
WINDOWS PROGRAMMING

by Jonathan Zuck

N

✓	

HOW DO YOU
HANDLE STRESS?
versely affect application performance.

Memory availability affects your ability to

create arrays and load modules. System re-

sources constrict your use of windows and

graphical objects. Disk space and file handles

affect your access to the system.

While lots of articles have been written on

how to conserve these precious system re-

sources, no one is writing about how to use

more of them. Using more system resources

sounds silly, but if you could consume re-

sources in a controlled fashion, you’d have a

great testing tool. For example, how do you

know how your application functions in a

low-resource environment unless you try it?

Of course, the obvious solution is to run Word 6.0, but this is

hardly a controlled test. Instead, we will use the Stress API found

in Windows 3.1.

You never expected to encounter a Stress API, did you? The

purpose of the API is low-resource testing, although the only

application that exploits it comes with Visual C++, not with

Visual Basic. The Stress API contains several consumption

functions, for lack of a better term, that eat up memory, re-

sources, disk space, and file handles. An additional function

counts the available file handles (see Table 1).

These functions are not difficult to declare or use, but

ou’re probably aware that stress on

system resources such as memory,

file handles, and disk space can ad- MEAS

THE IMP

SYSTEM R

USAGE O

PROGRAM

THE WI

STRES
94 MAY 1995 Visual Basic Programmer’s Journal ©1991
putting them together in a utility certainly

makes them more useful. Displaying cur-

rent information can be tricky. I created a

module, STRESS.BAS, with all of the neces-

sary declarations for the Stress API as well

as some related API and utility functions

(see Listing 1), and constructed an applica-

tion called “Argh.” (Download this applica-

tion and source code, ARGH.ZIP, from the

Magazine library of the Visual Basic
Programmer’s Journal Forum on Compu–

Serve. ARGH.ZIP is also on Volume 1, Num-

ber 3 of the VB-CD Quarterly.)

MANAGE YOUR STRESS
STRESS.BAS is a reusable utility that allows

you to selectively stress your system to see

how it handles low-resource and low-memory

situations. It also encourages you to learn how the Stress API

operates. The main window displays the current available

memory and resources. The information is updated every five

seconds (see Figure 1). The system then displays information

about global memory, User memory, GDI memory, disk space,

and available file handles:

Sub Form_Paint ()
lblHandles = GetFreeFileHandles()
lblGMem = _

Format(GetFreeSpace(0) \ 1024, "###,###,###") + "K"
lblUserMem = GetFreeHeap("User") & " bytes"
lblGDIMem = GetFreeHeap("GDI") & " bytes"
lblDiskSpace = _

Format(DiskSpaceFree() \ 1024, "###,###,###") + "K"
End Sub

By selecting Options from the Stress menu, you can deter-

mine how you want the system to be stressed (see Figure 2). The

default is a static test in which you simply specify how much of

each resource you want to remain. The default values are the

values when Argh was started, so you can leave them alone if

you don’t want them changed. Enter a new value to specifiy how

much of each of these you want left on the system when Argh is

active.

Be aware that both global memory and disk space may be

rounded if the number you choose doesn’t fall on normal

URE

ACT OF

ESOURCE

N YOUR

S WITH

DOWS

S API.
Jonathan Zuck is vice president of client/server technology for
Advanced Paradigms Inc. in Alexandria, Virginia. He is a regular
contributor to Visual Basic Programmer’s Journal and a co–
author of Visual Basic How-To, published by Waite Group Press.
Jonathan can be reached on CompuServe at 76702,1605.
TABLE 1 Test All Kinds of Consumption. The Stress API
functions allow testing of disk space, resources, and

system memory by consuming these resources and allowing you to
return the current status of memory resources.

The Stress API Functions

AllocDiskSpace Creates a file to consume space on a disk partition.

AllocFileHandles Allocates up to 256 file handles.

AllocGDIMem Allocates memory in the GDI heap.

AllocMem Allocates global memory.

AllocUserMem Allocates memory in the User heap.

FreeAllGDIMem Frees all memory allocated by the AllocGDIMem function.

FreeAllMem Frees all memory allocated by the AllocMem function.

FreeAllUserMem Frees all memory allocated by the AllocUserMem function.

GetFreeFileHandles Returns the number of free file handles.

UnAllocDiskSpace Deletes file created by AllocDiskSpace and frees space.

UnAllocFileHandles Frees file handles allocated by AllocFileHandles.
–1995 Fawcette Technical Publications H O M E

WINDOWS PROGRAMMING
boundaries. In the disk section of the options form, you can

indicate whether you want memory eaten from the Windows

disk, the current disk, or the temporary disk, if they are indeed

three different entities.

Once you have made your selections, choose OK. To start

stressing the system, select Go from the Stress menu (this

activates the code in Listing 2). You can then run your applica-

tion and see how it handles the situation you created. Again, be

aware that if you set some of these values too low they will affect

actual system performance as well and painting of the desktop

might be affected. For this reason, the Restore selection from
©1991–1995 Fawcette Technical Publications H O M
the Stress menu can be activated with a shortcut key combina-

tion, Ctrl-R, when you can’t access the menu.

In addition to a so-called static test, it is possible to make

Argh randomly consume selected resources so that it is more

difficult to predict when things will go wrong in your applica-

tions. Choose Random from the Stress section of the Options

form to enable the text boxes in the Max column. Use these pairs

of check boxes to specify a range for each resource. In this mode,

Argh will randomly choose a value in the range and change

resource settings to that value. Again, Ctrl-R stops the testing

and restores all resources. Argh uses this code to restore all of

your system resources to their original state:

Sub mnuStressRestore_Click ()
tmrStress.Enabled = False
UnAllocDiskSpace uDrive
UnAllocFileHandles
FreeAllGDIMem
FreeAllUserMem
FreeAllMem
Me.Refresh
mnuStressGo.Enabled = True
mnuStressOptions.Enabled = True

End Sub

System memory is usually less scarce than resources, but

when you start to run out of memory, your applications will have

problems. Windows makes a lot of global memory available

through its virtual memory mechanism, which treats disk space

as additional memory. As a result, you’ll rarely use up too much

of your global memory. However, if a system has 4 MB, and the

memory is more virtual than real, serious slowdowns can occur.

You can test your application in low memory circumstances

with Argh, even if your system has 32 MB.

Argh consumes global memory with the AllocMem function

in STRESS.DLL (see Listing 2). To use this function, you simply

pass the amount of memory you want remaining to the AllocMem

function. To release this memory, simply call FreeAllMem. Argh

uses the GetFreeSpace API function to determine the amount of

available global memory.

EMPTY YOUR POCKETS
A more frequent problem than memory is the lack of system

resources available to your application and others. This has

been the bane of Windows users for some time and is hopefully
STRESS.BAS
'declarations for the STRESS API in Windows 3.1
'by Jonathan Zuck/Visual Basic Programmer's Journal

Declare Function AllocDiskSpace Lib "STRESS.DLL" _
(ByVal lLeft As Long, ByVal uDrive As Integer) _

As Integer

Global Const EDS_WIN = 1
Global Const EDS_CUR = 2
Global Const EDS_TEMP = 3

Declare Sub UnAllocDiskSpace Lib "STRESS.DLL" _
(ByVal uDrive As Integer)

Declare Function GetFreeFileHandles Lib _
"STRESS.DLL" () As Integer

Declare Function AllocFileHandles Lib _
"STRESS.DLL" (ByVal nLeft As Integer) As Integer

Declare Sub UnAllocFileHandles Lib "STRESS.DLL" ()
Declare Function AllocGDIMem Lib "STRESS.DLL" _
(ByVal uLeft As Integer) As Integer

Declare Sub FreeAllGDIMem Lib "STRESS.DLL" ()
Declare Function AllocMem Lib "STRESS.DLL" (ByVal _
dwLeft As Long) As Integer

Declare Sub FreeAllMem Lib "STRESS.DLL" ()
Declare Function AllocUserMem Lib "STRESS.DLL" _
(ByVal uLeft As Integer) As Integer

Declare Sub FreeAllUserMem Lib "STRESS.DLL" ()

'other declares which are relevant
Declare Function GetFreeSpace Lib "Kernel" (ByVal _
wFlags As Integer) As Long

Declare Function GetModuleHandle Lib "Kernel" _
(ByVal ModName As String) As Integer

Declare Function GetHeapSpaces Lib "Kernel" _
(ByVal hModule As Integer) As Long

Declare Function DiskSpaceFree Lib "SETUPKIT.DLL" _
() As Long

Function GetFreeHeap (ModuleName As String) As Long
Dim rInfo As Long

rInfo = GetHeapSpaces(GetModuleHandle(ModuleName))
GetFreeHeap = LoWord(rInfo)

End Function

Function HiWord (LongInt As Long) As Long
Temp = LongInt \ &H10000
If Temp < 0 Then Temp = Temp + &H10000
HiWord = Temp

End Function

Function L2I (L As Long) As Integer
L2I = IIf(L > 32768, (L - 32768) * -1, L)

End Function

Function LoWord (LongInt As Long) As Long
Temp = LongInt Mod &H10000
If Temp < 0 Then Temp = Temp + &H10000
LoWord = Temp

End Function
Get Stressed Out. The STRESS.DLL functions allow
you to selectively “stress” your system by eating up

resources. As these resources dissappear, it’s easy to see how your
application handles low-resource and low-memory situations.

LISTING 1
Sub mnuStressGo_Click ()
mnuStressOptions.Enabled = False
mnuStressRestore.Enabled = True
mnuStressGo.Enabled = False

'now start stressing out!
If frmconfig.fraStress.Tag = "Random" Then

tmrStress.Enabled = True
Exit Sub

End If

'if they have chosen a static test then do it here
 Ok = AllocMem(Val(frmconfig.txtMin(0)))
 Ok = AllocUserMem(L2I(Val(frmconfig.txtMin(1))))
 Ok = AllocGDIMem(L2I(Val(frmconfig.txtMin(2))))
 Ok = AllocFileHandles(Val(frmconfig.txtMin(3)))
 Ok = AllocDiskSpace(Val(frmconfig.txtMin(4)), _

Val(frmconfig.fraDisk.Tag))
End Sub
Choosing Between Static and Random Testing. The
mnuStressGo_Click routine activates the type of test

chosen by the user. When testing for static memory conditions, pass
the amount of memory you want consumed to the function.

LISTING 2
Visual Basic Programmer’s Journal MAY 1995 95E

O
WINDOWS PR
being addressed in the next version of Windows, as it has been

in NT 3.5. Barry Seymour and Tim O’Pry explained in the

February issue that both window and graphical resources are

constrained by a 64K heap limit in USER.EXE and GDI.EXE

[“Conserving Windows Resources,” VBPJ February 1995]. They

both maintain their object lists in this space. System resources

are a measure of the percentage of this space remaining.

While there is now an API function, SystemHeapInfo, for

getting at these percentages, there isn’t a documented way to

get at the actual values. To display these values, I’ve gone back

to the old “undocumented” way of determining system re-

sources: the GetHeapSpaces API function. This function takes

a module handle and returns the total and remaining bytes in

the heap for that module. You can get a module handle by

calling the documented GetModuleHandle function. I’ve used

these functions in the GetFreeHeap utility function in

STRESS.BAS:

HOW DO YOU KNOW

HOW YOUR APPLICATION WORKS

IN A LOW-RESOURCE ENVIRONMENT

UNLESS YOU TRY IT?

©1991
–
GRAMMING
Visual Basic Programmer’s Journal JUNE 1995 97

The Argh Main Screen. The information about
available global memory, User memory, GDI memory,

disk space, and file handles is updated every five seconds.

FIGURE 1

Function GetFreeHeap (ModuleName As String) As Long
Dim rInfo As Long

rInfo = GetHeapSpaces(GetModuleHandle(ModuleName))
GetFreeHeap = LoWord(rInfo)

End Function

One trick to using this function is that GetHeapSpaces re-

turns a long integer, the hiword of which contains the total heap

space and the loword of which contains the remaining bytes.

Two problems encountered when trying to use this function are

1995 Fawcette Technical Publications H O M E

98 MAY 1995 Visual Basic Programmer’s Journal

WINDOWS PR

that VB doesn’t have hiword/loword functions, nor does it have

words at all. Therefore, I wrote the hiword/loword utility func-

tions that convert the integer values to longs in order to account

for negative values. Later, when the testing routine needs to

retrieve these values, they are converted back to integers from

longs with the L2I function (see Listing 1).

The STRESS.DLL functions for manipulating resources are

Argh Configuration. You can test memory in a static
or random fashion. When the random test is used, you

need to specify the range of values in which to constrain the
resource consumption.

FIGURE 2

©1991–
OGRAMMING

AllocUserMem, AllocGDIMem, FreeAllUserMem and FreeAll–

GDIMem. Again, the Alloc* functions take a single parameter to

specify the number of bytes to leave in the respective heap. These

are the functions likely to have the greatest effect on your system.

Besides monitoring the impact of system memory use, the

Stress API also includes functions for allocating disk space and

file handles. The AllocDiskSpace function takes two param-

eters: the disk on which to consume space, and the number of

bytes to leave there. AllocDiskSpace then creates a file called

STRESS.EAT on the specified drive. If you have a system crash,

you should look for this file and delete it before restarting

Windows.

In order to display the currently remaining space on disk,

Argh uses the DiskFreeSpace function found in the

SETUPKIT.DLL. To use this utility, make sure that both

STRESS.DLL and SETUPKIT.DLL can be accessed. SETUPKIT.DLL

is included with Visual Basic 3, and can be found in

\VB\SETUPKIT\KITFILES.

Because the process of counting available file handles is

quite complex, especially under Windows, the Stress API in-

cludes a function called GetFreeFileHandles that returns the

number of file handles currently available. The AllocFileHandles

and FreeFileHandles functions are called to manipulate these.

It’s pretty hard to run out of file handles because you have more

than 100 available, but the more robust you can make your

application the better.

Argh could benefit from a number of improvements, such as

storing previous choices in an INI file and logging resource

changes to disk to track when a fatal error occurred in random

mode. Still, the Stress API is a good starting point for building

more robust applications. ■

1995 Fawcette Technical Publications H O M E

	Home Page
	How Do You Handle Stress?

