
Q & A

I

by Carl Franklin

SUBCLASS TO INSERT ITEMS
INTO THE SYSTEM MENU
This is your forum for addressing the intricacies of the Visual Basic
language. Send in your questions, clever tips, and techniques.
Visual Basic Programmer’s Journal will pay $25 for any submis-
sion or question we print. If your submission includes code, please
send a disk along with your hard copy. Mail submissions to Q&A
Columnists, c/o Fawcette Technical Publications, 209 Hamilton
Avenue, Palo Alto, CA, USA, 94301-2500. CompuServe: 74774,305.

INSERTING ITEMS INTO SYSTEM MENU
For months I have been trying to insert items into a VB
app’s system menu. Finally I figured out how to add an

item, but I don’t know how to define what clicking on the item
will do. Can you please shed some light on this subject?
—Jack Einhorn, New York, New York

Your program needs to respond to system menu com-
mands. You can accomplish this using MSGBLAST.VBX,
which you can find on CompuServe in the VBPJ Forum

(GO VBPJFO), or on the MSDN CD from Microsoft. MSGBLAST
lets you hook one or more messages. By hook, I mean that
when your application receives a message that MSGBLAST is
listening for, MSGBLAST’s message event is fired, and all the
parameters of the message are passed. This lets your VB apps
respond to messages that it could not otherwise process.

In your case, you want to listen for WM_SYSCOMMAND mes-
sages. This message is sent any time the user selects an option in
the system menu or selects the system menu itself. The wParam
argument holds the Menu’s identifier. When you added your
menu item, you specified its identifier. This value is passed in
wParam. Also, the standard system commands have constant
identifiers you can check for, letting you do much more than just
capture your own menu options (see Listing 1).

Because there are so many other uses for the MSGBLAST
control, I’ve assembled two programs to give you some ideas
for your own apps. The first program (see Listing 2) handles
power management issues on laptop or notebook computers
that use advanced power management (APM). A WM_POWER
message is sent to your application before the machine powers
down, and again when it resumes power, allowing you to close
critical files, or do whatever else may be necessary when in an
idle state. You would not want to suspend a critical operation
such as power suspension by putting up a message box. The
message boxes are for the sake of demonstration.
122 MAY 1995 Visual Basic Programmer’s Journal ©1991–
The second program (see Listing 3) returns the names of files
that are dropped on your form from the File Manager. In order
for this to work, you must call the DragAcceptFiles routine to tell
Windows that your particular window will accept files being
dropped on it. When files are dropped, the WM_DROPFILE
message is sent, and a handle to the drop is passed. By calling
the DragQueryFile routine and passing the hDrop, you can
determine the number of files and their names.

As an aside, MSGBLAST.VBX works by continuously check-
ing the message queue in a loop with the PeekMessage API
function. When it finds a message you’ve told it to hook, it fires
the Message event and passes you all of the message’s param-
eters. You could do the same thing in your application, but you’d
have to be in a continuous loop, checking the message queue.

USING API CALLS TO PRINT
I have written several VB applications that display
graphical and text information on a map background. I

recently added a Hewlett-Packard DeskJet 560C printer to my
system. I can print using VB printer control commands
(Printer.Line), but when I use Windows API functions (LineTo%)
to print, I get no printer response. I have used the same API code
with three other printers, with no problem. I have traced the
problem to the API function CreateDC%, which creates a device
context for the printer. CreateDC returns a zero (error) for my
HP 560C, but not for the other printers.
—Ken Cranford, Colorado Springs, Colorado

It’s either the driver or your code. From the sound of it,
it’s the driver. Either it’s not set up correctly, or there
is a problem with it. Before you call for tech support, get

the printer’s device context from the printer object’s hDC
property, which always returns a handle to the current printer.
If Printer.hDC is returning zero, call tech support. The key in
pinpointing problems with drivers or with any other element of
a high-level system is finding out which subsystems are work-
ing. To do that, you usually have to test each piece of the puzzle
until you come to the piece that’s broken.

DETERMINING WHETHER SCROLLBARS ARE VISIBLE
While it’s true that you can read the Grid1.Scrollbars
property at run time, there is no way to determine if

either scrollbar is actually visible. This makes placement of a
text box over a cell near the grid edges a bit hard to calculate.
—Zsolt Halmos, Los Gatos, California

VB does not provide a way to determine if a scrollbar is
actually visible, but there is a workaround. When a
scrollbar is visible, the size of the client area is dimin-

ished by the space taken up by the scrollbar. Compare the pixel-
CONTINUED ON PAGE 126.
Carl Franklin is an independent software developer who spends
his time writing code on the cutting edge of innovation, and ripping
blues leads on his Gibson Les Paul. Contact Carl for Q&A questions
and private consulting by e-mail at carlf@win2.com, by CompuServe
at 74561,3324 (he frequently visits the new VBPJ Forum on
CompuServe—GO VBPJFO), or by phone at 909-799-0302. You can
also write Carl at 24879 Lawton Ave., Loma Linda, CA 92354.
1995 Fawcette Technical Publications H O M E

Q & A

©

DefInt A-Z

Const WM_SYSCOMMAND = &H112
Const MF_STRING = &H0
Const SC_TEST = 1
Const SC_CLOSE = &HF060
Const SC_MAXIMIZE = &HF030
Const SC_MINIMIZE = &HF020
Const SC_MOVE = &HF010
Const SC_RESTORE = &HF120
Const SC_SIZE = &HF000
Const SC_TASKLIST = &HF130

Declare Function GetSystemMenu% Lib "User" _
(ByVal hWnd%, ByVal bRevert%)

Declare Function AppendMenu% Lib "User" _
(ByVal hMenu%, ByVal wFlags%, ByVal wIDNewItem%, _
ByVal lpNewItem As Any)

Sub Form_Load ()

'-- Get a handle to the system menu
hw = Me.hWnd
hMenu = GetSystemMenu(hw, False)

'-- Add a menu option with the caption, "Test"
If AppendMenu(hMenu, MF_STRING, _

SC_TEST, "&Test") Then
'-- This means success.

'-- Tell MSGBLAST to hook this form and process
' WM_SYSCOMMAND Messages.
MsgBlaster1.hWndTarget = hw
MsgBlaster1.MsgList(0) = WM_SYSCOMMAND

End If
1991–1995 Fawcette Technical Publications H O M
End Sub
Sub MsgBlaster1_Message (MsgVal As Integer, _

wParam As Integer, lParam As Long, _
ReturnVal As Long)

Select Case MsgVal
Case WM_SYSCOMMAND

'-- An item was selected from the system menu
Select Case wParam

'-- Create a message for each menu item
Case SC_TEST

Msg$ = "You selected Test"
Case SC_CLOSE

Msg$ = "You selected Close"
Case SC_MAXIMIZE

Msg$ = "You selected Maximize"
Case SC_MINIMIZE

Msg$ = "You selected Minimize"
Case SC_MOVE

Msg$ = "You selected Move"
Case SC_SIZE

Msg$ = "You selected Size"
Case SC_TASKLIST

Msg$ = "You selected Switch To"
Case SC_RESTORE

Msg$ = "You selected Restore"
End Select

If Len(Msg$) Then
'-- Display the message
MsgBox Msg$

End If
End Select

End Sub
System Menu Hook. This code adds an item to your app’s system menu and uses Message Blaster to process the menu
selection. Note that each item in the system menu shares the same message (WM_SYSCOMMAND) and the menu option is

specified in the two-byte wParam parameter of the message. To set up this application, place a MSGBLAST.VBX control on a form.

LISTING 1
DefInt A-Z

Const WM_POWER = &H48

Const PWR_CRITICALRESUME = 3
Const PWR_SUSPENDREQUEST = 1
Const PWR_SUSPENDRESUME = 2

Const PWR_FAIL = -1
Const PWR_OK = 1

Sub Form_Load ()

'-- Get a handle to the system menu
hw = Me.hWnd

'-- Tell MSGBLAST to hook this form and process
' WM_POWER Messages.
MsgBlaster1.hWndTarget = hw
MsgBlaster1.MsgList(0) = WM_POWER

End Sub

Sub MsgBlaster1_Message (MsgVal As Integer, _
wParam As Integer, lParam As Long, _
ReturnVal As Long)

Select Case MsgVal
Case WM_POWER

'-- We're getting a power management message
Select Case wParam

Case PWR_SUSPENDREQUEST
'-- System is suspending power
Beep
'-- Ask the user if he/she wants to
'-- close files
OK = MsgBox("System Powering Down. _

Close All Open Files?", 36)
If OK Then

'-- Return this value if
'-- everything is cool.
ReturnVal = PWR_OK

Else
'-- Return PWR_FAIL if you could
'-- not close files.
' This will abort the suspend.
ReturnVal = PWR_FAIL

End If
Case PWR_SUSPENDRESUME

'-- System is about to power up
MsgBox "System Coming Online. _

Re-Open Files here"
Case PWR_CRITICALRESUME

'-- System is about to power up, but we
'-- didn't recieve a PWR_SUSPENDREQUEST
'-- message first.
MsgBox "System Coming Online after _

unexpected powerdown. Re-Open _
Files here"

End Select
End Select

End Sub
LISTING 2 Power Management. Windows sends messages before and after suspending power on laptops that use advanced power
management. You can hook these messages so you can safely close any open files in case the machine is left turned off.

When the machine’s power is restored, another message notifies your program. To set up this application, place a MSGBLAST.VBX
control on a form.
Visual Basic Programmer’s Journal MAY 1995 123E

Q & A
based width of the control with the width of its client area
(which you can get by a call to GetClientRect), and if they are not
equal then the vertical scrollbar is visible.

Do the same calculation for the horizontal scrollbar, compar-
ing the pixel-based height with the client area’s height. I have
some functions (see Listing 4), VScrollVisible and HScrollVisible,
that use this method to determine whether or not the scrollbars
are visible for any given control.

CONTINUED FROM PAGE 122.
124 MAY 1995 Visual Basic Programmer’s Journal ©1991
The only stipulation is that the control passed must have
an hWnd property. The RECT structure (or Type) holds a
pixel-based map of any rectangle. The four elements of RECT
(Top, Bottom, Left, Right) hold pixel positions of the bounds
of the rectangle. The GetClientRect routine returns the bounds
of a Window’s client area, or the area available to the user as
a working area.

The client area does not include scrollbars or title bars. It
is for this reason that comparing the size of a control’s client
area to its overall size works for determining if scrollbars
are visible. ■
I

DefInt A-Z

Const WM_DROPFILES = &H233

Declare Sub DragAcceptFiles Lib "SHELL.DLL" _
(ByVal hWnd, ByVal Accept)

Declare Function DragQueryFile Lib "SHELL.DLL" _
(ByVal hDrop, ByVal Index, ByVal FileName$, _
ByVal Size)

Declare Sub DragFinish Lib "SHELL.DLL" _
(ByVal hDrop)

Sub Form_Load ()

'-- Get a handle to the system menu
hw = Me.hWnd

'-- Tell windows that our form can be a dropping
' place for files.
Call DragAcceptFiles(hw, True)

'-- Tell MSGBLAST to hook this form and process
' WM_DROPFILES Messages.
MsgBlaster1.hWndTarget = hw
MsgBlaster1.MsgList(0) = WM_DROPFILES

End Sub

Sub MsgBlaster1_Message (MsgVal As Integer, _
wParam As Integer, lParam As Long, ReturnVal _

As Long)

Select Case MsgVal
Case WM_DROPFILES

'-- wParam is a handle to the drop
hDrop = wParam

'-- Get the number of files by calling
'-- DragQueryFile
NumFiles = DragQueryFile(hDrop, -1, _

FileName$, 127)

If NumFiles Then
'-- Clear the form
Me.Cls
'-- Get each filename from _

DragQueryFile
For i = 0 To NumFiles - 1

FileName$ = Space$(127)
L = DragQueryFile(hDrop, i, _

FileName$, 127)
FileName$ = Left$(FileName$, L)
'-- Print the file name on the form
' for demonstration purposes.
Me.Print FileName$

Next
End If

Call DragFinish(hDrop)
End Select

End Sub
LISTING 3 Drag and Drop File Names from File Manager. This
code returns the names of files as they are dropped on

the form from the File Manager. When you drop one or more files
on the form, the WM_DROPFILES message is received. From the
information passed you can determine the number of files that
were dropped and their names.
–1
DefInt A-Z

Type Rect
Left As Integer
Top As Integer
Right As Integer
Bottom As Integer

End Type

Declare Sub GetClientRect Lib "User" _
(ByVal hWnd As Integer, lpRect As Rect)

Function VScrollVisible (Ctrl As Control) _
As Integer

'-- Create a RECT structure
Dim Area As Rect

'-- Get the control's client area coordinates
' (pixel based)
hw = Ctrl.hWnd
Call GetClientRect(hw, Area)

'-- Determine the width as the Right
' minus the Left
ClientWidth = (Area.Right - Area.Left) + 2

'-- Get the actual width in pixels
WindowWidth = Ctrl.Width \ Screen.TwipsPerPixelX

'-- If they are not the same then the
' vertical scrollbar is visible.
If ClientWidth <> WindowWidth Then

VScrollVisible = True
End If

End Function

Function HScrollVisible (Ctrl As Control) _
As Integer

'-- Create a RECT structure
Dim Area As Rect

'-- Get the control's client area coordinates
' (pixel based)
hw = Ctrl.hWnd
Call GetClientRect(hw, Area)

'-- Determine the height as being the
' bottom minus the top
ClientHeight = (Area.Bottom - Area.Top) + 2

'-- Get the actual height in pixels
WindowHeight = Ctrl.Height \ Screen.TwipsPerPixelY

'-- If they are not the same then the
' horizontal scrollbar is visible.
If ClientHeight <> WindowHeight Then

HScrollVisible = True
End If

End Function
LISTING 4 VScrollVisible and HScrollVisible. These routines
use the GetClientRect API routine to determine if a given

control’s scrollbar is visible.
995 Fawcette Technical Publications H O M E

	Home Page
	Subclass To Insert Items Into the System Menu

