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The software described in this manual is furnished under alicensing agreement printed on
theinside front cover of the Ray Dream Designer User Manual. It may only be used or
copied in accordance with the terms of this license. No part of this publication may be
reproduced, stored in aretrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical or otherwise, without the prior express written permission of MetaCre-
ations, Corp.

The information in this user guideis provided for informational use only, is subject to
change without notice, and should not be construed as a commitment by MetaCreations,
Corp. MetaCreations, Corp. assumes no responsibility or liability for any errors or inaccu-
racies that may appear in this user guide.

Licensee acknowledges that the DreamSDK Development Toolkit may contain bugs,
errors and other problems that could cause system failures. Consequently, the DreamSDK
isprovided to Licensee “AS|1S,” and MetaCreations disclaims any warranty or liability
obligationsto Licensee of any kind. Accordingly, Licensee acknowledges that any
research or development that it performs regarding the DreamSDK or any product associ-
ated with the DreamSDK is done entirely at Licensee's own risk.

LICENSEE ACKNOWLEDGES THAT METACREATIONS MAKES NO EXPRESS,
IMPLIED, OR STATUTORY WARRANTY OF ANY KIND FOR THE PRODUCT
INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY WITH REGARD TO PER-
FORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PUR-
POSE.

METACREATIONS SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, DAMAGES
FOR LOSS OF REVENUE, LOSS OF PROFITS, BUSINESS INTERRUPTION, LOSS
OF INFORMATION OR DATA AND THE LIKE) ARISING OUT OF THE USE OF OR
INABILITY TO USE THE PROTOTY PE EVEN IF METACREATIONS HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
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Chapter 1 - Introduction

This chapter introduces the main concepts of the Dream SDK. It also givesimportant tips
on how to use this documentation and will help you in making the main technical choices
S0 you can have a smooth and exciting experience developing your 3D Components.
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1.1.An Open Architecture for 3D lllustration and Animatio n

What this 3D Open Architectureis

The architecture described in this document was created with the following design
requirementsin mind:

Enable an extension mechanism for 3D Illustration and Animation applications to share
major components such as shaders, renderers, light sources, atmospheric effects, anima-
tion effects, 3D primitives and more between applications
- Provide atransparent integration in the client application user interface
Provide a Plug-and-Play component installation
Provide a cross-platform solution (Windows and Macintosh)
Remove the burden out of writing 3D Extensions. When a choice had to be made, the
burden was put on the host application to facilitate the development of 3D Extensions.

These technical choices were made because 3D is acomplex field generally speaking:
anyone having any specific 3D needs has to invest in enormous programming efforts to
achieve his 3D project.

For example, aresearcher needing to make a 3D data visualization and simulation project
will have to implement a 3D renderer, a 3D Database system, 3D manipulation tools and
user interface, etc. Another example is an architect who has some needs to render his 3D
buildings, but cannot find any on-the-shelves 3D program that can support his exotic 3D
architecture file format.

Often the problem to solve is very ssmple to code, but the 3D tools around it are vast and
complex.

Thisiswhy an open architectureis especially welcomed in the 3D field. Applications such
as Ray Dream Designer” or Corel DreamTM 3D built on this architecture can be extended
very easily thisway. For example, adding a Spherical cameratakes only afew hundreds
lines of code and is about a one day project.

The other obvious advantage of programming 3D Componentsisto provide solutions that
run in different client applications, thus expanding the potential market of your 3D Com-
ponent to many users without being forced to choose a specific 3D application. This
advantage is usual in open architectures, and OLE programmers are familiar with it.

What this 3D Open Architectureis not

A rendering library
A CAD oriented API

What we explain in this document isaway for 3D Applications and 3D Components to
communicate together. As such, it describes both the client and server sides, and how they

©1995-1997 MetaCreations. All rights reserved.
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interact.

Supported Platforms and Compilers
The supported platforms are MacOS PPC, Windows 95, Windows NT and Win32s.

The supported compilers are Code Warrior 7 on the Macintosh, and Microsoft Visual C++
on Windows.

On the Macintosh, the use of Steve Jasik’s The Debugger or Metrowerks MetroNub
debugger is highly recommended for debugging.

©1995-1997 MetaCreations. All rights reserved.
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Introduction

1.2.The 3D Pipeline

One could

describe the main purpose of any 3D Application in these very simplistic steps:

1. Create/Manipulate the 3D data
2. Render itinanimage

However there isalong road to complete this process. Thisiswhy the 3D Open Architec-
ture divides this pipeline in many little “bricks’ that contribute one way or another to the
main task. All these bricks are developed as external components, called the 3D Compo-
nents or the 3D Extensions. Features can be added by simply adding new 3D Components.
The other “bricks’ will use and communicate with this new Components automatically.

Hereisthelist of al the things you can do:

1. 3D Dat

2. Render

abase:

3D Import filters

3D Export filters

3D Geometric Primitives

Deformers (deformations applied on a Geometric Primitive)
Tweeners (Animation interpolation objects)

Links (for mechanical dependencies between objects)

Behaviors (to add specific behaviors to elements in the 3D Database)
Scene Operations (commands that are added to the application as menu items)
ing:

Shaders

Light sources

Ambient Lights

Gels (put in front of light sources to change the light beam)
Atmospheric Shaders (fog...)

Reflected Background Shaders (for Environment mapping)
Backdrops (For 2D image composing)

Cameras (to define the type of 3D projection: conical, isometric, etc.)
Renderers (ray-tracing, Z-buffer, etc.)

Post-render filters (i.e. G-Buffersfilters)

©1995-1997 MetaCreations. All rights reserved.
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The way these 3D Components interact together in the 3D pipeline looks like this::

A0 Import Filkers

3D Export Filters

'

3D Database
Built-in External
Scene
Geometric Primitives Geometric Primtives Dperations
Deformers Tweensrs Links Behaviors
1
Lightsources Shaders
1
Gels
1
Abmospheric Background
Shaders Shaders
Lighting™a h 4 Reflection
| lurination Model |
1
Atmospheric
Shaders
1
Camera
1
Rendersr
1
Image Export Filber
| Irmage: | o PostRenderfilers

30 Component Qbject

The 3D Pipeline

Thisfigure gives a better view of the many possibilities offered by this architecture: it
allows the extension of a complex process through the development of simple 3D Compo-

nents.

©1995-1997 MetaCreations. All rights reserved.
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3D Shell and 3D Extensions

The 3D Application is the client of the different services provided by the 3D Compo-
nents. Because the 3D Components add features, they are often called 3D Extensions.

The 3D Application isin charge of organizing the data flow between the Components, and
it also offers a set of servicesto the 3D Components to allow then to interact with its own
internal data (like the 3D Database). The 3D Applicationis called the 3D Shell, whichisa
better and more generic term.

©1995-1997 MetaCreations. All rights reserved.
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1.3.Roadmap: How to use this documentatio n

You will find different types of chaptersin this documentation, each type answering a spe-
cific need of the 3D Components devel oper:

The Cookbook chapter s: These chapters are step-by-step / how-to descriptions that
will guide you through the main points of each subject. They often make referencesto
the Toolkit examples and comment them widely. You will find those chapters most
helpful to quickly understand the main concepts and tasks behind each 3D Extension,
and will be especially appreciated by newcomers.

A theoretical chapter, the “Database Overview” chapter. This chapter will give you
the mathematical background and the definition of the different 3D terms used
throughout the documentation. If you find anywhere an unknown 3D concept or term,
chances are that it is explained in the “ Database Overview” chapter.

Reference chapter s: “3D Components API Reference’, “3D Shell API Reference”’,
“Data Structures Reference” , etc. Thisiswhereyou will find all thelittle picky details
on each extension function, shell procedure or data structure.

Miscellaneous Appendices: “Toolkit Libraries’, “Resources Reference’, “Managing
the user interface of a3D Component”, “File format”, etc. You use these chapters for
some specific needs. They provide precious information on how to make the whole
thing work.

Cookbook and Reference chapters are designed to be complementary: the Cookbook is
used to get the general concepts and identify the steps to follow, and the Reference is used
to get to the bottom of each call parameter. In many ways, one cannot live without the
other.

Also the examples and the .h filesin the Dream SDK are precious sources of information.

©1995-1997 MetaCreations. All rights reserved.
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1.4.Using the COM dynamic linking

The communication between the 3D Shell and the 3D Components is done by using the
Component Object Model (COM).

The choice was made to use the COM because COM isavery widely spread industry stan-
dard (COM isthe low-level layer on which OLE isbuilt), and is actively promoted by
major industry players. So if you are already familiar with OLE, you will find it easier to
be started with this documentation. COM offers anice and clean C++ like interfacing, and
it is highly recommended to read the excellent book “Inside OLE 2" by Kraig Brock-
schmidt from Microsoft Pressto learn everything about it.

COM users should read the “Using the COM Dynamic Linking” appendix to learn al
details about each technique and how to implement them.

©1995-1997 MetaCreations. All rights reserved.
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1.5.How

the whole thing work s

Identifying Components at startup: Auto Plug-And-Play

When the 3D Shell islaunched, it first identifies which 3D Components are available. To
do this, it looksin its Extension directory and in all sub-directories of the Extension direc-
tory. On Windows, thiswill be the “ext” directory, on MacOS the “Ray Dream Exten-
sions’ folder.

On Windows:
All fileswith the “.rdx” extension are considered as Components.

On MacOS:
All fileswith the ‘RDEX’ file type are considered as Components.

Please note that there is nothing to register anywhere in the operating system to allow the
identification of the Component. It is completely automatic. Even if you develop a Wi n-
dows extension, it isnot necessary to register your Component in the WindowsRe g-
istry Database. This allows atrue Plug-And-Play installation of Components. No
problem for uninstalling, no full path namesissues, no conflicts between different versions
or languages, etc.

For each Component file found, the 3D Shell triesto find the corresponding resources.
Theresources are located in a*.dta’ file next to the Component file on Windows, and in a
“ data’ fileon MacOS. If no “.dta’ file can be found on Windows, then it will try to look
inside the “.rdx” fileitself for any Windows resources. See the “Managing Your User
Interface” appendix for more details on this. So far, let usjust say that storing the Compo-
nent resourcesin a“.dta’ fileisthe preferred solution becauseit is a cross-platform solu-
tion and because the possibilities in terms of user interfaces are better.

Now that the resources are found, the 3D Shell looks for al ‘COMP’ resourcesin thefile
(you can put severa Componentsin the samefile). The*COMP' resource isthe key to
each Component. It identifies the name of the Component, the API version number it is
based on, his own version number, and most important of all, its Family I D and its Class
ID.

Family ID,

Class ID...

Each Component belongs to a Family. The Component Family defines the kind of Com-
ponent the 3D Shell is dealing with: a Shader, a Camera, an Export Filter, etc. All the
itemsin bold in the “3D Pipeline’ chart shown earlier are the available Families.

Each Family as a4 letter code, its Family | D. For example, the Family ID for Shadersis
‘shdr’. Your Component must belong to an existing Family, otherwise the 3D Shell will
not know what to do with it. Family IDs are described for each Component in the Cook-
book and Reference chapters, and there is ageneral table in the “Managing the User Inter-
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face” appendix.
In the COM terminology, a Family is strictly equivalent to an I nterface.

Then Each Component hasa Class | D. Its Class ID describes uniquely your Component.
For example, in the Shader Family, there are different classes of shaders. the Checker
Shader, the Marble Shader, the Wood Shader, etc. Each of this shader has a unique Class
ID. Its Class ID is the Component’ s key to its data and instanciation process. Thisis how
your Component will be able to storeits private datain a Ray Dream Designer file and
retrieveit later.

For thisreason, if you intend to distribute your Component outside, even as a Freeware or
Shareware, it isvital that you register your Class|D from MetaCreationsto ensure
that it will be unique. This Class ID will then be yours forever. This registration process
isdone by e-mail or fax, and it isfree. See the “Managing the User Interface” appendix on
how to register Class IDs.

In the COM terminology, aClassisstrictly equivalent to aClass(did | hear anyone saying
that all thiswas already looking familiar ?).

...And Instances

Sofar, thisisall the 3D Shell does at startup. It simply identifies all available Components
for later use. No Component code has been loaded or executed.

Then comes the time of instanciation. For example, afileisread, and it contains a 3D
Object with aMarble Shader. The 3D Shell does not know anything about Marble Shad-
ers. It just gets the Family ID and the Class ID. Looking up in its Component Class direc-
tory, it the instanciate a Marble shader by asking the Component implementing it to
create one. The Shell just keeps on anonymous pointer on the Component | nstance, and
thiswill be good enough to communicate with it: reading/writing its data, handling the
user interface, executing it, etc. More on this just after.

Note that each instance has its own data values. For example, if another object in thefile
has another Marble texture on it, then a new instance will be created in order to store the
parameters of this second Marble. Thisishow you can have several Marbleswith different
vein spacing on different objects: they are different instances of the same Marble Class.

In the COM terminology, an Instance is strictly equivalent to an I nstance (sorry COM-
savvy readers, you got the point already...).

Communicating between the 3D Shell and the 3D Componen t

Once the Component has been instanciated, the 3D Shell will want to access the different
Component services (i.e. routines). The 3D Shell isthe orchestra director. The 3D Shell
will call your Component routines when needed. “Do not call us, you will be called” could
be the 3D Shell motto.

©1995-1997 MetaCreations. All rights reserved.
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However, there are times when your Component needs additional services from the 3D
Shell. For example, a 3D Import Filter will have to be able to create and manipulate data
structuresin the 3D Shell Database. Therefore, the 3D Shell offers a complete API to do
all kind of things. When aroutine of your Extension is called, you can then call back the
Shell to complete your job.

How the Component User Interface and Public Data is managed by the

3D Shell

Often, the 3D Shell will want to show to the user the Component’ s User Interface so its
parameters can be set before executing. The 3D Shell has unique way to do this so the user
interface of your Component is seamlessly integrated in the Shell user interface, providing
aconsistent and integrated experience to the user.

The key to thisUI integrationisthe‘pM AP’ resource. Thisresourceis aso the key to sav-
ing and reloading the Component’ s data.

The ‘pMAP resource describes atable called the Data Extension Map. During the ini-
tialization process, the Component told the Shell whereits“public data” was stored: thisis
called the Extension Data Buffer, and it islocated in the extension own RAM space. Itis
arecord of the Component parameters (like the vein spacing values and the veins colors of
the Marble Shader). The 3D Shell merely has an anonymous pointer on the Extension
Data Buffer. The Data Extension Map will help the 3D Shell identifying the types and
addresses of each data in the Extension Data Buffer, and build the relationship with the
user interface.

Put simply, the Data Extension Map has two values for each entry: an ID to identify the
user interface element (button, slider, etc.), and atype to identify the kind of data storein
the Extension Data Buffer (Boolean, fixed, long, etc.).

Thisway, when the user changes something like the state of a check box, the Shell is able
to compute the address of the corresponding item in the Data Buffer, and change it
directly. Then it calls the Component and tells it that its data have been changed, so that
the Component can react and update any internal pre-processed data.

User Interface Data Extension Map Data Extension Buffer

Aendarar

REFL FOOL w‘.:’_—:‘,d Foolean £0zelef lection
TRHE FOOL p——q Foolean £0seTransparency

QAL LOHG H- long £3ilhoustteluality
ATIAF EOOL It'\'_—'_','.'v Faalesn flselversamp ling

weta,, % = I

Note that you do not have to write any code to handle your user interface. The Shell reads
the resources describing your user interface from your Component file, and takes care of
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everything: it reacts when the user clicks on buttons, dliders, etc. because it knows about
all these user interface elements.

The other advantage of this mapping system of the 3D Component public dataisthat it
provides the 3D Shell with asimple way to save the Component datain afile and retrieve
it later without any knowledge of the Component’s purposein life. To store the Compo-
nent datain thefile, the Shell just writesthe data ID and the value, and that’ sit. L ater, after
the Component isinstanciated, the 3D Shell will write back this datain the Extension Data
Buffer.

Seethe | 3DExDataExchanger Interface and the “Managing the User Interface of a 3D

Component” Appendix for al details. You will also find details on how to build the user
interface itself (like using ‘View’ resources) and how to compile a .dtafile.

©1995-1997 MetaCreations. All rights reserved.
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Chapter 2 - Before writing a 3D Component

This chapter contains step-by-step / how-to descriptions that will guide you through the
main points of each 3D Component. The Dream SDK examples are often referenced and
commented. You will find this chapter most helpful to quickly understand the main con-
cepts and tasks behind each 3D Extension, especially if you are a newcomer.

Here iswhat you need to do to be able to develop a 3D Component:

1.
2.

3.

Read the Introduction chapter. Choose your platform(s).

If you have problems with some 3D terms, refer to the "Database Overview" chapter
to be more familiar with the 3D concepts and the terminology.

You will probably need to read the appendix related to the user interface management
and the one about the resources you will need to create.

Read the section in this chapter describing the 3D Component you are interested in,
and make the appropriate technical/agorithmic decisions related to your own applica-
tion.

Read the appendix describing the COM dynamic linking to learn more details on how
to implement your 3D Component.

Read the Read-Me filesin the Toolkit that correspond to your platform and compiler
to learn details about building a project and amakefile, compiling and linking, testing,
efc.

Use the examplein the toolkit as aframework to do your own 3D component. Each 3D
Component has an example. Most of the time, these examples are ready to compile,
saving you alot of time and efforts as you start.

Read the "Toolkit Libraries' chapter if you need to learn about failure handling or
math calculations.

©1995-1997 MetaCreations. All rights reserved.
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Chapter 3 - Writing an AtmosphericShader

Family ID : ‘atmo’

COM Interface ID : 11D_IDExAtmosphericShader

COM Interfacefile: I3DEXAB.h

The atmospheric shader is used to create effects such as fog, clouds, etc.

We will develop afog which are only between two altitudes.

Z

Zmax

Zmin

The parameters will be the color of the fog, the two altitudes and the distance of visibility:

typedef struct AtnosData
{

COLOR3D f Col or; /1 Color of the fog
NUMBD  fZmin; /1 Mninmmaltitude of the fog
NUMBD  f Zmex; [l Maxinmum al titude
NUMBD fVisibility; // distance of Visibility
} At nosDat a;

The vigbility in the fog is the maximum distance from the camerato an object to see it.
Beyond this distance everything is hidden by the fog.

So the formulato get the color of the light beam if the distance is less than the visibility is:

distance in the fog
distance of Visibility

Attenuation Factor =1-

FilteredColor = SourceColor “~ Attenuation Factor + FogColor ~ (1- Attenuation Factor)

If the distance is higher than the visibility, the FilteredColor will be the FogColor.
1. Implement the SegmentFilter function.
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Thisfunction is called to create the atmospheric effect on alight beam between two
points.

In our example, the fog is only between Zmin and Zmax, so for each light beam that does
not go across the fog, the color is not affected.
In the other cases, you must find the starting point and the ending point in the fog of the

light beam.
start of beam
First point in the fog
T Last point in the fog
end of beam
To find the coordinates of the First or Last point in the fog, you can use the following
expressions:
Z
Start (S)
Searched Pt (P)
Zmax
XorY
End (E)
, (Zmax- Zy)
Xo = X +(Xp - X)) —m—2
P S E S (ZE _ ZS)
, (Zmax- Zy)
Y, =Y.+ (Y. - Y) Y—m =2
P S E S (ZE _ ZS)

Then you have the distance in the fog by calculating the norm of the vector L astPoint-
FirstPoint.

So the C++ code will be:

HRESULT Atnos::SegnentFilter(TH S_ VECTOR3D* beg, VECTOR3D* end,
COLOR3D* filterQut) {
NUMBD di st ancel nTheFog;
VECTOR3D beanVect or ;
VECTOR3D beam nf ogbeg, beam nf ogend;
NUMBD filtercoef, col orcoef;

©1995-1997 MetaCreations. All rights reserved.
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if (((*beg)[2]>fData.fZmax)&&( (*end)[2]>fData.fzmax)) { // the light
beam i s above the fog
/1 Don't do anything
}
else if (((*beg)[2]<fData.fzZm n)&&((*end)[2]<fData.fzZnmn)) { // the
[ ight beamis under the fog
/1 Don't do anything
}
else { // The Light beam crosses the fog
if ((*beg)[2]>fData.fzZmax) {
beam nf ogbeg][ 2] =f Dat a. f Znax;
beam nf ogbeg[ 0] =(*beg) [0] +((*end)[ 0] -(*beg)[0])/((*end)[ 2] -
(*beg)[2])*(fData.fZmax-(*beg)[2]);
beam nf ogbeg[ 1] =(*beg) [1] +((*end)[1]-(*beg)[1])/((*end)[ 2] -
(*beg)[2])*(fData.fZmax-(*beg)[2]);
}

else if ((*beg)[2]<fData.fZmn) {
beam nf ogbeg[ 2] =f Dat a. f Zm n;
beam nf ogbeg[ 0] =(*beg) [0] +((*end)[ 0] -(*beg)[0])/((*end)[ 2] -
(*beg)[2])*(fData.fzZm n-(*beg)[2]);
beam nf ogbeg[ 1] =(*beg) [1] +((*end)[1]-(*beg)[1])/((*end)[ 2] -
(*beg)[2])*(fData.fzZm n-(*beg)[2]);
}

el se {
beam nf ogbeg=*beg; // the beginning point of the |ight beamis in
the fog

}
if ((*end)[2]>fData.fzZmax) {
beam nf ogend[ 2] =f Dat a. f Znax;
beam nf ogbeg[ 0] =(*beg) [0] +((*end)[ 0] -(*beg)[0])/((*end)[ 2] -
(*beg)[2])*(fData.fzZmax-(*beg)[2]);
beam nf ogbeg[ 1] =(*beg) [1] +((*end) [ 1] -(*beg)[1])/ ((*end)[2] -
(*beg)[2])*(fData.fzZmax-(*beg)[2]);
}

else if ((*end)[2]<fData.fZzZnin) {
beamni nf ogend[ 2] =f Dat a. f Zni n;
beam nf ogend[ 0] =(*beg) [0] +((*end)[ 0] -(*beg)[0])/((*end)[ 2] -
(*beg)[2])*(fData.fzZm n-(*beg)[2]);
beam nf ogend[ 1] =(*beg) [1] +((*end)[1]-(*beg)[1])/((*end)[ 2] -
(*beg)[2])*(fData.fzZm n-(*beg)[2]);
}
el se {
beam nf ogend=*end; // the ending point of the Iight beamis in the
fog
}
beanVect or =beani nf ogend- beam nf ogbeg;
di st ancel nTheFog=beamVect or . Get Norm() ;
filtercoef=kQui ckFi xOne-di stancel nTheFog/fData.fVisibility;
if (filtercoef<kQuickFixZero) {
filtercoef=kQuickFi xZero;
}
col or coef =kQui ckFi xOne-filtercoef;
filterOQut->R=filterQut->R*filtercoef+fData.fCol or.R*col orcoef;
filterOQut->G=filterQut->Gfiltercoef+fData.fCol or.G col orcoef;
filterOQut->B=filterQut->B*filtercoef+fData.fColor.B*col orcoef;

}
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return NOERROR;
}

2. Implement the DirectionFilter function.

Thisfunction is quite similar to the previous one, but you only have the beginning point of
the light beam and its direction. The light beam is supposed to be infinite in this direction.

To determine the distance of the beam in the fog, you calcul ate the entry point and the exit

point of the light beam, then you have the same formulae as SegmentFilter.

HRESULT Atnos::DirectionFilter(TH S_ VECTOR3D* origin, VECTOR3D*
tion, COLOR3D* filterQut) {
NUMBD di st ancel nTheFog;
VECTOR3D beanVect or ;
VECTOR3D beani nf ogbeg, beam nf ogend;
NUMBD filtercoef, col orcoef;

if (((*origin)[2]>fData.fZmax)&&((*direction)][2]>=kQui ckFi xZer
/1 Don't do anything
}
elseif (((*origin)[2]<fData.fZm n)&& (*direction)[2]<=kQui ckFi
{
/1 Don't do anything
}
el se {
if (((*origin)[2]>fData.fzmax)||((*origin)[2]<fData.fZmn))
beam nf ogbeg| 2] =f Dat a. f Znax;
beam nf ogbeg[ 0] =(*origin)[0] +(*direction)[0]*(fData.fZnmax-
gin)[2])/(*direction)[2];
beam nf ogbeg[ 1] =(*origin)[1] +(*direction)[1]*(fData. fZnmax-
gin)[2])/(*direction)[2];
beam nf ogend[ 2] =f Dat a. f Zni n;
beam nfogend[ 0] =(*origin)[0] +(*direction)[0]*(fData.fZm n-
gin)[2])/(*direction)[2];
beam nfogend[ 1] =(*origin)[1] +(*direction)[1] *(fData.fZm n-
gin)[2])/(*direction)[2];
}
else if ((*direction)[2]>kQuickFixzZero) {
bean nf ogbeg=*ori gi n;
beam nf ogend[ 2] =f Dat a. f Znux;
beam nfogend[ 0] =(*origin)[0] +(*direction)[0]*(fData.fZnmax-
gin)[2])/(*direction)[2];
beam nf ogend[ 1] =(*origin)[1] +(*direction)[ 1] *(fData.fZmax-
gin)[2])/(*direction)[2];

else if ((*direction)[2]<kQuickFixZero) {
bean nf ogbeg=*ori gi n;
beam nf ogend[ 2] =f Dat a. f Zmi n;
beam nf ogend[ 0] =(*origin)[ 0] +(*direction)[0]*(fData.fZmn n-
gin)[2])/(*direction)[2];
beam nf ogend[ 1] =(*origin)[1] +(*direction)[ 1] *(fData.fZmn n-
gin)[2])/(*direction)[2];
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}
else { // (*direction)[2]=kQui ckFi xZero
*filterQut=fData.fColor;
return NOCERROR,
}
beanVect or =beani nf ogend- beani nf ogbeg;
di st ancel nTheFog=beamvect or. Get Nor m() ;
filtercoef=kQui ckFi xOne-di stancel nTheFog/fData.fVisibility;
if (filtercoef<kQuickFixZero) {
filtercoef=kQuickFi xZero;
}
col or coef =kQui ckFi xOne-filtercoef;
filterQut->R=filterQut->R*filtercoef+fData.fCol or.R*col orcoef;
filterQut->GfilterQut->Gfiltercoef+fData.fCol or.G col orcoef;
filterQut->B=filterQut->B*filtercoef+fData.fCol or.B*col orcoef;

}
return NOERROR;

}
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Chapter 4 - Writing a Background

Family ID : *back’
COM Interface ID : 11D_IDExBackground
COM Interfacefile: I3DEXAB.h

The background interface is used to put a background in a scene behind every object. This
background can be reflected on objects in the scene.

We will create a Sunset as an example. For this, you must have the West direction, the
color of the sun, and of the sky colors at different points, and the size of the sun.

So the background data will be:

t ypedef BackDat a

{
COLOR3D f SuncCol or; /1 Col or of the sun
NUMBD  f SunDi anet er; /1 Sun Di aneter in degrees
NUMBD fWestDirection; // Direction of Wst in degrees
COLOR3D f Zeni t hCol or; /1 Color in the Zenith
COLOR3D f West Col or; /1 Color in the West Direction (behind the sun)
COLOR3D f East Col or; /1 Color in the opposite direction
COLOR3D f Eart hCol or; /1 Color of the Earth
} BackDat a;

1. You have to implement only one function for the background effect:

HRESULT Sunset :: Get BackgroundCol or (THI S_ VECTOR3D* direction, COLOR3D*
resultColor) {
NUMBD i n_sun;
i n_sun=(*direction)*fWstVector;
if ((*direction)[2]<kQuickFixzZero) { // You |look the earth and not the
sky
*resul t Col or=f Dat a. f Eart hCol or;
}
else if (in_sun>SunLimt) { // You |ook directly at the sun
*resul t Col or =f Dat a. f SunCol or ;
}
el se if (in_sun>kQuickFixZero) { // You look in the West Direction
resul t Col or - >Mbde=0;
resultColor->R =fData.fWstCol or. R*i n_sun+f Data. f Zenit h-
Col or. R* (kQui ckFi xOne-in_sun);
resultCol or->G =fData.fWstCol or. Gin_sun+fData.fZenith-
Col or. G*(kQui ckFi xOne-in_sun);
resultColor->B =fData.fWstCol or.B*i n_sun+f Data. fZenith-
Col or. B*(kQui ckFi xOne-i n_sun);
}
else { // You look in the East Direction
resul t Col or - >Mbde=0;

resultCol or->R =-fData.fEast Col or. R*i n_sun+f Dat a. f Zeni t h-
Col or. R* (kQui ckFi xOne+i n_sun) ;
resultCol or->G =-fData.fEast Col or. Gi n_sun+fDat a. f Zeni t h-
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Col or. G*(kQui ckFi xOne+i n_sun);

resultColor->B  =-fData. fEast Col or.B*i n_sun+fDat a. f Zeni t h-
Col or. B* (kQui ckFi xOne+i n_sun) ;
}
return NOERROR,

}
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Chapter 5 - Writing a Camera

Family ID : ‘came
COM Interface ID : 1ID_IDExCamera
COM Interfacefile: I3DExCam.h

Cameras define the projection from the 3D world to the 2D screen on which theimageis
rendered. Like with a photographic camera, one can design different type of cameraswith
various lens, focal value, zoom effects, etc. Projection is not restricted to the conical pro-
jection (the natural projection in your eye), so isometric or fish-eye cameras can be
designed.

In this part, we will develop two examples:
a Spherical Camera, called SphereCamera, which can see all around.
aConica Camera, called ConicCamera, which isasimplified conical camera. You
only have alens with afocal of 50mm and a zoom.

1. Think about the parameters needed by your camera. For example, in a Spherica Cam-
era, you need to know the aperture (360° correspond to all the 3D Space), and a Zoom fac-
tor to set the entire view in the production frame. Those parameters will be set by the user,
so to help the shell modifying those parameters, create a structure like this one::

typedef struct CaneraData {
short fZoonCoef;
short fAngle;

} CaneraDat a;

2. You obtain the transformation data between the Globa Coordinates System and the
Screen Coordinates System (read the Database Overview chapter for more explanation
about the different coordinates systems), with the function :

HRESULT | 3DExCaner a: : Set Transf orml TRANSFORMBD* transform ;

You must copy the transformation data and not keep the pointer. The transformation data
are organized in amatrix and a vector (Rotation and Tranglation).

The formulae to get the Screen Coordinates from the Global Coordinatesis
(8)=[R)(cG)+T
and because R is normalized the inverse transformation is

(©) = [R](S-T)

(S) isthe position in the Screen Coordinates System,
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(G) the same position in the Global Coordinates System,
T isthe trandation vector in Screen Coordinates,
R isthe rotation matrix,

the factor c is here to respect the 3D Units and the Points Units. A 3D Unit isequal to 4
inches or 288 Points Unit.

You can find the transformation functions in C++ (Local ToGlobal, Global ToLocal, Local-
ToGlobal Vector, Global ToLocal Vector) in the camera examplesfiles.

To copy the transformation data in your object you only have to do this:

HRESULT Spher eCaner a: : Set Tr ansf or m{l TRANSFORMBD* transfornm) {

fTransforme*transform // copy the data in the field fTransform of your
obj ect

return NCERROR,

}

If you think you can make any preprocess calculations with the transformation data, do it
in this function.

3. You have only two calls to implement for the Camera projection :

BOOLEAN | 3DExCaner a: : Proj ect 3DTo2D( VECTOR3D* position, VECTOR2D* screen-
Posi tion, NUM3BD* resul tDi stanceToScreen);

BOOLEAN | 3DExCaner a: : Cr eat eRay( VECTOR2D* screenPosition, VECTOR3D*
resultOrigin, VECTOR3D* resultDirection);

The function Project3DT02D gives the coordinates of the projection on the Screen of the
3D point, and the distance from the screen to the 3D point. If the 3D point isnot in front of
the camera, you will return FALSE.

In the SphereCamera the two screen coordinates will be the latitude and the longitude:
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Spoherical Projection convention

So for the Spherical projection you will have :

BOOLEAN Spher eCaner a: : Proj ect 3DTo2D( THI S VECTOR3D* position, VECTOR2D*
resul t Scr eenPosi ti on, NUMBD* resul tDi stanceToScreen) {
VECTOR3D t empV;
NUMBD t het a, phi, x2, z2, r;

position->Normalize(temV);

/'l Get the Spherical coordinates : ro,theta, phi
x2=t enpV[ 0] *t empV[ 0] ;

z2=tenmpV[ 2] *tempV| 2] ;

r=x2+z2;

r.Get SquareRoot (r); // Must be calculate to get phi

t het a. Degr eeSet FrontSi nCos(tenpV[ 0], -tenpV[ 2] ) ;
phi . Degr eeSet Fr onSi nCos(tenmpV[1],r);

if (theta>kQuick180) {
t het a- =(kQui ck180<<1); // theta : -180° to 180° (theta - 360)

}

i f (phi>kQuick180) {
phi - =(kQui ck180<<1); /1 phi : -90° to 90°
}

(*resul t ScreenPosi ti on)[ 0] =t het a* Coef ;
(*resul t ScreenPosi tion)[ 1] =phi * Coef ;
*resul t Di stanceToScr een=posi ti on->Get Norn() ;

return TRUE; // a spherical canera can see everything in the scene
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}

In the Conical Camera example, we use the standard definition of the conical projection :

Projection
Plane
Center of Y
rojection
7 proj y
0
S Z
F

So the formulae will be:

(where Fisthe focal length).

The screenPosition must be in Point Units so we use this conversion formulae:

288 10
Lin Pts = Lin mm
4 254

because 25.4mm isequal to 1 inch and 288 Points Unitsis equal to 4 inch.
So for the ConicCamera, you will have::

BOOLEAN Coni cCaner a: : Proj ect 3DTo2D( THI S_ VECTOR3D* position, VECTOR2D*
resul t Scr eenPosi ti on, NUMBD* resul tDi stanceToScreen) {

NUMBD t enp;

*resul t Di stanceToScreen=-(*position)[2]; // Distance to the screen (-
z) in Point Unit

t enp=kQui ckFocal *kQui ck288*kQui ckmmro3DUnit; // Focal length in Point
Uni t
if ((*position)[2]!=tenmp) {
tenp-=(*position)[2]; // Distance fromthe 3D Point to the Focal
Poi nt
(*resul t ScreenPosition)[0]=(*position)[0]*kQuickFocal /tenp*fQuick-
Zoom
(*resul t ScreenPosition)[1]=(*position)[ 1] *kQui ckFocal /tenp*f Qui ck-
Zoom
/1 Conical projection

}

el se {
(*resul t ScreenPosi tion)[ 0] =kQui ckFi xZer o;
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(*resul t ScreenPosi tion)[ 1] =kQui ckFi xZer o;
/1 the Point is in the Focal Plane so it can't be projected on the
screen

}

*resul t ScreenPosi ti on*=f Coef; // Conversion in Point Unit

if (*resultDi stanceToScreen<=kQui ckFi xZer 0)
return FALSE, // The point is behind the Canera
el se
return TRUE, // The point is in front of the Canera, it's visible.

}

Now, we have to implement the function that allows Ray-tracing. It creates aray from a
screen point. Asyou see in the spherical projection figure, the ray aways starts on the
same point in the Spherical Camera example, that’s why the resultOrigin will always be
(0,0,0) in the Screen Coordinates System. In the SphericCamera, the screenPosition are
the two angle theta and phi, so the resultDirection is very easy in the Screen Coordinates

System :. And the CreateRay function will be:
a( - s'n(ﬂ\ A~ N
Y xF

éy:gn(y— F. 7 xZ00m

z = - cog(q) xcog(j )

BOOLEAN Spher eCanera: : CreateRay(THI S VECTOR2D* screenPosition,
VECTOR3D* resultOrigin, VECTOR3D* resultDirection) {
VECTOR3D Spher ePos;
NUMBD t het a, phi, si nt het a, cost het a, si nphi, cosphi ;

Spher ePos|[ 0] =Spher ePos[ 1] =Spher ePos|[ 2] =kQui ckFi xZer o;
Local Tod obal (& Transf or m &Spher ePos, resul tOri gi n) ;
/1 Origin of the Ray is the center of the Sphere.

t het a=(*screenPosi tion)[ 0]/ Coef;
phi  =(*screenPosition)[ 1]/ Coef;

t het a. Degr eeGet Si nCos(si nt het a, cost het a) ;
phi . Degr eeGet Si nCos( si nphi, cosphi);

Spher ePos[ 0] =si nt het a*cosphi ;

Spher ePos|[ 1] =si nphi ;

Spher ePos[ 2] =- cost het a*cosphi ;

/1 3D Coordinates (x,y,z) from Spherical coordinates (r=1,theta, phi)

Local Tod obal Vect or (& Transf or m &Spher ePos, resul t Di recti on);
resultDirection->Normalize(*resultDirection);
/1 Direction vector nust be in d obal Coordi nates System and Normali zed

/1 Angle selection
if ((theta>QuickAngle)]|| (theta<-QuickAngle)) {
return FALSE; // Not in front of the canera

}
if ((phi>(QuickAngle>>1))]|| (phi<-(QuickAngle>>1))) {
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return FALSE;, // Not in front of the canera

}

return TRUE;
}

For the Conical Camera, it is the opposite transformation of the Project3DTo2D function:

BOOLEAN Coni cCaner a: : Creat eRay(THI S_ VECTOR2D* screenPosition, VECTOR3D*
resultOrigin, VECTOR3D* resultDirection) {
VECTOR3D tempV;

/1 Origin of the Ray is on the Screen in the G obal Coordi nates System
tenmpV[ 0] =(*screenPosition)[0]/fCoef/fQui ckZoom

tenmpV[ 1] =(*screenPosition)[1]/f Coef/fQui ckZoom

t empV[ 2] =kQui ckFi xZer o;

Local Tod obal (& Transform & enpV, resul t Ori gi n) ;

/1l Create the vector fromthe Center of projection to the screenPoint
t empV[ 2] =- kQui ckFocal ;

Local Tod obal Vect or (& Transform & enpV, resul t Di recti on);

resultDirection->Nornalize(); // the Direction vector nust be nornal -
i zed

return TRUE;
}

4. You can also add the function Clip3D to increase the speed of the Z-Buffer. This func-
tion have to cut afacet when it goes out of the screen and return a polygon. Because this

kind of functionsisvery complicated, you will find alibrary that do it for a conic or iso-

metric camera. You do not have to do it for a spherical camera because every point of the
spaceisvisible. So for the conic camera you will have :

ULONG Coni cCanera: : Cl i p3D( FACET3D* | ocal Facet, VERTEX3D* |ocal Verti ces,
FACET3D* caneraFacet, VERTEX3D* caneraVerti ces,
NUMBD* cli pBox) {
return ConicCip3D( kQuickFocal, |ocal Facet, |ocal Vertices, cam
eraFacet, caneraVertices, clipBox);
}
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Chapter 6 - Writing a Deformer

Family ID : ‘defo’
COM Interface ID : 1ID_IDExDeformer
COM Interfacefile : I3BDExDfr.h

A deformer gives you the possibility to deform objects with some geometric rules. For
example, we will implement a deformer which can make a pyramid with a cube or an egg
with a sphere.

1. We have to know the parameters used by our deformer. We can change the axis and we
have to enter two different scaling values for the beginning and the end of the two perpen-
dicular axis. So we will have a data structure like this one:

typedef struct DefornerData {

| ong f AXi s; /1 1D of the axis (AXEX AXEY or AXEZ)

NUMBD fUBegScale; // First scaling of the Uaxis (if Zis selected,
it is the X axis)

NUNMBD fUEndScal e; // Last scaling of the Uaxis (if Zis selected,
it is the X axis)

NUMBD fvBegScale; // First scaling of the Vaxis (if Zis selected,
it is the Y axis)

NUNMBD fVEndScal e; // Last scaling of the Uaxis (if Z is selected,
it is the Y axis)

BOX3D f Boundi ngBox; // Boundi ng Box

} Def orner Dat a;

2. If, to deform the objects, you only have to change the coordinates of each point, you can
implement only the Defor mPoints function. But if your deformer can change the structure
of the objects (add facets or patches for examples) you have to implement the Defor m-
Facets and Defor mPatches functions. In our case of the pyramidal deformer we only
need the function Defor mPoints, so we will return ResultFromScode(E_NOTIMPL) with
the two other functions.

The scaling will be linear between the beginning and the end of the bounding box along
the right axis. The code will be like this:

HRESULT Def orner:: Def ornPoi nt (TH S_ VECTOR3D* poi nt, VECTOR3D* result)
{ short u,v,w
NUMBD wr el ati ve;
i f(fData.fAxi s==kAxi sX)
{ u=1; // Y AXis
v=2; |/ Z AXis
w=0; // X AXis
}
el se if (fData.fAxi s==kAxi sY)
{ u=2; I/ Z AXis
v=0; // X AXis
w=l; // Y AXis
}
el se
{ u=0; // X Axis
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v=l; /] Y AXis
w=2; [] Z Axis
}
i f ((fData.fBoundi ngBox.fMax[w]-fData.fBoundi ngBox. fM n[w] ) ==kQui ck-
Fi xZer o)
{ (*result)=(*point);
return NOERROR;

}

wrelative=((*point)[w] - fData.fBoundi ngBox.fM n[w])/(fData.fBounding-
Box. f Max[ w] - f Dat a. f Boundi ngBox. fM n[w] ) ;

if ((fData.fUEndScal e+f Dat a. f UBegScal e) ==kQui ckFi xZer o)

{ (*result)[u] =kQui ckFi xZer o;

}

el se

{
(*result)[u] = (*point)[u] * (fData.fUBegScale + welative *
(f Dat a. f UEndScal e- f Dat a. f UBegScal e) ) ;

}
if ((fData.fVEndScal e+f Dat a. f VBegScal e) ==kQui ckFi xZer o)

{ (*result)[v]=kQui ckFi xZero;
}

el se

{
(*result)[v] = (*point)[v] * (fData.fVBegScale + welative *
(f Dat a. f VEndScal e- f Dat a. f VBegScal e) ) ;

}
(*result)[w] = (*point)[w;
return NOERROR,

}

3. Asyou seein this code, you have to know the bounding box before any deformation of
apoint. Thereisafunction in the Deformer interface that allowsthis: SetBBox. Thisfunc-
tion iscalled before calling any deformation functions. So if you want to make any prepro-
cessing calculations, you can do them in the functions SetBBox or
ExtensonDataChanged. In our case, we do not make any preprocessing, so we have a
very simple SetBBox function:

HRESULT Def orner:: Set BBox( THI S_ BOX3D *bbox)

{
f Dat a. f Boundi ngBox=*bbox; // copy the bbox in a field of the object
Def or ner .
return NOERROR,

}

Note: If you want to implement the functions Defor mFacets or Defor mPatches, you will
haveto usethel Shiterator to get the different facets or patches one by one. Then you will
have to return the facets or the patches with the callback function like in the Geometric
Primitive.
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Chapter 7 - Writing a Geometric Primitive

Family ID : *primy’
COM Interface ID : 11D_IDExGeometricPrimitive
COM Interfacefile : I3SDExPrim.h

Geometric primitive describe geometric objects (like a sphere, a cube, etc.).

This component needs to return alist a bicubic patches or facets. It can also give some
information on its UV Space.

In this part, we will describe three different implementations of a Geometric Primitive :
a 3D Star, based on facets with a special UV-Space

a Teapot, based on bicubic patches

&

a Sphere, based on Ray tracing definition

When you drop a geometric primitive in the scene, the shell can create a dialog to change
some parameters of your object. We will use this feature for the 3D Star, to change the
number of branches. So for this example, we will create aview and return its ID with the
function GetResl D (see I3DExDataExchanger interface for more details). Otherwise you
return -1 with the function GetResl D.

1. For the 3D Star, we have to create a data structure:

typedef struct StarData
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{
short fNbBranches; // Nunber of Star’s branches
} StarData;

2. For each primitive, you have to decide if you return bicubic patches of facets. The Z-
buffer in the perspective window can not use the ray-tracing information so you have to
create patches or facets for the Sphere too.

The shell knows your choice between facets and patches by calling the function | sPatch-

Based:
BOOLEAN Facets: : | sPat chBased()
{
return FALSE, // The 3D Star is based on facets and not on Patches
}

3. Then you have to implement one of these two functions. EnumPatches and EnumFac-
ets.
This Figure show you how to create the middle section of the Star.

360°/(2*Nb Branches)

How to construct a star

For the 3D Star we only use facets, so we implement EnumFacets:

HRESULT Facets:: Enunfacets(TH S_ EnunfFacet sCal | back cal | back, void*
privData, NUMBD fidelity)
{
short i;
FACET3D St ar Facet ;
VECTOR3D v1, v2, nor nal
NUMBD angl e, angl est ep, radi us1, radi us2, radi usswap, si nus, cosi nus;
NUMBD k360=Short ToQui ckFi x(360) ;

angl e=kQui ckFi xZer o;

angl est ep=(k360/ Short ToQui ckFi x(f Dat a. f NoBr anches) ) >>1;
radi us1l=Short ToQui ckFi x(10) ;

radi us2=Short ToQui ckFi x(4);
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/'l Inferior Facets

/1 -- Common Vertex of each inferior facets

St ar Facet . fVertices[O0].fVertex[ 0] =kQui ckFi xZer o;

St ar Facet.fVertices[O0].fVertex[ 1] =kQui ckFi xZer o;

Star Facet . fVertices[O0].fVertex[2]=Short ToQui ckFi x(-4);

for (i=0;i<(fData.fNbBranches*2);i ++)
{
/1 Variable information of the comon vertex
St ar Facet . f UYSpace=0;
St ar Facet . fVertices[0].fu=kQui ckFi xOne;
St ar Facet . fVertices[0].fv=(angl e+(angl est ep>>1))/k360;
/1 Second Vertex information
angl e. Degr eeCGet Si nCos( si nus, cosi nus) ;
St ar Facet . fVertices[1].fVertex[0] =cosinus*radi usl;
St ar Facet . fVertices[1].fVertex[ 1] =si nus*radi usi,;
St ar Facet. fVertices[1].fVertex|[ 2] =kQui ckFi xZer o;
St ar Facet. fVertices[1].fu=kQui ckFi xOneHal f;
St ar Facet . f Vertices[ 1] . fv=angl e/ k360;
/'l Last Vertex information
angl e += angl est ep;
angl e. Degr eeCet Si nCos( si nus, cosi nus) ;
St ar Facet . fVertices[2].fVertex[0] =cosi nus*radi us2;
St ar Facet . fVertices[2].fVertex[ 1] =si nus*radi us2;
St ar Facet . fVertices[2].fVertex[2] =kQui ckFi xZer o;
St ar Facet . fVertices[2].fu=kQui ckFi xOneHal f;
St ar Facet . f Vertices[2].fv=angl e/ k360;
/1 Swap the radius to "alternate" the point
radi usswap=r adi usl; radi usl=radi us2; r adi us2=r adi usswap;
/1 Normal vector calculation
v1=StarFacet.fVertices[1l].fVertex-StarFacet.fVertices[O].fVertex;
v2=St ar Facet.fVertices[2].fVertex-StarFacet.fVertices[O].fVertex;
nor mal =v2~v1; // Vectorial product
normel . Normal i ze(); // Normalization
Star Facet . fVertices[O].fNornal =normal; // the 3 points have the sane
normal vector
St ar Facet . f Vertices[ 1] . f Nor mal =nor mal
St ar Facet . f Vertices[2].fNormal =nor mal
/1 callback is used to give a facet to the shel
cal | back( &St ar Facet, privDat a) ;

/1 We use the sanme algorithmfor the superior facets
/1 there is only the commopn vertex which is different

angl e=kQui ckFi xZer o;
radi us1l=Short ToQui ckFi x( 10);
radi us2=Short ToQui ckFi x(4);

/'l Superior Facets

Star Facet . fVertices[0].fVertex[ 0] =kQui ckFi xZer o;

Star Facet . fVertices[0].fVertex[1] =kQui ckFi xZer o;

Star Facet . fVertices[0].fVertex[?2]=Short ToQui ckFi x(4);
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for (i=0;i<(fData.fNbBranches*2);i ++)

{ /'l First-Common point
St ar Facet . f UVSpace=0;
St ar Facet . fVertices[0]. fu=kQui ckFi xZer o;
Star Facet.fVertices[0].fv=(angl e+(angl est ep>>1))/k360;
/'l Second poi nt
angl e. Degr eeCGet Si nCos( si nus, cosi nus) ;
Star Facet.fVertices[1].fVertex[0]=cosinus*radi usl;
Star Facet.fVertices[1].fVertex[ 1] =sinus*radi usl;
Star Facet.fVertices[1].fVertex[2] =kQui ckFi xZer o;
Star Facet.fVertices[1].fu=kQui ckFi xOneHal f;
Star Facet . fVertices[1].fv=angl e/ k360;
/1 Last point
angl e += angl est ep;
angl e. Degr eeCGet Si nCos( si nus, cosi nus) ;
Star Facet . fVertices[2].fVertex[0]=cosinus*radi us2;
Star Facet.fVertices[2].fVertex| 1] =sinus*radi us2;
St ar Facet . fVertices[2].fVertex|2] =kQui ckFi xZer o;
Star Facet.fVertices[2].fu=kQui ckFi xOneHal f;
St ar Facet . fVertices[2].fv=angl e/ k360;
/1 radius swapping
radi usswap=r adi usl; radi usl=radi us2; radi us2=r adi usswap;
/1 Normal cal culation
v1=St ar Facet.fVertices[1].fVertex-StarFacet.fVertices[O0].fVertex;
v2=St ar Facet.fVertices[2].fVertex-StarFacet.fVertices[O0].fVertex;
nor mal =v17v2;
normal . Normal i ze() ;
St ar Facet . fVertices[0]. f Nor mal =nor nal
St ar Facet . fVertices[1].fNormal =nor nal
St ar Facet . fVerti ces[ 2] . fNormal =nor nal
/1 callback function
cal | back( &St ar Facet, privDat a) ;

}

return NOERROR,
}

We do not use the fidelity parameter because each facets match perfectly the surface of the
object. But for example with a sphere, if the fidelity is greater you must return more facets
to better match the sphere.

4. For the Teapot example which uses bicubic patches, we have alist of patches and we
only call the callback function for each patches. The sphere example is different because
we create each patches (one eighth of a sphere) with a mathematical formula.

/1 Teapot Exanple :

HRESULT Teapot :: EnunPat ches(THI S_ EnunPat chesCal | back cal | back, voi d*
pri vDat a)
{ short indexPatch
PATCH3D Teapot Pat ch;
short uPat chl ndex, vPat chl ndex;
VECTOR3D aVert ex;
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Teapot Pat ch. f u[ 0] =kQui ckFi xZer o;
Teapot Pat ch. f u[ 1] =kQui ckFi xZer o;
Teapot Pat ch. f v[ 0] =kQui ckFi xZer o;
Teapot Pat ch. f v[ 1] =kQui ckFi xZer o;
Teapot Pat ch. f UVSpace=0;

Teapot Pat ch. f Reser ved=0;

for (indexPatch=0;i ndexPat ch<NUM PATCHES; i ndexPat ch++)
{ for (uPatchl ndex=0; uPat chl ndex<4; uPat chl ndex++)

{

for (vPatchl ndex=0; vPat chl ndex<4; vPat chl ndex++)
{

aVert ex[ 0] =Doubl eToQui ckFi x(vertex[vertex_index[i ndex-
Pat ch] [ uPat chl ndex] [ vPat chl ndex] -1][0]);

aVert ex[ 1] =Doubl eToQui ckFi x(vertex[vertex_i ndex[i ndex-
Pat ch] [ uPat chl ndex] [ vPat chl ndex] -1][1]);

aVert ex[ 2] =Doubl eToQui ckFi x(vertex[vertex_i ndex[i ndex-
Pat ch] [ uPat chl ndex] [ vPat chl ndex] -1][2]);

aVert ex*=kTeapot Si ze;

Teapot Pat ch. f Verti ces[ uPat chl ndex] [ vPat chl ndex] =aVert ex;

}
}
cal | back( &Teapot Pat ch, pri vDat a) ;
}
return NOERRCR,
}

/'l Sphere Exanple :

/1 Functions to create the Patches of the Sphere
/1 -- Inverse a Patch
voi d I nversePat ch( PATCH3D *aPat ch) {

VECTOR3D swapPoi nt;

for (short uu=0;uu<=1; uu++)
{
for (short vv=0;vv<4;vv++)
{
swapPoi nt =aPat ch- >f Verti ces[uu] [ vv];
aPat ch->f Verti ces[uu] [ vv] =aPat ch->f Verti ces[ 3-uu] [vv];
aPat ch->f Verti ces[ 3- uu] [ vv] =swapPoi nt ;
}
}
}

/| Create Default Patches of the Sphere
voi d MakeSpher ePat ch( PATCH3D *aPat ch, NUMBD di , NUMBD dj , NUMBD dk)

{
NUMBD magi cFact or =Doubl eToQui ckFi x( 0. 552284749830793398) ;
NUMBD swapUV;

aPat ch->f Vertices[0][3][0] =kQui ckFi xZer o;
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aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

aPat ch->f Verti
aPat ch->f Verti
aPat ch->f Verti

ces[ 0] [3][1] =kQui
ces[ 0] [ 3][ 2] =dk;

ces[ 0] [ 2] [ O] =megi
ces[0][2][1] =kQui
ces[0][2][ 2] =dk;

ces[0][1][0] =di ;
ces[ 0] [ 1] [ 1] =kQui
ces[ O] [ 1] [ 2] =megi

ces[0][0][0O] =di;
ces[ 0] [ 0] [ 1] =kQui
ces[ 0] [ 0] [ 2] =kQui

ces[1][0][0] =di;
ces[ 1] [ O] [ 1] =megi
ces[1][ 0] [ 2] =kQui

ces[2][ 0] [ O] =magi
ces[2][0][1] =dj;
ces[2][0][ 2] =kQui

ces[ 3] [ 0] [ 0] =k Qui
ces[3][0][1]=dj;
ces[ 3] [ 0] [ 2] =k Qui

ces[ 3][1][ 0] =kQui
ces[3][1][1]=d];
ces[ 3] [ 1] [ 2] =megi

ces[3][2][ 0] =kQui
ces[3][2][ 1] =megi
ces[3][2]][ 2] =dk;

ces[ 3] [ 3][ 0] =kQui
ces[3][3][ 1] =kQui
ces[ 3][3][ 2] =dk;

ces[2][3][ 0] =kQui
ces[2][3][ 1] =kQui
ces[2][3][ 2] =dk;

ces[ 1] [ 3] [ 0] =kQui
ces[ 1] [ 3][ 1] =kQui
ces[1][3][ 2] =dk;

//m ddl e of the Patch (control
aPat ch->f Vertices[ 1] [ 2] [ 0] =magi cFact or *di ;
aPat ch->f Vertices[1][ 2] [ 1] =nagi cFact or * nagi cFact or *dj ;

aPat ch->f Verti

ces[1][2][ 2] =dk;

ckFi xZer o;

cFactor*di ;
ckFi xZer o;

ckFi xZer o;
cFact or *dk

ckFi xZer o;
ckFi xZer o;

cFactor*dj ;
ckFi xZer o;
cFactor*di ;
ckFi xZer o;
ckFi xZer o;
ckFi xZer o;
ckFi xZer o;
cFact or *dk
ckFi xZer o;

cFactor*dj ;

ckFi xZer o;
ckFi xZer o;

ckFi xZer o;
ckFi xZer o;

ckFi xZer o;
ckFi xZer o;

poi nt s)

aPat ch->f Vertices[ 2] [ 2] [ 0] =magi cFact or *nagi cFact or *di ;
aPat ch->f Vertices[2][ 2] [ 1] =magi cFact or *dj ;

aPat ch->f Verti

ces[2][2]][ 2] =dk;
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aPat ch->f Vertices[1][1][ 0] =di ;
aPat ch->f Vertices[ 1] [ 1] [ 1] =magi cFact or *dj ;
aPat ch->f Vertices[ 1] [ 1] [ 2] =magi cFact or *dk;

aPat ch->f Vertices[ 2] [ 1] [ O] =magi cFact or *di ;
aPat ch->f Vertices[2][1][ 1] =dj;
aPat ch->f Vertices[ 2] [ 1] [ 2] =magi cFact or *dk;

/1 Patch's uv-space information
i f (di >kQui ckFi xZer o)

i f (dj >kQui ckFi xZer o)

{
aPat ch- >f u[ 0] =kQui ckFi xZero; [/ O
aPat ch- >f u[ 1] =kUmax>>2; /1 to 90°
}
el se {
aPat ch- >f u[ 0] =( kUmax+kUnmax+kUmax) >>2; [/ 270°
aPat ch- >f u[ 1] =kUmax; /1 to 360°
}
}
el se

i f (dj >kQui ckFi xZer o)
{
aPat ch->f u[ 0] =kUmax>>2; // 90°
aPat ch- >f u[ 1] =kUmax>>1; // to 180°
}

el se
{
aPat ch- >f u[ 0] =kUmax>>1; /1 180°
aPat ch->f u[ 1] =( kUmax+kUnax+kUmax) >>2; // to 270°
}
}

i f (dk>kQui ckFi xZer o)
{
aPat ch- >f v[ 0] =kVmax>>1; // 90°
aPat ch- >f v[ 1] =kVmax; /1 to 180°
}

el se

{
swapUv=aPat ch- >f u[ 0] ;
aPat ch->f u[ 0] =aPat ch->f u[ 1] ;
aPat ch- >f u[ 1] =swapUuV;

aPat ch- >f v[ 0] =kVmax>>1;
aPat ch- >f v[ 1] =kQui ckFi xZer o;
}

i nt signi=(di >kQui ckFi xZer0?1:-1);
i nt signj=(dj>kQui ckFi xZero0?1:-1);
i nt signk=(dk>kQui ckFi xZer0?1:-1);
i f (signi*signj*signk<0)

{
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I nver sePat ch(aPat ch) ;

}

aPat ch- >f UVSpace=0;
aPat ch- >f Reser ved=0;

}

HRESULT Spher e: : EnunPat ches( EnunPat chesCal | back cal | back, void* priv-
Dat a)

{

PATCH3D aPat ch;

MakeSpher ePat ch( &Pat ch, kDef aul t Spher eRadi us, kDef aul t Spher eRadi us,
kDef aul t Spher eRadi us) ;

cal | back( &Pat ch, privDat a) ;

MakeSpher ePat ch( &Pat ch, - kDefaul t Spher eRadi us, kDef aul t Spher eRadi us,
kDef aul t Spher eRadi us) ;

cal | back( &Pat ch, pri vDat a) ;

MakeSpher ePat ch( &Pat ch, kDef aul t Spher eRadi us, - kDef aul t Spher eRadi us,
kDef aul t Spher eRadi us) ;

cal | back( &Pat ch, privDat a) ;

MakeSpher ePat ch( &Pat ch, -kDef aul t Spher eRadi us, - kDef aul t Spher eRadi us,
kDef aul t Spher eRadi us) ;

cal | back( &Pat ch, pri vDat a) ;

MakeSpher ePat ch( &Pat ch, kDef aul t Spher eRadi us, kDef aul t Spher eRadi us, -
kDef aul t Spher eRadi us) ;

cal | back( &Pat ch, privDat a) ;

MakeSpher ePat ch( &Pat ch, - kDefaul t Spher eRadi us, kDef aul t Spher eRadi us,
- kDef aul t Spher eRadi us) ;

cal | back( &Pat ch, privDat a) ;

MakeSpher ePat ch( &aPat ch, kDef aul t Spher eRadi us, -kDef aul t Spher eRadi us,
- kDef aul t Spher eRadi us) ;

cal | back( &Pat ch, privDat a) ;

MakeSpher ePat ch( &aPat ch, - kDef aul t Spher eRadi us, -kDefaul t Spher eRadi us,
- kDef aul t Spher eRadi us) ;

cal | back( &aPat ch, pri vDat a) ;

return NOERROR;

5. Now, you have to give the Bounding Box of your object with the function GetBBox:

HRESULT Spher e: : Get BBox( BOX3D* bbox)

{ bbox->f M n[ 0] =- kDef aul t Spher eRadi us;
bbox- >f Max[ 0] =kDef aul t Spher eRadi us;
bbox->f M n[ 1] =- kDef aul t Spher eRadi us;
bbox- >f Max[ 1] =kDef aul t Spher eRadi us;
bbox->f M n[ 2] =- kDef aul t Spher eRadi us;
bbox- >f Max[ 2] =kDef aul t Spher eRadi us;
return NOERRCR,

HRESULT Teapot : : Get BBox( BOX3D* bbox)
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{
return Result FronScode(E_NOTIMPL); // the bounding box is cal cul ated

by the shell

HRESULT Facets: : Get BBox( BOX3D* bbox)
{ bbox->f M n[ 0] =- Short ToQui ckFi x(10);
bbox- >f Max[ 0] =Short ToQui ckFi x(10) ;

bbox->f M n[ 1] =- Short ToQui ckFi x( 10) ;
bbox- >f Max[ 1] =Shor t ToQui ckFi x(10) ;
bbox->f M n[ 2] =- Short ToQui ckFi x(4) ;
bbox- >f Max[ 2] =Short ToQui ckFi x(4);
return NOERROR,

}

The hot point is automatically at the coordinates (0,0,0) in the local coordinate system, so
if you want to have an hot point not in the center of the object you have to trandate the
object in itslocal coordinate system.

6. After you have defined al the geometric calls, you can define the shading calls (i.e. the
UV-Space). Because it istoo difficult to define an UV Space on the teapot, we only define
an UV -Space on the sphere and the 3D Star.

The UV Space are aso use in the geometric calls, each point is given an uv-coordinate and
an uv-space ID.

Then you have to give some more information about the uv-spaces. Thiswill be done with
the functions GetUV SpaceCount, GetUV Space and UV2XY Z:

The first one gives the number of defined uv-spaces on the object.

The second one gives information about each UV Space of the object.

And the last one gives a method to calculate 3D coordinates with only uv-coordinates, if
this function is not implemented, a standard interpolation of the facets or the patches will
be used to calculate 3D coordinates.

ULONG Facet s: : Get UVSpaceCount ()
{

return 1; // the star is describe with only 1 UV-Space

}

HRESULT Facets:: Get UVSpace( ULONG uvSpacel D, UVSpacel nf o* uvSpacel nf 0)
{
if (uvSpacel D == 0)
{
uvSpacel nfo->f M n[ 0] = kQui ckFi xZero; // u coordinate goes fromO to
1
uvSpacel nf o- >f Max[ 0]
uvSpacel nf o->f M n[ 1]
1
uvSpacel nf o- >f Max[ 1] = kQui ckFi xOne;
uvSpacel nf o- >f W apar ound][ 0] FALSE; // No Wap around
uvSpacel nf o- >f W apar ound][ 1] FALSE;
uvSpacel nf o- >f | sFl at Sur f ace FALSE; // the surface is not flat

}
return NOERROR,

kQui ckFi xOne;
kQui ckFi xZero; // v coordinate goes fromO to
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}

/1 W use the default interpolation nethod to get all the coordinate of a
point in UV Coordi nates
HRESULT Facets:: UV2XYZ( VECTOR2D* uv, BOOLEAN* inUVSpace, VECTOR3D*
resul t Position) {
return Result FronScode( E_NOTI MPL) ;

}

ULONG Spher e: : Get UVSpaceCount ()

{
return 1; // the Sphere is describe with only 1 UV-Space
}
HRESULT Sphere: : Get UVSpace( ULONG uvSpacel D, UVSpacel nf o* uvSpacel nf 0)
{
if (uvSpacel D == 0)
{
/'l UV-Space is equival ent to Spherical Coordinates
uvSpacel nf o->f M n[ 0] = kQui ckFi xZer o; /1 u coordinate goes from
0 to 360
uvSpacel nf o- >f Max[ 0] = kUmax;
uvSpacel nfo->f M n[ 1] = kQui ckFi xZer o; /1 v coordinate goes from
0 to 180
uvSpacel nf o- >f Max[ 1] = kVnex;
uvSpacel nf o- >f W apar ound[ 0] = TRUE;
uvSpacel nf o- >f W apar ound[ 1] = FALSE;
uvSpacel nfo->f| sFl at Surface = FALSE;, // the surface is not flat
}
return NOERRCR,
}

HRESULT Sphere:: UV2XYZ( VECTOR2D* uv, BOOLEAN* inUvSpace, VECTOR3D*
resul t Position) {
NUMBD phi, theta;
NUMBD si nphi, cosphi ;
NUMBD si nt het a, cost het a;

*i nUVSpace=TRUE;
if (((*uv)][O0]<kQuickFi xZero)
if (((*uv)[1]<kQui ckFi xZer o)

|| ((*uv)[0] >=kUnmax)) *inUVSpace=FALSE;
[ ((*uv)[1] >=kVmeax)) *inUVSpace=FALSE;
i f (*inUvSpace==TRUE)

{
phi =(*uv)[0];
theta=(*uv)[1]-(kVmax>>1);

/1 Spherical Coordinates To XYZ-Coordi nates
phi . Degr eeGet Si nCos( si nphi, cosphi);
t het a. Degr eeGet Si nCos( si nt het a, cost heta) ;

(*resul t Posi tion)[ 0] =cosphi *cost het a;

(*resul t Posi tion)[ 1] =si nphi *cost het a;
(*resul t Posi tion)[2]=sintheta;
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(*resul t Position)*=kDef aul t Spher eRadi us;
}

return NOERROR;
}

7. 1f you can give the real coordinate of an intersection between aray and the surface of
the object, it can be better to implement the ray-tracing cals. In this case, the final image
will be better because the object will not be approximated. Thisis very easy to implement
for asphere.

You have 3 functions: RayHit, RayAllHits, and GetRayHitDetail s.

If you implement RayHit, you must implement GetRayHitDetail s.

If you implement RayAllHits, you must implement the two other functions.

In the RayHit function you only have to calculate the position (P) and the parameter (t) of
the intersection:

P =Origin+t~ Direction

HRESULT Sphere:: RayHi t (BOOLEAN* di dHit, Ray3D* aR, RayHitParaneters*
RayHi t Par ans, RayHi t3D* hit)
{
VECTOR3D Ori gi nToCent er;
NUMBD Di recti onNor n2;
NUMBD dot Pr oduct ;

NUNMBD t; /'l Sphere Center = Ray Origin +t * Ray Direc-
tion

VECTOR3D CH,; /1l position of the center projected on the ray

NUMBD di st CH2; /'l square of the distance of the projected
poi nt

NUMBD resT,
NUMBD del ta, del ta2z;
NUMBD radi us2=kDef aul t Spher eRadi us* kDef aul t Spher eRadi us;

OriginToCenter=aR->f Oigin;

Di recti onNor nR=aR->f Di recti on*aR->f Di r ecti on;
dot Pr oduct =aR->f Directi on*Ori gi nToCent er;
t =dot Product/ Di r ecti onNor n2;

CH=(aR->fOrigin)+(aR->fDirection)*t;
di st CH2=CH* CH,;
i f (distCH2>radius2) *didHit =FALSE;
else if (distCH2==radi us2)
{

resT=t;

*di dHi t =TRUE;
}

el se

{
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}

*di dHi t =TRUE;
del t a2=(r adi us2-di st CH2) / Di r ecti onNor n2;
del t a2. Get Squar eRoot (del t a) ;
resT=t-delta;
i f (resT<=RayHi t Parans->tnin)
{
resT=t +del t a;
}
}
i f (resT<=RayHit Parans->tnin)
{ *di dHi t =FALSE;
}

i f (resT>RayHit Parans- >t nax)
{ *di dHi t =FALSE;
}

i f (*di dHi t ==TRUE)

{ hit->fPosition=aR->f Origi ntaR->f Direction*resT,;

hit->ft=resT;
}

return NOERROR;

HRESULT Sphere:: GetRayH tDetail s(TH S_ RayHi t 3D* hit)

{

NUMBD phi , t het a, rxy;
NUMBD si nphi, cosphi, si nt het a, cost het a;

hi t - >f Nor mal =hi t - >f Posi ti on/ kDef aul t Spher eRadi

phi . Degr eeSet Fr onSi nCos(hit->f Normal [ 1], hit->f

us;

Nor mal [ 0]) ;

rxy=hit->f Normal [ 0] *hit->f Nornmal [ 0] +hit->f Normal [ 1] *hit->f Nornal [ 1] ;

rxy. Get Squar eRoot (rxy);

t het a. Degr eeSet FronSi nCos(hit->f Normal [ 2], rxy);

i f (hit->fShoul dSet UV)
{ hit->fUuV[0]=phi;
i f (theta>kVnax)
{ theta = theta - (kVmax<<l);
}
hi t - >f UV[ 1] =t het a+( kVmax>>1) ;
}
i f (hit->fShoul dSetlsoUV)
{
phi . Degr eeCGet Si nCos( si nphi, cosphi);
t het a. Degr eeGet Si nCos( si nt het a, cost heta) ;

hi t->f1soU[ 0] =- si nphi *kDef aul t Spher eRadi us;
hi t->flsoU[ 1] =cosphi *kDef aul t Spher eRadi us;
hit->fl soV[ 2] =kQui ckFi xZer o;

hi t->f1soV[ 0] =cosphi *si nt het a*kDef aul t Spher eRadi us;
hi t->f1soV[ 1] =si nphi *si nt het a*kDef aul t Spher eRadi us;

hi t->fl soV[ 2] =cost het a*kDef aul t Spher eRadi us;
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return NOERROR,
}

8. Thereis a private resource to add for a primitive extension. This resourceis called
‘Cmpp’ (Component Private). For aprimitive, this resource contains a short which are the
icon Id of the Primitive. Do not forget that you have 3 iconsto define : one 24x24 pixels
for the hierarchy windows and two 16x16 (selected and not selected) for the toolbar. The
first icon has the Id specified in the ‘Cmpp’ resource and the Id of the not selected and
selected icon are respectively first Icon Id + 50 and first Icon Id + 100.

Because the 3D Shell do not support yet the Windows Icon resources. You have to use the
default icon given with the application. To do this, you must not create a‘Cmpp’ resource.
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Chapter 8 - Writing a Light Source

Family ID : ’lite’
COM Interface ID : 1ID_IDEXxLightsource
COM Interfacefile: I3DExLit.h

Light sources define the lighting in a 3D scene. All kind of light sources can be designed:
spot lights, bulb lights, distant lights (sun, moon), etc. Various features can be coded in a

Light Source Extension, because the Light Source has complete control on the light inten-
sity returned to the 3D Shell.

The user can combine lights with gels to make additional lighting effects (see the
| 3DEXL ightsour ceGel interface).

In this part, we will create a« BeamsLight ». It sendsbeamsin all directionslikein anight
club:

This picture was made with only one BeamsLight in the center of the scene.

1. Like every extensions, you must think about the different parameters needed by your
light source. For the BeamsLight, we have defined this data structure :

typedef struct LightData {

short f Hor Aper t ur eAngl e; /1 Angular Limts of the |ight source in
degr ees

short f Ver Aper t ur eAngl e; /1

NUMBD flntensity; /1 Light source intensity

short f NboBeansHori zontal ly; // Nunber of Beans Horizontally and Ver-
tically

short f NbBeansVertically; /1

COLOR3D f Li ght Col or; /1 Default color

short f BeamApert ur e; /1 Angular Limt of a single Beam

} Light Dat a;

2. Like the Camera extension, you will obtain the transformation data (from the Global
System to the Lightsource Local Coordinates System) with the function:

HRESULT | 3DExLi ght source: : Set Tr ansf or n{ TRANSFORM3D* transforn;

The transformation data are organized in avector (translation) and amatrix (rotation). The
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formulae to get the Globa Coordinates from the Local Coordinates and vice versa, are the
same as written in the Camera Cookbook.
You can find the transformation functions in C++ in the BeamsLight example file (Beam-

Ight.cpp).
To copy the transformation data in your object you only have to do this:

HRESULT BeansLi ght:: Set Tr ansf or m{l TRANSFORM3D* transforn) {
fTransforme*transform // copy the data and not the pointer
return ResultFronScode(S _OK);

}

If you think you can make any preprocess calculations that use only the transformation
data, do it in this function.

3. Implement the following function to tell the shell that you light source can be repre-
sented in the perspective display. For example ainfinite light cannot be represented in the
perspective display so the function will return FAL SE otherwise return TRUE.

BOOLEAN BeansLi ght::1sVisibl el nPerspective(TH S) {
return TRUE; // the source is not a distant light (like the sun)
/1 so it can be in the 3D perspective display.

}

4. There are two important functions in the Lightsource Interface :

HRESULT | 3DExLi ght source: : GetDi recti on( VECTOR3D* position, VECTOR3D*
resultDirection, NUMBD* resultDistance);

BOOLEAN | 3DExLi ght sour ce: : Get Col or (VECTOR3D* position, VECTOR3D* direc-
tion, NUMBD di stance, COLOR3D* result, BOOLEAN* cal | For ShadowEf -
fect);

The GetDirection function is most simple to implement. You only have to calculate avec-
tor from the light source center to the 3D position passed to the procedure, return the
length of this vector and normalizeit :

HRESULT BeansLi ght:: GetDirection( VECTOR3D* position, VECTOR3D* resultDi-
rection, NUMBD* resultDistance)

{ *resultDirection=fTransform fT-(*position); // fTis the origin of the
light source in the d obal Coordinates System given by SetTrans-
form

*resul t Di stance=resul tDirection->Get Norm) ;
*resultDirection/=(*resultDi stance); // must be a unit vector
return Result FronScode(S_OK);

}

The second function will be as difficult as the light source effect.
For the BeamsL ight, we want to have alot of beams regularly spaced :
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X orY axis

Maximum Aperture

Bcam Aperture

Z axis

Repartition of the light beams

Thisfigure shows how the BeamsLight will illuminate the scene. Each beam will be sepa-
rated by the angle:

_ MaxAperture
NbBeams- 1

If the NbBeams equals one, the beam will be on the Z-axis (with theta or phi equal to
zero).

When you have adirection, you have to find the nearest beam (You will not compare each
beam, it is NbBeamsHorizontally* NbBeamsVertically comparisons).

First, you have to get the Local Coordinate of the direction vector. For this, you can use
the function Global ToLocal \Vector. Then it is easier to have the angular expression of the
direction vector.

That’s why you transform the direction vector into spherical coordinatesq andj (likein
the SphericCamera example). Then you can use this formulae to get the beam index :

q 1.
Index,. = Nearest Integer of (—— +— NbBeams- 1
Hor % (« MaxAperture 2) ( )

And the same formulae for the Vertical Index

Be sure that the index is between 1 and NbBeams(Horizontally or Vertically)

The 2 index allow you to determinate the nearest main direction beam with these formu-
lae:
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, In 0

g = MaxApertureHor gae 0,1 - 12
NbBeamsHor - 1 29

& Index,, 10

j = MaxApertureVec” %NbB Vo -1 25

ax = sin(q) xcos(j )
V=gy=sn()
éz = cos(q) xcos(j )
When you have the two vectors in the same coordinates system, you use the dot product to

get the small angle between the main direction of the beam and the given direction.
Because these 2 vectors are normalized we have :

cos(angle_beam_direction) = D%/

To know if the given direction isin the light beam (i.e. the angle_beam direction is bel-
low the beam aperture angle divided by 2), you compare the cosine of the beam aperture
divided by 2, and the cosine of angle_beam direction. If thefirst oneisbigger, the point is
not in the beam light. So the implementation of the GetColor function will be:

BOOLEAN BeansLi ght: : Get Col or (VECTOR3D* position, VECTOR3D* direction
NUMBD di st ance, COLOR3D* result, BOOLEAN* cal | For ShadowEf fect) {
VECTOR3D | ocal Vector,refDir;
VECTOR3D proj Vector;
NUMBD angl e, nearest _dir, hor,ver, theta, phi,r;
NUMBD cost het a, si nt het a, cosphi, si nphi ;
NUMBD cosdi fferential Angl e;
NUMBD angl eLi m t =Shor t ToQui ckFi x(360) ;

*cal | For ShadowEf f ect =TRUE; // We al ways want shadows for this |ight-
source

d obal ToLocal Vect or (& Transform direction, & ocal Vector);

/1 Initialize result to default color (intensity included)
*resul t =f Dat a. f Li ght Col or;

result->R*=fData.flntensity;

result->G=fData.flntensity;

result->B*=fData.flntensity;

/] Nearest direction vector determ nation

if (fData.fNboBeansHorizontally!=1) {
/1 direction is calculated in the Spherical Coordinates (see Spheri -
cal Canera)
/1 -- Horizontal Determ nation
angl e. Degr eeSet Frontsi nCos( | ocal Vector[ 0], | ocal Vector[2]);
if (angle>(angleLimt>>1)) {
angl e-=angl eLimt;
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}
i f ((angl e>f Hor Ang+f BeamAngl e) | | (angl e<-f Hor Ang- f BeamAngl e)) return

FALSE; // the point is outside the maxi mum horizontal aperture

near est _dir=(angl e/ (f Hor Ang<<1) +kQui ckFi xOneHal f) * Short ToQui ck-
Fi x(f Dat a. f NoBeansHori zontal | y-1);

hor =¥ | oor (nearest _dir);

i f (nearest_dir-hor>kQui ckFi xOneHal f) hor+=kQui ckFi xOne;

i f (hor>Short ToQui ckFi x(fDat a. fNbBeansHori zontal | y-1))

hor =Shor t ToQui ckFi x(f Dat a. f NoBeansHori zontal | y-1);

i f (hor<kQuickFi xZero) hor=kQui ckFi xZer o;

/1 hor must be between 0 and f NbBeansHorizontally-1

t het a=(f Hor Ang<<1) * ( hor/ Short ToQui ckFi x(f Dat a. f NoBeansHori zont al | y-
1) - kQui ckFi xOneHal f) ;

}

el se {
t het a=kQui ckFi xZer o;

if (fData.fNbBeansVertically!=1) {

/1 -- Vertical Determ nation

r=Il ocal Vector[ 0] *I ocal Vect or[ 0] +l ocal Vector[2]*l ocal Vector[2];

r. Get Squar eRoot (r);

angl e. Degr eeSet FronSi nCos( | ocal Vector[1],r);

if (angle>(angleLimt>>1)) {
angl e-=angl eLim t;
}

i f ((angl e>f Ver Ang+f BeamAngl e) | | (angl e<-f Ver Ang- f BeamAngl e)) return
FALSE;
/1 the point is outside the maxi mum vertical aperture

near est _di r=(angl e/ (f Ver Ang<<1) +kQui ckFi xOneHal f)*Short ToQui ck-
Fi x(f Dat a. f NoBeansVertically-1);

ver =¥ | oor (nearest _dir);

i f (nearest _dir-ver>kQui ckFi xOneHal f) ver+=kQui ckFi xOne;

i f (ver>Short ToQui ckFi x(fDat a. f NoBeansVertically-1)) ver=Short-
ToQui ckFi x(f Data. f NoBeansVertically-1);

i f (ver<kQuickFixZero) ver=kQui ckFi xZer o;

/'l ver must be between 0 and f NoBeansVertically-1

phi =(f Ver Ang<<1) *(ver/ Short ToQui ckFi x(f Dat a. f NoBeansVertically-1)-
kQui ckFi xOneHal f);

}

el se {
phi =kQui ckFi xZer o;
}

/'l nearest direction vector

/1l Spherical Coordinates of the direction vector

t het a. Degr eeGet Si nCos( si nt het a, cost heta) ;

phi . Degr eeGet Si nCos( si nphi, cosphi);

ref Di r[ 0] =si nt het a*cosphi ;

ref Di r[1] =si nphi;

ref Di r[ 2] =cost het a*cosphi ;

/1 Direction comparison

cosdi fferential Angl e=ref Di r*| ocal Vect or; /'l dot product to get the
cosinus of the angle

if (cosdifferential Angl e<fBeanLimt) return FALSE, // the point is out-
side the Beam
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return TRUE;
}

This functions return TRUE if the light illuminates the point, otherwise it returns FALSE.
The callFor ShadowEffect returned value is set to tell the renderer that the light source cre-
ates shadows, and that the renderer must call ShadowEffect to obtain the specia effect of

the shadows.

6. Now, you have to implement the ShadowEffect function :
HRESULT BeansLi ght:: ShadowEf f ect (NUMBD di st ance, COLOR3D* result);

This function alows you to create smoother shadow by reducing the color intensity if the
distanceThruis not too big rather than perfect shadow that are aways black. In the Beams-
Light example, we only create pure black shadows. So if this function is called, you mod-
ify the result color to give no color :

HRESULT BeansLi ght: : ShadowEf f ect (NUMBD di st ance, COLOR3D* result)
{
resul t - >R=kQui ckFi xZer o;
resul t - >G=kQui ckFi xZer o;
resul t - >B=kQui ckFi xZer o;
return ResultFronScode(S_OK);
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Chapter 9 - Writing a Light Source Gel

Family ID : ‘gel’
COM Interface ID : 11D_I3DEXxLightsourceGel
COM Interfacefile: I3BDExGel.h

The user can combine lights with Gels to make additional lighting effects. A Gel can be
thought as a colored slide that is put in front of the light source to modify the color and
intensity of the light beam.

In this part, we will create a Gel that create a star with a number of branches from 3 to 30.

1. The data structure for the exchange with the shell will be:

typedef structure Gel Data {
short fNbBranches;

}

2. You only have to implement one special function for the Gel Interface: GetGelValue

BOOLEAN Gel Li ght :: Get Gel Val ue( VECTOR2D* gel ScreenPosi ti on, COLOR3D*
result);

The gel screenislikeadidein front of alight source. This gel screen dimensions are -1.0
to +1.0 in each direction.
To have the star effect, we must have the polar coordinates of the gel ScreenPosition:

Gd Screen

When you have thisangle, you have to find the branch of the star. An easy way to that isto
use a modulo formula:

¢=( ~ nbBranches)%360
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a’ isan angle between 0 and 360°
nbBranch is the number of branches of the star

Then, if you use a conversion function between a’ and the color factor like this one:

color intensity

0% 360°
Transformation function
you will obtain the peaks periodically spaced in the a-Space:
color intensity
0° o '=360° o '=360° a'=360° 360°

Example of a-peaks with nbBranches=4

The implementation of the function will be:

BOOLEAN Gel Li ght :: Get Gel Val ues( VECTOR2D* gel Scr eenPosi ti on, COLOR3D* result)
{ NUMBD al pha;

NUMBD k360=Short ToQui ckFi x(360) ;

NUMBD gr ayl evel ;

/1 Get the angul ar position of the gel ScreenPosition

al pha. Degr eeSet Frontsi nCos( (*gel ScreenPosition)[1], (*gel ScreenPosi -

tion)[0]);
al pha*=Short ToQui ckFi x(f Dat a. f NbBr anches) ;

/1 Cal cul at e al pha*nbBranches nodul o 360°
whi | e (al pha>k360) al pha-=k360; // WMdul o 360

/'l peaks function
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if (al pha<(k360>>2)) {
grayl evel =((k360>>2) - al pha)/ (k360>>2) ;
}

el se if (al pha>(k360-(k360>>2))) {
grayl evel =(al pha- (k360- (k360>>2)))/ (k360>>2);
}

el se {
grayl evel =kQui ckFi xZer o
}

resul t->Mde=0;

resul t - >R=grayl evel

resul t - >G=grayl evel

resul t - >B=grayl evel

return TRUE

©1995-1997 MetaCreations. All rights reserved.



Chapter 9 - Page 60 Writing a Light Source Ge |

©1995-1997 MetaCreations. All rights reserved.



Writing aMotion Lin k Chapter 10 - Page 61
Chapter 10 - Writing a Motion Link

Family ID : ‘link’
COM Interface ID : 1ID_I3DExMotionLink
COM Interfacefile: I3DExLnk.h

The I3DExMotionLink Interface defines motion links between Tree Elements. It allows
to define “mechanical” constrains (degrees of freedom) between one Tree Element and its
father.

In order to animate the link, you have to put each freedom value (one for each degrees of
freedom) in the “pMAP’, even if they not appear in the User Interface.

We will create alink that acts like a screw. So we only have one degree of freedom, the
number of turns, and we have to know the axis and the step of the screw.

1. First we will describe the needed data structure:

t ypedef struct ScrewLi nkData {
| ong fAXis; // IDof the axis (AXEX AXEY or AXEZ)
NUMBD fStep; // Step of the screw (1 turn -> translation of fStep)
NUMBD f FreedonVval ue; // nunber of turns
} Screwli nkDat a;

2. The 3D Shell hasto know the number of degrees of freedom. Therefore it uses the func-
tion GetNbr Freedom(). In our case, we only have one degree (the number of turns):

short Screwli nk:: Get Nor Freedom( THI' S) {
return 1,

}

3. Because the freedom value can be limited, you haveto give the range of the values. This
range is defined as arange of increment/decrement around the value. In our case, we do
not want to limit the number of turns so we will always return the maximum range of
increment and decrement:

HRESULT ScrewLi nk:: Get Fr eedonRange( THI S_ short index, NUMBD* min, NUMBD*
max) {
if (index==1) {
*mn - Short ToQui ckFi x(32767) ;
* max Shor t ToQui ckFi x(32767) ;

}
return NOERROR,

}

4. The shell does not know how to increment each freedom degrees (it cannot directly
modify the value) so you have to implement the function I ncrementFreedomValu e
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HRESULT ScrewlLi nk: : I ncrenment FreedonVal ue(THI S_ short index, NUM3D*
i ncrement) {
if (index==1) {
Thi sP->f Dat a. f FreedonVal ue += *i ncrenent;

}
return NOERROR;

}

5. The most important thing to create alink is to give the rotation matrix and translation
vector due to the freedom values:

HRESULT ScrewlLi nk:: Get Transform( THIS_ TRANSFORMBD* transform ({
short u,v,w,
NUMBD al pha, cosa, si na;
NUMBD al titude;
NUMBD nB83[ 3] [ 3];

altitude = ThisP->fData.fFreedonval ue * Thi sP->f Dat a. f St ep;
al pha = Thi sP->f Dat a. f Fr eedonVal ue * kQui ckFi xTwoPi ;

/1l Axis permnutation:
i f (Thi sP->fData.fAxi s==kAxi sX) {

u=1; v=2; w=0;

}
el se if (ThisP->fData.fAxis==kAxisY) {

u=2; v=0; w=1;

}
el se if (ThisP->fData.fAxis==kAxi szZ) {

u=0; v=1; w=2;

}
transform >f T[ u]
transform >f T[ v] kQui ckFi xZer o;
transform >f T[ w] al titude;
al pha. Get Si nCos( si na, cosa) ;
m83[ u] [u] =cosa; nB3[u][Vv]=sina; nmB3[u][w =kQui ckFi xZer o;
n83[ v] [u] =-si na; nB3[v][Vv]=cosa; nB3[v][w =kQui ckFi xZer o;
nB83[ W] [ u] =kQui ckFi xZero; nB3[w [ v] =kQui ckFi xZero; nB3[w] [w] =kQui ckFi x-

One;
transform>fR = *( MATRI X3D*) &n83;

kQui ckFi xZer o;

return NOERROR,
}

Note: When the freedom values areinitialized the function GetTransfor m must return the
identical matrix for the rotation and a null vector for the translation.

6. To alow the inverse kinematics mechanism to work with your link, you have to imple-
ment the Get TransfromPartialDerivat e function. A partial derivative transformationisa
transformation where each element is derived by afreedom degree. So you have as much
Partial Derivative as freedom degrees.
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In our case the derivatives are easy to calculate:

HRESULT ScrewLi nk:: Get TransfornmParti al Derivate(TH S_ short i ndex,
TRANSFORMBD* transform {
short u,v,w,
NUMBD al pha, cosa, si na;
NUMBD nB3[ 3] [ 3];
i f (ThisP->fData.fAxi s==kAxi sX) {
u=1; v=2; w=0;
}
el se if (ThisP->fData.fAxis==kAxisY) {
u=2; v=0; w=1;
}
el se if (ThisP->fData.fAxis==kAxi sZ) {
u=0; v=1; w=2;
}
if (index==1) {
transform >f T[ u]
transform >f T[ v] kQui ckFi xZer o;
transform >f T[ w] fData.fStep
al pha = kQui ckFi xTwoPi * fDat a. f FreedonVval ue;
al pha. Get Si nCos( si na, cosa) ;
nB83[ u] [ u] =- kQui ckFi xTwoPi * sina; mB3[u][Vv]=kQui ckFi xTwoPi * cosa;
nB83[ u] [ W] =kQui ckFi xZer o;
nB83[ v] [ u] =- kQui ckFi xTwoPi * cosa; mB3[v][Vv]=-kQuickFi xTwoPi * sina,
nB83[ v] [ W] =kQui ckFi xZer o;
nB83[ W] [ u] =kQui ckFi xZero; nB3[ W [ Vv] =kQui ckFi xZero; nB3[w] [ w] =kQui ck-
Fi xZer o;
transform>fR = *( MATRI X3D*) &n83;

kQui ckFi xZer o;

}
return NOERROR,

}
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Chapter 11 - Writing a Scene Operation

Family ID : *scop’
COM Interface ID : 11D_I3DExSceneOperation
COM Interfacefile: I3DExScO.h

The Scene Operation Interface defines a new feature of the 3D Shell. The user will
directly accessto thisfunction in the * Arrange’ menu of the 3D Shell. It allows you to do
everything you want in the scene (create new objects, rotate or translate an object or alist
of objects).

In this cookbook, we will describe a Scene Operation that creates a stair with every
selected object. To do this, we have to duplicate and translate an object.

1. To make a stair, we have to know the number of steps and the relative position of each
step. So the data structure will be:

typedef struct SceneOpData {
short fNbStep;
NUMBD f Dx;
NUMBD f Dy;
NUMBD f Dz;
} SceneOpDat a;

2. Thereistwo call to implement for a Scene Operation. The first one allows you to pre-
pare the data before the shell show the setup dialog of your Scene Operation. Thiscall is
| 3BDExSceneOperation::Prepar e:

HRESULT SceneOp:: Prepare(THI S_ |1 3DShScene *scene, | 3DShTreeEl enent
*tree, long index, long total) {
return NCERROR,

}

I 3DExSceneOperation::Prepare() will be called repeatedly for each tree-root in the selec-
tion (aselected Tree Element with all its sub-tree elements selected will represent only one
selection). If there is nothing selected, Prepare() will still be called once.

In our case, we have nothing to prepare, so we do nothing.

3. The second call is called by the 3D Shell for each tree-root in the selection, like Pre-
pare(). In this function, we shall duplicate the Tree Element and trandate it to make the
stairs.

Bool ean SceneOp::Dolt(THI S |13DShScene *scene, |3DShTreeEl enent *tree,
| ong index, long total) {
| 3DShTr eeEl enent *newsSt ep;
TREETRANSFORMBD st epTr ansf orm
short i Step;
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if (!tree) return FALSE;

for (iStep=0;iStep<ThisP->fData.fNoStep;iStep++) {
newSt ep = tree->Cl one( TRUE) ;
if (!'newStep) return FALSE;
tree->InsertRi ght (newsStep);
newsSt ep- >Get A obal Transf or m( &t epTransformn ;
stepTransform f T[ 0] +=Short ToQui ckFi x(i Step)* f Dat a. f Dx;
stepTransform f T[ 1] +=Short ToQui ckFi x(i Step) * f Dat a. f Dy;
stepTransform f T[ 2] +=Short ToQui ckFi x(i Step)* fData. f Dz;
newsSt ep- >Set A obal Tr ansf or m( &t epTransformn ;

}
return TRUE;

}

4. Totell the Shell when it can use the scene operation, thereisa‘Cmpp’ (Component Pri-
vate) resource. This resource contains along which each bit have the following significa-
tion :

bit 31 : the Scene Operation can be use when there are more than 31 selected items.
bit 30 : the Scene Operation can be use when there are 30 selected items.
bit 29 : the Scene Operation can be use when there are 29 selected items.

bit 1 : the Scene Operation can be use when there is only one tree element selected.
bit O : the Scene Operation can be called when there is no selection.

This resource can be created on both cross-Platform and Windows-only sides, but for the
Windows resource do not forget to put the long in the Motorolaformat (Highest byte first).
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Chapter 12 - Writing a Shader

Family ID : *shdr’
COM Interface ID : [1D_I3DExShader
COM Interfacefile : I3DExShah

Shaders are very powerful 3D Components used to give photorealistic appearance to the
3D objects surfaces. They define the shading values at each point of an object surface:
color, shininess, reflectivity, etc. used to compute the illumination on the surface.

There are two types of Shaders. Shaders and Sub-Shaders. Shaders take care of every-
thing: they take all the input parameters and return all the shading values (see DoShade).
The advantage is to have complete control on the shading process, the disadvantage is that
the shader is more difficult to program and not very flexible. Sub-Shaders are more like
little bricks that can be combined together by the user to « build » is own shader. Sub-
Shaders return either avaue (GetValue), acolor (GetColor) or a vector (GetVector).
They are more simple to program and much more flexible.

This Cookbook explains how to build two Sub-Shaders: one that returns avalue (a
checker), and one a color (a Rainbow shader).

1. Before writing any code, you have to know the parameters specific to your shader and
needed from the Shell to perform its calculations (point position, Normal, UV Coordi-
nates, etc...).

In the Checker example, we need to know the numbers of squares horizontally and verti-
cally, called nbSquareU and nbSquareV.

To create the Checker effect, we only need the UV Coordinates from the shell. We use the
fact that if each number in the squareisthe addition of theinteger part of nu and nv which

are calculate with thisformulae :, the even and odd numbers are arranged like in a checker.
n, = (U~ Unn) xnbSquareU
(umax - Uy

In the Rainbow example, we choose to use the Normal (in Local or Global Coordinates)
to make out a color in the RGB-Cube.
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Blue

Green

Réd
When you have your data structure to communicate with the shell, and when you have the

resources, you can begin to implement your new shader.

2. You haveto tell the Shell what your shader needs. To do that, you use two functions
called GetShadingFlags and DependsOnAppliedExten t.

HRESULT I3DExShader::GetShadingFlags(ShadingFlags* theFlags);
BOOLEAN I3DExShader::DependsOnA ppliedExtent(void);

if you create a shader which depends on the UV -Space, return TRUE with Depend-
sOnAppliedExtent function.

U-V Coordinates on a Surface

GetShadingFlags allows the 3D Shell to learn which parameters the shader will need to
perform the shading calculations. Thisway, only the minimal number of parametersis cal-
culated (for more details on the ShadingFlags structure, see the descriptions of the data
structure).

Because the Checker depends on the UV -Coordinates the implementation will look like:

BOOLEAN Checker Shader: : DependsOnAppl i edExtent (THI' S) {
return TRUE;

}
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HRESULT Checker Shader : : Get Shadi ngFl ags( THI S_ Shadi ngFl ags* theFl ags) {
t heFl ags- >NeedsUWV TRUE; // the Checker uses UV Coordi nates
t heFl ags->Cal | Once FALSE; // the Checker is called for each point
return NOERROR,

}

But the Rainbow Shader uses only the Normal in the Global or Local Coordinates System:

BOOLEAN Rai nbowShader : : DependsOnAppl i edExt ent (THI S)

{
return FALSE, // The Rai nbow doesn't use the UV Space but only the Nor-
mal Vectors
}
HRESULT Rai nbowShader : : Get Shadi ngFl ags( THI S_ Shadi ngFl ags* t heFl ags)
{
t heFl ags- >f NeedsNor mal Loc = TRUE;
t heFl ags- >f NeedsNor mal = TRUE;
t heFl ags->Cal | Once = FALSE; // the Rainbow is called for each point
return NOERROR,
}

3. A shader can be implemented in one of 3 ways : by value, color, or vector. You must
implement one of them and return ResultFromScode(E_NOTIMPL) for the others.
The 3 functions are:

HRESULT | 3DExShader : : Get Val ue(NUMBD *result, Shadi ngl n* t heShadi ngln,
Shadi ngEl ent t heShadi ngEl em ;

HRESULT | 3DExShader : : Get Col or (COLOR3D *result, Shadi ngl n* theShadi ngln,
Shadi ngEl ent t heShadi ngEl em ;

HRESULT | 3DExShader : : Get Vect or (VECTOR3D *resul t, Shadi ngl n* t heShadi n-
gl n, Shadi ngEl ent theShadi ngEl em ;

which return respectively avalue, a color, and a vector.
A Checker have only two states (black or white) and it can be used with the operator Mix
for example. It only returns 0.0 or 1.0 as a Value. So the GetColor and GetVector will be

likethis:
HRESULT Checker Shader: : Get Col or (THI S_ COLOR3D*, Shadi ngl n*, Shadi n-
gEl enr) {
return Result FronScode( E_NOTI MPL) ;
}
HRESULT Checker Shader:: Get Vector (TH S_ VECTOR3D*, Shadi ngl n*, Shadi n-
gEl enr) {
return ResultFronScode( E_NOTI MPL) ;
}
And the function GetValue:

HRESULT Checker Shader: : Get Val ue(THI'S_ NUMBD* result, Shadi ngl n* theShad-
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i ngl n, Shadi ngEl ent theShadi ngEl em) {
NUMBD t enpu=Short ToQui ckFi x( Checker Publ i cDat a. nbSquar eU) / ( t heShadi n-

gEl em > f Shader Box. f Ri ght -t heShadi ngEl em >f Shader Box. f Left);

NUMBD t enpv=Short ToQui ckFi x( Checker Publ i cDat a. nbSquar eV)/ ( t heShadi n-
gEl em > f Shader Box. f Top-t heShadi ngEl em >f Shader Box. f Bott onm) ;

Qui ckW de nu = Qui ckWul W de(t heShadi ngl n->f UV[ 0] -t heShadi ngEl em
>f Shader Box. f Left, tenpu);

Qui ckWde nv = Qui ckul W de(t heShadi ngl n->f UV[ 1] -t heShadi ngEl em
>f Shader Box. f Top, tenpv);

if (!'((QWFl oor (nu)+QAFI oor(nv)) & 0x00000001)) // Even Number ?

{ *result = ShortToQui ckFi x(0);

}
el se
{ *result = ShortToQui ckFi x(1);
}
return NOERROR,
}

On the contrary, the Rainbow returns a color, so you have:

HRESULT Rai nbowShader : : Get Val ue( Shadi ngl n*, Shadi ngEl ent, NUMBD*) {
return Resul t FronScode( E_NOTI MPL) ;

}

HRESULT Rai nbowShader : : Get Vect or ( Shadi ngl n*, Shadi ngEl ent, VECTOR3D*) {
return Resul t FronScode( E_NOTI MPL) ;

}

HRESULT Rai nbowShader: : Get Col or (THI 'S COLOR3D* result, Shadingln*
t heShadi ngl n, Shadi ngEl ent t heShadi ngEl em) {
NUMBD t enp=Short ToQui ckFi x( Rai nbowPubl i cDat a. fl ntensity);
t enp/ =Short ToQui ckFi x(100) ;
result->Wbde = 0; // RGB col or node
i f (Rai nbowPubl i cDat a. f ModeLocal Or d obal ==1) {

result->R = (((theShadi ngl n->f Nor mal Loc[ 0] ) *t enp) >>1) +kQui ckFi x-
OneHal f;
result->G = (((theShadi ngl n->f Nor mal Loc[ 1] ) *t enp) >>1) +kQui ckFi xOne-
Hal f;
result->B = (((theShadi ngl n->f Nor mal Loc[ 2] ) *t enp) >>1) +kQui ckFi x-
OneHal f;
}
el se {
result->R = (((theShadi ngl n->f Nornal [ 0] ) *t enp) >>1) +kQui ckFi xOne-
Hal f;
result->G = (((theShadi ngl n->f Normal [ 1]) *t enp) >>1) +kQui ckFi xOneHal f ;
result->B = (((theShadi ngl n->f Nornal [ 2] ) *t enp) >>1) +kQui ckFi xOne-
Hal f;
}
return NOERRCR,

}
4. Implement the comparison of two shader:

BOOLEAN | 3DExShader : : | sEqual To(| 3DExShader * aShader) ;
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You will compare your shader with the shader pointed by aShader.

If the data of the two shaders are equal, you return TRUE, else you return FALSE.
For the checker, we only have to compare the number of squares Horizontally and Verti-
cally (we gather all the CheckerShader data in a structure called Checker PublicDat a)

BOOLEAN Checker Shader : : | sequal To( | 3DExShader * aShader)
{ return ((CheckerPublicDat a. nbSquar eU==(( Checker Shader *) aShader) -
>Checker Publ i cDat a. nbSquar eU)
&&( Checker Publ i cDat a. nbSquar eV==( ( Checker Shader *) aShader) -
>Checker Publ i cDat a. nbSquar eV) ) ;

}

You can make the type-cast because the shell verifies that the aShader pointer is a pointer
of the same type.

Remarks and improvements:

In the Checker example, each time the function GetValueis called, two factors (tempu and
tempv) are recalculated but don’t change if the numbers of squares do not. So it is agood
idea to make preprocess calculations. But each time the number of squares changes, you
have to recalculate the factors. When the Shell changes a data, it calls Extension-
DataChanged. To create a shader that alows preprocessing, add some private data (fPre-
processed, and fMul[2] which are boolean and the two preprocessed factors, for example),
then change the ExtensionDataChanged function like this:

HRESULT COMShader : : Ext ensi onDat aChanged(THI S) {
f Prepr ocessed=FALSE;
return NOERROR,

}
and the new GetValue function will be:

HRESULT Checker Shader : : Get Val ue( Shadi ngl n* t heShadi ngl n, Shadi ngEl ent
t heShadi ngEl em NUMBD* result) {
if (!fPreprocessed)
{ fMul[0]=Short ToQui ckFi x( Checker Publ i cDat a. nbSquar eU)/ ( theShadi n-
gEl em > f Shader Box. f Ri ght -t heShadi ngEl em >f Shader Box. f Left);
f Mul [ 1] =Short ToQui ckFi x( Checker Publ i cDat a. nbSquar eV)/ ( theShadi n-
gEl em > f Shader Box. f Top-t heShadi ngEl em >f Shader Box. f Bott on) ;
f Preprocessed=TRUE;
}
Qui ckW de nu = Qui ckMul W de(t heShadi ngl n->f UV[ 0] - t heShadi ngEl em
>f Shader Box. fLeft, fMul[0]);
Qui ckW de nv = Qui ckMul W de(t heShadi ngl n->f UV[ 1] - t heShadi ngEl em
>f Shader Box. fBottom fMil[1]);
if (!'((QWFIl oor (nu)+QA\Fl oor (nv)) & 0x00000001)) // Even Number ?
{ *result = ShortToQui ckFi x(0);

} else

{ *result = ShortToQui ckFix(1);
}

return NCERROR,
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Chapter 13 - Writing a Tree Behavior

Family ID : ‘trely
COM Interface ID : 11D_I3DEXTreeBehavior
COM Interfacefile: ‘I3DEXTbh.h’

The | 3DEXxTreeBehavior Interface is used to add any kind of additional behavior to a
Tree Element. Thisisalittlelike multiple inheritancein C++: new features are added to an
object.

In this cookbook, we will made a behavior that align three objects, by moving the tree ele-
ment on which the behavior is applied, on the line made by the two other objects.

1. Our behavior have to know the two other object, so we have to know the names of the
objects to find them in the scene. And to set the position of the tree element, we have to
know arelative position. So we will have a data structure shared with the 3D shell like
this:

typedef struct BehaviorData {
char fNaneCbject1[256]; // name of the first object to align to
char fNanmeCbject2[256]; // name of the second object to align to
NUMBD f Rel Pos; /1 relative position between the two objects (0
first, 1 second)
} Behavi or Dat a;

2. Thereisonly one function for a Tree Behavior called Apply. Thisfunction is called
when the TimeL ine changes or then the scene changes. Even if you only have onetree ele-
ment as a parameter, you can get all the scene and all the other element. That’ s how we can
get the two other objects to perform the alignment:

HRESULT Behavi or:: Appl y(THI S_ | 3DShTr eeEl enent* tree) {

TREETRANSFORMBD tr 1;

TREETRANSFORMBD tr 2;

TREETRANSFORMBD tr;

VECTOR3D hp1,;

VECTOR3D hp2;

VECTOR3D hp;

| 3DShTr eeEl ement *treel, *tree2;

| 3DShScene *scene;

/1l Get the scene

scene = tree->CGet Scene();

if (!scene) return NOERROR;, // abort any nodifications if you can not
get the scene

/1l Search tree elenent 1 by nane

treel = scene->Get TreeEl enment ByNane( f Dat a. f NaneObj ect 1) ;

if (!treel) return NOCERROR, // abort because object 1 not found
treel->Get d obal TransfornB(&tr1l);

/1l Search tree elenent 2 by nane
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tree2 = scene->CGet TreeEl enment ByNane( f Dat a. f NaneObj ect 2) ;
if (!tree2) return NOCERROR, // abort because object 2 not found
tree2->Get d obal TransfornB(&tr2);

/1 Set the new position of tree

tree->Cet d obal TransfornB(&tr);

tr.fT =trl. fT + (tr2.fT - trl1.fT) * fData.fRel Pos ;
tree->Set d obal TransfornB(&tr);

return NOERROR,

}
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Chapter 14 - Writing a Tweener

Family ID : ‘twee’
COM Interface ID : 11D_I3DExTweener
COM Interfacefile: *I3DEXTwn.h’

A Tweener is used to interpolate between two keyframes. When the shell has two key-
frames and wants to calculate an image between those keyframes, it calls the Tweener to
get avalue, and it usesthisvalue to interpolate linearly the keyframes. For example, if the
Tweener returns 0.0, the resulting keyframe will be the first one, if it is 1.0, it will be the
last one. You can use every value between 0.0 and 1.0 to get aframe that will be between
the keyframes or use other valuesto get a frame outside the segment defined by the 2 key-
frames.

In this cookbook, we will describe how to make an oscillator which slows down. The
physical formulaof that kind of oscillator is:

f (1) = cost) rexp(- 1)

Where T is apseudo-period and r, afactor that express the slow down.

To have the first frame when the animation begins, we have to return 0.0 and to have the
last frame at the end we have to return 1.0. These conditions will be met if we use the fol-
lowing formulae :

f(t) =1- cos(ax) >exp(-r %)

1
with a=2 (NbOSCiIIationS+Z)

To create a Tweener, you only have to implement one specific function: DoTweening.

1. Asyou seein the formulae, we only have to use two parameters, the r coefficient and the number of oscil-
lations between the two frames. So we will have a data structure shared with the shell like this:

typedef struct TweenerData {
short fNbGsc;
NUMBD f ExpCoef;
} Tweener Dat a;

2. To avoid calculating a each time the Shell wants a value, you can preprocessit in the
function ExtensonDataChanged:

HRESULT Tweener: : Ext ensi onDat aChanged(THI S) {
f CosCoef = 2*M PI *(f Dat a. f NoGsc+0. 25) ;
Qui ckFi xToDoubl e( f Dat a. f ExpCoef , f ExpCoef) ;
return NCERROR,
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}

3. Now, to implement the main function of the Tweener, we have to return the result in
lambda and we have three long to calculate the relative time't :

HRESULT Tweener:: DoTweeni ng( THLS_ NUMBD* | anbda, long tine, long tinel,
long tine2) {
long delta = tinme2 - tinel;
float t, value;
if (delta==0) {

*| anbda=0;
return NOERROR;
}

t = (1.0*tinme - tinel) / delta;
value = (1-cos(t*fCosCoef)*exp(-t*fExpCoef));
*| anbda = Doubl eToQui ckFi x(val ue);

return NOERROR;
}
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Chapter 15 - Writing a 3D Export Filter

Family ID : *3Dou’
COM Interface ID : 11D_I3DExExportFilter
COM Interfacefile: ‘I3DEXxIO.h’

Writing a 3D Export Filter is the right strategy when one wants to get 3D Data out of Ray
Dream Designer. It isamuch easier choice than trying to read the Ray Dream Designer
file format.

The toolkit example isa DXF exporter. It is based on COM. It just involves replacing the
callsto Querylnterface() by the appropriate type-casting.

1. In this very smple example, we do not have any user interface, so
| 3DEXExportFilter::Prepare() does not do anything, and I3DEXExportFilter::WantsOp-
tionDialog() returns FALSE.

2. In this exporter, the basic algorithm is this:

Create the output file Instanciate a | ShFil eStream
For each object instance in the scene: | 3DShScene: : Get | nst anceByl ndex()
Get the 3D object referenced by the instance |3DShlnstance:: Get 3DOhj ect ()
If it is aPrimtive Querylnterface(l1 D I3DShPrimtive)
Get its global Transfornmation | 3DShTr eeEl enent : : Get d obal Transf orm()
If the Prinmitive if Patch based | 3DShPrimtive::|sPatchBased()
Convert the patches to facets Convert Pat h2Facet s()

Transformthe facets in d obal coordinates
Wite the facets to the output file

Else if the Primtive is Facets based
Transformthe facets in d obal coordinates
Wite the facets to the output file

The code contains details that have to do with the DXF file format. These details are not
very exciting to cover here.

The main point in the exporter example is the heavy use of the Querylnterface() call.
Make sure you are familiar with the 1I3DShObject, 13D ShPrimitive, I3DShTreeElement
and 13D Shinstance interfaces.

3. Make sure you build theright ‘Cmpp’ (Component Private) resource. It contains the
information necessary to the 3D Shell to display your file format extension and namein
the Save Asdiaog.

Please refer to the “ The Component Private resources (“Cmpp”)” section in the “Manag-
ing the User Interface” Appendix for al details.
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Chapter 16 - Writing a 3D Import Filter

Family ID : *3Din’
COM Interface ID : 11D_I3DExImportFilter
COM Interfacefile: ‘I3DExIO.h’

Writing a 3D Import Filter is the right strategy when one wants to import 3D Datain Ray
Dream Designer. It isamuch easier (and compatible) choice than trying to create afile
with the Ray Dream Designer file format.

Thetoolkit example is a facetsimporter, based on COM. Thefile format is text based and
the extension on PC is .easfor “Easy”. Thisfile can be created with any text editor.

An easy fileisaset of surfaces display as followed:
number of points
first point
second point

last point
After the last surface, azero must be add to specify the end of thefile, followed by a space
or acarriage return to prevent reading failure. For example, asquare will be defined asfol-
low:
nunber of points
first point (x, y, and z)
second poi nt
third point
| ast poi nt

PP, OOM
OkFr kFr O
O O OO0

0 no nore surfaces, don't forget to add a space or a carriage
return

We will focus here in the steps involved to create a 3D object and insert it in the scene.
1. Find where you need to insert your 3D data

At first, you get a pointer on the scene and a pointer on the Tree Element under which to
insert your data. Often, this Tree Element will be NULL. In this case, you need to insert
under the Scene Tree Root. It isa sensible thing to call 13DShScene::CreateT reeRoo-
tIfNone() to make sure there is one, just in case.

In the following code example, we chooseto create agroup if father Treeis provided. This
isachoice we make. The variable topTree is where we shall insert our datain the end:

HRESULT TEasyl nporter:: Dol nmport(TH S_ char* full Pat hNane, |3DShScene*
scene, |3DShTreeEl enent* fatherTree) {

| 3DShTr eeEl enent* topTree;// \Were we shall put everything
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if (fatherTree == NULL) {
| 3DShGr oup* topGroup;
scene- >Creat eTreeRoot | f None() ;
t opGroup = scene->Get TreeRoot () ;
t opGroup->Querylnterface(l1D_| 3DShTreeEl enent, (LPVO D*) &t op-
Tree);
t opGr oup- >Rel ease();
}
el se {
gShel l Utilities->CoCreatel nstance(CLSI D _StandardG oup, NULL,
CLSCTX | NPROC_SERVER, |1 D | 3DShTreeEl enent, (LPVO D*) &t opTree);
t opTr ee- >Set Scene(scene) ;
father Tree->I nsertLast (topTree);

}
scene- >Cr eat eRenderi ngCaner al f None(I DTYPE('c', '0o', 'n', '"i"),
(fatherTree == NULL));// Create a conical rendering canera if

none, and a Distant |ight
if we not inporting in an existing scene

DoReadEasyFil e(stream scene, topTree); // here we inport the
obj ect

2. Create a default Rendering Camera and Light Source

Because the Easy format does not have the notion of cameras and light sources, we shall
use a built-in API call designed just for that:

scene- >Cr eat eRenderi ngCaner al f None(I DTYPE('c', '0o', 'n', 'I"), (father-
Tree == NULL));

Thiswill create a conical camera (we use the Conical Camera Class D ‘coni’), and a
default Distant Light if we are not importing in an existing scene (in this case, the second
parameter is TRUE).

Of course, if your own requirements are more sophisticated, you can create any type of
standard camera and light sources, and place them where you want in 3D.

3. Create your objects and put them in the scene:

3.1. Create the appropriate Primitive. Depending on your needs, you will create a Polygon
Listif you just haveraw list of triangles, a Polygon Array if your have more ordered data,
or even a Patch Array if you have high-level surfaces. Polygon and Patch Arrays are the
best choices because they provide a natural way to calculate Normals and Texture Coordi-
nates (UV Space).

In our case, we just need to use Polygon Lists without normals. The API providesacall to
calculate Normals. In generdl, it is slow and memory consuming, and it will never give a
perfect result, especialy if your 3D Datais not perfectly accurate. But the easy format is
quite simple, itisjust a set of triangles.

If you can also provide Texture Coordinates, then thisisreally great for the user. Not pro-
viding UV values will force the user to choose a Projection Mapping mode (Spherical,
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Cylindrical or Planar) that may not fit well your object (not mentioning the fact that Pro-
jection Mapping is not easy to understand).

| 3DShPol ygonLi st* surface;

/l-- Create the primtive:

gShel l Utilities->CoCreatel nstance(CLSI D _Standar dPol ygonLi st, NULL
CLSCTX_| NPROC_SERVER, |1 D_I 3DShPol ygonLi st, (LPVO D*) &sur-

face);

surface->Init (FALSE /*no normal s*/, FALSE /*no UV space*/);

3.2. Fill in your Primitive with your 3D data.

surface->PreAl | ocat eFacet s(nbPoints - 2/*nb of facets*/);

Fai | OSErr ( ReadStreanVect or 3D(stream &firstPoint));// read the
first point

Fai | OSErr ( ReadSt reanVect or 3D(stream & astPoint));// read the sec-
ond point

for (i=2; i<nbPoints; i++) {

secondPoi nt [ 0] =l ast Poi nt[ 0] ;

secondPoi nt[ 1] =l ast Poi nt[ 1] ;

secondPoi nt [ 2] =l ast Poi nt[ 2] ;

Fai | OSErr ( ReadSt r eanVect or 3D(stream &l astPoint));

/1 add a facet with the first point, the previous point and the
current point

surface->AddFacet (SetEasyFacet(firstPoint, secondPoint, |ast-
Point));

}
sur face->Cal cNor mal s( Short ToQui ckFi x(30));// angl es under 30
degrees are

snoot h

surface->Querylnterface(llD_|I 3DShChj ect, (LPVO D*) &object);
surface->Rel ease();
COLOR3Ddef Col or
def Col or. Mbde=0;
def Col or. R=kQui ckFi xOne;
def Col or. G=kQui ckFi xZer o;
def Col or. B=kQui ckFi xZer o;
def Col or. A=kQui ckFi xOne;
obj ect - >Set Si npl eShadi ng( &def Col or, kQui ckFi xOne, kQui ckFi xOne,
kQui ckFi xZero, kQui ckFi xZero);

3.3. Giveit aunique name. Thisisimportant because Primitives are referenced by their
name in Ray Dream Designer files.

sprintf(obj Nane, "Easy % ", ++counter);
obj ect - >Set Nane( obj Nane) ;
3.4. Create an Instance, and hook it to your Primitive.

gShel l Utilities->CoCreatelnstance(CLSI D Standardl nstance, NULL,
CLSCTX | NPROC_SERVER, |1 D_I 3Dshl nstance, (LPVO D*) &i nstance);
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i nst ance- >Set 3DObj ect (obj ect) ;

i nstance->Querylnterface(llD_|I 3DShTr eeEl enent, (LPVO D*) &i nstan-
ceTree);

i nst anceTr ee- >Set Scene(scene) ;

i nst anceTr ee- >Cent er Hot Poi nt OnEl enent () ;

i nst ance- >Rel ease();

3.5Put the Instance in the tree and calculate its 3D orientation and positioning.
topTree->l nsert Last (i nstanceTree);

The main point in the exporter example is the heavy use of the Querylnterface() call.

Make sure you are familiar with the 1I3DShObject, 13D ShPrimitive, I3DShTreeElement

and I3DShinstance interfaces.

4. Make sure you build the right *Cmpp’ (Component Private) resource. It contains the

information necessary to the 3D Shell to display your file format extension and namein

the Open and Import dialogs.

Please refer to the “ The Component Private resources (“Cmpp”)” section in the “Manag-
ing the User Interface” Appendix for al details.
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Chapter 17 - Writing a Post Render Filter

Family ID : ‘post’
COM Interface ID : 11D _ I13DExPostRenderer
COM Interfacefile: ' I3DExPos.h’

A Post Render Filter isagood way to add an effect on the final image. The toolkit exam-
pleisasandy filter that convert the result image in eight colors.

Two methods must be implemented: Filter and GetBufferNeeds. GetBufferNeeds is used
to set the informations we will need during the filtering.

enum {kDi stance=1, kPositionX=2, kPositionY=4, kPositionZ=8,
kNor mal X=0x10, kNor mal Y=0x20, kNor nmal Z=0x40,
kAl pha=0x80, kIl ndex=0x100, kSurfaceU=0x200, kSurfaceV=0x400,

kShader Col or =0x800, kShader Specul ar Col or =0x1000,
kShader Specul ar Si zeVal ue=0x2000, kShader Anbi ent Val ue=0x4000,
kShader Lanber t Val ue=0x8000, kShader Ref | ecti onCol or =0x10000, kShader Tr an-
par encyCol or =0x20000, kShader Ref r act i onVal ue=0x40000,

kShader A owCol or =0x80000} ; /1l For flags

voi d Sand:: GetBufferNeeds (THIS_/*RenderFilterNeeds& /| ong* needs, /
*TExt er nal Render er*/ voi d* renderer) {
*needs = O;

}

Thismethod is called before the rendering. The application prepare a buffer to stock dur-
ing the rendering the informations you are asking for. For example, if you need to know
which object is seen at a given point and where is this point on his UV space, you just
need to set needs to:

*needs = klndex | kSurfaceU | kSurfaceV,

In this example, we don’t need any of those informations, so, we just set needsto 0.

To process the filtering, we need to get access to the Offscreen of the image. The Off-
screen is composed of chunksthat are square pieces of the Offscreen used to store partially
the picture on disk. In this example, we aso need to create an Offscreen to draw a check
on screen to show the progress of the filtering.

The shell provides the scene, so we can get informations on the objects, the image result-
ing from the rendering, a buffers which contain all the informations you asked for. It aso
gives you access to the graphic device, useful to draw the check. The renderer is not yet
available.

void Sand::Filter (THI S_ | 3DShScene* theScene, | ShRaster O fscreen*
t hel mage, | Unknown** theBuffers, |ShG aphicDevice* gd,
TExt er nal Renderer*/voi d* renderer, void* renderHel per) {

First of al, we will create the check to be drawn on screen to display the progress. This
check fit exactly a chunk and will be displayed before each chunk to be computed.
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ULONG dept h;

RECT3D BRect ;
BRect.top = O;
BRect .l eft = 0;
BRect . right = 32000;
BRect . bottom = 32000;

Buf f er Chunk* aChunk=0;

RECT3D* aCl i p=new RECT3D;
RECT3D* cursorC i p=new RECT3D;
ULONG chunkH, chunkV, rowBytes;

/1 getting the dinmensions of a chunk
t hel mage- >Get Chunkl nf o( &hunkH, &chunkV, &rowBytes, &depth);
if (depth == 32) { // we need colors in 32 bits
/1 creating the cursor
| ShRast er Of f screen* theCursor;
sandShel | Utilities->CoCreateln-
stance(CLSI D_St andar dRast er Of f screen, 0, 0,
I 1 D | ShRaster O f screen, (voi d**) & heCursor) ;
t heCur sor->Ini t O f screen(chunkH, chunkV, depth);
/1 we will get the first chunk that is the only one chunk
| EnumChunk* First Chunk = theCursor->EnunChunks(&BRect) ;
Fi r st Chunk- >Next (1, & Chunk, 0) ;
t heCur sor - >Get ChunkRect (aChunk, cursordip);
t heCur sor - >LockChunk( aChunk) ;
[ ong* PCur Chunk

/1 now, we will fill the chunk with a black and yell ow checker
PCur Chunk = (1 ong*) (theCursor->Cet ChunkDat a(aChunk)) ;
short i,j;

for (i=0; i< chunkV; i++) {
for (j=0; j< chunkH;, j++) {
*(PCur Chunk++) =(((i”"j) &8)==0?0x0000000: OXOFFFFO0); // square
bl ack or
yel | ow each 8 pixels
}
}
t heCur sor - >Unl ockChunk( aChunk) ;

Ones the checker have been created with the size of a chunk, we will iterate on each chunk
of the image to process the filtering.

| EnunChunk* iter = thel mage- >EnuntChunks( &BRect) ;
for (; (iter->Next(1,&Chunk,0)) == NO ERROR, ) {
t hel mage- >Get ChunkRect (aChunk, adlip);
gd- >Dr awOf f screen(t heCursor, *cursorCip, *aCip); // draw the
checker
t hel mage- >LockChunk( aChunk) ;
[ ong* data = (1 ong*)thel mage- >Get ChunkDat a( aChunk) ;
/] iterate on each pixel of the chunk
for (short vv = adip->top; vv< aCip->top + chunkV;, vv++) {
t hel mage- >Set Posi tion(aClip->left, vv);
for (short hh = aClip->left; hh< alip->left + chunkH hh++)
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| ong col or;
/1 get the color
t hel mage- >Get (&col or) ;
/1 transformthis color
(*data) = Randontol or(col or & OxFF) + (Random
Col or((col or>>8) & OxFF)<<8) +
RandontCol or ((col or >>16) & OxFF) <<16) ;
/1 nove to the next pixe
t hel mage- >GoRi ght () ;
dat a++;
} /1 for hh
} /] for vv
t hel mage- >Unl ockChunk( aChunk) ;
gd->Dr awOf f screen(t hel mage, *aClip, *aClip); // draw the com
put ed chunk
} /] for iter
t heCur sor - >Rel ease() ;
} /1 if depth
}

The most important function here is Get that gives you the information you need for the
current position on the offscreen. theBuffersis a pointer on atable that contain the buffers
for each informations you asked for. The first one is the color buffer, aways available.
This call returns the color of the current pixel:

t hel mge->Get (&col or); // col or (0xOORRGGBB)

To get the others informations, we need to get an interface on 3D ShRasterBufferGetPut
that allows you to “navigate” thru the buffer like an offscreen.

| 3DShRast er Buf f er Get Put * t heDi st ance;
t heBuf fers[ 0] ->Queryl nterface(llD_|I SHRast er Buf f er Get Put, theDi stance);

t heDi st ance- >Get (&di stance); // distance

Now, you’ve got to iterate on each chunk of your buffer to get the distance on each point
aswe did for the color. You need to keep iterating on the chunks of the image to set the
new colors. Same way to get the others informations:

t heBuf f er s[ 0] /1 distance

t heBuf fers[ 1] /1 position X

t heBuf f er s[ 2] /1 position Y

t heBuf f er s[ 3] /1 position Z

t heBuf f er s[ 4] /1 normal X

t heBuf f er s[ 5] /1 normal Y

t heBuf f er s[ 6] /1 normal Z

t heBuf fers[ 7] /1 al pha

t heBuf f er s 8] /1 index

t heBuf f er s[ 9] /1 surface U

t heBuf f er s[ 10] /1l surface V

t heBuf fers[ 11] /'l shader col or

t heBuf f ers[ 12] /'l shader specul ar col or
t heBuf f er s[ 13] /'l shader specul ar size val ue
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t heBuf f er s[ 14]
t heBuf f er s[ 15]
t heBuf f er s[ 16]
t heBuf fers[ 17]
t heBuf f er s[ 18]
t heBuf f er s[ 19]

11
11
11
11
/11
11

shader
shader
shader
shader
shader
shader

anbi ent val ue

| ambert val ue

refl ection color
transparency col or
refraction val ue
gl ow col or

Alphaisthe mask, 0 mean background, MaxL ong mean object and intermediate values for
the frontier. Index, surface U and surface V are used to locate the point in UV spaces.
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17.1.Writing a Renderer

The API for this section does exist, but is not documented yet. The documentation will
come in afuture version of the DreamSDK. If you need more information, please contact
MetaCreations directly.
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Chapter 18 - DataBase Overview

Ray Dream Designer stores all the data of currently open documentsin a global database.
Third party extensions can access this database to get these or modify these data. The data-
base contains alist of scenes. To each open document corresponds one scene.
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18.1.Scene

A Sceneismostly comprised of 2 structures.
An Object Ligt, that contains all the Objects used in the scene.
A Scene Tree that contains the hierarchical structure of the scene. This defines the
positions and rel ationships between Tree Elements. These tree elements can be object
instances, light sources, cameras and groups.

Objects

Objects contains the geometric information defining its surface regardless of its position.
It also contains a reference to its shading information. The Objects are located in the
Objects Browser window in Ray Dream Designer.

An Object can be of two types. a Primitive or a Scene.

Primitives are the basic objects that are located in the « Basics » section of the Objects
Browser. There are different classes of primitives. Ray Dream Designer defines a certain
number of default internal primitivesthat can be used by extensions. Those primitiveswill
alwaysbethere. They are the Free Form Primitive, the Polygon Array, the Patch Array, the
Polygon List (list of triangular facets), the Flat Primitive, the 3D Text, etc. Some other
primitives are external primitives (coded in regular extensions) like the Cube, the Sphere,
the Isocaedra, etc. Third party developer can define new classes of primitives.

A Sceneisalso considered an Object, because it can be instanciated in another Scene, like
if it was a complex object. Thisis sometimes called « Scene Instancing ».

Scene Tree and Tree Elements

The scene treeis a hierarchical structure containing Tree Elements.
There are four types of tree elements: Object Instances, Light Sources, Cameras and
Groups. Those elements are detailed below. All these elements have 2 things in common:
apositioning in 3D space (orientation, location, scaling, etc...)
aname

Object Instances

An object instance is atree element that has a reference to an Object in the object list.
Therefore there can be multiple instances in a scene of a same object. This object can be
either a Primitive or another Scene.

Shading can be « overriden » at the instance level, thus surpassing any shading informa-
tion the original object may have.

Lights

A Light Sourceis atree element. There can be as many lights as needed in a scene. Most

©1995-1997 MetaCreations. All rights reserved.



DataBase Overview Chapter 18 - Page 91

Light Sources are implemented as Extensions.

Cameras

A Camerais another type of tree element. Like lights, there can be many camerasin a
scene. One of them will be the Rendering Camera, i.e. the camerathe final image will be
rendered from. Most Cameras are implemented as Extensions.

Groups

A Group is atree element used to gather other tree elements together. It can be open or
closed.
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18.2.Coordinate System s

Global Coordinate System

When you look at the Perspective window in Ray Dream Designer, the axis of the Global
Coordinate System are organized like this:

Figure 1. The Global Coordinate System
The projection of the (0, O, 0) origin fallsin the middle of each plane of the Working Box
(the origin is not the far corner of the box). Thel, J, K vectors are the unit vectors of the
X,Y and Z axis.

Working Box Coordinate System

The Working Box Coordinate System is defined by the position of the Working Box. As
the Working Box can be moved and rotated in Ray Dream Designer, this coordinate sys-
tem can be useful in some complex scenes. However, this system is never used when deal -
ing with Extensions, so we will just mention it here.

Local Coordinate System (or Object Coordinate System )

The Local Coordinate System (also sometimes called the Object Coordinate System)
define the system of an object or a group. Its axis, origin and scale depends on the posi-
tioning of the object in space.
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Figure 2. The Local Coordinate System of an object in a scene
Thei, j and k vectors are the unit vectors of the x, y and z axis.

Screen Coordinate System

When arendering occurs, the 3D datais projected onto the screen through the rendering
camera. The axis of the 3D coordinate system attached to the screen islike this:
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Figure 3. The Screen Coordinate System
As one can see, the objects seen by the camera have a negative z coordinate. The screen
and the Screen Coordinate System are centered on the camera’ s center.

The Screen Coordinate System versus the Camera’s Coordinate
System

Thereisadlight difficulty here. The camera’saim isalong they axis of its transformation.
Asaresult, hereisthe Local Coordinate System of the camerain the previous figure:
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Figure 4. The camera’s Local Coordinate System
You do not need to worry too much about this difference, because transformations cal cu-

lated by the 3D Shell takesthisinto account. It isimportant only if you intend to position a
camerain ascene.

The screen pixels space

The Screen Pixels Space is the actual Pixels coordinate system used to render the final

image. Itsunit system isin Points, as opposed to all other coordinate systemswhich arein
3D units. Asaresult :

1 3D unit = 288 points
because 1 inch = 72 points. More on the units business is covered later.

It is oriented with its vertical axis going down, and its (O, 0) origin in the top left corner of
the image:
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(0.0

Soree o

Figure 5. The Screen Pixels Space
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18.3.Geometry

Geometric data type: 32-bit fixed point

All geometric dataisin 32-bit fixed point format. Thisissimilar to the FI XED datatypein
Windows, and identical to the Fi xed data type on the Macintosh. As far asthe C com-
piler is concerned, itisal ong. Thetypeiscaled NUMBD in the Dream SDK.

31 1615 1]

Here iz the sign Here iz the decimal point

Examples of NUMBD values:

1.0 0x00010000
05 0x00008000
-1.0 OxFFFFO000
-15 OxFFFE8000

Rangeislimited to + 32767.99998, accuracy is limited to 1.5259E-5 (=1/65536).
To convert from aNUM3D to adouble:

doubl e NunBDToDoubl e( NUMBD f) {
return (f / 65536.0);

}
To convert from adouble to aNUM3D:

FI XED Doubl eToONUMBD( doubl e d) {
return (long) (d * 65536.0);

}

If you use C++, it is highly recommended to use the QuickMath library provided in the
development toolkit. It defines a C++ class called Qui ckFi x that matches the NUVBD
type, and that contains all kind of optimized operators and functions. You will save alot of
time and efforts by using thislibrary, and your code will be easier to read. See the devel op-
ment toolkit notes for details on how to use thislibrary on your specific platform.

Units System
The units system used in Ray Dream Designer is defined as follows:

1 3D unit = 4 inches

All geometric data uses the 3D units. The various units shown by Ray Dream Designer in
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the Geometry palette are just handled at the user interface level.

The advantage of using afixed system like thisis that there is no problem of data conver-
sion into different units. As all geometric datais stored in 32 bit fixed-point format, this
convention also gives the best range of values for typical scenes built by users. the maxi-
mum is+ 3.3 kilometers and the minimum is 1.5 um. Of course, those are the maximum
and the minimum of the accuracy you can get theoretically, but be careful not to overflow
those values when making calculations. Because of this, it is reasonable to limit yourself
to values well within thisrange. Try not going further than 0.5 kilometers, or you will
overflow quickly. Likewise, try not going below 1 millimeter, or you will lose accuracy.

Tree Elements Transformation

Each tree element (object instance, light source, group or camera) is defined relatively to
its parent in the tree. Depending of the API procedure you call, you will get the transfor-
mation parameters that define the attitude of the object in space in one format or another.

Whatever callback you use, you will get the following data:
A 3x3 rotation matrix R (or the 3 vectors that define it)
A translation vector T
A uniform scaling factor s

To transform a point from the Local Coordinate System of this tree element into the Coor-
dinate System of its parent, the following formulais used:

M=gRjm+T
with m the point in local coordinates, and M the same point in the parent’ s coordinates.

Tomakeit easier to read, hereisthe same equation in expanded format for each x, y and z

coordinate:
Mx:S(Rx, mx+ij, my+ka, mz)+Tx
My :S(Ry mx+Rjy m, + I:eky M)+Ty
Mz :dRiz ’ mx +Rjz ’ my + sz ’ mz)+Tz
With:
- m(my, my, m,) point in local coordinates
M(My, My, M) point in parent’s coordinates
T(Ty, Ty, Ty) position of the tree element origin in parent’s coordinates
S uniform scaling factor
R rotation matrix (see below)

Moreon therotation matrix:

If you consider the 3 i(iy, iy, i), j(ix, Jy» Jz) and k(ky, ky, k;) vectors of the Local Coordinates System, you
can write easily the R matrix by putting each vector in each column like this:
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X jX le;I

[R]: y jy vl

8. 1. k#

? (D> M
<

For additional information on transformation matrices and Tree Transformations, see the
Data Structure Reference chapter.

Geometry basics

When you deal with objects, there are several concepts to define that are related to the
object’ s shape.

Surface Point

Ray Dream Designer deals with surfaces, not volumes. An object is made of surfaces that

can be arbitrary complex. A point P on asurfaceis made of itsx, y and z coordinatesin the
Object Coordinate System.

Figure 6. A point on a surface
Surface Normal
The Surface Normal at a point is the vector perpendicular to a plan that would be tangent
to the surface at that point. The Normal is very important in 3D computer graphics,

becauseit is heavily used for shading (especially in Phong and Ray Tracing shadings).
Normals are usually normalized (their length is equal to 1), and always point outward.
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N{Nx Ny, Nz)

Figure 7. ANormal to the surface
Note that :

N>+ N2 +N,*=1

u,v Space (Texture Coordinate System)

Wrapping atexture (such as a texture map) on an object surface involves finding the corre-
spondence (the "mapping") between a 2D space (the image) and a 3D space (the object
surface). Thetypical rendering question is: "'l have apoint P(x, y, z) on my surface, where
should I look up in the texture map ?".

When one deal s with simple shapes (sphere, cube, cylinders, etc.), it is easy to find a map-
ping. When one deals with complex objects (list of facets or patches), the matter becomes
much more difficult. To solve this, most packages use a technique called " projection map-
ping": an intermediate imaginary surface surrounding the object is used, and the textureis
placed on it. Then the surface color at a point is calculated by using the part of the texture
that the point is facing.

The problem with thisis that you can get awkward results when the object is very unlike
the intermediate surface. Unwanted deformation isatypical problem: you want the texture
to shrink or enlarge only where the object surface does.

Parametric mapping - a better solution

The Ray Dream Designer free-form modeler isin fact capable of generating what we call

"UV spaces', and the architecture of Ray Dream Designer can keep thisinformation down
to the facets or bicubic patches level, in order to allow direct mapping (also called "Para-

metric Mapping").

Theideaisthis: because objects are built by combining 2D curves, it is possible to gener-
ate a 2D space that will behave topologically like the object surface.
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Figure 8. A typical u,v space on the side surface of an object

Every time you deal with a 3D point on the surface, you will be able to calculate the u,v
coordinates for this point (provided that the object supports UV spacing). Say you need to
know if the point is covered by a Paint Shape. The location of the paint shape is known by
the u,v coordinates of its corners. The test becomes asimple 2D test: "are the u,v coordi-
nates of the point inside a 2D rectangle 7.

Most of the time you get the u,v values from the 3D Shell. The only case where you have
to generate them is when you develop a geometric primitive extension.

If the object has some surface discontinuities, then several u,v spaces are generated for the
object. For example if your extrude a closed 2D curve, you will get 3 u,v spaces: one for
the side surface, one for the back face and one for the front face. Thisis because it is not
possible to have a u,v continuity across these different parts of the object (think of the
problem of anapkin on atable). Each UV space has a number (0, 1, 2...), called aUV
Spacel D.

Shading

The shading can be applied on an object by giving general properties (color, reflection...)
to the object or by mapping atexture on it. Thereis 5 ways of mapping atexture on an
object.
- the parametric mapping,
the box mapping,
the cylindrical mapping,
the spherical mapping,
the pass thru mapping.

The parametric mapping is the mapping using the UV Space information as seen in the
last section. Thisisthe better way of mapping, but because al objects don’t have necessar-
ily aUV Space, four other ways of mapping are provided.

The box mapping, the cylindrical mapping and the sphere mapping are obtained by pro-
jecting atexture on a cube, cylinder or a cube on the object.

The pass thru mapping is obtained by vertically projecting a planar texture on the object.

©1995-1997 MetaCreations. All rights reserved.



Chapter 18 - Page 102 DataBase Overview

Facets
There are two kinds of low level geometric data used for rendering, exporting, etc.: facets
and bicubic patches.

HA
HC

E
Figure 9. A 3D facet

Facets are triangles. Each vertex containsthe (X, y, z) coordinates of the point, the Normal
at this point, and the u,v coordinates at this point. The facet also storesthe u,v Space ID to
which it belongs.

typedef struct VERTEX3D {

VECTOR3D f Vert ex; /'l X, y, z vertex coordi nates
VECTOR3D f Nor mal ; /1 Nx, Ny, Nz nornmal values at that vertex
NUMBD fu,fv; /'l Texture u,v values at that vertex
} VERTEX3D,
typedef struct FACET3D{
VERTEX3D fVertices|[3]; /'l The facet three vertices
short f UVSpace; /1 UV Space ID this facet belongs to
short f Reserved; /'l Reserved - O
} FACET3D;

I nter polating in a facet

Interpolating a point in afacet isacommon exercisein 3D. If you call the verticesA, B
and C, their NormalsNA, NB, NC, and their u,v valuesuA, VA, uB, vB, and uC, vC, then:

from:

P=aA+bB+qC
you can interpol ate:

N =aNA+DbNB +gNC
Don't forget to renormalize the normal:

Likewise:
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u=auA+buB+quC
v=avA+bvB+guC

Of coursg, thisis an approximation of the real values, but facets are already approxima-
tions of the real surface. Aslong as facets are small enough, thisworks just fine.

Bicubic Patches

Bicubic patches are more interesting geometric entities. They can describe more complex
surfaces than facets, and are more resolution independent. For example Extrusions created
by Ray Dream Designer’ s Free-Form modeler generate bicubic patches. Turn on the Wire-
frame display: what you see are the boundaries of the patches.

Figure 10. A bicubic patch

A patch ismade of 16 3D points. You can think of a bicubic patch asacubic B_zier curve
that hasits 4 vertices moving along 4 other B_zier curves.

typedef struct PATCH3D{

VECTOR3D fVertices[4]][4]; /1 The patch 16 vertices

NUMBD ful 2]; /1 u values at the patch boundaries
NUMBD fv[2]; /1 v values at the patch boundaries
short f UVSpace; /1 UV Space ID this patch belongs to
short f Reserved,; /'l Reserved - O

} PATCH3D;

One can think of abicubic Bézier patch asaBézier curve moving on 4 other perpendicular
Bézier curves. Let’s apply this concept to calculate a point on the surface.

The patch can be defined as a parametric surface of two normalized parameters, tu and tv.

Bicubic Patch = S(t, , t,)
00£t,£1.0
00£t,£1.0

First consider the 4 Bézier curves defined by CO=(P00, P10, P20, P30), C1=(P01, P11,
P21, P31), C2=(P02, P12, P22, P32), and C3=(P03, P13, P23, P33), and calculate on each
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apoint at t,:

P(t,) =P, (1-t)*+ 3P, (1- t,)°t,+ 3P, (1- t,)t 2 +P,t}°
Then calculate the point at tv on the Bézier curve (PO(t,), PL(t,), P2(t,), P3(t,)) by re-
using the same formulae as above. Thisis the result.

Patch normals

A nicething about patchesisthat you do not have to worry about storing normals: they are
automatically defined by the patch geometry. So this means that you do not have to calcu-
late them for the 3D Shell. For the Mathematics savvy reader, let’ sremind that normals are
defined as:

N1 = 1518

ur tv ﬂtu ﬂtv
Patch u,v Space

The u and v values are constant along the patch boundaries.

P00, P01, P02, PO3: u[0] P00, P10, P20, P30: v[Q]

P30, P31, P32, P33: u[1] P03, P13, P23, P33: v[1]

(u, v) values at any point on the patch is calculated from these boundaries values by doing
aBézier interpolation.

(uLl, A1)

W Fig
L]

Fag
\\ (ul 11, +{0]]

Figure 11. A patch (u,v) Space
To learn more about Bézier bicubic Patches

Read the excellent book « Introduction to Computer Graphics » by Folley - Van Dame -,
published by Addison-Weidey.

Also take alook at source of the examples of the Dream SDK, like the Teapot primitive or
the patch deformer.
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