
20     FEBRUARY/MARCH 1994   Visual Basic Programmer’s Journal

C O M M U N I C A T I O N S    P R O G R A M M I N G

G o  t o  n e x t  p a g e



Visual Basic Programmer’s Journal   FEBRUARY/MARCH 1994     21

C O M M U N I C A T I O N S    P R O G R A M M I N G

Carl Franklin is a Software Engineer at
Crescent Software, 11 Bailey Ave.,
Ridgefield, Connecticut 06877. He is co-
author of the Visual Basic Programmer’s
Journal Q&A column, and plays lead gui-
tar in the VBITS Orchestra. Reach him at
203-438-5300, or on CompuServe,
70662,2605. Crescent Software is a leading
vendor of Visual Basic add-on products.

B  Y     C  A  R  L     F  R  A  N  K  L  I  N

hen you say the words “com-
munications programming” or
“serial-port programming” to
Basic programmers, they usu-

must admit I was unsure that the world was
ready to have the traditional method of serial
communications programming turned on its
ear. In the past, developers have had to use
callable routines to manipulate serial ports,
calling one routine to initialize the port, another
routine to read data, another routine to send
data, and so on. At first it was hard to grasp the
benefit of wrapping these functions into a cus-
tom control, but then the merits became obvi-
ous. With such a control, one control equals one
port. A comm port has settings, or properties,
and it definitely has events that can occur. Thus
the custom control is the perfect model for a
serial port.

Since the release of Visual Basic 3.0,
Microsoft has released a newly updated ver-
sion of MSComm that you simply must get.
Significant improvements were made in its
ability to work reliably in any situation. The
file is called MSCOMM.EXE, and is avail-
able on CompuServe, in the MSBASIC fo-
rum, library 1. Several references are made
in this article to the “latest version of
MSComm.” This is the version.

In a Visual Basic program, there are several
preliminary steps you must take in order to get
to the point where you can send a command to
the modem. First, the serial port has to be
opened. This is accomplished in three program-
ming steps. Assuming that you have already
placed an MSComm control on a blank form,
you can add the following code to your
Form1_Load procedure:

Comm1.CommPort = PortNum%
Comm1.Settings = SettingsString$
Comm1.PortOpen = True

The first line sets the number of the serial
port. To use COM 1, PortNum% should equal
1; for COM 2, PortNum% should equal 2, and
so on. Assuming that the mouse is using COM
1, our control should use COM 2:

At the heart of every serial port is a device
called a universal asynchronous receiver trans-
mitter, or UART (pronounced yoo-art). A
UART accepts parallel data one byte at a time
from the CPU, and converts it into the equiva-
lent stream of serial bits that is actually trans-
mitted. The UART also receives serial bits and
sends them to the CPU as byte values.

For serious communications developers, the
best UART on the market is the National Semi-
conductor NS16550A. It contains an internal
buffer, which takes a big load off the CPU when
processing incoming data. If your computer’s
serial ports do not have 16550A UARTs, it is
worth the 50 bucks to upgrade them.

Windows is a device-independent oper-
ating system, meaning that a Windows pro-
gram will work pretty much in the same way
from one machine to another, one video
system to another, one printer to another,
and one serial port hardware configuration
to another. Windows accomplishes device
independence by dividing the hardware-to-
software connection in half. On the hard-
ware side, the hardware vendor must pro-
vide a driver that connects its hardware to
Windows. On the software side, an applica-
tion need only call a generic routine to ac-
cess the hardware. It is for this reason that
Windows applications are device indepen-
dent.

This idea is extended to serial ports. The
Windows communications driver,
COMM.DRV, is the middleman in the commu-
nications process. A Windows application calls
standard API routines for sending and receiv-
ing data, and the driver does the dirty work.
Visual Basic is no exception. Because it uses
the Windows API for communications, you can
be sure your Visual Basic app will run on any
Windows platform.

COMMUNICATIONS AS A VBX
When Microsoft first approached my company
to help them develop the MSComm control, I

ally cringe with fear. It is a fear of the unknown.
Although we have always had the tools to
communicate through a serial port, there is not
much material available on the subject of se-
rial-port programming for Visual Basic pro-
grammers. Fortunately, the concepts of com-
munications programming are quite simple,
and for the most part, a communications pro-
cess uses only three or four functions. Relying
on those functions, and some tips and tricks,
you can do some simple serial-port tasks with
Visual Basic for Windows Professional Edi-
tion, including dialing a phone number, moni-
toring a communications port for incoming
data, writing it to a file, and more. Before we
talk about programming, though, let’s take a
look at what serial communications program-
ming lets you do, and the roles of the different
players in the game.

Most personal computers come equipped
with one or more serial ports. On the outside, a
serial port is a connector on the back of the
computer. If you have a mouse on your system,
it might be plugged into a serial port. Described
in simple terms, a serial port provides a channel
for data to be sent and received by an external
device.

W

Use these undocumented tips, tricks, and work-arounds
to customize your communications applications.

C o p i n g  W i t h  W i n d o w s

C o m m u n i c a t i o n s



22     FEBRUARY/MARCH 1994   Visual Basic Programmer’s Journal

C O M M U N I C A T I O N S    P R O G R A M M I N G

Comm1.CommPort = 2

The second line sets the baud rate, parity,
data-bit, and stop-bit settings for the comm port
in the form of “BBBB,P,D,S.” The baud rate is
the speed at which data travels through the port.
This can be one of several set values. Most
modems can support at least 2400 baud, and
many support 9600 and 19,200. While some
modems use compression methods to achieve
higher baud rates, the highest baud rate Win-
dows supports is 19,200 baud (higher speeds
can be achieved with replacement comm driv-
ers, however).

In serial communications, bits of data (ones
and zeros) are represented as the state of a wire
at a particular point in time. Since the timing is
established by the baud rate, the smallest inter-
val at which one bit of data can be received is
clearly defined. At the next interval, if the state
of the wire is off, the bit received is a zero. If the
wire is on, the bit received is a one.

The parity method is a simple method of
data validation. It is most common to not use
parity checking as a means of data validation
because it checks to see only if the number of
bits received is an even or an odd number.
There are other methods of parity checking that
can be used, but for standard modem use, using
no parity is most acceptable.

The data bits setting is the number of bits

that are said to represent data. Once this number
of bits has been received, the next bit or bits
received are used as a flag to signify the end of
the data. These flag bits are called the stop bits.
In most cases, only one bit is used as a stop bit,
because that is all that is necessary.

Most modem software uses a setting of
N,8,1—no parity, eight data bits, and one stop
bit. CompuServe uses a setting of “E,7,1.” That
is, even parity, seven data bits, and one stop bit.

For this example, we will set up the port at
2400 baud, using no parity, eight data bits and
one stop bit:

Comm1.Settings = "2400,N,8,1"

To open the port, simply set the PortOpen
property to True. The completed example of
opening a serial port looks like this:

Comm1.CommPort = 2
Comm1.Settings = "2400,N,8,1"
Comm1.PortOpen = True

The QuickBasic/Basic 7/VBDOS equiva-
lent to the above code is:

FileNum = FREEFILE
OPEN "COM2:2400,N,8,1,BIN" FOR BINARY _
AS #FileNum

MANAGING INPUT,
OUTPUT, AND BUFFERS
When a serial port is opened, The MSComm
control creates a receive buffer and a transmit
buffer. When one byte of data arrives at the
comm port, Windows moves the byte into the
receive buffer and tells MSComm that a byte
has arrived. MSComm’s job is to let the pro-
grammer know about it, which it does by
incrementing its InBufferCount property by
one (the InBufferCount property returns the
number of bytes in the receive buffer).

You could monitor the number of bytes
received simply by reading the value of the
InBufferCount property in a loop:

Do
     Me.Caption = Str$(Comm1.InBufferCount)
     DoEvents
Loop

You can read data from the receive buffer
into a string variable with MSComm’s Input
property. Here’s how to read the contents of the
receive buffer into the variable In$:

Comm1.InputLen = 0 'See below.
In$ = Comm1.Input 'Read the received data.

The InputLen property defines the number
of characters that are to be read with the Input
property. Setting InputLen to zero tells



Visual Basic Programmer’s Journal   FEBRUARY/MARCH 1994     23

C O M M U N I C A T I O N S    P R O G R A M M I N G

MSComm to read all bytes in the receive buffer.
You can read every received character and
display it in the debug window like this:

Sub Form1_Load ()
     Comm1.CommPort = 2 ' Open and

'initialize the port.
     Comm1.Settings = "2400,N,8,1"
     Comm1.PortOpen = True
     Comm1.InputLen = 1 ' Read one
'character at a time.
     Do
          DoEvents ' Allow events.
          If Comm1.InBufferCount Then
'Received any data?
               In$ = Comm1.Input 'Read in one
character.
               Debug.Print In$;'Display in debug window
          End If
     Loop
End Sub

You must call DoEvents when processing
communications in a loop. This allows for other
processes to occur, including MSComm’s han-
dling of received data.

Based on this idea, take a look at Listing 1,
a simple program that opens the comm port, and
writes all received data to a file until it receives
an end-of-file character (decimal 26). After the
port is opened, the program goes into a loop,
constantly checking the InBufferCount prop-
erty to see if data has been received. If so, the
characters are read and immediately written to
the open file. If the data received is a Chr$(26),
the file is closed, the port is closed, and the
program ends.

Just as the Input property reads data from
the receive buffer, the Output property sends
data into the transmit buffer, where Windows
then sends it out the serial port. The transmit
buffer is similar to the receive buffer. When you
send a string out the serial port with MSComm’s
Output property, MSComm places the data in a
transmit buffer, and tells Windows to send the
data.

To monitor the number of characters in the
output buffer, use the OutBufferCount prop-
erty. The code will wait until one string has
been sent before sending another string:

'Send a string
Comm1.Output = "This is the first _

string." & Chr$(13)
'Wait until the entire string has been 'sent
Do
     DoEvents
Loop Until Comm1.OutBufferCount = 0
'Send another string
Comm1.Output = "This is the second _

string."  & Chr$(13)

When you open a port with the MSComm
control, you are opening it in binary mode. That
is, VB does not add or take away any characters,
or filter out characters, unless you want it to.
Consider the following QuickBasic command:

PRINT #1, "HELLO WORLD"

Assuming that file number 1 is an open
serial port, this code will send the string “HELLO
WORLD” followed by a carriage return out the
port to the modem. MSComm’s Output prop-
erty sends a string exactly as you specify, like
this VB code:

Comm1.Output = "HELLO WORLD"

Assuming that Comm1 is an MSComm
control whose port is open, this code will send
the string “HELLO WORLD” with no carriage
return. If a carriage return is required, you have
to specify it:

Comm1.Output = "HELLO WORLD" & Chr$(13)

Also, you can flush, or delete, the contents
of both the receive buffer and transmit buffer by
setting their InBufferCount property to zero.



24     FEBRUARY/MARCH 1994   Visual Basic Programmer’s Journal

C O M M U N I C A T I O N S    P R O G R A M M I N G

G o  t o  n e x t  p a g e



Visual Basic Programmer’s Journal   FEBRUARY/MARCH 1994     25

C O M M U N I C A T I O N S    P R O G R A M M I N G

G o  t o  n e x t  p a g e



26     FEBRUARY/MARCH 1994   Visual Basic Programmer’s Journal

C O M M U N I C A T I O N S    P R O G R A M M I N G

G o  t o  n e x t  p a g e



Visual Basic Programmer’s Journal   FEBRUARY/MARCH 1994     27

C O M M U N I C A T I O N S    P R O G R A M M I N G

G o  t o  n e x t  p a g e



28     FEBRUARY/MARCH 1994   Visual Basic Programmer’s Journal

C O M M U N I C A T I O N S    P R O G R A M M I N G

THE MYSTERIOUS ONCOMM
EVENT
MSComm’s OnComm event is fired when a
communications event or error occurs. Events
include a change in the carrier detect line or
other serial-port register, and a received char-
acter, for example. Errors include lost data due
to a hardware overrun, receive buffer overflow,
and parity errors. You determine which of these
caused the OnComm event to fire by reading
the CommEvent property. This is explained in
detail in the VB manual. However, the manual
does not give much detail regarding how
OnComm is called and handled internally.

When you set RThreshold greater than zero,
the OnComm event will fire with CommEvent
equal to 2 (MSCOMM_EV_ RECEIVE) when-
ever (RThreshold) number of characters are
received. If new characters are received while
the OnComm event code is executing, the ex-
ecuting code must finish before the next
OnComm event will fire. The only way that you
could allow OnComm to fire while code is
executing is to call DoEvents in the OnComm
event procedure.

What happens if you don’t read the received
data when a receive event occurs? The original
version of MSComm and the current version of
MSComm handle this behavior differently. In
the original 3.0 release, when OnComm

to be received, and returns:

'Assuming that the port is open
Z$ = Chr$(0)
TO% = 30
Do
     In$ = WaitFor$ (Comm1, Z$, TO%, _

Error%)
     If Error% Then Exit Do
     Select Case In$
          Case "End Of Transmission"
               Call Cleanup
               Exit Do
          Case "Sending Fax"
               Call ReceiveFax
     End Select
     DoEvents
Loop

COMMON PROBLEMS WITH
MSCOMM
Here are solutions to the five most common
problems VB programmers encounter using
MSComm.

1. MSComm does not receive data.
One of the most widely reported problems with
MSComm is that once a link is established to a
device such as a remote modem, data can not be
received. In other words, MSComm will send
data, but the receive buffer never contains any
data. The reason is that the default value of the
RTSEnable property is False. For devices that
use RTS/CTS handshaking, unless MSComm’s
RTSEnable property is set to True, data will not
be received. When a device uses RTS/CTS
handshaking, it looks at the value of the RTS
line before sending data. If the line is low
(False) it waits until RTS goes high (True). By
setting RTSEnable to True, this problem is
easily solved.

If you are trying to send data via modem,
problems can arise if you do not pause for at least
eight seconds or so after receiving a CONNECT
string from the modem. If your modem does not
use data compression, and you’re connected to a
modem that does use data compression, you will
receive your CONNECT string eight seconds or
so before the other modem does. This is because
modems that use data compression send a packet
identifying the data compression mode after
connecting. It takes eight seconds for the modem
to time out. If you do not pause, the other modem
will become extremely confused. You can solve
this problem using a pause routine that you can
call to safely pause for a given number of sec-
onds:

Sub Pause (Seconds!)
     StartTime! = Timer
     EndTime! = Seconds! + Timer
     Do
          DoEvents
     Loop Until Timer >= EndTime!
End Sub

If you are still having trouble, there may be

Include Loops. When processing communications in a loop of any kind, you
should call DoEvents inside the loop. This allows for other processes to occur

(including  MSComm’s handling of received data). This program opens the comm port and
writes all received data to a file until it receives an end of file character (decimal 26). After
the port is opened, the program goes into a loop, constantly checking the InBufferCount
property to see if data has been received.

LISTING 1

(EV_RECEIVE) is fired and you do not read
the received character, you must wait for an-
other character to be received before OnComm
is called again. This proved to be difficult when
reading one character at a time (InputLen=1).
Because only one character can be read with
each OnComm (EV_RECEIVE), if you miss
reading one character, you will always be one
character behind from what you expect.

In the current version, when OnComm
(EV_RECEIVE) is fired and you do not read
the received character, another OnComm
(EV_RECEIVE) is fired until you have read it
or until there are no more characters in the
receive buffer.

The WaitFor routine shown in Listing 2 is
perfect for reading data from the receive buffer.
You specify the string that you want to receive,
and WaitFor doesn’t come back until it receives
that string. You must pass a timeout value in
seconds, which tells WaitFor to come back if
the string was not received in time.

What about when you need to receive vari-
able-length strings? Let’s look at some code
that demonstrates reading variable-length
strings from a machine. In this case, all strings
end with a Chr$(0) or a Null character. The
machine may send one character, or it may send
100 characters, or any number in between. The
only characteristic of the string is that it ends in
a Null. The Waitfor routine waits for a Chr$(0)



Visual Basic Programmer’s Journal   FEBRUARY/MARCH 1994     29

C O M M U N I C A T I O N S    P R O G R A M M I N G

Let’s take a closer look at modems and discuss how to use them
effectively. A modem is a device that attaches to the computer through
the serial port. Once a channel is established between the computer and
the modem, commands can be sent to the modem to tell it to perform
such tasks as dialing a phone number or connecting to another modem.

In simple terms, one modem must originate a call and another must
answer in order for two modems to connect. The PC that originates the
call is often called the “remote” PC, and the PC that answers the call
(and usually provides a service) is often referred to as the “host” PC.
The host PC’s modem is set up to answer the phone. When the phone
rings, the host PC’s modem picks up the phone and issues an answer
carrier. The remote PC’s modem calls the host with an originate carrier.
The two tones merge, and the modems are connected. In this state, the
carrier detect line is high. MSComm has a property called CDHolding
which returns True when the carrier detect line is high. As a general
rule, if Comm1.CDHolding = True, then the modem is connected. The
CDHolding property is supported by most modems.

Virtually all consumer-model modems sold today are Hayes com-
patible. In earlier days, the Hayes company had the best-selling
modem. Subsequently, the Hayes command set has become the stan-
dard.

All Hayes modem commands start with the letters “AT.” This
stands for Attention and is used to wake up the modem, meaning that
it identifies a string sent to the modem as being a modem command. The
command to dial a phone number is “D.” This is usually followed by
“T” for touch tone phones, or a “P” for pulse (rotary) phones, and then
the phone number. For example, just a few lines of code opens COM
2 at 2400 baud, no parity, eight data bits, and one stop bit, and tells the
modem to dial local information using touch tone:
Sub Command1_Click ()
    Comm1.CommPort = 2
    Comm1.Settings = "2400,N,8,1"
    Comm1.PortOpen = True
    Out$ = "ATDT 555-1212" & Chr$(13)
    Comm1.Output = Out$
End Sub

In this code:
“AT” means “Hey Mr. modem, I’m talking to you.”
“D” means “Dial the following number.”
“T” means “Using touch tone.”
“555-1212” is the phone number (spaces and hyphens are OK).
Chr$(13) is a carriage return, which must follow all “AT” commands.

In this example, the modem is in “command mode.” In other words,
the modem is not connected to another modem, and is accepting
modem commands. After you send the modem an AT command, it
sends you what is called a “result code.” If the modem successfully
processed the AT command, the result code will usually consist of
“OK” followed by a carriage return and a line feed. If you have ever
used a terminal program, such as Procomm, DynaComm, QModem, or
Windows TERMINAL.EXE for that matter, you may have seen an
“OK” on the screen. That is the modem telling you that it has success-
fully processed the last command it was given. To see if a modem is
connected and properly initialized, send it “AT” & Chr$(13), and you
should receive “OK” & Chr$(13) & Chr$(10).

Once the modem is connected to another modem, it is said to be in
online mode. In this mode, everything you send to the port goes through
the modem to the other side. If you are online and you wish to return
to command mode, you can send what is called the escape sequence,
which is a string usually consisting of three plus signs (“+++”). When
you send this string across a modem line, the modem will drop back

Modem Basics

into command mode, where you can send it more AT commands, such
as “ATH,” the command to disconnect. Note that just because the
modem is in command mode, it hasn’t necessarily disconnected.
From command mode, you could go back online by issuing the
“ATO” command.

The sample code for dialing local information would be a fine
example of a phone-dialing program, except that once the number is
dialed, then what? The modem still has control of the phone line. The
key here is to give the modem another command, the semicolon, which
tells it to return to command mode after it has dialed the number. Once
it has returned to command mode, the modem issues an “OK,” and you
can tell the modem to release control of the phone with the hang-up
command (“ATH”), letting you converse with whomever picks up the
phone on the other end. This phone dialer program hangs up after
dialing:
Sub Command1_Click ()
     '— Open and initialize port
     Comm1.CommPort = 2
     Comm1.Settings = "2400,N,8,1"
     Comm1.PortOpen = True
     '— The semicolon tells the modem to return
     '    to command mode after dialing.
     Out$ = "ATDT 555-1212;"& Chr$(13)
     '— Dial the number
     Comm1.Output = Out$
     '— Input reads all data
     Comm1.InputLen = 0
     OK$ = "OK” & Chr$(13) & Chr$(10)
     '— Wait until we get an "OK"
     Do
          DoEvents
          If Comm1.InBufferCount Then
               '— Read new data
               In$ = In$ + Comm1.Input
               '— Do we see an "OK"?
               If Instr(In$, OK$) Then
                    Exit Do
               End If
          End If
     Loop
     '— Send the hangup command.
     Comm1.Output = "ATH" & Chr$(13)
End Sub

While this code works very well, it assumes that you have the
modem plugged into the wall jack, and the telephone plugged into the
back of the modem. It also assumes that you have the telephone handset
off the hook and are ready to start talking to the party on the other end.
Obviously, if you delay picking up the phone until the modem tells you
when the other party answers, you are out of luck because the modem
disconnects immediately after dialing. n



30     FEBRUARY/MARCH 1994   Visual Basic Programmer’s Journal

C O M M U N I C A T I O N S    P R O G R A M M I N G

a more fundamental problem. MSComm is one
of the only Windows communications products
available commercially that uses the Windows
3.1 communications method called “Comm
Notification.” With this method, Windows no-
tifies MSComm whenever a character is re-
ceived. With the older and apparently more
reliable Windows 3.0 method, MSComm must
constantly check whether a character has been
received.

After MSComm was released, it became
apparent that no other major Windows commu-

Wait For The Data. Here’s how to guarantee that you read data from the
receive buffer. You specify the string you want to receive, and WaitFor doesn’t

come back until it receives that string. You must pass a timeout value in seconds, which
tells WaitFor to come back if the string was not received in time.

LISTING 2

sent by your modem. This occurs whenever the
phone rings. Most commercial modem soft-
ware relies on this method rather than checking
the status of the UART’s RI line.
4. Receive-buffer-overflow errors occur.
In the shipping version of MSComm, whenever
a byte with a decimal value of 26 (the end-of-
file character) is received, the next character
received fires an RXOVER error via the
OnComm event. This was in the original spec.
The current version of MSComm does not
include this feature.
5. EV_SEND event does not fire.
The send event requires a little explanation. At
first glance, it looks like this event is fired
whenever a character is sent out the comm port.
This is not true. If you set SThreshold to 1, in
order for EV_SEND to fire, there must first be
two bytes (characters) in the transmit buffer,

and then the next byte must be sent, leaving 1
character in the receive buffer.

As you can see, communications programming
isn’t that difficult once you understand the
possibilities and problems. And although there
are several common problems, the solutions are
fairly straightforward once you know what to
look for, and once you know the work-arounds.
n

WHEN USING LOOPS,
YOU SHOULD CALL

DOEVENTS INSIDE THE LOOP.

nications software vendor was using the notifi-
cation method because it was believed to have
been somewhat unstable. In the current version
of MSComm, there has been added a property
called Notification, which determines whether
MSComm uses the Windows 3.1 or the 3.0
method. The default setting is the more stable
3.0 method.
2. Out-of-stack-space errors occur.
This can happen if the RThreshold property is
set to any value greater than one, and you have
a call to DoEvents in your OnComm event
procedure. Let’s say that RThreshold is set to 1.
This means that every time one character is
received, the CommEvent property is set to 2
(MSCOMM_EV_RECEIVE), and the
OnComm event is fired. Let’s also say that in
the OnComm event, you’ve coded a loop with
a call to DoEvents somewhere in the middle of
it. Whenever that DoEvents is called, there is an
opportunity for another character to be pro-
cessed, and the OnComm event to fire again.

If a character is received while the code is in
the loop, the current code position will be saved
in the stack memory area, of which there is a
limited amount, and OnComm will be called
again. This behavior, called recursion, can hap-
pen again and again until the stack memory is
depleted, causing a stack overflow error. The
cure is simple. If you must call DoEvents in the
OnComm event, first set RThreshold to 0. This
will ensure that OnComm will not be called if
another character has been received. After you
have called DoEvents, you can set RThreshold
back to its original value.
3. RING event does not fire.
Unfortunately, some modems do not accurately
reflect the status of the ring indicator (RI)  line.
An alternative and much safer method to deter-
mine if the phone is ringing when using a
modem is to look for the word, “RING” to be



Visual Basic Programmer’s Journal   FEBRUARY/MARCH 1994     31

C O M M U N I C A T I O N S    P R O G R A M M I N G

COMMUNICATIONS LIBRARY 2.1
A full-fledged communications DLL that enables you to access up to
eight serial ports simultaneously. Includes XMODEM, YMODEM,
YMODEM-G, ZMODEM, and CompuServe B+ protocols for auto-
matic file transfers. Includes a fully functional terminal program as an
example. $149. SC: N/A. MicroHelp, Inc., 4359 Shallowford Indus-
trial Parkway, Marietta, GA 30066; 800-922-3383, 404-516-0899.
Fax: 404-516-1099.

COMPRESSION PLUS
Compress Visual Basic arrays, blocks of memory, files, text and
graphics screen images to a fraction of their original size. Includes full
support for the ZIP file format. Includes an installation utility which
you can use to distribute your applications in compressed format. Also
available for Microsoft PDS 7.x, Basic 6.x, QuickBasic 4.00b+, and
Visual Basic for MS-DOS. $149. SC: Yes, NC. EllTech Development
Inc., 4374 Shallowford Industrial Parkway. Suite B, Marietta, GA
30066; 800-553-1327, 404-928-8960. Fax: 404-924-2807.

CRYSTALCOMM FOR WINDOWS 3.23
A PC modem communications library designed for the Windows
environment. The Communications Library provides the XMODEM,
XMODEM CRC, XMODEM-1K, True YMODEM, YMODEM/Batch,
ZMODEM, Streaming KERMIT, and ASCII communication proto-
cols. $175. SC: Y/$350. Crystal Software, 329 Fire Lake Rd., Crystal
Falls, MI 49903; 906-822-7992. Fax: 906-822-7994.

DISTINCT TCP/IP FOR WINDOWS-SDK: VISUAL
EDITION
Designed specifically for Visual Basic programmers. Contains custom
controls for Windows Sockets, Telnet, and FTP, allowing developers
to write TCP/IP applications without making DLL calls. Several
samples in Visual Basic are also included. Can run over other Windows
Sockets-compliant TCP/IP stacks, including Microsoft NT. $195 + $15
S&H. SC: N/A. Distinct Corp., 14395 Saratoga Ave., P.O. Box 3410,
Saratoga, CA 95070; 408-741-0781. Fax: 408-741-0795.

DYNACOMM
Full line of communication, from asynchronous DEC connectivity to
IBM 3270 connectivity. By midsummer, with each DynaComm prod-
uct, Visual Basic system users will be able to visually link their
applications to DynaComm using DynaComm Custom Controls.
Planned to support IBM, HP, NEC, and Data General mainframes.
$249.95. SC: N/A. FutureSoft, 1001 South Dairy Ashford, Ste. 101,
Houston, TX 77077; 713-496-9400. Fax: 713-496-1090.

FAX PLUS

Third-Party Communications Products

Include full incoming and outgoing fax support in your VB application
using any Class 1, Class 2, Class 2.0, or CAS-compatible fax modem.
Incoming faxes can be automatically saved as files or processed
directly by your VB application. Outgoing faxes can be generated from
graphics files or redirected from any Windows (TM) application that
supports printing. $249. SC: N/A. EllTech Development, Inc., 4374
Shallowford Industrial Parkway. Suite B, Marietta, GA 30066; 800-
553-1327, 404-928-8960. Fax: 404-924-2807.

OBJECT-FAX 3.0
A complete fax solution for Windows 3.1 and DOS. Supports OLE 2.0,
DDE, drag-and-drop, Microsoft Mail, CC:mail, Lotus Mail, TrueType,
PostScript, PCL5, and automatic routing. Available in three different
packages: Object-Fax 3.0 for large networks, Object-Fax Lite for small
networks, and Object-Fax Single User. $: Call. Available Q1 1994. SC:
N/A. Traffic Software, 360 W. 31st St., New York, NY 10001-2793;
212-714-1584. Fax: 212-714-1691.

QUICKLINE VERSION 1.3
A development library with macros to control the Multi-Line Voice
Communications Board form Talking Technologies, Inc. Turns your
telephone into a communications and marketing tool when hooked up
with Visual Basic. Turn a PC into an answering system— rent voice-
mail boxes, or take orders 24 hours a day. $500. SC: Call. Silicon Valley
Products Corp., 8 Paquatuck Ave., P.O. Box 564, E. Moriches, NY
11940-0564; Distributor: 800-447-9120. Fax: 516-878-1826.

PDQCOMM FOR WINDOWS
Crescent Software’s enhanced version of MSComm. PDQComm can
transfer binary files in the background using ZModem, YModem-G,
YModem, XModem, CompuServe B+, or Kermit protocols, optionally
displaying a status dialog box with a percent-complete meter. Can
emulate TTY, ANSI, DEC VT100, and VT52 terminals without coding.
PDQComm comes with ModemWare, a complete set of Visual Basic
routines for handling modems, including a database of initialization
strings for more than 440 modems. Currently, PDQComm for Windows
and MSComm are the only two communications custom controls on the
market. C source code is available. No royalties. $149. Crescent Soft-
ware, Inc., 11 Bailey Ave, Ridgefield, CT 06877; 800-352-2742. Fax:
203-431-4626. n

AFTER MSCOMM
WAS RELEASED,

NO OTHER
MAJOR

WINDOWS
COMMUNICATIONS

SOFTWARE
VENDOR WAS

USING THE
NOTIFICATION

METHOD.


