
DATABASE DESIGN

I

TRACK CLIENT/SERVER
COST-PERFORMANCE

by Roger Jennings
A REALIT

ON THE US

PERFOR

OF Y

CLIENT/

APPLICATI

PAY DIV

ost large firms that implement cli-
ent/server database applications
want answers to two fundamental

questions: how many employees are using
the application on a regular basis and how is
the application performing? The answer to
the first question provides management with
the application cost per user. For example, if
the application development cost was
$250,000 and 500 people use it regularly, the
cost per user is $500. That’s not too much
more than a couple copies of shrink-wrapped
productivity software, so management is
likely to be happy with a number in the range
of $500 and under. Cost-per-user calcula-
tions do not take into account the productiv-
ity gains from the application, but productiv-
ity gains often are difficult to measure and
the metrics usually are suspect.

Other cost savings, such as eliminating the printing and
distribution of voluminous paper reports, can be more accu-
rately quantified. Like it or not, you’ll still find that manage-
ment relies primarily on the cost per user to measure the
success of a client/server database application. Down the
road, MIS staff will want to know the support cost per user hit.
74 MAY 1995 Visual Basic Programmer’s Journal ©1991
Y CHECK

AGE AND

MANCE

OUR

SERVER

ONS WILL

DENDS.

This figure is calculated by counting the
number of times per month users log into
the database and run at least one query,
then dividing the count into the monthly
support cost. There is no generally accepted
ballpark figure for support cost per user hit,
but it should fall into the same range as
support costs for the firm’s other client/
server applications.

Answering the second question presents
a greater challenge. Assuming that the appli-
cation provides users with the information
they need in a usable format, performance
measurement boils down to checking appli-
cation operating speed. How long does the
user have to wait to acquire and display the
requested information? Overall productivity
lags as a result of inordinate delays to log on

to the database, return rows, perform inserts or updates, or
format the information on the display. Users become reluctant
to run the application and some give up in disgust, increasing
the cost per user.

Performance problems usually are attributable to bad data-
base design, an overloaded back-end server, slow front-end
software or hardware, or network bottlenecks. Although a vari-
ety of general-purpose database and network performance analy-
sis tools are available, these tools are costly and seldom provide
the level of detail needed to accurately evaluate the perfor-
mance of a specific client/server application. Fortunately, it’s
not too difficult to add a table, a form, and a few chunks of Visual
Basic code to generate your own custom client/server perfor-
mance monitor. A reality check on the usage and performance
of your client/server application is likely to pay dividends in
your own performance review.

National Semiconductor Corp. has implemented a method
Take the Broad-Brush Approach. CycleTime displays
a histogram of the number of days necessary to process

an order or to perform a step in the manufacturing and distribution
process. This screen shot, which uses simulated data, shows the
cycle time for semiconductor wafer fabrication (Fab Start) to the
point where individual chips are cut from the wafer, tested, and
sorted by quality criteria (Sorted Die Bank).

FIGURE 1
Roger Jennings, a principal of OakLeaf Systems, is a consultant
specializing in Windows client/server database front ends. He has
more than 25 years of computer-related experience, and is the
author of four programming books: Using Access 2 for Windows,
Special Edition, and Discover Windows 3.1 Multimedia for Que
Books; and Access 2 Developer’s Guide and Database Developer’s
Guide with Visual Basic 3.0 for Sams Publishing. He’s also the
coauthor with Peter Hipson of Sams’ Database Developer’s Guide

with Visual C++ 2.0. Roger recently completed
Unveiling Windows 95 for Que Books, is in the
midst of writing Using Windows Desktop Video
for Que, and is finishing the workflow-oriented
OLE 2 Developer’s Guide with Visual Basic for
Applications for Sams. Reach him on CompuServe
at 70233,2161.
–1995 Fawcette Technical Publications H O M E

DATABASE DESIGN
for figuring the cost per user and performance metrics for its
CycleTime client/server application. If you’ve read my prior
Database Design columns, you’ve seen descriptions of other
components of this application and some of the Visual Basic
code to implement specific features. CycleTime consists of a
Visual Basic 3.0 front end to Sybase 10 running under AIX on an
IBM RISC/6000 Unix box.

National’s Larry Newcomer designed CycleTime to pro-
vide users with realtime workflow metrics for order process-
ing and for the various steps involved in manufacturing tens
of thousands of different semiconductor products. CycleTime
displays a summary histogram chart of cycle times (see
Figure 1), plus detailed data in spreadsheet format (see
Figure 2). Creating the histogram requires an average of 40
two-column rows from the server. Users specify the catego-
ries of products and the time period for the display in spe-
cially designed dialogs. The detail sheet displays individual
©1991–1995 Fawcette Technical Publications H O M
order line items or manufacturing/shipping meeting criteria
set by the user.

ACCURATE STATS
It’s not uncommon for users to set criteria that return a few
thousand rows, averaging 15 columns each. CycleTime can
print or copy to the clipboard both the histogram and all or
parts of the detail sheet. Getting accurate statistics for manufac-
turing and distribution cycles can involve returning tens of
thousands of single-column rows, if the statistics aren’t gener-
ated by a stored procedure. CycleTime users connect to Sybase
through National’s world-wide TCP/IP WAN, so network bottle-
necks could seriously affect CycleTime’s overall performance,

MANAGEMENT WILL PROBABLY BE HAPPY

WITH A COST PER USER OF $500.

especially for detail and statistics queries. Some users use 9600-
bps dial-up connections to CycleTime, so the performance of
the Shiva LANRover’s modem bank also is important.

The majority of CycleTime’s operations involve two steps:
executing the query and displaying the query result set (see
Figure 3). The performance log and message reply systems are
built into the production version of CycleTime, but the menu
items to display the support dialogs only appear to those who
have a specially-coded TXT file in their \CYCLTIME directory.
National’s performance monitor logs these CycleTime opera-
tions, identified in the Code column of the spreadsheet:

• Logon: The time required for the user to make a connection
to the database and the time required to query for pending
messages from CycleTime product support. When users
first log on to CycleTime, they are requested to provide
information about their location and method of connection,
which is stored in the tctusers table.

• Chart query and display: The time to execute the query and
return rows for histogram data, the time to display the
histogram, and the number of rows returned. Rows per
second is calculated from this data.

• Detail query and display: The time to execute the query for
the spreadsheet data, the time to insert the data in the
cells and display the spreadsheet, and the number of rows.
Rows per second is calculated for both query execution
and display.

• Statistics query: The time to execute the query to return
the number of days (float) required by the specified
operation for each manufacturing or distribution lot and
the number of rows returned. Rows per second is
calculated.

• Message transmission: The time to receive one or more
messages from CycleTime product support (GetMsgs),
acknowledge receipt of a message (AckReplies), and send a
message (SendMsg).

• Logoff: The time required to insert the stored performance
log records in the Sybase 10 tctperlog table. Rows per
second is calculated.

The records for the Detail operation provide the most valu-
able performance data, because you can identify whether a
performance problem is related to database/networking issues
or the user’s hardware. If the rows per second for the query are
in the same range as for other users, but the rows per second to
FIGURE 2 Display the Nitty-Gritties. Users can choose the range
of cycle times (in days) for the detail spreadsheet

display of the records that underlie the histogram in Figure 1. If the
user wants all of the records for a month or quarter, the number of
rows might range in the thousands. The user is warned ahead of
time how many rows the detail query will return. If it’s more than
1000, an "Are you sure?" message box appears.
Get the Lowdown on Performance. The spreadsheet
displays records from a snapshot of all the records in the

server’s tctperlog table. Select records for an individual user, a
specific user session, or a single operation within a session by
expanding the outline and clicking on the appropriate text element.

FIGURE 3
Visual Basic Programmer’s Journal MAY 1995 75E

DATABASE DESIGN
display the detail data exhibits a low comparative value, it’s
likely that the user has a slow PC, too many apps open (forcing
a disk-swap operation before displaying the data), or a slow
graphics subsystem. The entries for message transmission serve
to track usage of the messaging system. A high utilization rate
might indicate to MIS that other database applications deserve
their own messaging system.

GENERATING LOG RECORDS
Getting accurate performance data requires that the front end
generate the log records. A performance logging system that
78 MAY 1995 Visual Basic Programmer’s Journal ©199
relies solely on server performance data won’t identify front-
end problems. Thus the CycleTime front end creates and stores
a record for each operation in the tctperlog table of a local copy
of CTUSERS.MDB. CTUSERS.MDB also stores a set of custom
user preferences. Ultimately preferences will be stored on the
server for roaming users.

Records are identified by an unique user ID and a date/
time field, which is constant for each session, and an addi-
tional date/time field whose value is set at the end of each
operation. A local table is used to save log data so the records
can be added to the server’s tctperlog table in a single
transaction during logoff at the end of the session, improving
update speed by a second or so. In the event of a lost
connection or a crash, the unsent log records are transmitted
the next time the user logs off.

A LogOn record without a corresponding LogOff record for a
session indicates the user encountered a serious problem. The
subprocedure AddToLocalLog adds a log record to the local
tctperlog table (the tblLog Table object). AddToLocalLog is
called by the subprocedure for the final element of the logged
operation and is passed variables for the operation code
(strOpCode), the table in use (strOpTable), the number of records
in the snapshot created by the query (lngOpRecords), the time to
execute the query (sngOpQuery), and the time to display the
result (sngOpDisplay), if applicable (see Listing 1). strUserID and
varSession are declared as Global, because the value of these two
variables remains the same for a single session.

When the user ends the session by clicking on the Exit
button or by closing the main CycleTime form, the
Form_Unload event-handler tests the RecordCount property
of tblLog. If the user has caused an operation other than a
LogOn to occur, the Form_Unload event-handler calls the
Log Performance Locally. This code adds a record to
the local copy of the tctperlog table of CTUSER.MDB for

each logged operation. Using the AddNew method instead of a SQL
INSERT statement, and specifying index values rather than the
names of the fields, will contribute to the overall speed of the local
INSERT operation.

LISTING 1

Sub AddToLocalLog (strOpCode As String, _
strOpTable As String, lngOpRecords As Long, _

sngOpQuery As Single, sngOpDisplay As Single)
'Add record to local log (tctperlog) for operation
tblLog.AddNew
tblLog.Fields(0) = strUserID
tblLog.Fields(1) = varSession
tblLog.Fields(2) = Now
tblLog.Fields(3) = strOpCode
tblLog.Fields(4) = strOpTable
tblLog.Fields(5) = lngOpRecords
tblLog.Fields(6) = sngOpQuery
tblLog.Fields(7) = sngOpDisplay
tblLog.Fields(8) = False
tblLog.Update

End Sub
Use a Transaction to Send the Log to the Server. You don’t save a lot of time by wrapping the log entries with BEGIN TRANS
and COMMIT TRANS, but every second counts when you have a lot of simultaneous users. You can test the difference between

individual INSERTs and a single transaction by deleting the BEGIN TRANS and COMMIT TRANS statements in the following code. The
frmPerLogoff form tells the user that CycleTime is sending the performance log records.

LISTING 2

strLogSQL = strLogSQL & (Timer - sngStart) _
& ", "

End If
Else

strLogSQL = strLogSQL & tblLog.Fields(6) & ", "
End If
strLogSQL = strLogSQL & tblLog.Fields(7) & ", 0)"
strLogSQL = strLogSQL & " COMMIT TRAN"
'Send the log records to Sybase
lngRecs = dbSybase.ExecuteSQL(strLogSQL)

'Mark the record sent
If lngRecs Then

tblLog.Edit
tblLog.Fields(8) = True
tblLog.Update

End If
tblLog.MoveNext

Loop

'Clear the sent records from the local
'tctperlog table
strLogSQL = "DELETE FROM tctperlog WHERE sent <> 0"
dbUsers.Execute (strLogSQL)

End If
Screen.MousePointer = 0
Unload frmPerfLogoff
Exit Sub

SendLogError:
Screen.MousePointer = 0
Unload frmPerfLogoff
MsgBox "Error sending log to Sybase server."

Exit Sub
End Sub

Sub SendLocalLogToSybase ()
'Transmit content of local tctperlog
'table to Sybase tctperlog

Dim strLogSQL As String
Dim lngRecs As Long
Dim sngStart As Single

On Error GoTo SendLogError

sngStart = Timer
Screen.MousePointer = 11
frmPerfLogoff.Show
DoEvents
tblLog.MoveFirst
tblLog.MoveLast
If tblLog.RecordCount > 1 Then

'Send the log data to Sybase
tblLog.MoveFirst
Do Until tblLog.EOF

'Create the INSERT statement
strLogSQL = "BEGIN TRAN INSERT tctperlog VALUES('"
strLogSQL = strLogSQL & tblLog.Fields(0) & "', '"
strLogSQL = strLogSQL & tblLog.Fields(1) & "', '"
strLogSQL = strLogSQL & tblLog.Fields(2) & "', '"
strLogSQL = strLogSQL & tblLog.Fields(3) & "', '"
strLogSQL = strLogSQL & tblLog.Fields(4) & "', "
strLogSQL = strLogSQL & tblLog.Fields(5) & ", "
If tblLog.Fields(3) = "Logoff" Then

'Substitute the projected logoff time
If tblLog.Fields(5) > 0 Then

'Safety net for divide by 0
strLogSQL = strLogSQL & (tblLog.Fields(5) _

+ 1) * (Timer - sngStart) / tblLog._
Fields(5) & ", "

Else
1–1995 Fawcette Technical Publications H O M E

DATABASE DESIGNDATABASE DESIGN
SendLocalLogToSybase subprocedure; otherwise no log
records are transmitted and the LogOn record is deleted from
tblLog. The objective is to eliminate spurious log records,
which otherwise would be generated when the user decides
to exit CycleTime without running a query.

SendLocalLogToSybase works with individual INSERT op-
erations or as a single transaction in order to compare the
performance improvement offered by transaction processing
(see Listing 2). Delete BEGIN TRANS and COMMIT TRANS from
the strLogSQL string to see the difference in query execution
time. Notice that the actual LogOff time must be projected,
because the logoff operation doesn’t complete until CycleTime
transmits the SQL statement to the server.

If you’ve read my prior Database Design columns, you know
I’m a fan of SQL pass-through for Visual Basic and Access
80 MAY 1995 Visual Basic Programmer’s Journal80 MAY 1995 Visual Basic Programmer’s Journal ©1991
applications. SQL pass-through, which sends SQL statements
directly to the server, consistently outpaces conventional SE-
LECT, INSERT, and UPDATE queries that must pass though the
JET engine’s query optimizer and ODBC’s query parser.

FACING THE PERFORMANCE REVIEW
Writing the code to store and forward log records to a server
table is quite simple and doesn’t add much overhead to your
front end. The problem is that you must design forms and write

code to let the support folks review and analyze the perfor-
mance log to determine if anything’s amiss. The design of the log
review form and the log analysis tools is especially important if
you have a few hundred users logging on a couple of times per
day, which can result in 1000 or more records daily.

The Performance Log’s Form_Open event sends a query to
the server that returns all of the records in tctperlog to the ssLog
Snapshot object. Users of the performance log features of
CycleTime are on the same LAN as the server, so the time to
retrieve a few thousand tctperlog records is acceptable. A single
pass through the Snapshot populates the outline control at
three indent levels. (see Listing 3.) When you click on a text
element of the outline control to select records for a particular
user, session, or operation (or click on the All button to display
all records), the code populates the spreadsheet with the type(s)
of records specified by the check boxes in the Criteria for
Display frame (see Listing 4). Populating the spreadsheet al-
most always takes longer than creating the Snapshot.

HOW LONG DOES THE USER HAVE TO

WAIT FOR QUERIED DATA?
Statistics Don’t Lie. Opening the Performance Log
Statistics form makes a pass through a Snapshot of the

tctperlog records for the selected time period and calculates the
values for the labels. The default period is this week (beginning with
Sunday), but you can choose monthly, quarterly, and yearly statistics.

FIGURE 4
LISTING 3 Populate the Outline Control. The Form_Open event calls the GetLogHeaders subprocedure to create a snapshot of all
records in tctperlog. A pass through the ssLog snapshot adds items to the otlLog outline control at one or more of the three

indent levels: user, session, and operation. When a new record is encountered, three items are added, one at each indent level; two
records are added for each session conducted by a particular user.

Sub GetLogHeaders ()
'Purpose: Get log entries from Sybase for outline control

Dim strLogSQL As String 'Message SQL statement
Dim strUser As String 'User ID of sender
Dim varSession As Variant 'Session date/time
Dim intIndex As Integer 'Index to outline control item
Dim intItem As Integer 'Index to snapshot record
Dim strMsg As String 'Message box/caption message

Screen.MousePointer = 11

'Create the log query and send to Sybase
strLogSQL = "SELECT * FROM tctperlog ORDER BY user_id,_
 session, op_time"
Set ssLog = _

dbSybase.CreateSnapshot(strLogSQL, DB_SQLPASSTHROUGH)

otlLog.Clear
If ssLog.RecordCount > 0 Then

'Get the actual record count and
'set the spreadsheet rows
ssLog.MoveLast
ssLog.MoveFirst
sstLog.MaxRows = ssLog.RecordCount

Do While Not ssLog.EOF
If ssLog.Fields(0) <> strUser Then

'Add a user
otlLog.AddItem ssLog.Fields(0), intIndex
otlLog.Indent(intIndex) = 1

otlLog.ItemData(intIndex) = intItem
strUser = ssLog.Fields(0)
intIndex = intIndex + 1

End If

If ssLog.Fields(1) <> varSession Then
'Add a session
otlLog.AddItem Format$(ssLog.Fields(1), _
"mm-dd-yy hh:mm"), intIndex
otlLog.Indent(intIndex) = 2
otlLog.ItemData(intIndex) = intItem
varSession = ssLog.Fields(1)
intIndex = intIndex + 1

End If

'Add the log record
otlLog.AddItem (ssLog.Fields(3)), intIndex
otlLog.Indent(intIndex) = 3
otlLog.ItemData(intIndex) = intItem
intIndex = intIndex + 1
intItem = intItem + 1

ssLog.MoveNext
Loop

End If

Screen.MousePointer = 0
End Sub
–1995 Fawcette Technical Publications H O M E

DATABASE DESIGN
Figure 4 shows the Performance Log Statistics form opened
over the spreadsheet with the seven right columns visible. The
spreadsheet rows-per-second data for the chart (histogram)
and detail (spreadsheet) queries, as well as the detail display
rows per second, are calculated as the spreadsheet is filled
from the snapshot. Zero values appear as empty cells to
improve readability. Opening the Performance Log Statistics
form initiates a pass through the snapshot records for the
default period, the current week beginning with Sunday.

The Period Selection option buttons change the duration
of the period, and the This, Prior, or Next buttons execute
the code to run comparative statistics for other periods.
The period you choose for statistics data becomes the
period for analyzing operational exceptions The values for
standard deviation generated by opening the Statistics form
are needed to set the criteria so as to display only those
records for underachieving client operations. CycleTime
defines a slow operation as one that doesn’t achieve a row-
per-second rate of at least the average minus twice the
standard deviation for all like operations within a period.

The CycleTime logging system is designed for client/
server environments, but it’s appropriate for multiuser VB
and Access apps using shared MDB files. The code to gener-
ate the performance log records adds little overhead to
your front end. You take only a small performance hit during
front-end shutdown to send the performance log data to the
server or to the shared MDB file. Once you create the
performance log review forms and their accompanying code,
you can re-use them in other front ends with minor alter-
ations. The payoff is the ability to provide you and your
client or employer with exact cost-per-user data and to
pinpoint bottlenecks. A performance log guarantees you a
few extra points on your next performance review. ■
Sub FillLogRow (fIncrement As Integer)
'Purpose: Fill a single row of the spreadsheet
'Returns: fIncrement = True to insert the row

'Check to see if row is valid
If Not chkAll.Value Then

If ssLog.Fields(3) = "Stats" Then
Exit Sub

End If
If Not chkLogOnOff.Value And (ssLog.Fields(3) _

= "Logon" Or ssLog.Fields(3) = "Logoff") Then
Exit Sub

End If
If Not chkChart.Value And ssLog.Fields(3) _

= "Chart" Then
Exit Sub

End If
If Not chkDetail.Value And ssLog.Fields(3) _

= "Detail" Then
Exit Sub

End If
'All message entries are included
If Not chkMsgs.Value And InStr_

("GetMsgsSendMsgAckReplies", ssLog.Fields(3)) _
> 0 Then

Exit Sub
End If

End If

'Fill a single row of the log sheet
sstLog.Col = 1
sstLog.Text = ssLog.Fields(0)
sstLog.Col = 2
sstLog.Text = Format$(ssLog.Fields(1), "mm/dd/yy")
sstLog.Col = 3

sstLog.Text = Format$(ssLog.Fields(2), "hh:mm")
sstLog.Col = 4
sstLog.Text = ssLog.Fields(3)
sstLog.Col = 5
sstLog.Text = ssLog.Fields(4)
sstLog.Col = 6

'Rev 11 1/31/95 RJ Don't display zero entries
If ssLog.Fields(5) > 0 Then

sstLog.Text = ssLog.Fields(5)
End If
sstLog.Col = 7
If ssLog.Fields(6) > 0 Then

sstLog.Text = ssLog.Fields(6)
End If
sstLog.Col = 8

'Calculate query rows per second
If ssLog.Fields(5) > 0 And ssLog.Fields(6) > 0 Then

sstLog.Text = ssLog.Fields(5) / ssLog.Fields(6)
End If
sstLog.Col = 9
If ssLog.Fields(7) > 0 Then

sstLog.Text = ssLog.Fields(7)
End If

'Calculate display rows per second for Detail only
sstLog.Col = 10
If ssLog.Fields(3) = "Detail" And ssLog.Fields(7) _

> 0 Then
sstLog.Text = ssLog.Fields(5) / ssLog.Fields(7)

End If

fIncrement = True
End Sub

LISTING 4 Fill Columns Only with Valid Data. The check boxes in the Criteria for Display frame (see Figure 3) determine the types
of records to display when you click the text element of an outline control item or click on the All button to display all log

records. Because zero values are invalid, zero-value cells are left blank to improve spreadsheet readabilty. The spreadsheet control is
FarPoint Technologies’ Spread/VBX 2.0.
Visual Basic Programmer’s Journal MAY 1995 81Visual Basic Programmer’s Journal MAY 1995 81©1991–1995 Fawcette Technical Publications H O M E

	Home Page
	Track Client/Server Cost- Performance

