
D E A D L Y D E V E L O P E R D I S E A S E S

B Y K E N S C H I F F

Diagnosing Sick Screen
Syndrome

The same thing that makes VB so attractive lowers the developer’s
resistance to the 12 Deadly Developer Diseases. Education is the

most potent vaccine against this scourge that results in gooey GUIs.
power. But they also enable us to create
more garbage—a lot faster and in higher
resolution. A graphical user interface car-
ries no inherent guarantee of usability.
Many developers seem to believe that the
GUIer, the better. But caution is neces-
sary. From processor time to program-
ming time to configuration time, mis-
guided GUI designs frequently end up
wasting system and human resources
rather than enhancing productivity.

To the end user, the interface is the
software. A less-than-usable front end can
totally scuttle a brilliant back-end design.
Historically, interface design and usabil-
ity have been poorly understood, and as
a result, have had the fewest resources
allocated to them. Driven by the high
expectations and demands of today’s us-
ers, interface design and usability are
becoming critical components of the de-
velopment process. Visual Basic is a pow-
erful tool for the creation of graphical

T hese days you have to be care-
ful. New development tools give
us tremendous flexibility, inge-
nious capabilities, and fabulous
60 MAY 1995 Visual Basic Programmer’

Ken Schiff is president of Productivity
Through Technology Inc., a consultancy for
creating obvious, discoverable, and usable
software. Ken’s clients include Fortune 100
corporations, large commercial software
developers, small ISVs, VARs, and system
integrators. Reach him on the Internet at
kenguiguy@aol.com, or by fax at 510-471-2402.
user interfaces. However, there is no sub-
stitute for understanding visual design
principles and Windows conventions.

In fact, after several years of intensive
research, I have identified twelve Deadly
s Journal ©1991–1995 Fawcette Techn
usable, logical, and attractive user inter-
face, regardless of how hard he or she
tries. The best cure is prevention, through
self-administered awareness, discipline,
and education (ADE).

Awareness is frequently innate or in-
stinctive, but it can be acquired. Disci-
pline is self-imposed, although feedback
from others can help keep you on the
right track. Education is an ongoing pro-
cess and can come from classes, semi-
nars, and reading. I’d like to provide you
with some background you’ll need to start
recognizing the symptoms of the Deadly
Developer Diseases. Consider this article
an intense lab session, a sort of DDD 101.
In the name of patient confidentiality, I’ve
removed the names of all the applications
used in this article’s figures.

HYPERSTRATAMANIA
This disorder’s principal symptom is the
excessive use of 3-D controls on the
screen, to the extent that available space
for data is considerably reduced. Sport-
ing panels with three layers chiseled in,
four layers raised out, and buttons with
half-inch high elevations, some screens
can be mistaken for Arizona’s geological
formations. Some applications even have
menus, drop-down menus, and labels with
text that rival the bas relief of the ancients
(see Figure 1). Using 3-D sparingly will
cure Hyperstratamania.

HYPERLAYERMANIA
Have you ever seen a screen with five or
six layers of modal dialogs? Some pro-
grams use so many modal layers that you
forget what you were doing when you
Developer Diseases. These contagious
maladies are found throughout the world-
wide developer population. Although
symptoms vary widely, these diseases all
seem to be caused by the same thing: a
lack of training and experience. The dis-
ease manifests itself ultimately by hinder-
ing the developer’s ability to design a
ical Publications H O M E

D E A D L Y D E V E L O P E R D I S E A S E S
started opening the dialogs. Because
they’re modal, you can’t move any of the
previous layers out of the way to see the
parent window (see Figure 2). That’s
Hyperlayermania at its best (or worst).
The cure is simple: limit the levels used
on screen.

CLAUSTROPHOBIC OBJECTOSIS
This syndrome is characterized by too
many objects on the screen, giving the
user that crowded feeling (see Figure 3).
White space (or in the case of contempo-
rary Windows applications, gray space)
is important. Ease of use varies inversely
with the number of widgets on the screen
at any given time. Don’t be afraid of using
blank space: it can open up the claustro-
phobic interface dramatically.

ACUTE ICONITIS
The most prevalent of the diseases, Acute
Iconitis is manifested by placing too many
icons on the screen. From different
toolbars for each child window to multi-
colored graphics on each command but-
ton, this disease is frequently accompa-
nied by a major misunderstanding of vi-
sual design (see Figure 4). You can cure
Iconitis by limiting the number of icons
displayed at any one time.

HYPOTHERMAL PSEUDOUSABILITIS
This disease has reached worldwide epi-
demic proportions in the developer com-
munity. Programs are being designed to
look “cool” or “sexy,” with total disregard
for usability. While the UI may look great,
it may not make tasks any easier. In the
words of interface designer Don Norman,
“The best interface is a transparent one.”
Rather than saying, “Hey, what a great
UI,” the best compliment from a user is no
comment at all. Just seeing a user sit right
down and get to work without any overt
awareness of the interface is the sign of a
healthy application.

RANDOM
HYPERMULTIBUTTON SYNDROME
This disease is manifested by an exces-
sive number of command buttons,
grouped and positioned in various differ-
ent alignments, and confused by the use
of 3-D panels to simulate secondary com-
mand buttons (see Figure 5). This is typi-
cally cured by using tabbed dialogs and
other types of containers.

POLYSYLLABIC TECHNOJARGONITIS
Programmers speak a different lan-
guage than the average user. When
faxing, they rasterize rather than pre-
pare the cover page (see Figure 6). Re-
member who your users are. Regard-
less of the conversational language they
use, keep in mind that they are not
©1991–1995 Fawcette Technical Public
usually propeller-heads. Use words that
they will understand.

INFECTIOUS FEATURITIS
Users use applications to get work done.
Infectious Featuritis is typified by adding
features and complexity that users don’t
really want or need, but developers love.
These are usually solutions in search of

problems rather than ways that will allow
users to accomplish a task sooner or more
efficiently. Note that if too many features
are available, users won’t know where to
start. A valuable feature is one that is used.

TOXIC DOCFIXMANIA
This highly prevalent disease is named
for the frequently heard phrase among
Symptoms of Hyperstratamania. This dialog has three layers
facing “in” and four facing “out,” with nearly no room for data.

Overusing 3-D creates a Grand Canyon of form fissures; use 3-D only when
it enhances usability, not simply because it’s available.

FIGURE 1
Trapped in a Modal Fever. This is an example of the downward
spiral resulting from an overuse of modal dialogs. Five different

modal dialogs must be closed in reverse order to get back to work. Change
to property sheets or tabs for better organizational health.

FIGURE 2
Visual Basic Programmer’s Journal MAY 1995 61ations H O M E

D E A D L Y D E V E L O P E R D I S E A S E S
developer teams: “Let’s fix it in the docu-
mentation.” While we can occasionally
temper the symptoms, the cause is still
unknown. Here’s a preventive measure: if
it doesn’t work right, don’t include it.
Never use documentation as a crutch.

PERNICIOUS VERFIXMANIA
This ailment comes from another phrase
often heard from developers, “Let’s fix it in
the next release.” Why introduce prob-
lems? If it doesn’t work right, don’t include
it in this release. If there is a problem in the
first release, your program probably won’t
live to see a second chance.
64 MAY 1995 Visual Basic Programmer’
HYPERCOMPLEX HIGHRESOSIS
This is a relative newcomer to the Desk
Reference. It erupted when relatively
inexpensive high-resolution monitors
and display devices became readily
available. It is best explained by this
theorem: the propensity to complicate
user interfaces and the challenge to keep
things simple increase as the screen
resolution increases. The only known
cure is restraint.

CHRONIC MARKET PRESSURITIS
This disease comes from the pressure
to release products before they are
s Journal ©1991–1995 Fawcette Techn
ready. It is usually contracted by con-
tact with individuals from other depart-
ments within a developer’s organiza-
tion. Its only cure is good judgment,
which comes from experience. Unfortu-
nately, experience usually comes from
poor judgment.

If you encounter maladies that should
be included on this list, send descrip-
tions to the National Effort for Research
on Developer Diseases (NERDD) in care
of myself to kenguiguy@aol.com.
Fax: 510-471-2402. ■
I’m Breaking Out in Windows! Enabling
a user to open many overlapping windows

simultaneously is symptomatic of Claustrophobic
Objectosis, not to mention “Out of Memory” errors.

Again, tabbed dialogs can free up memory, as well as your user.

FIGURE 3

FIGURE 4 An Outbreak of Acute Iconitis .

 Every child window on this screen has its
own toolbar of related functions. Besides confusing
the user as to the functionality of each button, the only

white space to be found is in the data area. Use restraint to avoid
the ailment: go lightly with buttons.
Call in the Control Chiropractor. This victim of Random
Hypermultibutton Syndrome is in severe need of an adjustment to

straighten it out. There are five different alignment schemes on this crooked
dialog, and raised panels are easy to confuse with functional buttons.

FIGURE 5
C’mon Doc: Give
it to Me Straight.

Specialists in any industry throw
jargon around like it’s going

out of style. When you are updating a user
about the progress of his program, tell him in
language he’ll understand.

FIGURE 6
ical Publications H O M E

	Home Page
	Diagnosing Sick Screen Syndrome

