keypress event occurs after the character shows up in

the text box; it doesn’t tell you what key is pressed.

Are these restrictions something to worry about? Excel developers
have been turning out useful applications for years with roughly this
same set of limitations. If all you want to do is throw up a couple of list
boxes and buttons (something as complex as the Windows File | Open
common dialog, for example), you’ll probably be OK. But developers
used to the VB forms model will be extremely frustrated.

Here’s an example of calling an Excel dialog from VB. First, create
an Excel workbook called SHEETS.XLS, open a dialog sheet, and add
a list box and a list box. Then run the following code from VB:

Dim APPXL As object
Dim XL As object
Dim wb As object
Dim dlg As object
Dim dlgList As object
Dim objList As object

Set APPXL = GetObject(, "Excel.Application")
Set XL = APPXL.Application
XL.Workbooks.Open "SHEETS.XLS"
Set wb = XL.ActiveWorkbook
Set Dlg = wb.DialogSheets("dialog1")
Set DlgList = dlg.ListBoxes("sheetsList")
Set objList = wb.Sheets
dlgList.RemoveAllItems
dlg.DialogFrame.Caption = "List of Sheets"
For ix = 1 To objList.count

dlgList.[AddItem] (objList(ix).name)
Next
dlg.[Show]

Set dlg = Nothing
Set dlgList = Nothing
Set objList = Nothing
Set wb = Nothing

How Excel Objects Flow. Through Excel, Visual Basic
developers gain access to a peerless library of objects designed

for building business spreadsheet applications. This chart shows how
Excel’s objects are contained by and accessed through other objects.

FIGURE 1

The AMORTIZE.XLS worksheet sample included with Excel.
A simple code string is used to open AMORTIZE.XLS, plug

in values for the variables, and pop up the calculated payment in a
message box. If desired, the whole table can be easily brought back.

FIGURE 2

86 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

OLE EXPERT

Set XL = Nothing
Set APPXL = Nothing
The Excel5 INI File

When programming Excel from external applications, it’s important
to understand at least one aspect of Excel’s INI file: the section that
manages add-ins. This is necessary for at least two reasons: First, as a
developer you naturally want to minimize the resource usage of your app
and make it as fast and responsive as possible. Second, it’s sometimes
necessary to have precise control over Excel’s state. A related issue is that
if you change the default state of Excel, you’ll almost certainly want to
restore the user’s previous state when you’re through.

Excel add-ins are an important variable in the startup state of Excel.
Individual add-ins are shown in entries in the “[Microsoft Excel]” section
and begin with the word “OPEN:”

[Microsoft Excel]
OPEN=/F C:\WINDOWS\EXCEL\LIBRARY\SOLVER\SOLVER.XLA
OPEN1=/F C:\WINDOWS\EXCEL\LIBRARY\CROSSTAB\CROSSFNC.XLA
OPEN2=/F /R C:\WINDOWS\EXCEL\LIBRARY\ADDINFNS.XLA

[Recent File List]

[Init Commands]

[Converters]

Note the /F switch in each line. This option, new with version 5.0, tells
Excel to fast load the add-in: This means the add-in is examined for menu
items and selected text strings, but is not yet loaded into memory. While
this approach results in much quicker loads times (and a significantly

smaller main memory footprint) than if each of the add-ins were fully
loaded, it still takes time for Excel to manage. Also, these menu items that
are read in for each add-in consume resources from the Windows menu
heap. The menu heap (added in Windows 3.1) is one of the three system
heaps (the others being GDI and User) involved in calculating free
System Resources; while the amount of free menu heap has customarily
been higher than GDI, which is usually the first to get used up, adding a
slew of menu items can have a dramatic affect. Of course, the problem
with 64K heaps goes away in 32-bit Windows.

So if you want to integrate with Excel 5.0, be aware of Excel’s add-
in state. With Excel running and after setting an object variable xl to point
to an Excel application, enter the following code in VB’s debug (easily
my favorite window in Windows):

for x = 1 to xl.addins.count :?xl.addins(x).name, _
xl.addins(x).installed:next

This generates a listing similar to the following (your mileage may vary):
ANALYSIS.XLL 0
AUTOSAVE.XLA 0
CROSSFNC.XLA -1
SCENARIO.XLA 0
ADDINFNS.XLA -1
ANALYSIS.XLA 0
ANALYSF.XLA 0
PROOF.XLA 0
REPORTS.XLA 0
SOLVER.XLA -1
UPDTLINK.XLA 0
VIEWS.XLA 0

Though Excel establishes and maintains this list in EXCEL5.INI and

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 87

OLE EXPERT

88 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

OLE EXPERT

Go To Next
Page.

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 89

OLE EXPERT

Go To Next
Page.

90 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

OLE EXPERT

Go To Next
Page.

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 91

OLE EXPERT

will renumber the entries so that they are sequential, a programmer
shouldn’t rely on this. The proper technique involves reading in all the
keys in that section and searching for anything beginning with “OPEN.”
The following VB code stuffs the contents of these strings into a default
list box (what you want to do with these string will vary):

Declare Function GetPrivateProfileString Lib "Kernel"
Alias "GetPrivateProfileString"
(ByVal lpApplicationName As String,
ByVal lpKeyName As String,
ByVal lpDefault As String,
ByVal lpReturnedString As String,
ByVal nSize As Integer,
ByVal lpFileName As String) As Integer
Declare Function GetPrivateProfileStringSec _

Lib "Kernel"

Alias "GetPrivateProfileString"
(ByVal lpApplicationName As String,
ByVal lpKeyName As Long,
ByVal lpDefault As String,
ByVal lpReturnedString As String,
ByVal nSize As Integer,
ByVal lpFileName As String) As Integer
Dim sBuff As String * 2048
Dim sBuff2 As String * 128
Z$ = Chr$(0)

iBuff = GetPrivateProfileStringSec("Microsoft Excel", O&, "none", sBuff, Len(sBuff),
"EXCEL5.INI")
Ini$ = Z$ & Left$(sBuff, iBuff)

Foo$ = Z$ & "OPEN"
y% = 1

Do
x% = InStr(y%, Ini$, Foo$)
If x% = 0 Then Exit Do
y% = InStr(x% + 1, Ini$, Z$)
Tmp$ = Trim$(Mid$(Ini$, x% + 1, y% - x% - 1))
iBuff = GetPrivateProfileString("Microsoft Excel", Tmp$, "none", sBuff2,

Len(sBuff2), "EXCEL5.INI")
List1.AddItem Left(sBuff2, iBuff)

Loop

USING EXCEL ADDINS (SOLVER)
After building a spreadsheet model of a problem, you can use Solver to
optimize the value of a target cell in that model by changing the values
of a related range of cells. Solver allows you to set constraints for any cell
in the model. Figures 3 and 4 show the effects of running Solver on the
SOLVEREX.XLS sample provided with Excel and using the scenario
covered in Chapter 30 of the Microsoft Excel User Guide. Specifically,
a constraint is specified for total advertising expenditures (F10 <=
$40,000) and total profit (F14) is optimized by varying the quarterly
advertising estimate (B10 to E10).

Excel defines an object for handling add-ins, with properties and
methods just like other Excel objects:

•Properties: Application, Author, Comments, Count, Creator,
FullName, Installed, Keywords, Name, Parent, Path, Subject, Title

•Methods: Add, Item

Unfortunately, the add-ins themselves are not necessarily objects and
must be programmed through the Execute- Excel4Macro method of the
Application object. For example, to run the Solver analysis described
above, the following code is run from VB:

Dim APPXL As object
Dim XL As object
Dim ws As object

Set APPXL = GetObject(, "Excel.Application")
Set XL = APPXL.Application
XL.Workbooks.Open
"C:\WINDOWS\EXCEL\EXAMPLES\SOLVER\SOLVEREX.XLS"

Set ws = XL.ActiveSheet
oldP$ = ws.Range("F14").Value
XL.ExecuteExcel4Macro "[SOLVER.XLA]SOLVER!SOLVER.OK(!R10C6,1,0,)"
XL.ExecuteExcel4Macro
"[SOLVER.XLA]SOLVER!SOLVER.ADD(!R10C6,1,""=40000"")"
XL.ExecuteExcel4Macro
"[SOLVER.XLA]SOLVER!SOLVER.OK(!R14C6,1,0,(!R10C2:R10C5))"
XL.ExecuteExcel4Macro "[SOLVER.XLA]SOLVER!SOLVER.SOLVE(True)"

Using the Solver add-in to analyze a spreadsheet.
Excel defines an object for handling add-ins, with

properties and methods like other Excel objects. Unfortunately, add-ins
are not necessarily objects and must be programmed through the
Application object. Figures 3 and 4 show the effects of running Solver on
the SOLVEREX.XLS sample provided with Excel, using a scenario
covered in Chapter 30 of the Microsoft Excel User Guide.

FIGURE 3 FIGURE 4

92 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

OLE EXPERT

Go To Next
Page.

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 93

OLE EXPERT

Go To Next
Page.

94 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

OLE EXPERT

newP$ = ws.Range("F14").Value
MsgBox "Old: " & Format(oldP$, "currency") & Chr$(10) & "New: " &
Format(newP$, "currency"), , "Profit"
XL.Workbooks(1).[Close] (False)

Set ws = Nothing
Set XL = Nothing
Set APPXL = Nothing

Interestingly, Excel add-ins can also be programmed (from VBA
only) via:

References Command (Tools Menu)

This command adds, deletes, or makes available for editing Visual
Basic references to libraries or other workbooks that are specified for the
active workbook. You must be in a Visual Basic module to use this
command.

SOLVEROK(!R10C6,1,0,)
SOLVERADD(!R10C6,1,""=40000"")
SOLVEROK(!R14C6,1,0,(!R10C2:R10C5))
SOLVERSOLVE(True)

A couple of notes about this behavior: first of all, Excel’s built-in Macro
recorder, when set for VBA format, records (at least in the version I’m using)
generates “Application.ExecuteExcel4Macro” code. This isn’t as bad as it
seems since the code is much more portable to VB than it would be otherwise.
Second, Excel 5 (at least for this version) is actually translating OLE
Automation calls into traditional XLM macro code anyway, so there
wouldn’t be an appreciable performance improvement if add-ins were

programmable via conventional syntax. n

