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Figure 1: Modeling a helical flow using subdivision.

Abstract

The motion of fluids has been a topic of study for hundreds of years.
In its most general setting, fluid flow is governed by a system of
non-linear partial differential equations known as the Navier-Stokes
equations. However, in several important settings, these equations
degenerate into simpler systems of linear partial differential equa-
tions. This paper will show that flows corresponding to these lin-
ear equations can be modeled using subdivision schemes for vector
fields. Given an initial, coarse vector field, these schemes generate
an increasingly dense sequence of vector fields. The limit of this
sequence is a continuous vector field defining a flow that follows
the initial vector field. The beauty of this approach is that realistic
flows can now be modeled and manipulated in real time using their
associated subdivision schemes.
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1 Introduction

This paper describes an application of an increasingly popular mod-
eling technique, subdivision, to a traditional problem in computer
graphics, generating realistic fluid flows. Given that the physical
behavior of a flow is governed by a system of partial differential
equations (PDEs), one standard approach is to use some type of
multi-level solver to compute solutions for these PDEs. One of the
most efficient multi-level methods currently in use is multi-grid.
Multi-grid recursively generates increasingly dense approximations
to the exact continuous flow using a nested sequence of domain
grids. This method provides exceptionally good convergence rates
and has found many successful applications [2].

While multi-grid solvers are very efficient compared to standard
iterative solvers, they remain too costly to permit interactive model-
ing in many situations. One alternate technique that has proven very
useful in surface modeling is subdivision. Subdivision schemes
have been used to model a variety of surface types [3, 8, 7, 14, 24].
More recent work has applied subdivision to the modeling of sur-
faces with variational definitions [18, 19, 27, 28]. Due to their sim-
plicity, subdivision schemes are easy to implement and permit in-
teractive modeling of the resulting surfaces.

This paper has two goals, one practical and one theoretical: The
practical goal of this paper is to demonstrate that subdivision can be
extended beyond the domain of surface modeling to that of model-
ing flows. Modeling fluid flow through subdivision provides the
user with an intuitive modeling metaphor. She defines a coarse
initial vector field as a small set of vectors. The subdivision pro-
cess produces an arbitrarily dense discrete vector field which fol-
lows the initial field and satisfies theunderlying partial differential
equations. Application of the subdivision scheme is conceptually
simple, easy to implement and efficient because subdivision is in
essence a local weighted averaging process. In particular, imple-
mentation of a subdivider based on these schemes is much simpler
than implementation of any flow solver with comparable stability.
Furthermore, should a denser solution be required than has previ-
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ously been computed, the subdivision scheme can simply be ap-
plied a few extra rounds with no need to re-run the entire solving
process.

The theoretical goal of this paper is to expose an intrinsic link
between linear systems of PDEs and subdivision. Given a linear
system of PDEs, there exists an associated subdivision scheme that
produces solutions to these equations. In particular, this scheme is
a variant of a more general multi-grid process. The next section
of the paper briefly reviews multi-grid and derives the basic rela-
tionship between multi-grid and subdivision. The following section
then re-derives a known subdivision scheme for polynomial splines
as an illustrative example. After introducing the partial differen-
tial equations for fluid flow, the paper uses the same methodology
to derive subdivision schemes for flow. The resulting subdivision
schemes are finally used to construct an interactive modeling sys-
tem for fluid flow and for real time fluid flow animation.

2 Multi-Resolution Methods

Multi-resolution methods typically compute a sequence of discrete
approximations to some continuous limit shape. In this paper, this
shape is characterized as the solution to a system of partial differ-
ential equations. At an abstract level, the method computes a con-
tinuous shapeu that satisfies the equationD u = 0, whereD is a
continuous differential operator. Sinceu = 0 is a trivial solution to
this equation, extraboundary conditionsare added to disallow this
trivial solution. Instead, the continuous problem consists of finding
the shapeu that satisfies

D u = b (1)

whereb is determined by the boundary conditions.
Because computation with continuous quantities is cumbersome,

a common approach is to discretize the continuous shapeu over
some type of domain gridT yielding a discrete representationu. 1

Similarly, the continuous differential operatorD is represented by a
discrete counterpartD and the boundary conditions b are replaced
by their discrete analogb. Now, the discrete analog of equation 1 is

D u= b: (2)

If the discretization is chosen appropriately, the discrete solutionu
of equation 2 approximates the continuous solutionu of equation 1.

Equation 2 can be solved using a direct method such as Gauß
elimination. However, this approach is impractical for large prob-
lems. An alternate approach is to exploit the local structure of
the discrete operatorD and to solve equation 2 using an iterative
method such as Jacobi smoothing. Varga [26] and Young [30] pro-
vide background material on several iterative smoothing methods.
Unfortunately, these iterative methods tend to converge very slowly
for large problems. Multi-grid solvers converge much more rapidly
and provide an efficient method for recursively solving large sys-
tems of linear equations [2].

In multi-grid, the domain gridT is replaced by a sequence of
nested gridsT0� T1� :::� Tn. Similarly, the discrete entitiesD, u
andb are replaced by corresponding entitiesDk, uk andbk, defined
over the associated domain gridTk. Consequently, the problem now
consists of solving the sequence of linear systems

Dk uk = bk: (3)

Again, if the discretizations are chosen appropriately, the limit of
these discrete solutionsuk converges to the desired continuous so-
lution u.

1Note that we follow the convention of using bold roman notation such
asu for continuous entities and italics such asu for their discrete counter-
parts.

Multi-grid is a recursive method for computingu0, u1, u2, ... .
Given the solutionuk�1, multi-grid computesuk using the follow-
ing three steps:

1. Prediction: Compute an initial guess of the solutionuk using
a prediction operatorSk,

uk = Sk�1uk�1:

In multi-grid terminology, this step is also referred to aspro-
longation. A common choice for the prediction operatorSk is
piecewise linear interpolation.

2. Smoothing: Use a traditional iterative method such as Jacobi
or Gauß-Seidel smoothing to improve the current solution for
uk.

3. Coarse grid correction: Restrict the current residualDk uk�
bk to the next coarser gridTk�1. There, solve for an error
correction termek�1 that is then added back into the solution
usinguk = uk+Sk�1ek�1:

Note that both steps 2 and 3 serve to improve the accuracy of
the solutionuk. If the operatorSk�1 used in the prediction phase
of multi-grid produces an exact initial guess, i.e.DkSk�1uk�1 = bk,
then both the smoothing steps and coarse grid correction steps can
be omitted. Such an operatorSk�1 is aperfect predictor. A multi-
grid scheme based on perfect predictors consists of repeated appli-
cations ofSk to produce finer and finer solutions that converge to
the exact, continuous solution. Such a multi-grid scheme is exactly
a subdivision scheme, where the perfect predictor takes the role of
the subdivision operator! The remainder of this section focuses on
characterizing perfect predictors in terms of the discrete operators
Dk.

To be useful in practice, application of the perfect predictor
should not be too costly. Therefore, the perfect predictors should
have a local structure. To this end, we suggest a specific choice
for the right-hand sidebk of equation 3 based on upsampling. Let
Rk�1 be the discreteupsampling (replication) operatorthat con-
verts data defined over the coarse gridTk�1 into data defined over
the next finer gridTk. Rk�1’s action is very simple: data associated
with grid points inTk�1 are replicated; the remaining data associ-
ated with grid points inTk� Tk�1 are set to zero. Choosing the
right-hand sidebk to have the form

bk = Rk�1Rk�2:::R0D0u0

results in equation 3 having the form

Dkuk = Rk�1Rk�2:::R0D0u0: (4)

This particular choice ofbk can be interpreted as follows:uk is
determined so that the discrete differencesD0u0 over the coarsest
grid T0 are replicated onto the fine gridsTk; all the remaining entries
in Dkuk are forced to zero. Intuitively, the limit of this process, as
k!∞, is an objectu that satisfies the continuous partial differential
equationD u = 0 everywhere except at the coarsest grid points.
At these coarsest grid pointsD u exactly reproduces the differences
D0 u0.

Based on equation 4, a predictorSk�1 is perfect if it satisfies the
fundamental multi-grid relation

DkSk�1 = Rk�1Dk�1: (5)

To verify this assertion, letuk�1 be a solution to equation
4, i.e. Dk�1 uk�1 = Rk�2 Rk�3:::R0 D0 u0. Multiplying both
sides of this equation byRk�1 yields thatRk�1 Dk�1 uk�1 =
Rk�1 Rk�2 Rk�3:::R0 D0 u0. ReplacingRk�1Dk�1 by DkSk�1 (due



to equation 5) yieldsDkSk�1 uk�1 = Rk�1 Rk�2 Rk�3:::R0 D0 u0:
Finally, sinceuk = Sk�1uk�1, uk also satisfies equation 4.

At a high level, our approach to building subdivision schemes
for linear systems of PDEs can be outlined as follows: First, we
construct discrete analogs of the continuous differential operators
involved in the problem. Next, we determine the relationship be-
tween the grids of different levels, and define the upsampling and
concrete discrete difference operators for these grids. Finally, we
solve for the perfect predictor using the fundamental relation 5. The
result of this process is a perfect predictor, or subdivision scheme,
which converges to solutions of the original, continuous problem.

The next section fills in more of the details of this process. In
particular, we derive a subdivision scheme for the simple differen-
tial equation that characterizes piecewise polynomial splines. Later
in the paper, the same methodology is used to construct subdivision
schemes for the PDEs that characterize fluid flow.

3 Subdivision for Polynomial Splines

A polynomial splineu[x] of orderm is a piecewise polynomial func-
tion of degreem�1 in a real variablex. For uniform grids (i.e.T is
the integer grid,Z), the splineu[x] satisfies the differential equation

D[x]mu[x] = 0 (6)

for all x =2Z. Here, the differential operatorD[x] computes the
derivative ofu[x] with respect tox. D[x]m takes themth derivative
of u[x] with respect tox. Our task is to derive the subdivision rules
for these polynomial splines using equation 5.

3.1 A multi-grid scheme

Moving to the multi-grid setting, we consider a sequence of domain
gridsTk of the formTk =

1
2kZ. Note that the gridsTk grow dense in

the domainRask!∞. Given the continuous splineu[x], let uk be

a vector whoseith entry approximatesu
h

i
2k

i
. The vectorsuk are

discrete approximations tou[x]. As k! ∞, these vectorsuk should
converge to the continuous functionu[x].

In the uniform case, generating functions provide a particularly
concise and powerful representation for the vectorsuk. Let uk[x]
denote the generating function of the form

uk[x] = ∑i (uk)ix
i

where(uk)i is the coefficient of the vectoruk with grid pointi. For
example, the vectoru0= f4;12;10;5;8gover the integer grid points
f0;1;2;3;4g can be represented by the generating functionu0[x] =
4+12x+10x2+5x3+8x4. (Note that the generating functions used
in this paper may posses negative and even fractional exponents.)

To discretize the left-hand side of equation 6, we next derive
the discrete counterpart of the continuousmth derivative operator
D[x]m. On the initial gridT0 =Z, the discrete analog ofD[x] is the
generating function

D[x] =
1�x

x1=2
:

(Note the powerx�1=2 centers the difference operator D[x] over the
origin.) On finer gridsTk = 1

2kZ, this generating function D[x] is

scaled by a factor of 2k. Application of the differential operator
D[x] to u[x] has a simple discrete analog: multiplication ofu[x] by
D[x]. Repeated application ofD[x] is equivalent to repeated multi-
plication by D[x]: Thus, on the gridTk, the discrete analog of the
left-hand side of equation 6 is

(2kD[x])
m

uk[x]:

This expression forms the left-hand side of the fundamental
multi-grid relation of equation 4. Our next task is to build a gen-
erating function that models the right-hand side of these equations.
Recall that the upsampling operatorRk replicated data onTk and
inserted zero onTk+1�Tk. If uk[x] is the generating function as-
sociated with the vectoruk, then the expressionRkuk corresponds
to the generating functionuk[x

2]. Likewise, the action of the com-
bined operatorRk�1:::R0 can be modeled by replacingx by x2k

.
Thus, equation 4 can be expressed in terms of generating functions
as

(2kD[x])
m

uk[x] = 2kD[x2k
]
m

u0[x
2k
]: (7)

Note that an extra factor of 2k appears on the right-hand side of
equation 7. This factor reflects the effect of the varying grid spacing
on Rk. By scaling each upsampling operatorRk by 2d (whered is
the dimension of the underlying domain), the resulting normalized
equation defines a sequence of solutionsuk that converges to the
desired polynomial splineu[x].

3.2 The associated subdivision scheme

Given this multi-grid framework, we can now apply equation 5 and
derive a perfect predictor for this scheme. In the uniform setting,
the predictor (subdivision matrix)S is a 2-slanted matrix whose
columns are all shifts of a single vector. If we lets[x] denote the
generating function associated with this vector, then equation 5 has
the form:

(2kD[x])
m

s[x] = 2
�

2k�1D[x2]
�m

: (8)

The beauty of equation 8 is that we can now directly solve for
the subdivision masks[x]. In particular,s[x] is independent ofk and
has the form:

s[x] = 2

�
D[x2]

2D[x]

�m

=
1

2m�1

(1+x)m

xm=2
: (9)

To verify this fact, recall that D[x] = 1�x
x1=2 . Therefore, D[x2] = 1�x2

x

andD[x2]
D[x] = 1+x

x1=2 . Substituting this expression into equation 9 yields

a mask of the forms[x] = 1
2m�1

(1+x)m

xm=2 . This mask exactly captures
the subdivision rule for polynomial splines of orderm. In the case of
cubic splines, i.e.m= 4, equation 9 correctly yields the subdivision

masks[x] = (1+x)4

8x2 = 1
8

�
x�2+4x�1+6+4x+x2

�
due to Lane and

Riesenfeld [21].
Given the masks[x], subdivision can be expressed very concisely

in terms of generating functions. The coefficient vectorsuk�1 and
uk are related by

uk[x] = s[x]uk�1[x
2]:

As k! ∞, the coefficients ofuk[x] form increasingly dense ap-
proximations to a continuous limit functionu[x]. In particular, the
coefficient ofxi in uk[x] acts as a discrete approximation to a con-

tinuous function valueu
h

i
2k

i
. Figure 2 shows three rounds of sub-

division for a cubic spline.
The upper left curve in figure 2 depicts the coefficientsu0 =

f4;12;10;5;8g plotted over the integer grid pointsf0;1;2;3;4g.
This coefficient sequence can be represented by the generating
functionu0[x] = 4+12x+10x2+5x3+8x4. The upper right curve
shows the coefficients ofu1[x] = s[x]u0[x2],

u1[x]=
1
8

�
1
x2 +

4
x
+6+4x+x2

��
4+12x2+10x4+5 x6+8x8

�
;
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Figure 2: Subdivision for cubic splines.

plotted over the half-integer sequence,
n

0; 1
2;1; 3

2;2; 5
2 ;3; 7

2 ;4
o

.

(Remember, the coefficients ofxi in uk[x] is plotted atx = i
2k .)

The lower figures show the coefficients ofu2[x] = s[x]u1[x2] and
u3[x] = s[x]u2[x2] plotted over the quarter and one eighth integers,
respectively. Observe that this process quickly converges to the de-
sired polynomial spline.

Figure 3 shows plots of the discrete differences D[x]4uk[x] for
k= 0;1;2;3. Note that these differences are identically zero except
at the original integer grid points,f0;1;2;3;4g.
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Figure 3: Fourth order discrete differences for cubic splines.

This univariate subdivision scheme can be extended to two-
dimensional meshes in a variety of ways. Much of subdivision’s
popularity as a modeling technique is due to the landmark papers
by Doo and Sabin [8] and Catmull and Clark [3]. Hoppe, DeRose
and co-workers [14],[7] and Sederberg et al. [24] developed subdi-
vision schemes that can incorporate curvature discontinuities such
as creases. Zorin and Schroeder [31] and Kobbelt et al. [20] show
that subdivision is well suited for interactive multi-resolution edit-
ing of smooth models. Finally, recent work by Kobbelt [18, 19]
and the authors [28] investigates the link between subdivision and
variational problems.

4 A Brief Introduction to Fluid Mechanics

Fluid mechanics is a field of study that can occupy an entire career.
Our goal in this section is to give a brief introduction suitable for
the mathematically savvy non-specialist. The source for most of the

material in this paper isFluid Mechanicsby Liggett [17]. Our ap-
proach is to develop most of the theory for flows in two-dimensions.
Later in the paper, we extend the theory to three dimensions.

A flow in two dimensions is a vector-valued function
(u[x;y];v[x;y])T in two parametersx andy. Flows can be visu-
alized in a number of ways. Perhaps the simplest method is to eval-
uate(u[x;y];v[x;y])T at a grid of parameter values(xi;y j ). Each re-
sulting vector(u[xi;y j ];v[xi ;y j ])

T is then plotted with its tail placed
at(xi;y j ).

The behavior of flows is governed by a set of PDEs known as
theNavier-Stokes equations. In the most general setting, this set of
equations is non-linear. As a result, the behavior of many types of
flows is very hard to predict. However, in several important settings,
the Navier-Stokes equations reduce to a much simpler set of linear
PDEs. In the next sections, we consider two such cases: perfect
flow and slow flow. Later, we derive subdivision schemes for slow
flow, noting that the exact same methodology can be used to build
schemes for perfect flow.

4.1 Perfect flows

Perfect flows are characterized by two properties:incompressibility
andzero viscosity. A flow (u[x;y];v[x;y])T is incompressibleif it
satisfies the partial differential equation:

u(1;0)[x;y]+v(0;1)[x;y] = 0:

The superscript(i; j) denotes theith derivative with respect tox and
the jth derivative with respect toy. Flows(u[x;y];v[x;y])T satis-
fying this equation are said to bedivergence-free. In most flows,
viscosity induces rotation in the flow. However, if the fluid has zero
viscosity, then its flows are free of rotation. Such flows are often
referred to asirrotational. Irrotational flows are characterized by
the partial differential equation:

u(0;1)[x;y] = v(1;0)[x;y]:

Together, these two equations in two functionsu andv uniquely
characterize perfect flow:

u(1;0)[x;y]+v(0;1)[x;y] = 0;

u(0;1)[x;y]�v(1;0)[x;y] = 0:
(10)

To facilitate manipulations involving such systems of PDEs, we
use two important tools. As in the univariate case, we express var-
ious derivatives using the differential operatorsD[x] andD[y]. Left
multiplication by the differential operatorD[z] is simply a short-
hand for taking a continuous derivative in thez direction. For ex-
ample,D[x]u[x;y] = u(1;0)[x;y] andD[y]v[x;y] = v(0;1)[x;y]. Our
second tool is matrix notation. After replacing the derivatives in
equation 10 by their equivalent differential operators, the two linear
equations in two unknowns can be written in matrix form as:

�
D[x] D[y]
D[y] �D[x]

��
u[x;y]
v[x;y]

�
= 0: (11)

In conjunction, these techniques allow generation of subdivision
schemes from systems of PDEs using the same strategy as was em-
ployed for polynomial splines in the previous section.

4.2 Slow flows

As we saw in the previous section, perfect flows are governed by a
simple set of linear PDEs. Another important class of linear flow
is slow flow. A slow flow is an incompressible flow in which the
viscous behavior of the flow dominates any inertial component of



the flow. For example, the flow of viscous fluids such as asphalt,
sewage sludge or molasses is governed almost entirely by its vis-
cous nature. Other examples of slow flow include the movement
of small particles through water or air and the swimming of micro
organisms [17].

Slow flow may also be viewed as a minimum energy elastic de-
formation applied to an incompressible material. This observation
is based on the fact that the flow of an extremely viscous fluid is
essentially equivalent to an elastic deformation of a solid. One
byproduct of this view is that any technique for creating slow flows
can also be applied to create minimum energy deformations.

Slow flows in two dimensions are also governed by two partial
differential equations. The first partial differential equation corre-
sponds to incompressibility. However, due to their viscosity, slow
flows have a rotational component. This rotational component is
governed by the partial differential equation:

u(2;1)[x;y]+u(0;3)[x;y]�v(3;0)[x;y]�v(1;2)[x;y] = 0

For a complete derivation of this equation, see Liggett [17],
p.161. IfL [x;y] =D[x]2+D[y]2 denotes the continuous Laplacian,
then these two partial differential equations can now be written to-
gether in matrix form as:

�
D[x] D[y]

L [x;y]D[y] �L [x;y]D[x]

��
u[x;y]
v[x;y]

�
= 0: (12)

In this form, the similarity between the governing equations for
perfect flow and slow flow is striking: The second equation in 12
corresponds to the equation for irrotational flow multiplied by the
LaplacianL [x;y]. The effect of this extra factor ofL [x;y] on the
rotational component of slow flows is easy to explain: Perfect flows
exhibit infinite velocities at sources of rotational flow. The extra
factor of L [x;y] smoothes the velocity field at rotational sources
and causes slow flows to be continuous everywhere.

Due to limited space, our main focus in this paper is on devel-
oping subdivision schemes for slow flows based on equation 12.
Slow flows define smooth vector fields and relate to other inter-
esting problems such as minimum energy deformations. However,
we remind the reader that all of the techniques described here are
equally applicable to perfect flows.

4.3 Previous work on flows

Traditionally, fluid flow has been modeled either through explicit or
numerical solutions of the associated PDEs. Explicit solutions for
perfect flow are known for a number of primitives such as sources,
sinks and rotors. These can be combined into more complex fields
using simple linear combinations (see [17] for more details).

Numerical solutions for the modeling and simulation of flow is
a very active research area. Commonly, such solutions involve ap-
proximation using either finite difference or finite element schemes.
Brezzi and Fortin [1] provide an introduction to some of the stan-
dard numerical techniques used for modeling flow. Recently, cellu-
lar automata have been applied with some success for the discrete
modeling of physical problems, including gas and fluid flow [6, 23].

On the computer graphics side, Kass and Miller [16] simulate
surface waves in water by approximately solving a two-dimensional
shallow water problem. Chen and Lobo [4] solve the Navier Stokes
equations in two dimensions and use the resulting pressure field to
define a fluid surface. Chiba et al. [5] simulate water currents using
a particle based behavioral model. Miller and Pearce [22] model
viscous fluids through a connected particle system. Wejchert and
Haumann [29] introduce notions from aerodynamics to the graph-
ics community. Stam and Fiume [25] model turbulent wind fields
for animation based on solving the underlying PDEs. Foster and

Metaxas [11] suggest solving the Navier-Stokes equations on a
coarse grid in three dimensions using a finite difference approach
and then interpolating the coarse solution locally as needed. They
also extended their method to handle turbulent steam [12].

5 A Subdivision Scheme for Slow Flow

Following the same approach as in the polynomial case, we first
build discrete analogs of the continuous PDEs for slow flow and
then employ the fundamental multi-grid relation of equation 5 to
solve for the subdivision scheme. Given a coarse vector field
(u0;v0)

T , the resulting subdivision scheme defines a sequence of
increasingly dense vector fields(uk; vk)

T . These fields converge to
a continuous vector field(u[x;y];v[x;y])T that follows the original
coarse vector field(u0;v0)

T .
As for polynomial splines, we represent a discrete vector field by

a 2-vector of generating functions:�
uk[x;y]
vk[x;y]

�
= ∑i; j

�
uk
vk

�
i j

xiyj :

Again, the vectors comprising(uk;vk)
T act as discrete approxi-

mations to the continuous limit field(u[x;y];v[x;y])T . In particular,

thei j th entry of(uk;vk)
T acts at(x;y) =

�
i

2k ;
j

2k

�
. The subdivision

schemes[x;y] is the linear operator that relates(uk�1[x];vk�1[x])
T

and(uk[x];vk[x])
T according to�
uk[x;y]
vk[x;y]

�
= s[x;y]

�
uk�1[x

2;y2]
vk�1[x

2;y2]

�
:

Thus,s[x;y] is a 2�2 matrix of generating functions.
In practice, interesting flows depend on boundary conditions

which drive the flow. Our approach to boundary conditions is sim-
ilar to that for polynomial splines. In particular, we enforce the
flow PDEs everywhere except on the initial integer grid,Z2. The
coarse, initial vector field encoded by(u0[x;y];v0[x;y])

T determines
the boundary conditions atZ2. Denser vector fields are represented
by the generating functions(uk[x];vk[x])

T and determined so as to
satisfy the PDEs for flow.

5.1 A multi-grid scheme

Following the polynomial case, we consider slow flows
(u[x;y];v[x;y])T that satisfy the differential equations (in matrix
form) �

D[x] D[y]
L [x;y]D[y] �L [x;y]D[x]

��
u[x;y]
v[x;y]

�
= 0

for all (x;y) =2Z2. On the gridTk = 1
2kZ

2, the discrete version of
this equation (left-hand side only) has the form:�

2kD[x] 2kD[y]
8kL[x;y]D[y] �8kL[x;y]D[x]

��
uk[x;y]
vk[x;y]

�

whereL[x;y] = D[x]2+D[y]2 is the discrete version of the Lapla-
cian. The various powers of two are necessary for the discrete dif-
ferences to converge to the appropriate continuous derivatives as
k!∞. Based on this observation, the fundamental multi-grid equa-
tion (equation 4) can be expressed in terms of generating functions
as: �

2kD[x] 2kD[y]
8kL[x;y]D[y] �8kL[x;y]D[x]

��
uk[x;y]
vk[x;y]

�
=

4k

 
0 0

L
h
x2k

;y2k
i

D[y2k
] �L

h
x2k

;y2k
i

D[x2k
]

!0
@ u0

h
x2k

;y2k
i

v0

h
x2k

;y2k
i
1
A :

(13)



As before, the left-hand side of equation 13 is a discrete approxi-
mation to the PDEs for slow flow onTk. On the right-hand side, the
top row of the difference matrix, corresponding to divergence, is
zero. The bottom row of the difference matrix computes a discrete
approximation to the rotational component of the flow onZ2. This
rotational component is then upsampled (viax! x2k

andy! y2k
)

to the grid 1
2kZ

2. (The extra factor of 4k on the right-hand side is
due to the scaling of the upsampling matrices.)

As k! ∞, the discrete flows(uk[x];vk[x])
T satisfying equation

13 converge to a continuous slow flow(u[x;y];v[x;y])T satisfying
equation 12. The appendix demonstrates this convergence by de-
riving an analytic representation for the limit flow directly from
equation 13. This analytic representation for(u[x;y];v[x;y])T is es-
pecially useful in understanding the behavior of the resulting flows.
For example, the resulting slow flows are divergence-free every-
where and rotation-free everywhere except at the initial grid points
Z

2. The flow is driven by rotational sources that are positioned to
drive a flow that follows the initial vector field(u0;v0)

T . Figure
4 depicts two flows, each generated by a single unit vector in the
x andy direction, respectively. Note that each flow is driven by a
pair of rotational source located on grid points inZ2. More com-
plex flows are formed by taking linear combinations of translates of
these flows onZ2.
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Figure 4: Vector basis functions for slow flow

5.2 The associated subdivision scheme

In analogy with the case of polynomial splines, we next apply our
characterization for perfect predictors (equation 5) and derive the
subdivision scheme associated with this multi-grid process.

� 1
2D[x] 1

2D[y]
2L[x;y]D[y] �2L[x;y]D[x]

�
s[x;y] =

�
0 0

L[x2;y2]D[y2] �L[x2;y2]D[x2]

�
: (14)

Solving fors[x;y] in equation 14 yields a two by two matrix of
generating functions of the form

s[x;y] =
L[x2;y2]

2L[x;y]2

�
D[y] D[y2] �D[x2] D[y]
�D[x] D[y2] D[x] D[x2]

�
:

The matrixs[x;y] encodes the subdivision scheme for slow flow.
Note that this subdivision scheme is a true vector scheme:uk[x;y]
depends on bothuk�1[x;y] andvk�1[x;y]. Such schemes, while rare,
have been the object of some theoretical study. Dyn [10] investi-
gates some of the properties of such vector schemes.

Unfortunately, our analogy with polynomials is not complete.
The generating functionL[x;y]2 fails to divide into the numerators
of s[x;y]. In reality, this difficulty is to be expected. Polynomial

splines are known to have locally supported bases (B-splines). This
observation is consistent with the subdivision schemes[x] having
finitely supported subdivision rules. On the other hand, the vector
basis functions in figure 4 do not have local support. Therefore,
the generating functions[x;y] can not be expected to divide out and
yield finite rules.

Fortunately, all is not lost. The vector basis functions depicted in
figure 4 do have two important properties: they are highly localized
(i.e. decay rapidly towards zero asx;y!∞) and form a partition of
unity. As a result, these vector basis functions can be approximated
to any desired degree of accuracy via a locally supported vector
subdivision scheme. The next section describes an algorithm for
finding the subdivision scheme with fixed support that nearly satis-
fies equation 14.

6 Locally Supported Approximations

Before computing approximations to the matrix masks[x;y], we
make an important adjustment to the subdivision scheme for slow
flow. Uniform subdivision schemes for univariate splines come
in two types: primal and dual.Primal schemes have subdivision
masks of odd length that position new coefficients both over old
coefficients and between adjacent pairs of old coefficients.Dual
schemes have masks of even length that position two new coeffi-
cients between each adjacent pair of old coefficients. In the bivari-
ate setting, each dimension of a uniform scalar subdivision scheme
can be either primal or dual. For vector subdivision schemes, the
situation can be even more complex. Each dimension of each com-
ponent can be primal or dual. In particular, distinct components of
a vector scheme need not share the same primal/dual structure.

Indeed, this situation is the case for slow flow. Its vector subdi-
vision scheme has the remarkable property that theu component is
primal inx and dual iny, and thev component is dual inx and pri-
mal in y. This observation can be verified by checking the size
of the masks in the numerator ofs[x;y]. In practice, this prop-
erty makes computing with the given vector subdivision scheme
unpleasant. The indexing for schemes with such mixed structure is
difficult and prone to errors. In practice, we desire a subdivision
scheme for slow flows that is purely primal.

To this end, we adjust equation 14 slightly. In particular, we ap-
proximate the differential operatorsD[x] andD[y] in equation 12 by
D[x2] and D[y2] instead of D[x] and D[y]. The resulting subdivision
schemes[x;y] has the form� 1

2D[x2] 1
2 D[y2]

2L[x;y]D[y2] �2L[x;y]D[x2]

�
s[x;y] =

�
0 0

L[x2;y2]D[y4] �L[x2;y2]D[x4]

�
: (15)

Note that the scheme still converges to slow flows. However, the
associated subdivision scheme is now primal with a matrix gener-
ating function of the form:

1
2L[x;y]

�
D[y2] D[y4] �D[x4] D[y2]
�D[x2] D[y4] D[x2] D[x4]

�
: (16)

Our final goal is to compute a matrix of finitely supported gen-
erating functions �

s11[x;y] s12[x;y]
s21[x;y] s22[x;y]

�

that nearly satisfy equation 15. By treating each coefficient of the
maskssi j [x;y] as an unknown, the values for these unknowns can be
computed as the solution to an optimization problem. In particular,
the matrix of approximationssi j [x;y] should nearly satisfy equation
15: � 1

2D[x2] 1
2D[y2]

2L[x;y]D[y2] �2L[x;y]D[x2]

��
s11[x;y] s12[x;y]
s21[x;y] s22[x;y]

�
��

0 0
L[x2;y2]D[y4] �L[x2;y2]D[x4]

� (17)



The maximum of the matrix difference between the two sides
of equation 17 can easily be expressed as a linear program. In
practice, the size of this program can be reduced by noting that
s11[x;y] = s22[y;x] ands21[x;y] = s12[y;x] due to structure of ex-
pression 16. Likewise, due to expression 16, the coefficients of
s11[x;y] are symmetric inx andy while the coefficients ofs21[x;y]
are anti-symmetric inx andy. As a final modification, we constrain
the si j [x;y] to define a vector scheme with constant precision, i.e.
s[x;y] applied to a coarse, constant field should produce the same
constant on the finer grid. This extra constraint is necessary for
the scheme to be convergent (see Dyn [10]) and is consistent with
the observation that the vector basis functions for slow flow have
constant precision.

Using a standard linear programming code (CPLEX,
http://www.cplex.com/), we have precomputed approxima-
tionssi j [x;y] for matrix masks of size 5�5 to size 15�15. Figure
5 shows a plot of the maximum differences in equation 17 for
masks of various sizes. Note the rapid convergence of this residual
to zero. This convergence is due to the fact that the basis functions
for slow flow decay to zero asx;y!∞.
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Figure 5: Residuals for finite matrix masks of various sizes.

Given these precomputed maskssi j [x;y], we can apply the vector
subdivision scheme to an initial, coarse vector field(u0;v0)

T and
generate increasingly dense vector fields(uk;vk)

T via the matrix
relation

�
uk[x;y]
vk[x;y]

�
=

�
s11[x;y] s12[x;y]
s12[y;x] s11[y;x]

��
uk�1[x

2;y2]
vk�1[x2;y2]

�
:

If the vector field(uk�1;vk�1)
T is represented as a pair of ar-

rays, then the polynomial multiplications in this expression can be
implemented very efficiently using discrete convolution. The re-
sulting implementation allows us to model and manipulate flows in
real time. Although matrix masks as small as 5�5 yield nicely be-
haved vector fields, we recommend the use of 9�9 or larger matrix
masks if visually realistic approximations to slow flows are desired.
Figure 6 shows a plot of several rounds of subdivision applied to a
vector basis function defined in thex-direction (using a matrix mask
of size 9�9). Note the similarity to the plot of the exact analytic
representation in the left-hand side of figure 4.

The proceedings video tape contains a demonstration of an in-
teractive flow modeler based on these subdivision schemes and
discusses some further issues. More material, including the
actual local subdivision masks of various sizes, can be found
on the conference CDROM as well as on our web page under
http://www.cs.rice.edu/CS/Graphics/S99.

Figure 6: Three rounds of subdivision for a basis vector.

7 Extension to Three Dimensions

Three-dimensional flow is a vector-valued function
(u[x;y;z];v[x;y;z];w[x;y;z])T in three variablesx;y;z. Three-
dimensional slow flow is characterized by two sets of partial
differential equations modeling the same conditions as in the
two-dimensional case. The first partial differential equation forces
the flow to be incompressible. The incompressibility condition is
given by

D[x]u[x;y;z]+D[y]v [x;y;z]+D[z]w[x;y;z] = 0:

The second set of partial differential equations characterizes the
rotational behavior of the flow. These conditions are slightly more
complicated in three dimensions. For perfect flow these conditions
are:

D[y]u [x;y;z] = D[x]v[x;y;z];
D[z]u [x;y;z] = D[x]w[x;y;z]; (18)

D[z]v [x;y;z] = D[y]v[x;y;z]:

For slow flows, each equation is multiplied by a factor of
L [x;y;z]. Notice that these three continuous equations are linearly
dependent. Thus, a continuous solution to these four equations in
three unknowns is possible. Unfortunately, the multi-grid approach
used in equation 14 fails to yield a subdivision scheme for this set
of equations. However, modifying the PDEs for the rotational com-
ponent of the flow makes subdivision possible. Multiplying each
equation of 18 byD[z], D[y], andD[x], respectively yields an new
system of partial differential equations:

D[z]D[y]u[x;y;z] = D[x]D[z]v[x;y;z];
D[y]D[z]u[x;y;z] = D[x]D[y]w[x;y;z];
D[x]D[z]v[x;y;z] = D[x]D[y]v[x;y;z]:

Note that any solution to these equations is also a solution to
equations 18. Given these new equations, we can apply the same



Figure 7: Four views of a 3D vector basis function for slow flow.

derivation used in the two-dimensional case. First, we set up a
discrete version of this continuous system of PDEs. Next, we
derive the associated subdivision scheme and its analytic bases
from the fundamental equation 5. Finally, we compute approxi-
mations to the matrix subdivision mask for the scheme using lin-
ear programming. Again, the actual subdivision masks can be
found on the conference CDROM and on our web page under
http://www.cs.rice.edu/CS/Graphics/S99.

The resulting subdivision scheme shares all of the nice properties
of the two-dimensional scheme. Given a coarse, initial vector field
(u0;v0;w0)

T , the limit of the scheme is a continuous vector field
(u[x;y;z];v[x;y;z];w[x;y;z])T that follows(u0;v0;w0)

T . Figure 7
shows four plots of a vector basis function in thex-direction. The
respective plots show views of the vector basis along thex-axis,
they-axis, thez-axis and the vector(0;1;1)T . The basis defines a
localized slow flow driven by a toroidal flow around a unit square
orthogonal to thex-axis.

We conclude with a snapshot from the video proceedings. Figure
8 depicts a stream of particles flowing down a drain. This flow was
computed by applying several rounds of subdivision to an initial
3�3�3 grid of vectors.

8 Conclusion and Future Work

This paper developed vector subdivision schemes for slow flows.
These subdivision schemes were special instances of more gen-
eral multi-grid schemes for solving the PDEs that characterize slow
flow. Just as subdivision has revolutionized the process of poly-
hedral modeling, we feel that these schemes have the potential to
revolutionize the process of modeling flow. We have several strong
reasons for this belief. First and foremost, the speed of these subdi-
vision schemes allows examination and manipulation of interesting
flow fields at interactive rates. Next, the simplicity of these sub-
division schemes allow graphics enthusiasts who are not specialist
in flow to experiment with creating realistic flows. For example,
many of the stability problems that arise in conventional solvers are
not an issue here. Subdivision also provides a modeling paradigm
even if other simple methods such as potential fields fail (i.e. flows
in three dimensions). Finally, subdivision can also be incorporated
as an add-on to an existing flow package with the subdivision rules
used to refine an existing solution and provide more local detail.
Because the subdivision scheme models solutions to the Navier-
Stokes PDEs, this approach is far superior to polynomial interpola-
tion, which is usually used to locally refine the solutions of a flow
package.

On the other hand, there are limitations to the modeling of fluid
flow with the methodology developed here. First, subdivision is
an intrinsically linear process. Therefore, subdivision can only be
applied to modeling solutions to linear systems of PDEs. In the

case of flow, this restriction forces the focus onto modeling linear
flows such as slow flows and perfect flows. For now, modeling
non-linear flows seems beyond the reach of this method. Second,
the system of linear PDEs used here describes steady, time indepen-
dent flows. Thus, the resulting subdivision scheme models steady,
time independent flows. However, there is no fundamental limita-
tion to applying the methodology to derive subdivision schemes for
time dependent problems as long as the associated PDEs remain
linear. Finally, the derivations in this paper are based on regular
grids, modeled through generating functions. Hence, the subdivi-
sion schemes only model flows on regular grids. However, the same
methodology using linear algebra in place of generating functions
can be employed to derive subdivision schemes for irregular grids.
The main obstacle to this approach is the enumeration and compu-
tation of subdivision rules for each distinct geometric configuration
in the underlying grid.

Our future plans focus on two problems. The first problem is to
use these schemes as the building block for an interactive system
for designing flows. Ideally, the user would sketch approximate
streamlines and obstacles for the flow. The modeler would then
use subdivision to create a physically accurate flow that approxi-
mates the sketch. Our second task is to consider an extension of
this work to time varying flows. One simple approach would be to
modify the initial, coarsest vector field smoothly over time. Since
the underlying basis functions are highly localized and smooth, the
resulting limit flow should change smoothly. A more physically re-
alistic approach for time-dependent flows would be to add an extra
dimension corresponding to time to the discrete vector fields. Time
slices of the initial vector field(u0;v0)

T would be viewed as key
flow configurations (analogous to key frames). The vector subdi-
vision scheme would then define a sequence of increasingly dense
(in both time and space) vector fields(uk;vk)

T that converge to the
true time-dependent flow.
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Appendix: Analytic Bases for Slow Flow

This appendix derives an analytic representation for the limiting
flows of equation 13. Due to the linearity of the process, the lim-
iting vector field defined by the multi-grid scheme can be written
as a linear combination of translates of two vector basis functions
(φx[x;y];φy [x;y]) (shown in figure 4) times the vectors of the initial
field (u0;v0)

T . Specifically, the limiting field(u[x;y];v[x;y])T has
the form:

�
u[x;y]
v[x;y]

�
=

∞

∑
i; j=�∞

(φx[x� i;y� j] ; φy[x� i;y� j] )

�
u0
v0

�
i j

Note again that bothφx[x;y] andφy[x;y] are vector-valued func-
tions. Our goal is to find a simple, closed-form expression for these
functions.

A rotational generator of slow flow

Recall that the continuous field(u[x;y];v[x;y])T is the limit of
the discrete fields(uk;vk)

T ask! ∞. By solving equation 13 we
can express(uk;vk)

T directly in terms of(u0;v0)
T ,

�
uk[x;y]
vk[x;y]

�
=

L
h
x2k

;y2k
i

2kL[x;y]2

�
D[y]
�D[x]

��
D[y2k

]; �D[x2k
]
��u0[x;y]

v0[x;y]

�
:

This matrix of generating functions relating(u0;v0)
T and

(uk;vk)
T can be re-written in the form:

1

4kL[x;y]2
L
h
x2k

;y2k
i� 2kD[y]
�2kD[x]

��
D[y2k

]; �D[x2k
]
�
: (19)

Our next task is to find continuous analogs of various parts of
this matrix expression ask! ∞. We first analyze the most difficult
part of the expression, 1

4kL[x;y]2
. Consider a sequence of generating

functionsrk[x;y] such that 4kL[x;y]2rk[x;y] = 1 for all k. The co-
efficients of therk[x;y] are discrete approximations to a continuous
functionr [x;y] satisfying the differential equation,

L [x;y]2r [x;y] = 0

everywhere except at(x;y)= 0. Fortunately, a closed form solution
to this partial differential equation is known. The functionr [x;y] is
a radial basis function of the form:

r [x;y] =
1

16π
(x2+y2) log[x2+y2]:

Hoschek and Lasser [13] and Dyn [9] give a brief introduction
to radial basis functions and discuss some of their properties. The
factor of 4k normalizes the coefficients of the sequencerk[x;y] so
that their limit r [x;y] satisfies

R
L [x;y]2r [x;y] = 1:

The other components of expression 19 are easier to interpret.
Differences of the form 2kD[z] taken on 1

2kZ
2 converge to the con-

tinuous derivativeD[z]. Differences of the form D[z2k
] taken on

1
2kZ

2 correspond to unit differences taken onZ2. Based on these
two observations, we can convert successively larger portions of
expression 19.

Let gk[x;y] denoterk[x;y]L
h
x2k

;y2k
i
( 2kD[y] ; �2kD[x] )

T
.

The continuous analog ofL
h
x2k

;y2k
i

is a sequence of dif-

ferences onZ2 corresponding to the discrete difference mask

L[x;y]. The continuous analog of the vector of discrete opera-

tors( 2kD[y]; �2kD[x] )
T

is the vector of differential operators

( D[y]; �D[x] )
T . Based on these observations, the correspond-

ing vector functiong[x;y] has the form:

g[x;y] =

�
d[y]
�d[x]

��
�4r [x;y]+ r [x+1;y]+

r [x�1;y]+ r [x;y+1]+ r [x;y�1]
�
:

The behavior ofg[x;y] gives us our first insight into the structure
of slow flow. In fact,g[x;y] is a generator for a localized, rotational
slow flow. We can verify thatg[x;y] is truly a slow flow by substi-
tuting the definition ofg[x;y] into equation 12. Likewise, we can
verify that this flow is highly localized (i.e. decays to zero very fast
away from the origin) based on the analytic representation. Figure
9 shows a plot ofg[x;y] on the domain[�2;2]2.
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Figure 9: A rotational generator for slow flow

Vector basis functions for slow flow

Finally, expression 19 can be written as

gk[x;y]
�

D[y2k
] ; �D[x2k

]
�

. The coefficients of this se-

quence converge to differences of the rotational generatorg[x;y]
taken in they-direction andx-direction, respectively. The resulting
functions are the vector basis functions for our subdivision scheme:

φx[x;y] = g
�
x;y+ 1

2

�
�g

�
x;y� 1

2

�
;

φy[x;y] = �g
�
x+ 1

2 ;y
�
+g

�
x� 1

2 ;y
�
:

Figure 4 contains plots of these basis functions in thex andy
directions, respectively. Note that the vector basis consists of a pair
of rotational sources positioned so as to drive a flow along the ap-
propriate axis. Again, this flow is localized in the sense that it de-
cays rapidly to zero away from the origin. More complex flows can
be constructed by taking linear combinations of these vector basis
functions. Due to the normalizing constant of1

16π used in defining
the original radial basis functionr [x;y], the scheme has constant
precision. In particular, choosing the coarse vector field(u0;v0)

T

to be translates of a constant vector defines a constant flow of the
same magnitude in the same direction.


