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Section 1

Course Introduction

Computer systems, and in particular graphics systems, change quickly. Vendors introduce new products
several times a year and new features and better performance are available with accelerating frequency.
It is not surprising then that a common misconception in the computing industry today is that to make
slow software work more quickly, you simply obtain a bigger and faster computer. However, this ap-
proach is expensive and often unworkable. Anticipated performance is often disappointing and published
benchmarks are often misleading. A more feasible and cost-effective approach to improving software
performance is to measure the current software performance, and then optimize the software to meet the
anticipated graphics and system performance.

This SIGGRAPH 2002 course was developed for those software graphics developers who are interested
in developing interactive graphics applications that perform well. The course is not targeted at a spe-
cific class of graphics applications, such as visual simulation or CAD, but instead focuses on the general
elements required for highly interactive 2D and 3D applications.

Any graphics application has bottlenecks or areas within an application that limit overall performance.
Simply buying faster graphics may not increase performance, as the bottleneck may lie elsewhere in the
system. Therefore, it is important to understand where a bottleneck is and understand its underlying cause.
So, this course starts with an overview in secfipn 2 of the different components of a graphics computer
system and how those components interact with an application.

Simply eliminating a bottleneck is not enough, because other bottlenecks will appear. In addition,
bottlenecks change from system to system, so performance on one machine does not imply proportional
performance on another machine. Fortunately, the goal in tuning an application is not to merely eliminate
all the bottlenecks - an impossible task. A better goal is to achidsadanceacross the different hard-
ware components and subsystems. A useful metaphor for this balance (and fun diversion from the topic
of computer hardware) is the Chinese concept of yin and yang. Quoting from the Skeptics Dictionary
(http://skepdic.com/yinyang.html ):

According to traditional Chinese philosophy, yin and yang are the two primal cosmic princi-
ples of the universe. Yin (Mandarin for moon) is the passive, female principle. Yang (Man-
darin for sun) is the active, masculine principle. According to legend, the Chinese emperor Fu
Hsi claimed that the best state for everything in the universe is a state of harmony represented
by a balance of yin and yang.

Although the ideas behind yin and yang do not exactly map to the main goal of application tuning, the
basic concept of balance is key. If the repurposing of this ancient Chinese philosophy can be forgiven, the
goal in tuning an application is to obtain harmony, a state of blissful balancing of application load across
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the hardware provided in a computer. Throughout the remainder of this course, the yin/yang symbol
appears in the margin to denote a section of interest that discusses harmonious application balance. A
consequence of trying to obtain balanced hardware usage is the need to understand how that hardware
operates so that an application can best take advantage of it.

Finding a bottleneck is useless unless you can fix it. So, this course introduces in sgctiong 3 and 4
alternate ways to create and structure applications more efficiently. Of course, the additional performance
must be verified and sectiofis 5 dihd 6 explain techniques to quantify and optimize application performance.

In these sections, the course also uses another icon: the winged foot of Mercury. This icon indicates
an explicit performance hint or suggestion. The goal of this course is not, however, to give explicit hints,
but to encourage overall understanding of an application and its interaction with the computer on which
it runs. Therefore, scanning the course for these icons and following the hint without understanding
the surrounding concepts and content will not be of much value. Furthermore, much larger performance
increases can be obtained by implementing the concept, as opposed to implementing a specific suggestion.
Be sure that you understand why a particular suggestion is given, where it will work, and most importantly,
the context of the section surrounding the suggestion.
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Section 2

System Design and Architecture

The computer hardware on which an application runs can vary dramatically from system to system and
vendor to vendor. Therefore, understanding some of the architectural issues of hardware systems can
improve your understanding of application hardware utilization. Tuning an application based on this
understanding can, in turn, lead to overall application and graphics performance improvements through
more effective use of hardware resources. This section describes application and hardware interaction
topics that you should consider when you access the performance of a graphics application.

2.1 Data Access Rates

Before diving in and examining the details of computer architecture, it is important to first understand
two key measures of performance that are relevant to computer design. These performance metrics are
bandwidthandlatency Bandwidth is the amount of data per time unit that can be transmitted to a device.
Latency is the amount of time it takes to fully transfer a single unit of data to a device. The difference
between the two is quite clear, but the interaction between the two is not.

Different hardware systems often have very different bandwidth abilities in different portions of a sys-
tem. For example, the 33-MHz, 32-bit PCI bus has a theoretical bandwidth of 133 Mbytes/second(MB/s),
calculated simply by multiplying 33M cycles/second * 32 bits/cycle (or 4 bytes/cycle) to yield 133 MB/s.
The 66-MHz, 32-bit AGP graphics bus has a theoretical bandwidth of either 264 MB/s (or 528 MB/s de-
pending on whether data transfer happens on both edges of the clock cycle). Other systems have vastly
greater bandwidths.

Latency can be measured between many points in a system, so it is helpful to know where latency is
important to an application. Profiling an application can yield insight into where critical latencies are
encountered. Profiling is discussed in later sections, but the key result of profiling shows which routines
take up the most time. These time-intensive routines can be either computationally complex or doing much
simpler tasks that are latency critical. Latencies vary dramatically within a system. For example, network
latencies can be many milliseconds (or even seconds), whereas latencies for data in L2 cache operate in
tens of nanoseconds (Figure]2.1).

Now that a few typical latencies and bandwidths have been discussed, how do the two interact? When
transferring data from one piece of hardware to another, both measures are important. Latency is most
often a factor when many operations are being performed, each with a latency that is large relative to
length of the overall operation. Latency is critical when accessing memory; for example, as the access
times for portions of main memory are slower than those of cache memories.
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fast - » Slow
<lns ----- l1ns----- 10ns------ 100ns ----10ms--- >10ms
register ---- L1cache---L2cache----- main - - - - - disk - -- network
small » Mmammoth

Figure 2.1: Approximate Data Latencies and Capacities of Typical System Components.

A hypothetical graphics device is used to illustrate the effects that latencies can have on a running
program. Assume that this system consists of a data source (memory) and a data sink (graphics) where
the bandwidth between source and sink is 1 MB/s and the latency is 100 ms. The hypothetical application
programming interface (API) in this example is a call that blocks (is synchronous) while downloading a
texture. The transfer time for a 100-MB download of a texture (assuming no other delays in retrieving the
data) then takes 100 seconds. Because the latency involved in transferring this texture is 100 ms or 0.1
second, then the overall time to transfer this texture is 100.1 seconds. However, if 100 1-MB textures are
downloaded, the transfer time per texture is 1 second, for a total of 100 seconds. Adding in the latency of
0.1 second per texture, we add a cumulative additional 10 seconds, which increases the total transfer time
by 10% or 110 seconds total. A developer who is aware of this issue could design methodologies such as

& creating a large texture with many small subtextures within it to avoid many small data transfers that could
negatively impact performance. Though contrived, this example illustrates that latency can be an issue
that affects application performance, and that developers must be aware of hardware latencies so that the
effects can be minimized.

2.2 Component I/O

Computer systems are constructed from a wide variety of components, each with its own characteris-
tics. Aside from the obvious differences in core functionality among network interfaces, hard disk drives,
graphics accelerators, and serial port controllers are the less obvious differences in the way these systems
respond to input.

Some systems are said Ibdock when input or output is requested. Blocking is the process of pre-
venting the controlling program from proceeding in its current thread of execution until the device being
communicated with finishes its operation. Blocking operation of a system is also knasyn@sonous
operation Other devices operate asynchronously, or in a non-blocking mode, allowing data to be queried
and program execution to continue regardless of the guery result.

Other differences among devices are the rates at which they can communicate data back to the host, the
latency involved in these data transfers, and how various buffers and caches mitigate the effects of these
differences among devices. Subsequent sections discuss these issues in more detail.

The architecture of a specific computer system is important to consider when designing software for
that system. Specifically, its important to consider which subsystems an application interacts with and
how that interaction occurs. There are several distinct systems on a computer, each of which uses some
interconnect fabric or “glue” (shown as a single block in Figuré 2.2) to communicate with one another.
Understanding this fabric and where the devices are located on this fabric is extremely important in both
determining where application bottlenecks occur and avoiding bottlenecks when designing new software
systems.
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CPU == B memory
glue |—— (graphics)

ASIC [— (disk)

- » (misc i/0)

Figure 2.2: An Abstract Computer System Fabric.

Interconnect fabrics vary dramatically from system to system. On low-end systems, the fabric is often
a bus on which all devices share access through some hardware arbitration mechanism. The fabric can
be a point-to-point peer connection, which allows individual devices to communicate with preallocated
guaranteed bandwidth. In other fabrics, some systems might live on a bus, while others in that system
live on a peer interface. The differences in application performance among these types of systems can be
dramatic depending on how an application uses various components.

Because the focus of this course is on writing graphics applications, it is especially important to under-
stand the specifics of how graphics hardware interfaces with CPU, memory, and disk. A diverse mix of
computer systems exists on which an application might be run. This diversity ranges from systems that
have a shared bus (PCI) with local texture and framebuffer, to systems that have a dedicated bus to the
graphics (AGP) with some local texture cache, main memory texture cache, and local framebuffer, to sys-
tems on a dedicated bus with all texture and framebuffer allocated from main memory (Silicon d%phics
02® visual workations). Each of these architectures has certain advantages and disadvantages, but you
cannot expect an application to fully realize the performance of these platforms without considering the
differences among them.

A concrete example of these differences is shared-bus systems. Graphics systems that use a shared-bu
architecture share bandwidth with other devices on that bus. This sharing impacts applications that are
attempting to transfer large amounts of data to or from the graphics pipe while other devices are using
the bus. Large texture downloads, framebuffer readbacks, or other high-bandwidth uses of the graphics
hardware are likely to encounter bottlenecks as other parts of the system utilize the bus. Regardless of the
type of system that is used, the key to high-performance applications is to fully utilize the entire system,
balancing the workload among all of the components that are needed so that more application work can
be performed more quickly.

2.3 Memory

Previous sections have described the effects of latencies and bandwidths on hypothetical activities. This
section of the course discusses memory hierarchies and how applications interact with data within memory.
This section also describes how memory hierarchies work in general, but many details are beyond the
scope of this course, such as instruction vs. data caches, details behind cache mappings (direct, n-way
associative), translation look-aside buffers, and many others.

2.3.1 CPU and Memory Interaction

Before jumping into the discussion on memory, it is important to understand how the system CPU interacts
with memory. Figuré¢ Z]3 depicts a simplistic CPU to illustrate the lengthy path that application data must
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travel before it is useful. In this figure, main memory lives on the far side of all of the caches, and data
must be successively cached down to the registers before it can be operated on by the CPU. This means
that keeping often-used data localized in memory is a good idea, as it can improve cache efficiencies
dramatically. In fact, the premise behind caches is that the data that is near the data that is currently being
operated upon is much more likely to be needed next. This design criterion means that data locality affects
performance, because access to cache memory is significantly faster than to main memory.

operations &—> registers &—> L1 cache &—>L12 cache | &—> memory

Figure 2.3: Abstract CPU.

Application data transfers to the graphics hardware that avoid pushing data through the CPU can sig-
nificantly improve performance. Graphics structures such as Op®1@ibplay lists and Microso
Direct3D® vertex buffers often can be pre-compiled into a state so that a single function call simply
transfers the display list directly from main memory to the graphics hardware via a technique such as di-
rect memory access (DMA). This technique allows large amounts of graphics data to be rendered without
any complex calculations occurring on that data at run time.

2.3.2 Virtual Memory

Most current operating systems work under a memory scheme knowirt@es memory Virtual mem-

ory is a method of managing memory that allows applications access to data storage space that is sized
significantly larger than the amount of physical RAM in a system. Addressing schemes vary, but 32-bit
applications can typically address more than GB of memory when only a small fraction of that is physi-
cally available. Virtual memory systems perform this task by managing a list of active memory segments
known aspages For details behind this operation, and for a general discussion of computer systems, see
Principles of Computer Architectuf@3] or a good introductory computer architecture book for elabora-

tion.

Pages of memory are blocks afidress spacef a fixed size. Memory address space is simply a
hardware mapping of all available memory locations to a numbering scheme. A simplistic mapping for
a 16-byte memory system might have valid memory addresses of 0x00 to 0x10. The size of pages of
memory varies from system to system but is typically constant on a specific running system. However,
many hardware systems allow the page size to be changed; some operating systems allow this to be
changed dynamically as a tunable parameter. Knowing the page size and page boundary for the specific
system on which an application is running can be very useful. Specific page sizes and functions to retrieve
page size and page boundary vary by operating system. Pages are important structures to understanc
because they are used as the coarsest level of data caching that occurs in virtual memory systems.

As applications use memory and address space for code and data storage, more and more pages of tha
address space are allocated and used. Eventually, more pages are in use than are available in physica
system RAM. At that point, the virtual memory manager decides to move some infrequently used pages
for that application from main memory to disk. This process is knowpaggng Each time a page of
memory is requested, the memory manager determines whether it already exists in main memory. If it
does, no action is required; if it does not, the memory manager determines whether space is available in
RAM for that page. If space is available in RAM for the needed page, no action is required. If space
is not available, a page of resident data must be written to disk before reading the desired page from
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disk. In all cases, the desired page is then copied from disk to the available page location in RAM.
When an application pages, disk I/O occurs, which impacts both the application and the overall system
performance. Because maintaining the integrity of a running application is essential, the paging process
operates in a fairly resource-intensive way to ensure that data is properly preserved. Because of these
constraints, keeping data in as few pages as possible is important to ensure high-performance applications.
Applications that typically use very large datasets, which cause the system to page, may benefit from
implementing its own data paging strategy. Application-specific paging can be written to be much more
efficient than the general OS paging mechanism.

Figure[Z:# shows a hypothetical application with an address space that ranges from page 0taqége
a system with many physical pages of RAM. In this example application, pages 0 through 9 are active; the
application has stored data in them, and pages 0 and 1 are physically resident in RAM. For this example,
the memory manager has decreed that the application can use only two pages, so any application data tha
resides on pages other than the two pages in RAM are paged to and from disk.

Address
Space Physical
page 0 RAM
page 1 page 1
page O
page n

Figure 2.4: Virtual Memory Mapping Active Pages into RAM.

If the application in this example needs to retrieve vertex data from each of the 10 pages in use by
the application, then each page must be cached into RAM. This process likely will require eight paging
operations, which can be quite expensive given that disk access is slower than RAM access. However,
if the application could rearrange data such that it all resided on one page, the virtual memory manager
would not be required to page, and access times for this data would improve dramatically. This property
of one piece of data residing “close” to another piece of data in memory is knodetasocality. If data
locality can be improved by storing frequently-used data in adjacent memory, performance may improve
as well. Understanding data access patterns is the key to understanding and improving data locality.

When data resides on pages in main memory, it then must be transferred to the CPU (seg Figure 2.3)
for operations to be performed on it. The process by which data is copied from main memory into cache
memory is similar to the process by which data is paged into main memory. As memory locations are
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required by the operating program, they must be copied into the registers. Figure 2.5 shows the data
arrangement of cache lines in pages and both caches.

To get data to the registers, active data must first be cached into L2 and then L1 caches. Data is
transferred from pages in main memory to L2 cache in chunks knoveac lines A cache line is a
linear block of address space of a system-dependent size. Level-2 (L2) caches are typically sized between
32 and 128 bytes in length. As data is required by the CPU, data from L2 cache must be copied into a
faster level-1 (L1) cache of a system-dependent size, typically 32 bytes. Finally, the actual data required
from within the L1 cache is copied into the registers where the CPU operates on it. This is the physical
path through which data must flow to enable the CPU to operate on it.

Memory L2 Cache L1 Cache
2 R 2
2 g 2 EER
: 3 e o
e KX 4

\—[|||||||i|||||||

\
i

R920501 Re2eted Redeted loetet

7 L2 cache line within a page of memory
XK L1 cache line within L2 cache
[]  byte

Figure 2.5: Cache Line Structure. Pages of Memory Composed of Multiple L2 Cache Lines; L2 Cache
Composed of Multiple L1 Cache Lines; and L1 Cache Composed of Individual Bytes.

The process by which requested data is copied into the registers is important because the consequence:
of its action are one of the primary factors that limit application performance. As data is needed by the
CPU, controlling circuitry checks to see if that data is in the registers. If the data is not immediately
available, the controller checks the L1 cache for the data. If it is again unavailable, the controller checks
the L2 cache. Finally, if the data is still not available, a cache line that contains the required data is copied
from a page in main memory (assuming that the page is already resident in RAM, and not paged to disk)
and is propagated through L2 and L1 cache, ultimately depositing the requested data in a register. This
process is depicted in Figure 2.6, which shows the data request procedure as a flowchart.

Though this discussion of memory and how it works is straightforward, the relevance to application
performance may not be immediately cleBata localityis the ultimate point of any discussion of how
memory works. Keeping data closer together keeps data in faster and faster memories in the memory
hierarchy. Conversely, data that is widely dispersed in memory is accessed through slower layers in the
memory hierarchy. The effects of data locality are best demonstrated through two examples.
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Figure 2.6: Register Data Request Flowchart.

In these examples, the CPU is performing an operation that requires 2 bytes of data, each in a register.
The computer on which this operation is running has the following access times: L1 cache, 1 ns; L2 cache,
10 ns; main memory, 100 ns. These access times are the largest contributors to overall data access time.
In the first example, the 2 bytes of data are resident on two different pages of memory, so for each byte of
data to be accessed, a cache line must be copied from main memory into the cache. Thus, to access mair
memory, it takes 100 ns + the L2 cache access time (10 ns) + the L1 cache time (1 ns), or 111 ns for each
data byte to be copied from main memory to a register. Therefore, for the first example, the total time to
prepare memory for the operation to occur is 222 ns. Note that in this example, the 2 bytes are the data of
interest, but complete L2 cache lines that contain the bytes of interest are copied from main memory, and
L1 cache lines that contain the bytes are copied from L2 cache to L1 cache. Finally, a word that contains
each byte of interest is copied to each register location.

In the second example, both data bytes live on the same page in memory and on the same L2 cache line
(though far enough apart that they don't fit on the same L1 cache line). This operation requires a much
smaller time to set up than the operation in the first example. Again, it takes 100 ns to access the main
memory page to copy data to L2 cache, 10 ns to access the L2 cache twice to copy each byte to a different
L1 cache line, and two 1-ns accesses of the L1 cache to load the registers. In this example, the total time
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to prepare the operation is 122 ns, which is nearly half of the previous example’s overall time. As these
examples show, localizing data can clearly benefit application performance. Remember this cache effect
when you design graphics data structures to hold objects to be rendered, state information, visibility lists,
and so forth. Simple changes in the data structure organization might gain a few frames per second in the
application frame rate.

Another example of how data locality can be advantageous to a graphics application is through a graph-
ics construct known as eertex array Vertex arrays allow the CPU to efficiently utilize graphics data
for purposes such as transformations and lighting. This efficiency is primarily because vertex arrays are
arranged contiguously in memory; therefore, subsequent accesses to vertex data are likely to be found
in a cache. For example, if a hypothetical L2 cache uses 128-byte lines, then four 32-bit floats can live
on a single cache line which allows fast access to each of them. However, because most applications
do more than render flat-shaded triangles, these vertices need normals too. If a large contiguous array
is allocated in memory for the vertices, another for the normals, another for the color, and so on, it is
possible that — due to the implementations of the L2 caches — these arrays may overlap in cache and
still incur trips to main memory for access. Interleaved vertex arrays are a solution to this problem. In
this case, vertex, normal, and color data are arrayed one after another in memory; therefore, in a 128-byte
cache line implementation, all three are likely to live in nonoverlapping L2 cache at once, thus improving
performance.

A number of techniques exist for mitigating the effects of cache on data access performance; however,
these techniques are more adequately addressed in later sections of this course, which discuss languags
and code optimizations.

Understanding the path through which data must flow to the CPU is key because of the latencies involved
in accessing data from various memory caches. Keeping data packed closely in memory ensures that
subsequent data accesses will occur from memory that is already resident in cache; and therefore, the
algorithms operating on that data will be much faster.

2.4 Graphics

The graphics subsystem is responsible for rendering and displaying application data. The rendering pro-
cess, also know as tlggaphics pipelineis typically implemented as a combination of CPU-based software

and dedicated graphics hardware. The hardware functionality within this subsystem and the physical con-
nection between it and the other parts of a system play a large role in the overall performance of a graphics
application. This section reviews the graphics rendering pipeline and describes how special-purpose dedi-
cated hardware can be used to implement it as well as the impact these different hardware implementations
have on overall application performance.

2.4.1 Graphics Pipeline

The process of rendering interactive graphics can best be described as a series of distinct operations that
are performed on a set of input data. This data, often referred tgpamiive, typically takes the form

of triangles, triangle strips, image data, points, and lines. Each primitive enters the process as a set of
vertex data in a world coordinate system and leaves as a set of pixels in the framebuffer. The set of stages,
which performs this transformation, is known collectively as the graphics pipeline. This pipeline, shown

in Figure[Z2.7, is implemented within the system by a combination of dedicated graphics hardware and
host-based software.

10
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data xformH light H Win H rast H tex | frag framebuffer
xform ops
xform: Transform geometry to eye space
light: Lighting operations
win xform: Clipping, perspective transform, and viewport operations
rast: Rasterize
tex: Texture, fog, and anti—aliasing operations
frag ops: Stencil, depth, alpha, and other operations

Figure 2.7: Graphics Pipeline.

When dedicated graphics hardware is available within a system, this hardware — commonly referred to
as a graphics processing unit or GPU — implements various stages of the graphics pipeline while stages
not explicitly implemented are still performed in software that is executing on the host CPU. More sophis-
ticated GPUs implement more stages in hardware while less sophisticated systems leave more stages in
software. Understanding the performance of a graphics application requires an understanding of how the
GPU and the CPU divide the graphics processing.

The frontend of the graphics pipeline consists of the geometry processing stages. These geometry
processing stages operate on vertex data. These stages map graphics primitives from world space into
eye space, and then perform lighting and shading calculations prior to backface culling, transforming, and
clipping the resulting primitives to the viewport. The final stages of primitive assembly and triangle setup
convert the resulting primitives into fragments for rasterization. This geometry processing portion of the
graphics pipeline is illustrated in Figuie 2.8. On GPUs with hardware-accelerated transform and lighting
(T & L) functionality, these stages of the graphics pipeline occur in dedicated circuitry that is commonly
referred to as a transform engine. Operations not implemented by the hardware transform engine are
performed by software that is running on the host CPU. And, as one might expect, the result of executing
these operations on the host CPU is significantly reduced performance.

The backend of the graphics pipeline consists of the rasterization stages. These stages operate on screen
space fragments and determine the final colors of pixels within the framebuffer by performing texturing,
filtering, blending and fog operations. Visibility testing, whether a pixel is visible, also occurs within these
stages of the pipeline. This rasterization section of the graphics rendering pipeline is pictured in Figure
Z.9. In hardware, these functions are implemented by the rendering engine. Most graphics systems today
implement this functionality within the GPU.

The graphics pipeline describe above is a traditional rendering pipeline with fixed-function transform,
lighting, and pixel shading functionality. As such, the graphics rendering hardware implements solely the
fixed functions of graphics APIs for which it was designed. In recent years, however, GPU technology has
advanced beyond this traditional fixed-function model to provide programmable capabilifies] [38, 25, 14].
Because the GPU is like a specially designed CPU for graphics processing, it is only natural that the GPU
should evolve to become user programmable. In the GPU, this programmability takes the form of small
assembly-language-like programs that replace the hardwired T & L and pixel shading functionality of
traditional graphics processors.

In the geometry-processing section of the graphics pipeline these assembly-language-like programs
take as input the current vertex coordinates and attributes in source registers along with the constants

11
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Figure 2.10: Programmable Vertex Shader Data Flow.

that contain the current transform and lighting parameters and produce as output the resulting vertex
in output registers. This data flow is pictured in Fig{ire 2.10. The input vertex data takes the form of
streams of independent vertex data rather than primitives to exploit the parallel nature of the processing
task. By implementing a SIMD programming model, the same instructions are executed for each vertex.
Backface culling, clipping, and the viewport transform, which require primitive-relative information, are
performed by subsequent implementation-specific processing techniques as they would be in the case of a
fixed function pipeline. This programmable transform and lighting functionality within a GPU is typically
referred to as programmable vertex shaders. The addition of this programmability feature to the geometric
process section of the graphics pipeline is pictured in Figure] 2.11.

For the rasterization section of the user-programmable graphics pipeline, assembly-language-like pro-
grams take as input multiple texel, color, and constant values and perform mathematical operations on
these values to calculate the final color value for a pixel. These programs can be divided into two basic
stages. The first stage samples the input textures by using the original input texture coordinates or new
texture coordinates that result from program instructions. This stage permits dependent texture reads and
is called the texture shader. The instructions in the second stage blend the sampled texture values with the
input color values to calculate the final pixel color. This second stage is referred to as the color shader.
The data flow is pictured in Figufe Z]12. These assembly-language-like programmable units that operate
on individual pixels within a GPU are commonly referred to as programmable pixel shaders. To see how
programmable pixel shaders fit within the traditional rasterization section of the graphics pipline, refer to
Figure[Z.1B.

Now, you might be asking yourself why we went through all this. Well, all of this has an impact on
performance. Complex lighting and shading models that previously were not implemented by the fixed-
function processing within the GPU and as a result required software processing on the host CPU can
now be performed faster by custom vertex shading programs that execute on the GPU. And, pixel shading
operations that required multiple passes to implement all the texturing and blending operations, can now

13
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Figure 2.14: Geometry Process Pipeline with Programmable Vertex Shaders and Tesselation.

be programmed in fewer passes. Both of these user-programmable functions within the graphics render-
ing pipeline leverage the dedicated graphics hardware to improve the overall performance of a graphics
application.

The next step in the implementation of the graphics rendering pipeline in hardware is the support for
the automatic tesselation of higher-order surfaces within the GPU. This is an active area of research that
has led to some initial implementationsi[57] 13, 14]. The goal here is to allow an application to pass
higher-order surfaces to the graphics hardware. The GPU then tesselates the geometry and calculates the
required vertex data prior to transform and lighting. The resulting performance advantage to an application
is that this approach requires less data to be passed over the interconnect between the CPU/system memor
and the graphics subsystem. The limited bandwidth of this interconnect can prove to be a bottleneck as
described in Sectiorf_2.4.3. So, transferring less data in this case reduces the bandwidth requirements.
The addition of this functionality to the geometry processing portion of graphics pipeline is pictured in

Figure[Z.TH4.

2.4.2 Graphics Memory

Another critical part of the graphics subsystem is the local graphics memory. This memory resides directly
within the graphics subsystem. This memory is different from any system memory that may be allocated
by the OS specifically for graphics usage. One example of this type of memory is AGP memory on

a system that uses an AGP interconnect to the graphics subsystem. There are two aspects of graphics
memory to consider in the scope of application performance: the amount of dedicated graphics memory
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Figure 2.15: Frame Buffer Bandwidth Requirements for an Application Running at 1280x1024 Resolution
at 60 Frames/Second with an Average Depth Complexity of 2.5.

available and the bandwidth between the GPU and the graphics memory.

In typical graphics subsystems today, the amount of onboard graphics memory ranges from 8 MB to
256 MB. This memory is typically divided between the framebuffer, Z buffer, local texture store, and
sometimes display list storage and other auxiliary offscreen buffers. Caching textures and display lists
locally in the graphics subsystem eliminates the latency required to fetch them from main system memory.
However, when an insufficient amount of graphics memory is available, these objects must be paged over
the graphics interconnect as required by the GPU. The limited bandwidth of the graphics interconnect as
described in Sectiori_2Z.4.3 negatively impacts the performance of this operation and the overall perfor-
mance of the application. As such, it is important that applications efficiently use the onboard graphics
memory. Numerous techniques to optimize the use of graphics memory will be presented in later sections
of the course.

The second issue relating to graphics memory in the context of a graphics application is the memory
bandwidth between the GPU and the graphics memory. Pixels are rendered by reading from and writing
to the color and z-buffers and performing lookups into texture data. For a typical graphics application,
this rendering process completes two to three times for every pixel in a frame as objects occlude or hide
other objects. The repeated filling of the same pixel is knowdegth complexityMore information on
depth complexity and how it can impact the performance of an application is discussed in $ectipn 3.4.1.
However, to understand the frame buffer bandwidth that is required for a typical graphics application,
examine Figurgé 215, which demonstrates an application that is running at a resolution of 1280x1024 at a
speed of 60 Hz with an average depth complexity of 2.5. The application requires 3.7 GB/s of bandwidth
between the GPU and frame buffer memory. Bumping the refresh rate up to a more typical 72 frames/s
adds another gigabyte for a total of 4.7 GB/s.

As one can conclude from this example, frame buffer bandwidth is one of the key limiters to the fill
performance of a graphics application. Applications whose performance is limited by the framebuffer

17
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bandwidth are described as fill-limited. (See Secfion ¥#.3.3) When analyzing application performance it is
important to understand the available bandwidth between the GPU and the frame buffer memory as well
as the subsequent requirements of the application. And then, it is important to efficiently use this available
bandwidth.

2.4.3 Graphics Interconnect Limitations

Another important aspect of the graphics subsystem is the physical connection or the fabric that connects
the graphics subsystem with main memory and the CPUs. Of particular relevance is the peak and sustain-
able bandwidth among the principal components. The physical connection can take the form of a bus or
switched hub, depending on the overall architecture of the system. This connection, no matter what form
it takes, has a limited bandwidth that can hinder application performance if it is not used effectively.

Typically, low-end graphics adapters sit directly on the 132-MB/s PCI bus where they must compete for
bus bandwidth with other PCI devices. In this scenario, graphics data that is transferred between system
memory and dedicated memory in the graphics subsystem must pass through the CPU, thereby increasing
the requirements on the CPU as well as the risk of an application becoming CPU-bound.

Meanwhile, high-end graphics cards might use an AGP or other proprietary bus connection that offers
exclusive bandwidth between system memory and graphics. Implemented via DMA, graphics data can be
transferred from system memory to video memory in the graphics subsystem without increasing the load
on the CPU. This reduces the risk that an application will become CPU-bound. Currently, AGP offers an
exclusive 512-MB/s or 1024-MB/s transfer path between system memory and graphics.

Another approach is the unified memory architecture (UMA). In UMA machines, a dedicated bus han-
dles the flow of data between the CPU and graphics. A comparison of the various architectures can be
seen in Figur€ Z.16.

2.5 Complex Pipeline Architectures

The previous sections described the architecture of single graphics-adapter (also know as a single-head or
pipe) systems. These systems are the most common types found on desktops. However, larger architec-
tures of either multiple pipes within a system or numbers of smaller systems clustered together provide a
different set of application goals and a different set of design and usage patterns.

As computing and graphics power increases and the cost of these systems drops, systems (either single-
system-image or cluster-of-workstations) with multiple graphics pipelines (or pipes) are increasingly com-
mon. Systems of this size are typically used to drive large displays, such as wall or room displays, with
each pipe driving a portion of that display. One common example of a system of this type is the CAVE [7].
This usage model is relatively simple to implement, because each graphics pipe contains a simple section
of the overall view-frustum and the output can simply be sent to a display device. This section describes
more complicated usage models in which the resultant pipe outputs are not simply sent to a display device,
but recombined in another pipe for scaling the graphics loads. A more general way to use multiple graphics
pipelines to render imagery is to subdivide the entire final graphics image and send it to individual pipes;
then, recombine these images in the final display, regardless of how that final display device is configured.

Why would an application use a single-system-image (SSI) or cluster-of-workstations (COW) system?
An application uses an SSI or a COW system to display data sets that are much more complex than those
viewable on a single-pipe system. Through the use of multiple pipelines, aggregate system performance
is improved to a point where the problem can be interactively visualized. While it is true that individual
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graphics adapters that are available on the desktop today are more powerful than more costly systems that
were available a few years ago, system users always want to display more. Regardless of how fast indi-
vidual systems perform, a combination of multiple graphics adapters can always attack larger problems.

Both SSI and COW systems address a similar problem and raise the system interface issues (for exam-
ple, PCIl vs. AGP) to a different level. How do these systems differ, for what applications are systems
like these appropriate, and how do applications utilize them effectively? The next few subsections address
these and other issues in large-system interactive graphics application utilization.

2.5.1 Single System with Multiple Pipes

The defining features of SSI architectures are multiple graphics pipes with a single set of system resources
including memory and CPU, which all communicate over a high-bandwidth, low-latency interconnect.
In SSI systems, all resources are available to applications through traditional programming techniques.
Displays and windows are simply opened by specifying a target graphics adapter, for example, a specific
display and screen for X Window Systéh applications. Figurg 2.17 shows how a system might be con-
figured. In this diagram, the system consists of four dedicated rendering pipelines (indicated by monitors)
that render. The results then transfer internally across the system bus or hub and recombined on a fifth
pipe. Processes are threaded (or even forked) across multiple CPUs, and functions are executed directly
through standard programming language bindings. In an SSI system, data is shared either implicitly, as
occurs with threaded programs, or explicitly, as occurs with forked programs that use shared-memory are-
nas. In both cases, explicit or implicit memory sharing, the data resides within a single logical memory
subsystem, which allows easy and direct access to data across multiple processes and threads.

The key difference between systems of this type and clusters is the bandwidth and latency of interfaces
among graphics pipes. In systems of this sort, sharing data from main memory to and from individual
graphics pipelines is both high bandwidth and low latency.

1B
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il DDD’DDDDDD
B

Figure 2.17: Example SSI system configuration.

2.5.2 Cluster-of-Workstation Pipes

Typically, the defining feature of COW systems is cost. COWSs are often systems with much less inte-
grated hardware and more off-the-shelf components. Though systems of this sort can potentially have
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high-performance graphics, often they have lower cost and lower quality graphics. In COW systems, ap-
plications must be explicitly aware of the differences among individual systems(nodes) in the cluster, as
well as the individual system capabilities and the link performance and topology of the system connec-
tions. Figureg Z.18 shows an example of a configuration. Programming interfaces are explicitly parallel
or happen through an abstraction layer such as a message-passing interface. Examples of these interface
include OpenMPM [4] and MPI [3], although many others exist. Another technique is object distribution

via an object layer such as CORBA [1]. Link connection and topology are key factors in constructing
and using a cluster to both determine the amount of data that can be distributed to all nodes (within the
application per-frame time constraints) and the latency involved (through number-of-hops in the topology)
to transfer that data.
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Figure 2.18: Example COW system configuration.

2.5.3 SSI/COW Usage Models

A variety of interesting usage patterns exist for both COW and SSI systems. In both systems, three factors
are key to maximizing utilization and ultimately achieving good results:

e Choosing an appropriate problem decomposition
e Understanding the system architecture

¢ Understanding the differences among individual systems, or nodes, within a system

First you must understand and choose an appropriate problem decomposition: image-space, time-based,
geometry-based, and depth-based. The application architecture might demand one particular decomposi-
tion, particularly if the application is to be modified to encompass an SSI/COW structure. In addition,
each of these techniques require that you understand the possible output display configuration.

In image-space decomposition, the configuration may consist of either a single large image that is
subdivided into a set of smaller subimages or a set of abutting images, perhaps not even in the same plane,
such as in a CAVE. The scene geometry is divided, rendered, and then recombined(tiled) together for the
final display.

A second decomposition is geometry-based. In this configuration, each pipe views the entire view-
volume, and each pipe receives some portion of the geometry to render. The images from each pipe are
then recombined with their depth buffers on the final pipeline. Care must be taken, however, to ensure an
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adequate balance between the different pipes. Different graphical objects have different geometric require-
ments, and furthermore, the pipes may have different capabilities. In reality, the application must examine
the geometric workload within a graphical object and allocate the workload accordingly. Additionally, the
time necessary to recombine the images with their depth buffers can greatly exceed the time to recombine
images in other decomposition methods. An advantage of this decomposition method, however, is that the
geometry does not necessarily have to be sorted according to screen space or depth.

Another decomposition, often used in simulators, is time-based. In this decomposition, each subsequent
frame is rendered on an additional pipe; then, the results are displayed sequentially on the output device
(or pipe). In time-based decompositions, pipes are arranged in a ring-buffer; each pipe, once finished,
begins working on the next available frame. For non-interactive graphics applications, this technique is
often used to render frames of animations. In this decomposition, ensure that each pipe can accomplish its
workload in the alloted time frame.

Yet another decomposition is depth-space tiling. In this decomposition, each pipe handles the same
screen-space area, but each renders a specific depth-section of the database (which itself is sorted by
depth.) For example, on a 3 pipe system, each pipe creates a view frustum of one-third of the total
depth. This requires that the screen-space depth data of each piece of geometry be computed. This differs
from the image-space decomposition described previously in which the database is divided into eye-space
sections. Each pipe renders its own piece of the geometry, and the rendered sets of geometry are combinec
into the final image. The decomposition must balance its workload as well. In this method, the individual
depth-section might have to be recalculated for each frame, depending on the time and data requirements.

If enough resources are available, combining these techniques can yield very interesting and scalable
results. For example, an application might use a time-based decomposition, but for each frame within
that time-buffer, you can subdivide those frames spatially. Decomposition combinations such as these are
extraordinarily powerful but require a significant investment in software architecture to utilize multiple-
pipe systems effectively. Appendix B contains some pseudocode that details each of these decomposition
methods.

Whatever technique you chose, each image is first rendered by using a different graphics pipe and then
recomposited together. Techniques for recompositing include, in the case of wall or CAVE configurations,
allowing the images to simply be projected on surfaces that physically abut each other, thereby creating
the illusion of a seamless image. The second, more challenging technique, involves rendering images on a
number of pipes, and then capturing those pixels (and potentially depth information) and returning them to
the final graphics pipe where they are recomposited and sent to the display device. Examples of all these
techniques are shown in Figyre 2.19.

The COW or SSI system architecture largely determines the decomposition method. In some archi-
tectures bandwidth may not be available to pass back image sections to a final pipe for recomposition.
Or potentially, if bandwidth is available, the latencies involved may be too long for a copy to occur per
frame. For example, in a COW latencies may be several milliseconds, but in an SSI system, latencies
may be several microseconds. In clusters, at this point in time, a good strategy is to avoid these latencies
whenever possible by transmitting synchronous data across the network fabric as infrequently as possible.
This also implies that for COWs depth-space compositing can be difficult due to the latencies — especially
in interactive applications. Specifically, a good technique in COWs is to project the resultant displays to
recomposite the image. Similarly, in an SSI system where latencies are lower, it is much more feasible to
transmit portions of the resultant image to a single pipe for recompositing.
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Figure 2.19: Example tiling techniques for scaling graphics performance.

The differences among individual systems(nodes) within a system further impact the decomposition
method and final software architecture. When you use depth-space composition or large image recon-
struction completing this final step on a system with additional resources makes obvious sense as the pixel
demands on this system are larger. In a more general sense, balancing the load among systems in eithel
a COW or an SSI system is essential to maximize the performance of the overall system. Both geometric
and fill requirements should be balanced for each individual node and pipe within a system so that each
pipe is kept busy, but only for as long as the time constraints on interactivity allow.
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Section 3

Graphics Performance

To evaluate the performance of a software application, it is necessary to first understand the raw per-
formance of the underlying computer system hardware. This measurement of raw system performance
provides a baseline by which to compare the performance of a software application. Therefore, to an-
alyze the graphics performance of an application, it is important to understand the raw performance of
the computer graphics hardware within the system. This section examines typical graphics performance
measures, the impact of the system architecture on performance, and caveats that can impact the overall
graphics performance of a benchmark as well as an application.

3.1 Performance Measurements

Before jumping in and analyzing the performance of a graphics system, it is important to first understand
how such performance is measured, and specified. Traditionally, graphics hardware throughput has been
characterized in terms difll rate and polygon ratewhile the performance of a graphics application has

been measured in terms fsthme rate Recently however, other metrics of graphics performance have
started to appear in the marketing literature of graphics hardware subsystems. These new measures include
such metrics as: memory bandwidth, texel fill rate, and operations per second. The goal of this section
is to define each of these performance metrics and demonstrate methods in which each of them can be
objectively measured. It is important to independently verify the raw performance of a system prior to
analyzing the performance of a graphics application.

3.1.1 FillRate

Fill rate is a measure of the speed at which primitives are converté@gmentsand drawn into the
framebuffer. Fragments not only represent the raw color data that appears in an image, but also the pixels in
the framebuffer with color, alpha, depth and other data. As a result, the fill rate measures the performance
of the back end of the graphics pipeline. Fill rates have historically been reported as the number of pixels
drawn per second. However, this number is virtually meaningless without additional information about
the types of pixels (and more correctly, types of fragments) that are involved in the measurement. When
you review product literature and documentation that describes performance results, read carefully to find
additional information about the tests. Specifically, look for the bit-depths of the fragments used (32-bit
RGBA, 8-bit RGB, and so on), whether the fragments were textured, what type of texture interpolation
was used, and other such details.
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Recently, vendors of graphics cards have started reporting the fill rate in terms of texels per second
rather than pixels per second. This tactic is misleading and serves to inflate the result as typical hardware
has multiple parallel texture units and therefore performs multiple texture lookups per pixel. The real fill
rate is then the texel fill rate divided by the number of texture units.

Another caveat to fill rate, is image fill versus texture fill. Texture fill data is typically local to the graph-
ics memory within the graphics subsystem while image fill must typically be downloaded from system
memory. Consider an image processing or compositing application that manipulates large film plates in
memory prior to rendering. Rendering in this case takes the form of an OpgibBawPixels  opera-
tion after each change to an image. Because this data must be downloaded over the graphics interconneci
prior to being drawn each frame, this performance will be burdened by the host download bandwidth.
With texture fill rate as the metric, the texture data is kept local to the graphics subsystem and as a result
does not measure the time it takes the texture or image to download from system memory.

3.1.2 Triangle Rate

Triangle rate is a measure of the speed at which triangles can be processed by the graphics pipeline. As
such, the triangle rate measures the performance of the transform and lighting stages at the front end
of the graphics pipeline. Triangle rates are reported as the number of triangles that can be drawn per
second. Triangle rates, like fill rates, are almost meaningless without additional supporting information.
Check hardware information carefully for specifics about these triangles: were they lit or unlit, were they
textured or untextured, what was the pixel size, and other such details. Polygon rates are often bottlenecks
in application domains such as CAD and manufacturing simulation.

3.1.3 Memory Bandwidth

Memory bandwidth, the number of bytes of data which can be moved between the frame buffer memory
and the GPU, is typically measured in gigabytes per second(GB/s). This statistic started to appear on
graphics product spec sheets with the introduction of programmable pixel shaders. Because pixel shaders
operate on multiple textures and other per-pixel values that are stored in graphics memory — often reading
and writing these values multiple times — the higher the memory bandwidth, the higher the performance
of programmable pixel shaders and the general fill performance of an application.

3.1.4 Operations Per Second

With the advent of programmable GPUSs, the operations-per-second specification indicates the number of
vertex and pixel shader instructions that can be executed in one second. This metric has a direct correlation
to the number of vertices which can be processed per second and ultimately the geometry performance of
an application.

3.1.5 Frame Rate

Another measure of performance that is more typical of graphics applications specifications than raw
hardware throughput is that of the frame rate. The frame rate is the number of frames rendered and
displayed per second. This measurement is also often specified in Hz, where 30 frames/second is 30
Hz. For applications like simulation and animation it is important to maintain a consistent and visually
acceptable frame rate to maintain temporal continuity. As such, the performance of applications like this is
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typically expressed in terms of the frame rate achieved. Ultimately, good frame rate performance depends
on good fill rates and triangle rates. However, as explained in Seftion] 3.4.2 improving the fill or polygon
performance of an application does not always improve the overall frame rate.

3.2 Application Impact

It is important to consider how the fill rate and triangle rate can impact the overall performance of an
application. Fill rates directly correspond to the rasterization phase of the pipeline that is referred to
in Figure[Z.D; whereas, triangle rates directly correspond to the transformation and lighting phase of the
pipeline in Figurg Z]8. Achieving a good balance between these two phases is essential to good application
performance. For example, if a graphics vendor claims a high triangle rate, but a low fill rate, the card is of
little use in the flight simulation space because of the type of graphics data that is typically used in flight
simulations. Flight simulations draw relatively few polygons, but most are large, textured, and fogged,
and often overlap (think of trees that are in front of buildings that are in front of layers of ground terrain).
Thus, they have high depth-complexity. In another example, if graphics hardware claims a high fill rate,
but low triangle rate, it will likely be a poor CAD performer. CAD applications typically draw many small
polygons without using much fill capacity (no texture, no fog, no per-pixel effects). In either application
scenario, CAD or flight-simulation, some performance of the graphics hardware is often underutilized;
and if it were more fully utilized, more complex or detailed scenes could be rendered. Balance is key.

Examining the details behind the reported fill rate and polygon rate numbers can yield information about
whether an application will be able to perform up to these published standards. However, even armed
with all this information, hardware vendors do not provide data on many variables that affect application
performance. Ultimately, to measure the real performance of system graphics, you must test(benchmark)
the hardware yourself.

3.3 Benchmarking

After carefully examining a graphics hardware vendor’s reported performance numbers, it can be illumi-
nating to try to duplicate those numbers. Small test programs are useful to characterize performance
in a scenario that is similar to the vendor’s tests, or you can use a focused test application such as
SPECnger@ [?] to characterize very specific portions of the graphics hardware.

Benchmarking a system to obtain real application data numbers, however, can be very difficult. A sys-
tem must be “quiet” without extraneous processes running, which could potentially modify the measured
applications behavior. So, as a general rule, kill all unnecessary services/daemons before benchmarking.
A second issue to be aware of when benchmarking is thisaiofe-rate quantizationFrame-rate quanti-
zation is the characteristic of a graphics system to swap buffers (draw the backbuffer to the visible screen
area) only at the next vertical retrace interval. As a result, an application can block while it waits for
the next vertical retrace. Frame-rate quantization is described in more detail in Sectipn 3.4.2; but in the
meantime, this implies that you should use single-buffer mode for benchmarking because single-buffer
rendering does not wait for the next vertical refresh before it swaps buffers. Though single-buffered
rendering introduces a visual artifact knowntaaring the application draws as fast as possible, which
ensures accurate frame-rate measurement.

Several design parameters to keep in mind when you write test applications. First, keep data structures
as small as possible and as tightly packed in memory as possible. Closely packed data is more likely to
be kept in cache and therefore, more likely to accurately characterize the true performance of the graphics
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hardware and avoid performance issues with the memory subsystem. Documentation can be sketchy about
the default graphics hardware state (for example: is lighting enabled, is depth buffering enabled?). Be as
explicit as possible about setting the graphics state to ensure that the test can be reliably duplicated on
other platforms. Fully specify as much of the state as possible, paying particular attention to the state that
is commonly used in your application. Finally, test a lot of data for a long time. Highly accurate timers are
not available on all platforms; so, to lessen the effects of less-precise timers on the results, test data for a
length of time that is much greater than a single frame. Similarly, use large enough data to ensure that the
desired effect is accurately measured, not the setup/shutdown costs that are associated with each frame o
drawing.

An alternative to writing your own benchmark application is to use the SPECglperf application, which
is available through the SPECAPtWeb site [2]. SPECglperf is designed to allow you to test most
of the OpenGL pipeline within a simple script-based test framework. SPECgIlperf scripts test a variety
of parameters in many combinations, thus, providing an automated way of gathering performance data
across a set of rendering conditions. SPECglperf also has been highly tuned and optimized according to
the guidelines that are outlined above to accurately measure the raw graphics performance of a system.

Upon testing graphics hardware with either a test framework, SPECglperf, or some other tool, perfor-
mance still may not be as high as expected from the graphics hardware. Many hardware accelerators are
only “fast” when they use very specific data formats or state settings, which are implemented in hardware
on your graphics subsystem. Another name for these “fast” formatatige formatswhich indicates
that they are used internally by the graphics hardware. To find the native formats, try changing vertex data
formats to vertex arrays, compiled arrays, tristrips, or quadstrips. Change pixel format data among RGBA,
RGB, AGBR, BGR. Change light types from directional to local, and change lighting modes, and tex-
ture modes. Vary all of the important parameters in an application space to determine which combination
yields both the highest performance and the desired quality for that application.

3.4 Performance Caveats and Pitfalls

When you measure both the raw graphics performance of the system and the overall performance of
a graphics application, you must be aware of caveats that can adversely affect the performance. Fully
understanding these pitfalls will help mitigate their effects.

3.4.1 Depth Complexity

Fill rate consists of more than the number of fragments drawn to the framebuffer and transferred to the
screen. While the pipeline draws geometry to the framebuffer, fragments can be filled multiple times. For
example, if a polygon at some far distance in the framebuffer is first drawn and then another is drawn in
front of it, the second polygon is be drawn completely, overwriting some of the more distant polygons.
Pixels in which the two polygons intersect are written to, or filled, twice. The phenomenon of writing the
same framebuffer fragments multiple times yields a measurement knowdegitiecomplexitpf a scene.

Depth complexity is an average measurement of how many times a single-image pixel has been filled prior
to display. The overall performance of applications with a high depth complexity is often limited by the
fill rate of the graphics subsystem. As a result, fill rate is often a bottleneck for application domains such
as flight simulation, which have high depth complexity.
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Figure 3.1: Effects of Frame-Rate Quantization.

3.4.2 Frame-Rate Quantization

A very simplified render loop for a double-buffered application entails drawing to the back buffer, issuing

a buffer swap command to the graphics hardware to bring the back buffer to the front, and then drawing
to the back again. Between issuing the buffer swap and the next graphics command, the graphics system
must wait for the current frame to finish scanning to the output device. This render loop, combined with
the display refresh rate, determines the effective frame rate of a double-buffered application. Specifically,
this frame rate is an integer multiple of the output device refresh rate. Double-buffering also introduces
at least one frame of latency into the application, because the scene drawn atdoee not appear to

the user until the next buffer swap. On a 72-Hz output device, this implies a potential maximum latency
of 13.89 milliseconds extra per frame. This synchronization of the buffer swap operation to the vertical
retract is also known a@samelock

Figure[3.l demonstrates the impact that framelock can have on the performance of an application. The
top line of this example shows disabled framelock such that buffer swaps do not need to wait for the next
vertical retrace. In 5 one-hundredths of a second, 6 frames can be drawn for an effective frame rate of 120
Hz. Conversely, if framelock is enabled as shown on the second line, the effects of frame-rate quantization
yield a performance of only 100 Hz, because the application stalls each frame until the next vertical
retrace. To see how this stall can adversely affect performance, consider line 3 where the frame draw time
exceeds the hundredth of a second refresh rate of the display only slightly but the frame rate is effectively
halved to 50 Hz. Notice in line 4 how the frame draw time can be actually increased, but the application
frame rate does not improve. In an application that falls into this category, more graphics processing can
be performed to yield higher-quality results without impacting the performance of an application. And
finally, notice again how the frame rate of an application is effectively halved as soon as the frame time
exceeds the vertical retrace time.

Not all graphics hardware supports framelock functionality. So, how does one determine if frame rate
guantization is a big problem within an application? The best way is to disable double buffering within an
application and measure the performance to determine if it improves. A notable improvement in applica-
tion performance indicates that frame rate quantization is playing a role in the performance. Another way
is to disable framelock. Some hardware vendors provide a switch to do this. Check hardware documen-
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tation for such a switch. Once it has been determined that frame rate quantization is indeed a problem,
measure the time that is required to draw a frame and compare this to the time between vertical retrace
operations to more fully understand the impact.

Although frame rate quantization can be viewed as a problem, it can also be viewed as an opportunity to
enhance the graphics of an application without changing the frame rate. To accomplish this, increase the
graphics complexity of the application such that the frame render time expands to consume the time when
the application would ordinarily stall as it waits for the next vertical retrace. In this case, an application
can be enhanced simply by using the available bandwidth within the system more effectively.

3.4.3 Specified vs. Measured Performance

After running benchmarks on graphics hardware, it is always interesting to compare the results with those
specified by the hardware vendor. When you do this comparison you will most likely identify some
differences. It is helpful to understand these differences in order to decipher your benchmark results
and determine that you are getting the best possible performance from the graphics hardware. Possible
differences include geometry rate and fill rate.

Geometry Rate

One reason that the geometry rate that you obtained does not match the geometry rate that the vendor
specified is that the triangle sizes in your test did not match those that the hardware vendor used. To
improve the fill rate, the vendor may have used very small 1 or 2 pixel triangles to calculate the published
results, while the triangle in your benchmark may be a more reasonable size and closer to the triangle sizes
in your application.

The geometry rate also may differ if the vendor used different lighting parameters or had lighting turned
off altogether. Enabling fewer lighting parameters or disabling lighting reduces the number of required
geometric calculations and ultimately improves the graphics hardware performance. (In a real application
one would never totally disable lighting.)

Fill Rate

To improve the fill rate performance specification, the vendor may have not actually rendered the prim-
itives into the frame buffer. Or, your results may differ from those of the vendor because different pixel
operations were performed during rasterization. Often, a vendor will disable visability tests like the depth
test inorder to eliminate the overhead of the Z buffer read.

3.4.4 Hardware Fast Paths

Section[Z.4]1 described the graphics rendering pipeline and how it is typically implemented as a combi-
nation of dedicated hardware: a GPU and software running on the host CPU. Fast rendering operations
directly supported in the underlying hardware are knowhaslware fast pathsMeanwhile, primitives,

states, and rendering modes for which no direct hardware support exists are rendered in a less optimal soft-
ware path running on the host CPU. When this occurs within an application, the application falls off the
fast path, which results in a significant decrease in rendering performance. Historically, rendering modes
that cause an application to fall off the fast path include anti-aliased polygons, anti-aliased wide lines, and
local light sources. As is described in Section 4.3.4, unexpected CPU activity is a sign that an application
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has fallen off the hardware fast path. This unexpected CPU activity is software doing what the hardware
cannot do. When benchmarking with SPECglperf or another test, another sign that an application has
fallen off the fast path is a large reduction in the performance after changing a single state variable.

Although Section[ Z.4]1 described GPU-based graphics subsystems with hardware support geometric-
processing operations, often, only a limited number of paths are fully implemented in hardware. For
example, some machines may only accelerate geometric operations that involve one infinite light; others
may not accelerate lights at all. Some GPUs may transform geometric data faster for triangle strips of even
lengths rather than odd (due to parallelism in the geometry engines). Understanding which operations in
this portion of the graphics pipeline are performed in hardware, and to what degree, is critical for building
fast graphics applications.

The same is true of rasterization operations. Although any (or all) rasterization operations can be incor-
porated into hardware, sometimes only a limited subset actually are. Reasons for this limitation are many,
including cost, complexity, chip (die) space, target market applicability, and CPU speed. Some hardware
may accelerate textures only of certain formats (ABGR and not RGBA); whereas, others may not accel-
erate texture at all, but instead target markets such as CAD where texture is (as of yet) unimportant. It is
important to know what is and is not implemented in hardware to construct a well-performing graphics
application.

As a result, when you develop an application, it is important to know the hardware fast paths and design
the application to stay on those paths whenever possible inorder to achieve the best performance. One
technique to determine hardware fast paths is to read vendor-supplied documentation. If your vendor does
not supply fast-path documentation or it is unclear, ask the vendor to supply this information. Another way
to determine hardware fast paths is to use SPECglperf or a similar test suite or test program as described in
Sectio33. However, when you use a test program be careful not to introduce other bottlenecks that may
invalidate the results. When targeting more than one platform, use a least-common denominator approach
if possible, to stay on the intersection between the different hardware fast paths. If graphics state and
modes are forcing an application off a fast path, change the code within the parameters of the application
to more fully exercise the rendering features of the graphics hardware. Another method for mitigating the
effects of fast and slow paths between different graphics hardware for an application is to test questionable
rendering modes at startup and perform subsequent graphics operations based on the outcome of these
tests.

3.4.5 Concluding Remarks

When graphics performance on specific graphics hardware has been characterized, the task then turns tc
realizing such performance in an application. Unfortunately, it is almost impossible to attain manufacturer-
specified levels of performance in a real application. The interactions among the various components in a
computer system may allow an application to perform very close to rated performance on one platform,
but not on the next. But, by understanding the graphics performance of different hardware platforms,
steps can be taken in the design and implementation of graphics applications to mitigate these differences.
These steps are the topics of the remainder of the course.
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Section 4

System Performance Analysis

The application tuning process can best be described as four nonexclusive phases as shown[in]Figure 4.1.
The first phase, performance quantification, compares how an application performs against the ideal sys-

tem performance. The second phase examines how system configuration impacts performance. The third
phase performs an analysis of the graphics subsystem implementation and usage to determine when an
application is CPU or graphics-bound. The fourth and final stage focuses on bottleneck elimination.

Before examining each stage of the process in detail, you should understand that the process that is
described here is iterative and never really complete. When a bottleneck or application performance prob-
lem has been identified and addressed, the tuning process should restart in search of the next performance
bottleneck. Code changes as well as hardware and software configuration changes can cause performanc
bottlenecks to shift among the different stages of the rendering process and between the CPU and graphics
subsystem. As a result, performance tuning is an ongoing process.

4.1 Quantify: Characterize and Compare

To balance the demands of an application program and the computer graphics hardware, examine the ap-
plication graphics requirements. Your goal is to collect basic information that will enable you to determine
what the application is doing without regard for the underlying computer graphics hardware. This exercise
should both help you determine the load on the system and inspire thoughts on applications changes that
could improve performance.

4.1.1 Characterize Application
Application Space

Application type plays a significant role in determining the graphics demands on a system. Is the applica-
tion a 3D modeling application that uses a large amount of graphics primitives with complex lighting and
texture mapping, an imaging application that performs mostly 2D pixel-based operations, or a scientific
visualization application that renders large amounts of geometry and texture? A good place to start is to
know the application space.
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Figure 4.1: A Four Step Process.

Primitive Types

Determine the primitive types, such as triangles, quads, and pixel rectangles, that the application uses
and whether a predominant primitive type exists. Identify if the primitives are generally 2D or 3D and

if they are rendered individually or as strips. Primitives passed to the graphics hardware as strips use
inherently less bandwidth, which is important during the analysis process. The easiest way to determine
this information is to examine the source code and the graphics API calls.

Primitive Counts

Determine the average number of primitives that are rendered per frame by instrumenting the code to
count the number of primitives between buffer swaps or screen updates. For primitives that are sent in
lists, report the number of lists and the number of primitives per list. Add instrumentation in such a
way that it can be enabled and disabled easily with an environment variable or compiler flag. Consider
enabling and using run-time instrumentation to load-balance as application hardware utilization changes.
Instrumentation also provides a chance to examine the graphics code to determine how the primitives are
being packaged and sent to the graphics hardware. Later in this section, you will learn about tools to trace
per-frame primitive information.

When gathering primitive counts and other data, it is important that you use the application and exercise
code paths as a real user would use them. The work process that a user encounters day in and day out is the
most useful to consider. It is also important to exercise multiple code paths when you gather performance
data.

After you determine the number of primitives, calculate the amount of per-primitive data that must
be transferred to the rendering pipeline. This exercise can be a revelation, stimulating thought about
bandwidth- saving alternatives. For example, consider the worst case as illustrated in[Figure 4.2. To
render a triangle with color, normal, and texture data requires 56 bytes of data per vertex and 168 bytes
per triangle. Rendering the three triangles individually requires 504 bytes of data (Figure 4.2A); render-
ing the triangles as a strip requires only 280 bytes of data (Figure 4.2A), which saves 224 bytes. In an
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Figure 4.2: Worst Case Per-Vertex Data for Triangles. (A) Shown are three triangles, each vertex con-
taining position (XYZW), color (RGBA), normal (XYZ), and texture (STR). Rendering a single triangle
requires 56 bytes of data per vertex, resulting in a total of 168 bytes of data. The set of triangles therefore
requires 504 bytes of data. (B) The same triangles from A are now combined into a triangle strip. Each
vertex still requires 56 bytes of data, but because only 5 vertices are used, the total amount of data is 280
bytes, saving 224 bytes.

actual application, this savings increases dramatically. For example, rendering 5000 independent triangles
requires 820 KB of data. However, combining the triangles into a single strip requires only 273 KB of
data, roughly 300% less data.

Lighting Requirements

To fully quantify the graphics requirements of an application, it is critical that you consider the following
lighting variables:

e Number of light sources

e Local orinfinite light sources
¢ Lighting model

e Local or nonlocal viewpoint

¢ If both sides of polygons are lit

You can easily find lighting information by looking at the graphics API calls in the application source
code.

All of the listed lighting variables affect the number and complexity of calculations that must be per-
formed in the lighting equations. For example, local lights require that you calculate an attenuation factor,
which makes local lights more expensive than infinite light sources. Furthermore, a local viewpoint is
more costly, because the direction between the viewpoint and each vertex must be calculated. With an
infinite viewer, the direction between each vertex and the viewpoint remains constant. Two-sided lighting
requires that the lighting be done twice, once for the front face of a polygon and a second time for the
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back face. For OpenGL, review the OpenGL Programming Guide [44] to obtain more information about
how different lighting parameters can change the computation complexity and performance of the lighting
model equation.

Frame Rate

Measure the frame rate to determine the number of frames that can be rendered per second. The best way
to determine frames per second is to add instrumentation code to the application that counts the number of
buffer swaps or screen updates per second. Be aware that swaps may occur at screen-refresh boundarie
and that single-buffer mode can eliminate some potential measurement artifacts here, as described in more
detail in Section 3.4}2. Some systems provide hooks and tools into the hardware, which can measure

framebuffer swaps for any application.

4.1.2 Compare Results

After you collect the above data, you can compare the current performance of the application to the ideal
performance on a particular system. Methods for determining this measure of ideal performance are
described in Sectionn_3.3. Use this comparison to determine if the application performance is what you
expect given the capabilities of the available hardware.

Compare how the application data that was gathered earlier compares with the data that is either supplied
by the manufacturer or obtained via a test program. However, keep in mind the performance caveats
described in Sectiop 3.4. Do not forget that data supplied by the manufacturer is optimal and may not
be realistic. Does the application use primitives that the hardware vendor recommended and accelerated?
Also, remember that the application may need time to generate the data to render for each frame. This
time is not included in the optimal system graphics performance.

How does the comparison look? Are the primitive count/sec and the frame rate roughly equivalent to
either the quotes from the manufacturer or information that was obtained from a benchmark test program?
If so, then tuning the graphics code will not improve the user experience. In this case, the core application
must be tuned to realize a performance boost. Please refer to Section 5 for more information on general
application code tuning. If the rates are not equivalent, then the application graphics are performing poorly
and will benefit if you tune them to reach the balancing point between the demands of the application and
the capabilities of the system. Subsequent steps in this process examine how the system configuration and
application software design could create an imbalance between different aspects of the system that could
impact overall performance.

4.2 Examine the System Configuration

Often the first system component that is considered when you examine the graphics performance is the
graphics hardware. However, it is better to first examine the other system components to determine how
they are configured and how they might affect rendering performance. Eliminate other system components
from the performance tuning equation before you examine the graphics hardware.

A complete examination of the system configuration involves two steps. First, examine the actual
physical resources of a system to ensure that they are adequate for an application. Second, examine how
the various system components are set up and configured.
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4.2.1 Resources
Memory

Insufficient memory in a system can cause excessive paging. Understand the memory requirements of
your application and compare them with the available memory in the system. If disk activity is high
while an application is running memory page swapping may be occurring; this is a symptom of having
insufficient physical memory or inefficient application memory usage. Swapping memory pages to disk
negatively impacts performance. Try to keep data small and in-cache as much as possible by creating and
using small, tightly packed, and efficient data structures. Large models and databases add to the overall
memory footprint of an application.

Consider how system memory stores graphics data. Some systems implement a UMA where the frame-
buffer resides in system memory, and other systems use AGP where some textures and most graphics date
are stored in system memory before a high-speed transfer to the framebuffer. These two approaches to
graphics hardware can affect performance in different ways.

In a UMA system, a set amount of system memory is reserved for the framebuffer at boot time. This
memory is not available to application programs and is never released. The performance advantage of
this approach is that graphics data can be rendered directly into the framebuffer, which removes the cost
of the additional copy from system memory to dedicated video memory that is found in more traditional
hardware. One caveat of this approach is that this memory is never available to an application. As a
result, if you do not boost the physical system memory accordingly when you configure the system, an
application that fits on a traditional system may swap on a UMA system.

On a system built around AGP, system memory holds graphics data, but this memory is not reserved
for the framebuffer and can be allocated and freed as necessary so that the application may use it. System
memory provides an application with space for textures and other graphics data that otherwise would not
fit in dedicated graphics memory. Copying data from system memory to video memory is implemented
as a DMA over AGP. One disadvantage of AGP texturing is that memory access to nonresident textures
requires a full fetch from main memory with all the attendant performance implications of main memory
access.

Learn the memory access times and bus speeds of the system. Compare these with the amount of date
that the application moves around when rendering. Determine if the optimal data transfer time per unit
of the application time exceeds the time that which the memory and bus can provide. No matter how fast
the system CPUs are, the overall performance in some application domains is limited by the bus speeds
on which the CPUs reside. For example, in current @tehemory controller-based workstations, overall
performance is governed by the front-side bus between the CPU and main memory.

Disk

Consider how the disk subsystem might affect the graphics performance of an application. In addition to
the type of disk, for example, IDE, SCSI, and fibre channel, consider the actual location of the disks and
the application requirements. Streaming video to the screen from a slow disk is physically impossible,
regardless of the speed of the graphics hardware. Store data and textures on local disks, because fetching
data across a network can be a significant bottleneck. Choose disks with the lowest latencies and seek
times. Once again, the disk requirements vary greatly by application, so use appropriate disk resources for
the specific application.
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4.2.2 Configuration
Display

Ensure that the latest driver is installed on the system before you examine the display configuration.
Manufacturers constantly fix bugs and tune drivers; the latest driver typically performs best. If it is unclear
whether a new driver offers the best performance, run a benchmark test to compare the performances of
the new and old drivers. Use the driver that offers the best performance for the application.

Almost all combinations of operating systems and window systems provide methods for setting the con-
figuration of the graphics display. This functionality dictates how the window system uses the graphics
hardware, and consequently, how an application uses the graphics hardware. Consider how the current
active display configuration relates to the actual hardware in the graphics subsystem as described in Sec-
tion[2:4. The display configuration should be set to take full advantage of the features that are implemented
in hardware and necessary for the application.

When display information is queried by an application, the window system passes the display capability
information back to the application. An improperly configured display impacts performance by forcing
operations to be performed in software on the host CPU — operations that could have been performed
by the graphics hardware — which effectively forces an application off the fast path. Therefore, it is
important to confirm that display properties are set properly within the window system before you consider
the display properties that are available to an application. More often than not, poor performance or some
aspect of it can be attributed to a poorly configured display that does not take full advantage of hardware
features. A number of visuals can match the needs of an application. It is important to understand the
performance of the selected visual as it may not be the best performing or most feature rich.

Once the display is configured properly it is the responsibility of the application to use an appropriate
configuration for the underlying graphics hardware. One way to ensure that this occurs is to have an appli-
cation run simple benchmarks tests at startup that exercise frequently used functionality. Use the results
of these tests to determine on an optimum display configuration. The following display parameters are
important to consider.

Pixel Formats / Visuals The pixel formats/visuals that are available dictate the color depth and the avail-
ability of auxiliary buffers such as depth and stencil. Determine how the available pixel formats or
visuals compare with those that an application requires. Have a backup strategy if the application
cannot get the desired pixel format. For example, if the display is configured so that no pixel for-
mats or visuals are available with destination alpha, an application that draws alpha-blended shapes
forces the graphics driver to perform alpha blending in software. A backup strategy for this scenario
might be to use stippled alpha rather than blended alpha.

Color Buffer Choose a visual that matches the color precision needs of your application. For example,
a system may support visuals with 12 bits of precision available per color-component, but may not
have alpha planes available in this configuration. Secondly, choose visuals that match, and only just
match, the requirements for the application. Visuals with more precision per pixel induce extra fill
work, and can be a potential bottleneck.

Screen ResolutionThe screen resolution determines the number of pixels that must be filled for a given
frame. Determine the optimal screen resolution for an application. An application may run faster at
1024x 768 than at 12801024 because there are fewer pixels to fill. However, a lower resolution
sacrifices visual quality, which may not be an acceptable trade-off.
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Depth Buffer The depth buffer configuration indicates the resolution of the Z buffer. Determine how
the resolution of the configured Z buffer compares to the requirements of the application. A visual
or pixel format that does not support a hardware Z buffer forces depth testing to be performed in

software. The actual resolution of the Z buffer is important as well. Too many bits of precision
increases the fill overhead per pixel; whereas too few bits of precision creates visual artifacts known
asZ-fightingor flimmering

Auxiliary Buffers Typically, several auxiliary buffers exist for a particular visual, and it is important that
you select a visual with appropriate auxiliary buffers. Additional buffers available include stencil,
accumulation, and stereo. Certain combinations of auxiliary buffers may force the rendering driver
off the fast path. This is especially true with auxiliary buffers that are not resident in local graphics
memory.

Buffer Swap Characteristics Determine if buffer swaps are tied to the vertical retrace of the graphics
display. If so, an application that can render a frame faster than the screen refresh rate (normally 60
Hz or 75 Hz) stalls to wait for a vertical retrace and buffer swap to complete. This anomaly is called
frame rate quantizatioand is described in more detail in Sectjon 3.4.2. Many hardware graphics
drivers now enable users to disconnect buffer swaps from the vertical retrace which improves per-
formance by allowing an application to render to the back buffer as quickly as possible. Keep in
mind that enabling this disconnect may introduce unacceptable tearing in the display.

Network

The network can also play a role in the performance of an interactive graphics application. Use caution
when you load data and textures from a remote file system during rendering; network traffic and laten-
cies affect performance. Also, consider what else might be happening on the network to cause a system
“hiccup” that would impact performance. For example, something as simple as receiving an e-mail, gen-
erating a DNS lookup, or redrawing a simple animated gif on a Web page consumes CPU cycles and
system bandwidth that would have been otherwise devoted to the application. Another issue to consider
is remote rendering. Is all data and rendering being performed locally, or are remote machines being
used to augment the CPU processing requirements? If so, understand the capabilities of all systems in a
remote-rendering scenario and the available bandwidth between them.

4.3 Graphics Analysis

An analysis of the graphics system and the graphics performance of an application requires that you
understand how the performance of an application oscillates between the CPU and the graphics hardware
subsystem. It is also important that you understand how the architecture of the graphics subsystem affects
performance. A computer graphics application is either CPU-bound or graphics-bound at any moment
during its execution. An application oscillates like a pendulum between varying degrees of these two states
while rendering execution swings from CPU-based tasks to graphics-based tasks. Tuning an application
attempts to improve the balance between these two extremes. As with yin and yang, the ideal state of
rendering is a healthy balance of CPU usage and special-purpose dedicated graphics hardware usage
However, before you can make the appropriate lifestyle adjustments to achieve this balance, you must be
able to recognize a few warning signs of imbalance.
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An application passed data through a graphics library that prepares the data to pass over the interconnect
fabric (see Section Z.4.3). At this point, the graphics commands enter a command buffer, often a first in,
first out (FIFO) buffer. A FIFO is a mechanism designed to mitigate the effects of the differing rates
of graphics data generation and graphics data processing. However, this FIFO cannot handle extreme
differences between the generation and processing rates.

4.3.1 Ideal Performance

Ideal graphics application performance is defined as simultaneously using all of the CPU and all of the
graphics. Said differently, ideal performance is when the CPU is running at 100% utilization executing
application code while the graphics subsystem is running at 100% utilization rendering graphics data.
In a perfect world, this is how an application would behave. Unfortunately, ideal performance is rarely
achieved. Instead, during program execution, application performance typically swings between being
CPU-bound or graphics-bound.

4.3.2 CPU-Bound

When the graphics subsystem processes data in the FIFO faster than the CPU can place new data into the
FIFO, the FIFO empties, which causes the graphics hardware to stall while waiting for data to render. In
this case, an application is CPU-bound because the overall performance of the application is governed by
how fast the CPU can process data to be rendered. Here, the balance between the stages of the renderin
pipeline done in hardware and in software is such that all available CPU cycles are consumed preparing
data to be rendered while additional unused bandwidth may be available in the graphics subsystem. An
application in this state can also be described as being host-limited. In this scenario, the CPU is running
at 100% utilization, while the graphics subsystem is running at less than 100% utilization and may even
be idle.

4.3.3 Graphics-Bound

If the graphics subsystem is processing data slower than the FIFO is being filled, the FIFO issues an
interrupt which causes the CPU to wait until sufficient space is available in the FIFO so that it can continue
sending data. This condition is known as a pipeBtal. The implications of stalling the pipeline are that

the application processing stops as well and waits until the hardware again begins processing data again.
An application in this state is graphics-bound such that the overall performance is determined by how fast
the graphics hardware can render the data that the CPU sends. A graphics application that is not CPU-
bound is graphics-bound. A graphics-bound application can be either fill-limited or geometry-limited. In
this situation, the graphics subsystem is running at 100% utilization, while the CPU is running at less than
100% utilization.

Fill-Limited

A fill-limited application is limited by the speed at which pixels can be updated in the framebuffer. This is
common in applications that draw large polygons. In the context of the graphics pipeline as described in
SectionZ.4]1, an application that is fill-limited is limited by the speed at which rasterization and subsequent
pipeline stages can be executed. The rasterization capabilities of the graphics accelerator card determine
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the fill limit, which is specified in megapixels/s. When an application reaches the fill limit, consider
increasing the application geometry load to improve the balance between fill and geometry operations.

Geometry-Limited

An application that is geometry-limited is limited by the speed at which vertices can be lit, transformed,
and clipped. Programs that contain large amounts of geometry or geometric primitives that are highly
tessellated can easily become geometry-limited or transform-limited. An application that is fill-limited

is limited by the speed at which the per-vertex and primitive assembly operations can be performed.
The geometry limit is determined by both the CPU and the graphics hardware. The limit depends on
the hardware capabilities of the graphics subsystem and where the geometric calculations are performed.
In this case, consider reducing geometry calculations to improve the balance between fill and geometry
operations.

4.3.4 Simple Techniques for Determining CPU-Bound or Graphics-Bound

You can use numerous techniques to determine if the performance of an application is bound by the CPU
or by the graphics subsystem. Use the following techniques before you try more complicated tools.

e Shrink the graphics window. If the frame rate improves, then the application is fill-limited be-
cause the overall performance is limited by the time that is required to update the graphics window.
Shrinking the graphics window shrinks the viewport which in turn shrinks the size of primitives and
reduces the fill requirements. Before using this technique, ensure that the behavior of the applica-
tion does not change. Some applications change their behavior and render less polygons when the
graphics window is made smaller. This behavior invalidates the test; not only are the fill require-
ments reduced, but the geometry requirements are reduced as well.

e Reduce geometry processing requirements. Use fewer or no lights, materials properties, pixel trans-
fers, and clip planes to render. This technique reduces the geometry processing demands on the
system. If the frame rate improves and the graphics subsystem is responsible for geometry pro-
cessing, then an application is graphics-bound. But, if the host performs lighting and geometric
processing, then an increase in the frame rate indicates that the application is CPU-limited.

e Remove all graphics API calls. This technique establishes a theoretical upper limit on the perfor-
mance of an application. The quickest way to employ this technique is to build and link with a
stub library. If, after removing all the graphics calls, the performance of the application does not
improve, the bottleneck is clearly not the graphics system. The bottleneck is the application code
in either the generation or traversal phases. Retain this stub library in your bag of tricks for further
use.

e Use a system monitoring tool to trace unexpected and excessive amounts of CPU activity. This is
a sure sign that an application has become CPU-bound while software rendering. Often, a simple
state change can cause this problem. It is common subsystems where not all rendering modes are
implemented in hardware.

Figure[4.B shows how to combine these techniques into a comprehensive graphics performance analysis
procedure. Follow this procedure as a first step in the analysis of the graphics subsystem performance.
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Figure 4.3: Graphics Performance Analysis Procedure.

4.3.5 Remedies

Once you determine whether an application is CPU bound or graphics bound, you can change the appli-
cation to move work from one subsystem to the other. This section describes techniques to improve the
performance of a CPU or graphics-limited application.

CPU-Bound

When an application is CPU bound, the goal should be to lessen the workload of the CPU. In general,
there are two ways to accomplish this goal:

e Move rendering operations that are done in the host software to the GPU.

e Optimize application code so that it requires fewer CPU cycles to generate data for rendering.

Graphics Bound

When an applicaton is graphics bound, the goal should be to reduce the workload of the GPU. This goal
can be accomplished via several methods, all of which fall into two general categories:

¢ Modify the data that is to be rendered so that it uses the hardware graphics pipeline more efficiently.
e Move operations from the GPU to the CPU.

The following section outlines numerous techniques to correct an application which is CPU bound or
graphics bound.
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4.4 Bottleneck Elimination

Now that you have a thorough knowledge of the system architecture, an understanding of the graphics
pipeline implementation, and the ability to determine if an application is CPU-bound or graphics-bound,
you can analyze the application code. This process includes identifying and removing bottlenecks.

Understanding the potential and actual bottlenecks is crucial to effectively tuning an application. Bottle-
necks that limit the performance of the system will always exist within an application. The goal of tuning
an application is to reach a balance among all the potential bottlenecks so that the various stages of the
system and the application run as equitably as possible.

Strangely enough, a bottleneck is not always a negative situation. Sometimes, you can take advantage
of a bottleneck and use the time it takes the bottleneck to clear to perform other tasks. Sometimes you
can use this time to add functionality to an application. For example, in a fill-limited application, an
application might add more geometry processing in the form of more sophisticated lighting and shading
and/or a finer tessellation without affecting the overall performance.

Bottlenecks are not limited to the graphics subsystem and can occur in all parts of the system and arise
from a number of causes. For instance, when using high-performance user-programmable GPUs which are
capable of executing the complete rendering pipeline in specialized hardware, the largest problem facing
the graphics applications developer is feeding the rendering pipeline. As a result, the data generation and
data traversal parts of an application and the usage of memory bandwidth ultimately control the speed at
which the rendering pipeline and subsequently the application can perform.

4.4.1 Graphics

Bottlenecks are most common in the graphics subsystem. Where, when, and how severe a bottleneck is
depends largely on the combination of hardware and software that implements the graphics pipeline and
how the application utilizes the graphics pipeline. Bottleneck elimination in this case should focus on
changing the application to better utilize the graphics subsystem. In the past, tuning options were limited
by the fixed-function nature of the graphics pipeline. Now, with the advent of programmable vertex and
pixel shaders, the number of ways in which an application can take advantage of the performance of the
hardware graphics pipeline has increased.

Non-native Graphics Formats

Pixel and texture data that is not in a format that is native to the graphics hardware must be reprocessed by
the graphics driver inorder to arrange the bits into a native format before it can be rendered. An example
of this process would be the conversion of ABGR data to RGBA. This increased rendering overhead could
create a bottleneck within the system. A list of native data formats can typically be found in the graphics
hardware documentation. To eliminate any need for bit swizzling, it is best to match image and texture
formats with the framebuffer pixel format.

State Changes

The graphics subsystem is a state machine that is set up for rendering a particular primitive according to
the settings of that machine. Changing state adds rendering overhead because the rendering pipeline mus
be revalidated after each state change before rendering can occur. Excessive state changing can cause
bottleneck in the graphics subsystem when more time is spent validating the state than rendering.
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To avoid unnecessary state changes, organize data so that primitives with similar, if not identical char-
acteristics, are rendered sequentially (without differing data in between). Although the graphics driver
should be smart enough to ignore redundant state changes, it is best to avoid redundant state calls and
cache important state information within the application. The following are examples of categories into
which you could sort data:

e Transform

Lighting model (one vs. two-sided, local vs. infinite)

Texture

Material

Primitive (triangle strips, quads, lines)
e Color

However, use caution, and do not blindly pick a sorting methodology. Measure the relative expense of
each state change and hierarchically order the sort accordingly. Also, refer to vendor documentation for
hints as to the relative costs of various state changes.

Pipeline Queries

The graphics subsystem is optimized to receive graphics data and attribute information from an application
and to render the resulting primitives according to the current state settings. Avoid querying the pipeline
for state information because this breaks the inherent pipelining and causes the graphics subsystem to
stall. Cache important state information within the application.

Inefficiently Packaged Graphics Primitives

Render similar primitives together and combine them into strips if possible to reduce the rendering over-
head of setup time in the graphics subsystem. The graphics driver and hardware pipe can often pipeline
the rendering of primitive strips.

Most graphics subsystems implement post-T&L vertex caches for the temporary storage of a limited
number of previously transformed and lit vertices within graphics memory. Packaging vertex data into
vertex arrays in OpenGL or vertex buffers in Direct3D promotes the most efficient use of this cache.
When a vertex is in cache, it does not have to be resent to the GPU, retransformed, or relit, which saves
both the transfer latency time and precious cycles within the GPU. Check with the hardware vendor to
determine the availability and size of vertex cache as well as any requirements for their use. Some vendors
require the use of glDrawElements, gIDrawRangeElements, or a special OpenGL extension.

Texture Paging

Textures that do not fit in texture cache on a graphics subsystem must be transferred to the memory within
the graphics subsystem prior to rendering. Traditional PCI bus-based graphics subsystems have limited
local graphics memory in which to hold texture data. Such systems, therefore, are required to cache
textures from system memory over the 132-MB/s shared PCI bus. In this scenario, loading and using
textures that do not fit in the local texture cache can be a bottleneck. The AGP architecture solves this
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problem by providing a high-speed dedicated bus to transfer the texture data from system memory to
graphics memory. However, some latency remains when a texture is not resident in the texture memory
on the graphics card and must be transferred from system memory. UMA systems provide support for
large textures by implementing the framebuffer directly in system memory. In the case of UMA, texture
download or copy of the texture data is not required for rendering.

One solution to reduce texture paging in OpenGL is to use the texture LOD extension to reduce the
resolution, and subsequently the texture size, until a texture fits into texture memory. When you cannot
avoid texture paging, amortize the cost of loading textures by calfiAge TexturesResident()
to determine which textures are resident in texture memory and then render all objects that require the
resident textures.

In OpenGL, use texture objects to optimize rendering and texture management. Texture objects are
persistent. They can be stored in onboard texture memory, which may prevent a texture from being
downloaded to the rasterizer every frame. If texture objects are not an option, consider encapsulating
texture commands into a display list.

Direct3D implements a texture management system that automatically downloads textures to graphics
memory as needed and uses a least-recently-used algorithm to determine which texture should be removed
from texture memory to make space for a new texture. Request automatic texture management by speci-
fying DSDPOOLMANAGEWhen you create a texture.

Except in the case of a UMA system where graphics memory is system memory, a limit to the number
of textures that can be resident in graphics memory will always exist. To help stay within the limit of
the amount of texture memory that is available to keep textures resident, combine multiple small textures
into one large texture as a mosaic, and change the texture coordinates accordingly to map into the larger
super-texture. If possible, avoid switching between textures by rendering together primitives that use the
same texture.

When changing a texture, ugdexSublmage*()  routines in OpenGL to redefine part of an existing
texture object. This step eliminates the overhead of creating a new texture object.

Lighting Model Characteristics

If you use lighting features that are unnecessary within the context of the application, such as two-sided
lighting and local viewer, you will add unnecessary complexity to the lighting model and the geometry
processing that is required to render a scene. Bottlenecks of this type can occur in either the graphics
subsystem or the CPU depending on where the lighting model is implemented.

When a local viewer is specified, the calculation of the specular term requires the calculation of the an-
gle between the viewpoint and each object in the scene. With an infinite viewer, this angle is not required.
This produces slightly less realistic results but at a reduced computational cost. In OpenGL, non-local
viewing is specified by settinGL LIGHT _MODELLOCALVIEWERto GL FALSEIn glLightModel

Specifying two-sided lighting requires that lighting model calculations be performed for both faces
of each polygon. Disable two-sided lighting in OpenGL by set@igLIGHT _MODELTWQOSIDE to
GL FALSEin glLightModel . To use one-sided lighting effectively, all normals must be consistent
with respect to the geometry. In other words, all normals must point either “out” or “in.”

Ensure that all of the lights and the state characteristics of those lights are required and add to the overall
visual quality of the scene. For example, use directional or infinite light sources rather than local lights
to remove the per-vertex calculation of the attenuation factor. In OpenGL, infinite or directional lights are
specified with the fourth coordinate &L POSITION set to 0.0. Remove lights that do not add to the
visual clarity of the scene. Each additional light requires that you evaluate the lighting model equation at
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each primitive for flat shading and each vertex for Gouraud shading.
When you use Direct3D follow these general rules to optimize the performance of lighting operations:

e Use direction lights rather than point lights to remove the per-vertex calculation of the angle between
each vertex and the light source.

e Use the range parameter to limit lights to only the part of the scene that they should eliminate.
During execution, lighting code within the graphics driver typically exits early when a light is out
of range.

e Do not use specular highlights when they are not necessary. To disable specular highlights, set the
D3DRSSPECULARENABLEender state to O.

If using a lighting model that is not supported in the fixed-function hardware graphics pipeline. Consider
using a programmable vertex or pixel shader to implement the custom lighting model.

Normalization

Normalization within the graphics rendering pipeline can create a bottleneck on the CPU or in the graphics

“3»@ hardware depending on where such calculations are performed for a given implementation. Avoid normal
recalculation by the graphics rendering pipeline by ensuring that all normals are normalized within the
application prior to specification to the graphics subsystem. When all normals are guaranteed to be nor-
malized by the application, disable automatic renormalization in OpenGL by disdblimn¢ORMALIZE

Rasterization and Per-Fragment Operations

Using rasterization operations that your application does not require increases rendering overhead and
creates a rasterization bottleneck. Rasterization operations such as texture, fog, antialiasing, and other
per-fragment/per-pixel operations (blending, depth, stencil, scissor, logic operations, and dithering) could
be unnecessary for an application and should be disabled when appropriate. Bottlenecks of this type
can occur in either the graphics subsystem or on the host CPU, depending on the rendering pipeline
split between hardware and software. Although today, these operations are most always performed by
rasterization hardware of the GPU.

& Examine application code to ensure that all rendering states that are enabled are required to achieve the
desired images. Turn off unused features and attributes when they have no visible effect. For example,
depth testing can be turned off when it is not required. In a visual simulation application, draw background
objects such as the sky and ground with the depth buffer disabled; then enable the depth test for foreground
objects such as mountains, trees, and buildings. In another example, if low-quality texturing is acceptible,
use only bilinear filtering instead of trilinear.

If an application is currently performing multiple rendering passes in the fixed-function rasterization
pipeline to implement an effect, consider using a programmable pixel shader to achieve the custom effect.
Use multitexturing to apply multiple textures in a single pass.

Geometry

Processing large amounts of geometry can cause a bottleneck within the transform and lighting stages
of the rendering pipeline, even on hardware-accelerated graphics subsystems. In every system, there is a
point where the system becomes geometry bound, where the system cannot transform and light the amount
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of geometry that is specified at satisfactory frame rates. When this state occurs, the solution is to lessen
the per-frame geometric requirements. And, the best way to start is to follow the rule: if you cannot see
it, do not draw it. The process by which invisible objects are removed from a scene prior to rendering
is known asculling. Culling objects from a frame eliminates the cost of transformation and lighting of
vertices and the rasterization of pixels which do not contribute to the visual fidelity of the scene. Refer to
Appendix[A-2 for a description of various culling techniques.

Consider using billboards to replace complex geometry as described in Appendix A-2.3. Textures also
can be used to implement approximate per-pixel lighting models for hardware that does not support per-
pixel lighting. These textures are commonly referred to as lightmaps. More generally, think of textures
as simply one-, two- or three-dimensional lookup tables. Texture coordinates can be used to extract any
specific data point within texture space and apply that point’s properties to a vertex. This broadens the
usefulness of textures but requires some thought to determine how to apply it within an application. Refer
to [35] for further description and ideas.

After all invisible geometry has been culled from a scene, use multiple levels of detail (LODs) to render
distant objects with less geometric complexity. This technique reduces the geometry processing require-
ments of a scene at the expense of the visual clarity of distant objects. Objects that project to a smaller
screen area can be rendered with less detail and have minimal impact on the scene. More information on
LOD techniques can be found in Appen@ix/Aj2.4.

Depth Complexity

Consider how many times the same pixels are filled. Avoid drawing small or occluded polygons by culling
unseen or insignificant geometry. Culling is available in four types: backface, occlusion, view frustrum
and contribution. For more information on these culling techniques, please refer to Apperdix A-2.

4.4.2 Code and Language

Poor coding practices can be a source of application bottlenecks on the host CPU. General coding issues
are addressed in Sectidns 5 &nd 6, but a few graphics-specific issues warrant discussion here.

Function Overhead

A common cause of bottlenecks is function call overhead on the transfer of data between the host and the
graphics subsystem. While some systems may have a host interface that uses look-up tables for graphics
API subroutines and DMA to transfer data between the CPU and graphics, most systems do not have a host
interface and require a function call for each graphics API call. Function call overhead is not negligible,
because the system must save the current state, push the arguments on the stack, jump to the new prograr
location, and return and restore the original state. Using many small calls such as glVertex, instead of
batching calls with aggregate functions such as glVertexArray, can cause the CPU to do excessive work
and create a bottleneck on the host, which leaves the graphics subsystem underutilized.

Avoiding these types of bottlenecks is quite simple. Use primitive strips to reduce the raw amount of
data sent to the pipe. Use aggregate calls such as vertex arrays and display lists in OpenGL and vertex
buffers in Direct3D to reduce function-call overhead. Use vector arguments instead of individual vector
elements in function calls to reduce the data copies on the stack. Another way to reduce call overhead
is to eliminate function calls which set state to the same value as is already current. Do not send state
information that has not changed to the graphics subsystem.
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drawi{) 33: glVertex2fi{xl, ¥1):

! £1d qword ptr [ebp-18h]
double x1 = -0.5 f=st dword ptr [ebp-24h]
double ¥2 = 0.5 Mk esi, esp

pus ecx
Houble: y1.20<0. 4 fstp dword ptr [esp]
double y2 = 0.5 £1d qword ptr [ebp-8]
f=t dword ptr [ehp-28h]
glClear (GL_COLOR BUFFER BIT | push bix
GL_DEPTH BUFFER BIT}; istp dword ptr [esp]l
call dword ptr
ylBegin (G OUADS) : [ imp_ glVertex2fi@d (0017h478)]
gl\l’ert.ex2f?x1, 1) ; 34: % gl\l’ert.exzf'(ixlt,’ I%Lh ot
glVertex?f(xl, ¥?); genre;per B-
ylVertex2f(x2, y2): ==t il i
glVertex2f(x2, y1): push iy L
glEnd() ; f=stp dword ptr [espl
f1d gword ptr [ehp-8§]
glXSwapBuffers (dpy, win); f=t dword ptr [ebhp-30h]
} push BeCcx
fstp dword ptr [esp]
dword ptr [ imp glVertex?f@g
(0042b478) ] SRl

Figure 4.4: Call Overhead When Vertex Data Passed as Doubles.

Vertex Formats

When you use vertex arrays, consider using interleaved and precompiled vertex arrays. Interleaved arrays
enable you to specify multiple arrays with a single function call. Using interleaved arrays also specifies
that the data is tightly packed and can be accessed in one piece. When the data is tightly packed, the
graphics subsystem can make assumptions about the layout, thereby reducing required pointer calculations
during traversal. When precompiled arrays are used, data can be transferred from host memory to graphics
via DMA.

Consider using a display list for static geometry that is drawn many times. However, for optimal perfor-
mance within a display list, do not replace a single instantiation of an object with multiple copies. Also,
be careful not to make display lists excessively small. In this case, the overhead to traverse the display
list may outweigh the time savings of immediate mode rendering. One final caveat with display lists is to
understand how nested display lists may create memory fragmentation and caching problems that impact
performance.

Non-native Data Format

Another source of potential graphics API overhead is passing vertex data in a non-native format. For
example, if an API call is expecting vertex data as floats and the data is passed in as a double, additional
CPU cycles must be used to transform the data to the required type. As an example, compaie Figure 4.4
which demonstrates the assembly instructions that are required to pass vertex data as doubles to OpenGL
with Figure[4.b which passes the data in the native float data format.

Contention for a Single Shared Resource

One potential source of bottlenecks, which results more from a poor initial design rather than from a
particular implementation, is contention for a single shared resource. This resource could be a graphics
context, the graphics hardware, or another hardware device.

Be alert for stalls that are caused by multiple threads that are waiting to access a single graphics context,
or multiple graphics contexts waiting for access to a single graphics device. Application programs that
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dranr( ) 33: glVertex2f{xl, ¥1):
{ mowr ezl esp
float x1 = -0.5 mow eax, dword ptr [ebp-0Ch]
float x2 = 0.5 push eax
float ¥1 = -0.5 mow ecx, dword ptr [ebp-4]
float ¥2 = 0.5 push ecx
call dword ptr
glClear (GL_COLOR EBUFFER BIT | [ imp glV¥ertex?fa3d (0042b478)]
Gl DEPTH_BUFFER_BIT) ; 34: qlVertex2f(x1, ¥2):
mow esgi,esp
glBegin (GL. QUADS) ; mov edx,dword ptr [ebp-10h]
glVertex2f{xl, ¥1): push edx
qlVertex2f{x1, ¥2): mow eax, dword ptr [ebp-4]
qiVertex2f{x2, ¥2): push eax
glVertex2f(x2, ¥1): call dword ptr
glEnd() ; [ imp glVertex?fi@§ (0042b4178)]
g1XSyapBuffers{dpy, win);
}

Figure 4.5: Call Overhead When Vertex Data Passed as Floats.

use multiple threads are becoming more and more common; however, most graphics system software is
implemented such that only a single thread can draw at any moment. Even with multiple contexts, one or
more per thread, access to the graphics hardware is still necessarily serialized at some level.

Mutex locks are normally used to prevent multiple threads from accessing a graphics context at the
same time. However, having multiple threads drawing and waiting on a single mutex lock can cause an
application bottleneck.

Bottlenecks in Non-graphics Code

A common cause of poor graphics performance in an application is one or more bottlenecks in the non-
graphics code. Code that traverses the application data structures and generates the data to be rendere
prior to handing it off the data to the graphics subsystem is especially suspect. Profile such code as
described in Sectiofj 5 to identify and remove bottlenecks of this type.

Figure[4.6 demonstrates how API call overhead can be reduced. In this example, rendering 3 triangles
as independent triangles requires 36 function calls, while using triangle strips reduces the number of calls
to 20. The use of vertex arrays further reduces the number of calls to 5. The use of a single interleaved
vertex array reduces the number of calls to 2, and by using a display list, the number of function calls can
be reduced to 1.

4.4.3 Memory

When using high-performance user-programmable GPUs that are capable of executing the complete ren-
dering pipeline in specialized hardware, the largest problem facing the developer of graphics applications
is feeding the rendering pipeline. As a result, memory bandwidth becomes a bottleneck to obtaining
ideal application performance. Inefficient storage of graphics data within memory and inefficient memory
management in general can cause a bottleneck in the memory system.

Memory Allocation

Memory allocation requires a system call and an expensive kernel context switch from user mode to system
mode. As a result, the allocation of memory within the rendering loop causes rendering to stall until the
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Independent Triangles
' (XYZW + RGBA + XYZ + STR) * 9 vertices: 36 function calls
/ \ = Triangle Strips
: (XYZW + RGBA + XYZ + STR)* 5 vertices: 20 function calls
_/? e Vertex Array
. ' 5 function calls
_f’f, PN Interleaved Vertex Array
: ' 2 function calls
y N, Display List
- 1 function call

Figure 4.6: API Call Overhead.

& system call returns and the user mode state is restored. To prevent a stall of this type, allocate all memory
for graphics primitives before you begin the rendering loop.

Data Copies

Making local copies of data consumes CPU cycles that could otherwise be used for graphics or other

“3»@ data processing within the application. Avoid making local copies of per-vertex data for API calls. For
example, do not copy individual X, Y, and Z coordinates into a vector to make a graphics API call when
the coordinates can be sent individually.

Memory Bandwidth

Each transfer of data from memory to graphics requires overhead and system bus traffic. Amortize this
overhead and maximize data bandwidth by organizing per-vertex data so that it uses vertex arrays in
OpenGL or vertex buffers in Direct3D. Code that processes these data structures within the graphics driver
is optimized to efficiently step through memory to obtain the per-vertex data and transfer it efficiently to
the graphics hardware. Data in precompiled vertex arrays can be transferred from host memory to graphics
via DMA. Display lists may also be a solution to reduce bus traffic on platforms where display list data
is cached in local graphics memory. Also, check vendor documentation for extensions that permit the
allocation of vertex arrays in graphics memary(6, 14].
In the case of textures, combine multiple small textures into one large texture as a mosaic; change the
texture coordinates accordingly to map into the larger super texture. This action maximizes the amount of
m texture data that is downloaded for the fixed overhead cost of the operation. Also when you use textures,
consider usingylTexSublmage* to redefine a subregion of an existing texture. This action optimizes
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V Independent Triangles
9 vertices: 504 bytes
/v\ Triangle Strip
5 vertices: 280 bytes
Vertex Array
/ : ; BN FIEERE
5 vertices: 280 bytes um

Vertex = RGBA+XYZW+XYZ+STR = 56 bytes

Figure 4.7: Memory Bandwidth and Fragmentation.

the use of available memory bandwidth by downloading only the portion of a texture that has changed and
not the whole texture.

Another option is to pass higher-order surface geometry to the graphics rendering pipeline and let the
graphics hardware perform the tessellation prior to the transform and lighting stages of geometric process-
ing. In this case, passing surface geometry rather than individual vertex data lessens the amount of data
that must be fetched from system memory and passed over the graphics interconnect.

Memory Fragmentation

Sparsely packed data causes memory fragmentation, and as a result, poor cache behavior. To avoid mem:
ory fragmentation, allocate memory for per-vertex data from a preallocated pool. This reduces expensive
memory paging operations when traversing graphics data.

Figure[4.¥ demonstrates how the use of triangle strips and vertex arrays can reduce memory fragmen-
tation and maximize the use of available memory bandwidth. In this example, rendering 3 triangles as
independent triangles requires 9 vertices and 504 bytes of memory; using triangle strips or a vertex array
to render the same 3 triangles requires only 280 bytes of data. This modification reduces the required mem-
ory bandwidth by 45%. In the vertex array case, vertex data is contiguous in memory thereby reducing
page faults and subsequent memory paging as the data is traversed.

444 CPU

Another common place to uncover system bottlenecks is the host CPU. This is especially true on systems
that implement a large part of the graphics rendering pipeline in software. In this case, the most common
bottleneck is geometry processing while the CPU performs all transform and lighting calculations. To
remedy this situation, follow the suggestions un@eometryin SectionN4.4]1.
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4.4.5 Disk

Inefficiently storing and loading of data from disk into memory at run time can cause the file system to
become a bottleneck. Ensure that texture and program data are stored locally and that the disk can handle
the transfer requirements (for example, video streaming requires a disk system that can transfer the data
fast enough to maintain the frame rate).

4.5 Use System Tools to Look Deeper

After you try the techniques listed above to isolate and remove bottlenecks, you might need to use system
tools to probe deeper. Numerous tools exist, although different tools exist for different platforms. Unfor-
tunately, time and space and the goal of remaining more or less platform neutral do not permit more than
a brief overview here.

4.5.1 Graphics API Level

Use a graphics API tracing tool to examine the API call sequence to find excessive call overhead and
unnecessary API calls. Analyze the output on a per-frame basis to establish the graphics activity per
frame. Typically, the rendering loop in an application is executed per-frame, so analysis of a single frame
can be applied to all frames. Analyze by examining all of the API calls between buffer swaps or screen
updates. Watch for repeated calls to set graphics state and rendering modes between primitives. Tools such
as OpenGL debug (see Figure]4.8), APIMON (see Fi@iuie 4.9), and ZapDB provide these capabilities.

4.5.2 Application Level

Profile the application program to determine where the most time and/or CPU cycles are spent. This helps
to locate host-limiting bottlenecks in the application code. When profiling, it is important to consider
not only how long a particular piece of code takes to execute, but how many times that piece of code is
executed. Again, numerous tools exist depending on the target platform. Profiling is discussed in more
detail with specific examples in Sectipn 5.

4.5.3 System Level

Use a system monitoring application to examine operating system activity that is caused by the application
program or perhaps an external factor. A system monitoring application will help you identify system
bottlenecks. Specific things to look for include the following:

e System/Privileged vs. User Time
A large percentage of time spent in system or privileged mode rather than user time can indicate
excessive system call overhead.

e Interrupt Time

A large percentage of time spent servicing hardware interrupts can indicate that a system is graphics-
bound as the graphics hardware interrupts the CPU to prevent graphics FIFO overflow.
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Figure 4.8: Sample Output From ogldebug, an OpenGL Tracing Tool. (A) Call count output from a
running OpenGL application. (B) A call history trace from the same OpenGL application. (C) Primitive
count output from the same OpenGL application.
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l,__;l ApiMon <D:\uszersitruelprojectsiteapotiD ebughiteapot_exer
File Tool: “Window Help

== ] o AR 4% &@[EH|2] €

DLL Marme | Address | APl Mame I E'I'Uﬂtl TilTIEI
[ meidle dl Ox7775 glCallLizt 23 3743224

qlClear 23 0039
L] micd32.di Ox7E43... glClearColor 0.004

L1 apidll.di 0w 2Fa0... glCalar3f 0.005
L] mgvertd.di Q1020 qlColordf 0026
(] tumbleq.dl 021000 gllepthFunc 0.014

: glDizable 0.004
[ deiman32.dll 0x7716... qlE nable 0043

I:l Q|LI32.E"| 7 ECA. gIEndList 1 205
L rpertd. dil 0x77el... glE valesh2 0.086

gdi32.dll 0=77ed... glFrantFace 0.013
(] user32.di Ox77e7... gllighthy 0.009

: glLightbdodelf: 0005
L] advapiz2.dl  0x77dc... il gad derti 0107

[l kemel32.dl Ox7700... oM ap?d 1079
L1 gt di 0x7200... alt apGrid2f 0.030
opengl32.dl  0x755h... gt aterialf 0.013

T kel il 0477160 gMalcialy I
[] teapat.exe =0040 g atri:-:!'vh:u:le 200
' alt evalizt 4314

gldrtho ama

qglPophd atrix 0.004

alPushbd atris 0.0

glRotated 0.2490

glR otatef 0.021

gl5caled 0079

ql5hadetd odel 0.005

glTranzlated 0173

alTranzlatef 0004

alvfiewpart 12634

wglCreateContesxt ¥0.958

wolGetFrochddress 0189

wltd akeCurrent 23707

wll zeFontOutlinesd, 8.705

—_t
[od =4 (] = —& —L —1 —1
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AP Maonitar Time: || 20504 PM -

Figure 4.9: Using APIMON to Trace Graphics APl Usage.
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e Page Faults

A large number of page faults indicates that a process is referring to a large number of virtual
memory pages that are not currently in its working set in main memory and could signal a memory
locality problem.

e Disk Activity

A large amount of disk activity indicates that an application is exceeding the physical memory of a
machine and is paging.

e Network Activity

A large amount of network activity indicates that a system is being bombarded with network packets.
Servicing such activity steals CPU cycles from application performance.

Because tools differ by platform, it is impossible to adequately describe them here. More detail is
presented in the next section but, in general, you should familiarize yourself with the tools available on
your development platform.

4.6 Conclusion

Tuning a graphics application to take advantage of the underlying hardware is an iterative process. First,
basic understanding of the graphics hardware is necessary, followed by analysis of its capabilities, pro-
filing of the application, and subsequent code changes to achieve better performance. The key concept
in graphics tuning is to attain a balance among the various components involved in the rendering cy-
cle. Balancing workload among CPU, transformation hardware, and rasterization hardware is essential
to maximize the performance of a graphics application. Applying the tuning procedures and tips that are
described in this section to a graphics application yields a more complete understanding of the graphics
pipeline, application usage of that pipeline, and better utilization of that pipeline for faster application
performance.
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Section 5

Profiling and Tuning Code

By this point in the course, overall graphics application performance has been characterized and tuned and
can perform at an acceptable level. The next step is to profile the code, which simply means using system
tools to identify the slow parts of application software. These tools track source code lines as they are
executed and measure the number of times that a line of code was executed or the number of CPU cycles
that were used to execute a section of code. You can then use the results of this analysis to rewrite, or tune,
code in the slowest parts of the application software.

5.1 Why Profile Software?

Even if the software is “fast enough” for current needs, it is always a good idea to know how well your
code runs. Though an application runs well on a particular platform, it may not perform well on other
platforms. Interactions among changing bus, memory, and CPU speeds may lead to shifted bottlenecks
on different systems. For example, an application may run well on one computer configuration, but what
will happen if you replace the existing CPU with a faster one that has a smaller cache? Will the program
execute faster? Should you recommend that your customers replace their graphics card with the next-
generation version? If your code is well-balanced, upgrading a piece of the hardware system is more
likely to improve the overall application performance.

Software profiling is not difficult, but it is necessary. Although it takes time to develop the expertise to
both generate and interpret profiling data, the basics are simple to master. It is well worth the effort, as
profiling points out areas that need work. For example, if a graphics application is too slow, a common
error might be to tune the graphics API code. However, no amount of tuning of the graphics API code will
improve performance if the work that the application is doing between frames is causing the bottleneck.
A quick profile run will help identify the bottleneck and direct the tuning efforts appropriately.

5.2 System and Software Interaction

Before you profile software, you should determine how it performs relative to the overall system. Does the
program spend most of its time in 1/0O such as disk, serial, or network activity? Does the software spend
an inordinate amount of time in system calls? A utility suchiaee (csh) gives you the ratio of user,

system, and total time spent. If the reported system time is unexpectedly high relative to the user time,
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check your system calfs.Not all system function calls are expensive of course, but it is important that
you understand the effects of a system call before you use it. Similarly, libraries or utilities, which in turn
execute system calls such as memory allocation functions, need to be handled carefully. Do not allocate
memory in a time-critical graphics code. Although this is elementary, it might not be obvious that other
utilities (for example, some GUI functions) may allocate memory; understand the work that the libraries
in an application are doing, and use caution if these calls are in a tight loop.

Some computer systems have a FIFO queue in between the host system and the graphics system tc
smooth the transfer of data (see Section 4.3 for more details.) The queue can force a CPU stall if it
becomes too full, which in turn stalls program execution. The state of the queue (stalled, full, or empty)
during intense graphic activity can indicate if the host is flooding the graphics pipeline. Use the tools that
are described in Sectign 4]1.1 to gather data about the FIFO usage.

Although newer chips tend to have larger cache sizes, larger caches will only temporarily mitigate the
effect of poor cache usage — it is far too easy to write code that thrashes even the largest cache. Some
CPUs have special hardware that monitor cache misses and points out areas of code for optimization.
Data, which is then packed more densely, may reduce cache misses in these cases. Additionally, most
systems have monitoring tools for paging activity. If swap activity is high, then the system needs more
physical memory or it needs to better utilize the existing memory.

5.3 Software Profiling

Once the code and system interaction is understood, the code is ready to be profiled. There are two basic
types of profilersinstrumentingandsampling Instrumenting profilers count the executiorbafsic blocks
and sampling profilers statistically count the number of cycles needed to execute lines of code.

A basic block is a section of code that has one entry and one exit. Basic block counting measures the best
possible timeifleal timg that a section of code can achieve, regardless of how long an instruction might
have taken to complete. Therefore, basic block profiling does not account for any memory latency issues.
Statistical sampling determines how many cycles or how much CPU time is actually spent executing a
line of code and can be used to locate memory latency issues. Both instrumenting and sampling profiling
reveal bottlenecks in code. However, because the two methods tend to show slightly different results, it is
important that you complete both analyses.

Be careful when you profile and debug code. Code optimization by a compiler can greatly change the
behavior of the software. The optimization process may change where the slow sections occur within
the executable. Therefore, the profiling process must occur on optimized code (or code that is in a state
identical to that which is used to ship code to customers) and not on debug code.

5.3.1 Profiling Example

It is fairly simple to profile code (Figurg 5.1). Some computers require a compile-time flag to instrument
the software for profiling. Other systems instrument the software after it has been compiled arfii linked
The next step is to run the instrumented code with a relevant data set and usage scenario. Choose the
data set that best represents typical customer data. When you profile, run the software when you profile

UNIX® system utilitiessar andpar and GNU/Linux system utilitgtrace report which system calls your program is
calling. Corresponding utilities in the Intel VTR profiler perform the same function for Windowssystems.

20n Linux, eges/gcov : on IRIX®), prof/pixie  ; on Solari€™, tcov ; on Windows NT®), Microsoft Visual Studio
or TrueTime ® from NuMega
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in a manner similar to a customer’s scenario. Poor choice of data and usage when profiling leads to code
optimizations that are not particularly relevant. Be aware that the execution of instrumented code can take
significantly longer to complete. Running the instrumented executable produces a data file with timing
results that can then be interpreted as shown in the example below.

Step 1: Instrument the executable.
% instrument foo.ex e

Step 2: Run the instrumented executable on carefully choosen data.
% instrumented.foo.ex e —args

Step 3: Analyze the results using a profiling tool such as the Unix "prof" tool.
% prof foo.exe.data fil e

Figure 5.1: The Steps Performed During Code Profiling.

As an example, a popular shareware video game was run and profiled. The results are shown in Figure
5.2. The format and content differ, of course, depending on what platform the software is profiled. But
most profilers provide the time spent or the number of cycles used to execute each function. In this figure,
the functions that take the most time are sorted and listed. In addition, the amount of time that each
function takes is given, along with its relative percentage of execution time. The exclusive time is also
listed for each function. This is the time spent by the function, not including any time spent in other
functions that it calls. For a different perspective, see Figiré 5.3 which shows inclusive time for the
second run of this video game.

Excl usi ve
Secs % Cum % Cycles Instructions Calls Function
1.076 0.5% 10.5% 209832164 241113393 15848 @G._CreateSurfaceLi ght map
0.922 9. 0% 19.5% 179832097 217077400 3888 S Update_
0. 868 8.5% 27.9% 169208525 187411067 420359 R Render BrushPoly
0.496 4.8% 32.8% 96696515 98688770 1993956 sin
0.408 4.0% 36. 8% 79560696 97668367 350 G._LoadTexture
0. 347 3. 4% 40. 1% 67666329 76576271 20829 R DrawAl i ashbdel
0. 343 3.3% 43. 5% 66866290 62365310 1478701 gl Begin
0. 322 3.1% 46. 6% 62838943 54407219 541646 R _Cul |l Box
0. 322 3. 1% 49. 8% 62785756 66456754 360125 R _RecursiveWr| dNode
0.277 2. 7% 52. 5% 54077401 51603314 54 G._MakeAl i asModel Di spl ayLi sts
0. 251 2.5% 54. 9% 48995823 50654431 14768 Updat eSpaces
0. 241 2.4% 57. 3% 47036705 46400754 33138 EnitWaterPolys
0.210 2.0% 59. 3% 40859721 70045236 5837103 gl TexCoor d2f
0.201 2. 0% 61. 3% 39164595 41458727 1923 R Drawwerld
0. 150 1.5% 62. 7% 29185515 17511309 5837103 gl TexCoor d2f
0. 144 1. 4% 64. 1% 2815621 27680141 64387 Recursi velLi ght Poi nt

Figure 5.2: Basic block profile example from a video game.

There are a couple of points to derive from this data. First, this profile is fairly typical. Each function
takes a very small part of the overall execution time and therefore tuning this application will be difficult.
A function, optimized to run at twice its original speed, will not improve performance much if it takes only
2% of the overall time. Secondly, the drop off in execution time for each function is gradual. Therefore,
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there is no obvious set of functions that might be optimized. Furthermore, the first graphics API function
is seventh down the list. Clearly, the game didn’t spend much time drawing graphics.

This particular game runs well and it's performance is fine. However, other applications with poor per-
formance may have similar flat profiles. They cannot be optimized easily for this reason. They are written
to execute many, many functions, each only taking a very small fraction of the overall time. For a variety
of reasons, software written in C++ will tend to have this problem if the authors abandon performance in
the pursuit of the rich set of features that C++ offdtd=or some helpful comments on optimizing C++
software, see Section 6.b.1.

It is probable that this set of functions, listed in this order, would not surprise the authors of this code.
Some of the listed functions are used to initialize data and this is not surprising as the game player was
killed off in short order. Subsequent runs, which lasted longer, show that the intialization functions are
dropped down the list and are replaced by the OpegMertex3fv function calls and the system
DMAWrite function, as shown in Figuie 5.B.

In the second run, the system waited for DMA writes for about 23% of the time. The second and third
functions in the list are OpenGL calls, but take much less time than the DMA writes. This data, then,
seems to imply that the game would run much more efficiently with a faster graphics card. Optimizing the
graphics function calls might improve performance, but only if it reduces the DMA writes. By examining
the inclusive column in the data, it is evident that the funcienderBrushPoly  spends little time
executing, but a lot of time waiting for the DMA writes to occur. Perhaps this function could be rewritten
to use more cycles but actually reduce the amount of DMA writes (and overall time) that occur during
program execution. Finally, because the majority of the time is spent in the graphics code, the application
part of the software is not a performance factor in this run.

Ex| usi ve I ncl usi ve
Secs % Cum % Secs % Sampl es Procedure

10. 710 22.6% 22.6% 10.710 22.6% 357 gl WaitForDVAWIite
3.900 8.2% 30.9% 3.900 8.2% 130 gl Vertex3fv
3.300 7.0% 37.8% 3.300 7.0% 110 ioctl
3.000 6.3% 44.2% 3.000 6.3% 100 gl TexCoor d2f
2.370 5.0% 55.5% 12.030 25.4% 401 R _Render BrushPol y
1.860 3.9% 59.4% 1.860 3.9% 62 flushRegs
1.710 3.6% 63.1% 1.710 3.6% 57 gl Wai t For DVARead
1.590 3.4% 66.4% 1.590 3.4% 53 gl EndPol ygon
1.230 2.6% 69.0% 1.230 2.6% 41 sin
1.020 2.2% 71.2% 1.020 2.2% 34 gl Vertex3f

Figure 5.3: PC sample profiling example from a video game, second run. This table shows inclusive
sampling data.

Essentially, the task at this point is to observe the data and note any surprising placements of the func-
tions in the execution time list. Are functions that are not intended to be there showing up? Do the
graphics functions show up at all? Surprisingly, graphics functions often do not take much time — even
in animation applications or so-called "graphics” applications such as CAD. These programs can spend an
enormous amount of time pushing data around before drawing a single polygon; therefore, optimizing the
graphics function calls can be futile.

3Obviously, this is a generalization, but the point still stands: always write code with an eye towards performance. It will
not matter how beautiful your class structure is if it is too slow; your competition will win.
41t was important to exercise all portions of the code to ensure accurate results for this course. This took some time.
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5.3.2 Basic Block Profiling

To illustrate basic block profiling, another examgi®y.exe , is shown in Figuré 5/4. This example has
two functions of interespld _loop andnew_loop , which add and print the sum of all the values in array
X. A third function,setup _data , is used only to set up the data. The functodah _loop (Figure[5.4A)

is the original function prior to profilingpew_loop (Figure[5.4B) is the improved function which results
from application tuning.

A /] Code the old way B // Code the new way
#define NUM 1024 27: void new_ | oop() {
19: void ol d_loop() { 28: sum = 0;
20: sum = 0O; 29: i1 = NUM,
21: for (i = 0;i < NUM i++) 30: for (i =0; i <ii; i++)
22: sum += x[i]; 31: sum += x[i];
23: printf("sum= %\n", sum; 32: for (i =ii; i <NUM i += 4){
24: } 33: sum += x[i];
34: sum += x[i +1];
35: sum += x[i +2];
36: sum += x[i +3];
37: 1}
38: printf("sum= 9%\n", sun);
39: }

Figure 5.4. Code ofoo.exe for profiling example. (A) Original functiomld _loop . (B) Improved
functionnew_loop with the loop unrolled.

What does the analysis tell us about this code segment? Higuire 5.5 provides the output for the test
run. The functionold _loop took 6,168 cycles to complete. Now the fun begins — analyzing why
the code is “slow” and how we can improve it. How could this be rewritten to run faster? Notice that
old _loop (Figure[5.8A) is basically one large loop and nothing else. If you unroll the loop and call the
functionnew_loop , it now looks like Figurg 5]4B. (More about loop unrolling in Sectjon 6.4.5). After
re-profiling the new executable, the analysis (Figure 5.5B) shows#vatioop takes only 4,625 cycles,
a savings of 25%.

In addition to the amount of time that each function takes, the analysis provides the lines of code that
are repeated most often. The second part of the report (Higure 5.5C) provides that data. (For simplicity in
this examplepld _loop andnew_loop are both included in the same file and both called once.) Note
that lines 21 and 22 afld _loop were invoked 1,024 times each. (This makes sense because the code
was written that way.) The loop overhead used approximately two cycles per loop invocation, and the loop
body used four cycles per loop invocation. In th@w_loop function, the loop body took 4,615 cycles
(978 + 3 * 968) to execute — a little more than withld _loop (4,096). However, the loop overhead
dropped from 2,061 cyclesld _loop )to 733 few_loop ) because it was executed fewer times. This is
the primary source of savings from the loop-unroll optimization.

How does this savings compare on other syste@®ig? loop andnew_oop were combined into one
file, compiled under Visual C++, and run on an Intel CPU. The results (F[gure 5.6) shomethdbop
improves orold _loop by about 40%.
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A Cycles Instructions Calls Function (file, line)
[1] 6160 6168 1 old_loop (blahdso.c, 19)
[2] 4869 8714 1 setup_data (blahdso.c, 11)
B Cycles Instructions Calls Function (file, line)
[1] 4869 8714 1 setup_data (blahdso.c, 11)
[2] 4625 4891 1 new_loop (blahdso.c, 27)

C Cycles Invocations Function (file, line)

4096 1024 old_loop (blahdso.c, 22)
3434 256 setup_data (blahdso.c, 13)
2061 1024 old_loop (blahdso.c, 21)
1435 256 setup_data (blahdso.c, 12)
978 256 new_loop (blahdso.c, 36)
968 256 new_loop (blahdso.c, 35)
968 256 new_loop (blahdso.c, 34)
968 256 new_loop (blahdso.c, 33)
733 256 new_loop (blahdso.c, 32)
7 1 new_loop (blahdso.c, 29)

Figure 5.5: Results of profiling. (A) The basic profiling block of the original code. Shown is the function
list in descending order by ideal time. (B) Profiling block of the modified code. Shown is the function list
in descending order by ideal time. (C) Line analysis for both original and modified code. Shown is the
line list in descending order by time.

Function Percent of Function + Percentof  Hit Function

Time (s) Run Time Child Time Run Time Count
0.410 39.4 0.410 39.4 1 _old_loop (nt_loop.obj)
0.249 23.9 0.249 23.9 1 _new_loop (nt_loop.obj)

Figure 5.6: Profile comparison okw_loop andold _loop using Visual C++ on an Intel CPU.

5.3.3 PC Sample Profiling

Instrumenting profilers count the number of times a block of code was run, but do not record the amount
of effort, or CPU cycles, that were needed to complete that block of code. Sampling profilers count
the number of cycles used, which is a measurement of the amount of effort that is required to execute a
line of code. These profilers, therefore, provide another useful analysis tool to determine where to tune
application code.

Sampling profilers are used differently than instrumenting profilers. A sampling profiler interrupts the
program at various time intervals and records the execution information, the program counter (PC), or the
call stack. These profilers then provide a statistical report on the software that was executing. Because the
overall system activity changes, the statistical results may vary between runs. An advantage of sampling
profilers is that they do not instrument the code; therefore, the profiling run executes much faster. However,
some UNIX System V platforms require that the code be relinked with different compiler flags. If an
application incorporates third-party software, and relinking is not an option, sampling profilers may not
be useful.
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Figure[5.F compares the PC sampling-based analysis against the basic block method and shows how
these two methods differ and why both must be completed. In this example, the contents of an array are
summed by using three different functiom&: _loop , kji _loop , andikj _loop . The function names
denote the loop index ordering for the three-dimensional array used in Figure 5.7A.

Although the example appears simplistic, it is real code that has been extracted from volume rendering
code. In this type of application, data is often viewed alongathe, or z planes. In this application,
rendering along one plane may be slower or faster than another. Why? Figure 5.7 clearly shows that
the index order makes an enormous difference. Under the basic block analysis, each function takes the
same number of cycles as expected (Figuré 5.7B). However, under PC sampling analysis, a different
behavior (Figurg 517C) is evident. The PC sampling analysis shows th&idpe_ijk is much more
efficient thanoop kji because of the caching behavior of the data.

This example demonstrates the importance of using both types of profiling. PC sampling points out
those areas of software that use the most CPU cycles, whereas basic block analysis points out the number
of times that particular areas of software are executed. Both methods are essential for a balanced picture of
application performance. If a real application has an inherent performance weakness, profiling can show
you where to be especially careful when you build the data structures and code to compensate for memory
latency.

5.4 Conclusion

Code profiling is critical to optimal application performance. Code profiling tools make it relatively simple
to gain a basic understanding of how well different parts of the application software execute. Profiling also
gives you a glimpse into the effects of instruction and data caching by comparing the basic block results
to the profiling data from a statistical sampling profile.

Though profiling the application is easy, it can be difficult to find a code change that yields better
performance. Initially, it may take several iterations for software changes to realize performance gains.
The next section discusses some common C and C++ code changes that may increase your application’s
performance.
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A #defi ne YNUM 100
long i,j,k;
doubl e y[ YNUM [ YNUM [ YNUM ;
doubl e sum = O;

voi d setup_data()

{
for (i = 0;i < YNUM i ++)
for (j = 0;] < YNUM | ++)
for (k = 0;k < YNUM k++)
YIiT[J1[K] = i+j+k;
}
void ijk_loop()
sum = 0;
for (i = 0;i < YNUM i ++)
for (j = 0;) < YNUM | ++)

for (k = 0;k <YNUM k++)

_ sum += y[i][j][k];
printf("sum= %\n",sun;

void kji_loop()

sum = O;
for (k = 0;k < YNUM k++)
for (j = 0;) < YNUM | ++)
for (i = 0;i < YNUM I ++)

_ sum += y[i][]][k];
printf("sum= %\n", sum;

void i kj_loop()

{
sum = 0;
for (i = 0;i < YNUM i ++)
for (k = 0;k < YNUM k++)
for (j = 0;) < YNUM | ++)

_ sum += y[i][]][K];
printf("sum= %\n", sum;

B [Index] Cummulative Cycles Instructions Calls Function (file(line)
Percent
[1] 25.3% 51141434 37101028 1 ijk_loop (foo.c, 47)
[2] 25.3% 51141434 37101028 1 kji_loop (foo.c, 57)
[3] 25.3% 51141434 37101028 1 ikj_loop (foo.c, 66)
C [Index] Percent Samples Procedure (file, line)
[1] 38.0% 27 kji loop  (foo.c, 57)
[2] 23.9% 17 setup_data (foo.c, 15)
[3] 19.7% 14 iki_loop  (foo.c, 66)
[4] 18.3% 13 ijk_loop (foo.c, 47)

Figure 5.7: Example sampling profile showing memory latency. (A) Code for three functions that traverse
a array. Each function traverses the indices in a different order. (B) Report showing basic block analysis.
(C) Report showing PC sampling analysis.
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Section 6

Compiler and Language Optimizations

Effective use of a compiler and linker can greatly increase the overall performance of an application. Their
effective use can, however, go beyond the casual incorporation of the highest level optimization flag. This
section discusses several additional optimizations that are possible with modern compilers. In addition,
a programmer can use his or her knowledge of the compiler and the programming language to modify
the source code specifically towards performance. Some C and C++ language examples and issues are
provided.

6.1 Compilers and Optimization

Modern compilers have a large number of options that can be independently enabled or disabled to affect
code performance, compiler performance, and compiler functionality. For example, performance may be
increased by increasing the roundoff tolerance for calculations. Debugging features can be enabled or
disabled. Numerous optimizations for loop unrolling, processor architectures, error handling, and other
activities can be selectively enabled or disabled in a good compiler.

Optimizations occur within a compromise of speed, memory space, and time needed to compile and link.
Therefore, there are no absolute rules about what will or will not be acceptable trade-offs within a software
project. Rather, compiler optimization is usually an iterative process of discovering what is effective
and what is not. Compilers may boost performance by changing the amount of arithmetic roundoff, but
may be ineffective when necessary precision is lost. Compilers may gain a great deal of performance
by inter-procedural analysis (IPA) and optimization, but at the expense of extended link times. (IPA is
the process of rearranging code within one function based on knowledge of another function’s code and
structure.) In another situation, compilers may be able to optimize code if pointers are never aliased. These
optimizations come, however, at the expense of compile and link time, and the possible increase of code
size. Some optimizations even require multi-pass compiles on the same source code. Are they worth it?
Experiment with your code and find out.

Furthermore, a developer need not use the same optimization techniques for the entire software project;
certain optimizations can be used for one specific file or library, and other optimizations can be used for
other files. In addition, different compilers may be used throughout the development cycle. One compiler
might be used with integrated debugging tools for software development and debugging. But after code
completion, another compiler with better optimization techniques may be used to produce the final shipped
product binary images. One additional note is that compilers on different platforms come with different
levels of quality and different types of optimizations. Study the compiler documentation carefully for
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insight into how certain optimizations perform and change the way code is generated.

Discovering and working with optimizations can be well worth the effort. Consider the commonly
known, although old, Dhrystones benchmark as an example. The benchmark measures how many itera-
tions (or loops) of a specific code fragment can be executed in a given time. More loops executed means
that the code performs faster. In Figlirg 6.1, the benchmark achieves 239,700 loops by using code that is
not optimized. If the first level of optimization is used, 496,353 loops are achieved in the allotted time.
Better yet, if the highest level of optimization is used and then tuned for a specific computer, 1,023,234
loops are achieved. This is nearly four times faster than the original benchmark.

Amount of optimization Compiler flags Number of loops

No optimization -n32 239,700
First level -n32 -0 496,353
Second level -n32 -02 512,403
Third level -n32 -03 484,976
Third level -n32-03 -IPA 1,023,234

linter-procedural analysis tuned for a specific platform

Table 6.1: Effect of optimization on the Dhrystone benchmark. All tests performed on an SGI computer.

One common complaint about compiler optimizations is that they break the application code. Generally,
this happens because of a problem in the code, not in the compiler. Perhaps an inherently incorrect
statement was used or one that does not adhere properly to a C or C++ standard. Or maybe the source
code implicitly depends on some dubious practice. It is true, however, that the optimizations may lead to
different mathematical results because of a change in arithmetic roundoff as a result of rearranged lines
of code. The author has to make the final decision about each optimization by carefully weighing the
advantages and disadvantages of each.

A final word on debugging code: never ship a final product with debugging enabled — it has happened!
Debug code is much slower than optimized code and can be used to reverse-engineer software. This may
launch a premature entry into the Open Source arena. Always ensure that executables and libraries are
stripped before shipping.

6.2 32-bit and 64-bit Code

The computing industry is in the midst of a change from 32-bit to 64-bit machines which allows application
writers an opportunity to port their software to the new machines. There are a variety of reasons to change,
including increased memory address space, higher precision, and possible access to more machine code
instructions, which potentially will lead to better performance.

None of the advantages of 64-bit applications come without potential overhead. The memory space that
is required by applications increases as the data type sizes and additional alignment constraints expand.
Additional performance may be elusive, and performance may actually degrade because of the additional
data that is being pushed around the system.
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6.3 User Memory Management

The careful placement of objects in memory can lead to efficient application operation because of the data
access speed improvements that are associated with data that is accessed in the first- and second- leve
caches. These two caches provide data to the CPU faster than data in main memory, so keeping data
cache-resident is an obvious performance improvement. This section of the course discusses what steps &
developer can take to increase the likelihood that data resides in cache.

A quick survey of common data usage scenarios is the most effective means of determining what is
necessary to enable data to reside in cache in those situations. One primary data structure that is used in
applications is the linked list. Linked lists are used when the overall length of a set of objects is not known
or when frequent reordering of those objects is necessary. This means that a set of discontinuous data
structures in memory (unlike arrays that are a continuous segment of memory) is necessary. Given that,
and the usage scenario of walking the list to find a particular element, how can a developer ensure that the
listis as cache-resident as possible?

Many techniques exist to solve this problem, but most require that a developer manage memory explic-
itly. If each time a new list element is required, a new list structure is obtainech&ic()  or new,
the list is likely to be fragmented or spread around memory in a way such that two list elements are far
apart, and unlikely to be cached. The solution to this problem is to create a routine that creates a number
of list elements close together in memory, then hands them to the application when a new one is required.
This allocated set of elements is known gso®l and is managed explicitly by a set of routines that were
created expressly for that purpose. For example, in C, a suite of functions such as the following would be
created:

e void initializeList(); allocates a number of list elements and prepares them for use by
the application.

e list * createListElement(); hands an element from the set that was previously created
in initializeList() to the application. Marks that particular list element as in-use in the pool.
e void destroyListElement( list * ); returns the specified element to the pool of ele-

ments, and marks that new element as available for redistribution by the pool.

e void finalizeList(); deallocates the pools and cleans up.

Similar functions can be created in C++ with class constructors and the overloadieg &b provide
the same behavior in a much more seamless fashion. A procedure like the one described above is much
better than a simplmalloc -based approach, because it increases the likelihood that list elements reside
next to others in cache. It does not ensure that elements exist in cache but rather incregasbs iy
that they will.

One key trade-off when doing memory management of this sort is the amount of both work and space
that is allocated to doing the list management. One issue to consider is how many list elements you
should preallocate. If too many are allocated, overall memory requirements for the application may be
increased, yet performance improved. If too few are allocated, the store of preallocated elements will
be exhausted and another segment will have to be allocated. This allocation may come at a costly and
untimely performance penalty. Again, it is important to consider the balance of work in an application.
Improving cache behavior definitely improves application performance if data access is an important and
time-consuming task. However, it is important to pursue changes that will most affect the application being
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tuned; if the application does not use linked lists, time invested in improving cache behavior of lists will
not be particularly useful. Memory management techniques such as pooling are typically of most interest
for data types that are used in large number and frequently allocated and deallocated. Consider memory
allocation issues and usage scenarios for those data structures most commonly used by an application anc
then spend effort tuning those.

6.4 C Programming Optimizations

This section details some C source code considerations that may boost performance of a graphics appli-
cation. These examples, while not necessarily applicable to all applications, have produced significant
performance boosts in many publicly released applications. They are included as examples of issues to
consider as you write C code.

6.4.1 Data Structures

Data structures are essential to any application, including graphics applications. While writing and manip-
ulating efficient data structures does not directly affect graphics, managing data and memory effectively
can lead to more efficient search and retrieval of that data. Therefore, developing, managing, and manipu-
lating data structures efficiently is key to good graphics performance.

A struct { B struct {

str *next; str *next;

str *prev; Str *prev;

large_type foo; / / lots of data int key; /I lik ely to be

/I cac hed in already
int key; // not ¢ ached until large_type foo; / / lots of data
Il expli citly referenced

} str; } str;

strptr; C struct {
Str *next;

while ( ptr—>key I= find_this_key ) Str *prev:
{ int key: // lik ely to be

pr = ptr=>next /I cac hed in already
} large_type *pfoo; /I pointer to foo

} str;

Figure 6.1: Example of how data structure choice affects performance. (A) Typical linked list data struc-
ture with the reference locatdey not cached with th@ext or previous pointers. (B) Modified
version of linked list in A withkey relocated to be cached with thext andprevious pointers. (C)

Third version, which uses a pointer to referefoe .

Consider the data structure and code shown in Figuie 6.1A. This data structure is typical of a linked
list with next andprevious pointing to other structures in the list, akdy used as a reference for
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locating the desired data structure. In this example, all of the userfdata,is cached-in whemext
or prev are referenced. BecauB® is not referenced in the comparison test vk#ly to locate a list
element, the loading dbo results in potentially more cache misses and, therefore, lowered performance.
The data structure could be easily rearranged, as shown in Figure 6.1B, so thatexhear previ-
ous is referencedkey is likely to be cached in as well. Becausext , previous , andkey probably
are only several bytes each, they should all fit in most cache lines. Thus, the refer&egedwvoids a
cache miss.
A further optimization can be easily made. Remember that the famedata structure still exists in
each of thenext link items. When traversing the list, it is likely that th@o structure will be partially
brought into cache. By allocating it outside the linked list and by using a pointer to refeieamcehe
linked list can be traversed in a much more cache-friendly way because multiple link data structures can
reside in cache simultaneously as shown in Figurie 6.1C. Naturally, the size of the cache lines changes the
effectiveness of these optimizations.

6.4.2 Data Packing and Memory Alignment

Understanding how your compiler arranges data structures in memory is an important prerequisite to
writing efficient code. On some platforms, compilers may attempt the optimizations that are described in
this section on behalf of an application developer. However, to achieve performance in a portable fashion,
it is important to consider memory issues when you develop data structures.

A computer uses one simple rule to organize data in memory: data larger or equal to a magic size must
be placed on boundaries of that magic size. The magic size, referred to as the alignment size, is typically
the size of the largest basic type (suchflasat or double ). Units of data that are smaller than the
alignment size can be placed on subalignment-size boundaries, and units of data that are larger than the
alignment size are placed on the next nearest alignment boundary. Armed with this rule, a developer can
begin to restructure existing or new data structures in an application to maximize memory efficiency.
Figure[6.R illustrates how two structures map to physical memory, and why the word alignment of data
that is equal to or larger than the word size causes padding to occur.

There are two key ramifications of keeping data structures tightly packed in memory. First, more effi-
cient use of data structures results in a smaller “memory footprint” when the program executes. Customers
like this because it allows them to work on systems with much smaller (and cheaper) physical RAM ca-
pacities. Second, your data is more likely to be cached together resulting in a higher rate of cache hits. As
access to data in cache is faster than access to data in main memory, the program runs faster. Obviously,
customers also like this.

6.4.3 Source Code Organization

An often overlooked aspect of software development is source code organization. Which functions are
put into which source files? Which object files are linked together into libraries? The performance issues
surrounding code organization are not immediately obvious and are described in this section.

Source code organization is often performed by the developer according to functionality or locality.
To improve performance, developers should group functions that call each other within one source file
and subsequently within one library. This organization can result in reduced virtual memory paging and
reduced instruction cache misses. This improvement in efficiency can be realized because application

executable code resides in the same memory page as the rest of the application data, and is therefore
subject to the similar issues surrounding paging and caching (as described in §eftion 2.3).
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A typedef struct foo B Memory space
{
char aa; // fills 8 bits, aa gg
/1 pad 24 bits to get to next word dd
float bb; // conpletely fills word dd
char cc; // fills 8 bits, gg €e
/! pad 24 bits to get to next word bb
float dd; // conpletely fills word Db
char ee; // fills 8 bits, cc
/! pad 24 bits to get to next word 5 words
} foo_t;
C typedef struct foo_packed D Memory space
¢ . . aal |dd
char aa; // fills 8 bits, no pad cel [dd
char «cc; // fills 8 bits, no pad eel |dd
char ee; // fills 8 bits, dd
/[l pad 8 bits to get to next word EE
float bb; // conpletely fills word bb
float dd: // conpletely fills word bp| 3 words

} foo packed t;

Figure 6.2: How data structure packing affects memory size on a 32-bit system. (A) A non-packed data
structurefoo . (B) Memory space used by thieo data structure. Each 8-bit character wastes 24 bits.
Total space takes 5 words. (C) Packed version of the data structure shown in A. (D) Memory space used
by thefoo _packed data structure. The packing enables all three characters to be placed in the same
word and only 8 bits of memory are wasted. Total space takes 3 words.

Tools that rearrange procedures automatically are available on some platforms. These tools can be used
after the program is compiled and linked. These tools use sample data sets to create feedback files, which
are then used to rearrange the procedures in an executable. However, the data sets that generate thes
feedback files need to be chosen carefully because they influence the overall effectiveness and relevance
of these tools. Just like when profiling applications, choosing representative data is the most important
factor. If sample data is chosen poorly, the rearrangement of procedures in the executable might be slower
for a more common usage scenario. Contact specific hardware vendors for more information about their
tools.

6.4.4 Software Pipelining

Many modern computers use superscalar CPUs. These include the F@nﬂ'rtaamiurr?M, PA-8000, and
the R1000R series chips. These processors are capable of handling more than one instruction ata time. A
compiler may use this feature to restructure statements within the body of a loop so that one iteration of the
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loop can start before the prior iteration finishes. This technique is catiiddare pipelining Although the
compiler cannot be directly instructed to pipeline a loop, some source code changes may enable software
pipelining.

The compiler will not bother to software pipeline a loop if the number of iterations are low or if the
work accomplished within the loop is too small. Pipelining may be enabled by unrolling the loop instead.
Typically, inner loops are software pipelined, so concentrate efforts there. Ensure that no function calls or
conditionals exist within the loop. If possible, rewrite the loop so that no flow dependencies exist between
iterations. (A flow dependency occurs when one loop iteration depends on the computational results of
the prior iteration.) Finally, remove any potential for pointer aliasing (Se¢tion 6.4.9) within a loop as that
may prevent software pipelining.

6.4.5 Unrolling Loop Structures

Another common optimization technique is knownl@asp unrolling Consider the functioold _loop
shown in Figuré¢ 6]3A, which demonstrates a conventional loop that consists of the loop overhead (line 21)
and the loop body (line 22). (This example is profiled in Figuré 5.4.) Execution speed can be improved if
the loop setup overhead can be better amortized by completing more work in the loop body. Remember that
i is incremented and comparedNid&Mor every loop iteration. The resulting modified loo@ww_loop ,
is shown in Figurd 6]3B; it consists of four statements in the loop body (lines 33-36). This function
completes four times the amount of original work for the same amount of loop overhead. In addition, this
method may expose the loop’s parallelism to a processor that can take advantage of software pipelining.
The performance gain from this technigue can be substantial and may far exceed the performance gained
by simply reducing the loop overhead.

Of course, becausdUMis unlikely to always be a multiple of 4, the software first needs to find the
remainder oNUMlivided by 4 and sum those array entries as well. This extra loop, knowprasandi-
tioning loopis shown in lines 30 and 31. However, for some applications the loopNiZ®in this case,
is known and finding the remainder is not necessary. For example, the code might be running through an
array that is known to be dimensioned by 1,024. Other applications may not be so fortunate.

A // Code the old way B // Code the new way
#define NUM 1024 27: void new_|l oop() {
19: void old_loop() { 28: sum = 0;
20 sum = 0; 29: i1 = Nuwm;
21: for (i = 0;i < NUM i++) 30: for (i =0; i <ii; i++)
22: sum += x[i]; 31: sum += x[i];
23: printf("sum= 9%\n", sun); 32: for (i =ii; i <NUM i += 4){
24: } 33: sum += x[i];
34: sum += x[i +1];
35: sum += x[i +2];
36: sum += x[i +3];
37: }
38: printf("sum= 9%\n", sun);
39: }

Figure 6.3: Example of loop unrolling. (A) Original functiamid _loop . (B) Improved function
new_loop with the loop unrolled.
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In the example shown in Figufe 5.5, the amount of work that the code segment completed took 6,168
cycles. By reducing the loop overhead relative to the amount of work accomplished, the improved code
took 4,891 cycles, which results in a savings of approximately 25%. Of course, the $\kéMaind a
choice of value other than 4 affects the total savings achieved.

Which loops are good candidates for loop unrolling? “Fat” loops, those that complete a lot of work
relative to the overhead, are poor candidates. If the loop iteration, or trip count, is small, the amount of
savings is likely to be negligible. Loops that contain function calls also should be ignored as they are
likely to be expensive. In addition, loops that contain branches probably will not yield much additional
performance when unrolled. If possible, consider removing branches or inlining functions. The compiler
may then be able to automatically unroll the loop.

Note, however, that there are drawbacks to loop unrolling. First, it adds visual clutter and complexity
to the code because the loop operations are duplicated. Second, because code is duplicated, loop un-
rolling can increase the code size. Third, the compiler may already optimize by loop unrolling and it may
do a better job than manual attempts. Furthermore, manual unrolling can actually prevent a number of
optimizations.

6.4.6 Memory Reference Optimizations

Large data arrays may cause poor cache behavior when a loop strides through the data. For example, in
image processing where array sizes are often large, it is frequently more efficient to break up the array into
smaller subarrays. The size of these subarrays can be designed to reside within either the first or second
level cache. This technique is often callssthe blocking

A second example is a loop that walks down columns in an array. If each row is aligned so that elements
along the row-axis are cached in with each access, then walking through each column of data involves
caching a new row of data with each loop iteration. However, if the array is accessed across rows instead
of down columns, the data is in cache and is accessed much more quickly. $ec¢tion 2.1 points out that data
access to array elements in cache is far faster than those from main memory.

A for (i =0; i <N i++) B for (i =0; i <N i +=2)
for (j =05 J <N j++) for (j =0 j <N j +=2) {
Ali,jl = Aj,i] +Bli,j] Alj i 1 =Aj ,i 1 +8i .i 1;
Alj+1,i ] = Aj+1,i ] + Bli ] +1] ;
Alj ,i+l] = Aj i+1] + B[i+1,] ];
ALj+1,i+1] = A[j+1,i+1] + B[i+1,]+1];

Figure 6.4: Example of optimization using cache blocking within a vector sum. (A) Original code. (B)
Optimized version using cache blocking.

Dowd [16] combines these two concepts in an excellent example. Higure 6.4A shows a vector sum
computation in which one array is referenced with a unit stride and the other with a stileAdirst
intuitive optimization might be to reorder the indices, but the algorithm still strides through either array
A or B by N. Dowd provides a cache blocking algorithm in Fig{irg 6.4B, which references a few elements
of A, then B, in neighborhoods. This method unrolls the outer and inner loop to reuse the cache entries
as much as possible to improve the caching behdvidiis performance optimization easily can lead to
100% performance improvement.

1This book is highly recommended. Although its emphasis is on high-performance computing algorithms and the examples
are written in FORTRAN, the book provides an excellent overview of code optimization.
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6.4.7 Inlining and Macros

Many functions can be written in several lines of code. Much like loops, the overhead in accessing a
function must be offset by the work that is done by that function. For small functions, the overhead of
calling that function may be more expensive than actually performing the commands in place. A good
compiler optimizes these inefficiencies away through the uselioing, the technique of replacing the

call to a function with an in-place copy of the functions contents. Macros can take the place of inlining if
the function is too large to be optimized in this way. Also consider using the keywiamd  wherever
possible. When you use inlining, be sure to watch the overall code size because heavy use of inlining and
macro-expansion can increase the size of the code dramatically and impair performance due to instruction
cache misses.

6.4.8 Temporary Variables

Another common optimization technique is local temporary variables. You can use temporary variables
in place of references to global pointers within a function or to avoid repeatedly dereferencing a pointer
structure, as shown in Figufe 6.5. As with other compiler optimizations, some compilers may have the
ability to perform this optimization and others may not. In the interest of better performing cross-platform
code, modify the source to avoid this performance pitfall.

A X =global_ptr->rec ord_str—>a; B tnp =global_ptr—>r ecord_str;
y = global_ptr—>rec ord_str—>b; X = tmp—>a;
y = tmp—>b;

Figure 6.5: Example of optimization using temporary variables. (A) Original code. (B) Optimized version.

Figure[6.p demonstrates how within a function, a temporary variéble, can replace several refer-
ences to a global pointerewPnt . In Figure [6.pA, a matrix multiply function is used to transform a point
(oldPnt ). Repeated dereferences of the global varialelMPnt occur within the loop. Removal of this
unnecessary step, shown in Figyre] 6.6B, results in better cache behavior, increased performance, and ar
up to 50% faster loop with some compilers.

6.4.9 Pointer Aliasing

In C and C++, pointers reference and perform various data operations on sections of memory. If two
pointers point to potentially overlapping regions of memory, those pointers are saidliases[1Z]. To
be safe, the compiler must assume that two pointers with the potential to overlap may be aliased, and this
may severely restrict its ability to optimize those pointers by reordering or parallelizing the code. However,
if the compiler knows that the two pointers never overlap, significant optimization can be accomplished.
Consider the code example from Coakl[12] (FigOré 6.7A). This code is excerpted from an audio ap-
plication, but the problems of aliasing are common to graphics applications as well. In this exainple,
may point to memory that overlaps memory that is referencqulbyl herefore, any store througti can
potentially affect memory pointed to kp2. This problem prevents the compiler from taking advantage
of instruction pipelining or parallelism that is inherent in the CPU. Loop unrolling may help solve the
problem, but in this case a simpler solution exists.
Optimally, the compiler would recognize aliasing and optimize accordingly. This is unrealistic in any
large software project. Furthermore, there is no way to indicate which pointers are aliased and which are
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A void tr_pointl(float *oldPnt, B void tr_point2(float *ol dPnt,

float *m float *m
float *newPnt) fl oat *newPnt)
float *cl, *c2, *c3, *c4, float *cl, *c2, *c3, *c4,
*op, *np; *op, *np, tnp;
cl=m c2 =m+ 4; cl=m ¢c2 =m+ 4;

c3 m+ 8, ¢c4 = m+ 12;

m+ 8 ¢4 = m+ 12; c3

for (j=0, np=newPnt; |<4; ++j) for (j=0, np=newPnt; |<4; ++j)

{ {
op = ol dPnt; op = ol dPnt;
*np = *opt+t+ * *cl++, tmp = *op++ * *cl++,
*np += *op++ * *C2++; tnp += *opt++ * *C2++;
*np += *op++ * *Cc3++; tnp += *opt++ * *C3++;
*Np++ += *op++ * *Cc4++; *np++ = tnp + (*op * *c4++);
} }

Figure 6.6: Example of optimization using temporary variables with a function. (A) Original code. (B)
Optimized version.

not. However, the C99 standard uses the keywestrict for the C language to solve this problem.
Therestrict keyword is used to indicate which pointers are aliased and which are not. tésing

strict , the code in Figur€ 8.7A would be rewritten as shown in Figure 6.7B. Cook [12] states that a
300% performance improvement occurred by using this technique compared to the original code. In addi-
tion, adding this keyword to the code and recompiling is a much simpler and faster change than unrolling
the loop.

A void add_gai n(float *p1l, B void add_gain(float * restrict pl,
float* p2, float * restrict p2,
fl oat gain) fl oat gain)

{ {
int i; int i;
for (i =0; i < NUM i++) for (i=0; i< NUM i++)
pl[i] = p2[i] * gain; pl[i] = p2[i] * gain

} }

Figure 6.7: An example of pointer aliasing. (A) Function with pointer aliasing. (B) Revised function using
therestrict keyword to optimize pointer aliasing.
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6.5 C++ Programming Optimizations

This section describes a few performance issues to be aware of when you design and code in C++. C++
provides many efficiencies in design, architecture, and reuse aspects of software development, but it also
has associated performance implications that you need to consider when you implement your designs.
Ensure that your software abstraction does not impair the application performance.

6.5.1 General C++ Issues

There are only a few major issues to consider when you write C++ software, but many little issues exist
that can add up to slow performance. These smaller issues are of two general sorts and can be summarizec
rather simply. First, be aware of what the compiler does with expressions of various types; and second,
avoid expensive operations either explicitly in code or through compiler flags. A few specific issues follow.

When objects are constructed in C++, the specific instance that is created has its constructor invoked.
This constructor can be written to do much work, but even in some simple cases, such as where only
initial values are set, there is the overhead of a function call for each object constructed. Because of the
invocation of the constructor on each instance of an object, certain situations such as static array creation
can be very expensive. In other cases, if objects are passed by value across functions, the compiler instructs
that a complete copy of the object be created, which invokes a copy constructor. This is potentially very
expensive. When passing arguments to functions, pass arguments by reference instead of by value.

There are many other minor C++ issues that developers should consider when writing software. Some
are subtle and insidious, some are not, but the main point of any of the problems listed in this section is to
understand how the compiler operates, its warnings, and what can be done in code to avoid these issues.

e Use theconst keyword wherever possible to ensure that a compiler detects a write to read-only
objects. Some compilers can also perform some optimizatiogsmst objects to avoid aliasing.

e Understand how temporary classes are created. As objects are transformed from one type to another
(through type conversion and coercion), temporary copies of these classes can be created, invoking
some constructor code and causing allocation of extra memory. Compilers sometimes warn of this
issue.

e Understand what overloaded operators exist for objects in an application. Overloaded operators
offer another path into user-written code that can be of arbitrary complexity. Despite the visual
readability of overloading an operator to perform vector addition, for example, problems can occur
when types differ and the compiler attempts to reconcile this through type conversion and coercion,
incurring problems associated with temporary classes.

¢ Inline functions as a compiler hint wherever possible. Inlining can replace small functions with
in-place code, speeding execution.

e Understand how a compiler behaves you when use C++ keywords sirdimas , mutable , and
volatile . Use of these keywords can affect how data is accessed and how compiler optimization
is performed.

e Profile how run-time type identification (RTTI) performs on the systems on which an application
will run. In some cases, adopting an application-specific type methodology may be more efficient,
even though RTTl is part of the ANSI standard.
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e Function call overhead can be significant. When structuring an application, ensure that a balance
exists between the number and size of functions and overall performance. Inlining functions may
help; condensing small functions into fewer larger ones can yield new tuning opportunities.

6.5.2 Virtual Function Tables

One of the core features of an object-oriented language is inheritance, and one aspect of inheritance in C++
is virtual functions. Understand where virtual functions are necessary and use them there only. Virtual
functions are implemented essentially as function tables that are stored within a class instance; this class
instance defines which virtual function to call when a specific instance of a class has a virtual method
invoked. There are several performance issues to keep in mind when you use virtual functions.

Because the virtual function table is stored within a class instance in memory, there is associated mem-
ory overhead for this table. The increase in the size of an instance means that an instance takes up more
space in main memory and requires more space when cached. Using more space when cached implies tha
less data overall can be in the cache. Therefore, the application is more likely to have to fetch data from
main memory, thus affecting performance.

A second implication of using virtual functions is that an additional memory dereference is required
when a virtual function is invoked. For more information about memory issues see Sgction 2.3. This
overhead is relatively minor in the grand scheme, but many little things add up quickly to slow an appli-
cation. Balance the costs of virtual function (and function table) invocation with a larger amount of work
performed in that function. Using a method that is implemented as a virtual function (or function table
in a C application) to retrieve individual vertices in a rendering loop would be a poor amortization of the
startup costs.

6.5.3 Exception Handling

Exception handling is a powerful feature of the C++ language, yet it has some undesirable performance
characteristics. Exceptions can be thrown from within any function at any time. Compilers must keep
track of additional state data (typically with each stack frame) to preserve state in such a way that useful
information can be retrieved when an exception is thrown. Tracking this additional data can cause appli-
cations that are compiled with exceptions, but perhaps not even using them, to be slower. Compilers also
may not be able to optimize code as significantly with exceptions enabled. To deal with these undesirable
characteristics of exceptions, follow this advice: catch exceptions that are not basic types by reference to
reduce the number of copies made of exception objects; use exceptions to handle only abnormal condi-
tions — their overhead is too great for common error handling. Understand the implications of exception
use for the operating systems and compilers that are used to build an application.

6.5.4 Templates

Templates are another language feature of C++ that enables high levels of code reuse. Templates preserve
type safety while they enable the same code to operate on multiple data types. The efficiency of reusing the
same code for performing a certain operation for all data types stems from having to implement efficient
code only once. Templates can be difficult to debug, but are easily implemented as a concrete class first,
then as a template after they have been debugged. Another solution to efficient template usage is to use
commercial libraries or the Standard Template Library (§Twhich is now part of the ANSI language

2The Standard Template Library — http://www.cs.rpi.edmusser/stl.html
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specification. Extensive use of templates may cause code expansion due to techniques that compilers use
to instantiate template code. Read compiler documentation to learn how templates are instantiated on a
particular system.

6.6 Conclusion

This section has covered a number of topics and issues related to high-performance C and C++ software.
Software tuning can increase an application’s performance, and knowledge of the programming language
can further increase that performance. However, it should be obvious that the possible performance im-
provement is limited with these techniques. As Commike [11] writes, “the most highly tuned bubble sort
in the world is still a bubble sort and will be left in the dust by any decent quicksort implementation.” A
need for good algorithms is evident.

Fortunately, the basics of good algorithms are taught in the early fundamentals of programming classes.
Usually these topics cover general ideas such as sorting and searching. Other sburces [21] offer a col-
lection of algorithms, programs, and mathematical techniques specifically for the computer graphics pro-
grammer. These “gems” are general purpose and fit into any desired application domain.

This course has mentioned the need to reduce the amount of information rendered if an application
is geometry bound. Level of detail (LOD) and culling algorithms are techniques that can be used to
reduce the amount of information and complexity in a particular scene. Past SIGGRAPH conferences
have offered research into these higher-level algorithms and an excellent overview of these algorithms is
given in Appendix A.
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Conclusion

Efficient graphics software is built on three foundations. These foundations, of course, rely on your
knowledge of how software, graphics function calls, and the computer system interact with one another.

Because many graphics applications spend much of their time processing information that is not directly
related to calling any graphics API, the first foundation is based on well-written application software. This
software is distinct from software that is used to call any graphics API; instead, it is used to process data,
take user input, or store data. Delays in the execution of this part of the code decrease overall performance.
Fortunately, a host of tools are available that can clearly define any existing inefficiency in the application
software.

The second foundation rests on an efficient graphics structure and how that structure interplays with
the system hardware. Graphics API calls can be implemented poorly, and no amount of code analysis or
restructuring will change that fact. Fortunately, most graphics hardware suppliers provide key pointers
that demonstrate how to improve graphics APl and hardware interaction.

Unfortunately, well-written code and graphics function calls do not compensate for a poor choice of
graphics algorithms. Efficient algorithms, then, are the third foundation on which graphics performance
rests. As the course pointed out, a poor algorithm can effectively kill any performance gained by clever
coding or graphics hack. Fortunately, SIGGRAPH conferences are replete with examples of such algo-
rithms, and some of them are captured here.

Creating high-performance graphics software can be difficult. The purchase of a bigger-faster-cheaper
computer may be a solution, but this is a temporary solution that does not fit many situations. It is far
easier — and less expensive in the long run — to examine how the software and system interact, and then
modify the application software accordingly. This effort can be one of the most challenging and satisfying
aspects of developing efficient graphics software.
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Appendix A: Graphics Techniques and
Algorithms

A-1 Introduction

In this coursf, you have learned tools and techniques to determine how well an application is running
and how to improve performance. Although tuning the individual parts of an application increases per-
formance, tuning can only go so far. The metaphor for this section is as follows: “The most highly tuned
bubble sort in the world is still a bubble sort and will be left in the dust by any decent quicksort implemen-
tation.” The goal of this section is to describe additional techniques that improve application performance
and demonstrate how these techniques can be combined with knowledge of the application domain and
system architecture to produce high-performance applications.

Each application is written to solve a specific domain problem, and each problem domain comes with a
set of requirements to which the application must adhere. These requirements sometimes differ drastically
among domains. For example, a visual simulation application might be required to run at a 30-Hz or even
60-Hz constant frame rate; the frame rate in a scientific visualization application might be measured not
in frames per second, but seconds per frame; and, an interactive modeling application might require a
delicate balance between interactive user response and image quality. Many more domains exist, each
with its own set of requirements. An application writer needs to look at these requirements to determine
how the application as a whole fits together to solve the user’s problem. Furthermore, these requirements
are usually not mutually exclusive. An application typically does not need to achieve a high constant frame
rateanda high-fidelity scene, but a balance of both.

This section covers both idioms that are used to increase perceived graphics performance and application-
level architectures that use these idioms to achieve the best possible application performance. This section
primarily emphasizes interactive applications. Therefore, many of the techniques described do not fit
well into an application where the end result is only a generated image, but rather are appropriate for
applications where the goal is user-interactivity in generating images.

A-2 Ildioms

idiom: The syntactical, grammatical, or structural form peculiar to a language [58].

The language of the computer is very specific — one misplaced symbol, and the computer no longer

1This section comes from this course given at SIGGRAPH 2000 and SIGGRAPH 1999. It was originally written by Alan
Commike in 1999 and modified by Roger Corron in 2000.
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does what is expected. When that language is used for a graphics application, similar although not as
catastrophic results can occur. For example, an application might not meet the needs of the users if it is
not architected properly. Many idioms help in architecting a graphics application, and these generally take
the form of reducing the information that needs to be rendered. The basic premise of these idioms is that
an application needs only to render what the user sees and that rendering needs to be only as detailed a:
the user can perceive. This may seem obvious, but few applications exist that are effective at applying all
the techniques described.

The following sections outline some useful idioms for reducing the information that needs to be rendered
(culling), reducing the complexity of the information that gets rendered (level of detail), and reducing the
amount of data that has to be transferred at a given stage of the pipeline (caching).

Effective use of these idioms reduces both the geometry load and the pixel fill load of an application,
which enables applications to render scenes that are much more complex in a shorter amount of time.
Unfortunately, this effective speedup can introduce a feedback loop that can cause swings in frame rate
and a reduction in the amount of time that can be spent calculating versus drawing. This feedback loop
begins by reducing the graphics load, thereby increasing the effective frame rate. The increase in frame
rate reduces the amount of time that is available for non-rendering tasks, which adds more geometry load
to the graphics system due to less time to cull and calculate proper level of details, and so on, creating
the feedback loop. Therefore, when you use culling and multiple levels of detalil, it is necessary to have a
frame-rate control mechanism that can balance the graphics and CPU load.

A-2.1 Caching

Cachingis the well-known technique of locally storing data that is expensive to recompute or fetch from
remote storage. Caching reduces data transfer by storing graphics information in one part of the graph-
ics pipeline so that it does not have to be retransmitted. Applied to graphics applications, caching can
minimize data generation, accelerate traversal, and possibly avoid rendering altogether.

Geometry Caching - Display Lists

A display listis a data structure that stores graphics commands in a format that is optimized for fast
traversal and transfer to the graphics system. Display lists may be provided by the graphics vendor or
may be implemented within an application. Vendor-supplied display lists optimize traversal by precom-
piling graphics API calls into graphics commands and data structures in a format that is native to the
graphics system. This format is aligned for rapid transfer to the graphics hardware by the CPU and may,
depending on the system, be transferred by DMA. If your graphics vendor does not provide native display
lists, it is often advantageous to implement a display list within your application. For example, if your
application edits and displays NURBS or other parametric surfaces, a display list can store the surface
tesselations as triangle strips, which removes the need to retesselate. Both types of display list can contain
meta-information such as bounding boxes to enable other optimizations. Because display list generation
and editing take time, display lists are best for caching static geometry that will be displayed more than
changed. Display lists are stored in system memory, and their memory requirements need to be balanced
against the performance acceleration they supply. In most cases, display lists provide a useful performance
boost at a reasonable cost.
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Data Caching - Paging, Tiling, and Bricking

Many applications roam through a large database that is stored on disk. The database may contain geom-
etry, or in other cases, image or volume data that is formatted as texture. It can be worthwhile to organize
the database spatially, and create a cache for the data that is most likely to displayed next. If multithreading
is used, the cache can be loaded by prefetching instead of on demand.

For imaging and volume visualization applications, the data is easy to organize as tiles or bricks, with
the nearest spatial neighbor implicit in the data definition. These applications are particularly amenable to
data caching and prefetching. Applications that display 3D geometry are harder to organize in this way,
because the natural hierarchy created by the user is not always as spatially coherent as in the imaging or
volume cases.

Image Caching - Backing Store

Caching the final image can be used to avoid rendering altogether in cases where the geometry has not
changed, but the image has been disturbed by outside events such as the superposition of GUI elements
or the windows of other applications. The image may be saved in backing store and restored to avoid
redrawing. Image saving may be done by performing a copy after rendering is complete, although this has
the disadvantage of not working if the graphics window is already obscured. Also, it may be necessary
to preserve other buffers than the visible part of the framebuffer, such as the depth buffer or auxiliary
buffers. If your target graphics system has sufficient offscreen memory, it may be possible to perform
all rendering to offscreen memory and then copy the final image to the onscreen window. This has the
advantage of automatically keeping all graphics buffers offscreen and "unobscured” at all times. Not all
graphics systems have sufficient offscreen memory, but some, including some low-cost UMA systems, do.
The cost in memory of backing store must be weighed against the usability cost of not providing it. The
alternative technique of placing the application GUI in the system overlay planes often does an adequate
job of preventing excessive rendering. Backing store works best for environments where overlay planes
are unavailable or where the framebuffer must be shared with other applications that do not use the system
overlay planes.

A-2.2 Culling

One of the most effective ways of improving graphics rendering performance of a scene is to not render
all the objects in that sceneCulling is the process of determining which objects in a scene need to be
drawn and which objects can safely be elided. In other words, the objects of the scene that can safely be
elided are those that are not visible in the final rendered scene. This concept has fostered years of researct
work [19,60,/59/09 23] and many useful techniques.

The premise behind culling is to determine if a geometric object needs to be drawn before actually
drawing it. Therefore, the first step is to define the objects to test. In most cases, it is not computationally
feasible to test the actual, perhaps very complex geometric object, so a simpler representation of the object
is used: thébounding volume This representation can take the form of a bounding sphere, a bounding
box, or even a more complex bounding convex hull.

A bounding sphere is a point and a radius, defined to completely encompass the extents of the geometry
that it represents. A bounding sphere is very fast and efficient to test against, but not very accurate in
determining the extents of the object. Bounding sphere extents are fairly accurate when the dimensions of
an object are similar. For example, box-shaped objects such as buildings, cars, and engines are usually well
represented by bounding spheres. However, bounding spheres are a poor representation in many cases
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particularly when a single dimension is much larger than another. For example, the bounding sphere of an
elongated object in a scene is much larger than the true extents of the object. Objects such as pens, trees
missiles, and railroad cars are not particularly well-represented by bounding spheres.

Significant efficiency is gained by grouping objects spatially and testing the bounding sphere of the
larger group instead of testing each individual object in that group. For this to be effective, the geometry
for the scene needs to be grouped hierarchically with bounding sphere information determined at the
lowest levels and propagated up the tree. A bounding sphere test of a large group of geometry can quickly
determine that none of its contained geometry needs to be tested, thus avoiding the test of each geometric
object.

The process of recursively testing a bounding sphere and, if needed, the child geometry contained in the
bounding sphere, can continue all the way down to individual geometric objects. You can use bounding
boxes of the actual geometry when you need a more accurate test of the geometric extents. The level at
which the bounding sphere test stops and the point at which bounding box tests are started can be based
on the amount of time that is either allotted to culling the scene or set to a fixed threshold. The cull time
needs to be balanced with the draw time. A very accurate cull that takes more time than the allotted frame
time is not very useful. On the other hand, an early termination of the cull that causes excess geometry to
be drawn slows down the overall frame rate.

Bounding boxes also suffer from some of the same problems as bounding spheres. In particular, a poorly
oriented bounding box has the same problems as a bounding sphere representing an elongated object —
poor representation of an object leading to inaccurate culling. l@has, have recently published a paper
on the determination of the optimal bounding box orientation [33].

View Frustum Culling

One of the easiest forms of culling veew frustum culling Geometry is identified afill-in, full-out, or

partial with respect to the view frustum. Geometric objects that lie fully outside the view frustum can
safely be elided. Geometric objects that lie fully within the view frustum must be drawn (unless elided in
another culling step). Geometric objects that lie partially inside and partially outside the view frustum can
either be split into the full-in portion and the full-out portion, or added to the full-in list to be clipped by
the hardware when rendered.

An advantage of differentiating between full-in and partial can come with systems that implement soft-
ware clipping. In some cases, the graphics library implementation allows the application to turn off clip
testing when all geometry lies fully within the view frustum. In these cases, there is a contract between
the application and the graphics library: the application agrees not to send geometry that lies outside of
the view frustum, and the graphics library agrees to speed processing of the geometry. Rendering results
are undefined if this contract is broken by sending down geometry outside of the view frustum. Usually,
the undefined results manifest in the form of an application crash or an improperly rendered scene.

Like many operations that change graphics state, notifying the graphics system that geometry does not
need to be clipped is not a computationally free operation. This means that the application should be
structured so that it does not have to repeatedly turn on and off the clipping state when rendering partial
and full-in geometry.

Backface Culling

Manifold surfaces always have some polygons that are facing the viewer and others that are facing away
from the viewer. Polygons that are facing away from the viewer are not visible and do not need to be
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rendered. The process of determining which polygons are frontfacing (visible)and which are backfacing
(not visible), and then eliding those that are backfacing is cdddkface cullind60]. Backface culling
is done on a per-object, and sometimes per-primitive, basis.

OpenGL performs backface culling as the first step of rasterization after clipping, transformation, and
lighting. This only eliminates rasterization, which is not helpful for applications bound by transformation
and lighting. In such graphics systems, it can be worthwhile to perform backface culling explicitly, before
transformation takes place.

A simple approach to calculating the face of a polygon is to take the dot product of the polygon normal
and a ray from the camera (or eye-point). If the dot product is negative, the polygon is facing toward the
user and needs to be drawn. If the dot product is positive, the polygon is facing away from the user and can
safely be elided. One aspect of dot products that needs attention is the meaning of the dot product sign.
When the user is inside the object, the meaning of the positive and negative dot product is reversed. The
possibility of the eye point entering an object needs to be handled in all cases where the direction of the
normal is important, such as lighting. Backface culling adds an additional case to the handling of flipped
normals.

Before implementing your own backface culling, test your application performance and check your
vendor’s documentation. OpenGL backface culling may be adequate and if not, your vendor may provide
an extension to perform camera-space backface culling.

Occlusion Culling

A more complex form of cullingpcclusion culling is the process of determining which objects within

the view frustum are visible. Only objects that are not behind other objects or are not seen through those
objects from the current viewpoint are visible in the final rendered scene. The objects that are visible are
known asoccluders and those that are blocked are knowmeasludeesThe determination of the optimal

set of occluders is the goal of an occlusion culling algorithm. The objects in this optimal occluder set are
the only objects that need to be drawn; all other objects can safely be elided.

The key to an effective occlusion culling algorithm is to determine which objects in a scene are occlud-
ers. In many cases, you can use the information that is available in the application domain as a means to
help determine the occluders. In domains such as architectural walkthroughs or certain classes of games,
the world is naturally made up @kllsandportalsbetween the cells. In this case, you can use a cell and
portal [55] culling algorithm to make a map of the visibility between cells. Only cells that are visible from
the current cell need to be rendered.

When knowledge about the underlying spatial organization does not lead to the use of a specialized
algorithm to determine occluders, you can use a general occlusion algoritim_[61, 23]. One method of
occlusion culling is to use the hierarchical bounding-box or bounding-sphere information in conjunction
with a typical hardware depth buffer. The scene is sorted in a rough front-to-back ordering, and all ge-
ometry in the scene is marked as a possible occluder, meaning that all geometry needs to be drawn. The
depth sort is necessary to take advantage of the natural visibility effects where a closer object generally
obstructs the view of a further object. The bounds of each object are rendered in turn, and the depth buffer
is compared to the previous depth buffer. If the depth buffer changes between drawing one object and the
next, the object is visible and is not occluded. If the depth buffer did not change, the object is not visible
and can safely be elided. It is possible that the hardware can efficiently feed back the depth buffer hit in-
formation outside of reading the full depth buffer. Check with your hardware vendor when you implement
an occlusion culling algorithm to find out if there are extensions that enable efficient occlusion culling
algorithms.
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More detail on occlusion culling can be found in Zhangl] [59], which covers occlusion culling back-
ground material and an extensive algorithm for choosing the optimal occlusion set.

Contribution Culling

You can also use culling to elide objects that are small enough not to be noticed if they are missing from
the scene. This form of culling, callemntribution culling[69], makes a binary decision to draw or not

draw an object depending on its pixel coverage in screen space. An object that only occupies a few pixels
in screen space can be safely elided with very little impact in the overall scene. Examples of situations in
which contribution culling can be applied include objects that are a large distance from the eye, such as
trees when flying at altitude in a flight-simulator, or objects that are very small in comparison to the entire
scene, such as bolts on an engine when designing a truck. Contribution culling can also assist occluder
selection for occlusion culling, because objects with low pixel coverage are not good occluders.

The screen space size of an object can be determined either computationally or in a preliminary ren-
dering pass. In either method, the bounding representation is used instead of the actual geometry that is
associated with the object. Check with your hardware vendor when you implement a contribution culling
algorithm. It is possible that the hardware can efficiently feed back the pixel coverage information much
easier and faster than a computational approach or straightforward graphics language implementation.

A-2.3 Application-specific Heuristics and Combinations of Idioms

Typically, these idioms are combined in a pipelined fashion. First, an appropriate level of detail is selected;
then, multiple stages of culling are applied to reduce the geometry load on the graphics system. Caching is
used at various stages of the pipeline to minimize and optimize data transfer. However, knowledge of your
application domain may enable you to invent combinations of these idioms or heuristics that accelerate
your application more than generic techniques. Some examples are given below.

Accelerated Panning

If users of your application typically spend a lot of time panning complex 3D images, you can

combine image caching and view frustum culling to accelerate classic translation. Blit the image
to translate the part of the image that will remain visible after translation; then, use view frustum
culling on the exposed region to render only new exposed geometry.

Accelerated Dynamics

If you must render complex geometry of which only a small partis dynamic, the following technique
can be useful. The static geometry is rendered first to form the background, and all the output buffers
(including depth and auxiliary buffers) are saved. Then, instead of clearing the frame buffer and
redrawing everything, the bounding box of the dynamic geometry is restored in all buffers at the
beginning of each frame and only the dynamic geometry is redrawn. Again, system architecture and
cost will affect your design. [122]

Oversampled Antialiasing

Antialiasing has classically been done by either blending, which in the general case requires depth
sorting of polygons to avoid blending artifacts, or by accumulating several renderings of the im-
age, each displaced by a small amount. Each method has disadvantages. The depth sorting that is
required for blending can add large amounts of data generation time to the graphics pipeline. The
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multiple renderings that are required for accumulation buffer antialiasing adds very large amounts
of traversal, transformation, and rasterization. If your target graphics system has fast imaging op-
erations and sufficient framebuffer available, it can be worthwhile to implement antialiasing by
oversampling In this technique, the image is rendered once in a large offscreen buffer, and then
filtered into the smaller visible window with an appropriate (and fast) kernel. When compared to
blending, oversampling trades off framebuffer use against the CPU and main memory requirements
of a depth sort. When compared to accumulation, oversampling has a fraction of the traversal and
transformation requirements, comparable rasterization requirements, and a higher framebuffer re-
quirement.

Substitute Texture for Geometry

If your target systems have texturing operations, substitution of texture for detailed geometry can
accelerate performance by reducing the amount of data that is sent down the graphics pipeline and
transformed. A specific example of this is the acceleration of high-quality shading by substituting a
sphere mapped texture of the shading model and coarsely tessellated geometry for finely tessellated
geometry that is lit and shaded by the graphics system. This technique can also be used to support
shading models that are not implemented in the target graphics API. Because the texture must be
computed in software, this technique is most useful for the combination of dynamic geometry and
static lighting conditions.

Accelerated panning and accelerated dynamics ufil&mae coherenceEach frame of the outputimage
contains much of the data from the previous frame, so much so that it is worthwhile to cache it and rerender
only a small part of the image. Oversampled antialiasing substitutes a fast 2D operation that requires a
large amount of framebuffer for 3D operations that conserve framebuffer but use large amounts of time.
The substitution of texture for geometry also substitutes fast 2D operations for slow 3D operations. There
may be other ways to accelerate your application. Is your geometry laid out in such a way that some
objects will always make better occluders than other objects? (For example, sheet metal vs. rivets.) Do
you typically draw large arrays of coplanar or parallel surfaces that can be backface removed together at
a small computational cost? Step back and cast a critical eye at your application, the problems it solves,
and its usage.

A-2.4 Level of Detall

As the viewpoint of a scene changes, more or fewer pixels are devoted to rendering each object in the scene.
By taking advantage of reductions in the pixel area of a full-fidelity image, a corresponding reduction of
the geometric complexity can be introduced. The idea is to introdieeshof detail(LOD, pronounced

lad) for each object in a scene [9] 26, 41]. When an object is far from the viewer, fewer triangles need to
be devoted to rendering the object to retain the same image fidelity.

Many types of models exist that you can simplify with multiple levels of detail. Two of the larger
classes are large, relatively flatrrain or height fieldmodels that stretch into the horizon and general 3D
object models such as cars, buildings, and the associated parts of each. These two classes require differen
techniques for LOD manipulation. A continuous terrain model needs to have a higher level of detail close
to the user and a lower level further back, where both levels are active in the same object at the same
time. You can use specialized terrain LOD algorithins [39] or general adaptive algorithms if they allow the
decimation factor to vary over the model in a view-dependent fashion10, 29]. In most cases, a general 3D
object, where the size of the object is small compared to the full scene, has a constant LOD at any point in
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time. As the eye-point moves closer to the object, more detail is displayed. As the eye-point moves further
from the object, less detail is displayed. The LOD can be calculated prior to rendering [10] or calculated
“on the fly” as a progressive refinement of the objéct [29].

As the user moves through a scene, the LOD for each object or group of objects changes. Each new
LOD is potentially a new geometric representation. Simply rendering the new representation instead of
the old is considered laard changen the scene. In other words, as the user transitions from one LOD to
another, the transition is noticed by the user as a “popping” effect. You can minimize this effect by using
softer methods of LOD transitions such as geometry morphing (geomorph) or blending. A good LOD
implementation should present few visual artifacts to the user.

Creating the LOD objects is only part of the full LOD idiom. To effectively use multiple LOD objects
in a scene, you must determine the correct LOD for each object. Properly determining the correct LOD
can greatly increase frame rate![19, 46, 50]. The LOD can be based not only on the distance from the eye,
but also on the cost of rendering the object and the perceived importance within thelScene [19]. In many
cases, the geometry can be totally replaced by a textured irnage [50], thereby reducing the geometry load
to a single polygon.

Creating the LOD Models

Geometric models come from many sources and can vary greatly in their complexity. Very dense models
arise from 3D scans of real-world models, from surface extraction of volumetric data, terrain acquired by
satellite, and parametric surfaces generated from a modeling package.Clark [9] first proposed the use of
simplified models to increase frame rate while rendering interactive applications. Since then, geometric
surface simplification has been a strong research topic. Heckbert and Garland [27] provide a complete
survey of geometry surface simplification along with a taxonomy of algorithms that span multiple disci-
plines.

Using multiple LODs within the same scene is also knownmastiresolution modeling With mul-
tiresolution modeling, there is no need to render a highly tessellated model when the tessellation detail is
not visible in the final scene. Heckbert and Garland classify surface simplification algorithms into three
classes: height fields, manifold surfaces, and non-manifold surfaces. A simplistic definition of a manifold
surface is one where an edge is shared between only two triangles or not shared at all.

Height Fields

Heckbert and Garland further subdivided height fields into six subclasses: regular grid methads [36, 32],
hierarchical subdivision methods [54] 47 15], feature methads [52], refinement methods [18,28, 45, 20],
decimation methods [37, 48], and optimal methads [5]. Many of these algorithms are very computational
and therefore, can be used only to preprocess the LODs that are used during rendering. These preprocesse
LODs are generally not sufficient for an interactive application where the user controls the eye-point and
viewing parameters. This is especially true for surfaces that are very large, as in terrain models, where a
single LOD is not sufficient over the whole surface. In fully interactive applications, the LOD across the
height field needs to be what Hoppe refers to as “view-dependent” [30]: the LOD across the height field
varies as the eye-point and view frustum changes. This entails a real-time algorithm with a continuously
variable LOD that enables more detail close to the eye-point and less further away.

The number of algorithms that allow view-dependent, real-time height field LOD calculations is small.
For the algorithm to be effective, Lindstromhal [39] defines five properties that are important for a height
field LOD algorithm:
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e At any instant, the mesh geometry and the components that describe it should be directly and ef-
ficiently queryable, allowing for surface following and fast spatial indexing of both polygons and
vertices.

e Dynamic changes to the geometry of the mesh, that lead to recomputation of surface parameters or
geometry should not significantly impact the performance of the system.

¢ High frequency data such as localized convexities and concavities and local changes to the geometry
should not have a widespread global effect on the complexity of the model.

e Small changes to the view parameters (for example, viewpoint, view direction, field of view) should
lead only to small changes in complexity to minimize uncertainties in prediction and allow mainte-
nance of (near) constant frame rates.

e The algorithm should provide a means of bounding the loss in image quality that is incurred by
the approximated geometry of the mesh. That is, a consistent and direct relationship should exist
between the input parameters to the LOD algorithm and the resulting image quality.

A single algorithm that fulfills all of these properties, runs in real time, and handles very large surfaces
is difficult to achieve. The IRIS Performeri46] library’s Active Surface Definition (ASD), Linstrom’s [39]
algorithm, and Hoppe's view-dependent progressive niesh [31] are some examples of algorithms that fulfill
all properties. These algorithms depend on a hierarchical surface definition but take different approaches
to achieve a similar result. Lindstrom and Hoppe work with the original height field breaking the surface
into LOD blocks. They simplify each block with a continuous LOD function that is based on eye position,
height, and an error tolerance. The ASD algorithm starts with a triangulated irregular network (TIN) and
precomputes the LOD blocks. Lindstrom works with the entire surface but limits the maximum size that
can be rendered to what can fit in memory. In addition, even though the LOD is continuous, Lindstrom
does not geomorph the surface when changing from one level to another, which can cause a noticeable
popping effect. In contrast, ASD and Hoppe store the hierarchical LOD blocks on disk and load the
appropriate block as needed, depending on the viewer velocity and direction. This action enables an
infinite surface to be convincingly rendered. Furthermore, both ASD and Hoppe geomorph the vertices as
the LOD level changes. This step produces a smooth-looking surface representation even when the error
tolerance becomes high.

Manifold and Non-Manifold Surfaces

Manifold and non-manifold surfaces are a more general simplification problem than height fields be-
cause the surface does not fall into a simple 2D parameterization. Many methods have been consiructed [56
49,[17,29]10,-30,-40] to solve this problem, each having advantages and disadvantages. Recently, these
simplification algorithms have expanded the domain coverage to include real-time algorithms [34, 30, 40]
and view-dependent information 10, 30J 40], and to attain higher compression rates for low-bandwidth
transmission of datal[8, 53,124].

Determining Which LOD to Use

Generating multiresolution models is only the first step to effectively using LODs in an application. The
second step of the problem is to decide when to use which LOD level 19, 46]. This is a very important
consideration with little formal information published. The generation of LOD models is rooted in com-
putational geometry and statistical error measurements, whereas determination of which LOD model to
use is purely heuristic.
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The goal with interactive applications is to keep the systerhyisteresis meaning that the changes
due to user viewpoint and scene complexity should have a minimal effect on frame rate. The first step in
achieving this goal is to decide on a frame rate. The desired frame rate depends on the application domain.
A visual simulation may need to run at 30 Hz or 60 Hz, whereas a scientific visualization of hundreds of
megabytes of data may require only a 1-Hz frame rate. Most applications are somewhere in the middle
and in many cases, do not target a specific frame rate. This target frame rate helps determine which LODs
need to be used and without it, the graphics pipeline may be under-utilized or overloaded. A target frame
rate sets a bound on the minimum frame rate without which the frame rate is unbounded, which enables
an application to become arbitrarily slow.

Often, application developers who have not incorporated frame rate control into their applications, ra-
tionalize the decision by saying that they always want the fastest frame rate; hence, they do not need to
set a target frame rate. This viewpoint is always countered by the fact that a frame-rate control mechanism
combined with LODs enables the fastest frame rate to be increased by using less complex LODs. For ex-
ample, if an application is running slower than the target frame rate, it can decrease the LOD complexity,
thereby reducing the geometry load on the system and increasing the overall frame rate. Without a target
frame rate and associated frame-control mechanism, increasing the frame rate cannot happen reliably. Ad-
justing the geometry load based on the difference between current and target frame rate is lstee®s as
managementStress is a multiplier, which is calculated on this difference and incorporated into the LOD
selection function. One method of determining which LODs to render is to determine the cost in frame
time it takes to render each object and the benefit of having that object at a certain LOD level.

Funkhouseet al.[19] defines cost and benefit functions for each object in a scene. The cost of rendering
an objectO at level of detailZ with rendering methodr is defined agost(O, L, R), and the benefit of
having objec in the scene is defined d%nefit(O, L, R). Therefore, to determine the LOD levels for
all objects in a scene, maximize

> Benefit(O, L, R)
S

subject to

> Cost(O, L, R) < TargetFrameRate.
S

Generating the cost functions can be done experimentally as the application starts by running a small
benchmark to determine the rendering cost. This benchmark can render some of the basic graphics primi-
tives in different sizes by using multiple graphics states to determine the characteristics of the underlying
system. The cost of rendering certain primitives is useful not only for LOD control, but also for the gen-
eral case of determining some of the fast paths on given hardware. Of course, though the benchmark is
not a substitute for detailed system analysis, you can use it to fine-tune for a particular platform. Itis up
to the application writer to first determine which modes and rendering types are fastest separately and in
combination for a particular platform and then to code those into the benchmark.

The Benefit function is a heuristic based on rasterized object size, accuracy of the LOD model com-
pared to the original, importance in the scene, positidoausin the scene, perceived motion of the object
in the scene, and hysteresis through frame-to-frame coherence. Unfortunately, optimizing the above for
all objects in the scene is NP-complete and therefore too computationally expensive to attempt for any
real data set size. Funkhous#ral. uses a greedy approximation algorithm to select the objects with the
highestBene fit/Cost ratio. They take advantage of frame-to-frame coherency to incrementally update
the LOD for each object starting with the LOD from the previous frame. Bhee fit andCost functions
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can be simplified to reduce the computational complexity of calculating the LODs. This computational
complexity can become the overriding frame time factor for complex scenes, because the LOD calcula-
tions increase with the number of objects in the scene. Similar to using LODs to reduce geometry load,
it is necessary to measure the computational load and reduce computation when the calculations begin to
take more time than the rendering.

Using a predictive model such as the one described above, you can control the frame rate with higher
accuracy than with purely static or feedback methods. The accuracy of the predictions highly depend on
the C'ost function accuracy. To minimize the divergence of actual frame rate to calculated cost, you can
introduce a stress factor to artificially increase the LOD levels as the graphics load increases. This stress
factor is a feedback loop that depends on the true frame rate.

Using Billboards

Another approach to controlling the level of geometric detail in a scene is to substitutgoastoror

a billboard for the real geometry[46,-42,750,151]. In this idiom, the geometry is pre-rendered into a
texture and then texture mapped onto a single polygon or simple polygon mesh during rendering. This
is an advanced form of the texture for the geometry substitution that is described in A-2.3. IRIS
Performer [46] has a built-in billboard (sometimes knowrspste) data type that can be explicitly used.

The billboard follows the eye-point with two or three degrees of freedom, which appear to the user as if
the original geometry is being rendered. Billboards are used extensively for trees, buildings, and other
static scene objects.

Shadeet al. [60] creates a BSP tree of the scene and renders via a two-pass algorithm. The first pass
caches images of the nodes and uses a cost function and error metric to determine the projected lifespan
of the image and the cost to simply render the geometry. The projected lifespan of the image alleviates the
problem of the algorithm trying to cache only the top-level node. A second pass renders the BSP nodes
back to front by using either geometry or the cached images. This algorithm works well for sparsely
occluded scenes. In dense scenes, the parallax due to the perspective projection shortens the lifetime of
the image cache, thereby making the technique less effective.

Sillion et al.[61] have a similar approach, but instead of using only textures mapped to simple polygons,
they create a simplified 3D mesh to go along with the texture image. The 3D mesh is created through
feature extraction on the image that is followed by a re-projection into 3D space with the use of the depth
buffer. This 3D mesh has a much longer lifetime than 2D texture techniques, but at the expense of much
higher computational complexity in the creation of the image cache.

A-3 Application Architectures

There are many techniques that have wide ranging ramifications on the whole or part of the application
architecture. Applying these techniques along with the above idioms, efficient coding practices, and some
platform-dependent tuning helps ensure that the underlying application performs as well as possible on
the target platform.

A-3.1 Multithreading

Multithreading is the general ability to have more than one thread of control that shares a work load for a
single application. These threads run concurrently on multiprocessor machines or are scheduled in some
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manner on single-processor machines. Threads also may all reside within the same address space or ma
be split across separate exclusive address spaces. In a cluster of workstations, threads execute on separa
machines and communicate by a message passing interface. The mechanism of thread control is not as
important as the need to use multiple threads within an application.

Even when using only a single processor, multithreading can still improve application performance.
Additional threads can accomplish work while the main thread is waiting for something to happen, which
is quite often. The main thread may be waiting for a graphics operation to complete before issuing another
command; waiting for an I/O operation to complete and block in the 1/O call; or waiting for memory to
be copied from main memory into the caches. In addition, when multiple processors are available, the
threads can run free on those processors and do not have to wait for the main thread to stall or to context
swap to get work done.

Multiple threads can do many of the computational tasks that are involved in deciding what to draw,
such as LOD control, culling, and intersection testing. Threads can be used to page data to and from
disk or to pipeline the rendering across multiple frames. Again, an added benefit comes when running the
application on multiprocessing machines. In this case, the rendering thread can spend 100% of its time
rendering while the other threads are dedicated to their tasks 100% of the time.

A few issues are associated with using multiple threads. The primary concern becomes data exclusion
and data synchronization. When multiple threads act on the same data, only one thread can change the
data at a time. That change then needs to be propagated to all other threads so that they see the sami
consistent view of the data. It is possible to use standard thread-locking mechanisms such as semaphores
and mutexes to minimize these multiprocessing data management issues. This approach is not optimal,
because as the number of objects in the scene increases, the corresponding locking overhead also increase
A more elaborate approach that is based on multiple memory buffers is described in [46]. Another issue is
the time consumed by thread creation. It may be worthwhile to cache and reuse threads instead of creating
and destroying them freely. As in all other aspects of graphics, performance measurement is an essential
part of threaded architecture design.

Threads can be used in a pipelined fashion or in a parallel fashion for rendering. In many cases, com-
bining the two techniques produces the greatest performance benefit. In a pipelined renderer, each stage of
the pipeline works on an independent frame with its own view of the data. Here the latency is increased by
the number of stages in the pipeline, but the throughput is also increased. Parallel concurrent processes all
work on the same frame at the same time, perhaps by using multiple hardware graphics pipelines (see 2.5).
The synchronization overhead is higher, but latency is reduced. A combination of the two approaches can
have a pipelined renderer that has asynchronous concurrent threads handle non-frame-critical aspects of
the application such as I/0. The target system architecture determines what is possible, whereas the appli-
cation requirements determine what is useful. The following operations are some areas where a separate
thread can work either as a stage in a pipeline or as a parallel concurrent thread.

Culling

The process of culling determines which geometric objects need to be drawn and which geometric objects
can be safely elided from the scene (see setioh A-2). Culling is traditionally done early in the rendering
process to reduce the amount of data that later stages need to process. As one of the first stages in a multi-
threaded application, the culler thread can traverse the scene doing view frustum, backface, contribution,
and occlusion culling. Each of these culling algorithms can be done in a pipelined fashion spread over
multiple threads. The resulting output of the culling threads can be incorporated into a new second-stage
scene structure, which is passed to the remaining parts of the application.
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Level of Detail Control

Multiple levels of detail (LOD) per object is one of the most effective ways of reducing geometric com-
plexity (seg A-Z4). The determination of the correct LOD for each object can be a time-consuming task
and is perfectly suited to run in a separate thread. LOD threads should run after the culling stage, or be
pipelined with early results from the culling stage to prevent calculation of LOD values for objects that
are not rendered.

Intersection

Most applications do more than just render and they enable the user to interact with the scene. This
interaction entails calculating intersections either on an object-to-object basis or as a ray cast from a
viewing position to an object. An intersection thread can be run concurrently with LOD calculations to
generate a hit list that is passed to the application before rendering.

1/O

In applications where all data is generally not all visible simultaneously, it is beneficial to load only the
portion of the data that is currently being used. Complex visual simulations or architectural walkthroughs
are two of the many types of applications that have latgegbasesn which the data igpagedoff the

disk as the user moves through the world. As the user approaches an area where the data has not yel
been loaded, the required data is read off the disk or a network interface to be ready to use when the user
arrives at the new area. One or more asynchronous threads are generally allocated to I/O operations such
as paging database data from external storage or tracking information from input devices. These threads
can be asynchronous because they do not need to complete to generate data for the next frame of the
rendering process. An additional benefit of an asynchronous I/O thread is that an application is not tied to
the variable read rates that are inherent in disk, network, or other external interfaces. The maximum frame
rate of an application is gated by the I/O device when 1/O is done inline as part of the rendering loop. This
point is especially apparent with input devices that have a very high data latency that put a bounds on the
frame rate.

Because I/0O threads are asynchronous and may not have completed their operation before the data that
they are responsible for is needed, the application needs to have a fallback to replace the missing data.
Database paging operations can first bring in small, low-resolution data that is quick to read to ensure that
some data is ready to be rendered if needed. Similarly, missing tracking information can simply reuse
previous data or interpolate where the new position may be based on the previous heading, velocity, and
acceleration.

A-3.2 Memory vs. Time vs. Quality Trade-offs

There are many trade-offs between memory, time, and quality that need to be considered. Depending on
the target audience and application type, memory utilization may be a higher priority than frame rate, or
frame rate may be most important regardless of the amount of memory needed. Quality has similar issues:
higher quality may mean more memory or slower frame rate.
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Level of Detall

Changing between appropriate LODs for a given object should be almost invisible to a user. When LOD
levels are artificially changed because of the need to increase frame rate, users begin to notice changes
in the scene. Here, frame rate and image quality need to be balanced. Similarly, if a proper blend or
morph between two LOD levels is not done, the switch between the two LODs is apparent and distracting.
In either case, the use of LODs is important for an application. Memory considerations for generating
LODs should be a concern only for very memory-conscious applications. If memory becomes a concern,
consider paging the LOD levels from disk when needed.

Mipmapping

Textures can be pre-filtered into a multiple power of two levels that form a pyramid of texture levels.
During texture interpolation, the two best mipmap levels are chosen, and texel values are interpolated
between those levels. This process reduces texturing complexity when the ratio of screen space to texture
dimension gets very small. Interpolation between smaller levels produces a better image at the cost of
memory to store the texture levels and a possible performance hit on some graphics systems that do not
have hardware support for mipmapping. The memory bloat that is associated with mipmapping is minimal
in fact, adding only one-third the original image size. This memory bloat is usually outweighed by the
increase in image quality and performance for hardware that accelerates mipmapping.

Paging

For very large databases or other types of applications that work with large data sets, all of the data does
not have to be loaded upfront. An application should be able to roam through an infinitely large scene if it
is supplied with an infinitely large disk array.

Lower Fidelity Scenes

The full-fidelity scene does not always need to be drawn in interactive applications. Draw a more coarse
approximation of the scene if the render time falls below interactive rates. As more time becomes available,
draw higher fidelity scenes. Infinite time is available when the user is not moving, so you can use advanced
rendering techniques to further improve the quality of a static scene.

A-3.3 Scene Graphs

All graphics applications have some sort of scene graph. A scene graph is the basic data structures and
traversal algorithms that render from those data structures. Some small changes exist that you can make in
the scene graph and use throughout the application to make a large impact on the overall usability of the
application. Be aware that a scene graph API can get very complex with more time spent on creating the
scene graph API than the domain-specific application. It is often more efficient both in terms of the time
required and scene graph performance to use an off-the-shelf scene graph API.

Bounding Information

One of the easiest pieces of information to use and most beneficial to store in the scene graph is bounding
information for objects in a scene. Both bounding spheres and bounding boxes may be stored, each used
where appropriate.
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Pre-Calculations

Many times objects in a scene have static transformations that are associated with them; for example,
wheels of a car are always positioned relative to the center of the car, offset by some transformation.
These extra transformations can quickly add up with complex scenes. A pass through the scene graph
can be done before rendering begins to collapse static transformations by recalculating the vertices of
the objects, physically moving the vertices to their transformed locations. You can similarly concatenate
other states in the scene, namely rendering modes, colors, and you can even pre-calculate lighting in some
situations.

State Changes

State changes are generally an expensive operation for most graphics systems. Try to render all items
with the same state to minimize the number of times state needs to be changed in a scene. Rendering a
geometric checkerboard is much faster if you render all black squares first followed by all white squares,
instead of rendering alternate black and white squares. If each object is able to keep track of the state
settings it uses, then sort the scene by state becomes possible and rendering becomes more efficient. Thi:
sorting creates lists of renderable items that have multiple levels of sorting from most expensive to least
expensive.

Performance Monitoring and Timing

Obtaining accurate timing is useful when you decide how much can be drawn per frame. This timing
information can be supplemented with information about the number and types of primitives that are
being drawn, how many state changes are taking place, the relative time each thread of control takes to do
its job, measured threading overhead, and many other interesting pieces of information.

For debugging purposes, it is useful to know what is actually being drawn, especially when trying to fix
a fill-limited or geometry-limited application to see how the state changes affect what is actually rendered.
Besides timing information, the depth complexity of a scene should be viewable as an image of the depth
buffer to see how many times each pixel is filled. This is a measure of how well the culling process is
performing. It is also useful to be able to turn off certain modes to see their effect. For example, turning
off texturing or drawing the scene in wire frame can be useful for debugging.

Static vs. Interactive Scenes

Many applications present a scene to the user, enable the user to modify the scene in some way, and then
present the updated scene to the user. A scene presented in this fashion can be considicestane
because it needs to be of high quality but not interactive. Scenes that users interact with should be of high
quality, but primarily should be rendered with interactivity of a higher priority than higher quality.

An interactive scene needs to use many of the previous techniques (such as culling and LODs), but may
have to go even further to reduce complexity to achieve responsive user interaction. This process may
include removing specific object representations by substituting bounding boxes for them.
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Appendix B: Multipipe Decomposition
Algorithms

This appendix presents pseudo-code for each of the decomposition methods described i Settion 2.5.3.

B-1 Image-space Decomposition

/I In image-space decomposition, the image is subdivided by
/I screen space. Each pipe gets a section of the image-space
/I view-volume. Sort so only that section of data goes to each pipe.

sort_geometry by screen_space();

for( pipe_num < num_pipes; pipe_num++ ) {
set_graphics_context_to_window_on_pipe( pipe_num );
[* OpenGL/gIX: glXMakeCurrent( pipe_num ); */

render_individual_pipe_data( pipe_num );
[* OpenGL: glBegin/End */

save_image_buffer( color_buffer, pipe_num );
[* OpenGL: glReadPixels( ... GL_RGB ... ); */
}

II* ensure all pipes have finished rendering before proceeding.
barrier_wait_for_all_pipes_to_finish();

set_graphics_context_to_window_on_pipe( output_pipe );
I* OpenGL/gIX: glXMakeCurrent( output_pipe ); */

for( pipe_num < num_pipes; pipe_num++ ) {
restore_image_buffer( color_buffer, pipe_num );
/* OpenGL: glDrawPixels( ... GL_RGB ... ); */

}

[* image recomposition complete: display final image */
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B-2 Depth-space Decomposition

/I In depth-based decomposition, each pipe gets a section of the
/I depth-space view-volume.

sort_geometry_by depth();

for( pipe_num < num_pipes; pipe_num++ )

{
set_graphics_context_to_window_on_pipe( pipe_num );
[* OpenGL/gIX: glXMakeCurrent( pipe_num ); */

render_individual_pipe_data( pipe_num );
[* OpenGL: glBegin/End */

save_image_buffer( color_buffer, pipe_num );
/* OpenGL: glReadPixels( ... GL_RGB ... ); */

save_image_buffer( depth_buffer, pipe_num );
/* OpenGL: glReadPixels( ... GL_DEPTH ... ); */
}

/I ensure all pipes have finished rendering before proceeding.
barrier_wait_for_all_pipes_to_finish();

set_graphics_context_to_window_on_pipe( output_pipe );
[* OpenGL/gIX: glXMakeCurrent( output_pipe ); */

for( pipe_num < num_pipes; pipe_num++ )

{
enable( DEPTH_TEST & STENCIL_WRITE );

restore_image_buffer( depth_buffer, pipe_num );
[* OpenGL: glDrawPixels( ... GL_DEPTH ... ); */

disable( DEPTH_TEST & STENCIL WRITE );
enable( STENCIL _TEST );

restore_image_buffer( color_buffer, pipe_num );

/* OpenGL: glDrawPixels( ... GL_RGB ... ); */
}

/* image recomposition complete: display final image */
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B-3 Geometry-space Decomposition

/I Each pipe gets a fraction of the total geometric objects. Each
/I pipe views the entire view-volume.

divide_geometry_among_pipes();

for( pipe_num < num_pipes; pipe_num++ )

{
set_graphics_context_to_window_on_pipe( pipe_num );
[* OpenGL/gIX: glXMakeCurrent( pipe_num ); */
render_individual_pipe_data( pipe_num );
[* OpenGL: glBegin/End */
save_image_buffer( color_buffer, pipe_num );
[* OpenGL: glReadPixels( ... GL_RGB ... ); */
save_image_buffer( depth_buffer, pipe_num );
/* OpenGL: glReadPixels( ... GL_DEPTH ... ); */
}

/I ensure all pipes have finished rendering before proceeding.
barrier_wait_for_all_pipes_to_finish();

set_graphics_context_to_window_on_pipe( output_pipe );
[* OpenGL/gIX: glXMakeCurrent( output_pipe ); */

for( pipe_num < num_pipes; pipe_num++ )

{

restore_image_buffer( depth_buffer, pipe_num );
/* OpenGL: glEnable( DEPTH_TEST );
* OpenGL: glDrawPixels( ... GL_DEPTH ... ); */

restore_image_buffer( color_buffer, pipe_num );

[* OpenGL: glDrawPixels( ... GL_RGB ... ); */
}

[* image recomposition complete: display final image */
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B-4 Time-based Decomposition

/I Each pipe gets the ’'next’ frame. The next frame is computed by
/[ either continuously sampling input devices, or by extrapolating

/[ along some smoothed previous 'n’ input steps. In either case,

/I each subsequent new view is rendered on another pipe, then

/I back to the main pipe.

sort_geometry by pipe();
for( pipe_num < num_pipes; pipe_num++ )
{
set_graphics_context_to_window_on_pipe( pipe_num );
[* OpenGL/gIX: glXMakeCurrent( pipe_num ); */

set_view( new_view_matrix );
render_all_data();

save_image_buffer( color_buffer, pipe_num );
/* OpenGL: glReadPixels( ... GL_RGB ... ); */

set_graphics_context_to_window_on_pipe( output_pipe );
[* OpenGL/gIX: glXMakeCurrent( output_pipe ); */

restore_image_buffer( color_buffer, pipe_num );
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Glossary

API: See Application Programming Interface.

Application Programming Interface: A collection of functions and data that together define an interface
to a programming library.

ASIC: Application Specific Integrated Circuit. Examples of ASICs include chips that perform texture-
mapping, lighting calculations, or geometric transformations.

Asynchronous: An event or operation that is not synchronized. Asynchronous function calls are those
that can occur at any time and do not wait for other input to complete before returning.

Bandwidth: A measure of the amount of data per time unit that can be transmitted to a device.
Basic Block: A section of code that has one entry and one exit.

Basic Block Counting: Indicates how many times a section of code has been executed (the hot spot),
regardless of how long an instruction might have taken.

Billboard: A texture, or multiple textures, that represent complex geometry. The texture is mapped to a
single polygon that follows the eye-point.

Binary Space Partitioning: Usually referred to as a BSP tree. This is a data structure that represents a
recursive, hierarchical subdivision of space. The tree can be traversed to quickly find the locations
of items in a scene.

Block: The process of not allowing the controlling program to proceed any further in its current thread of
execution until the device that is being communicated with is finished with its operation.

Bottleneck: A point in an application that is the limiting factor in overall performance.

Bounding Box: The extents of an object that are defined by the smallest box that fits around the object.
A bounding box can be axis-aligned or oriented in some way to better fit the object extents.

Bounding Sphere: The extents of an object that are defined by the smallest sphere that fits around the
object.

Bounding Volume: The extents of an object or group of objects that can be defined by using a bounding
box, bounding sphere, or other method.

BSP Tree: See Binary Space Partitioning.
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Cache Blocking: Memory reference optimization that reorders the memory accesses in a loop nest so
that data are worked on in small neighborhoods that fit in cache. Also known as tiling.

Cache Line: The smallest unit of transfer into a cache.
Callstack Profiling: See Program counter profiling.

Contribution Culling: A binary decision to draw or not draw depending on the pixel coverage in screen
space.

COW: See Cluster of Workstations.
CPU: Central Processing Unit.

Cluster-of-Workstations: A collection of workstations that is designed to be used to produce a single
computational or graphical result.

Culling: The process of determining which objects in a scene need to be drawn and which objects can
safely be elided.

Data Locality: The property of data to reside 'near’ other data in memory. One way to achieve data
locality is to use a vertex array, which stores vertices linearly in memory - subsequently accessed
vertices will be adjacent to just-used vertices, and likely have better cache behavior.

Database: The application one buys from Oracle or Sybase. Also, the store of data that can be rendered.
Usually used in the visual simulation domains.

Depth Complexity: The measure of how many times a single pixel on the screen is filled. Depth com-
plexity can be reduced by using Culling.

Direct Memory Access: A way for a piece of hardware in a system to bypass the CPU and read directly
from the memory. This is generally faster than the PIO, but there is a constant setup time that makes
DMA useful only for large data transfers.

Display: The output device.
DMA: Direct Memory Access.

FIFO Buffer: A mechanism that mitigates the effects of the differing rates of graphics data generation
and graphics data processing.

Fill Rate: A measure of the speed at which pixels can be drawn into the frame buffer. Fill rates are
reported as a number of pixels that can be drawn per second.

Full-in: A geometric object that lies fully inside the view frustum.
Full-out: A geometric object that lies fully outside the view frustum.

Fragment: A fragmentis an OpenGL rasterized piece of geometry or image data that contains coordinate,
color, and depth information.

Frustum: The perspective corrected view volume.
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Frustum Culling: Removing all geometry that lies outside of the frustum.
Generation: All of the work done by an application prior to the point at which it is nearly ready to render.
Graphics Pipeline: The stages through which a primitive is operated on to transform it into an image.

Height Field: A mapping of a data value to a height that is relative to the image plane. One common
mapping is to take a grid of elevation data (terrain) and map it to a trianglated surface.

Host: A synonym for CPU. See CPU.

Hysteresis: Minimizing the effect of a changing scene to keep a constant frame rate.

Impostor: A billboard with depth information.

Inlining: The technique of replacing the call to a function with an in-place copy of the functions contents.

Interprocedural Analysis: The process of rearranging code within one function based on knowledge of
another function’s code and structure.

LOD: See Level of Detall
Latency: A measure of the amount of time it takes to fully transfer a single unit of data to a device.

Level of Detail: Alternate representations of geometric objects in which successive levels have less geo-
metric complexity.

Manifold Surface: A closed surface that can be topologically mapped to a sphere.

Microcode: Instructions that implement the instruction set of a processing unit. Typically composed of
bit fields which control specific low-level processor operations. Several microcode instructions or
microinstructions are required to decode and implement higher-level operations.

Native data formats: Data formatted in the same fashion that is used internally by a graphics subsystem.
Pixels, vertices, normals, and a number of other basic data types have preferred, or native data
formats. Example: AGBR may be native but RGBA may not.

Node: Description of a single computing element in a cluster or a single-system-image workstation. A
computing element typically consists of at least one CPU, memory, and some 1/O capability. In an
SSI system, a node is typically a board within the system; in a cluster, a node is a single system
within the cluster.

Occlusion Culling: Determination of the visible objects from the current viewpoint.
Page: A unit of virtual memory.

Paging: Copying data to and from one device to another, usually disk to memory.
Pipeline: See graphics pipeline.

P10: Programmed I/O.
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Pixel: A picture element. All the bits at locatigm, y) in all the bitplanes of the framebuffer that form the
single pixel(x, y). In OpenGL window coordinates, a pixel corresponds to a 1.0 x 1.0 screen area.

Polygon Rate: A measure of the speed at which polygons can be processed by the graphics pipeline.
Polygon rates are reported as the number of triangles that can be drawn per second.

Primitive: Basic graphic input data such as triangles, triangle strips, pixmaps, points, and lines.

Profile: To measure quantitatively the performance of individual functions, components, or modules of
an executing program.

Program Counter Profiling: Uses statistical callstack or program counter (PC) sampling to determine
how many cycles or CPU time is spent in a line of code.

Programmed 1/O: Transferring data from one device in a system to another by having the CPU read
from the first and write to the second. See DMA for another approach.

Rasterization: Process that renders window-space primitives into a frame buffer.

SSI: Single-system-image. Refers to a type of multiple-graphics pipeline-based system that is running a
single copy of an operating system.

Scene Graph: The data structure that holds the items that will be rendered.

Single-System-Image:A collection of graphics pipes within a system that produce a single computational
or graphical result via traditional programming models.

Span: Segment of a scanline inside a polygon upon which a scanline algorithm operates to rasterize a
primitive.
Stall: A condition where further progress cannot be made due to the unavailability of a required resource.

Static Scene: A scene that needs to be of high quality but not interactive.

Stress Factor: A computed value for a scene such that the further behind the scene gets from its target
frame rate the higher the stress factor becomes.

Synchronous: The opposite of asynchronous. Synchronous function calls are those that do not return un-
til they have finished performing whatever action is requested of them. For example, a synchronous
texture download function waits until the texture has been completely downloaded before return-
ing, while an asynchronous download function simply queues the texture for download and returns
immediately.

Tearing: The effect that happens when a rendering is not synchronized to the monitor refresh rate in single
buffered mode. Parts of more than one frame can be visible at one time, which gives a “tearing”
look to a moving scene.

Transformation: Usually used as the process of multiplying a vertex by a matrix, thereby changing the
location of the vertex in space.
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Traversal: The portion of an application that walks through internal data structures to extract data and
call specific graphics API calls (in OpenGL things such as gIBegin(), glVertex3f(), and glEnable(
foo)).

Virtual Memory: Addressing memory space that is larger than the physical memory on a system.

Word: The “natural” data size of a specific computer. 64-bit computers operate on 64-bit words, 32-bit
computers operate on 32-bit words.
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