
C H A N G I N G P O I N T E R S

©1991–1995
Controlling Pointer
Appearance

Smoothly changing the appearance of
pointers in your apps gives users useful feedback

about the state of your program.
 Fawcette Technical Public
mouse pointer has a substantial impact
on the usability of your programs. Al-
though the use of the MousePointer prop-
erty has nothing to do with the actual
speed of your application, it does affect
the user’s perception of speed.

A MATTER OF PERCEPTION
User perception, in a graphical environ-
ment such as Windows, is truly an impor-
tant matter and should never be underes-
timated. Think back to a program you
have used that was so incredibly slow the
hourglass was displayed more often than
the normal arrow. Then think about pro-
grams you have run where there are only
a few brief moments where you had to
wait while the hourglass was visible.
Which program seemed faster to you?

Changing a pointer’s shape communi-
cates the state of the program to the user.
Not changing the pointer communicates
a completely different message. Have you
ever used a program that was carrying
out a long operation but did not display
an hourglass to notify you of that fact?

If you are like me, you think of the
program as being sloppy or poorly writ-
ten. Such sloppy coding will cause the
user to perceive your program as slow,
and changing that perception is very dif-
ficult once it is in the user’s mind.

The MousePointer property can be
used on three distinct types of objects in
Visual Basic: screen objects, form objects,
and most control objects. Setting the
screen’s MousePointer property controls
the pointer used everywhere on the vis-
ible screen (even when the mouse is over
other applications’ windows). This prop-
Visual Basations H O M E
erty will override the mouse pointer set-
ting for individual forms and controls.
The Form object’s MousePointer prop-
erty controls the pointer only while it is
over the form whose property was set.
Additionally, most VB controls have a
MousePointer property. Setting a control’s
mouse pointer overrides the Form’s
mouse pointer only while the pointer is
over the control.

Most programmers usually display the
hourglass during processes that take a
few seconds or longer to complete. This
time factor is usually (and erroneously)
based on the time it takes to complete a
task on the programmer’s machine, not
the customer’s machine. You’ve heard
this before, but let me say it again: when
in doubt, always assume your customers
have the slowest machines in existence
when coding.

When designing a program, most pro-
grammers generally test their code with
the minimal amount of steps required to
test all aspects of their code. Program-
mers like to program, and most program-
mers I’ve met dislike extensively testing
what they have programmed, lest they
find bugs in their magnificent code.

In a database application I developed
a while back, I tested my code by creat-
ing a few test records and trying all of the
available operations on those records.
This tested my code sufficiently to en-
sure my algorithms worked as designed,
but it failed to stress-test my application
and provide reasonable performance
benchmarks.

Operations that took less than a sec-
ond on my development machine (a
B Y C H R I S A D L E R

and overhead required to develop Win-
dows applications are automatically
handled by Visual Basic itself. The pro-
grammer doesn’t need to know that such
tasks exist.

Some tasks, however, aren’t auto-
matically handled by VB, and many be-
ginning programmers (and even some
advanced programmers) overlook
them. One of the frequently overlooked
manual tasks a programmer must un-
derstand is the correct use of the
MousePointer property.

Most Visual Basic programmers have
used the MousePointer property in their
projects. This property provides a
simple mechanism for changing the
shape of the mouse pointer among the
eight predefined shapes provided by
Windows. Most programmers use the
MousePointer property in two basic
ways: displaying an hourglass and dis-
playing the normal arrow.

While changing the shape of a pointer
may seem mundane, the shape of the

Visual Basic is probably the most
productive language for Win-
dows application development.
Almost all of the tedious tasks
Chris Adler is vice president of Invoice
Central and the author of several successful
shareware utilities. He also works as an
independent contractor specializing in cli-
ent/server database applications. He can
be reached on Compuserve at 71726,2677.
ic Programmer’s Journal MAY 1995 65

C H A N G I N G P O I N T E R S
Pentium 90 with 32 MB of RAM) took tens
of seconds and sometimes longer on my
customer’s machines. I did not imple-
ment the hourglass in many of my rou-
tines because to me they were instanta-
neously completed. Changing to an hour-
glass would only result in a fast flash as
the arrow turned to an hourglass and
then back to the arrow.

My customers paid the price when
they stared at screens with a normal ar-
row for the mouse pointer, wondering
66 MAY 1995 Visual Basic Programmer
what was going on in the background. Did
the program lock up? Ultimately the pro-
grammer pays the price for this type of
shortsighted coding.

To ensure that the cursor changes
when a procedure is being executed,
you can wrap all of your code in an
hourglass routine that displays the hour-
glass upon startup and restores the
hourglass to the previous pointer upon
completion.

Some would argue that procedures
’s Journal ©1991–1995 Fawcette Techn
that are called only from within other
procedures do not require hourglass
management if their calling procedure
already handles it. This may be true, but
using the techniques I’ll illustrate, you
can effectively add hourglass manage-
ment to all of your procedures without
any adverse side effects. By protecting
all of your procedures you ensure your
code will always handle the hourglass
properly, even when major changes are
made to your application.

So you’ve finished coding your mas-
terpiece and you’ve included basic hour-
glass management. Upon starting a pro-
cedure you display the hourglass, and
when the procedure is complete you set
the mouse pointer back to the default
pointer or the arrow.

Is this all you need to do? Let’s look at
a common scenario that illustrates a prob-
lem with this basic approach to mouse
pointer management.

 The code shows two subroutines,
TestSubOne and TestSubTwo. TestSubTwo
is called by TestSubOne about halfway
though the subroutine. Notice the hour-
glass code at the top and bottom of each
procedure. See if you can find the trap this
coding method springs on the unsuspect-
ing programmer (see Listing 1).

TestSubOne starts by setting the mouse
pointer to an hourglass. The program con-
tinues into the next part of the subroutine
and some other code is executed. Next, the
program calls TestSubTwo to perform
It Isn’t Right to Point. The most
common (and flawed) approach

to hourglass management: If the pointer
shape is changed from an arrow to an
hourglass in TestSubOne, and another
routine requiring a shape change in the
cursor is called, the procedure is foiled.

LISTING 1

Sub TestSubOne ()
'Show the MousePointer
'Screen.MousePointer = HOURGLASS
'Some code here.
.
.
'Call the other routine now
Call TestSubTwo

'More code here.. and this code
'takes a while to complete......
.

'Hide the hourglass and
'restore the arrow now
Screen.MousePointer = ARROW

End Sub
Sub TestSubTwo ()

'Show the hourglass
Screen.MousePointer = HOURGLASS
'This subroutine performs some
'operation and then ends
'Your code here........

'Restore the hourglass to an
'arrow now
Screen.MousePointer = ARROW

End Sub
ical Publications H O M E

C H A N G I N G P O I N T E R S
some other operations. Notice that the
first thing TestSubTwo does is change
the mouse pointer to an hourglass.

This is done even though the mouse
pointer is already an hourglass. This
approach is not necessarily bad, but it
contributes to this code’s hourglass
problem.

At the bottom of TestSubTwo, the
mouse pointer is returned to an arrow.
There is nothing specifically wrong with
this, unless the procedure was called from
©1991–1995 Fawcette Technical Public
within another procedure. With the mouse
pointer as an arrow, the program returns
to the middle of TestSubOne.

Now the long operation processes
and makes the user wait for it to com-
plete, and all with an ordinary arrow as
a mouse pointer. Calling TestSubTwo
has foiled the hourglass management of
this scenario.

TestSubOne does not know that
TestSubTwo turned the hourglass into an
arrow and assumes the mouse pointer is
Visual Basations H O M E
an hourglass. This enduring problem need
not plague programmers any longer: using
either of my two hourglass management
routines will cure this problem and help
you present a professional and well-pol-
ished look and feel to the user.

KEEPING TRACK OF THE SHAPE
Now let’s examine the two different mouse
pointer management methods and explore
their benefits and drawbacks. These meth-
ods are known as buffered management
and reference count management. Both
provide effective and professional mouse
pointer management, but with clearly dif-
ferent implementations and requirements
on the programmer.

In the buffered management technique,
every procedure buffers the mouse
pointer in use before your code started,
and displays an hourglass while your code
executes. Upon ending, the program re-
stores the buffered mouse pointer, re-
turning it to how it was before your code
started.

Let’s look at the buffered management
approach by examining some simple code
that shows it in action:

Sub TestSubOne ()
'Buffer for the MousePointer
Dim iOldPointer As Integer
'Buffer the current MousePointer
iOldPointer = Screen.MousePointer
'Change to an hourglass
Screen.MousePointer = HOURGLASS

Your code goes here...

'Restore the MousePointer
Screen.MousePointer = iOldPointer

End Sub

One thing to notice in the sample is the
introduction of the variable iOldPointer.
This variable is the buffer used to store
the mouse pointer in use before it is
changed to an hourglass.

If TestSubTwo is modified to handle
the mouse pointer in the same way
TestSubOne does, you will have a consis-
tent and seamless hourglass between the
two subroutines. The biggest concern here
is that every procedure using this tech-
nique must have a local integer variable
to buffer the previous mouse pointer.
Each procedure must have its own buffer
variable because the previous mouse
pointer can vary across procedures.

This approach to tracking the mouse
pointer shape is efficient, but each proce-
dure requires extra time to implement
(two extra lines of code for each proce-
dure, four if you count the comments).

If you have a large number of rou-
tines that need mouse pointer manage-
ment, you may be interested in the time
ic Programmer’s Journal MAY 1995 67

C H A N G I N G P O I N T E R S
savings offered by the Reference Count
method instead.

The reference count management
technique keeps a count of the times
the hourglass is displayed versus the
number of times it is returned to an
arrow. This technique assumes the
hourglass will be visible if any proce-
dures have requested that it be shown,
and it has not yet been restored to an
arrow.

The Reference Count method keeps
track of the mouse pointer by examining
the number of times the hourglass was
called versus the number of times it was
restored to an arrow. Each time an hour-
glass is needed, the variable that stores
the reference count of the hourglass is
incremented by one.
68 MAY 1995 Visual Basic Programmer
Likewise, the same reference count is
decreased once for each call to restore
the mouse pointer to the arrow. This
process works just like the reference
count for a Windows DLL.

Each time an application loads the
DLL, the reference count is increased
by one. When all applications have fin-
ished and decreased the reference
count accordingly, the DLL is no longer
needed and is unloaded from memory
(see Listing 2).

The first step in the reference count
method is to create two subroutines that will
manage our reference counting for us. Both
refer to the variable iHourGlassCount. This
variable can be declared globally, or better
yet, the code can be placed in a module that
encapsulates the iHourglassCount and
’s Journal ©1991–1995 Fawcette Techn
iOldPointer variables. After the variable is
declared, create a new module by selecting
New Module from the File menu.

Add these two subroutines to the
module, and create the two module-
level variables by placing these dimen-
sions in the declarations procedure of
the new module:

Dim iHourglassCount as Integer
Dim iOldPointer as Integer

These variables are module-level and
only accessible by procedures found in
the module. This technique is an easy
way to apply object-oriented program-
ming techniques to the traditionally non-
object-oriented VB development envi-
ronment.

Let’s revisit the TestSubOne and
TestSubTwo subroutines again, this time
with the reference count approach to
mouse pointer management (see Listing
3). This technique is much easier to imple-
ment and requires fewer lines than the
buffered approach. Programmers will find
it simple to use VB’s replace feature to
replace their existing hourglass code with
the reference count code lines.

One exception to hourglass manage-
ment that must be handled manually by
the programmer is user input. Code that
requires interaction from the user should
appropriately change the mouse pointer
to an arrow until the user has completed
the input process, then restore the hour-
glass when input is complete.

In these instances, it is appropriate to
explicitly set the mouse pointer to the
desired shape. In my example, a subrou-
tine displays a message box while tempo-
rarily handling the hourglass. Because
the hourglass is in use when it is tempo-
rarily changed to an arrow, hard-coding it
is acceptable.

If the exact state of the mouse pointer
is unknown when allowing input, use the
buffered management approach to
handle the temporary mouse pointer
change. You will never go wrong if you

THE SHAPE OF THE

MOUSE POINTER HAS A

SUBSTANTIAL IMPACT ON

 THE USABILITY OF YOUR

PROGRAMS.
Counting Cursor Changes. This listing contains the core code required by the
reference count technique. Each time the cursor shape is changed, the reference

counter is increased by one, and when unloaded, it is decreased by one.

LISTING 2

Sub ShowHourglass ()
'Increase the hourglass count by 1
iHourglassCount = iHourglassCount + 1
'If this is the first call then buffer

'the MousePointer before we change it
If iHourglassCount = 1 Then

'Buffer the MousePointer
iOldPointer = Screen.MousePointer

End If
'If the cursor isn't an hourglass then make it so
If Screen.MousePointer <> HOURGLASS Then

Screen.MousePointer = HOURGLASS
End If

End Sub

Sub ReleaseHourglass ()
'Decrease the Hourglass reference count by 1
iHourglassCount = iHourglassCount - 1
'If there are no more requests then release
'the hourglass
If iHourglassCount < 1 Then

'Restore the pointer original pointer
Screen.MousePointer = iOldPointer

End If
End Sub
This One Counts. This code is similar to the hourglass management implementation
in Listing 1, only using the reference count hourglass management scheme. This

code handles pointer changes faster and in fewer lines than Listing 1.

LISTING 3

Sub TestSubOne ()
'Show the MousePointer
Call ShowHourglass
'Some code here.

'Call the other routine now
Call TestSubTwo
'More code here.. and this code takes a while to
'complete......
.
'Release the hourglass now
Call ReleaseHourglass

End Sub
Sub TestSubTwo ()

'Show the hourglass
Call ShowHourglass
'This subroutine performs some operation
'and then ends
'Your code here........
'Restore the hourglass to an arrow now
Call ReleaseHourglass

End Sub
ical Publications H O M E

C H A N G I N G P O I N T E R S
use some buffered management routines
in conjunction with the reference count
method when handling input from the
user (see Listing 4).

Prematurely exiting a procedure re-
quires that you restore the hourglass to
the appropriate state before you leave,
or the user may be faced with a per-
petual hourglass, even when the pro-
gram is idle.

Here is a sample that will acciden-
tally strand the hourglass as the mouse
pointer when DataIsComplete is True:

Sub IsDataOK
Screen.MousePointer = HOURGLASS
If DataIsComplete then

Exit Sub
Else

MsgBox "Your data is _
incomplete", MB_OK, "Oh Oh"

End If
Screen.MousePointer = ARROW

End Sub

By placing code immediately before
the Exit Sub, this problem can be avoided.

DON’T TOUCH THAT BUTTON!
So you’ve finished coding your program
and everything works as planned. The
user can click on a button and begin a
long operation, promptly changing the
mouse pointer to an hourglass to notify
the user of the lengthy process. What
happens if the user clicks on the same
button he just clicked on while the mouse
pointer is an hourglass? Is it discarded
or is it processed?

In this case, the click is processed just
like any other event in Visual Basic. But if
the cursor is an hourglass, doesn’t that
mean “wait until I am done”?

In Visual Basic the hourglass is basically
just a picture, no more than one of many
available mouse pointers. Visual Basic does
not care what the mouse pointer is set to:
it’s business as usual. Now, think about
how your code is written. What happens if
the user clicks on a button that starts a long
task, and then presses it again, causing two
instances of the procedure to be executing
simultaneously.

Most procedures aren’t designed to
handle this type of action. You will prob-
ably run into a trappable error that promptly
brings down your application. You can even
start a recursive process and be greeted by
an “Out of Stack Space” error.

Then how do you disable input to all of
the controls on a form during long opera-
tions? Do you set the Enabled property of
all of your controls to False? This causes
the control to ignore input, but at the
expense of graying the text and changing
the physical look of the controls unneces-
sarily. Simply change the Enabled prop-
©1991–1995 Fawcette Technical Publica
erty of the form to False to disable all
controls on the form.

When a window is disabled, its con-
trols are still completely functional,
though limited to the user. Control events
can still be generated programmatically,
even when the control they are generated
by is disabled to the user.

A good example is the Click event of
Visual Bastions H O M E
a command button. Setting the Value
property of the command button will
still fire the Click event, as if the user
clicked on the button. Tying up these
loose ends will allow your program to
accurately communicate its current
state to the user, and account for the
overexcited user who doesn’t believe
the hourglass is what it seems. ■
Hybrid Pointer Management. This example combines the benefits of the
reference count and buffered mouse management methods during user input.

While the code handles the cursor changes, the programmer still needs to account for
excess Click events while the program is executing.

LISTING 4

Sub ConfirmAddress
'Request the hourglass
Call ShowHourglass
'Some code here
.
'Temporarily show the hourglass
iOldPointer = Screen.MousePointer
Screen.MousePointer = ARROW
sMessage = "Are you sure you want to exit?"
iReturnValue = MsgBox(sMessage, MB_OK, "Please Confirm")
'Return the hourglass to the previous pointer
Screen.MousePointer = iOldPointer
'Do something here
.
'Release the Hourglass
Call ReleaseHourglass

End Sub
ic Programmer’s Journal MAY 1995 69

	Home Page
	Controlling Pointer Appearance

