
12. The TMS34010 Instruction Set

This section contains the TMS34010 instruction set (in alphabetical order).
Related subjects, such as addressing modes, are presented first.

Section Page
12.1 Symbols and Abbreviations 	 12-2
12.2 Addressing Modes 	 12-3
12.3 Move Instructions Summary 	 12-8
12.4 PIXBLT Instructions Summary 	 12-14
12.5 PIXT Instructions Summary 	 12-14

- TMS34010 Instruction Set Summary 	 12-15
- Example Instruction 	 12-21

12-1

TMS34010 Instruction Set - Symbols and Abbreviations

12.1 Symbols and Abbreviations

The symbols and abbreviations in Table 12-1 are used in the addressing
modes discussion, the instruction set summary, and in the individual instruc-
tion descriptions.

Table 12-1. TMS34010 Instruction Set Symbol and Abbreviation Definitions

Symbol Definition Symbol Definition

Register File A Registers AO—A14, including SP Register File B Registers BO—B14, including SP

Rs Source register Rd Destination register

RsX X half of source register RsY Y half of source register

RdX X half of destination register RdY Y half of destination register

An Register n in register file A Bn Register n in register file B

PC Program counter PC' PC prime. Specifies the PC of the
next instruction (PC + instruction
length)

ST Status register N Status sign bit

C Status carry bit Z Status zero bit

V Status overflow bit IE Global interrupt enable bit

SP Stack pointer TOS Top of stack

SAddress Source address DAddress Destination address

MSW Most significant word LSW Least significant word

LSB Least significant bit MSB Most significant bit

> Hexadecimal number K 5-bit constant

IW 16-bit immediate value IL 32-bit immediate value

W 16-bit immediate value L 32-bit immediate value

F Field select. F=0 selects FSO, FE0
in the status register, F=1 selects
FS1, FE1

R Register file select. Indicates
which register file (A or B) the
operand registers are in. R --=0
specifies register file A, R=1
specifies register file B

() In 	instruction syntax, contents
of. For example, (Rd) specifies
the contents of the destination
register

. • Concatenation. For example,
Rd:Rd + 1 means the concatena-
tion of one register and the next
into a 64-bit value, as in AO:A1

Becomes the contents of — l's complement

I 	I Absolute value [] Optional parameter

Indirect addressing @ Absolute addressing

<text> In instruction syntax, indicates a "fill in the blank" — substitute an actual value,
address, or register for the text enclosed in the ang e brackets. For example, substitute
an actual source register for <Rs>; substitute an actual destination address for
<DAddress>.

12-2

TMS34010 Instruction Set - Addressing Modes

12.2 Addressing Modes

The TMS34010 supports a variety of addressing modes. Most instructions
use only one addressing mode; however, the MOVB, MOVE, and PIXT in-
structions each support several addressing modes. The following subsections
describe the TMS34010 addressing modes.

12.2.1 Immediate Addressing

In this addressing mode, the source operand may be one of the following:

• A 16-bit immediate value (designated as IW)

• A 32-bit immediate value (designated as IL)

• A constant (designated as K)

Figure 12-1 shows an example of the movi <IL> , <Rd> instruction. A 32-bit
immediate value, >FC00, is loaded into the destination register, A3.

	

Execution Unit
	

Program Memory

31
	

0
	

15
	

0
AO

A3

ST

SP

PC

MOVI >FC00, A3

Figure 12-1. Immediate Addressing Mode

12.2.2 Indirect XY

A source operand or a destination operand can be specified using this ad-
dressing mode.

• *Rs.XY - The register contains the XY address of the data.

• *Rd.XY - The register contains the XY address where the data will be
moved.

12-3

0

Execution Unit

31

Program Memory

15 	 0

N V C

N

15

AO

A4

ST

SP

PC

>07E4

FADDR (LSW)

FADDR (MSW)

Data Memory

MOVB •MDR, A4
N

N+1

N+2

N+3

0

I

B-File

TMS34010 Instruction Set - Addressing Modes

12.2.3 Absolute Addressing

A source operand or a destination operand can be specified as an absolute
address.

• @SAddress - The specified address contains the data.

• @DAddress - The data will be moved into the specified address.

Figure 12-2 shows an example of the MOVB @<SAddress>, <Rd> instruction.
In this example, the symbol FADDR represents a memory address; the data at
this address are loaded into register A4.

Figure 12-2. Absolute Addressing Mode

12.2.4 Register Direct

A source operand or a destination operand can be specified using register di-
rect addressing mode.

• Rs - The source register contains the data.

• Rd - The data will be moved into the destination register.

Figure 12-3 shows an example of the MOVE <Rs> , <Rd> instruction. The
contents of the source register, A3, are moved into the destination register,
B2.

12 - 4

N

N+1

MOVE A3, B2

>FC00 >OC

V C

N

A3

B2

ST

SP

PC

TMS34010 Instruction Set - Addressing Modes

Execution Unit
	

Program Memory

31 	 0
	

15
	

0

Figure 12-3. Register Direct Addressing Mode

12.2.5 Register Indirect

A source operand or a destination operand can be specified using register in-
direct addressing mode.

• *Rs - The register contains the address of the data.

• *Rd- The register contains the address where the data will be moved.

Figure 12-4 shows an example of the MOVE <Rs> , * <Rd> , [<F>] instruction.
Register A4 contains the source operand. Register A3 contains an address
(represented by the symbol FADDR) where the data in A4 will be moved.

Execution Unit

31

Program Memory

31 	 0
(Default) • •

>8083 •
A3 FADDR N

A4 FDATP
MOVE A4, *A3, 0

(Indirection)
B-File

ST
Data Memory

FADDR NI 	I 	I 	I
15 SP Memory Address

PC FDATA •

Figure 12 - 4. Register Indirect Addressing Mode

12-5

>8083 N

N+1

N+2

>10

FADDR+18 Data Memory

0

FDATA

15

AO • • •

67

SP

PC

(Displacement)

MOVE M, ■A3(18), 0

(Indirection)

Memory Address

1

A3 	FADDR

A4 DATA

B-Ale

NI cl Zl

TMS34010 Instruction Set - Addressing Modes

12.2.6 Register Indirect with Displacement

A source operand or a destination operand can be specified using this ad-
dressing mode.

• *Rs(Displacement) - The address of the data is found by adding the re-
gister contents to the signed displacement.

• *Rd(Displacernent) - The data will be moved to the address specified
by the sum register contents and the signed displacement.

Figure 12 - 5 shows an example of the MOVE <Rs> , * <Rd> (<Displacement>)
instruction. Register A4 contains the source operand. Register A3 contains
an address (represented by the symbol FADDR). The displacement, 16, is
added to FADDR, to point to the location where the data in A4 will be moved.
FS0 contains the field size.

Execution Unit 	 Program Memory

31 	 0

Figure 12-5. Register Indirect with Displacement Addressing Mode

12.2.7 Register Indirect with Predecrement

A source operand or a destination operand can be specified using this ad-
dressing mode.

• -*Rs - The address of the data is found by decrementing the register
contents by the field size of the move.

• -*Rd - The data will stored at the address found by decrementing the
register contents by the field size of the move.

Figure 12-6 shows an example of the MOVE <Rs> , * - <Rd> instruction. Reg-
ister A4 contains the source operand. Register A3 contains an address (re-
presented by the symbol FADDR). This address is decremented by the field
size of the move, so that it points to the location where the data in A4 will be
moved. FS1 contains the field size.

12-6

AO
•

A3 	FA!)DR
A4 1-----FO■ T4

•

•

FADDR + FS

B-File
Data Memory

15 	 0

FADDR V N C z ST

SP

PC FDATA

0 15 31 	 0

FS=Fleld Size

TMS34010 Instruction Set - Addressing Modes

Execution Unit Program Memory

ST

SP

PC

31
	

0

FS=Field Size

15

>A0843

Data Memory

0 15 L

N

N+1

MOVE A4, ■-A3, 1

Memory Address

AO

A3

A4

0 	
Predecrement

Figure 12-6. Register Indirect with Predecrement Addressing Mode

12.2.8 Register Indirect with Postincrement

A source operand or a destination operand can be specified using this ad-
dressing mode.

• *Rs+ - The register contains the address of the data. The register con-
tents are incremented after the move.

• *Rd+ - The register contains the address where the data will be moved.
The register contents are incremented after the move.

Figure 12-7 shows an example of the MOVE <Rs> , * - <Rd> instruction. Reg-
ister A4 contains the source operand. Register A3 contains an address (re-
presented by FADDR) where the data in A4 will be moved. The register
contents are incremented after the move. FSO contains the field size.

Execution Unit 	 Program Memory

Postincrement

N

N+1

MOVE A4, ■A3+, 0

Memory Address

Jr
Figure 12-7. Register Indirect with Postincrement Addressing Mode

12-7

TMS34010 Instruction Set - Move Instructions Summary

12.3 Move Instructions Summary

The move instructions use the GSP's bit-addressing and field operation capa-
bilities to provide flexible memory management. All memory addresses for
move operations are bit addresses. When a field is moved from memory to a
register. Register bits to the left of the field are filled with either Os or the sign
bit, depending on the field extension mode. When a field is moved to memory
from a register, the data for the field is assumed to be right justified within the
register, and the bits to the left of the field are ignored. Table 12-2 summarizes
the GSP move instructions.

Table 12-2. Summary of Move Instructions

Move Type Mnemonic Description

Register MOVE Move register to register

Constant MOVK Move constant (5 bits)

MOVI Move immediate (16 bits)

MOVI Move immediate (32 bits)

XY MOVX Move 16 LSBs of register (X half)

MOVY Move 16 MSBs of register (Y half)

Multiple Register MMFM Move multiple registers from memory

MMTM Move multiple registers to memory

Byte MOVB Move byte (8 bits, 9 addressing modes)

Field MOVE Move field to/from memory/register
(15 addressing modes)

12.3.1 Register-to-Register Moves

The register-to-register MOVE instruction moves data directly between register
files A and B. This is a 32-bit move; the entire contents of the destination re-
gister are replaced.

12.3.2 Constant-to-Register Moves

The MOVK and MOVI instructions load a register with a constant value.
MOVK places a zero-extended value of 1 to 32 in the register. MOVI has two
modes, 16-bit and 32-bit. The 32-bit MOVI uses two extension words which
explicitly define the value to be stored in the register. The extension word for
the 16-bit MOVI contains a value which is sign extended to 32 bits when
moved into the register. Use the CLR instruction to store 0 in a register.

12.3.3 X and Y Register Moves

The MOVX and MOVY instructions move the X and Y halves, respectively; the
other half of the destination register is not affected. These are 16-bit moves
within the register file. XY addressing is discussed in Section 4.

12-8

TMS34010 Instruction Set - Move Instructions Summary

12.3.4 Multiple Register Moves

Multiple-register moves save and restore select members of up to an entire file
of registers to memory. A 16-bit mask specifies which of the 16 registers in
the designated file are to be moved to or from memory. One register from the
selected file acts as a pointer register for the move. Any of the registers in the
file, including the SP, may be used as the pointer register. The selected reg-
isters are input as a list; the assembler checks that they and the pointer register
are all in the same file. The pointer register contains a bit address for the reg-
ister "stack." The stacking operation follows the same conventions as the
system stack, growing in the direction of lower memory. If the SP is used,
both register files may be moved to the same stack area (since SP may be ac-
cessed from both files). MMTM moves multiple registers to the stack while
MMFM moves them from memory back to the register file.

12.3.5 Byte Moves

Byte moves are special 8-bit cases of the field moves described in Section
12.3.6. Byte moves are implicitly 8-bit moves. They transfer data:

• From memory to a register (using field extraction),

• From a register to memory (using field insertion),
or

• From memory to memory (using field extraction and field insertion).

A byte can begin on any bit boundary within a word. When a byte is moved
from memory to a general-purpose register, it is right justified within the reg-
ister so that the LSB of the byte coincides with the rightmost bit (bit 0) of the
register. The byte is sign extended to fill the 24 MSBs of the register.

Table 12-3 lists the possible combinations of source and destination address-
ing modes for MOVBs.

Table 12-3. MOVB Addressing Modes

Source
Addressing

Mode

Destination Addressing Mode

Rd *Rd *Rd(disp) @Address

Rs • • •

*Rs • •

*Rs(Disp) • •

@Address • •

Note: The • symbol indicates a valid operation; a blank box indicates an
invalid operation.

Sequences of byte-move operations can be expected to execute more effi-
ciently if the byte address points to an even 8-bit boundary within memory.
This occurs when the three LSBs of the 32-bit starting address of the byte are
0. A byte that straddles a word boundary requires twice as many memory cy-
cles to access.

12-9

TMS34010 Instruction Set - Move Instructions Summary

12.3.6 Field Moves

A field is a configurable data structure in memory. It is identified by two pa-
rameters - size and data address. A field's length can be defined to be any
value from 1 to 32 bits. Field moves manipulate arbitrarily-sized data fields in
memory and the register file.

• Field data in memory is addressed by its bit address and is treated as a
string of contiguous bits; it may start at any bit address in memory.

• Field data in the register file is right justified in the register; the LSB of
the field is stored in the LSB of the register.

When field data is moved into a register, it is right justified within the register.
The register bits to the left of the field are all 1s or all Os, depending on the
values of both the appropriate FE (field extension) bit in the status register,
and sign bit (MSB) of the field. If FE=1, the field is sign extended; if FE=O,
the field is zero extended. When data is moved from a register, these non-field
bits of the register are ignored.

Fields are transferred between the general-purpose registers and memory by
means of the memory-to-register and register-to-memory move instructions.
Fields are transferred from one memory location to another via the memory-
to-memory move instructions.

Table 12-4 lists the possible combinations of source and destination address-
ing modes for MOVEs.

Table 12-4. Field Move Addressing Modes

Source
Addressing

Mode

Destination Addressing Mode

Rd *Rd *Rd+ -*Rd *Rd(disp) @Address

Rs • • • • •

*Rs • •

*Rs+ • •

-*Rs • •

*Rs(Disp) • • •

@Addr • • •

Note: The • symbol indicates a valid operation; a blank box indicates an invalid operation.

Two field sizes are simultaneously available for field moves. The lengths of
fields 0 and 1 are defined by two 5-bit fields in the status register, FS0 and
FS1. The status register also contains the FE0 and FE1 parameters, which
define the field extension properties of the data when it is moved into a reg-
ister.

The SETF instruction specifies the size and signed/unsigned condition of ei-
ther field 0 or 1 by placing this data in one of two 6-bit fields located in the

12-10

TMS34010 Instruction Set - Move Instructions Summary

status register. One bit specifies sign/zero extension, and five bits store the
field size (in bits).

The EXGF instruction may also set either of the two field types, while pre-
serving a copy of the previous definition.

The address of a field points to its least significant bit. A field can begin at
an arbitrary bit address in memory. Field data addresses for particular moves
are derived from values in registers and extension words following the in-
struction. Field moves transfer data:

• From memory to a register (using field extraction),

• From a register to memory (using field insertion),
o r

• From memory to memory (using field extraction and field insertion).

12.3.6.1 Register - to - Memory Field Moves

Figure 12-8 illustrates the register-to-memory move operation. In this type
of move, the source register contains the right-justified field data (width is
specified by the field size). The destination memory location is the bit position
pointed to by the destination memory address. The address consists of a
portion defining the starting word in which the field is to be written and an
offset into that word, the bit address. Depending on the bit address within this
word and the field size, the destination location may extend into two or more
words. The field size for the move is one of two indirect values stored in ST,
as selected by the programmer. The field extension bit is not used.

Move from Register to Memory

31
	

4 3
	

0

Destination Memory Address Word Address
	

Bit 	IAddress

31
	

0

Source Register t

Field Data

r_ Field Size •

Word Address + 18 	 Word Address

15 0 	15

Destination Memory Location r--- 	 Reid Data

14--Field Size ► 14

 Field Size =1 to 32 bits

Figure 12 - 8. Register - to - Memory Moves

Bit Address-PI

1 2 - 1 1

Bit 	I
Address I Word Address

10 0 0 0 	 000
	

Field Data

TMS34010 Instruction Set - Move Instructions Summary

12.3.6.2 Memory-to-Register Field Moves

Figure 12-9 shows the memory-to-register move operation. The source me-
mory location is the bit position pointed to by the source memory address.
The address consists of a portion defining the starting word in which the field
is to be written and an offset into that word, the bit address. Depending on
the bit address within this word and the field size, the source location may
extend into two or more words. After the move, the destination register LSBs
contain the right-justified field data (width is specified by the field size). The
MSBs of the register contain either all 1s or all Os. If the sign extension bit
FE0 or FE1 associated with the field size selected is 0, the MSBs are Os. If the
sign extension bit selected is 1, the MSBs contain the value of the sign bit of
the field data (its MSB). The field size for the move is one of two indirect
values stored in ST, as selected by the programmer.

Move from Memory to Register

31 4 3 0

Source Memory Address

15

Source Memory Location 1

Word Address + 18

0 15

Field Data

Word Address

0 _

1
14—Field Size . 101.1 	Bit Address-0i

31 0

Destination Register, FE=0

Sign Bit

31

Destination Register, FE=1 14 	
Field size = 1 to 32 bits

Figure 12-9. Memory-to-Register Moves

	0

Field Data 	1 Sign Bit

12-12

31 4 3 0

Bit 	IAddress Word Address A

Word Address A+18 --\

	

0115 	
Reid Data 	i 	 I

14— Reid Size —.14— Bit Address —1

Source Memory Address

Source Memory Location

Word Address A

31

Destination Memory Address

I

TMS34010 Instruction Set - Move Instructions Summary

12.3.6.3 Memory-to-Memory Field Moves

Figure 12-10 shows a memory-to-memory field move operation. The source
memory location is the bit position pointed to by the source memory address.
The destination memory location is the bit position pointed to by the destina-
tion memory address. Depending on the bit addresses within the respective
words and the field size, either the source location or destination locations
may extend into two or more words. After the move, the destination location
contains the field data from the source memory location. The field size for the
move is one of two indirect values stored in ST, as selected by the program-
mer. The field extension bit is not used.

Move from Memory to Memory

Word Address B+16 	 Word Address B

15 	 0115 0

Destination Memory Location 	I Field Data

Destination Field Size Bit Address

Reid size = 1 to 32 bits

Figure 12 - 10. Memory - to - Memory Moves

12-13

TMS34010 Instruction Set - PIXBLT/PIXT Instructions Summary

12.4 PIXBLT Instructions Summary

The TMS34010 supports 6 different PIXBLT instructions. PIXBLTs vary ac-
cording to the format of the source and destination pixel blocks. Table 12-5
summarizes the PIXBLT instructions.

Table 12-5. PIXBLT Instruction Summary

Syntax Formats Page

PIXBLT B,L Binary to linear 12-157

PIXBLT B,XY Binary to XY 12-162

PIXBLT L,L Linear to linear 12-169

PIXBLT L,XY Linear to XY 12-175

PIXBLT XY,L XY to linear 12-181

PIXBLT XY,XY XY to XY 12-186

12.5 PIXT Instructions Summary

The PIXT instructions move single pixels. The pixel may originate from a reg-
ister or a memory location, and may be moved to a register or a memory lo-
cation. There are 6 variations of the PIXT instruction; each uses a different
combination of the addressing modes described in Section 12.2.

Table 12-6 lists the possible combinations of source and destination address-
ing modes for PIXTs.

Table 12-6. PIXT Addressing Modes

Source
Addressing

Mode

Destination Addressing Mode

Rd • Rd *Rd.XY

Rs • •

• Rs • •

• Rs.XY • •

Note: The • symbol indicates a valid operation; a blank box
indicates an invalid operation.

12 - 14

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary

Graphics Instructions

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

ADDXY Rs,Rd
Add registers in XY mode

1 1,4 1110 000S SSSR DDDD

CMPXY Rd,Rd
Compare X and Y halves of registers

1 3,6 1110 010S SSSR DDDD

CPW Rs,Rd
Compare point to window

1 1,4 1110 011S SSSR DDDD

CVXYL Rs,Rd
Convert XY address to linear address

1 3,6 1110 1 00S SSSR DDDD

DRAY Rs,Rd
Draw and advance

1 t 1111 011S SSSR DDDD

FILL L
Fill array with processed pixels, linear

1 # 0000 1111 	1100 0000

FILL XY
Fill array with processed pixels, XY

1 t 0000 1111 	1110 0000

MOVX Rs,Rd
Move X half of register

1 1,4 1110 110S 	SSSR DDDD

MOVY Rs,Rd
Move Y half of register

1 1,4 1110 111S 	SSSR DDDD

PIXBLT B,L
Pixel block transfer, binary to linear

1 ## 0000 1111 	1000 0000

PIXBLT B,XY
Pixel block transfer and expand, binary to XY

1 ## 0000 1111 	1010 0000

PIXBLT L,L
Pixel block transfer, linear to linear

1 § 0000 1111 	0000 0000

PIXBLT L,XY
Pixel block transfer, linear to XY

1 § 0000 1111 	0010 0000

PIXBLT XY,L
Pixel block transfer, XY to linear

1 § 0000 1111 	01 00 0000

PIXBLT XY,XY
Pixel block transfer, XY to XY

1 § 0000 1111 	0110 0000

PIXT Rs,"Rd
Pixel transfer, register to indirect

1 t 1111 100S SSSR DDDD

PIXT Rs,*Rd.XY
Pixel transfer, register to indirect XY

1 t 1111 000S SSSR DDDD

PIXT *Rs,Rd
Pixel transfer, indirect to register

1 t 1111 101S SSSR DDDD

PIXT *Rs,*Rd
Pixel transfer, indirect to indirect

1 t 1111 110S 	SSSR DDDD

PIXT *Rs.XY,Rd
Pixel transfer, indirect XY to register

1 t 1111 001S SSSR DDDD

PIXT *Rs.XY,*Rd.XY
Pixel transfer, indirect XY to indirect XY

1 t 1111 010S SSSR DDDD

SUBXY Rs,Rd
Subtract registers in XY mode

1 1,4 1110 001S SSSR DDDD

LINE Z
Line draw

1 A 1101 1111 	Z001 1010

t See instruction
t See Section 13.3, FILL Instructions Timing
*t See Section 13.5, PIXBLT Expand Instructions Timing

See Section 13.4, PIXBLT Instructions Timing
A See Section 13.6, The LINE Instruction Timing

12-15

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

Move Instructions

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

MOVB Rs,*Rd
Move byte, register to indirect

1 4 1000 110S SSSR DDDD

MOVB *Rs,Rd
Move byte, indirect to register

1 IT 1000 111S SSSR DDDD

MOVB *Rs,*Rd
Move byte, indirect to indirect

1 IT 1001 110S SSSR DDDD

MOVB *Rs,*Rd(Disp)
Move byte, register to indirect with displacement

2 IT 1010 110S SSSR DDDD

MOVB *Rs(Disp),Rd
Move byte, indirect with displacement to register

2 IT 1010 111S SSSR DDDD

MOVB *Rs(Disp),"Rd(Disp)
Move byte, indirect with displacement to indirect
with displacement

3 11 1011 11 OS SSSR DDDD

MOVB Rs,@DAddress
Move byte, register to absolute

3 IT 0000 0101 111R SSSS

MOVB @SAddress,Rd
Move byte, absolute to register

3 Tr 0000 0111 111R DDDD

MOVB @SAddress,@DAddress
Move byte, absolute to absolute

5 1f 0000 0011 01 00 0000

MOVE Rs,Rd
Move register to register

1 1,4 0100 11MS SSSR DDDD

MOVE Rs,*Rd,F
Move field, register to indirect

1 11 1000 OOFS SSSR DDDD

MOVE Rs,-*Rd,F
Move field, register to indirect (predecrement)

1 If 1010 OOFS SSSR DDDD

MOVE Rs,*Rd-E,F
Move field, register to indirect (postincrement)

1 1r 1001 OOFS SSSR DDDD

MOVE *Rs,Rd,F
Move field, indirect to register

1 11. 1000 01FS SSSR DDDD

MOVE -*Fis,Rd,F
Move field, indirect (predecrement) to register

1 1r 1010 01FS SSSR DDDD

MOVE *Rs+,Rd,F
Move field, indirect (postincrement) to register

1 If 1001 01FS SSSR DDDD

MOVE *Rs,*Rd,F
Move field, indirect to indirect

1 IT 1000 10FS SSSR DDDD

MOVE -*Rs,-*Rd,F
Move field, indirect (predecrement) to indirect
(predecrement)

1 IT 1010 10FS SSSR DDDD

MOVE "Rs+,*Rd+,F
Move field, indirect (postincrement) to indirect
(postincrement)

1 11. 1001 1 OFS SSSR DDDD

MOVE Rs,*Rd(Disp),F
Move field, register to indirect with displacement

2 IT 1 011 OOFS SSSR DDDD

MOVE "Rs(Disp),Rd,F
Move field, indirect with displacement to register

2 IT 1011 01 FS SSSR DDDD

IT See Section 13.2, MOVE and MOVB Instructions Timing

12-16

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

Move Instructions (Continued)

Syntax and Description
,

Words
Machine
States MSB

16-Bit Opcode
LSB

MOVE *Rs(Disp),"Rd+,F
Move field, indirect with displacement to indirect
(postincrement)

2 4 1101 OOFS SSSR DDDD

MOVE *Rs(Disp),*Rd(Disp),F
Move field, indirect with displacement to indirect
with displacement

3 11 1011 10FS SSSR DDDD

MOVE Rs,@DAddress,F
Move field, register to absolute

3 11 0000 01 F1 100R DDDD

MOVE @SAddress,Rd,F
Move field, absolute to register

3 4 0000 01 F1 101R DDDD

MOVE @SAddress,`Rd+,F
Move field, absolute to indirect (postincrement)

3 if 1101 01F0 000R DDDD

MOVE @SAddress,@DAddress,F
Move field, absolute to absolute

5 1T 0000 01 F1 1100 DDDD

General Instructions

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

ABS Rd
Store absolute value

1 1,4 0000 0011 100R DDDD

ADD Rs,Rd
Add registers

1 1,4 0100 000S SSSR DDDD

ADDC Rs,Rd
Add registers with carry

1 1,4 0100 001S SSSR DDDD

ADDI IW,Rd
Add immediate (16 bits)

2 2,8 0000 1011 000R DDDD

ADDI IL,Rd
Add immediate (32 bits)

3 3,12 0000 1011 001R DDDD

ADDK K,Rd
Add constant (5 bits)

1 1,4 0001 OOKK KKKR DDDD

AND Rs,Rd
AND registers

1 1,4 0101 000S SSSR DDDD

ANDI IL,Rd
AND immediate (32 bits)

3 3,12 0000 1011 100R DDDD

ANDN Rs,Rd
AND register with complement

1 1,4 0101 001S SSSR DDDD

ANDNI IL,Rd
AND not immediate (32 bits)

3 3,12 0000 1011 100R DDDD

BTST K,Rd
Test register bit, constant

1 1,4 0001 11 KK KKKR DDDD

BTST Rs,Rd
Test register bit, register

1 2,5 01 00 1 01 S SSSR DDDD

CLR Rd
Clear register

1 1,4 0101 011 D DDDR DDDD

CLRC
Clear carry

1 1,4 0000 0011 0010 0000

CMP Rs,Rd
Compare registers

1 1,4 0000 1011 010R DDDD

4 See Section 13.2, MOVE and MOVB Instructions Timing

12-17

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

General Instructions (Continued)

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

CMPI IW,Rd
Compare immediate (16 bits)

2 2,8 0000 1011 010 R DDDD

CMPI IL,Rd
Compare immediate (32 bits)

3 3,12 0000 1011 011R DDDD

DEC Rd
Decrement register

1 1,4 0001 0100 001 R DDDD

DINT
Disable interrupts

1 3,6 0000 0011 0110 0000

DIVS Rs,Rd
Divide registers signed

1 40,43
39,42

0101 100S SSSR DDDD

DIVU Rs,Rd
Divide registers unsigned

1 37,40 0101 101S SSSR DDDD

EINT
Enable interrupts

1 3,6 0000 1101 0110 0000

EXGF Rd,F
Exchange field size

1 1,4 1101 01 F1 000R DDDD

LMO Rs,Rd
Leftmost one

1 1,4 0110 101S SSSR DDDD

MMFM Rs,List
Move multiple registers from memory

2 t 0000 1001 101R DDDD

MMTM Rs,List
Move multiple registers to memory

2 t 0000 1001 100R DDDD

MODS Rs,Rd
Modulus signed

1 40,43 0110 110S SSSR DDDD

MODU Rs,Rd
Modulus unsigned

1 35,38 0110 111S SSSR DDDD

MOVI IW,Rd
Move immediate (16 bits)

2 2,8 0000 1001 110R DDDD

MOVI IL,Rd
Move immediate (32 bits)

3 3,12 0000 1001 111 R DDDD

MOVK K,Rd
Move constant (5 bits)

1 1,4 0001 10KK KKKR DDDD

MPYS Rs,Rd
Multiply registers (signed)

1 20,23 0101 1105 SSSR DDDD

MPYU Rs,Rd
Multiply registers (unsigned)

1 21,24 0101 111S SSSR DDDD

NEG Rd
Negate register

1 1,4 0000 0011 101R DDDD

NEGB Rd
Negate register with borrow

1 1,4 0000 0011 110R DDDD

NOP
No operation

1 1,4 0000 0011 0000 0000

NOT Rd
Complement register

1 1,4 0000 0011 111R DDDD

t See instruction
$ If F=1, add 1 to cycle time
A Rd even/Rd odd

12-18

TMS34010 Instruction Set - $ummary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

General Instructions (Continued)

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

OR Rs,Rd
OR registers

1 1,4 0101 010S SSSR DDDD

ORI L,Rd
OR immediate (32 bits)

3 3,12 0000 1011 101R DDDD

RL K,Rd
Rotate left, constant

1 1,4 0011 OOKK KKKR DDDD

RL Rs,Rd
Rotate left, register

1 1,4 0110 10SS SSSR DDDD

SETC
Set carry

1 1,4 0000 1101 1110 0000

SETF FS,FE,F
Set field parameters

1

	

1,4 	*

	

2,5 	+
0000 01 F1 01 FS SSSS

SEXT Rd,F
Sign extend to long

1 3,6 0000 01F1 000R DDDD

SLA K,Rd
Shift left arithmetic, constant

1 3,6 0010 OOKK KKKR DDDD

SLA Rs,Rd
Shift left arithmetic, register

1 3,6 0110 000S SSSR DDDD

SLL K,Rd
Shift left logical, constant

1 1,4 0010 01 KK KKKR DDDD

SLL Rs,Rd
Shift left logical, register

1 1,4 0110 001S SSSR DDDD

SRA K,Rd
Shift right arithmetic, constant

1 1,4 0010 10KK KKKR DDDD

SRA Rs,Rd
Shift right arithmetic, register

1 1,4 0110 010S SSSR DDDD

SRL K,Rd
Shift right logical, constant

1 1,4 0010 11KK KKKR DDDD

SRL Rs,Rd
Shift right logical, register

1 1,4 0110 011S SSSR DODD

SUB Rs,Rd
Subtract registers

1 1,4 0100 010S SSSR DDDD

SUBB Rs,Rd
Subtract registers with borrow

1 1,4 0100 011S SSSR DDDD

SUBI IW,Rd
Subtract immediate (16 bits)

2 2,8 0000 1011 111R DDDD

SUBI IL,Rd
Subtract immediate (32 bits)

3 3,12 0000 1101 111R DDDD

SUBK K,Rd
Subtract constant (5 bits)

1 1,4 0001 01KK KKKR DDDD

XOR Rs,Rd
Exclusive OR registers

1 1,4 0101 011S SSSR DDDD

XORI IL,Rd
F • 	ive OR immediate value (32 bits)

3 3,12 0000 1011 110D DDDD

Z_•. 	Rd,F
Zero extend to long

1 1,4 0000 01F1 001R DDDD

t See instruction
If F=1, add 1 to cycle time

A Rd even/Rd odd

1 2-1 9

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Concluded)

Program Control and Context Switching Instructions

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

CALL Rs 1 3+(3),9 _ 0000 1001 001R DDDD
Call subroutine indirect 3+(9),15°

CALLA Address 3 4+(2),15,, 0000 1101 0101 1111
Call subroutine address 4+(8),21°

CALLR Address 2 3+(2),11,, 0000 1101 0011 1111
Call subroutine relative 3+(8),17°

DSJ Rd,Address 2 3,9,„ 0000 1101 100R DDDD
Decrement register and skip jump 2,8 "

DSJEQ Rd,Address 2 3,9, 0000 1101 101R DDDD
Conditionally decrement register and skip
jump

2,8 "

DSJNE Rd,Address 2 3,9 0000 1101 11OR DDDD
Conditionally decrement register and skip
jump

2,8 n

DSJS Rd,Address 1 2,5 ,„ 0011 1 DKK KKKR DDDD
Decrement register and skip jump short 3,6 "

EMU 1 6,9 0000 0001 0000 0000
Initiate emulation

EXGPC Rd 1 2,5 0000 0001 001 R DDDD
Exchange program counter with register

GETPC Rd 1 1,4 0000 0001 010R DDDD
Get program counter into register

GETST Rd 1 1,4 0000 0001 100R DDDD
Get status register into register

JAcc Address 3 3,6 1100 code 1000 0000
Jump absolute conditional 4,7 n
JRcc Address 2 3,6 1100 code 0000 0000
Jump relative conditional 1,4 n
JRcc Address 1 2,5 1100 code xxxx xxxx
Jump relative conditional short 2,5 	11

JUMP Rs 1 2,5 0000 0001 011R DDDD
Jump indirect

POPST 1 8,11,, 0000 0001 1100 0000
Pop status register from stack 10,13°

PUSHST 1 2+(3),8 _ 0000 0001 1110 0000
Push status register onto stack 2+(8),13°

PUTST Rs 1 3,6 0000 0001 101R DDDD
Copy register into status

RETI 1 11,14,, 0000 1001 0100 0000
Return from interrupt 15,184'

RETS [N] 1 7,10 0000 1 001 011N NNNN
Return from subroutine 9,124'

TRAP N 1 16,19,, 0000 1001 000N NNNN
Software interrupt 30,33°

0 SP aligned/SP nonaligned
fl Jump/no jump
4' Stack aligned/stack nonaligned

12-20

Example Instruction 	 EXAMPLE EXAMPLE

Syntax

Execution

This line shows you how to enter an instruction. Here are some sample
syntaxes:

• EXAM PLE <source operand>,<destination operand>

If an operand is enclosed in angle brackets (< and >), substitute ac-
tual source and destination operands (such as a register or constant)
for the text that is shown.

• EXAMPLE B,XY

If an operand is not enclosed in angle brackets, then enter it as
shown. In this example, you would actually enter EXAMPLE B,XY.

• EXAMPLE <source operand>[,< destination operand>]

If an operand is enclosed in square brackets ([]), then the operand
is optional. (Do not enter the brackets.) This example could be en-
tered as EXAMPLE source operand, destination operand or
as EXAMPLE source operand.

This section describes instruction execution. The general form is:

<operand> operator <operand> 	<operand>

Encoding
	

15 14 13 12 11 10 9 8
	

7 	6 	5
	

4 3
	

2
	

0

0 	0 	0 	0 	0 	0 	01 	<source opd> I R I , <destination opd>

Operands

Fields

Description

This section displays the contents of the instruction word.

This section describes any instruction operands and elements of the pre-
ceding opcode format. Any assembler exception handling for operands may
be described here.

This line discusses any fields in the opcode that are not explicit operands.

This section describes the instruction execution and its effect on the rest
of the processor or memory contents. Any constraints on the operands
imposed by the GSP or the assembler are also described here. Special in-
struction applications may follow the description.

12-21

EXAMPLE 	 Example Instruction 	 EXAMPLE

Implied
Operands 	This section describes any operands which are implicit inputs to the in-

struction. These operands are usually B file registers and I/O registers and
are described in detail in Sections 5 and 6. You must load these registers
with appropriate values before instruction execution.

B File Registers

Register Name Format Description

. .
•
. .

I/O Registers

Address Name Description and Elements (Bits)

•
. . .

Special Graphics Topics
Graphics instructions (DRAV, PIXBLTs, etc.) may present special topics of
discussion under the following headings:

• Source Array

• Source Expansion

• Destination Array

• Pixel Processing

• Window Checking

• Transparency

• Corner Adjust

• Plane Mask

• Shift Register Transfers

Interrupts 	Discusses the effects of possible interrupts.

Words 	Specifies the number of memory words required to store the instruction and
its extension words.

Machine
States

Status Bits

Cache resident + (Hidden cycles), Cache disabled

Specifies instruction cycle timing for the instruction. Not all instructions
have hidden cycles. Section 13, Instruction Timings, provides a complete
explanation of instruction timing.

N Describes the instruction's effects on the sign bit.
C Describes the instruction's effects on the carry bit.
Z Describes the instruction's effects on the zero bit.
✓ Describes the instruction's effects on the overflow bit.

Examples 	Each instruction description contains sample code, and shows the effects
of the code on memory and/or registers.

12 - 22

ABS 	 Store Absolute Value 	 ABS

Syntax
	

ABS <Rd>

Execution
	

I(Rd)I -4 Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	1 	1 	1 	0 	0 H I
	

Rd

Description 	ABS stores the absolute value of the contents of the destination register
back into the destination register. This is accomplished by subtracting the
destination register data from 0 and storing it if status bit N indicates that
the result is positive. If the result of the subtraction is negative, then the
original contents of the destination register are retained.

Words 	1

Machine
States 	1,4

Status Bits 	N 1 if the original data is positive, 0 otherwise. This status bit is the in-
verse of its normal function; it is the output of the subtract-from-0 op-
eration.

C Unaffected
Z 	1 if the original data is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise. An overflow occurs if Rd con-

tains >8000 0000 (>8000 0000 is returned).

Examples 	Code Before After

Al NCZV Al
ABS Al >7FFF FFFF 1x00 >7FFF FFFF
ABS Al >FFFF FFFF 0x00 >0000 0001
ABS Al >8000 0000 1x01 >8000 0000
ABS Al >8000 0001 Ox00 >7FFF FFFF
ABS Al >0000 0001 1 x00 >0000 0001
ABS Al >0000 0000 0x10 >0000 0000
ABS Al >FFFA0011 Ox00 >0005 FFEF

12-23

ADD 	 Add Registers ADD

Syntax
	

ADD <Rs>,<Rd>

Execution
	

(Rs) + (Rd) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4 3
	

2
	

1
	

0

1 0 	1 	0 	0 	0 	0 0
	

Rs
	

H I 	Rd

Description 	ADD adds the contents of the source register to the contents of the desti-
nation register; the result is stored in the destination register.

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the ADDC instruction.

The source and destination registers must be in the same register file.

Words

Machine
States

1

1,4

Status B its N 	1 if the result is negative, 0 otherwise.
C 	1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

Al 	 AO NCZV AO

ADD A1,A0 	>FFFF FFFF 	>FFFF FFFF 1100 >FFFF FFFE
ADD Al ,A0 	>FFFF FFFF 	>0000 0001 0110 >0000 0000
ADD Al , AO 	>FFFF FFFF 	>0000 0002 0100 >0000 0001
ADD Al,A0 	>FFFF FFFF 	>8000 0000 0101 >7FFF FFFF
ADD Al ,A0 	>FFFF FFFF 	>8000 0001 1100 >8000 0000
ADD Al ,A0 	>7FFF FFFF 	>8000 0001 0110 >0000 0000
ADD Al ,A0 	>7FFF FFFF 	>8000 0000 1000 >FFFF FFFF
ADD Al ,A0 	>7FFF FFFF 	>0000 0001 1001 >8000 0000
ADD Al ,A0 	>0000 0002 	>0000 0002 0000 >0000 0004

12-24

ADDC 	 Add Register with Carry 	 ADDC

Syntax
	

ADDC <Rs>,<Rd>

Execution
	

(Rs) + (Rd) + (C) —■ Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4 3 2
	

1 0

1 o 	1 	0 	0 	0 	0 	1
	

Rs
	

R
	

Rd

Description 	ADDC adds the contents of the source register and the status carry bit to
the contents of the destination register; the result is stored in the destination
register. Note that the status bits are set on the collective add.

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

Examples

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Code Before After

C Al AO NCZV AO
ADDC Al , AO 1 > FFFF FFFF > FFFF FFFF 1 1 00 > FFFF FFFF
ADDC Al ,A0 1 >FFFFFFFF >0000 0001 0100 >00000001
ADDC Al , AO 1 >FFFFFFFF >00000002 0100 >00000002
ADDC Al ,A0 1 >FFFF FFFF > 8000 0000 1 1 00 >8000 0000
ADDC Al ,A0 1 >FFFF FFFF >8000 0001 1 1 00 >8000 0001
ADDC Al ,A0 1 >FFFF FFFF >8000 0001 01 00 >8000 0001
ADDC Al , AO 1 >FFFF FFFF > 8000 0000 011 0 >0000 0000
ADDC Al ,A0 1 > 7FFF FFFF > 0000 0001 1 001 >8000 0001
ADDC Al , AO 1 >0000 0002 >0000 0002 0000 >0000 0005
ADDC Al , AO 0 > FFFF FFFF > FFFF FFFF 11 00 > FFFF FFFE
ADDC Al , AO 0 > FFFF FFFF >0000 0001 01 1 0 >0000 0000
ADDC Al ,A0 0 > FFFF FFFF >0000 0002 01 00 >0000 0001
ADDC A1,A0 0 > FFFF FFFF >8000 0000 01 01 >7FFF FFFF
ADDC Al ,A0 0 >FFFF FFFF >8000 0001 1 1 00 >8000 0000
ADDC A1,A0 0 >7FFF FFFF >8000 0001 0110 >00000000
ADDC Al ,A0 0 >7FFF FFFF >8000 0000 1 000 > FFFF FFFF
ADDC A1,A0 0 >7FFF FFFF >0000 0001 1 001 >8000 0000
ADDC Al , AO 0 >0000 0002 >0000 0002 0 00 0 >0000 0004

12-25

ADDI

Syntax

Execution

Encoding

Add Immediate - 16 Bits 	 ADDI

ADDI <IW>,<Rd>[,W]

1W + (Rd) - ■ Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	0 	1 	1 	0 	0 	0 R
	

Rd

IW

Operands 	IW is a 16-bit, sign-extended immediate value.

Description 	ADDI adds the sign-extended, 16-bit immediate value to the contents of
the destination register; the result is stored in the destination register.

The assembler will use the short (16-bit) add if the immediate value has
been previously defined and is in the range -32,768 < IW < 32,767. You
can force the assembler to use the short form by following the instruction
with W:

ADDI <IW>,<Rd>,W

If the IW value is outside the legal range, the assembler will discard all but
the 16 LSBs and issue an appropriate warning message.

Multiple-precision arithmetic can be accomplished by using ADDI in con-
junction with the ADDC instruction.

Words

Machine
States

Status Bits

2

2,8

N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	 Before 	After

AO 	 NCZ V AO
ADDI 1,A0 	 >FFFF FFFF 	0110 >0000 0000
ADDI 2 ,A0 	 >FFFF FFFF 	0100 >0000 0001
ADDI 1,A0 	 >7FFF FFFF 	1001 >8000 0000
ADDI 2,A0 	 >0000 0002 	0000 >0000 0004
ADDI 32767,A0 	 >0000 0002 	0000 >0000 8001
ADDI >FFFF0010 ,A0 ,W 	>FFFF FFFO 	0110 >0000 0000

12-26

Syntax

Execution

Encoding

ADDI <IL>,<Rd>[,L]

IL + (Rd) 	Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	0 	0 	0 	1 	0 	1 	1 	0 	0 	1
	

R
	

Rd

IL (LSW)

IL (MSW)

ADD!
	

Add Immediate - 32 Bits 	 ADDI

Operands 	IL is a 32-bit immediate value.

Description 	ADDI adds the 32-bit, signed immediate data to the contents of the desti-
nation register; the result is stored in the destination register.

The assembler will use the long (32-bit) ADDI if it cannot use the short
form. You can force the assembler to use the long form by following the
instruction with L:

ADDI <IL> , <Rd> ,L

Words 	3

Machine
States 	3,12

Status Bits 	N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	 Before 	After

AO 	 NCZV AO

ADDI >FFFFFFFF ,A0 	>FFFF FFFF 	1100 >FFFF FFFE
ADDI >80000000 , AO 	>FFFF FFFF 	0101 >7FFF FFFF
ADDI >80000000 , AO 	>7FFFFFFF 	1000 >FFFF FFFF
ADDI 32768 , AO 	 >7FFFFFFF 	1001 >8000 7FFF
ADDI 2 ,A0 ,L 	 >FFFF FFFF 	0100 >0000 0001

12-27

ADDK 	 Add Constant (5 Bits) 	 ADDK

Syntax
	

ADDK <K>,<Rd>

Execution
	

K + (Rd) -■ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

Words

Machine
States

Status Bits

Examples

0 	0 	0 	1 	0 	0
	

K
	

Rd

K is a constant from 1 to 32.

ADDK adds a 5-bit constant to the contents of the destination register; the
result is stored in the destination register. The constant is treated as an
unsigned number in the range 1-32, where K = 32 is converted to 0 in the
opcode. The assembler will issue an error if you try to add 0 to a register.

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the ADDC instruction.

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
✓ 1 if there is an overflow, 0 otherwise.

Code 	 Before 	After

AO 	 NCZ V AO
ADDK 1 , AO 	>FFFF FFFF 	0110 >0000 0000
ADDK 2 , AO 	>FFFF FFFF 	0100 >00000001
ADDK 1 , AO 	>7FFF FFFF 	1001 >8000 0000
ADDK 1, AO 	>8000 0000 	1000 >8000 0001
ADDK 32 , AO 	>8000 0000 	1000 >8000 0020
ADDK 32 , AO 	>0000 0002 	0000 >0000 0022

12-28

ADDXY 	 Add Registers in XY Mode 	 ADDXY

Syntax 	ADDXY <Rs>,<Rd>

Execution 	(RsX) + (RdX) 	RdX
(RsY) + (RdY) - ■ RdY

Encoding 	15 14 13 12 11 10 9 8 7
	

6
	

5 4 3
	

2
	

1
	

0

1
	

1 	1 	0 	0 	0 	0
	

Rs
	

R
	

Rd

Description 	ADDXY adds the signed source X value to the signed destination X value,
and adds the signed source Y value to the signed destination Y value. The
result is stored in the destination register. The source and destination reg-
isters are treated as if they contained separate X and Y values. When they
are added, the carry out from the lower (X) half of the register does not
propagate into the upper (Y) half.

If you only want to add the X halves together, then the Y value of one of
the operands must be 0 (the method for adding the Y halves is similar).

This instruction can be used for manipulating XY addresses in the register
file and is particularly useful for incremental figure drawing.

The source and destination registers must be in the same register file.

Words

Machine
States

1

1,4

Status Bits N 	1 if resulting X field is all Os, 0 otherwise.
C 	The sign bit of the Y half of the result.
Z 	1 if Y field is all Os, 0 otherwise.
V 	The sign bit of the X half of the result.

Examples Code 	 Before After

Al 	 AO AO NCZV

ADDXY Al , AO 	>0000 0000 	>0000 0000 >0000 0000 1010
ADDXY Al , AO 	>0000 0000 	>0000 0001 >0000 0001 0010
ADDXY Al , AO 	>0000 0000 	>0001 0000 >0001 0000 1000
ADDXY Al , AO 	>0000 0000 	>0001 0001 >0001 0001 0000
ADDXY A1,AO 	>0000 FFFF 	>0000 0001 >0000 0000 1010
ADDXY Al , AO 	>0000 FFFF 	>0001 0001 >0001 0000 1000
ADDXY Al , AO 	>0000 FFFF 	>0000 0002 >0000 0001 0010
ADDXY Al ,A0 	>0000 FFFF 	>0001 0002 >0001 0001 0000
ADDXY Al , AO 	>FFFF 0000 	>0001 0000 >0000 0000 1010
ADDXY Al , AO 	>FFFF 0000 	>0001 0001 >0000 0001 0010
ADDXY Al ,A0 	>FFFF 0000 	>0002 0000 >0001 0000 1000
ADDXY Al , AO 	>FFFF 0000 	>0002 0001 >0001 0001 0000
ADDXY Al ,A0 	>FFFF FFFF 	>0001 0001 >0000 0000 1010
ADDXY Al , AO 	>FFFF FFFF 	>0001 0002 >0000 0001 0010
ADDXY Al , AO 	>FFFF FFFF 	>0002 0001 >0001 0000 1000
ADDXY Al,A0 	>FFFF FFFF 	>0002 0002 >0001 0001 0000

12-29

Syntax
	

AND <Rs>,<Rd>

Execution
	

(Rs) AND (Rd) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	1 	0 	0 	0
	

Rs
	

R
	

Rd

AND bitwise-ANDs the contents of the source register with the contents
of the destination register; the result is stored in the destination register.
The source and destination registers must be in the same register file.

1

1,4

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise.
V Unaffected

Description

Words

Machine
States

Status Bits

AND AND Registers AND

Examples Code
	

Before 	 After

Al 	 AO 	 NCZ V
AND Al,AO 	>FFFF FFFF 	>FFFF FFFF 	xx0x
AND A1,A0 	>FFFF FFFF >00000000 	xx1x
AND Al , AO 	>0000 0000 >0000 0000 	xxlx
AND Al , AO 	>AAAAAAAA >55555555 	xxlx
AND Al , AO 	>AAAA AAAA >AAAAAAAA 	xx0x
AND Al , AO 	>5555 5555 >5555 5555 	xx0x
AND Al , AO 	>5555 5555 >AAAAAAAA 	xx 1 x

AO
>FFFF FFFF
>0000 0000
>0000 0000
>0000 0000
> AAAAAAAA
>5555 5555
>0000 0000

12 - 30

H I Rd 0 	0 	0 	0 	1 	0 	1 	1 	1 	0 	0

9 8 7 6 5 4 3 2 1 0

ANDI <IL>,<Rd>

IL AND (Rd) —> Rd

15 14 13 12 11 10

ANDI

Syntax

Execution

Encoding

AND Immediate (32 Bits) 	 ANDI

—IL (LSW)

—IL (MSW)

Operands

Description

Words

Machine
States

Status Bits

Examples

>FFFFFFFF,A0
>FFFFFFFF,A0
>00000000,A0
>AAAAAAAA,A0
>AAAAAAAA,A0
>55555555,A0
>55555555,A0

Before 	After

AO 	 NCZ V
>FFFF FFFF 	xx0x
>0000 0000 	xx1x
>0000 0000 	xx1x
>5555 5555 	xxlx
>AAAA AAAA 	xx0x
>5555 5555 	xx0x
>AAAA AAAA 	xx1x

AO
>FFFF FFFF
>0000 0000
>0000 0000
>0000 0000
> AAAA AAAA
>5555 5555
>0000 0000

IL is a 32-bit immediate value.

AN DI bitwise-AN Ds the value of the 32-bit immediate value, IL, with the
contents of the destination register; the result is stored in the destination
register.

This is an alternate mnemonic for ANDNI IL, Rd. The assembler stores the
l's complement of IL in the two extension words.

3

3,12

N Unaffected
C Unaffected
Z / if the result is 0, 0 otherwise.
V Unaffected

Code

ANDI
ANDI
ANDI
ANDI
ANDI
ANDI
ANDI

12-31

ANDN 	AND Register with Complement 	ANDN

Syntax
	

ANDN <Rs>,<Rd>

Execution
	

NOT(Rs) AND (Rd) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	1 	0 	0 	1
	

As
	

I
	

Rd

Description 	ANDN biwise-ANDs the l's complement of the contents of the source re-
gister with the contents of the destination register; the result is stored in the
destination register.

The source and destination registers must be in the same register file. Note
that ANDN Rn ,Rn has the same effect as CLR Rn.

Words

Machine
States

Status Bits

1

1,4

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

Al 	 AO 	 NCZ V AO
ANDN Al , AO 	>FFFF FFFF 	>FFFF FFFF 	x x 1 x > 0000 0000
ANON Al , AO 	>FFFF FFFF >00000000 	x x 1 x >00000000
ANDN Al , AO 	>0000 0000 >0000 0000 	x x1 x >0000 0000
ANON Al , AO 	>AAAAAAAA >5555 5555 	xx0x >5555 5555
ANDN Al , AO 	>AAAA AAAA >AAAA AAAA 	x x 1 x >0000 0000
ANDN Al AO 	>5555 5555 >5555 5555 	xxlx >0000 0000
ANDN Al AO 	>5555 5555 >AAAAAAAA 	xx0x > AAAAAAAA

12 - 32

NOT IL AND (Rd)

15 	14 	13 	12

-■

11

Rd

10 9 8 7 6

1 0 1 1 1 0

5 4 3 2 1 0

0 R
	

Rd

IL (LSW)

IL (MSW)

ANDNI 	AND Not Immediate (32 Bits) 	ANDNI

Syntax 	ANDNI <IL>,<Rd>

Execution

Encoding

Operands 	L is a 32-bit immediate value.

Description 	ANDNI bitwise-ANDs the 1's complement of the 32-bit immediate data
with the contents of the destination register; the result is stored in the des-
tination register. AN DI also uses this opcode.

Words 	3

Machine
States 	3,12

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	After

AO 	 NCZV AO
ANDNI >FEFFFFFF ,A0 	>FFFF FFFF 	x x 1 x >0000 0000
ANDNI >FFFFFFFF , AO 	>0000 0000 	x x1 x >0000 0000
ANDNI >00000000 , AO 	>0000 0000 	x x 1 x >0000 0000
ANDNI >AAAAAAAA , AO >5555 5555 	xx0x >5555 5555
ANDN I >AAAAAAAA , AO >AAAAAAAA 	xxlx >0000 0000
ANDNI >55555555 , AO 	>5555 5555 	x x 1 x >0000 0000
ANDNI >55555555 , AO >AAAAAAAA 	xx0x >AAAA AAAA

12-33

BTST

Syntax

Execution

Encoding

Operands

	

Test Register Bit - Constant 	 BTST

BTST <K>,<Rd>

Set status on value of bit K in Rd

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	1 	1 	1
	

—K
	

R
	

Rd

K is a constant in the range of 0 to 31.

31

MSB

	1•1 	

0

	I Rd

LSB

Description 	BTST tests the specified destination register bit, K, and sets status bit Z
accordingly. The K value must be an absolute expression that evaluates to
a value in the range 0 to 31; if the value specified is greater than 31, the
assembler issues a warning and truncates the K operand value to the five
LSBs. The specified bit number is l's complemented by the assembler be-
fore it is inserted into the K field of the opcode.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the bit tested is 0, 0 if the bit tested is 1.
V Unaffected

Examples 	Code 	 Before 	After

AO 	 NCZV
BTST 0,AO 	>5555 5555 	xx0x
BTST 15 , AO 	>55555555 	xx 1 x
BTST 31 , AO 	>5555 5555 	xx1x
BTST 0 , AO 	>AAAAAAAA 	xxix
BTST 15,A0 	>AAAAAAAA 	xx0x
BTST 31,A0 	>AAAAAAAA 	xx0x
BTST 0 T AO 	>FFFFFFFF 	xx0x
BTST 15,A0 	>FFFFFFFF 	xx0x
BTST 31,A0 	>FFFFFFFF 	xx0x
BTST 0 , AO 	>0000 0000 	xx1x
BTST 15 , AO 	>0000 0000 	xxl x
BTST 31 , AO 	>0000 0000 	xx1x

12-34

I Rd

LSB M6B

CEO

BTST

Syntax

Execution

Encoding

Operands

	

Test Register Bit - Register 	 BTST

BTST <Rs>,<Rd>

Set status on value of bit (Rs) in Rd

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	0 	1 	0 	1
	

Rs
	

R
	

Rd

Rs contains the number of the bit in Rd to be tested.

31
	

0
Rs

Description 	BTST tests the specified destination register bit and sets status bit Z ac-
cordingly. The five LSBs of the source register specify the bit to be tested
(the 27 MSBs are ignored).

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

Examples

1

2,5

N Unaffected
C Unaffected
Z 1 if the bit tested is 0, 0 if the bit tested is 1.
V Unaffected

Code Before

AO

After

Al NCZV
BTST Al , AO >0000 0000 >5555 5555 xx0x
BTST Al ,A0 >0000 000F >5555 5555 xx1x
BTST A1,A0 >0000 001F >5555 5555 xx1x
BTST Al , AO >0000 0000 >AAAAAAAA xx1x
BTST Al , AO >0000000F >AAAAAAAA xx0x
BTST Al , AO >0000001F >AAAAAAAA xx0x
BTST A1,A0 >FFFF FF8F >FFFF 7FFF xx0x
BTST A1,A0 >00000000 >FFILT FFFF xx0x
BTST A1,A0 >0000000F >FFFF FFFF xx0x
BTST Al,A0 >0000001F >FFFF FFFF xx0x
BTST Al , AO >0000 0000 >0000 0000 xxl x
BTST Al ,A0 >0000 000F >0000 0000 xx1x
BTST Al ,A0 >0000 001F >0000 0000 xx1x

12-35

CALL
	

Call Subroutine - Indirect 	 CALL

Syntax 	CALL <Rs>

Execution 	(PC') - ■ TOS
(Rs) 	PC
(SP) - 32 -■ SP

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5 4 3
	

2
	

1
	

0

0 	0 	0 	0 	1 	0 	0 	1 	0 	0 	1
	

R
	

Rs

Description 	CALL pushes the address of the next instruction (PC') onto the stack, then
jumps to a subroutine whose address is contained in the source register.
This instruction can be used for indexed subroutine calls. Note that when
Rs is the SP, Rs is decremented after being written to the PC (the PC
contains the original value of Rs).

The TMS34010 always sets the four LSBs of the program counter to 0, so
instructions are always word aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. PC' is pushed onto the stack and the SP is predecremented by 32
before the return address is loaded onto the stack. Stack pointer alignment
affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

Words 	1

Machine
States 	3+(3),9 (SP aligned)

3+(9),15 (SP nonaligned)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Example 	CALL AO

Before 	 After
AO 	PC 	 SP 	 PC 	 SP

>0123 4560 >0444 2210 >0F00 0020 >0123 4560 >0F00 0000

Memory will contain the following values after instruction execution:

Address 	Data
>0F00 0010 	>2220
>0F00 0020 	>0444

12-36

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1

Address (LSW)

Address (MSW)

CALLA 	 Call Subroutine - Absolute 	 CALLA

Syntax 	CALLA <Address>

Execution 	(PC') 	TOS
Address PC

Encoding

Operands 	Address is a 32-bit absolute address.

Description 	CALLA pushes the address of the next instruction (PC') onto the stack,
then jumps to the address contained in the two extension words. This in-
struction is used for long (greater than +32K words) or externally refer-
enced calls.

The lower four bits of the program counter are always set to 0, so in-
structions are always word-aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. PC' is pushed onto the stack and the SP is predecremented by 32
before the return address is loaded onto the stack. Stack pointer alignment
affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

Words

Machine
States

Status Bits

3

4+(2),15 (SP aligned)
4+(8),21 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Example 	CALLA >01234560

Before 	 After

PC 	 SP 	 PC 	 SP
>0444 2210 	>0F00 0020 	>0123 4560 	>0F00 0000

Memory will contain the following values after instruction execution:

Address 	Data
>0F00 0010 	>2240
>0F00 0020 	>0444

12-37

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1

Displacement

CALLR
	

Cali Subroutine - Relative 	 CALLR

Words

Machine
States

Status Bits

Examples

CALLR <Address>

(PC') -* TOS
PC' + (Displacement x16) - ■ PC

Address is a 32-bit address within +32K words (-32,768 to 32,767) of
PC'

CALLR pushes the address of the next instruction (PC') onto the stack,
then jumps to the subroutine at the address specified by the sum of the next
instruction address and the signed word displacement. This instruction is
used for calls within a specified module or section.

The displacement is computed by the assembler as (Address - PC')/16.
The address must be defined within the section and within -32,768 to
32,767 words of the instruction following CALLR. The assembler will not
accept an address value that is externally defined or defined within a dif-
ferent section than PC'.

The lower four bits of the program counter are always set to 0, so in-
structions are always word aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. The PC is pushed on to the stack and the SP is predecremented
by 32 before the return address is loaded onto the stack. Stack pointer
alignment affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

2

3+(2),11 (SP aligned)
3+(8),17 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

PC SP PC SP
CALLR >0447FFF0 > 0440 0000 > OF00 0020 >0447 FFFO > OF00 0000
CALLR >04480000 > 0440 0000 > OF00 0020 > 0448 0000 > OF00 0000

Syntax

Execution

Encoding

Operands

Description

Memory will contain the following values after instruction execution:

Address
>0F00 0010
>0F00 0020

Data
>0000
>0440

12-38

Syntax

Execution

Encoding

CLR <Rd>

(Rd) XOR (Rd) - ■ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	1 	0 	1 	0 	1 	1 1
	

Rd
	

R 1
	

Rd

CLR 	 Clear Register CLR

Description 	CLR clears the destination register by XORing the contents of the register
with itself. This is an alternate mnemonic for XOR Rd,Rd.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z 1
V Unaffected

Examples 	Code 	Before 	 After

AO 	 AO 	 NCZV
CLR AO 	>FFFF FFFF 	>0000 0000 xx1x
CLR AO 	>0000 0001 	>0000 0000 xx1x
CLR AO 	>8000 0000 	>00000000 xx1x
CLR AO 	>AAAAAAAA 	>0000 0000 xx1x

1

12-39

1

Syntax

Execution

Encoding

CLRC

0 	C

15 14

I o 	0

CLRC 	 Clear Carry CLRC

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1 0 0 0 0 0

Description 	CLRC sets the status carry bit (C) to 0. The rest of the status register is
unaffected. The SETC instruction is a counterpart to this instruction.

This instruction is useful for returning a true/false value (in the carry bit)
from a subroutine without using a general-purpose register.

Words

Machine
States

Status Bits

Examples

1

1,4

N Unaffected
C 0
Z Unaffected
V Unaffected

Code Before After

ST NCZV ST NCZV
CLRC > F000 0000 1111 > B000 0000 1011
CLRC >4000 0010 0100 >0000 0010 0000
CLRC > B000 001F 1011 > B000 001F 1011

12-40

CMP 	 Compare Registers CMP

Syntax

Execution

Encoding

CMP <Rs>,<Rd>

Set status bits on the result of (Rd) - (Rs)

15 14 13 12 11 10 9 	8 	7 	6 	5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	0 	1 	0 	0
	

Rs
	

R
	

Rd

Description 	CMP subtracts the contents of the source register from the contents of the
destination register and sets the condition codes accordingly. Both the
source and destination registers remain unaffected. This instruction is often
used in conjunction with the JAcc or JRcc conditional jump instructions.

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if a there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples
	

Code
	

Before 	 After Jumps Taken

Al 	 AO 	NCZV
CMP A1,A0 > 0000 0001 > 0000 0001 0 01 0 U C, N N, N C,Z, NV, LS,G E, L E, HS
CMP A1,A0 > 0000 0001 > 0000 0002 0 0 0 0 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
CMP A1,A0 > 0000 0001 > FFFF FFFF 1 000 U C, N, N C, NZ, NV, P, HI, LT, LE, HS
CMP A1,A0 > 0000 0001 > 8000 0000 0 0 01 U C, NN, N C, NZ, V, H I, LT, LE, HS
CMP A1,A0 > FFFF FFFF > 7FFF FFFF 1101 U C, N, C, NZ,V, LS, G E,GT, LO
CMP A1,A0 > FFFF FFFF > 8000 0000 11 00 U C, N, C, NZ, NV, LS, LT, LE, LO
CMP Al,A0 > 8000 0000 > 7FFF FFFF 1 1 01 U C, N, C, NZ,V, LS,G E,GT, LO

12-41

0 	0 	0 	0 	1 	0 	1 	1 	0 	1 	0 R
	

Rd

— 1W

CM PI

Syntax

Execution

Encoding

	

Compare Immediate - 16 Bits 	 CMPI

CM PI <IW>,<Rd> [,W]

Set status bits on the result of (Rd) - IW

15 14 13 12 11 10 9 	8 	7 	6
	

5
	

4
	

3
	

2
	

1
	

0

Operands 	IW is a 16-bit signed immediate value.

Description 	CMPI subtracts the sign-extended, 16-bit immediate data from the contents
of the destination register and sets the condition codes accordingly. The
destination register remains unaffected.

The assembler places the 1's complement of the specified value into the
extension word (—IW).

The assembler will use the short form if the immediate value has been pre-
viously defined and is in the range -32,768 < IW < 32,767. You can force
the assembler to use the short form by following the register specification
with W:

CMPI <IW> , <Rd> , W

The assembler will truncate the upper bits and issue an appropriate warning
message if the value is greater than 16 bits.

This instruction is often used in conjunction with the JAcc or JRcc condi-
tional jump instructions.

Words

Machine
States

Status Bits

2

2,8

N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	 Before 	After Jumps Taken

AO 	 NCZ V
CMPI 1, A0 >0000 0002 	0000 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
CMPI 1 , A0 >0000 0001 	0010 UC,NN,NC,Z,NV,LS,GE,LE,HS
CMPI 1 , A0 >0000 0000 	1100 U C, N, C, NZ, NV, LS, LT, LE, LO
CMPI 1,A0 >FFFF FFFF 	1000 UC,N,NC,NZ,NV,P,HI,LT,LE,HS
CMPI 1 , AO >8000 0000 	0001 UC,NN,NC,NZ,V,HI,LT,LE,HS
CMPI -2 ,A0 >0000 0000 	0100 UC,N N,C,NZ,NV,P, LS,GE,GT, LO
CMPI -2 , AO >FFFF FFFF 	0000 UC,NN,NC,NZ,NV,P,LI,GE,GT,HS
CMPI -2 , AO >FFFF FFFE 	0010 UC,NN,NC,Z,NV,LS,GE,LE,HS
CMPI -2 , AO >FFFF FFFD 1100 UC,N,C,NZ,NV,LS,LT,LE,L0
CMPI -1 , AO >7FFF FFFF 	1101 UC,N,C,NZ,V,LS,GE,GT,L0

12-42

Operands

Description

	

Compare Immediate - 32 Bits 	 CMPI

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	0 	1 	1 	0 	1 	1 I R
	Rd

—IL (LSW)

—IL (MSW)

IL is a 32-bit immediate value.

CMPI subtracts the signed, 32-bit immediate data from the contents of the
destination register and sets the condition codes accordingly. The desti-
nation register remains unaffected.

The assembler places the 'I's complement of the specified value into the
extension words (—IL).

The assembler will use this opcode if it cannot use the short form. You can
force the assembler to use the long form by following the register specifi-
cation with L:

CMPI <IL>, <Rd> ,L

This instruction is often used in conjunction with the JAcc or JRcc condi-
tional jump instructions.

if the result is negative, 0 otherwise.
if there is a borrow, 0 otherwise.
if the result is 0, 0 otherwise.
if there is an overflow, 0 otherwise.

Before After Jumps Taken

AO NCZ V
>8000,A0 	>0000 8001 000 0 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
>8000 , A0 	>00008000 001 0 UC,NN,NC,Z,NV,LS,GE,LE,HS
>8000 , AO 	>0000 7FFF 110 0 UC,N,C,NZ,NV,LS,LT,LE,L0
>8000,A0 	>FFFF FFFF 1 00 0 UC,N,NC,NZ,NV,P,HI,LT,LE,HS
>8000,A0 	>8000 7FFF 000 1 UC,NN,NC,NZ,V,HI,LT,LE,Hs

>FFFF7FFF , AO > 0000 0000 010 0 UC,NN,C,NZ,NV,P,LS,GE,GT,L0
>FFFF7FFE , AO > FFFF 7FFF 000 0 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
>FFFF7FFE , AO > FFFF 7FFE 001 0 UC,NN,NC,Z,NV,LS,GE,LE,HS
>FFFF7FFE , AO > FFFF 7FFD 110 0 UC,N,C,NZ,NV,LS,LT,LE,L0
>FFFF7FFF , AO > 7FFF 7FFF 11 0 1 UC,N,C,NZ,V,LS,GE,GT,L0

Words

Machine
States

Status Bits

Examples

CMPI

Syntax 	CMPI <IL>,<Rd>[,L.]

Execution 	Set status bits on the result of (Rd) - IL

Encoding

3

3,12

N
C
Z

/

Code

CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI

12-43

1 	1 	1 	0 	0 	1 	0
	

Rs
	

R
	

Rd

CMPXY compares the source register to the destination register in XY mode
and sets the status bits as if a subtraction had been performed. The regis-
ters themselves remain unaffected. The source and destination registers are
treated as signed XY registers. Note that no overflow detection is provided.

The source and destination registers must be in the same register file.

1

1,4

N 1 if source X field = destination X field, 0 otherwise.
C Sign bit of Y half of the result.
Z 	1 if source Y field = destination Y field, 0 otherwise.
V Sign bit of X half of the result.

CMPXY 	Compare X and Y Halves of Registers 	CMPXY

Syntax
	

CMPXY <Rs>,<Rd>

Execution
	

Set status bits on the results of:

(RdX) - (RsX)

(RdY) - (RsY)

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5 4
	

3
	

2
	

1
	

0

Description

Words

Machine
States

Status B its

Examples Code

CMPXY A1,A0
CMPXY A1,A0
CMPXY A1,A0
CMPXY Al,A0
CMPXY Al,A0
CMPXY A1,A0
CMPXY Al,A0
CMPXY Al,A0
CMPXY Al,A0

Before

Al
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009

AO
>0001 0001
>0009 0001
>0001 0009
>0009 0009
>0000 0010
>0009 0010
>0010 0000
>0010 0009
>0010 0010

After Jumps Taken

NCZ V
0101 NN,C,NZ,V,LS,LT
0011 NN,NC,Z,V,LS,LT
1100 N,C,NZ,NV,LS, LT
1010 N,NC,Z,NV,LS,LT
0100 NN,C, NZ, NV,LS,G E
0010 NN, N C,Z, NV, LS, G E
0001 N N, NC, NZ,V,H I, LT
1000 N, NC, NZ, NV, HI, LT
0000 N N, NC, NZ, NV, H I,G E

12 - 44

Window

0000

0100 	0110

0010

1000 	1010

31
	

88
	

54
	

0

1000....000 ! CODE 1000001 Rd

	► +X

0101

0001

1001

CPW 	 Compare Point to Window 	 CPW

Syntax
	

CPW <Rs> ,<Rd>

Execution
	

Point Code 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	11 	001 Rs I R I Rd

Description 	CPW compares a point represented by an XY value in the source register to
the window limits in the WSTART and WEND registers. The contents of
the source register are treated as an XY address that consists of 16-bit
signed X and Y values. WSTART and WEND are also treated as signed
XY-format registers. WSTART and WEND should contain positive values;
negative values produce unpredictable results. The location of the point
with respect to the window is encoded as follows and loaded into the
destination register.

Codes:

Machine
States

Note that the five LSBs of the destination register are set to 0 so that Rd
can be used as an index into a table of 32-bit addresses.

This instruction can also be used to trivially reject lines that do not intersect
with a window. The CPW codes for the two points defining the line are
AN Ded together. If the result is nonzero, then the line must lie completely
outside the window (and does not intersect it). A 0 result indicates that the
line may intersect the window, and a more rigorous test must be applied.

The source and destination registers must be in the same register file.

B File Registers

Register Name Format Description

B5 WSTART XY Window start. 	Defines 	inclusive starting
corner of window (lesser value corner).

B6 WEND XY Window 	end. 	Defines 	inclusive 	ending
corner of window (greater value corner).

1

1,4

Implied
Operands

Words

12-45

CPW Compare Point to Window 	 CPW

Status Bits

Examples

N Unaffected
C Unaffected
Z Unaffected
V 1 if point lies outside window, 0 otherwise.

You must select appropriate implied operand values before executing the
instruction. In this example, the implied operands are set up as follows,
specifying a block of 36 pixels.

WSTART = 5,5
WEND 	= A,A

CPW Al,A0

Before

NCZV

After

NCZ V Al AO
>0004 0004 xxx0 >0000 00A0 xxxl
>0004 0005 xxx0 >0000 0080 xxxl
>0004 000A xxx0 >0000 0080 xxxl
>0004 000B xxx1 >0000 0000 xxxl
>0005 0004 xxxl >0000 0020 xxxl
>0005 0005 xxx0 >0000 0000 xxx0
>0005 000A xxx0 >0000 0000 xxx0
>0005 000B xxx0 >0000 0040 xxxl
>000A 0004 xxx0 >0000 0020 xxxl
>000A 0005 xxxl >0000 0000 xxx0
>000A 000A xxx1 >0000 0000 xxx0
>000A 0008 xxx0 >0000 0040 xxxl
>000B 0004 xxx0 >0000 0120 xxxl
>000B 0005 xxx0 >0000 0100 xxxl
>000B 000A xxx0 >0000 0100 xxxl
>000B 0006 xxx0 >0000 0140 xxxl

12-46

CVXYL 	Convert XY Address to Linear Address 	CVXYL

Syntax
	CVXYL <Rs>,<Rd>

Execution
	

(Rs XY) .- Rd (Linear)

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5 4 3
	

2
	

1 0

Implied
Operands

Words

Machine
States

Status Bits

1 1 	1 	1 	0 	1 	0 	0 1
	

Rs
	

1 R
	

Rd
	

1
Rs The source register contents are treated as an XY address that contains

signed 16-bit X and Y values. The X value must be positive.

CVXYL converts an XY address to a linear address. The source register
contains an XY address. The X value occupies the 16 LSBs of the register
and the Y value occupies the 16 MSBs. This is converted into a 32-bit li-
near address which is stored in the destination register. The following
conversion formula is used:

Address = (Y x Display Pitch) OR (X x Pixel Size) + Offset

Since the TMS34010 restricts the screen pitch and pixel size to powers of
two (for XY addressing), the multiply operations in this conversion are ac-
tually shifts. The offset value is in the OFFSET register. The CONVDP value
is used to determine the shift amount for the Y value, while the PSIZE reg-
ister determines the X shift amount.

The source and destination registers must be in the same register file.

B File Registers

Register Name Format Description

B3 DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (location 0,0)

I/O Registers

Address Name Description and Elements (Bits)

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

1

3,6

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Operands

Description

12-47

CVXYL Convert XY Address to Linear Address CVXYL

Examples

Code Before 	After

PSIZE CONVDP 	Al AO OFFSET
CVXYL A0,A1 >0040 0030 	>0000 0000 >0010 >0014 >0002 0300
CVXYL A0,A1 >0040 0030 	>0000 0000 >0008 >0014 >0002 0180
CVXYL AO , Al >0040 0030 	>0000 0000 >0004 >0014 >0002 0000
CVXYL AO , Al >0040 0030 	>0000 8000 >0004 >0014 >0002 8000
CVXYL A0,A1 >0040 0030 	>0F00 0000 >0004 >0014 >0F02 0000
CVXYL AO , Al >0040 0030 	>0000 0000 >0002 >0014 >0002 0060
CVXYL AO , Al >0040 0030 	>0000 0000 >0001 >0014 >0002 0030
CVXYL AO , Al >0040 0030 	>0000 0000 >0001 >0013 >0004 0030
CVXYL AO , Al >0040 0030 	>0000 0000 >0001 >0015 >0001 0000

CONVDP = >0013 corresponds to DPTCH = >0000 1000
CONVDP = >0014 corresponds to DPTCH = >0000 0800
CONVDP = >0015 corresponds to DPTCH = >0000 0400

12-48

DEC 	 Decrement Register DEC

Syntax
	

DEC <Rd>

Execution
	

(Rd) - 1 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2

1 0 	0 	0 	1 	0 	1 	0 	0 	0 	0 	1 I R I 	Rd

Description 	DEC subtracts 1 from the contents of the destination register; the result is
stored in the destination register. This instruction is an alternate mnemonic
for SUBK 1 ,Rd.

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the SUBB instruction.

Words

Machine
States

Status Bits

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	Before
	

After

Al 	 Al 	 NCZV
DEC Al 	>0000 0010 	>0000 000F 	0000
DEC Al 	>0000 0001 	>0000 0000 	0010
DEC Al 	>0000 0000 	>FFFF FFFF 	1100
DEC Al 	>FFFF FFFF 	>FFFF FFFE 	1000
DEC Al 	>8000 0000 	>7FFF FFFF 	0001

12-49

DINT 	 Disable Interrupts DINT

Syntax

Execution

Encoding

DINT

0 -0 IE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0

Description 	DINT disables interrupts by setting the global interrupt enable bit (IE, status
bit 21) to 0. All interrupts except reset and NMI are disabled; the interrupt
enable mask in the INTENB register is ignored. The remainder of the status
register is unaffected.

The El NT instruction enables interrupts.

Words

Machine
States

Status Bits

1

3,6

N Unaffected
C Unaffected
Z Unaffected
V Unaffected
IE 0

Examples 	Code 	Before 	 After

ST 	 ST
DINT 	>0000 0010 	>0000 0010
DINT 	>0020 0010 	>0000 0010

12 - 50

DIVS Divide Registers - Signed 	 DIVS

Syntax 	DIVS <Rs>,<Rd>

Execution 	Rd Even: (Rd):(Rd+1)/(Rs) 	Rd, remainder -4 Rd+1
Rd Odd: (Rd)/(Rs) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	1 	1 	0 	0
	

Rs
	

R
	

Rd

Operands 	Rs is a 32-bit signed divisor.

Rd is a 32-bit signed dividend, or the most significant half of a 64-bit
signed dividend.

Description 	There are two cases:

Rd Even DIVS performs a signed divide of the 64-bit operand contained
in the two consecutive registers, starting at the specified desti-
nation register, by the 32-bit contents of the source register.
The specified even-numbered destination register, Rd, contains
the 32 MSBs of the dividend. The next consecutive register
(which is odd-numbered) contains the 32 LSBs of the divi-
dend. The quotient is stored in the destination register, and the
remainder is stored in the following register (Rd+1). The re-
mainder is always the same sign as the dividend (in Rd:Rd +1).
Avoid using Al 4 or B14 as the destination register, since this
overwrites the SP; the assembler will issue a warning in this
case.

Rd Odd DIVS performs a signed divide of the 32-bit operand contained
in the destination register by the 32-bit value in the source re-
gister. The quotient is stored in the destination register; the re-
mainder is not returned.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	40,43 (Rd even)

39,42 (Rd odd)
41,44 if result = >80000000
7,10 if (Rd) > (Rs) or (Rs) < 0

Status Bits 	N 1 if the quotient is negative, 0 otherwise.
C Unaffected
Z 	1 if the quotient is 0, 0 otherwise.
V 1 if quotient overflows (cannot be represented by 32 bits), 0 otherwise.

The following conditions will set the overflow flag:

Divisor is 0

• 	Quotient cannot be contained within 32 bits

12-51

DIVS 	 Divide Registers - Signed 	 DIVS

Examples

DIVS A2 ,A0

Before

Al
>8765 4321
>789A BCDF
>789A BCDF

A2
>8765 4321
>8765 4321
>789A BCDF

After

Al
>15CA 1 DD7
>EA35 E229
>EA35 E229

A2
>8765 4321
>8765 4321
>789A BCDF

NCZV
1 x00
Ox 00
1 x00

AO
>1234 5678
>EDCB A987
>EDCB A987

AO
>D95B C60A
>26A4 39F6
>D95B C60A

>1234 5678 >8765 4321 >789A BCDF >26A4 39F6 >15CA 1DD7 >789A BCDF Ox 00
>1234 5678 >8765 4321 >0000 0000 >1234 5678 >8765 4321 >0000 0000 Ox 01
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 Ox 01
>0000 0000 >0000 0000 >8765 4321 >0000 0000 >0000 0000 >8765 4321 0 x 1 0
>8765 4321 >0000 0000 >8765 4321 >8765 4321 >0000 0000 >8765 4321 Ox 01

DIVS A2,A1

Before After

AO Al A2 AO Al A2 NCZV
>0000 0000 >8765 4321 >1234 5678 >0000 0000 >FFFF FFFA >1234 5678 1x00
>0000 0000 >8765 4321 >EDCB A988 >0000 0000 >0000 0006 >EDCB A988 Ox 00
>0000 0000 >789A BCDF >EDCB A988 >0000 0000 >FFFF FFFA >EDCB A988 1 x00
>0000 0000 >789A BCDF >1234 5678 >0000 0000 >0000 0006 >1234 5678 Ox 00
>0000 0000 >8765 4321 >0000 0000 >0000 0000 >8765 4321 >0000 0000 Ox 01
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 0 x 01

12-52

DIVU 	 Divide Registers - Unsigned 	 DIVU

Syntax 	DIVU <Rs>,<Rd>

Rd Even: (Rd):(Rd+1)/(Rs) -■ Rd, remainder 	Rd+1
Rd Odd: (Rd)/(Rs) -* Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	1 	1 	0 	1
	

Rs
	

R
	

Rd

Rs is a 32-bit unsigned divisor.

Rd is a 32-bit unsigned dividend or the most significant half of a 64-bit
unsigned divisor.

Description 	There are two cases:

Rd Even DIVU performs an unsigned divide of the 64-bit operand con-
tained in the two consecutive registers, starting at the destina-
tion register, by the 32-bit contents of the source register. The
specified even-numbered destination register, Rd, contains the
32 MSBs of the dividend. The next consecutive register
(which is odd-numbered) contains the 32 LSBs of the divi-
dend. The quotient is stored in the destination register, and the
remainder is stored in the following register (Rd+1). Avoid
using Al 4 or B14 as the destination register, since this over-
writes the SP; the assembler will issue a warning in this case.

Rd Odd 	DIVU performs an unsigned divide of the 32-bit operand con-
tained in the destination register by the 32-bit value in the
source register. The quotient is stored in the destination regis-
ter; the remainder is not returned.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	37,40 (Rd even)

37,40 (Rd odd)
5,8 if (Rd) > (Rs) or (Rs) < 0

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the quotient is 0, 0 otherwise.
V 1 if quotient overflows (cannot be represented by 32 bits), 0 otherwise.

The following conditions set the overflow flag:

• Divisor is 0

• Quotient cannot be contained within 32 bits

Execution

Encoding

Operands

12-53

DIVU Divide Registers - Unsigned 	 DIVU

Examples

DIVU A2 ,A0

Before

Al A2

After

Al A2 AO AO
>1234 5678 >8765 4321 >789A BCDF >26A4 39F6 >15CA 1 DD7 >789A BCDF
>1234 5678 >8765 4321 >0000 0000 >1234 5678 >8765 4321 >0000 0000
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000
>0000 0000 >0000 0000 >8765 4321 >0000 0000 >0000 0000 >8765 4321
>8765 4321 >0000 0000 >8765 4321 >8765 4321 >0000 0000 >8765 4321

DIVU A2 ,A1

Before After

AO Al A2 AO Al A2
>0000 0000 >789A BCDF >1234 5678 >0000 0000 >0000 0006 >1234 5678
>0000 0000 >1234 5678 >0000 0000 >0000 0000 >1234 5678 >0000 0000
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000
>0000 0000 >0000 0000 >8765 4321 >0000 0000 >0000 0000 >8765 4321
>0000 0000 >8765 4321 >8765 4321 >0000 0000 >0000 0001 >8765 4321

NCZV
x x 00
xx 01
xx 01
x x 1 0
x x 01

NCZV
x x 00
x x 01
xx 01
xx10
x x 00

12-54

DRAV 	 Draw and Advance 	 DRAV

Syntax 	DRAV <Rs>,<Rd>

Execution 	(pixel)COLOR1 -+ *Rd
(RsX) + (RdX) 	RdX
(RsY) + (RdY) 	RdY

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Rs
	

IR 	 Rd

Description 	DRAV writes the pixel value in the COLOR1 register to the location pointed
to by the XY address in the destination register. Following the write, the
XY address in the destination register is incremented by the value in the
source register: the X half of As is added to the X half of Rd, and the Y half
of Rs is added to the Y half of Rd. Any carry out from the lower (X) half
of the register will not propagate into the upper (Y) half.

COLOR1 bits 0-15 are output on data bus lines 0-15, respectively. The
pixel data used from COLOR1 is that which aligns to the destination lo-
cation, so 16-bit patterns can be implemented. The source and destination
registers must be in the same register file.

Implied
Operands B File Registers

Register Name Format Description

B3 DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (location 0,0)

85 WSTART XY Window starting corner

B6 WEND XY Window ending corner

B9 COLOR1 Pixel Pixel color

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP—Pixel processing operations (22 options)
W —Window checking operation
T 	—Transparency operation

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Pixel
Processing 	Set the PPOP field in the CONTROL register to select a pixel processing

operation. This operation will be applied to the pixel as it is moved to the
destination location. At reset, the default pixel processing operation is re-
place (S D). For more information, see Section 7.7, Pixel Processing, on
page 7-15.

Window
Checking 	Select a window checking mode by setting the W bits in the CONTROL

register. If you select an active window checking mode (W = 1, 2, or 3),
the WSTART and WEND registers will define the XY starting and ending
corners of a rectangular window. The X and Y values in both WSTART and
WEND must be positive.

12-55

DRAV 	 Draw and Advance 	 DRAV

When the TMS34010 attempts to write a pixel inside or outside a defined
value, the following actions may occur:

W=0 No window operation. The pixel is drawn and the WVP and V bits
are unaffected.

W=1 Window hit. No pixels are drawn. The V bit is set to 0 if the pixel lies
within the window; otherwise, it is set to 1.

W=2 Window miss. If the pixel lies outside the window, the WVP and V
bits are set to 1 and the instruction is aborted (no pixels are drawn).
Otherwise, the pixel is drawn and the V bit is set to 0.

W=3 Window clip. If the pixel lies outside the window, the V bit is set to
1 and the instruction is aborted (no pixels are drawn). Otherwise, the
pixel is drawn and the V bit is set to 0.

For more information, see Section 7.10, Window Checking, on page 7-25.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL register to 1. The TMS34010 checks for 0-valued (transparent)
pixels resulting from the combination of the source and destination pixels,
according to the selected pixel processing operation. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Shift Register
Transfers 	When this instruction is executed and the SRT bit is set, normal memory

read and write operations become SRT reads and writes. Refer to Section
9.9.2, Video Memory Bulk Initialization, on page 9-27 for more information.

Words 	1

Machine
States The states consumed depend on the operation selected, as indicated below.

Pixel Processing Operation
Window
Violation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX W=1 W=2 W=3

1,2,4,8
16

4+(3),10
4+(1),8

6+(3),12
6+(1),10

7+(3),13
6+(1),10

7+(3),13
7+(1),11

7+(3),13
7+(1),11

8+(3),14
8+(1),12

7+(3),13
7+(1),11

5,8
5,8

3,6
3,6

5,8
5,8

Status Bits N Unaffected
C Unaffected
Z Unaffected
V 1 if a window violation occurs, 0 otherwise; unaffected if window

clipping is not used.

12 - 56

DRAV 	 Draw and Advance 	 DRAV

Examples 	These DRAV examples use the following implied operand setup.

Register File B:
DPTCH (B3)
OFFSET (B4)
WSTART (B5)
WEND (B6)
COLOR1 (B9)

= >200
= >0001 0000
= >0010 0000
= >003C 0040
= >FFFF FFFF

I/O Registers:
CONVDP = >0016

Assume that memory contains the following values before instruction exe-
cution:

Code

>0001

Before

Address
8040 	>8888

Al

Data

PSIZE PP W

After

AO @>18040 AO PMASK

DRAV Al,AO >0040 0040 >0010 0010 >0001 00000 00 >0000 >0050 0050 >8889
DRAV Al, AO >0040 0020 >0010 0010 >0002 00000 00 >0000 >0050 0030 >888B
DRAV Al ,A0 >0040 0010 >0010 0010 >0004 00000 00 >0000 >0050 0020 >888F
DRAV Al ,AO >0040 0008 >0010 0010 >0008 00000 00 >0000 >0050 0018 >88FF
DRAV Al , AO >0040 0004 >0010 0010 >0010 00000 00 >0000 >0050 0014 >FFFF
DRAV Al, AO >0040 0004 >0000 FFFF >0010 01010 00 >0000 >0040 0003 >0000
DRAV Al , AO >0040 0004 >FFFF 0000 >0010 10011 00 >0000 >003F 0004 >0000
DRAV Al ,A0 >0040 0004 >0001 0001 >0010 00000 11 >0000 >0041 0005 >0000
DRAV Al ,A0 >0040 0004 >0040 0004 >0010 00000 00 >00FF >0080 0008 >FFOO

12-57

DSJ 	Decrement Register and Skip Jump 	DSJ

Syntax 	DSJ <Rd>,<Address>

Execution 	(Rd) - 1 —> Rd
If (Rd) # 0, then (Displacement x16) + (PC') — ■ PC
If (Rd) = 0, then go to next instruction

Encoding
	

15 14 13 12 11 10 9 8 	7 	6
	

5
	

4 3 2
	

1
	

0

0 	0 	0 	0 	1 	1 	0 	1 	1 	0 	0 R
	

Rd

Displacement

Operands 	Rd
	

contains the operand to be decremented.

Address 	is a 32-bit address (within 32K words).

Description 	DSJ decrements the contents of the destination register by 1. If this result
is nonzero, then a jump is made relative to the current PC. The current
PC points to the instruction word that immediately follows the second word
of the DSJ instruction. The signed word displacement is converted to a
bit displacement by multiplying by 16. The new PC address is then ob-
tained by adding the resulting signed displacement (Displacement x 16)
to the address of the next instruction.

If the result of the destination register decrement is 0, then no jump is per-
formed and the program continues execution at the next sequential in-
struction.

The displacement is computed by the assembler as (Address - PC')/16.
The resulting jump range is -32,768 to +32,767 words. The specified
32-bit address is converted by the assembler into the value required for the
displacement field.

This instruction is useful for large loops involving a counter. For shorter
loops, the assembler will translate this into a DSJS instruction.

Words 	2

Machine
States 	3,9 (Jump)

2,8 (No jump)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples Code Before After

Jump taken? A5 A5
DSJ A5 , LOOP >0000 0009 >0000 0008 Yes
DSJ A5 , LOOP > 0000 0001 >0000 0000 No
DSJ A5 , LOOP > 0000 0000 >FFFF FFFF Yes

12-58

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	1 	0 	1 	1 	0 	1
	

R
	

Rd

Displacement

Encoding

DSJEQ

Syntax

Execution

Conditionally Decrement Register
and Skip Jump 	 DSJEQ

DSJEQ <Rd>,<Address>

If (Z) = 1 then (Rd) - 1 —) Rd
If (Rd) 	0 then PC' + (Displacement x16) —) PC
If (Rd) = 0 then go to next instruction

If (Z) = 0 then go to next instruction

Operands
	

Rd
	

contains the operand to be conditionally decremented.

Address 	is a 32-bit address (within 32K words).

Description
	

The DSJEQ instruction performs a conditional jump, based on an evalu-
ation of the status Z bit.

• If Z = 1, the contents of the destination register are decremented by

If this result is nonzero, then a jump is made relative to the
current PC. The current PC points to the instruction word that
immediately follows the second word of the DSJ instruction.
The signed word displacement is converted to a bit displace-
ment by multiplying by 16. The new PC address is then ob-
tained by adding the resulting signed displacement
(Displacement x 16) to the address of the next instruction.

If the result is 0, then the jump is skipped and the program
continues execution at the next sequential instruction.

• If Z = 0, the jump is skipped, the program counter is advanced to the
next sequential instruction, and the instruction completes.

The displacement is computed by the assembler as (Address - PC')/16.
The resulting jump range is -32,768 to +32,767 words. The specified
32-bit address is converted by the assembler into the value required for the
displacement field.

This instruction can be used after an explicit or implicit compare to 0. Ad-
ditional information on these types of compares can be obtained in the
CMP and CMPI, and MOVE-to-register instructions, respectively.

Words

Machine
States

Status Bits

2

3,9 (Jump)
2,8 (No jump)

N Unaffected
C Unaffected
Z Unaffected
✓ Unaffected

12-59

DSJEQ
Conditionally Decrement Register

and Skip Jump DSJ EQ

Examples 	Code Before After

A5 NCZV A5 Jump taken?
DSJEQ A5,LOOP >0000 0009 xx1x >0000 0008 Yes
DSJEQ A5,LOOP >0000 0001 xx1x >0000 0000 No
DSJEQ A5,LOOP >0000 0000 xxlx >FFFF FFFF Yes
DSJEQ A5,LOOP >0000 0009 xx0x >0000 0009 No
DSJEQ A5,LOOP >0000 0001 xx0x >0000 0001 No
DSJEQ A5,LOOP >0000 0000 xx0x >0000 0000 No

12-60

Conditionally Decrement Register
DSJNE 	 and Skip Jump 	 DSJNE

Syntax 	DSJNE <Rd>,<Address>

Execution 	If (Z) = 0 then (Rd) - 1 -. Rd
If (Rd) 	0 then PC' + (Displacement x 16) 	PC
If (Rd) = 0 then go to next instruction

If (Z) = 1 then to to next instruction

Encoding
	

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	1 	0 	1 	1 	1 	0 R
	

Rd

Displacement

Operands 	Rd
	

contains the operand to be conditionally decremented.

Address 	is a 32-bit address (within 32K words).

Description 	The DSJ NE instruction performs a conditional jump, based on an evalu-
ation of the Z bit.

• If Z = 0, the contents of the destination register are decremented by

If this result is nonzero, then a jump is made relative to the
current PC. The current PC points to the instruction word that
immediately follows the second word of the DSJ instruction.
The signed word displacement is converted to a bit displace-
ment by multiplying by 16. The new PC address is then ob-
tained by adding the resulting signed displacement
(Displacement x 16) to the address of the next instruction.

If the result is 0, then the jump is skipped and the program
continues execution at the next sequential instruction.

• If Z = 1, the jump is skipped, the program counter is advanced to the
next sequential instruction, and the instruction completes.

The displacement is computed by the assembler as (Address - PC')/16.
The resulting jump range is -32,768 to +32,767 words. The specified
32-bit address is converted by the assembler into the value required for the
displacement field.

This instruction can be used after an explicit compare or an implicit compare
to 0. Additional information on these types of compares can be obtained
in the CM P, CMPI, and MOVE-to-register instructions.

Words 	2

Machine
States 	3,9 (Jump)

2,8 (No jump)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-61

Conditionally Decrement Register
DSJNE 	 and Skip Jump 	 DSJNE

Examples 	Code Before

AS
DSJNE A5, LOOP >0000 0009
DSJNE A5, LOOP >0000 0001
DSJNE A5, LOOP >0000 0000
DSJNE A5, LOOP >0000 0009
DSJNE A5, LOOP >0000 0001
DSJNE A5, LOOP >0000 0000

After

NCZV 	A5 	Jump taken?
xx1x >0000 0009 	No
x x 1 x >0000 0001 	No
x x 1 x >0000 0000 	No
xx0x >0000 0008 	Yes
xx0x >0000 0000 	No
xx0x 	> FFFF FFFF 	Yes

12-62

P

DSJS Decrement Register and Skip Jump - Short DSJS

Syntax 	DSJS < Rd>, <Address>

Execution 	(Rd) - 1 -■ Rd
If (Rd) # 0 then PC' + (Displacement x16) - ■ PC
If (Rd) = 0 then go to next instruction

Encoding
	

15 14 13 12 11 10 9 	8 	7 	6
	

5
	

4
	

3
	

2
	

1
	

0

10 	0 	1 	1 	1
	

D
	

Displacement
	

R
	

Rd

Operands 	Rd
	

contains the operand to be decremented.

Address 	is a 32-bit address (within 32K words).

Description 	DSJS performs a conditional jump; first, it decrements the contents of the
destination register by 1.

• If this result is nonzero, then a jump is made relative to the current
PC. The current PC points to the instruction word that immediately
follows the second word of the DSJ instruction. The 5-bit displace-
ment is converted to a bit displacement by multiplying by 16.

- If the direction bit D is 0, the new PC address is then obtained
by adding the resulting displacement to PC'.

- If the direction bit D is 1, the new PC address is obtained by
subtracting the resulting displacement from PC'. This provides
a jump range of -32 to 32 words, excluding 0.

• If the result of the decrement is 0, then the jump is skipped and pro-
gram execution continues at the next sequential instruction.

The specified 32-bit address is converted by the assembler into the value
required for the displacement field. The displacement is computed by the
assembler as (Address - PC')/16. This instruction is useful for coding tight
loops for cache-resident routines.

Words
	

1

Machine
States 	2,5 (Jump)

3,6 (No jump)

Status Bits
	

N Unaffected
C Unaffected
Z Unaffected
✓ Unaffected

Examples 	Code 	 Before 	 After

A5 	 A5 	 Jump taken?
DSJS A5 ,LOOP 	>0000 0009 	>0000 0008 	Yes
DSJS A5 ,LOOP 	>0000 0001 	>0000 0000 	No
DSJS A5 , LOOP 	>0000 0000 	>FFFF FFFF 	Yes

12-63

EINT

1 -, IE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0

Syntax

Execution

Encoding

1 1

EINT 	 Enable Interrupts EINT

Description 	EINT sets the global interrupt enable bit (IE) to 1, allowing interrupts to be
enabled. When IE=1, individual interrupts can be enabled by setting the
appropriate bits in the INTENB interrupt mask register. The rest of the sta-
tus register is unaffected.

The DINT instruction disables interrupts.

Words 	1

Machine
States 	3,6

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected
IE 1

Examples 	Code 	Before 	After

ST 	 ST
EINT 	>00000010 	>00200010
EINT 	>00200010 	>00200010

12 - 64

EMU 	 Initiate Emulation
	

EMU

Syntax

Execution

Encoding

EMU

ST -■ Rd and conditionally enter emulator mode

15 14 13 12 11 10 9 	8 	7 	6 	5 	4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	0 	1 	0 	0 	0 	0 	0 	0 	0 0

Description 	The EMU instruction pulses the EMUA pin and samples the RUN/EMU pin.
If the RUN/EM pin is in the RUN state, the EMU instruction acts as a NOP.
If the pin is in the EMU state, emulation mode is entered. This instruction
is not intended for general use; refer to the TMS34010 XDS/22 User's
Guide for more information.

Words 	1

Machine
States 	6,9 (or more if EMU mode is entered)

Status Bits 	N Indeterminate
C Indeterminate
Z Indeterminate
V Indeterminate

12-65

EXGF 	 Exchange Field Size 	 EXGF

Syntax 	EXGF <Rd>[,<F>]

Execution 	(Rd) 	FSO, FEO or (Rd) 	FS1, FE1
FSO, FE0 	(Rd) or FS1, FE1 —■ (Rd)

Encoding
	

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1
	

1 	0 	1 	0 	1 1F 1 1 	0 	0 	0 1 	 Rd

Operands 	F is an optional operand; it defaults to 0.
F=0 selects FSO, FEO to be exchanged.
F=1 selects FS1, FE1 to be exchanged

Description 	EXGF exchanges the six LSBs of the destination register with the selected
six bits of field information (field size and field extension). Bit 5 of the 6-bit
quantity in Rd is exchanged with the field extension value. The upper 26
bits of Rd are cleared.

313020 29 27 	2322zi,E1D 	17 1%5 1.5 a 43 t1 1D 9 0 7 0 0-4 3 2 1' 0

IN e Z v 	-Ree F 	RuerVed 	
F
E 	FS1 FS0
	ut—h-

Status Register

Words
Machine
States

Status B its

1

1,4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	Before 	 After

A5 	 ST 	 A5 	 ST
EXGF A5 , 0 >FFFF FFCO >F000 OFFF >0000 003F >F000 OFCO
EXGF A5 , 1 >FFFF FFCO >F000 OFFF >0000 003F >F000 003F

12-66

EXGPC Exchange Program Counter with Register EXGPC

Syntax
	

EXGPC <Rd>

Execution
	

(Rd) --■ PC, (PC') -÷ Rd

Encoding
	

15 14 13 12 11 10 9
	

8 7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

° 	0 	0 	0 	0 	0 	0 	1 	0 	0 	1 R
	

Rd

Description 	EXGPC exchanges the next program counter value with the destination re-
gister contents. After this instruction has been executed, the destination
register contains the address of the instruction immediately following the
EXGPC instruction.

Note that the TMS34010 sets the four LSBs of the program counter to 0
(word aligned).

This instruction provides a "quick call" capability by saving the return ad-
dress in a register (rather than on the stack). The return from the call is
accomplished by repeating the instruction at the end of the "subroutine."
Note that the subroutine address must be reloaded following each call-re-
turn operation.

Words 	1

Machine
States 	2,5

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	Before 	 After

Al 	 PC 	 Al 	 PC
EXGPC Al >0000 1C10 >0000 2080 >0000 2090 >0000 1C10
EXGPC Al >0000 1050 >0000 2080 >0000 2090 >0000 1050

12-67

FILL Fill Array with Processed Pixels - Linear 	FILL

Syntax

Execution

Encoding

Operands

Description

Implied
Operands

Destination
Array

FILL L

pixel(COLOR1) -■ Pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

L 	specifies that the pixel array starting address is in linear format.

FILL processes a set of source pixel values (specified by the COLOR1 reg-
ister) with a destination pixel array. This instruction operates on a two-di-
mensional array of pixels using pixels defined in the COLOR1 register. As
the FILL proceeds, the source pixels are combined with destination pixels
based on the selected graphics operations.

Note that the instruction is entered as FILL L. The following set of im-
plied operands govern the operation of the instruction and define both the
source pixels and the destination array.

B File Registers

Register Name Format Description

B2t DADDR Linear Pixel array starting address

B3 DPTCH Linear Pixel array pitch

B7 DYDX XY Pixel array dimensions (rows:columns)

B9 COLOR1 Pixel Fill color or 16-bit pattern

B1 0—B1 41. Reserved registers

I/O Registers

Address Name Description and Operations

>C00000B0 CONTROL PP—Pixel processing operations (22 options)
T 	—Transparency operation

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t Changed by FILL during execution.

The contents of the DADDR, DPTCH, and DYDX registers define the lo-
cation of the destination pixel array:

• At the outset of the instruction, DADDR contains the linear address
of the pixel with the lowest address in the array.

During instruction execution, DADDR points to the next pixel (or
word of pixels) to be modified in the destination array. When the ar-
ray transfer is complete, DADDR points to the linear address of the
pixel following the last pixel written.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array. DPTCH must be a multiple of
16, exept when a single pixel-width line is drawn (DX=1). In this
case, DPTCH may be any value.

12-68

FILL
	

Fill Array with Processed Pixels - Linear 	FILL

Pixel
Processing

• 	DYDX specifies the dimensions of the destination array in pixels. The
DY portion of DYDX contains the number of rows in the array, while
the DX portion contains the number of columns.

Set the PPOP field in the CONTROL register to select a pixel processing
operation. This operation will be applied to the pixel as it is moved to the
destination location. There are 16 Boolean and 6 arithmetic operations; the
default operation at reset is replace (S D). Note that the destination data
is read through the plane mask and then processed. The 6 arithmetic op-
erations do not operate with pixel sizes of one or two bits per pixel. For
more information, see Section 7.7, Pixel Processing, on page 7-15.

Window
Checking
	

Window checking cannot be used with this instruction. The contents of
the WSTART and WEND registers are ignored.

Corner Adjust There is no corner adjust for this instruction. The direction of the FILL is
fixed as increasing linear addresses.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL register to 1. The TMS34010 checks for 0 (transparent) pixels
after it processes the source data. At reset, the default case for transparency
is off.

Interrupts This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the FILL is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the insterrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the FILL cor-
rectly. You can inhibit the TMS34010 from resuming the FILL by executing
an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and
B10-B14 will contain indeterminate values.

Plane Mask 	The plane mask is enabled for this instruction.

Shift Register
Transfers 	If the SRT bit in the DPYCTL register is set, each memory read or write in-

itiated by the FILL generates a shift register transfer read or write cycle at
the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.) See Section 9.9.2,
Video Memory Bulk Initialization, on page 9-27 for more information.

Words 	1

Machine
States
	

See Section 13.3, FILL Instructions Timing.

12-69

FILL 	Fill Array with Processed Pixels - Linear 	FILL

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	These FILL examples use the following implied operand setup.

Register File B: 	 I/O Registers:
DADDR (B2) = >00002010 	PSIZE 	= >0008
DPTCH (B3) 	= >00000080
DYDX (B7) 	= >0002000D
COLOR1 (B9) = >30303030

Assume that memory contains the following values before instruction exe-
cution.

Example 1

Example 2

Example 3

Linear
Address 	 Data
>02000 >1100, >3322, >5544, >7766, >9988, >BBAA,>DDCC,>FFEE
>02080 >1100, >3322, >5544, >7766, >9988, >BBAA,>DDCC,>FFEE

This example uses the pixel processing rep/ace (S 	DJ operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
PP=00000).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>02000 >1100, >3030, >3030, >3030, >3030, >3030, >3030, >FF30
>02080 >1100, >3030, >3030, >3030, >3030, >3030, >3030, >FF30

This example uses the (-S and D) 	D pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >2C00 (T=0,
PP=01010).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>02000 >1100, >0302, >4544, >4746, >8988, >8B8A,>CDCC? FFCE
>02080 >1100, >0302, >4544, >4746, >8988, >8B8A,>CDCC>FFCE

This example uses transparency and the (S and DJ --■ D pixel processing
operation. Before instruction execution, PMASK = > 0000 and CONTROL
= > 0420 (T=1, PP=00000).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>02000 >1100, >3020, >1044, >3020, >1088, >3020, >10CC,>FF20
>02080 >1100, >3020, >1044, >3020, >1088, >3020, >10CC,>FF20

12 - 70

FILL 	Fill Array with Processed Pixels - Linear 	FILL

Example 4 	This example uses plane masking; the four MSBs are masked. Before in-
struction execution, PMASK • = >FOFO and CONTROL = >0000 (T=0,
PP=00000).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>02000 >1100, >3020, >5040, >7060, >9080, >BOAO,>DOCO,>FFEO
>02080 >1100, >3020, >5040, >7060, >9080, > BON:3c> DOCO,> FFEO

12-71

B File Registers

Register Name Format Description

B211 DADDR XY Pixel array starting address

B3 DPTCH Linear Pixel array pitch

B4 OFFSET Linear Screen origin (address of 0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

B7t$ DYDX XY Pixel array dimensions (rows:columns)

B9 COLOR1 Pixel Fill color or 16-bit pattern

B10—B14t Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
W —Window checking operation
T 	— Transparency operation

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Implied
Operands

r

Fill Array with Processed Pixels - XY 	FILL FILL

FILL XY

pixel(COLOR1) -* Destination pixel array (with processing)

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0

XY Specifies that the pixel array starting address is given in XY format.

FILL processes a set of source pixel values (specified by the COLOR1 reg-
ister) with a destination pixel array.

This instruction operates on a two-dimensional array of pixels using pixels
defined in the COLOR1 register. As the FILL proceeds, the source pixels
are combined with destination pixels based on the selected graphics oper-
ations.

Note that the instruction is entered as FILL L,XY. The following set of
implied operands govern the operation of the instruction and define both
the source pixels and the destination array.

Syntax

Execution

Encoding

Operands

Description

Destination
Array

t Changed by FILL during execution.
t Used for common rectangle function with window hit operation (W=1).

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. At the outset
of the instruction, DADDR contains the XY address of the pixel with the
lowest address in the array. It is used with OFFSET and CONVDP to cal-
culate the linear address of the starting location of the array. DPTCH con-
tains the linear difference in the starting addresses of adjacent rows of the
destination array (typically this is the screen pitch). DPTCH must be a
power of two (greater than or equal to 16) and CONVDP must be set to

12-72

FILL
	

Fill Array with Processed Pixels - XY 	FILL

correspond to the DPTCH value. CONVDP is computed by operating on
the DPTCH register with the LMO instruction; it is used for the XY calcu-
lations involved in XY addressing and window clipping. DYDX specifies
the dimensions of the destination array in pixels. The DY portion of DYDX
contains the number of rows in the array, while the DX portion contains the
number of columns. During instruction execution, DADDR points to the
next pixel (or word of pixels) to be modified in the destination array. When
the array transfer is complete, DADDR points to the linear address of the
pixel following the last pixel written. This is that pixel on the last row that
would have been written had the array transfer been wider in the X dimen-
sion.

Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL register specifies the pixel processing operation that will be ap-
plied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the re-
place (S D) operation. Note that the destination data is read through the
plane mask and then processed. The 6 arithmetic operations do not operate
with pixel sizes of one or two bits per pixel. For more information, see
Section 7.7, Pixel Processing, on page 7-15.

Window
Checking 	The window operations described iri Section 7.10, Window Checking, on

page 7-25. can be used with this instruction. Window pick, violation de-
tect, or preclipping can be selected by setting the W bits in the CONTROL
register to 1, 2, or 3, respectively. Window pick modifies the DADDR and
DYDX registers to correspond to the common rectangle formed by the
destination array and the clipping window defined by WSTART and WEND.
DADDR is set to the XY address of the pixel with the lowest address in the
common rectangle, while DYDX is set to the X and Y dimensions of the
rectangle. If no window operations are selected, the WSTART and WEND
registers are ignored. At reset, no window operations are enabled.

Corner Adjust There is no corner adjust for this instruction. The direction of the FILL is
fixed as increasing linear addresses.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL register to 1. The TMS34010 checks for 0 (transparent) pixels
after it processes the source data. At reset, the default case for transparency
is off.

Interrupts 	This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the FILL is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this tine, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SAD DR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed .

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the FILL cor-
rectly. You can inhibit the TMS34010 from resuming the FILL by executing
an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and
B10-B14 will contain indeterminate values.

12-73

FILL 	Fill Array with Processed Pixels - XY 	FILL

Plane Mask 	The plane mask is enabled for this instruction.

Shift Register
Transfers 	If the SRT bit in the DPYCTL register is set, each memory read or write in-

itiated by the FILL generates a shift register transfer read or write cycle at
the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.) See Section 9.9.2,
Video Memory Bulk Initialization, on page 9-27 for more information.

Words 	1

Machine
States 	See Section 13.3, FILL Instructions Timing.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V 1 if a window violation occurs, 0 otherwise. Unaffected if window

clipping is not enabled.

Examples 	These FILL examples use the following implied operand setup.

Register File B: 	 I/O Registers:
DADDR (B2) = >0052 0007 CONVDP 	= >0017
DPTCH (B3) 	>0000 0100 PSIZE 	= >0004
OFFSET (B4) 	>0001 0000 PMASK 	= >0000
WSTART (B5) 	>0030 000C CONTROL = >0000
WEND (B6) 	= >0053 0014 	 (W=00, T=0, PP=00000)
DYDX (B7) 	>0003 0012
COLOR1 (B9) 	>FFFF FFFF

Example 1

Assume that memory contains the following values before instruction exe-
cution.

Linear
Address 	 Data
>15200 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC
>15300 >3210, >7654, > BA98, > FEDC,> 3210, >7654, > BA98,> FEDC
>15400 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC

This example uses the replace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>15200 >3210, >F654, >FFFF, >FFFF, >FFFF, >FFFF, >BA9F,>FEDC
>15300 >3210, >F654, >FFFF, >FFFF, >FFFF, >FFFF, >BA9F,>FEDC
>15400 >3210, >F654, >FFFF, >FFFF, >FFFF, >FFFF, >BA9F,>FEDC

12-74

FILL 	Fill Array with Processed Pixels - XY 	FILL

XY Addressing
X Address

Y 	00 000000000000001111111111111111
O 1 23456789ABCDEF01 2345678 9ABCDEF

A
d 52 0 123456FFFFFFFFFFFFFFFFFF9ABCDEF
d
✓ 53 0123456FFFFFFFFFFFFFFFFFF9ABCDEF
e
s 54 0123456FFFFFFFFFFFFFFFFFF9ABCDEF

Example 2
	

This example uses the (D XOR S) D pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >2800 (T=0,
W=00, PP=01 01 0).

After instruction execution, memory contains the following values:

X Address
Y 	00000000000000001111111111111111

O '1 2 3456789ABCDEF01 23456789ABCDEF
A
d 52 0'1 23456876543210FEDCBA9879ABCDEF
d
✓ 53 0123456876543210FEDCBA9879ABCDEF
e
s 54 0123456876543210FEDCBA9879ABCDEF

Example 3 This example uses transparency, the (D subs S) 	D pixel processing op-
eration. 13efore instruction execution, COLOR1 = >88888888, PMASK =
>0000, a -id CONTROL = >4C20 (T=1, W=00, PP=10011).

After instruction execution, memory contains the following values:

X Address
Y 00000000000000001111111111111111

01 2 3456789ABCDEF01 23456789ABCDEF
A
d
d
r
e
s

52

53

54

0 1 23456781 23456701 23456789ABCDEF

0123456781 2345670123456789ABCDEF

01 23456781 23456701 23456789ABCDEF
I

1 2-75

FILL 	Fill Array with Processed Pixels - XY 	FILL

Example 4 	This example uses window operation 3; the destination is clipped. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=11, PP=00000).

After instruction execution, memory contains the following values:

X Address
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDE F 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 52 0 23456789ABFFFFFFFFF56789ABCDEF
d
✓ 53 0123456789ABFFFFFFFFF56789ABCDEF
e
s 54 0 23456789ABCDEF0123456789ABCDEF

Example 5 This example uses plane masking; the most significant bit is masked. Before
instruction execution, PMASK = >8888 and CONTROL = >0000 (T=0,
W=00, PP-00000).

After instruction execution, memory contains the following values:

X Address
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 52 0 1234567FFFFFFFF77777777F9ABCDEF
d
r 53 0 1234567FFFFFFFF77777777F9,ABCDEF
e
s 54 01234567FFFFFFFF77777777F9ABCDEF

12-76

GETPC 	Get Program Counter into Register 	GETPC

Syntax

Execution

Encoding

GETPC <Rd>

(PC') —■ Rd

15 14 13 12 11 10 9 	8 	7 	6 	5 	4 	3 	2 	1 	0

1 o 	0 	0 	0 	0 	0 	0 	1 	0 	1 	OIRI 	Rd

Description 	GETPC increments the PC contents by 16 to point past the GETPC in-
struction, and copies the value into the destination register. Execution
continues with the next instruction. This instruction can be used with the
EXG PC and JUMP instructions for quick call on jump operations. GETPC
can be used to access relocatable data areas whose position relative to the
code area is known at assembly time.

Words

Machine
States 1,4

Status Bits N 	Unaffected
C 	Unaffected
Z 	Unaffected
V 	Unaffected

Examples Code Before After

PC Al

GETPC Al >0000 1 BDO >0000 1 BE0
GETPC Al >0000 1C10 >0000 1 C20

12-77

313029 28 27 28 25 24 23 22 212019 18 17 18 15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

[N

C

V

P

X

E Raaerded
. 	,

F
E
1

FS1
F
E
0

FS0

GETST 	Get Status Register into Register 	GETST

Syntax
	

G ETST <Rd>

Execution
	

(ST) 	Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2 1 0

0 	0 	0 	0 	0 	0 	0 	1 	1 	0 	0 R
	

Rd

Description 	GETST copies the contents of the status register into the destination regis-
ter.

Status Register

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	 Before 	 After

PC 	 Al
GETST Al 	>2020 0010 	>2020 0010
GETST Al 	>0000 0010 	>0000 0010

12-78

Syntax

Execution

Encoding

INC <Rd>

(Rd) + 1 	Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 	0 	0 	1 	0 	0 	0 	0 	0 	0 	1 I Rd

INC 	 Increment Register INC

Description 	INC adds 1 to the contents of the destination register and stores the result
in the destination register. This instruction is an alternate mnemonic for
ADDK 1 ,Rd.

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the ADDC instruction.

Words

Machine
States

Status Bits

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	Before 	 After

Al 	 Al 	 NCZV
INC Al 	>0000 0000 	>0000 0001 0000
INC Al 	>0000 000F 	>0000 0010 0000
INC Al 	>FFFF FFFF 	>0000 0000 0110
INC Al 	>FFFF FFFE 	>FFFF FFFF 	1000
INC Al 	>7FFF FFFF 	>8000 0000 1001

12-79

1 	1 	0 	0 Code 1 	0

Address (LSW)

Address (MSW)

5 4 3 2 1 0

0 0 0 0 0 0

15 14 13 12 11 10 9 	8 	7 	6 Encoding

JAcc 	 Jump Absolute Conditional 	 JAcc

Syntax 	JAcc <Address>

Execution 	If condition true, then Address —■ PC
If condition false, then go to next instruction

Operands 	cc 	is a condition mnemonic such as UC, LO, etc. (see condition
codes table).

Address is a 32-bit absolute address.

Fields 	Code 	is a 4-bit digit (see condition codes table below).

Description 	If the specified condition is true, jump to the address contained in the two
words of extension and continue execution from that point. If the specified
condition is false, continue execution at the next sequential instruction.
Note that the lower four bits of the program counter are set to 0 (word
aligned). These instructions are usually used in conjunction with the CMP
and CM PI instructions. The JAV and JANV instructions can also be used
to detect window violations or CPW status.

Condition
Codes Mnemonict Code Condition Status Bits

JAUC 0000 Unconditional No conditions

Unsigned Compare

JALO (JAC) 1000 Lower than C

JALS 0010 Lower or same C + Z

JAHI 0011 Higher than C • Z

JAHS (JANC) 1001 Higher or same C

JAEQ (JAZ) 1010 Equal Z

JANE (JANZ) 1011 Not equal Z

Signed Compare

JALT 0100 Less than (N • V) + (ICI • V)

JALE 0110 Less than or equal (N • V) + (N • V) + Z

JAGT 0111 Greater than (N • V • 2) 	+ (N • V • 2)

JAGE 0101 Greater than or equal (N • V) + (N • V)

JAEQ (JAZ) 1010 Equal Z

JANE (JANZ) 1011 Not equal 7

Compare to Zero

JAZ 1010 Zero Z

JANZ 1011 Nonzero 2

JAP 0001 Positive N • Z

JAN 1110 Negative N

JANN 1111 Nonnegative N

12-80

JAcc 	 Jump Absolute Conditional JAcc

Condition Codes
(continued) Mnemonict 	Code 	Condition 	 Status Bits

General Arithmetic

JAZ 1010 Zero Z

JANZ 1011 Nonzero Z

JAC 1000 Carry C

JANC 1001 No carry C

JAB (JAC) 1000 Borrow C

JANB (JANC) 1001 No borrow T

JAV* 1100 Overflow V

JANV* 1101 No overflow V

t Jump instructions in parentheses indicate equivalent instructions
Also window clipping

+ Logical OR
Logical AND
Logical NOT

3

3,6 (Jump)
4,7 (No jump)

Words

Machine
States

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples
	

Code 	Flags for Branch

NCZV NCZV NCZV
JAUC HERE xxxx
JAP HERE Ox Ox
JALS HERE xx 1 x x1 xx
JAHI HERE x 00x
JALT HERE Ox x1 1x x0
JAGE HERE Ox x0 1x x1
JALE HERE Oxx1 1 xx0 xx1x
JAGT HERE Ox 00 1x01
JAC HERE x1 xx
JANC HERE xOxx
JAZ HERE xx 1 x

Code
	

Flags for Branch

NCZV NCZV NCZV
JAV HERE x x x 1
JANZ HERE xxOx
JANN HERE Oxxx
JANV HERE xxx0
JAN HERE 1 xxx
JAB HERE x1 xx
JANB HERE xOxx
JALO HERE x1 xx
JAHS HERE x00x xx1x
JANE HERE xxOx
JAEQ HERE xx1x

Note:

The TMS34010 assembler will take the jump when any one or more of
the Flags for Branch listed above are set as indicated.

12-81

JRcc Jump Relative Conditional - ±127 Words 	JRcc

Syntax

Execution

JRcc <Address>

If condition True then Displacement + (PC') 	PC
If condition False then go to next instruction

Encoding
	

15 14 13 12 11 10 9 8 7 	6 5 4 3 2 1 0

I
 1 	

1 	0 	0I
	

code
	

Displacement

is a condition mnemonic such as UC, LO, etc. (see condition
codes table).

is a 32-bit relative address, ±127 words (excluding 0).

is a 4-bit digit (see condition codes table below).

Operands
	

CC

Address

Fields
	

Code

Description

Condition
Codes

If the condition specified is true, then jump to the location at the address
specified by the sum of the next instruction address (PC') and the signed
word displacement. If the specified condition is false, then continue exe-
cution at the next sequential instruction.

The displacement is the number of words relative to the PC and is com-
puted by the assembler as (Address - PC')/16. The assembler will use this
opcode if the address in the range -127 to 127 words (except for 0). If the
displacement is outside the legal range, the assembler will automatically use
the longer JRcc instruction. If the displacement is 0, the assembler will
automatically substitute a NOP opcode instead. The assembler will not
accept an address which is externally defined or an address which is relative
to a different section than the PC. Note that the four LSBs of the program
counter are always 0 (word aligned).

These instructions are usually used in conjunction with the CM P and CMPI
instructions. The JRV and JRNV instructions can also be used to detect
window violations or CPW status.

Mnemonict Code Condition Status Bits

JRUC 0000 Unconditional No conditions

Unsigned Compare

JRLO (JRC) 1000 Lower than C

JRLS 0010 Lower or same C + Z

JRHI 0011 Higher than C • 2-

JRHS (JRNC) 1001 Higher or same C

'JREQ (JRZ) 1010 Equal Z

JRNE (JRNZ) 1011 Not equal 7

Signed Compare

JRLT 0100 Less than (N • V) + (17 • V)

JRLE 0110 Less than or equal (N • V) + (N • V) + Z

JRGT 0111 Greater than (N • V • 7) 	+ (N • V • 7)

JRGE 0101 Greater than or equal (N • V) + (N • \7)

JREQ (JRZ) 1010 Equal Z

JRNE (JRNZ) 1011 Not equal '2

12-82

JRcc 	Jump Relative Conditional - ±127 Words 	JRcc

Condition Codes
(continued)

Words

Mnemonict 	Code 	Condition 	 Status Bits

Compare to Zero

J RZ 1010 Zero Z

JRNZ 1011 Nonzero Z

JRP 0001 Positive N • 7

JRN 1110 Negative N

JRNN 1111 Nonnegative N
General Arithmetic

JRZ 1010 Zero Z

JRNZ 1011 Nonzero 7
JRC 1000 Carry C

JRNC 1001 No carry Z

JRB (JRC) 1000 Borrow C

JRNB (JRNC) 1001 No borrow -E
JRV* 1100 Overflow V

JRNV* 1101 No overflow V

t Jump instructions in parentheses indicate equivalent instructions
t Also window
+ Logical OR

Logical AND
Logical NOT

1

Machine
States 	2,5 (Jump)

1,4 (No jump)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples Code 	Flags for Branch

NCZV NCZV NCZV
JRUC HERE xxxx
JRP HERE Ox Ox
JRLS HERE xx1x x1 xx
JRHI HERE x00x
JRLT HERE Ox x1 1 x x0
JRGE HERE Ox x 0 1 xx1
JRLE HERE Ox x1 1 x x 0 x x1 x
JRGT HERE Ox 00 1x01

Code 	Flags for Branch

NCZV NCZV NCZV
JRC HERE x 1 xx
JRNC HERE x Oxx
JRZ HERE xx1 x
JRNZ HERE xx Ox
JRV HERE xxxl
JRNV HERE xx x0
JRN HERE 1 xx x
JRNN HERE Oxxx

1

Note:

The TMS34010 assembler will take the jump when any one or more of
the Flags for Branch listed above are set as indicated.

12-83

JRcc Jump Relative Conditional - ±32K Words 	JRcc

Syntax

Execution

JRcc <Address>

If condition True then Address 	PC
If condition False then go to next instruction

Encoding
	

15 14 13 12 11 10 9 8 7 	6
	

5 4 3 2 1
	

0

Operands

Fields

Description

Condition
Codes

1 	1 	0 	0
	

code
	

0 	0 	0 	0 	0 	0 	0 0

Displacement

CC
	

is a condition mnemonic such as UC, LO, etc. (see condition
codes table).

Address is a 32-bit relative address, ±32K words (excluding 0).

Code 	is a 4-bit digit (see condition codes table below).

If the specified condition is true, then jump to the location at the address
specified by the sum of the next instruction address (PC') and the signed
word displacement. If the specified condition is false, then continue exe-
cution at the next sequential instruction.

The displacement is the number of words relative to the PC and is com-
puted by the assembler as (Address - PC')/16. The assembler will use this
opcode if the displacement is in the range -32,768 to 32,767 words (except
for 0). If the displacement is 0, the assembler will automatically substitute
a NOP opcode instead. If the address is out of range, the assembler will
use the JAcc instruction instead. The assembler will not accept an address
which cannot be resolved at assembly time, that is, an address which is
externally defined or which is relative to a different section than the current
PC. Note that the four LSBs of the program counter are always 0 (word
aligned).

These instructions are usually used in conjunction with the CMP and CMPI
instructions. The JRV and JRNV instructions can also be used to detect
window violations or CPW status.

Mnemonict Code Condition Status Bits

JRUC 0000 Unconditional No conditions

Unsigned Compare

JRLO (JRC) 1000 Lower than C

JRLS 0010 Lower or same C + Z

JRHI 0011 Higher than T • 7
JRHS (JRNC) 1001 Higher or same C

JREQ (JRZ) 1010 Equal Z

JRNE (JRNZ) 1011 Not equal 7

Signed Compare

JRLT 0100 Less than (N • V) + (N • V)

JRLE 0110 Less than or equal (N • V) + (Fl• V) + Z

JRGT 0111 Greater than (N • V • Z) 	+ (N • V • Z)

JRGE 0101 Greater than or equal (N • V) + (Ti • V)

JREQ (JRZ) 1010 Equal Z

JRNE (JRNZ) 1011 Not equal 7

12-84

JRcc 	Jump Relative Conditional - ±32K Words 	JRcc

Condition Codes
(continued) Mnemonict 	Code 	Condition 	 Status Bits

Compare to Zero

J RZ 1010 Zero Z

JRNZ 1011 Nonzero 7

JRP 0001 Positive N • 7

JRN 1110 Negative N

JRNN 1111 Nonnegative N

General Arithmetic

JRZ 1010 Zero Z

JRNZ 1011 Nonzero 7

JRC 1000 Carry C

JRNC 1001 No carry C
JRB (JRC) 1000 Borrow C

JRNB (JRNC) 1001 No borrow C
J Mit 1100 Overflow V

J R NVT 1101 No overflow V

t
t

Jump instructions in parentheses indicate equivalent instructions
Also window clipping
Logical OR
Logical AND
Logical NOT

Words 	2

Machine
States 	3,6 (Jump)

2,5 (No jump)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	Flags for Branch Code 	Flaqs for Branch

NCZV NCZV NCZV 	 NCZV NCZV NCZV
JRUC HERE xxxx 	 JRZ HERE xx1x
JRP HERE OxOx 	 JRNZ HERE xx0x
JRLS HERE xx1x xlxx 	 JRV HERE xxx1
JRHI HERE x00x 	 JRNV HERE xxx0
JRLT HERE Oxx1 1xx0 	JRN HERE lxxx
JRGE HERE OxxO 1xx1 	 JRNN HERE Oxxx
JRLE HERE Oxxl 1xx0 xx1x JRB HERE xlxx
JRGT HERE Ox00 1x01 	 JRNB HERE x0xx
JRC HERE xlxx 	 JRLO HERE xlxx
JRNC HERE x0xx 	 JRHS HERE x00x xxlx

Note:

The TMS34010 assembler will take the jump when any one or more of
the Flags for Branch listed above are set as indicated.

12-85

JUMP 	 Jump Indirect JUMP

Syntax
	

JUMP <Rs>

Execution
	

(Rs) — PC

Encoding
	

15 14 13 12 11 1 0 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

Words

Machine
States

Status Bits

Examples

o 0 	 0 0 	0 	0 	0 	1 	0 	1 	1 I R I 	Rs 	1

Rs contains the new PC value.

JUMP jumps to the address contained in the source register. The
TMS34010 sets the four LSBs of the program counter to 0 (word aligned).
This instruction can be used in conjunction with the GETPC and/or EXGPC
instructions.

1

2,5

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before

PC

After

Al PC
JUMP Al >0000 1 EEO >0055 5550 >0000 1 EEO
JUMP Al >0000 1 EE5 >0055 5550 >0000 1 EEO
JUMP Al >FFFF FFFF >0055 5550 >FFFF FFFO

12-86

LINE 	 Line Draw with XY Addressing 	 LINE

Syntax 	LINE {0,1}

Execution 	The two execution algorithms for the LINE instruction are explained below.
These algorithms are similar, varying only in their treatment of d=0.

Encoding

Operands

Description

15 14 13 12 11 10 9 	8 	7 	6 	5 	4 	3 	2 	1
	

0

1 	0 	1 	1 	1 	1 	11Z10 	0 	1 	1 	0 	1 	01

Z is the algorithm select bit:
Z=0 selects algorithm 0.
Z=1 selects algorithm 1.

LINE performs the inner loop of Bresenham's line-drawing algorithm. This
type of line draw plots a series of points (xi,yi) either diagonally or laterally
with respect to the previous point. Movement from pixel to pixel always
proceeds in a dominant direction. The algorithm may or may not also in-
crement in the direction with the smaller dimension (this produces a diag-
onal movement). Two XY-format registers supply the XY increment values
for the two possible movements. The LINE instruction maintains a decision
variable, d, that acts as an error term, controlling movement in either the
dominant or diagonal direction. The algorithm operates in one of two
modes, depending on how the condition d=0 is treated. During LINE ex-
ecution, some portion of a line [(xo,yo)(xi,yi)] will be drawn. The line is
drawn so that the axis with the largest extent has dimension a and the axis
with the least extent has dimension b. Thus, a is the larger (in absolute
terms) of yi - yo or x1 - x0 and b is the smaller of the two. This means that
a > b > 0.

The following values must be supplied to draw a line from (xo,y0) to
(x1 ,y1):

1) Set the XY pointer (xi,yi) in the DADDR register to the initial value
of (x0,y0)•

2) Use the line endpoints to determine the major and minor dimensions
(a and b, respectively) for the line draw; then set the DYDX register
to this value (b:a).

3) Place the signed XY increment for a movement in the diagonal (or
minor) direction (d > 0 for Z=0, d > 0 for Z=1) in the INC1 register.

4) Place the signed XY increment for a movement in the dominant (or
major) direction (d < 0 for Z=0, d 5 0 for Z=1) in the INC2 register.

5) Set the initial value of the decision variable in register BO to 2b - a.

6) Set the initial count value in the COUNT register to a + 1.

7) Set the LINE color in the COLOR1 register.

8) Set the PATTRN register to all 1s.

12-87

LINE 	 Line Draw with XY Addressing 	 LINE

The LINE instruction may use one of two algorithms, depending on the
value of Z.

Algorithm 0 (Z=0):

While COUNT > 0
Draw the next pixel
If d > 0

d= d + 2b - 2a
POINTER = POINTER + INC1

Else d = d + 2b;
POINTER = POINTER + INC2

Algorithm 1 (Z=1):

While COUNT > 0
Draw the next pixel
If d > 0

d= d + 2b - 2a
POINTER = POINTER + INC1

Else d = d + 2b;
POINTER = POINTER + INC2

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR Integer Decision variable, d

B2t DADDR XY Starting point (yrxi), usually (y0:x0)

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

B7 DYDX XY b:a minor :major line dimensions

B9 COLOR1 Pixel Pixel color to be replicated

BlOt COUNT Integer Loop count

B11 INC1 XY Minor axis (diagonal) increment, INC1

B12 INC2 XY Major axis (dominant) increment, INC2

B131" PATTRN Pattern Future pattern register, must be set to all 1s

B15 TEMP — Temporary register

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations
W —Window clipping operation
T —Transparency operation

>C0000140 CONVDP ' XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by instruction execution

12-88

LINE 	 Line Draw with XY Addressing 	 LINE

Pixel
Processing 	The PP field in the CONTROL I/O register specifies the operation to be

applied to the pixel as it is written. There are 22 operations; the default case
at reset is the pixel processing replace (S D) operation. For more infor-
mation, see Section 7.7, Pixel Processing, on page 7-15.

Window
Checking 	Window clipping or pick is selected by setting the W bits in the CONTROL

I/O register to the appropriate value. The WSTART and WEND registers
define the window in XY-coordinate space.

Options include:

0 No window clipping. LINE draws the entire line. Neither the WVP or
V bit are affected. WSTART and WEND are ignored.

1 	Window hit. The instruction calculates points but no pixels are actually
drawn. As soon as the pixel to be drawn lies inside the window, the
WVP bit is set, the V bit is cleared, and the instruction is aborted. If the
line lies entirely outside the window, then the WVP bit is not affected,
the V bit in the status is set, and the instruction completes execution.

2 Clip and set WVP. LINE draws pixels until the pixel to be drawn lies
outside the window. At this point, the WVP bit is set, the V bit is set,
and the instruction is aborted. If the entire line lies within the window,
then the WVP bit is not affected, the V bit is cleared and the in-
struction completes execution. The initial value of WVP does not affect
instruction execution.

3 Clip. LINE calculates all the points, but only draws the points that lie
inside the window. The V bit tracks the state of the last pixel. If the
pixel was outside the window, V is set to 1; otherwise, it is 0. The in-
struction will traverse the entire line.

The default case at reset is no window clipping. For more information, see
Section 7.10, Window Checking, on page 7-25.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Interrupts 	LINE may be interrupted after every pixel in the line draw except for the last
pixel. If the instruction is interrupted, the PC is decremented by 16 to point
back to the LINE instruction (the one being executed) before the PC is
pushed on the stack. Thus, the LINE instruction will be resumed upon re-
turn from the interrupt. In order for the LINE to be resumed correctly, any
B-file registers that are modified by the interrupting routine must be re-
stored, and the RETI or RETS instruction must be executed. Note that a
LINE instruction that is aborted because of window checking options 1 or
2 does not decrement the PC before pushing it on the stack. In this case,
the LINE is not resumed after returning from the interrupt service routine.

Words 	1

12-89

LINE 	 Line Draw with XY Addressing 	 LINE

Machine
States 	See Section 13.6, The LINE Instruction.

Status Bits 	N 	Undefined
C 	Undefined
Z 	Undefined
V 	Set depending upon window operation.

Linedraw Code

The following code segment shows setup and execution of the LINE in-
struction.

.file 	'LineDraw'

.globl _draw_line

.globl _xyorigin

—draw_line:
MMTM 	SP,B2,137,B10,B11,B12,B13,B14

MOVE 	A14,B14
MOVE 	*-B14,B2,1 	; Get starting x
MOVE 	*-B14,B11,1 	; Get starting y
SLL 	16,B11
MOVY 	B11,B2 	 ; B2 = (y0,x0)
MOVE 	*-B14,B10,1 	; Get ending x
MOVE 	*-B14,B11,1 	; Get ending y
SLL 	16,311
MOVY 	B11,B10 	; B10 = (yl,xl)
MOVE 	B14,A14

B11,B2
B11,B10

;
;

;

Add viewport offset
Add viewport offset

Draw line from (y0,x0) to (yl,xl)
B7 ; B2 = (y0,x0), 	B10 	= 	(yl,xl)
B2,B10
horiz_line
vert_line
bpos
bneg_apos

; B10 = (y1-y0,x1-x0) = 	(b,a)

B10,B7 ; B7 = (1 10 1,1a1)
-1,B11
cmp_b_a

; B11 = (-1,-1)

B10,B7
B10,B7 ; B7 = (Ib1,1a1)
>FFFF0001,B11
cmp_b_a
bpos_apos

; B11 = (-1,1)

B10,B7
B10,B7 ; B7 = (lbl,lal)
>0001FFFF,B11
cmp_b_a

; B11 = (1,-1)

B10,B7 ; B7 = (Ibl,lal)
>00010001,B11 ; B11 = (1,1)

MOVE 	@—xyorigin,Bli,i
ADDXY
ADDXY

draw_line:
CLR
SUBXY
JRZ
JRN
JRNC
JRNV

bneg_aneg: SUBXY
MOVI
JRUC

bneg_apos: SUBXY
MOVX
MOVI
JRUC

bpos: 	JRNV
bpos_aneg: 	SUBXY

MOVY
MOVI
JRUC

bpos_apos: 	MOVE
MOVI

12-90

LINE 	 Line Draw with XY Addressing 	 LINE

cmp_b_a: 	CLR 	B12
MOVI 	-1,B13 	 ; B13 = FFFFFFFF (set pattern to

; all 1s)

a_it_b:

line0:

a_ge_b:

linel:

MOVE 	B7,B0
SRL 	16,B0 	 ; BO = b
CLR 	B10
MOVX 	B7,B10 	 ; B10 = a
CMP 	BO,B10
JRGT 	a_ge_b
MOVE 	BO,B10
MOVX 	87,130
RL 	16,87 	 ; a and b swapped
MOVY 	B11,312
SLL 	1,B0
SUB 	B10,B0 	 ; BO 	2b - a
ADDK 	1,B10
MOVE 	B11,1311 	 ; If drawing in +Y direction, use
JRN 	linel 	 ; LINE 0, otherwise use LINE 1
LINE 	0
JRUC 	done

MOVX 	B11,B12
SLL 	1,130
SUB 	B10,B0 	 ; BO = 2b - a
MOVE 	B11,B11 	 ; If drawing in -Y direction, use
JRNN 	line° 	 ; LINE 1, otherwise use LINE 0
LINE 	1
JRUC 	done

horiz_line: JRN 	pixel
JRNV 	do_fill
SUBXY 	B10,B7
MOVE 	B7,B10
ADDXY 	B10,B2

vert_line: 	JRNC 	do_fill
NEG 	B10
ADDXY 	B10,B2

; Make DX positive

; Change start to (yl,xl)

; Make DY positive
; Change start to (yl,xl)

do_fill: 	MOVE 	B10,B7
ADDI 	>10001,B7
FILL 	XY
JRUC 	done

pixel: 	DRAV 	B12,B2

done: 	MMFM 	SP,B2,B7,B10,B11,B12,B13,B14
RETS 	2 	 ; Return to calling routine

12-91

LINE 	 Line Draw with XY Addressing 	 LINE

Example 1 	This example draws a line from (3,52) to (19,55). Window checking is off,
transparency and the pixel processing replace operation are selected, and
plane masking is disabled. Assume the following registers have been
loaded with these values:

BO = >FFFF FFF1 	Decision variable d = 2b - a = -15
B2 = >0052 0003 DADDR
B3 = >0000 0800 DPTCH (CONVDP=13)
B4 = >0000 0100 OFFSET
B5 = >0030 0003 WSTART
B6 = >0055 0025 WEND
B7 = >0003 0016 b:a; b=3 and a=22
B9 = >4444 4444 COLOR1 (color of the line)
B10 = >0000 0017 COUNT (a+1)
B11 = >0001 0001 	Diagonal increment (+1,+1)
B12 = >0000 0001 	Nondiagonal increment (0,+1)
B13 = >FFFF FFFF PATTRN (all 1s)

This line is shown in Figure 12-11, represented by es.

Before LINE execution, DADDR contains the first pixel to be drawn. During
LINE execution, DADDR is updated so that it always points to the next
pixel to be drawn. After this example is completed, DADDR will equal
>0055 001 A. Register B7 contains the X and Y dimensions of the line.
Register B10 indicates the number of pixels that will be drawn; if you want
the endpoint to be drawn (in this case, (19,55)), B10 should equal a+1.

B11 contains the XY increment for diagonal moves. You can see the line
progressing in a diagonal direction when it moves from (6,52) to (7,53); it
is incremented by 1 in both the X and the Y dimensions. B12 contains the
XY increment for nondiagonal moves. You can see the line progressing in
a nondiagonal direction when it moves from (3,52) to (4,52); it is incre-
mented by 1 in the X dimension.

10 10 1112 13 14 16:1 18 18.1A:
51
02
53 	
54
55

a=22

x
b=3

Figure 12 - 11. LINE Examples

12-92

LINE 	 Line Draw with XY Addressing 	 LINE

Example 2 	This example draws a line from (19,52) to (3,55). Window checking is off,
transparency and the pixel processing replace operation are selected, and
plane masking is disabled. Assume the following registers have been
loaded with these values:

BO = >FFFF FFF1 	Decision variable d = 2b - a = -15
B2 = >0052 0019 DAD DR
B3 = >0000 0800 DPTCH (CONVDP=13)
B4 = >0000 0100 OFFSET
B5 = >0030 0003 WSTART
B6 = >0055 0025 WEND
B7 = >0003 0016 b:a; b=3 and a=22
B9 = >2222 2222 COLOR1 (color of the line)
B10 = >0000 0017 COUNT (a+1)
B11 = >0001 FFFF 	Diagonal increment (+1,-1)
B12 = >0000 FFFF 	Nondiagonal increment (0,-1)
B13 = >FFFF FFFF PATTRN (all 1s)

This line is shown in Figure 12-11, represented by Xs.

Before LINE execution, DAD DR contains the first pixel to be drawn. During
LINE execution, DADDR is updated so that it always points to the next
pixel to be drawn. After this example is completed, DADDR will equal
>0055 0002. Register B7 contains the X and Y dimensions of the line.
Register B10 indicates the number of pixels that will be drawn; if you want
the endpoint to be drawn (in this case, (3,55)), B10 should equal a+1.

B11 contains the XY increment for diagonal moves. You can see the line
progressing in a diagonal direction when it moves from (F,53) to (E,54); it
is decremented by 1 in the X dimension and incremented by 1 in the Y di-
mension. B12 contains the XY increment for nondiagonal moves. You can
see the line progressing in a nondiagonal direction when it moves from
(14,53) to (13,53); it is decremented by 1 in the X dimension.

12-93

LMO
	

Leftmost One
	

LMO

Words

Machine
States

Status Bits

Examples

LMO <Rs>,<Rd>

31 - (Bit number of leftmost 1 hit in Rs) - Rd

15 14 1.3 12 11 10 9 	8 	7 	6 	5
	

4
	

3
	

2
	

1
	

0

0 	1 	1 	0 	1 	0 	1
	

Rs
	

R I 	Rd

Rs is the register to be evaluated.

LMO locates the leftmost (most significant) 1 in the source register. It then
loads the l's complement of the bit number of the leftmost-1 bit into the
five LSBs of the destination register. The 27 MSBs of the destination reg-
ister are loaded with Os. Bit 31 of Rs is the MSB (leftmost) and bit 0 is the
LSB. If there are no 1 bits in the source register, then the destination result
is 0 and status bit Z is set.

The source register contents can be normalized by following this instruction
by executing the RL Rs ,Rd instruction, where Rs is the destination register
of the LMO instruction and Rd is the source register.

The source and destination registers must be in the same register file.

1

1,4

N Unaffected
C Unaffected

1 if the source register contents are 0, 0 otherwise.
V Unaffected

Code 	 Before 	After

AO 	 NCZV 	Al
LMO AO , A1 	>0000 0000 	xxix >0000 0000
LMO AO , Al 	>0000 0001 	xx0x >0000 001F
LMO AO,A1 	>0000 0010 	xx0x >0000 001B
LMO AO , Al 	>0800 0000 	xx0x >0000 0004
LMO AO,A1 	>8000 0000 	xx0x >0000 0000

Syntax

Execution

Encoding

Operands

Description

12 - 94

MMFM Move Multiple Registers from Memory MMFM

MMFM <Rs>,[<register list>-]

If Register n in <register list> then *Rs+ 	Rn
Repeat for n = 0 to 15

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	1 	0 	0 	1
	

1 	0 	1
	

R
	

Rs

Mask

Rs 	 points to the first location in a block of memory.

Register list is a list of registers to be moved (such as A0,A1,A9).

Mask is a binary representation of the register list.

MMFM loads the contents of a specified list of either A or B file registers
(not both) from a block of memory. Rs points to the first location in the
memory block. Rs and the registers in the list must be in the same register
file.

The MMFM and MMTM instructions can be thought of as "stack" in-
structions for storing and retrieving multiple registers in memory. MMTM
stores the registers in memory, using Rs as a "stack pointer." The stack
"shrinks" in the direction of increasing linear address, with Rs containing
the bit address of the top of the stack. MMFM reverses the action of the
MMTM instruction. Rs is postincremented by 32 when popping off the
stack. Each register is removed from the stack LSW first, with higher order
registers moved first. (The alignment of Rs affects the instruction timing
as indicated in Machine States, below.) If a 0 mask is supplied, the SP
will be popped from memory and loaded. Note that including Rs in the
register list produces unpredictable results.

The bit assignments in the mask are:

Syntax

Execution

Encoding

Operands

Fields

Description

If Rs is in file A:

I SP I A141A13I Al21 All IA10 I A9 1 A8 I A7 1 A6 I A5 I A4 I A3 I A2 1 Al I AO

15(MSB)
	

0(LSB)

If Rs is in file B:

SP1B141B131B121B111B101 B9 I B8 I B7 1 B6 I B51 B4 I B3 I B2 I B1 'BO

15(MSB)
	

0(LSB)

Words
	

2

Machine
States
	

Cache Enabled
	

Cache Disabled
Aligned: 	3 + 4n + (2) extended states

	
9 + 4n

Nonaligned: 	3 + 8n + (6) extended states
	

9 + 8(n + 1)

Status Bits
	

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-95

MMFM Move Multiple Registers from Memory MMFM

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address Data Address Data
>000100F0 >1111 >00010070 >CCCC
>000100E0 >B1B1 >00010060 >BCBC
>000100 DO >2222 >00010050 >DDDD
>00010000 > B2B2 >00010040 >BDBD
>000100B0 >3333 >00010030 >EEEE
>000100A0 > B3B3 >00010020 >BEBE
>00010090 >7777 >00010010 >FFFF
>00010080 >B7B7 >00010000 >BFBF

Register BO = >0001 0000

MMFM BO ,B1 ,B2 ,B3 ,B7 , 812 ,B13 ,B14 , SP
or
MMFM BO ,>710F

Register contents after instruction execution:

BO = >0010 0100
B1 = >1111 B1B1
B2 = >2222 B2B2
B4 = >3333 B3B3
B8 = >7777 B7B7

B12 = >CCCC BCBC
B13 = >DDDD BDBD
B14 = >EEEE BEBE
SP = >FFFF BFBF
Others unchanged

12-96

MMTM 	Move Multiple Registers to Memory 	MMTM

Syntax 	M MTM <Rd>, <register list>

Execution 	If Register n in <register list> then Rn 	-*Rd
Repeat for n = 0 to 15

Encoding 	15 14 13 12 11 10 9 8 7 	6 	5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	0 	0 	1 	1 	0 	0
	

Rd

Mask

Operands 	Register list is a list of registers to be moved (such as A0,A1,A9).

Fields 	Mask is a binary representation of the register list.

Description 	MMTM stores the contents of a specified list of either A or B file registers
(not both) from a block of memory. Rs points to the first location in the
memory block. Rs and the registers in the list must be in the same register
file.

The MMFM and MMTM instructions can be thought of as "stack" in-
structions for storing and retrieving multiple registers in memory. MMTM
stores the registers in memory, using Rs as a "stack pointer." The stack
"shrinks" in the direction of increasing linear address, with Rs containing
the bit address of the top of the stack. MMFM reverses the action of the
MMTM instruction. Rs is postincremented by 32 when popping off the
stack. Each register is removed from the stack LSW first, with higher order
registers moved first. (The alignment of Rs affects the instruction timing
as indicated in Machine States, below.)

When execution of the MMTM instruction is complete, the contents of the
lowest-numbered register in the list will reside at the highest address in the
memory block. Rd will have been decremented to point to the contents of
the highest-numbered register in the list.

If a register list is not specified, the GSP will store all the registers of a re-
gister file, starting at the location specified by Rs. Rs indicates the register
file that will be affected. For example, MMTM A3 stores the A-file registers
in memory, beginning at the address in register A3. Similarly, MMTM BO
stores the B-file registers in memory, beginning at the address in register
BO. If you use SP as the pointer register in this manner, the GSP will as-
sume you want to store the A-file registers inm memory. If you want to use
the stack pointer but intend to store the B-file registers, use B15 instead of
S P.

12-97

MMTM 	Move Multiple Registers to Memory 	MMTM

The GSP uses a mask to indicate which registers will be affected. Registers
in the list are indicated by a 1 in the appropriate location within the mask.
If a 0 mask is supplied, AO or BO will be pushed on the stack. The bit as-
signments in the mask are:

If Rs is in file A:

1A01 Al 1 A2 1 A3 1- A4 1 A51 A6 1 A7 1 A8 1 A9 1A101A111Al21A131A141SP1

15(MSB)
	

0(LSB)

If Rs is in file B:

1 BOI B1 1 B2 1 B31 B4 1 B51 B6 1 B7 1 B8 1 B9 1B1011311113121813113141SP

15(MSB)

Words 	2
Machine
States 	Cache Enabled

Aligned: 	2 + 4n + (2)
Nonaligned: 	2 + 10n + (8)

0(LSB)

Cache Disabled
8 + 4n + 2
10(n + 1)

Status Bits
	

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that these registers contain the following values before instruction
execution:

Al = >0010 0000
AO = >0000 AOAO
A2 = >2220 A2A2
A4 = >4444 A4A4
A8 = >8888 A8A8

Al2 = >CCCC ACAC
A13 = >DDDD ADAD
A14 = >EEEE AEAE
SP = >FFFF AFAF

MMTM Al,A0 ,A2 ,A4 ,A8 ,Al2 ,A13 ,A14 SP
Or
MMTM Al , >A88F

After instruction execution, register Al = >000F FF00. The other registers
are not changed.

Memory will contain the following values after instruction execution:

Address Data Address Data
>000FFFOO >AFAF >000FFF80 >A8A8
>000FFF10 >FFFF >000FFF90 >8888
>000FFF20 >AEAE >000FFFAO >A4A4
>000FFF30 >EEEE >000FFFB0 >4444
>000FFF40 >ADAD >000FFFC0 >A2A2
>000FFF50 >DDDD >000FFFDO >2222
>000FFF60 >ACAC >000FFFE0 >A0A0
>000FFF70 >CCCC >000FFFF0 >0000

12-98

Syntax

Execution

Encoding

MODS <Rs>,<Rd>

(Rd) mod (Rs) --+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	1 	1 	0 	1 	1 	0
	

Rs
	

IR I
	

Rd

MODS 	 Modulus - Signed MODS

Description 	MODS performs a 32-bit signed divide of the 32-bit dividend in the desti-
nation register by the 32-bit value in the source register, and returns a
32-bit remainder in the destination register. The remainder is the same sign
as the dividend. The original contents of the destination register will always
be overwritten.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	40,43 (normal case)

41,44 if result = 80000000
3,6 if Rs = 0

Status Bits 	N 1 if the remainder is negative, 0 otherwise.
C Unaffected
Z 1 if the remainder is 0, 0 otherwise.
V 1 if the quotient overflows (cannot be represented by 32 bits), 0 oth-

erwise. The following conditions set the overflow flag:

Examples

•
•

The divisor is 0
The quotient cannot be contained within 32 bits

Code Before After

AO Al NCZ V AO
MODS AO,A1 >0000 0000 >0000 0000 Ox01 >0000 0000
MODS AO,A1 >0000 0000 >0000 0007 Ox01 >0000 0007
MODS AO,A1 >0000 0000 >FFFF FFF9 Ox01 >FFFF FFF9
MODS AO,A1 >0000 0004 >0000 0008 Ox10 >0000 0000
MODS AO,A1 >0000 0004 >0000 0007 Ox00 >0000 0003
MODS AO,A1 >0000 0004 >0000 0000 Ox10 >0000 0000
MODS AO,A1 >00000004 >FFFF FFF9 1x00 >FFFF FFFD
MODS AO,A1 >0000 0004 >FFFF FFF8 Ox10 >0000 0000
MODS AO,A1 >FFFF FFFC >0000 0008 Ox10 >0000 0000
MODS AO,A1 >FFFF FFFC >0000 0007 Ox00 >0000 0003
MODS AO,A1 >FFFF FFFC >0000 0000 Ox10 >0000 0000
MODS AO,A1 >FFFF FFFC >FFFF FFF9 1x00 >FFFF FFFD
MODS AO,A1 >FFFF FFFC >FFFF FFF8 Ox10 >0000 0000

12-99

MODU Modulus - Unsigned 	 MODU

Syntax
	

MODU <Rs>,<Rd>

Execution
	

(Rd) mod (Rs) -+ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Rs
	

I 	I
	Rd

Description 	MODU performs a 32-bit unsigned divide of the 32-bit dividend in the
destination register by the 32-bit value in the source register, and returns a
32-bit remainder in the destination register. The original contents of the
destination register will always be overwritten.

The source and destination registers must be in the same register file.

Words

Machine
States

1

35,38
3,6 if Rs = 0

Status Bits N 	Unaffected
C 	Unaffected
Z 	1 if the remainder is 0, 0 otherwise.
V 	1 if divisor (Rs) equals 0, 0 otherwise.

Examples Code 	 Before After

AO 	 Al NCZ V Al
MODU AO ,A1 	>0000 0000 	>0000 0000 xx01 >0000 0000
MODU AO , Al 	>0000 0000 	>0000 0007 x x 01 >0000 0007
MODU AO ,A1 	>0000 0000 	>FFFF FFF9 xx01 >FFFF FFF9
MODU AO ,A1 	>0000 0004 	>0000 0008 x x10 >0000 0000
MODU AO , Al 	>0000 0004 	>0000 0007 xx00 >0000 0003
MODU AO , Al 	>0000 0004 	>0000 0000 xx10 >0000 0000
MODU AO ,A1 	>0000 0004 	>FFFF FFF9 x x00 >0000 0001

12 - 100

Move Byte - Register to Indirect 	MOVB

MOVB <Rs>,.<Rd>

Rs --0 *Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	0 	0 	0 	1 	1 	0
	

Rs
	I R I 	Rd

Rs 	The source byte is the eight LSBs of the register.

*Rd The destination location is the memory address contained in the
specified register:

Description 	MOVB moves a byte from the source register to the memory address con-
tained in the destination register. The source operand byte is right justified
in the source register and it is the eight LSBs of the register which are
moved. The memory address is a bit address and the field size for the move
is eight bits. The source and destination registers must be in the same re-
gister file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples
	

Assume that memory contains the following values before instruction exe-
cution:

Address
>5000
>5010

Code

Data
>0000
>0000

Before After

AO Al @>5000 @>5010
MOVB A0,*A1 >89AB CDEF >0000 5000 > 00 EF >0000
MOVB A0,*A1 >89AB CDEF >0000 5001 >01 DE >0000
MOVB A0,*A1 >89AB CDEF >0000 5009 >DE00 >0001
MOVB A0,*A1 >89AB CDEF >0000 500C >F000 >000E

MOVB

Syntax

Execution

Encoding

Operands

12-101

Move Byte -
MOVB 	Register to Indirect with Displacement 	MOVB

Syntax

Execution

Encoding

Operands

MOVB 	<Rs>,*<Rd(Displacement)>

Rs 	--■ 	*(Rd + Displacement)

15 	14 	13 	12 	11 	10 	9 	8 	7 	6 	5 	4 3 2 1 	0

1 	0 	1 	0 	1 	1 	0 	 Rs 	 R Rd

Displacement

Rs 	The source byte is the eight LSBs of the register.

*Rd(Displacement)
The destination location is the memory address formed by the sum
of the specified register contents and the signed 16-bit displace-
ment, contained in the extension word following the opcode.

Description 	MOVB moves a byte from the source register to the destination memory
address. The source operand byte is right justified in the source register; it
is the eight LSBs of the register which are moved. The destination memory
address is a bit address and is formed by adding the contents of the speci-
fied register to the signed 16-bit displacement. This is a field move, and the
field size for the move is eight bits. The source and destination registers
must be in the same register file.

Words 	2

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address
>10000
>10010

Code

Data
>0000
>0000

Before

Al

After

AO @>10000@>10010
MOVB AO , *A1 (0) >89AB CDEF >0001 0000 >00EF >0000
MOVB A0, *A1 (1) >89AB CDEF >0001 0000 >01DE >0000
MOVB A0, *A1 (9) >89AB CDEF >0001 0000 >DE00 >0001
MOVB AO , *A1 (12) >89AB CDEF >0001 0000 >F000 >000E
MOVB AO ,*A1 (32767) >89AB CDEF >0000 8001 >00EF >0000
MOVE AO , *A1 (—32768) >89AB CDEF >0001 8000 >00EF >0000

12-102

0 	0 	0 	0 	0 	1 	0 	1 	1 	1 	1 I R I 	Rs

Destination Address (LSW)

Destination Address (MSW)

MOVB 	Move Byte - Register to Absolute 	MOVB

Syntax
	

MOVB <Rs>,@<DAddress>

Execution
	

Rs -4 @DAddress

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands 	Rs 	The source byte is the eight LSBs of the register.

DAddress
The destination location is the linear memory address contained in
the two extension words following the instruction.

Description 	MOVB moves a byte from the source register to the destination memory
address. The source operand byte is right justified in the source register and
it is the eight LSBs of the register which are moved. The specified desti-
nation memory address is a bit address and the field size for the move is
eight bits. The source and destination registers must be in the same register
file.

Words

Machine
States

Status Bits

3

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

	

Address 	Data

	

>5000 	>0000

	

>5010 	>0000

Code Before After

@>5010 AO @>5000
MOVB A0,@>5000 >89AB CDEF >00EF >0000
MOVB A0,@>5001 >89AB CDEF >01DE >0000
MOVE A0,@>5009 >89AB CDEF >DE00 >0001
MOVB A0,@>500C >89AB CDEF >F000 >000E

12-103

MOVB Move Byte - Indirect to Register 	MOVB

Syntax
	

MOVB *<Rs>,<Rd>

Execution
	

*Rs -0 Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Words

Machine
States

Status Bits

1 	0 	0 	0 	1 	1 	1
	

Rs
	

R
	

Rd

*Rs The source byte location is the memory address contained in the
specified register.

MOVB moves a byte from the memory address contained in the source re-
gister to the destination register. The source memory address is a bit ad-
dress and the field size for the move is eight bits. When the byte is moved
into the destination register, it is right justified and sign extended to 32 bits.
This instruction also performs an implicit compare to 0 of the field data.
The source and destination registers must be in the same register file.

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the sign-extended data moved into register is negative, 0 otherwise.
C Unaffected
Z 1 if the sign-extended data moved into register is 0, 0 otherwise.
V 0

Operands

Description

Examples
	

Assume that memory contains the following values before instruction exe-
cution:

Address
>5000
>5010

Code

Data
>00EF
>89AB

Before After

AO Al NCZV
MOVB *AO , Al >0000 5000 >FFFF FFEF 1x00
MOVB *AO ,A1 >0000 5001 >0000 0077 Ox00
MOVB *AO , Al >0000 5008 >0000 0000 Ox10
MOVB *AO , Al >0000 500C >FFFF FFBO 1x00

12-104

MOVB 	Move Byte - Indirect to Indirect 	MOVB

Syntax
	

MOVB *<Rs>,*<Rd>

Execution
	

*Rs -■ *Rd

Encoding
	

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1
	

0 	0 	1 	1 	1 	0
	

Rs
	

I R I 	Rd

*Rs The source byte location is the memory address contained in the
specified register.

*Rd The destination location is the memory address contained in the
specified register.

MOVB moves a byte from the source memory address to the destination
memory address. Both memory addresses are bit addresses and the field
size for the move is eight bits. The source and destination registers must
be in the same register file.

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Operands

Description

Words

Machine
States

Status Bits

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address
>5000
>5010
>6000
>6010

Code

Data
>CDEF
>89AB
>0000
>0000

Before After

AO Al @>6000 @>6010
MOVB *AO , *Al >0000 5000 >0000 6000 >00EF >0000
MOVB *A0, *A1 >0000 5000 >0000 6001 >01 DE >0000
MOVB *AO , *A1 >0000 5000 >0000 6009 >DE00 >0001
MOVE *AO , *Al >0000 5000 >0000 600C >F000 >000E
MOVB *A0 , *A1 >0000 5001 >0000 6000 >00F7 >0000
MOVE *AO *A1 >0000 5001 >0000 6001 >01 EE >0000
MOVB *AO , *A1 >0000 5001 >0000 6009 >EE00 >0001
MOVE *AO , *A1 >0000 5001 >0000 600C >7000 >000F
MOVB *A0 , *A1 >0000 5009 >0000 6000 >00E6 >0000
MOVB *AO , *A1 >0000 5009 >0000 6001 >01CC >0000
MOVE *AO, *Al >0000 5009 >0000 6009 >CCOO >0001
MOVB *AO , *A1 >0000 5009 >0000 600C >6000 >000E
MOVE *AO , *Al >0000500C >0000 6000 >OOBC >0000
MOVB *AO , *Al >0000500C >0000 6001 >0178 >0000
MOVB *AO , *Al >0000 500C >0000 6009 >7800 >0001
MOVE *AO , *Al >0000 500C >0000 600C >C000 >000B

12-105

Move Byte -
MOVB 	Indirect with Displacement to Register 	MOVB

Syntax

Execution

Encoding

MOVB *<Rs(Displacement)>,<Rd>

*(Rs + Displacement) -+ Rd

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Rs
	

R
	

Rd

Displacement

Operands 	*Rs(Displacement)
The source byte location is the memory address specified by the sum
of the specified register contents and the signed 16-bit displace-
ment, contained in the extension word following the opcode.

Description 	MOVB moves a byte from the source memory address to the destination
register. The source memory address is a bit address and is formed by ad-
ding the contents of the specified register to the signed 16-bit displace-
ment. The field size is eight bits. When the byte is moved into the
destination register, it is right justified and sign extended to 32 bits. This
instruction also performs an implicit compare to 0 of the field data. The
source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

2

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the sign-extended data moved into register is negative, 0 otherwise.
C Unaffected
Z 1 if the sign-extended data moved into register is 0, 0 otherwise.
V 0

Examples 	Assume that memory contains the following values before instruction exe-
cution:

	

Address 	Data

	

>10000 	>00EF

	

>10010 	>89AB

Code Before After

NCZV AO Al
MOVB *AO (0) ,A1 >0001 0000 >FFFF FFEF 1x00
MOVE *A0(1) ,A1 >0001 0000 >0000 0077 Ox 00
MOVB *A0(8) ,A1 >0001 0000 >0000 0000 Ox 10
MOVB *A0(12) ,A1 >0001 0000 >FFFF FFBO 1x00
MOVB *AO (32767) ,A1 >0000 8001 >FFFF FFEF 1x00
MOVE *AO (-32768) ,A1 >0001 8000 >FFFF FFEF 1x00

12-106

Move Byte - Indirect with Displacement
MOVB 	to Indirect with Displacement 	 MOVB

Syntax

Execution

Encoding

MOVB *<Rs(Displacement)>, *<Rd(Displacement)>

*(Rs + Displacement) —■ *(Rd + Displacement)

15 14 13 12 11 10 9 	8 	7 	6 	5
	

4
	

3
	

2
	

1
	

0

Rs
	

R
	

Rd

Source Displacement

Destination Displacement

Operands 	*Rs(Displacement)
The source byte location is the memory address specified by the sum
of the specified register contents and the signed 16-bit displace-
ment, contained in the first of two extension words following the
opcode.

*Rd(Displacement)
The destination location is the memory address specified by the sum
of the specified register contents and the signed 16-bit displace-
ment, contained in the second of two extension words following the
opcode.

Description 	MOVB moves a byte from the source memory address to the destination
memory address. Both the source and destination memory addresses are
bit addresses and are formed by adding the contents of the specified regis-
ter to its respective signed 16-bit displacement. The field size is eight bits.
The source and destination registers must be in the same register file.

Words 	3

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-107

Move Byte - Indirect with Displacement
MOVB 	to Indirect with Displacement 	MOVB

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Code

	

Address 	Data

	

>10000 	>CDEF

	

>10010 	>89AB

	

>11000 	>0000

	

>11010 	>0000

Before After

AO Al @>11000 @>11010

MOVB *A0(0) , * A1(0) >0001 0000 >0001 1000 >00EF >0000
MOVB *A0(0) ,*A1(1) >0001 0000 >0001 1000 >01 DE >0000
MOVB *A0(0) ,*A1(9) >0001 0000 >0001 1000 >DE00 >0001
MOVB *A0(0),*A1(12) >0001 0000 >0001 1000 >F000 >000E
MOVB *A0(0),*A1(32767) >0001 0000 >0000 9001 >00EF >0000
MOVE *A0 (0) ,*A1(- 32768) >0001 0000 >0001 9000 >00EF >0000
MOVB *A0(12),*A1(0) >0001 0000 >0001 1000 >00BC >0000
MOVE *AO (12) ,*A1 (1) >0001 0000 >0001 1000 >0178 >0000
MOVE *A0(12) ,*A1(9) >0001 0000 >0001 1000 >7800 >0001
MOVB *A0(12) ,*A1(12) >0001 0000 >0001 1000 >C000 >000B
MOVB *A0(12),*A1(32767) >0001 0000 >0000 9001 >00BC >0000
MOVE *A0(12) ,*A1(-32768) >0001 0000 >0001 9000 >00BC >0000
MOVB *A0(32767) ,*A1(0) >0000 8001 >0001 1000 >00EF >0000
MOVB *A0(32767) ,*A1(1) >0000 8001 >0001 1000 >01 DE >0000
MOVE *A0(32767),*A1(9) >0000 8001 >0001 1000 >DE00 >0001
MOVB *A0(32767) ,*A1(12) >0000 8001 >0001 1000 >F000 >000E
MOVE *A0(32767) ,*A1(32767) >0000 8001 >0000 9001 >00EF >0000
MOVE *AO (32767) , *A1 (-32678) >0000 8001 >0001 9000 >00EF >0000
MOVE *A0(-32768) ,*A1(0) >0001 8000 >0001 1000 >00EF >0000
MOVB *A0(- 32768),*A1(1) >0001 8000 >0001 1000 >01DE >0000
MOVB *A0(-32768) ,*A1(9) >0001 8000 >0001 1000 >DE00 >0001
MOVE *A0(-32768),*A1(12) >0001 8000 >0001 1000 >F000 >000E
MOVE *AO (-32768),*A1(32767) >0001 8000 >0000 9001 >00EF >0000
MOVE *AO (-32768) ,*A1(-32678) >0001 8000 >0001 9000 >00EF >0000

12 - 108

Syntax

Execution

Encoding

MOVB @<SAddress>,<Rd>

tb,SAddress 	Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	0 	0 	0 	0 	1 	1 	1 	1 	1 	1
	

R
	

Rd

Source Address (LSW)

Source Address (MSW)

MOVB Move Byte - Absolute to Register 	MOVB

Operands

Description

Words

Machine
States

Status Bits

Examples

SAddress
The source byte location is the linear memory address contained in
the two extension words following the instruction.

MOVB moves a byte from the source memory address to the destination
register. The specified source memory address is a bit address and the field
size for the move is eight bits. When the byte is moved into the destination
register, it is right justified and sign extended to 32 bits. This instruction
also performs an implicit compare to 0 of the field data. The source and
destination registers must be in the same register file.

3

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the sign-extended data moved into register is negative, 0 otherwise.

C Unaffected
Z 1 if the sign-extended data moved into register is 0, 0 otherwise.
V 0

Assume that memory contains the following values before instruction exe-
cution:

Address
>10000
>10010

Code

Data
>00EF
>89AB

After

Al NCZV
MOVB @>10000,A1 >FFFF FFEF 1x00
MOVE @>10001,A1 >0000 0077 0x00
MOVB @>10008,A1 >0000 0000 Ox10
MOVB @>1000C,A1 >FFFF FFBO 1x00

12-109

Syntax

Execution

Encoding

MOVB @<SAddress>, @<DAddress>

@SAddress @DAddress

15 14 13 12 11 10 9
	

8
	

7 6 5 4 3 2 1 0

MOVB 	Move Byte - Absolute to Absolute 	MOVB

0 	0 	0 	0 	0 	0 	1 	1 	0 	1 	0 	0 	0 	0 	0 	0

Source Address (LSW)

Source Address (MSW)

Destination Address (LSW)

Destination Address (MSW)

Operands 	SAddress
The source byte location is the linear memory address contained in
the first set of two extension words following the instruction.

DAdd ress
The destination location is the linear memory address contained in
the second set of two extension words following the instruction.

Description 	MOVB moves a byte from the source memory address to the destination
memory address. Both the source and destination addresses are interpreted
as bit addresses and the field size for the move is eight bits.

Words 	5

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-110

MOVB 	Move Byte - Absolute to Absolute 	MOVB

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address
>10000
>10010
>11000
>11010

Code

Data
>CDEF
>89AB
>0000
>0000

After

@>11000 @>11010
MOVB @>10000,@>11000 >00EF >0000
MOVE @>10000,@>11001 >01DE >0000
MOVE @>10000,@>11009 >DE00 >0001
MOVB @>10000,@>1100C >F000 >000E
MOVB @>10001,@>11000 >00F7 >0000
MOVB @>10001,@>11001 >01 EE >0000
MOVB @>10001,@>11009 >EE00 >0001
MOVE @>10001,@>1100C >7000 >000F
MOVB @>10009,@>11000 >00E6 >0000
MOVE @>10009,@>11001 >01CC >0000
MOVB @>10009,@>11009 >CCOO >0001
MOVE @>10009,@>1100C >6000 >000E
MOVE @>1000C,@>11000 >00BC >0000
MOVE @>1000C,@>11001 >0178 >0000
MOVB @>1000C,@>11009 >7800 >0001
MOVB @>10000,@>1100C >C000 >000B

12-111

MOVE

Syntax

Execution

Encoding

Fields

Move - Register to Register

MOVE <Rs>,<Rd>

(Rs) -+ Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5

M Cross File A/File B boundary
M=0 if registers are in same file
M=1 if registers are in different files

R Register file select
R=0 specifies register file A
R=1 specifies register file B

4 3 2
	

1 0

MOVE

0 	1 	0 	0 	1 	1 I M I
	

Rs 	I R 	Rd

Description 	MOVE moves the 32 bits of data from the source register to the destination
register. Note that this is not a field move; therefore, the field size has no
effect. The source and destination registers can be any of the 31 locations
in the on-chip register file. Note that this is the only MOVE instruction that
allows the source and destination registers to be in different files. This in-
struction also performs an implicit compare to 0 of the register data.

Words

Machine
States

Status Bits

1

1

N 1 if the 32-bit data moved is negative, 0 otherwise.
C Unaffected
Z 1 if the 32-bit data moved is 0, 0 otherwise.
V 0

Examples 	Code

MOVE AO,A1
MOVE AO,A1
MOVE AO,A1
MOVE AO,B1
MOVE AO,B1
MOVE AO,B1

Before 	After

AO 	 Al 	 B1
>0000 FFFF >0000 FFFF >xxxx xxxx
>0000 0000 >0000 0000 >xxxx xxxx
>FFFF FFFF >FFFF FFFF >xxxx xxxx
>0000 FFFF >xxxx xxxx >0000 FFFF
>0000 0000 >xxxx xxxx >0000 0000
>FFFF FFFF >xxxx xxxx >FFFF FFFF

NCZ V
Ox 00
Ox10
1x00
Ox 00
Ox10
1x00

12 - 112

MOVE 	Move Field - Register to Indirect 	MOVE

Syntax
	MOVE <Rs>,.<Rd>[,<F>]

Execution
	

(field)Rs 	(field)*Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1
	

0 	0 	0 	0 	0 F
	

Rs
	

R
	

Rd

Operands 	Rs
	

The source operand is the right justified field in the specified register.
1-32 bits of the register are moved, depending on the field size se-
lected.

*Rd Destination register (indirect). The destination location is the mem-
ory address contained in the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

Description 	MOVE moves a field from the source register to the memory address con-
tained in the destination register. This memory address is a bit address and
the field size for the move is 1-32 bits. The SETF instruction sets the field
size and extension. The source and destination registers must be in the
same register file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address 	Data
>15500
>15510
>15520

Register

Code

>0000
>0000
>0000

AO = >FFFF FFFF

Before After

Al FSO/1 @>15500 @>15510 @>15520

MOVE AO , *A1 , 0 >0001 5500 5/x >001F >0000 >0000
MOVE AO , *Al , 1 >0001 5503 x/8 >07F8 >0000 >0000
MOVE AO , *A1 , 0 >0001 5508 13/x > FFOO >001F >0000
MOVE AO , *Al , 1 >0001 550B x/16 >F800 >07FF >0000
MOVE AO , *Al , 0 >0001 550D 19/x >E000 >FFFF >0000
MOVE A0, *Al , 1 >0001 550C x/24 >F000 >FFFF >000F
MOVE AO ,*Al, 0 >0001 5512 27/x >0000 >FFFC >1 FFF
MOVE AO , *A1 , 1 >0001 5510 x/32 >0000 >FFFF >FFFF

12-113

MOVE

Syntax

Execution

Encoding

Operands

Move Field - Register to Indirect

	

(Postincrement)
	

MOVE

MOVE <Rs>,*<Rd>+[,< F>]

(field)Rs 	(field) . Rd
Rd + field size 	Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

I 1
	

0 	0 	1 	0 	0
	

F
	

Rs
	

I R I 	Rd

Rs 	The source operand is the right justified field in the specified regis-
ter. 1-32 bits of the register which moved, depending on the field
size selected.

*Rd+ Destination register (indirect with postincrement). The destination
location is the memory address contained in the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

Description 	MOVE moves a field from the source register to the memory address con-
tained in the destination register. The destination register is postincre-
mented after the move by the field size selected. The memory address in the
destination register is a bit address and the field size for the move is 1-32
bits. The SETF instruction sets the field size and extension. The source and
destination registers must be in the same register file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Code

Address
>15500
>15510
>15520

Register

Data
>0000
>0000
>0000

AO = >FFFF

Before

FFFF

After

Al FSO/1 Al @>15500 @>15510 @>15520
MOVE AO ,*A1+ , 0 >0001 5528 5/x >0001 552D >0000 >0000 >1 FOO
MOVE AO, *Al+ , 1 >0001 5525 x/8 >0001 552D >0000 >0000 >1FE0
MOVE AO , *Al+ , 0 >0001 5520 13/x >0001 552D >0000 >0000 >1FFF
MOVE A0, *Al+ , 1 >0001 551D x/16 >0001 552D >0000 >E000 >1FFF
MOVE AO, *Al+ , 0 >0001 5516 19/x >0001 5529 >0000 >FFCO >01FF
MOVE AO , *Al+ , 1 >0001 5507 x/24 >0001 551F > FF80 >7FFF >0000
MOVE AO , *A1+ , 0 >0001 5507 27/x >0001 551F >FF80 >FFFF >0003
MOVE A0, *A1+, 1 >0001 5500 x/32 >0001 5520 >FFFF >FFFF >0000

12-114

Before

FSO/1

After

@>15500 @>15510 @>15520 Al Al
>0001 5530 5/x >0001 552B >0000 >0000 >F800
>0001 552D x/8 >0001 5525 >0000 >0000 >1FE0
>0001 5528 13/x >0001 551B >0000 >F800 >00FF
>0001 5528 x/16 >0001 5518 >0000 >FFOO >00FF
>0001 5523 19/x >0001 5510 >0000 >FFFF >0007
>0001 5520 x/24 >0001 5508 >FFOO >FFFF >0000
>0001 5524 27/x >0001 5509 >FE00 >FFFF >000F
>0001 5520 x/32 >0001 5500 >FFFF >FFFF >0000

Code

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

Register AO = >FFFF FFFF

AO - *Al, 0
A0, - *A1, 1
A0, - *A1,0
AO , - *Al, 1
AO , - *Al, 0
AO , - *Al 1
AO , - *A1,0
AO , - *Al 1

MOVE

Syntax

Execution

Encoding

Operands

Move Field - Register to Indirect

	

(Predecrement)
	

MOVE

MOVE <Rs>,-*<Rd>[,< F>]

Rd - field size 	Rd
(field) Rs 	(field)" Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0
1 	0
	

1 	0 	0 	0 F
	

Rs
	

R
	

Rd

Rs 	The source operand is the right justified field in the specified regis-
ter. 1-32 bits of the register are moved, depending on the field size.

-*Rd Destination register (indirect with predecrement). The destination
location is the memory address contained in the specified register
predecremented by the field size selected. This is also the final value
for the register.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

Description 	MOVE moves a field from the source register to the memory address con-
tained in the destination register predecremented by the field size. The
memory address in the destination register is a bit address and the field size
for the move is 1-32 bits. The SETF instruction sets the field size and ex-
tension. Rs and Rd must be in the same register file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address Data
>15500 >0000
>15510 >0000
>15520 >0000

12-115

MOVE

Syntax

Execution

Encoding

Move Field - Register to Indirect
with Displacement

MOVE Rs,"<Rd(Displacement)>[,< F>]

(field)Rs 	(field)*(Rd + Displacement)

15 14 13 12 11 10 9 	8 	7 	6
	

5
	

4

MOVE

3
	

2
	

1
	

0

1 	0 	1 	1 	0 	0 F
	

Rs
	 R
	

Rd

Displacement

Operands 	Rs 	The source operand is the right justified field in the specified register.
1-32 bits of the register are moved, depending on the field size se-
lected.

*Rd(Displacement)
Destination register with displacement. The destination location is
the memory address specified by the sum of the specified register
contents and the signed 16-bit displacement, contained in the ex-
tension word following the opcode.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

Description 	MOVE moves a field from the source register to the destination memory
memory address. The destination memory address is a bit address and is
formed by adding the contents of the specified register to the signed 16-bit
displacement. The field size for the move is 1-32 bits. The SETF instruction
sets the field size and extension. The source and destination registers must
be in the same register file.

Words

Machine
States

Status Bits

2

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-116

MOVE

Examples

Move Field - Register to Indirect
with Displacement 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Address 	 Data

Code

>15530
>15540
>15550

Register

>0000
>0000
>0000

AO = >FFFF FFFF

Before After

Al FS0/1 @>15530 @>15540 @>15550
MOVE A0,*A1(>0000),1 >0001 5530 x/1 >0001 >0000 >0000
MOVE A0,*A1(>0001),0 >0001 552F 5/x >001F >0000 >0000
MOVE A0,*A1(>000F),0 >0001 552D 8/x >F000 >000F >0000
MOVE A0,*A1(>0020),1 >0001 551C x/13 >F000 >01 FF >0000
MOVE A0,*A1(>00FF),0 >0001 5435 16/x >FFFO >000F >0000
MOVE A0,*A1(>OFFF),0 >0001 4531 19/x >FFFF >0007 >0000
MOVE A0,*A1(>7FFF),1 >0000 D531 x/22 >FFFF >003F >0000
MOVE A0,*A1(>FFF2),1 >0001 5540 x/25 >FFFC >07FF >0000
MOVE A0,*A1(>8000),0 >0001 D530 27/x >FFFF >07FF >0000
MOVE A0,*A1(>FFF0),0 >0001 5540 31/x >FFFF >7FFF >0000
MOVE A0,*A1(>FFEC),1 >0001 5548 x/31 >FFFO >FFFF >0007
MOVE A0,*A1(>FFEC),0 >0001 554D 32/x >FE00 >FFFF >01 FF
MOVE A0,*A1(>001D),0 >0001 5520 32/x >E000 >FFFF >1FFF
MOVE A0,*A1(>0020),1 >0001 5520 x/32 >0000 >FFFF >FFFF

1

12-117

i

MOVE

Syntax

Execution

Encoding

Operands

Examples

	

Move Field - Register to Absolute 	MOVE

MOVE <Rs>,@<DAddress>[,< F>]

(field)Rs 	(field)@DAddress

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0
0 	0 	0 	0 	0 	1

	
F
	

1 	1 	0 	0 R
	

Rs
Destination Address (LSW)

Destination Address (MSW)

Rs 	The source operand is the right justified field in the specified register.
1-32 bits of the register are moved, depending on the field size.

DAddress
Linear destination address. The destination location is the memory
address contained in the two extension words following the in-
struction.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

MOVE moves a field from the source register to the destination memory
address. The specified destination memory address is a bit address and the
field size for the move is 1-32 bits. SETF sets the field size and extension.

3

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains these values before instruction execution:

Description

Words

Machine
States

Status Bits

Data
>0000
>0000
>0000

>FFFF FFFF

Address
>15500
>15510
>15520

Register AO

Code

MOVE A0,@>15500,0
MOVE A0,@>15503,1
MOVE A0,@>15508,0
MOVE A0,@>15508,1
MOVE AO,@>1550D,0
MOVE A0,@>15510,1
MOVE A0,@>15512,0
MOVE A0,@>1550C,1

	

Before 	After

FS0/1 @>15500 @>15510 @>15520

	

5/x 	>001F >0000 >0000

	

x/8 	>07F8 >0000 >0000

	

13/x 	>FFOO >001F >0000

	

x/16 	>F800 >07FF >0000

	

19/x 	>E000 >FFFF >0000

	

x/24 	>0000 >FFFF >OOFF

	

27/x 	>0000 >FFFC >1FFF

	

x/32 	>F000 >FFFF >OFFF

12-118

MOVE 	Move Field - Indirect to Register 	MOVE

Syntax
	

MOVE *<Rs>,<Rd>[,<F>]

Execution
	

(field)*Rs -> Rd

Encoding
	

15 14 13 12 11 10 9 8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0
1 	0 	0 	0 	0 	1

	
F
	

Rs
	

R
	

Rd

Operands 	*Rs The source operand location is the memory address contained in the
specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FEO parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the memory address contained in the source re-
gister to the destination register. The source memory address is a bit ad-
dress and the field size for the move is 1-32 bits. When the field is moved
into the destination register, it is right justified and sign extended or zero
extended to 32 bits according to the value of FE. This instruction also
performs an implicit compare to 0 of the field data. The SETF instruction
sets the field size and extension. The source and destination registers must
be in the same register file.

Words 	1

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address
>15500
>15510

Register

Code

>7770
>7777

AO = >0001

Data

5500

Before After

FSO/1 FEO/1 Al NCZV
MOVE *AO , Al, 1 x/1 x/1 >0000 0000 Ox10
MOVE *AO , Al, 0 5/x 0/x >0000 0010 Ox00
MOVE *AO , Al, 1 x/5 x/1 >FFFF FFFO 1x00
MOVE *AO ,A1, 0 12/x 1/x >0000 0770 Ox00
MOVE *AO , Al, 1 x/12 x/0 >0000 0770 Ox00
MOVE *AO , Al, 0 18/x 0/x >0003 7770 Ox00
MOVE *AO , Al, 1 x/18 x/1 >FFFF 7770 1x00
MOVE *AO,A1,0 27/x 1/x >FF77 7770 1x00
MOVE *AO , Al , 1 x/27 x/O >0777 7770 Ox00
MOVE *AO , Al 0 31/x 0/x >7777 7770 Ox00
MOVE *AO , A1 , 1 x/31 x/1 >F777 7770 1x00
MOVE *AO Al, 0 32/x x/x >7777 7770 Ox00

12-119

MOVE 	Move Field - Indirect to Indirect 	MOVE

Syntax
	

MOVE *<Rs>,*<Rd>[,< F>]

Execution
	

(field)* Rs 	(field)* Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2
	

1 0
1
	

0 	0 	0 	1 	0
	

F
	

Rs
	

I R I 	Rd

Operands 	*Rs The source operand location is the memory address contained in the
specified register.

*Rd The destination location is the memory address contained in the
specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both memory addresses are bit addresses and the field
size for the move is 1-32 bits. The field size is determined by the value of
FS for the specified F bit. The SETF instruction sets the field size and ex-
tension. The source and destination registers must be in the same register
file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address Data Address Data
>15500 >FFFF >15530 >0000
>15510 >FFFF >15540 >0000
>15520 >FFFF >15550 >0000

Code

MOVE *A0, *Al ,
MOVE *A0, *A1,
MOVE *A0, *Al ,
MOVE *AO , *A1 ,
MOVE *AO , *A1 ,
MOVE *A0, *A1,
MOVE *AO , *Al ,
MOVE *AO , *A1 ,
MOVE *AO, *A1,
MOVE *AO , *Al ,
MOVE *AO , *A1 ,
MOVE *AO , *Al ,
MOVE *AO , *A1 ,

Before

Al FSO/1

After

@>15540 @>15550 AO @>15530
1 >0001 5500 >0001 5530 x/1 >0001 >0000 >0000
0 >0001 5500 >0001 5534 5/x >01 FO >0000 >0000
1 >0001 5500 >0001 553A x/10 >FC00 >000 F >0000
0 >0001 5500 >0001 553F 19/x >8000 >FFFF >0003
1 >0001 5504 >0001 5530 x/7 >007F >0000 >0000
0 >0001 550A >0001 5530 13/x >1FFF >0000 >0000
1 >0001 550D >0001 5534 x/8 >OFFO >0000 >0000
0 >0001 550D >0001 5530 28/x >FFFF >OFFF >0000
1 >0001 5505 >0001 5535 x/23 >FFEO >OFF F >0000
0 >0001 5508 >0001 5536 31/x >FFCO >FFFF >001F
1 >0001 5508 >0001 5531 x/31 >FFFE >FFF F >0000
0 >0001 550A >0001 5530 32/x >FFFF >FFFF >0000
0 >0001 5500 >0001 553A x/32 >FC00 >FFF F >03FF

12-120

Move rield - Indirect (Postincrement)
MCVE 	 to Register

Syntax 	MOVE •<Rs>+,<Rd>[,< F>]

Execution 	(field)* Rs -■ Rd
(Rs) + field size 	Rs

Encoding

Operands 	*Rs+ Source register (indirect with postincrement). The source operand
location is the memory address contained in the specified register.
The register is incremented after the move by the field size selected.

Rd 	The destination location is the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FEO parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the memory address contained in the source re-
gister to the destination register. The source register is incremented after
the MOVE by the field size selected. The source memory address is a bit
address and the field size for the move is 1-32 bits. When the field is moved
into the destination register, it is right justified and sign extended or zero
extended to 32 bits according to the value of FE for the particular F bit se-
lected. This instruction also performs an implicit compare to 0 of the field
data. The SETF instruction sets the field size and extension. The source
and destination registers must be in the same register file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4

MOVE

3
	

2
	

1
	

0

1
	

0 	0 	1 	0 	1
	

F
	

Rs
	I R I 	Rd

12-121

MOVE

Examples

Move Field - Indirect (Postincrement)
to Register 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Code

Address
>15500
>15510

Register AO = >0001

Before

Data
>7770
>7777

5500

After

FSO/1 FEO/1 AO Al NCZV
MOVE *A0+,A1,1 x/1 x/0 >0001 5501 >0000 0000 Ox10
MOVE *A0+,A1 , 1 x/5 x/0 >0001 5505 >0000 0010 Ox00
MOVE *AO+ ,A1, 0 5/x 1/x >0001 5505 >FFFF FFFO lx00
MOVE *AO+ ,A1 , 0 12/x 0/x >0001 550C >0000 0770 Ox00
MOVE *AO+ ,A1 , 1 x/12 x/1 >0001 550C >0000 0770 Ox00
MOVE *AO+ ,A1 , 0 18/x 1/x >0001 5512 >FFFF 7770 1x00
MOVE *A0+,A1, 1 x/18 x/0 >0001 5512 >0003 7770 0x00
MOVE *AO+ ,A1 , 0 27/x 0/x >0001 551 B >0777 7770 Ox00
MOVE *A0+,A1,1 x/27 x/1 >0001 551B >FF77 7770 1 x00
MOVE *AO+ ,A1 , 0 31/x 1/x >0001 551F >F777 7770 1x00
MOVE *A0+,A1 , 1 x/31 x/0 >0001 551F >7777 7770 Ox00
MOVE *AO+ ,A1 , 0 32/x x/x >0001 5520 >7777 7770 Ox00

r

12-122

1

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1
	

0 	0 	1 	1 	0 F
	

Rs
	

R
	

Rd

Move Field - Indirect (Postincrement)
MOVE 	 to Indirect (Postincrement) 	 MOVE

Syntax 	MOVE *<Rs>+, *<Rd>+[,<F>]

Execution 	(field)*Rs 	(field)*Rd
(Rs) + field size -■ Rs
(Rd) + field size - ■ Rd

Encoding

Operands 	*Rs+ Source Register (indirect with postincrement). The source operand
location is the memory address contained in the specified register.
The register is incremented after the move by the field size selected.

*Rd+ Destination register (indirect with postincrement). The destination
location is the memory address contained in the specified register.
The register is postincremented after the move by the field size se-
lected. If Rs and Rd specify the same register, then the destination
location is the original contents of the register incremented by twice
the FS.

F 	is an optional operand; it defaults to 0.
F=0 selects the FS0 parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both registers are incremented after the move by the field
size selected. Both memory addresses are bit addresses and the field size
for the move is 1-32 bits. The field size is determined by the value of FS
for the F bit specified. The SETF instruction sets the field size and exten-
sion. If Rs and Rd specify the same register, the data read from the location
pointed to by the original contents of Rs will be written to the location
pointed to by the incremented value of Rs (Rd). The source and destina-
tion registers must be in the same register file.

Words 	1

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

1

12-123

MOVE

Examples

Move Field - Indirect (Postincrement)
to Indirect (Postincrement) 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Before

5500

Address
>15500
>15510
>15520

MOVE 	*A0+,*A1+,F

Al 	FSO/1
>0001 553D 	x/1

Data
> FFFF
>FFFF
>FFFF

After

Address
>15530
>15540
>15550

Al
>0001 553E

Data
> 0000
> 0000
> 0000

@>15530 @>15540
>2000 	>0000

@>15550
>0000

F 	AO
1 	> 0001

AO
>0001 5501

0 	> 0001 5505 > 0001 5538 5/x >0001 550A >0001 553D >1F00 >0000 >0000
1 	> 0001 550A >0001 553F x/10 > 0001 5514 >0001 5549 >8000 >01FF >0000
0 	> 0001 550D >0001 5530 19/x >0001 5520 >0001 5543 >FFFF >0007 >0000
1 	> 0001 5510 >0001 5532 x/7 > 0001 5517 >0001 5539 >01 FC >0000 >0000
0 	> 0001
1 	>0001

5511
5513

>0001
>0001

553A
553F

13/x
x/8

>0001
>0001

551E
551B

>0001
>0001

5547
5547

>FC00
>8000

>007F
>007F

>0000
>0000

o 	>0001 5510 >0001 553A 28/x >0001 552C >0001 5556 >FC00 >FFFF >003F
1 	>0001 5518 >0001 5534 x/23 >0001 552F >0001 554B >FFFO >07FF >0000
0 	>0001 5510 >0001 5530 31/x >0001 552F >0001 554F >FFFF >7FFF >0000
1 	>0001 5511 >0001 553D x/31 >0001 5530 >0001 555C >E000 >FFFF >OFFF
0 	>0001
1 	>0001

5510
5500

>0001
>0001

553F
5530

32/x
x/32

>0001
>0001

5530
5520

>0001
>0001

555F
5550

>8000
>FFFF

>FFFF
>FFFF

>7FFF
>0000

12-124

MOVE

Syntax MOVE -*<Rs>,<Rd>[,‹ F>]

(Rs) - field size 	Rs
(field)*Rs -■ Rd

15 14 13 12 11 10
	

9 8 7 6 5 4

-*Rs Source Register (indirect with predecrement). The source operand
location is the memory address contained in the specified register
decremented by the field size selected. This is also the final value
for the register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FE0 parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the memory address contained in the source re-
gister to the destination register. The source register is predecremented
before the move by the field size selected. The source memory address is
a bit address and the field size for the move is 1-32 bits. The field size is
determined by the value of FS for the F bit specified. The SETF instruction
sets the field size and extension. When the field is moved into the desti-
nation register, it is right justified and sign extended or zero extended to 32
bits according to the value of FE for the particular F bit selected. This in-
struction also performs an implicit compare to 0 of the field data.

The source and destination registers must be in the same register file. If
Rs and Rd are the same register, the pointer information is overwritten by
the data fetched.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

Move Field - Indirect (Predecrement)
to Register MOVE

Execution

Encoding

Operands

3 2 	1 	0

Rd

12-125

MOVE

Examples

Move Field - Indirect (Predecrement)
to Register 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Code

Address

Register

>15500
>15510

AO = >0001

Before

Data
>7770
>7777

5520

After

FS0/1 FEO/1 AO Al NCZV
MOVE -*AO,A1,1 x/1 x/0 >0001 551F >0000 0000 Ox10
MOVE -*AO,A1,0 5/x 1/x >0001 551B >0000 000E Ox00
MOVE -*AO,A1,1 x/5 x/0 >0001 551B >0000 000E Ox00
MOVE -*AO,A1,0 12/x 0/x >0001 5514 >0000 0777 Ox 00
MOVE -*AO,A1,1 x/12 x/1 >0001 5514 >0000 0777 Ox 00
MOVE -*AO,A1,0 18/x 1/x >0001 550E >0001 DDDD Ox00
MOVE -*AO,A1,1 x/18 x/0 >0001 550E >0001 DDDD Ox00
MOVE -*AO,A1,0 27/x 0/x >0001 5505 >03888888 Ox 00
MOVE -*AO,A1,1 x/27 x/1 >0001 5505 >03BBBBBB Ox00
MOVE -*AO,A1,0 31/x 1/x >0001 5501 >3BBBBBB8 Ox00
MOVE -*AO,A1,1 x/31 x/0 >0001 5501 >3BBBBBB8 Ox 00
MOVE -*AO,A1,0 32/x x/x >0001 5500 >77777770 Ox00

12-126

Move Byte - Indirect (Predecrement)
MOVE 	 to Indirect (Predecrement) 	 MOVE

Syntax

Execution

Encoding

MOVE - . <Rs>,-*<Rd>[,< F>]

(Rs) - field size -> Rs
(Rd) - field size - ■ Rd
(field)* Rs (field)*Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	0 	1 	0 	1 	0
	

F
	

Rs
	

R
	

Rd

Operands 	- *Rs Source Register (indirect with predecrement). The source operand
location is the memory address contained in the specified register
decremented by the field size selected. This is also the final value
for the register.

- *Rd Destination register (indirect with predecrement). The destination
location is the memory address contained in the specified register
decremented by the field size selected. This is also the final value
for the register. If Rs and Rd specify the same register, then the
destination location is the original contents decremented by twice
the FS.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both registers are decremented before the move by the
field size selected. Both memory addresses are bit addresses and the field
size for the move is 1-32 bits. The field size is determined by the value of
FS for the F bit specified. The SETF instruction sets the field size and ex-
tension. The source and destination registers must be in the same register
file. If Rs and Rd are the same register, then the final contents of the reg-
ister are its original contents decremented by twice the field size.

Words 	 1

Machine
States 	 See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

1 2-1 27

Move Byte - Indirect (Predecrement)
MOVE 	 to Indirect (Predecrement) 	 MOVE

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Before

Address
>15500 	>FFFF
>1 5 51 0 	>FFFF
>1 5 5 20 	>FFFF

MOVE 	- *AO, - *Al

Data 	Address

F

After

>1 5 530
>1 5 540
>1 5 5 50

Data
>0 00 0
>0 0 0 0
>0 0 0 0

F 	AO Al FSO/1 AO Al @>15530@>15540@>15550

1 	>0001 5501 >0001 5531 x/1 >0001 5500 >0001 5530 >0001 >0000 >0000
0 >0001 5505 >0001 5539 5/x >0001 5500 >0001 5534 >01F0 >0000 >0000
1 	>0001 550A >0001 5544 x/10 >0001 5600 >0001 553A >FC00 >000F >0000
0 	>0001 5513 >0001 5552 19/x >0001 5500 >0001 553F >8000 >FFFF >0003
1 	>0001 550B >0001 5537 x/7 >0001 5504 >0001 5530 >007F >0000 >0000
0 > 0001 5517 > 0001 553D 13/x >0001 550A >0001 5530 >1 FFF >0000 >0000
1 	>0001 5515 >0001 553C x/8 >0001 550D >0001 5534 >OFFO >0000 >0000
0 >0001 5529 >0001 554C 28/x >0001 5500 >0001 5530 >FFFF >OFFF >0000
1 	>0001 551C >0001 554C x/23 >0001 5505 >0001 5535 >FFEO >OFFF >0000
0 	> 0001 5527 > 0001 5555 31/x > 0001 5508 > 0001 5536 >FFCO >FFFF >001F
1 	>0001 5527 >0001 5550 x/31 >0001 5508 >0001 5531 >FFFE >FFFF >0000
0 	>0001 552A >0001 5550 32/x >0001 550A >0001 5530 >FFFF >FFFF >0000
1 	>0001 5520 >0001 555A x/32 >0001 5500 >0001 553A >FC00 >FFFF >03FF

12-128

Move Field - Indirect with Displacement
MOVE 	 to Register

Syntax
	

MOVE . <Rs(Displacement)>,< Rd>[,<F>]

Execution
	

(field)•(Rs + Displacement) - ■ Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2 1 0

MOVE

1 	0 	1 	1 	0 	1
	

F
	

Rs
	 R
	

Rd

Displacement

Operands 	"Rs(Displacement)
Source register with displacement. The source operand location is
the memory address specified by the sum of the specified register
contents and the signed 16-bit displacement. The source displace-
ment is contained in the extension word following the instruction.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FEO parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the source memory address to the destination
register. The source memory address is a bit address and is formed by ad-
ding the contents of the specified register to the signed 16-bit displace-
ment. The field size for the above is 1-32 bits. When the field is moved into
the destination register, it is right justified and sign extended or zero ex-
tended to 32 bits, according to the value of FE for the particular F bit se-
lected. This instruction also performs an implicit compare to 0 of the field
data. The SETF instruction sets the field size and extension. The source
and destination registers must be in the same register file.

Words 	2

Machine
States 	See Section 13.2, MOVE and MOVB Instructions Timing.

Status Bits 	N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

12-129

MOVE

Examples

Move Field - Indirect with Displacement
to Register 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Code

Address
>15530
>15540
>15550

Data
>3333
>4444
>5555

Before After

AO FB0/ FE01 Al NCZV
MOVE *A0(>0000),A1,1 >0001 5530 x/1 x/1 >FFFF FFFF 1x00
MOVE *A0(>0003),A1,1 >0001 552F x/2 x/O >0000 0000 Ox10
MOVE *A0(>0001),A1,0 >0001 552F 5/x 0/x >0000 0013 Ox00
MOVE *A0(>000F),A1,0 >0001 552D 8/x 1 /x >0000 0043 Ox00
MOVE *A0(>0020),A1,1 >0001 551 C x/13 x/0 >0000 0443 Ox00
MOVE *A0(>00FF),A1,0 >0001 5435 16/x 1/x >0000 4333 Ox00
MOVE *A0(>OFFF),A1,0 >0001 4531 19/x 1 /x >FFFC 3333 1x00
MOVE *A0(>7FFF),A1,1 >0000 D531 x/22 x/1 >0004 3333 Ox00
MOVE *A0(>FFF2),A1,1 >0001 5540 x/25 x/0 >0111 OCCC Ox00
MOVE *A0(>8000),A1,0 >0001 D530 27/x 1/x > FC44 3333 1x00
MOVE *A0(>FFF0),A1,0 >0001 5540 31/x 0/x >4444 3333 Ox00
MOVE *A0(>FFE0),A1,1 >0001 5558 x/31 x/1 >D544 4433 1x00
MOVE *A0(>FFEC),A1,0 >0001 554D 32/x 0/x >AAA2 2219 1x00
MOVE *A0(>001D),A1,0 >0001 5520 32/x 1 /x >AAAA 2221 1x00
MOVE *A0(>0020),A1,1 >0001 5520 x/32 x/0 >5555 4444 Ox00

12-130

Move Field - Indirect with Displacement
MOVE 	 to Indirect (Postincrement) 	 MOVE

Syntax 	MOVE *<Rs(Displacement)>, .<Rd>+[,<F>]

Execution 	(field)" Rs(Displacement) 	(field)*Rd
(Rd) + field size -+ Rd

Encoding 	15 14 13 12 11 10 9 	8 7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	1 	0 	1 	0 	0 F
	

Rs
	

R
	

Rd

Displacement

Operands 	*Rs(Displacement)
Source register with displacement. The source operand location is
the memory address specified by the sum of the source register
contents and the signed 16-bit displacement, contained in the ex-
tension word following the instruction.

*Rd+
Destination register (indirect with postincrement). The destination
location is the memory address contained in the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address contained in the destination register; both the source and
destination memory addresses are bit addresses. The source memory ad-
dress is formed by adding the contents of the source register to the signed
16-bit displacement. The destination register is incremented following the
move by the field size selected. The field size for the move is 1-32 bits.
The SETF instruction sets the field size and extension. The source and
destination registers must be in the same register file.

Words

Machine
States

Status Bits

2

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-131

Move Field - Indirect with Displacement
to Indirect (Postincrement) 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

MOVE

Examples

Address Data Address Data
>15500 >0000 >15530 >3333
>15510 >0000 >15540 >4444
>15520 >0000 >15550 >5555

Code Before

Al 	FSO/1

After

@>15520

@>15510

@>15500

AO Al
MOVE *A0(>0000),A1+,1 >00015530 >00015500 x/1 > 00015501 >0001 >0000 >0000
MOVE *A0(>0001),A1+,1 >0001552F >00015504 5/x >00015509 >0130 >0000 >0000
MOVE *A0(>000F),A1+,1 >0001552D >0001550C 8/x >00015514 >3000 >0004 >0000
MOVE *A0(>0020),A1+,1 > 0001551 C > 0001550D x/13 >0001551A >6000 >0088 >0000
MOVE *A0(>00FF),A1+,1 >00015535 >0001550C 16/x > 0001551 C >3000 >0433 >0000
MOVE *A0(>OFFF),A1+,1 > 00015531 > 00015510 19/x >00015523 >0000 >3333 >0004
MOVE *A0(>7FFF),A1+,1 > 0000D531 > 00015508 x/22 > 0001551E >3300 >0433 >0000
MOVE *A0(>FFF2),A1+,1 > 00015540 > 00015500 x/25 >00015519 >OCCC >0111 >0000
MOVE *A0(>8000),A1+,1 > 0001 D530 > 00015503 27/x > 0001551 E >9998 >2221 >0000
MOVE *A0(>FFF0),A1+,1 >00015540 >00015501 31/x > 0001552A >6666 >8888 >0000
MOVE *A0(>FFE0),A1+,1 >00015558 >00015508 x/31 >00015527 >3300 >4444 >0055
MOVE *A0(>FFEC),A1+,1 >0001554D >0001550A 32/x > 00015528 >3200 >4444 >0155
MOVE *A0(>001D),A1+,1 > 00015520 > 00015510 32/x >00015530 >0000 >2221 >AAAA
MOVE *A0(>0020),A1+,1 >00015520 >00015510 x/32 > 00015530 >0000 >4444 >5555

12-132

Move Field - Indirect with Displacement
MOVE 	 to Indirect with Displacement 	 MOVE

Syntax

Execution

Encoding

MOVE *<Rs(Displacement)>, *<Rd>(Displacement)> [,<F>.]

(field)*Rs(Displacement) 	(field)*Rd(Displacement)

15 14 13 12 11 10 9 	8 	7 	6 	5 	4 	3
	

2
	

1
	

0

1 	0 	1 	1 	1 	0
	

F
	

Rs
	

R
	

Rd

Source Displacement

Destination Displacement

Operands 	"Rs(Displacement)
Source register with displacement. The source operand location is
the memory address specified by the sum of the specified register
contents and the signed 16-bit displacement, contained in the first
of two extension words following the instruction.

*Rd(Displacement)
Destination register with displacement. The destination location is
the memory address specified by the sum of the specified register
contents and the signed 16-bit displacement, contained in the sec-
ond of two extension words following the instruction.

F 	is an optional operand; it defaults to 0.
F=0 selects the FS0 parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both the source and destination memory addresses are
bit addresses and are formed by adding the contents of the specified regis-
ter to its respective signed 16-bit displacement. The field size for the move
is 1-32 bits. The SETF instruction sets the field size and extension. The
source and destination registers must be in the same register file.

Words 	3

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-133

MOVE

Examples

Move Field - Indirect with Displacement
to Indirect with Displacement 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Address Data Address Data
>15500 >0000 >15530 >3333
>15510 >0000 >15540 >4444
>15520 >0000 >15550 >5555

Before After

Al 	FSO/1

4>15500 	@>15520

@>15510 AO
MOVE *AO (>0000) , *A1 (>0000) , 1 >00015530 >00015500 x/1 >0001 >0000 >0000
MOVE *AO (>0001) , *A1 (>0000) , 0 >0001552F >00015504 5/x >0130 >0000 >0000
MOVE *AO (>000F) , *A1 (>000F) , 0 >0001552D > 000154FD 8/x >3000 >0004 >0000
MOVE *AO (>0020) , *A1 (>001D) , 1 >0001551C >000154F0 x/13 >6000 >0088 >0000
MOVE *AO (> OOFF) , *A1 (>FFF8) , 0 >00015435 >00015514 16/x >3000 >0433 >0000
MOVE *AO (>OFFF) , *A1 (>OFFF) , 0 >00014531 > 00014511 19/x >0000 >3333 >0004
MOVE *AO (> 7FFF) , *A1 (>8000) , 1 >0000D531 > 0001 D508 x/22 >3300 >0433 >0000
MOVE *AO (>FFF2) , *A1 (>7FFF) , 1 >00015540 >0000D501 x/25 >OCCC>0111 >0000
MOVE *AO (>8000) , *A1 (>0020) , 0 > 0001 D530 > 000154E3 27/x >9998 >2221 >0000
MOVE *AO (>FFFO) , *A1 (>0010) , 0 >00015540 > 000154F1 31/x >6666 >8888 >0000
MOVE *AO (>FFEO) , *A1 (>FFEO) , 1 >00015558 > 00015528 x/31 >3300 >4444 >0055
MOVE *AO (>FFEC) , *A1 (>FFEC) , 0 >00015540 > 0001551 D 32/x >3200 >4444 >0155
MOVE *AO (>001D) , *A1 (>0020) , 0 >00015520 > 000154F0 32/x >0000 >2221 >AAAA
MOVE *AO (>0020) , *A1 (>0020) , 1 >00015520 > 000154F0 x/32 >0000 >4444 >5555

12-134

Syntax

Execution

Encoding

MOVE @<SAddress>,<Rd>[,< F>]

(field)@SAddress -0 Rd

15 14 13 12 11 10 9
	

8
	

7 6 5 4 3 2 1 0

MOVE 	Move Field - Absolute to Register 	MOVE

0 	0 	0 	0 	0 	1
	

F
	

1 	1 	0 	1
	

R
	

Rd

Source Address (LSW)

Source Address (MSW)

Operands 	SAddress
Source address. The source operand location is the linear memory
address contained in the two extension words following the in-
struction. It is 1-32 bits in size.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FE0 parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the source memory address to the destination
register. The specified source memory address is a bit address and the field
size for the move is 1-32 bits. When the field is moved into the destination
register, it is right justified and sign extended or zero extended to 32 bits
according to the value of FE for the particular F bit selected. This instruc-
tion also performs an implicit compare to 0 of the field data. The SETF in-
struction sets the field size and extension.

Words

Machine
States

Status Bits

3

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

12-135

MOVE Move Field - Absolute to Register 	MOVE

Examples Assume that memory contains the following values before instruction exe-
cution:

Address
>15500
>15510

Code

Data
>7770
>7777

Before After

FEO/1 FSO/1 Al NCZV
MOVE @>15500,A1,1 x/0 x/1 >0000 0000 Ox10
MOVE @>15500,A1,0 0/x 5/x >0000 0010 Ox00
MOVE @>15503,A1,1 x/1 x/5 >0000 000E Ox 00
MOVE @>15500,A1,0 0/x 12/x >0000 0770 Ox00
MOVE @>1550D,A1,1 x/1 x/12 >FFFF FBBB 1x00
MOVE @>15504,A1,0 1/x 18/x >FFFF 7777 1x00
MOVE @>15500,A1,1 x/0 x/18 >0003 7770 000
MOVE @>15500,A1,0 0/x 27/x >0777 7770 Ox00
MOVE @>15500,A1,1 x/1 x/27 >FF77 7770 1x00
MOVE @>15501,A1,0 0/x 30/x >3BBB BBB8 Ox00
MOVE @>15501,A1,1 x/1 x/30 >FBBB BBB8 1x00
MOVE @>15500,A1,0 x/x 32/x >7777 7770 Ox00

12-136

1 	1 	0 	1 	0 	1
	

F
	

0 	0 	0 	0 R
	

Rd

Source Address (LSW)

Source Address (MSW)

MOVE

Syntax

Execution

Encoding

Move Field - Absolute to Indirect
(Postincrement)

MOVE @<SAddress>, *<Rd>+[,F]

(field)@SAddress 	(field)*Rd
(Rd) + field size -+ Rd

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4 3 2
	

1 0

MOVE

Operands 	SAddress
Source address. The source operand location is the linear memory
address contained in the two extension words following the in-
struction.

*Rd+
Destination register (indirect with postincrement). The destination
location is the memory address contained in the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the memory ad-
dress contained in the destination register. The source memory address is
contained in the two extension words following the instruction. The des-
tination register is incremented following the move by the field size se-
lected. The source and destination registers must be in the same register
file.

Words 	5

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-137

Move Field - Absolute to Indirect
MOVE 	 (Postincrement) 	 MOVE

Examples 	Assume that memory contains the following values before instruction exe-
cution:

	

Address 	Data 	Address 	Data

	

>15500 	>FFFF 	>15530 	>0000

	

>15510 	>FFFF 	>15540 	>0000

	

>15520 	>FFFF 	>15550 	>0000

Code Before After

@>15500 	@>15520
AO 	 Al FEO/1 Al @>15510

MOVE @ 15 5 0 	, A1+ , 1 >00015530 >00015531 x/1 >00015531 >0001 >0000 >0000
MOVE @ 15 5 0 	, A1+ 	> 00015534 > 00015539 5/x > 00015539 >01 FO >0000 >0000
MOVE @ 15 5 00 , A1+ , 1 >0001553A >00015544 x/10 >00015544 >FC00 >000F >0000
MOVE @ 15 5 0 	, A1+ , 0 >0001553F >00015552 19/x >00015552 >8000 >FFFF >0003
MOVE @15 5 04 ,A1+, i >00015530 >00015537 x/7 >00015537 >007F >0000 >0000
MOVE @15 5 OA , Al+ , 0 >00015530 >0001553D 13/x >0001553D >1 FFF >0000 >0000
MOVE @ 15 5 OD , Al+ , 1 >00015534 >00015536 x/8 >00015536 >OFFO >0000 >0000
MOVE @15 5 OD , Al+ , 0 >00015530 >0001554C 28/x >0001554C >FFFF >OFFF >0000
MOVE @15 5 0 5 ,A1+ , 1 >00015535 >0001554D x/23 >0001554D >FFEO >OFFF >0000
MOVE @15508,A1+,0 >00015536 >00015555 31/x >00015555 >FFCO >FFFF >001F
MOVE @15 5 08 , A1+ , 1 >00015531 >00015548 x/31 >00015548 >FFFE >FFFF >0000
MOVE @155OA,Al+,0 >00015530 >00015550 32/x >00015550 >FFFF >FFFF >0000
MOVE @15 5 0 0 ,A1+ , 1 >0001553A >0001555A x/32 >0001555A >FC00 >FFFF >03FF

12-138

MOVE 	Move Field - Absolute to Absolute 	MOVE

Syntax

Execution

Encoding

MOVE @<SAddress>, @<DAddress>[,<F>]

(fieid)©SAddress 	(field)@DAddress

15 14 13 12 11 10 9 	8 	7 	6 	5
	

4
	

3
	

2
	

0

0 	0 	0 	0 	0 	1 	IF 	I 	1 	1 	1 	0 	0 	0 	0 	0 	0

Source Address (LSW)

Source Address (MSW)

Destination Address (LSW)

Destination Address (MSW)

Operands 	SAddress
Source address. The source operand location is the linear memory
address contained in the first set of two extension words following
the instruction.

DAddress
Destination address. The destination location is the linear memory
address contained in the second set of two extension words follow-
ing the instruction.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both memory addresses are bit addresses and the field
size for the move is 1-32 bits. The SETF instruction sets the field size and
extension.

Words 	5

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-139

MOVE

Examples

Move Field - Absolute to Absolute 	MOVE

Assume that memory contains the following values before instruction exe-
cution:

Address
>15500
>15510
>15520
>15530
>15540
>15550

Data
>FFFF
>FFFF
>FFFF
>0000
>0000
>0000

Code Before After

@>15540 @>15550 FSO/1 @>15530
MOVE @>15500,@>15530,1 x/1 >0001 >0000 >0000
MOVE @>15500,@>15534,0 5/x >01F0 >0000 >0000
MOVE @>15500,@>1553A,1 x/10 >FC00 >000F >0000
MOVE @>15500,@>1553F,0 19/x >8000 >FFFF >0003
MOVE @>15504,@>15530,1 x/7 >007F >0000 >0000
MOVE @>1550A,@>15530,0 13/x >1 FFF >0000 >0000
MOVE @>1550D,@>15534,1 x/8 >OFFO >0000 >0000
MOVE @>1550D,@>15530,0 28/x >FFFF >OFFF >0000
MOVE @>15505,@>15535,1 x/23 >FFEO. >OFFF >0000
MOVE @>15508,@>15536,0 31/x >FFCO >FFFF >001F
MOVE @>15508,@>15531,1 x/31 >FFFE >FFFF >0000
MOVE @>1550A,@>15530,0 32/x >FFFF >FFFF >0000
MOVE @>15500,@>1553A,0 x/32 >FC00 >FFFF >03FF

12-140

I

0 	0 	0 	0 	1 	0 	0 	1 	1 	1 	0 R
	

Rd

IW

MOVI <IW>,<Rd>[,W]

IW 	Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Syntax

Execution

Encoding

Move Immediate - 16 Bits 	 MOVI MOVI

Operands 	IW is a 16-bit immediate value.

Description 	MOVI stores a 16-bit, sign-extended immediate value in the destination
register.

The assembler will use the short form if the immediate value has been pre-
viously defined and is in the range -32,768 < IW < 32,767. You can force
the assembler to use the short form by following the register specification
with ,W:

MOVI IW , Rd, W

The assembler will truncate the upper bits and issue an appropriate warning
message.

Words 	2

Machine
States 	2,8

Status Bits 	N 1 if the data being moved is negative, 0 otherwise.
C Unaffected
Z 1 if the data being moved is 0, 0 otherwise.
V 0

Examples 	Code 	 After

AO 	 NCZV
MOVI 32767 , AO 	>0000 7FFF Ox00
MOVI 	1,A0 	>0000 0001 	Ox00
MOVI 	0,A0 	>0000 0000 Ox10
MOVI 	-1,A0 	>FFFF FFFF 1x00
MOVI -32768,A0 	>FFFF 8000 1x00
MOVI >0000,A0 	>0000 0000 Ox10
MOVI > 7FFF , AO 	>00007FFF Ox00

12-141

Syntax

Execution

Encoding

MOVI <IL>,<Rd> [,L]

IL 	Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

MOVI Move Immediate - 32 Bits 	 MOVI

0 	0 	0 	0 	1 	0 	0 	1 	1 	1 	1
	

Rd

IL (LSW)

IL (MSW)

Operands 	IL is a 32-bit immediate value.

Description 	MOVI stores a 32-bit immediate value,in the destination register. The as-
sembler will use this opcode if it cannot use the MOVI IW,Rd opcode,
or if the long opcode is forced by following the register specification with
,L:

MOVI IL,Rd,L

Words 	3

Machine
States 	3,12

Status Bits 	N 1 if the data being moved is negative, 0 otherwise.
C Unaffected
Z 1 if the data being moved is 0, 0 otherwise.
V

Examples 	Code 	 After

AO 	 NCZ V
MOVI 2147483647,A0 	>7FFF FFFF Ox00
MOVI 	 32768 , AO 	>0000 8000 Ox00
MOVI 	-32769,A0 	>FFFF 7FFF 1x00
MOVI -2147483648,A0 	>8000 0000 1 x00
MOVI 	 >8000 , AO >0000 8000 Ox00
MOVI 	>FFFFFFFF ,A0 	>FFFF FFFF 1x00
MOVI 	>FFFF ,A0 ,L 	>FFFFFFFF 1x00

12-142

Syntax

Execution

Encoding

MOVK <K>,<Rd>

K 	Rd

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2 1 0

0 	0 	0 	1 	1 	0
	

K
	

R
	

Rd

MOVK 	 Move Constant (5 Bits) 	' MOVK

Operands

Description

Words

Machine
States

Status Bits

K is a constant from 1 to 32.

MOVK stores a 5-bit constant in the destination register. The constant is
treated as an unsigned number in the range 1-32, where K = 0 in the op-
code corresponds to a value of 32. The resulting constant value is zero
extended to 32 bits. Note that you cannot set a register to 0 with this in-
struction. You can clear a register by XORing the register with itself; use
CLR Rd (an alternate mnemonic for XOR) to accomplish this. Both these
methods alter the Z bit (set it to 1).

1

1,4

N Unaffected
C Unaffected
Z Unaffected
✓ Unaffected

Examples 	Code

MOVK ',AO
MOVK 8,A0
MOVK 16,A0
MOVK 32,A0

After

AO
>0000 0001
>0000 0008
>0000 0010
>0000 0020

12-143

MOVX 	 Move X Half of Register 	 MOVX

Syntax
	

MOVX <Rs>,<Rd>

Execution
	

(RsX) —■ RdX

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5 4 3 2
	

1 0

Description

Rs
	 R
	

Rd

MOVX moves the X half of the source register (16 LS8s) to the X half of
the destination register. The Y halves of both registers are unaffected.

MOVX and MOVY instructions can be used for handling packed 16-bit
quantities and XY addresses. The RL instruction can be used to swap the
contents of X and Y.

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

1

1,4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples Code 	 Before

AO
MOVX AO , Al 	>0000 0000
MOVX AO , Al 	>1234 5678
MOVX AO ,A1 	>FFFF FFFF

After

Al 	 Al
>FFFF FFFF 	>FFFF 0000
>0000 0000 	>0000 5678
>0000 0000 	>0000 FFFF

12-144

MOVY 	 Move Y Half of Register 	 MOVY

Syntax
	

MOVY <Rs>,<Rd>

Execution
	

(RsY) 	RdY

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0
1
	

1 	1 	0 	1 	1 	1
	

Rs
	 R
	

Rd

Description 	MOVY moves the Y half of the source register (16 MSBs) to the Y half of
the destination register. The X halves of both registers are unaffected.

MOVX and MOVY instructions can be used for handling packed 16-bit
quantities and XY addresses. The RL instruction can be used to swap the
contents of X and Y.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	 Before 	 After

AO 	 Al 	 Al
MOVY AO, Al 	>0000 0000 >FFFF FFFF 	>0000 FFFF
MOVY AO Al 	>1234 5678 >0000 0000 	>1234 0000
MOVY AO, Al 	>FFFF FFFF >0000 0000 	>FFFF 0000

12-145

MPYS 	 Multiply Registers - Signed 	 MPYS

Syntax 	IVIPYS <Rs>,<Rd>

Execution 	Rd Even: (Rs) x (Rd) - ■ Rd:Rd+1
Rd Odd: (Rs) x (Rd) - Rd

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4 3 2
	

1
	

0

0 	1 	0 	1 	1 	1 	0
	

Rs
	

R
	

Rd

Description 	There are two cases:

Rd Even MPYS performs a signed multiply of the source register by the
destination register, and stores the 64-bit result in the two
consecutive registers starting at the destination register. The
32 MSBs of the result are stored in the specified even-num-
bered destination register. The 32 LSBs of the result are stored
in the next consecutive register, which is odd-numbered.
Avoid using A14 or B14 as the destination register, since this
overwrite the SP. The assembler will issue a warning in this
case.

Words

Machine
States

Status Bits

Rd Odd 	Perform a signed multiply of the source register by the desti-
nation register, and store the 32 LSBs of the result in the des-
tination register. Note that overflows are not detected. The Z
and N bits are set on the full 64-bit result, even though only the
lower 32 bits are stored in Rd.

FS1 controls the width of the multiply; the portion of Rs by which Rd is
multiplied is determined by FS1. FS1 should be even. If FS1 is odd, MPYS
will produce unpredictable results. The MSB of the source operand field
supplies the source operand's sign. The source and destination registers
must be in the same register file.

1

20,23

N 1 if the result is negative, 0 otherwise.
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

12-146

MPYS 	 Multiply Registers - Signed' MPYS

Examples 	MPYS Al, AO

Before

Al 	 FS1

After

Al NCZV AO AO
>0000 0000 >0000 0000 32 >0000 0000 >0000 0000 Oxlx
>0000 0000 >7FFF FFFF 32 >0000 0000 >0000 0000 Oxl x
>0000 0000 >FFFF FFFF 32 >0000 0000 >0000 0000 Oxlx
>7FFF FFFF >0000 0000 32 >0000 0000 >0000 0000 Oxlx
>FFFF FFFF >0000 0000 32 >0000 0000 >0000 0000 Oxlx
>7FFF 0000 >1000 0000 32 >0000 0000 >7FFF0000 OxOx
>7FFF 0000 >1000 0000 32 >0000 007F >FF00 0000 OxOx
>7FFF 0000 >1000 0000 32 >0000 7FFF >0000 0000 OxOx
>FFFF FFFF >1000 0000 32 >FFFF FFFF >FFFF FFFF 1 x0x
>8000 0000 >7FFF FFFF 32 >C000 0000 >8000 0000 lxOx
>FFFF 0000 >7FFF 0000 32 >FFFF 8001 >0000 0000 1x0x
>FFFF FFFF >FFFF FFFF 32 >0000 0000 >1000 0000 OxOx
>8000 0000 >8000 0000 32 >4000 0000 >0000 0000 OxOx
>8000 0001 >8000 0000 32 >3FFF FFFF >8000 0000 OxOx

MPYS AO,A1

Before After

AO Al FS1 AO Al NCZV
>0000 0000 >0000 0000 32 >0000 0000 >0000 0000 Oxlx
>FFFF FFFF >0000 0000 32 >FFFF FFFF >0000 0000 Oxlx
>0000 0000 >7FFF FFFF 32 >0000 0000 >0000 0000 Oxlx
>7FFF 0000 >1000 0000 32 >007F FF00 >7FFF0000 OxOx
>7FFF 0000 >1000 0000 32 >007F FFOO >FFOO 0000 Ox0x
>7FFF 0000 >1000 0000 32 >007F FF00 >0000 0000 Ox Ox
>FFFF FFFF >1000 0000 32 >FFFF FFFF >FFFF FFFF 1x0x
>FFFF 0000 >7FFF0000 32 >FFFF 0000 >0000 0000 1x0x
>FFFF FFFF >FFFF FFFF 32 >FFFF FFFF >1000 0000 OxOx
>8000 0001 >8000 0000 32 >8000 0001 >8000 0000 OxOx
>8000 0000 >8000 0000 32 >8000 0000 >0000 0000 Ox1x

12-147

MPYU

Syntax

Multiply Registers - Unsigned MPYU

MPYU <Rs>,<Rd>

Execution 	Rd Even: (Rs) x (Rd) 	Rd:Rd+1
Rd Odd: (Rs) x (Rd) --■ Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4 3 2
	

1
	

0

Rs
	

R
	

Rd

Description 	There are two cases:

Rd Even MPYU performs an unsigned multiply of the source register by
the destination register, and stores the 64-bit result in the two
consecutive registers starting at the destination register. The
32 MSBs of the result are stored in the specified even-num-
bered destination register. The 32 LSBs of the result are stored
in the next consecutive register, which is odd-numbered.
Avoid using Al 4 or B14 as the destination register, since this
overwrites the SP. The assembler will issue a warning in this
case.

Words

Machine
States

Status Bits

Examples

Rd Odd 	Perform an unsigned multiply of the source register by the
destination register, and store the 32 LSBs of the result in the
destination register. Note that overflows are not detected. The
Z and N bits are set on the full 64-bit result, even though only
the lower 32 bits are stored in Rd.

FS1 controls the width of the multiply; the portion of Rs by which Rd is
multiplied is determined by FS1. FS1 should be even. If FS1 is odd, MPYS
will produce unpredictable results.

The source and destination registers must be in the same register file.

1

21,24

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise.
V Unaffected

MPYU Al,A0

Before

Al FS1

After

Al NCZV AO AO
>0000 0000 >0000 0000 32 >0000 0000 >0000 0000 xxlx
>0000 0000 >FFFF FFFF 32 >0000 0000 >0000 0000 xx1x
>FFFF FFFF >0000 0000 32 >0000 0000 >0000 0000 1x1x
>FFFF 0000 >1000 0000 32 >0000 0000 >FFFF 0000 xx0x
>FFFF 0000 >1000 0000 32 >0000 ()OFF >FFOO 0000 xx0x
>FFFF 0000 >1000 0000 32 >0000 FFFF >0000 0000 xx0x

12 - 148

MPYU 	 Multiply Registers - Unsigned MPYU

MPYU AO,A1

Before

Al 	 FS1

After

Al NCZV AO AO
>0000 0000 >0000 0000 32 >0000 0000 >0000 0000 xx1x
>FFFF FFFF >0000 0000 32 >FFFF FFFF >0000 0000 xxix
>0000 0000 >FFFF FFFF 32 >0000 0000 >0000 0000 1x1x
>FFFF 0000 >1000 0000 32 >00FF FF00 >FFFF 0000 xx0x
>FFFF 0000 >1000 0000 32 > 00 F F FF00 > FFOO 0000 xx0x
>FFFF 0000 >1000 0000 32 >00FF FF00 >0000 0000 xx0x

12-149

NEG Negate Register NEG

Syntax
	

NEG <Rd>

Execution 	-(Rd) -■ Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5 4 3 2
	

1 0

1 ° 	0 	0 	0 	0 	0 	1 	1 	1 	0 	1
	

R
	

Rd

Description 	NEG stores the 2's complement of the contents of the destination register
back into the destination register.

Words 	1

Machine
States 	1,4

Status Bits 	N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow (Rd # 0), 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow (Rd = >8000 0000), 0 otherwise.

Examples Code Before After

AO AO NCZV
NEG AO >0000 0000 0010 >0000 0000
NEG AO >5555 5555 1100 >AAAAAAAB
NEG AO >7FFF FFFF 1100 >8000 0001
NEG AO >8000 0000 1101 >8000 0000
NEG AO >8000 0001 0100 >7FFF FFFF
NEG AO >FFFF FFFF 01 00 >0000 0001

12-150

NEGB 	 Negate Register with Borrow 	 NEGB

Syntax
	

NEGB <Rd>

Execution 	-(Rd) - (C) -- ■ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	1 	1 	1 	1 	0 H I
	

Rd

Description 	NEGB takes the 2's complement of the destination register's contents and
decrements by 1 if the borrow bit (C) is set; the result is stored in the des-
tination register. This instruction can be used in sequence with itself and
with the NEG instruction for negating multiple-register quantities.

Words

Machine
States

Status Bits

Examples

....

▪

,,

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
✓ 1 if there is an overflow, 0 otherwise.

Code Before

C

After

AO AO NCZV
NEGB AO >0000 0000 0 0010 >0000 0000
NEGB AO >0000 0000 1 1100 >FFFF FFFF
NEGB AO >5555 5555 0 1100 >AAAA AAAB
NEGB AO >5555 5555 1 1100 >AAAA AAAA
NEGB AO >7FFF FFFF 0 1100 >8000 0001
NEGB AO >7FFF FFFF 1 1100 >8000 0000
NEGB AO >8000 0000 0 1101 >8000 0000
NEGB AO >8000 0000 1 0100 >7FFF FFFF
NEGB AO >8000 0001 0 0100 >7FFF FFFF
NEGB AO >8000 0001 1 01 00 >7FFF FFFE
NEGB AO >FFFF FFFF 0 0100 >0000 0001
NEGB AO >FFFF FFFF 1 0110 >0000 0000

12-151

NOP 	 No Operation NOP

Syntax
	

NOP

Execution
	

No operation

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4 3
	

0
0 	0 	0 	0 	0
	

1 	1 	0 	0 	0 	0 	0 	0 	0 0

Description 	The program counter is incremented to point to the next instruction. The
processor status is otherwise unaffected.

This instruction can be used to pad loops and perform other timing func-
tions.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Example 	Code 	Before 	After

PC 	 PC
NOP 	>00020000 	>00020010

12-152

Syntax
	

N OT <Rd>

Execution
	

NOT(Rd) 	Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4 3
	

2
	

1 0
0 0 0 0 0

	
R
	

Rd

NOT stores the l's complement of the destination register's contents back
into the destination register.

1,4

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise.
V Unaffected

Description

Words

Machine
States

Status Bits

NOT 	 Complement Register NOT

Examples Code 	Before 	After

AO 	 NCZV

NOT AO >0000 0000 	xx0x
NOT AO >5555 5555 	xx0x
NOT AO >FFFF FFFF 	xxl x
NOT AO >8000 0000 	xx0x

AO
>FFFF FFFF
>AAAA AAAA
>0000 0000
>7FFF FFFF

12-153

OR 	 OR Registers OR

Syntax 	OR <Rs>,<Rd>

Execution 	(Rs) OR (Rd) 	Rd

Encoding 	15 14 13 12 11 10

0 	1 	0 	1 	0 	1 	0

9 8 7 6 5

Rs

4 3 2 1 0

I
	

Rd

Description 	This instruction bitwise-ORs the contents of the source register with the
contents of the destination register; the result is stored in the destination
register.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

AO 	 Al 	 Al 	 NCZNi
OR AO,A1 	>FFFF FFFF >0000 0000 >FFFFFFFF xx0x
OR AO,A1 	>0000 0000 >FFFF FFFF >FFFF FFFF xx0x
OR AO , Al 	>55555555 >AAAA AAAA >FFFFFFFF xx0x
OR AO , Al 	>0000 0000 >0000 0000 >0000 0000 xxl x

12 - 154

ORI

Syntax

Execution

Encoding

OR Immediate (32 Bits)

ORI <L>,<Rd>

L OR (Rd) 	Rd

15 14 13 12 11 10 9
	

8
	

7
	

6 5 4 3 2 1 0

ORI

0 	0 	0 	0 	1 	0 	1 	1 	1 	0 	1
	

R
	

Rd

L (LSW)

L (MSW)

Operands 	L is a 32-bit immediate value.

Description 	This instruction bitwise-ORs the 32-bit immediate value, L, with the con-
tents of the destination register; the result is stored in the destination reg-
ister.

Words 	3

Machine
States 	3,12

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

AO 	 AO 	 NCZV
ORI >FFFEFFFF ,A0 	>0000 0000 	>FFFF FFFF xx0x
ORI >00000000,A0 	>FFFF FFFF 	>FFFF FFFF xx0x
ORI >AAAAAAAA,A0 	>5555 5555 	>FFFF FFFF xx0x
ORI >00000000,A0 	>0000 0000 	>0000 0000 xx1x

12-155

PIXBLT 	Pixel Block Transfer - Binary to Linear 	PIXBLT

Syntax

Execution

Encoding

PIXBLT B,L

Binary source pixel array 	Destination pixel array (with processing)

1

1

5 1 4 1 3 1 2 11 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

Operands 	B specifies that the source pixel array is treated as a binary array whose
starting address is given in linear format.

L specifies that the destination pixel array starting address is given in lin-
ear format.

Description 	PIXBLT expands, transfers, and processes a binary source pixel array with
a destination pixel array. This instruction operates on two-dimensional ar-
rays of pixels using linear starting addresses for both the source and the
destination. The source pixel array is treated as a one bit per pixel array.
As the PixBlt proceeds, the source pixels are expanded and then combined
with the corresponding destination pixels based on the selected graphics
operations.

Note that the instruction is entered as PIXBLT B , L. The following set of
implied operands govern the operation of the instruction and define the
source and destination arrays.

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR Linear Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B2t DADDR Linear Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B7 DYDX XY Pixel array dimensions (rows:columns)

B8 COLORO Pixel Background expansion color

B9 COLOR1 Pixel Foreground expansion color

B10—B141. Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP—Pixel processing operations (22 options)
T 	—Transparency operation

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask—pixel format

t These registers are changed by PIXBLT execution.

Source Array The source pixel array for the expand operation is defined by the contents
of the SADDR, SPTCH, and DYDX registers:

• 	At the outset of the instruction, SADDR contains the linear address
of the pixel with the lowest address in the array.

12-156

PIXBLT 	Pixel Block Transfer - Binary to Linear 	PIXBLT

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH can be any pixel-aligned va-
lue for this PIXBLT.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, SADDR points to the address of the next set
of 32 pixels to be read from the source array. When the transfer is complete,
SADDR points to the linear address of the first pixel on the next row of
pixels that would have been moved had the block transfer continued.

Source
Expansion 	The actual source pixel values which are to be written or processed with the

destination array are determined by the interaction of the source array with
the contents of the COLOR1 and COLORO registers. In the expansion op-
eration, a 1 bit in the source array selects a pixel from the COLOR1 register
for operation on the destination array. A 0 bit in the source array selects a
COLORO pixel for this purpose. The pixels selected from the COLOR1 and
COLORO registers are those that align directly with their intended position
in the destination array word.

Destination
Array 	 The location of the destination pixel block is defined by the contents of the

DADDR, DPTCH, and DYDX registers:

• At the outset of the instruction, DADDR contains the linear address
of the pixel with the lowest address in the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a multiple of 16.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, DADDR points to the next pixel (or word of
pixels) to be modified in the destination array. When the block transfer is
complete, DAD DR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

Corner Adjust No corner adjust is performed for this instruction; PBH and PBV are ig-
nored. The pixel transfer simply proceeds in the order of increasing linear
addresses.

Window
Checking 	Window checking cannot be used with this PixBlt instruction. The con-

tents of the WSTART and WEND registers are ignored.
Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to expanded pixels as they are processed with the destination array.
There are 16 Boolean and 6 arithmetic operations; the default case at reset

12-157

PIXBLT Pixel Block Transfer - Binary to Linear 	PIXBLT

is the replace (S 	D) operation. Note that the data is first expanded and
then processed. The 6 arithmetic operations do not operate with pixel sizes
of one or two bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask

Interrupts

The plane mask is enabled for this instruction.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBlt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBlt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10-B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words

Machine
States

Status Bits

1

See PIXBLT Expand Instructions Timing, Section 13.5.

N Undefined
C Undefined
Z Undefined
V Undefined

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B:
	

I/O Registers:
SADDR (B0) 	= >0000 2030 	PSIZE 	= >0010
SPTCH (B1) 	= >0000 0100
DADDR (B2)
	

>0003 3000
DPTCH (B3)
	

>0000 1000
DYDX (B7)
	

>0002 0010
COLORO (B8) = >FEDC FEDC
COLOR1 (B9)
	

>BABB BA98

12-158

PIXBLT 	Pixel Block Transfer - Binary to Linear 	PIXBLT

For this example, assume that memory contains the following data before
instruction execution.

Linear
Data Address

>02000 >xxxx, >xxxx, >xxxx, >1234, >xxxx, >xxxx, >xxxx, >xxxx
>02080 >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >5678, >xxxx, >xxxx, >xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx

>33000 >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF
>33080 >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

>34000 >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF
>34080 >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

Example 1

Example 2

This example uses the replace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>33000 >FEDC,> FEDC,>BA98,>FEDC,> BA98, > BA98, >FEDC,>FEDC
>33080 >FEDC,>BA98,>FEDC,>FEDC,>BA98,>FEDC,>FEDC,>FEDC

>34000 >FEDC,>FEDC,>FEDC,>BA98,>BA98,>BA98,>BA98,>FEDC
>33080 >FEDC,>BA98,>BA98,>FEDC,>BA98,>FEDC,>BA98,>FEDC

This example uses the (D - S) 	D pixel processing operation. Before in-
struction execution, PMASK = >0000 and CONTROL = >4800 (T=0,
PP=10010).

After instruction execution, memory will contain the following values:

Linear
Address Data
>33000 >0123, >0123, >4567, >0123, >4567, >4567, >0123, >0123
>33080 >0123, >4567, >0123, >0123, >4567, >0123, >0123, >0123

>34000 >0123, >0123, >0123, >4567, >4567, >4567, >4567, >0123
>34080 >0123, >4567, >4567, >0123, >4567, >0123, >4567, >0123

12-159

PIXBLT 	Pixel Block Transfer - Binary to Linear 	PIXBLT

Example 3 	This example uses transparency with COLORO = >00000000. Before in-
struction execution, PMASK = >0000 and CONTROL = >0020 (T=1,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>33000 >FFFF, >FFFF, >BA98,>FFFF, >BA98,>BA98,>FFFF, >FFFF
>33080 >FFFF, >BA98,>FFFF, >FFFF, >BA98,>FFFF, >FFFF, >FFFF

Example 4

>34000 >FFFF, >FFFF, >FFFF, >BA98,>BA98,>BA98,>BA98,>FFFF
>34080 >FFFF, >BA98,>BA98,>FFFF, >BA98,>FFFF, >BA98,>FFFF

This example uses plane masking; the four LSBs are masked. Before in-
struction execution, PMASK = >000F and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>33000 >FEDF, >FEDF, >BA9F,>FEDF, >BA9F,>BA9F,>FEDF, >FEDF
>33080 >FEDF, > BA9F, > FEDF, >FEDF, >BA9F,>FEDF, >FEDF, >FEDF

>34000 >FEDF, >FEDF, >FEDF, >BA9F,>BA9F,>BA9F, >BA9F,>FEDF
>34080 >FEDF, > BA9F, > BA9F, > FEDF, >BA9F,>FEDF, >BA9F,>FEDF

12 - 160

PIXBLT 	Pixel Block Transfer - Binary to XY 	PIXBLT

Syntax 	PIXBLT B,XY

Execution 	Binary source pixel array - ■ Destination pixel array (with processing)

Encoding

Operands 	B specifies that the source pixel array is treated as a binary array whose
starting address is given in linear format.

XY specifies that the destination pixel array starting address is given in XY
format.

Description 	PIXBLT expands, transfers, and processes a binary source pixel array with
a destination pixel array. This instruction operates on two-dimensional ar-
rays of pixels using a linear starting address for the source and an XY ad-
dress for the destination. The source pixel array is treated as a one bit per
pixel array. As the PixBlt proceeds, the source pixels are expanded and then
combined with the corresponding destination pixels based on the selected
graphics operations.

Note that the instruction is entered as PIXBLT B , XY. The following set
of implied operands govern the operation of the instruction and define the
Source and destination arrays.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 01

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR Linear Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B211 DADDR XY Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

B7t DYDX XY Pixel array dimensions (rows:columns)

B8 COLORO Pixel Background expansion color

B9 COLOR1 Pixel Foreground expansion color

B10—B14t Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
W —Window clipping or pick operation
T 	—Transparency operation

>C0000130 CONVSP XY-to-linear conversion (source pitch)
Used for source preclipping.

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,6,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.
Used for common rectangle function with window hit operation (W=1).

12-161

PIXBLT 	Pixel Block Transfer - Binary to XY 	PIXBLT

Source Array The source pixel array for the expand operation is defined by the contents
of the SADDR, SPTCH, DYDX, and (potentially) CONVSP registers:

• At the outset of the instruction, SADDR contains the linear address
of the pixel with the lowest address in the array.

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH can be any pixel-aligned va-
lue for this PIXBLT. For window clipping, SPTCH must be a power
of two, and CONVSP must be set to correspond to the SPTCH value.

• CONVSP is computed by operating on the SPTCH register with the
LMO instruction; it is used for the XY calculations involved in XY ad-
dressing and window clipping.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, SADDR points to the address of the next set
of 32 pixels to be read from the source array. When the block transfer is
complete, SADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

Source
Expansion 	The actual source pixel values which are to be written or processed with the

destination array are determined by the interaction of the source array with
contents of the COLOR1 and COLORO registers. In the expansion opera-
tion, a 1 bit in the source array selects a pixel from the COLOR1 register for
operation on the destination array. A 0 bit in the source array selects a
COLORO pixel for this purpose. The pixels selected from the COLOR1 and
COLORO registers are those that align directly with their intended position
in the destination array word.

Destination
Array 	 The location of the destination pixel block is defined by the contents of the

DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

• At the outset of the instruction, DADDR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVDP to calculate the linear address of the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a power of two (greater than or equal to 16) and
CONVDP must be set to correspond to the DPTCH value.

• CONVDP is computed by operating on the DPTCH register with the
LMO instruction; it is used for the XY calculations involved in XY ad-
dressing and window clipping.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

12 - 162

PIXBLT 	Pixel Block Transfer - Binary to XY 	PIXBLT

During instruction execution, DADDR points to the linear address of next
pixel (or word of pixels) to be modified in the destination array. When the
block transfer is complete, DADDR points to the linear address of the first
pixel on the next row of pixels that would have been moved had the block
transfer continued.

Corner Adjust No corner adjust is performed for this instruction. The transfer executes in
the order of increasing linear addresses. PBH and PBV are ignored.

Window
Checking 	Window checking can be used with this instruction by setting the two W

bits in the CONTROL register to the desired value. If window checking
mode 1, 2, or 3 is selected, the WSTART and WEND registers define the
XY starting and ending corners of a rectangular window.

0 No windowing. The entire pixel array is drawn and the WVP and V bits
are unaffected.

1 Window hit. No pixels are drawn. The V bit is set to 0 if any portion of
the destination array lies within the window. Otherwise, the V bit is set
to 1.

If the V bit is set to 0, the DADDR and DYDX registers are modified to
correspond to the common rectangle formed by the intersection of the
destination array with the rectangular window. DADDR is set to the XY
address of the pixel in the starting corner of the common rectangle.
DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the
values of DADDR and DYDX are indeterminate.

2 Window miss. If the array lies entirely within the active window, it is
drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V
and WVP bits are set to 1, and the instruction is aborted.

3 Window clip. The source and destination arrays are preclipped to the
window dimensions. Only those pixels that lie within the common rec-
tangle (corresponding to the intersection of the specified array and the
window) are drawn. If any preclipping is required, the V bit is set to 1.

Pixel
Processing
	

Pixel processing can be used with this instruction. The PPOP field of the
CONTROL I/O register specifies the pixel processing operation that will be
applied to expanded pixels as they are processed with the destination array.
There are 16 Boolean and 6 arithmetic operations; the default case at reset
is the S D operation. Note that the data is first expanded and then pro-
cessed. The 6 arithmetic operations do not operate with pixel sizes of one
or two bits per pixel. For more information, see Section 7.7, Pixel Proc-
essing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

12-163

PIXBLT Pixel Block Transfer - Binary to XV 	PIXBLT

Plane Mask

Interrupts

The plane mask is enabled for this instruction.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBIt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBIt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBIt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10-B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBIt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words 	1

Machine
States 	See PIXBLT Expand Instructions Timing, Section 13.5.

Status Bits 	N Undefined
C Undefined
Z Undefined
V 1 if a window violation occurs, 0 otherwise. Undefined if window

checking is not enabled (W=00).

12-164

PIXBLT 	Pixel Block Transfer - Binary to XV 	PIXBLT

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: 	 I/O Registers:
SADDR (BO) 	= >0000 2010 	PSIZE 	= >0008
SPTCH (B1) 	= >0000 0010
DADDR (B2) = >0030 0022
DPTCH (B3) 	>0000 1000
OFFSET (B4) 	>0001 0000
WSTART (B5) 	>0000 0026
WEND (B6) 	>0040 0050
DYDX (B7) 	>0004 0010
COLORO (B8) 	>0000 0000
COLOR1 (B9) 	>7C7C 7C7C

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear
Data Address

>2000 >xxxx, >0123, >4567, >89AB,>CDEF,>xxxx, >xxxx, >xxxx

>40000 to
>43080 >FFFF

Example 1 This example uses the replace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W-00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>40100 >FFFF, >7C7C,>0000, >7C00, >0000, >007C, >0000, >0000
>40180 >0000, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

>41100 >FFFF, >7C7C,>007C, >7C00, >007C, >007C, >007C, >0000
>41180 >007C, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

>42100 >FFFF, >7C7C,>7C00, >7C00, >7C00, >007C, >7C00, >0000
>42180 >7C00, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

>43100 >FFFF, >7C7C,>7C7C,>7C00, >7C7C,>007C, >7C7C,>0000
>43180 >7C7C,>FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

12-165

PIXBLT 	Pixel Block Transfer - Binary to XY 	PIXBLT

XY Addressing

Example 2

X Address
Y 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

O 1 2 3 4 5 6 7 8 9 ABCDE F 012 3 4
A
d 30 FF FF 7C 7C 00 00 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
d
r 31 FF FF 7C 7C 7C 00 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
e
s 32 FF FF 7C 7C 00 7C 00 7C 00 7C 7C 00 00 7C 00 00 00 7C FF FF FF

33 FF FF 7C 7C 7C 7C 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FF FF FF

This example uses the XOR pixel processing operation. Before instruction
execution, PMASK = >0000 and CONTROL = >2800 (T=0, W=00,
PP-01010).

After instruction execution, memory will contain the following values:

Example 3

X Address
• 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4
A
d 30 FF FF 83 83 FF FF FF 83 FF FF 83 FF FF FF FF FF FF FF FF FF FF
d
r 31 FF FF 83 83 83 FF FF 83 83 FF 83 FF 83 FF FF FF 83 FF FF FF FF
e
s 32 FF FF 83 83 FF 83 FF 83 FF 83 83 FF FF 83 FF FF FF 83 FF FF FF

• 33 FF FF 83 83 83 83 FF 83 83 83 83 FF 83 83 FF FF 83 83 FF FF FF

This example uses transparency. Before instruction execution, PMASK =
>0000 and CONTROL = >0020 (T=1, W=00, PP=00000).

After instruction execution, memory will contain the following values:

X Address
Y 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4
A
d 30 FF FF 7C 7C FF FF FF 7C FF FF 7C FF FF FF FF FF FF FF FF FF FF
d
r 31 FF FF 7C 7C 7C FF FF 7C 7C FF 7C FF 7C FF FF FF 7C FF FF FF FF
e
s 32 FF FF 7C 7C FF 7C FF 7C FF 7C 7C FF FF 7C FF FF FF 7C FF FF FF

33 FF FF 7C 7C 7C 7C FF 7C 7C 7C 7C FF 7C 7C FF FF 7C 7C FF FF FF

12 - 166

PIXBLT 	Pixel Block Transfer - Binary to XV 	PIXBLT

Example 4 	This example uses window operation 3 (clipped destination). Before in-
struction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=11, PP =00000).

After instruction execution, memory will contain the following values:

X Address
Y 	222222222222222233333

O 12 3 4 5 6 78 9ABCDEF 01234
A
d 30 FF FF FF FF FF FF 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
d
✓ 31 FF FF FF FF FF FF 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
e
s 32 FF FF FF FF FF FF 00 7C 00 7C 7C 00 00 7C 00 00 00 7C FF FF FF

33 FF FF FF FF FF FF 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FF FF FF

Example 5 This example uses plane masking; the four LSBs of each pixel are masked.
Before instruction execution, PMASK = >OFOF and CONTROL = >0020
(T=1, W-00, PP=00000).

After instruction execution, memory will contain the following values:

X Address
Y 	222222222222222233333

O 12 3 4 5 6 78 9ABCDEF 01234
A
d 30 FF FF FF FF FF FF FF 7F FF FF FF FF FF FF FF FF FF FF FF FF FF
d
r 31 FF FF FF FF FF FF FF 7F 7F FF FF FF FF FF FF FF 7F FF FF FF FF
e
s 32 FF FF FF FF FF FF FF 7F FF 7F FF FF FF FF FF FF FF 7F FF FF FF

• 33 FF FF FF FF FF FF FF 7F 7F 7F FF FF FF FF FF FF 7F 7F FF FF FF

12-167

PIXBLT
	

Pixel Block Transfer - Linear to Linear 	PIXBLT

Implied
Operands

PIXBLT L,L

Source pixel array 	Destination pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

L specifies that the source and destination pixel array starting addresses
are given in linear format.

PIXBLT transfers and processes a source pixel array with a destination pixel
array. This instruction operates on two-dimensional arrays of pixels using
linear starting addresses for both the source and the destination. As the
PixBlt proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

Note that the instruction is entered as PIXBLT L,L. The following set of
implied operands govern the operation of the instruction and define the
source and destination arrays.

B File Registers

Register Name Format Description

BOtt SADDR Linear Source pixel array starting address

131 t SPTCH Linear Source pixel array pitch

B2tt DADDR Linear Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B7 DYDX XY Pixel array dimensions
(rows:columns)

B10—B14t Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
T 	—Transparency operation
PBH — 	Bit BLT horizontal direction
PBV— 	Bit BLT vertical direction

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.
t You must adjust SADDR and DADDR to correspond to the corner selected by the

values of PBH and PBV. See Corner Adjust below for additional information.

Syntax

Execution

Encoding

Operands

Description

Source Array The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, and DYDX registers:

• At the outset of the instruction, SADDR contains the linear address
of the pixel at the appropriate starting corner of the array as deter-
mined by the PBH and PBV bits in the CONTROL I/O register. (See
Corner Adjust below.)

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH must be a multiple of 16.

12-168

PIXBLT 	Pixel Block Transfer - Linear to Linear 	PIXBLT

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, SADDR points to the next pixel (or word of
pixels) to be read from the source array. When the block transfer is com-
plete, SADDR points to the starting address of the next set of 32 pixels that
would have been moved had the block transfer continued.

Destination
Array 	 The location of the destination pixel array is defined by the contents of the

DADDR, DPTCH, and DYDX registers:

• At the outset of the instruction, DADDR contains the linear address
of the pixel at the appropriate starting corner of the array as deter-
mined by the PBH and PBV bits in the CONTROL I/O register. (See
Corner Adjust below.)

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array. DPTCH must be a multiple of
16.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, DADDR points to the next pixel (or word of
pixels) to be modified in the destination array. When the block transfer is
complete, DADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction
of the PixBlt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved.

However, this instruction is unique because the corner adjust is not auto-
matic; the starting corners of both the source and destination arrays must
be explicitly set to the alternate corner before instruction execution. Only
the direction of the move is affected by the values of the PBH and PBV bits.
This facility allows you to use corner adjust for screen definitions that do
not lend themselves to XY addressing (those not binary powers of two).
In effect, you supply your own corner adjust operation in software and the
PixBlt instruction provides directional control. To use this feature, you must
set both SAD DR and DADDR to correspond to the corner selected by PBH
and PBV.

• For PBH = 0 and PBV = 0, SADDR and DADDR should be set as
normally for linear PixBlts. Both registers should be set to correspond
to the linear address of the first pixel on the first line of the array
(that is, the pixel with the lowest address).

12-169

PIXBLT 	Pixel Block Transfer - Linear to Linear 	PIXBLT

• For PBH = 0 and PBV = 1, SADDR and DADDR should be set to
correspond to the linear address of the first pixel on the last line of
the array. In other words,

SADDR = (linear address of 1st pixel in source array) + (DY x SPTCH)

and

DADDR = (linear address of 1st pixel in dest. array) + (DY x DPTCH)

• For PBH = 1 and PBV = 0, SADDR and DADDR should be set to
correspond to the linear address of the pixel following the last pixel
on the first line of the array. In other words,

SADDR = (linear address of 1st pixel in source array) + (DX x PSIZE)

and

DADDR = (linear address of 1st pixel in dest. array) + (DX x PSIZE)

• For PBH = 1 and PBV = 1, SADDR and DADDR should be set to
correspond to the linear address of the pixel following the last pixel
on the last line of the array. In other words,

SADDR = (linear address of 1st pixel in source array) + (DY x SPTCH)
+ (DX x PSIZE)

and

DADDR = (linear address of 1st pixel in dest. array) + (DY x DPTCH)
+ (DX x PSIZE)

Window
Checking 	Window operations are not enabled for this instruction. The contents of the

WSTART and WEND registers are ignored.
Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the re-
place (S D) operation. Note that the data is read through the plane mask
and then processed. The 6 arithmetic operations do not operate with pixel
sizes of 1 or 2 bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Interrupts 	This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the

12-170

PIXBLT 	Pixel Block Transfer - Linear to Linear 	PIXBLT

next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBlt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBlt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10—B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words

Machine
States

Status Bits

1

See Section 13.4, PIXBLT Instructions Timing.

N Undefined
C Undefined
Z Undefined
V Undefined

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: 	 I/O Registers:
SADDR (BO) = >0000 2004 	PSIZE 	= >0004
SPTCH (B1) 	— >0000 0080
DADDR (B2) = >0000 2228
DPTCH (B3) = >0000 0080
OFFSET (B4) = >0000 0000
DYDX (B7) = >0002 000D

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear
Address Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, 	>xxxx, >xxxx
>02080 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, 	>xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx
>02200 >xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxxx
>02280 >xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxxx
>02300 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx

12-171

PIXBLT

Example 1

Pixel Block Transfer - Linear to Linear 	PIXBLT

This example uses the rep/ace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, >xxxx, > XXXX

>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx
>02100 >xxxx, >xxxx, > xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >XXXX

>02180 >xxxx, >xxxx, > xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx

>02200 >xxxx, >xxxx, >00xx, >1110, > 2221, > x332, > xxxx, >XXXX

>02280 >xxxx, >xxxx, >00xx, >1110, > 2221, >x332, > xxxx, > XXXX

>02300 >xxxx, >xxxx, > xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx

Example 2

Example 3

This example uses the (D - S) 	D pixel processing operation. Before in-
struction execution, PMASK = >0000 and CONTROL = >4800 (T=0,
W=00, PP-10010).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, > xxxx

>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx

>02100 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, > xxxx

>02180 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx

>02200 >xxxx, >xxxx, >FFxx, >EEEF, >DDDE>xCCD,>xxxx, >xxxx

>02280 >xxxx, >xxxx, >FFxx, >EEEF, >DDDE,>xCCD,>xxxx, >XXXX

>02300 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx

This example uses transparency. Before instruction execution, PMASK =
> 0000 and CONTROL = > 0020 (T=1, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, > xxxx, >XXXX

>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, > xxxx, > xxxx

>02100 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >XXXX, >XXXX

>02180 >xxxx, '>xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx, >xxxx

>02200 >xxxx, 	>xxxx, > FFxx, >111F, >2221, >x332, >xxxx, >xxxx

>02280 >xxxx, >xxxx, >FFxx, >111 F, >2221, >x332, > xxxx, >xxxx

>02300 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, > xxxx, > xxxx, >XXXX

12-172

PIXBLT 	Pixel Block Transfer - Linear to Linear 	PIXBLT

Example 4 	This example uses plane masking; the MSB of each pixel is masked. Before
instruction execution, PMASK = >8888 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, 	>xxxx, >xxxx

>02080 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, 	>xxxx, >xxxx

>02100 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx

>02180 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx

>02200 >xxxx, >xxxx, >88xx, >9998, >AAA9,>xBBA,>xxxx, >xxxx

>02280 >xxxx, >xxxx, >88xx, >9998, >AAA9,>xBBA,>xxxx, >xxxx

>02300 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx

12-173

PIXBLT 	Pixel Block Transfer - Linear to XV 	PIXBLT

Syntax

Execution

Encoding

PIXBLT L,XY

Source pixel array -* Destination pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0

Operands 	L specifies that the source pixel array starting address is given in linear
format.

XY specifies that the destination pixel array starting address is given in XY
format.

Description 	PIXBLT transfers and processes a source pixel array with a destination pixel
array. This instruction operates on two-dimensional arrays of pixels using
a linear starting addresses for the source array and an XY address for the
destination array. As the PixBlt proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

Note that the instruction is entered as PIXBLT L , XY. The following set
of implied operands govern the operation of the instruction and define the
source and destination arrays.

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR Linear Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B2T$ DADDR XY Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner 	.

B6 WEND XY Window ending corner

B7$ DYDX XY Pixel array dimensions (rows:columns)

B10— B14T Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
W —Window operations
T 	—Transparency operation
PBH— 	PixBlt horizontal direction
PBV— 	PixBlt vertical direction

>C0000130 CONVSP XY-to-linear conversion (source pitch)
Used for preclipping and corner adjust

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask—pixel format

t These registers are changed by PIXBLT execution.
$ Used for common rectangle function with window pick.

12-174

PIXBLT 	Pixel Block Transfer - Linear to XI' 	PIXBLT

Source Array The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, DYDX, and (potentially) CONVSP registers:

• At the outset of the instruction, SAD DR contains the linear address
of the pixel with the lowest address in the array.

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH must be a multiple of 16.
For window clipping or corner adjust, SPTCH must be a power of two
and CONVSP must be set to correspond to the SPTCH value.

• CONVSP is computed by operating on the SPTCH register with the
LMO instruction; it is used for the XY calculations involved in window
clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, SADDR points to the next pixel (or word of
pixels) to be accessed in the source array. When the block transfer is
complete, SADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

Destination
Array 	 The location of the destination pixel array is defined by the contents of the

DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

• At the outset of the instruction, DADDR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVDP to calculate the linear address of the starting location
of the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a power of two (greater than or equal to 16) and

• CONVDP must be set to correspond to the DPTCH value. CONVDP
is computed by operating on the DPTCH register with the LMO in-
struction; it is used for the XY calculations involved in XY addressing,
window clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, DADDR points to the linear address of next
pixel (or word of pixels) to be accessed in the destination array. When the
block transfer is complete, DADDR points to the linear address of the first
pixel on the next row of pixels that would have been moved had the block
transfer continued.

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction
of the PixBlt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being

12-175

PIXBLT 	Pixel Block Transfer - Linear to XV 	PIXBLT

overwritten before it is moved. This PixBlt performs the corner adjust
function automatically under the control of the PBH and PBV bits. If
PBV=1, SPTCH must be a power of two and CONVSP should be valid.
The SADDR and DADDR registers should be set to correspond to the ap-
propriate format address of the first pixel on the first line of the source
(linear) and destination (XY) arrays, respectively.

Window
Checking 	Window checking can be used with this instruction by setting the two W

bits in the CONTROL register to the desired value. If window checking
mode 1, 2, or 3 is selected, the WSTART and WEND registers define the
XY starting and ending corners of a rectangular window.

0 No windowing. The entire pixel array is drawn and the WVP and V bits
are unaffected.

1 Window hit. No pixels are drawn. The V bit is set to 0 if any portion of
the destination array lies within the window. Otherwise, the V bit is set
to 1.

If the V bit is set to 0, the DADDR and DYDX registers are modified to
correspond to the common rectangle formed by the intersection of the
destination array with the rectangular window. DADDR is set to the XY
address of the pixel in the starting corner of the common rectangle.
DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the
values of DADDR and DYDX are indeterminate.

2 Window miss. If the array lies entirely within the active window, it is
drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V
and WVP bits are set to 1, and the instruction is aborted.

3 Window clip. The source and destination arrays are preclipped to the
window dimensions. Only those pixels that lie within the common rec-
tangle (corresponding to the intersection of the specified array and the
window) are drawn. If any preclipping is required, the V bit is set to 1.

r
I

Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the re-
place (S D) operation. Note that the data is read through the plane mask
and then processed. The 6 arithmetic operations do not operate with pixel
sizes of 1 or 2 bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Interrupts 	This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.

12-176

PIXBLT 	Pixel Block Transfer - Linear to XY 	PIXBLT

DADDR points to the linear address of the next word of pixels to be modi-
fied after the insterrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBlt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBlt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10-B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words 	1

Machine
States 	See PIXBLT Instructions Timing, Section 13.4.

Status Bits 	N Undefined
C Undefined
Z Undefined
V If window clipping is enabled - 1 if a window violation occurs, 0 oth-

erwise. Undefined if window clipping not enabled (W=00).

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: I/O Registers:
SADDR (BO) 	= >0000 2004 CONVDP = >0017
SPTCH (B1) = >0000 0080 PSIZE = >0004
DADDR (B2) >0052 0007 PMASK = >0000
DPTCH (B3) >0000 0100 CONTROL = >0000
OFFSET (B4) = >0001 0000 (W=00, T=0, PP=00000)
WSTART (B5) >0030 000C
WEND (B6) = >0053 0014
DYDX (B7) >0003 0016

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear
Data Address

>02000 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC
>02080 >3210, >7654, > BA98, > FEDC,>3210, >7654, > BA98, > FEDC
>02100 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC

>15200 to
>15480 >8888

12-177

PIXBLT 	Pixel Block Transfer - Linear to XV 	PIXBLT

Example 1 	This example uses the replace (S -■ D) pixel processing operation. Before
instruction execution, PMASK = >7777 and CONTROL = >0000 (T=0,
W=00, PP=00000).

Example 2

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>15200 >8888, >1888, >5432, >9876, >DCBA,>10FE, >5432, >8886
>15300 >8888, >1888, >5432, >9876, > DCBA,>10FE, >5432, >8886
>15400 >8888, >1888, >5432, >9876, >DCBA>10FE, >5432, >8886

XY Addressing
X Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d 52 88888881 23 456 7 8 9ABCDEFO 1 23458888
d

53 88888881 234 56 7 8 9ABCDE FO 1 23458888
e
s 54 8888888123 456 7 8 9ABCDEFO 1 23458888

This example uses the (D subs S) -> D pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >4C00 (T=0,
W=00, PP=10011).

After instruction execution, memory will contain the following values:

X Address
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 	1 1 	1 1 	1 1 	1 	1 	1 	1 	1 	1 	1
0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d
d
r
e
s

52

53

54

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 7

8 7

8 7

6 5 4 3 2 1 0 0 0 0

6 5 4 3 2 1 0 0 0 0

6 5 4 3 2 1 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

8 7

8 7

8 7

6 5 4 3 2 8 8 8

6 5 4 3 2 8 8 8

6 5 4 3 2 8 8 8

Example 3 This example uses transparency with the (D subs S) -■ D pixel processing
operation. Before instruction execution, PMASK = >0000 and CONTROL
= >4C20 (T=1, W=00, PP=10011).

After instruction execution, memory will contain the following values:

X Address
0 0
0 1

0 0
2 3

0 0
4 5

0 0
6 7

0 0 0 0 0 0 0 0 1 1
8 9 ABCDEF 0 1

1 	1
2 3

1 	1
4 5

1 	1
6 7

1 	1 	1 	1 	1 	1 	1 	1
8 9 ABCDEF

A
d
d

52 8 8 8 8 8 8 8 7 6 5 4 3 2 1 8 8 8 8 8 8 8 8 8 7 6 5 4 3 2 8 8 8

e
s

53

54

8 8

8 8

8 8

8 8

8 8

8 8

8 7

8 7

6 5

6 5

4 3

4 3

2 1

2 1

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 7

8 7

6 5

6 5

4 3

4 3

2 8

2 8

8 8

8 8

12 - 178

PIXBLT 	Pixel Block Transfer - Linear to XY 	PIXBLT

Example 4 	This example uses window operation 3 (the destination is clipped). Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=11, PP=00000).

After instruction execution, memory will contain the following values:

X Address
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 52 8888888888886789ABCDE88888888888
d
r 538888888888886789ABCDE88888888888
e
s 54 8

Example 5 This example uses plane masking; the most significant bit is masked. Before
instruction execution, PMASK = >8888 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

X Address
Y 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 52 88888889ABCDEF89ABCDEF89ABCDE888
d
r 53 88888889ABCDEF89ABCDEF89ABCDE888
e
s 54 88888889ABCDEF89ABCDEF89ABCDE888

12-179

PIXBLT 	Pixel Block Transfer - XY to Linear 	PIXBLT

Syntax 	PIXBLT XY,L

Execution 	Source pixel array - Destination pixel array (with processing)

Encoding

Operands 	XY specifies that the source pixel array starting address is given in XY for-
mat.

L specifies that the destination pixel array starting address is given in lin-
ear format.

Description 	PIXBLT transfers and processes a source pixel array with a destination pixel
array. This instruction operates on two-dimensional arrays of pixels using
an XY starting address for the source pixel array and a linear address for the
destination array. As the PixBlt proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

Note that the instruction is entered as PIXBLT XY,L. The following set
of implied operands govern the operation of the instruction and define the
source and destination arrays.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR XY Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B2t DADDR Linear Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B4 OFFSET Linear Screen origin (0,0)

B7 DYDX XY Pixel array dimensions (rows:columns)

1310—B14t Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP 	— Pixel processing operations (22 options)
T 	—Transparency operation
PBH — PixBlt horizontal direction
PBV — PixBlt vertical direction

>C0000130 CONVSP XY-to-linear conversion (source pitch)
Used for X1' operations

>C0000140 CONVDP XY-to-linear conversion (destination pitch)
Used for XY operations

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.

12-180

PIXBLT 	Pixel Block Transfer - XY to Linear 	PIXBLT

Source Array The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers:

• At the outset of the instruction, SAD DR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVSP to calculate the linear address of the starting location
of the array.

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array (typically this is the screen pitch).
SPTCH must be a power of two (greater than or equal to 16) and

• CONVSP must be set to correspond to the SPTCH value. CONVSP
is computed by operating on the SPTCH register with the LMO in-
struction; it is used for the XY calculations involved in XY addressing,
window clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, SADDR points to the next pixel (or word of
pixels) to be accessed from the source array. When the block transfer is
complete, SADDR points to the linear address of the first pixel on the
next row of pixels that would have been moved had the block transfer
continued.

Destination
Array 	 The location of the destination pixel array is defined by the contents of the

DADDR, DPTCH, DYDX, and (potentially) CONVDP registers:

• At the outset of the instruction, DADDR contains the linear address
of the pixel with the lowest address in the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array. DPTCH must be a multiple of
16. For window clipping or corner adjust, DPTCH must be a power
of two and CONVDP must be set to correspond to the DPTCH value.

• CONVDP is computed by operating on the DPTCH register with the
LMO instruction; it is used for the XY calculations involved in window
clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, DADDR points to the next pixel (or word of
pixels) to be modified in the destination array. When the block transfer is
complete, DADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

1 2-1 81

PIXBLT 	Pixel Block Transfer - XY to Linear 	PIXBLT

r

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction
of the PixBIt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved. This PixBIt performs the corner adjust
function automatically under the control of the PBH and PBV bits. If
PBV=1, DPTCH must be a power of two and CONVDP must be valid. The
SADDR and DADDR registers should be set to correspond to the appro-
priate format address of the first pixel on the first line of the source (XY)
and destination (linear) arrays, respectively.

Window
Checking 	Window operations are not enabled for this instruction. The contents of the

WSTART and WEND registers are ignored.
Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the S

D operation. Note that the data is read through the plane mask and then
processed. The 6 arithmetic operations do not operate with pixel sizes of
one or two bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Interrupts 	This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBIt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10—B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the insterrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBIt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBIt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10—B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBIt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words 	1

Machine
States See PIXBLT Instructions Timing, Section 13.4.

12-182

PIXBLT 	Pixel Block Transfer - XI' to Linear 	PIXBLT

Status Bits N Undefined
C Undefined
Z Undefined
V Undefined

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: 	 I/O Registers:
SADDR (BO) = >00400001 	CONVSP = >0018
SPTCH (B1) 	= >00000080 	PSIZE 	= >004
DADDR (B2) = >00002228
DPTCH (B3) = >00000080
OFFSET (B4) = >00000000
DYDX (B7) = >0002000D

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, 	>xxxx, >xxxx
>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, 	>xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx
>02200 >xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxxx
>02280 >xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxxx
>02300 >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx

Example 1 This example uses the replace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, 	>xxxx, >xxxx
>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, 	>xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx
>02200 >xxxx, >xxxx, >00xx, >1110, >2221, >x332; >xxxx, >xxxx
>02280 >xxxx, >xxxx, >00xx, >1110, >2221, >x332, >xxxx, >xxxx
>02300 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx

12-183

PIXBLT

Example 2

Pixel Block Transfer - XV to Linear 	PIXBLT

This example uses the Os 	D pixel processing operation. Before instruc-
tion execution, PMASK = >0000 and CONTROL = >0000 (T=0, W=00,
PP=00011).

After instruction execution, memory will contain the following values:

Linear
Address Data

>02000 > 000x, > 1 1 1 1 , >2222, >xx33, >xxxx, > xxxx, > xxxx, >XXXX

>02080 >000x, >1111, >2222, >xx33, >xxxx, >XXXX, >xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >XXXX, >xxxx, >xxxx

>02180 > xxxx, >xxxx, >xxxx, >xxxx, >xxxx, > xxxx , >xxxx, >xxxx
>02200 >xxxx, >xxxx, >00xx, >0000, >0000, > x000 , > xxxx, >XXXX

>02280 >xxxx, > xxxx, >00xx, >0000, >0000, >x000, >xxxx, >xxxx
>02300 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >XXXX, >XXXX

Example 3 This example uses transparency. Befrore instruction execution, PMASK =
> 0000 and CONTROL = > 0020 (T=1, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, > 1 111 , >2222, >xx33, >xxxx, >xxxx, >xxxx, > xxxx
>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx, >xxxx

>02180 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx, >xxxx, >xxxx
>02200 >xxxx, >xxxx, > FFxx, >111F, >2221, >x332, >xxxx , >xxxx
>02280 >xxxx, >xxxx, > FFxx, >111F, >2221, >x332, >XXXX, >XXXX

>02300 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx, >XXXX,>XXXX

Example 4 	This example uses plane masking; the two MSBs of each pixel are masked.
Before instruction execution, PMASK = >CCCC and CONTROL = >0000
(T=0, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Data

Address
>02000 >000x, >1111 , >2222, >xx33, >xxxx, 	>xxxx, >xxxx, >xxxx

>02080 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, >xxxx, > xxxx
>02100 >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx, > xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx, >xxxx
>02200 >xxxx, >xxxx, >CCxx, >DDDC?EEED,>xFFE, >xxxx, > xxxx
>02280 > xxxx, > xxxx, >CCxx, >DDDC?EEED,>xFFE, >XXXX, >XXXX

>02300 >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx

12-184

PIXBLT 	Pixel Block Transfer - XY to XY 	PIXBLT

Implied
Operands

PIXBLT XY,XY

Source pixel array —■ Destination pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0

XY specifies that the source and destination pixel array starting addresses
are given in XY format.

PIXBLT transfers and processes a source pixel array with a destination pixel
array. This instruction operates on two-dimensional arrays of pixels using
XY starting addresses for both the source and destination pixel arrays. As
the PixBlt proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

Note that the instruction is entered as PIXBLT XY,XY. the destination.
The following set of implied operands govern the operation of the instruc-
tion and define the source and destination arrays.

B File Registers

Register Name Format Description

BOt SADDR XY Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B2t# DAD D R XY Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

87$ DYDX XY Pixel array dimensions (rows:columns)

B10—B14$ Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C0000080 CONTROL PP 	— Pixel processing operations (22 options)
W 	—Window clipping or pick operation
T 	— Transparency operation
PBH— PixBlt horizontal direction
PBV— PixBIt vertical direction

>C0000130 CONVSP XY-to-linear conversion (source pitch)

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.
Used for common rectangle function with window pick.

Syntax

Execution

Encoding

Operands

Description

12-185

PIXBLT
	

Pixel Block Transfer - XV to XV 	PIXBLT

Source Array

Destination
Array

The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers:

• At the outset of the instruction, SADDR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVSP to calculate the linear address of the starting location
of the array.

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array (typically this is the screen pitch).
SPTCH must be a power of two (greater than or equal to 16) and
CONVSP must be set to correspond to the SPTCH value.

• CONVSP is computed by operating on the SPTCH register with the
LMO instruction; it is used for the XY calculations involved in XY ad-
dressing, window clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, SADDR points to the next pixel (or word of
pixels) to be read from the source array. When the block transfer is com-
plete, SADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

• At the outset of the instruction, DADDR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVDP to calculate the linear address of the starting location
of the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a power of two (greater than or equal to 16) and
CONVDP must be set to correspond to the DPTCH value.

• CONVDP is computed by operating on the DPTCH register with the
LMO instruction; it is used for the XY calculations involved in XY ad-
dressing, window clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, DADDR points to the next pixel (or word of
pixels) to be read from the destination array. When the block transfer is
complete, DADDR points to the linear address of the first pixel on the
next row of pixels that would have been moved had the block transfer
continued.

12-186

PIXBLT 	Pixel Block Transfer - XV to XV 	PIXBLT

Window
Checking 	Window checking can be used with this instruction by setting the two W

bits in the CONTROL register to the desired value. If window checking
mode 1, 2, or 3 is selected, the WSTART and WEND registers define the
XY starting and ending corners of a rectangular window.

0 No windowing. The entire pixel array is drawn and the WVP and V bits
are unaffected.

1 Window hit. No pixels are drawn. The V bit is set to 0 if any portion of
the destination array lies within the window. Otherwise, the V bit is set
to 1

If the V bit is set to 0, the DADDR and DYDX registers are modified to
correspond to the common rectangle formed by the intersection of the
destination array with the rectangular window. DADDR is set to the XY
address of the pixel in the starting corner of the common rectangle.
DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the
values of DADDR and DYDX are indeterminate.

2 Window miss. If the array lies entirely within the active window, it is
drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V
and WVP bits are set to 1, and the instruction is aborted.

3 Window clip. The source and destination arrays are preclipped to the
window dimensions. Only those pixels that lie within the common rec-
tangle (corresponding to the intersection of the specified array and the
window) are drawn. If any preclipping is required, the V bit is set to 1.

Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the re-
place (S --■ D) operation. Note that the data is read through the plane mask
and then processed. The 6 arithmetic operations do not operate with pixel
sizes of one or two bits per pixel. For more information, see Section 7.7,
Pixel Processing, on page 7-15.

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction
of the PixBIt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved. This PixBIt performs the corner adjust
function automatically under the control of the PBH and PBV bits. The
SADDR and DADDR registers should be set to correspond to the appro-
priate format address of the first pixel on the first line of the source (XY)
and destination (XY) arrays, respectively.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

12-187

PIXBLT

Interrupts

Pixel Block Transfer - XV to XV 	PIXBLT

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the insterrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBlt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBlt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10-B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words 	1

Machine
States 	See Section 13.4, PIXBLT Instructions Timing.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V If window clipping is enabled - 1 if a window violation occurs, 0 oth-

erwise. Unaffected if window clipping not enabled.

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: I/O Registers:
SADDR (BO) 	= >0020 0004 CONVSP 	= >0016
SPTCH (B1) - >0000 0200 CONVDP = >0016
DADDR (B2) = >0041 0004 PSIZE = >0004
DPTCH (B3) = >0000 0200 PMASK = >0000
OFFSET(B4) = >0001 0000 CONTROL = >0000
WSTART(B5) = >0030 0009 (W=00, T=0, PP=00000)
WEND (B6) = >0042 0012
DYDX (B7) = >0003 001 6

Additional implied operand values are listed with each example. For this
example, assume that memory contains the following data before instruc-
tion execution.

Linear
Address 	 Data
>14000 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC
>14200 >3210, >7654, > BA98, > FEDC,>3210, >7654, > BA98, > FEDC
>14400 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC
>18200 to
>18680 >3333

12-188

PIXBLT 	Pixel Block Transfer - XV to XV 	PIXBLT

Example 1 	This example uses the rep/ace (S -4D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=00, PP-00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>18200 >3333, >7654, >BA98,>FEDC,>3210, >7654, >3398, >3333

>18400 >3333, >7654, > BA98, > FEDC,>3210, >7654, >3398, >3333

>18600 >3333, >7654, >BA98,>FEDC,>3210, >7654, >3398, >3333

XY Addressing
X Address

• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d 41 3333456789ABCDEF 0123456789333333
d
• 42 3333456789 ABCDEF 0123456789333333
e
s 43 3333456789 ABCDEF 0123456789333333

Example 2 This example uses the (D adds S) 	D pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >4400 (T=0,
W=00, PP-10001).

After instruction execution, memory will contain the following values:

X Address
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 41 3 3 3 3789 ABCDEFFFF 3456789 ABC333333
d
• 42 3333789 ABCDEFFFF 3456789 ABC333333
e

43 3333789ABCDEFFFF34567 89 ABC 333333

12-189

PIXBLT 	Pixel Block Transfer - XV to XV 	PIXBLT

Example 3 	This example uses transparency and the (D SUBS S) -■ D pixel processing
operation. Before instruction execution, PMASK = >0000 and CONTROL
= >4C20 (T=1, W=00, PP=10011).

After instruction execution, memory will contain the following values:

X Address
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 	1 1 	1 1 	1 1 	1 	1 	1 	1 	1 	1 	1
0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d
d
r
e
s

41

42

43

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3 3 3 3 3 3 3 3 1

3 3 3 3 3 3 3 3 3 1

3 3 3 3 3 3 3 3 3 1

2 3

2 3

2 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

Example 4

Example 5

This example uses window operation 3 (the destination is clipped). Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=11, P P = 00000) .

After instruction execution, memory will contain the following values:

X Address
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d
d

41 3333333339 ABCDEF 0123333333333333

r
e
s

42

43

3333333339 ABCDEF 0123333333333333

3

This example uses plane masking; the third least significant bit is masked.
Before instruction execution, PMASK = >5555 and CONTROL = >0000
(T=0, W=00, PP-00000).

After instruction execution, memory will contain the following values:

X Address
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d 41 3333113399 BB99 BB1133113399333333
d
r 42 333311 3399BB99BB1 1 3311 3399333333
e
s43 3333113399BB99BB1133113399333333

12-190

Syntax

Execution

Encoding

PIXT <Rs>,*<Rd>

(pixel)Rs 	(pixel)*Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1
	

1 	1 	1 	1 	0 	0
	

Rs
	

R
	

Rd

PIXT
	

Pixel Transfer - Register to Indirect 	PIXT

Operands 	Rs The source pixel is right justified in the specified register.

*Rd Destination register indirect. The destination location is at the linear
memory address contained in the specified register.

Description 	PIXT transfers a pixel from the source register to the linear memory address
contained in the destination register. The source pixel is the 1, 2, 4, 8, or
16 LSBs of the source register, depending on the pixel size specified in the
PSIZE I/O register. The source and destination registers must be in the
same register file.

Implied
Operands I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
T 	—Transparency operation

>C0000150 PSIZE Pixel size (1,2,4,6,8,16)

>C0000160 PMASK Plane mask — pixel format

Pixel
Processing 	The PP field of the CONTROL I/O register selects the pixel processing op-

eration to be applied to the pixel as it is transferred to the destination lo-
cation. The default case at reset is the pixel processing rep/ace operation.
For more information, see Section 7.7, Pixel Processing, on page 7-15.

Window
Checking 	Window checking cannot be used with this instruction. The W bits are

ignored.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Status Bits

1

Pixel Processing Operation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX

1,2,4,8
16

2+(3),8
2+(1),6

4+(3),10
4+(1),8

4+(3),11
4+(1),8

5+(3),11
5+(1),9

5+(3),12
5+(1),9

6+(3),11
6+(1),10

5+(3),10
5+(1),9

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Words

Machine
States

12-191

PIXT Pixel Transfer - Register to Indirect PIXT

Examples

Before

PIXT A0,*A1

Al @>20500 PSIZE PP

After

@>20500 AO T PMASK
1) >0000 FFFF >0002 0500 >0000 >0001 00000 0 >0000 >0001
1) >0000 FFFF >0002 0500 >0000 >0002 00000 0 >0000 >0003
1) >0000 FFFF >0002 0500 >0000 >0004 00000 0 >0000 >000F
1) >0000 FFFF >0002 0500 >0000 >0008 00000 0 >0000 >00FF
1) >0000 FFFF >0002 0500 >0000 >0010 00000 0 >0000 >FFFF
1) >0000 0006 >0002 0508 >0000 >0004 00000 0 >0000 >0600
2) >0000 0006 >0002 0508 >0300 >0004 01010 0 >0000 >0500
3) >0000 0006 >0002 0508 >0100 >0004 00001 0 >0000 >0000
4) >0000 0006 >0002 0508 >0100 >0004 00001 1 >0000 >0100
5) >0000 0006 >0002 0508 >0000 >0004 00000 0 >AAAA >0400

Notes:

1) S replaces D
2) (S XOR D) replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D is not replaced
5) S replaces unmasked bits of D

12-192

Syntax

Execution

Encoding

PIXT <Rs>,*<Rd>.XY

(pixel)Rs 	(pixel)*Rd.XY

15 14 13 12 11 10 	9 8 7
	

6 5 4 3 2 1 0

1
	

1 	1 	1 	0 	0 	0
	

Rs
	

R
	

Rd

PIXT 	Pixel Transfer - Register to Indirect XY 	PIXT

Operands 	Rs 	The source pixel is right justified in the specified register.

•Rd.XY Destination register indirect in XY format. The destination lo-
cation is the XY address contained in the specified register. The
X value occupies the 16 LSBs of the register and the Y value oc-
cupies the 16 MSBs.

Description 	PIXT transfers a pixel from the source register to the XY memory address
contained in the destination register. The source pixel is the 1, 2, 4, 8, or
16 LSBs of the source register, depending on the pixel size specified in the
PSIZE I/O register. The source and destination registers must be in the
same register file.

Implied
Operands

Window
Checking

B File Registers

Register Name Format Description

B3 DPTCH Linear Destination pitch

B4 ' OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
W —Window clipping or pick operation
T —Transparency operation

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Window checking can be selected by setting the W bits in the CONTROL
register to the desired value. If one of the three active window modes (1,
2, or 3) is selected, the WSTART and WEND registers define the starting
and ending window corners. When an attempt is made to write a pixel in-
side or outside a window, the results depend on the selected window
checking mode:

0 No window checking. The pixel is drawn and the WVP and V bits are
unaffected.

1 Window hit. No pixels are drawn. The V bit is set to 0 if the pixel lies
within the window; otherwise, it is set to 1.

2 Window miss. If the pixel lies outside the window, the V and WVP bits
are set to 1 and the instruction is aborted (no pixels are drawn). Other-
wise, the pixel is drawn and the V bit is set to 0.

12-193

PIXT Pixel Transfer - Register to Indirect XV 	PIXT

Pixel
Processing

Transparency

Plane Mask

Words

Machine
States

3 Window clip. If the pixel lies outside the window, the V bit is set to 1
and the instruction is aborted (no pixels are drawn). Otherwise, the pixel
is drawn and the V bit is set to 0.

For more information, see Section 7.10, Window Checking, on page 7-25.

The PP field of the CONTROL I/O register specifies the pixel processing
operation of that will be applied to the pixel as it is transferred to the des-
tination location. The default case at reset is the pixel processing replace
operation. For more information, see Section 7.7, Pixel Processing, on page
7-15.

Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

The plane mask is enabled for this instruction.

1

Pixel Processing Operation
Window
Violation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX W=1 W=2 W=3

1,2,4,8
16

4+(3),10
4+(1),8

6+(3),12
6+(1),10

6+(3),12
6+(1),10

7+(3),13
7+(1),11

7+(3),13
7+(1),11

8+(3),14
8+(1),12

7+(3),13
7+(1),11

6,9
6,9

6,9
6,9

4,7
4,7

Status Bits N Unaffected
C Unaffected
Z Unaffected
V 1 if window clipping enabled and window violation or pick occurs, 0

if no window violation occurs. Unaffected if window clipping is not
enabled.

12-194

Pixel Transfer - Register to Indirect XY
	

PIXT PIXT

Before the PIXT instruction can be executed, the implied operand registers
must be loaded with appropriate values. These PIXT examples use the fol-
lowing implied operand setup.

Examples

Before

Register File B:
DPTCH (B3) 	= >00000800
OFFSET (B4) 	= >00000000
WTART (B5) 	= >00300020
WEND (B6) 	= >00500142

PIXT 	A0,*Al.XY

I/O Registers:
CONVDP = >0014

After

AO Al @>20500 PSIZE PP W T PMASK @>20500

1) >0000 FFFF >0040 0500 >0000 >0001 00000 00 0 >0000 >0001
1) >0000 FFFF >0040 0280 >0000 >0002 00000 00 0 >0000 >0003
1) >0000 FFFF >0040 0140 >0000 >0004 00000 00 0 >0000 >000F
1) >0000 FFFF >0040 00A0 >0000 >0008 00000 00 0 >0000 >OOFF
1) >0000 FFFF >0040 0050 >0000 >0010 00000 00 0 >0000 >FFFF
1) >0000 0006 >0040 0142 >0000 >0004 00000 00 0 >0000 >0600
2) >0000 0006 >0040 0142 >0300 >0004 01010 00 0 >0000 >0500
3) >0000 0006 >0040 0142 >0100 >0004 00001 00 0 >0000 >0000
4) >0000 0006 >0040 0142 >0100 >0004 00001 00 1 >0000 >0100
5) >0000 0006 >0040 0142 >0000 >0004 00000 00 0 >AAAA >0400
6) >0000 0006 >0040 0142 >0000 >0004 00000 11 0 >0000 >0600
7) >0000 0006 >0040 0143 >0000 >0004 00000 11 0 >0000 >0000
8) >0000 0006 >0040 0143 >0000 >0004 00000 10 0 >0000 >0000

XY Address in Al = Linear Address >20500

Notes:

1) S replaces D
2) (S XOR D) replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D not replaced
5) S replaces unmasked bits of D
6) Window Option = 3, D inside window, S replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in

status register
8) Window Option = 2, D outside window, D not replaced, WV interrupt

generated, V bit set in status register

12-195

PIXT Pixel Transfer - Indirect to Register 	PIXT

Syntax
	

PIXT *<Rs>,<Rd>

Execution
	

(pixel)`Rs 	(pixel)Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Implied
Operands

Rs
	

R I 	Rd

*Rs Source register indirect. The source pixel is located at the linear
memory address contained in the specified register.

PIXT transfers a pixel from the linear memory address contained in the
source register to the destination register. When the pixel is moved into the
register, it is right justified and zero extended to 32 bits according to the
pixel size specified in the PSIZE I/O register. The source and destination
registers must be in the same register file.

I/O Registers

Address Name Description and Elements (Bits)

>C0000150 PSIZE Pixel size (1,2,4,6,8,16)

>C0000160 PMASK Plane mask — pixel format

Window checking cannot be used with this instruction. The W bits are
ignored.

Pixel processing cannot be used with this instruction.

Transparency cannot be used with this instruction.

The plane mask is enabled for this instruction.

1

4,7

N Undefined
C Undefined

Undefined
V Set to 1 if the pixel is 1, set to 0 if the pixel is 0.

Operands

Description

Window
Checking

Pixel
Processing

Transparency

Plane Mask

Words

Machine
States

Status Bits

12-196

PIXT 	Pixel Transfer - Indirect to Register 	PIXT

Examples 	Assume that memory

Address
@>20500
@>20510

PIXT 	*AO,A1

Before

contains the following

Data
>FFFF
>3333

values:

After

AO PSIZE PMASK Al
>0002 0500 >0001 >0000 >0000 0001
>0002 0500 >0001 >FFFF >0000 0000
>0002 0500 >0002 >0000 >0000 0003
>0002 0500 >0002 >5555 >0000 0002
>0002 0500 >0004 >0000 >0000 000F
>0002 0510 >0004 >9999 >0000 0002
>0002 0500 >0008 >0000 >0000 ()0FF
>0002 0510 >0008 >5454 >0000 0023
>0002 0500 >0010 >0000 >0000 FFFF
>0002 0500 >0010 >BA98 >0000 4567
>0002 0510 >0010 >BA98 >0000 0123

12-197

PIXT
	

Pixel Transfer - Indirect to Indirect 	PIXT

Syntax
	

PIXT <Rs>,* <Rd>

Execution 	pixel(*Rs) 	pixel(*Rd)

Encoding
	

15 14 13 12 11 10 9
	

8 	7 	6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

Implied
Operands

Pixel
Processing

Rs
	

I 	I
	

Rd

*Rs Source register indirect. The source pixel is located at the linear
memory address contained in the specified register.

*Rd Destination register indirect. The destination location is at the linear
memory address contained in the specified register.

PIXT transfers a pixel from the linear memory address contained in the
source register to the linear memory address contained in the destination
register. The source and destination registers must be in the same register
file.

I/O Registers

Address Name Description and Elements (Bits)

>C00000E30 CONTROL PP- Pixel processing operations (22 options)
T 	-Transparency operation

>C0000150 PSIZE Pixel size (1,2,4,6,8,16)

>C0000160 PMASK Plane mask - pixel format

The PP field of the CONTROL I/O register selects the pixel processing op-
eration that will be applied to the pixels as they are transferred to the des-
tination array. The default case at reset is the pixel processing replace
operation. For more information, see Section 7.7, Pixel Processing, on page
7-15.

Window checking cannot be used with this instruction. The W bits are
ignored.

Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

The plane mask is enabled for this instruction.

1

Window
Checking

Transparency

Plane Mask

Words

Machine
States

Pixel Processing Operation
Window
Violation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX W=1 W=2 W=3

1,2,4,8
16

4+(3),10
4+(1),8

6+(3),12
6+(1),10

6+(3),12
6+(1),10

7+(3),13
7+(1),11

7+(3),13
7+(1),11

8+(3),14
8+(1),12

7+(3),13
7+(1),11

-
-

-
-

-
-

12-198

PIXT

Status Bits

Examples

Pixel Transfer - Indirect to Indirect 	PIXT

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

PIXT *AO ,*A1

AO

Before

@>20500 PSIZE PP T PMASK

After

@>20510 Al @>20500
1) >0002 0500 >0002 0508 >000F >0001 00000 0 >0000 >010F xxxx
1) >0002 0500 >0002 0508 >000F >0002 00000 0 >0000 >030F xxxx
1) >0002 0500 >0002 0508 >000F >0004 00000 0 >0000 >OFOF xxxx
1) >0002 0500 >0002 0508 >00EF >0008 00000 0 >0000 >EFEF xxxx
1) >0002 0500 >0002 0508 >1234 >0010 00000 0 >0000 >3434 >xx12
2) >0002 0500 >0002 0508 >030F >0004 01010 0 >0000 >OCOF xxxx
3) >0002 0500 >0002 0508 >010E >0004 00001 0 >0000 >000E xxxx
4) >0002 0500 >0002 0508 >020E >0004 00001 1 >0000 >020E xxxx
5) >0002 0500 >0002 0508 >000F >0004 00000 0 >AAAA >050F xxxx

Notes:

1) S replaces D
2) (S XOR D) replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D not replaced
5) S replaces unmasked bits of D

12-199

PIXT 	Pixel Transfer - Indirect XY to Register 	PIXT

Syntax
	

PIXT *<Rs>.XY,<Rd>

Execution
	

(pixel)*Rs.XY -4 (pixel)Rd

Encoding
	

15 14 13 12 11 10 9 8
	

7
	

6
	

5
	

4 3 2
	

1
	

0

1
	

1 	1 	1 	0 	0 	1
	

Rs
	

R
	

Rd

Operands 	•Rs.XY Source register indirect in XY format. The source operand is at
the XY memory address contained in the specified register. The
X value occupies the 16 LSBs of the register and the Y value oc-
cupies the 16 MSBs.

Description 	PIXT transfers a pixel from the XY memory address contained in the source
register to the destination register. When the pixel is moved into the regis-
ter, it is right justified and zero extended to 32 bits according to the pixel
size specified in the PSIZE I/O register. The source and destination regis-
ters must be in the same register file.

Implied
Operands B File Registers

Register Name Format Description

83 DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (0,0)

I/O Registers

Address Name Description and Elements (Bits)

>C0000130 CONVSP XY-to-linear conversion (source pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Window
Checking 	Window checking cannot be used with this instruction. The W bits are

ignored.
Pixel
Processing 	Pixel processing cannot be used with this instruction.

Transparency Transparency cannot be used with this instruction.

Plane Mask 	The plane mask is enabled for this instruction.

Words 	1

Machine
States
	

6,9

Status Bits 	N Undefined
C Undefined
Z Undefined
V Set to 1 if the pixel is 1, set to 0 if the pixel is 0.

12 - 200

PIXT 	Pixel Transfer - Indirect XY to Register 	PIXT

Examples 	These PIXT examples use the following implied operand setup.

Register File B: 	 I/O Registers:
DPTCH (B3) = >800 	CONVSP = >0014
OFFSET (B4) = >00000000

Assume that memory address @>20500 contains >CF3F before instruction
execution.

PIXT *AO.XY,A1

Before

PSIZE PMASK

After

AO Al
>0040 0500 >0001 >0000 >0000 0001
>0040 0500 >0001 >FFFF >0000 0000
>0040 0280 >0002 >0000 >0000 0003
>0040 0280 >0002 >AAAA >0000 0001
>0040 0140 >0004 >0000 >0000 000F
>0040 0140 >0004 >9999 >0000 0006
>0040 00A0 >0008 >0000 >0000 003F
>0040 00A0 >0008 >8989 >0000 0036
>0040 0050 >0010 >0000 >0000 CF3F
>0040 0050 >0010 >7310 >0000 8C2F

Note:

The XY addresses stored in register Al in these examples translate to
the linear memory address >20500. The pitch of the source was not
changed for any of these examples.

12-201

PIXT 	Pixel Transfer - Indirect XY to Indirect XY 	PIXT

Syntax
	

PIXT *<Rs>.XY, *<Rd>.XY

Execution
	

(pixel)*Rs.XY 	(pixel)*Rd.XY

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1
	

1 	1 	1 	0 	1 	0
	

Rs
	

R
	

Rd

Operands 	*Rs.XY Source register indirect XY format. The source pixel is at the XY
memory address contained in the specified register. The X value
occupies the 16 LSBs of the register and the Y value occupies the
16 MSBs.

*Rd.XY Destination register indirect XY format. The destination location
is the XY address contained in the specified register. The X value
occupies the 16 LSBs of the register and the Y value occupies the
16 MSBs.

Description 	PIXT transfers a pixel from the XY memory address contained in the source
register to the XY memory address contained in the destination register.
The source and destination registers must be in the same register file.

Implied
Operands B File Registers

Register Name Format Description

B1 SPTCH Linear Source pitch

B3 DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP—Pixel processing operations (22 options)
W —Window clipping or pick operation
T 	— Transparency operation

>C0000130 CONVSP XY-to-linear conversion (source pitch)

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Window
Checking 	Window clipping can be selected by setting the W bits in the CONTROL

I/O register to 2 or 3. Pick can be selected by setting the W bits to 1. The
WSTART and WEND registers define the window in XY-coordinate space.
If window clipping or pick is not selected, then the WSTART and WEND
registers are ignored. The default case at reset is no window clipping. For
more information, see Section 7.10, Window Checking, on page 7-25.

Pixel
Processing 	The PP field of the CONTROL I/O register specifies the pixel processing

operation to be applied to pixels as they are transferred to the destination
array. The default case at reset is the pixel processing replace operation.
For more information, see Section 7.7, Pixel Processing, on page 7-15.

12-202

PIXT
	

Pixel Transfer - Indirect XY to Indirect XY 	PIXT

Transparency

Plane Mask

Words

Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

The plane mask is enabled for this instruction.

1

Machine
States

Pixel Processing Operation
Window
Violation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX W=1 W=2 W=3

1,2,4,8
16

7+(3),13
7+(1),11

9+(3),15
9+(1),13

9+(3),15
9+(1),13

10+(3),1610+(3),16
10+(1),1410+(1),14

11 +(3),17
11 +(1),15

10+(3),16
10+(1),14

-
-

8,11
8,11

6,9
6,9

Status Bits

Examples

N Unaffected
C Unaffected
Z Unaffected
V 1 if window clipping enabled and window violation occurs, 0 if no

window violation occurs. Unaffected if window clipping is not ena-
bled.

These PIXT examples use the following implied operand setup.

Register File B:
SPTCH (B1) = >800
DPTCH (B3) = >800
OFFSET (B4) = >00000000
WSTART (B5) = >00300020
WEND (B6) 	= >00500142

I/O Registers:
CONVSP = >0014
CONVDP = >0014

AO

PIXT 	*AO.XY,*Al.XY

Before

@>20500 PSIZE PP W T PMASK @>20500

After

Al @>20510
1) >0040 0500 >0040 0508 >000F >0001 00000 00 0 >0000 >010F xxxx
1) >0040 0280 >0040 0284 >000F >0002 00000 00 0 >0000 >030F XY.XX

1) >0040 0140 >0040 0142 >000F >0004 00000 00 0 >0000 >OFOF xxxx
1) >0040 00A0 >0040 00A1 >00EF >0008 00000 00 0 >0000 >EFEF xxxx
1) >0040 0050 >0040 0051 >CDEF >0010 00000 00 0 >0000 >CDEF >CDEF
2) >0040 0140 >0040 0142 >0306 >0004 01010 00 0 >0000 >0506 xxxx
3) >0040 0140 >0040 0142 >0106 >0004 00001 00 0 >0000 >0006 xxxx
4) >0040 0140 >0040 0142 >0106 >0004 10001 00 1 >0000 >0106 xxxx
5) >0040 0140 >0040 0142 >0006 >0004 00000 00 0 >AAAA >0406 xxxx
6) >0040 0140 >0040 0142 >0006 >0004 00000 11 0 >0000 >0606 xxxx
7) >0040 0140 >0040 0143 >0006 >0004 00000 11 0 >0000 >0006 xxxx
8) >0040 0140 >0040 0143 >0006 >0004 00000 100 >0000 >0006 xxxx

XY Address in AO = Linear Address >20500

12-203

PIXT 	Pixel Transfer - Indirect XY to Indirect XY 	PIXT

Notes:

1) S replaces D
2) (S XOR D) replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D not replaced
5) S replaces unmasked bits of D
6) Window Option = 3, D inside window, S replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in

status register
8) Window Option = 2, D outside window, D not replaced, WV interrupt

generated, V bit set in status register

12-204

3130 29 28 27 28 25 24 23 22 212019 18 17 18 15 14 13 12 11 10 9 8 7' 8 5 4 3 2 1 0
P
B
X

F
E
1

F
E
0

N C V Rem E R FS1 FS0

POPST 	Pop Status Register from Stack 	POPST

Syntax
	

POPST

Execution
	

*SP+ -0 ST

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	0 	1 	1 	1 	0 	0 	0 	0 	0 0

Description 	POPST pops the status register from the stack and increments the SP by
32 after the status register is removed from the stack.

Status Register

Words

Machine
States

Status Bits

1

8,11 (SP aligned)
10,13 (SP nonaligned)

N Set from bit 31 of stack status.
C Set from bit 30 of stack status.
Z Set from bit 29 of stack status.
V Set from bit 28 of stack status.
IE Set from bit 21 of stack status.

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Add ress
	

Data
>OFFO 0000
	

>0010
>OFFO 0010
	

>C000

Code 	Before 	 After

SP 	 ST 	 SP
POPST 	>OFFO 0000 	>C000 0010 >OFFO 0020

12-205

PUSHST 	Push Status Register onto Stack 	PUSHST

Syntax
	

PUSHST

Execution
	

ST -■ -*SP

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	0 	1 	1 	1 	1 	0 	0 	0 	0 0

Description PUSTST pushes the status register onto the stack and then decrements the
SP by 32.

3130 29 28 27 28 25 24 23 22 212019 18 17 IQ 15 14 1:3 12 11 10 9 8 7 8 5 4 3 2 1 0

NC ZV A111 .: El zzltelt---11 E •:::-.----z :- :Miliff.:--- 	E 	F131 	E 	FSO

	

..... •._ r .,-,..,,,,,-• •-:-......-:, : 	1 	 a, 	,

Status Register

Words

Machine
States

Status Bits

Example

1

2+(3),8 (SP aligned)
2+(8),13 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code 	 Before

SP
PUSHST 	>OFFO 0020

After

ST 	 SP
> C000 0010 	>OFFO 0000

Memory will contain the following values after instruction execution:

Address
	

Data
>OFFO 0010
	

>0010
>OFFO 0020
	

>C000

12-206

Syntax

Execution

Encoding

PUTST <Rs>

(Rs) 	ST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	0 	0 	0 	0 	0
	

1 	1 	0 	1
	

R
	

Rs

PUTST 	 Copy Register into Status 	 PUTST

Description 	PUTST copies the contents of the specified register into the status register.

3130 29 28 27 28 25 24 23 22 2120 19 18 17 18 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N C

V Res B
P(1,

F
E
1

F 1
F61 	E I 	F60 	I

Status Register

Words

Machine
States

Status B its

1

3,6

N Set to value of bit 31 in source register
C Set to value of bit 30 in source register
Z Set to value of bit 29 in source register
V Set to value of bit 28 in source register
IE Set to value of bit 21 in source register

Example 	Code 	 Before 	 After

AO 	 ST 	 ST
PUTST AO 	>C000 0010 >xxxx xxxx 	>C000 0010

12-207

RETI 	 Return from Interrupt 	 RETI

Syntax
	

RETI

Execution
	

*SP+ 	ST
*SP+ 	PC

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5 4 3 2 1
	

0

Description

Words

Machine
States

Status Bits

Examples

0 	0 	0 	0 	1 	0 	0 	1 	0 	1 	0 	0 	0 	0 	0 0

RETI returns from an interrupt routine. It pops the status register and then
the program counter from the stack. Execution then continues according
to the values loaded.

The stack is located in external memory and the top is indicated by the stack
pointer (SP). The stack grows in the direction of decreasing linear address.
The ST and PC are popped from the stack and the SP is incremented by
32 after each register is removed from the stack.

Note:

If the PBX status bit is set in the restored ST value, then the bit is
cleared and a PIXBLT or FILL will be resumed, depending on the values
stored in the B-file registers.

The CONTROL register and any B-file registers modified by an interrupt
routine should be restored before RETI is executed. Otherwise, inter-
rupted PIXBLT and FILL instructions may not resume execution cor-
rectly.

1

11,14 (aligned stack)
15,18 (nonaligned stack)

N Copy of corresponding bit in stack location
C Copy of corresponding bit in stack location

Copy of corresponding bit in stack location
V Copy of corresponding bit in stack location
IE Copy of corresponding bit in stack location

Assume that memory contains the following values before instruction exe-
cution:

Address
>OCCC 0000
>OCCC 0010
>OCCC 0020
>OCCC 0030

Data
>0010
>C000
>FFFO
>0044

Code 	Before
	

After

SP 	 ST
	

PC 	 SP
RETI >OCCC 0000 >C000 0010

	
>0044 FFFO >OCCC 0040

12 - 208

RETS 	 Return from Subroutine 	 RETS

Syntax

Execution

RETS [<N>]

*SP 	PC (N defaults to 0)
(SP) + 32+ (16N) —■ SP

Encoding
	

15 14 13 12 11 10 9 8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Fields

Description

Words

Machine
States

Status Bits

Examples

0 	0 	0 	0 	1 	0 	0 	1 	0 	1 	1
	

N

N Optional stack pointer adjustment (0 to 31 words)

RETS returns from a subroutine by popping the program counter from the
stack and incrementing the stack pointer by N +2 words. If N is specified,
the stack pointer is incremented by 32 + 16N. If N is not specified, the
stack is incremented by 32. Execution then continues according to the PC
value loaded.

1

7,10 (Aligned stack)
9,12 (Unaligned stack)

N Unaffected
C Unaffected
Z Unaffected
✓ Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address 	Data
>OFFO 0000 	>FFFO
>OFFO 0010 	>0001

Code 	 Before 	 After

SP 	 PC 	 SP
RETS 	>OFFO 0000 	>0001 FFFO >OFFO 0020
RETS 1 	>OFFO 0000 	>0001 FFFO >OFFO 0030
RETS 2 	>OFFO 0000 	>0001 FFFO >OFFO 0040
RETS 16 	>OFFO 0000 	>0001 FFFO >OFFO 0120
RETS 31 	>OFFO 0000 	>0001 FFFO >OFFO 0210

12-209

REV 	 Store Revision Number
	

REV

Syntax
	

REV <Rd>

Execution
	

Revision numer - Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	

0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	1 1 R 1
	

Rd
	

1
Description 	REV stores the revision number of the TMS340 family device in the desti-

nation register. The revision number information is stored in the following
format:

31 30 29
	

4 3 2 1 0

1 0 	0 	0
	

0 	1 I Reserved I

Words 	1
Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	 Before 	After

Al 	 Al
REV Al 	>FFFF FFFF 	>0000 0008

12-210

RL 	 Rotate Left - Constant
	

RL

Syntax
	

RL <K>,<Rd>

Execution
	

(Rd) rotated left by K 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	1 	1 	0 	0
	

K
	

R
	

Rd

Operands 	K is a rotate count from 0 to 31.

Description 	RL rotates the destination register contents by left the number of bits spe-
cified by K. This is a circular rotate so that bits shifted out the MSB are
shifted into the LSB.

C 	31

0

LsB-1

The left rotate count is contained in the 5-bit K field of the instruction word.
The assembler will only accept absolute expressions as valid K operand
values. If the value specified is greater than 31, the assembler will issue a
warning and set the value of the K field equal to the five LSBs of the K
operand value specified.

The rotate count of 0 can be used to clear the carry and test a register for
0 simultaneously.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Set to value of last bit rotated out, 0 for rotate count of 0.
Z 	1 if result is 0, 0 otherwise.
V Unaffected

Examples Code Before After

Al NCZ V
RL 0 , Al >0000 000F x 00x
RL 1 A1 > F000 0000 x10x
RL 4 , Al > F000 0000 x 10x
RL 5 , Al > F000 0000 x00x
RL 30 , Al > F000 0000 x10x
RL 5 , Al >0000 0000 x 01x

Al
>0000 000F
>E000 0001
>0000 000F
>0000 001E
>3C00 0000
>0000 0000

12-211

RL
	

Rotate Left - Register

Syntax
	

RL <Rs>,<Rd>

Execution
	

(Rd) rotated left by Rs --+ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4 3
	

2
	

1
	

0

RL

Words

Machine
States

Status B its

Examples

0 	1 	1 	0 	1 	0 	0
	

Rs
	

R
	

Rd

Rs The five LSBs of the source register specify the left rotate count (a
value from 0 to 31). The 27 MSBs are ignored.

RL rotates the destination register contents left by the number of bits spe-
cified. This is a circular rotate, so that bits shifted out of the MSB are
shifted into the LSB.

31

MSB 	 L68

Note that the you must designate Rs with a keyword or symbol which has
been defined to be a register, for instance A9. Otherwise, the assembler
will use the RL K, Rd instruction.

The source and destination registers must be in the same register file.

1

1,4

N Unaffected
C Set to value of last bit rotated out, 0 for rotate count of 0.
Z 	1 if result is 0, 0 otherwise.
V Unaffected

Code 	 Before 	 After

5 LSBs 	AO 	Al 	 NCZV 	Al
RL AO,A1 	00000 	>0000 000F 	x00x >0000 000F
RL A0,A1 	00100 	>F000 0000 	x10x >0000 000F
RL A0,A1 	00101 	>F000 0000 	x00x >0000 001E
RL AO , A1 	11111 	>F000 0000 	x00x >7800 0000
RL AO,A1 	xxxxx 	>0000 0000 	x01x >0000 0000

Operands

Description

04 	

12-212

SETC 	 Set Carry SETC

Syntax
	

SETC

Execution
	

1 -■ C

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

. 0 	o 1 0 	1 	0 	1 	1 1 	 0 1 	0 	0 	0 0

Description 	SETC sets the carry bit (C) in the status register to 1. The rest of the status
register is unaffected.

This instruction is useful for returning a true/false value (in the carry bit)
from a subroutine without using a general-purpose register.

Words

Machine
States

Status Bits

Examples

1

1,4

N Unaffected
 Cl

Z Unaffected
V Unaffected

Code Before

NCZV

After

NCZV ST ST
SETC >0000 0000 0000 >4000 0000 0100
SETC >B000 0010 1011 >F000 0010 1111
SETC >4000 001F 0100 >4000 001F 0100

12-213

SETF

Syntax

Execution

Encoding

SETF <FS> ,<FE>[,<F>]

(FS, FE) -* ST

15 14 13 12 11 10 9

SETF

1
	

0

Set Field Parameters

8 7 6 5 4 3 2

0 	0 	0 	0 	0 	1
	

F
	

1 	0 	1 I FE I 	FS

Operands 	FS is the field size to be stored in status register (1-32).

FE is the field extend to be stored in status register - 0 for zero extend, 1
for sign extend.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO, FEO to be altered.
F=1 selects FS1, FE1 to be altered.

Description 	SETF loads the values specified for the field size (FS) and the field exten-
sion (FE) into the status register. The rest of ST is unchanged. The F bit
specifies whether the Field 0 or Field 1 parameters are to be set. FS can
be in the range 1-32, FE is either 0 or 1, and F is optional. If F is not spe-
cified, it defaults to 0. An FS of 0 in the opcode corresponds to a field size
of 32. This instruction is used to set either of the two sets of field move
parameters in the status register. These determine the field size for MOVE
field instructions and the field-extension rule for MOVE into a register. Ei-
ther set of parameters can be chosen by an individual MOVE instruction,
by specifying the F parameter.

Words

Machine
States

1

1,4
2,5

313(1213219272.1326 24 25 221201E4 1E 17 le 1s 14 13 t2

N C z V Reis
P
B ReEpj I

e,

• 	 • F
S 	F64)
■I■1■I■i■

for F=0
for F=1

Status Register

Status Bits N 	Unaffected
C 	Unaffected
Z 	Unaffected
V 	Unaffected

Examples Code Before After

ST ST
SETF 	32,0,0 >xxxx x000 >xxxx x000
SETF 	32,1,0 > xxxx x000 >xxxx x020
SETF 	31,1,0 >xxxx x000 >xxxx x03F
SETF 	16,0,0 >xxxx x000 >xxxx x010
SETF 	32,0,1 >xxxx x000 >xxxx x000
SETF 	32,1,1 >xxxx x000 >xxxx x800
SETF 	31,1,1 >xxxx x000 >xxxx xFC0
SETF 	16,0,1 >xxxx x000 >xxxx x400

12-214

SEXT 	 Sign Extend to Long SEXT

SEXT <Rd>[,<F>]

(field)Rd —■ (sign-extended field) Rd

15 14 13 12 11 10 9 	8 	7 	6

F Is an optional operand; it defaults to 0
0 selects FSO for the field size
1 selects FS1 for the field size

Syntax

Execution

Encoding

Operands

5 4 3 2 1 0

0 	0 	0 	0 	0 	1
	

F
	

1 	0 	0 	0 R
	

Rd

Description 	SEXT sign extends the right-justified field contained in the destination re-
gister by copying the MSB of the field data into all the nonfield bits of the
destination register. The field size for the sign extension is specified by the
FSO or FS1 bits in the status register, depending on the F bit specified.

Words

Machine
States

Status Bits

1

3,6

N 1 if the result is negative, 0 otherwise.
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

FSO/1 	 AO 	 NCZ V 	AO
SEXT AO , 0 	17/x 	>0000 8000 	OxOx >0000 8000
SEXT AO , 0 	16/x 	>0000 8000 	1 x0x > FFFF 8000
SEXT AO , 0 	15/x 	>0000 8000 	Ox1x >0000 0000
SEXT AO , 1 	x/17 	>0000 8000 	OxOx >0000 8000
SEXT A0, 1 	x/16 	>0000 8000 	1x0x >FFFF 8000
SEXT AO , 1 	x/15 	>0000 8000 	Ox 1x >0000 0000

12-215

SLA
	

Shift Left Arithmetic - Constant 	SLA

Syntax
	

SLA <K>,<Rd>

Execution
	

(Rd) shifted left by K - Rd

Encoding
	

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 	0 	1 	0 	0 	0I
	

K
	

I R 	Rd

Operands 	K is a shift value from 0 to 31.

Description 	SLA shifts the destination register contents left by the number of bits spe-
cified. As shown in the diagram, zeros are shifted into the least significant
bits. The last bit shifted out of the destination register is shifted into the
carry bit. If either the sign bit (N) or any of the bits shifted out of the reg-
ister differ from the original sign bit, the overflow bit (V) is set.

04-
MSB

Change
Detect

31

4 	Shift 4-1-- 0

MSB 	 LSB

The left shift count is contained in the 5-bit K field of the instruction word.
The assembler accepts only absolute expressions as valid K operand values.
SLA executes slower than SLL because overflow detection. If the value
specified is greater than 31, the assembler issues a warning and sets the
value of the K field equal to the five LSBs of the K operand value specified.

Words

Machine
States

Status Bits

Examples

1

3,6

N 1 if the result is negative, 0 otherwise.
C Set to the value of last bit shifted out, 0 for shift count of 0.
Z 1 if a 0 result generated, 0 otherwise.
V 1 if the MSB changes during shift operation, 0 otherwise.

Code Before After

NCZV Al Al
SLA 0 Al >3333 3333 >3333 3333 0000
SLA 0 , A1 > CCCC CCCC > CCCC CCCC 1000
SLA 1,A1 >CCCCCCCC >9999 9998 1100
SLA 2,A1 >33333333 >CCCCCCCC 1001
SLA 2 , Al >CCCCCCCC >3333 3330 0101
SLA 3 , Al >CCCCCCCC >6666 6660 0001
SLA 5 , Al >CCCCCCCC >9999 9980 1101
SLA 30 , Al >CCCCCCCC >0000 0000 0111
SLA 31, Al > CCCC CCCC >0000 0000 0011
SLA 31 , A1 >0000 0000 >0000 0000 0010

12-216

SLA
	

Shift Left Arithmetic - Register 	 SLA

Syntax
	

SLA <Rs>,<Rd>

Execution
	

(Rd) shifted left by (Rs) —> Rd

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	1 	0 	0 	0 	0
	

Rs
	

R
	

Rd

Operands
	

Rs The five LSBs of the source register specify the left-shift count (a va-
lue from 0 to 31). The 27 MSBs are ignored.

Description
	

SLA shifts the destination register contents left by the number of bits spe-
cified the source register. The last bit shifted out of the destination register
is shifted into the carry bit. If either the sign bit (N) or any of the bits
shifted out of the register differ from the original sign bit, the overflow bit
(V) is set.

Shift 4---- 14-0

LS8

MSB
Change
Detect

31

Words

Machine
States

Status Bits

Examples Code 	 Before

5 LS Bs 	AO 	Al
SLA AO , Al 	00000 	>3333 3333
SLA AO , Al 	00000 	>CCCC CCCC
SLA AO , Al 	00001 	>CCCC CCCC
SLA AO , Al 	00010 	>3333 3333
SLA AO , Al 	00010 	>CCCC CCCC
SLA AO , Al 	00011 	>ccCC CCCC
SLA AO , Al 	00101 	>CCCC CCCC
SLA AO , Al 	11110 	>CCCC CCCC
SLA AO , Al 	11111 	>CCCC CCCC
SLA AO ,A1 	11111 	>0000 0000

After

Al
>3333 3333
>CCCC cCCC
>9999 9998
>CCCc ccCC
>3333 3330
>6666 6660
>9999 9980
>0000 0000
>0000 0000
>0000 0000

The left shift count is specified by the five LSBs of the source register.

Note that you must designate Rs with a keyword or symbol which has been
defined to be a register, for instance A9. Otherwise, the assembler will use
the SLA K , Rd instruction. SLA executes slower than SLL because the
overflow detection. The source and destination registers must be in the
same register file.

1

3,6

N 1 if the result is negative, 0 otherwise.
C Set to value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
V 1 if the MSB changes during shift operation, 0 otherwise.

NCZV
0000
1000
1100
1001
0101
0001
1101
0111
0011
0010

12-217

SLL
	

Shift Left Logical - Constant 	 SLL

Syntax
	

SLL <K>,<Rd>

Execution
	

(Rd) shifted left by K — ■ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

0 	0 	1 	0 	0 	1
	

K
	

R
	

Rd

K is a shift value from 0 to 31.

SLL shifts the destination register contents left by the number of bits spec-
ified. The last bit shifted out of the destination register is shifted into the
carry bit. Zeros are shifted into the least significant bits. This instruction
differs from the SLA instruction only in its effect on the overflow (V) bit.

3'KMSB) 	 00-SB)

[4— Shift 4---- 14 	 0

The left shift count is contained in the 5'-bit K field of the instruction word.
The assembler will only accept absolute expressions as valid K operand
values. If the value specified is greater than 31, the assembler will issue a
warning and set the value of the K field equal to the five LSBs of the K
operand value specified.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C / to the value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples Code 	 Before 	 After

Al 	 Al 	 NCZV
SLL 0 , Al 	>0000 0000 	>0000 0000 x0lx
SLL 0 , Al 	>8888 8888 	>8888 8888 x00x
SLL 1 , Al 	>8888 8888 	>1111 1110 	x10x
SLL 4 , Al 	>8888 8888 	>8888 8880 x 00x
SLL 30 , Al 	>FFFF FFFC 	>0000 0000 x11x
SLL 31 , Al 	>FFFF FFFC 	>0000 0000 x 01x

12-218

4 3 2 1 0

R
	

Rd

Shift Left Logical - Register 	 SLL SLL

Syntax 	SLL <Rs>,<Rd>

Execution 	(Rd) shifted left by (Rs) 	Rd

Encoding 	15 14 13 12 11 10 9 	8 	7 	6 	5

0 	1 	1 	0 	0 	0 	11 	Rs

Description 	SLL shifts the destination register contents left by the number of bits spec-
ified in the source register. The last bit shifted out of the destination register
is shifted into the carry bit. Zeros are shifted into the least significant bits.
The left shift count is specified by the five LSBs of the source register. This
instruction differs from the SLA instruction only in its effect on the overflow
(V) bit.

31(MSB) 	 O(LSB)

1.4- Shift 4 	 I I 	0

Note that you must designate Rs with a keyword or symbol which has been
defined to be a register, for instance A9. Otherwise, the assembler will use
the SLA K, Rd instruction.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Set to the value of last bit shifted out, 0 for shift value of 0.
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

5 LSBs AO 	Al 	 Al 	 NCZV
SLL A0,A1 	00000 	>0000 0000 	>0000 0000 x01 x
SLL A0,A1 	00000 	>8888 8888 	>8888 8888 x00x
SLL AO ,A1 	00001 	>8888 8888 	>1111 1110 	x10x
SLL AO , Al 	00100 	>8888 8888 	>8888 8880 x 00x
SLL AO , Al 	11110 	>FFFF FFFC 	>0000 0000 	xlix
SLL AO , Al 	11111 	>FFFF FFFC 	>0000 0000 	x 01x

12-219

SRA Shift Right Arithmetic - Constant 	 SRA

Syntax
	

SRA <K>,<Rd>

Execution
	

(Rd) shifted right by K —■ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

Words

Machine
States

Status Bits

Examples

0 	0 	1 	0 	1 	01 2s Complement of K 	1 R 1 	Rd

K is a shift count from 0 to 31.

SRA shifts the destination register contents right by the number of bits
specified. The last bit shifted out of the destination register is shifted into
the carry bit. The sign bit (MSB) is extended into the most significant bits.

MSB

The 5-bit K field of the instruction opcode contains the 2's complement of
the right shift count specified by the K operand. The assembler will only
accept absolute expressions for the shift operand value. If the value speci-
fied is greater than 31, the assembler will issue a warning and set the value
of the K field of the instruction opcode equal to the 2's complement of the
five LSBs of the specified operand value.

1

1,4

N 1 if the result is negative, 0 otherwise.
C Set to the value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
✓ Unaffected

Code 	 Before 	After

Al 	 Al 	 NCZ V
SRA 0,A1 >0000 0000 	>0000 0000 001x
SRA 0,A1 >FFFF 0000 	>FFFF 0000 100x
SRA 8 , Al >7FFF 0000 	>007F FF00 000x
SRA 8,A1 >FFFF 0000 	>FFFF FFOO 	100x
SRA 30,A1 >7FFF 0000 	>0000 0001 	010x
SRA 31,A1 > 7 FFF 0000 	>0000 0000 011x
SRA 31,A1 	>FFFF 0000 	>FFFF FFFF 	110x

12-220

SRA 	 Shift Right Arithmetic - Register 	 SRA

Syntax
	

SRA <Rs>,<Rd>

Execution
	

(Rd) shifted right by - (Rs) - ■ Rd

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Words

Machine
States

Status Bits

Examples

0 	1 	1 	0 	0 	1 	0
	

Rs
	

R
	

Rd

Rs The 2's complement of the source register's five LSBs specify a shift
count from 0-31 bits. The 27 MSBs are ignored.

SRA shifts the destination register contents right by the number of bits
specified in the source register. The last bit shifted out of the destination
register is shifted into the carry bit. The sign bit (MSB) is extended into the
most significant bits.

MSB

Note:

The five LSBs of the source register contain the 2's complement of the
right shift count.

You must specify Rs with a keyword or a symbol which has been defined
to be a register, for instance A9. Otherwise, the assembler will use the SRA
K, Rd instruction. The source and destination registers must be in the same
register file.

1

1,4

N 1 if the result is negative, 0 otherwise.
C Set to the value of last bit shifted out, 0 for shift count of 0.

1 if the result is 0, 0 otherwise.
V Unaffected

Code 	 Before 	 After

5 LSBs 	AO 	Al 	 Al 	 NCZV
SRA AO , Al 	00000 	>0000 0000 	>0000 0000 001x
SRA A0,A1 	00000 	>FFFF0000 	>FFFF 0000 100x
SRA A0,A1 	11111 	>7FFF 0000 	>3FFF 8000 000x
SRA A0,A1 	11111 	>FFFF0000 	>FFFF 8000 100x
SRA A0,A1 	11000 	>7FFF 0000 	>007F FF00 000x
SRA AO , A1 	11000 	>FFFF0000 	>FFFF FF00 100x
SRA AO,A1 	00010 	>7FFF 0000 	>0000 0001 	010x
SRA AO , Al 	00001 	>7FFF 0000 	>0000 0000 011x
SRA A0,A1 	00001 	>FFFF 0000 	>FFFF FFFF 110x

Operands

Description

12-221

SRL <K>,<Rd>

(Rd) shifted right by K -* Rd

15 14 13 12 11 10 9 	8 	7 	6 	5

0 	0 	1 	0 	1 	1 I 2s Complement of K

Syntax

Execution

Encoding 4 3
	

2
	

1
	

0

R
	

Rd

Shift Right Logical - Constant 	 SRL SRL

Operands
	

K is a shift value from 0 to 31.

Description
	

SRL shifts the destination register contents right by the number of bits
specified. The last bit shifted out of the destination register is shifted into
the carry bit. Zeros are shifted into the most significant bits.

MSB
	

L6B

Words

Machine
States

Status Bits

Examples

The 5-bit K field of the instruction opcode contains the 2's complement of
the right shift count specified by the K operand. The assembler accepts
only absolute expressions for the shift operand value. If the specified value
is greater than 31, the assembler issues a warning and set the value of the
K field of the instruction opcode equal to the 2's complement of the five
LSBs of the specified operand value.

1

1,4

N Unaffected
C Set to the value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
✓ Unaffected

Code 	 Before 	 After

SRL 0 , A1
Al

>0000 0000
Al

>0000 0000
NCZV
x 01x

SRL 0,A1 >7FFF FFFF >7FFF FFFF x00x
SRL 1,A1 >7FFF FFFF >3FFF FFFF x10x
SRL 8,A1 >7FFF0000 >007F FFOO x00x
SRL 30,A1 >7FFF 0000 >0000 0001 x10x
SRL 31,A1 >7FFF0000 >0000 0000 xllx
SRL 31,A1 >3FFF 0000 >0000 0000 x 01x

12-222

SRL
	

Shift Right Logical - Register 	 SRL

Syntax
	

SRL <Rs>,<Rd>

Execution
	

(Rd) shifted right by -(Rs) - ■ Rd

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Words

Machine
States

Status Bits

Examples

0 	1 	1 	0 	0 	1 	1
	

Rs
	

R
	

Rd

Rs The 2's complement of the source register's five LSBs specify a shift
count from 0-31 bits. The 27 MSBs are ignored.

SRL shifts the destination register contents right by the number of bits
specified. The last bit shifted out of the destination register is shifted into
the carry bit. Zeros are shifted into the most significant bits.

Note: The five LSBs of the source register contain the 2's complement
of the right shift count.

You must specify Rs with a keyword or symbol which has been defined to
be a register, for instance A9. Otherwise, the assembler will use the SRL
K,Rd instruction. The source and destination registers must be in the same
register file.

1

1,4

N Unaffected
C Set to the value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Code 	 Before 	 After

5 LSBs 	AO 	Al 	 Al 	 NCZV
SRL AO , Al 	00000 	>0000 0000 	>0000 0000 x01x
SRL AO , Al 	00000 	>7FFF FFFF 	>7FFF FFFF x00x
SRL AO ,A1 	11111 	>7FFF FFFF 	>3FFF FFFF 	xl Ox
SRL AO ,A1 	11000 	>7FFF 0000 	>007F FF00 x 00x
SRL AO , Al 	00010 	>7FFF 0000 	>0000 0001 xl0x
SRL AO , Al 	00001 	>7FFF 0000 	>0000 0000 xllx
SRL AO , Al 	00001 	>3FFF 0000 	>0000 0000 x01x

Operands

Description

12-223

SUB Subtract Registers SUB

Syntax
	

SUB <Rs>,<Rd>

Execution
	

(Rd) - (Rs) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4 3 2
	

1
	

0

0 	1 	0 	0 	0 	1 	0 1 	Rs I 	I 	Rd

Operands

Description

Rs contains the 32-bit subtrahend.

Rd contains the 32-bit minuend.

SU B subtracts the contents of the source register from the contents of the
destination register; the result is stored in the destination register. Multi-
ple-precision arithmetic can be accomplished by using this instruction in
conjunction with the SUBB instruction.

The source and destination registers must be in the same register file.

Words

Machine
States

1

1,4

Status Bits N 	1 if the result is negative, 0 otherwise.
C 	1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

AO 	 Al NCZ V AO
SUB Al , AO 	>7FFF FFF2 	>7FFF FFF1 0000 >0000 0001
SUB Al AO 	>7FFF FFF2 	>7FFF FFF2 0010 >0000 0000
SUB Al AO 	>7FFF FFF1 	>7FFF FFF2 1100 >FFFF FFFF
SUB Al , AO 	>7FFF FFF1 	>FFFF FFFF 0100 >7FFF FFF2
SUB Al AO 	>7FFF FFFF 	>FFFF FFFF 1101 >8000 0000
SUB Al , AO 	>FFFF FFFD 	>FFFF FFFF 1100 >FFFF FFFE
SUB Al , AO 	>FFFF FFFD 	>FFFF FFFD 0010 >00000000
SUB Al ,A0 	>FFFF FFFE 	>FFFF FFFD 0000 >0000 0001
SUB Al, AO 	>FFFF FFFF 	>0000 0001 1000 >FFFF FFFE
SUB Al AO 	>8000 0000 	>0000 0001 0001 >7FFF FFFF

12 - 224

SUBB 	Subtract Registers with Borrow 	SUBB

SUBB <Rs>,<Rd>

(Rd) - (Rs) - (C) 	Rd (C acts as borrow)

15 14 13 12 11 10 9 	8 	7 	6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	0 	0 	1 	1
	

Rs
	

R
	

Rd

Rs contains the 32-bit subtrahend.

Rd contains the 32-bit minuend.

SUBB subtracts both the contents of the source register and the carry bit
from the contents of the destination register; the result is stored in the des-
tination register. This instruction can be used with the SUB, SUBK, and
SUBI instructions for extended-precision arithmetic.

Syntax

Execution

Encoding

Operands

Description

The source and destination registers must be in the same register file.

Words

Machine
States

1

1,4

Status Bits N 	1 if the result is negative, 0 otherwise.
C 	1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

C 	AO 	 Al NCZV AO
SUBB Al,A0 	0 	>0000 0002 	>0000 0001 0000 > 0000 0001
SUBB Al,A0 	1 	>0000 0002 	>0000 0001 001 0 >0000 0000
SUBB Al,A0 	0 	>0000 0002 	>0000 0002 001 0 >0000 0000
SUBB Al,A0 	1 	>0000 0002 	>0000 0002 1100 >FFFF FFFF
SUBB Al,A0 	0 	>0000 0002 	>0000 0003 11 00 >FFFF FFFF
SUBB Al,A0 	0 	>7FFF FFFE 	>FFFF FFFF 01 00 >7FFF FFFF
SUBB Al,A0 	0 	>7FFF FFFE 	>FFFF FFFE 11 01 >8000 0000
SUBB Al,A0 	1 	>7FFF FFFE 	>FFFF FFFE 0100 >7FFF FFFF
SUBS Al,A0 	0 	>FFFF FFFE 	>FFFF FFFF 1100 >FFFF FFFF
SUBS Al,A0 	0 	>FFFF FFFE 	>FFFF FFFE 0010 >0000 0000
SUBB Al,A0 	1 	>FFFF FFFE 	>FFFF FFFE 1100 >FFFF FFFF
SUBB Al,A0 	0 	>FFFF FFFE 	>FFFF FFFD 0000 >0000 0001
SUBB Al,A0 	1 	>FFFF FFFE 	>FFFF FFFD 001 0 >0000 0000
SUBB Al,A0 	0 	>8000 0001 	>0000 0001 1 000 >8000 0000
SUBB Al,A0 	1 	>8000 0001 	>0000 0001 0001 >7FFF FFFF
SUBB Al,A0 	0 	>8000 0001 	>0000 0002 0001 >7FFF FFFF

12-225

Syntax

Execution

Encoding

SUBI <IW>,<Rd>[,W]

(Rd) - IW -+ Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

	

Subtract Immediate - 16 Bits 	 SUBI SUBI

0 	0 	0 	0 	1 	0 	1 	1 	1 	1 	1
	

R
	

Rd

-IW

Operands 	1W 	is a signed 16-bit immediate value.

Description 	SUBI subtracts the sign-extended, 16-bit immediate value from the con-
tents of the destination register; the result is stored in the destination reg-
ister.

The assembler will use the short form if the immediate value has been pre-
viously defined and is in the range -32,768 5 IW < 32,767. You can force
the assembler to use the short form by by following the register specifica-
tion with ,W:

Words

Machine
States

SUBI 	IW,Rd,W

The assembler will truncate any upper bits and issue an appropriate warning
message. Multiple-precision arithmetic can be accomplished by using this
instruction in conjunction with the SUBB instruction.

2

2,8

Status Bits N 	1 if the result is negative, 0 otherwise.
C 	1 if a borrow is generated, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

AO AO NCZV
SUBI 	32765,A0 	>0000 7FFE >0000 0001 0000
SUBI 	32766,A0 	>0000 7FFE >0000 0000 0010
SUBI 	32767,A0 	>0000 7FFE >FFFFFFFF 1100
SUBI 	32766,A0 	>8000 7FFE >8000 0000 1000
SUBI 	32767 ,A0 	>8000 7FFE >7FFF FFFF 0001
SUBI -32766,A0 	>FFFF 8001 >FFFFFFFF 1100
SUBI 	-32767 , AO 	>FFFF 8001 >0000 0000 0010
SUBI -32768,A0 	>FFFF 8001 >0000 0001 0000
SUBI -32767,A0 	>7FFF 8000 >7FFF FFFF 0100
SUBI -32768,A0 	>7FFF 8000 >8000 0000 1101

12-226

Syntax

Execution

Encoding

SUBI </L>,<Rd>[,L]

(Rd) - IL -* Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

	

Subtract Immediate - 32 Bits 	 SUBI SUBI

0 	0 	0 	0 	1 	1 	0 	1 	0 	0 	0 R
	

Rd

-IL (LSW)

-IL (MSW)

Operands 	IL is a signed 32-bit immediate value.

Description 	SUBI subtracts the signed 32-bit immediate value from the contents of the
destination register; the result is stored in the destination register. The as-
sembler will use this opcode if it cannot use the SUBI IW,Rd opcode,
or if the long opcode is forced by following the register specification with
,L:

Words

Machine
States

SUBI 	IL , Rd, L

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the SUBB instruction.

3

3,12

Status Bits N 	1 if the result is negative, 0 otherwise.
C 	1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

AO AO NCZy
SUBI 	2147483647, AO 	>7FFFFFFF >0000 0000 0010
SUBI 	32768 , AO 	>0000 8001 >0000 0001 0000
SUBI 	32769,A0 	>0000 8001 >0000 0000 0010
SUBI 	32770 , AO 	>0000 8001 >FFFF FFFF 1100
SUBI 	32768,A0 	>8000 8000 >8000 0000 1000
SUBI 	32769,A0 	>8000 8000 >7FFF FFFF 0001
SUBI -2147483648, AO 	>8000 0000 >0000 0000 0010
SUBI 	-32769, AO 	>FFFF7FFE >FFFF FFFF 1100
SUBI 	-32770,A0 	>FFFF 7FFE >0000 0000 0010
SUBI 	- 32771,A0 	>FFFF7FFE >0000 0001 0000
SUBI 	-32770 , AO 	>7FFF 7FFD >7FFFFFFF 0100
SUBI 	-32771,A0 	>7FFF 7FFD >8000 0000 1101

12-227

Syntax

Execution

Encoding

SUBK <K>,<Rd>

(Rd) - K 	Rd

15 14 13 12 11 10 4 3 	2 	1 	0

Rd

9 8 7 6 5

0 	0 	0 	1 	0 	1
	

K
	

R

SUBK Subtract Constant SUBK

K is a constant from 1 to 32.

Before 	After

1

Operands

Description

Words

Machine
States

Status Bits

Examples

1,4

Code

SUBK 5,A0
SUBK 9,A0
SUBK 32,A0
SUBK 1,A0

AO
>0000 0009
>0000 0009
>0000 0009
>8000 0000

AO 	 NCVZ
>0000 0004 0000
>0000 0000 0010
>FFFF FFE9 1100
>7FFF FFFF 0001

N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
✓ 1 if there is an overflow, 0 otherwise.

SUBK subtracts the 5-bit constant from the contents of the destination re-
gister; the result is stored in the destination register. The constant is treated
as an unsigned number in the range 1-32, where K = 0 in the opcode cor-
responds to the value 32. The assembler converts the value 32 to 0. The
assembler issues an error if you try to subtract 0 from a register. Multi-
ple-precision arithmetic can be accomplished by using this instruction in
conjunction with the SUBB instruction.

12 - 228

SUBXY 	Subtract Registers in XY Mode 	SU BXY

Syntax 	SUBXY <Rs>,<Rd>

Execution 	(RdX) - (RsX) 	RdX
(RdY) - (RsY) 	RdY

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	1 	1 	0 	0 	0 	1
	

Rs
	

R
	

Rd

Description 	SUBXY subtracts the source X and Y values individually from the destina-
tion X and Y values; the result is stored in the destination register.

This instruction can be used for manipulating XY addresses and is partic-
ularly useful for incremental figure drawing. These addresses are stored as
XY pairs in the register file.

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

Examples

1

1,4

N 1 if source X field = destination X field, 0 otherwise.
C 1 if source Y field > destination Y field, 0 otherwise.
Z 1 if source Y field = destination Y field, 0 otherwise.
V 1 if source X field > destination X field, 0 otherwise.

Code Before

Al

After

NCZV AO AO
SUBXY Al,AO >0009 0009 >0001 0001 >0008 0008 0000
SUBXY Al ,AO >0009 0009 >0009 0001 >0000 0008 0010
SUBXY Al,AO >0009 0009 >0001 0009 >0008 0000 1000
SUBXY Al,AO >0009 0009 >0009 0009 >0000 0000 1010
SUBXY Al, AO >0009 0009 >0000 0010 >0009 FFF9 0001
SUBXY Al,AO >0009 0009 >0009 0010 >0000 FFF9 0011
SUBXY Al,AO >0009 0009 >0010 0000 >FFF9 0009 0100
SUBXY Al,AO >0009 0009 >0010 0009 >FFF9 0000 1100
SUBXY Al,AO >0009 0009 >0010 0010 >FFF9 FFF9 0101

12-229

TRAP
	

Software Interrupt
	

TRAP

Syntax

Execution

Encoding

TRAP <N>

(PC) 	-*SP
(ST) 	-*SP
Trap Vector(N) -* PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operands

Description

0 	0 	0 	0 	1 	0 	0 	1 	0 	0 	0
	

N

N is a trap number from 0 to 31.

TRAP executes a software interrupt. The return address (the address of
next instruction) and then the status register are pushed onto the stack.
The IE (interrupt enable) bit in ST is set to 0, disabling maskable interrupts,
and ST is set to >0000 0010. Finally, the trap vector is loaded into the PC.
The TMS34010 generates the trap vector addresses as shown below:

Trap
Number

 0
1 >FFFF FFCO
2 	>FFFF FFAO
3 	>FFFF FF80
4 	>FFFF FF80
5 	>FFFF FF40
6 	>FFFF FF20
7 	>FFFF FPrin
8 	>FFFF FEN
9 	>FFFF FECC

10 	>FFFF FFAO
11 	>FFFF FEBO
12 	>FFFF FFR0
13 	>FFFF
14 	>FFFF
15 	'FFFF
16 	>FFFF hAf
17 	>FFFF ra
18 	>FFFF cnA^
19 	>FFFF
20 	>FFFF
21 	>FFFF
22 	>FFFF
23 	>FFFF
24 	>FFFF r."1":
25 	>FFFF r.:
26 	>FFFF FCAO
27 	>FFFF
28 	>FFFF
29 	'FFFF F•.40
30 	>FFFF =.L2•
31 	>FFFF FC00

Reset
External Interrupt 1
External Interrupt 2

Non Mas•ab's Interrupt
Host litervipt
Display interrapt
Window Violation

Illegal Opcode

The stack is located in external memory and the top is indicated by the stack
pointer (SP). The stack grows in the direction of decreasing linear address.
The PC and ST are pushed on the stack MSW first, and the SP is predec-
remented before each word is loaded onto the stack.

12-230

Examples
Code Before

PC SP PC
TRAP 0 	>xxxx xxxx >8000 0000 @FFFF FFEO
TRAP 1 	>xxxx xxxx >8000 0000 @FFFF FFCO

TRAP 30 >xxxx xxxx >8000 0000 @FFFF FC20
TRAP 31>xxxx xxxx >8000 0000 @FFFF FC00

After
SP 	 ST

>8000 0000 >0000 0010
>7FFF FFCO >0000 0010

>7FFF FFCO >0000 0010
>7FFF FFCO >0000 0010

TRAP 	 Software Interrupt TRAP

Notes:

1. The level 0 trap differs from all other traps; it does not save the old
status register or program counter. This may be useful in cases
where the stack pointer is corrupted or uninitialized; such a situ-
ation could cause an erroneous write.

2. The NMI bit does not affect the operation of TRAP 8.

Words 1

Machine
States 	16,19 (SP aligned)

30,33 (SP nonaligned)

Status Bits 	N 0
C 0
Z 0
V 0

12-231

XOR 	 Exclusive OR Registers XOR

Syntax
	

XOR <Rs>,<Rd>

Execution
	

(Rs) XOR (Rd) --0 Rd

Encoding
	

15 14 13 12 11 10 9
	

8 7
	

6
	

5
	

4 3
	

2
	

1
	

0

0 	1 	0 	1 	0 	1 	1 I 	Rs 	 R I 	Rd

Description 	XOR bitwise-exclusive-ORs the contents of the source register with the
contents of the destination register; the result is stored in the destination
register.

You can use this instruction to clear registers (for example, XOR BO ,B0);
the CLR instruction also supports this function.

The source and destination registers must be in the same register file.

Words

Machine
States

Status B its

1

1,4

N Unaffected
C Unaffected
Z / if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

AO 	 Al 	 NCZ V 	Al
XOR AO ,A1 	>FFFF FFFF >00000000 	xx0x >FFFF FFFF
XOR A0,A1 	>FFFF FFFF >AAAAAAAA 	xx0x >5555 5555
XOR A0,A1 	>FFFF FFFF >FFFF FFFF 	xxlx >0000 0000

12-232

Syntax

Execution

Encoding

XORI </L>,<Rd>

IL XOR (Rd) y Rd

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2 1 0

0 	0 	0 	0 	1 	0 	1 	1 	1 	1 	0 R
	

Rd

IL (LSW)

IL (MSW)

XORI 	 Exclusive OR Immediate Value 	 XORI

Operands 	IL is a 32-bit immediate value.

Description 	XORI bitwise exclusive ORs the 32-bit immediate data with the contents
of the destination register; the result is stored in the destination register.

Words 	3

Machine
States 	3,12

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	After

AO 	 NCZ V AO
XORI >FFFFFFFF,A0 	>00000000 	xx0x >FFFF FFFF
XORI >FFFFFFFF,A0 	>AAAAAAAA 	xx0x >5555 5555
XORI >FFFFFFFF,A0 	>FFFFFFFF 	xxlx >0000 0000
XORI >00000000,A0 	>00000000 	x x 1 x >00000000
XORI >00000000,A0 	>FFFFFFFF 	xx0x >FFFF FFFF

12-233

ZEXT 	 Zero Extend to Long ZEXT

Description

ZEXT <Rd>[,<F>]

(field) Rd -- ■ (zero-extended field) Rd

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	1
	

F
	

1 	0 	0 	1
	

R
	

Rd

F 	is an optional parameter, it defaults to 0.
F=0 selects FS0 for the field size.
F=1 selects FS1 for the field size.

ZEXT zero extends the right-justified field contained in the destination reg-
ister by zeroing all the nonfield bits of the destination register. The field size
for the zero extension is specified by the FS0 or FS1 bits in the status reg-
ister, depending on the value of F.

Syntax

Execution

Encoding

Operands

Words
	

1

Machine
States
	

1,4

Status Bits
	

N Unaffected
C Unaffected

1 if the result is 0, 0 otherwise.
V Unaffected

Examples Code Before After

FSO FS1 AO NCZV AO
ZEXT AO , 0 32 x >FFFF FFFF xx0x >FFFF FFFF
ZEXT AO , 0 31 x >FFFF FFFF xx0x >7FFF FFFF
ZEXT AO , 0 1 x >FFFF FFFF xx0x >00000001
ZEXT A0,0 1 6 x >FFFF0000 xx1x >0000 0000
ZEXT AO , 1 x 16 >FFFF0000 x x 1x >0000 0000

12 - 234

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234

