
Application Note

Manipulating the DBEngine 2.0 Custom Control
Interactively in Microsoft's App Studio

Copyright (C) - 1993
by

Douglas A. Bebber
All Rights Reserved

Introduction

 This Application Note gives some examples of how to use the DBEngine 2.0
Custom Control interactively in Microsoft's App Studio. The intention here is to
provide a reference to Microsoft Visual C++ developers on how to use the
DBEngine Custom Control, until the official DBEngine 2.0 Custom Control
Programmer's Guide - Visual C++ Edition is released.

 The examples presented in this Application Note are interactive examples
showing how to use the DBEngine Custom Control's properties and database
Actions. No C or C++ code is presented here (for example C/C++ code see the
DBEngine Custom Control Programmer's Guide - Visual C++ Edition in the
DBENG2C.ZIP pre-registration evaluation kit.) The DBEngine 2.0 Custom
Control Reference Guide (located in the DBENG2.ZIP file) should be used as a
technical reference while performing the examples demonstrated in this
Application Note.

 Here is a sample outline of the material presented in this Application Note:

I. Interactive Examples

1. Create a database table using the CreateTable Action.
2. Create an index for a database table using CreateIndex.
3. Open a database table using the OpenTable Action.
4. Writing a field using the PutField Action.
5. Inserting a record using InsertRecord.
6. Moving to the first record in a table using FirstRecord.
7. Moving to the next record using the NextRecord Action.
8. Moving to the last record in a database using LastRecord.
9. Moving to the previous record using PreviousRecord.
10. Reading a record using the GetRecord Action.
11. Reading a field value using GetField.
12. Closing a database table using CloseTable.

Examples

 Before you begin to interactively manipulate a DBEngine 2.0 Custom Control
in the App Studio, you must first create an instance of the DBEngine Custom
Control. You can do this by following this procedure:

1. Install the DBEngine Custom Control so that it is available form the App
Studio's Control Palette. Select File then Install Controls... from the App
Studio's main menu. Select the DBENG2.VBX file from the appropriate PATH.
Then select OK.

2. Create a Dialog Box, then select the DBEngine Custom Control from the App
Studio Control Palette and place a DBEngine control on the Dialog Box.

3. Double-click the DBEngine control on the Dialog Box. You will then be
presented with Dialog DBENGINE Properties window.

4. You will most likely be presented with the General property settings. Select the
Styles property selection from the Combo Box.

5. At this point you should have all of the DBEngine properties described in the
DBEngine 2.0 Custom Control Reference Guide in front of you.

 The example interactions that follow require you to manipulate the DBEngine
properties available in the Styles property settings window.

Example 1. CreateTable

 This example shows you how to create a Paradox database table using the
CreateTable Action. To create a database table using the CreateTable Action you
must first provide information in four specific DBEngine properties:

TableName should have the name of the database table you wish to create
including a PATH specifier if needed. Do not place a file extension (.DB) in this
property setting.

NFields should be equal to the number of fields present in the database table.

TableFieldNames should have a comma separated list of field names.

TableFieldTypes should have a comma separated list of the field types. The
order of the field types is important and must be a one-to-one correspondence
with the field names present in the TableFieldNames property setting.

Note: See the DBEngine 2.0 Custom Control Reference Guide for more detailed
information on the DBEngine properties and Actions.

 Once the above property settings have been made you can perform a
CreateTable Action. Once the CreateTable Action is performed, the result
(Reaction) of the Action is placed in the Reaction property. A zero value is placed
in Reaction if the Action was successfull, a non-zero (error code) is placed in

Reaction if something went wrong.

Try this example (in the following examples do not use quotes just type what is
inside the quotation marks in the App Studio's property value text field):

1. For the TableName property type in "C:\TEST"
2. For the NFields property type in "4"
3. For the TableFieldNames property type in "ID,Last Name,First Name, MI"
4. For the TableFieldTypes property type in "N,A30,A20,A1"
5. For the Action property select "8 - CreateTable"
6. If the table was created successfully the Reaction property setting will equal 0.

 This example if successfull, created a Paradox database table called TEST on
drive C, in the root directory. The TEST database table created has the following
structure:

Field Field Type
ID N
Last Name A30
First Name A20
MI A1

 The TEST database table consists of four (NFields = 4) fields. We will continue
to use this TEST database in our following examples.

Example 2. CreateIndex

 The CreateIndex Action is performed to create indexes for database tables.
When using the DBEngine 2.0 Custom Control there are two types of indexes
that can be created, Primary and Secondary indexes (for detailed information
concerning indexes see the DBEngine 2.0 Custom Control Reference Guide.)

 In this example we will create a Primary index that consists of a single key field
(ID). Prior to performing the CreateIndex Action several other DBEngine
properties must be set with valid information:

TableName must have the name of the database table that the index is being
created for.

IndexNFields must have the number of key fields composing the index.

IndexID must have the field number of the key field. For Primary indexes

IndexID is always 1. For secondary indexes, it is the field number of the key field
(for detailed information concerning indexing and key fields see the DBEngine
2.0 Custom Control Reference Guide.)

IndexType should be set to:

0 - Primary
1 - NonMaintainedSecondary
2 - MaintainedSecondary

 Try this example (in the following examples do not use quotes just type what is
inside the quotation marks):

1. Set the DBEngine control's TableName to "C:\TEST" if it is not already so set.
2. Set the IndexNFields property to "1"
3. Set the IndexID property to "1"
4. Set the IndexType property to "0 - Primary" (use the property value combo box
for predefined selections.)

5. For the Action property select "7 - CreateIndex"
6. If the index was created successfully the Reaction property setting will equal 0.
If not the appropriate error code will be present in the Reaction property.

 We set IndexID equal to one because we wish to create an index with one and
only one key field. We set IndexID to one because our key field is the ID field
which is the first field in the database record structure. We set IndexType to 0 -
Primary because we wanted to create a Primary index.

The TEST database table now has the following structure:

Field Field Type
ID N*
Last Name A30
First Name A20
MI A1

Note: where key fields are marked by an *.

Example 3. OpenTable

 The OpenTable Action is used to open a database table for processing. The

OpenTable Action expects the following properties to be set with valid informaton:

TableName has the name of the database table to open.

IndexID has the field number of the index to be opened along with the table (use
zero (0) to open the table with all associated indexes.

SaveEveryChange should be set to one of the following:
0 - False (buffers data to disk)
1 - True (save changes to disk immediately)

. This example will open our C:\TEST database. We will buffer changes to disk,
and open the table with all associated indexes.

Try this example (in this example do not use quotes just type what is inside the
quotation marks):

1. Set the DBEngine control's TableName to "C:\TEST" if it is not already so set.
2. Set the IndexID property to "1"
3. Set the SaveEveryChange property to "0 - False"
3. For the Action property select "36 - OpenTable"
4. If the index was created successfully the Reaction property setting will equal 0.
If not the appropriate error code will be present in the Reaction property.

 When a database table is successfully opened, the default current record is
the first record in the table image. non the less we will next demonstrate how to
move to the first record in the database table regardless of where the current
record pointer is located.

Example 4. PutField

 In order to write values into a database table using the DBEngine 2.0 Custom
Control, you need to first place values into the database fields, then either insert
a record into the database table or update the current record in the database
table (you can also append a record). Storing data or writing data to the table is
thus a two-step process:

1. Place the information into the field(s) of the DBEngine's record buffer.
2. Insert, append, or update the record in the database.

 The PutField Action requires a valid open database table. It also requires valid
information in the following DBEngine properties:

FieldName holds the name of the field you are working with.

FieldValue holds the value you intend to write into the field.

 This example will show you how to place values into the fields of the open C:
\TEST database table. The next example will show how to write the record to the
table.

 Try this example (in this example do not use quotes just type what is inside the
quotation marks):

Note: The C:\TEST table must be open!

1. Set the FieldName property to "ID"
2. Set the FieldValue property to "11223"
3. Set the Action property to "39 - PutField" (use the property value combo box)
(If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.)
// We just placed info into the ID field, let's do the Last Name field Next.

4. Set the FieldName property to "Last Name"
5. Set the FieldValue property to "Bebber"
6. Set the Action property to "39 - PutField" (use the property value combo box)
(If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.)
// We just placed info into the Last Name field, let's do the First Name field Next.

7. Set the FieldName property to "First Name"
8. Set the FieldValue property to "Douglas"
9. Set the Action property to "39 - PutField" (use the property value combo box)
(If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.)
// We just placed info into the First Name field, let's do the MI field Next.

10. Set the FieldName property to "MI"
11. Set the FieldValue property to "A"
12. Set the Action property to "39 - PutField" (use the property value combo box)
(If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.)
// We just placed info into the MI field, all the fields now have values.

 If everything went well, we encountered no errors and are now ready to insert
the record into the database table by performing an InsertRecord Action.

Example 5. InsertRecord

 One values have been written to fields by performing PutField Action(s), a
record can be inserted into a database table by performing an InsertRecord
Action. To be successfull, the InsertRecord Action requires that the DBEngine
control be associated with a valid, open database table. The field values must
have been placed into the DBEngine control by performing PutField Action(s).

 This example will insert the record set up in the previous (PutField example)
into the open C:\TEST database table:

1. Set the Action property to "25 - InsertRecord" (use the property value combo
box).
2. If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.

Note: Perform the above two examples again, this time write different field values
to the table (for example: ID = 12984, Last Name = "Doe", First Name = "John",
and MI = "D".) This will give us multiple records in the C:\TEST database. We will
need more than 1 record when we start to perform the DBEngine Actions that
move from record-to-record.

Example 6. FirstRecord

 The FirstRecord Action can only be performed after a table has been
successfully opened via the OpenTable Action. If the table has been successfully
opened, you can move to the first record in the table image at any time by
performing a FirstRecord Action. The FirstRecord Action has no other
requirements or prerequisites other than it be performed on an open table.

 The following example shows how to perform a FirstRecord Action:

1. The DBEngine control must have a valid open table (if you just opened the C:
\TEST table by doing the previous example you have a valid open table. If not,
do the above example(s) in order to successfully open the C:\TEST database
table.)

2. For the Action property select "15 - FirstRecord"
3. If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.

Example 7. NextRecord

 The NextRecord Action can only be performed after a table has been
successfully opened via the OpenTable Action. If the table has been successfully
opened, you can move to the next record in the table image at any time by
performing a NextRecord Action. The NextRecord Action has no other
requirements or prerequisites other than it be performed on an open table.

 The following example shows how to perform a NextRecord Action:

1. The DBEngine control must have a valid open table (if you just opened the C:
\TEST table by doing the previous example you have a valid open table. If not,
do the above example(s) in order to successfully open the C:\TEST database
table.)

2. For the Action property select "32 - NextRecord"
3. If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.

Example 8. LastRecord

 The LastRecord Action can only be performed after a table has been
successfully opened via the OpenTable Action. If the table has been successfully
opened, you can move to the last record in the table image at any time by
performing a LastRecord Action. The LastRecord Action has no other
requirements or prerequisites other than it be performed on an open table.

 The following example shows how to perform a LastRecord Action:

1. The DBEngine control must have a valid open table (if you just opened the C:
\TEST table by doing the previous example you have a valid open table. If not,
do the above example(s) in order to successfully open the C:\TEST database
table.)

2. For the Action property select "29 - LastRecord"
3. If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.

Example 9. PreviousRecord

 The PreviousRecord Action can only be performed after a table has been
successfully opened via the OpenTable Action. If the table has been successfully
opened, you can move to the previous record in the table image at any time by

performing a PreviousRecord Action. The PreviousRecord Action has no other
requirements or prerequisites other than it be performed on an open table.

 The following example shows how to perform a PreviousRecord Action:

1. The DBEngine control must have a valid open table (if you just opened the C:
\TEST table by doing the previous example you have a valid open table. If not,
do the above example(s) in order to successfully open the C:\TEST database
table.)

2. For the Action property select "37 - PreviousRecord"
3. If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.

Example 10. GetRecord

 Before you can read individual fields of information from a database table you
need to perform a GetRecord Action. Reading data from a table is a two-step
process:

1. Get the current record from the database table.
2. Read individual fields of information from the record read in in step 1.

 The GetRecord Action requires that there be a valid open database table
associated with the DBEngine control. This example shows how to perform a
GetRecord Action:

1. The DBEngine control must have a valid open table (if you just opened the C:
\TEST table by doing the previous example you have a valid open table. If not,
do the above example(s) in order to successfully open the C:\TEST database
table.)

2. For the Action property select "21 - GetRecord"
3. If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.

 Now that we have read-in the current record from the database table, we can
move on to the next example which reads in a field from the current record.

Example 11. GetField

 Once a record has been read-in to the DBEngine control, you can examine
individual field values by performing GetField Action(s). You can not expect to
obtain valid field values unless you have first performed a GetRecord Action (this
is a common mistake that beginning DBEngine programmers make, they try to
read a field value without first obtaining the record via GetRecord.)

 Obviously, the GetField Action requires a valid open database table. The
following property must be set with valid information before performing a
GetField Action:

FieldName holds the name of the field you wish to examine.

 The following steps show how to successfully perform a GetField Action:

1. The DBEngine control must have a valid open table (if you just opened the C:
\TEST table by doing the previous example you have a valid open table. If not,
do the above example(s) in order to successfully open the C:\TEST database
table.) Also you must have previously performed a GetRecord Action.

2. Set the FieldName property to "ID"
3. For the Action property select "17 - GetField"
4. If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.

 Now for our last example in this Application Note, we will show how to close a
database table. You should always close a table when you are through
processing it by performing a CloseTable Action.

Example 12. CloseTable

 This last example shows how to close a database table associated with a
DBEngine control. Obviously, before we can successfully close the table it must
be a valid open table. This is the only prerequisite to performing a CloseTable
Action (the DBEngine control must be associated with a valid open database
table.)

 The following steps show how to close an open table using the CloseTable
Action:

1. The DBEngine control must have a valid open table (if you just opened the C:
\TEST table by doing the previous example you have a valid open table. If not,
do the above example(s) in order to successfully open the C:\TEST database

table.)

2. For the Action property select "5 - CloseTable"
3. If successfull the Reaction property setting will equal 0. If not the appropriate
error code will be present in the Reaction property.
.

 This concludes the Application Note. For more detailed technical information
concerning the DBEngine 2.0 Custom Control consult the DBEngine 2.0
Custom Control Reference Guide. For extensive information concerning
DBEngine programming including example source code see the DBEngine 2.0
Custom Control Programmer's Guide - Visual C++ Edition.

End of Document

