E]

Subdivision Sch emes for Fluid Flow
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Figure 1: Modeling a helical flow using subdivision.

Abstract 1 Introduction

The motion of fluids has been a topic of study for hundreds of years. This paperdescribes an application of an increasingly popular mod-
In its most general setting, fluid flow is governed by a system of eling technique, subdivision, to a titidnal problem in computer
non-linear partial differential equations known as the Navier-Stokes graphics, generating realistic fluid flows. Given that the physical
equations. However, in several important settings, these equationsbehavior of a flow is governed by a system of partial differential
degenerate into simpler systems of linear partial differential equa- equations (PDEs), one standard approach is to use some type of
tions. This paper will show that flows corresponding to these lin- multi-level solver to compute solutions for these PDEs. One of the
ear equations can be modeled using subdivision schemes for vectomost efficient multi-level métods currently in use is nfti+grid.
fields. Given an initial, coarse vector field, these schemes generateMulti-grid recursively generatesincreasingly dense approximations
an increasingly dense sequence of vector fields. The limit of this to the exact continuous flow using a nested sequence of domain
sequence is a continuous vector field defining a flow that follows grids. This method provides exceptionally good convergence rates
the initial vector field. The beauty of this approach is that realistic and has found many successful applications [2].

flows can now be modeled and manipulated in real time using their  While multi-grid solvers are very efficient compared to standard
associated subdivision schemes. iterative solvers, they remain too costly to permit interactive model-
ing in many situations. One alternate technique that has proven very
useful in surface modeling is subdivision. Subdivision schemes
have been used to model a variety of surface types [3, 8, 7, 14, 24].
More recent work has applied subdivision to the modeling of sur-

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling— Physically based modeling;
1.6.5 [Simulation and Modeling]: Model Development—Modeling

Methodologies faces with variational defitions [18, 19, 27, 28]. Due to their sim-
Keywords: CAD, subdivision, miti-grid, fluid simulations, frac- plicity, subdivision schemes are easy to implement and permit in-
tals, physically based animation, physically based modeling teractive modeling of the resulting sades.

This paper has two goals, one practical and one theoretical: The
*Rice University, Department of Computer Science, P.O. Box 1892, practical goal of this paper is to demonstrate that subdivision can be
Houston, TX 77251-189Zhenrik jwarren  }@rice.edu extended beyond the domain of surface modeling to that of model-
ing flows. Modeling fluid flow through subdivision provides the
user with an intuitive modeling metaphor. She defines a coarse
initial vector field as a small set of vectors. Thebsglivision pro-
cess produces an arbitrarily dense discrete vector field which fol-
lows the initial field and satisfies thenderlying partial differential
equations. Application of the subdivision scheme is conceptually
simple, easy to implement and efficient because subdivision is in
essence a local weighted averaging process. In particular, imple-
mentation of a subdivider based on these schemes is much simpler
than implementation of any flow solver with comparable stability.
Furthermore, should a denser solution be required than has previ-
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ously been computed, the subdivision scheme can simply be ap- Multi-grid is a recursive method for computing, uz, Uy, ... .
plied a few extra rounds with no need to re-run the entire solving Given the solutioru,_;, multi-grid computesl, using the follow-
process. ing three steps:

The theoretical goal of this paper is to expose an intrinsic link
between linear systems of PDEs and subdivision. Given a linear 1. Prediction: Compute an initial guess of the solutiopusing
system of PDESs, there exists an associated subdivision schemethat  a prediction operatds,
produces solutions to these equations. In particular, this scheme is

a variant of a more general multi-grid process. The next section Uk = S—1Uk_1.

of the paper briefly reviews multi-grid and derives the basic rela- o ) . .

tionship between multi-grid andibdivision. The following section In multi-grid terminology, this step is also referred topas-
then re-derives a known subdivision scheme for polynomial splines longation A common choice for the prediction opera&ris
as an illustrative example. After imtducing the partial differen- piecewise linear interpolation.

tial equations for fluid flow, the paper uses the same methodology
to derive subdivision schemes for flow. The risg subdivision
schemes are finally used to construct an interactive modeling sys-
tem for fluid flow and for real time fluid flow animation.

2. Smoothing: Use a traditional iterative method such as Jacobi
or Gaul3-Seidel smoothing to improve the current solution for
Ugk-

3. Coarse grid correction: Restrict the current residuk uy —

2 Multi-Resolution Methods by to the next coarser grid_;. There, solve for an error
co_rrection termg_1 that is then added back into the solution
Multi-resolution methods typically compute a sequence of discrete usinguk = Uk + Sc-18-1-

approximations to some continuous limit shape. In this paper, this .

shape is characterized as the solution to a system of partial differ- NOte that both steps 2 and 3 serve to improve the accuracy of
ential equations. At an abstract level, the method computes a con-the solutionuy. If the operatori§._; used in the prediction phase
tinuous shape that satisfies the equati@hu = 0, whereD is a of multi-grid produces an exactinitial guess, iS_1Uk_1 = bk,
continuous differential operator. Singe= 0 is a trivial solutionto ~ then both the smoothing steps and coarse grid correction steps can
this equation, extraoundary conifions are added to disallow this P& omitted. Such an operat§_, is aperfect predictor A multi- _
trivial solution. Instead, the continuous problem consists of finding 9rd scheme based on perfect predictors consists of repeated appli-

the shape that satisfies cations ofS to produce finer and finer solutions that converge to
the exact, continuous solution. Such altingrid scheme is exactly
Du=b 1) a subdivision scheme, where the perfect predictor takes the role of
the subdivision operator! The remainder of this section focuses on
whereb is determined by the boundary catiohs. characterizing perfect predictors in terms of the discrete operators
Because computation with continuous qtitgs is cumbersome, Dy
a common approach is to discretize the continuous shapeer To be useful in practice, application of the perfect predictor
some type of domain gridl yielding a discrete representatian® should not be too costly. Therefore, the perfect predictors should

Similarly, the continuous differential opera®ris representedbya  have a local structure. To this end, we suggest a specific choice
discrete counterpal and the boundary coitibns b are replaced  for the right-hand sidé, of equation 3 based on upsampling. Let
by their discrete analdg Now, the discrete analog of equation1is R,_; be the discreteipsampling (replication) operatathat con-
verts data defined over the coarse dfid; into data defined over
Du=h. @ the next finer gridl,. Re_1's action is very simple: data associated

If the discretization is chosen ropriatelv. the discr lution with gri_d poi_nts in_Tk_l_ are replicated; the remaining data_ associ-
the discretization is chosen appropriately, the discrete solutio ated with grid points inly — Tx_; are set to zero. Choosing the

of equation 2 approximates the continuous solutiaf equation 1. . .
Equation 2 can be solved using a direct method such as Gaug/9nt-hand sidéy to have the form

elimination. However, this approach is impractical for large prob- _
lems. An alternate approach is to exploit the local structure of b= Re-1Re—2---RoDolio
the discrete operatdd and to solve equation 2 using an iterative ; ; :

. . results in equation 3 having the form
method such as Jacobi smoothing. Varga [26] and Young [30] pro- q 9
vide background material on several iterative smoothing methods. DUk = Re_1Ry_2...RoDoUo. @)
Unfortunately, these iterative methods tend to converge very slowly
for large problems. Multi-grid solvers converge much more rapidly  This particular choice ol can be interpreted as followsi is
and provide an efficient method for recursively solving large sys- determined so that the discrete differenBesip over the coarsest

tems of linear equations[2]. grid To are replicated onto the fine gridig all the remaining entries

In multi-grid, the domain gridr is replaced by a sequence of in D,y are forced to zero. Intuitively, the limit of this process, as
nested griddo C Ty C ... C Tn. Similarly, the discrete entitiel3, u k — oo, is an object that satisfies the continuous partial differential
andb are replaced by correspondingiéies Dy, ux andby, defined equationD u = O everywhere except at the coarsest grid points.
over the associated domain gfiid Consequently, the problem now At these coarsest grid poinBsu exactly reproduces the differences
consists of solving the sequence of linear systems Do Up.

Based on equation 4, a predictr_; is perfect if it satisfies the

Dk U = Dby ®) fundamental miti-grid relation

Again, if the discretizations are chosen appropriately, the limit of DiSe_1 = Re_1D ®)
these discrete solutiong converges to the desired continuous so- kk=1 = Fk=1Mk-1-

lution u. To verify this assertion, leti_1 be a solution to equation

INote that we follow the convention of using bold roman notation such 4, i.e. Dk_1 Uk-1 = Rc—2 R—3...Ro Do Up. Multiplying both
asu for continuous etities and italics such as for their discrete counter- sides of this equation byR,_1 yle_Ids thatR_1 Dyx_1 U1 =
parts. R¢—1 Rk—2 Rc_3...Ro Dg Ug. ReplacingR¢_1Dk_1 by DxSc_1 (due




to equation 5) yield®,S_; ux_1 = Rk_1 Rk—2 Rk_3..-Ro Do Up.
Finally, sinceuy = S_1Uk_1, Uk also satisfies equation 4.

At a high level, our approach to building subdivision schemes
for linear systems of PDEs can be outlined as follows: First, we

This expression forms the left-hand side of the fundamental
multi-grid relation of equation 4. Our next task is to build a gen-
erating function that models the right-hand side of these equations.
Recall that the upsampling operatey replicated data ofiy and

construct discrete analogs of the continuous differential operatorsinserted zero offi1 — Tk. If uk[X is the generating function as-

involved in the problem. Next, we determine the relationship be-

sociated with the vectas, then the expressioRguy corresponds

tween the grids of different levels, and define the upsampling and to the generating function[x?]. Likewise, the action of the com-
concrete discrete difference operators for these grids. Finally, we pined operatoR,_;...Ry can be modeled by replacingby x2.

solve for the perfect predictor using the fundamental relation 5. The Thys, equation 4 can be expressed in terms of generating functions
result of this process is a perfect predictor, or subdivision scheme, 55

which converges to solutions of the original, continuous problem.
The next section fills in more of the details of this process. In
particular, we derive a subdivision scheme for the simple differen-

tial equation that characterizes piecewise polynomial splines. Later
in the paper, the same methodology is used to construct subdivision

schemes for the PDEs that characterize fluid flow.

3 Subdivision for Polynomial Splines

A polynomial splineu[x] of ordermis a piecewise polynomial func-
tion of degreem— 1 in a real variable. For uniform grids (i.eT is
the integer gridZ), the splineu[x] satisfies the differential equation

(6)

for all x ¢ Z. Here, the differential operatdd[x] computes the
derivative ofu[x] with respect tox. D[x]™ takes themth derivative
of u[x] with respect tox. Our task is to derive the subdivision rules
for these polynomial splines using equation 5.

D[x]™u[x] =0

3.1 A multi-grid scheme

Moving to the multi-grid setting, we consider a sequence of domain
grids Ty of the formTy = 2—1kZ. Note that the grid3y grow dense in
the domairiR ask — «. Given the continuous splingx], let ux be

a vector whoséth entry approximates [ﬂ The vectoray are

discrete approximations tgx]. As k — «, these vectorsy should
converge to the continuous functiafx].

In the uniform case, generating functions provide a particularly
concise and powerful representation for the vectgrs Let ug[x]
denote the generating function of the form

Zi (uk)ixi

where(u); is the coefficient of the vectar with grid pointi. For
example, the vectarp = {4,12,10,5, 8} over the integer grid points
{0,1,2,3,4} can be represented by the generating funatigir] =
44 12x+10x2+5x3+8x*. (Note that the generating functions used
in this paper may posses negative and even fractional exponents.)
To discretize the left-hand side of equation 6, we next derive
the discrete counterpart of the continuanth derivative operator
D[x]™. On the initial gridTo = Z, the discrete analog di[x] is the
generating function

ug[x]

1-x

(Note the powek—1/2 centers the difference operatopxdPover the
origin.) On finer gridsTy = 2—1kZ, this generating function [®] is
scaled by a factor of’2 Application of the differential operator
D[x] to u[x] has a simple discrete analog: multiplicationupf] by
D[x]. Repeated application &f[x] is equivalent to repeated multi-
plication by Ox]. Thus, on the gridly, the discrete analog of the
left-hand side of equation 6 is

(2D[x))"uk[].

(2D[x)) "ux] = 2Dx?] Ul )
Note that an extra factor of2ppears on the right-hand side of
equation 7. This factor reflects the effect of the varying grid spacing

onRy. By scaling each upsampling operaRyby 24 (whered is
the dimension of the underlying domain), the i&sg normalized
equation defines a sequence of solutiopghat converges to the
desired polynomial spline[x].

3.2 The associated subdivision scheme

Given this multi-grid framework, we can now apply equation 5 and
derive a perfect predictor for this scheme. In the uniform setting,
the predictor (subdivision matrix} is a 2-slanted matrix whose
columns are all shifts of a single vector. If we %] denote the
generating function associated with this vector, then equation 5 has
the form:

(20105 = 2(2 D] " ®)

The beauty of equation 8 is that we can now directly solve for
the subdivision mas§x]. In particularg[x] is independent df and
has the form:

DXZ\™ 1 (14+x™
= 2(2D[x]) T o1 2 ©)
To verify this fact, recall that [X] = 13X, Therefore, Ix?] = ¢
and DD[[);Z]] = )1(1%‘ Substituting this expression into equation 9 yields
a mask of the forns[x] = 5 %;L This mask exactly captures

the subdivision rule for polynomial splines of oraerin the case of
cubic splines, i.em= 4, equation 9 correctly yields the subdivision

4
masksx] = %L =3 (x 2+ 4x7 1+ 6+ 4x+x?) due to Lane and
Riesenfeld [21].

Given the mask]x], subdivision can be expressed very concisely
in terms of generating functions. The coefficient vectges; and
Uk are related by

U] = s[xjue_1[x%).

As k — oo, the coefficients ofi[x] form increasingly dense ap-
proximations to a continuous limit functiarx]. In particular, the
coefficient ofX' in ug[x] acts as a discrete approximation to a con-

tinuous function value [ﬁ] . Figure 2 shows three rounds of sub-

division for a cubic spline.

The upper left curve in figure 2 depicts the coefficiengs=
{4,12,10,5,8} plotted over the integer grid point0,1,2,3,4}.
This coefficient sequence can be represented by the generating
functionugx] = 4+ 12x+ 10x2+ 5x3 + 8x*. The upper right curve
shows the coefficients afi[x] = s[x]up[x?],

1 (X—12-|—;-|—6-|—4x-|—x2) <4-|—12x2-|—10x4-|—5 x6-|—8x8> ,

MNZS



material in this paper iBluid Mechanicdy Liggett [17]. Our ap-
/\ \ proach s to develop most of the theory for flows in two-dimensions.
Later in the paper, we extend the theory to three dimensions.
A flow in_two dimensions is a vector-valued function
\/ (u[x,y],v[x,y])T in two parameters andy. Flows can be visu-
0 1

>34 alized in a number of ways. Perhaps the simplest method is to eval-
uate(u[x,y],v[x,y])T ata grid of parameter valu¢s;,y; ). Eachre-

/\ - sulting vector(u[xi,yj],v[xi,yj])T is then plotted with its tail placed
at(xi,yj)-

\\\ The Jbehavior of flows is governed by a set of PDEs known as

the Navier-Stokes equationk the most general setting, this set of
\/ equations is non-linear. As a result, the behavior of many types of
0O 1 72 3 4 flows is very hard to predi_ct. However, in several ir_nportantsettings,
the Navier-Stokes equations reduce to a much simpler set of linear

PDEs. In the next sections, we consider two such cases: perfect

Figure 2: Subdivision for cubic splines. flow and slow flow. Later, we derive subdivision schemes for slow
flow, noting that the exact same methodology can be used to build
schemes for perfect flow.

plotted over the half-integer sequeno@,%,l,%,z,%,3,%,4}.
(Remember, the coefficients af in uy[x] is plotted atx = %.)

The lower figures show the coefficients @f[x] = s[X]u1[x?] and Perfect flows are characterized by two propertissompressibility

uslX = siuz[¥?] plotted over the quarter and one eighth integers, andzero viscosity A flow (u[x,y],v[x,y])" is incompressibléf it

respectively. Observe that this process quickly converges to the de-satisfies the partial differential equation:

sired polynomial spline. w0 01
Figure 3 shows plots of the discrete differencels]fuy[x] for U Xyl + VBT [x,y] = 0.

k=0,1,2,3. Note that these differences are identically zero except The superscrip(i, j) denotes théth derivative with respect toand

4.1 Perfect flows

at the original integer grid point$0, 1,2,3,4}. the jth derivative with respect tg. Flows (u[x,y],v[x,y])" satis-
fying this equation are said to lwbvergence-free In most flows,
viscosity induces rotation in the flow. However, if the fluid has zero
viscosity, then its flows are free of rotation. Such flows are often
/ referred to asrrotational. Irrotational flows are characterized by
(y 1 > 3 4 0 1 ) 3 4 the partial differential equation:

uOx,y] = vLO[x,y].

Together, these two equations in two functianandv uniquely

A characterize perfect flow:
T 4 b / U0,y +-v0 x,y] = 0
To facilitate manipulations involving such systems of PDEs, we

use two important tools. As in the univariate case, we express var-

. . . . . . ious derivatives using the differential operat®is] andD[y]. Left
Figure 3: Fourth order discrete differences for cubic splines. multiplication by the differential operatdd[z] is simply a short-

hand for taking a continuous derivative in thelirection. For ex-

This univariate subdivision scheme can be extended to two- ample,D[x]u[x,y] = uX9[x,y] andD[y}v[x,y] = v(®D[x,y]. Our

dimensional meshes in a variety of ways. Much of subdivision's second tool is matrix notation. After replacing the derivatives in

popularity as a modeling technique is due to the landmark papersequation 10 by their equivalent differential operators, the two linear

by Doo and Sabin [8] and Catmull and Clark [3]. Hoppe, DeRose equations in two unknowns can beitten in matrix form as:

and co-workers [14],[7] and Sederberg et al. [24] developed subdi-

vision schemes that can incorporate curvature discontinuities such D[x] D[y ulx,y]

as creases. Zorin and Schroeder [31] and Kobbelt et al. [20] show ( Dly] —D[x] ) ( VIX,Y] ) =0. (11)

that subdivision is well suited for interactive ititresolution edit-

ing of smooth models. Finally, recent work by Kobbelt [18, 19] In conjunction, these techniques allow generation of subdivision
and the authors [28] investigates the link between subdivision and schemes from systems of PDEs using the same strategy as was em-

variational problems. ployed for polynomial splines in the previous section.

4 A Brief Introduction to Fluid Mechanics 4.2 Slow flows

As we saw in the previous section, perfect flows are governed by a
Fluid mechanics is a field of study that can occupy an entire career.simple set of linear PDEs. Another important class of linear flow
Our goal in this section is to give a brief introduction suitable for is slow flow. A slow flow is an incompressible flow in which the
the mathematically savvy non-specialist. The source for most of the viscous behavior of the flow dominates any inertial component of



the flow. For example, the flow of viscous fluids such as asphalt, Metaxas [11] suggest solving the Navier-Stokes equations on a
sewage sludge or molasses is governed almost entirely by its vis-coarse grid in three dimensions using a finite difference approach
cous nature. Other examples of slow flow include the movement and then interpolating the coarse solution locally as needed. They

of small particles through water or air and the swimming of micro
organisms [17].

Slow flow may also be viewed as a minimum energy elastic de-
formation applied to an incompressible material. This observation
is based on the fact that the flow of an extremely viscous fluid is
essentially equivalent to an elastic deformation of a solid. One
byproduct of this view is that any technique for creating slow flows
can also be applied to create minimum energy deformations.

Slow flows in two dimensions are also governed by two partial
differential equations. The first partial differential equation corre-
sponds to incompressiity. However, due to their viscosity, slow
flows have a rotational component. This rotational component is
governed by the partial differential equation:

uHx, v+ u®I [, y] - vy - v x,y) = 0

For a complete derivation of this equation, see Liggett [17],

p.161. IfL[x,y] = D[x]2+ D[y]? denotes the continuous Laplacian,
then these two partial differential equations can now be written to-
D[]

gether in matrix form as:
=0.
( ooy ) (W)

In this form, the similarity between the governing equations for
perfect flow and slow flow is striking: The second equation in 12
corresponds to the equation for irrotational flowltiplied by the
LaplacianL[x,y]. The effect of this extra factor df[x,y] on the
rotational component of slow flows is easy to explain: Perfect flows
exhibit infinite velocities at sources of rotational flow. The extra
factor of L[x,y] smoothes the velocity field at rotational sources
and causes slow flows to be continuous everywhere.

Due to limited space, our main focus in this paper is on devel-
oping subdivision schemes for slow flows based on equation 12.
Slow flows define smooth vector fields and relate to other inter-
esting problems such as minimum energy deformations. However,

Dly]
—L[x,y|D[X]

ulx,y]

V[x,Y] (12)

we remind the reader that all of the techniques described here areb

equally applicable to perfect flows.

4.3 Previous work on flows

Traditionally, fluid flow has been modeled either through explicit or
numerical solutions of the associated PDEs. Explicit solutions for

also extended their method to handle turbulent steam [12].

5 A Subdivision Scheme for Slow Flow

Following the same approach as in the polynomial case, we first
build discrete analogs of the continuous PDEs for slow flow and
then employ the fundamental ftitgrid relation of equation 5 to
solve for the subdivision scheme. Given a coarse vector field
(uo,vo)T, the resulting sbdivision scheme defines a sequence of

increasingly dense vector fielgisy, vk)T. These fields converge to
a continuous vector fieI(iJ[x,y],v[x,y])T that follows the original

coarse vector fieléuo, vo)" .
As for polynomial splines, we represent a discrete vector field by
a 2-vector of generating functions:
) Xyl
ij

( Uk[x,Y] ) Zi,j(

Vk[%,Y]

Again, the vectors comprisin(gjk,vk)T act as discrete approxi-
mations to the continuous limit fie(dj[x,y],v[x,y])T. In particular,
theijth entry of(uk,vk)T actsa(x,y) = <EIF7 EJF> . The subdivision
T

Uk
Vk

schemes[x,y] is the linear operator that relatés_1[X], Vk—1[X])
and(uk[x],vk[x])T according to
Uk[x,Y] Ue-1[¢%,y7] )

( Vi[x, Y] ) = sb] ( Vi1, Y]

Thus,g[x,Y] is a 2x 2 matrix of generating functions.

In practice, interesting flows depend on boundary d@mrts
which drive the flow. Our approach to boundary citieds is sim-
ilar to that for polynomial splines. In particular, we enforce the
flow PDEs everywhere except on the initial integer gid, The

coarse, initial vector field encoded byp([x, Y], vo[X, y])T determines
the boundary coritions atZ2 Denser vector fields are represented

y the generating functior($1k[x],vk[x])T and determined so as to
satisfy the PDEs for flow.

5.1 A multi-grid scheme

Following the polynomial case, we consider slow flows

perfect flow are known for a number of primitives such as sources, 10

sinks and rotors. These can be combined into more complex fields

using simple linear combinations (see [17] for more details).
Numerical solutions for the modeling and simulation of flow is

a very active research area. Commonly, such solutions involve ap-

proximation using either finite difference or finite element schemes.
Brezzi and Fortin [1] provide an introduction to some of the stan-
dard numerical techniques used for modeling flow. Recently, cellu-

lar automata have been applied with some success for the discrete

modeling of physical problems, including gas and fluid flow [6, 23].
On the computer graphics side, Kass and Miller [16] simulate

surface waves in water by approximately solving a two-dimensional

shallow water problem. Chen and Lobo [4] solve the Navier Stokes

equations in two dimensions and use the resulting pressure field to

define a fluid surface. Chiba et al. [5] simulate water currents using
a particle based behavioral model. Miller and Pearce [22] model
viscous fluids through a connected particle system. Wejchert and
Haumann [29] introduce notions from aerodynamics to the graph-
ics community. Stam and Fiume [25] model turbulent wind fields

for animation based on solving the underlying PDEs. Foster and

(u[x,y],v[x,y])T that satisfy the differential equations (in matrix
D[x]

(Lo ) (W )=o

for all (x,y) ¢ Z2 On the gridTj = %Z? the discrete version of
this equation (left-hand side only) has the form:

( 2*D[x] 2Dly] ) (

8L[x,yIDly] —8L[x,YID[x]
whereL[x,y] = D[x]?+ D[y]? is the discrete version of the Lapla-
cian. The various powers of two are necessary for the discrete dif-
ferences to converge to the appropriate continuous derivatives as
k — oo, Based on this observation, the fundamentdtirguid equa-
tion (equation 4) can be expressed in terms of generating functions
8L[x,yIDly] —8kL[x,y]D[X]) (

(ol ) (320
).

4K < L [szyyzk] Dy%] —L [szyyzk] Dx%]

Dly]
—L[x,yID[X]

ulx,y]
VIx,Y]

Uk[X, y]
Vk[X7 y]

2D[x] 2Dly] udx,y]
Vi(x,y]

)

Uo [szyyzk] (13)

K
Vo [Xz Y

i



As before, the left-hand side of equation 13 is a discrete approxi-

mation to the PDEs for slow flow oFk. On the right-hand side, the
top row of the difference matrix, corresponding to divergence, is

splines are known to have locally supported bases (B-splines). This
observation is consistent with the subdivision schefrehaving
finitely supported subdivision rules. On the other hand, the vector
basis functions in figure 4 do not have local support. Therefore,

zero. The bottom row of the difference matrix computes a discrete the generating functiog]x, y] can not be expected to divide out and

approximation to the rotational component of the flowZh This
rotational component is then upsampled iz x2 andy — yzk)
to the grid z—lkZZ. (The extra factor of %on the right-hand side is
due to the scaling of the upsampling matrices.)

As k — o, the discrete flows‘suk[x],vk[x])T satisfying equation
13 converge to a continuous slow flqw[x,y],v[x,y])" satisfying

yield finite rules.

Fortunately, all is not lost. The vector basis functions depicted in
figure 4 do have two important properties: they are highly localized
(i.e. decay rapidly towards zeroas/ — «) and form a partition of
unity. As a result, these vector basis functions can be approximated
to any desired degree of accuracy via a locally supported vector
subdivision scheme. The next section describes an algorithm for

equation 12. The appendix demonstrates this convergence by definging the subdivision scheme with fixed support that nearly satis-

riving an analytic representation for the limit flow directly from

equation 13. This analytic representa’[ion(foix,y],v[x,y])T is es-
pecially useful in understanding the behavior of the itgsyiflows.

fies equation 14.

For example, the resulting slow flows are divergence-free every- 6 Locally Supported Approximations

where and rotation-free everywhere except at the initial grid points

Z2. The flow is driven by rotational sources that are positioned to
drive a flow that follows the initial vector fielduo,vo)T. Figure

Before computing approximations to the matrix magky], we
make an important adjustment to the subdivision scheme for slow

4 depicts two flows, each generated by a single unit vector in the flow. Uniform subdivision schemes for univariate splines come
x andy direction, respectively. Note that each flow is driven by a N two types: primal and dualPrimal schemes have subdivision

pair of rotational source located on grid pointsZif. More com-
plex flows are formed by taking linear combinations of translates of
these flows orZ.2.
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Figure 4: Vector basis functions for slow flow

5.2 The associated subdivision scheme

In analogy with the case of polynomial splines, we next apply our

characterization for perfect predictors (equation 5) and derive the

subdivision scheme associated with thisltirgrid process.

Dly] 0

: )s[xy]—( 9 ) (14)
—2ixyioix ) Y= e vl - yaone )
- 2y2 2 2y2 2

( 3D[x]
2Lx,y]Dly]

Solving for gx,y] in equation 14 yields a two by two matrix of
generating functions of the form

_ LY ( DIy] DIy?]
~DI[x] D[y?]

2y’
The matrixs[x,y] encodes the subdivision scheme for slow flow.
Note that this subdivision scheme is a true vector schemgjg;y]
depends on boti_1[x,y] andvy_1[x,y]. Such schemes, while rare,

Xl ~D[x?] D[y] ) .

D[x] D[x’]

have been the object of some theoretical study. Dyn [10] investi- ;5

gates some of the properties of such vector schemes.

Unfortunately, our analogy with polynomials is not complete.
The generating functioh[x, y]? fails to divide into the numerators
of s[x,y]. In reality, this difficulty is to be expected. Bwolomial

masks of odd length that position new coefficients both over old
coefficients and between adjacent pairs of old coefficiebtgal
schemes have masks of even length that position two new coeffi-
cients between each adjacent pair of old coefficients. In the bivari-
ate setting, each dimension of a uniform scalar subdivision scheme
can be either primal or dual. For vector subdivision schemes, the
situation can be even more complex. Each dimension of each com-
ponent can be primal or dual. In particular, distinct components of
a vector scheme need not share the same primal/dual structure.

Indeed, this situation is the case for slow flow. Its vector subdi-
vision scheme has the remarkable property thatitbemponentis
primal inx and dual iny, and thev componentis dual i and pri-
mal iny. This observation can be verified by checking the size
of the masks in the numerator gfx,y]. In practice, this prop-
erty makes computing with the given vector subdivision scheme
unpleasant. The indexing for schemes with such mixed structure is
difficult and prone to errors. In practice, we desire a subdivision
scheme for slow flows that is purely primal.

To this end, we adjust equation 14 slightly. In particular, we ap-
proximate the differential operatdgx] andD[y] in equation 12 by
D[x?] and Oy?] instead of ] and Cjy]. The resulting sbdivision
schemes]x, y] has the form

3DIy?]

ip[x¥ 0 0
(ZL[ZX, yIply?] —2Lx y]D[xZ]) = (L[xz,

YIDly*] —L[xz,yZ]D[x“])' (%)

Note that the scheme still converges to slow flows. However, the
associated subdivision scheme is now primal with a matrix gener-
ating function of the form:

1 ( Diy| Dy -D[x4| D[yzl)
2[xy] \ —Dix Dly"]  DIx? D]

Our final goal is to compute a matrix of finitely supported gen-
erating functions

(16)

( s11[x.y]  s12x.Y] )

syl S22%Y]

that nearly satisfy equation 15. By treating each coefficient of the
maskssj[x,y] as an unknown, the values for these unknowns can be
computed as the solution to an optimization problem. In particular,
the matrix of approximations;[x,y|] should nearly satisfy equation

( 3D[x?] 1D[y?] )( sulxyl  silxy] )~
2L[xyDly?]  —2L{xYID[x’] syl salxy] ) (17)
0 0
( LDZ,y?IDly*]  —L[x%,y?]D[x"] )



The maximum of the matrix difference between the two sides
of equation 17 can easily be expressed as a linear program. |
practice, the size of this program can be reduced by noting the
s11[%,Y] = S22y, X and sp1[x,y] = s12[y,X] due to structure of ex-
pression 16. Likewise, due to expression 16, the coefficients o
s11[x,y] are symmetric ik andy while the coefficients 0$1[x,y]
are anti-symmetric ix andy. As a final modification, we constrain
the sj[x,y] to define a vector scheme with constant precision, i.e.
g[x,y] applied to a coarse, constant field should produce the sam
constant on the finer grid. This extra constraint is necessary fo
the scheme to be convergent (see Dyn [10]) and is consistent wit
the observation that the vector basis functions for slow flow have
constant precision.

Using a standard linear programming code€PLEX,
http://www.cplex.com/), we have precomputed approxima-
tionss;j[x,y] for matrix masks of size & 5 to size 15x 15. Figure
5 shows a plot of the maximum differences in equation 17 for
masks of various sizes. Note the rapid convergence of this residu:
to zero. This convergence is due to the fact that the basis functior
for slow flow decay to zero agy — .
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Figure 5: Residuals for finite matrix masks of various sizes.

Given these precomputed mask$x, y], we can apply the vector
subdivision scheme to anifial, coarse vector fiela!uo,vo)T and
generate increasingly dense vector fiead@vk)T via the matrix

)=( )

If the vector field(uk_l,vk_l)T is represented as a pair of ar-
rays, then the polynomial nitiplications in this expression can be
implemented very efficiently using discrete convolution. The re-
sulting implementation allows us to model and manipulate flows in
real time. Although matrix masks as small as 5 yield nicely be-
haved vector fields, we recommend the use ®or larger matrix
masks if visually realistic approximations to slow flows are desired.

s12[x,Y]
sll[y7 X]

s11[X,Y]
512[y7 X]

( U, Y]

Vk[X7 y]

U-1[x2,y?] ) .

Vi 12, y?]
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Figure 6: Three rounds of subdivision for a basis vector.

7 Extension to Three Dimensions

Three-dimensional flow_ is a vector-valued function
(u[x,y,z],v[x,y,z],w[x,y,z])T in three variablesx,y,z. Three-
dimensional slow flow is characterized by two sets of partial
differential equations modeling the same conditions as in the
two-dimensional case. The first partial differential equation forces
the flow to be incompressible. The incompressibilipndition is
given by

D[x]u[x,Y,z] + D[y]v[x,Y,Z] + D[z]w[x,y,z] = 0.

The second set of partial differential equations characterizes the
rotational behavior of the flow. These conditions are slightly more
complicated in three dimensions. For perfect flow these conditions
are:

Dlylu[x,y,7] = D[x]v[x,y, 2,
D[z]u[x,y,z] = DIX]w[x,y, Z],
D[Z]V[vavz] = D[y]V[X,y,Z].

(18)

For slow flows, each equation is itiplied by a factor of
L[x,y,Zz]. Notice that these three continuous equations are linearly
dependent. Thus, a continuous solution to these four equations in
three unknowns is possible. Unfortunately, thetirgrid approach
used in equation 14 fails to yield a subdivision scheme for this set
of equations. However, modifying the PDEs for the rotational com-

Figure 6 shows a plot of several rounds of subdivision applied to a ponent of the flow makes subdivision possible. Itiplying each

vector basis function defined in tlkedirection (using a matrix mask
of size 9x 9). Note the similarity to the plot of the exact analytic
representation in the left-hand side of figure 4.

The proceedings video tape contains a demonstration of an in-
teractive flow modeler based on these subdivision schemes and
More material, including the
actual local subdivision masks of various sizes, can be found
on the conference CDROM as well as on our web page under

discusses some further issues.

http://www.cs.rice.edu/CS/Graphics/S99.

equation of 18 byD[z], D[y], andD[x], respectively yields an new
system of partial differential equations:

D[z]Dlylulx,y, 7] = D[x|D[z}v[xy,Z],

Dly|D[z]u[x,y,Z] = D[x|D[ylw[x,y, ],
DIX|D[Z]v[x,y,z] = D[x|D[ylv[x,y, Z].

Note that any solution to these equations is also a solution to
equations 18. Given these new equations, we can apply the same
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Figure 7: Four views of a 3D vector basis function for slow flow.

derivation used in the two-dimensional case. First, we set up a case of flow, this restriction forces the focus onto modeling linear
discrete version of this continuous system of PDEs. Next, we flows such as slow flows and perfect flows. For now, modeling
derive the associated subdivision scheme and its analytic basesion-linear flows seems beyond the reach of this method. Second,
from the fundamental equation 5. Finally, we compute approxi- the system of linear PDEs used here describes steady, time indepen-
mations to the matrix subdivision mask for the scheme using lin- dent flows. Thus, the resultingisdivision scheme models steady,
ear programming. Again, the actual subdivision masks can be time independent flows. However, there is no fundamental limita-
found on the conference CDROM and on our web page under tion to applying the methodology to derive subdivision schemes for
http://www.cs.rice.edu/CS/Graphics/S99. time dependent problems as long as the associated PDEs remain
The resulting sbdivision scheme shares all of the nice properties linear. Finally, the derivations in this paper are based on regular
of the two-dimensional scheme. Given a coarse, initial vector field grids, modeled through generating functions. Hence, the subdivi-
(uo,vo,wo)T, the limit of the scheme is a continuous vector field sion schemesonly model flows on regular grids. However, the same

(u[x,y,z],v[x,y,z],w[x,y,z])T that fo||OWS(UO7V07WO)T. Figure 7 methodology using Iinear algebr_a_in place of genera_\ting functic_)ns
shows four plots of a vector basis function in telirection. The ~ ¢an be employed to derive subdivision schemes for irregular grids.
respective plots show views of the vector basis alongxtfaeis, The main obstacle to this approach is the enumeration and compu-

the y-axis, thez-axis and the vecta(0,1,1)T. The basis defines a tation of subdivision rules for each distinct geometric configuration

localized slow flow driven by a toroidal flow around a unit square " the underlying grid. _ _
orthogonal to thex-axis. Our future plans focus on two problems. The first problem is to
We conclude with a snapshotfrom the video proceedings. Figure YS€ these schemes as the building block for an interactive system

8 depicts a stream of particles flowing down a drain. This flow was fOr designing flows. Ideally, the user would sketch approximate
computed by applying several rounds of subdivision to atialn streamlines and obstacles for the flow. The modeler would then

3% 3x 3 grid of vectors. use subdivision to create a physically accurate flow that approxi-
mates the sketch. Our second task is to consider an extension of
this work to time varying flows. One simple approach would be to
8 Conclusion and Future Work modify the initial, coarsest vector field smoothly over time. Since
the underlying basis functions are highly localized and smooth, the
resulting limit flow $iould change smoothly. A more physically re-

This paper developed vector subdivision schemes for slow flows. _." " .
These subdivision schemes were special instances of more gen_ahStIC approach for time-dependent flows would be to add an extra

eral multi-grid schemes for solving the PDEs that characterize slow dlmensmn co_rrg_spondmg t_o time to tPT1e discrete ve_ctor fields. Time
flow. Just as subdivision has revolutionized the process of poly- Slices of the initial vector fielduo,vo) " would be viewed as key
hedral modeling, we feel that these schemes have the potential tof0W configurations (analogous to key frames). The vector subdi-
revolutionize the process of modeling flow. We have several strong ViSion scheme would then define a sequence of increasingly dense
reasons for this belief. First and foremost, the speed of these subdi{in both time and space) vector fielig, vi)  that converge to the
vision schemes allows examination and manipulation of interesting true time-dependent flow.
flow fields at interactive rates. Next, the simplicity of these sub-
division schemes allow graphics enthusiasts who are not specialist
in flow to experiment with creating realistic flows. For example, Acknowledgments
many of the stability problems that arise in conventional solvers are
not an issue here. Subdivision also provides a modeling paradigmwe would like to thank the anonymous reviewers of the paper for
even if other simple methods such as potential fields fail (i.e. flows the many constructive suggestions. This work was supported in
in three dimensions). Finally, subdivision can also be incorporated part under National Science Foundation grants CCR-9500572 and
as an add-on to an existing flow package with the subdivision rules CCR-9732344.
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Appendix: Analytic Bases for Slow Flow L[x,y]. The continuous analog of the vector of discrete opera-
tors( 2Dly], —2*D[x] ) is the vector of differential operators

( Dly], -D[X] )T. Based on these observations, the correspond-
ing vector functiorg[x, y] has the form:

This appendix derives an analytic representation for the limiting
flows of equation 13. Due to the linearity of the process, the lim-
iting vector field defined by the multi-grid scheme can be written
as a linear combination of translates of two vector basis functions

(@x[x,y],®[x,y]) (shown in figure 4) times the vectors of the initial gx.y] = ( —do[l)[/}(] ) <_ Ar[x,y]+r[x+1,y]+
field (uo,vo)". Specifically, the limiting fieldu[x,y],v[x,y])" has
the form: rx— Ly +rby+1+rixy-1]).
(EE?)):D =Y (&x-iy-il, ¢x=iy—j)) (38) ) The behavior ofj[x, y] gives us our first insight into the structure
’ i,j==c ij of slow flow. In fact,g[x,y] is a generator for a localized, rotational

slow flow. We can verify thag[x,y] is truly a slow flow by substi-
Note again that bottp[x,y] andgy[x,y] are vector-valued func-  tuting the definition ofg[x,y] into equation 12. Likewise, we can
tions. Our goal is to find a simple, closed-form expression for these verify that this flow is highly localized (i.e. decays to zero very fast
functions. away from the origin) based on the analytic representation. Figure
9 shows a plot ofj[x,y] on the domairi—2, 2)2.
A rotational generator of slow flow

Recall that the continuous fiefdi[x,y],v[x,y])" is the limit of ) /2 — /'} — 0 1 2 )
the discrete fieldsi, Vi)' ask — . By solving equation 13 we L N
T . . T ~ N NN
can expressuy, Vi)' directly in terms of(ug, Vo) ', VR R
{7 RN
2k | 2k V]
(uk[x,y]):L[X ¥ (D[y] ) (04?1, —05) (Uo[va]). oy o NN e
VkX.Y]) T 2k [x,yj? \—DIX] ’ Volx,Y] ; L ‘
{7 ~\
I [/
\ \
This matrix of generating functions relralting,lo,vo)T and ot! J \1 L\ l‘ , 10
(U, Vi) T can be re-written in the form: ! ! \\ ) | '
) S~—
- ,
1 2k 2K sz[y] 2k ok ' T ’
4k|_[x,y]2|‘[x 7>’2] (_sz[X] (D[y ], —DIx ]>~ (19) SN AR
7 7
Our next task is to find continuous analogs of various parts of : : : .. s
this matrix expression ds— «. We first analyze the most difficult N S )
) 1 ) . - MY SYSSS - = = = . P &
part of the expressmrzw. Consider a sequence of generating > ) 5 i 5
functionsr[x,y] such that 4L[x,y]?r«x,y] = 1 for all k. The co-
efficients of thery[x,y] are discrete approximations to a continuous Figure 9: A rotational generator for slow flow
functionr[x,y] satisfying the differential equation, 9 ) 9
Lx,yl’r[x,y] =0 . .
Vector basis functions for slow flow
everywhere except &x,y) = 0. Fortunately, a closed form solution . . )
to this partial differential equation is known. The functiofx,y] is Finally, kexpressmrkl 19~ can .b_e WI’IHEI.’I as
a radial basis function of the form: gk[X,y]< Dly?], -D[x?] ) The coefficients of this se-
quence converge to differences of the rotational genegigy
1
rix,y] = —(x2-|—y2) log[x? +y?]. taken in they-direction andk-direction, respectively. The resulting
16 functions are the vector basis functions for our subdivision scheme:

Hoschek and Lasser [13] and Dyn [9] give a brief introduction Y] = g[x 1] [x 1]
to radial basis functions and discuss some of their properties. The %Xyl =9 ,y-l—; —9 ,y—; ’

factor of 4 normalizes the coefficients of the sequengg,y] so Wy = —g[x+3y]+9[x—3.y].

Lo e 2

that their limitr [x,y] satisfies/ L [x,y]“r[x,y] = 1. _ _ Figure 4 contains plots of these basis functions inxtendy
_The other components of expression %9 are easier to Interpret.girections, respectively. Note that the vector basis consists of a pair
Differences of the form ¥D[Z] taken on Z2 converge to the con-  of rotational sources positioned so as to drive a flow along the ap-

tinuous deriva’[ivd)[z]_ Differences of the form sz] taken on propriate axis. Again, this flow is localized in the sense that it de-
172 correspond to unit differences taken @A Based on these ~ CaySrapidly to zero away from the origin. More complex flows can
t%/vo observations, we can convert successively larger portions of be constructed by taking linear combinations of these vector basis
expression19. functions. Due to the normalizing constantg; used in defining
ok Zk] K ok T the original radial basis functionx,y], the scheme has constant
Let gilxy] denoterfx ylL [X 2y | ( 2Dyl 2Dl ) precision. In particular, choosing the coarse vector f(eltdvo)T
The continuous analog of [x2k7y2k] is a sequence of dif- to be translates of a constant vector defines a constant flow of the

. . . same magnitude in the same direction.
ferences onZ?2 corresponding to the discrete difference mask ¢



