
Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 81

WINDOWS PROGRAMMING

Otherwise you’d need another array of locations to
locate elements in the first array!

Finally, having all the elements the same size
also forces the rows and columns of a multidimen-
sional array to be the same size as other rows or
columns, respectively. This allows elements in any
row or column to be easily located by adding the
number of intervening rows or columns multiplied
by the row/column size, to the location value
(pointer) in the particular row or column. What,
then, is this row-major versus column-major order
thing? This table helps clarify the difference:

Column: 1 2
2-D Array: Row 2: c d

Row 1: a b

Row-major order: a b c d
Column-major order:a c b d (used by VB)

Whether VB uses row- or column-major order is usually immaterial
to the VB programmer. It’s really only important to know that VB, like
Fortran, uses column-major order when you want to manipulate the
memory locations with another tool, such as C. If row-major order was
used, then rows could be exchanged by moving blocks of memory the
size of an entire row. For example, rows 1 and 2 could be exchanged by
picking up elements “a b” and swapping them with “c d.” Because
column-major order is used, individual elements must be exchanged one
by one. This means that you must swap “a” with “c,” then “b” with “d.”

HOW THE DLL KNOWS
The final question is how the C-language DLL will become aware of the
format and size of the array. The calling program could explicitly tell the
DLL all the necessary information (starting location in memory, number
of dimensions, bounds of each dimension, and size of an element), or the
DLL could discover the information for itself. The former approach
would be necessary if the DLL was destined to be used by different
languages. The latter can be used if VB-specific functions are available
to reveal the information—and they are.

Using VB-specific functions allows a DLL to hook into VB itself and
directly manipulate or investigate VB data elements. These functions are
provided as part of the CDK, and can be used to build either DLLs or

vide standard routines for sorting, such as C’s
qsort(), Basic programmers use vendor sample
code or examples from books (like Gary Cornell’s
book: The Visual Basic 3 for Windows Hand-
book). Since I’m cursed with an attraction to the C
language, I often incorporate C programs and rou-
tines into my personal programming projects. In
fact, at our company, we actively look for opportu-
nities to develop C DLLs whenever possible be-
cause they can be used with various 4GL tools such
as Visual Basic, ObjectView and PowerBuilder.
This approach allows us to develop reusable soft-
ware in and for the Windows environment. Our
strategy is very similar to that explained in the
recent article on mixing C and Visual Basic (“Mix
C and VB for Maximum Performance and Productivity,” Visual Basic
Programmer’s Journal, Aug/Sept ‘93, Vol. 3, #5, pg. 20). And because
VB has no built-in arraying sorting routines, it was a natural opportunity
to do the job with a C DLL.

DLLs provide a language-independent way to build components for
Window’s applications. They can provide enterprise-standard functions
that will work with any program, regardless of the language used by the
caller. DLLs can also include specialized functions that work only with
programs developed in a particular language. The DLL will make use of
specific functions provided by VB Professional’s Control Development
Kit, so it won’t be usable with applications written in other products like
PowerBuilder or ObjectView. The VBPro CDK functions are explained
in the Professional Features Book 1 and are not provided as part of the
Personal edition of VB.

If you’re the type who likes to jump immediately to the code, you can
find the entire DLL in Listings 1, 2, and 3. Listing 1 is the DLL header
file and includes preprocessor directives and function prototypes. Listing
2 is the DLL itself and contains code for the LibMain(), WEP() and
vbSortArray() functions. Listing 3 is the module definition file and is
shown to emphasize the importance of selecting the correct name on the
LIBRARY parameter. In the end, it turned out to be a fairly short DLL,
but that wasn’t intuitively obvious at first.

The first hurdle to overcome was learning how VB stores array
elements in memory. Wow! Fortran programmers will feel right at home,
but for this C enthusiast, it was quite a shock. How dare they store them
backwards and use column-major rather than row-major order. But, to
get everyone on the same level playing field, let’s review some properties
of arrays.

First, array elements are always stored contiguously in memory—no
extra space is allowed between any two elements. This is necessary
because an array subscript is multiplied by the element size to generate
the location of a particular element. Second, array elements are always
the same size: a requirement for the multiplication scheme to work.

ecently I was surprised to find that Visual
Basic programmers often write their own
sort routines. While some languages pro- ROLL

YOUR OWN
VISUAL BASIC

2-D ARRAY
SORTING DLL

USING THESE C
TECHNIQUES.

George Defenbaugh is a project manager for Amerada Hess Corporation
in Tulsa, Oklahoma. He is currently working to implement client/server
technology for applications used in the natural gas industry. He has
written a college-level textbook about C, and teaches Advanced C,
Windows Programming in C and Visual Basic classes part-time at Tulsa
Junior College. Reach him at 918-599-4791 or via CompuServe at
71004,413.

C DLL Extends
VB Array Sorting

I

by George Defenbaugh

82 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

WINDOWS PROGRAMMING

custom controls. Use them to reduce the number of arguments required
by the DLL to one: the array descriptor (the other argument, nDebug, can
always be zero without affecting the DLL’s function). Four separate
functions allow you to obtain information about the array. In addition to
the manuals, these functions are also documented in the VBAPI.HLP file
provided with VBPro.

The first function we use is VBArrayBounds, which is called once for
each dimension and returns the number of rows or columns. The column
boundary is dimension one; the row boundary is dimension two. The high
and low boundaries are both stored in a long integer, and HIBOUND and
LOBOUND are used to extract the separate values. The low boundary is
subtracted from the high, and one is added to yield the number of rows
or columns.

The second is VBArrayElemSize, which returns the size of an
element. Our DLL only supports integer arrays, so this function is
primarily for illustration. You’ll use it to calculate the height of a column,
but could easily have used sizeof(int) instead.

The third function is VBArrayIndexCount, which reveals the number
of dimensions. This DLL supports one or two, and a one-dimension array
becomes a specialized version of a 2-D array.

Last comes VBArrayFirstElem which returns a pointer to the first
element of the array. That pointer tells the C DLL where the array begins
in memory. All other elements fall in line immediately after the first, with
column one appearing first, column two next, and so on.

The DLL supports only integer arrays. Handling arrays of other types
requires duplicating the core portion of the code that does the sorting. The
problem with writing a general-purpose C routine that handles any data
type is that C, unlike VB, requires variables to be defined before use with
a particular data type. A variable’s data type can be temporarily changed
on the fly, but it can’t be permanently changed while the program is
executing. Consequently, a general-purpose sort routine for arrays of
different types would really be a series of special-purpose routines, each
handling a particular type. Separate pointers would be needed for each
data type, and the choice of which pointer to use would be determined by
an argument passed to the DLL.

One useful thing about pointers in C is that pointer arithmetic is scaled
to the size of the item pointed to: if a pointer references one integer or
element of the array, adding one to the pointer causes it to point to the next
integer or element of the array. Likewise, if there are five rows in the 2-
D array, and you start with a pointer to the very first element, you can add
five to the pointer to make it point to the second element of the first row.
Remember that the array is laid out in column-major order, so the entire
first column occurs before the second element of the first row, which
starts the second column.

USE A SIMPLE RIPPLE SORT

Build your C DLL. This is essentially the entire program.
Hungarian notation is used to help form each variable's

prefix, and meaningful names help the code explain itself. After the
variables are defined, VB specific functions are used to obtain information
about the 2-D array. That information is used by various pointers, which
search through the rows and columns.

LISTING 2
LISTING 2. CONTINUED IN NEXT COLUMN.

Include a header file. SORTARY.H contains include files,
defined constants, and function prototypes. While a header

file isn't absolutely required, it's a good programming practice. Defined
constants avoid the problems associated with hard coding numeric
constants in the program.

LISTING 1

Visual Basic Programmer’s Journal FEBRUARY/MARCH 1994 83

WINDOWS PROGRAMMING

Match your names. This .DEF file establishes how the
program will be organized. The LIBRARY name must match

the file name or VB won't be able to use the DLL. LOADONCALL defers
the DLL load until it's needed, and WINSTUB.EXE provides a message
to the user if the program is accidently run from DOS rather than from
within Windows.

A ripple sort is used in this DLL: while most other sort algorithms are
faster, they are also more complicated. Using a ripple allows you to focus
on the interface between C and VB.

The basic idea of the ripple sort is to anchor yourself to one row, then
ripple through the rest of the rows looking for any that are smaller than
the anchor row. Each time you find one, an exchange is done. After all
the rows have been searched, the anchor row will contain the smallest of
all rows examined. The process is repeated by moving to the next row and
designating it as the anchor row. Each cycle in the process has to examine
one less row, and the next to the last row is the last one to serve as an
anchor.

Since you’re sorting a 2-D array, the comparison process is a little
more involved than when sorting only one dimension; you must loop
through each element of the two rows being examined. In memory, each
element in a row is separated from adjacent elements in the same row by
the height of a column of elements (the number of rows). Looping
through the elements in a row means you add the number of rows to a
pointer each time.

The DLL has two arguments. The first is hadArray, or “handle to
array descriptor.” Through it the DLL can discover all about the array by
using the functions mentioned above. The other argument is a flag that
controls whether debugging information is displayed by the DLL. This
information can be crucial during initial development. The approach also
allows a runaway sort process to be terminated. The second MessageBox
includes the MB_OKCANCEL style option with a subsequent test of the
MessageBox return value. If IDCANCEL is returned, the DLL termi-
nates.

Including a debug flag in the DLL’s argument list requires that the
debugging code be carried into production, rather than removed before
distribution. This might not be a good approach to use for a commercial
product, but can be helpful in a corporate or personal environment where
the programmer has close contact with the developers who use the DLL.
This allows developers to include features in their applications that can
turn the debugging option on when needed or requested, such as while the
user is on the phone with a support group or assistance center.

BUILDING THE DLL
At this point, I’ve covered everything except to note special files required
to build the DLL. With VBPro, both of these files will be found in the
\CDK directory of a standard installation. First is VBAPI.H. In Listing
1, it’s referenced in a #include directive and provides VB specific
definitions to the DLL. This includes function prototypes for the func-
tions VBArrayBounds, VBArrayElemSize, VBArrayIndexCount and
VBArrayFirstElem.

Second is VBAPI.LIB, the import library containing the linkage that
enables the DLL to find the VB-specific functions I just mentioned. The
file has to be identified to the linker, either in the list of libraries if using
a make file, or else in the list of project files if an integrated development
environment is used.

Third, the DLL itself is shown in Listing 2. The LibMain() and WEP(
) functions are the same as those found in almost any simple DLL. The
function of interest and the one called by the application is vbSortArray(

LISTING 2. CONTINUED FROM PREVIOUS COLUMN.

LISTING 3

84 FEBRUARY/MARCH 1994 Visual Basic Programmer’s Journal

). It can be viewed in four parts. The first ten lines are where the local
variables are defined. The next eight lines make use of the VB-specific
functions to obtain information about the format and size of the array.
Then follow two if() statement blocks that perform debug processing and
error checking. The ripple sort code brings up the rear in a moderately
long for() loop.

Fourth, the module definition or .DEF file is shown in Listing 3. As
I’ve already mentioned, it’s included to emphasize how the internal name
of the DLL must match the external name. Otherwise, VB won’t be able
to locate the subroutine. This is a feature peculiar to VB and some other
4GLs, and it doesn’t occur when the DLL is accessed by a C-language
calling program.

Finally, a test driver must be constructed and should remain available
during the life of the DLL, to be used whenever the DLL is changed. One
idea for a driver to test vbSortArray is to use the Grid control to provide
a visual representation of a 2-D array. The Grid control can be loaded
using the Rnd function, and a separate form can allow specific cells to be
“plugged” with user-supplied values. Plugging is necessary so that rows
with identical values in a particular column can be tested, to ensure that
the sort isn’t just ordering the rows based on the first column. The VB
code needed to identify the function in the DLL is fairly simple:

Declare Function vbSortArray Lib "sorary.dll"
(gnAry() As Integer, ByVal nDebug As Integer)
As Integer

Note how the array argument is defined, and that it doesn’t include the
ByVal keyword. However, the nDebug argument uses ByVal so that it’s
passed by value and not by reference.

One final note that will be very helpful to some readers. Simultaneous
development of the VB test driver code and the DLL is easy to arrange.
VB can be running at the same time as an integrated development
environment, or a programmable editor like Codewright. The developer
can bounce back and forth between changing the DLL and changing the
VB test code. However, it’s very easy to put VB into debug mode and
switch back to the C development environment without actually stopping
the VB program.

If SHARE is used, and the DLL is rebuilt while it’s still in use by the
VB test program, disaster can strike. It’s likely you’ll have to restart
DOS—not just Windows—and any unsaved files will be lost. So save all
files before testing any code, and stop all programs before starting any
compiles. n

WINDOWS PROGRAMMING

