by Jonathan Wood

any commercial applications dis-
play a startup splash screen as the

the best possible technique. Unfortunately,
it soon became apparent that no single tech-
nique was the best solution. Rather, a num-
ber of different problems must be solved and
the best way to solve them depends on the nature of your
application. I'll present several methods and point out the
advantages and disadvantages of each one.

The simplest wayto create asplash screenis toshow amodal
splash form and then wait until the splash form closes before
continuing with the rest of your program’s initialization. By
selecting the Project command from the Options menu, you can
set the Start Up Form to Sub Main and then show the splash
screen from Sub Main before any other forms have been loaded:

Sub Main ()

'Load splash screen (unloads automatically)
frmSplash.Show 1

'Load program form(s)
frmMain.Show

End Sub

The “1” that follows the Show method causes the splash form
(frmSplash) to be displayed modally. The result is that the Show
method won’t return until the splash form is unloaded. To
unload the splash form, [add two routines to the splash form to
set a timer for five-second intervals, and then unload the form
when it receives a timer event:

Sub Form_Load ()

'Fire up timer (5 second interval)
Timerl.Interval = 5000

End Sub

PROGRAMMING TECHNIQUES

HIDE
THE SLUDGE

Sub Timerl Timer ()

application is loading. A splash A STARTUP "Interval expired, unload form

screen offers two primary benefits: it’s a Unload Me
place to display your program’s copyright SPLASH SCREEN
notice (and a flashy logo if you so desire) End Sub
each time your program starts. It can also CAN GIVE
make your program seem more responsive The only problem with this simple tech-
because it is thrown onscreen quickly and YOUR APP nique is that if your program takes along time
remains there while the rest of the program to load, it will now take much longer. Visual
loads, giving the user something to look at A FAST’ Basic forms that have many controls can be
other than a blank display (see Figure 1). slow to load. It would be nice if the program

In showing how to cll)rea};e(a spla%h scrt)aen, PROFESSIONAL could continue loading while thepst.'frtup
I planned to demonstrate what I thought was FEEL screen is displayed. My second method dis-

plays the splash screen as amodeless form by
loading it with this statement:

frmSplash.Show

This causes the Show method to return immediately so
initialization can continue while the splash form is displayed.
However, this approach requires that you address some addi-
tional issues. To begin with, you need to make the splash screen
atopmost window so that it stays on top of any other forms that
get loaded during initialization (see Listing 1).

Youalsoneed to prevent the user from accessing the main form
while the splash screen is displayed. To do this, the main form’s
Load event sets its Enabled property to False. When the splash
form unloads, its Unload [T |
eventsetsthemainform’s ’
Enabled propertybackto
True. If your application
has more than one top-
level form, you may need
to add code to disable e
and then re-enable addi-
tional forms.

If your program trig-
gers an error that results
in a message box being
displayed during initial-
ization, the program be-
comes locked. This is be-
cause message boxes are
modal and prevent the

Rplick Gorees D

FIGURE] Splashy Screen. Use a
splash screen to give your

users a nice picture to look at while
your program is loading. You can also
use a splash screen to hide forms as

they are being populated with data.

Jonathan Wood writes commercial and custom software in Visual
Basic, Visual C++, and assembly language. His company, SoftCircuits,
is located in Irvine, California. Reach him on the VBPJ Forum (he’s
the section leader ofthe DLL/API Lab section) and MSBASIC Forum
on CompuServe at 72134,263.

©1991-1995 Fawcette Technical Publications HOME Visual Basic Programmer’s Journal MAY 1995 117

splash screen from getting the timer event it needs to unload
itself. Because the splash screen is now a topmost window, it
will cover the message box and the user won’t be able to dismiss
it. Check carefully for any errors that may occur while the splash
form is displayed. If you find potential errors, you must trap
them and make sure the splash form is unloaded before display-
ing any error messages.

My last method involves the use of a small C program that
displays the splash screen. I wrote such a program called
STARTUP.EXE that I invoke from Sub Main:

Sub Main ()
Dim hInst As Integer

'Run splash program (unloads automatically)
hInst = Shell(App.Path & "\STARTUP.EXE")

'Load program form(s)
frmMain.Show

End Sub

The STARTUP.EXE program simply displays a bitmap in a
topmost window and automatically closes it after five seconds.
If you have a resource editor, you can change the bitmap
displayed by this program.

Using this method, the splash screen is now part of another
program so the problem of an error message preventing the
splash screen from unloading is gone. Whereas before you re-
enabled the main form when the splash screen unloaded, you
are no longer notified when this occurs. There is no simple
workaround for this.

Perhaps the primary reason for using a small C program this
way is to have the splash screen load faster than is possible from
alarge Visual Basic program. However, there really isn’t much
of a speed advantage here. The program is not executed until
Sub Main can invoke it anyway, which makes it about the same
speed as my second method. If time is critical, you might make
a small C program that displays the splash screen and then

'Windows declarations

Declare Sub SetWindowPos Lib "User" (ByVal hWnd _
As Integer, ByVal hWndInsertAfter As Integer, _
ByVal X As Integer, ByVal Y As Integer, _
ByVal cx As Integer, ByVal cy As Integer, _
ByVal wFlags As Integer)

'Windows constants

Global Const HWND_TOPMOST = -1
Global Const SWP_NOMOVE = &H2
Global Const SWP_NOSIZE = &H1
Sub Form_Load ()

'Make form a top-most window
Call SetWindowPos(hwnd, HWND_TOPMOST, 0, 0, _
0, 0, SWP_NOMOVE Or SWP_NOSIZE)

'Force painting of form
Visible = True: Refresh

'Fire up timer (5 second interval)
Timerl.Interval = 5000

End Sub

LisTING 1 From the Top. This form’s Load event makes the splash
screen a topmost window by calling the Windows
SetWindowPos API function. Notice the statements that force the
form to be painted. Because the program initialization proceeds
immediately, the splash form won'’t get another chance to display
itself until the program completes initialization and becomes idle.

PROGRAMMING TECHNIQUES

invokes your primary Visual Basic program. This way, the
splash screen is displayed almost instantly.

The source code for the three splash screen demos and the
startup C program are available in the VBPJ and MSBASIC Forums
on CompuServe as SPLASH.ZIP (they will be available on the third
volume of the VB-CD Quarterly as well). AsI pointed out at the start,
there is no best way to display a splash screen in Visual Basic, but
it can be done. Hopefully one of the three methods I've demon-
strated, or perhaps even a combination of them, will be just what
your application needs to give it that something extra.

API TECHNIQUE: ECHO OFF FOR LIST BOXES

If you've ever had to fill a list box with many items, or program-
matically select all items in a multiselect list box, you probably
noticed flickering as the list box was updated: as each item is
modified, Windows repaints the list box to reflect the changes.

In such cases, it makes sense to prevent the list box from
updating until all the changes are complete: an “echo off” for list
boxes. Not only would this prevent the list box from flickering as
it is updated, but it would also make it considerably faster
because the list box would only be repainted once.

Fortunately, the Windows API provides this functionality
through the WM_SETREDRAW message. This message sets or
clears the redraw flag for a given window. While the
WM_SETREDRAW message may be sent to any window, it makes
sense to use it only for certain window types.

To demonstrate the WM_SETREDRAW message, the ex-
ample code selects all of the items in a multiselect list box (see
Listing 2).

The function uses the Windows API function SendMessage to
send the WM_SETREDRAW message to the list box with an
argument of False. This clears the redraw flag for the list box
while all the list items are selected.

The WM_SETREDRAW message is then sent again with an
argument of True to set the redraw flag back on. While this is
usually all you need, the Windows Software Development Kit
documentation recommends that you then call InvalidateRect
with the fErase parameter set to True. This instructs the list box
to repaint itself entirely to prevent any garbage from being left
behind, which can occur as a result of some list box operations.

KEYWORD OF THE MONTH: DIRS

The Dir$ function returns the names of files that match a
specified pattern and attribute. For example, this statement
prints the name of the first file in the current directory:

Print Dir$("*.*")

To get additional files matching the same pattern, call Dir$

with no arguments. When no more files remain, Dir$ returns "".
To print all the files in the current directory, you could use:

Sub Commandl Click ()
Dim fName As String

fName = Dir$("*.*")

Do Until fName = ""

Print fName

fName = Dir$
Loop
End Sub

Note that Dir$ returns files in the order of DOS’s internal
directorytables. You'll have to process thelist if you need it sorted.
The flexibility of the Dir$ function makes it useful for other

120 MAY 1995 Visual Basic Programmer’s Journal [RCIEEISIERENEASIHNE L TLIRID] HET)E l ; I _ I!! l !

tasks as well. For example, this function checks to see if a
specified file exists or not:

Function FileExists (fName As String)

On Error Resume Next

If Dir$(fName) = "" Then
FileExists = False
Else
FileExists = True
End If

End Function

Ifthefile specified by fName exists, the functionreturns True;
otherwise, it returns False. The fName argument can be a simple
file name or it can be a complete, fully qualified file name with
drive and path specifier. Notice that [used an On Error Resume
Next statement before calling Dir$. This is required in case the
file name is specified as existing on a floppy drive. If there is an
error reading the drive (if the drive is empty, for example) then
the function returns False instead of triggering an error.

You canalso have the Dir$ functionreturn files that have certain
file attributes. This function returns a drive’s volume label:

Global Const ATTR_VOLUME = &H8

Function GetVolume (DriveSpec As String) As String
Dim i As Integer, VolName As String

On Error Resume Next
VolName = Dir$(DriveSpec, ATTR_VOLUME)

'Remove returned by Dir$

Global Const WM_SETREDRAW = &HB

Declare Function SendMessage Lib "User"™ (ByVal _
hWnd As Integer, ByVal wMsg As Integer, _
ByVal wParam As Integer, TParam As Any) _
As Long

Declare Sub InvalidateRect Lib "User"™ (ByVal _
hWnd As Integer, ByVal 1pRect As Long, _
ByVal bErase As Integer)

Sub Commandl _Click ()
Dim i As Integer

'Disable updates
i = SendMessage(Listl.hWnd, WM_SETREDRAW, _
False, ByVal 0&)

'‘Select all items in Tist

'MultiSelect property must be 1 or 2

For i = 0 To Listl.ListCount - 1
Listl.Selected(i) = True

Next i

'Reenable updates
i = SendMessage(Listl.hWnd, WM_SETREDRAW, _
True, ByVal 0&)

'Force update of entire 1list box
Call InvalidateRect(Listl.hWnd, 0&, True)

End Sub

LISTING 2 Suppress List Box from Redrawing. This function
uses the Windows API function SendMessage to keep a

list box from redrawing, which makes the list box look more
professional and speeds it up, too.

PROGRAMMING TECHNIQUES

i = InStr(VolName,
If i Then

")

GetVolume = Left$(VoIName, i - 1) & _
Mid$(VolName, i + 1)
Else
GetVolume = VolName
End If

End Function

The Dir$ function can return the volume label because DOS
stores volume labels as a special type of file. However, since Dir$
thinks it’s returning a file name, a period is inserted into the
volume name. The GetVolume function uses InStr to find the
period and remove it. The argument is the drive for which you
want the volume label returned. For example, to print the
volume label for drive C:, you would use:

Print GetVolume("C:")

DISTRIBUTION TIP: DIRECTORY FOR VBX/DLL FILES

For all the convenience that custom controls bring to Visual
Basic, VBXs cause most of the conflicts that occur when you
distribute applications. Such applications are likely to find
themselves on systems with other applications created with
Visual Basic possibly using the same VBXs.

For this toworkwithout conflict, it’s important that Visual Basic
developers adhere to a common set of conventions. Primarily,
VBXs and DLLs that might be shared with other applications
should be placed in the Windows system directory. Visual Basic’s
Setup Wizard handles this automatically for you. Unfortunately,
some programs do not follow this protocol and install VBX files in
the Windows directory.

Maybe half of the support calls I handle concern users who
try to run my program, but are thwarted by an error message
stating that a particular VBX used by the program is out of date.
How can the VBX be out of date when they just used my
installation program, which installs my version of the VBX?
Invariably, the answer is that another program installed an
older version of the VBX in the Windows directory.

When Windows loads a DLL (VBX files are a type of DLL), it
searches for it in these places:

® Modules already loaded into memory.

® The active directory.

e The Windows directory.

* The Windows system directory.

¢ The directory where the client program resides (Windows 3.1
and later).

¢ Directories listed in the PATH environment string.

¢ Directories mapped in a network.

When my program requests the VBX, Windows locates the
version in the Windows directory before it finds my version in
the Windows system directory. If the one in the Windows
directory is older than the one my program uses, the error
occurs. If I tell the user to delete or rename the VBX in the
Windows directory, my program runs fine.

What happens if the other program had correctly installed
the VBX in the Windows system directory? Setup programs
created with Setup Wizard compare the internal version infor-
mation of VBX files. If the existing version is newer than the one
being installed, the existing file is not overwritten. In this case,
the existing VBX was an older version, so the newer one would
have been installed on top of it. Because newer versions of VBXs
should always be compatible with older versions, this allows
both programs to peacefully coexist. m

©1991-1995 Fawcette Technical Publications HOME Visual Basic Programmer’s Journal MAY 1995 121

	Home Page
	Hide the Sludge

