
ERwin

Methods Guide

© 1997 by Logic Works, Inc.

ERwin Version 3.0

Methods Guide

Logic Works, Inc.

University Square at Princeton

111 Campus Drive

Princeton, NJ 08540

This product is subject to the license agreement and limited warranty enclosed in the
product package. The product software may be used or copied only in accordance with
the terms of this agreement. Please read the license agreement carefully before opening
the package containing the program media. By opening the media package, you accept
these terms. If you do not accept or agree to these terms, you may promptly return the
product with the media package still sealed for a full refund.

Information in this document is subject to change without notice. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express
written permission of Logic Works.

logic
works®

© Copyright 1989-1997 Logic Works, Inc. All rights reserved.

Printed in the United States of America.

Logic Works, ERwin and BPwin are U.S. registered trademarks of Logic Works, Inc. ModelMart,
DataBOT, TESTBytes, ModelBlades, RPTwin and Logic Works with logo are trademarks of Logic
Works, Inc. All other brand and product names are trademarks or registered trademarks of their
respective owners.

ERwin Methods Guide

Contents • i

Contents

Preface iii

Intended Audience .. iv
About this Guide ... iv
Typographical Conventions... v
Related Documentation.. v

Information Systems, Databases, and Models 9

What’s In This Chapter?... 9
What is Data Modeling?... 10
Data Modeling Sessions ... 12
Sample IDEF1X Modeling Methodology.. 14
Logical Models.. 16
Physical Models .. 17
Benefits of Modeling in ERwin.. 18

Constructing a Logical Model 19

What’s In This Chapter?... 19
The Entity-Relationship Diagram.. 20
Validating the Design of the Logical Model... 24
Data Model Example.. 25

The Key-Based Model 27

What’s In This Chapter?... 27
Understanding Keys... 28
Relationships and Foreign Key Attributes.. 32
Rolenames ... 36

Naming and Defining Entities and Attributes 37

What’s In This Chapter?... 37
Naming Entities and Attributes .. 38
Entity Definitions.. 40
Attribute Definitions .. 43
Rolenames ... 44

ERwin Methods Guide

ii • Contents

Definitions and Business Rules ..46

Refining Model Relationships 47
What’s In This Chapter? ...47
Relationship Cardinality ...48
Referential Integrity...51
Additional Relationship Types...56
Many-to-Many Relationships ...57
N-ary Relationships...60
Recursive Relationships ..62
Subtype Relationships...64

Normalization 71
Introduction ...71
Overview of the Normal Forms ...72
Common Design Problems...73
Unification..84
How Much Normalization Is Enough?..86
ERwin Support for Normalization...88

Creating a Physical Model 91
What’s In This Chapter? ...91
Creating a Physical Model ..92
Denormalization ..93

Dependent Entity Types 95
Classification of Dependent Entities ..95

Glossary of Terms 97

Index 101

ERwin Methods Guide

Contents • iii

Preface

Welcome to data modeling with ERwin. If you have never seen a model
before, the ERwin Methods Guide will help you understand what a model is,
and what it is good for. If you already have some experience with data and
data models, you know how useful they can be in understanding the
requirements of your business. A model can help if you are designing new
information systems or are maintaining and modifying existing ones.

Data modeling is not something that can be covered in a lot of detail in a short
document like this one. But by the time you have read it, you will understand
enough, even if you are just a beginner, to put ERwin’s methods to work for
you. Overall, the ERwin Methods Guide has the following purposes:

♦ To provide a basic level of understanding of the data modeling method
used by ERwin that is sufficient to do real database design.

♦ To introduce some of the descriptive power and richness of the IDEF1X
and IE modeling languages supported by ERwin and to provide a
foundation for future learning.

♦ To provide additional information that lets you to better understand
ERwin’s modeling features.

This document covers the methods of data modeling supported by ERwin,
which include:

♦ IDEF1X. The IDEF1X method was developed by the U.S. Air Force. It is
now used in various governmental agencies, in the aerospace and
financial industry, and in a wide variety of major corporations.

♦ IE (Information Engineering). The IE method was developed by James
Martin, Clive Finkelstein, and other IE authorities and is widely deployed
in a variety of industries.

Both methods are suited to environments where large scale, rigorous,
enterprise-wide data modeling is essential.

ERwin Methods Guide

iv • Contents

Intended Audience
This manual is intended for:

♦ Novice database designers and data modelers — as a primer on data
modeling, and as a guide to using the ERwin methods.

♦ Experienced data modelers and applications developers — as a guide to
IDEF1X and IE data modeling in ERwin.

♦ Experienced IDEF1X or IE users — as a guide to the features of IDEF1X
and/or IE supported by ERwin, and the mapping between these
methods.

About this Guide
This document contains seven chapters, an appendix, a glossary, and an
index:

♦ Chapter 1 describes data modeling, provides a sample methodology for
creating a data model, and the benefits of modeling in ERwin.

♦ Chapter 2 describes the creation of an entity-relationship diagram (ERD)
and explains both the process and validation of the model. This chapter
also introduces the ideas of entities, attributes, and relationships.

♦ Chapter 3 explains the concept of keys, including candidate keys, primary
and alternate keys, inversion entries, migration of foreign keys, and the
use of rolenames.

♦ Chapter 4 explains the importance of creating accurate names and
definitions for entities, attributes, and rolenames in the logical model.

♦ Chapter 5 provides additional information about entity relationships,
including relationship cardinality, referential integrity. This chapter also
describes additional relationship types, such as many-to-many, n-ary,
recursive, and subtype relationships.

♦ Chapter 6 defines normalization and the six normal forms of database
design. This chapter also provides solutions to a number of common
design problems, and describes ERwin’s support for normalization.

♦ Chapter 7 describes physical model constructs and the creation of the
physical model from a logical model in ERwin.

♦ Appendix A describes the types of dependent entities, including
characteristic, associative, designative, and subtype entities, and their use
in a logical model.

ERwin Methods Guide

Contents • v

Typographical Conventions
The ERwin Methods Guide uses some special typographic conventions to
identify ERwin user interface controls and key terms that appear in the text.

Text Item Convention Example

New and important
terms

Bold italics normalization

Entity Name All uppercase; followed by the word
“entity” in lower case

MOVIE COPY entity

Attribute Name All lowercase in quotation marks;
hyphen replaces embedded space(s).

“movie-name”

Column Name All lowercase. movie_name

Table Name All uppercase. MOVIE_COPY

Verb Phrase All lowercase in angle brackets. <is available for rental as>

Related Documentation
The ERwin documentation set includes the following print and online
manuals:

♦ ♦ ERwin Online Help

♦ ♦ ERwin Methods Guide (this guide)

♦ ♦ ERwin Reference Guide

♦ ♦ ERwin Features Guide

♦ ♦ ERwin Workgroup Modeling Guide

♦ ♦ Logic Works RPTwin User’s Guide

ERwin Methods Guide

vi • Contents

ERwin Methods Guide 1

Information Systems, Databases, and Models • 9

Information Systems, Databases, and Models

What’s In This Chapter?
Information systems can have numerous benefits to corporations, from
automating tasks that were previously performed manually, to uncovering
information and relationships that were previously unknown or undefined. In
short, the benefits of information systems can be boiled down to a few key
words: faster, better, and more.

However, to realize the benefits of information systems, you must be able to
develop them in a timely and cost effective manner, so that they meet real
business needs and are modifiable and maintainable with minimum expense.
Achieving these goals is a major challenge -- a poorly designed system will
end up costing more money and time than it saves.

The most important tool in reducing the cost of managing and retrieving
information has become the relational database management system or
RDBMS. An RDBMS provides a reliable and convenient means of storing,
retrieving, and updating data.

Equally important is a method that reduces the cost of designing and
managing relational databases. The most important and widely used method
is called data modeling.

Chapter Contents

What is Data Modeling?... 10
Data Modeling Sessions ... 12
Sample IDEF1X Modeling Methodology.. 14
Logical Models.. 16
Physical Models .. 16
Benefits of Modeling in ERwin.. 18

1

ERwin Methods Guide

10 • Information Systems, Databases, and Models

What is Data Modeling?
Data modeling is the process of describing information structures and
capturing business rules in order to specify information system requirements.
A data model represents a balance between the specific needs of a particular
RDBMS implementation project, and the general needs of the business area
that requires it.

Structured system development approaches in general, and data-centered
design approaches specifically, invest heavily in front end planning and
requirements analysis activities. Many of these “top-down” design
approaches use ERwin data modeling as a method for identifying and
documenting that portion of system requirements relating to data. Process
models (e.g., data flow diagram sets, distribution models, event/state models)
can be created in Logic Works BPwin and other tools to document processing
requirements. Different levels of these models are used during different
development phases.

When created with the full participation of business and systems
professionals, the data model can provide many benefits. These benefits
generally fall into two classes — those primarily associated with the model
(the product of the effort) and those associated with the process of creating
the model (the effort).

Examples of product benefits:

♦ A data model is implementation-independent, so it does not require that
the implementation is in any particular database or programming
language.

♦ A data model is an unambiguous specification of what is wanted.

♦ The model is business user-driven. The content and structure of the model
is controlled by the business client rather than the system developer. The
emphasis is on requirements rather than constraints or solutions.

♦ The terms used in the model are stated in the language of the business,
not that of the system development organization.

♦ The model provides a context to focus discussions on what is important to
the business.

Examples of process benefits:

♦ During early project phases, model development sessions bring together
individuals from many parts of the business, and provide a structured
forum in which business needs and policies are discussed. During these
sessions, it is often the case that the business staff, for the first time, meet

ERwin Methods Guide 1

Information Systems, Databases, and Models • 11

others in different parts of the organization who are concerned with the
same needs.

♦ Sessions lead to development of a common business language with
consistent and precise definitions of terms used. Communication among
participants is greatly increased.

♦ Early phase sessions provide a mechanism for exchanging large amounts
of information among business participants, and transferring much
business knowledge to the system developers. Later phase sessions
continue that transfer of knowledge to the staff who will implement the
solution.

♦ Session participants are generally able to better see how their activities fit
into a larger context. And parts of the project can be seen in the context of
the whole. The emphasis is on “cooperation” rather than “separation.”
Over time, this can lead to a shift in values, and the reinforcement of a
cooperative philosophy.

♦ Sessions foster consensus and build teams.

Design of the data structures to support a business area is only one part of
developing a system. The analysis of processes (function) is equally
important. Function models describe “how” something is done. They can be
presented as hierarchical decomposition charts, data flow diagrams, HIPO
diagrams, etc. You will find, in practice, that it is important to develop both
your function and data models at the same time. Discussion of the functions
to be performed by the system uncovers the data requirements. Discussion of
the data normally uncovers additional function requirements. Function and
data are the two sides of the system development coin.

ERwin provides direct support for process modeling and can work well with
many techniques. For example, Logic Works also provides a function
modeling tool, BPwin, that supports IDEF0, IDEF3 work flow, and data flow
diagram methods and can be used in conjunction with ERwin to complete an
analysis of process during a data modeling project.

1

ERwin Methods Guide

12 • Information Systems, Databases, and Models

Data Modeling Sessions
Creating a data model involves not only construction of the model, but also
numerous fact-finding sessions that uncover the data and processes used by a
business. Running good sessions, like running good meetings of any kind,
depends on a lot of preparation, and “real-time” facilitation techniques. In
general, modeling sessions should include the right mix of business and
technical experts and should be facilitated. This means that they are
scheduled well in advance, carefully planned to cover sets of focused
material, and orchestrated in such a way that desired results are achieved.

When possible, it is highly recommended that modeling of function and data
be done at the same time. This is because functional models tend to validate a
data model and uncover new data requirements. This approach also ensures
that the data model supports function requirements. To create both a function
and data model in a single modeling session, it is important to include not
only a data modeler, but also a process modeler who is responsible for
capturing the functions being explored.

Session Roles
Formal, guided sessions, with defined roles for participants and agreed upon
procedures and rules, are a must. The following roles seem to work well:

♦ The facilitator is the session guide. This person is responsible for
arranging the meetings and facilities, providing follow-up documentation,
and intervening during sessions, as necessary, to keep them on track and
control the scope of the session.

♦ The data modeler is responsible for leading the group through the process
of developing the model and validating it. The modeler develops the
model, in real-time if possible, in front of the group by asking pertinent
questions that bring out the important detail,and recording the resulting
structure for all to see. It is often possible (although somewhat difficult)
for the same individual to play both facilitator and data modeler roles.

♦ The data analyst(s) functions as the scribe for the session, and records the
definitions of all entities and attributes that make up the model. They can
also begin to “package” entities and attributes into subject areas,
manageable and meaningful subsets of the complete data model, based on
information from the business experts.

ERwin Methods Guide 1

Information Systems, Databases, and Models • 13

♦ The subject matter experts provide the business information needed to
construct the model. They are “business” not “systems” people. It is their
business that is being analyzed.

♦ The manager, either from the “systems” or “business” community,
participates in the sessions in his or her assigned role (facilitator, subject
matter expert, etc.) but has the additional responsibility of making
decisions as needed to keep the process moving. The manager has the
responsibility of “breaking ties” but only when absolutely necessary.

1

ERwin Methods Guide

14 • Information Systems, Databases, and Models

Sample IDEF1X Modeling Methodology
ERwin has been developed to support the IDEF1X and IE modeling
standards, but is otherwise free from restrictions on any methodology. The
use of various levels of models within the IDEF1X method, however, can be
very helpful in developing a system. General model levels are outlined in the
IDEF1X standard, and are presented below. In practice, you may find it useful
to expand or contract the number of levels to fit individual situations.

The model levels generally trend from a very wide, but not too detailed view
of the major entities that are important to a business, down to a level of
precision required to represent the database design in terms understandable
by a particular DBMS. At their very lowest level of detail, the models are said
to be technology dependent, e.g., a model for an IMS database will look very
different from a model for a DB2 database. At higher levels, the models are
technology independent, and may even represent information which is not
stored in any automated system.

The modeling levels presented below are well suited to a top-down system
development life cycle approach, in which successive levels of detail are
created during each project phase.

The highest level models come in two forms. The Entity Relationship Diagram
(ERD) identifies major business entities and their relationships. The Key-
Based (KB) Model sets the scope of the business information requirement (all
entities are included) and begins to expose the detail.

The lower level models also come in two forms. The Fully Attributed (FA)
Model is a third normal form model which contains all of the detail for a
particular implementation effort. The Transformation Model (TM) represents
a transformation of the relational model into a structure which is appropriate
to the DBMS chosen for implementation.

The transformation model, in most cases, is no longer in third normal form.
The structures have been optimized based on the capabilities of the DBMS,
the data volumes, and the expected access patterns and rates against the data.
In a sense, this is a picture of the eventual physical database design.

The database design is contained in the DBMS Model for the system.
Depending on the level of integration of a business’ information systems, the
DBMS Model may be a project level model, or an area level model for the
entire integrated system.

ERwin Methods Guide 1

Information Systems, Databases, and Models • 15

These levels are presented in the figure below. Notice that the DBMS Model
can be either at an “Area” scope, or a “Project” scope. It would not be
uncommon to have single ERD and KB models for a business, and multiple
DBMS Models, one for each implementation environment, and then another
set within that environment for “projects” which do not share databases. In an
ideal situation, there are a set of “Area” scope DBMS Models, one for each
environment, with complete data sharing across all projects in that
environment.

IDEF1X Database Design Levels

1

ERwin Methods Guide

16 • Information Systems, Databases, and Models

Logical Models
There are three levels of logical models that are used to capture business
information requirements: the Entity Relationship Diagram (ERD), the Key-
Based (KB) Model, and the Fully Attributed(FA) model. The ERD and KB
models are also called “area data models” because they often cover a broad
business area that is larger than the business chooses to address with a single
automation project. In contrast, the FA model is a “project data model”
because it typically describes a portion of an overall data structure intended
for support by a single automation effort.

The Entity Relationship Diagram
The Entity Relationship Diagram is a high level data model that shows the
major entities and relationships which support a wide business area.

The objective of the entity relationship diagram is to provide a view of
business information requirements sufficient to satisfy the need for broad
planning for development of its information system. These models are not
very detailed (only major entities are included,) and there is not much detail,
if any, on attributes. Many-to-many (non-specific) relationships are allowed,
and keys are generally not included. This is primarily a presentation or
discussion model.

The Key-Based Model
A Key-Based Model describes the major data structures which support a wide
business area. All entities and primary keys are included, along with sample
attributes.

The objective of the key-based model is to provide a wide business view of
data structures and keys needed to support the area. This model provides a
context in which detailed implementation level models can be constructed.
The model covers the same scope as the Area ERD, but exposes more of the
detail.

The Fully-Attributed (FA) Model
A Fully Attributed Model is a third normal form data model that includes all
entities, attributes and relationships needed by a single project. The model
includes entity instance volumes, access paths and rates, and expected
transaction access patterns against the data structure.

ERwin Methods Guide 1

Information Systems, Databases, and Models • 17

Physical Models
There are also two levels of physical models for an implementation project:
the Transformation Model and the DBMS Model. The physical models
capture all of the information that systems developers need to understand
and implement a logical model as a database system. The Transformation
Model is also a “project data model” that describes a portion of an overall
data structure intended for support by a single automation effort. ERwin
supports individual projects within a business area, allowing the modeler to
separate an larger area model into submodels, called subject areas. Subject
areas can be developed, reported on, and generated to the database in
isolation from the area model and other subject areas in the model.

The Transformation Model
The objectives of the transformation model are to provide the Database
Administrator (DBA) with sufficient information to create an efficient physical
database, to provide a context for the definition and recording in the data
dictionary of the data elements and records that form the database, and to
assist the application team in choosing a physical structure for the programs
that will access the data.

When deemed appropriate for the development effort, the model can also
provide the basis for comparing the physical database design against the
original business information requirements — to demonstrate that the
physical database design adequately supports those requirements, to
document physical design choices and their implications (e.g., what is
satisfied, and what is not), and to identify database extensibility capabilities
and constraints.

The DBMS Model
The transformation model directly translates into a DBMS model, which
captures the physical database object definitions in the RDBMS schema or
database catalog. ERwin directly supports this model with its schema
generation function. Primary keys become unique indices. Alternate keys and
inversion entries also may become indices. Cardinality can be enforced either
through the referential integrity capabilities of the DBMS, application logic, or
“after the fact” detection and repair of violations.

1

ERwin Methods Guide

18 • Information Systems, Databases, and Models

Benefits of Modeling in ERwin
Regardless of the type of DBMS you use or which types of data models you
wish to develop, modeling your database in ERwin has many benefits. The
most obvious benefit is system documentation that can be used by database
and application development staff to define system requirements and to
communicate among themselves and to end-users.

A second benefit is to provide a clear picture of referential integrity
constraints. Maintaining referential integrity is essential in the relational
model where relationships are encoded implicitly.

A third benefit is the provision of a “logical” RDBMS-independent picture of
your database that can be used by automated tools to generate RDBMS-
specific information. Thus, you can use a single ERwin diagram to generates
DB2 table schemas, as well as schemas for other relational DBMSs.

One of the primary benefits of data modeling with ERwin is the ease with
which you will be able to produce a diagram summarizing the results of your
data modeling efforts, and generate a database schema from that model.

ERwin Methods Guide 2

Constructing a Logical Model • 19

Constructing a Logical Model

What’s In This Chapter?
The first step in constructing a logical model is developing the Entity
Relationship Diagram (ERD), a high level data model of a wide business area.
An entity-relationship diagram is made up of three main building blocks —
entities, attributes, and relationships. If we view a diagram as a graphical
language for expressing statements about your business, entities are the
nouns, attributes are the adjectives or modifiers, and relationships are the
verbs. Building a data model with ERwin is simply a matter of finding the
right collection of nouns, verbs, and adjectives and putting them all together.

The objective of the ERD is to provide a view of business information
requirements sufficient to satisfy the need for broad planning for
development of its information system. These models are not very detailed
(only major entities are included,) and there is not much detail, if any, on
attributes. Many-to-many (non-specific) relationships are allowed, and keys
are generally not included. This is primarily a presentation or discussion
model.

ERDs are also divided into subject areas, which are used to define “business
views” or specific areas of interest to individual business functions. Subject
areas help reduct larger models into smaller packages more manageable
subsets of entities, that can be more easily defined and maintained.

There are many methods available for developing the ERD. These range from
formal modeling sessions (described in the previous chapter) to individual
interviews with business managers who have responsibility for wide areas.

This chapter introduces the data modeling method used by ERwin and
provides a brief overview of its richness and power for describing the
information structures of your business.

Chapter Contents

The Entity-Relationship Diagram.. 20
Validating the Design of the Logical Model... 24
Data Model Example.. 25

2

ERwin Methods Guide

20 • Constructing a Logical Model

The Entity-Relationship Diagram
If you are familiar with a relational database structure, you know that the
most fundamental component of a relational database is the table. Tables are
used to organize and store information. A table is organized in columns and
rows of data. Each row contains a set of facts called an instance of the table.

In a relational database, all data values must also be atomic — each cell in the
table can contain only a single fact. There is also a relationship between the
tables in the database. Each relationship is represented in an RDBMS by
sharing one or more columns in two tables.

Like the tables and columns that make up a physical model of a relational
database, an entity-relationship diagram (and all other logical data models)
include equivalent components that let you model the data structures of the
business, rather than the database management system. The logical equivalent
to a table is an entity, and the logical equivalent to a column is an attribute.

In an ERD, the entity is represented by drawing a box that contains the with
the name of the entity. Entity names are always singular — CUSTOMER not
CUSTOMERS, MOVIE not MOVIES, COUNTRY not COUNTRIES. By always
using singular nouns, you gain the benefit of a consistent naming standard
and facilitate “reading” the diagram as a set of declarative statements about
entity instances.

The diagram below is one created by a hypothetical video store that needs to
track its customers, movies that can be rented or purchased, and rental copies
of movies that are in stock in the store.

Sample Entity-Relationship Diagram

Relationships between tables are a vital component of a relational database.
These relationships are captures using shared key: facts in one table refer to,
or are associated with, facts in another table. In an ERD, a relationship is
represented by a line drawn between the entities in the model. A relationship
between two entities also implies that facts in one entity refer to, or are
associated with, facts in another entity.

ERwin Methods Guide 2

Constructing a Logical Model • 21

In the example above, the video store needs to track information
CUSTOMERs and MOVIE RENTAL COPYs. The information in these two
entities is related, and this relationship can be expressed in a statement: A
CUSTOMER rents one or more MOVIE RENTAL COPYs.

Defining Entities and Attributes
We can define an entity as any person, place, thing, event, or concept about
which information is kept. More precisely, we can think of an entity as a set or
collection of like individual objects called instances. An instance is a single
occurrence of a given entity. Each instance must have an identity distinct from
all other instances.

In the previous example, we might say that the CUSTOMER entity represents
the set of all of the possible customers of a business. Each instance of the
CUSTOMER entity is a customer. You can list information for an entity in a
sample instance table, such as the one shown below.

CUSTOMER

customer-id customer-name customer-address

10001 Ed Green Princeton, NJ

10011 Margaret Henley New Brunswick, NJ

10012 Tomas Perez Berkeley, CA

17886 Jonathon Walters New York, NY

10034 Greg Smith Princeton, NJ

Sample Instance Table for the CUSTOMER Entity

Each instance represents a set of “facts” about the related entity. In the sample
above, each instance of the CUSTOMER entity includes information on the
“customer-id,” “customer-name,” and “customer-address.” In a logical
model, these properties are called the attributes of an entity. Each attribute
captures a single piece of information about the entity.

2

ERwin Methods Guide

22 • Constructing a Logical Model

You can include attributes in an ERD to more fully describe the entities in the
model, as shown below:

ERD With Attributes

Logical Relationships
Relationships represent connections, links or associations between entities.
They are the “verbs” of a diagram showing how entities relate to each other.
Easy-to-understand rules help business professionals validate data
constraints, and ultimately identify relationship cardinality.

Here are some examples:

♦ A TEAM <has> many PLAYERs.

♦ A PLANE-FLIGHT <transports> many PASSENGERs.

♦ A DOUBLES-TENNIS-MATCH <requires> exactly 4 PLAYERs.

♦ A HOUSE <is owned by> one or more OWNERs.

♦ A SALESPERSON <sells> many PRODUCTs.

In all of these cases, the relationships are chosen so that the connection
between the two entities is what is known as 1-to-many. This means that one
(and only one instance) of the first entity is related or connected to many
instances of the second entity. The entity on the “1-end” is called the parent
entity, the entity on the “many-end” is called the child entity.

ERwin Methods Guide 2

Constructing a Logical Model • 23

Relationships are displayed as a line connecting two entities, with a dot on
one end, and a verb phrase written along the line. In the previous examples,
the verb phrases are the words inside the brackets (e.g., <sells>). Here is a
diagram of the relationship between PLANE-FLIGHTs and PASSENGERs on
that flight.

Relationship Example

Many-to-Many Relationships
A many-to-many relationship, also called a non-specific relationship,
represents a situation where an instance in one entity relates to one or more
instances in a second entity, and an instance in the second entity also relates to
one or more instances in the first. In the video store example, a many-to-many
relationship occurs between a CUSTOMER and a MOVIE COPY. From a
conceptual point of view, this many-to-many relationship indicates that “A
CUSTOMER <rents> many MOVIE COPYs” and “A MOVIE COPY <is rented
by> many CUSTOMERs.”

Example of a Many-to-Many Relationship in IDEF1X (top) and IE (bottom)

Many-to-many relationships tend to be used in a preliminary stage of diagram
development, such as in an entity-relationship diagram (ERD) and are
represented in IDEF1X as a solid line with dots on both ends.

Because a many-to-many relationship can hide other business rules or
constraints, they should be fully explored at some point in the modeling
process. For example, sometimes a many-to-many relationship identified in
early modeling stages is mislabeled, and is actually two one-to-many

2

ERwin Methods Guide

24 • Constructing a Logical Model

relationships between related entities. Or, the business must keep additional
facts about the many-to-many relationship, such as dates or comments, and
the result is that the many-to-many relationship must be replaced by an
additional entity to keep these facts. You should ensure that all many-to-many
relationships are fully discusssed at later modeling stages to ensure that the
relationship is correctly modeled.

Validating the Design of the Logical Model
If you choose your verb phrases correctly, you should be able to “read” a
relationship from the parent to the child using an “active” verb phrase. One of
the previous examples read as:

A PLANE FLIGHT <transports> many PASSENGERs.

Verb phrases can also be read from the perspective of the child entity. You can
often read from the child entity perspective using “passive” verb phrases. For
example:

Many PASSENGERs <are transported by> a PLANE FLIGHT.

Because a data model exposes many of the business rules that describe the
area being modeled, reading the relationships helps you validate that the
design of the logical model is correct. Verb phrases provide a brief summary
of the business rules embodied by relationships. And although they do not
precisely describe the rules, they let the person looking at the model get an
initial sense of how the entities are connected. It is a good practice to make
sure that each verb phrase in the model results in valid statements. Reading
your model back to the business is one of the primary methods of verifying
that it has correctly captured the business rules.

ERwin Methods Guide 2

Constructing a Logical Model • 25

Data Model Example
ERwin includes a model of a database constructed for a hypothetical video
store. A copy of the logical model in the MOVIES diagram appears below.

EMPLOYEE
Subject Area

CUSTOMER
Subject Area

Data Model for a Video Store

The data model of the Video Store, along with definitions of the objects
presented on it, makes the following assertions:

♦ A MOVIE is in stock as one or more MOVIE-COPYs. Information
recorded about a MOVIE includes its name, a rating, and rental
rate. Each MOVIE-COPY has its general condition recorded.

♦ The store’s CUSTOMERs rent the MOVIE-COPYs. A MOVIE-
RENTAL-RECORD records the particulars of the rental of a
MOVIE-COPY by a CUSTOMER. The same MOVIE-COPY may,
over time, be rented to many CUSTOMERs.

2

ERwin Methods Guide

26 • Constructing a Logical Model

♦ Each MOVIE-RENTAL-RECORD also records a due date for the
movie, and a status indicating whether or not it is overdue.
Depending on his or her previous relationship with the store, a
CUSTOMER is assigned a credit status code which indicates
whether the store should accept checks or credit cards for payment,
or take only cash.

♦ The store’s EMPLOYEEs are involved with many MOVIE-RENTAL-
RECORDs, as specified by an involvement type. There must be at
least one EMPLOYEE involved with each record. Since the same
EMPLOYEE might be involved with the same rental record several
times on the same day, involvements are further distinguished by a
time stamp.

♦ An overdue charge is sometimes collected on a rental of a MOVIE-
COPY. OVERDUE-NOTICEs are sometimes needed to remind a
CUSTOMER that a tape needs to be returned. An EMPLOYEE is
sometimes listed on an OVERDUE-NOTICE.

♦ The store keeps salary and address information about each of its
EMPLOYEEs. It sometimes needs to look up CUSTOMERs,
EMPLOYEEs, and MOVIEs by their names, rather than by their
“numbers.”

This is a relatively small model, but it says a lot about the video rental store.
From it, we not only can get an idea of what a database for the business
should look like, but we also get a good picture of the business. There are
several different types of graphical “objects” in this diagram. The entities,
attributes and relationships, along with the other symbols describe our
business rules. In the following chapters, you will learn more about what the
different graphical objects mean and how to use ERwin to create your own
logical and physical data models.

ERwin Methods Guide 3

The Key-Based Model • 27

The Key-Based Model

What’s In This Chapter?
A Key-Based Model (KB) is data model that fully describes all of the major
data structures that support a wide business area. The goal of a key-based
model is to include all entities and attributes that are of interest to the
business.

As their name suggests, key-based models also include keys, which are the
elements of the data model that are used to identify unique instances within
an entity and, when implemented in a physical model, provide easy access to
the underlying data.

Basically, the key-based model covers the same scope as the ERD, but exposes
more of the detail, including the context in which detailed implementation
level models can be constructed.

Chapter Contents

Understanding Keys... 28
Relationships and Foreign Key Attributes.. 32
Rolenames ... 36

3

ERwin Methods Guide

28 • The Key-Based Model

Understanding Keys
Lets look at our previous example.

ERD With Attributes

Each entity is divided by a horizontal line that separates the attributes into
two groups. In fact, this horizontal line divides the attributes into keys and
non-keys. The area above the line is called the key area, and the area below
the line is called the data area. The key area of CUSTOMER contains
“customer-number,” the data area contains “customer-name,” “customer-
address,” and “customer-phone.”

The key area contains the primary key for the entity. The primary key is a set
of attributes that the business has chosen to identify unique instances of an
entity. The primary key can comprise one or more primary key attributes, as
long as the attributes chosen form a unique identifier for each instance in an
entity.

Primary key attributes are placed above the line in the key area. As the name
suggests, a non-key attribute is an attribute which has not been chosen as a
key. Non-key attributes are placed below the line, in the data area.

Whenever you create an entity in your data model, one of the most important
questions you need to ask is: “How can a unique instance be identified?” You
must be able to uniquely identify each instance in an entity in order to
correctly develop a logical data model. As a reminder, entities in an ERwin
model always include a key area so you define key attributes in every entity.

ERwin Methods Guide 3

The Key-Based Model • 29

Selecting a Primary Key
Choosing the primary key of an entity is an important step, and requires some
serious consideration. There may be several attributes, or sets of attributes
that could be used as primary keys. Attributes or groups of attributes that can
be chosen as primary keys are called candidate key attributes. A candidate
key must uniquely identify each instance of the entity. Accordingly, no part of
the key can be NULL, that is “empty” or “missing.” The business user is
typically the best person to identify candidate keys, because of their
knowledge of the business and business data.

For example, in order to correctly use the EMPLOYEE entity in a data model
(and later in a data base), you must be able to uniquely identify instances. In
the customer table, you could choose from several potential key attributes
including: the employee name, a unique employee number assigned to each
instance of EMPLOYEE, or a group of attributes, such as name and birth date.

The rules that you use to select a primary key from the list of all candidate
keys are stringent, but can be consistently applied across all types of
databases and information. The rules state that the attribute or attribute group
must:

♦ Uniquely identify an instance.

♦ Never include a NULL value.

♦ Not change over time. An instance takes its identity from the key. If the
key changes, it’s a different instance

♦ Be as short as possible, to facilitate indexing and retrieval. If you need to
use a key that is a combination of keys from other entities, make sure that
each part of the key adheres to the other rules.

Consider the following example:

Key selection example

3

ERwin Methods Guide

30 • The Key-Based Model

If you use the rules listed above to find candidate keys for EMPLOYEE, you
might compose the following analysis of each attribute:

♦ Because it is unique for all EMPLOYEEs, “employee-number” is a
candidate key.

♦ “Employee-name” does not look like a good candidate. There may be two
John Smiths in the company.

♦ “Employee-social-security-number” is unique, but every EMPLOYEE may
not have one.

♦ The combination of “employee-name” and “employee-birth-date” might
work (unless there are two John Smiths, born on the same date, and both
employed by our company). This could be a candidate key.

♦ Only some EMPLOYEEs of our company are eligible for annual bonuses.
Therefore, “employee-bonus-amount” can be expected to be NULL in
many cases. As a result, it cannot be part of any candidate key.

After analysis, there are two candidate keys — one is “employee-number”
and the other is the group of attributes containing “employee-name” and
“employee-birth-date.” Because it is the shortest, and ensures uniqueness of
instances “employee-number” is selected as the primary key.

When choosing the primary key for an entity, modelers often assign a
surrogate key, an arbitrary number that is assigned to an instance to uniquely
identify it within an entity. “Employee-number” is an example of a surrogate
key. A surrogate key is often the best choice for a primary key because is short
and can be accessed the fastest, and ensures unique identification of each
instance. Further, a surrogate key can be automatically generated by the
system, so that numbering is sequential and does not include any gaps.

It is acceptable to choose a primary key for the logical model, only to discover
that the primary key needed to efficiently access the table in a physical model
is different. The key can be changed to suit the needs and requirements of the
physical model and database at any point.

ERwin Methods Guide 3

The Key-Based Model • 31

Designating Alternate Key Attributes
Candidate keys not selected as primary keys can be designated as alternate
keys, and recorded as such in the model. The symbol (AKn), where n is a
number, is placed after those attributes which form the alternate key.
Alternate keys are often used to show different indexes the business will use
to access the data. So our logical model for EMPLOYEE appears as follows:

Alternate Key Example

Inversion Entry Attributes
Businesses also need to keep track of attributes that are not unique, but are
routinely used to look up information for the entity. These attributes are
called inversion entries. An inversion entry is an attribute or group of
attributes that are commonly used to access the entity (as though they are a
primary key), but may not result in finding exactly one instance.

For example, the business might want to be able to look up an employee by
name, as well as the employee number. Although a search on a name may
result in one, two, or more records, it is still a business requirement that
employee records can also be accessed using the employee name. When you
assign the attribute to an inversion entry, an IEn is placed after the
“employee-name” attribute, as shown below. There can be several inversion
entries for an entity.

Inversion Entry Example

3

ERwin Methods Guide

32 • The Key-Based Model

Relationships and Foreign Key Attributes
Just as a RDBMS captures relationships using shared key values, ERwin also
represents relationships using shared keys. Although ERwin certainly can be
used to model information that is stored in non-relational data base
management systems, in its treatment of keys, ERwin is relational.

Whenever entities in a ERwin diagram are connected by a relationship, the
relationship contributes a key (or set of key attributes) to the child entity.
These attributes are called the foreign key. Foreign key attributes are defined
as primary key attributes of a parent entity contributed to a child entity across
a relationship. The contributed keys are said to migrate from parent to child.
Foreign key attributes are designated in the model by an (FK) following the
attribute name. Notice the (FK) next to “parent-key” in the figure below.

PLAYER Entity With Migrated Foreign Key (FK)

Dependent and Independent Entities
As you develop your model, you may discover certain entities that depend on
the value of the foreign key attribute for uniqueness. For these entities, the
foreign key must be a part of the primary key of the child entity (above the
line) in order to uniquely define each entity.

In relational terms, a child entity that depends on the foreign key attribute for
uniqueness is called a dependent entity. In the example above, PLAYER is
considered a dependent entity because it depends on the TEAM entity for its
identification. In IDEF1X, dependent entities are represented as round-
cornered boxes.

Dependent entities are further classified as existence dependent, which means
the dependent entity cannot exist unless its parent does, and identification
dependent, which means that the dependent entity cannot be identified
without using the key of the parent. The PLAYER entity is identification
dependent, but not existence dependent, because PLAYERs can exist if they
are not on a TEAM.

ERwin Methods Guide 3

The Key-Based Model • 33

In contrast, there are situations in which an entity is existence dependent on
another entity. Consider two entities: ORDER, which the business uses to
track customer orders, and LINE ITEM, which tracks individual items in an
ORDER. The relationship between these two entities can be expressed as An
ORDER <contains> one or more LINE ITEMS. In this case, LINE ITEM is
existence dependent on ORDER, because it makes no sense in the business
context to track LINE ITEMS unless there is a related ORDER.

Entities that do not depend on any other entity in the model for identification
are called independent entities. In the example above, TEAM is considered an
independent entity. In IE and IDEF1X, independent entities are represented as
square-cornered boxes.

Identifying Relationships
In IDEF1X, the concept of dependent and independent entities is enforced by
type of the relationship that connects two entities. If you want the foreign key
to migrate to the key area of the child entity (and create a dependent entity as
a result), you can create an identifying relationship between the parent and
child entities.

Identifying relationships are indicated by a solid line connecting the entities.
In IDEF1X, the line includes a dot on the end nearest to the child entity, as
shown below. In IE, the line includes “crows feet” at the end of the
relationship nearest to the child entity.

Identifying Relationship in IDEF1X Notation (top) and IE Notation (bottom)

Note : Standard IE notation does not include rounded corners on entities. This is an
IDEF1X symbol that is included in IE notation in ERwin to ensure compatibility
between methods.

3

ERwin Methods Guide

34 • The Key-Based Model

As you saw in the discussion of independent and dependent entities, the
business rule that indicates that a relationship is identifying results from an
intentional choice to identify the child entity by using the identifier of the
parent entity. In our example of MOVIEs and MOVIE-COPYs, we could have
chosen to identify the copy by its own unique number. Instead, we decided to
use the identifier of the MOVIE and add a second part (copy-number) to tell
one copy from another.

Note : As you may find, there are advantages to contributing keys to a child entity
through identifying relationships in that it tends to make some physical system
queries more straightforward, but there are also many disadvantages. Some
advanced relational theory suggests that contribution of keys should not occur in
this way. Instead, each entity should be identified not only by its own primary
key, but also by a logical handle or surrogate key, never to be seen by the user
of the system. There is a strong argument for this in theory and those who are
interested are urged to review the work of E. F. Codd and C. J. Date in this
area.

Non-Identifying Relationships
Non-identifying relationships, which are unique to the IDEF1X notation, also
connect a parent entity to a child entity. Non-identifying relationship are used
to show a different migration of the foreign key attribute(s) – migration to the
data area of the child entity (below the line).

Non-identifying relationships are indicated by a dashed line connecting the
entities. If you connect the TEAM and PLAYER entities in a non-identifying
relationship, the model appears as shown below.

Non-Identifying Relationship in IDEF1X Notation (Top) and IE Notation (bottom)

ERwin Methods Guide 3

The Key-Based Model • 35

Because the migrated keys in a non-identifying relationship are not part of the
primary key of the child, non-identifying relationships do not result in any
identification dependency. In this case, PLAYER is considered an independent
entity, just like TEAM.

However, the relationship can reflect existence dependency if the business
rule for the relationship specifies that the foreign key cannot be NULL
(“missing”). If the foreign key must exist, this implies that an instance in the
child entity can only exist if an associated parent instance also exists.

Note : Identifying and non-identifying relationships are not a feature of the IE method.
However, this information is included in your ERwin diagram in the form of a
solid or dashed relationship line to ensure compatibility between IE and IDEF1X
methods.

3

ERwin Methods Guide

36 • The Key-Based Model

Rolenames
When foreign keys migrate from the parent entity in a relationship to the child
entity, they are serving double-duty in the model in terms of stated business
rules. To understand both roles, it is sometimes helpful to rename the
migrated key to show the role it plays in the child entity. This name assigned
to a foreign key attribute is called a rolename. In effect, a rolename declares a
new attribute, whose name is intended to describe the business statement
embodied by the relationship that contributes the foreign key.

Rolename Example

The foreign key attribute of PLAYER, “player-team-id.team-id,” shows us the
syntax for defining and displaying a rolename. The first half (before the
period) is the rolename. The second half is the original name of the foreign
key, sometimes called the base name.

Note : Rolenames are also used to model compatibility with legacy data models, where
the foreign key was often named differently than the primary key.

Rolenames migrate across relationships just like any other attributes. For
example, suppose that we extend the example to show which PLAYERs have
scored in various games throughout the season. The “player-team-id”
rolename migrates to the SCORING PLAY entity (along with any other
primary key attributes in the parent entity), as shown below.

Diagram Showing Migration of a Rolenamed FK Attribute

ERwin Methods Guide 4

Naming and Defining Entities and Attributes • 37

Naming and Defining Entities and Attributes

What’s In This Chapter?
It is extremely important in data modeling, and in systems development in
general, to choose clear and well thought out names for objects. The result of
your efforts will be a clear, concise, and unambiguous model of a business
area.

Naming standards and conventions are identical for all types of logical
models, including both the entity-relationship diagrams and key-based
diagrams discussed in previous chapters.

Chapter Contents

Naming Entities and Attributes .. 37
Entity Definitions.. 40
Attribute Definitions .. 43
Rolenames ... 44
Definitions and Business Rules.. 46

4

ERwin Methods Guide

38 • Naming and Defining Entities and Attributes

Naming Entities and Attributes
The most important rule to remember when naming entities is that entity
names are always singular. This facilitates reading the model with declarative
statements such as “A FLIGHT <transports> zero or more PASSENGERs”
and “A PASSENGER <is transported by> one FLIGHT.” When we name an
entity, we are also naming each instance. For example, each instance of the
PASSENGER entity is an individual passenger, not a set of “passengers.”

Attribute names are singular, too. For example, “person-name,” “employee-
SSN,” “employee-bonus-amount” are correctly named attributes. Naming
attributes in the singular helps to avoid normalization errors, such as
representing more than one fact with a single attribute. The attributes
“employee-child-names” or “start-or-end-dates” are plural, and highlight
errors in the attribute design.

A good rule of thumb when naming attributes is to use the entity name as a
prefix. The rule here is:

♦ Prefix qualifies.

♦ Suffix clarifies.

Using this rule, you can easily validate the design and eliminate many
common design problems. For example, in the CUSTOMER entity, you can
name the attributes “customer-name,” “customer-number,” “customer-
address,” etc. If you are tempted to name an attribute “customer-invoice-
number,” you use the rule to check that the suffix “invoice-number” tells you
more about the prefix “customer.” Since it does not, you must move the
attribute to a more appropriate location (such as INVOICE).

You may sometimes find that it is difficult to give an entity or attribute a
name without first giving it a definition. As a general principle, providing a
good definition for an entity or attribute is as important as providing a good
name. The ability to find meaningful names comes with experience and a
fundamental understanding of what the model represents.

Because the data model is a description of a business, it is best to choose
meaningful business names wherever that is possible. If there is no business
name for an entity, you must give the entity a name that fits its purpose in the
model.

ERwin Methods Guide 4

Naming and Defining Entities and Attributes • 39

Synonyms, Homonyms and Aliases
Not everyone speaks the same language. And we are not always precise in
our use of names. Because entities and attributes are identified by their names
in a data model, you need to ensure that synonyms are resolved, to ensure
that they do not represent redundant data, and then precisely defined, so that
each person who reads the model understands which facts are captured in
which entity.

It is also important to choose a name that clearly communicates a sense of
what the entity or attribute represents. For example, we get a clear sense that
there is some difference among things called PERSON, CUSTOMER, and
EMPLOYEE. Although they can all represent an individual, they have distinct
characteristics or qualities. However, it is the role of the business user to tell
you whether or not PERSON and EMPLOYEE are two different things, or just
synonyms for the same thing.

Choose your names carefully, and be wary of calling two different things the
same if they are not. For example, if you are dealing with a business area
which insists on calling its customers “consumers,” don’t force or insist on the
name. You may have discovered an alias, another name for the same thing, or
you may have a new “thing” that is distinct from, although similar to, another
“thing.” In this case, perhaps CONSUMER is a category of CUSTOMER that
can participate in relationships that are not available for other categories of
CUSTOMER.

ERwin lets you enforce unique naming in the modeling environment. This
way you can avoid the accidental use of homonyms (words that are written
the same but have different meanings), ambiguous names, or duplication of
entities or attributes in the model.

Note : Some databases support multiple names in the physical model through the use
of defined synonym or alias names, ERwin also supports the definition of
synonyms and aliases, but in the physical model only.

4

ERwin Methods Guide

40 • Naming and Defining Entities and Attributes

Entity Definitions
Defining the entities in your logical model is a good way to elaborate on the
purpose of the entity, and clarify which facts you want to include in the entity.
It is also essential to the clarity of the model. Undefined entities or attributes
can be misinterpreted in later modeling efforts, and possibly deleted or
unified based on the misinterpretation.

Writing a good definition is more difficult than it might initially seem.
Everyone knows what a CUSTOMER is, right? Just try writing a definition of
a CUSTOMER that holds up to scrutiny. The best definitions are created using
the points of view of many different business users and functional groups
within the organization. Definitions that can pass the scrutiny of many,
disparate users provide a number of benefits including:

♦ Clarity across the enterprise.

♦ Concensus about a single fact having a single purpose.

♦ Easier identification of “categories,” groups of entities that are unique, but
have similar purposes or manage similar data.

Most organizations and individuals develop their own conventions or
standards for definitions. In practice you will find that long definitions tend to
take on a structure that helps the reader to understand the “thing” being
defined. Some of these definitions can go on for several pages (CUSTOMER,
for example). You may want to adopt the following items as “standards” for
the structure of a definition as a starting point, even though IDEF1X and IE do
not provide standards for definitions:

♦ Description

♦ Business example

♦ Comments

Each of these components is discussed more fully below.

Descriptions

A description should be a clear and concise statement that tells whether an
object is or is not the thing you are trying to define. Often such descriptions
can be fairly short. Be careful, however, that the description is not too general,
or uses terms that have not been defined. Here are a couple of examples, one
of good quality, and one which is questionable.

♦ “A COMMODITY is something that has a value that can be determined in
an exchange.”

ERwin Methods Guide 4

Naming and Defining Entities and Attributes • 41

This is a good description because, after reading it, you know that something
is a COMMODITY if someone is, or would be, willing to trade something for
it. If someone is willing to give us three peanuts and a stick of gum for a
marble, then we know that a marble is a COMMODITY.

♦ “A CUSTOMER is someone who buys something from our company.”

This is not a good description. You can easily misunderstand the word
“someone” if you know that the company also sells product to other
businesses. Also, the business may want to track potential CUSTOMERs, not
just those who have already bought something from the company. You could
also define “something” more fully to describe whether the sale is of
products, services, or some combination of the two.

Business Examples

It is a good idea to provide typical business examples of the thing being
defined, because good examples can go a long way to help the reader
understand a definition. Although they are a bit “unprofessional,” comments
about peanuts and marbles can help a reader to understand the concept of a
COMMODITY. The definition said that it had “value.” The example can help
to show that value is not always “money.”

Comments

You can also include general comments about who is responsible for the
definition and who is the source, what state it is in, and when it was last
changed as a part of the definition. For some entities, you may also need to
explain how it and a related entity or entity name differ. For instance, a
CUSTOMER might be distinguished from a PROSPECT.

Definition References and Circularity
If you open up a dictionary, you may find a situation like this:

♦ TERM-1 Definition includes reference to, or is based on TERM-2.

♦ TERM-2 Definition includes reference to, or is based on TERM-3.

♦ TERM-3 Definition includes reference to, or is based on TERM-1.

4

ERwin Methods Guide

42 • Naming and Defining Entities and Attributes

The individual definitions look good, but when viewed together are found to
be “circular.” Without some care, this can happen with entity and attribute
definitions. For example:

♦ CUSTOMER: Someone who buys one or more of our PRODUCTs.

♦ PRODUCT: Something we offer for sale to CUSTOMERs.

In is important when you define entities and attributes in your data model
that you avoid these circular references.

Constructing a Business Glossary
It is often convenient to make use of common business terms when defining
an entity or attribute. For example:

“A CURRENCY-SWAP is a complex agreement between two PARTYs in
which they agree to exchange cash flows in two different CURRENCYs
over a period of time. Exchanges can be fixed over the term of the swap,
or may float. Swaps are often used to hedge currency and interest rate
risks.”

In this example, defined terms within a definition are highlighted. Using a
style like this makes it unnecessary to define terms each time they are used,
since people can look them up whenever needed.

If it will be convenient to use terms that are not the names of entities or
attributes, (e.g., common business terms), it is a good idea to provide base
definitions of them, and refer to these definitions as would be done for
references to entity or attribute definitions. A glossary of commonly used
terms, separate from the model, can be used. Such common business terms
are highlighted with bold-italics, as in the above passage.

It may seem that a strategy like this will lead initially to a lot of flipping back
and forth among definitions. The alternative, however, is to completely define
each term every time it is used. If these “internal definitions” appear in many
places, they need to be maintained in many places, and the probability that a
change will be applied to all of them at the same time is very small.

Developing a glossary of common business terms can serve several purposes.
It can become the “base” for use in modeling definitions, and it can, all by
itself, be of significant value to the business in helping people to communicate.

ERwin Methods Guide 4

Naming and Defining Entities and Attributes • 43

Attribute Definitions
As with entities, it is important to define all attributes clearly. The same rules
apply — by comparing a thing to a definition, we should be able to tell if it
fits. However, you should beware of things like “account-open-date” defined
as, “The date on which the ACCOUNT was opened.” You may need to
further define what is meant by “opened” before the definition is clear and
complete.

Attribute definitions generally should have the same basic structure as entity
definitions, including a description, examples, and comments. The definitions
should also contain, whenever possible, rules that specify which facts are
accepted as valid values for that attribute.

A validation rule identifies a set of values that an attribute is allowed to take,
it constrains or restricts the domain of values that are acceptable. These values
have meanings in both an abstract and a business sense. For example,
“person-name,” if it is defined as the preferred form of address chosen by the
PERSON, is constrained to the set of all character strings. You can define any
validation rules or valid values for an attribute as a part of the attribute
definition. ERwin also lets you assign these validation rules to an attribute
using a domain. Supported domains include text, number, datetime, and blob.

Definitions of attributes, such as codes, identifiers, or amounts, often do not
lend themselves to good business examples. So, including a description of the
attribute’s validation rules or valid values is usually a good idea. When
defining a validation rule it is good practice to go beyond listing the “values”
that an attribute can take. Suppose we define the attribute “customer-status”
as follows:

Customer-status: A code that describes the relationship between the CUSTOMER
and our business. Valid values: A, P, F, N

The validation rule specification is not too helpful because it does not define
what the codes mean. You can better describe the validation rule using a table
or list of values, such as the one below:

Valid Value Meaning

A: Active The CUSTOMER is currently involved in a purchasing relationship
with our company.

P: Prospect Someone with which we are interested in cultivating a relationship, but
with whom we have no current purchasing relationship.

F: Former The CUSTOMER relationship has lapsed — i.e., there has been no
sale in the past 24 months.

N: No business accepted The company has decided that no business will be done with this
CUSTOMER.

4

ERwin Methods Guide

44 • Naming and Defining Entities and Attributes

Rolenames
When a foreign key is contributed to a child entity through a relationship, you
may need to write a new or enhanced definition for the foreign key attributes
that explains their usage in the child entity. This is certainly the case when the
same attribute is contributed to the same entity more than once. These
duplicated attributes may appear to be identical, but because they serve two
different purposes, they cannot have the same definition.

Consider the example below. Here we see a FOREIGN-EXCHANGE-TRADE
with two relationships to CURRENCY.

Currency Example

The key of CURRENCY is “currency-code,” (the identifier of a valid
CURRENCY that we are interested in tracking). We see from the relationships
that one CURRENCY is “bought by,” and one is “sold by” a FOREIGN-
EXCHANGE-TRADE.

We see also that the identifier of the CURRENCY (the “currency-code”) is
used to identify each of the two CURRENCYs. The identifier of the one that is
bought is called “bought-currency-code” and the identifier of the one that is
sold is called “sold-currency-code.” These rolenames show that these
attributes are not the same thing as “currency-code.”

ERwin Methods Guide 4

Naming and Defining Entities and Attributes • 45

It would be somewhat silly to trade a CURRENCY for the same CURRENCY
at the same time and exchange rate. Thus, for a given transaction (instance of
FOREIGN-EXCHANGE-TRADE) “bought-currency-code” and “sold-
currency-code” must be different. By giving different definitions to the two
rolenames, we can capture the difference between the two currency codes.

Attribute/Rolename Attribute Definition

currency-code The unique identifier of a CURRENCY.

bought-currency-code The identifier (“currency-code”) of the CURRENCY bought by
(purchased by) the FOREIGN-EXCHANGE-TRADE.

sold-currency-code The identifier (“currency-code”) of the CURRENCY sold by the
FOREIGN-EXCHANGE-TRADE.

The definitions and valididations of the bought and sold codes are based on
“currency-code.” “Currency-code” is called a base attribute.

IDEF1X standard dictates that if two attributes with the same name migrate
from the same base attribute to an entity, that the attributes must be unified.
The result of unification is a single attribute migrated through two
relationships. Because of the IDEF1X standard, ERwin automatically unifies
foreign key attributes, as well. If you do not want to unify migrated attributes,
you can rolename the attributes at the same time that you name the
relationship, in ERwin’s Relationship Editor.

4

ERwin Methods Guide

46 • Naming and Defining Entities and Attributes

Definitions and Business Rules
Business rules have been mentioned earlier as an integral part of the data
model. These rules take the form of relationships, rolenames, candidate keys,
defaults, and other modeling structures not yet explored, including
generalization categories, referential integrity, and cardinality. And, business
rules are also captured in entity and attribute definitions and validation rules.

For example, the CURRENCY entity in the previous figure could be defined
either as the set of all valid currencies recognized anywhere in the world, or
could be defined as the subset of these which our company has decided to use
in its day to day business operations. This is a subtle, but important
distinction. In the latter case, there is a business rule, or “policy statement,”
involved.

This rule manifests itself in the validation rules for “currency-code.” It
restricts the valid values for “currency-code” to those that are used by the
business. Maintenance of the business rule becomes a task of maintaining the
table of valid values for CURRENCY. To permit or prohibit trading of
CURRENCYs, you simply create or delete instances in the table of valid
values.

The attributes “bought-currency-code” and “sold-currency-code” are
similarly restricted. And both are further restricted by a validation rule that
says “bought-currency-code” and “sold-currency-code” cannot be equal – so
each is dependent on the value of the other in its actual use. Using ERwin,
validation rules can be addressed in the definitions of attributes, and can also
be defined explicitly using validation rules, default values, and valid value
lists.

ERwin Methods Guide 5

Refining Model Relationships • 47

Refining Model Relationships

What’s In This Chapter?
Relationships are a bit more complex than they might at first seem. They carry
a lot of information. Some might say that they are the heart of the data model,
because, to a great extent, they describe the rules of the business and the
constraints on creating, modifying and deleting instances.

For example, you can use cardinality to define exactly how many instances
are involved in both the child and parent entities in the relationship. And you
can further specify how you want to handle database actions such as INSERT,
UPDATE, and DELETE using referential integrity rules.

Data modeling also supports highly complex relationship types that enable
you construct a logical model of your data that is understandable to both
“business” and “systems” experts.

Chapter Contents

Relationship Cardinality .. 48
Referential Integrity.. 51
Additional Relationship Types.. 56
Many-to-Many Relationships .. 57
N-ary Relationships.. 60
Recursive Relationships ... 62
Subtype Relationships .. 64

 5

ERwin Methods Guide

48 • Refining Model Relationships

Relationship Cardinality
Up to this point, we have discussed one-to-many relationships in a logical
model, without capturing any information on what we mean by the word
“many.” The idea of “many” does not mean that there has to be more than
one instance of the child connected to a given parent. Instead the “many” in
one-to-many really means that there are zero, one or more instances of the
child paired up to the parent.

Cardinality is the relational property that defines exactly how many instances
appear in a child table for each corresponding instance in the parent table.
IDEF1X and IE differ in the symbols are used to specify cardinality. However,
both methods provide symbols to denote one or more, zero or more, zero or
one, or exactly N, as explained in the following table.

Cardinality
Description

IDEF1X Notation
Identifying Non-identifying

IE Notation
Identifying Non-identifying

One to zero, one, or more

One to one or more

P P

One to zero or one

Z Z

Zero or one to zero, one, or
more (non-identifying only)

Zero or one to zero or one (non-
identifying only)

Z

ERwin Methods Guide 5

Refining Model Relationships • 49

Cardinality lets you specify additional business rules that apply to the
relationship. In the example below, the business has decided to identify each
MOVIE COPY based on both the foreign key “movie-number” and a
surrogate key “copy-number”. Further, each MOVIE is available as one or
more MOVIE COPYs. The business has also stated that the relationship is
identifying, that MOVIE COPY cannot exist unless there is a corresponding
MOVIE.

Cardinality in a One-to-Many Identifying Relationship

The MOVIE-MOVIE COPY model also specifies the cardinality for the
relationship. The relationship line shows that there will be exactly one
MOVIE, and only one, participating in a relationship. This is because MOVIE
is the parent in the relationship.

By making MOVIE-COPY the child in the relationship (shown with a dot in
IDEF1X), the business defined a MOVIE-COPY as one of perhaps several
rentable copies of a movie title. The business also determined that to be
included in the database, a MOVIE must have at least one MOVIE-COPY.
This makes the cardinality of the “is available as” relationship one-to-one or
more. The “P” symbol next to the dot represents cardinality of “one or more.”
As a result, we also know that a MOVIE with no copies is not a legitimate
instance in this database.

In contrast, the business might want to know about all of the MOVIEs in the
world, even those for which they have no copies. So their business rule is that
for a MOVIE to exist (be recorded in their information system) there can be
zero, one, or more copies. To record this business rule, the “P” is removed.
When cardinality is not explicitly indicated in the diagram, cardinality is one-
to-zero, one or more.

Cardinality in Non-Identifying Relationships
Non-identifying relationships contribute keys from a parent to a child entity.
But, by definition, some (or all) of the keys do not become part of the key of
the child. This means that the child will not be identification-dependent on the
parent. And there can be situations where an entity at the “many” end of the
relationship can exist without a “parent,” i.e., it is not existence-dependent.

 5

ERwin Methods Guide

50 • Refining Model Relationships

If the relationship is mandatory from the perspective of the child, then the child
is existence-dependent on the parent. If it is optional, the child is neither
existence nor identification-dependent with respect to that relationship
(although it may be dependent in other relationships). IDEF1X uses a diamond
to indicate the optional case, while IE includes a circle at the parent end of the
relationship line.

Cardinality in a One-to-Many, Non-Identifying Relationship Using IDEF1X (top) or IE (bottom)

In the example, the attribute “passenger-id” is a foreign key attribute of SEAT.
Because the “passenger-id” does not identify the SEAT, it identifies the
PASSENGER occupying the SEAT, the business has determined that the
relationship is non-identifying. The business has also stated that the SEAT can
exist without any PASSENGER, so the relationship is optional. When a
relationship is optional, the diagram includes either a diamond in IDEF1X or
the circle in IE notation. Otherwise, the cardinality graphics for non-
identifying relationships are the same as those for identifying relationships.

The cardinality for the relationship, indicated here with a “Z” in IDEF1X and
a single line in IE, states that a PASSENGER <may occupy> zero or one of
these SEATs on a flight. Each SEAT can be occupied, in which case the
PASSENGER occupying the seat is identified by the “passenger-id”, or it can
be unoccupied, in which case the “passenger-id” attribute will be empty
(NULL).

ERwin Methods Guide 5

Refining Model Relationships • 51

Referential Integrity
Because a relational database relies on data values to implement relationships,
the integrity of the data in the key fields is extremely important. If you change
a value in a primary key column of a parent table, for example, you must
account for this change in each child table in which the column appears as a
foreign key. The action that is applied to the foreign key value varies
depending on the rules defined by the business.

For example, a business that manages multiple projects might track its
employees and projects in a model similar to the one below. The business has
determined already that the relationship between PROJECT and PROJECT-
EMPLOYEE is identifying, so the primary key of PROJECT becomes a part of
the primary key of PROJECT-EMPLOYEE.

PROJECT-EMPLOYEE Model

In addition, the business decides that for each instance of PROJECT-
EMPLOYEE there is exactly one instance of PROJECT. This means that
PROJECT-EMPLOYEE is existence-dependent on PROJECT.

What would happen if you were to delete an instance of PROJECT?

If the business decided that it did not want to track instances in PROJECT-
EMPLOYEE if PROJECT is deleted, then you would also have to delete all
instances of PROJECT-EMPLOYEE that inherited part of their key from the
deleted PROJECT.

 5

ERwin Methods Guide

52 • Refining Model Relationships

The rule that specifies the action taken when a parent key is deleted is called
referential integrity. And the referential integrity option chosen for this action
in this relationship is cascade. Each time an instance of PROJECT is deleted,
this delete cascades to the PROJECT-EMPLOYEE table and causes all related
instances in PROJECT EMPLOYEE to be deleted, as well.

Available actions for referential integrity include not only cascade, but also
restrict, set null, and set default. Each of the options is explained below:

♦ Cascade . Each time an instance in the parent entity is deleted, each
related instance in the child entity must also be deleted.

♦ Restrict . Deletion of an instance in the parent entity is prohibited if there
are one or more related instances in the child entity, or deletion of an
instance in the child entity is prohibited if there is a related instance in the
parent entity.

♦ Set Null . Each time an instance in the parent entity is deleted, the foreign
key attribute(s) in each related instance in the child entity are set to
NULL.

♦ Set Default . Each time an instance in the parent entity is deleted, the
foreign key attribute(s) in each related instance in the child entity are set
to the specified default value.

♦ <None> . No referential integrity action is required. Not every action must
have a referential integrity rule associated with it. For example, a business
may decide that referential integrity is not required when deleting an
instance in a child entity. This is a valid business rule in cases where the
cardinality is zero or one to zero, one or more, because instances in the
child entity can exist even if there are no related instances in the parent
entity.

Although referential integrity is not a formal part of the IDEF1X or IE
languages, it does capture business rules that indicate how the completed
database should work, so it is a critical part of data modeling. Because of this,
ERwin provides a method for both capture and display of referential integrity
rules.

Once referential integrity is defined, the facilitator or analyst should test the
referential integrity rules defined by the business users by asking questions or
working through different scenarios that show the results of the business
decision. When the requirements are defined and fully understood, the
facilitator or analyst can recommend specific referential integrity actions, like
restrict or cascade.

ERwin Methods Guide 5

Refining Model Relationships • 53

Reading Referential Integrity Options
Referential integrity rules vary depending on whether or not the entity is a
parent or child in the relationship and the database action that is
implemented. As a result, in each relationship there are six possible actions
for which referential integrity can be defined. These are:

♦ PARENT INSERT

♦ PARENT UPDATE

♦ PARENT DELETE

♦ CHILD INSERT

♦ CHILD UPDATE

♦ CHILD DELETE

The example below shows referential integrity rules in the EMPLOYEE-
PROJECT model.

Referential Integrity Example

The referential integrity rules captured in the diagram show the business
decision to cascade all deletions in the PROJECT entity to the PROJECT-
EMPLOYEE entity. This rule is called PARENT DELETE CASCADE, and is
noted in the diagram by the letters "D:C" placed at the parent end of the
specified relationship. The first letter in the referential integrity symbol always
refers to the database action: I(nsert), U(pdate), or D(elete). The second letter
refers to the referential integrity option: C(ascade), R(estrict), SN(set null), and
SD(set default).

 5

ERwin Methods Guide

54 • Refining Model Relationships

In the example above, no referential integrity option has been specified for
PARENT INSERT, so referential integrity for insert (I:) is not displayed on the
diagram.

RI, Cardinality, and Identifying Relationships
In the previous example, the relationship between PROJECT and PROJECT-
EMPLOYEE is identifying. So the valid options for referential integrity for the
parent entity in the relationship, PROJECT, include cascade and restrict.

Cascade indicates that all instances of PROJECT-EMPLOYEE that are affected
by the deletion of an instance of PROJECT should also be deleted. Restrict
indicates that a PROJECT cannot be deleted until all instances of PROJECT-
EMPLOYEE that have inherited its key have been deleted. If there are any left,
the delete is “restricted.”

Why would we want to restrict the deletion? One reason might be that the
business needs to know other facts about a PROJECT-EMPLOYEE such as the
“date started” on the project. If you cascade the delete, you lose this
supplementary information.

In the case of updating an instance in the parent entity, the business has also
determined that the updated information should cascade to the related
instances in the child entity.

As you can see in the example, different rules apply when an instance is
inserted, updated, or deleted in the child entity. When an instance is inserted,
for example, the action is set to restrict. This rule appears in as "I:R" placed
next to the child entity in the relationship. This means that an instance can be
added to the child entity only if the referenced foreign key matches an existing
instance in the parent entity. So, you can insert a new instance in PROJECT-
EMPLOYEE only if the value in the key field matches a key value in the
PROJECT entity.

ERwin Methods Guide 5

Refining Model Relationships • 55

RI, Cardinality, and Non-Identifying Relationships
If the business decides that PROJECT-EMPLOYEEs are not existence or
identification-dependent on PROJECT, you can change the relationship
between PROJECT and PROJECT-EMPLOYEE to optional, non-identifying. In
this type of relationship, the referential integrity options are very different.

Referential Integrity for a Non-Identifying Relationship

Because a foreign key contributed across a non-identifying relationship is
allowed to be NULL, one of the referential integrity options you could specify
for PARENT DELETE is "set null." Set null indicates that if an instance of
PROJECT is deleted, then any foreign key inherited from PROJECT in a
related instance in PROJECT-EMPLOYEE should be set to NULL. The delete
does not cascade as in our previous example, and it is not prohibited (as in
restrict). The advantage of this approach is that you can preserve the
information about the PROJECT-EMPLOYEE while effectively breaking the
connection between the PROJECT-EMPLOYEE and PROJECT.

Decisions to use cascade or set null reflect business decisions about
maintaining the “historical” knowledge of relationships represented by the
foreign keys.

 5

ERwin Methods Guide

56 • Refining Model Relationships

Additional Relationship Types
Relationships define whether the child entity is dependent or independent of
the parent entity and how many instances are related in parent and child
entities. As you develop a logical model, you may find relationships that do
not fall into the standard, one-to-many relationships discussed in previous
chapters. These relationships include:

♦ Many-to-many relationships. A relationship where one entity <owns>
many instances of a second entity, and the second entity also <owns>
many instances of the first entity. For example, an EMPLOYEE <has> one
or more JOB TITLEs, and a JOB TITLE <is applied to> one or more
EMPLOYEEs.

♦ N-ary relationships . A simple one-to-many relationship between two
entities is termed binary. When a one-to-many relationship exists between
two or more parents and a single child entity it is termed an n-ary
relationship.

♦ Recursive relationships. Entities that have a relationship to themselves
take part in recursive relationships. For example, for the EMPLOYEE
entity, you could include a relationship to show that One EMPLOYEE
<manages> one or more EMPLOYEEs. This type of relationship is also
used for bill-of-materials structures, to show relationships between parts.

♦ Subtype relationships . Related entities are grouped together so that all
common attributes appear in a single entity, but all attributes that are not
in-common appear in separate, related entities. For example, the
EMPLOYEE entity could be subtyped into FULL-TIME and PART-TIME.

Each of these relationship types is discussed more fully later in this chapter.

ERwin Methods Guide 5

Refining Model Relationships • 57

Many-to-Many Relationships
In key-based and fully-attributed models, relationships must relate zero or
one instances in a parent entity to a specific set of instances in a child entity.
As a result of this rule, many-to-many relationships that were dicovered and
documented in an ERD or earlier modeling phase must be broken down into a
pair of one-to-many relationships.

The example above shows a many-to-many relationship between STUDENTs
and COURSEs. If you did not eliminate the many-to-many relationship
between COURSE and STUDENT, for example, the key of COURSE would be
included in the key of STUDENT, and vice versa. But COURSEs are identified
by their own keys, and likewise for STUDENTs -- creating an endless loop!

 5

ERwin Methods Guide

58 • Refining Model Relationships

You can eliminate the many-to-many relationship by creating an associative
entity. In the example below, we have resolved the many-to-many
relationship between STUDENT and COURSE by adding COURSE-ROSTER
entity.

Resolving the STUDENT-COURSE Relationship Using an Associative Entity

COURSE-ROSTER is an associative entity, meaning it is used to define the
association between two related entities.

Many-to-many relationships often hide meaning. In the diagram with a many-
to-many relationship, you know that a STUDENT enrolls in many COURSEs,
but no information is included to show how. When you resolve the many-to-
many relationship, you see not only how the entities are related, but uncover
additional information, such as the “course-time,” that also describes facts
about the relationship.

Once the many-to-many relationship is resolved, you are faced with the
requirement to include relationship verb phrases that validate the structure.
There are two ways to do this: construct new verb phrases, or use the verb
phrases as they existed for the many-to-many relationship. The most
straightforward way is to continue to read the “many-to-many” relationship,
through the associative entity. So you can read A STUDENT <enrolls in>
many COURSEs and A COURSE <is taken by> many STUDENTs. Many
modelers adopt this style for constructing and reading a model.

ERwin Methods Guide 5

Refining Model Relationships • 59

There is another style, which is equally correct, but a bit more cumbersome.
The structure of the model is exactly the same, but the verb phrases are
different, and the model is “read” in a slightly different way. In this example,
you would read: A STUDENT <enrolls in a COURSE recorded in> one or
more COURSE-ROSTERs, and A COURSE <is taken by a STUDENT recorded
in> one or more COURSE-ROSTERs.

Reading Relationships Through Associative Entities

Although the verb phrases have gotten fairly long, the reading follows the
standard pattern reading directly from the parent entity to the child.

Whichever style you choose, be consistent. Deciding how to record verb
phrases for many-to-many relationships is not too difficult when the
structures are fairly simple, as in our examples. However, this can become
more difficult when the structures become more complex, such as when the
entities on either side of the associative entities are themselves associative
entities, which are there to represent other many-to-many relationships.

 5

ERwin Methods Guide

60 • Refining Model Relationships

N-ary Relationships
When a single parent-child relationship exists, the relationship is called
binary. All of the previous examples of relationships to this point have been
binary relationships. However, when creating a data model, it is not
uncommon to come across n-ary relationships, which are the modeling name
for relationships between two or more parent entities and a single child table.
An example of an n-ary relationship is shown below.

N-ary Relationship

Like many-to-many relationships, three-, four-, or “n-ary” relationships are
valid constructs in entity-relationship diagrams. Also like many-to-many
relationships, n-ary relationships should be resolved in later models using a
set of binary relationships to an associative entity.

If you consider the business rule stated in the example above, you see that a
CONTRACT represents a three-way relationship among COMPANY,
PRODUCT, and CUSTOMER. The structure indicates that many COMPANYs
sell many PRODUCTs to many CUSTOMERs. When you see a relationship
like this, however, you know that there are business questions begging to be
asked. For example, “Must a product be offered by a company before it can be
sold?” “Can a customer establish a single contract including products from
several different companies?” and, “Do we need to keep track of which
customers “belong to” which companies?” Depending on the answers, the
structures may change.

ERwin Methods Guide 5

Refining Model Relationships • 61

If, for example, the answer to the question "Must a product be offered by a
company before it can be sold?” is “yes,” then we would have to change the
structure as shown below.

Resolving an N-ary Relationship

Because PRODUCTs must be offered by COMPANYs, you can create an
associative entity to capture this relationship. As a result, the original “three-
way” relationship to CONTRACT is replaced by two, “two-way”
relationships.

By asking a variety of business questions, it is likely that you will find that
most “n-ary” relationships can be broken down into a series of relationships
to associative entities.

 5

ERwin Methods Guide

62 • Refining Model Relationships

Recursive Relationships
An entity can participate in a recursive relationship (also called "fish hook") in
which the same entity is both the parent and the child. This relationship is an
important one when modeling data originally stored in legacy DBMSs such as
IMS or IDMS that use recursive relationships to implement bill of materials
structures.

For example, a COMPANY can be the “parent of” other COMPANYs. As with
all non-identifying relationships, the key of the parent entity appears in the
data area of the child entity.

Recursive Relationship Example

The recursive relationship for COMPANY includes the diamond symbol to
indicate that the foreign key can be NULL, such as when a COMPANY has no
parent. Recursive relationships must be both optional (diamond) and non-
identifying.

The “company-id” attribute migrated through the recursive relationship, and
appears in the example with the rolename “parent-id”. The reason for this is
two-fold. First, as a general design rule, an attribute cannot appear twice in
the same entity under the same name. Thus, to complete a recursive
relationship, you must provide a rolename for the migrated attribute.

Second, the attribute “company-id” in the key, which identifies each instance
of COMPANY, is not the same thing as the “company-id” migrated through
the relationship, which identifies the parent COMPANY. You cannot use the
same definition for both attributes, so the migrate attribute must be
rolenamed. An example of possible definitions appears below:

company-id: The unique identifier of a COMPANY.

parent-id: The “company-id” of the parent COMPANY. Not all COMPANYs have a
parent COMPANY.

ERwin Methods Guide 5

Refining Model Relationships • 63

If you create a sample instance table, such as the one below, you can test the
rules in the relationship to ensure that they are valid.

COMPANY

company-id parent-id company-name

C1 NULL Big Monster Company

C2 C1 Smaller Monster Company

C3 C1 Other Smaller Company

C4 C2 Big Subsidiary

C5 C2 Small Subsidiary

C6 NULL Independent Company

Sample Instance Table for COMPANY

The sample instance table shows that “Big Monster Company” is parent of
“Smaller Monster Company” and “Other Smaller Company.” “Smaller
Monster Company,” in turn, is parent of “Big Subsidiary” and “Small
Subsidiary.” “Independent Company” is not the parent of any other, and has
no parent. “Big Monster Company” also has no parent. If you diagram this
information hierarchically, you can validate the information in the table.

COMPANY Hierarchy

 5

ERwin Methods Guide

64 • Refining Model Relationships

Subtype Relationships

A subtype relationship, also referred to as a generalization category,
generalization hierarchy, or inheritance hierarchy, is a way to group a set of
entities that share common characteristics. For example, we might find during
a modeling effort, that several different types of ACCOUNTs exist in a bank,
such as checking, savings and loan accounts, as shown below.

Example Account Entities

When you recognize similarities among the different independent entities,
you may be able to collect together attributes common to all three types of
accounts into a hierarchical structure.

You can move these common attributes into a higher level entity called the
supertype entity (or generalization entity). Those that are specific to the
individual account types remain in the subtype entities. In the example, you
can create a supertype entity called ACCOUNT to represent the information
that is common across the three types of accounts. The supertype ACCOUNT
includes a primary key of “account-number.”

Three subtype entities, CHECKING-ACCOUNT, SAVINGS-ACCOUNT, and
LOAN-ACCOUNT, are added as dependent entities that are related to
ACCOUNT using a subtype relationship.

ERwin Methods Guide 5

Refining Model Relationships • 65

The result is a structure like the one shown below.

Subtype Relationship Example

In this example, an ACCOUNT is either a CHECKING ACCOUNT, a
SAVINGS-ACCOUNT, or a LOAN-ACCOUNT. Each subtype entity is an
ACCOUNT, and inherits the properties of ACCOUNT. The three different
subtype entities of ACCOUNT are mutually exclusive.

In order to distinguish one type of ACCOUNT from another, we add the
attribute “account-type” as the subtype discriminator. The subtype
discriminator is an attribute of the category supertype (ACCOUNT) and its
value will tell us which type of ACCOUNT we have.

Once you have established the subtype relationship, you can examine each
attribute in the original model, in turn, to determine if it should remain in the
subtype entities, or move to the supertype. For example, each subtype entity
has an “open-date.” If the definitions of these three kinds of “open-date” are
the same, you can move them to the supertype, and drop them from the
subtype entities.

You need to analyze each attribute in turn to determine if it remains in the
subtype entity or moves to the supertype. In those cases where a single
attribute appears in most, but not all, of the subtype entities, you face a more
difficult decision. You can either leave the attribute with the subtype entities,
or move the attribute up to the supertype. If this attribute appears in the
supertype, this will mean that the value of the attribute in the supertype will
be NULL when the attribute is one not included in the corresponding subtype
entity.

 5

ERwin Methods Guide

66 • Refining Model Relationships

Which alternative to choose depends on how many of the subtype entities
share the common attribute. If most do, it is good practice, at higher level
models, to move them up. If few subtype entities share the attribute, it is best
to leave them where they are. In lower level models, depending on the
purpose, it is often appropriate to leave the attributes in their subtype entity.

After analysis, the resulting model might appear like the one below.

Account Subtype Example

When developing a subtype relationship, you must also be aware of any
specific business rules that need to be imposed at the subtype level that are
not pertinent to other subtypes of the supertype. For example, LOAN
accounts are deleted after they are paid-up. You would hardly like to delete
CHECKING and SAVINGS accounts under the same conditions.

There may also be relationships that are meaningful to a single subtype, and
not to any other subtype in the hierarchy. The LOAN entity needs to be
examined, for example, to ensure that any previous relationships to records of
customer payments or assets are not lost because of a different organizational
structure.

ERwin Methods Guide 5

Refining Model Relationships • 67

Complete Versus Incomplete Subtype Structures
In IDEF1X, different symbols are used to specify whether or not the set of
subtype entities in a subtype relationship is fully defined. An incomplete
subtype indicates that the modeler feels there may be other subtype entities
that have not yet been discovered, and is indicated by a single line at the
bottom of the subtype symbol.

Incomplete Subtype

A complete subtype indicates that the modeler is certain that all possible
subtype entities are included in the subtype structure. For example, a
complete subtype could capture information specific to male and female
employees, as shown below. A complete subtype is indicated by two lines at
the bottom of the subtype symbol.

Complete Subtype

 5

ERwin Methods Guide

68 • Refining Model Relationships

When you create a subtype relationship, it is a good rule of thumb to also
create a validation rule for the discriminator. This helps to ensure that all
subtypes have been discovered. For example, a validation rule for “account-
type” might include: C=checking account, S=savings account, L=loans. If the
business also has legacy data with account types of “O,” the validation rule
uncovers the undocumented type and lets you decide if the “O” is a symptom
of poor design in the legacy system, or a real account type that you forgot.

Inclusive and Exclusive Relationships
Unlike IDEF1X, IE notation does not distinguish between complete and
incomplete subtype relationships. Instead, IE notation documents whether the
relationship is exclusive or inclusive.

In an exclusive subtype relationship, each instance in the supertype can relate
to one and only one subtype. For example, you might model a business rule
says that an employee can be either a full-time or part-time employee, but not
both. To create the model, you would include an EMPLOYEE supertype
entity with FULL-TIME and PART-TIME subtype entities, and a discriminator
attribute called “employee-status.” In addition, you would constrain the value
of the discriminator to show that valid values for it include “F” to denote full-
time and “P” to denote part-time.

In an inclusive subtype relationship, each instance in the supertype can relate
to one or more subtypes. In our example, the business rule might now state
that an employee could be full-time, part-time, or both. In this example, you
would constrain the value of the discriminator to show that valid values for it
include “F” to denote full-time, “P” to denote part-time, and “B” to denote
both.

Note : In IDEF1X notation, you can represent inclusive subtypes by drawing a separate
relationship between the supertype entity and each subtype entity.

ERwin Methods Guide 5

Refining Model Relationships • 69

IDEF1X and IE Subtype Notation
The following chart illustrates subtype notation in IDEF1X and IE.

IDEF1X Subtype Notation

Complete Incomplete IE Subtype Notation

Exclusive
Subtype

Inclusive
Subtype

 5

ERwin Methods Guide

70 • Refining Model Relationships

When to Create a Subtype Relationship
To summarize, there are three reasons to create a subtype relationship:

♦ First, the entities share a common set of attributes. This was the case in
our examples above.

♦ Second, the entities share a common set of relationships. We have not
explored this, but, referring back to our account structure, we could as
needed, collect any common relationships that the subtype entities had
into a single relationship from the generic parent. For example, if each
account type is related to many CUSTOMERs, you can include a single
relationship at the ACCOUNT level, and eliminate the separate
relationships from the individual subtype entities.

♦ Third, subtype entities should be exposed in a model if the business
demands it (usually for communication or understanding purposes) even
if the subtype entities have no attributes that are different, and even if
they participate in no relationships distinct from other subtype entities.
Remember that one of the major purposes of a model is to assist in
communication of information structures, and if showing subtype entities
assists with this, then show them.

ERwin Methods Guide 6

Normalization • 71

Normalization

Introduction
Normalization is the process of making a database design comply with the
design rules outlined by E. F. Codd for relational databases. Following the
rules for normalization, you can control and eliminate data redundancy by
removing all model structures that provide multiple ways to know the same
fact.

The goal of normalization is to ensure that there is only one way to know a
“fact.” A useful slogan summarizing this goal is:

ONE FACT IN ONE PLACE!

To provide a basic understanding of the principles of normalization, this
chapter includes a variety of examples of common design problems and
normalization solutions.

Chapter Contents

Overview of the Normal Forms .. 72
Common Design Problems .. 73
Unification... 84
How Much Normalization Is Enough?... 86
ERwin Support for Normalization .. 88

 6

ERwin Methods Guide

72 • Normalization

Overview of the Normal Forms
The following are formal definitions for the most common normal forms.

Functional Dependence (FD)
Given an entity E, attribute B of E is functionally dependent on attribute A of
E if and only if each value of A in E has associated with it precisely one value
of B in E (at any one time). In other words, A uniquely determines B.

Full Functional Dependence
Given an entity E, an attribute B of E is fully functionally dependent on a set
of attributes A of E if and only if B is functionally dependent on A and not
functionally dependent on any proper subset of A.

First Normal Form (1NF)
An entity E is in 1NF if and only if all underlying values contain atomic values
only. Any repeating groups (that might be found in legacy COBOL data
structures, for example) must be eliminated.

Second Normal Form (2NF)
An entity E is in 2NF if it is in 1NF and every non-key attribute is fully
dependent on the primary key. In other words, there are no partial key
dependencies — dependence is on the entire key K of E, and not on a proper
subset of K.

Third Normal Form (3NF)
An entity E is in 3NF if it is in 2NF and no non-key attribute of E is dependent
on another non-key attribute. There are several equivalent ways to express
3NF. Here is a second: An entity E is in 3NF if it is in 2NF and every non-key
attribute is non transitively dependent on the primary key. A third and final
way is: An entity E is in 3NF if every attribute in E carries a fact about all of E
(2NF) and only about E (as represented by the entity’s entire key and only by
that key). One way to remember how to implement 3NF is using the following
quip: “Each attribute relies on the key, the whole key, and nothing but the
key, so help me Codd!”

Beyond 3NF lie three more normal forms, Boyce-Codd, Fourth and Fifth. In
practice, third normal form is the standard. At the level of the physical
database design, choices are usually made to “denormalize” a structure in
favor of performance for a certain set of transactions. This may introduce
redundancy in the structure, but is often worth it.

ERwin Methods Guide 6

Normalization • 73

Common Design Problems
Many common design problems are a result of violating one of the normal
forms. Common problems include:

♦ Repeating data groups

♦ Multiple use of the same attribute

♦ Multiple occurrences of the same fact

♦ Conflicting facts

♦ Derived attributes

♦ Missing information

These problems are examined individually in the follow sections, and
explained using models and sample instance data. When you work on
eliminating design problems, the use of sample instance data can be
invaluable in discovering many normalization errors.

Repeating Data Groups
Repeating data groups can be defined as lists, repeating elements, or internal
structures inside an attribute. This structure, although common in legacy data
structures, violates first normal form and must be eliminated in an RDBMS
model. This is because an RDBMS cannot handle variable-length repeating
fields, because it offers no ability to subscript through arrays of this type. The
entity below contains a repeating data group, “children’s-names”. Repeating
data groups violate first normal form, which basically states that “An entity is
in first normal form if each of its attributes has a single meaning and not more
than one value for each instance.”

Repeating data groups, such as in the example below, present problems when
defining a database to contain the actual data. For example, after designing
the EMPLOYEE entity, you are faced with the questions “How many
children’s names do we need to record?” “How much space should we leave
in each row in the database for the names?” and “What will we do if we have
more names than remaining space?”

EMPLOYEE Entity

 6

ERwin Methods Guide

74 • Normalization

A sample instance table might clarify the problem:

EMPLOYEE

emp-id emp-name emp-address children's-names

E1 Tom Berkeley Jane

E2 Don Berkeley Tom, Dick, Donna

E3 Bob Princeton —

E4 John New York Lisa

E5 Carol Berkeley —

EMPLOYEE Sample Instance Table

In order to fix the design, we must somehow remove the list of children’s
names from the EMPLOYEE entity. One way to do this is to add a CHILD
table to contain the information about employee’s children. Once that is done,
you can represent the names of the children as single entries in the CHILD
table. In terms of the physical record structure for employee, this can resolve
some of your questions about space allocation, and prevent wasting space in
the record structure for employees who have no children or, conversely,
deciding how much space to allocate for employees with families.

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD

emp-id child-id child-name

E2 C1 Tom

E2 C2 Dick

E2 C3 Donna

E4 C1 Lisa

Sample Instance Tables for the EMPLOYEE-CHILD Model

ERwin Methods Guide 6

Normalization • 75

This change makes the first step toward a normalized model – conversion to
first normal form. Both entities now contain only fixed-length fields, which
are easy to understand and program.

Multiple Use of the Same Attribute
It is also a problem when a single attribute can represent one of two facts, and
there is no way to understand which fact it represents. For example, the
EMPLOYEE entity below contains the attribute “start-or-termination-date” in
which you can record this information for an employee.

EMPLOYEE Entity with “Start-or-termination-date” Attribute

EMPLOYEE

emp-id emp-name emp-address start-or-termination-date

E1 Tom Berkeley Jan 10. 1998

E2 Don Berkeley May 22, 1998

E3 Bob Princeton Mar 15, 1997

E4 John New York Sep 30, 1998

E5 Carol Berkeley Apr 22, 1994

E6 George Pittsburgh Oct 15, 1998

Sample Instance Table Showing “Start-or-termination-date”

The problem in the current design is that there is no way to record both a start
date, “the date that the EMPLOYEE started work,” and a termination date,
“the date on which an EMPLOYEE left the company,” in situations where
both dates are known. This is because a single attribute represents two
different facts. This is also a common structure in legacy COBOL systems, but
one that often resulted in maintenance nightmares and misinterpretation of
information.

 6

ERwin Methods Guide

76 • Normalization

The solution is to allow separate attributes to carry separate facts. Below is an
attempt to correct the problem. It’s still not quite right. To know the start date
for an employee, for example, you have to derive what kind of date it is from
the “date-type” attribute. While this may be efficient in terms of physical
database space conservation, it wreaks havoc with query logic.

In fact, this “solution” actually creates a different type of normalization error,
because “date-type” does not depend on “employee-id” for its existence. This
is also poor design because it solves a technical problem, but does not solve
the underlying business problem – how to store two facts about an employee.

When you analyze the data, you can quickly determine that a better solution
is to let each attribute carry a separate fact.

EMPLOYEE Entity with “Start-date” and “Termination-date” Attributes

EMPLOYEE

emp-id emp-name emp-address start-date termination-date

E1 Tom Berkeley Jan 10. 1998 —

E2 Don Berkeley May 22, 1998 —

E3 Bob Princeton Mar 15, 1997 —

E4 John New York Sep 30, 1998 —

E5 Carol Berkeley Apr 22, 1994 —

E6 George Pittsburgh Oct 15, 1998 Nov 30, 1998

Sample Instance Table Showing “Start-date” and “Termination-date”

ERwin Methods Guide 6

Normalization • 77

Each of the two previous situations contained a first normal form error. By
changing the structures we have made sure that an attribute appears only
once in the entity, and that it carries only a single fact. If you make sure that
all entity and attribute names are singular, and that no attribute can carry
multiple facts, then you will have taken a large step toward assuring that a
model is in first normal form.

Multiple Occurrences of the Same Fact
One of the goals of a relational database is to maximize data integrity, to
ensure that the information contained in the database is correct and that facts
within the database do not conflict. To maximize data integrity, it is important
to represent each fact in the database once and only once. If a fact appears in
two or more places, errors can begin creep into the data. The only exception to
this rule (one fact in one place) is in the case of key attributes, which appear
multiple times in a database. The integrity of keys, however, is managed using
referential integrity, which is discussed earlier in this book.

Multiple occurrences of the same fact often point to a flaw in the original
database design. In the example below, you can see that including “employee-
address” in the CHILD entity has introduced an error in the database design.
If an employee has multiple children, the address must be maintained
separately for each child.

Multiple Occurrences of the Same Fact

“Employee-address” is information about the EMPLOYEE, not information
about the CHILD. In fact, this model violates second normal form, which states
that each fact must depend on the entire key of the entity in order to belong to
the entity. The example above is not in second normal form because
“employee-address” does not depend on the entire key of CHILD, only on the
“employee-id” portion, creating a partial key dependency. If you place
“employee-address” back with EMPLOYEE, you can ensure that the model is
in at least second normal form.

 6

ERwin Methods Guide

78 • Normalization

Conflicting Facts
Conflicting facts can occur for a variety of reasons, including violation of first,
second or third normal forms. An example of conflicting facts occurring
through a violation of second normal form appears below:

EMPLOYEE-CHILD Model With Conflicting Facts

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD

emp-id child-id child-name emp-spouse-address

E1 C1 Jane Berkeley

E2 C1 Tom Berkeley

E2 C2 Dick Berkeley

E2 C3 Donna Cleveland

E4 C1 Lisa New York

Sample Instance Tables Showing “Emp-spouse-address”

The attribute named “emp-spouse-address” is included in CHILD, but this
design is a second normal form error. The instance data highlights the error.
As you can see, Don is the parent of Tom, Dick, and Donna but the instance
data shows two different addresses recorded for Don’s spouse. Perhaps Don
has two spouses (one in Berkeley, and one in Cleveland), or Donna has a
different mother from Tom and Dick. Or perhaps Don has one spouse with
addresses in both Berkeley and Cleveland. Which of these is the answer?
There is no way to know from the model as it stands. Business users are the
only source that can eliminate this type of semantic problem, so analysts need
to ask the right questions about the business to uncover the correct design.

ERwin Methods Guide 6

Normalization • 79

The problem in the example is that “emp-spouse-address” is a fact about the
EMPLOYEE’s SPOUSE, not about the CHILD. If we leave the structure the
way it currently is, then every time Don’s spouse changes address (along with
Don, we presume), we will have to update that fact in multiple places; once in
each CHILD instance where Don is the parent. And if we have to do that in
multiple places, what is the chance that we will always get it right
everywhere? Not too good.

Once it is recognized that “emp-spouse-address” is a fact not about a child
but about a spouse, you can correct the problem. To capture this information,
you can add a SPOUSE entity to the model.

Spouse Entity Added to the EMPLOYEE-CHILD Model

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

Sample Instance Tables

 6

ERwin Methods Guide

80 • Normalization

CHILD

emp-id child-id child-name

E1 C1 Jane

E2 C1 Tom

E2 C2 Dick

E2 C3 Donna

E4 C1 Lisa

SPOUSE

emp-id spouse-id spouse-address current-spouse

E2 S1 Berkeley Y

E2 S2 Cleveland N

E3 S1 Princeton Y

E4 S1 New York Y

E5 S1 Berkeley Y

Sample Instance Tables Showing the SPOUSE Entity

In breaking out SPOUSE into a separate entity, you can see that the data for
Don’s spouse’s address is correct -- Don just had two spouses, one current
and one former.

By making sure that every attribute in an entity carries a fact about that entity,
you can generally be sure that a model is in at least second normal form.
Further transforming a model into third normal form generally reduces the
likelihood that the database will become corrupt, i.e., that it will contain
conflicting information, or that required information will be missing.

ERwin Methods Guide 6

Normalization • 81

Derived Attributes
Another example of conflicting facts occurs when third normal form is
violated. For example, if you included both a “birth-date” and an “age”
attribute as non-key attributes in the CHILD entity, you violate third normal
form. This is because “age” is functionally dependent on “birth-date.” By
knowing “birth-date” and the date today, we can derive the “age” of the
CHILD.

Derived attributes are those that may be computed from other attributes (e.g.,
totals) and therefore need not be stored directly. To be accurate, derived
attributes need to be updated every time their derivation source(s) is updated.
This creates a large overhead in an application that does batch loads or
updates, for example, and puts the responsibility on application designers and
coders to ensure that the updates to derived facts are performed.

A goal of normalization is to ensure that there is only one way to know each
fact recorded in the database. If we know the value of a derived attribute, and
we know the algorithm by which it is derived and the values of the attributes
used by the algorithm, then there are two ways to know the fact (look at the
value of the derived attribute, or derive it from scratch). If you can get an
answer two different ways, it is possible that the two answers will be
different.

For example, we can choose to record both the “birth-date” and the “age” for
CHILD. And suppose that the “age” attribute is only changed in the database
during an end of month maintenance job. Then, when we ask the question,
“How old is such and such CHILD?” we can directly access “age” and get an
answer, or we can, at that point, subtract “birth-date” from “today’s-date.” If
we did the subtraction, we would always get the right answer. If “age” has not
been updated recently, it might give us the wrong answer, and there would
always be the potential for conflicting answers.

There are situations, where it makes sense to record derived data in the
model, particularly if the data is expensive to compute. It can also be very
useful in discussing the model with the business. Although the theory of
modeling says that you should never include derived data (and we urge you
to do so only sparingly), break the rules when you must. But at least record
the fact that the attribute is derived and state the derivation algorithm.

 6

ERwin Methods Guide

82 • Normalization

Missing Information
Missing information in a model can sometimes result from efforts to
normalize the data. In our example, adding the SPOUSE entity to the
EMPLOYEE-CHILD model improves the design, but destroys the implicit
relationship between the CHILD entity and the SPOUSE address. It is possible
that the reason that “emp-spouse-address” was stored in the CHILD entity in
the first place was to represent the address of the other parent of the child
(which was assumed to be the spouse). If we need to know the other “parent”
of each of the children, then we must add this information to the CHILD
entity.

Replacing Missing Information Using a New Relationship

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD

emp-id child-id child-name other-parent-id

E1 C1 Jane —

E2 C1 Tom S1

E2 C2 Dick S1

E2 C3 Donna S2

E4 C1 Lisa S1

Sample Instance Tables for EMPLOYEE, CHILD, and SPOUSE

ERwin Methods Guide 6

Normalization • 83

SPOUSE

emp-id spouse-id spouse-address current-or-not

E2 S1 Berkeley Y

E2 S2 Cleveland N

E3 S1 Princeton Y

E4 S1 New York Y

E5 S1 Berkeley Y

Sample Instance Tables for EMPLOYEE, CHILD, and SPOUSE

The normalization of this model is not completed, however. In order to
complete it you must ensure that you can represent all possible relationships
between employees and children, including those in which both parents are
employees.

 6

ERwin Methods Guide

84 • Normalization

Unification
In the example below, the “employee-id” attribute migrates to the CHILD
entity through two relationships – one with EMPLOYEE and the other with
SPOUSE. You might expect that the foreign key attribute would appear twice
in the CHILD entity as a result. However, because the attribute “employee-id”
was already present in the key area of CHILD, it is not repeated in the entity
even though it is part of the key of SPOUSE.

Unification of the “Employee-id” Foreign Key Attribute

This combining of two, identical foreign key attributes migrated from the
same base attribute through two or more relationships is called unification. In
the example, “employee-id” was part of the primary key of CHILD
(contributed by the “has” relationship from EMPLOYEE), and was also a non-
key attribute of CHILD (contributed by the “has” relationship from SPOUSE).
Because both foreign key attributes are the identifiers of the same
EMPLOYEE, it is desirable that the attribute appears only once. Unification is
implemented automatically by ERwin when this situation occurs.

The rules that ERwin uses to implement unification include:

1. If the same foreign key is contributed to an entity more than once, without
the assignment of rolenames, all occurrences unify.

2. Unification does not occur if the occurrences of the foreign key are given
different rolenames.

3. If different foreign keys are assigned the same rolename, and these foreign
keys are rolenamed back to the same base attribute, then unification will
occur. If they are not rolenamed back to the same base attribute, there is
an error in the diagram.

ERwin Methods Guide 6

Normalization • 85

4. If any of the foreign keys that unify are part of the primary key of the
entity, the unified attribute will remain as part of the primary key.

5. If none of the foreign keys that unify are part of the primary key, the
unified attribute will not be part of the primary key.

Accordingly, you can override the unification of foreign keys when necessary
by assigning rolenames. If you want the same foreign key to appear two or
more times in a child entity, you can add a rolename to each foreign key
attribute.

 6

ERwin Methods Guide

86 • Normalization

How Much Normalization Is Enough?
From a formal normalization perspective (what an algorithm would find
solely from the “shape” of the model, without understanding the meanings of
the entities and attributes) there is nothing wrong with the EMPLOYEE-
CHILD-SPOUSE model. But just because it is normalized does not mean that
the model is complete or correct. It still may not be able to store all of the
information that is needed, or may store it inefficiently. With experience, you
can learn to detect and remove additional design flaws even after the “pure
normalization” is finished.

In the earlier EMPLOYEE-CHILD-SPOUSE model example, you have already
discovered that there is no way of recording a CHILD whose parents are both
EMPLOYEEs. So you can make additional changes to try to accommodate this
type of data.

If you noticed that EMPLOYEE, SPOUSE, and CHILD all represent instances
of people, you may want to try to combine the information into a single table
that represents facts about people and one that represents facts about
relationships. To fix the model, you can eliminate CHILD and SPOUSE,
replacing them with PERSON and PERSON-ASSOCIATION. This lets you
record parentage and marriage through the relationships between two
PERSONs captured in the PERSON-ASSOCIATION entity.

EMPLOYEE, PERSON, and PERSON-ASSOCIATION Entities

ERwin Methods Guide 6

Normalization • 87

In this structure, we can finally record any number of relationships between
two PERSONs, as well as a number of relationships we could not record
before. For example, the previous model had not considered “adoption.” The
new structure, however, automatically covers it. To represent “adoption” you
can add a new value to the “person-association-type” validation rule to
represent adopted parentage. You can also add “legal guardian,” “significant
other,” or other relationships between two PERSONs later, if needed.

EMPLOYEE remains an independent entity, because the business chooses to
identify EMPLOYEEs differently from PERSONs. However, EMPLOYEE
inherits the properties of PERSON by virtue of the “is a” relationship back to
PERSON. Notice the “Z” on that relationship and the absence of a diamond.
This is a one-to-zero or one relationship that can sometimes be used in place
of a subtype when the subtype entities require different keys. In our example,
a PERSON either “is an” EMPLOYEE or not.

If we had wanted to use the same key for both PERSON and EMPLOYEE we
could have “encased” the EMPLOYEE entity into PERSON and allowed its
attributes to be NULL whenever the PERSON was not an EMPLOYEE. We
still could have specified that the business wanted to look up “employees” by
a separate identifier, but the business statements would have been a bit
different. This structure is shown below.

Generalized Employee Model Construct

Conclusions
What this all basically comes down to in the end is that a model may
“normalize,” but may still not be a correct representation of the business.
Formal normalization is important. Verifying, perhaps with sets of sample
instance tables as we have done here, that the model means something is no
less important.

 6

ERwin Methods Guide

88 • Normalization

ERwin Support for Normalization
ERwin provides some support for normalization of data models, but does not
currently contain a full normalization algorithm. If you have not used a “real
time” modeling tool before, you will find ERwin’s standard modeling features
quite helpful. They will prevent you from making many normalization errors
in the first place.

First Normal Form Support
In a model, each entity or attribute is identified by its “name.” ERwin will
accept any name for an object, with the following exceptions:

♦ ERwin will flag a second use of an entity name (depending on your
preference for unique names).

♦ ERwin will flag a second use of an attribute name, unless that name is a
rolename. When rolenames are assigned, the same name for an attribute
may be used in different entities.

♦ ERwin will not let you bring a foreign key into an entity more than once
without giving it a rolename each time.

By preventing multiple uses of the same name, ERwin is basically leading you
to put each fact in exactly one place. There may still be second normal form
errors if you place an attribute incorrectly, but no algorithm would find that
without more information than is present in a model.

In the data model, ERwin cannot know that a name you assign to an attribute
can represent a “list” of things. For example, ERwin was happy to accept
“children's-names” as an attribute name in our earlier example. So it does not
directly guarantee that every model is in first normal form.

However, the DBMS schema function of ERwin does not support a data type
of “list.” Because the schema is a representation of the database in a physical
relational system, first normal form errors are also prevented at this level.

ERwin Methods Guide 6

Normalization • 89

Second and Third Normal Form Support
ERwin does not currently know about functional dependencies, but it can
help to prevent second and third normal form errors. For example, if you
reconstruct the examples presented earlier in this chapter, you will find that
once “spouse-address” has been defined as an attribute of SPOUSE, you
cannot also define it as an attribute of CHILD. (Again, depending on your
preference for unique names.)

By preventing the multiple occurrence of foreign keys without rolenames,
ERwin is reminding you to think about what the structure represents. If the
same foreign key occurs twice in the same entity, there is a business question
to ask:

Are we recording the keys of two separate instances, or do both of the
keys represent the same instance?

When the foreign keys represent different instances, separate rolenames are
needed. If the two foreign keys represent the same instance, then there is very
likely a normalization error somewhere. A foreign key appearing twice in an
entity, without rolenames, is a dead giveaway that there is a redundant
relationship structure in the model. When two foreign keys are assigned the
same rolename, unification occurs.

 6

ERwin Methods Guide

90 • Normalization

ERwin Methods Guide 7

Creating a Physical Model • 91

Creating a Physical Model

What’s In This Chapter?
The objective of a physical model is to provide a database administrator with
sufficient information to create an efficient physical database. The physical
model also provides a context for the definition and recording in the data
dictionary of the data elements that form the database, and assists the
application team in choosing a physical structure for the programs that will
access the data. To ensure that all systems-side needs are met, physical
models are often developed jointly by a team representing the data
administration, database administration, and application development areas.

When deemed appropriate for the development effort, the model can also
provide the basis for comparing the physical database design against the
original business information requirements — to demonstrate that the
physical database design adequately supports those requirements, to
document physical design choices and their implications (e.g., what is
satisfied, and what is not), and to identify database extensibility capabilities
and constraints.

ERwin provides support for both roles of a physical model: generating the
physical database and documenting physical design against the business
requirements. For example, you can create a physical model from an ERD,
key-based, or fully attributed model simply by changing the view of the
model from “Logical Model” to “Physical Model.” Each option in the logical
model has a corresponding option in the physical model. So each entity
becomes a relational table, attributes become columns, and keys become
indices.

Once the physical model is created, ERwin can generate all model objects in
the correct syntax for the selected target server – directly to the catalog of the
target server, or indirectly, as a schema DDL script file.

Chapter Contents

Creating a Physical Model ... 92
Denormalization ... 93

 7

ERwin Methods Guide

92 • Creating a Physical Model

Creating a Physical Model
The following table summarizes the relationship between objects in a logical
and physical model.

Summary of Logical and Physical Model Components
Logical Model Physical Model

Entity Table

Dependent entity FK is part of child table’s PK

Independent entity Parent table or, if child table, FK is NOT part of child
table’s PK

Attribute Column

Logical datatype (text, number,
datetime, blob)

Physical datatype (valid example varies depending on
the target server selected)

Domain (logical) Domain (physical)

Primary key Primary key, PK Index

Foreign key Foreign key, FK Index

Alternate key (AK) AK Index—a unique, non-primary index

Inversion entry (IE) IE Index—a non-unique index created to search table
information by a non-unique value, such as customer
last name.

Key group Index

Business rule Trigger or stored procedure

Validation rule Constraint

Relationship Relationship implemented using FKs

Identifying FK is part of child table’s PK (above the line)

Non-Identifying FK is NOT part of child table’s PK (below the line)

Subtype Denormalized tables

Many-to-many Associative table

Referential Integrity
 (cascade, restrict, set
 null, set default)

INSERT, UPDATE, and DELETE Triggers

Cardinality INSERT, UPDATE, and DELETE Triggers

N/A View or view relationship

N/A Pre- and post-script

Note : Referential integrity is described as a part of the logical model, because the
decision of how you want a relationship to be maintained is a business decision,
but it is also a physical model component, because triggers or declarative
statements appear in the schema. ERwin supports referential integrity as a part
of both the logical and physical model.

ERwin Methods Guide 7

Creating a Physical Model • 93

Denormalization
ERwin also lets you denormalize the structure of the logical model so that you
can build a related physical model that is designed effectively for the target
RDBMS. Features supporting denormalization include:

♦ “Logical only” properties for entities, attributes, key groups, and
domains. You can mark any item in the logical model “logical only” so
that it appears in the logical model, but does not appear in the physical
model. For example, you can use the “logical only” settings to
denormalize subtype relationships or support partial key migration in the
physical model.

♦ “Physical only” properties for tables, columns, indexes, and domains. You
can mark any item in the physical model “physical only” so that it appears
in the physical model only. This setting also support denormalization of
the physical model because it enables the modeler to include tables,
columns, and indexes in the physical model that directly support physical
implementation requirements.

♦ Resolution of many-to-many relationships in a physical model. ERwin
provides support for resolving many-to-many relationships in both the
logical and physical models. If you resolve the many-to-many relationship
in the logical model, ERwin creates the associative entity and lets you add
additional attributes. If you choose to keep the many-to-many relationship
in the logical model, you can still resolve the relationship in the physical
model. ERwin maintains the link between the original logical design and
the new physical design, so the origin of the associative table is
documented in the model.

 7

ERwin Methods Guide

94 • Creating a Physical Model

ERwin Methods Guide A

Dependent Entity Types • 95

Dependent Entity Types

Classification of Dependent Entities
The following table lists the types of dependent entities that may appear in an IDEF1X
diagram.

Dependent Entity
Type

Description Example

Characteristic A characteristic entity represents a group
of attributes which occurs multiple times
for an entity, and which is not directly
identified by any other entity. In the
example, HOBBY is said to be a
characteristic of PERSON.

Associative or
Designative

Associative and designative entities record
multiple relationships between two or more
entities. If the entity carries only the
relationship information, it is termed a
designative entity. If it also carries
attributes that further describe the
relationship, it is called associative. In the
example, ADDRESS-USAGE is an
associative or designative entity.

Subtype Subtype entities are the dependent entities
in a subtype relationship. In the example,
CHECKING-ACCOUNT, SAVINGS-
ACCOUNT, and LOAN-ACCOUNT are
subtype entities.

 A

ERwin Methods Guide

96 • Dependent Entity Types

ERwin Methods Guide

Glossary of Terms • 97

Glossary of Terms

Alternate Key
1) An attribute or attributes that uniquely identify an instance of an entity.

2) If more than one attribute or group of attributes satisfies rule 1, the
alternate keys are those attributes or groups of attributes not selected as the
primary key.

ERwin will generate a unique index for each alternate key.

Attribute
An attribute represents a type of characteristic or property associated with a
set of real or abstract things (people, places, events, etc.).

Basename
The original name of a rolenamed foreign key.

Binary Relationship
A relationship in which exactly one instance of the parent is related to zero,
one, or more instances of a child. In IDEF1X, identifying, non-identifying, and
subtype relationships are all binary relationships.

Cardinality
The ratio of instances of a parent to instances of a child. In IDEF1X, the
cardinality of binary relationships is 1:n, whereby n may be one of the
following:

Zero, one, or more - signified by a blank space

One or more - signified by the letter P

Zero or one - signified by the letter Z

Exactly n - where n is some number

ERwin Methods Guide

98 • Glossary of Terms

Complete Subtype Cluster
If the subtype cluster includes all of the possible subtypes (every instance of
the generic parent is associated with one subtype), then the subtype cluster is
complete. For example, every EMPLOYEE is either male or female, and
therefore the subtype cluster of MALE-EMPLOYEE and FEMALE-
EMPLOYEE is a complete subtype cluster.

Dependent Entity
An entity whose instances cannot be uniquely identified without determining
its relationship to another entity or entities.

Discriminator
The value of an attribute in an instance of the generic parent determines to
which of the possible subtypes that instance belongs. This attribute is known
as the discriminator. For example, the value in the attribute Sex in an instance
of EMPLOYEE determines to which particular subtype (MALE-EMPLOYEE
or FEMALE-EMPLOYEE) that instance belongs.

Entity
An entity represents a set of real or abstract things (people, places, events,
etc.) which have common attributes or characteristics. Entities may be either
independent, or dependent.

Foreign Key
An attribute that has migrated through a relationship from a parent entity to a
child entity. A foreign key represents a secondary reference to a single set of
value values - the primary reference being the owned attribute.

Identifying Relationship
A relationship whereby an instance of the child entity is identified through its
association with a parent entity. The primary key attributes of the parent
entity become primary key attributes of the child.

Incomplete Subtype Cluster
If the subtype cluster does not include all of the possible subtypes (every
instance of the generic parent is not associated with one subtype), then the
subtype cluster is incomplete. For example, if some employees are
commissioned, a subtype cluster of SALARIED-EMPLOYEE and PART-TIME
EMPLOYEE would be incomplete.

ERwin Methods Guide

Glossary of Terms • 99

Independent Entity
An entity whose instances can be uniquely identified without determining its
relationship to another entity.

Inversion Entry
An attribute or attributes that do not uniquely identify an instance of an
entity, but are often used to access instances of entities. ERwin will generate a
non-unique index for each inversion entry.

Non-key attribute
Any attribute that is not part of the entity's primary key. Non-key attributes
may be part of an inversion entry and / or alternate key, and may also be
foreign keys.

Non-Identifying Relationship
A relationship whereby an instance of the child entity is not identified through
its association with a parent entity. The primary key attributes of the parent
entity become non-key attributes of the child.

Nonspecific Relationship
Both parent-child connection and subtype relationships are considered to be
specific relationships because they define precisely how instances of one entity
relate to instances of another. However, in the initial development of a model,
it is often helpful to identify "non-specific relationships" between two entities.
A nonspecific relationship, also referred to as a "many-to-many relationship,"
is an association between two entities in which each instance of the first entity
is associated with zero, one, or many instances of the second entity and each
instance of the second entity is associated with zero, one, or many instances of
the first entity.

Primary Key
An attribute or attributes that uniquely identify an instance of an entity. If
more than one attribute or group of attributes can uniquely identify each
instance, the primary key is chosen from this list of candidates based on its
perceived value to the business as an identifier. Ideally, primary keys should
not change over time, and should be as small as possible. ERwin will generate
a unique index for each primary key.

ERwin Methods Guide

100 • Glossary of Terms

Referential Integrity
The assertion that the foreign key values in an instance of a child entity have
corresponding values in a parent entity.

Rolename
A new name for a foreign key. A rolename is used to indicate that the set of
value values of the foreign key is a subset of the set of value values of the
attribute in the parent, and performs a specific function (or role) in the entity.

Schema
The structure of a database. Usually refers to the DDL (data definition
language) script file. DDL consists of CREATE TABLE, CREATE INDEX, and
other statements.

Specific Relationship
A specific relationship is an association between entities in which each
instance of the parent entity is associated with zero, one, or many instances of
the child entity, and each instance of the child entity is associated with zero or
one instance of the parent entity.

Subtype Entity
In the real world, we often encounter entities which are specific types of other
entities. For example, a SALARIED EMPLOYEE is a specific type of
EMPLOYEE. Subtype entities are useful for storing information that only
applies to a specific subtype. They are also useful for expressing relationships
that are only valid for that specific subtype, such as the fact that a SALARIED
EMPLOYEE will qualify for a certain BENEFIT, while a PART-TIME-
EMPLOYEE will not. In IDEF1X, subtypes within a subtype cluster are
mutually exclusive.

Subtype Relationship
A subtype relationship (also known as a categorization relationship) is a
relationship between a subtype entity and its generic parent. A subtype
relationship always relates one instance of a generic parent with zero or one
instance of the subtype.

ERwin Methods Guide

Index • 101

Index

1NF
definition, 72

2NF
definition, 72

3NF
definition, 72

Alias
entity names, 39

Alternate key, 31
Associative entity, 58

definition, 95
Attribute

avoiding multiple
occurrences, 77

avoiding multiple usages,
75

avoiding synonyms and
homonyms, 39

definition, 21, 43
definition using business

terms, 42
derived, 81
in an ERD, 20
key and non-key, 28
name, 38
rolename, 36
specifying a domain of

values, 43
specifying a rolename, 44
validation rule in

definition, 43
Base attribute

definition, 45
Binary relationship

definition, 60
BPwin

process modeling, 11
Business rule

capturing in a definition,
46

Business term
organizing, 42

Candidate key
definition, 29

Cardinality
definition, 48
in identifying

relationships, 48
in non-identifying

relationships, 49
notation in IDEF1X and IE,

48
Cascade

definition, 52
example, 54

Characteristic entity
definition, 95

Child entity, 22
Complete subtype

relationships, 67
Components

in an ERD, 20
Data analyst

role, 12
Data area, 28
Data model

use of verb phrases, 24
Data modeler

role, 12
Data modeling

analysis of process, 11
assertion examples, 25
benefits, 10, 18
definition, 10
methodologies, 10
sample IDEF1X

methodology, 14
sessions, 12

Definition
attribute, 43
capturing business rules,

46
entity, 40
rolename, 44

ERwin Methods Guide

102 • Index

Denormalization
in the physical model, 93

Dependency
existance, 32
identification, 32

Dependent entity, 32
types of, 95

Derived attribute
definition, 81
when to use, 81

Designative entity
definition, 95

Discriminator
in subtype relationships,

65
Domain

specifying valid attribute
values, 43

Entity
assigning a definition, 40
associative, 58, 95
avoiding circular

definitions, 42
avoiding synonyms and

homonyms, 39
characteristic, 95
child entity, 22
definition, 21
definition conventions, 40
definition description, 40
definition using business

terms, 42
dependent, 32
designative, 95
in an ERD, 20
independent, 33
name, 38
parent, 22
subtype, 64, 95
supertype, 64

Entity Relationship Diagram
creating, 20
definition, 16
objective, 19
overview, 19
sample, 20
subject areas, 19

ERD. See also Entity
Relationship Diagram

ERwin diagram

components, 20
ERwin model

advantages, 18
Exclusive subtype

relationships, 68
Existence dependency, 32
Facilitator

role, 12
First normal form, 73, 75

definition, 72
Foreign key

assigning referential
integrity, 51

unification, 45
Foreign key attribute

rolename, 36
Full functional dependence,

72
Fully attributed model, 14

definition, 16
Generalization category

definition, 64
Generalization hierarchy

definition, 64
Glossary

creating a business
glossary, 42

IDEF1X
origin, iii

Identification dependency,
32

Identifying relationship, 33
cardinality, 48

IE
origin, iii

Inclusive subtype
relationships, 68

Incomplete subtype
relationships, 67

Independent entity, 33
Information system

purpose, 9
requirements, 9

Inheritance hierarchy
definition, 64

Instance
definition, 21

Inversion entry, 31
Key

alternate key, 31

ERwin Methods Guide

Index • 103

data area, 28
definition, 28
foreign key attributes, 32
inversion entry, 31
migration, 32
primary, 28
selection example, 29
surrogate, 30

Key attributes, 28
Key based model

definition, 16, 27
objective, 27

Logical model
corresponding physical

model constructs, 92
definition, 16

Logical Only property, 93
Manager

role, 13
Many-to-many, 23, 56, 57

eliminating, 58
Migrating

rolename, 36
Naming

attributes, 38
entities, 38

N-ary relationship, 56
definition, 60

Non-identifying
relationship, 34

cardinality, 49
Non-key attribute, 28
Normal Forms

full functional
dependence, 72

summary of six forms, 72
Normalization

avoiding design problems,
73, 75, 77, 80, 81

completing, 86
denormalizing in the

physical model, 93
ERwin support, 88
First Normal Form, 73, 75
Second Normal Form, 77
Third Normal Form, 80, 81

One-to-many, 22
Parent entity, 22
Physical model

corresponding logical
model constructs, 92

creating, 91
definition, 17

Physical Only property, 93
Primary key, 28

choosing, 29
Process modeling, 11
Recursive relationship, 56

definition, 62
Referential integrity, 51

cascade, 52
definition, 52
example, 54, 55
notation in an ERwin

diagram, 53
restrict, 52
set default, 52
set null, 52

Relationship
and dependent entities, 32
and independent entities,

33
complete subtype, 67
definition, 22
enforcing cardinality, 48
exclusive subtype, 68
identifying, 33
in an ERD, 20
inclusive subtype, 68
incomplete subtype, 67
mandatory and optional,

49
many-to-many, 23, 56, 57
n-ary, 56, 60
non-identifying, 34
one-to-many, 22
reading from child to

parent, 24
reading from parent to

child, 24
recursive, 56, 62
referential integrity, 51
subtype, 56
subtype (category), 64
subtype notation, 69
verb phrase, 23

Repeating data groups, 73
Restrict

definition, 52

ERwin Methods Guide

104 • Index

example, 54
Rolename

assigning a definition, 44
definition, 36
migrating, 36

Second Normal Form, 77
definition, 72

Session
planning, 12
session roles, 12

Set default
definition, 52

Set null
definition, 52
example, 55

Subject matter expert
role, 13

Subtype entity
definition, 95

Subtype relationship, 56
complete, 67
creating, 70
definition, 64
discriminator, 65

exclusive, 68
inclusive, 68
incomplete, 67
notation, 69
supertypes, 64

Supertypes, 64
Surrogate key

assigning, 30
Third normal form, 80, 81

definition, 72
fully-attributed model, 16
key based model, 16

Transformation model, 14
creating, 91
definition, 17

Unification
avoiding normalization

problems, 84
foreign key rolenaming, 45

Validation rule
in attribute definitions, 43

Verb phrase, 23
example, 23
in a data model, 24

Documentation Comments Form ERwin Version 3.0
Methods Guide

Logic Works is interested in your feedback on this documentation. You can use this form if
you have compliments or questions, or would like to report problems in the documentation.

Please fax or mail completed forms to:

Documentation Manager
Logic Works, Inc.
University Square at Princeton
111 Campus Drive
Princeton, NJ 08540

Fax: (609) 514-0184

Comments:

Please enter your comments in the space provided below:

Please include your name, address, and telephone number in the space below:

Would you like a Logic Works representative to contact you? Yes � No �

	Contents
	Preface
	Intended Audience
	About this Guide
	Typographical Conventions
	Related Documentation
	Chapter 1 Information Systems, Databases, and Models
	What’s In This Chapter?
	Chapter Contents

	What is Data Modeling?
	Data Modeling Sessions
	Session Roles

	Sample IDEF1X Modeling Methodology
	Logical Models
	The Entity Relationship Diagram
	The Key-Based Model
	The Fully-Attributed (FA) Model

	Physical Models
	The Transformation Model
	The DBMS Model

	Benefits of Modeling in ERwin

	Chapter 2 Constructing a Logical Model
	What’s In This Chapter?
	Chapter Contents

	The Entity-Relationship Diagram
	Defining Entities and Attributes
	Logical Relationships
	Many-to-Many Relationships

	Validating the Design of the Logical Model
	Data Model Example

	Chapter 3 The Key-Based Model
	What’s In This Chapter?
	Chapter Contents

	Understanding Keys
	Selecting a Primary Key
	Designating Alternate Key Attributes
	Inversion Entry Attributes

	Relationships and Foreign Key Attributes
	Dependent and Independent Entities
	Identifying Relationships
	Non-Identifying Relationships

	Rolenames

	Chapter 4 Naming and Defining Entities and Attributes
	What’s In This Chapter?
	Chapter Contents

	Naming Entities and Attributes
	Synonyms, Homonyms and Aliases

	Entity Definitions
	Descriptions
	Business Examples
	Comments
	Definition References and Circularity
	Constructing a Business Glossary

	Attribute Definitions
	Rolenames
	Definitions and Business Rules

	Chapter 5 Refining Model Relationships
	What’s In This Chapter?
	Chapter Contents

	Relationship Cardinality
	Cardinality in Non-Identifying Relationships

	Referential Integrity
	Reading Referential Integrity Options
	RI, Cardinality, and Identifying Relationships
	RI, Cardinality, and Non-Identifying Relationships
	Additional Relationship Types

	Many-to-Many Relationships
	N-ary Relationships
	Recursive Relationships
	Subtype Relationships
	Complete Versus Incomplete Subtype Structures
	Inclusive and Exclusive Relationships
	IDEF1X and IE Subtype Notation
	When to Create a Subtype Relationship

	Chapter 6 Normalization
	Introduction
	Chapter Contents

	Overview of the Normal Forms
	Functional Dependence (FD)
	Full Functional Dependence
	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)

	Common Design Problems
	Repeating Data Groups
	Multiple Use of the Same Attribute
	Multiple Occurrences of the Same Fact
	Conflicting Facts
	Derived Attributes
	Missing Information

	Unification
	How Much Normalization Is Enough?
	Conclusions

	ERwin Support for Normalization
	First Normal Form Support
	Second and Third Normal Form Support

	Chapter 7 Creating a Physical Model
	What’s In This Chapter?
	Chapter Contents

	Creating a Physical Model
	Denormalization

	Appendix A Dependent Entity Types
	Classification of Dependent Entities

	Glossary of Terms
	Index
	Documentation Comments Form

