
5

P E R F E C T O F F I C E
Build
PerfectOffice Apps

With a suite of three VBXs in hand, VB developers can build cool
custom solutions in PerfectOffice—without relying on DDE.
B Y S T E V E M A N N

them. I see numerous messages
on the WPUSERS Forum on
CompuServe asking about various
ways to automate PerfectOffice
through Visual Basic. Until now
Dynamic Data Exchange (DDE) was
the only way to accomplish this
with PerfectOffice’s predecessor,
Borland Office 2.0, or with
WordPerfect for Windows. DDE
works, but the method usually
doesn’t offer the level of control
necessary to create really cool so-
lutions based on common desk-
top applications.

PerfectOffice 3.0, released in
December 1994, breaks through
that limitation, opening the full
functionality of PerfectOffice to
Visual Basic programmers through
three VBXs. The mechanism is
simple, robust, and the back-end
functionality is extensive. Armed with your
existing knowledge of Visual Basic, all you’ll
need is this introduction to PerfectOffice

The newest version of Novell’s
PerfectOffice suite offers robust
and varied custom development
tools, but little is known about
2 MAY 1995 Visual Basic Programmer
and you’ll be coding Visual Basic solutions
with PerfectOffice like an old pro.

Let’s start with an overview of the
PerfectOffice automation architecture. The
foundation of PerfectOffice’s development
architecture is PerfectScript, a full scripting
system. PerfectScript has application-inde-
pendent language commands (also called
’s Journal ©1991–1995 Fawcette Techn
uct commands to the appropriate applica-
tion for it to execute. Because PerfectScript
is independent of the applications, it is a
true cross-application controller, where a
single script can simultaneously control
individual PerfectScript applications. A com-
mand prefix tells PerfectScript which appli-
cation a command should be sent to. For

example, you could use these lines
to set up a script for WordPerfect
for Windows (WPWin) and
GroupWise (PerfectOffice’s e-mail
package, which retains the
WPOffice name in PerfectScript for
backward compatibility):

Application (WP; _
"WordPerfect"; "US")

Application (GW; _
"WPOffice";"US")

After these lines, any state-
ment preceded by GW is sent to
GroupWise, while WP tells
PerfectScript to send the com-
mand to WPWin. The other pa-
rameter tells PerfectScript the lan-
guage, in this case U.S. English.
You can also use a Default param-
eter to indicate that product com-

mands without a prefix by default go to a
specific application:

Application (WP; "WordPerfect"; _
Default; "US")

Application (GW; "WPOffice";"US")

These application prefixes need to be
defined only once within a script. The first
time a product command is executed for a
product commands) such as If, While, and
Call. Each application exposes its product-
specific command set to PerfectScript
through a Product Interface Descriptor, or
PID file. This file details every product com-
mand and its parameter types for each
product’s native functions.

When you execute a script in the
PerfectScript system, it interprets its own
programming commands and passes prod-
Steve Mann is group leader of the
PerfectOffice development team at
WordPerfect, the Novell Applications Group.
Steve is also coauthor of Que’s Using Novell
PerfectOffice: Special Edition. Reach Steve
on CompuServe at 74777,2716.
ical Publications H O M E

P E R F E C T O F F I C E

©1991–1995 Fawcette Technical Public
the traffic controller, forwarding the com-
mand to the proper application. This com-
bination gives you the full power and famil-
iarity of Visual Basic with the native com-
mand set of the application.

The VBX connects to PerfectScript
through the CIWIN20.DLL, bypassing
PerfectScript’s language interpreter, but
passing application commands into
PerfectScript’s command marshaling facil-
ity (see Figure 1).

Now you’re ready to start coding. First,
you need to make sure the VBXs are in-
stalled. If you do a standard install of
PerfectOffice, the VBXs will not be installed.
To install them, you need to do a custom
install, select Shared components, and
check the box next to “Visual Basic VBXs.”
PerfectOffice will install the VBXs (there are
three), and a constants text file for each
one, into your Windows system directory.
Of the three VBXs, I’ll focus on the most
Visual Basations H O M E
general and most useful one: the
WPCIWIN.VBX. The CIWIN stands for Com-
mand Interface for Windows, meaning that
this VBX (really the CIWIN20.DLL behind it)
gives Visual Basic an alternate command
interface to the PerfectOffice applications.
Just like PerfectScript, this VBX allows you
to play scripts in any of the PerfectOffice
applications, or to send individual com-
mands or command sequences directly to
any specific PerfectOffice app.

When you are ready to include the
WPCIWIN VBX in your project, use Add File
to add it to the toolbar, select it, and create
a frame on your form. Double-click on the
control and open your project’s Properties
window to view the Property list. Installed
with the VBX is a text file that defines the
WPCIWIN constants you’ll use in the code
throughout this article (see Table 1).

When you create the VBX instance in
your form, it will be named PSCRIPT1.
Property Possible Values Purpose

CommandTargetApp WORDPERFECT = "WordPerfect" The name of the application that will receive
GROUPWISE = "WPOffice" subsequent commands.
PRESENTATIONS = "WPPrWin"
QUATTRO_PRO = "QuattroPro"

CommandLangCode PerfectScript’s international capabilities are very
robust. This Language code allows the developer to
specify which language should be used. Language
codes are always two-letter codes, such as US, FR, etc.
This property only applies if launching the application.
If it is already running, the language is already
determined.

CommandString Any product command This is a hidden property. The specific product
command to be sent to the application specified in the
last CommandTargetApp statement. CommandString is
one of two trigger properties.

CommandReturn Some product commands return a value. This property
will hold the return value of the last command to
return a value.

ScriptType PS_TEMPLATE_SCRIPT = 0 PerfectScript allows applications to store scripts
PS_FILE_SCRIPT = 1 in two locations, either within a script file or in a

template file.

ScriptName Full path and file name of the script file, or of the
name of the script within a template file
(depending on the value of the ScriptType property).

Action PS_ACTION_PLAYSCRIPT = 1 Action is a trigger property that executes based
PS_ACTION_GETVARIABLE = 2 on the settings of other properties. For example,
PS_ACTION_SETVARIABLE = 3 you would use Action when running a script from VB.
PS_ACTION_DELVARIABLE = 4
PS_ACTION_EXISTSVARIABLE = 5

Name The name of this instance of the control.
By default this is PScript1 for the first instance. If you
change the name, then all commands that reference
the control must begin with the new name.

VBX Properties. While they are few in number, these simple VBX properties
give VB programmers access to thousands of product-specific commands to

control PerfectOffice. For example, WordPerfect alone has 1824 product commands.

TABLE 1

CONTINUED ON PAGE 58.
i

PerfectOffice Suite

PerfectScript (Commands)

W
ordP

erfect

Q
uattro P

ro

P
resentations

G
roupW

ise

InfoC
entral

E
nvoy

PerfectScript

Language

Interpreter

Windows

Command

Interpreter

Visual

Basic

VBX

Architecture of PerfectScript.
PerfectScript is the foundation of

the PerfectOffice’s automation architecture,
and a part of the PerfectFit technology. The
native scripting mechanism in PerfectOffice
is PerfectScript’s language interpreter and
command dispatcher. CIWIN exposes an
alternate interface for dispatching
commands. Through the WPCIWIN VBX,
Visual Basic can take advantage of this
alternate interface and talk directly to
PerfectScript’s command facility to
automate PerfectOffice.

FIGURE 1
new application (new to this PerfectScript
session), PerfectScript will launch the ap-
plication if necessary. If you want to see
more on how PerfectScript works, experi-
ment with recording some cross-applica-
tion scripts in PerfectOffice. During the
record session, you can move from one
PerfectOffice application to another. As you
record the various product commands, the
PerfectScript recorder will insert the ap-
propriate command prefixes to direct the
commands to the correct application.

VB DOES PERFECTSCRIPT
The Visual Basic interface into PerfectOffice
is built on this PerfectScript foundation.
Instead of using PerfectScript’s program-
ming commands, you use Visual Basic as
the programming tool. When you need to
communicate with or control an applica-
tion, you use a VBX to send the application’s
product command. PerfectScript acts as
c Programmer’s Journal MAY 1995 53

P E R F E C T O F F I C E
You can include more than one instance
in a form or project, although it is rarely
necessary. The only exception might be
when you want to drive more than one
application, and you set your properties
at design time.

All of the properties, their purposes,
and their enumerated values from the
WPCIWIN.TXT file are shown in Table 1.
The main properties used to control
PerfectOffice applications are Command-
TargetApp, ScriptName, ScriptType, Action,
54 MAY 1995 Visual Basic Programmer’s
and Command String. CommandTargetApp
contains the name of the application that
will receive subsequent commands.
ScriptName is a full path name to a script
file containing PerfectScript commands to
be executed. ScriptType is either a script
file or a template file with an embedded
script. The Action property is a trigger
command to run a script or carry out other
actions specified in the VBX properties.

You can control PerfectOffice from
VB by playing a prerecorded script, or
 Journal ©1991–1995 Fawcette Techn
you can send product commands (also
called tokens) directly to the applica-
tion. If you have a simple interaction
with PerfectOffice, and the steps are
known in advance, then playing a script
make sense. For example, if your com-
pany requires employees to send a status
report to a supervisor every week, you
could automate that process from VB.
Record a script (say SENDRPT.WCM) in
WordPerfect and GroupWise, and then
run that script from VB. Set the proper-
ties either at run time or design time:

CommandLangCode = US
CommandTargetApp = WordPerfect
ScriptType = WP_FILE_SCRIPT
ScriptName = _

C:\OFFICE\WPWIN\MACROS\SENDRPT.WCM

In this case, the CommandTargetApp
could be any of the applications, because
PerfectScript will recognize the Application
statements in the script and fire up
WordPerfect and GroupWise. However, you
can’t just leave the CommandTargetApp
property blank. Once these properties are
set, at run time you trigger the running of
the script by tying a single VB statement to
a button (or some other event) like this:

Sub SendRptBtn_Click ()
PScript1.Action = _

PS_ACTION_PLAYSCRIPT
End Sub

Sending individual commands to the
applications requires setting the value of
the hidden property, CommandString. Be-
cause it is hidden, it can be used only at run
time. CommandString enables the VBX to
send individual product commands to a
specific product. Sending one command at
a time gives you greater control and inter-
action with the applications in your cus-
tom solution. You can drive the app, query
for state information, and have greater
runtime flexibility based on dynamic user
interaction with the VB front end.

When sending tokens between VB and
PerfectScript, you must follow a few addi-
tional procedures for the process to work
correctly. First, the CommandTargetApp
becomes critical. When running a script,
the application statement in the script
tells PerfectScript which application to
communicate with. When sending indi-
vidual commands, it’s up to you to tell
PerfectScript where you want commands
to go.

Second, when you send individual com-
mands, PerfectScript puts the application
into a remote-control mode—much like a
script play-back mode. You decide when the
application is in or out of that mode. When
your app is in this remote control mode,
some of the product’s functionality becomes
ical Publications H O M E

P E R F E C T O F F I C E
unavailable. For example, while the VBX is
controlling WordPerfect, the user cannot
exit. Quit is a special command that tells
PerfectScript you are through with a com-
mand or series of commands. You should
always follow a runtime command, or series
of commands, with a Quit command.

A third difference is that the
CommandString property requires no other
trigger. CommandString, like the Action
property, is itself a trigger property. As
soon as you assign a value (or command) to
the CommandString property, it is sent im-
mediately to the TargetApp.

What does a runtime sequence of com-
mands look like? Here’s a series of steps
that will copy the text area of a GroupWise
e-mail message into a new document in
WordPerfect:

PScript1.CommandLangCode = "US"
PScript1.CommandTargetApp = GROUPWISE
PScript1.CommandString = _

"FocusSet(MESSAGE!)"
PScript1.CommandString = "PosTextTop"
PScript1.CommandString = _

"SelectToEndText"
PScript1.CommandString = "EditCopy()"
PScript1.CommandTargetApp = _

WORDPERFECT
' the next line is ugly.
' all it does is create a new file
' based on WPWin's Standard Template
PScript1.CommandString =_

"TemplateSelect(""C:\OFFICE\WPWIN_
TEMPLATE\STANDARD.WPT"")"

PScript1.CommandString = _
"EditPaste ()"

PScript1.CommandString = "Quit"

MASTERING PERFECTOFFICE COMMANDS
You now know everything you need to
about VB and the PerfectOffice VBX to
start building your own PerfectOffice apps.
But there is still one problem. Where can
you find the right product commands to
send to the applications?

If you want help building product com-
mands, there are two places you can turn.
The first is the application’s own script
recording capability. Plan out the steps
you want to follow, then go to the applica-
tions involved and manually go through
the sequence. Use filler file names or val-
ues as you go. Once you’ve completed the
recording, you’ve completed 80 percent
or more of the work.

From there, copy the commands into
your VB code and add:

PScript1.CommandString =

in front of each command. Of course you’ll
need to edit in quotation marks around
the commands, and change any recorded
values to variables, but recording is a
great head start.
©1991–1995 Fawcette Technical Public
Second, the PerfectOffice VBX surfaces
the PerfectScript product command
browser. This feature, called the command
inserter in PerfectScript, is accessed in a
somewhat unconventional way, but you’ll
find it invaluable in building product com-
mands (see Figure 2). For each product
with a PID, PerfectScript gives you access
to every command within that PID and all
its parameters. You access this browser
from the Properties window of the VBX
control. You can either double-click on the
Visual Basations H O M E
Command Inserter property itself, or se-
lect it, then click on the ellipse button on
the upper-right corner of the Properties
Window. (The down-arrow button changes
to an ellipse when you select the Com-
mand Inserter property.)

From this dialog, you first select the
product whose command set you want to
browse. Every product with a PID shows
up in the drop-down list. After you select
the product and click on OK, you’ll see a
list of every command in that product’s
ic Programmer’s Journal MAY 1995 55

P E R F E C T O F F I C E
PID. For example, the WordPerfect prod-
uct set contains 1824 commands. As you
move through the list, you’ll see the pa-
rameter list for the selected command in
a second list box. Each parameter identi-
fies the parameter’s type and any enu-
merations for that parameter.

PerfectScript commands contain two
peculiar conventions. Any command that
begins with a question mark (or hook in the
PerfectScript parlance) is a Query com-
mand. These commands return state infor-
mation from the product, such as an open
56 MAY 1995 Visual Basic Programmer’
file name or the current font. The return
value from a query command can be re-
trieved by the CommandReturn property
of the VBX control. Here’s an example of a
query command that will get the current
font name from a WordPerfect document:

PScript1.CommandLangCode = "US"
PScript1.CommandTargetApp = _

WORDPERFECT
PScript1.CommandString = "?Font"
PScript1.CommandString = "Quit"
CurFont$ = PScript1.CommandReturn
s Journal ©1991–1995 Fawcette Techn
Enumerations usually have text val-
ues associated with the numeric equiva-
lents. These enumerated values end with
an exclamation point “!” (called a bang).
For example, the FileSave command has
three parameters: the file name, export
type, and overwrite. Overwrite is a nu-
meric parameter, with three possible val-
ues, zero for no (don’t overwrite), 1 for
yes, and 2 for prompt (prompt the user).
You’ll see that these values can be repre-
sented as No! (0), Yes! (1), and Prompt!
(2). If you pass No! to this command it
will translate it to zero. These two lines
are equivalent:

PScript1.CommandString = _
"FileSave(""REPORT.WPD""; _
WordPerfect_60!;No!)”

PScript1.CommandString = _
"FileSave(""REPORT.WPD""; _
WordPerfect_60!;0)”

While in the command inserter dialog
you can build your commands and then
use the copy button to place them on the
clipboard. Go back to VB and paste the
code into the appropriate code window.
The command inserter is an invaluable
tool for assembling product commands
and learning the basics of PerfectOffice
product command syntax.

To use the techniques outlined here
you must be sure you are using the latest
versions of the PerfectOffice applications:
WordPerfect for Windows 6.1, GroupWise
4.1a, Presentations 3.0, and Quattro Pro
6.0. InfoCentral and Envoy are not acces-
sible through the PerfectOffice VBXs.

There’s more to cover, but you’ve
learned the basics of using VB with
PerfectOffice. Topics for future investiga-
tion include PerfectScript’s persistent vari-
able pool—a mechanism to pass data be-
tween PerfectOffice applications or between
the apps and VB. The PSVariableName,
PSVariableType, and PSVariableValue prop-
erties all make use of this pool.

You can also experiment with two
additional VBXs. The WPDLG VBX ex-
poses the PerfectOffice File Open, Save,
Save As, and Select Directories dialogs
to VB. With these dialogs, VB programs
can take on the look and feel of a
PerfectOffice application. The third VBX
gives some extra control over Quattro
Pro for Windows.

If you’re looking for more information
on programming VB and PerfectOffice,
try checking the WPUSERS Forum on
CompuServe. This independent forum is
frequented by several PerfectScript and
VB experts. Section 19 is the preferred
forum for PerfectOffice discussions. Fi-
nally, the PerfectOffice SDK, due later this
year from Novell, will document the VBXs
and other PerfectOffice APIs. ■
CONTINUED FROM PAGE 53.

Property Possible Values Purpose

PSVariableName Sets the name of a variable in PerfectScript’s
persistent variable pool.

PSVariableValue The value, in string format, of the variable.

PSVariableType PS_STRING_TYPE = 0 The type of the variable.
PS_INTEGER_TYPE = 1
PS_FLOAT_TYPE = 2

CommandErrorCode NO_ERROR = 0 If a command does not execute correctly, PerfectScript
COMMAND_NOT_FOUND = 1 returns an error code, which you’ll find in the
INVALID_APP_PROPERTY = 2 CommandError Code property.
COMMAND_TOO_LARGE = 3
NO_PRODUCTS_FOUND = 4
COMMAND_SYNTAX_ERROR = 5
PRODUCT_NOT_RESPONDING = 6
MACRO_OR_TEMPLATE_NOT_FOUND = 7
VARIABLE_ERROR = 8
PERFECTSCRIPT_SYSTEM_ERROR = 9
PID_NOT_ENABLED = 10

ExistsResult PS_VAR_NOT_EXISTS = 0 Used to test for the existence of a persistent variable
PS_VAR_EXISTS = 1 in the PerfectScript persistnet variable pool.

The variable name is set in the PSVariableName.

Top The top position of the upper-left corner of the control
in the form. Because the control is invisible at run
time, it is not necessary to change this value.

Left The left position of the upper-left corner of the control
in the form. Because the control is invisible at run
time, it is not necessary to change this value.

Index Required by Visual Basic for VBX control.

Can I See My Script? The Command Inserter dialog is the VB programmer’s
tool for learning PerfectOffice’s product command syntax. The dialog displays

every product command, the parameter types, enumerated values, and a brief description
of the command.

FIGURE 2
ical Publications H O M E

	Home Page
	Build PerfectOffice Apps

