
Q & A

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 99

This is your forum for addressing the intricacies of the Visual Basic
language. Send in your questions, clever tips, and techniques. Visual
Basic Programmer’s Journal will pay $25 for any submission or question
that we print. If your submission includes code, please send a disk along
with your hard copy.

Mail submissions to Q&A Columnists, c/o Fawcette Technical
Publications, 280 Second Street, Suite 200, Los Altos, CA, USA, 94022-
3603. INTERNET:71732.3233@CompuServe.COM.
INTERNET:RobertVBPJ@AOL.COM.

DISPLAY AVI VIDEO FILES
USING VISUAL BASIC
I cannot seem to get Microsoft Video for Windows AVI files

to display in Visual Basic 3.0 Professional Edition, but I know it can be
done. Can you define the position and size of the display window?
What’s involved?
—Keith Schaefer, Pleasant Grove, California

You can use the Multimedia control (MCI.VBX) to display an
AVI file in Visual Basic. The MCI control is one of the most
misunderstood controls, mostly because it does so much. It can

play back digital audio files, MIDI files, movies, AVI files, and CD-
audio, with provisions for controlling digital audio tape (DAT) ma-
chines, scanners, VCRs, and other devices.

At design time, the MCI control is a button bar that resembles the
transport controls of a tape deck. There are buttons for rewind, play,
record, stop, pause, and so on. The MCI control can be visible at run time
or invisible, in case you want to control it with code.

Listing 1 shows a sample program in which an MCI control and a
Visual Basic Picture control have been placed on a form. The program
allows the user to display an AVI file in the picture box by manipulating
the transport buttons on the MCI control. There are only four lines of

by Carl Franklin
and Ethan Winer

Video Clips
In Visual Basic

Carl Franklin develops programming tools in C, Visual Basic, and DOS
Basic for Crescent Software. Carl also writes, plays, produces, and
engineers music in his spare time.

Ethan Winer founded Crescent Software and is the author of Crescent’s
QuickPak Professional and P.D.Q. Basic add-on products. Ethan has
written numerous magazine articles on programming and is a contribut-
ing editor to Visual Basic Programmer’s Journal and PC Magazine.

Contact Ethan or Carl at Crescent Software, 11 Bailey Ave., Ridgefield,
Connecticut 06877; 203-438-5300. Ethan’s CompuServe number is
72241,63. Carl’s is 70662,2605.

Display video. This code allows you to display an AVI video
clip in a Visual Basic application. Place an MCI.VBX control

and a Picture control on a form, and enter this code into the Form_Load
procedure. At run time you can click the play button (third from left) to
play the video, and the rewind button (far left) to rewind, as well as pause
(fourth from left), stop (third from right), and step play (fourth from
right).

LISTING 1

code, located in the Form_Load procedure. Since the video is displayed
in a VB picture control, you can move the video image anywhere on your
form.

The MCI control’s DeviceType property defines the file format to
display (or record, as the case may be). Set this property to “AVIVideo”
to use Video for Windows files. The next step is to open your AVI file.
Set the FileName property to a valid AVI file name. Make sure you give
the full path, unless the AVI file is in the current directory. Then, set the
command property to “Open” to load the file. The next line of code tells
the MCI control to display the video clip in Picture1, a standard Visual
Basic picture control. If you omit this line, the video clip will be displayed
in a separate window.

DROPPING FILES ON A FORM
How do I make a Visual Basic program that has the power to drag files

to other applications the way File Manager can?
—Robert Lausevic, Sacramento, California

Currently, the File Manager version 3.1 is the only server application that
supports the drag-and-drop protocol. However, future versions of Win-
dows will enable an application to be a drag-drop server. A server can

initiate a file drag-and-drop sequence, and a client can receive
dropped files.
However, Windows has support for drag-and-drop clients.
The code in Listing 2 enables a VB form to receive files

dropped from the File Manager. When files are dropped on the form from
the File Manager, the names are displayed on the form. This simple
application requires only that you add the code in Listing 2 to a module
in a new project. No custom controls are required. However, there are
third-party add-on tools available that supply the same functionality.

In the Main() subroutine, after displaying the form, the first thing to
do is tell Windows that Form1 is to receive WM_DROPFILES messages
by calling DragAcceptFiles. If you do not make this call, the user will see
a circle with a line through it when he attempts to drop a list of files on
the form.

Q & A

I

100 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

Drag and drop files from File Manager. Start a new project, add a new module, and add this code to the module to enable a form to receive
files from the File Manager. At run time, select one or more files from the Windows File Manager and drop them on your form. The file

names are displayed on the form. You must set the "Startup Form" to Sub Main in the Project Options menu for this code to work. In addition to working
with a form, this code will work with any control that has an hwnd, such as a picture control.

LISTING 2

Restart your engines! This code can be used to
declare and call the ExitWindows API function to reboot

the PC or restart Windows.
LISTING 4Restart DOS. This VB-DOS subroutine will reboot the

PC when called.LISTING 3

The DoEvents loop that follows will occur whenever the system is not
busy. The PeekMessage API call returns a value of -1 (True) if a received
message falls between the specified lower and upper range. In this case,
you only want to see one message, WM_DROPFILES, so both the lower
and upper range message values are set to WM_DROPFILES. If one or
more files are dropped on the form, PeekMessage will return a nonzero
value.

When a WM_DROPFILES message is received, the wParam integer
element of the Message TYPE variable contains a handle to a list of file

Q & A

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 101

names (hDrop). This handle has no real value,
except that it can be passed to the DragQueryFile
function to return the number of files dropped
on the form and their names. If you pass
DragQueryFile a value of -1 as the second
parameter (Index), DragQueryFile returns the
number of files that were dropped on the form.

To return a particular file name, pass the
zero-based file number as the second param-
eter, and a fixed-length string as the third pa-
rameter, and the string will return the file name.
The return value of DragQueryFile is the length
of the file name. You can simply use the Left$
function to return only the file name from the
fixed-length string.

REBOOTING THE PC

define the location of the segment (or 64K
block), and two bytes define the offset within
that segment. Since POKE accepts only the
address or offset portion, you must define the
segment. The DEF SEG = XXXX statement is
required to define the segment within 64K of
the POKE address. Therefore, the address that
the first POKE statement accesses is actually
0000 0473 (hex). n

FROM DOS OR WINDOWS
How can I reboot the PC from VB-DOS or
Windows, and is there a way to just restart
Windows from a VB app without rebooting?
—Ross Lally, Waterford, Connecticut

Rebooting the PC is one of those things that
isn’t required often, so there isn’t much help
available on the subject. However, when you

need to reboot, there’s no substitute.
Rebooting in Windows is easy: there
is an API call that reboots. But in VB-
DOS, you have to do a little poking

around.
The code in Listing 3 is a VB-DOS routine

that reboots the PC, and Listing 4 is a VB-
Windows example of both rebooting the PC
and restarting Windows using the ExitWindows
API function.

Note the use of POKE in the VB-
DOS Reboot subroutine (see Listing
3). If you didn’t already know, POKE
sets the value of a byte at a particular

address in memory. Intel 80x86-based systems
use a full address of four bytes. Two bytes

REBOOTING IN
WINDOWS IS EASY,

BUT IN VB-DOS YOU HAVE
TO DO A LITTLE

POKING AROUND.

