
32 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

C R E A T I N G H E L P S Y S T E M S

B Y T H E O D O R E K A H N

o, you’ve learned VB, finished your
application, and are ready to start
creating the help file: how difficult
could this be? Hang on to your key-

G e t t i n g H e l p W i t h

H e l p S y s t e m s

board! While VB might be the most advanced
programming environment commonly avail-
able, creating a Windows help file is more in the
category of a blast from the past; it has very
little to do with Windows itself and has no
particular connection to VB. In fact, you can
create a complete Windows help file without
using Windows.

Most people think of online help as simply
part of the documentation. While this is true, it
can be much more. The help system in Crunch
Software’s statistical application has become a
key selling point because of the added value
and capabilities. Computers can present and
relate information in ways that are impossible
using printed media. Not only do help systems
use hypertext, but multimedia as well, includ-
ing graphics, sound and video. In the future,
help will be so well integrated into the applica-
tion that the two will be indistinguishable.
Researchers in the field of computer/human
interfaces recognize this trend. For example,
computer scientists at Carnegie Mellon Uni-
versity in Pittsburgh, Pennsylvania have tar-
geted help systems as a key area for advancing

S

Although tools for developing help are archaic,
the added value is worth the pain.

Theodore Kahn is a software designer,
programmer, and documentation writer for
Crunch Software Corp. in Oakland, California.
Crunch develops statistical software for DOS
and Windows, and its current Windows project
is being supported by the National Cancer Insti-
tute under a Small Business Innovation Research
(SBIR) contract. Reach Ted via Internet at
tedkahn@netcom.com or CompuServe at:
70353,2603.

This diagram shows how the various programs and files required to create a help file
are organized. The rounded rectangles represent programs and the square ones

represent files. The Help Project File references the files pointing toward it. This information is
then used by the Help Compiler to create the help file.

FIGURE 1

software ease of use, now that the fundamentals
of graphical user interfaces have become widely
accepted. However, help could be used more
extensively than it is now, in part because help
authoring tools are still primitive.

But before I get into the technical details of
creating a help file, it is important to remember
that a help file is a hypertext document. This

means that a reader can jump from topic to
topic within the help file and even to other help
files. These jumps can be initiated in a variety
of ways: by clicking on jump (green) text or a
graphic; by clicking the Back, History, or
Browse buttons (<< or >>), or by selecting a
topic from the Search Dialog Box, to name a
few. All these methods are under your control

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 33

C R E A T I N G H E L P S Y S T E M S

A Little Help. This sample Help Project File is an ASCII file containing two types
of information: Options and other parameters that define various help file

characteristics and, references to the word processing and graphics files that will comprise
your help file.

LISTING 1

hypertext.
4. The # $ K + characters are not really text, but
custom footnote characters which are called
Control codes. They are usually the first char-
acters in the topic. The footnote contents for
each Control code contains the information that
controls the hypertext nature of your help file.
The remaining text and graphics in the first
paragraph (in this case the word “Contents”)
becomes the topic title. Additional paragraphs
contain the topic text and graphics.

There are two other footnote characters
that do not have a hypertext function. The *
footnote specifies the build-tag. This allows
you to conditionally include (or exclude) top-
ics dependent on the build-tag string. This
feature is useful if you need to create multiple
versions of the help file. The ! footnote lets
you specify a macro that is executed whenever
the topic is displayed.
5. The end of a topic is indicated by a hard page
code. In WinWord, press Ctrl-Enter (it is shown
as a thin horizontal line). The characters after
the hard page code will then be the Control
codes for the next topic, and so on.

So, my help authoring tool automatically
created the first topic. It called the title “Con-
tents” and entered four lines of boilerplate text.
I was supposed to replace the line “List of help
Topics goes here” with a series of jumps to
other topics that I would add later.

This all boils down to some pretty simple
stuff: If you can figure out how to enter custom
footnote characters into your word processor,
you can create help files without a help authoring
tool. In WinWord Version 2.0, choose Insert
Footnote and select Custom, then enter one of the
four characters # $ K +. Then enter the footnote
text. This all seems pretty straightforward to me

help authoring tool. A Dialog box popped up
and asked me the name of the file and project
title. I entered the information and pressed
return. This is what I saw:

$ K + Contents
The following Help Topics are available:
List of Help Topics goes here.
For Help on Help, Press F1
——————————————————

I was totally stumped. What did all this mean?
What was I supposed to do next? Where was my
help authoring tool? To be honest, it took me
days to figure this out. I pored over the Help
Compiler documentation and studied the
ICONWORKS example, both of which came
with VB Professional. Oh, and of course I read
all 35 pages of the help authoring tool manual,
and then some (see sidebar, “References And
Resources,” p. 35). It seems to me today that I
spent the better part of two weeks trying to get
a handle on what was going on. So I’ll save you
a couple of weeks and boil down what I learned:

1. A help file consists of one or more topics
(there is no practical limit to the number of
topics). In other words, the topic is the unit in
which you work.
2. A topic can have any amount of text and/or
graphics. Keep them small. If a topic gets too
big, break up the text into multiple smaller
topics and relate them with jumps, browse
sequences, and keywords (more on these con-
cepts later).
3. The order in which topics appear in your
word processor (or help authoring editor) has
no bearing whatsoever on their appearance in
the help file. This is a critical concept to under-
stand: it represents your introduction to

as the help file creator. (don’t forget that
you—or someone else if you’re lucky—also
has to write the text). The process of creating
a help file requires specifying the hypertext
jumps and visual layout for each topic. The
topics, in turn, must relate logically and con-
cisely to the program for which the help file is
being written.

Many help file creators use Microsoft
WinWord Version 2.0 as their word processor.
We have therefore made several references to
WinWord regarding the performance of specific
tasks. If you are using a different word processor,
look to its equivalent feature for executing the
function. In addition, the features discussed here
refer to Windows 3.1. If you design your help file
to run under Windows 3.0 you must compile it
using the 3.0 Help Compiler (HC30), or you will
need to include WINHELP.EXE 3.1 with your
help file.

If all this sounds difficult, it is: You are
using yesterday’s technologies to create state-
of-the-art hypertext multimedia online docu-
ments. This doesn’t make a lot of sense, and the
process is tedious at times, but it’s reality. So
put on your Simon & Garfunkel or Aretha
Franklin records (no CD’s) and join me in what
can be best described as The Twilight Zone of
Windows programming.

CREATING THE HELP SYSTEM
Creating a help file is really very similar to
programming in more traditional languages
under DOS (see Figure 1). You need one or
more source files; in my example the source
files are word processing files saved in rich text
format (RTF), and a Project file that is analo-
gous to other languages’ MAK files. The Project
file specifies help compiler options and the
RTF file names (see Listing 1). If your help file
requires graphics or other multimedia files,
these too are referenced in the Project file. From
DOS, run the Help Compiler and provide the
Project file as its argument. The result is your
help file, which requires WINHELP.EXE (a
Windows program) to view.

If the Help Compiler detects an error, you’ll
need to edit the Project file and/or word pro-
cessing file (in the latter case you also need to
regenerate a new RTF file), and then rerun the
Help Compiler. When no errors are found, go to
Windows and run WINHELP.EXE to look at
the help file. To be thorough, check all the
hypertext links and macros. Again, if errors are
encountered, make the appropriate changes and
recompile. As in any programming project, the
number of possible errors can be enormous, and
their interactions may be unpredictable.

When you first get started building a help
system, you create a help topic in your word
processor. So let’s dig in here with a real-world
example of what happened to me the first day I
tried to create a help file.

My help authoring tool (like many) consists
of a set of macros for WinWord 2.0. The first
thing I did was fire up WinWord, choose File
New and select the template provided by the

34 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

C R E A T I N G H E L P S Y S T E M S

G o t o n e x t p a g e .

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 35

C R E A T I N G H E L P S Y S T E M S

The Microsoft Help Compiler documentation that comes with VB
Professional is terse, and for the beginner, difficult to understand.
Even worse, it’s incomplete. Here are some places to look for
additional information to supplement what Microsoft provides.
• If you have VB professional, the HC subdirectory contains all the
programs necessary to create a help file (except a word processor),
additional documentation relating to API calls, and a sample project
(ICONWRKS).
• I highly recommend the book Developing Online Help for Windows,
by Scott Boggan, et al., Sams Publishing 1993. (800-428-5331, $39)
It covers everything from writing styles for help files to a spreadsheet
to project development costs. It also includes a disk with a number of
sample help files that illustrate various features. The disk also has a
simple help authoring tool (macros for WinWord Version 2).
• The Help Authoring Guide. This is a help file created by Microsoft
(possibly as a precursor to a more comprehensive help document). It
contains far more information than the manual that comes with VB.
The file is available on CompuServe in the WinSDK forum, library
16 as file HAG.ZIP. This is a highly technical document—most
people would be better served getting Boggan’s book.
• We have created a sample help file and VB program that illustrates
many of the issues and features discussed in this article, and a lot
more. It’s called HELPINFO.ZIP. Probably the easiest and fastest
way to learn how a help file is put together is to look at sample code.
However, there are very few help files that also include the Help
Project file as well as all the word processing and graphics files that
go into creating help files. That’s exactly what’s included in
HELPINFO.ZIP.

Of particular interest is a glossary with all the bells and whistles:
graphics, hot spots, accelerator keys, secondary windows, and much
more. All you need to do is add your specific text. In addition, we have
also included a VB program (with source) that illustrates how to
integrate the help into a VB program. All the API declarations, along
with just about all the code you can use is in there. You are free to use
any part of the help file or program in your own projects. The only
thing we ask is that you do not sell the files as is. You’ll find
HELPINFO.ZIP on the Internet (FTP to ftp.cica.indiana.edu and go
to /pub/pc/win3/programr/vbasic) or CompuServe (WinSDK forum
library 16 and MSBASIC Programming Lib). n

now, but it took some time before I really felt I understood this well.

UNDERSTANDING HYPERTEXT
You cannot write a good help file without truly understanding how the
hypertext Control codes work. For me, this was one of those learning
experiences where I always seemed to think I understood what was
going on until I looked at the result. Trying to think and write in
hypertext is fundamentally different from writing according to the way
I’ve been taught. I can still remember my third-grade teacher Mrs.
Murray saying, “Tell them what you’re going to say, say it, and tell them
what you said.” It doesn’t work in this situation. Mrs. Murray’s model
used words to lead in and out of ideas and concepts: Hypertext uses
Control codes and words.

On a physical level, this part of the article relates to only what you
enter for the four Control code (# $ K +) footnote contents. These four
Control codes define the hypertext methods by which a topic can be

References and Resources

36 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

C R E A T I N G H E L P S Y S T E M S

authoring tool supports it. Therefore, if you
want mid-topic jumps, it’s likely you’ll have to
code them.
2. The + code refers to the browse sequence.
You may have already noticed the two buttons
labeled << and >> at the top of the help screen.
This is the Control code that drives those but-
tons. The browse sequence provides the user
with a quick and convenient way to move
through related topics in an ordered fashion.
Forward or backward movement is accom-
plished by clicking the browse buttons. The
footnote text is composed of two parts—the
group name and a sequence number, separated
by a colon. Continuing with the Print example:
suppose you had the following three topics;
Printing Overview, Print Dialog Box, and Print
Dialog Box Options. The information goes
from general to specific, and so follows a natu-
ral progression. In this case, the browse se-
quence might look like this:

Printing Overview PRINT:010
Print Dialog Box PRINT:020
Print Dialog Box OptionsPRINT:030

The group name is optional. Some help
authoring tools do not use a group name, or they
use the same group name for all topics. This
diminishes the browse sequence utility: jumps
can be made to unrelated topics. If the topic has

displayed. A topic can have any combination of
these Control codes. If it has none, it cannot be
displayed. Figure 2 illustrates how footnote
information is translated into hypertext jumps.
Let’s take a close look at each of these impor-
tant codes:

1. The # code refers to the context string. This
is a string of characters that uniquely defines a
topic. That is, each topic must have a unique
string. For example, enter print_dialog_box as
the text for the # footnote to define that string
as the topic context string (spaces are not
allowed). If a topic does not have a # footnote,
there is no way to jump to it. By jump, I mean
that green text you see in help files—you click
on it and a different topic is displayed. Usu-
ally, you want users to be able to jump to
topics, so most topics have context strings.

There is one very important fact to know
about context strings: A topic can have any
number of context strings and the # footnotes
can be placed anywhere in the topic.

When you jump to that context string, the
text just after its corresponding footnote (#) is
displayed at the top of the help screen. This is
sometimes referred to as a mid-topic jump. The
VB Help Glossary is a good example of this
feature.

The mid-topic jump is virtually undocu-
mented. To the best of my knowledge no help

an ordered relationship to other topics, code the
topics with a browse sequence accordingly.
Otherwise, do not include this control code.
3. The $ code refers to the title in the Search
Dialog Box topic list, and K refers to the topic
keyword phrases. These two Control codes
work together, and usually you will include or
exclude them as a pair. This gets a bit tricky, so
go slow. The first thing to know is that the text
for the $ footnote can be different from the title
that appears in the topic title paragraph, and
both can be different from the context string.
Generally, however, all three are the same (of
course, underlines would be substituted for
spaces in the context string).

The text of the K footnote contains the
keyword phrases. This text appears in the top
part of the Search Dialog Box. The text of the $
footnote contains the title as it will appear in the
bottom part of the Search Dialog Box when one
of its keyword phrases is selected.

To make this work correctly, related topics
must have the same keywords. Pay particular
attention to word endings. In Table 1 I used
“printing” in all three topics. If the user selects
“printing” from the keyword list, all three top-
ics will appear in the topic list box, the user can
select the most appropriate one. Note the “docu-
ment” keyword for the Print Dialog Box topic.
This help file might also have topics titled

CONTINUED ON PAGE 107.

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 37

C R E A T I N G H E L P S Y S T E M S

Each topic in your word processing file has encoded into it information that
defines its hypertext nature to the Help Compiler. The top part shows how a

topic looks in WinWord while the bottom shows how it is diplayed in the help file. The title
(yellow background) is nonscrolling (the title paragraph code “keep with next” is
selected). The line above “See Also” is a top border.

FIGURE 2

107

CONTINUED FROM PAGE 36.
Opening Documents and Closing Documents,
each with the keyword “document.” Then, when
the user selects “document,” the Open, Print,
and Close topics (and maybe others) are dis-
played. Keyword footnotes (like context string
footnotes) can be placed anywhere in the topic,
not just at the beginning. When the user selects
a topic having a keyword in the middle, the
topic is displayed with the keyword at the top.
This feature is not well documented, and few
help authoring tools support it. This is difficult
stuff to really understand and implement well,
especially as the number of topics and key-
words go up. Some help authoring tools pro-
vide various ways of organizing footnote text,
as in Table 2.

Now let’s take a look at pop-up topics.
Some topics in a help file appear in a little pop-
up window, which goes away when you click it.
These topics are called pop-up topics. You do
not program pop-up topics per se. Whether a
topic appears as a pop-up or regular topic de-
pends upon the type of hypertext jump that
caused the topic to be displayed. It took me
forever to figure this out.

As a general rule, topics that appear only in
pop-ups do not have browse sequences, or
keywords and titles (+K$ footnotes). This is
why help authoring tools ask you whether a
topic is to be a pop-up of not. If you select Yes,
then they don’t include these footnotes.

TACKLING TOPIC JUMPS
Jumping from topic to jump is the most funda-
mental hypertext attribute used. Previously, I
discussed the # footnote, which contains the
context string. This is the address that defines
the place you’ll be jumping to. Next, we need a
method to define the start of a jump, both to the
Help Compiler and to the user. Since there are
two types of jumps—regular and pop-up, there
are two methods to indicate the type of jump to
be made.

The starting point, function, and destination
are all conveyed to the Help Compiler through
three different character formatting attributes
shown in Table 2:
The hidden text follows immediately after the
underlined text. No spaces are allowed.
That’s all there is to it. If you can figure out how
to underline characters and mark them as hid-
den in your word processor, you can program
jumps. This is not very intuitive, and so at first
it feels strange and somewhat complex. But
consider how simple it really is. One more
thing, you can also underline (double or single)
a graphic, instead of text. Then the jump occurs
when the user clicks on the graphic. Here’s
what a jump to our printing_overview topic
looks like (the bold text is marked hidden):

$ K + Contents
How to print a
document printing_overview
List of Help Topics goes here.
For Help on Help, Press F1

This syntax, underlined text or graphic, fol-
lowed by hidden text, can also be used for
jumps to secondary help windows, other help
files, and for executing help compiler macros.
Once you understand this concept, you’ll really
be able to make your help file jump to life.

A final note. Most help authoring tools
automate standard jumps, as discussed above.
However, they don’t always provide all pos-
sible options all the time. The mid-topic jump
previously mentioned is one example. Another
is allowing jumps in the topic title. Again, look
at VB Help for an example of topic title jumps.
Many of the titles have “See also” and “Ex-
ample” as jumps in the title—a nice touch, I
think.

GUIDE TO GRAPHICS
Graphics can really add a lot to a help file, and
you should look for creative ways to use them.

For example, all our program toolbar icons are in
a topic, and next to each we’ve included their
keystroke equivalents with a one-line explana-
tion that can be clicked on for more detailed
information. Another nice place for graphics is in
the topic title. Again, look at the VB Glossary.

The Help Compiler supports four types of
graphics files: bitmaps (BMP), windows
metafiles (WMF), hypergraphic (SHG), and
multiple-resolution bitmaps (MRB). The lat-
ter two formats are special formats that can
only be used by the Help Compiler. The pro-
grams to create SHG and MRB files are in-
cluded with VB professional.

All graphics are generally entered “By
Reference,” meaning that you enter a code
with the graph file name at the place where the
graph is to appear. Then, in the Help Project
file [BITMAPS] section you enter the full file
name. This allows you to display the graph in
different places in your help file, but store only

[

�

$printing overview
and Kprinting to
Search button. The K
footnote text contains the
topic keywords (sepa-
rated by semicolons).
They appear in the top
part of the Search Dialog
Box (SDB). When a topic
keyword is selected in the
SDB, its topic title (the $
footnote text) is shown
in the bottom part of the
SDB. Identical keywords
can (and should) be used
in multiple topics.

+PRINT:00010 to
<< >> buttons. The
+footnote specifies the
browse sequence, which
is controlled by the <<
and >> buttons. You also
to need to add the
BrowseButtons() macro
to your Help Project File
in order for these buttons
to appear.

�
�

�

38 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

C R E A T I N G H E L P S Y S T E M S

Even if you are only going to write a small help file, you should look
into getting a help authoring tool of some sort. Coding help topics is just
too tedious to do manually. (Developing Online Help for Windows
mentioned elsewhere includes a basic help authoring tool for WinWord
Version 2.) help authoring tools generally break into two categories:
those that include their own editor and those that work with a commer-
cial word processor. I recommend those that use a commercial word
processor. That way, if the help authoring tool does not support a
feature, such as tables or mid-topic jumps, you can code them yourself.
help authoring tools that provide their own editors allow you very little
flexibility in this area. Here are some products to consider:
These products use WinWord.
CreateHelp, Shareware, $40, CompuServe 100111,3452. In MSBASIC
forum, search for the file CH**.ZIP. The asterisks indicate the release.
Nice program, good value. Support and manual are limited. This would
be a good first program to try, and it may be all you’ll need.
Doc-To-Help, WexTech Systems, $295, (212) 949-9595. Some nice
features for turning existing Word documents, such as procedures
manuals, into help files.
HelpBreeze, Solutionsoft, $279, (408) 736-1431. Very nice program.

Help Authoring Tools

Includes the right set of well-implemented features. Well-written
manual and good support. Highly recommended.
RoboHelp, Blue Sky Software, $495, (800) 677-4946 or (619) 459-
6365. Includes extra programs for working with graphics, such as
screen and window captures.
These products include their own editors.
Help Magician, Software Interphase, Inc. $199, (401) 397-2340. Nice
support for multimedia.
VB/HelpMaker, Teletech Systems, Fred Bunn, CompuServe
72260,2217. Some nice features for integrating your VB program into
the help file.
VisualHelp, ShareWare, $49, (800) 242-4775 or (713)-524-6394. In
MSBASIC forum, search for the file VH.ZIP. Fun and simple to use for
small help files, but has no editor. Instead, text is entered into text
boxes. n

file lets you control the position, size, and
background colors for the regular text and
nonscrolling region, (if defined) for each win-
dow. This is well documented in the manual
that comes with the Professional Edition (Pro-
fessional Features, Help Compiler Section,
p128-130. Look at the bottom of page 132 for
an example.)

The Help Compiler allows you to display
two (or more) help windows at the same time.
Putting a glossary topic in a secondary window
is now commonly done. Also consider putting
index type material in a secondary window
with jumps to the primary window containing
the detailed information. Another use for a
secondary window is for a special graphic, or
other topic that is independent of the normal
help flow.

Adding a secondary window is simple: add
a line to the Help Project file [WINDOWS]
section for each secondary window. To display
a topic in a secondary window you need to also
specify the help file and window name in the
jump hidden text. (Remember, jumping to a
topic requires double-underlining some text
and following that immediately with the con-
text string of the destination topic text.) The full
syntax of the hidden text is:

context-string>WindowName@HelpFilename

If the window name is “g_win,” the help
file is “myfile.hlp,” and context string is “glos-
sary,” the hidden text is:

glossary>g_win@myfile.hlp

Note that this syntax allows you to also
jump to different help files. Secondary win-TABLE 2.

one copy.
The code is {bmX filename.ext} where X is

L for a left-justified graphic, C for a character
and R for a right-justified graphic. (WinWord
users note: this is not a field code, which the
braces would otherwise indicate.)

The BMP and WMF formats need no expla-
nation; you are, however, limited to 16 colors
with this method. The MRB format is really
only necessary if you intend your application to
work with CGA and EGA monitors. The format
of greatest interest is Semented Hypergraphic, or
SHG.

SHG files are BMP or WMF files that have
been processed by the hot spot editor,
SHED.EXE. SHED allows you to define hot
spots (rectangular regions) to a BMP or WMF
file. A jump (or macro) is then assigned to each
hot spot. When the cursor is positioned over a
SHG hot spot, it changes to a hand indicating to
the user that clicking the mouse initiates the
jump (or macro).

SECONDARY WINDOWS AND
MORE
The [WINDOWS] section of the Help Project

character formatting* Function Appearance in Help file

Double underline Start of regular jump Green text with solid underline
Single underline Start of pop-up jump Green text with dotted underline
Hidden text Context string associated with the

destination text. Usually the beginning
of a topic.

*applied to the text in the word processing file.

context string $ title K keyword phrases + browse sequence

printing_overview Printing overview printing PRINT:010
print_dialog_box Print Dialog Box printing;document PRINT:020
printing_options Printing Options printing PRINT:030

108

TABLE 1.Use the same keywords for related topics.

Authoring tools provide a number of ways to organize text.

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 39

C R E A T I N G H E L P S Y S T E M S

dows do not normally contain menu items or buttons. Therefore, you may
want to add a jump back to the main window. Of course, the user can close
the secondary window using the Control Box or pressing Alt-F4.

Topics appearing only in secondary windows should be treated the
same as pop-up topics when it comes to the Control codes. That is, they
should only be given a # context string footnote. Otherwise, the user will
be able to select the topic from the Search Dialog Box and it will appear
in the main window.

Another common feature is to make the title a nonscrolling region—
the title stays at the top of the screen as the user scrolls through the text.
It’s a nice touch. This attribute is set on a topic-by-topic basis. To specify
a nonscrolling region for a topic, set the title paragraph attribute “Keep
with next” on. (This is the attribute that keeps two paragraphs together.)
A note of caution: make sure this attribute is not set for topics appearing
in pop-ups. If it is, the topic text is not displayed.

Although I’ve covered only the fundamentals, this information,
with the Microsoft documentation, should be sufficient for you to
create a help file without any special help authoring tools, other than a
word processor capable of outputting RTF files (see sidebar: “Help
Authoring Tools”). Create three- or four-topic help files and try putting
in jumps, pop-ups, keywords and browse sequences so that you can get
the hang of the process. Also, define and jump to a secondary window.

Because of length limitations, there are two areas I did not cover:
macros and integrating the help file with your program. These subjects
are covered in a sample help file and VB program available on the
Internet and CompuServe’s MSBASIC forum. If you download and
examine these files, you’ll be a long way toward developing your own
custom help system. n

109

