term

A terminal program for Amiga computers

ARexx-interface and ARexx-commands explained

18 October 1996

by Olaf Barthel

Copyright (©) 1990-1996 Olaf Barthel

You may make and distribute verbatim copies of this documentation if the contents are unchanged

or the author has agreed to any changes made.

No guarantee of any kind is given that the program described in this document are 100% reliable.

You are using this material on your own risk.
The program ‘term’ and the data received/sent by it must not be used for the following purposes:

1. The construction, development, production or testing of weapons or weapon systems of any
kind.

2. The construction, development, production or use of plants/installations which include the

processing of radioactive/fissionable material.

3. The training of persons to deal with the abovesaid actions.

Listen to your conscience.

Chapter 1: Changes 1

1 Changes

Previous ‘term’ releases would use a different ARexx host interface implementation. In order
to conform to Commodore-endorsed user interface style guidelines it was redesigned from scratch
for version 3.0. The design and implementation of the ARexx host interface was suggested by the
Amiga User Interface Style Guide and strongly influenced by Martin Taillefer’s TurboText ARexx
host interface.

Not a simple command has ‘survived’ the revision, the new implementation is no longer com-
patible with its predecessors, so existing ARexx scripts will have to be adapted or even entirely
rewritten.

‘term’ no longer distinguishes explicitely between asynchronous and synchronous commands (i.e.
commands which force the main program to wait and commands which need not bother the main
program as the ARexx handler process is able to execute them). As of this writing it is safe to
assume that almost any command will be processed by the main program, exceptions are noted.

ARexx-interface and ARexx-commands explained

Chapter 2: term and ARexx 3

2 term and ARexx

This document describes the ARexx(tm)!* commands supported by ‘term’. This is not intended
to be an introduction to the language itself. Rexx was developed by Mike F. Cowlishaw on an
IBM/SP system and ported to the Amiga by William S. Hawes.

ARexx (or Amiga Rexx) is a commercial product which is included with the AmigaDOS 2.0
Enhancer Package. If you need a good introduction and description of the language, try to get a
hold of the book The REXX Language A Practical Approach to Programming by M.F. Cowlishaw,

available from Prentice-Hall International, Inc.

The section entitled Section 2.1 [Command execution], page 3 gives a brief introduction how to
write and run ARexx commands. For more information refer to the Release 2 Users Manual Using
the System Software.

By default ‘term’ opens an ARexx host by the name of TERM (accessable via address term). If
more than a single ‘term’ process is running on your machine, the name of the host will be adapted
to the number of the program (i.e. the first programm will use TERM, the second one will use
TERM. 1, the third one TERM. 2, etc.). The default name can be overridden by invoking the program
with certain parameters (see main program documentation). The name of the host is displayed in

the status window (see main program documentation).

2.1 Command execution

In order to invoke any command supported by ‘term’ one usually has to address the host

explicitely:

/* Address the ‘term’ host. */

ADDRESS term

/* Invoke the ‘beepscreen’ commmand. */
BEEPSCREEN

However, if an ARexx script is invoked directly by the ‘term’ main program, the script will by
default address the main program it was invoked by.

1 ARexx is a registered trademark of Wishful Thinking Development Corp.

4 ARexx-interface and ARexx-commands explained

Most commands will return results or error codes on failure. To enable result codes, one has
to use the options results command. The results returned by commands will be placed in the
result variable:

/* We assume that the script will address the host it was invoked from.
*

* Enable command results.

*/
OPTIONS RESULTS
/* Request a string from the user. */
REQUESTSTRING DEFAULT ’anything’ PROMPT ’Enter anything’
/* Did the user cancel the requester? */
IF rc "= 0 THEN
SAY ’user cancelled requester’

ELSE
SAY result /* Output the result . */

Failure codes will always be returned in the rc variable (see previous example).

In case of failure (variable rc >= 10), ‘term’ will leave an error code in the term.lasterror
variable:
/* Enable command results. */
OPTIONS RESULTS
/* Produce an error by not supplying any arguments. */
STOPBITS
/* Display the error code. */

SAY term.lasterror

Rexx tries to tokenize any command parameters, this process involves promoting them to all
upper case letters and checking for illegal characters. This feature inhibits the use of the : (colon)
and blank space characters in parameter names unless the corresponding arguments are enclosed
in quotes. To make things even more complicated, the parser will not always accept parameters to
contain blank spaces. If a command template accepts the entire command line (such as TEXT/K/F)
a parameter can include any number of blank spaces. A command template to accept just a single

Chapter 2: term and ARexx 5

parameter (such as TEXT/K) requires double quotes if blank spaces are included. Text such as tea
or coffee? thus becomes ’"tea or coffee?"’.

/* The following command will fail to send the file ‘ram:foobar’ as the colon
* in the path name will cause an error:

*/
SENDFILE ram:foobar
/* Here is how to do it correctly: */
SENDFILE ’ram:foobar’
/* The following command will fail to send the file ‘foo bar’ as the
* file name is treated as two single files:
*/
SENDFILE foo bar
/* The next line will still fail to send the file ‘foo bar’
* as the ARexx parser will split the argument into two
* parameters.
*/
SENDFILE ’foo bar’
/* Here is how to do it correctly: */
SENDFILE ’"foo bar"’
/* The following command will not transmit the string ‘Hello sailor’
* across the serial line as the single words will be capitalized,
* they will be transmitted as ‘HELLO SAILOR’:
*/
SEND Hello sailor

/* Here is how to do it correctly: */

SEND ’Hello sailor’

ARexx-interface and ARexx-commands explained

Chapter 3: Stopping a command 7

3 Stopping a command

Programs and commands sometimes fail to do what the user is expecting them to do which
makes it necessary to bring program/command execution to a stop. A common ARexx script to
call no external functions or host commands one can be halted in the following ways:

1. Executing the HI command (located in the ‘SYS:rexxc’ drawer) from Shell. This command
will attempt stop all currently running ARexx scripts.

2. If the ARexx script to be executed runs in an environment to sport an output window, activate
the window and press the Control + C keys. A break signal will be sent to the ARexx script,
causing it to stop as soon as possible.

With host environments such as ‘term’ it may not always be possible to abort a command using
the simple measures described above. As for ‘term’ any command to wait (such as the Section 4.33
[READ], page 34, Section 4.13 [DELAY], page 19 or Section 4.60 [WAIT], page 55 commands) can

be aborted by sending ‘term’ itself a break signal in the following fashion:

1. If the ‘term’ program is still attached to a Shell output window, activate the window and press
the Control + D keys.

2. If the ‘term’ program was invoked from a Shell but is no longer attached to it, enter status
command term from Shell, remember the number printed, then enter break <number> with
<number> being the number returned by the ‘status’ command.

3. Press the hotkey combination configured in the program hotkey settings (see main program
documentation). The default is Right Shift + Left Shift + Escape. This will cause a break
signal to be sent to the ‘term’ program.

ARexx-interface and ARexx-commands explained

Chapter 4: Commands 9

4 Commands

The commands supported by ‘term’ are listed in a table of the following form:

Format:

Template:

The command name with its possible calling parameters. In this table parameters are
enclosed in brackets and braces, separated by commas and vertical bars; do not type
these special characters along with the parameters!:

<> (Angle brackets)
Angle brackets enclose parameters whose contents must not be omitted in
order to make the command work properly.

[1 (8quare brackets)

Square brackets enclose optional parameters.

{ } (Curly braces)
Curly braces enclose items which can be repeated a number of times, such
as file name lists.

| (Vertical bar)

Vertical bars separate alternative, mutually exclusive options.

, (Comma)

Commas separate multiple applicable options.

The command template, similar to the command templates employed by AmigaDOS
Shell commands. Possible templates are:
<Parameter>/A
The parameter must always be included in order to get accepted.
<Option>/K
The option’s keyword must be given.
<Option>/S
This option works as a switch. If this option keyword is included the switch
is on, else it is off.
<Option>/N
A numeric parameter is expected.
<Option>/M
Multiple parameters are accepted.

<Text>/F

The text must be the final parameter on the command line.

10 ARexx-interface and ARexx-commands explained

, (Comma)

Indicates that the command takes no parameters.

Purpose:

Briefly describes what the command will do.
Specifications:

Describes the command and its possible uses in more detail.
Result:

The type of the command result code if any.
Warning:

If the command can return with a warning and when.
Example:

An example code fragment to illustrate how to use the command. Commands and
keywords are given in upper case, the names of variables and command arguments are
given in lower case. Where a single command line would not fit into a single line on
the screen, an ellipsis (*...") is meant to join the broken line.

4.1 The ACTIVATE command

Format:
ACTIVATE

Template:

Purpose:
De-iconifies the program, brings the main window to the front and makes it active.

Specifications:
The program can be put to sleep using the Section 4.12 [DEACTIVATE], page 19
command, to bring it back to proper operation, use the ACTIVATE command. If this
command is invoked while the program is not asleep, it will cause the main window to
be brought to the front and activated.

Result:

Warning:

Example:

Chapter 4:

Commands 11

/* This is how the main programm can be (re-)activated: */

ACTIVATE

4.2 The ADDITEM command

Format:
ADDITEM [To] <Upload|Download |Dial| Wait> [Before|After] [Command <Com-
mand for trap list>] [Response <Response text>] [Phone <Entry number, name or
wildcard pattern>] [Name <Name>]
Template:
TO/A,BEFORE/S,AFTER/S,RESPONSE/K,COMMAND/K,PHONE/K/F,NAME/K/F
Purpose:
Inserts an item (a name, a phone number, text, etc.) before or after the currently
selected list item.
Specifications:

‘term’ maintains a number of lists, these are:

Upload list
The list of files to be uploaded.

Download list

The list of files the program has downloaded.

Dial list

The list of phone numbers or phone book entries to be dialed.

Wait list
The list of texts the Section 4.60 [WAIT], page 55 command is to wait for.

New items can be added to the list with the ADDITEM command. The upload list expects
the names of files the Section 4.53 [SENDFILE], page 50 command is to transfer. It
makes little sense to add files names to the download list as the ‘term’ main program
maintains it and adds the names of files received to it, but it is still possible. The wait
list expects text lines the Section 4.60 [WAIT], page 55 command will look for in the
terminal input stream. A wait list entry added using the RESPONSE keyword will if
found in the input data stream cause the response text to be immediately sent to the
remote. Note: a wait list entry to make use of the RESPONSE keyword will be handled
by the Section 4.60 [WAIT], page 55 command, the ARexx script will not notice if this
list entry was found or not.

The dial list accepts a number of different parameters:

12

Result:

Warning:

Example:

ARexx-interface and ARexx-commands explained

Phonebook entry numbers
These are passed using the Phone parameter which should be a numeric
value as it is used as an index to pick the corresponding entry from the
phone book.

Phonebook entry names
These are also passed using the Phone parameter which can be a proper

name or a wildcard pattern.

Phone numbers
These are passed using the Name parameter.

List item can be inserted before or after the currently selected list item (see Section 4.50
[SELECTITEM], page 48 command). The default is to insert them after the currently
selected list item.

/* Enable result codes. */
OPTIONS RESULTS
/* Get a file name from the user. */
REQUESTFILE TITLE ’"Select a file to upload"’
/* Add the file name to the upload list. */
IF rc = O THEN ADDITEM TO upload NAME result
/* Add phonebook entry #2 to the dial list. */
ADDITEM TO dial PHONE 2
/* Add all phonebook entries whose names start
* with an ‘a’ to the dial list.
*/
ADDITEM TO dial PHONE a#7?

/* Add a plain phone number to the dial list. */

ADDITEM TO dial NAME 424242

Chapter 4: Commands 13

4.3 The BAUD command

Format:
BAUD [Rate] <Transfer speed in bits per second>
Template:
RATE/A/N
Purpose:
Sets the serial line transfer speed
Specifications:
Sets the serial line transfers speed to some defined value. The rate parameter passed
in will be matched against all valid BPS rates supported by ‘term’; the closest value
will be used.
Result:
Returns the old baud value.
Warning:
Example:

/* Change the serial transfer speed to 2400 bps. */

BAUD 2400

4.4 The BEEPSCREEN command

Format:
BEEPSCREEN
Template:
Purpose:
‘Beeps’ the terminal screen.
Specifications:

Invokes a bell signal, as configured in the program settings.

Result:

14 ARexx-interface and ARexx-commands explained

Warning:
Example:

/* Invoke a bell signal. */

BEEPSCREEN

4.5 The CALLMENU command

Format:
CALLMENU [Title] <Title text or wildcard pattern>
Template:
TITLE/A/F
Purpose:
Invokes the function associated with a menu item.
Specifications:
Calls a pull-down menu function just as if the user had selected it using the mouse.
The Title parameter can be any valid menu item name or a wildcard pattern. In the
latter case, only the first menu item to match the pattern will be called.
Result:
Warning:
If no matching menu item was to be found.
Example:

/* Invoke the ‘About...’ menu item. */

CALLMENU abou#?

4.6 The CAPTURE command

Format:
CAPTURE [To] <Printer | File> [Append | Overwrite | Skip] [Name <File name>|

Template:
TO/A,APPEND/S,OVERWRITE/S,SKIP/S,NAME /K

Chapter 4: Commands 15

Purpose:
Starts a file or printer capture.
Specifications:
If a capture is not already in progress will open a capture file or start capturing incoming

terminal text to the printer. If the File argument is given and the Name parameter is
omitted, will prompt for the name of a file to capture to.

If to capture to a given file, will append the captured text. If user is to select a file to
capture to, will ask whether to append the text to the file or to overwrite it.

The command will not prompt the user to confirm whether an existing file should be
overwritten, etc. if one of the following options are in effect:

‘APPEND’ If the named file exists, append the new capture data to it.

‘OVERWRITE’
If the named file exists, delete it before adding new capture data to it.

‘SKIP’ If the named file exists, don’t overwrite it. Do not open the capture file.

Result:

Warning:
In case user was to select a file and aborted the selection.

Example:

/* Open a named capture file. */
CAPTURE TO file NAME ’ram:capture file’
/* Close the capture file, ask the user for a file name. */

CLOSE FILE
CAPTURE TO file

/* Capture to the printer. */

CAPTURE TO printer

4.7 The CLEAR command

Format:

CLEAR [From| <Upload | Download | Dial | Wait | Buffer> [Force]

Template:
FROM/A ,FORCE/S

16 ARexx-interface and ARexx-commands explained

Purpose:
Clears the contents of a global list or the text buffer.

Specifications:
This command serves to clear the contents of the lists to be maintained using the
Section 4.2 [ADDITEM], page 11, Section 4.36 [REMITEM], page 38, Section 4.50
[SELECTITEM], page 48, etc. commands and to purge the contents of the text buffer.
In the latter case the program will prompt for confirmation in case the buffer still holds
any lines. This confirmation can be suppressed by using the Force parameter.

Result:

Warning:
In case the user did not confirm to clear the buffer.

Example:

/* Clear the wait list. */

CLEAR FROM wait

/* Clear the buffer, ask for a confirmation. */

CLEAR FROM buffer

/* If no confirmation was given, clear it by force. */

IF rc "= 0 THEN CLEAR FROM buffer FORCE

4.8 The CLEARSCREEN command

Format:

CLEARSCREEN
Template:
Purpose:

Clears the terminal screen
Specifications:

Clears the terminal screen and positions the cursor in the top left corner.

Result:

Chapter 4: Commands

Warning:

Example:

/* Clear the terminal screen.

CLEARSCREEN

4.9 The CLOSE command

*/

17

Format:
CLOSE [From] <Printer | File| All>
Template:
FROM/A
Purpose:
Terminates file and/or printer capture.
Specifications:
Terminates a capture process as started with the Section 4.6 [CAPTURE], page 14
command. Will terminate printer capture, file capture or both.
Result:
Warning:
Example:

/* Terminate both file and printer capture. */

CLOSE ALL

4.10 The CLOSEDEVICE command

Format:
CLOSEDEVICE
Template:

18 ARexx-interface and ARexx-commands explained

Purpose:
Release the current serial device driver

Specifications:
Frees the serial device driver for use with other applications. The driver can be reopened
(or a different device driver can be selected) using the Section 4.24 [OPENDEVICE],
page 28 command.

Result:

Warning:

Example:

/* Release the serial device driver, all serial I/0
* will be halted.
x/

CLOSEDEVICE

4.11 The CLOSEREQUESTER command

Format:
CLOSEREQUESTER

Template:

Purpose:
Closes the currently open requester window

Specifications:
WiIll close any currently open requester window, such as the dialing window, the phone
book, the serial settings window, etc. Will not close windows such as the file transfer
window or the text/numeric input windows.

Result:

Warning:

Example:

Chapter 4: Commands 19

/* Close the currently open requester window,
* whatever it may be.

*/

CLOSEREQUESTER

4.12 The DEACTIVATE command

Format:
DEACTIVATE

Template:

Purpose:
Iconifies the program.

Specifications:
Puts the application to sleep. Requires Workbench to be running, so an Applcon can be
put on the Workbench backdrop. This command will be ignored if the application has
already been put to sleep. To wake the application up, use the Section 4.1 [ACTIVATE],
page 10 command.

Result:

Warning:

Example:

/* Iconify the program. */

DEACTIVATE

4.13 The DELAY command

Format:
DELAY[MKHNHCROSECONDS<NumbHﬂ[SECHSECOND$<NumbHﬂ[MHWBHNUTES
<Number>| [QUIET]

Template:
MIC=MICROSECONDS/K/N,SEC=SECONDS/N,MIN=MINUTES/K/N,QUIET/S

20 ARexx-interface and ARexx-commands explained

Purpose:
Delays program execution for a couple of microseconds, seconds and minutes.
Specifications:
Will cause both the program to make the call and the application to wait for a certain
period of time. Unless the QUIET option is in effect will process and display data
received from the serial line.
Result:
Warning:
If command was aborted before the timeout had elapsed.
Example:

/* Wait for five seconds. */
DELAY 5
/* Wait for one second and seven microseconds. */

DELAY MIC 7 SEC 5

4.14 The DIAL command

Format:
DIAL [WAIT|SYNC] [[Num] <Phone number>]
Template:
WAIT=SYNC/S,NUM/F
Purpose:
Dials the provided phone number. If no phone number was given, will dial the numbers
and phone book entries stored in the dial list.
Specifications:

This command will build a dialing list from the available sources and pass it to the
dialing function which is to schedule the dialing process and perform any login-actions.
Available sources are the Num parameter which will cause the command to dial only
this single number or the dial list whose contents will be used if the Num parameter is
omitted.

If the WAIT parameter is used the command will wait until a connection is made. If the
parameter is not use this command will return as soon as the dialing process has been

initiated.

Chapter 4: Commands 21

Result:

Warning:
If no connection was to be made.

Example:
/* Dial a single phone number. */

DIAL 424242
/* Wait a bit and abort the dialing process. */

DELAY 5
CLOSEREQUESTER

/* Clear the dialing list, then add all the phonebook entries
* to the list.
*/

CLEAR FROM dial
ADDITEM TO dial PHONE #7?

/* Dial the dial list. */
DIAL WAIT
/* Did we get a connection? */

IF RC == 0 THEN SEND TEXT "Ack!\r"

4.15 The DUPLEX command

Format:

DUPLEX [Full|Half| Echo]
Template:

FULL/S,HALF=ECHO/S
Purpose:

Sets the serial line duplex mode.

Specifications:
Sets the serial line duplex mode, this can be either full duplex or half duplex (local
echo).

22 ARexx-interface and ARexx-commands explained

Result:

Returns the old duplex value.

Warning:
Example:

/* Enable local terminal echo. */

DUPLEX ECHO

4.16 The EXECTOOL command

Format:
EXECTOOL [Console] [Async| [Port] [Command] <File name>
Template:
CONSOLE/S,ASYNC/S,PORT/S,COMMAND/A/F
Purpose:
Executes a program.
Specifications:
Will load and execute an AmigaDOS program. The Console parameter will cause an
output file or window to be opened, the Async parameter will cause the command to
return as soon as the execution process has been launched. The Port parameter will
cause the current ARexx host port name to be passed to the tool on the command line.
Result:
Warning:
Example:

/* Launch the ‘Dir’ command. */

EXECTOOL CONSOLE COMMAND ’dir c:’

4.17 The FAULT command

Format:
FAULT [Code] <Error code>

Chapter 4: Commands 23

Template:
CODE/A/N
Purpose:
Returns the descriptive text associated with an error code as returned by ‘term’.
Specifications:
‘term’ will return error codes in the term.lasterror variable. In order to get the
descriptive text associated with an error code, use this command. All internal Rexx
and AmigaDOS errors codes are supported as well as the error codes special to ‘term’.
Result:
The error description associated with the error code.
Warning:
Example:

/* Enable command results. */

OPTIONS RESULTS

/* Get the text associated with error #1001. */
FAULT 1001

/* Output the result. x/

SAY result

4.18 The GETATTR command

Format:
GETATTR [Object] <Name> [Field] <Name> [Stem <Name>] [Var <Name>|
Template:
OBJECT/A,FIELD,STEM/K,VAR/K
Purpose:
Obtains information on an application attribute.
Specifications:

Obtains information on an object, if possible will store it in the result variable. If a
stem or simple variable name is given using the Stem or Var parameters will store the
information in this variable. If no Field parameter is given, will store the entire object

24 ARexx-interface and ARexx-commands explained

contents which requires that the Stem parameter is given. For a list of valid attributes
see the section entitled Section 5.23 [Attributes|, page 78.

Result:

Returns information either in result variable or in the supplied Stem or Var variable.

Warning:

Example:

/* Enable command results. */

OPTIONS RESULTS

/* Query the name of the ARexx host we are communicating with. */
GETATTR OBJECT term FIELD arexx

/* Output the result. x/

SAY result

/* Same as above, but using a different syntax. */

GETATTR term.arexx
SAY result

/* Store the entire contents of the phone book in a
* stem variable.

*/

GETATTR phonebook STEM book

/* Output the phonebook contents. */

SAY ’phone book contains’ book.count ’entries’

DO i = 0 TO book.count - 1
SAY ’entry #’ i

SAY ’name :? book.i.name

SAY ’number :’ book.i.number

SAY ’comment :’ book.i.commenttext
SAY ’username:’ book.i.username

END 1

4.19 The GETCLIP command

Chapter 4: Commands 25

Format:
GETCLIP [Unit <Number>]

Template:
UNIT/K/N

Purpose:
Retrieves the contents of the clipboard.

Specifications:
Obtains the contents of the clipboard and returns it in the result variable. Will
optionally read from the given clipboard unit, but uses the unit number selected in
the application settings by default. Note that a string returned can be up to 65,536
characters long!

Result:
Contents of the clipboard if it contains any text.

Warning:
If clipboard does not contain any text.

Example:

/* Enable command results. */
OPTIONS RESULTS
/* Get the primary clipboard contents. */
GETCLIP
/* Output the contents. */
IF rc "= 0 THEN
SAY ’clipboard does not contain any text’

ELSE
SAY result

4.20 The GOONLINE command

Format:
GOONLINE

Template:

26 ARexx-interface and ARexx-commands explained

Purpose:
Cause ‘term’ to go into online state.

Specifications:
After this command is processed ‘term’ will immediately go into online state. If the
carrier signal is to be checked and no signal is present ‘term’ will drop into offline state
right away:.

Result:

Warning:

Example:

/* Go into online state. */

GOONLINE

4.21 The HANGUP command

Format:
HANGUP
Template:
Purpose:
Hang up the serial line.
Specifications:
Hangs up the serial line, executes logoff and cleanup operations.
Result:
Warning:
Example:

/* Hang up the line, whether the program is online or not. */

HANGUP

Chapter 4: Commands 27

4.22 The HELP command

Format:
HELP [[Command] <Name>| [Prompt)]
Template:
COMMAND,PROMPT/S
Purpose:
Returns the template of a command or invokes the online help system.
Specifications:
This command will either return the template associated with a ‘term’ ARexx command
specified using the Command parameter or invoke the AmigaGuide(tm) help system.
Result:
Command template if requested.
Warning:
Example:

/* Enable command results. */

OPTIONS RESULTS

/* Query the template associated with the ‘selectitem’ command. */
HELP selectitem

/* Output the result. x/

SAY result

/* Invoke the online help. */

HELP PROMPT

4.23 The OPEN command

Format:
OPEN [Name <File name>] [TO] <Translations|Functionkeys|Cursorkeys| Fast-
macros | Hotkeys | Speech | Sound | Buffer | Configuration | Phone>

Template:
NAME/K,TO/A

28 ARexx-interface and ARexx-commands explained

Purpose:
Reads data from a disk file.

Specifications:
This command reads the contents of a disk file and stores the information either in the
configuration, the phone book or the text buffer. If text is read into the text buffer it
will be appended to the existing text. If no file name is given will prompt the user to
select a file.

Result:

Warning:
If user was requested to select a file and cancelled the selection.

Example:

/* Load the configuration from a file. */
OPEN NAME ’ram:term.prefs’ TO configuration
/* Add text to the text buffer. */

OPEN TO buffer

4.24 The OPENDEVICE command

Format:
OPENDEVICE [Name <Device name>] [Unit <Number>]

Template:
NAME/K,UNIT/K/N

Purpose:
(Re-)Opens the serial device driver.

Specifications:
(Re-)Opens the previously released (see Section 4.10 [CLOSEDEVICE], page 17 com-
mand) device driver or a different device driver/unit if the corresponding Device and
Unit parameters are given.

Result:

Returns the old device name and unit number.

Warning:

Chapter 4: Commands 29

Example:

/* Request command results. */
options results

/* Release the serial device driver. */

CLOSEDEVICE

/* Open a different device driver. */

OPENDEVICE DEVICE ’duart.device’ UNIT 5

/* Tell the name of the old device driver,
* and unit number, e.g. "serial.device/0"
*/

say RESULT

4.25 The OPENREQUESTER command

Format:
OPENREQUESTER [REQUESTER] <Serial | Modem | Screen | Terminal | Emulation | Clipboard |
Capture| Commands | Misc | Path | Transfer | Translations | Functionkeys | Cursorkeys | Fast-
macros | Hotkeys | Speech | Sound | Phone>
Template:
REQUESTER/A
Purpose:
Opens a requester window.
Specifications:
Opens a requester window. Only a single window can be open at a time. The window
opened can be closed using the Section 4.11 [CLOSEREQUESTER], page 18 command.
Result:
Warning:
Example:

/* Open the phonebook window. */

OPENREQUESTER phone

30 ARexx-interface and ARexx-commands explained

4.26 The PARITY command

Format:
PARITY [Even|Odd |None|Mark | Space]
Template:
EVEN/S,0DD/S,NONE/S,MARK/S,SPACE/S
Purpose:
Sets the serial line parity mode.
Specifications:
Sets the serial line parity mode.
Result:
Returns the old parity mode.
Warning:
Example:

/* Set the parity mode. */

PARITY NONE

4.27 The PASTECLIP command

Format:
PASTECLIP [Unit <Number>|
Template:
UNIT/K/N
Purpose:
Feed the contents of the clipboard into the input stream.
Specifications:
Feeds the contents of the clipboard into the input stream. Obtains the data either from
the given clipboard unit or from the default unit configured in the program settings.
Result:
Warning:

If clipboard does not contain any text.

Chapter 4: Commands 31

Example:

/* Paste the contents of clipboard #2. */

PASTECLIP UNIT 2

4.28 The PRINT command

Format:
PRINT [From]| <Screentext|Clipboard |Buffer|Diall Wait|Upload | Download> [TO
<File name>] [Serial | Modem | Screen | Terminal | User | Comment | Size|Date | Attr]
Template:
FROM/A,TO/K,SERIAL/S,MODEM/S,SCREEN/S,TERMINAL/S,USER/S, COM-
MENT/S,SIZE/S,DATE/S,ATTR/S
Purpose:
Prints the contents of the screen, the clipboard, the textbuffer or one of the lists.
Specifications:

Outputs the contents of the screen, the clipboard, the textbuffer or one of the lists (see

Section 4.2 [ADDITEM], page 11 command) to a file or the printer. If the To parameter

is omitted, will output the data to the printer. The parameters Serial through Attr

control what will be printed:

Screentext, Clipboard, Buffer, Wait list
Options have no effect on the output.

Dial list Responds to the Serial, Modem, Screen, Terminal, User and Comment
parameters. The printout will contain information on the corresponding
settings.

Upload list, Download list
Responds to the Comment, Size, Date and Attr parameters. The printout
will contain information on the corresponding file attributes. Note: if any
of these parameters are given, only the base file names will be printed along
with the corresponding information.

Result:
Warning:

Example:

If user cancelled print operation.

32 ARexx-interface and ARexx-commands explained

/* Clear the dialing list, then add the entire phone book to it. */

CLEAR dial
additem to dial phone #7

/* Send the contents of the dial list to a disk file. */

PRINT FROM dial TO ’ram:phonebook’ SERIAL MODEM SCREEN...
.. .TERMINAL USER COMMENT

4.29 The PROCESSIO command

Format:
PROCESSIO <On| Off>

Template:
ON/S,OFF/S

Purpose:
Turns serial 1/O processing on or off.

Specifications:
Usually, the ‘term’ main program processes incoming data from the serial line, i.e. text
is displayed in the terminal window or data transfers are started. This can interfere
with custom I/O processing, such as done by an ARexx program which wants to receive
and process all incoming serial data, without getting interrupted by the main program.
For an application example see Section 4.60 [WAIT], page 55.

Result:
Returns the old PROCESSIO value.

Warning:

Example:

/* Turn off I/0 processing. */

PROCESSIO OFF

4.30 The PROTOCOL command

Format:
PROTOCOL [None| RTSCTS|RTSCTSDTR]

Chapter 4: Commands 33

Template:
NONE/S,RTSCTS/S,RTSCTSDTR/S
Purpose:
Sets the serial line handshaking protocol.
Specifications:
Sets the serial line handshaking protocol. See the main program documentation for
details.
Result:
Returns the old protocol mode.
Warning:
Example:

/* Set the handshaking protocol. */

PROTOCOL NONE

4.31 The PUTCLIP command

Format:
PUTCLIP [Unit <Unit>] [TEXT] <Text to store>

Template:
UNIT/K/N,TEXT/A/F

Purpose:
Stores text in the clipboard.

Specifications:
Stores the provided text in the clipboard. Will store it in the given clipboard unit if the
Unit parameter is given. Will use the unit number configured in the program settings
otherwise.

Result:

Warning:

Example:

34 ARexx-interface and ARexx-commands explained

/* Store a short string in the clipboard. Note: can
* only be up to 65,536 characters long.
*/

PUTCLIP ’hello sailor!’

4.32 The QUIT command

Format:
QUIT [Force]
Template:
FORCE/S
Purpose:
Terminates the application.
Specifications:
Terminates program execution, will ask for a confirmation to leave unless the Force
parameter is used. Caution: this command may fail if there are still output windows
open on the ‘term’ screen.
Result:
Warning:
If user did not confirm termination.
Example:

/* Try to terminate the program, ask for confirmation. */
QUIT
/* If no confirmation was given terminate by force. */

IF rc "= 0 THEN QUIT FORCE

4.33 The READ command

Format:

READ [Num <Number of bytes>] [CR] [Noecho| [Verbatim] [Timeout <Seconds>] [Ter-
minator <Character>] [[Prompt] <Prompt text>]

Chapter 4: Commands 35

Template:
NUM/K/N,CR/S,NOECHO/S,VERBATIM/S,TIMEOUT/K/N,TERMINATOR/K,PROMPT/K

Purpose:
Reads a number of bytes or a string from the serial line.

Specifications:
If Num parameter is given will read a number of bytes from the serial line (note: only
a maximum of 65,536 bytes can be read). The command will return when the read

request has been satisfied, the timeout (settable using the Section 4.58 [TIMEOUT],
page 54 command) has elapsed or the command was aborted.

If the CR parameter is given will handle simple line editing functions (Backspace,
Control-X) and return a string as soon as the Carriage return key is pressed, the
timeout (settable using the Section 4.58 [TIMEOUT], page 54 command) has elapsed
or the command is aborted.

The Noecho parameter will cause ‘term’ not to echo typed characters back to the
remote. Note that in order to see any input on the local side the remote is to echo the
characters typed back.

With the Timeout parameter you can override the global timeout value (settable using
the Section 4.58 [TIMEOUT], page 54 command) for this command.

The Terminator parameter tells the command to stop when finding the given character
in the input stream. For example, TERMINATOR "\n" would tell the command to stop
when finding the line feed character in the input stream.

If present, the Prompt text will be sent across the serial line, much the same as if it
had been sent using the Section 4.51 [SEND], page 49 command.

This command pays attention to the current character translation table for incoming
characters. If the characters are to be read without any changes made one has to use
the Verbatim parameter.

Result:

The string read.
Warning:

If command was cancelled, no input was made or, if the CR parameter is used, the
timeout elapsed.

Example:

/* Enable command results. */
OPTIONS RESULTS

/* Set the read timeout to five seconds. */

36 ARexx-interface and ARexx-commands explained

TIMEOUT 5
/* Read seven bytes. */
READ NUM 7
/* Output the result. x/
IF rc "= 0 THEN
SAY ’no data was read’
ELSE
SAY result
/* Wait up to eight seconds to eight bytes to arrive. */
READ TIMEOUT 8 NUM 8
/* Turn the timeout off. x*/
TIMEOUT OFF
/* Prompt for input. */
READ CR PROMPT ’Enter a line of text:’
/* Output the result. x*/
IF rc "= 0 THEN
SAY ’no input was made’

ELSE
SAY result

4.34 The RECEIVEFILE command

Format:

RECEIVEFILE [Mode <ASCII| Text | Binary>] [Name <File name>]
Template:

MODE/K,NAME/K
Purpose:

Receive one or more files using the XPR protocol.
Specifications:

Receives one or more files using the currently configured XPR protocol. The Mode
parameter determines the file transfer mode (either plain ASCII, Text mode or binary
file mode), if omitted the file(s) will be received in binary mode. Some file transfer

Chapter 4: Commands 37

Result:

Warning:

Example:

protocols do not require any file names to be given as they have their own means to
determine the names of the files to be received. However, a file name parameter can
be given. If omitted the file transfer protocol will prompt the user for a file name if
necessary.

The names of all files received are placed on the download list for processing. The list
will be cleared before the transfer is started.

If user cancelled file selection.

/* Start to receive a file in text mode. */

RECEIVEFILE MODE text

4.35 The REDIAL command

Format:
REDIAL
Template:
Purpose:
Redials the numbers remaining in the currently configured dialing list.
Specifications:
Redials the numbers which still remain in the dialing list built either by the phone
book or by the Section 4.14 [DIAL], page 20 command. Note that this command will
return as soon as the dialing process is initiated.
Result:
Warning:
If dialing list is empty.
Example:

/* Redial the list. */

REDIAL

38 ARexx-interface and ARexx-commands explained

/* Successful? */

IF rc "= 0 THEN SAY ’dialing list is empty’

4.36 The REMITEM command

Format:
REMITEM [From] <Upload | Download | Dial | Wait> [Name <Name or wildcard>]
Template:
FROM/ANAME/K/F
Purpose:
Removes one or more items from a list.
Specifications:
Removes one or more items from a list. If no Name parameter is given will remove the
currently selected list item (selectable using the Section 4.50 [SELECTITEM], page 48
command). The Name parameter can be a proper name or a wildcard pattern.
Note: Cannot remove named items from the dial list.
Result:
Warning:
If no list item would match the name pattern.
Example:

/* Remove the currently selected item from the wait list. */

REMITEM FROM wait

/* Remove all items from the wait list which end with ‘z’. */

REMITEM FROM wait NAME ’#7z’

4.37 The REQUESTFILE command

Format:

REQUESTFILE [Title <Title text>| [Path <Path name>] [File <File name>| [Pattern
<Wildcard pattern>] [Multi] [Stem | Name <Variable name>]

Chapter 4: Commands 39

Template:
’ TITLE/K,PATH/K,FILE/K,PATTERN /K, MULTI/S,STEM=NAME /K

Purpose:
Requests one or more file names from the user.

Specifications:
Requests one or more file names from the user. Will present a file requester with given
title text and preset path, file name and pattern values. If only a single file name is to
be requested will place the result in the result variable. The Multi parameter allows
multiple files to be selected, the number of files selected and the file names will be
placed in the variable specified using the Stem parameter.

Result:
The name of the file selected will be placed in the result variable. If multiple file were
selected, will place the following information in the supplied stem variable:
<Variable name>.COUNT

The number of files selected.
<Variable name>.0 through <Variable name>.n-1
The file names selected.

Warning:
If user cancelled selection.

Example:

/* Enable command results. */
OPTIONS RESULTS
/* Request a single file name from the user. */
REQUESTFILE TITLE ’"select a file"’
/* Output the result. */
IF rc "= 0 THEN
SAY ’no file was selected’
ELSE
SAY result
/* Request several files. */
REQUESTFILE TITLE ’select several files’ MULTI STEM names

/* Output the result. */

IF rc "= 0 THEN
SAY ’no files were selected’

40 ARexx-interface and ARexx-commands explained

ELSE DO
SAY ’files selected:’ names.count

DO i = 0 TO names.count - 1
SAY names.i
END
END

4.38 The REQUESTNOTIFY command

Format:
REQUESTNOTIFY [Title <Title text>] [Prompt] <Prompt text>
Template:
TITLE/K,PROMPT/A/F
Purpose:
Notify the user with a message.
Specifications:
Opens a requester to notify the user, the prompt text can include line feed characters
(?0A’X), the user will be able to answer the requester by clicking on a Continue button.
Result:
Warning:
Example:

/* Notify the user. */

REQUESTNOTIFY TITLE ’"Important information"’
...PROMPT °’This message is important’

4.39 The REQUESTNUMBER command

Format:
REQUESTNUMBER [Default <Default number>] [Prompt <Prompt text>]

Template:
DEFAULT/K/N,PROMPT/K/F

Chapter 4: Commands 41

Purpose:
Requests a numeric value from the user

Specifications:
Requests a numeric value from the user, will display the provided prompt text or a
default text and present the provided default number, so user can simply hit return to
accept the defaults.

Result:
The number the has entered.

Warning:
If user cancelled requester.

Example:

/* Enable command results. */
OPTIONS RESULTS
/* Requester a single number. */
REQUESTNUMBER DEFAULT 42 PROMPT ’Enter the answer’
/* Output the result. x/
IF rc "= 0 THEN
SAY ’no number was entered’

ELSE
SAY result

4.40 The REQUESTRESPONSE command

Format:
REQUESTRESPONSE [Title <Title text>] [Options <Options string>] [Prompt]
<Prompt text>
Template:
TITLE/K,OPTIONS/K,PROMPT/A/F
Purpose:
Request a response from user.
Specifications:

Requests a response from the user, uses provided title and prompt text and a number
of options. If no options are specified will use Yes|No as the defaults.

42 ARexx-interface and ARexx-commands explained

Result:
For Options passed as Yes|Perhaps|No will return 1 for Yes, 2 for Perhaps and return
a warning for No.

Warning:
If user selected negative choice.

Example:

/* Enable command results. */
OPTIONS RESULTS
/* Request a response. */

REQUESTRESPONSE PROMPT ’Are you indecisive?’
...OPTIONS ’"Yes|Don’t know|No"’

/* Look at the response. */

IF rc "= 0 THEN
SAY ’Not indecisive’
ELSE DO
IF result = O THEN
SAY ’Indecisive’
ELSE
SAY ’Probably indecisive’
END

4.41 The REQUESTSTRING command

Format:
REQUESTSTRING [Secret] [Default <String>] [Prompt <Text>]
Template:
SECRET/S,DEFAULT/K,PROMPT/K/F
Purpose:
Requests a string from the user.
Specifications:

Requests a string from the user, will display the provided prompt text or a default text
and present the provided default string, so user can simply hit return to accept the
defaults.

If the Secret parameter is provided, will not display the characters typed.

Chapter 4: Commands 43

Result:

The text the user entered.
Warning:

If user cancelled the requester.
Example:

/* Enable command results. */
OPTIONS RESULTS
/* Request a secret string. */

REQUESTSTRING SECRET DEFAULT ’"hello sailor!"’
.. .PROMPT ’Enter secret message’

/* Output the result. */
IF rc "= 0 THEN
SAY ’no text was entered’

ELSE
SAY result

4.42 The RESET command

Format:
RESET [Clear][Styles|[Text][Timer]
Template:
CLEAR/S,STYLES/S,TEXT/S,TIMER/S
Purpose:
This is a superset of all the RESET commands.
Specifications:
See Section 4.44 [RESETSTYLES], page 44, Section 4.45 [RESETTEXT], page 45,
Section 4.43 [RESETSCREEN], page 44, Section 4.46 [RESETTIMER], page 45.
Result:
Warning:

Example:

44 ARexx-interface and ARexx-commands explained

/* Reset the terminal screen. */

RESET CLEAR

4.43 The RESETSCREEN command

Format:
RESETSCREEN
Template:
Purpose:
Resets the terminal screen to defaults.
Specifications:
Resets the terminal screen to defaults, this includes clearing the screen, moving the
cursor to the home position and resetting text, text rendering styles and colours.
Result:
Warning:
Example:

/* Reset the terminal screen. */

RESETSCREEN

4.44 The RESETSTYLES command

Format:
RESETSTYLES
Template:
Purpose:
Resets the text rendering styles to defaults.
Specifications:

Resets the text rendering styles to defaults, turning off inverse video, boldface, italics,

etc. modes.

Chapter 4: Commands 45

Result:

Warning:

Example:

/* Reset the text rendering styles. */

RESETSTYLES

4.45 The RESETTEXT command

Format:
RESETTEXT
Template:
Purpose:
Reset the terminal text to defaults.
Specifications:
Reset the terminal text to defaults, this includes switching back from graphics text or
G1 mode.
Result:
Warning:
Example:

/* Reset the terminal text. */

RESETTEXT

4.46 The RESETTIMER command

Format:

RESETTIMER

46 ARexx-interface and ARexx-commands explained

Template:

Purpose:
Reset the online timer.

Specifications:
The online timer is reset to 00:00:00, regardless whether ‘term’ is currently online or
not.

Result:

Warning:

Example:

/* Reset the online timer. */

RESETTIMER

4.47 The RX command

Format:
RX [Console| [Async] [Command] <Command name>
Template:
CONSOLE/S,ASYNC/S,COMMAND/A/F
Purpose:
Invokes an ARexx macro file.
Specifications:
Invokes an ARexx macro file, if Console argument specified opens a console output win-
dow, else uses ‘NIL:’; if Async argument specified executes the macro asynchronously.
Result:
Warning:
Example:

/* Launch the ‘term’ command shell. */

RX CONSOLE ASYNC ’term:cmdshell.term’

Chapter 4: Commands

4.48 The SAVE command

47

See Section 4.49

Format:
SAVE [From| <Translations|Functionkeys| Cursorkeys|Fastmacros|Hotkeys|Speech |
Sound | Buffer | Configuration | Phone| Screentext | Screenimage>
Template:
FROM/A
Purpose:
Saves data to a disk file.
Specifications:
Saves data to a disk file, will prompt for a file name to save to.
[SAVEAS], page 47 command for more information.
Result:
Warning:
If user cancels save operation.
Example:

/* Save the terminal screen contents to an
* JFF-ILBM file.
x/

SAVE FROM screenimage

4.49 The SAVEAS command

Format:
SAVEAS [Name <File name>| [From| <Translations|Functionkeys | Cursorkeys| Fast-
macros | Hotkeys | Speech | Sound | Buffer| Configuration | Phone|Screentext| Screenim-
age>

Template:
NAME/K,FROM/A

Purpose:
Saves data to a disk file.

Specifications:

Saves data to a disk file, will prompt for a filename to save to if none is provided. Will

save either parts of the program configuration or the phone book contents (Phonebook

48 ARexx-interface and ARexx-commands explained

parameter), the contents of the terminal screen as plain ASCII text (Screentext pa-

rameter) or the contents of the terminal screen as an IFF-ILBM-file (Screenimage

parameter).
Result:
Warning:

If user cancels save operation.
Example:

/* Save the program configuration to a file. */

SAVEAS NAME ’ram:term.prefs’ FROM configuration

4.50 The SELECTITEM command

Format:
SELECTITEM [Name <Name>] [From| <Upload | Download | Dial | Wait> [Next | Prev | Previous | Toy
Template:
NAME/K,FROM/A NEXT/S,PREV=PREVIOUS/S,TOP/S,BOTTOM/S
Purpose:
Select an item from a list.
Specifications:
Selects an item from a list, returns the item name in the result variable. The Top
parameter will select the first list item, Bottom the last item. The Previous parameter
will select the previous list item, Next the next successive item. Instead of using a
positioning parameter, it is also possible to use a wildcard pattern or name with the
Name parameter. The first list item to match the name will be selected.
Note: cannot be used with the dial list.
Result:
Returns the list item in the result variable.
Warning:
If end of list reached.
Example:

/* Enable command results. */

OPTIONS RESULTS

Chapter 4: Commands 49

/* Output the contents of the download list. */
SELECTITEM FROM download TOP
DO WHILE rc = 0

SAY result

SELECTITEM FROM download NEXT
END

4.51 The SEND command

Format:
SEND [Noecho| [Local] [Literal] [Byte <ASCII code>| [Text] <Text>
Template:
NOECHO/S,LOCAL/S,LITERAL/S,BYTE/K/N,TEXT/A/F
Purpose:
Sends the provided text to the serial line, executes embedded command sequences.
Specifications:
Sends the provided text to the serial line, executes embedded command sequences (see
main program documentation). To send a single byte, use the Byte parameter. The
Noecho parameter will suppress terminal output. The Local parameter will cause
the text to be output only locally in the terminal window, it will not be sent across
the serial line. The Literal parameter keeps ‘term’ from interpreting any special
characters, such as \r, in the text to send and just transmits the text you passed in.
Result:
Warning:
Example:

/* Send some text to the serial line. */

SEND ’This is some text.\r\n’

/* Send a single byte (a null) to the serial line. */
SEND BYTE O

/* Execute an embedded command (send a break signal). */

SEND ’\x’

50 ARexx-interface and ARexx-commands explained

4.52 The SENDBREAK command

Format:
SENDBREAK
Template:
Purpose:
Send a break signal across the serial line.
Specifications:
Send a break signal across the serial line.
Result:
Warning:
Example:

/* Send a break signal. */

SENDBREAK

4.53 The SENDFILE command

Format:

SENDFILE [Mode <ASCII| Text | Binary>] [Names] {File names}
Template:

MODE/K,NAMES/M
Purpose:

Transfers files using the currently selected file transfer protocol.
Specifications:

Transfers one or more files using the currently configured XPR protocol. The Mode
parameter determines the file transfer mode (either plain ASCII, Text mode or binary
file mode), if omitted the file(s) will be sent in binary mode. Some file transfer protocols
do not require any file names to be given as they have their own means to determine
the names of the files to be sent. However, a file name parameter can be given. If
omitted the file transfer protocol will prompt the user for a file name if necessary.
Several file names can be given if necessary, they will be transferred along with the

Chapter 4: Commands 51

file names stored in the upload list. The file transfer process will remove any files
successfully transferred from the upload list, leaving only those behing which were not
to be transferred correctly.

Files whose names do not include a fully qualified path name are expected to reside in

the default upload directory as specified in the main program paths settings.

Result:

Warning:
If user cancels file selection.

Example:
/* Prompt for files to be uploaded. */

SENDFILE

/* Send a single file. */

SENDFILE ’c:list’

/* Clear the upload list, add a single file name. */

CLEAR upload
ADDITEM TO upload NAME ’c:dir’

/* Transfer the file. */

SENDFILE

4.54 The SETATTR command

Format:
SETATTR [Object] <Name> [Field] <Name> [Stem <Name>| [Var <Name>|
Template:
OBJECT/A,FIELD,STEM/K,VAR
Purpose:
Sets a certain application attribute.
Specifications:

Sets a certain application attribute, retrieves the information from the supplied stem
or simple variable. For a list of valid attributes, see the section entitled Section 5.23
[Attributes], page 78.

52 ARexx-interface and ARexx-commands explained

Result:

Warning:

Example:

/* Set the transfer speed. */

SETATTR serialprefs baudrate 2400

4.55 The SPEAK command

Format:
SPEAK [Text] <Text>
Template:
TEXT/A/F
Purpose:
Speaks the provided text using the Amiga speech synthesizer.
Specifications:
Speaks the provided text using the Amiga speech synthesizer, requires that speech
support is enabled.
Result:
Warning:
Example:

/* Say something sensible. */

SPEAK ’something sensible’

4.56 The STOPBITS command

Format:

STOPBITS [011]

Chapter 4: Commands 53

Template:
0/S,1/S

Purpose:

Sets the serial line stop bits.

Specifications:
Sets the serial line stop bits.

Result:

Returns the old number of stop bits.

Warning:
Example:

/* Set the serial line stop bits. */

STOPBITS 1

4.57 The TEXTBUFFER command

Format:
TEXTBUFFER [Lock | Unlock]
Template:
LOCK/S,UNLOCK/S
Purpose:
Locks or unlocks the text buffer contents.
Specifications:
Locks or unlocks the text buffer contents, similar to the effect of the corresponding
main menu entry.
Result:
Warning:
Example:

/* Lock the text buffer. */

TEXTBUFFER LOCK

54 ARexx-interface and ARexx-commands explained

4.58 The TIMEOUT command

Format:
TIMEOUT [[Sec|Seconds| <Number>] [Off]
Template:
SEC=SECONDS/N,OFF/S
Purpose:
Sets the serial read timeout.
Specifications:
Sets the timeout the Section 4.60 [WAIT], page 55 and Section 4.33 [READ], page 34
commands will wait until they exit.
Result:
Warning:
Example:

/* Set the read timeout. */

TIMEOUT SEC 5

4.59 The TRAP command

Format:
TRAP <On|Off>
Template:
ON/S,0OFF/S
Purpose:
Turns the trap list processing on or off.
Specifications:

This command tells the main program whether it should process entries of the trap list

when filtering input or not.

Result:

Chapter 4: Commands 59

Warning:

Example:

/* Ignore the trap list. */

TRAP OFF

4.60 The WAIT command

Format:

Template:

Purpose:

WAIT [Noecho| [Timeout <Seconds>] [[Text] <Text>]

NOECHO/S,TIMEOUT /K /N, TEXT/F

Waits for a certain sequence of characters to be received from the serial line.

Specifications:

Result:

Warning:

Example:

Wait for text to be received from the serial line. If no text to wait for is provided wait
for either item of the wait list to appear. The Noecho parameter suppresses terminal
output. Note that text comparison does not consider the case of characters (in respect
to the ECMA Latin 1 character set). As ‘term’ has control over the incoming data
stream before and after the WAIT command is executed, it may ‘eat’ and process data
the WAIT command ought to receive. In order to avoid this effect you can use the
PROCESSIO command (see Section 4.29 [PROCESSIO], page 32). For example, at the
beginning of a program you could tell ‘term’ to leave the incoming data stream alone
with the PROCESSIO OFF command, then invoke the WAIT command as needed, and
eventually when your program exits allow ‘term’ to process incoming data with the
PROCESSIO ON command.

With the Timeout parameter you can override the global timeout value (settable using
the Section 4.58 [TIMEOUT], page 54 command) for this command.

Returns the string found.

If timeout has elapsed before any matching text was received.

/* Enable command results. */

56 ARexx-interface and ARexx-commands explained

OPTIONS RESULTS
/* Set the read timeout. */
TIMEQOUT SEC 30
/* Wait for a single line of text. */
WAIT ’some text’
/* Wait up to ten seconds for a single line of text. */
WAIT TIMEOUT 10 ’some more text’
/* Clear the wait list, add a few items. */
CLEAR wait
ADDITEM TO wait NAME ’foo’
ADDITEM TO wait NAME ’bar’
/* Wait for the text to appear. */
WAIT
/* Output the result. x/
IF rc "= 0 THEN
SAY ’no text was received’

ELSE
SAY result

4.61 The WINDOW command

Format:
WINDOW [Names] {<Buffer | Review | Packet | Fastmacros| Status|Main | UploadQueue>2}
[Open | Close] [Activate] [Min|Max| [Front |Back] [Top|Bottom | Up | Down]

Template:
NAMES/A/M,0PEN/S,CLOSE/S,ACTIVATE/S,MIN/S,MAX/S,FRONT/S,BACK/S,
TOP/S,BOTTOM/S,UP/S,DOWN/S

Purpose:
Manipulates the aspects of a window.

Specifications:

Manipulates the aspects of a window. Not all windows will support all available com-
mands. The windows supported are:

Chapter 4: Commands 57

Result:

Warning:

Example:

Buffer
The text buffer window and screen. Supports the Open, Close, Activate
and Front commands.

Review
The review window. Supports the Open, Close, Activate, Min, Max, Front,
Back, Top, Bottom, Up, and Down commands.

Packet
The packet window. Supports the Open, Close, Activate, Min, Max, Front
and Back commands.

Fastmacros
The fast! macro window. Supports the Open, Close, Activate, Min, Max,
Front and Back commands.

Status
The status window. Supports the Open, Close, Activate, Front and Back
commands.

Main

The main program window. Supports the Open, Close, Activate, Front
and Back commands.

/* Open all available windows. */

WINDOW buffer review packet fastmacros status main OPEN

58

ARexx-interface and ARexx-commands explained

Chapter 5: Attributes 59

5 Attributes

Several of the application’s internal variables are can be accessed and modified using the Sec-
tion 4.18 [GETATTR], page 23 and Section 4.54 [SETATTR], page 51 commands. Information is
available on the objects and their associated fields explained below. Each line consists of the object
and field name and the type of the available data:

Numeric data
<Object>.<Field>

Numeric
The information is a numeric value.

Text data
<0bject>.<Field>
Text
The information is a text string.
Boolean data
<0Object>.<Field>
Boolean

The information is a boolean value and can be ON or OFF.

Mapped codes
<Object>.<Field>
<Value 1> ... <Value n>

The information can be one of the given values.

5.1 The TERM object (read-only)

TERM.VERSION
Text

The ‘term’ program revision.

TERM.SCREEN
Text

The name of the public screen the ‘term’ main window has been opened on.

TERM.SESSION.ONLINE
Boolean

Whether the program is currently online or not.

60 ARexx-interface and ARexx-commands explained

TERM.SESSION.SESSIONSTART
Text
Time and date when the ‘term’ program was started.
TERM.SESSION.BYTESSENT
Numeric
TERM.SESSION.BYTESRECEIVED
Numeric
TERM.SESSION.CONNECTMESSAGE
Text
The message issued by the modem when the connection was established.
TERM.SESSION.BBSNAME
Text
TERM.SESSION.BBSNUMBER
Text
TERM.SESSION.BBSCOMMENT
Text

TERM.SESSION.USERNAME
Text

TERM.SESSION.ONLINEMINUTES
Numeric

The number of minutes the program is currently connected to a BBS.

TERM.SESSION.ONLINECOST

Numeric
The cost of the connection to the BBS.

TERM. AREXX
Text

The name of the ARexx host port the program is communicating with.

TERM.LASTERROR

Numeric
The code corresponding to the error the last command has caused.

TERM.TERMINAL.ROWS

Numeric
The number of available terminal screen rows.

TERM.TERMINAL.COLUMNS
Numeric

The number of available terminal screen columns.

Chapter 5: Attributes 61

TERM.BUFFER.SIZE
Numeric

The size of the text buffer.

5.2 The PHONEBOOK object (read-only)
Available fields are:

PHONEBOOK . COUNT
Numeric

The number of entries in the phonebook. The single phonebook entries can be accessed
as PHONEBOOK.O. . . through PHONEBOOK.n-1. ...

PHONEBOOK .n .NAME
Text

PHONEBOOK .n . NUMBER
Text

PHONEBOOK .n.COMMENTTEXT
Text

PHONEBOOK .n . USERNAME
Text

PHONEBOOK .n .PASSWORDTEXT
Text

5.3 The SERIALPREFS object
Available fields are:

SERIALPREFS.BAUDRATE

Numeric

SERIALPREFS.BREAKLENGTH
Numeric

The break signal length in microseconds.

SERIALPREFS.BUFFERSIZE

Numeric

62 ARexx-interface and ARexx-commands explained

SERIALPREFS.DEVICENAME

Text
SERIALPREFS.UNIT

Numeric
SERTALPREFS.BITSPERCHAR

Numeric

The number of bits per transferred char. This can be either seven or eight.
SERTALPREFS.PARITYMODE

NONE EVEN 0DD MARK SPACE.
SERIALPREFS.STOPBITS

Numeric

The number of stop bits to be used. This can be either 0 or 1.
SERIALPREFS .HANDSHAKINGMODE

NONE RTSCTS RTSCTSDSR
SERIALPREFS.DUPLEXMODE

HALF FULL
SERIALPREFS.LOCALECHO

Boolean
SERIALPREFS. INTERNALXONXOFF

Boolean
SERIALPREFS.HIGHSPEED

Boolean
SERTIALPREFS.SHARED

Boolean
SERIALPREFS.STRIPBITS

Boolean
SERIALPREFS.CARRIERCHECK

Boolean
SERIALPREFS .PASSXONXOFFTHROUGH

Boolean
SERTALPREFS.DIRECTCONNECTION

Boolean
SERIALPREFS.QUANTUM

Numeric
SERIALPREFS.USEOWNDEVUNIT

Boolean

SERIALPREFS.OWNDEVUNITREQUEST
RELEASE RELEASERETRY IGNORE

Chapter 5: Attributes

5.4 The MODEMPREFS object
Available fields are:

MODEMPREFS .MODEMINITTEXT
Text

MODEMPREFS .MODEMEXITTEXT
Text

MODEMPREFS .MODEMHANGUPTEXT
Text

MODEMPREFS.DIALPREFIXTEXT
Text

MODEMPREFS.DIALSUFFIXTEXT
Text

MODEMPREFS .CHARSENDDELAY
Numeric

MODEMPREFS .DTALMODE
PULSE TONE

MODEMPREFS .NOCARRIERTEXT
Text

MODEMPREFS .NODIALTONETEXT
Text

MODEMPREFS . CONNECTTEXT
Text

MODEMPREFS.VOICETEXT
Text

MODEMPREFS .RINGTEXT
Text

MODEMPREFS .BUSYTEXT
Text

MODEMPREFS . OKTEXT
Text

MODEMPREFS .ERRORTEXT
Text

MODEMPREFS.REDIALDELAY
Numeric

The redial delay in seconds

64

MODEMPREFS.DIALRETRIES
Numeric

MODEMPREFS.DIALTIMEQUT
Numeric

The dial timeout in seconds

MODEMPREFS .VERBOSEDIALING
Boolean

MODEMPREFS .CONNECTAUTOBAUD
Boolean

MODEMPREFS . HANGUPDROPSDTR
Boolean

MODEMPREFS .REDIALAFTERHANGUP
Boolean

MODEMPREFS .NOCARRIERISBUSY
Boolean

MODEMPREFS.CONNECTLIMIT
Numeric
Time limit in minutes.

MODEMPREFS . CONNECTLIMITMACRO
Text

MODEMPREFS.TIMETOCONNECT
Numeric

MODEMPREFS.INTERDIALDELAY

Numeric

5.5 The SCREENPREFS object
Available fields are:

SCREENPREFS . COLOURMODE
TWO FOUR EIGHT SIXTEEN

SCREENPREFS.FONTNAME
Text

SCREENPREFS.FONTSIZE

Numeric

ARexx-interface and ARexx-commands explained

Chapter 5: Attributes

SCREENPREFS . MAKESCREENPUBLIC
Boolean
SCREENPREFS . SHANGHAIWINDOWS
Boolean

SCREENPREFS .BLINKING
Boolean
SCREENPREFS .FASTERLAYOUT
Boolean
SCREENPREFS.TITLEBAR
Boolean
SCREENPREFS.STATUSLINEMODE
DISABLED STANDARD COMPRESSED
SCREENPREFS . USEPUBSCREEN
Boolean
SCREENPREFS . PUBSCREENNAME
Text
SCREENPREFS . USEPENS
Boolean
SCREENPREFS . WINDOWBORDER
Boolean
SCREENPREFS.SPLITSTATUS
Boolean

SCREENPREFS.ONLINEDISPLAY
TIME COST BOTH

5.6 The TERMINALPREFS object
Available fields are:

TERMINALPREFS.BELLMODE

NONE VISIBLE AUDIBLE BOTH SYSTEM
TERMINALPREFS.ALERTMODE

NONE BELL SCREEN BOTH
TERMINALPREFS.EMULATIONMODE

INTERNAL ATOMIC TTY EXTERNAL HEX
TERMINALPREFS.FONTMODE

STANDARD IBM IBMRAW

65

66 ARexx-interface and ARexx-commands explained

TERMINALPREFS.SENDCRMODE
IGNORE CR CRLF

TERMINALPREFS.SENDLFMODE
IGNORE LF LFCR

TERMINALPREFS.RECEIVECRMODE
IGNORE CR CRLF

TERMINALPREFS.RECEIVELFMODE
IGNORE LF LFCR

TERMINALPREFS.NUMCOLUMNS
Numeric

TERMINALPREFS.NUMLINES
Numeric

TERMINALPREFS.KEYMAPNAME
Text

TERMINALPREFS.EMULATIONNAME
Text

TERMINALPREFS.FONTNAME
Text

TERMINALPREFS.FONTSIZE
Numeric

TERMINALPREFS.USETERMINALPROCESS
Boolean

TERMINALPREFS.AUTOSIZE
Boolean

5.7 The EMULATIONPREFS object
Available fields are:

EMULATIONPREFS.IDENTIFICATION
VT200 VT102 VT101 VT100

EMULATIONPREFS.CURSORMODE
STANDARD APPLICATION

EMULATIONPREFS.NUMERICMODE
STANDARD APPLICATION

EMULATIONPREFS.CURSORWRAP
Boolean

Chapter 5: Attributes

EMULATIONPREFS.LINEWRAP
Boolean

EMULATIONPREFS.INSERTMODE
Boolean

EMULATIONPREFS.NEWLINEMODE
Boolean

EMULATIONPREFS.SCROLLMODE
JUMP SMOOTH

EMULATIONPREFS.DESTRUCTIVEBACKSPACE
OFF OVERSTRIKE OVERSTRIKESHIFT

EMULATIONPREFS.SWAPBSDELETE
Boolean

EMULATIONPREFS.PRINTERENABLED
Boolean

EMULATIONPREFS.ANSWERBACKTEXT
Text

EMULATIONPREFS.CLSRESETSCURSOR
Boolean

EMULATIONPREFS.NUMPADLOCKED
Boolean

EMULATIONPREFS.CURSORLOCKED
Boolean

EMULATIONPREFS.FONTLOCKED
Boolean

EMULATIONPREFS.WRAPLOCKED
Boolean

EMULATIONPREFS.STYLELOCKED
Boolean

EMULATIONPREFS.COLOURLOCKED
Boolean

EMULATIONPREFS.MAXPRESCROLL

Numeric

EMULATIONPREFS.MAXJUMP
Numeric

EMULATIONPREFS.USEPENS
Boolean

68 ARexx-interface and ARexx-commands explained

5.8 The CLIPBOARDPREFS object
Available fields are:

CLIPBOARDPREFS.UNIT
Numeric

CLIPBOARDPREFS.CONVERTLF
Wahrheitswert

CLIPBOARDPREFS.LINEDELAY
Numeric

Paste line delay in 1/100 seconds.

CLIPBOARDPREFS.CHARDELAY
Numeric

Paste character delay in 1/100 seconds.

CLIPBOARDPREFS.LINEPROMPTTEXT
Text

CLIPBOARDPREFS.SENDTIMEQOUT
Numeric

Timeout in 1/100 seconds.

CLIPBOARDPREFS.TEXTPACING
DIRECT ECHO ANYECHO PROMPT DELAY KEYBOARD

CLIPBOARDPREFS.INSERTPREFIXTEXT
Text

CLIPBOARDPREFS.INSERTSUFFIXTEXT
Text

5.9 The CAPTUREPREFS object
Available fields are:

CAPTUREPREFS.LOGACTIONS
Boolean

CAPTUREPREFS.LOGFILENAME
Text

CAPTUREPREFS.LOGCALLS
Boolean

Chapter 5: Attributes

CAPTUREPREFS.CALLLOGFILENAME
Text

CAPTUREPREFS .MAXBUFFERSIZE
Numeric

CAPTUREPREFS.BUFFER
Boolean

CAPTUREPREFS .BUFFERSAVEPATH
Text

CAPTUREPREFS.CONNECTAUTOCAPTURE
Boolean

CAPTUREPREFS . AUTOCAPTUREDATE
NAME, INCLUDE

CAPTUREPREFS.CAPTUREFILTER
Boolean

CAPTUREPREFS.CONVERTCHARACTERS
Boolean

CAPTUREPREFS.CAPTUREPATH
Text

CAPTUREPREFS . OPENBUFFERWINDOW
TOP, END

CAPTUREPREFS . REMEMBERBUFFERWINDOW
Boolean

CAPTUREPREFS . OPENBUFFERSCREEN
TOP, END

CAPTUREPREFS . REMEMBERBUFFERSCREEN
Boolean

CAPTUREPREFS . BUFFERSCREENPOSITION
LEFT, MID, RIGHT

CAPTUREPREFS . BUFFERWIDTH

Numeric

CAPTUREPREFS.SEARCHHISTORY
Numeric

CAPTUREPREFS . BUFFERSAFETYMEMORY

Numeric

70 ARexx-interface and ARexx-commands explained

5.10 The COMMANDPREFS object
Available fields are:

COMMANDPREFS .STARTUPMACROTEXT
Text

COMMANDPREFS .LOGINMACROTEXT
Text

COMMANDPREFS .LOGOFFMACROTEXT
Text

COMMANDPREFS .UPLOADMACROTEXT
Text

COMMANDPREFS . DOWNLOADMACROTEXT
Text

5.11 The MISCPREFS object
Available fields are:

MISCPREFS.PRIORITY

Numeric
MISCPREFS.BACKUPCONFIG

Boolean
MISCPREFS.OPENFASTMACROPANEL

Boolean
MISCPREFS.RELEASEDEVICE

Boolean
MISCPREFS.CREATEICONS

Boolean
MISCPREFS.SIMPLEIO

Boolean
MISCPREFS.PROTECTIVEMODE

Boolean
MISCPREFS.IOBUFFERSIZE

Numeric
MISCPREFS.ALERTMODE

NONE BELL SCREEN BOTH

Chapter 5:

MISCPREFS.

MISCPREFS.

MISCPREFS.

MISCPREFS.

MISCPREFS

MISCPREFS.

MISCPREFS.

5.12 The PATHPREFS object

Attributes

REQUESTERMODE
IGNORE CENTRE RELATIVE

REQUESTERLEFT
Numeric

REQUESTERTOP
Numeric

REQUESTERWIDTH
Numeric

.REQUESTERHEIGHT

Numeric

CONSOLEWINDOW
Text

SUPPRESSOUTPUT
Boolean

Available fields are:

PATHPREFS

PATHPREFS.

PATHPREFS.

PATHPREFS

PATHPREFS.

PATHPREFS.

PATHPREFS

PATHPREFS.

PATHPREFS.

.ASCITUPLOADPATH

Text
ASCIIDOWNLOADPATH
Text
TEXTUPLOADPATH
Text

. TEXTDOWNLOADPATH

Text
BINARYUPLOADPATH
Text
BINARYDOWNLOADPATH
Text

.CONFIGPATH

Text
EDITORNAME
Text
HELPFILENAME
Text

71

72 ARexx-interface and ARexx-commands explained

5.13 The TRANSFERPREFS object
Available fields are:

TRANSFERPREFS.DEFAULTPROTOCOL

Text
TRANSFERPREFS.ERRORNOTIFYCOUNT

Numeric
TRANSFERPREFS.ERRORNOTIFYWHEN

NEVER ALWAYS START END
TRANSFERPREFS.ASCITIUPLOADPROTOCOL

Text
TRANSFERPREFS.ASCIIDOWNLOADPROTOCOL

Text
TRANSFERPREFS.QUIETTRANSFER

Boolean
TRANSFERPREFS . MANGLEFILENAMES

Boolean
TRANSFERPREFS.LINEDELAY

Numeric
TRANSFERPREFS.CHARDELAY

Numeric
TRANSFERPREFS.LINEPROMPTTEXT

Text
TRANSFERPREFS.TEXTPACING

DIRECT ECHO ANYECHO PROMPT DELAY KEYBOARD
TRANSFERPREFS.SENDTIMEQUT

Numeric
TRANSFERPREFS.STRIPBITS8

Boolean
TRANSFERPREFS.IGNOREDATAPASTTERMINATOR

Boolean
TRANSFERPREFS.TERMINATORCHAR

Numeric
TRANSFERPREFS.IDENTIFYCOMMAND

Text

TRANSFERPREFS .EXPANDBLANKLINES
Boolean

Chapter 5: Attributes

TRANSFERPREFS. TEXTUPLOADPROTOCOL

Text
TRANSFERPREFS. TEXTDOWNLOADPROTOCOL

Text
TRANSFERPREFS.BINARYUPLOADPROTOCOL

Text
TRANSFERPREFS.BINARYDOWNLOADPROTOCOL

Text
TRANSFERPREFS.OVERRIDEPATH

Boolean
TRANSFERPREFS.SETARCHIVEDBIT

Boolean
TRANSFERPREFS.COMMENTMODE

IGNORE FILETYPE SOURCE
TRANSFERPREFS.TRANSFERICONS

Boolean
TRANSFERPREFS.HIDEUPLOADICON

Boolean
TRANSFERPREFS. TRANSFERPERFMETER

Boolean
TRANSFERPREFS.DEFAULTTYPE

XPR or PROGRAM
TRANSFERPREFS.DEFAULTSENDSIGNATURE

Text
TRANSFERPREFS.DEFAULTRECEIVESIGNATURE

Text
TRANSFERPREFS.ASCITUPLOADTYPE

XPR, PROGRAM, DEFAULT or INTERNAL
TRANSFERPREFS.ASCITIUPLOADSIGNATURE

Text
TRANSFERPREFS.ASCITDOWNLOADSIGNATURE

Text
TRANSFERPREFS.ASCITIDOWNLOADTYPE

XPR, PROGRAM, DEFAULT or INTERNAL
TRANSFERPREFS.ASCIIDOWNLOADSIGNATURE

Text

TRANSFERPREFS.ASCIIDOWNLOADSIGNATURE
Text

74 ARexx-interface and ARexx-commands explained

TRANSFERPREFS . TEXTUPLOADTYPE
XPR, PROGRAM or DEFAULT

TRANSFERPREFS . TEXTUPLOADSIGNATURE
Text

TRANSFERPREFS . TEXTDOWNLOADSIGNATURE
Text

TRANSFERPREFS . TEXTDOWNLOADTYPE
XPR, PROGRAM or DEFAULT

TRANSFERPREFS . TEXTDOWNLOADSIGNATURE
Text

TRANSFERPREFS . TEXTDOWNLOADSIGNATURE
Text

TRANSFERPREFS .BINARYUPLOADTYPE
XPR, PROGRAM or DEFAULT

TRANSFERPREFS.BINARYUPLOADSIGNATURE
Text

TRANSFERPREFS .BINARYDOWNLOADSIGNATURE
Text

TRANSFERPREFS .BINARYDOWNLOADTYPE
XPR, PROGRAM or DEFAULT

TRANSFERPREFS.BINARYDOWNLOADSIGNATURE
Text

TRANSFERPREFS.BINARYDOWNLOADSIGNATURE
Text

5.14 The PROTOCOLPREFS object

This object features no fields, it contains a single line of text: the XPR protocol options.

5.15 The TRANSLATIONPREFS object

Indices referring to the ascii codes range from 0 to 255, available fields are:

TRANSLATIONPREFS.n.SEND
Text

Chapter 5: Attributes

TRANSLATIONPREFS.n.RECEIVE

Text

5.16 The FUNCTIONKEYPREFS object

Key indices range from 1 to 10 (representing F1 through F10), available fields are:

FUNCTIONKEYPREFS.n

Text

FUNCTIONKEYPREFS.SHIFT.n

Text

FUNCTIONKEYPREFS.ALT.n

Text

FUNCTIONKEYPREFS.CONTROL.n

Text

5.17 The CURSORKEYPREFS object

Available fields are:

CURSORKEYPREFS
Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

.UPTEXT

RIGHTTEXT

DOWNTEXT

LEFTTEXT

SHIFT.UPTEXT

SHIFT.RIGHTTEXT

SHIFT.DOWNTEXT

76

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

CURSORKEYPREFS.

Text

SHIFT.LEFTTEXT

ALT.UPTEXT

ALT.RIGHTTEXT

ALT.DOWNTEXT

ALT.LEFTTEXT

CONTROL . UPTEXT

CONTROL.RIGHTTEXT

CONTROL .DOWNTEXT

CONTROL.LEFTTEXT

ARexx-interface and ARexx-commands explained

5.18 The FASTMACROPREFS object

FASTMACROPREFS.

COUNT

Numeric

The number of fast macros available, entries range from FASTMACROPREFS.O... to

FASTMACROPREFS.n-1...
FASTMACROPREFS.

Text

FASTMACROPREFS.

Text

n.NAME

n.CODE

5.1 The HOTKEYPREFS object

Available fields are:

HOTKEYPREFS . TERMSCREENTOFRONTTEXT

Text

Chapter 5: Attributes

HOTKEYPREFS .BUFFERSCREENTOFRONTTEXT
Text

HOTKEYPREFS.SKIPDIALENTRYTEXT
Text
HOTKEYPREFS.ABORTAREXX
Text
HOTKEYPREFS.COMMODITYPRIORITY

Numeric

HOTKEYPREFS .HOTKEYSENABLED
Boolean

5.20 The SPEECHPREFS object
Available fields are:

SPEECHPREFS .RATE
Numeric

SPEECHPREFS.PITCH

Numeric

SPEECHPREFS . FREQUENCY
Numeric

SPEECHPREFS . SEXMODE
MALE FEMALE

SPEECHPREFS . VOLUME
Numeric

SPEECHPREFS . SPEECH
Boolean

5.21 The SOUNDPREFS object
Available fields are:

SOUNDPREFS . BELLNAME
Text

7

78 ARexx-interface and ARexx-commands explained

SOUNDPREFS . CONNECTNAME
Text

SOUNDPREFS .DISCONNECTNAME
Text

SOUNDPREFS . GOODTRANSFERNAME
Text

SOUNDPREFS .BADTRANSFERNAME
Text

SOUNDPREFS .RINGNAME
Text

SOUNDPREFS.VOICENAME
Text

SOUNDPREFS . ERRORNAME
Text

SOUNDPREFS . PRELOAD
Boolean

5.22 The CONSOLEPREF'S object

This object features no fields, it contains a single line of text: the console output window
specification.

5.23 The FILEPREFS object
Available fields are:

FILEPREFS.TRANSFERPROTOCOLNAME
Text
FILEPREFS.TRANSLATIONFILENAME
Text
FILEPREFS.MACROFILENAME
Text
FILEPREFS.CURSORFILENAME
Text
FILEPREFS.FASTMACROFILENAME
Text

Chapter 6: Wanted! 79

6 Wanted!

As of this writing only a single example ARexx script is included in the ‘term’ distribution (see
the ‘Rexx’ drawer). However, it is desirable to include more sample scripts so more users will be

able to take advantage of the ARexx interface.

If you wish to share your scripts with the ‘term’ user community, send them (including docu-
mentation) to:
Olaf Barthel
Brabeckstrasse 35
D-30559 Hannover
Federal Republic of Germany
Internet: olsen@sourcery.han.de

80

ARexx-interface and ARexx-commands explained

Index

Index

9

, (CommAa) . ..vvvein 9, 10
[1 (Square brackets)cooiiinia... 9
{} (Curly braces)ovuiiiiiiiiiininenn. 9
| (Vertical bar)oouniiniiii . 9
<

<> (Angle bracketsS)ovviiinniiiiennnenn. 9
KOPEION>/K .ottt 9
KOption>/M. ... 9
KOption>/N. ... 9
KOPtion>/S . 9
<Parameter>/A 9
KText>/F o 9
ACTIVATE . . e e e 10
ADDITEM . .ot e 11
APPEND ... e 15
BAUD . . e e 13
BEEPSCREENot e e e 13
CALLMENU . ..ot e e e e e 14
CAPTURE . .. i e e 14
CAPTUREPREFS e e 68
CLEAR. .o e 15
CLEARSCREEN.t e e e 16
CLIPBOARDPREFS i 68
CLOSE. . it e 17

81
CLOSEREQUESTERttt it ie e 18
COMMANDPREFS ..ottt it it 70
CONSOLEPREFS ..ottt ettt it ie e 78
CURSORKEYPREFS it ittt ie e 75
DEACTIVATE . ..\ttt et e 19
DELAY . .t e 19
DIAL . it e 20
Dial 1isSt .ottt e 11
Download list........coiiiiiini i 11
DUPLEX .. e 21
EMULATIONPREFS . .. ottt e e 66
Example: 10
EXECTOOL . ..ottt e e e e e e e 22
FASTMACROPREFSttt e e 76
FAULT . .ottt e et et e 22
FILEPREFSttt e 78
Format: ... 9
FUNCTIONKEYPREFS it 75
GETAT TR . .ottt it et et ettt 23
GETCLIP . .o e e e e 24
GOONLINE . ..t e et e e e e e 25
HANGUP . .t e e et e 26
HEL P . .ttt e e e 27
HOTKEYPREFS. ... e e e 76
MISCPREFS . ..ottt ittt 70
MODEMPREFS . ..ottt et 63

82 ARexx-interface and ARexx-commands explained

O RK e 46
OPEN . o 27
OPENDEVICE . . .ottt e e e e 28 Es
OPENREQUESTER . . . oottt e e 29 SAVE . e 47
OVERWRITE . .\ttt e 15 SAVEAS ..o 47
SCREENPREFS. ..o 64
I) SELECTITEM. ..ottt et 48
PARITY . oo oo oo 30 SEND . ot 49
PASTECLIP . . o oo oo oo 30 SENDBREAK . ..o 50
PATHPREFS . .. oo 71 SENDFILE e 50
PHONEBOOK . .. oo oo 61 SERIALPREFS. e 61
PRINT . oottt et e e 31 SETATTR ..ot 51
PROCESSTIO . . o oo oo 32 ST P . et 15
PROTOCOL . . oo vvee e e e, 32 SOUNDPREFSo 77
PROTOCOLPREFS . . . oo oo oo, 74 SPE K . e e 52
PUTPOSE: « ettt ettt e e 10 Specifications:................o 10
PUTCLIP ..o\ttt 33 SPEECHPREFS. ... 77
(2 STOPBITS . ottt e e e 52
QUIT . o e 34 T
Template: ... 9
I{, TERM . o e 59
READ . .ttt 34 TERMINALPREFS 65
RECEIVEFILE. ...t e 36 TEXTBUFFER.o 53
REDIAL ..ottt et e e 37 TIMEOUT ..ot 54
REMITEM . ..ottt e 38 TRANSFERPREFSt 72
REQUESTFILE. ...ttt ittt et et i 38 TRANSLATIONPREFS. i 74
REQUESTNOTIFYo e 40 TRAP . 54
REQUESTNUMBERttt 40
REQUESTRESPONSEottt 41 IJ
REQUESTSTRINGottt ettt i eaens 42 Upload list...... ... 11
RESET . it 43
RESETSCREEN. . ..ot e e 44 -\N]
RESETSTYLES. ... i 44 WAL T . e 55
RESETTEXT . ..o e 45 Wait 1ist ... 11
RESETTIMER.ottt 45 Warning:o 10

Result:o 10 WINDOW ..ot s 56

Table of Contents

1 Changes............oiiiiiiii 1
2 termand ARexxX......... 3
2.1 Command eXeCUtIOn.ttt 3
3 Stoppingacommand......................... 7
4 Commands................ ... 9
4.1 The ACTIVATE command ..., 10
4.2 The ADDITEM command..............oiiiuiaaiinn. 11
4.3 The BAUD command 13
4.4 The BEEPSCREEN command iiiiiiieen.... 13
4.5 The CALLMENU command............coiiiiiieeiiiiiinnn.. 14
4.6 The CAPTURE commandciiiiiiiiii... 14
4.7 The CLEAR command 15
4.8 The CLEARSCREEN command..................iiiiiiieeoo. .. 16
4.9 The CLOSE commandooiiiiiiiiiiiiiiaaaa. 17
4.10 The CLOSEDEVICE commandit. 17
4.11 The CLOSEREQUESTER command 18
4.12 The DEACTIVATE command................. i .. 19
4.13 The DELAY commandoiiiiiiiiiinaa. 19
4.14 The DIAL commandc .. 20
4.15 The DUPLEX command0iiiiiieiiiiiiiinnn. 21
4.16 The EXECTOOL command..............ccoiiiiiiiiiiiiiiii. 22
4.17 The FAULT command, 22
4.18 The GETATTR command.............coo it 23
4.19 The GETCLIP commandcooiiiiiiiiiiiaaaana... 24
4.20 The GOONLINE commandooiiiiiiiiiinenenn .. 25
4.21 The HANGUP command..............coiiiiiuiieaaaiin. 26
4.22 The HELP command 27
4.23 The OPEN commando i 27
4.24 The OPENDEVICE commando ... 28
4.25 The OPENREQUESTER command 29
4.26 The PARITY command, 30
4.27 The PASTECLIP command iiiiiiiaeeai.. 30
4.28 The PRINT command it 31

4.29

The PROCESSIO command. ...t 32

ii ARexx-interface and ARexx-commands explained
4.30 The PROTOCOL command..........ccooviiiiiiiiiiiiiinannn... 32
4.31 The PUTCLIP commandc.coiiiiieiieiiiiiaaann... 33
4.32 The QUIT commandoiiuiiiiiiiiii e, 34
4.33 The READ commando, 34
4.34 The RECEIVEFILE commandcoiiunn.. 36
4.35 The REDIAL commandoiiiiiiiiiiiaaaaaaaa.. 37
4.36 The REMITEM command iuiiiiiiiiiiana.. 38
4.37 The REQUESTFILE command, 38
4.38 The REQUESTNOTIFY command..................cooiii.... 40
4.39 The REQUESTNUMBER commandcoouo... 40
4.40 The REQUESTRESPONSE command 41
4.41 The REQUESTSTRING commandcooa... 42
4.42 The RESET command, 43
4.43 The RESETSCREEN command.............................. .. 44
4.44 The RESETSTYLES commandciiiieao. ... 44
4.45 The RESETTEXT command..................coiiiiiiiinnaa.... 45
4.46 The RESETTIMER commandiiiiiiieaoo. ... 45
4.47 The RX commandoo i 46
4.48 The SAVE command............... i, 47
4.49 The SAVEAS command 47
4.50 The SELECTITEM command..........ccovuiiiiiiiiiiiiiiann.. 48
4.51 The SEND command i, 49
4.52 The SENDBREAK commandoiiiii. ... 50
4.53 The SENDFILE commandiiiiiiiiaaneen... 50
4.54 The SETATTR command, 51
4.55 The SPEAK commandooi i, 52
4.56 The STOPBITS command ccciiiiiiii.. 52
4.57 The TEXTBUFFER command.................................. 53
4.58 The TIMEOUT command.ccoouiiiiiiiiiiiiiiaananaa... 54
459 The TRAP command i 54
4.60 The WAIT commandot 55
4.61 The WINDOW commandiiiiiiieiiiiiinn. 56

5 Attributes..... 59
5.1 The TERM object (read-only)......... ..., 59
5.2 The PHONEBOOK object (read-only)ooo... 61
5.3 The SERTALPREFS objectcooviii e 61
54 The MODEMPREFS object. ... 63
5.5 The SCREENPREFS objectcooiiiii i, 64
5.6 The TERMINALPREFS objectccoovviiiiiiiiinn... 65
5.7 The EMULATIONPREFS object........ccooiviiiiiiii ... 66
5.8 The CLIPBOARDPREFS object ..., 68

5.9 The CAPTUREPREFS objecto 68
5.10 The COMMANDPREFS objectcooiiiiiiiiiiiiii. 70
5.11 The MISCPREFS object 70
5.12 The PATHPREFS objectcooiiii i 71
5.13 The TRANSFERPREFS object ...t 72
5.14 The PROTOCOLPREFS object. ... 74
5.15 The TRANSLATIONPREFS object..... ..o, 74
5.16 The FUNCTIONKEYPREFS objectc..cooiiiiiii .. 75
5.17 The CURSORKEYPREFS object ...t 75
5.18 The FASTMACROPREFS object ..., 76
5.19 The HOTKEYPREFS object. ... 76
5.20 The SPEECHPREFS object ..o, 7
5.21 The SOUNDPREFS object. ..., 77
5.22 The CONSOLEPREFS object. ... 78
5.23 The FILEPREFS object ...t 78
6 Wanted!........ ... 79

iii

v

ARexx-interface and ARexx-commands explained

