
VISUAL PROGRAMMING

by Richard Hale Shaw

GET STARTED WITH
CONTROLWIZARD
control might be used in a future VB or VC++

environment. This month, I want to show

you what actually takes place when you use

the OLE Control Development Kit (CDK) and

its ControlWizard component to create a

new OCX. In subsequent columns, I’ll exam-

ine the steps required to complete a control

of your own.

As we get closer to the release of new

visual development environments—environ-

ments that let you use OCXs as well as create

them—I’ll explore the issues of interaction

between OCXs and the applications that ac-

tually can use them: OCX control containers.

But frankly, it irks me to no end that you

can’t use OCXs in any VB or VC++ development environment on

the market as of March 1995. Yeah, yeah, you can use Access or

Visual FoxPro, but I’m talking about language-based visual

development environments, in contrast with database systems

that double as development environments. Until we can really

work with and test OCXs in a visual development environment

based on VB, OCX development is going to go nowhere fast.

You know what I’m talking about when I refer to such an

environment. But NDAs being what they are, I can’t say so in print,

at least. Microsoft’s VB team has given me very specific, limited

permission to show how to use OCXs in my talks at conferences

such as VBITS. So, until these new environments get closer to

release, and the trade press starts its usual round of NDA-

breaking, I’ll be vague about the unreleased environment in which

you can use OCXs. I can say this: it should arrive sometime this

ast month I showed you how to cre-

ate a simple OCX that subclasses a

Windows edit control, and how that CREAT

CONTROLS

IN VISU

WITH THE

DEVELO

KIT AN

WIZA
88 MAY 1995 Visual Basic Programmer’s Journal ©1991
year, and hopefully it won’t be too many

months away by the time you read this.

INSIDE THE OCX CDK
The key to building OCXs is Visual C++ 2.x,

which comes with a version of the OLE CDK

already on the CD, offering support for build-

ing both 16- and 32-bit OCXs. To build 32-bit

OCXs, you must install the 32-bit CDK. For

Win16 OCXs, use the 16-bit CDK. In either

case, the installation program will add a

subdirectory (by default, CDK16 or CDK32)

of files to your MSVC or MSVC20 directory

structure, or somewhere else if you choose.

A 16- or 32-bit ControlWizard for creating

OCXs and a Test Container for testing them

have been added as well. If you’re using VC++

1.5, the CDK setup program will install a new

ClassWizard that includes support for adding Events to your

OCX. The 32-bit ClassWizard in VC++ 2.0 already has this feature,

and doesn’t need to be replaced.

The bottom line? You’ll need VC++ 2.x, but it contains

everything you need to create both 32-bit and 16-bit OCXs.

That’s the good news. But you’ll need to know C++ as well as

Visual C++, MFC, and their basic OLE support if you’re going to

be productive building and creating your own OCXs. If you’re

familiar with MFC, especially the CWnd and CDialog classes,

you’ll feel right at home with the MFC extensions that provide

OCX support. But if you don’t already know how to take advan-

tage of the Visual C++ environment and MFC, you’ll be lost.

Thus including a Visual C++ programming column such as

this one, in a Visual Basic programming magazine such as this

one, makes sense after all. Your job is to be productive with VB.

My job is to help you be productive where VC++, and the OCX

CDK in particular, can help.

The OCX CDK specifically gives you the OCX ControlWizard,

MFC extensions to encapsulate OCXs as MFC objects, a bunch of

source code samples, online documentation, and the OCX Test

Container application. Plus, you’ll use the VC++ ClassWizard for

adding OCX properties, methods, and events to an OCX (the

update to ClassWizard in VC++ 1.5 is required: the original

ClassWizard does not have OLE Events support).

At press time (March 1995), I had received VC++ 2.1, which

E OLE

 QUICKLY

AL C++

CONTROL

PMENT

D ITS

RDS.
Richard Hale Shaw is a contributing editor to Visual Basic

Programmer’s Journal, PC Magazine, Windows Tech Journal,

and Microsoft Systems Journal. He’s currently completing Visual

Programming++, a book about Visual C++ and MFC programming,
to be published by Addison-Wesley. He lives in Ann Arbor, Michi-
gan and can be reached on CompuServe at 72241,155 or the
Internet at 3998368@mcimail.com.
Signs That the CDK Moved In. The Control Develop–
ment Kit Setup program installs two 16-bit and four 32-bit

OCX DLLs into your system directory.

TABLE 1

Added to \WINDOWS\SYSTEM:

OC25.DLL Release version: 16-bit OLE control

OC25D.DLL Debug version: 16-bit OLE control

Added to \WINDOWS\SYSTEM32 (Windows NT):

OC30.DLL Release version of 32-bit OLE controls with ANSI/DBCS support

OC30D.DLL Debug version of 32-bit OLE controls with ANSI/DBCS support

OC30U.DLL Release version of 32-bit OLE controls with Unicode support

OC30UD.DLL Debug version of 32-bit OLE controls with Unicode support
–1995 Fawcette Technical Publications H O M E

VISUAL PROGRAMMING
includes additions to both 16- and 32-bit MFC (2.52 and 3.1), as

well as a few new goodies in AppWizard for creating in-process

OLE Automation servers.

In addition to those components, the CDK install adds a tool

for registering a control (you must update the registry before

you can use a control), and if you’ve installed the 16-bit CDK on

an NT machine, a batch file, BLDTYPLB.BAT, will be installed for

creating type libraries.

In any case, your VC++ Tools menu will be updated to

include entries for running ControlWizard, registering the

control, and running the Test Container. And if you’re running

VC++ 1.5, the Tools menu will include an entry for building the

type library with BLDTYPLB.BAT as well. Type library builds
©1991–1995 Fawcette Technical Publications H O M
will be automatic with VC++ 2.0, because they’re added to the

make process by ControlWizard. Finally, the CDK SETUP will

install a bunch of new DLLs on your system (see Table 1).

THE CDK AND MFC
The OLE CDK adds several new classes to MFC that encapsulate

support for building OLE Controls. You need to know about two

key classes: COleControl and COlePropertyPage. You derive a

class from COleControl to represent the control you’re building,

and derive another from COlePropertyPage to add support to

the dialog or form used for displaying or setting the control’s

properties at design time.

COleControl is directly derived from MFC’s CWnd class, and

consequently inherits all of CWnd’s standard windowing func-

tionality. COleControl adds to CWnd the ability to fire events, as

well as method and property support, although some of this was

already in place with additions to CCmdTarget—the MFC mes-

saging class, and the base class of CWnd—as far back as MFC 2.5.

COleControl also allows a control to be inserted into an OLE

container application.

The method and property support provided by COleControl

and CCmdTarget make it possible for the container application

(the application that uses the control) to change data in the

control, or to trigger services provided by the control. But how

does the control post a notification back to the container? You

may have read my earlier Visual Programming column discussing

the whole issue of callback notifications, and how an automation

client can expose its own IDispatch interface to let a server call

back into it [VBPJ March 1995]. So you’d think that a control

would have to do the same—and it does. But the control’s

IDispatch is cleverly hidden and encapsulated by COleControl’s

support for OLE events. By defining events in the control, you can

specify the mechanism for posting notifications back to the

control container application, and then add event handling to the

container to respond (I’ll discuss events in detail in a future

column).

COleControl offers more than 100 member functions (see

Table 2) that provide support for control data persistence,

ambient and stock properties and methods, events, and data

binding, to name a few. In this respect it rivals its parent.

CWnd itself is one of MFC’s largest classes, with around 150

member functions. As I develop controls in this column over

the next several months, I’ll explore even more of

COleControl’s capabilities.

COlePropertyPage is, by contrast, a much less complex class

to deal with: you’ll basically use it to design a form-based UI so

a developer can access and change a control’s properties. With

only 15 member functions (see Table 3) and derivation from

MFC’s CDialog class, adding property access is not terribly

complex. I’ll use this class in future columns to add a dialog

control to let your OCX users change the values of properties

exposed by the control.

USING CONTROLWIZARD
Once you’re ready to build your first OCX, ControlWizard is the

tool you use to get started. Like AppWizard, ControlWizard can

IF YOU’RE FAMILIAR WITH MFC, YOU’LL

BE AT HOME WITH THE MFC EXTENSIONS

THAT PROVIDE OCX SUPPORT.
The COleControl Interface Functions. Here are a
handful of the 100-plus member functions in COleControl.

You’ll find the entire class documented in the online help file that
comes with the OLE CDK.

TABLE 2

The COleControl Interface

BoundPropertyChanged Notifies the container that a bound property has been
changed.

COleControl Creates a COleControl object.

ControlInfoChanged Called after the set of mnemonics handled by the control
has changed.

DisplayError Displays stock Error events to the control’s user.

DoPropExchange Serializes the properties of a COleControl object.

DoSuperclassPaint Redraws an OLE control that has been subclassed from a
Windows control.

EnableSimpleFrame Enables simple frame support for a control.

ExchangeExtent Serializes the control’s width and height.

ExchangeStockProps Serializes the control’s stock properties.

ExchangeVersion Serializes the control’s version number.

OnClick Called to fire the stock Click event.

OnDoVerb Called after a control verb has been executed.

OnDraw Called when a control is requested to redraw itself.

OnDrawMetafile Called by the container when a control is requested to
redraw itself using a metafile device context.

OnEdit Called by the container to UI-Activate an OLE control.

OnKeyDownEvent Called after the stock KeyDown event has been fired.

OnKeyPressEvent Called after the stock KeyPress event has been fired.

OnKeyUpEvent Called after the stock KeyUp event has been fired.

OnProperties Called when the control’s “Properties” verb has been
invoked.

OnSetExtent Called after the control’s extent has changed.

OnSetObjectRects Called after the control’s dimensions have been changed.

OnShowToolBars Called when the control has been UI activated.

SelectFontObject Selects a custom Font property into a device context.

SelectStockFont Selects the stock Font property into a device context.

SetControlSize Sets the position and size of the OLE control.

SetInitialSize Sets the size of an OLE control when first displayed in a
container.

SetModifiedFlag Changes the modified state of a control.
Visual Basic Programmer’s Journal MAY 1995 89E

90 MAY 1995 Visual Basic Programmer’s Journal

Keyline F.P.O.

ProtoView
Pick-up:

ISSUE: April 1995

PAGE: 78

FOUR-COLOR

VISUAL PROGRAMMING
generate the code for a starter OCX, and lets you configure the

generated code through a series of dialogs. Actually, it more

closely resembles the VC++ 1.5 AppWizard, which requires that

you know how to navigate through it, rather than the VC++ 2.0

AppWizard, which prompts you for the information it needs.

ControlWizard will generate the starter files you need to

create a new OCX, including header and source files, resources,

the make file, the ODL script for compiling a type library, and the

module-definition file for building 16-bit OCXs.

While it’s not necessary to use ControlWizard, you’d be

crazy not to for two reasons. First, it gets you started with an

OCX ready to be compiled and run. Second, it inserts all the

pieces necessary to continue using tools such as ClassWizard so

you can do as much of the work as possible using visual

programming techniques.
If you’re a masochist and insist on writing all your code by

hand, don’t bother with ControlWizard (or this column, for that

matter). When you’re done with ControlWizard, the generated

code will include basic control drawing and data serialization

facilities, the appropriate message and dispatch maps for sup-

porting properties and methods, and even event maps.

As I mentioned, the CDK Setup program automatically adds

a ControlWizard entry to the Tools menu of your VC++ environ-

ment. So when you’re ready to build a new OCX, start by

launching ControlWizard.

ControlWizard has the usual, AppWizard-style prompts (re-

questing the name of the project, class names, file names,

whether you want to create a VC++-compatible make file, and

whether the source code includes comments, for example). You

can specify a project name that’s used for the make file name, as

well as the name of the OCX file. OCXs are stored in a DLL with

an OCX extension. AppWizard uses the project name to create
Functions of the COlePropertyPage Interface.

Dealing with COlePropertyPage is fairly straightforward.
Its main purpose is to design a form-based user interface that gives
developers a means to customize a control.

TABLE 3

The COlePropertyPage Interface

COlePropertyPage Constructs a COlePropertyPage object.

GetObjectArray Returns the array of objects being edited by the property page.

SetModifiedFlag Sets a flag indicating whether the user has modified the
property page.

IsModified Indicates whether the user has modified the property page.

GetPageSite Returns a pointer to the property page’s IPropertyPageSite
interface.

SetDialogResource Sets the property page’s dialog resource.

SetPageName Sets the property page’s name (caption).

SetHelpInfo Sets the property page’s brief help text, the name of its help
file, and its help context.

GetControlStatus Indicates whether the user has modified the value in the control.

SetControlStatus Sets a flag indicating whether the user has modified the
value in the control.

IgnoreApply Determines which controls do not enable the Apply button.

OnHelp Called by the framework when the user invokes help.

OnInitDialog Called by the framework when the property page is initialized.

OnEditProperty Called by the framework when the user edits a property.

OnSetPageSite Called by the framework when the property frame provides
the page’s site.
©1991–1995 Fawcette Technical Publications H O M E

VISUAL PROGRAMMING
the class names, but you can override this if you’d prefer.

The License Validation option will cause ControlWizard to

generate an LIC file. The LIC file approach is identical to the

scheme used by most VBXs, where the LIC file has to be

present in the directory where the control is stored, in order

to use the control at design time. The LIC file doesn’t have to

be present in order to use the control from a control con-

tainer application. With this option checked, ControlWizard

generates the LIC file for you, along with some code that will

automatically be invoked at design time to check for the

presence and validity of the LIC file. (Again, this will be

covered in more detail in a future column.)

Another option, Show Insert Object Dialog, will make the

control appear in the dialog that’s displayed by an OLE

Object Container in response to the user selecting the Object

command from the Insert menu. The option will also add

support for an “Edit” verb to your control’s message-map, if

selected. Don’t select this option lightly: most current OLE

containers aren’t yet aware of controls. They can let you

embed or insert an object server object, but they can’t

communicate with such an object that’s managed by an OLE

control. Because controls are hybrids of an object server and

an automation server, only special types of applications—
92 MAY 1995 Visual Basic Programmer’s Journal ©1991–
OLE control containers—can communicate with them and

use them. So for the time being, leave this option unchecked.

Other options control the physical appearance of the

control during its use. For instance, the Activate When Vis-

ible option will add code to tell the container to activate the

control whenever it’s visible. Another option, Simple Frame,

lets you create a control that includes a simple window frame.

Yet another prompts you to add an About Box to the control,

if you wish.

The Invisible At Runtime option lets you create a control that

is visible during program design, and invisible when used by the

control container application. While some controls, such as

those that subclass a Windows control, are meant to be dis-

played at both design and run time, others are not. This option

lets you build a control that provides services to be used, but

has no user interface; it shouldn’t be seen by the user while the

program is running. A good example is the Data Source VBX that

Coromandel uses to encapsulate an ODBC data source: there’s

no reason for the user to see this control, but there’s every

reason for you to interact with it at design time.

BEGINNERS’ BEST OPTIONS
Perhaps the two most important options, particularly for the

beginner, are Subclass Window Control and Use VBX Control As

Template. The Subclass Window Control adds code to specify

the window class of the control. You can select Edit, Listbox, and

Button, for example, to subclass standard Windows controls in

your OCX and create versions of them customized to your own

liking. This was the approach I used last month to create the

PhoneEdit OCX.

The Use VBX Control as Template option lets you use a VBX

on your system as the basis for a new OCX. When you select this

option, ControlWizard will let you specify a VBX for it to read.

Then it will use the interfaces in the VBX as the basis for the

interfaces in the new control, with the same properties, and with

a corresponding event structure.

While you must add the code to implement the new OCX

interfaces, much of the groundwork is done for you by

ControlWizard. Use this option if you’re porting a VBX of your

own to the OCX architecture, or if you have a favorite VBX that

the VBX vendor is unwilling or unable to port to OCX. While you

must add the implementation code, the resulting OCX will have

all the same interfaces and should work just dandily with a new

version of that VB application you wrote to use the VBX, once

you’ve ported the application to VB4 (hopefully, later this year).

Finally, ControlWizard lets you name the classes and files it

generates, and additionally lets you add more than one

COleControl derivative to the project. This means you can

create more than one OLE control that can be stored in the same

resulting OCX file (a DLL, remember?). You can also use these

options to specify the name by which the control will be known

in the system registry.

If you use ControlWizard to generate an OLE Control project,

you’ll end up with a group of files that include a COleControl

derivative for each control you specified. The default name for

a single control class will be CprojectnameCtrl, where projectname
is the name of the OCX project you’re building. Like any Visual

C++ application, this same approach is used to name the header

and implementation file for this class. There’ll also be a

CprojectnamePropPage class for the control’s property page,

and ControlWizard will generate a default dialog template for

the control’s first property page. In both cases, ControlWizard

lets you override the class name and file names before you

generate them.

Finally, ControlWizard generates a number of files (see Table

4). Just what’s in these files, and what does the code in them do?

I’ll take that up in my next column. ■
Files Generated by ControlWizard. Once Control–
Wizard finishes its magic, it creates a number of files for

your project, each with a specific purpose. In this table, prjname

is used in place of the project name you specify.

TABLE 4

Files Generated by ControlWizard

(Note: prjname is used in place of the project name you specify.)

prjname.MAK The make file for this OCX.

prjname.CLW The ClassWizard file of classes, events, messages, etc.

prjname.ODL The Object Description Language script used to create the
control’s type library.

prjname.RC The control’s resource script.

RESOURCE.H The common header file of resource IDs.

prjNACTL.BMP The bitmap used when the control is displayed in a toolbar
or palette.

prjname.DEF The Windows’ module-definition file for this OCX.

prjname.H The OCX class header file with a
CWinApp-derivative definition.

prjname.CPP The OCX class implementation file with a
CWinApp-deriviative implementation.

prjNACTL.H The COleControl class derivative definition.

prjNACTL.CPP The COleControl class derivative implementation.

prjNAPPG.H The COlePropertyPage class derivative definition.

prjNAPPG.CPP The COlePropertyPage class derivative implementation.

STDAFX.H A Visual C++ precompiled header file.

STDAFX.CPP A Visual C++ precompiled header implementation file.

MAKEHELP.BAT A batch file for compiling RTF files into HLP files
(if the Help option was selected).

prjname.HPJ The Help project file.

CTRLCORE.RTF The Rich Text Format file for creating on-line help.

*.BMP Bitmaps used by the RTF file.

prjname.LIC The LIC file used for controlling licensing (if option selected).
1995 Fawcette Technical Publications H O M E

	Home Page
	Get Started with ControlWizard

