
I N S I D E  S O R T S

Speed Sorting with
Seven Algorithms

Want to speed up your VB sorting tasks?
Here’s how to choose and use sorting

algorithms for faster results.
B Y  D E E P A K  A G R A W A L

than others. Some are easier to write and
use than others. Still others may be ex-
tremely fast, but pose resource problems
and crash if not properly thought out.

In order to determine which sort is
right for you, you need to know the capa-
bilities of each sort method, the complexity
of the sort and the process by which the
sort operates. Let’s look at seven sorts:
Insertion, Selection, Bubble, Bucket, Shell,
Heap, and Quick sort.

Each sorting algorithm falls into one of
two categories based on its runtime execu-
tion efficiency: Insertion, Selection, Bucket,
and Bubble sort are all N ** 2; Merge, Heap
and Quick sort are N log N (log base 2); the
Shell sort can belong to either group.

If N is assigned to be indicative of the
size of the array, then you can watch an N **
2 sort to see how much time is consumed

There’s no one best sorting algo-
rithm for every task. Of the many
algorithms you can choose, some
are dramatically more efficient
38     MAY 1995   Visual Basic Programmer’
during execution. The larger the size of N,
the longer the sort takes to execute. If our N
array is 100 elements, it could take 10,000
iterations to complete the sort. If you were
to sort an array of 15,000 user IDs from a
Customer table, this could take as long as
225,000,000 iterations to complete. With
the N log N sorts this would be substantially
faster: as small as 62,641 iterations for the
same array. That is roughly 99.98 percent
faster. It sounds good, but these sorts are
far more complex.

Each sort routine accepts an array of
random data, internally sorts the elements
of the array and eventually returns the
array in properly sorted order. The
pseudocode logic for each sort is included
so that you can re-create the routines in the
language of your choice. The pseudocode
is used to show the process of the sorts, and
won’t run in VB. You must translate the
pseudocode examples here into VB or C++
code. An example program uploaded to the
VBPJ Forum on CompuServe and printed
here (see Listing 1) will give you VB code
using these techniques and will let you
evaluate the different sorts more fully. Look
for VBSORT.ZIP in the Magazine Library
(see Figure 2).

Each of these sorts has been imple-
mented in straight VB code, without the use
of any DLL libraries, and are located in the
SORT.BAS file. Some recursive and
nonrecursive implementations will be dem-
onstrated. Bone up on your understanding
of recursive routines. Not many VB pro-
grams take advantage of this optimization
technique (see “The Secrets of Recursion”
[VBPJ December/January 1993/1994] for
more on recursive routines, and “C DLL
s Journal ©1991–1995 Fawcette Techn
Extends VB Array Sorting” [Windows Pro-
gramming, VBPJ February/March 1994] for
more on the sorting DLL).

The pseudocode logic for the sorts
uses these variables:

V: To represent the array passed to the
sorting function.
L: Pointer to Low entry in the array (the
Lbound value).
H: Pointer to the High entry in the array
(the Ubound value).
N: Size of the array.
I, J, K: Temporary variable pointers (In-
dexes into the array).

Let’s take a look at the Bubble sort and
what makes it tick. Classic sorting algo-
rithms take advantage of pointers, but
because we are VB developers and do not
yet have the luxury of pointers, these sort-
ing routines have been altered to fit the
needs of the Visual Basic programmer.

The Bubble sort is like the tortoise from
Aesop’s fable about the tortoise and the
hare: it’s the underdog (see Figure 1). While
the Bubble sort is by far the slowest, most
inefficient algorithm for large jobs, it is
also the easiest to code. That’s what makes
it so popular with programmers.

The Bubble sort operates on the prin-
ciple that eventually the smallest num-
ber will bubble to the top or bottom of
the array.

The Bubble sort is inefficient due to the
method by which it determines the rela-
tionship of the elements in the array to be
sorted. A comparison of adjacent elements
is made at every stage of the sorting pro-
cess. The larger the array, the larger the
Deepak Agrawal is president of DAConsulting
Inc., a Chicago, Illinois-based consultancy
specializing in client/server application
development, training, downsizing corpo-
rate systems, and providing progressive
technology services. He also contributes to
a variety of technical publications and in-
dustry newsletters, and is a guest confer-
ence speaker. Deepak can be reached at
708-742-9985, or on CompuServe at
73322,1561.
ical Publications H O M E



I N S I D E  S O R T S
number of comparisons and the longer it
will take the sort to complete. One un-
popular characteristic of the Bubble sort
is that if a sorted array is passed to it, it will
still try to sort the array.

Here is the pseudocode for a typical
Bubble sort:

Sub Bubble (V, L, H )

J = L
DO WHILE ( J < H )

K = H
DO WHILE ( K > J )

IF V( K ) < V( K - 1 ) _
THEN

TEMP = V( K )
V( K ) = V( K - 1 )
V( K - 1 ) = TEMP
©1991–1995 Fawcette Technical Public
ENDIF
K = K - 1

LOOP
'At this point the
'lowest element is
'at the top

J = J + 1
LOOP

End Sub

The Bubble sort compares each ele-
ment until the array is sorted in ascend-
ing order (see Figure 3). With this set of
data the Bubble sort would take this step-
by-step sequence:

point J to element 0
point K to element 2
compare element K (7) to element K-1 _
Visual Basiations H O M E
(12) : A
swap 7 and 12
decrement K by 1
compare element K (7) to element K-1 _

(-5): B
don’t swap because 7 > -5, so _

decrement K by 1
since K is not > J exit inner loop _

and begin again : C
point K to element 2, point J to _

element 1
compare element K (12) to element K-1 _

(7) : D
don’t swap because 12 > 7, so _

decrement K by 1
since K is not > J exit inner loop _

and begin again : E
point J to element 2 : F

CONTINUED ON PAGE 44.
Going Around in Circles. Even on a 90 Mhz Pentium with a math-coprocessor, Windows NT 3.5, and 32 MB of RAM, the
Bubble sort will make you want to upgrade your machine (these timings were made on such a system). Keep in mind that

these timings will vary on your machine, but the percent differences will be consistent. The loop count is only an indication of how many
iterations were performed, not how many comparisons were made.

FIGURE 1

0

10

20

30

40

50

60

Begin:

50653.59 seconds

End:

50654.11 seconds

Duration:

0.5195313 seconds

Loops:

6,266

Quick

Begin:

50683.63 seconds

End:

50684.84 seconds

Duration:

1.230469 seconds

Loops:

25,224

Heap

Begin:

50506.83 seconds

End:

50508.54 seconds

Duration:

1.722656 seconds

Loops:

35,665

Shell

Begin:

50348.2 seconds

End:

50382.88 seconds

Duration:

34.67969 seconds

Loops:

1,023,872

Bucket

Begin:

50425.38 seconds

End:

50462.15 seconds

Duration:

36.76953 seconds

Loops:

1,997,001

Selection

Begin:

50270.65 seconds

End:

50314.22 seconds

Duration:

43.58203 seconds

Loops:

1,001,748

Insertion

Begin:

49649.74 seconds

End:

49703.84 seconds

Duration:

54.12109 seconds

Loops:

2,000,999

Bubble

Duration in seconds
QUICK SORT BURSTS BUBBLE
c Programmer’s Journal   MAY 1995     39



I N S I D E  S O R T SI N S I D E  S O R T S
SORT.BAS
Global Const ZERO = 0
Global Const ASCENDING_ORDER = 0
Global Const DESCENDING_ORDER = 1

Global gIterations

'***BUBBLE***
Sub BubbleSort (Array(), ByVal
nOrder As Integer)
Dim Index
Dim TEMP
Dim NextElement

NextElement = ZERO
Do While (NextElement < _

UBound(Array))
Index = UBound(Array)
Do While (Index > NextElement)

If nOrder = ASCENDING_ORDER _
Then

If Array(Index) < Array(Index _
1) Then

TEMP = Array(Index)
Array(Index) = Array(Index -1)
Array(Index - 1) = TEMP

End If
ElseIf nOrder = _

DESCENDING_ORDER Then
If Array(Index) >= Array(Index _
1) Then

TEMP = Array(Index)
Array(Index) = Array(Index - _

1)
Array(Index - 1) = TEMP

End If
End If
Index = Index - 1
gIterations = gIterations + 1

Loop
NextElement = NextElement + 1
gIterations = gIterations + 1
Loop

End Sub

'***BUCKET***
Sub Bucket (Array(), ByVal nOrder
As Integer)
Dim Index
Dim NextElement
Dim TheBucket

NextElement = LBound(Array) + 1
While (NextElement <= _

UBound(Array))
TheBucket = Array(NextElement)
Index = NextElement
Do

If Index > LBound(Array) Then
If nOrder = ASCENDING_ORDER _

Then
If TheBucket < Array(Index _

- 1) Then
Array(Index) = Array(Index _

- 1)
Index = Index - 1
Else
Exit Do
End If

ElseIf nOrder = _
DESCENDING_ORDER Then
If TheBucket >= Array(Index _

- 1) Then
Array(Index) = Array(Index - _
1)
Index = Index - 1
Else
Exit Do
End If

End If
Else
Exit Do
End If
gIterations = gIterations + 1

Loop
Array(Index) = TheBucket
NextElement = NextElement + 1
gIterations = gIterations + 1
Wend

End Sub

'***HEAP***
Sub Heap (Array())
Dim Index
Dim Size
Dim TEMP

Size = UBound(Array)

Index = 1
While (Index <= Size)
Call HeapSiftup(Array(), Index)
Index = Index + 1
gIterations = gIterations + 1
Wend

Index = Size
While (Index > 0)
TEMP = Array(0)
Array(0) = Array(Index)
Array(Index) = TEMP
Call HeapSiftdown(Array(), _

Index - 1)
Index = Index - 1
gIterations = gIterations + 1
Wend

End Sub

Sub HeapSiftdown (Array(), M)
Dim Index
Dim Parent
Dim TEMP

Index = 0
Parent = 2 * Index

Do While (Parent <= M)

If (Parent < M And Array(Parent) _
< Array(Parent + 1)) Then
Parent = Parent + 1

End If

If Array(Index) >= Array(Parent) _
Then
Exit Do

End If

TEMP = Array(Index)
Array(Index) = Array(Parent)
Array(Parent) = TEMP

Index = Parent
Parent = 2 * Index

gIterations = gIterations + 1
Loop
End Sub

Sub HeapSiftup (Array(), M)
Dim Index
Dim Parent
Dim TEMP

Index = M
Do While (Index > 0)
Parent = Int(Index / 2)

If Array(Parent) >= _
Array(Index) Then
Exit Do

End If

TEMP = Array(Index)
Array(Index) = Array(Parent)
Array(Parent) = TEMP

Index = Parent
gIterations = gIterations + 1
Loop

End Sub

'***INSERTION***
Sub Insertion (Array(), ByVal _

nOrder As Integer)
Dim Index
Dim TEMP
Dim NextElement

NextElement = LBound(Array) + 1
While (NextElement <= _

UBound(Array))
Index = NextElement
Do

If Index > LBound(Array) Then
If nOrder = ASCENDING_ORDER _

Then
If Array(Index) < _

Array(Index - 1) Then
TEMP = Array(Index)
Array(Index) = _

Array(Index - 1)
Array(Index - 1) = TEMP
Index = Index - 1
Else
Exit Do
End If

ElseIf nOrder = _
DESCENDING_ORDER Then
If Array(Index) >= _

Array(Index - 1) Then
TEMP = Array(Index)
Array(Index) = _

Array(Index - 1)
Array(Index - 1) = TEMP
Index = Index - 1
Else
Exit Do
End If

End If
Else
Exit Do
End If
gIterations = gIterations + 1

Loop
NextElement = NextElement + 1
gIterations = gIterations + 1
Wend

End Sub

CONTINUED ON PAGE 44.
40     MAY 1995   Visual Basic Programmer’s Journal40     MAY 1995   Visual Basic Programmer’s Journal

Sort Out Your Life. Here’s the code for seven sorting algorithms: Insertion; Selection; Bubble; Bucket; Shell; Heap; and Quick
sort. Some are easier to code, while others will be radically faster at run time (see Figure 1).LISTING 1

©1991–1995 Fawcette Technical Publications H O M E



I N S I D E  S O R T S
since J not < H exit loop
Array Is Sorted

The number of interactions performed
by the Bubble sort varies depending on the
size and randomness of the array. In this
example, the sort performed five tests be-
fore the array was sorted properly. Be-
cause the worst-case scenario would be
nine tests (N ** 2), for a small set of data, the
Bubble sort does an adequate job of sorting
in a reasonably short period of time.

FROM BUBBLE TO INSERTION
The basic idea in an Insertion sort is much
like what card players use to arrange
cards. You look at each card one at a time
and when each new card is seen, it is
inserted into its proper place.

At each stage of the Insertion sort, the
cards preceding the current card are al-
ready sorted. Rather than run through the
entire list of members, you compare the
current card with the partial set of sorted

CONTINUED FROM PAGE 39.
©1991–1995 Fawcette Technical Public
members. The farther we go to the bottom
of the deck the longer the sort takes be-
cause there are more members to test.
Compared to the Bubble sort, which tests
every member in the array every time, the
Insertion sort actually begins with a small
comparison and increases gradually.

The Insertion sort example’s logic is
very similar to the Bubble sort. You begin
by comparing adjacent elements and
swapping them if they are not in the proper
ascending or descending order. The effi-
ciency of the Insertion sort comes from
its ability to sort a small set of members
before continuing through the remaining
unsorted members of the array, until the
entire array is sorted.

This pseudocode for the Insertion sort
demonstrates how the algorithm functions:

Sub Insertion (V, L, H )

J = L + 1
DO WHILE ( J <= H )

K = J
Visual Basiations H O M E
DO WHILE ( K > L AND V( K ) _
< V( K - 1 ) )
TEMP = V( K )
V( K ) = V( K - 1 )
V( K - 1 ) = TEMP
K = K - 1

LOOP
J = J + 1

LOOP
End Sub

Sorting algorithms aren’t always simple
to figure out. The best way to understand
a sort is to step through the logic with a
small set of data. Let’s use the array we
used in the Bubble sort to see how the
Insertion sort works (see Figure 4).

Here’s the Insertion sort’s step-by-step
sequence:

point J to element 1
point K to J
If K > L, compare element K (12) _

to element K-1 (-5) : A
don’t swap because 12 > -5
'***QUICKSORT***
Sub QuickSort (Array(), L, R)
Dim I, J, X, Y

I = L
J = R
X = Array((L + R) / 2)

While (I <= J)
While (Array(I) < X And I < R)

I = I + 1
Wend
While (X < Array(J) And J > L)

J = J - 1
Wend
If (I <= J) Then

Y = Array(I)
Array(I) = Array(J)
Array(J) = Y
I = I + 1
J = J - 1

End If
gIterations = gIterations + 1
Wend

If (L < J) Then Call _
QuickSort(Array(), L, J)

If (I < R) Then Call _
QuickSort(Array(), I, R)

End Sub

'***SELECTION***
Sub Selection (Array(), ByVal _

nOrder As Integer)
Dim Index
Dim Min
Dim NextElement
Dim TEMP

NextElement = 0
While (NextElement < _

UBound(Array))
Min = UBound(Array)
Index = Min - 1
While (Index >= NextElement)

If nOrder = ASCENDING_ORDER _
Then

CONTINUED FROM PAGE 42.

If Array(Index) < Array(Min) _

Then
Min = Index

End If
ElseIf nOrder = _

DESCENDING_ORDER Then
If Array(Index) >= Array(Min) _

Then
Min = Index

End If
End If
Index = Index - 1
gIterations = gIterations + 1

Wend
TEMP = Array(Min)
Array(Min) = Array(NextElement)
Array(NextElement) = TEMP
NextElement = NextElement + 1
gIterations = gIterations - 1
Wend

End Sub

'***SHELL***
Sub ShellSort (Array(), ByVal
nOrder As Integer)
Dim Distance
Dim Size
Dim Index
Dim NextElement
Dim TEMP

Size = UBound(Array) - _
LBound(Array) + 1

Distance = 1

While (Distance <= Size)
Distance = 2 * Distance
Wend

Distance = (Distance / 2) - 1

While (Distance > 0)

NextElement = LBound(Array) + _
Distance

While (NextElement <= _
UBound(Array))
Index = NextElement
Do
If Index >= (LBound(Array) + _

Distance) Then
If nOrder = ASCENDING_ORDER _

Then
If Array(Index) < _

Array(Index - Distance) Then
TEMP = Array(Index)
Array(Index) = _

Array(Index - Distance)
Array(Index - Distance) = _

TEMP
Index = Index - Distance
gIterations = gIterations _

+ 1
Else

Exit Do
End If
ElseIf nOrder = _

DESCENDING_ORDER Then
If Array(Index) >= _

Array(Index - Distance) _
Then

TEMP = Array(Index)
Array(Index) = _

Array(Index - Distance)
Array(Index - Distance) = _

TEMP
Index = Index - Distance
gIterations = gIterations _

+ 1
Else

Exit Do
End If
End If

Else
Exit Do

End If
Loop
NextElement = NextElement + 1
gIterations = gIterations + 1

Wend
Distance = (Distance - 1) / 2
gIterations = gIterations + 1
Wend

End Sub
c Programmer’s Journal   MAY 1995     41



increment J by 1
point K to J
compare element K (7) to element _

K-1 (12) : B
swap because 12 > 7, so decrement K _

by 1
since K > L stay inside inner loop _

again compare next adjacent pair
compare element K (7) to element _

K-1 (-5) : C
don’t swap because 7 > -5
increment J by 1
since J > H we have exited the array _

and the outer loop
Array Is Sorted

The Insertion sort has a sibling called
the Bucket sort. Like twins, these algorithms
have much in common, and many subtle
differences. For example, rather than per-
forming many swaps, the Bucket sort holds
an entry until it finds the correct position.
Compared to the standard Insertion sort,
the Bucket sort is faster, although the num-
ber of swaps performed by either sort
method is similar in the end. In tests the
Bucket sort actually performed more itera-
tions than the Insertion sort, but the overall
processing time was faster.

In this example, the Bucket sort holds
the out-of-place value in a bucket until
the correct position is located, rather
than swapping entries as it iterates the
array:

Sub Bucket (V, L, H )
J = L + 1
DO WHILE ( J <= H )

BUCKET = V ( J )
K = J

Sort It Out. SORT.EXE will help y
algorithms inside Visual Basic. It c

CompuServe. Type GO VBPJFO and look for

FIGURE 2

©1991–1995 Fawcette Techn
DO WHILE ( K > L AND BUCKET _
< V ( K - 1 ) )
V( K ) = V( K - 1 )
K = K - 1

LOOP
V ( K ) = BUCKET
J = J + 1

LOOP
End Sub

ou learn how to implement efficient sorting
an be downloaded from the VBPJ Forum on
 VBSORT.ZIP in the Magazine Library.

ical Publications H O M E



Of the N ** 2 sorting algorithms, the
Insertion sort is the most efficient. On the
average, it will take less time than both
the Selection and Bubble sorts. But the
price you pay for using the Insertion sort
is that it does not work well if the array is
presorted in opposite order. That’s where
the Selection sort comes in.

The Selection sort operates on a single
entry until it finds the proper location
(see Figure 5). At each swap the array
begins to become more sorted until the
final two entries are swapped. Some algo-
rithms suggest selecting the lowest entry
to build a sorted array; others suggest the
highest. The operation of the Selection
sort in the example code here has not
changed—only the sorting order has:

Sub Selection (V, L, H )

J = L
DO WHILE ( J < H )

MIN = H
K = H - 1
DO WHILE ( K >= J )

IF ( V ( K ) < V( MIN ) _
) THEN
MIN = K

ENDIF
K = K - 1
LOOP
TEMP = V( MIN )
V( MIN ) = V( J )
V( J ) = TEMP
J = J + 1

LOOP
End Sub

The Selection sort is slightly faster
than the Bubble sort, but not by a margin
so wide that they can be considered com-
petitors in the N ** 2 category. On large
sets of data, the Selection sort has not
performed well. If your applications re-
quire sorting on large arrays, the next few
sort methods may be of interest.

The Shell sort, like the Selection sort,
is derived from the Insertion sort and is
based on the concept of diminishing in-
crements. The Shell sort does not sort the
entire array at once. First, the array is
divided into smaller segments, which are
then sorted separately using the Inser-
tion sort. The sort begins with compari-
sons of entries located at the greatest
distance possible (see Figure 6).

With each subsequent pass, the dis-
tance between compared entries becomes
smaller until the last increment is one.
Each pass increases the order until the
array is sorted:

Visual Basi

I N S I D E  S O R T S

©1991–1995 Fawcette T
Sub Shell (V, L, H )

D: Distance between entries
N: Size of the array

N = H - L + 1
D = 1

DO WHILE ( D <= N )
D = 2 * D

LOOP

D = D/2 -1

DO WHILE ( D > 0 )
J = L + D
DO WHILE ( J <= H )

K = J
DO WHILE ( K >= L + D _

AND V( K ) < V( K - _
D ) )
TEMP = V( K )
V( K ) = V( K - 1 )
V( K - 1 ) = TEMP
K = K - D

LOOP
J = J + 1

LOOP
D = ( D - 1 ) / 2

LOOP
End Sub

c Programmer’s Journal   MAY 1995     43

echnical Publications H O M E



I N S I D E  S O R T S
The Shell sort is considerably faster
than any of the N ** 2 sorts. In mathemati-
cal terms, the Shell sort is proportional to
N ** 0.5. On large arrays, the Bubble,
Insertion, Selection, and Bucket sorts do
not approach the execution time of the
Shell sort. Unlike the Insertion sort, whose
performance would degrade on presorted
arrays, the Shell sort is equally efficient in
either ascending or descending order.

QUICK EXCHANGE
The Quick sort algorithm is an exchange
type of sort. These sorts involve a basic
idea of exchanging or switching pairs of
elements, gradually moving each element
closer to its final position in the array.
When this technique is applied to a sort,
it works equally well. Split the array into
two subarrays (see Figure 7):

1 contains all entries < a given element
2 contains all entries > a given element

We continue to divide each sublist down
until we reach the last element in the list.
This approach is applied to Sublist 2, once
Sublist 1 is completely sorted. The Quick
sort lends itself very easily to using recur-
sive techniques. The one problem in using
the Quick sort is the selection of the divid-
ing or pivot element. We want an element
in the array that ideally represents the
median of all elements in the list.

When you write recursive routines in
Visual Basic, you need to avoid running
out of stack space. Because you are not
working in a C/C++ environment, you don’t
need direct control over the stack space,
so certain limitations are imposed on Vi-
sual Basic programmers.

This Quick sort implementation always
calculates the pivot point to be the center
element in the target array:

Sub Quick ( V, Left, Right )

I = Left
J = Right
Pivot = V( (Left + Right) / 2 )

DO WHILE ( I <= J )
DO WHILE ( V( I ) < Pivot _

AND I < Right )
I =  I + 1

LOOP
DO WHILE ( Pivot < V( J ) < _

Pivot AND J > Left )
J = J -1

LOOP

IF ( I <= J ) THEN
Y = V( I )
V( I ) = V( J )
V( J ) = Y
I = I + 1
J = J - 1
44     MAY 1995   Visual Basic Programmer’
ENDIF
LOOP

IF ( Left < J ) THEN Quick( V, _
Left, J )

IF ( I < Right ) THEN Quick( V, _
I, Right )

End Sub

Sorts on an N log N method execute
extremely fast. The Shell sort is mark-
edly more efficient than the N ** 2 meth-
ods, but the Quick sort and its mem-
bers, Heap and Merge, are substantially
faster. For an array of 100 elements, the
average number of comparisons is
roughly 200.

The Heap sort follows the structure
of a binary tree. This sorting method
relies on creating a heap data structure:
every element at location K is greater
than or equal to the elements at 2K and
2K+1. For example:

or V(i/2) >= V(i) where 1 <= i _
<= N
s Journal ©1991–1995 Fawcette Techn
The two kinds of Heaps are:

Top-heavy:  V(K) >= V(2K) AND V(2K+1)
Bottom-heavy:  V(K) <= V(2K) AND _

V(2K+1)

The Heap sort algorithm is depen-
dent on three unique processes: the
Heap, the Siftup, and the Siftdown rou-
tines. The Heap routine is the driving
engine of the sort that calls the Siftup
and Siftdown routines until the array is
sorted. The Siftup and Siftdown rou-
tines each perform a specific task. The
Siftup routine builds the Heap, then the
Siftdown begins swapping a parent with
its largest child, eventually creating the
sorted Heap:

Sub Heap ( V, N )

I = 2

'This builds the HEAP
DO WHILE ( I <= N )

SIFTUP ( V, I )
I = I + 1
Bubbles Float Up. The Bubble sort’s objective is to rearrange the elements in
the array in ascending order (low to high). It compares each member in the

array with the next for each pass through the array. If time is not an issue or your array is
small, the Bubble sort is the simplest to code.

FIGURE 3

? ?

?
?

?

?

A B C D E F

-5

12

7

-5

7

12

-5

7

12

-5

7

12

-5

7

12

-5

7

12
Better Than the Bubble. Same set of data, but half the time! The Insertion sort
is based on N ** 2 algorithms, but on small data sets it performs better than the

Bubble sort. If you’re working with large data sets, however, you need to use a more
efficient algorithm instead.

FIGURE 4

?

??

BA C D

-5

12

7

-5

12

7 12

-5-5

7

12

7

ical Publications H O M E



I N S I D E  S O R T S
LOOP
I = N

'by this swap the HEAP property
'is lost; but the largest element
'is driven to the correct
'position. SIFTDOWN will put the
'out of order element in correct
'position and thus
'create the HEAP.

DO WHILE ( I > 1 )
TEMP = V( 1 )
V( 1 ) = V( I )
V( I ) = TEMP
SIFTDOWN( V, I-1 )
I = I - 1

LOOP

End Sub
©1991–1995 Fawcette Technical Public
The Siftup swaps an element with its
parent if it is greater than its parent and
thus drives it up to its correct position:

Sub SIFTUP( V, M )

I = M
DO WHILE ( I > 1 )

J = I / 2

IF ( V( J ) >= V( I ) ) THEN

BREAK
ENDIF

TEMP = V( I )
V( I ) = V( J )
V( J ) = TEMP

I = J
Visual Basations H O M E
LOOP

End Sub

This routine is called after the highest
element is swapped with the last element of
the array. This routine receives the trun-
cated array with one element out of order
(from a heap). In turn, the routine drives that
out-of-order element to its correct position.

The Siftdown process is logarithmic in
nature because at each comparison in sift-
ing down you eliminate one of the two
substructures-—that of location 2K or 2K+1:

Sub SIFTDOWN( V, M )

I = 1
J = 2 * I

DO WHILE( J <= M )
IF ( J < M AND V( J ) < V( _

J + 1 ) THEN
J = J + 1

ENDIF

IF V( I ) >= V( J ) THEN
BREAK

ENDIF

TEMP = V( I )
V( I ) = V( J )
V( J ) = TEMP

I = J
J = 2 * I

LOOP

End Sub

The Heap sort may not be recursive like
the Quick sort, but it still performs effi-
ciently due to the Siftdown process. If you
want to sort a standard large array, the
Heap sort is not the best solution: use the
Quick sort. If your array represents a binary
tree (see Figure 8), the Heap sort is recom-
mended. The binary tree is not a data struc-
ture used commonly by most VB program-
mers, but if you have been using binary
trees in either VB development or another
language and need a method by which you
can sort the tree, give Heap sort the oppor-
tunity.

Of the sorting techniques I haven’t cov-
ered, such as the two Merge sorts (recur-
sive and nonrecursive), the nonrecursive
Quick sort, the Exchange sort, and a variety
of others have been derived from the core
sorting algorithms presented here. Whether
any of these other sorting algorithms is
better than the others is a question you
need to answer based on your situation.

LARGE ARRAYS AND VB DON’T MIX
I wouldn’t recommend sorting large ar-
rays with Visual Basic. C programmers
?

BA C D

-1

12

-5

12

7

-1

7

12-5

77

12

-5

-1

-5

?
?

-1

FIGURE 5 Pick One, Any One. The Selection sort utilizes a different strategy: finding the
proper location for each entry, and at each step becoming more organized.

Simple in design and elegant in execution, the Selection sort is not much different from the
Insertion sort.
F D A C B E

C B A F D E

A B C D E F

A B C D E F

Pass 1:

Pass 2:

Pass 3:

Pass 4:

D=3

D=2

D=1

The Shell Game. The Shell sort performs comparisons based on a distance
(D). Every set of elements that are D entries apart is compared and swapped.

At each pass, the distance grows smaller and the array becomes more sorted until the
distance is 1, at which point the array is sorted. Shell sort will outperform the N ** 2 sorts
every time on large arrays.

FIGURE 6
ic Programmer’s Journal   MAY 1995     45



I N S I D E  S O R T S
already know that these sorting algo-
rithms will execute at lightning speeds in
C compared to that in Visual Basic. The
pseudocode for the sorts can easily be
translated into C or assembler functions
and collected into a DLL to suit your
sorting needs. If you prefer to save some
programming time, many third-party ven-
dors provide libraries of DLLs that allow
you to use their sorting routines instead.

My sorting needs have not be very
demanding, so I prefer handwritten code
in Visual Basic. The arrays most program-
mers sort are often small, with no more
than 100 elements, so purchasing another
third-party tool may not be an attractive
alternative.

For huge arrays, consider using a sort
written in C or you’ll be waiting for min-
utes while the sort is executing. To see
what I mean, use my SORT.EXE program
(see Figure 2) to sort a small array of 4,000
elements with the Bubble sort.

Sorting can come in handy when you
are dealing with a list of data that must be
presented in an ordered fashion. If the
luxury of a SQL database that supports
ORDER BY and GROUP BY clauses or
presorted data in a file isn’t available, the
only choice is to sort the data manually.
Many of these sorting algorithms can be
modified to read from a file and sort the
data, or else you can read the data into an
array and sort it. The size of the data
should help indicate which sort to use.
Avoid any of the N ** 2 arrays when
sorting large arrays: the larger the array
the more time it will take to sort.

For example, consider a table contain-
ing manufacturer codes for cars as well as
a unique ID for each code. The table is in
order by code, not by ID. It would be easy
to read this table into the VB program and
display the codes in a combo box. Each
record is read one at a time until the end
of file is reached, and the records are
added to the combo box—again, the list
46     MAY 1995   Visual Basic Programmer
would be ordered by code, not by ID.
If the code reads the table into a two-

dimensional array and then sorts the ar-
ray on the first dimension (the IDs), the
array could be displayed in order by ID
when the sort finished. Sorts on zip codes,
social security numbers, or federal tax ID
numbers, all of which are unique num-
bers, are often used as well.

The SORT.EXE example program dem-
onstrates the sorts covered in this article.
The nOrder parameter in the Bubble, Shell,
Insertion, Bucket, and Selection sorts in-
dicate which order the array should be
sorted in: ascending or descending order.
Arrays of various sizes can be built by
entering a size in the text field and click-
ing on the Generate Data button, and
selecting the sort method and sort order
to sort your array.

Although variants aren’t recommended
by most programmers when coding, these
sorting algorithms can sort more than just
Integers. This approach may look poor,
but I wanted to demonstrate a neat place
where variants can come in handy.

For performance reasons, it would
be better to build a set of unique sorts,
one for each data type, but if you per-
form as little sorting as most program-
mers do, and time is not an issue, a
simple generic sort is easier to main-
tain. The array can be composed of
strings or a numeric data type, and still
’s Journal ©1991–1995 Fawcette Techn
be sorted with the same routine.
A global counter variable is placed in

each sort function to count the approxi-
mate number of iterations performed
for that sort to complete. This number
is not indicative of the number of logical
comparisons performed for the array to
be sorted. In the more elaborate sorts,
the count decreases dramatically: a good
sign of better performance.

If you simply need to sort a list of
names and these sorting algorithms
seem overdone, VB comes with a sort
control. The list box has a Sorted prop-
erty, which when set to True will sort its
internal list in alphabetical order. Take
care not to perform AddItems on the list
though, which could throw off the sort.

The best way to determine which
sort is right for you is to experiment
with varying sizes of array and data
types. No one array is the best solution;
time, complexity of data type, and size
of the array all play a part in selecting
the right sort. My personal selection is
the Bubble sort for small arrays, and the
Quick sort for large arrays. Experiment
with the sorting routines to see which
ones you like the best. If you happen to
have some of your own that aren’t in-
cluded in the SORT.BAS file, send them
to me on CompuServe and I will include
them in my SORT.BAS file for everyone
else to share. ■
Quicker Than a Speeding
Bullet. The popular Quick sort

can be written either recursively or
nonrecursively. In the recursive model, the
array is broken into smaller sublists, based
on a Pivot point, and are then sorted. Use
the Quick sort for large data sets that must
be sorted quickly, but beware of stack space
limitations in VB with a recursive routine!

FIGURE 7

<x

<x >x

>x

Sublist 1 Sublist 2

Sublist 1 Sublist 2
The Heap is On. Remember all the trouble you had with binary trees when you
were still in school? The Heap sort is built on the principle of balancing a binary

tree. Phase I is to build the heap. Phase II is to sort the tree. The Heap sort is not recursive,
but it’s still fast.

FIGURE 8

The Array:

Siftup:

-13322

21571 -5111

21571

-13322 -5111

Siftdown:

21571

-5111 -13322

-13322

-5111 21571

-5111

-13322 21571

-13322

-5111 21571

The Sorted Array:

-13322

-5111 21571

-13322

-5111 21571

21571

-5111 -13322
ical Publications H O M E


	Home Page
	Speed Sorting with Seven Algorithms

