Seriously Flexible Installation Software

User’s Guide

Copyright © 2001—All Rights Reserved

IndigoRose

SOFTWARE DESIGN CORP.

http://www.indigorose.com
info@indigorose.com

http://www.indigorose.com/
mailto:info@indigorose.com

User’s Guide

Proprietary Notice

The software described in this document is a proprietary product of Indigo Rose Software
Design Corporation and is furnished to the user under a license for use as specified in the
license agreement. The software may be used or copied only in accordance with the terms
of the agreement.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Indigo Rose Software Design Corporation. No part of this
document may be reproduced, transmitted, transcribed, stored in any retrieval system, or
translated into any language without the express written permission of Indigo Rose
Software Design Corporation.

Trademarks

Setup Factory, TrueUpdate, Visual Patch and the Indigo Rose logo are trademarks of
Indigo Rose Software Design Corporation. All other trademarks and registered trademarks
mentioned in this document are the property of their respective owners.

Copyright
Copyright © 2001 Indigo Rose Software Design Corporation.
All Rights Reserved.

Indigo Rose Corporation
11/2001

Table of Contents

Chapter 1:

Chapter 2:

Introduction ..o 15
What is Setup Factory?.....coviiiiiiiiin 15
Installers and Setup FileS.....iiiiiiiiiier e anaaaas 16
What's NeW in 6.07 ... 16
KEY FRATUIMES ..uiviiiiii i 18
Getting the Most from this User's Guide........ccoeiiiiiiiiiiiiiiiieeens 20
Document CoNVENTIONS....iiiiiiiiiir s 21
Other RESOUICES ..iuiviiiiiiiiiiii e 23
Key CoNCEPLS cuuuieiirirrrnisisnsnsnsisis s rsnnasa s s s s nnnnnnnanass 25
DESIGN TiME ..t 25
BUIld TimI@ o e 25
RUN TiME cuiiiiiiii s 25
REICASES . vttt 26
Files, Folders and Paths ... e 26

= 26

= 0 g e 26

10 o (=] o PP 27

DIV S v 27

L2 Yo 1 o [L= 28

2 1 1 28
SO CUES ..t 30
CRC VAlUEBS i 31
LI 2= L1 o VPP 32
File ASSOCIAtiIONS 1.uvuiviiiiiiiiii 33
ACTIONS et 34
Variables ..uvieii 35

BUIlt=in Variablesouoiuiuiiiiiiiiiiisisiiivisiii i 36

CUStOM Variabl€S.........c..vviiiiiiiiiiiiiiiiisisi 36

User’s Guide

Chapter 3:

Chapter 4:

Design-time Constantsccviviiiiiiii 37
[md] 11 [0 o = PP 38
Conditional EXPreSSiONS ..ttt ae e aaeaeens 39
Boolean Values (True and FalSe)ovvuiuiiiiiiiiiiiiinnnn s 39
Build-time Conditionsvviiiiiiiii 40
Run-time ConditionS......ccuvuiiiiiiiiiiiii e 41
PaCKAGES et 41

Package VariabI@S..........cuuuriiiiiiiiiiiii i 42
PrimeEr FileS . v 43
Getting Startedcocvmimiriririrsrsre s 45
What Files Do You Need to Distribute?.......cccovvviiiiiiiiiiiiii 45
Preparing the Directory STructurecociiiiiiiiiiiiin s 47
Where Do Your Files Need To Be Installed?cocooviiiiiiiiininininnnnnnns 48

Installing Program FileSu.eesesesii et ieieieeceaeaeaeaanaaannns 49

Installing Configuration Fil€Sccuuiuiuieiiiniiiiiiiiiiiiiiiiiisinenenens 49

Installing Operating System CoOmponentsc.cccevvvieiiieiiiieiiieinens. 50

Installing Shared Application RE€SOUICES.........ccovieiiiiiiiiiiiiiiiiaieinns, 50
What System Changes Need To Be Made?.......cocoveiniiiiviiiiienineneneneneens 51
What Information Do You Need from the User?.........covvvviiiiiininiiininnnnn, 52
The Design Environment......cccociiiinsnsninns s 53
SHOMECUL Bar cuiviiiiiiiiii i 54
TOOIDAIS 1uiiiiit i 56
Project WINAOW ...uiviiiiiiiiinn e s 56

AFCRIVE TaAD.. s 56

L@/ 20 I Ir- | - e 57
Column HEAAEIS ..viiiiiiiii i 57
] = 58

List Control BUEEONSvuiuiiiiisiiiiiiiiiiiiacii i aeaeas 59

Table of Contents

Chapter 5:

Right-click CoNtext MENUS...........vuvuviiiiiiiiiiiiniinisinisinnnaiaiaiaeaens 60
L [0 =V 60
General Preferences . ..o.iviiiiiiiiiiiii 61
Setting the Temporary Build FOIder..............ccouoviiiiiiiiiiiiiinininininanans 61
Setting the Default Output Foldercccooviiiiiiiiiiiiiiiniiininininians 62
Setting Automatic File Treatment OptionsSccovvvviiiiiiiiiiieienenenens 62
Sorting Filenames by their EXteNSIONSc.coveviiiiiiiiiiiiiiiiininenans 62
Enabling or Disabling Build Process Confirmation 63
Choosing Startup OPLiONSvvuiiiiiisisiiiiiniiieeeeeeeenes 63
Language PreferenCeS v 64
Setting Default Language FileSccvuvevuiiiiiuiiiniiiiiiiiiiiiiiiininenens 65
Action Tabs PreferenCes......oviviviiiiiiiii 66
Changing the Action LiSt COIOISccouviiiiiiisiiiiiniiiiiiiiiiiieienans 67
Changing the INAENt SiZE..........uueeiiiesissai e eieeieeeas 67
Update PreferEnCeS . v it 68
Automatically Checking for New Versions of Setup Factory................ 68
Hiding the Update Interface Until a New Version is Available............. 69
Setting How Often Setup Factory Checks for Updates....................... 69
Configuring the Setup Factory Connection Settingsc..c...... 69
LT a1 o 70
Configuring USEI TOOISovvviiiiiiiiiiiiiisisisninniaeeaeeeeeneneaenes 70
Quickstart Tutorial......cocvverrrarararerarara s s s rass 71
Step 1: Prepare YOUr FileS ..uuiiuiiiiiiiii e e e aeas 71
Step 2: Use the Project Wizardcccvvviviiiiiiiiiiiiiiicceee e 71
Step 3: Add Additional Files to the Projectcooviiiiiiiiiinnes 74
Step 4: Create ShOrtCULS .vviei e as 75
Step 5: Set Up Packages ...oviviuiiiiiiiiiinnn e 77
Step 6: Customize the SCreenS.....ccvviiiiiiiiiii e 86
Step 7: Add Any Required ACLIONS......cvviiiiiiiiiiiiiii e 88

User’s Guide

Chapter 6:

Chapter 7:

Vi

Step 8: Build the Setup Executablecocvvviiiiiiiiia 91
SEEP 91 All DONE! e 93
Working with Projectscccovimiiminininininsnsnniniis s 95
What Are Project FilesS? ..o 95
Starting @ New Project......ccciiiiiiiiiiin 95
Opening an EXisting Project.... oo 95
Saving the Current Project......ccoviiiiiiiiiii e 96
Reopening a Recent Project.......coouvviiiiiiiiiiiiii s 96
IMporting @ ProjecCt....couviiiiiii 97
Viewing and Editing Project File Propertiescccvvvivivivieiiiinininnenenennnns 98
Using the Project Wizard........oveveiiieiiiiiie e 98
Generating a Project REPOIrtovviiiiiiiiiii 99
Project Build Settingsccvvviiiiiiii 100

Changing the Output FOIAErcccveviiieisssii e eeieaeeeaes 100

Changing the Setup Executable Filename.............c.cccoveiiiiiiiiinnnn. 101

Changing the Output File Segment Siz€..........cccovviiiiiiiiiiiiiiiiinnnnns. 101

Automatically Running a Program Before or After the Build Process.. 102

Design-time Constantscooiiiiiiii 103
Adding Design-time COonStants...........ccouuuiiiiiiiininiiiiiiiiiiiiiaieens. 104
Removing Design-time COonsStantsccoovviviiiiiiiiiniiiiniiiiniiinnnns 104
Editing Design-time CONStants........c.ouvviviiiiiiiiininiininisinininisinanans 105

Base Dir€CLOMIES 1uuviuiiiniiiniiiirrr 105
Changing the Base Directory for the Archive Tab 107
Changing the Base Directory for the CD-ROM Tab..................c.cu.... 107

Building the Current Projectcooviviiiiiiiii s 107

Working with FileS.....cccivimimimrrararsrsnsrsniniinsnsssssssarnanananes 109

The Project WiNAOW ...viuiuiiiiiiiiiin s e e e 109
The ArchiVe Tabcvuiiiiiiiiiii e 109

Table of Contents

Chapter 8:

THE CD-ROM TAD e 109
Before Adding Fil@S ..uvuviiiiiie e e e 111
AddiNg FIlES . oveiiii i 111

Adding Files From Within Setup Factorycocouvvviviiiiinininininanann 111

Dragging Files Onto the Project Windowcccocvivivivininininaianann 113

How the Base Directory is Converted to %AppDir%c.cccvuvenn.. 114
REMOVING FIlES uiviiiiiiii s 116
File Properti€s ...ouiuiuiiiiiiin e 116

The GENEral TAbouvuiuiiiiiiiiiiiiisiiir e 117

The ShOrtCUL Tabcuiviiiiiii e 119

The Advanced Tabocvuviriiiiiiiiiiiiiiiisii e 120

The Conditions Tabcvuiuiriiiiiiiisiisissrr e eeeeae 121

The Packages Tab.......vuvuiuiiiiiiiiiiisisisinisssn e eenenes 122
Multiple File Properti€s ..coveeeeiereieieieiiieieieieieenen e erer e r s asnsnsnesnnenens 123
MISSING FilES .. ueieiiiii e 124
Registering Filesc.vuiiiiiiiiiii 125
Registering FONtS.....ccviiiiiiii 125
Nested ShortCULSvviiiiii 126
General DEeSIgNccveieieiererrrrsr s 127
The Product Info Tab....o.vviiiii e 128
The Settings Tab ... 129
The Languages tab.......ve i enees 130

Editing MESSAGESvuiiiiisesia ettt 131

Setting the Default Languagecvevuviviiiiiiiiniiiiiiiniiiiiinininens 132
The Serial NUMbers Tabcocviiiiiiii e 134

Creating a List of Serial NUMDBErS.........c.cuveieieiiiiiiiiiiaiaiaiainnnns, 135

Adding a Serial Number to the LiSt...........ccccvuviviviiiiiiiiiiiiiiiians. 138

Changing a Serial Number in the LiStcccccvoviiiiiiiiiiiiiinininians. 138
The Primer Files Tab.....oiiiiiiiiiiinn e 139

vii

User’s Guide

Chapter 9:

Chapter 10:

viii

ol =T o 141
Screens in @ NUtShell.....oooiiiiiiii 142
The Screens DIialog «.vv e e 142
The Before Installing Tab........ccovvviiiiiiinininiiiniiiiiiiiiiiiiiiiiiicicananes 143
The After Installing Tabc.ocvvviiiiiiiiiiiiiniiiiiiieeceene 143
Screen CoNditioNS ...vuiuieiiniiiniiii 144
SCre@N ACHIONS 1uiuiiiiiiiiiiii 144
The Help BUEEON ..vvieiiii e 145
SCreen ProPerti€S .uvuiiiiiiiiiiiiiii i 146
SELEINGS TAD ooveeieeee e 147
CUSEOM TAD oviiiiiiiiiii i 148
BEFOre TaD ..osisiiiiiiiii 149
A = 7= T 150
¥ (o [T a o TS0l <1< o =P 151
REMOVING SCrEENS ...uiiiiiiiiiire e 153
Editing SCre@NS ..viviiiiiiiiiin e 153
Rearranging SCrEENS ...uiuiuiiiiiiiiii e aeas 153
PrevieWing SCreeNS ... 154
Cutting, Copying and Pasting SCreensSccovvviiiiiiniiirererrerirrneenenens 155
EXPOrting SCrEENS...uiiiiiiiiiiiii i 156
IMPOrting SCrEENS ..uvuiiiiiiii s 157
ACtiONS. .. rrr i 159
What Are ACHIONS? .. v 159
Actions in @ NUEShell. ..o 160
ACEION LiSES wiviiiiii 161
ACHION TaDS vttt 161
The ACtionS Dia@logcuvuiuiniiiiiiiisisis i eeeeaes 162
The Screen Properties Dialog...........c.ccovviviiiiininininiiiiiiiiiiiinian, 163
The Help Button Actions Dialog..........ccouviviiiiinivinininiiiiiiniiiiiiian 164

Table of Contents

Chapter 11:

The Uninstall Dialogooovuiiiiiinisiiiniiininniiiiiieeeeccnenes 165
/¥ o 119 o X0 o o T3P 167
ReMOVING ACLIONS «.viiiiiiii 168
Editing ACHIONS uoviiiiiiiii e 168
Rearranging ACtiONSoviuiiiiiii 169
[T LT Vo X oY o =T 169
UNIiNdenting ACLIONS ..uuiiiiiiie e 170
Cutting, Copying and Pasting ACLIONSc.ocviviiiiiiiiiiiiic e ees 170
EXporting ACtiONS....ciiiiiiiii 171
IMPOrting ACLIONS ..uviei s 172
Importing Registry ValUeS........oviuiiiiiiiiiiiiiin s 172
USiNg Control SErUCTUrESvviiiiiiiiiiir s 174
TF AN END IF ...ttt ettt et ae e eeaes 174
WHILE and END WHILEccoviiuiiiiiiiiiiiiiiisiiiniacaiasanaa e 175
Label and GOTO Label...........cccviuviiiiiiiiiiniiiiiiiiiiiiniiininiinininianins 177
A OT et 178
Adding Comments and Whitespacecoovviiiiiiiiiiiiiii s 178
[=T o 11T gV I = o o = 180
Built-in Error Handling (The On Error Tab) ...covvviiviiiiiiiiiieeeeens 181
Setting the User Notification OptionsS..........couvviiiiiiiiiiiiiininininenens 182
Setting the Action Taken After an Error OCCUIS........c.cccveeinviiinnnannn. 183
Custom Error Handling (USiNg ACLIONS) ..vuvuvuviviiiniienenereneenearneaenenenens 184
Checking YoLasStErrorNUM Yoovvuieiiiisiisiiiiesisnaeaeeeeeenenas 184
Using Continue at 1abel...........coovviiiiiiiiiiiiiiiiniiiceee e 186
2= L] [T« =S 187
What Are PaCKageS? . .uuv e ieieieieiiee e e s s rar e r s s s s e eeenens 187
Packages in @ NULShell......cooiiiiiiii s 187
[o T 2= = T =3 189
Naming Package Variablescccoviiiiiiiiiiii 190

User’s Guide

Chapter 12:

Chapter 13:

Chapter 14:

AddiNg PaCkages.cuvuiiiiiiiiiiirr 191
ReMOVING PACKAGES ..ueuiuiiiiiiiinieie e e e e e e er e s ar s s e e nenens 192
Editing PacKages.vuiuiiiiiiinn e 193
Rearranging PacCKagescviviiiiiiiiiiiiiiiiiiii s 194
Cutting, Copying and Pasting Packages........cccooeiuiiiiiiiiiniiiiiiiieieiaeens 195
Assigning Files t0 PACKagesvveieieieiiiiiieie e anaennanaas 196
INSEall Ty PES t ittt e e 197
Runtime Support....c.cciciaininniiir s s 199
The Runtime Support Dialog......ccviiiiiiiniiiiiin e 199
The Visual Basic Project SCannercovvvviiiiiiieiirireveeeeenenenenenes 201
The Dependency File SCanNer.....ccveiiiiiiii i neaa 203
Uninstall ..o e 205
The Uninstall Dialog «.vvivieieiiiieieieiesn s e e e e e e nees 205

The SEEEINGS TAD .evvveeiiiie e e eeeaes 206

The Before Uninstalling Tabccouvviiiiiiiininininiiiiiiiiiiiiinan, 206

The After Uninstalling Tab.........cccocvuviviiinininininiiiiiiiiiiiiiiniincncnanns 206
How the Uninstall Works.......cccovuviiiiiiiii e 208
Variables. ..o 211
What Are Variables? ... 211

BUilt-in VAriablescouvuviiiiiiiiiiiiiiiiiiiiiisisinisisinnnn 211

CUSEOM Variabl€S..........ouviiiiiiiiiiiisiiirs i 212
What Can You Do With Variables?cccvviiiiiiiiiiiiiniie 213
Defining Variables with ACtiONS........coviiiiiiii 214
Defining Variables with Screens.........coovviiiiiiiiiiii 214
A Little Common Sense Never HUMS......oovvvviiiiininiinie s 215
NamMIiNg VariablesS.....cuiiiiiie s 216
Inserting VariableS.....covuiiiii 218

Table of Contents

Chapter 15:

Chapter 16:

Using Variables in EXPressioNS......o.vuiuiiiiiiiiiiiiinnnnrras s 219
EXPreSSIiONS .iueieiiererierarsarassassssarsssassssssssssssssassssassssnssssnssssnssssnnnnnns 221
What Are EXPreSSiONS? cuuiieiiieii it eeaas 221
Where Can You Use Them? ... 221
Build-time CONditionsSccvuvuviiiiiiiiiiiiiiiiiiirisirisrnniaeaeaeas 221
RUN-time CONItiONScuvviiiiiiiiisii i 223
5creen ConditionsS.........ouuvuiiuiiiiiiiiiiiiiiisiia e 224
IF and WHILE GCHIONSuviuieiiiiiiiinaiaiaeaaaaaansaaeaeainanananans 225
ASSIgN Value actionsccvuviviiiiiiiiiiiiiiiiiiiiiisisinsirnnaieaens 226
VAlUEBS 1t 227
Boolean Values (True and FalS€)........ccuuveiiieiiiiiiiiiiiiiiiiiiiiniaiennnns 229
(=T 1= = 230
Table of Operator Precedence and AsSSOCIatiVityccccovviviiiininns 231
PArENthESES . .vuiviiiisiisii i 232
Logical (Bo0I€an) OPeratorsc.uuvuiuiuiiiiiiiiisisiisiniianaininineninins 232
Relational OPEratorsvuvuvuruiuiuiiiiiiiiaaiinisirenininanaiaiaiininens 233
ArtAMELIC OPErators......ouiviiiiiiiiiiiiiiiiiiiis s 234
SEHNG OPEIratorSuieii i eeas 234
V=TS (o1 I O 5 =] = 1 e S 235
NOEES 1 aiti i 235
SYNEAX RUIES vt 237
Supporting Multiple Languages.....cicrararriririmisisissssasasasasasasasasasass 241
Translating SCre@NS. ... 241
Translating Language FileS.....coovviiiiiiiiiiiii e 243
Translating Packages......ouveiiiiiiiiir e 245
Translating ACtioNSvieieiii e 245

Xi

User’s Guide

Chapter 17:

Chapter 18:

Chapter 19:

Xii

Creating a CD-ROM Installer.....cccicrererararrrinisissasasasasasasasanasasasass 247
Full Install to the Hard Drivecccoviiiiiiiiiiii e 247
Leaving All Files on the CD-ROMiviiiiiiiiiiiiiie s 249
Letting the User ChOOSE......cviiiiiiiiiiiiiiiii e 250
Burning YOUr CD-ROMcuiiiiiiiiiiiiiiiiiirs s 251
Creating an AUtOPIay MENUivieieiiiiiiie e e aenens 251
Building and Distributing Your Installerc.cccvivmiarararnnnnnnnnnn, 253
Building Your InStaller ... 253
Testing Your INStaller ... 254
Distributing Your Installerovveieieiii s 254
CD-ROM DiStribULiONvvveisiiiiiiiiiiiiiiiisiinisis e 255
Internet DiStribULiONccvviiiiiiisirniiii e iisereraans 255
Floppy Disk DiStribUtiONouvuvuiuiiiiiiiiiiiiininininininininiiaiaiainins 256
Command Line OptioNS ...ccuievrumrrmrrssrerssrsssrassssasssssssssassnsassnsanas 257
Installer OpLioNS ... 257
Language (/L)uuuuiiiiiisiiiiiiiie e 257
SHlENE MOAE (/S) vveeeererireeee et e e e e e e e eeeaenenenens 258
TeMIP PAtR (/T) ettt ettt ettt et aaaieaaeieaas 259
Wait for REEUIN (/W) couenereiiiiiii i eaeaeaeas 259
Uninstaller OptionS.....cviiiiiiiii 260
SHlENE MOAE (/S) vrreeererineeeeee et e e e e e e e e eeeaenenenens 260
Design Environment (Build) OptionS......ouvuiiiiiiiiiiiinnnnesrr e 260
Unattended BUild (/B)ovriririiiiiisiiininniiieaeeeeeeeene 260
MinimiZE (/M) .cuoeeiiiiii s 261

Table of Contents

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Actions INAEX ..ceurerevsurermrsirarmmsimaressissrassmssrasarsssasassssasasssssannnsnsanas 263
Built-in Variablesciciciiiriiminiiir i 269
Design-time Constantsccoviiiiiiiii 277
Contact INFO...ciuiiiiiiiiiirrsr s 279
Corporate HeadqUarterso.vvieieieiiiieieeiee s s s e e e enenens 279
LS | = 279
Technical SUPPOIT .. vvieii e 280

Before You Contact Our Support Departmentc.cccovvieiniinnnn. 280

Limitations of Technical SUPPOItc.oviiiiieiiiiiiisiiiiiniinanans 281
Minimum System Requirements........cccvcvvrririrararsnnrnnnnnnnnes. 283
Setup Factory Design Environmentccoviiiiiiiiiiiiiiniinnneens 283
Setup Factory Run-Time Executablecccoovviiiiiiiiiiiiiiiinn 283
.. 285
.. 295

Xiii

Chapter 1

Introduction

Welcome to the Setup Factory User's Guide. This User's Guide is designed to explain
important concepts and help familiarize you with the features available in Setup Factory.

What is Setup Factory?

Setup Factory is a sophisticated tool that gives you complete control over the installation
process. Full-featured, fast, and easy to use, Setup Factory's intuitive design maximizes
your ability to deploy software products, data files, graphic images, or anything else that
you want to distribute.

Solid and Effective

Setup Factory 6.0 creates single-file, compact, bulletproof professional software
installations. Its visual design environment makes it a snap to assemble your files,
customize the wizard interface, add runtime support modules, and package your
software for deployment via diskette, CD-ROM, LAN, email or web.

A Proud Heritage

Since its first release, Setup Factory has defined innovation in Windows based setup
and installation tools. Over the years, the product line has been the recipient of
numerous awards, accolades and glowing reviews.

Trusted By Professionals

Thousands of software developers trust Setup Factory to distribute their software to

millions of customers and clients around the world.

While others have tried to imitate it, only Setup Factory 6.0 offers such a perfect
combination of ease, flexibility and control.

15

Chapter 1

Installers and Setup Files

Installers are special self-contained executable programs designed to transport whole
software products to your users and deploy them on their systems. Also known as "setup
files," "setups" and "setup executables," professional installers like Setup Factory are able
to fully configure the user's system to perfectly accept their software cargo.

In order to adapt to field conditions, installers must be able to accurately gather
information on the software's operating environment. This can involve anything from
analyzing the amount of free space available on a hard drive, to ensuring that the user's
system is properly configured to accept the software being installed.

In order to support the widest possible markets, installers need to interact with users in a
streamlined, sensible fashion. The best installers do this by presenting a familiar, user-
friendly, wizard style interface. In the case of Setup Factory, not only is the user interface
friendly and familiar, but it's fully customizable to meet any need as well.

What’'s New in 6.07?

Actions

Only Setup Factory could integrate powerful scripting control into its visual design
environment in such a seamless manner. While most users will never need to go
beyond the visual side of Setup Factory, developers who require absolute control
will appreciate the extremely flexible "Action Scripts" built into Setup Factory 6.0.
Actions give you the flexibility of advanced programming, without sacrificing the
ease of use that Setup Factory is famous for.

Control Structures

Build advanced looping and testing structures with actions like IF, WHILE and GOTO
Label.

Variables, Expressions and Operators

Use an unlimited number of variables to store data. Throw in full expression parsing
and mathematical evaluation, and you've got enough power to make your installer
handle anything you throw at it!

16

Introduction

String Functions

Parse, evaluate, manipulate and search through text files, text variables, and other
strings.

Silent Installations

The /S command line option lets you perform installations without user interaction.

Download Files and Upload Data

Make it easy for your users to stay up-to-date. Built-in HTTP download and web
data submission make it easy to distribute files "after the fact."

Enhanced Package Support

Package support has been completely redesigned, and sports a new, integrated
design interface. By assigning files to packages, you can give your users greater
control over what files are installed on their system. You can even present your
users with multiple levels of control, including the standard Complete, Typical,
Minimum, and Custom installation options. And there's more good news for power
users: now files can be assigned to multiple packages!

File Dependency Scanning

Quickly scan Portable Executable files to analyze their runtime dependencies. With a
negative import option, you can control which dependency files are added to your
project.

ZIP File Extraction

Use the Unzip Files action to extract files from a Zip archive at run time.

Full Control over Windows Services

Setup Factory 6.0 adds full support for Windows services, including starting,
stopping, pausing, querying, creating, continuing, and deleting them.

Full Control over Programs and Processes

With full shell execution support, starting or terminating programs and processes is
a piece of cake.

17

Chapter 1

Enhanced 3rd Party Runtime Support

Instantly add runtime support for many popular third-party technologies.

Enhanced Visual Basic Project Support

Core runtime support and advanced Visual Basic project file scanning make creating
installers for Visual Basic applications easier than ever.

Updated Run-time Interface

The setup executable's user interface has been updated to the professional and
modern "Windows Installer" style.

Design-Time Constants

Similar to variables, but instead of being converted to values at run time, design-
time constants get converted at build time. Like #define statements in C++, you
can use design-time constants to simplify your project management.

Enhanced Reporting and Logging Features

Keeping track of essential project details has never been easier. With customizable
HTML-based project reports and text-based install-time log files, you'll have an
accurate record of everything you need.

Key Features

Award-Winning Visual Design Environment

Organize your project quickly and efficiently using Setup Factory's innovative, point-
and-click development environment.

Quick and Easy Project Wizard

The Project Wizard is the fastest and easiest way to get your installation off to the
right start. With the Project Wizard you'll have an installation ready to go in
minutes.

18

Introduction

Dynamic File Lists

Set up your project the way you see fit. When you're ready to build the setup
executable, your project is rescanned to include the most recent versions of your
files.

Flexible OS Filtering

Target multiple operating systems with one installer. Sophisticated condition and
expression parsing lets you filter files and actions to specific operating systems.

Flexible Deployment Options

Distribute on any media size or format, including web, email, ftp, CD-ROM, DVD,
network drive or even 1.44MB floppy disks.

Registry and System Modifications

A full suite of actions are supplied for reading and writing information to and from
the Windows Registry, INI files and text configuration files.

OCX/DLL and Font Registration

Register TrueType fonts and OCX/DLL files right from your installer.

Extensive File Handling Options

Complete version checking, file searching, copying, renaming, deleting, attributes
setting, and more.

International Language Support

Setup Factory has built-in handling for every language supported by Windows.

Comprehensive Operating System Support

You don't want to mess around with reliability. Your install will run on all 32 bit
Windows platforms. This includes everything from Windows 95, through 98, ME,
NT4, 2000 and even Windows XP.

19

Chapter 1

Getting the Most from this User’s Guide

The Setup Factory 6.0 User's Guide is divided into 19 chapters and 4 appendices.

We've tried to organize these chapters in a way that will benefit new and experienced
users alike. The first five chapters cover important concepts, introduce you to Setup
Factory's design environment, and teach you the first steps in designing an installer.
Chapters 6 through 13 serve as a reference to the core parts of Setup Factory's design
environment. Chapters 14 through 19 cover advanced topics and offer insights and advice
on building, testing and distributing your installer.

New Users

If you're new to installers, or new to Setup Factory, reading this User's Guide from front
to back will teach you everything you need to know to become proficient at building
installers for your software. If you're eager to get started, then Key Concepts (page 25),
Getting Started (page 45), and Quickstart Tutorial (page 71) are the three "must-read"
chapters you'll want to read in order to get going as quickly as possible.

Experienced Users

If you're an experienced Setup Factory user, you probably want to jump right in and see
the new features in action. In that case, feel free to use this guide as a reference. When
you encounter a feature that you'd like to know more about, use the Index and the Table
of Contents to quickly locate information about that feature in this User's Guide.

Of course, even advanced users will gain valuable insights by reading this User's Guide
from cover to cover. It's a good idea to skim through the Key Concepts chapter (page 25)
and look for concepts that you aren't already familiar with. Design-time constants (page
37) and primer files (page 43) will certainly be new to you. It's also wise to read the
chapter on Expressions (page 221) that covers the intricacies of the conditional
expressions that you can use in Setup Factory 6.0.

Advanced users might also want to browse the list of actions in Appendix A (page 263),
and the list of built-in variables in Appendix B (page 269).

Setup Factory is an advanced application, and there's a lot of information in this User's
Guide. We hope you'll find this User's Guide as easy to use as Setup Factory itself.

20

Introduction

Document Conventions

Throughout this User’s Guide, we've presented different kinds of information in the
following ways:
Start Menu

Items in the Start menu are presented in bold, italicized text and separated by
-> symbols, like so:

Start -> Programs -> Indigo Rose -> Setup Factory -> Important Notes

To access this item, you would click on the Start button, click on Programs in the
Start menu to open the Programs menu, click on Indigo Rose in the Programs
menu to open the Indigo Rose menu, click on Setup Factory in the Indigo Rose
menu to open the Setup Factory menu, and click on the Important Notes menu
item.

Setup Factory Program Menus

Items in the Setup Factory program menus are presented in bold text and
separated by | symbols, like so:

Project | Build
To access this item, you would first click on the Project menu at the top of the
Setup Factory program screen to open the Project menu, and then click on the

Build item in that menu.

Paths and filenames

Directory paths and filenames are presented in a monospace font, like so:

C:\Program Fi | es\ Setup Factory

This path refers to the Setup Factory folder within the Program Files folder on your
C: drive.

21

Chapter 1

Tips, Notes, Warnings and Cross-References

We've used special formatting to set some information apart from the rest of the
text:

| TIP

Tips provide helpful information, such as alternative ways of accessing a
feature or shortcuts for advanced users.

[NOTE

@ Notes provide extra information to clarify points discussed in the text.

[IMPORTANT

| Warnings alert you to important information.

[SEE ALSO

This is how we highlight links to information online, in the Command
Reference or on other pages in this User’s Guide.

Dialogs and Screens

The names of Setup Factory dialogs and the names of screens that you can add to
your installer are both presented in italics:

The General Design dialog
The Select Packages screen

22

Introduction

Buttons

The names of Setup Factory buttons are presented in bold text, like so:
The Properties button

When applicable, button names are followed by a thumbnail of the button image
between parentheses:

The Add button (&)

Fields

The names of fields and other GUI elements like check boxes and drop-down lists
are presented in bold text, like so:

Select the Evaluate value as expression check box

Other Resources

If you ever have any questions about the software that aren't answered by this User's
Guide, there are several other resources available to you:

Command Reference and Online Help

The Command Reference is included in HTML Help format. It is accessible from both
Start -> Programs -> Indigo Rose -> Setup Factory -> Help Contents and
from the Help menu within the product. This is a comprehensive reference for all
the Setup Factory screens, options and properties.

TIP |

Most screens within the development environment contain a Help button,
which will automatically open the appropriate topic in the Command
Reference.

23

Chapter 1

Web Site

The Setup Factory web site is a great place to learn about the product. It is located
at http://www.indigorose.com/setup/.

The web site is where you will find:

e Knowledge Base articles

e Tutorials

e Answers to frequently asked questions

e Information about the latest version, bug fixes, etc.

Forums

We maintain a number of popular web-based discussion and support forums at
http://www.indigorose.com. These forums are an ideal place to meet with other
users of Indigo Rose products. Members frequently discuss the usage of products,
share tips and tricks, exchange ideas and much more.

Technical Support

For information on tech support please see page 280.

24

http://www.indigorose.com/setup/
http://www.indigorose.com/

Chapter 2

Key Concepts

This chapter explains important concepts and terminology that you must understand in
order to become proficient with Setup Factory.

| TIP |

If you're an experienced Setup Factory 5.0 user, you might want to jump
directly to the explanation of Actions on page 34.

Design Time

Design time refers to the process of designing your setup using the Setup Factory design
environment. Everything you do with Setup Factory, from the moment you start the
program, to the point where you are ready to actually generate the executable setup file,
is considered work done "at design time."

Design time is where you, the developer, make the choices that will determine what your
setup will do, how it will do it, and what it will look like when it is done.

Build Time

Build time refers to the final step of actually generating the setup executable file. This is
where Setup Factory takes all the work you did at design time and converts it into the
final product that your users will run.

Run Time

Run time refers to when the actual setup executable is run. This is where the interface
you customized during design time is presented to the user, and the actual work of
installing the software is performed.

25

Chapter 2

Releases

A release is defined as a set of files that are distributed as a whole unit. In other words, a
release consists of all the files that make up one version of your software.

In Setup Factory, a release consists of all the files that you need to install on the user's
system in order for them to be able to use your software.

Files, Folders and Paths

In order to be able to design your installer, it's important that you have a solid
understanding of files, folders and paths. If you're new to Windows and hierarchical file
systems, you should pay extra attention to this section.

Files

Information on computers is stored in files. A file is a collection of computer-readable data
that is treated as a single entity by the computer's operating system. In other words, a
file is a bunch of data that a computer can store as one unit.

Files vary in size and can contain all sorts of data, from text, images and sounds, to
database records and the machine language code that programs are made of.

Each file is identified by its filename and path. The filename is the name that was given to
the file when it was created or saved. The path is a string of text that describes where the
file is stored.

Extensions

A file extension consists of a period (.) followed by one or more characters at the end
of a filename. Windows uses the file extension to determine what kind of information
is contained in a file. For example, in the filename nyfil e. t xt, .t xt is the file
extension that identifies myfi | e. t xt as a text file.

26

Key Concepts

| TIP |
When reading filenames out loud, the period in the extension is usually
pronounced "dot." So nyfil e. t xt would be pronounced "myfile dot text"
or "myfile dot tee ex tee."

Folders

Windows uses a hierarchical file system. This means that storage space is organized into
folders and sub-folders, forming what is often referred to as a "directory tree." The base
of the directory structure is known as the root folder, or just the "root" for short. Within

this root folder there can be files and sub-folders, and within those sub-folders there can
be other files and sub-folders as well.

Each folder acts like a container for all the files and folders that are "in" it. All the files and
sub-folders in a folder can be copied, moved or deleted at once by copying, moving or
deleting the folder that contains them.

Much like hanging folders in a filing cabinet, folders make it easier to organize and locate
your files. If the files on a computer were all kept in one place, it would be very difficult to
find a particular file. Folders allow related files to be grouped together so it's easier to find
them.

[NOTE

Folders are also often called directories. In Windows, the terms "folder"
and "directory" both refer to the same thing.

Drives

A drive is a form of fixed, networked or removable media used as a storage device. A
"fixed" drive is one that isn't removable—which is to say that the storage media is built
right into the drive, and isn't made to be removable like floppy disks and CD-ROMs are. A
"networked" drive is a one that isn't connected locally, but is instead accessed remotely
via a network. A "removable" drive stores information on removable media such as

magnetic or optical disks, cartridges and tapes.

27

Chapter 2

The term "drive" can also refer to the drive letter, which is the letter assigned to the drive
during the computer boot process. A single letter of the alphabet is assigned to each drive
as it is detected at startup. The letters "A" and "B" are reserved for floppy drives, and the
rest of the letters (from C to Z) are assigned in order to the various hard drives, CD-ROM
drives, and any other drives attached to the system.

For example, if your system has a single hard drive and a CD-ROM drive, your C: drive is
your hard drive, and your D: drive is your CD-ROM. If your hard drive is split into two
logical drives or "partitions," then C: and D: would refer to those partitions, and your
CD-ROM drive would be E:.

[NOTE

@ Drives are where files and folders are stored.

Root Folder

The root folder is the "base" or "main" folder on any drive. The root folder is where all
of the other folders on a drive are located. When you double-click on the C: drive in
My Comput er, you're opening the root folder of the C: drive. All the folders on the C:

drive are located in the "root" of C:.

The root folder is always named "\" in Windows. For example, the path to the root of the
D: drive is:

D\

Paths

A path is a string of text that describes where a file or folder is stored in a hierarchical
directory structure. There are three kinds of paths you can use in Setup Factory: full
paths, relative paths and UNC paths.

Full Paths

Full or "absolute" paths provide "complete" directions to locate a file, starting from
the root folder of a given drive. A full path begins with the drive letter and includes

28

Key Concepts

the name of each folder that would need to be opened, in turn, in order to access
the desired folder or file. The folder names are separated by backslash characters
(\). Full paths have the following general format:

<drive letter>:\<folder name>\<folder name>\<filename>
For example:

e The path to the root folder on the C: drive is:
C\

e The path where Setup Factory 6.0 is installed on your system is probably:
C.\Program Fi | es\ Setup Factory 6.0

e The path to Not epad. exe on your system is probably something like:
C:\ W ndows\ Not epad. exe

Relative Paths

Relative paths provide "partial" directions to locate a file starting from another
folder (often the current working directory). They look just like full paths, but
they're missing the drive name and possibly some folder names too. The simplest
relative paths consist of a single folder or filename. Relative paths have the
following general format:

<folder name>\<folder name>\<filename>
For example:

e The relative path to a Data folder in the current working directory would be:
Dat a

e The relative path to the Setup Factory 6.0 application from the Pr ogr am
Fi | es folder would be:

Setup Factory 6.0\ SUF60Desi gn. exe

e The relative path to a readme file in a sub-folder named Docs would be:
Docs\ readne. t xt

29

Chapter 2

UNC paths

The Universal Naming Convention (UNC) is a standard method of describing the
location of files and other resources shared on a network. In Windows, UNC paths
begin with two backslashes (\\), followed by the server name, which is the name
assigned to the computer where the shared resources are located. The server name
is followed by another backslash (\) and the share name, which is simply the name
that was given to the volume or storage device when it was shared. This is then
followed by the path to the desired file or folder on that shared volume.

UNC paths have the following general format:
\\<server name>\<share name>\<folder name>\<filename>
For example:

e The UNC path to the Setup Factory 6.0 application on a C: drive which is
shared as "D2" on a computer named "R2" would be:
\\ R2\ D2\ Pr ogram Fi | es\ Set up Factory 6.0\ SUF60Desi gn. exe

e The UNC path to a file named f 00. t xt in the t enp folder of a drive which

is shared as "MAIN" on a computer named "DOROTHY" would be:
\ \ DOROTHY\ MAI N\ 't enp\ f 00. t xt

Shortcuts

A shortcut is a very small file in the Windows operating system that points or "links" to a
file or web site.

Each shortcut file contains information about where the file or web site that it "points" to
is located. When a user double-clicks on a shortcut file, the file or web site that it points
to is opened instead.

Shortcut files have a . | nk, . url or. pi f extension that is hidden by the Windows

operating system.

30

Key Concepts

Items in the Favorites menu and the Start menu are all shortcuts. These shortcuts are
usually organized into folders, known as shortcut folders. A shortcut folder is simply a
folder in the Start menu that contains shortcut files.

CRC Values

CRC values are calculated using an algorithm known as the Cyclic Redundancy Check, or
"CRC" for short. Basically, this involves generating a 32-bit number (or "CRC value")
based on the contents of a file. If the contents of a file change, its CRC value changes as
well. This allows the CRC number to be used as a "checksum" in order to identify whether
or not the file has changed. It also allows you to distinguish between different versions of
a file by comparing its CRC value to the CRC values of the originals.

A file doesn't have to change much for its CRC value to be different. In fact, if even just
one bit in a file changes, the CRC value for that file will change as well. If all you did was
change one letter in a readme.txt file between version 1 and version 2, the CRC value for
that readme.txt file would be completely different.

CRC values can be calculated for any type of file.

More on CRC values:

The basic idea of the CRC algorithm is to treat all the bits in a file as one big binary
number, and then divide that number by a standard value. The remainder from the
division is the CRC value.

You can think of this value as being like a fingerprint for each file. Unlike human
fingerprints, however, it isn't impossible for two files to have the same CRC-32 value.
Setup Factory uses an industry-standard CRC-32 algorithm which generates CRC
values that are 32 bits in length. This means that one in every 4,294,967,296 files
could have the same CRC "fingerprint."

Although the chances of any two files having the same CRC value are incredibly small,
the CRC value alone isn't enough to guarantee an accurate identification. If you need
to be absolutely sure, check the CRC in addition to other information about the file,

such as the size of the file in bytes and its location on the user's system.

31

Chapter 2

The Registry

The Registry is a central database provided by the Windows operating system where
system and software configuration details are stored. It's arranged into a hierarchical
structure that is similar to the way folders and files are organized on a hard drive.

The Registry is organized into six main folders, called main keys. Each of these main keys
can contain any number of sub-folders, called sub keys. Information in the Registry is
stored inside the main keys and sub keys as values.

There are three different types of values that can be stored in the Registry: String, Binary,
and DWORD. String values contain strings of characters, Binary values contain binary
data, and each DWORD value contains a single 32-bit ("double word") value.

Each main key in the Registry contains a different kind of information.
The six main keys are:

HKEY_CLASSES_ROOT

HKEY_CLASSES_ROQOT is used to store information on different aspects of shell
integration, like file associations, OLE, DDE, and drag-and-drop operations.

This key is actually a link to HKEY_LOCAL_MACHINE\SOFTWARE\Classes. Storing
information in HKEY_CLASSES_ROQOT is the same as storing information in
HKEY_LOCAL_MACHINE\SOFTWARE\Classes, and vice-versa.

HKEY_CURRENT_USER

Like HKEY_CLASSES_ROQOT, this is actually a link to another key. In this case, it
points to the key in HKEY_USERS that belongs to the user who is currently logged
onto the system. This is where configuration information for the current user is
stored.

HKEY_LOCAL_MACHINE

HKEY_LOCAL_MACHINE contains information about system hardware, peripherals,
installed software, OLE and software configuration, and other Windows
configuration details.

32

Key Concepts

HKEY_USERS

This is where user-specific configuration information is stored. Individual sub keys
hold settings for each user, and the default settings are kept in a sub key named
.Default.

HKEY_CURRENT_CONFIG

HKEY_CURRENT_CONFIG stores information for plug-and-play devices and the
various hardware configurations that have been defined.

HKEY_DYN_DATA

HKEY_DYN_DATA is used by Windows to store dynamic information that changes
frequently during the normal operation of Windows. It's usually best to leave this
key alone.

| TIP

You can read and write to the Registry by using the Read from Registry
and Modify Registry actions.

File Associations

File associations tell Windows what actions can be performed on different types of files,
what programs should be used to carry out each of those actions, and the paths to where
those programs can be found.

Each file association associates a specific file extension with a command to use a program
to do something to that file. For example, a file association can tell Windows that when
files ending with . doc are double-clicked, they should be opened with Microsoft Word.

The program that is associated with a file extension is known as the default viewer for
that type of file. For instance, Notepad is the default viewer for . t xt files when Windows

is installed.

File associations are stored in the Registry under HKEY_CLASSES_ROOT.

33

Chapter 2

Actions

Actions are an important part of Setup Factory 6.0. They allow your installer to take care
of any extra installation requirements that go beyond simply installing files. Actions can
take care of everything from commonplace tasks like manipulating the Registry, launching
programs, and backing up files, to exotic tasks like uploading data to web forms,
manipulating strings, and downloading files off the Internet.

Actions also allow your installer to react to different situations in different ways. Does the
user already have the evaluation version of your software installed? Is an Internet
connection available? You can use actions to answer these kinds of questions and have
your installer respond accordingly.

Each action is a specialized command that your installer can perform at run time. You can
combine different actions together to form easily-managed action lists. Programmer-
friendly actions like IF and WHILE provide advanced features like conditional execution
and nested loops, without sacrificing the ease of use that Setup Factory is famous for.

Adding actions is both flexible and straightforward. On several dialogs throughout Setup
Factory, there are action tabs that correspond to the different times during the installation
process when actions can be performed. Each of these action tabs is a separate canvas
upon which you can create a list of actions. The actions that you add to an action tab are
performed in sequence, like lines in a program.

Actions can be performed at various stages during the installation process:
e atinstaller startup
e immediately before displaying a screen
e immediately after displaying a screen
e before installing all the files
e after installing all the files

e atinstaller shutdown

34

Key Concepts

Actions can also be performed before and after the uninstallation process.

[_NOTE |

Actions have replaced all the functionality of the System Editors, Shell
Operations, and Variables dialogs from Setup Factory 5.0—and more.

[SEE ALSO

2 For more information on actions, see page 159.

Variables

Variables are special named "containers" for values that change. (The word "variable"
comes from the changing nature of the values that variables represent.)

We say that values are "assigned to" or "stored in" variables. If you picture a variable as a
container that can hold a value, assigning a value to a variable is like "placing" that value
into a container. You can change this value at any time by assigning a new value to the
variable; the new value simply replaces the old one. This ability to hold changeable
information is what makes variables so useful.

Variable names in Setup Factory always begin and end with a percentage sign. At design
time these variable names serve as placeholders, marking the places where the values
will go once those values become known.

Wherever you use a variable like %CompanyName% in Setup Factory, the user will see
the value that was assigned to that variable instead. (In this case, the user would see the
value you specified for your company name on the Product Info tab of the General Design
screen, i.e. some text like "Foobar Widgets and Gadgets Corp.")

[NOTE |

Normally, the user never sees the variable names—just the values they

(} represent. (The exception is when a variable gets used before a value is
assigned to it. In that case, the name of the variable is shown where the
value would have appeared.)

35

Chapter 2

There are two kinds of variables in Setup Factory: built-in variables, and custom variables.

Built-in Variables

Built-in variables are automatically provided for you by Setup Factory. They are used to
represent common values that might differ between systems, like the location of the
user's temp directory (%TempDir%) or the width of the user's display screen in pixels
(%ScreenWidth%). These variables serve as pre-defined constants that you can use in
the paths and conditional expressions within your Setup Factory project.

There are also built-in variables for things like your product name (%ProductName%) and
copyright notice (%Copyright%). These variables are automatically defined to match the
information you provide in the various fields on the Product Info tab of the General Design
dialog. You only have to change these values in one place (in this case, on the Product
Info tab), and wherever those variables are used in your setup, the new values will be
shown automatically.

Finally, there are built-in variables you can use in action lists to get information about the
last action that was performed (%LastCommand®), and in the case of an error, to get
information about the type of error that occurred (%LastErrorNum©%, %LastErrorMsg%
and %LastErrorDetails%).

[SEE ALSO

For a complete list of built-in variables, see Built-in Variables in the
- Command Reference, or see page 269 of this User's Guide.

Custom Variables

Custom variables are not built into Setup Factory—instead, they're created whenever you
specify a new variable name to receive a value.

Custom variables can be used to receive user input, such as the user's email address or
phone number. They can also be used to receive information from the Registry or INI files,
such as the path where a given software component is installed on the user's system. For
instance, you would use a custom variable when you query the Registry for information
that was put there by another application.

36

Key Concepts

You can even make the way your installer operates depend on the values of specific
variables. Using variables, you could install different files if a certain registry key exists, or
skip a screen based on the user's input on the screen before.

You can also assign values to custom variables and use them as constants. For instance,
you could set a variable like %FaxNumber% to your company's fax number, and then use
that variable in messages throughout your installation instead of the number itself.

[SEE ALSO |

For information on how to define custom variables in Setup Factory, see
. page 214.

Design-time Constants

Design-time constants are similar to variables, but instead of being converted to values at
run time, design-time constants get converted at build time. We call them design-time
constants because the names you give them only exist at design time. At build time, the
name of each design-time constant is replaced by the value that was assigned to it.

Just like variables, you can use design-time constants as placeholders to represent values
in your project. Unlike variables, however, design-time constants are replaced by their
values before the setup executable is built. (Variable names are only replaced by their
values when the installer is run.)

Essentially, design-time constants let you substitute one string for another during design
time. They give you the ability to "name" a string, and use that name everywhere you
want the string to appear. For example, you could assign "hello world" to a constant
named #GREETING#, and include # GREETING# on several screens throughout your
project. Before the installer is built, every occurrence of #GREETING# in the project will
be replaced by the words "hello world."

[NOTE |

Each design-time constant is like one big "search and replace" operation
that gets performed on your project before the setup executable is built.

37

Chapter 2

Because design-time constants are in effect at build time, you can use them inside build-
time conditions. Build-time conditions let you control what files get included in your setup
executable. (You can't use variables in build-time conditions, because variables don't
receive their values until run time.)

| TIP

Make your design-time constants easy to recognize by putting a number
sign or "hash" sign (#) at the beginning and end of their names.

It's a good idea to give design-time constants names that distinguish them from their
variable cousins. We recommend using all-uppercase letters for your constants, and
putting a number sign or "hash" sign (#) at the beginning and end of every constant's
name. For example, a design-time constant for the path to your source files could be
named #LOCAL_PATH#.

You can use design-time constants anywhere that you can enter text in Setup Factory.

[NOTE

Design-time constants are like the C/C++ preprocessor directive #define.
They provide you with a way to set up "aliases" or "macros" that will be
replaced at build time with whatever text you specify.

Expressions

Expressions are like miniature program statements that you can use to perform
calculations and tests in Setup Factory. They consist of strings containing operators and
values arranged in an order or "syntax" that Setup Factory understands. Setup Factory
evaluates or "interprets" these expressions and resolves them to a single result.

You can use expressions in build-time conditions, run-time conditions, screen conditions,
and IF, WHILE and Assign Value actions.

38

Key Concepts

Conditional Expressions

Conditional expressions are just like other expressions, but their results are interpreted as
Boolean (true/false) values. In other words, the result of a conditional expression is
always either true or false.

You can use conditional expressions in build-time conditions, run-time conditions, screen
conditions, and IF and WHILE actions.

Boolean Values (True and False)

Boolean values are used to describe logical truths—whether something is "true" or "false."
In fact, true and false are the only two possible Boolean values.

Boolean values are often used to describe the results of logical comparisons like "10 > 5"
and "tree = dog." We say that "10 > 5" is true, because 10 is greater than 5. We say that
"tree = dog" is false, because the string "tree" is not equal to the string "dog."

In Setup Factory, an expression is considered true if it resolves to either the word "true"
or any non-zero integer value (such as "1" or "41395"). An expression is considered false
if it resolves to anything else—in other words, an expression is false if it resolves to the
number 0 or any string other than "true" (such as "false" or "raspberry").

[NOTE |

Setup Factory. For instance, when a check box is checked, its variable is
set to True, and when it's unchecked, its variable is set to False.

5 True and false are also used symbolically to represent yes/no and on/off in

Boolean values are named after George Boole (1815-1864), an English mathematician
who developed the system of logical thought that came to be known as Boolean
algebra. Boole's texts on symbolic logic are still used to teach mathematics, computer

science and artificial intelligence today.

39

Chapter 2

Build-time Conditions

Build-time conditions let you conditionally include or exclude files from your setup
executable.

Every file in a Setup Factory project can have a build-time condition attached to it. The
build-time condition determines whether that file gets included when the setup executable
is built.

A build-time condition is a conditional expression that resolves to either true or false. If
the expression resolves to true, the file gets included in the installer. If it resolves to false,
the file is excluded from the installer.

By using design-time constants as switches, you can set up build-time conditions to
conditionally include or exclude files from different "builds" of your installer. This enables
you to easily manage concurrent versions of an installer within a single Setup Factory
project.

[_NOTE |

You can use design-time constants as switches (or "flags") by assigning
different values to them before initiating the build process.

For example, you could use the same Setup Factory project to build installers for the
commercial and evaluation versions of your software. Simply define a design-time
constant to use as a switch—for the sake of discussion, let's name it #BUILD#—and use
that constant in build-time conditions. Give the files that are only meant for your
commercial release the condition #BUILD# = "full", and give the files that only belong to
your demo the condition #BUILD# = "demo". This lets you control whether the files from
the commercial or demo versions of your installer get included by assigning either "full" or
"demo" to #BUILD#. Remember how design-time constants are replaced at build time by
the values currently assigned to them? When you assign "full" to #BUILD#, the condition
for the commercial files will be true, because the expression "full" = "full" is true, and the
condition for the demo files will be false, because the expression "full" = "demo" is false.

40

Key Concepts

[_NOTE |

Only design-time constants can be used as flags in build-time conditions.
You can't use variables in build-time conditions, because variables don't
receive their values until run time.

Run-time Conditions

Run-time conditions let you control whether specific files get installed from your setup
executable onto the user's system.

Every file in a Setup Factory project can have a run-time condition attached to it. The run-
time condition determines whether that file gets installed when the setup executable is

run.

A run-time condition is a conditional expression that resolves to either true or false. If the
expression resolves to true, the file is installed. If it resolves to false, the file is not
installed.

[NOTE |

You can also control whether files are installed by assigning them to

5 packages. Files belonging to a package are only installed if the user selects
that package at run time. However, even when a package is selected, each
file's run-time condition must still be satisfied in order for that file to be
installed.

Packages

Packages are special categories that you can define in order to group related files
together. They're often used as part of a "custom" installation option, presenting optional
components and letting users choose which parts of an application they want to install on
their system.

You can have as many packages in a Setup Factory project as you want. Each package
has a name and an optional description that you can use to provide information about the
package to your users. This information will appear on the Select Packages screens that

41

Chapter 2

you can include in your installer. The Select Packages screens allow your users to select
which packages they want to install.

Each file in a Setup Factory project can be assigned to one or more packages. When a file
is assigned to a package, it will only be installed if the user selects that package at run
time. In other words, when users choose a package, they automatically enable the
installation of all the files that belong to it.

[NOTE

@ A file that is assigned to a package is said to "belong" to that package.

Package Variables

Each package has a unique custom variable that can be set to either true or false. When
the user chooses to enable a package, that package's variable is set to "true". If the user
chooses not to enable a package, that package's variable is set to "false".

When you add a Select Packages or Select Install Type screen to your installer, you're
really just giving the user an easy way to set the package variables to true or false.

These true or false values are what determine whether the files assigned to each package
are installed. When a package variable is set to "true", any files associated with that
package will be installed. If a package variable is set to "false", the files associated with
that package won't be installed, unless they also belong to another package whose

variable is set to true.

[NOTE

Files assigned to a single package are only installed if that package's
variable is set to "true". Files assigned to multiple packages are installed if
any of the packages' variables are set to "true".

42

Key Concepts

Primer Files

Primer files are just regular files that get extracted from the setup executable before the
installation process begins. This means you can use primer files at the very start of the
installation process, right after the user runs the setup executable.

You can make any file a primer file simply by adding it to the Primer Files tab of the
General Design dialog. The files on this tab will be included in the setup executable when
you build the installer.

Primer files are automatically extracted to a temporary folder at run time. The path to
this folder is stored in a built-in variable named %TempLaunchDir%. You should use this
variable in actions when you need to access your primer files.

Primer files make it easy to run a program on the user's system before the rest of your
files are installed. Just add the program to the list of primer files, and execute it with an
Execute File action early in the installation process.

For example, you might need to execute a custom program or DLL function before your
software is installed—perhaps to perform some product-specific, low-level pre-installation
tests on the user's hardware, and write the results to the Registry. By adding your custom
program or . dl | to the list of primer files, you could distribute it "inside" your setup
executable and still be able to run it before any of the "normal" files in your project are
installed.

| TIP |

distribute them "alongside" your installer. For instance, you could store
the files "externally" on the same CD-ROM, and access them directly; or,
you could download the files from your web site using a Download File
HTTP action on the Startup action tab.

< ; Another way to access files at the start of the installation process is to

Primer files are only required when you need early access, and you want
the files to be included in your setup executable.

43

Chapter 3

Getting Started

The first step in creating a successful software installation is to plan it out.

In fact, planning your installation is one of the most important steps in designing a
professional installer. Knowing what your installer needs to accomplish in advance will
give you a clear goal to aim for and a solid plan to follow.

| TIP

you'll have to do later. Investing some time in planning at the start can

(; As with most things, the more planning you do now, the less repairing
save you a lot of time in the long run.

There are several things you need to know in order to create an installer:
e What files do you need to distribute?
e Where do your files need to be installed?
e What system changes need to be made?
e What information do you need from the user?

This chapter will provide you with the information you need to answer these questions as
quickly and accurately as possible.

What Files Do You Need to Distribute?

The first step in preparing your installation is to determine exactly what files your
software requires for proper operation.

There are four basic types of files that you may need to distribute: program files,
configuration files, operating system components, and shared application resources.

45

Chapter 3

Program Files

Program files are the "main files" of your application. These files are essential to
your application and are only useful in the context of your application. They can be
executables, help files, documents, templates, or any other data files that your
application requires. Program files usually make up the bulk of your software.

Configuration Files

Configuration files are used to store startup options, user settings, and other
configuration options for your software. Information can be read from and written
to these files during the normal operation of your application. These files are often
referred to as "config" files, and come in many different formats, from traditional
"INI" files (which adopt the same internal structure as Windows . i ni files) to

modern XML files.

Operating System Components

These files are usually included with the Windows operating system, but you may

want to distribute the newest versions of certain files, or you may have developed
custom system files of your own. These files are generally DLLs, OCX components,
or hardware drivers like SYS files and VxDs.

Shared Application Resources

These are files that may be shared by more than one application, such as ActiveX
controls, OCX components, and DLL files.

Some of the files that you need to distribute will be obvious, such as the main executable
and help files. Others may be less apparent, such as DLLs and ActiveX controls installed in
the Windows directories of your development system.

[NOTE

Many of today's development tools require that you distribute runtime

5 support files along with your application. Please consult your development
tool's documentation to determine what files you need to distribute with
your software.

46

Getting Started

Often an executable in your application absolutely requires other files in order to work
properly. These "absolutely required" files are known as dependency files.

Dependency Files

Dependency files are external support files that an executable requires for proper
operation. In other words, they are external files that a program file "depends on"
in order to function properly. Dependency files may include INI files, DLLs, ActiveX
controls, OCX components, or any other support file type. Although it's generally
preferable to install dependency files in the same directory as the program that
needs them, they are often installed in other locations, such as the Windows

system directories.

[SEE ALSO
2 Setup Factory has a built-in dependency scanner that you can use to
- identify dependency files and add them to your project. For more

information on this feature, see page 203.

Setup Factory also provides built-in runtime support for many runtime
dependency files via the Runtime Support dialog. The Runtime Support
dialog makes it easy to add support for such technologies as Visual Basic,
ODBC, DAO, ADO, and many more. For more information on this feature,
see page 199.

Preparing the Directory Structure

The ultimate goal of a good installer is to get your software onto the user's system in an
easy and accurate manner. Although Setup Factory ensures both you and your users' ease
of use, the accuracy of the installation itself is largely up to you. Whether your files are
installed in a structure in which they can function properly depends largely on where you

tell Setup Factory to install those files.

The best way to ensure an accurate installation is to prepare the software in its finished
state on your development system before you begin creating the installer. This means
setting up the entire directory structure and all of the file locations exactly as you want

them to appear on the user's system.

47

Chapter 3

The end result should be that your software is fully installed on your development system
exactly as you want it installed on the user's.

Not only does this make it easy to test your software in its intended directory structure,
but it also makes the process of designing the installer much quicker and easier for you.
All you'll have to do is drag your application folder onto the Setup Factory project window,
and the files and sub-folders will be created exactly the same on the user's system.

& C:'\Products’, X Y2 Bitmap Yiew -0 x|
J File Edit \Mew Favorites Tools Help |
J Address II:I C\ProductsixyZ Bitmap Viewer I
Data Docs Sample Update
Images
imglibrary. dll Crdeting Readme.htm Wiewer.exe
Information. ..
|8 objeck(s) |2. 12 MB |Q. Iy Camputer 4

A well-prepared directory structure

3 You should fully test your software in its "final" structure before creating
the installer.

Where Do Your Files Need To Be Installed?

Once you have your software organized, you need to determine exactly where each file
needs to go on the user's system. Although Setup Factory does a lot of this work for you
by maintaining directory structures when you add files to your project, there are still
some files that may need to be directed to different locations on the user's system.

Here are some guidelines to help you determine where you should install your files on the
user's system. Once again, there are four basic types of files that you may need to

48

Getting Started

distribute: program files, configuration files, operating system components, and shared
application resources.

Installing Program Files

Program files should be installed in a directory that the user chooses during the
installation process. Throughout this manual and in the Setup Factory program, this
directory is referred to as the application directory. The path to the application directory is
represented by the built-in variable %AppDir%.

[SEE ALSO

2 For more information on built-in variables, see pages 36 and 211.

It's okay to install program files in sub-folders within the application directory—in fact,
organizing your program files into sub-folders is a very good idea. Your files don't all have
to be in the application directory itself; the folder that the user chooses can be used as a
common application directory, with sub-folders for all of your program files.

If the users aren't given an opportunity to choose an installation folder, the path that you
provided as the default value for %AppDir% will be used. You can provide a default path
for the application directory on the Settings tab of the General Design dialog.

[SEE ALSO

2 For more information on the Settings tab, see page 129.

Installing Configuration Files

In the past, initialization or "INI" files were often installed in the Windows directory
(%WinDir%). This is definitely not necessary or even beneficial in all cases. Unless your
application shares a configuration file with other programs, it's best to install the file in
the application directory along with your program files.

You should avoid installing any files in the Windows directory, or in any other folders
where critical operating system files are stored, unless it is absolutely required by your
application.

49

Chapter 3

Installing Operating System Components

Operating system components, such as DLL or OCX files, are traditionally installed in the
W NDOWE\ SYSTEMdirectory (%SysDir%). If your application doesn't need to share these
files with other applications, it's best to install them in your application directory
(%AppDir%) instead.

[SEE ALSO

For a complete list of built-in variables like %SysDir%, %WinDir%, and
- %AppDir%, see Built-in Variables in the Command Reference or page 269
in this User's Guide.

Installing Shared Application Resources

Shared application resources, such as some ActiveX controls or DLL files, are generally
installed in the W NDOAB\ SYSTEMdirectory (%SysDir%). Keep in mind that many DLL
and OCX files are COM servers, also known as "OLE components" and "ActiveX controls."
As such, they will need to be registered with the operating system before they will be
available for use by your application.

Setup Factory will automatically try to detect files that require registration when you add
them to your project. You can also manually indicate files that you want Setup Factory to
register by using the options on the Advanced tab of the File Properties dialog. And, you

can use a Register File action to register a file manually at run time.

[SEE ALSO
2 For information on how to use the Preferences dialog to control whether
- Setup Factory will automatically try to register DLL and OCX files, see

"Setting Automatic File Treatment Options" on page 62.

For more information on how to manually indicate files that you want
Setup Factory to register, see page 125.

For more information on the Register File action, please consult the
Command Reference.

50

Getting Started

Keep in mind that some DLL and OCX files have dependency files themselves, and these
dependency files need to be distributed and possibly also registered before the DLL or
OCX files can be used. You should consult the documentation for your components to
determine what dependencies they have.

[_NOTE |

file typically has the same filename as the control with a . DEP extension,
e.g., Control . ocx would have a dependency file named Contr ol . dep.
These dependency files can be opened and viewed with a text editor (such
as Notepad) and can tell you a lot about what, if any, dependencies the
control may have.

5 Many OCX and DLL controls ship with a dependency file. The dependency

[SEE ALSO |

2 You can also use Setup Factory's built-in dependency scanner to identify
any dependency files your components may have. For more information
on this feature, see page 203.

What System Changes Need To Be Made?

The next step is to think about what, if any, changes need to be made to the user's
system. This can include changes to system files (such as W N. | NI , CONFI G. SYS,
SYSTEM | NI and AUTOEXEC. BAT) , changes to the Registry, and even such things as
installing and registering fonts. All of these changes can be handled easily using Setup
Factory actions.

[SEE ALSO

2 For more information on actions, see pages 34 and 159.

51

Chapter 3

What Information Do You Need from the
User?

The final step in planning your software installation is to consider what information you
will need from the user, and what information you will need from the user's system. For
example, in order to personalize your software or register it to a specific user, you may
want to ask the user to provide their name on a User Information screen. Or, you may
want to ask the user for a serial number on a Verify Serial Number screen.

[SEE ALSO

2 For more information on screens, see page 141.

If you need to gather information from the user's system, you might be able to use a
built-in variable. For example, if you want to know the user's company name, you could
try using the built-in variable %RegOrganization%.

Otherwise, you can use one of several sleuth-worthy Setup Factory actions to query the
Registry or investigate any other part of the user's system that the installer has access to.

[SEE ALSO

For a complete list of actions, see Actions Index in the Command
- Reference, or see page 263 in this User's Guide.

52

Shortcut
Bar

Chapter 4

The Design
Environment

This chapter will help you get familiar with the Setup Factory design environment as
quickly as possible. It will provide you with a quick tour of the Setup Factory interface,
and help familiarize you with some of the terms used throughout this user's guide.

Menu

&4 Untitled - Setup Factory 6.0

) -Ioix]
File Edit Design Project W¥iew Tools Help |
Ded|axam -~ ||xava||o|

N d
————i-|x i OLrcE | Diestination | Package | Sharteut Size: |
/
Toolbars
The Project Window
e Archive CD-ROM
Urirstall tab tab
)/ . .
{25 Archive |® 0-ROM |
Ready |Files: o [Bytes: 0 [om 4

The Setup Factory main screen

53

Chapter 4

Shortcut Bar

The shortcut bar is used to quickly access the Setup Factory design dialogs. It's located
along the left side of the main screen by default, but you can dock it along the right side
or let it float above the main screen if you prefer. To move the shortcut bar when it's
docked, left-click on the gripper bar at the top, hold the mouse button down, and drag the
shortcut bar to the desired location.

Bar “ Eile Edit Design Project Wiew T
osE ||Bxaw
[—

i

Design

Marmne

To move the shortcut bar when it's floating, drag it by the title bar instead.

Title

&& Untitled - Setup Factory 6.0
Bar

\ “ Eile Edit Design Project Wiew T

NMea e xaw
Shortcut Bar B —

Mai

To return the shortcut bar to its docked position, drag it to the left or right edge of the
Setup Factory main screen.

54

The Design Environment

You can toggle the shortcut bar on or off at any time by selecting View | Shortcut Bar

from the menu.

There are six design dialogs you can access from the shortcut bar:

General Design

The General Design dialog is used to configure your product information, languages,
serial numbers, and other important installation settings.

Screens

The Screens dialog allows you to configure the screens that will be displayed by
your installer at run time.

Actions

The Actions dialog is used to define lists of actions that will be performed at run
time. You can use actions to perform advanced installation tasks like manipulating
variables, modifying the Registry, starting and stopping programs, and more.

Packages

The Packages dialog is used to define and localize packages. Packages are usually
used to group files and provide custom installation options to users.

Runtime Support

The Runtime Support dialog allows you to select the runtime technologies you want
to include in your project. This includes Visual Basic 5.0 and 6.0, Visual C++ 6.0,
Visual FoxPro and many more.

Uninstall

The Uninstall dialog is where you can configure the uninstall routine for your

installer.

TIP

(I You can also access these dialogs at any time from the Design menu.

55

Chapter 4

Toolbars

The Setup Factory toolbars make it easy to access features quickly without having to
locate a menu command. Each button on a toolbar corresponds to a menu item or
command. The toolbars are fully customizable and can be positioned anywhere on the
Setup Factory screen. The toolbars can either float above the main screen or be docked
along the top, bottom, left or right edges.

[DEHE B x5 8 o=

The File and Edit toolbars

You can customize the existing toolbars or create your own by selecting

Tools | Customize Toolbar from the menu. You can also show or hide any of the
toolbars by using the Toolbars dialog, which you can access by selecting View | Toolbars
from the menu.

Project Window

The project window takes up most of the main screen and contains a list of all the files
that you have added to your project. From this list you can highlight specific files and view
or edit their properties.

There are two tabs on the project window: the Archive tab, and the CD-ROM tab.

Archive Tab

The Archive tab is for files that you want compressed and stored in the setup executable.
In other words, this tab is for files that will be included in your installer.

When Setup Factory builds the setup executable, it compresses all the files listed on the
Archive tab and packs them right into the setup executable file. We say that these files
get included in the setup archive, which is how the Archive tab was named.

56

The Design Environment

CD-ROM Tab

The CD-ROM tab is for files that you don't want compressed and stored in the setup
executable. In other words, this tab is for files that will be distributed with your installer.

When Setup Factory builds the setup executable, it includes all the information it knows
about the files on the CD-ROM tab, such as where the files are expected to be at run time,
and where you want them to be installed to. But it doesn't actually include the files in the
setup executable. Instead, you're expected to make sure that those files will be where the
installer expects them to be at run time. Usually this is done by distributing the files along
with the setup executable on the same CD-ROM (hence the name "CD-ROM tab").

[NOTE

though. You can use it to install any external files, i.e., any files that are
external to the setup executable.

@ The CD-ROM tab isn't just for files that are distributed on CD-ROMs,

Column Headers

Both tabs have columns that display different information about each file in your project.
You can sort the information along any of the columns by clicking on the header for that

column. If you click on the same header again, the files will be sorted by that category in
reverse order.

Marne —__ | Source A | Destination & | Package
default,dat %ebpplirssi\Data
@Iogo.bmp
EWidget Designet ...
@readme.txt

Column
Headers

To sort files by their extensions, select "Sort filenames by type" on the General tab of the
Preferences dialog, which you can access by selecting Edit | Preferences in the menu.

57

Chapter 4

[NOTE

The order of files on the project window doesn't have any bearing on the
order they're installed in. Files are installed in the same order they were
added to your Setup Factory project. Sorting files in the project window

has no effect on the installation order at all.

Whenever you load a project, Setup Factory displays the files in the order

they will be installed.

Lists

Setup Factory makes extensive use of lists in its user interface. Most of these lists have

similar controls to let you add, remove, edit and rearrange items in the list.

E1 Staltupl &1 Before Instaling 1 After Instaling | E1 Shutdownl

&) Undo
) Bedo

These actions are executed after the files are ingtalled, be

Ctrl+2
ol

Command

Check Intemet Connection [%lsConnected |

ﬂm
Copy el

Diownload and apply the latest full-history patch E Baste by
IF [Zl:Connected®] Select Al 8
HTTF Downloaq [http: Ay wick edwidgets. comddo Deselect Al Chrl+U
Execute [ZSrcDirs\Patches swdpatch. exe)
EMD IF add... Ins
¥ Remove Del
Right-click
context 4 Move Up Ctrl+Up
menu & Mave Do hr|+Dovn
List o Increase Indert Chrl+H
Control 4m Decreass Indsnt Ctrl+G
Buttons
J Properties CErHP
! Export Ackions. .. Ctr+E
B X2 4Bl s e [CF
Import Actions. ., CerH+T
| ak. Cancel

Help

List controls on the After Installing actions tab

58

The Design Environment

There are three ways the list controls can be accessed: using buttons, using the right-click

context menu, and using hotkeys.

List Control Buttons

Here are some of the common list control buttons that appear throughout Setup Factory:

Add Add a new item to the list
}(_ Remove Remove the currently selected item(s) from the list
J::' Properties Open the Properties screen for the currently

selected item

E'H;. Cut

Remove the selected items and place them in the
clipboard

Copy Copy the selected items into the clipboard
Paste ﬁftd the items currently in the clipboard into the
Move up Move the selected item up one position

Move down

Move the selected item down one position

Increase indent

Indent the selected items more

+ & & » |3

Decrease indent

Indent the selected items less

B Advanced

Display a menu of list-specific functions like
"Import Registry Values" and "Export Actions."

59

Chapter 4

Right-click Context Menus

You can also access the list controls by right-clicking on a list and using the right-click
context menu. Some context menus have additional controls, such as the Select All
command, that can only be accessed via the menu; they don’t have any buttons
associated with them.

| TIP

Right-click context menus are available throughout Setup Factory. You can
even use them to insert items into edit fields.

Hotkeys

You can access the list controls using the keyboard by pressing certain key combinations
known as hotkeys. The hotkeys are listed on the right-hand side of the context menu
when you right-click on a list.

For example, the hotkey for the Select All command is Ctrl+A. This means you can select
all items in a list by holding the Ctrl key and pressing the A key on your keyboard.

| TIP

Hotkeys are available throughout Setup Factory. Just about every menu
item has a hotkey associated with it.

60

The Design Environment

General Preferences

You can set general preferences for the Setup Factory design environment on the General
tab of the Preferences dialog. To access the Preferences dialog, select Edit | Preferences
from the menu.

x

&b General |O Language&l Action Tabsl @ Updatel

— Folders

Falder ta store temparary build files:

IE:'\Temp J

Default output folder for new projects:
IC:'\D utput J

—*%hen Adding Filez to Project

Create shortcuts for files with extensions:

Iene;hlp;chm;bat;cum

v Reqister all TrueType TTF files
[Scan .DLLAOCK for DIR egisterServer

— Interface
[Sart filenames by pe

[v Confirmn before starting build process

— Startup

* ‘\Welcome screen " Last project " Mew project

0k, I Cancel Help

The General tab of the Preferences screen

Setting the Temporary Build Folder

Setup Factory uses a temporary folder while generating the setup executable. You can
change the folder that is used for this purpose by editing the path in the Folder to store
temporary build files field, which is located on the General tab of the Preferences

61

Chapter 4

dialog. You can also press the Browse button ([]) to browse for a path using the Select
Folder dialog.

Setting the Default Output Folder

You can change the default output folder for new projects by editing the path in the
Default output folder for new projects field, which is located on the General tab of the
Preferences dialog. You can also press the Browse button (H) to browse for a path
using the Select Folder dialog.

Setting Automatic File Treatment Options

When you add certain types of files to your project, Setup Factory will automatically
configure their file properties according to the settings in the When Adding Files to
Project section on the General tab of the Preferences dialog.

There are three different automatic file treatment options that you can control on this
screen:

The Create shortcuts for files with extensions field determines which types of files
will automatically have the Create shortcut in Start menu option enabled.

The Register all TrueType .TTF files check box determines whether TrueType font files
will automatically have the Register as TrueType font option enabled.

The Scan .DLL/.OCX for DIIRegisterServer check box determines whether DLL and
OCX files will be scanned to see if they support registration—i.e., whether they have the
DlIRegisterServer function available. If a file supports registration, the DIIRegisterServer
option will be enabled for that file on the Advanced tab of the File Properties dialog.

Sorting Filenames by their Extensions

You can sort files by their extensions on the Project Window by selecting the Sort
filenames by type check box on the General tab of the Preferences dialog.

62

The Design Environment

Enabling or Disabling Build Process Confirmation

By default, Setup Factory will ask you to confirm that you really want to start the build
process whenever you build the setup executable. You can modify this behaviour by
selecting or clearing the Confirm before starting build process check box on the

General tab of the Preferences dialog.

Choosing Startup Options

When you start Setup Factory, it opens a welcome screen by default to let you quickly

start a project, open an existing project file, or open the project file you had open the last

time you ran Setup Factory. If you prefer, you can have Setup Factory automatically
create a project or open the last project file instead of displaying this welcome screen.

Create a New Project
[Use the Project \Wizard.

Open Existing Project

Select an exizting project to edit.

Open Last Project
C:AProjects'{vZ Bitmap Yiewer. sf6

Exit

Close Setup Factary.

Setup Factory's welcome screen

You can choose between the three options in the Startup section on the General tab of the

Preferences dialog.

Startup
’7 ¥ ‘Welcome soreen " Last project £ Mew project

The Startup section on the General tab of the Preferences dialog

63

Chapter 4

Language Preferences

You can set language preferences for Setup Factory on the Languages tab of the
Preferences dialog. To access the Preferences dialog, select Edit | Preferences from the

menu.

x

% General @ Languages | Action Tabsl @ Updatel

|Default language files:

1=y q
French.lng
German.Ing

0k, I Cancel Help

The Languages tab of the Preferences dialog

64

The Design Environment

Setting Default Language Files

To change the list of languages that are added to every new project, edit the Default
Language Files list on the Languages tab of the Preferences dialog. The first language in
this list will also be marked as the default language—in other words, when you start a
new project, the default language check box on the Edit Messages dialog will be selected
for the first language in the Default Language Files list.

% eneral @ Languages | Achian Tal:usl @ L||:u:|ate|

|Default language filez;

French.lng
German.ng

These three languages will be added to every new project

To add a language to the list, press the Insert Language button ([l) or use the Insert
hotkey. Then, enter the path to the language (. | ng) file you want to add, or press the

Browse button (]) to browse for a language file.

To remove a language from the list, select the language you want to remove and press
the Remove Language button () or use the Delete hotkey.

To change the order of the languages in the list, select the language that you want to
move, and then use the Move Up (E‘) and Move Down (+l) buttons to reposition
the language in the list.

[NOTE |

You can add languages to the current project on the Languages tab of the
General Design dialog.

65

Chapter 4

Action Tabs Preferences

You can set preferences for all action tabs in the Setup Factory development environment
on the Action Tabs tab of the Preferences dialog. To access the Preferences dialog, select

Edit | Preferences from the menu.

x

% Generall O Languages Action T abs |<@> Updatel

—dction List Colors

Default command: Control structures:
Comments: Labels:

-|v _|'

— Mizcellaneous

Indent size:

T

0k, I Cancel Help

The Action Tabs tab of the Preferences dialog

66

The Design Environment

Changing the Action List Colors

You can change the colors that are used for the control structures, comments, labels and
default commands (which is basically "everything else") on the action lists. To do so, just
click on one of the four color choosers on the Environment tab of the Preferences dialog,

and select a different color from the list that appears.

—a&ction List Colors

Default command: Control structures:
Comments: Labels:

_|' _|'

The four color choosers on the Environment tab of the Preferences dialog

Changing the Indent Size

You can change the indent size used on the action tabs. To do so, enter the width in
spaces for each level of indentation in the Indent size field on the Environment tab of

the Preferences dialog.

Mizcelaneous
Indent size:

=

The Indent size field

67

Chapter 4

Update Preferences

You can set update preferences for the Setup Factory software on the Update tab of the
Preferences dialog. To access the Preferences dialog, select Edit | Preferences from the
menu.

x
& Generall O Language&l E ditors @ lpdate |

— Settings

v automatically check far new versions of 5 etup Factorny

[Hide the update interface untl a new version iz available

— Frequency

' Check every (15 days

" Check every |1U time:s the prograr is

Confiqure Connection...

0k I Cancel Help

The Update tab of the Preferences dialog

Automatically Checking for New Versions of Setup
Factory

The Setup Factory development software can automatically check the Internet for
updates. Setup Factory will use Indigo Rose's TrueUpdate technology to download and
install new versions of itself as soon as they become available.

68

The Design Environment

To enable this feature, just select the Automatically check for new versions of Setup
Factory check box.

| TIP

You can easily integrate the same update technology into your software.
For more information, visit www.indigorose.com/trueupdate/.

Hiding the Update Interface Until a New Version is
Available

The Hide the update interface until a new version is available check box lets you
control whether the TrueUpdate client interface is shown each time Setup Factory checks
the Internet for a new version of itself. If the check box is selected, the client interface is
only shown when a new version is available and an update is performed.

Setting How Often Setup Factory Checks for Updates

The Frequency section of the Update tab allows you to specify how often Setup Factory

checks the Internet for new versions of itself. You can have Setup Factory check every X
number of times it is started, or have it check (on starting Setup Factory) if a minimum

number of days have elapsed since the last time a check was performed.

Configuring the Setup Factory Connection Settings

You can configure the connection settings Setup Factory will use when it checks for an
update by pressing the Configure Connection button. This will open the Connection
Settings dialog, where you can specify whether your development system connects to the
Internet using a LAN or a dial-up connection. This is also where you can configure your
proxy settings if your system connects to the Internet through a proxy server.

| TIP |

server, you will need to configure your proxy settings in order for Setup

(I If you're development system connects to the Internet through a proxy
Factory to download updates successfully.

69

http://www.indigorose.com/trueupdate/

Chapter 4

User Tools

You can add custom menu items to Setup Factory's Tools menu to start other programs
that you use often during the design process. For instance, you might want to add a menu

item to launch your favorite text editor.

Configuring User Tools

To configure the custom items that will show up in the Tools menu, select
Tools | Configure User Tools from the menu to open the Configure User Tools dialog.

Customize

tenu Contents

| Cancel

Menu Text: ILIItraE dit

Remaove
Command: IC:\F‘mgram Files\UltraEdithJE ... | —l
Argurnents: I W onee g |

Initial Directary: I | foyve Dawn |

The Configure User Tools dialog

ik

You can use this dialog to add tools to the menu, remove them from the menu, and
change the order of the tools in the menu.

| TIP

within Setup Factory, so you can easily test it after it's built. Simply use
the path and filename that your setup executable is normally generated to
(for example, C:\ Qut put \ set up. exe) in the Command field on the
Configure User Tools dialog.

(; It can be useful to set up a user tool to run the setup executable from

70

Chapter 5

Quickstart Tutorial

This tutorial is a great place to start if you're new to Setup Factory. It will walk you
through the steps required to build a simple but complete installer.

[NOTE |

There is definitely more than one way to approach the design process with
Setup Factory. The method described in this chapter is only meant to
serve as an example to get you building installers as quickly as possible.

Step 1:
Prepare Your Files

As explained in the Getting Started chapter on page 47, the first and most important step
in creating an installer is to prepare the directory structure and copy all the files to your
development system.

Before you move on to step 2, your product should be fully installed in a neat and
organized manner, looking exactly as you want it to look on the end user's system.

If at all possible, try to arrange it so that all of the files in your application fall within a
single, common "application directory." This will make it much easier to add all the files to
your project in step 2.

Step 2:

Use the Project Wizard

The Project Wizard is designed to help you get a project started as quickly as possible. In
some cases, the Project Wizard is all you need to create a complete installer. Of course,

you will probably want to make a few modifications using the design environment—just to
make everyone think you're working harder than you are...

71

Chapter 5

To start the Project Wizard, select Project | Project Wizard from the Setup Factory
program menu, or press the Project Wizard button (E) on the Project toolbar.
This will open the Project Wizard's Welcome screen.

After you have read the information on the Welcome screen, click Next to continue to the

General Information screen.

Setup Factory Project Wizard i[

General Information

Fill in the fields belaw and click Mext to cantinue.

‘What is your company name?
IWicked wiidgets, Inc.

‘What ig your product's name or title?
IWidgel Designer

‘Wwhat iz your product's version?
|1 I

What iz your product's marketing tagline?

IEhanging the world, one widget at a time.

‘what ig your product's information URL?

Ihttp: £ fvmaney wickedwidgetz.com

¢ Back I Mest » I Cancel

The Project Wizard's General Information screen

The General Information screen is used to collect information about the product and your
company. This information will be used in various places throughout your installer. Fill in

the information on this screen completely and accurately—it's designed to save you time
later.

Once you've finished entering your information, click Next to continue to the Source
Directory screen.

72

Quickstart Tutorial

Setup Factory Project Wizard 1[

Source Directory

Locate pour source directory and click Mest to continue.

The Project Wizard now needs to know where to find pour zource files. These are the
filez that Setup Factory will be building an installation far.

Project Wizard will maintain an exact image of the files found in this directory and
optionally all of itz subdirectones, “'ou will be able ko add or remove files from this list
once you are returned bo Setup Factory's main screen.

What directory are your files located in?

IC:'\F'mglam Files\widget Desigrner 1.0 |

¥ Include files in subdirectories

< Back I Mest > I Cahcel

The Project Wizard's Source Directory screen

The Source Directory screen is used to locate your application directory. Enter the path to
the top level directory where your product is installed, or press the Browse button (L])

to browse for the directory. This is the single main directory where all of your application's
files and subdirectories are found. Be sure to select the Include files in subdirectories

check box so the Project Wizard will import all the files in your directory tree.

Once you've provided the path to your application directory, click Next to continue to the

Options screen.

73

Chapter 5

Setup Factory Project Wizard ﬂ

Options
Select the optional components and click Finizh to continue,

v Imclude Urinstall support

¥ Create a log file during installation
¥ Support install types [Complete, Custam, etc.] and packages
[My pragram uzes third-party runtime madules [Visual Basic, BDE, MDAC, ete.)

Select Huntime fadiles

This iz the final step of the Project Wizard. Click Back to go back and reviews your
options, Finish to create your Setup Factory project, or Cancel to abort.

CFish Cancel

< Back

The Project Wizard's Options screen

The Options screen is the final step of the Project Wizard. You can use this screen to set
some common project options, such as whether an uninstall routine will be included in the
installer, whether a log of the installation process will be created on the user's system,
whether a Select Install Type and Select Packages screen will be added to your project for
you, and whether your product requires any third-party runtime support.

For this tutorial, select the Support install types option to enable support for install
types and packages. Then, click Finish to complete the Project Wizard process.

Step 3:
Add Additional Files to the Project

Although you've added all of the main program files to your project, you may still need to
add additional files that aren't found within your application directory structure. For
example, you may need to add an ActiveX control that is needed by your software. Like
most ActiveX controls, it would probably be located in the Windows System directory on
your development system.

74

Quickstart Tutorial

To add an additional file to your project:

1. Select Edit | Add Files from the menu.

2. Browse for the file on your system, and select the file.

3. Press the Add button to add the selected file to your project.

The file should now appear on the project window along with the files that were added by
the Project Wizard. Note that the file's destination is automatically set to a built-in
variable like %AppDir%, %SysDir%, or %WinDir%, depending on where the file was
located on your development system. These variables are automatically expanded to the
corresponding paths on the user's system at run time. For example, %AppDir%,
%SysDir%, and %WinDir% would be expanded to the paths to your application directory,
the Windows System directory, and the Windows directory on the user's system.

[SEE ALSO

2 For more information on built-in variables, see pages 36 and 211.

For more information on adding files to your project, see page 111.

Step 4.
Create Shortcuts

If you look in the Shortcut column on the project window, you will see that Setup Factory
has automatically selected some of your files as candidates for shortcuts. (In the case of
our Widget Designer example, Setup Factory automatically created shortcuts for the
executables and help files.) The only problem is that Setup Factory uses the filenames for
the shortcut descriptions by default. In order to give your shortcuts more appropriate
descriptions, you'll need to edit the properties for those files.

To change a shortcut's description:

1. Select the file whose shortcut description you want to change on the Setup
Factory project window.

75

Chapter 5

76

2.

Select Edit | File Properties from the menu. This will open the File Properties
dialog for the file you selected.

The File Properties dialog is where you can edit file-specific settings, such as the
source path, destination path, shortcut options, package associations, run-time
and build-time conditions, and more.

Select the Shortcut tab.

The Shortcut tab is where you can configure the shortcut options for the file you
selected.

Edit the text in the Shortcut description field to your liking. This is the text
that will appear next to the shortcut icon in the user's Start menu, and beneath
the shortcut icon on the user's desktop.

Widget Designer.exe Properties 1[

& General il Shortout | .&dvancedl 0 Conditionsl = Packagesl

— Settings

v Create shortcut in Start benu Shorteut description:
I\N'idget Desigrer.ed

[~ Create shortcut on Desktop

&dvanced
Carmmand line arguments: Warking directaony:
lcon index: Fiun Mode
I__,D -
=l % Mamal
[~ Use external icon file AN

External izon path;

' Maximized

Ok I Cancel Help

Editing the shortcut description on the

Shortcut tab of the File Properties dialog

Quickstart Tutorial

5. Press OK to accept the changes.

You can repeat this process for any other file that you want to change the shortcut
description for. You can also instruct Setup Factory to create shortcuts for other files in
your project that don't have shortcuts created for them by default.

To create a shortcut in the user's Start menu for a file that does not have a shortcut
created by default, such as a . t xt file, follow the same five steps above, but enable the

Create shortcut in Start Menu option between steps 3 and 4.

You can also enable the Create shortcut on Desktop option to have the installer create
a shortcut on the user's desktop as well.

Before you continue, take time to explore the File Properties dialog and familiarize
yourself with the various options available to you. If you want to learn more about any of
the options, press the Help button (e |)

[SEE ALSO

7 For more information on shortcuts, see page 30.

For more information on the File Properties dialog, see page 116.

Step 5:
Set Up Packages

If you have a complex or multi-product installation, you may want to offer your users
several different installation options. This gives them the power to tailor the installation to
meet their own specific requirements. While it may seem that this sort of flexibility would
be difficult to offer, Setup Factory makes it as easy as possible.

It's really simple. You start out with all the files you've added to your project. You then
group your files into what we call "packages." A package is simply a related group of files,
such as help files, graphic files, samples—anything you want.

77

Chapter 5

Then, you add a Select Install Type screen and, usually, a Select Packages screen to your
project. Your users will use these screens to select the packages that they want to install.

The first step in implementing packages is to create the packages themselves, i.e., set up

the categories that your files will belong to. To do this:

1. Select Design | Packages from the menu. This will open the Packages dialog.

The Packages dialog is where you can add packages to your project, and remove
or edit any packages already in your project.

x|

& Packages |

Package Mame | Variable | Default State |

X2 2R 18

(1] I Cancel Help

The Packages dialog

2. Press the Add Package button (). This will open the Package Properties
dialog for the new package you're adding.

78

Quickstart Tutorial

x4
Settings |@ Localizel

Package name:

ID ocuments

Description:

Documentation for Widget Desigrer, including an electranic version ;I
of the uzer's guide in PDF format.

=
Wariable:
IZF‘ackageDocuments‘Z

Default value
’7 % TRUE [Selected) ™ FALSE [Unselected)

0K I Cancel Help

The Package Properties dialog

Provide a name for the package in the Package name field. For our example,
we wanted to prepare a package to group our documents together, so we named
the package "Documents."

Provide a description for the package in the Description field. This is what the
users will see on the Select Packages screen when they select this package.

Enter a unique variable name for this package in the Variable field. A good way
to name this variable is to start with "%Package", add the name of your package
(without spaces), and end with "%". For our example, we used
%PackageDocuments% as the variable name.

Starting all your package variable names with a prefix like "Package" can help you
recognize the package variables when you're working on your project.

Press OK on the Package Properties dialog to add the package to your project.

Repeat steps 2 to 6 for every package you want to add to your project.

Press OK on the Packages dialog to add all the packages you created above to
your project. (Don't just press Cancel, or the changes you made won't be saved.)

79

Chapter 5

x

ﬁ Packages |
Package Mame | Variable | Default State |
Documentation %PackageD ocumentation? Checked
Samples %PackageSamples® Checked

BX g &2l Té

Qk I Cancel Help

The Packages dialog after we added 2 packages

[SEE ALSO

2 For more information on adding packages, see page 191.

The next step in implementing packages is to assign files to the packages that you
created. To do this:

1. On the project window, select the files that you want to assign to a package.

2. Select Edit | File Properties from the menu. This will open the Multiple File
Properties dialog. (We'll assume you selected more than one file to add to this
package. If you didn't, that's okay; the File Properties dialog will be opened
instead, but it works pretty much the same as the Multiple File Properties dialog
does for assigning files to packages.)

3. Select the Packages tab. This is where you can assign the files you selected to
the packages you created.

80

Quickstart Tutorial

Multiple File Properties |

&y General.-’Shortcutl Advancedl T} Condtions BF Packages |

Belongs to packages:

[[Diocumentation
(1S amples

(] I Cancel Help

The Packages tab of the Multiple File Properties dialog

4. Select the packages that you want the files you selected to belong to. The files
will belong to a package when there is a solid black check mark next to that
package name on the Packages tab.

Belonas to packages:

WD ocumentation
[]Samples

After assigning our files to a package

5. Press the OK button to assign the files to the packages you selected.

[SEE ALSO

2 For more information on assigning files to packages, see page 196.

81

Chapter 5

Once you've assigned your files to the packages, you need to give your users a way to
select those packages at run time. This is done by adding a Select Install Type screen and
a Select Packages screen to your project.

Because you selected the Support install types option in the Project Wizard, both of
these screens were already automatically added to your project. All you need to do is
configure those screens to use the packages you added.

To configure the Select Install Type screen:

1. Select Design | Screens from the menu. This will open the Screens dialog.

screens x|

21 Befare Instaling |_=_] After Installingl

Screen Mame | Screen Title | Condition |
Welcome - Side Banner [Englizh] %ProductMame? Setup ESpglanguagei =9
License dgreement [Englizh] EProductMame® Setup ESpglanguagei =9
Uger Information (Englizh) EProductMame® Setup ESpglanguagei =9
Scraling Text [Englizh) ZProductM ame? Setup #SysLanguage® =9
Select Install Type [Enalizh) ZProductM ame? Setup #SysLanguage® =9
Select Packages [Enalizh) ZProductM ame? Setup ["ZlnstalTypes" =
Select Install Folder [Englizh) ZProductM ame? Setup #SysLanguage® =9
Select Shartcut Folder [Englizh) ZProductM ame? Setup #SysLanguage® =9
Ready ta Install (Englizh) ZProductMame? Setup #SysLanguage® =9

S B R = B B
0k I Cancel Help

The Screens dialog

2. Select the "Select Install Type (English)" line. This line represents the Select
Install Type screen on the Screens dialog.

82

Quickstart Tutorial

Select F'ac:kages [Englizh]
Select Install Folder (English)
Select Shartcut Falder (English)
Ready ta Install [Englizh)

/F'roduu:tNarne/ Setup
%ProductName? Setup
#ProductMame’? Setup
ZProductMame® Setup

Screen Mame | Screen Title | Condition |
WWelcome - Side Banner [English] %ProductM ameX Setup %Syslanguagei
Licenze Agreement [Englizh] EProducth ame? Setup %5ysLanguage’
Uszer Infarmation [Englizh) ZProductMame® Setup ZSyilanguage® =
Scrolllng Tth [English] ZProductM ame? Setup °/:.S_l,lsLanguage"/

[+InstaIITy|:-e/
%5yslanguage® =19
#5ysLanguagei =9
ZSpslanguage® =9

Selecting the Select Install Type screen

3. Press the Properties button (). This will open the Screen Properties dialog

for the Select Install Type screen.

the Select Install Type screen that you selected.

Screen Properties: Select Install Type {English}

W Settings Custom | &1 Beforel] Afterl

Select the Custom tab. This is where you can configure the custom settings for

— Inztall Types
; Mame: Set packages to state:
E’I?r?ijnliﬁ:we IT_I,inu:aI [w|Documentation
Custom Description: [15amples
Installs the most common program ﬂ
festures. Recommended for most
LigErE.
[-]
O
— Group Options
Store selected install type name in varniable: Default install type:
IZInstaIIT_l,lpe‘Z Typical
Store gelected install ype index in vanable;
IZInstaIIT_l,lpelnde:-:Z

[|

Cancel Help

The Custom tab of the Screen Properties dialog

for the Select Install Type screen

83

Chapter 5

5. Select the "Typical" install type in the list on the left side of the Custom tab.

Note that the name and description for the install type you select in the list are
displayed in the Name and Description fields to the right.

6. Use the Set packages to state list on the right side of the Custom tab to select
the packages that you want enabled when the user selects this install type.

Any packages in the list that have check marks beside them will be enabled when
the user selects the "Typical" install type at run time. Since the Typical install
type is used to select the most often-used features, select the packages that you

feel most users will want to install.

7. Select the "Complete" install type in the list on the left.

When users select this install type, they want to install everything, so enable all
of the packages in the Select packages to state list.

8. Select the "Minimum" install type in the list on the left.

When users select this package, they only want the bare essentials installed, so
enable only the essential packages in the Select packages to state list.

9. Select the "Custom" install type in the list on the left.

When users select this package, they will be allowed to choose which individual
packages they want to install. (This happens on the Select Packages screen,
which we'll get to in a moment.) Use the Select packages to state list to select
which packages will be enabled on the Select Packages screen by default.

10. Press OK to close the Screen Properties dialog and return to the Screens dialog.

Next you need to configure the Select Packages screen.
To configure the Select Packages screen:

1. Select the "Select Packages (English)" line on the Screens dialog. This line
represents the Select Packages screen.

84

Quickstart Tutorial

Screen Mame

| Screen Title

| Condition |

WWelcome - Side Banner [Englizh)
Licenze Agreement [Englizh]
Uszer Infarmation [Englizh)
Scroling Test [Englizh)
Select Install Type [English)
5 [Ent)
Select Install Folder [Engll
Select Shartcut Falder (English)
Ready ta Install [Englizh)

EProductMame? Setup
%ProductName® Setup
ZProductMame® Setup
ZProductMame? Setup
%ProductName® Setup

du & Ip
ZProductMame? Setup
#ProductMame’? Setup
ZProductMame® Setup

%Syzlanguage:
*%5ysLanguage:
ZSyslanguags
Z5ysLanguage:
*%5ysLanguage:

o gt ed o e

#5ysLanguagei =9
ZSpslanguage® =9

Selecting the Select Packages screen

2. Press the Properties button (). This will open the Screen Properties dialog

for the Select Packages screen.

3. Select the Custom tab. This is where you can configure the custom settings for

the Select Packages screen that you selected.

Screen Properties: Select Packages {English} 1[

W Settings Custom | &1 Beforel] Afterl

Al available packages:

Samplez

r Instructions
Text:
Flease select the program features you want bo ingtall and click Nest to continue. ﬂ
=
—Packages

Packages available on thiz screen;

N

L4

34

— Options

¥ Show package sizes beside package names

[|

Cancel

Help

The Custom tab of the Screen Properties dialog

for the Select Packages screen

85

Chapter 5

4. Press the Move all button (El). This will move all of the packages from the
All available packages list on the left to the Packages available on this

screen list on the right.
5. Press OK to close the Screen Properties dialog and return to the Screens dialog.
6. Press OK to close the Screens dialog.

The Select Install Type screen and the Select Packages screen are now ready for the user

to use at run time.

Step 6:
Customize the Screens

You might want to edit the other screens in your installer, too. A good candidate is the
License Agreement screen, which starts out with a default license agreement that you

need to replace with your own legalese.
To replace the text on the License Agreement screen:
1. Select Design | Screens from the menu. This will open the Screens dialog.

2. Select the License Agreement screen.

Screen Mame | Screen Title | Candition |
Wwielcome - Side Banner ([Englizh] ZProductM ame? Setup /S_l,lsLanguag % =9
Uzer Information [Englizh) QF'roduu:tName 4 =9
Scrolling Text [Englizh) ZProductNameX Setup /SysLanguageZ =3
Select Install Type [English] EProducth ame? Setup *%5ysLanguage® =9
Select Packages [English] ZProductMame® Setup ["ZHlnstallTypeX" =
Select Ingtall Folder (English) ZProductNameX Setup #Syslanguagek = S
Select Shortcut Folder (E nglish) EProducth ame? Setup *%5ysLanguage® =9
Ready ta Install [Englizh) ZProductMame® Setup ZSpslanguage® =9

Selecting the License Agreement screen

3. Press the Properties button (@). This will open the Screen Properties dialog

for the License Agreement screen.

86

Quickstart Tutorial

4. Select the Custom tab. This is where you can configure the custom settings for
the License Agreement screen that you selected.

Screen Properties: License Agreement (English) x|
W Settings Custom | E] Beforel] .-’-‘«fterl

—Screen Text
Text:

Inzert your license agreement text here. ., -|

=
— Licenze Agreement Options
Agree text: Dizagree text:
II agree to the terms of thiz license agreement | do not agree to the terms of this icense agreement
Defaul: 7 Agree ' Disagree

(] I Catcel Help

The Custom tab of the Screen Properties dialog

for the License Agreement screen

5. Open your license agreement document in a document editor such as Microsoft
Word or Notepad.

6. Copy your license agreement text to the clipboard (usually by selecting
Edit | Copy or by pressing the Ctrl+C hotkey).

7. Go back to the Screen Properties dialog for the License Agreement screen in
Setup Factory and click on the Text field.

87

Chapter 5

8. Use the Ctrl+A hotkey to select all of the default license agreement text. This will
highlight the text in the Text field so it can be replaced with your new license
agreement text in the next step.

Screen Text

Text:

Out with the old...

9. Press the Ctrl+V hotkey to paste your license agreement into the Text field. This
will replace the default license agreement text that you highlighted in the
previous step.

Screen Text
Test:
Iwilll ot steal this software, Maor will | give it to athers, =]

...and in with the new

10. Press OK to close the Screen Properties dialog.

11. Press OK to close the Screens dialog.

Step 7:
Add Any Required Actions

Setup Factory features over 50 powerful and flexible actions that you can use to really
customize your installer. One of the actions that you will probably use often is the Modify
Registry action.

In this step, we'll show you how to store the installation path in the Registry so that
future installers can retrieve this value and use it to install files to the same location.

88

Quickstart Tutorial

To add this Modify Registry action:

1. Select Design | Actions from the menu. This will open the Actions dialog, which
is one of the places where you can add actions to your project.

Each tab on the Actions dialog corresponds to a different time during the
installation process when actions can be performed.

actions x|

£ Startup | 1 Eeforelnstallingl 1 Afterlnstallingl 1 Shutdownl

These actions are erecuted at the start of the setup, before the "Before Instaling” screens are displayed.

Command

B X B % "R 4+ 45 @ 5 IDitemsinIist I
Ok I Cancel | Help

The Actions dialog

2. Switch to the After Installing tab. This way, the action will be performed after all
the files in your project are installed.

89

Chapter 5

3. Press the Add Action button (). This will pop up a list of action categories
right next to the Add Action button.

Reboot » I
Sepvices 4 Reead From Fegistry
Shaorkcuts 3
Strimgs 3
Text Files 3
Vatiables 3
([Xp sl 23 & @ B [oom

The Modify Registry item in the Registry category

4. Navigate to the Registry category and select the Modify Registry action. This will
open the Action Properties dialog for the Modify Registry action.

Action Propetties: Modify Registry ﬂ
Hp Settings |® On Errorl

Registy action;

I Set Value hd
I air ke

[HKEY_CURRENT_USER 4|
Sub key:

IS oftwarehEComparyh ame® W EProductM ame

Lo

Walue name:
IInstaIIDir

Walue type:
|REG_5Z |
Walue data:
IZAppDirZ

K I Cancel Help

The Action Properties dialog for the Modify Registry action

90

Quickstart Tutorial

5. Select "Set Value" in the Registry action field.
6. Select "HKEY_CURRENT_USER" in the Main key field.
7. Enter "Software\%CompanyName%\%ProductName%" in the Sub key field.
8. Enter "InstallDir" in the Value name field.
9. Select "REG_SZ" in the Value type field.
10. Enter "%AppDir%" in the Value data field.
11. Press OK to add this Modify Registry action.
[SEE ALSO
r) For more information on actions, see page 159.
| TIP
You can remove this installation path from the Registry when your
software is uninstalled by adding a Modify Registry action to the After
' Uninstalling tab of the Uninstall dialog.
Step 8:

Build the Setup Executable

Before building your setup executable, you might want to configure the build settings for

your project. To do so:

Select Project | Project Settings from the menu. This will open the Project
Settings dialog, where you can configure various options for your project.

On the Build Settings tab, enter the path to the Output folder where you want
the setup executable to be built.

91

Chapter 5

3. Enter the name you want your setup executable to have in the Setup file name
field.

Project Settings

¥ Build Settings |n@ Desigretime Constantsl = Directoriesl

— Dutput Settings
Output folder:

Output file segment size:

IE:'\Dutput

~

Setup file name:

=

I Largest Poszible

Cugtom segment size [in bytes]:

Isetup.exe

r— Run Before Build

Run program:

r— Rur After Build

Rur program;

| |

Command line arguments:

| |

Carmmand line arguments:

[~ swait for program bo finish running

[~ “/ait for program to finish running

o1

Cancel Help

The Build Settings tab of the Project Settings dialog

4. Press OK to close the Project Settings dialog.

[SEE ALSO

?

92

For more information on these project settings, see page 100.

Quickstart Tutorial

Now it's time to see your work in action!
To build the setup executable:

1. Select Project | Build from the menu.

2. When asked if you want to start the build process, select Yes.

If all goes well, the setup executable will be generated in the output folder, ready for you
to test and distribute.

[SEE ALSO |

2 For more information on testing and distributing your installer, see page
- 254.

Step 9:
All Done!

Congratulations! You have just created an installer.

In many cases, this is all the functionality of Setup Factory that you will ever need. But if
you love to tinker, don't worry—there's plenty more that you can do with Setup Factory.

93

Chapter 6

Working with Projects

What Are Project Files?

Setup Factory uses project files to store your work between sessions. These project files
(. sf 6 files) contain the same information that goes into the setup executable when it's

built.

Think of the project files as saving the work you do in Setup Factory at design time. When
you load a project file into Setup Factory, you're returning Setup Factory to the same
state it was in when that project file was saved.

[NOTE

(} Setup Factory project files end with a . sf 6 file extension.

Starting a New Project

To start a new project, select File | New from the menu or press the Ctrl+N hotkey. The
new project replaces the current project in Setup Factory. If you've made any changes to
the current project, you will be asked if you'd like to save the changes before continuing.

Opening an Existing Project

To open an existing project, select File | Open from the menu or press the Ctrl+O hotkey.
This project will replace the current project in Setup Factory. If you've made any changes
to the current project, you will be asked if you'd like to save the changes before
continuing.

95

Chapter 6

Saving the Current Project

To save the current project, select File | Save from the menu or press the Ctrl+S hotkey.
To save the project with a different filename, select File | Save As.

Reopening a Recent Project

You can access the four most recently saved project files directly from the File menu.

=% widget designer.sf6 - Setup Fac|

JJ File Edit Design Project Wiew Tg

ﬂ [Iew Project ZErl+M
A& open... Crl+0
= H Save Chrl+5
Save fs
Properties, ..
Impork ¥

1 widget designer . sf& k
2 widget whacker,sf&
3 widget masker . sf&

4 widget cam,sfE

Exit

The list of recent project files in the File menu

| TIP

(; The name of the current project file is displayed in Setup Factory's title
bar.

96

Working with Projects

Importing a Project

This feature allows you to merge two or more projects together. You can import a project
file into the current project by selecting File | Import from the menu to open the Import

Project File dialog.

Import Project File x|

Setup Factory B.0 project file o impart:

| |

[v' Impart file lists v Impart packages
% Inzert befare existing files % |mzert before existing packages
™ Insert atter ewisting files ™ |mzert after existing packages
I Import screens [Impart uninztall action lists
% [nsert before existing screens % |nzert befare existing actions
= Insert after evisting screens " Insert after existing actions
V' Import actions v Design-time constants
%" Insert before existing actions % |ngert before existing constants
™ Ingert after existing actions " Insert after existing constants

Ok I Cancel | Help

The Import Project File dialog

You can use the Import Project File dialog to control which parts of a project file you want
to import into the current project. You can also control whether the imported parts are
inserted before the corresponding parts of the current project, or appended after them.

97

Chapter 6

Viewing and Editing Project File
Properties
You can view and edit the project file properties by selecting File | Properties from the

menu to open the Project File Properties dialog. The project file properties are for your
information only—your users will never see the information that you enter here.

Project File Propetties |

B File Information |

File name: IE:\.Dutput\.widget dezigner. zf6

Drescription: IInstaIIEI for Widget Designer 1.0

Avthor: IIan Sertyurnaymeer

Company: IWicked Widgets, Inc.

Motes: Mow & - updated info URL [hew product page] ;I

Mow 8 - fived the uninstaller zo it won't delete
the uzer's data files automatically...now it asks

the uzer if it's okay to delete therm first j
File size [hytes]; |1 53850
Created: IThursda}', October 04, 2007 - 14:13:43
b odified: IThursda}', Movember 08, 20071 - 03:52:30

Ok, I Cancel Help

The Project File Properties dialog

Using the Project Wizard

You can use the Project Wizard to walk you through the steps required to build a simple
Setup Factory project.

To do so, simply select Project | Project Wizard from the menu, and follow the
instructions. You can also start the Project Wizard by pressing the Project Wizard button
() on the Project toolbar.

98

Working with Projects

Generating a Project Report

A project report is an HTML file containing various information about a project, from
information about the project file itself, to details on all of your design-time settings. The
project reports are built from template files, which are located in the Report s sub-folder

of your Setup Factory program directory.

You can customize the existing report types and even create your own report templates
for Setup Factory to use. When a report is generated, specific keywords in the template
files are replaced with information about the current project. Aside from the keywords,
these templates are standard HTML files, so you can easily edit them with your favorite
text editor. Project reports can contain as much or as little information on the current

project as you like.
To generate a report on the current project:

1. Select Project | Generate Report from the menu. This will open the Generate

Project Report dialog.

Generate Project Repork El

Report: -

Complete Project [sl gl . 5
A full report which includesz all data in
yaur project.

Save report file to;

ID:'\LDgs‘\S etup Factory Reportz'sdrZ Bitmap Wiewser. hitml |

|v Display repart after generation

™ Print report after generation

Ok, I Cancel Help

The Generate Project Report dialog

99

Chapter 6

2. Select the type of report that you want to generate in the Report list. A
description of the selected report type will appear to the right of the list.

3. Enter the full path and filename of the report file that you want to generate in
the Save report file to field, or press the Browse button ([]) to select a
filename using the Save As dialog.

4. Optional:
If you want to automatically view the report file in your default browser, select
the Display report after generation check box.

5. Optional:
If you want to automatically print the file with your default printer (using your
default HTML browser), select the Print report after generation check box.

6. Press OK when you're ready to generate the report.

Project Build Settings

You can configure the build settings for the current project on the Build Settings tab of the
Project Settings dialog. To access the Project Settings dialog, select Project | Settings
from the menu.

— Dutput Settings
Output folder: Output file zegment size:
II::'\D LtpLt J ILargeat Possible j
Setup file name; Custam segment size [in butes];
Isetup.e:-:e I

The Output Settings section on the Build Settings tab

Changing the Output Folder

You can control where the setup executable will be generated by editing the path in the
Output folder field. Alternatively, you can press the Browse button (H) to select a
folder using the Select Folder dialog.

100

Working with Projects

| TIP |

You can set the default output folder for new projects in the design
environment preferences (see page 62).

Changing the Setup Executable Filename

You can change the name that will be given to the setup executable by editing the value
in the Setup file name field.

Changing the Output File Segment Size

Setup Factory can output the setup executable as a single contiguous file, or it can break
it up into several parts or "segments" of a specific size. This feature allows you to "span"
a very large setup executable across two CD-ROMs, or to break an installer into pieces
small enough to email without being rejected due to mail server size limits.

To output your installer into multiple segments, simply set the Output file segment size
field to the maximum size you want each segment to have. You can use one of the default
segment sizes, or you can select the "Custom" option and provide your own segment size
in the Custom segment size (in bytes) field.

| TIP |

segment size field set to "Largest Possible" and point the Output folder
directly to your floppy drive. During the build process, Setup Factory will
automatically prompt you to insert a new floppy as each disk is filled to
capacity.

(I To span an executable across multiple floppy disks, leave the Output file

TIP

segment sizes to the list by editing the segnment si zes. i ni file in the
Dat a sub-folder of your Setup Factory program directory.

(; You can modify the existing segment size options or add your own

101

Chapter 6

Automatically Running a Program Before or After the
Build Process

Setup Factory can automatically execute an external program before and after the
installer is built. For example, you could update a readme file with the current build date
using a search-and-replace utility before Setup Factory builds the installer. Or, you could
automatically call a batch file to copy the setup executable to a different directory right
after it's built.

Or you might want to automatically run your installer to test it. To do so, you would enter
the output path and filename for the setup executable in the Run program field in the
Run After Build section on the Build Settings tab of the Project Settings dialog.

— Fiun Before Build — Fiun After Build
Fiun program: Fiun program:
I | IE:\Dutput\setup.EHe |
Command line arguments: Command line arguments:

| I"HT:E:KM}I Temp Dir"

[“wait far pragram o finish rnning [wait far pragram ta finish running

The Output Settings section on the Build Settings tab

To automatically run a program before or after the build process:

1. Enter the full path to the program you want to run in the appropriate Run
program field—i.e., the one in the Run Before Build section or the one in the
Run After Build section—on the Build Settings tab of the Project Settings dialog.

2. Optional:
Enter any command line arguments you want to pass to the program in the
Command line arguments field.

3. Optional:
If you want Setup Factory to wait for the program to finish before continuing with
the build process, select the Wait for program to finish running check box.

102

Working with Projects

Design-time Constants

You can add, remove and edit design-time constants for the current project on the
Design-time Constants tab of the Project Settings dialog. To access the Project Settings

dialog, select Project | Settings from the menu.

| SEE ALSO

2 For more information on design-time constants, see page 37.

Projeckt Settings 5[

! BuidSetings] Design-time Constarts ||2- Directories |

Cohztant
HGREETIMNGH# = Hello warld!

LXK L + 2R +§

Ok I Cancel Help

The Design-time Constants tab of the Project Settings dialog

103

Chapter 6

Adding Design-time Constants

To add a design-time constant:

1. Press the Add button () or use the Insert hotkey. This will open the

Design-time Constant Properties dialog.

Design-time Constant Properkies 5[

Canstant name:
IﬂGHEETINGﬁ

W alle:
IHeIIo world!

ok I Cancel

The Design-time Constant Properties dialog

2. Enter a name for the constant in the Constant name field. We strongly
recommend that you begin and end all constant names with a nhumber (#) sign,
like so: #MY_CONSTANT#.

3. Enter a value in the Value field. This value will replace the constant name at
build time.

Removing Design-time Constants

To remove a design-time constant:

1. Select the design-time constant that you want to remove on the Design-time
Constants tab of the Project Settings dialog.

2. Press the Remove button (E) or use the Delete hotkey.

104

Working with Projects

Editing Design-time Constants

To edit a design-time constant:
1. Select the design-time constant that you want to edit.

2. Press the Properties button (re]) or use the CTRL+P hotkey to open the
Design-time Constant Properties dialog.

| TIP |

You can also double-click on a constant on the Design-time Constants tab
to open the Design-time Constant Properties dialog.

3. Edit the Constant name and Value fields as desired.

Base Directories

When files are added to a Setup Factory project, Setup Factory tries to set a "best guess"
value for the destination folder of each file. It does this by comparing the file's path to the
base directory for the tab the files were added to.

The base directory is the path to a folder on your system that represents the application
directory (%AppDir%) on the user's system. There is one base directory for the Archive
tab, and another base directory for the CD-ROM tab. When you add files to your project,
Setup Factory uses the appropriate base directory setting to determine where the files
should be installed at run time.

When you add a file, any part of the file's source path that matches the base directory is
essentially replaced by %AppDir% in the destination path for the file.

For example, if you add C: \ Pr oduct s\ Foo\ Dat a\ set ti ngs. i ni to your project, and
the base directory is C: \ Pr oduct s\ Foo, the file's destination path will automatically be
set to ¥%AppDi r % Dat a\ settings.ini.

105

Chapter 6

[SEE ALSO

2 For more information on the base directory, see page 109.

You can view or edit the current base directory for the Archive tab and the CD-ROM tab on
the Directories tab of the Project Settings dialog. To access the Project Settings dialog,
select Project | Settings from the menu.

Project Settings x|
! Buid Settingsl 4] Designtime Constants (2 Directories I

— Baze Directary

Baze directary for files added to the Archive tab:

IE:\F‘raiects\W’idget Dezigner

Baze directory for files added to the CD-ROM tab:

Ok I Cancel Help

The Directories tab of the Project Settings dialog

[_NOTE |

The base directory only matters when files are added. Changing the value
in either field has no effect on files that have already been added to your
project.

106

Working with Projects

Changing the Base Directory for the Archive Tab

To change the current base directory for the Archive tab, edit the path in the Base
directory for files added to the Archive tab field, or press the Browse button (L) to
select a folder using the Select Folder dialog.

Changing the Base Directory for the CD-ROM Tab

To change the current base directory for the CD-ROM tab, edit the path in the Base
directory for files added to the CD-ROM tab field, or press the Browse button ([)
to select a folder using the Select Folder dialog.

[NOTE |

The corresponding base directory setting is reset (deleted) whenever you
remove all of the files from the Archive tab or CD-ROM tab.

Building the Current Project

To build the current project, select Project | Build from the menu. (You can also press
the Build button () on the Project toolbar, or use the F7 hotkey.)

You will be asked to confirm that you want to start the build process. If you select Yes,
the Status dialog will appear and the build process will proceed. If all goes well, the setup
executable will be generated in the output folder, ready for you to test and distribute.

[SEE ALSO |
2 For more information on testing and distributing your installer, see page
254,
| TIP |

You can start the build process from a batch file by running Setup Factory
with the Unattended Build (/ B) command line option. (See page 260.)

107

Chapter 7

Working with Files

Installing the right files to the right places is the key to performing a successful
installation. The files that make up your software need to get from your development
system to the appropriate locations on the user's computer. Regardless of whether you're
distributing files on CD-ROMs, floppies, or in a single, downloadable setup executable,
Setup Factory allows you to install all of your files with the utmost precision.

[NOTE |

design a successful installer, you need to know where your files need to
go.

g Setup Factory will install files exactly where you tell it to. In order to

The Project Window

The project window is where all of the files that you add to your Setup Factory project are
listed. You can use the project window to highlight specific files and view or edit their
properties.

There are two tabs on the project window: the Archive tab, and the CD-ROM tab.

The Archive Tab

The Archive tab is for files that you want compressed and stored in the setup executable.
In other words, this tab is for files that will be included in your installer.

You should add files to the Archive tab when you want them physically included in the

setup executable file.

The CD-ROM Tab

The CD-ROM tab is for files that you don't want compressed and stored in the setup
executable. In other words, this tab is for files that will be distributed with your installer.

109

Chapter 7

You should add files to the CD-ROM tab when you don't want them physically included in

the setup executable file.

When you add files to the CD-ROM tab, you're essentially telling Setup Factory: "don't

worry about how these files got there, just look for them here and install them to there."

[NOTE

£

You can use the CD-ROM tab even if you aren't distributing your software
on a CD-ROM. Setup Factory doesn't care how the files on the CD-ROM tab

end up on the user's system; it just needs to be able to find them where
you said they would be at run time.

Mamme | Source Diestination | Package | Shorkeuk Size |
@ Readrme. hkri Ci\Productsix¥Z Bitmap Vi... YeAppDirs 5,691
irmaglibary, dll CProducts\xYZ Bitmap Vi, YeAppDirss 41,232
@ Crdering Informa.., C\Products\®vZ Bitmap Vi... S=AppDirte 2,623
@ Viewer, exe CiiProducks ¥z Bitmap Vi, %:AppDir%: ¥YZ Image Vi, 2,175,046
@Sample 1.bmp CiAProductsx¥Z Bitmap Vi.., %AppDirsaiSam... Samples 53,158
@Sample Z.bmp CProducts ez Bitmap Vi.., %AppDirtaiSam... Samples 7,910
@Sample Z.bmp CProducts ez Bitmap Vi.., %AppDirtaiSam... Samples 8,022
@Sample 4.bmp CA\Productsie¥Z Bitmap Vi... %:AppDirtaiSam... Samples 8,022
|'_a@ Confighelp.chn C\ProductsixYZ Bitmap Vi... %AppDirttiUpdate Documentation 30,187
update.cli C\Productsix¥Z Bitmap Vi... %AppDirtaiUpdate 9,296

update exe CProducts\xYZ Bitmap Vi, YeAppDirsciUpdate Check for Up..., 655,360
ﬂUser's Guide.pdf C\Products\ =2 Bitmap Vi... %eAppDirtsiDocs Documentation 2,228,418
|E§5] Bitmap Wiewser Hel.,. CA\Products\x¥Z Bitmap Vi... %:A4ppDirdeiDocs Help File 214,406

settings.ini Ci\Productst»¥Z Bitmap Vi... %appDirtaiData 43

1] | |

3 Archive I@ CD-ROM |

A list of files on the Archive tab of the Setup Factory project window

110

Working with Files

Before Adding Files

Before you start adding files to your project, make sure you have all of your files properly
installed on your system. Your local directory structure affects the destination paths that

Setup Factory assigns to files as they are added to your project, so it's important to have
your application's directory structure laid out on your system the same way you want it to

end up on the user's.

[SEE ALSO |

2 For more information on preparing your directory structure, see page 47.

Adding Files

There are two ways to add files to your Setup Factory project: you can add files from
within Setup Factory, or you can drag and drop files onto the project window.

[IMPORTANT |

When you add files to your project, they are not actually moved or copied
. from their original locations—instead, Setup Factory references or "links
to" the files at their original locations.

Adding Files From Within Setup Factory
To add files from within Setup Factory:

1. Select the Archive tab on the project window if you want the files to be included
in the setup executable, or select the CD-ROM tab on the project window if the

files will be distributed separately.

2. Select Edit | Add Files from the menu.

(You can also press the Add Files button (), use the Insert hotkey, or right-
click on the project window and select Add Files from the context menu.)

This will open the Add Files to Project dialog.

Chapter 7

112

Add Files to Project ﬂll

Loaok in: Iﬁ HYE Bitmap Viewer j = £k Ef-
Data @ Readme.htm
Dacs @ Viewer . exe
Sample Images
Update
imglibrary . dll

COrdering InFormation. bkm

File name: Al Files in Tree Add
Files of type: I.L\II Files [*.%) j Cancel |
Add Mode

" Selected files anly
" Allfiles i this falder
" Al files in this falder and all sub folders

The Add Files to Project dialog

Select the add mode that you want to use:

The Selected files only option will only add the files that you select with the
Add Files to Project dialog.

The All files in this folder option will add all of the files in the folder that the
Add Files to Project dialog is currently displaying.

The All files in this folder and all sub-folders option will add all of the files in
the current folder, and all of the files in any sub-folders as well.

Select the files that you want to add, or navigate to the folder where all the files
(and possibly sub-folders) that you want to add are located.

Press the Add button to add the files to your project.

Working with Files

Dragging Files Onto the Project Window

To add files by dragging and dropping them:

1. Open the folder where your files are located.

C:Products’ XYZ Bitmap Yiewer B [m] 4
F

File Edit Wiew Faworites Tools Help ‘ﬁ

J R Back + = - | G search L Falders S History |E’ O: 5 =
J Address I[:I Ci\ProductsixvZ Bitmap Viewer j
Data Dacs Sample Update irnalibrarsy, dll
Images

e e N

Ordering Readme. bt Viewer, exe
Infarmation...

|8 ohjeck(s) 2,12 MB |@I Iy Computer i

The "C:\Products\XYZ Bitmap Viewer" folder in Windows

2. Select the files that you want to add to your project.

TIP

s You can drag and drop folders, too. When you select a folder, all of the
files in that folder and in all of its sub-folders are selected as well.

3. With your files still selected, hold the left mouse button down and drag the files
over the Setup Factory project window.

4. Let go of the mouse button to "drop" the files onto the project window.

113

Chapter 7

How the Base Directory is Converted to %AppDir%

When files are added to a Setup Factory project, Setup Factory tries to set a "best guess"
value for the destination folder of each file. It does this by comparing the file's path to the
base directory for the tab the files were added to.

The base directory is the path on your system that corresponds to the path where your
application will be installed. In other words, it's the local representative of %AppDir%.
(%AppDir% is the built-in variable that gets set to the installation path when the user
selects an install folder at run time.)

Setup Factory automatically picks a base directory for you the first time you add any files
to your project. If you add a single file, Setup Factory chooses the folder that the file is
located in as the base directory. If you add multiple files at the same time, Setup Factory
chooses the first folder that all of the files have in common as the base directory.

Once a base directory is set, whenever a file is added to a Setup Factory project, any part
of the source path that matches the base directory is replaced with "%AppDir%".

For instance, if the current project's base directory for the Archive tab was
C.\ Proj ect s\ Wdget Desi gner and you added the following files to the Archive tab:

C.\ Proj ect s\ Wdget Desi gner\ W dget Designer.exe
C:\ Proj ect s\ Wdget Designer\Data\Parts. dat
C:\ Proj ect s\ Wdget Desi gner\ Docs\ Wdget Designer.htnl

...the destination paths for the files would be set to:

%AppDi r % W dget Desi gner. exe
%AppDi r % Dat a\ Part s. dat
%AppDi r % Docs\ W dget Desi gner. htmi

If you add a file that isn't located somewhere beneath the base directory—so the path to

the base directory isn't found in the path to the source file—Setup Factory sets the file's
destination path to just "%AppDir%".

114

Working with Files

[NOTE

The base directory is reset (i.e. cleared) whenever you remove all the files
from a tab. In other words, the base directory for the Archive tab is reset
when you remove all the files from the Archive tab, and the base directory
for the CD-ROM tab is reset when you remove all the files from the CD-
ROM tab. This means that if you remove all the files from one of the tabs,
and then proceed to add files to it again, Setup Factory will pick a new
base directory based on the files you just added.

You can also set the base directory manually. This can be helpful if you
have two different directory structures that you want to install to the same
place on the user's system.

For example, you might have two different versions of your software
installed in two different directory structures on your system (a full version
and a demo version, perhaps). If you wanted to install them both to the
same place on the user's system, you could add the files from the first
directory structure, change the path of the base directory to point to the
second directory structure, and then add the files from the second
directory structure to your project. (Once the files were added, you could
assign them to packages to control which version is installed at run time.)

To set the base directory manually, select Project | Settings from the
menu, and edit the appropriate path on the Directories tab of the Project
Settings dialog.

[SEE ALSO

?

For more information on how to set the base directories manually, see
page 105.

115

Chapter 7

Removing Files

To remove files from your Setup Factory project:
1. Select the files that you want to remove on the project window.

2. Select Edit | Remove Files from the menu.

(You can also press the Remove Files button (x|), use the Delete hotkey, or
right-click on the project window and select Remove Files from the context

menu.)

File Properties

You can use the File Properties dialog to view and edit the settings for any file in your

project.
To access the File Properties dialog:
1. Select a file on the project window.

2. Select Edit | File Properties from the menu.

(You can also press the File Properties button (), use the CTRL+Enter
hotkey, or right-click on the file and select File Properties from the context

menu.)

This will open the File Properties dialog, where you can view and edit the
properties of the file you selected.

| TIP

You can also access the File Properties dialog by double-clicking on a file in
the project window.

116

Working with Files

There are five tabs on the File Properties dialog: General, Shortcut, Advanced, Conditions
and Packages.

The General Tab

The General tab is where you will find information about the file itself, such as its name,
date/time stamp, size, and other common attributes. This is also where you can view or
edit the source path, the destination path, and the overwrite settings for the file.

Yiewer.exe Properties ﬂ

% General |ﬂ Shnrh:utl Advancedl ﬂ Cu:unditionsl 'ﬁ Package&l

— File Information

M ame: Drate/Tinmne:
IViewer.eHe |3D-Dct-u1 10E04:28 A
Lozal source: Product werzion: File version:
IC:'\F‘IDductSW Bitmap ‘iewn J |1 007 |1 001
Biumtime souree; Size: Attributes:
I.f-\rchive |2,1 76,046 I_.-’-\.
— Destination
Install file to this location;
|3:,-txppDnz
|F file already exists:
IDverwrite if exsting fle iz zame or older j

Ok I Cancel | Help |

The General tab of the File Properties dialog

117

Chapter 7

There are two possible source paths for every file: the local source path, and the runtime
source path.

Local source path

The local source path is the path to the file on your development system at design
time. In other words, this is where Setup Factory expects to find the file on your
system.

Runtime source path

The runtime source path is the path to the file on the user's system at run time. In
other words, this is where Setup Factory expects to find the file at the beginning of
the installation process.

[NOTE

on the Archive tab are always located in the setup executable archive at
run time.

5 The runtime source path only applies to files on the CD-ROM tab. The files

The destination path is the path that the file will be installed to on the user's system. You
can change this path by editing the value in the Install file to this location field.

[SEE ALSO

For more information on the General tab, please consult the Command
. Reference.

118

Working with Files

The Shortcut Tab

The Shortcut tab is where you can configure the shortcut options for the selected file. You
can use this tab to have Setup Factory automatically create a shortcut icon for the file in
the user's Start menu or on the user's desktop at run time.

Yiewer.exe Properties ﬂ

& General il Shartcut | .fi‘n.clvanc:edl T Eonditionsl i | F'ac:kagesl

— Settings

W Create shortcut in Start Menu Shartcut descriptian:
IXYZ Image Viewer

[~ Create shartcut on Desktop

—Advanced
Cammand line arguments: whorking directony;
| ZippDirk
lcon index: Fiun Mode
Iﬁ z
=l & Nomal
[T Usze external icon file i

External icomn path:

" Maximized

Ok I Cancel Help

The Shortcut tab of the File Properties dialog

[SEE ALSO

For more information on the Shortcut tab, please consult the Command
. Reference.

119

Chapter 7

The Advanced Tab

The Advanced tab is where you can configure advanced options for the selected file. This
is where you can override certain default installation settings, such as whether the file will
be compressed before storing it in the setup executable, whether it will be uninstalled
automatically by your installer's uninstall routine, and what attributes will be assigned to
the file after it's installed. You can also specify whether the file should be registered as a
TrueType font, or even whether it should be registered as a shared OLE or ActiveX

component using DLLRegisterServer.

Yiewer.exe Properties

— Settings

™ Suppiess "in-use" notice
™ Pratect

[~ Create backup

™| Disable CRC check

% GenEIaII j Shortcut Advanced |ﬁ D:nnl:litiansl 'ﬁ F'ackagesl

— Uninztall

[Mever remove
[Shared/System file

— Font

[” Renister as TrueType font

Fantmarne;
— Inztall-Time Attibutes I
V¥ Use original Autn-Namel
[Bead-orly
— OLE AActives

I~ fchive S
[Hidden ™ DLLReqisterS erver Dl
I Ghster [Register TypeLib

o]

Cancel Help

The Advanced tab of the File Properties dialog

[SEE ALSO

120

For more information on the Advanced tab, please consult the Command

Reference.

Working with Files

The Conditions Tab

The Conditions tab is where you can edit the run-time and build-time conditions for the
selected file.

The run-time condition is an expression that determines whether the selected file is
installed at run time. The build-time condition is an expression that determines whether
the file is included in the setup executable at run time.

x4
i Generall il Shnrh:utl fdvanced Th Conditions |'ﬁ Package&l

Rur-time install condition:

ZlSwind T 4% OR Z$win2000% OR ZlswirePX ;l

Build-ime include condition:
"HEUILDH" = "RELEASE" ;I

[~
Buid.._ |

Ok Cancel | Help |

The Conditions tab of the File Properties dialog

[SEE ALSO

For more information on run-time and build-time conditions, see pages
40-41 and 221-223. For more information on the Conditions tab, please
consult the Command Reference.

121

Chapter 7

The Packages Tab

The Packages tab is where you can select the packages that you want the currently
selected file to belong to. The Packages tab lists all of the packages that have been
configured in your project. You can add the currently selected file to one or more
packages by clicking on the check boxes in this list.

x
% GenEIaII j Shultcutl .-’-‘n.dvancedl ﬁ Conditions ﬁ Packages |

Belongs to packages:

[D ocurmentation

k. I Cancel Help

The Packages tab of the File Properties dialog

The file will be assigned to the packages that have check marks beside them. Clicking on
an empty check box adds a check mark, and clicking on a box that already has a check
mark clears it.

An empty check box looks like this: [(]5amples

A selected check box looks like this: [w]5amples

122

Working with Files

Multiple File Properties

You can use the Multiple File Properties dialog to edit the properties of more than one file

in your project at a time.
To access the Multiple File Properties dialog:

1. Select more than one file on the project window. (You can select multiple files by
pressing and holding the Ctrl key or the Shift key while you click on the files.)

2. Select Edit | File Properties from the menu.

(You can also press the File Properties button (), use the CTRL+Enter
hotkey, or right-click on the file and select File Properties from the context
menu.)

This will open the Multiple File Properties dialog, where you can view and edit the
properties of the files you selected.

The Multiple File Properties dialog is similar to the File Properties dialog, but there are
some important differences:

e The Multiple File Properties has four tabs instead of five; the General tab and the
Shortcut tab are combined into a single General/Shortcut tab.

e Entering text in a field changes the corresponding setting in all of the selected files.

e Check boxes on the Multiple File Properties dialog have three states:
enabled (|7), disabled (I_), and mixed (|7). The mixed state preserves the
settings for that check box in all of the selected files.

e The Conditions tab has two special drop-down lists that let you choose how to
apply any text you enter in the Run-time install condition and Build-time
include condition fields to the existing conditions. You can replace the existing
conditions with the new text, prepend the text to each of the conditions with either
an AND or an OR, append the text to the end of each condition with an AND or an
OR, or leave the existing conditions unchanged.

123

Chapter 7

Missing Files

Since Setup Factory only records an informational link to each file, and doesn't actually
maintain a copy of the file itself, it's possible for files to go "missing" from Setup Factory's
point of view. For example, if a file in your project is moved to another directory, Setup
Factory will no longer be able to find it at its original location. The same thing happens
when a file is renamed or deleted. Setup Factory only knows to look for a file at the place
where it was when you "showed" the file to Setup Factory by adding it to your project.

Although Setup Factory might not know where a missing file has ended up, it definitely
knows when a file is missing. Whenever a file in your project can't be found at its original
location, Setup Factory displays the file's information on the project window in red instead
of black. The red color makes it easy for you to see which files in your project are

missing.

If you find that your files are suddenly playing hide-and-seek with Setup Factory, try to
remember if you've made any changes to your files recently. If you moved the files, you
can try moving them back. If you renamed the files, you can restore the original names.
If you deleted the files, you'll have to replace them.

If Setup Factory still shows the files in red after you've corrected the situation, you
probably just need to refresh the display. To do so, simply select View | Refresh from
the menu, or use the F5 hotkey. Refreshing the display causes Setup Factory to re-
examine the location of every file in your project.

[NOTE

Setup Factory automatically refreshes the display for you when you open a
project or initiate the build process.

If you moved, renamed, or deleted the files on purpose, and you want Setup Factory to
use the files at their new locations, or remember the files by their new names, or just
forget about the past and move on, you'll need to either remove the files from your
project and add them back in again, or change the local source path on the File Properties
dialog for each file. The only way to "show" Setup Factory where a new file is on your
development system is to add the file to your project.

124

Working with Files

Registering Files

There are two ways that you can register files (such as ActiveX controls) in Setup Factory.
The easiest way is to simply select the DLLRegisterServer check box on the Advanced
tab of the File Properties dialog for the file you want to register.

OLE fActives

¥ DLLRegisterServer EI

[~ Register Typelib

The alternative method is to use a Register File action to register a file after it has been

installed.
[SEE ALSO |
For more information on the DLLRegisterServer option and the Register
. File action, please consult the Command Reference.

Registering Fonts

There are two ways that you can register TrueType fonts in Setup Factory. The easiest
way is to select the Register as TrueType font check box on the Advanced tab of the
File Properties dialog for the file you want to register. The file must be a valid Windows
TrueType font (. tt f) file.

Fant

¥ Register az TrueType font
Faont name:
IFunk_l,J Cold Moderma

Auto-Mame |

The alternative method is to use a Register Font action to register a . tt f file after it has

been installed.

125

Chapter 7

[SEE ALSO

For more information on the Register as TrueType font option and the
- Register Font action, please consult the Command Reference.

Nested Shortcuts

A nested shortcut is simply a shortcut file that is located in a shortcut sub-folder—i.e., a
shortcut file in a folder that is located or "nested" in another folder.

You can easily create nested shortcuts with Setup Factory 6.0 by using a Create Shortcut
action. Simply include the nested folders in the path that you provide in the Folder field
on the Action Properties dialog for the Create Shortcut action.

In other words, just enter the full path to where you want the shortcut file to end up, and
if any of the folders in the path don't exist, Setup Factory will automatically create them
for you.

Action Properties: Create Shortcuk il
i Settings |Q On EHCIII

— Locatiohs
Folder:

I%SEFDIderF’ach'\H eysLook'\MestedyFolders

Shortcut description;
IM_I,I Mested Shortcut

Target file:
Ifé.-ﬁ\ppD irZhzomefile. exe

Create Shortcut action settings to create a nested shortcut

[SEE ALSO

For more information on the Create Shortcut action, please consult the
- Command Reference.

126

Chapter 8

General Design

The General Design dialog is where you can configure general design settings for your
installer.

You can access the General Design dialog by selecting Design | General Design from
the menu, or by clicking on the General Design icon on the shortcut bar.

There are five tabs on the General Design dialog: Product Info, Settings, Languages,

Serial Numbers, and Primer Files.

General Design x|

Product Infa |% Settingsl @ Languagesl =) SerialNumberSl & Primer Fi|ES|

— General
Product name: Campany name:
|><Y'Z Bitmap Yiewer ICnmpany e
Product tagline: Wersion:
IImages the way they should be! I'I 001
Copyright notice: |nformation URL:
II:npyright & 2001 Ihttp:f'.fwww.company-:-:yz-infn.com

k. I Cancel Help

The Product Info tab of the General Design dialog

127

Chapter 8

The Product Info Tab

The Product Info tab is where you can provide general information about your product.
This includes the name of your product, your company name, a product tagline or
"marketing slogan," a version string, your copyright notice, and the web site address
where more information about your product can be found.

The information you provide on the Product Info tab is made available throughout your
project in the form of six built-in variables: %ProductName%, %CompanyName%,
%ProductTagline%, %ProductVer%, %Copyright%, and %InfoURL%.

%ProductName% %CompanyName%
— Bxneral /
Frodgt name: Company name: /
=2 Bitmap Wiewer ICompan_l,J Rre
Product tagline: “ersion;
%ProductTagline% iimages the way they should be! I‘I 001 <4— %ProductVer%
Copyright natice: Infarmation LRL:
ICopyright @ 2001 Ihttp:ﬁwww. company-syz-info.com
< »
7 AN
%Copyright% %InfoURL%
[SEE ALSO
r) For more information on variables, see pages 35 and 211.

For more information on the Product Info tab, please consult the
Command Reference.

128

General Design

The Settings Tab

The Settings tab is where you can configure general installation options for your installer.
This includes whether a log of the installation process will be generated, whether the
setup will run in silent mode, what the installer's name in the taskbar will be, and what
the default values for the installation path (%AppDir%) and shortcut folder name
(%SCFolderTitle%) will be.

General Design |

Product Info i Settings |Q Language&l é SeriaINumberxl 23 Primer Fi|E$|

 Inztallation

¥ Create an installation log file
File narne:

I?sWinDir?é\ZF'mductN ame? Setup Log.txt

™ “erify archive befare installing [Fun setup in silent mode
Application title [appearz in the tazkbar while zetup is running);

I%F’laductN ame? Setup

Frogress screen image:

IStandard [zrnall).brmp J

—“ariable Defaultz
o ppDirk [Default inztallation path]: %S CFolderT itle® [Default shartout folder):
ZProgramFilesZ % ProductM ame? IZF‘raductNamef’é

k. I Cancel Help

The Settings tab of the General Design dialog

[SEE ALSO |

For more information on the Settings tab, please consult the Command
- Reference.

129

Chapter 8

The Languages tab

The Languages tab is where you can add language modules to your project and translate
the various text messages used by your installer. You can use the Languages tab to edit
the text for all the messages, buttons and prompts that can appear during an installation.

These "built-in" messages are stored in Setup Factory language (. | ng) files.

Language files are special INI files used by Setup Factory. Each language file corresponds
to a specific Windows language ID, and includes all of the "built-in" messages for that
language in plain text format. You can find the Setup Factory language files in your

C.\ Program Fil es\ Setup Factory 6.0\ Languages folder.

General Design

F'mduc:tlnfu:ul % Seftings @ Languages | é SeriaINumberxl =5 Primer Fi|E$|

Languages supported in zetup:

Language

I Default | Language File

Englizh
French
German
Japanese
Spanizh

8 X P

TRUE

C:A\Program FileshSetup Factory B 0L anguageshEnglish. Ing
C:\Program FileshS etup Factory B .0%LanguagesziFrench.ing
C:A\Program FileshS etup Factory B 04%LanguageshGerman.Ing
C:\Program FileshS etup Factory B 0L anguages') apanese.lng
C:\Program FileshS etup Factory 6 .04 anguages\Spanizh.Ing

k. I Cancel Help

The Languages tab of the General Design dialog

130

General Design

Editing Messages

To edit the messages associated with a language:
1. Select the language you want to edit on the Languages tab.

2. Press the Properties button (el), or right-click on the language and select
Properties from the context menu. This will open the Language Module

Messages dialog.

English: C:%Program Files',Setup Factory 6.0 Demo’Languag =l
¥ This iz the default language
Double click a meszage to edit the text:
Category | 1D | Text |ﬂ
tlizc LaNGE MNAME 7liz f
Mizc MISC_BYTES bytes
Button BTH_CAMCEL Cancel
Button BTH_DK oK
Button BTH_BROWSE Browse...
Buttan BTH_START Start
Buttan BTH_CLOSE Cloze
Buttan BTH_YES e
Buttan BTH_KO Ma
Button BTM_TES_TO_ALL Tes to Al
Button BTH_MO_TO_ALL Moo Al
Title DLG_MOTICE Motice
Title DLG_ERROR Error
Title DLG_FATAL Fatal Error
Title DLG COMFIRM Confirm Action LI
p 0k I Cancel Help |

The Language Module Messages dialog

3. Select the message you want to edit.

4. Press the Properties button (£l), or right-click on the message and select
Properties from the context menu. This will open the Edit Message Text dialog.

131

Chapter 8

Edit Message Text x|

Original Text:

“r'ou do not have enough free space on the zelected dive to install the software.

MHew Text:

rou do not have enough free space on the zelected drive to install the m:uftwe;I

[

Category: 1D String:
Motice w| |SCAN_FREESPACE ok | Concel |

The Edit Message Text dialog

5. Edit the message to your liking and press the OK button.

| TIP

3 You can also edit messages using your text editor by editing a language
file directly, and then adding the modified language file to your Setup
Factory project.

You can create a new language module by copying one of the existing
language files and then editing the copy.

Setting the Default Language

If the installer doesn't have a language module for the language being used on the user's
system, the messages from the default language will be used instead.

To set the default language:

1. Select the language on the Languages tab that you want to use as the default
language.

132

General Design

2. Press the Properties button (re]), or right-click on the language and select
Properties from the context menu. This will open the Language Module
Messages dialog.

3. Select the This is the default language check box to make this language the

default language.

Select this
check box
English: C:'Program Files"Setup Factory 6.0 Demo‘Languag ﬂ
¥ Thiz is the default language
Double click a mezsage to edit the text:
Category | D | Text |:|
iz LaNG MAME ol]
Mizc MISC_BYTES bytes
Buttan BTH_CAMCEL Cancel
Buttan BTH_COK [u] 4
Buttan BTH_BROWSE Browse. ..
Button BTH_START Start
Button BTH_CLOSE Cloze
Button BTH_YES Tes
Button BTH_MO Mo
Buttan BTH_TES_TO_aLL Tes to bl
Buttan BTH_WNO_TO_ALL Mata bl
Title DLG_MOTICE Matice
Title DLG_ERROR Errar
Title DLG_FATAL Fatal Error
Title DLG COMFIRM Confirm Actioh j
E‘ 0k I Cancel Help |
The Language Module Messages dialog
[SEE ALSO |

For more information on the Languages tab, please consult the Command

. Reference.

133

Chapter 8

The Serial Numbers Tab

The Serial Numbers tab is where you can create, delete and modify lists of serial numbers
to include in your installer. These serial numbers can then be used with Verify Serial
Number screens to control access to individual features or even the whole installation at
run time.

General Design |

Product Info | ¥ Setiings | & Languages () Serial Numbers |@ Primer Files |

Sernial number list: Q s

Serial numbers in list: "”|>(|1~|4| Generate... |

FrZ-0000000
FyZ-0000001 Export... |

#vZ-0000002
Sy Z-0000003
#vZ-0000004
#vZ-0000005
#Z-0000006 Clear |
#vZ-0000007

#vZ-0000008

#rZ-0000009

=yZ-0000010

#yZ-0000017

#vZ-0000012

Sy Z-000001 3

#vZ-000001 4

Sy Z-0000015

#vZ-0000016 ;l

Ok I Cancel | Help

The Serial Numbers tab of the General Design dialog

Impnrt

For example, you could use the Serial Numbers tab to generate a list of 20,000 serial
numbers, and assign that list to a Verify Serial Number screen that is shown right after
your License Agreement screen at runtime. Your users would be required to enter a valid
serial number on that Verify Serial Number screen in order to proceed with the installation.

The Serial Numbers tab can be especially useful when you release new versions of your
software. For instance, if you learned that a group of serial numbers had been leaked by a

134

General Design

warez site, you could remove those numbers from your lists in the next version of your
installer. That way, users would no longer be able to use those stolen serial numbers to
install your software.

[IMPORTANT

| Although Setup Factory does its best to help secure the installation
process, it can't keep your software safe by itself. The security of your
installations will ultimately depend on how you issue and keep track of
serial numbers.

Setup Factory can only secure the installation of your software; once your
software is installed, it is beyond the protection of Setup Factory's security
features.

If security is a concern, make sure you take whatever other steps are

necessary to protect your software.

Implementing serial numbers is a two step process. The first step is to create a list of
serial numbers on the Serial Number tab.

Creating a List of Serial Numbers

To create a list of serial nhumbers:

1. Press the Add a new serial number list button (). This will open the Name
Password List dialog.

Name Password List x|

Fazzward Ligt Mame:

ITnp Secret Serial Mumber List #1
0K I Cancel |

The Name Password List dialog

2. Enter a name for the new list and press OK to return to the Serial Numbers tab.

135

Chapter 8

3. Press the Generate button (_Benerae|). This will open the Generate Serial
Number dialog.

Generate Serial Number |

— Sernial Humbers

Nurnber of serial numbers o generate; |32EIEIEI _I?

{* Generate sequential serial numbers

Firzt gerial number;
|IMAE!TEIEIEIEI‘|

" Generate random serial numbers
Serial number mazk:

[b s =]

Ok, I Cancel Help |

The Generate Serial Numbers dialog

4. Use the Generate Serial Number dialog to generate your serial numbers.

[NOTE

5 You can have as many serial number lists in your project as you want.

Why more than one list?

Setup Factory allows you to create multiple serial number lists because there may be
cases where you need more than one set of serial numbers to unlock different
products or features. For example, you may want to distribute several related products
in a single setup executable, while still requiring your users to purchase licenses for
each product separately. By creating a separate list of serial numbers for each

product, you can make the verification process product-specific. That way, the user
couldn't just use the serial number from one product to install all of the others.

136

General Design

TIP

You can also import a list of serial numbers from a text file.

To do so, press the Import button on the Serial Numbers tab, and select
the text file that you want to import the serial numbers from.

The text file must have one serial number per line, and each line can have
a maximum length of 100 characters. For example, if your text file began
with the following three lines, each line would become a separate serial
number in the list:

139- EL33T- 256- A
358-1 D10T-444-H
358-1 R11T-001-L

Note: you can also export a list of serial numbers to a text file by using
the Export button.

Once you've created a list of serial numbers, you can add a Verify Serial Number screen
to your installer and configure its settings on the Custom tab of the Screen Properties
dialog to use the serial number list that you created.

[SEE ALSO

For more information on how to add screens to your installer, see page
150. For more information on the Serial Numbers tab, please consult the
Command Reference.

137

mailto:2342kj@LKJ

Chapter 8

Adding a Serial Number to the List

To add a new serial number to the list:

1. Press the New button (=1). This will insert a blank line at the end of the list,

and position the cursor at the beginning of the line.

o Z-0000093
oz -0000099

| E
oK I Cancel | Help

Ready to enter a new serial number

HrZ-0000037 |

2. Type in the serial number.

HvZ-0000038
Q000099

vz-000] E
Qg I Cancel | Help

Typing in a new serial number

HyZ-0000037 |

Changing a Serial Number in the List

To change an existing serial number in the list:
1. Double-click on the serial humber you want to change.

2. Use the Backspace, Delete, and Left or Right arrow keys to edit the serial number,
or just type in a new serial number.

= Z-000001 2
HyZ-0000013

20000017
HrZ-0000018

Editing a serial number

138

General Design

The Primer Files Tab

The Primer Files tab is where you can edit the list of primer files that will be included in
the setup executable. The files in this list will be extracted from the setup executable
before the installation process begins so they can be used at the very start of the
installation process, right after the user runs the setup executable.

General Design x|

F'rou:luctlnh:nl % Setlingsl @ Languagesl é Serial Mumbers 2% Primer Files |

Theze files will be included in the zetup executable and estracted to %TempLaunchDirz at
the start of the installation process.

Primer files:

C:4WProductz\Primer Files\fontreq. exe
C:WProductz\Primer Fileshinztallin'. mp3

0K I Cancel Help

The Primer Files tab of the General Design dialog

[SEE ALSO

2 For more information on Primer Files, see page 43.

For more information on the Primer Files tab, please consult the Command
Reference.

139

Chapter 9

Screens

Screens make up the visual user interface of your installer. They're what the user sees
and interacts with throughout the installation process.

You can use screens to display information to the user, and you can use them to get
information from the user as well.

The screens in Setup Factory use a familiar "wizard" style. Each screen either has an
image on the left-hand side, with text and options on the right, or a banner along the top,
with text and options below. The bottom of the screen has a combination of buttons like
Next, Back, Finish, and Cancel, depending on the screen.

i'E" Widget Designer Setup x|

Installation Folder

Select the installation folder below and click Mest to continue,

The software will be installed in the folder listed below. Toinstall to a different falder,
either type in a new path, or click Change to browse for an exizting folder.

Inztall WWidget Dezsigner to:

C:%Program Filez\Widget D esigner Change... |

Space required on drive: 91 B
Space avallable on zelected dive; 3068 MEB

< Back I Mest > I Cahcel

A Select Install Folder screen at run time

141

Chapter 9

Screens in a Nutshell

Here's a basic overview of screens:
e Screens make up the visual interface of your installer.

e You can have as few or as many screens in your project as you want. In fact, you
don't have to display any screens at all.

e Screens are displayed in the same order as they're listed on the Screens dialog.

e Screens on the Before Installing tab are displayed before files are installed.

e Screens on the After Installing tab are displayed after files are installed.

e Each screen has a screen condition that determines whether the screen will be shown.
e A screen is hidden when its screen condition evaluates to false.

e An optional "Help" button can be enabled on each screen.

e Actions can be performed immediately before or after any screen is displayed. They
can also be performed when the user presses the Help button on a screen.

e You can add actions to the Before and After tabs of the Screen Properties dialog,
and you can also add them to the Help Button Actions dialog.

e Information entered by the user on screens is usually stored in custom variables.

The Screens Dialog

The Screens dialog is where you can add, remove, arrange, preview, export and configure
all of the screens in your Setup Factory project.

There are two tabs on the Screens dialog: the Before Installing tab, and the After
Installing tab. These two tabs represent the two different times during the installation
process when screens can be shown.

At run time, the screens are displayed in the same order as they're listed on these tabs.

142

Screens

You can access the Screens dialog by selecting Design | Screens from the menu, or by

clicking on the Screens icon on the shortcut bar.

bereens x
=] Betore Instaling | =] aiter Instaling |
Screen Mame | Screen Title
M elc g aducth ary tup sLanguac !
Licenze Agreement [Englizh) #Productiame’® Setup %Syslanguagei =9
|dzer Information [Englizh) #Productiame’® Setup %Syslanguagei =9
Scralling Text [Englizh) #Productiame’ Setup #Syslanguage® =19
Select Install Folder [Englizh) #Productiame’® Setup ZSpslanguage® =9
Select Shartcut Folder (Englizh) FProductiame? Setup ZSyslanquage® =19
Ready to Install [English) ZProductt amel Setup Z5pslanguagei =19
PR G R | "2 +4 3 B
k. I Cancel Help

The Before Installing tab of the Screens dialog

The Before Installing Tab

The Before Installing tab lists the screens that will be displayed before the files in your
project are installed. All of the screens on this tab will be shown before Setup Factory
begins installing the files that you added to the Archive and CD-ROM tabs.

The After Installing Tab

The After Installing tab lists the screens that will be displayed after the files in your
project are installed. All of the screens on this tab will be shown after Setup Factory is
done installing the files that you added to the Archive and CD-ROM tabs.

143

Chapter 9

Screen Conditions

A screen condition is simply an expression that determines whether a screen will be
hidden or displayed at run time. If the expression is blank, or evaluates to a true result,
the screen will be shown. If the expression evaluates to a false result, the screen will not
be shown.

Each screen has its own screen condition that determines whether that screen will be
shown. You can edit the screen condition on the Settings tab of the Screen Properties
dialog.

Screen Condition

["EInztal Tppe®" = "Cugtom"] AMD [¥Spslanguagek = 9) ;I

j Bluild... |

The Screen Condition field at the bottom of the Settings tab

Screen Actions

Screen actions are simply actions that you add to the Before and After tabs on a Screen
Properties dialog. Depending on which tab you add them to, these actions will be
performed immediately before or after the associated screen is displayed at run time.

You can use these actions to make your installer respond even more intelligently to field
situations. For example, you could use actions to process the information entered on one
screen, and present the results to the user on the next. Or, you could use actions to
compare the user's system information with what they entered on a User Information
screen, and ask more questions if their information didn't match.

The full palette of Setup Factory actions is available on these action tabs—even advanced
actions like Check Internet Connection and Download File HTTP.

[NOTE

5 There is a Before and After tab for each screen in your project.

144

Screens

The Help Button

You can display an optional Help button on any screen in your installer. Each help button
has an action list associated with it. When the user presses a Help button, the actions in
that button's action list are performed.

Help | < Back I Mewt » I Caticel

The Help button at the bottom of a screen at run time

For example, you could use an Open Document action to open a Word document or HTML
file with instructions on how to use the current screen—or even to play an audio file with

verbal instructions for your users.

| TIP |

want. In fact, you can even change the name of the Help button and use it

(; You can use the Help button to perform any Setup Factory actions you
to serve a completely different function.

To enable the Help button on a screen, select the Enabled check box and the Visible
check box for that button on the Settings tab of the Screen Properties dialog.

To access the Help Button Actions dialog, where you can edit the list of actions that will be
associated with the Help button, press the Actions button (@) on the Settings tab

of the Screen Properties.

Cancel:

Use this button
to access the

Use these check W Enabled ¥ Visible Button Click tab
boxes to enable Help: f

the Help button \\ IHeIp Achiohs... /l

A
¥ Enabled Iv isible

IEanceI

The Help button options on the Settings tab

of the Screen Properties dialog

145

Chapter 9

Screen Properties

The Screen Properties dialog is where you can configure the settings for the currently
selected screen.

To access the Screen Properties dialog:
1. Select the screen that you want to configure on the Screens dialog.

2. Press the Properties button (), use the Ctrl+P hotkey, or right-click and
select Properties from the context menu.

Screen Properties: Welcome - Top Banner (English)
% Settings | Eustoml] Befulel E] .&fterl

— Screen ldentification — Buttons
Screen name: Mext:
IW’elcnme - Tap Banner [English) INe:-:l *
¥ Enabled Iv isible
—window Sdppearance Back:
Window fitle: I< Back

IZF‘rnductName"/o Setup I Enabled I Wisibl
nable izible

Heading: Canech

IW’elcnme ICanceI

Sulb irzzslng: [V Enabled ¥ Visible
IW’eIcnme to the installer for ZProductM ame? %Proc Help:

Image: IHelp Actions... |

[Standard [small.bmp J I Enabled [Visible

— Screen Candition

%5yslanguageX =19 ;I

LI Buaild... |

Ok, I Carcel | Help

The Screen Properties dialog for a Welcome - Top Banner screen

The Screen Properties dialog has four tabs: Settings, Custom, Before, and After.

146

Screens

Settings Tab

The Settings tab is where you can configure common screen options like the title bar text,
heading text, and the text that appears on the buttons at the bottom of the screen. You
can also configure which buttons will appear on the screen, and whether they will be
enabled or disabled (also known as "ghosted" or "greyed out").

The Settings tab is also where you can edit the screen condition that determines whether
the screen is displayed at run time.

The Settings tab displays the same options for every screen in your project.

Screen Properties: User Information (English) X
iy Setings | Eu3tom|] Eeforel] Afterl

— Screen ldentification — Buttons
Screen name: Mext:
IUser Information (E nglizh) INE:-:t *
¥ Enabled ¥ Visible
—Window bdppearance Back:
Window title: I< Back

IZF‘rnductNameZ Setup [# Enabled [Visble

Heading:

Cancel:
IUser Information I[jancel
Sub heading: ¥ Enabled v ‘isible
IEnter your uger information and click Mext to contire Help:

Image: IHelp Actions... |

[5tandard small.bmp J I~ Enabled [Visible

— Screen Condition
#Spslanguage® =9 ;I

LI Build... |
0k I Cancel | Help |

The Settings tab for the User Information screen

147

Chapter 9

Custom Tab

The Custom tab is where you can configure screen-specific settings. This can include
anything from text instructions and field captions, to default values and custom variable
names.

The options on the Custom tab depend on the type of screen that is being configured.

[SEE ALSO |

For more information on the custom tabs for the different screens in Setup
- Factory, please consult the Command Reference.

screen Properties: User Information (English) ﬂ
& Settings Custom IE Befolel E] .&fterl

r Instructions
Text:
— Edit Fields

|Name: Captioh abowve edit field:
|Eompany:

Default text in edit fizld:

|°/;F|egDrgani2atinn?é

Staore text in wariable: inirmuim: I azimum;

|ZU$erEnmpan_l,JZ |1 |'| ao

Browse button shyle:

[naNE | W visble W Enabled
e B ! Data validation lype: ™ &lphanumeric ' Mumeric

0k I Cancel Help

The Custom tab for the User Information screen

148

Screens

Before Tab

The Before tab is for actions you want performed before the currently selected screen is
displayed. These actions are performed after the screen condition is evaluated, so if the
screen condition isn't met, none of the actions on this tab will be performed. In other
words, the actions on this tab are only performed if the screen is going to be displayed.

[SEE ALSO

7

screen Properties: Welcome - Side Banner (English) ﬂ

% Settingsl Cuztom E Before |E| .&fterl

For more information on actions, see page 159.

These actions are executed before the screen is displayed, after the Screen Condition is evaluated.

Cornmand

Tell the uzer to cloze all applications
Show Message Baox [If you have any applications curently running, please close themn before proceding aty furthe...

Tell the user that ['m nat ':::I::.ir'u
Show Meszage Box [I'M HOT JOKINGIHT

ILine: 4

B < O 0% m + 4 @& & |1 itemns selzcted

0k I Cancel | Help

The Before tab of the Screen Properties dialog

149

Chapter 9

After tab

The After tab is for actions you want performed after the currently selected screen is
displayed. These actions are performed after the user presses the Next button to advance

to the next screen.

| SEE ALSO

2 For more information on action tabs, see page 161.

Screen Properties: User Information (English) X

& Setting$| Eu3tom|] Before £ Aiter |

Thesze actions are executed after the zoreen iz dizplayed if the Nedt button iz pressed,

Cormmand

Frivate meszage for Juan Valdez
IF ["EgerMame" = "JuanValdez"]
Show Yes/Mo Dialog [%vezMoResults = Hey Juan, can you send me some more of dem cool coffee beans?)
IF ["%7esMoR ety = "vES")
Show Meszage Box (Thanks, amigal |'ve been burnin' the midnight oil again.)

EMDNIF
EMDN IF
By x B % B + 4% @& & |1 items selected ILine:1

0k I Cancel | Help

The After tab of the Screen Properties dialog

150

Screens

Adding Screens

To add a screen:

1. Open the Screens dialog by selecting Design | Screens from the menu.

screens x|
=] Betore Instaling | =] aiter Instaling |
Screen Mame | Screen Title
ne - Top Banner [English) !
Licenze Agreement [Englizh) =9
|dzer Information [Englizh) #Productiame’® Setup %Syslanguagei =9
Scralling Text [Englizh) #Productiame’ Setup #Syslanguage® =19
Select Install Folder [Englizh) #Productiame’® Setup ZSpslanguage® =9
Select Shartcut Folder (Englizh) FProductiame? Setup ZSyslanquage® =19
Ready to Install [English) ZProductt amel Setup Z5pslanguagei =19
PR G R | "2 +4 3 B
k. I Cancel Help

The Before Installing tab of the Screens dialog

2. If you want to add a screen that will appear before your files are installed, select
the Before Installing tab.
If you want to add a screen that will appear after your files are installed, select
the After Installing tab.

3.

Select the line on the Screens dialog where you want the screen to be inserted.

151

Chapter 9

4. Press the Add button (), use the Insert hotkey, or right-click and select Add
from the context menu. This will open the Screen Gallery.

Screen Gallery x|

H =5 =

Eﬂ IEninsh j

— D escnption

Check Bowesz 12 Edit Bowes : o .
If this screen iz displayed, the setup will abart.
Set the zcreen's conditions so that it will anly
appear if paur criteria are zatisfied.
Finis:hed Screen - Finizhed Screen - Licehze — [Preview
Side Banner Top Banner Agreement g .@f
List Bow Radio Buttons 12 Ready to Instal
Screen
et [T
== == = =
] I Cancel
The Screen Gallery
5. Optional:

Select a language in the drop-down list on the upper right corner of the Screen

Gallery. This will display the screens for that language in the list on the left.

6. Select the screen that you want from the list of screens on the left.

[NOTE

£

Screen Gallery.

A preview of the selected screen will appear on the right-hand side of the

7. Press the OK button to add the selected screen to the Screens dialog.

152

Screens

Removing Screens

To remove a screen:
1. Select the screen that you want to remove on the Screens dialog.

2. Press the Remove button (E).

Editing Screens

To edit a screen's properties:
1. Select the screen you want to edit on the Screens dialog.

2. Press the Properties button (@), use the Ctrl+P hotkey, or right-click and
select Properties from the context menu. This will open the Screen Properties

dialog for the screen you selected.

3. Edit the properties for the screen.

| TIP

You can also double-click on a screen to display its Screen Properties
: ‘ dialog.

Rearranging Screens

Your screens will be displayed in the same order as they're listed on the Before Installing
and After Installing tabs. The screens at the top of the list are displayed first, and the
screens at the bottom of the list are displayed last.

To change the order that your screens will appear in:
1. Select the screen that you want to move on the Screens dialog.

2. Use the Move Up (1|) and Move Down (0) buttons or the Ctrl+Up and
Ctrl+Down hotkeys to reposition that screen in the list.

153

Chapter 9

| TIP

drag and drop a screen, left-click on the screen and hold the left mouse

(; You can drag and drop individual screens to reposition them in the list. To
button down while you drag the screen to another line.

You can move screens between the Before Installing and After Installing
tabs by cutting and pasting them.

Previewing Screens

Once you've configured a screen, you can see how it will look at run time without having
to build the installer.

To preview a screen:
1. Select the screen that you want to preview on the Screens dialog.

2. Press the Preview button (‘E) at the bottom of the Screens dialog. Setup
Factory will display a preview of the screen with its current settings.

|
BXose 13 3 &

4
/ K I Cancel Help
/

The Preview button

3. When you've finished examining your work, press any of the buttons at the
bottom of the screen to return to the Screens dialog.

154

Screens

Cutting, Copying and Pasting Screens

You can cut, copy and paste screens within the same tab, between the Before Installing
and After Installing tabs, and even between Setup Factory projects.

[NOTE |

You can open a different project file or even switch to another instance of
Setup Factory to copy screens from one project to another.

5 When you cut or copy screens, they are placed in the Windows clipboard.

To cut a screen and place it in the clipboard:
1. Select the screen you want to cut.

2. Press the Cut button (1), use the Ctrl+X hotkey, or right-click on the screen
and select Cut from the context menu.

To copy a screen and place it in the clipboard:
1. Select the screen you want to copy.

2. Press the Copy button (), use the Ctrl+C hotkey, or right-click on the screen
and select Copy from the context menu.

To paste a screen from the clipboard onto the Before Installing or After Installing tab:
1. Select the line on the Screens dialog where you want the screen to be inserted.

2. Press the Paste button (), use the Ctrl+V hotkey, or right-click on the screen
and select Paste from the context menu.

| TIP

You can hold a Ctrl or Shift key down to select multiple screens when
preparing to cut or copy them.

155

Chapter 9

Exporting Screens

If you find that you're often making the same changes to a particular type of screen, you
might want to consider exporting a version of the screen to use as a template. Once
you've exported a screen, you can add a new copy of it right from the Screen Gallery, with
all of your custom settings intact.

Exporting a screen essentially allows you to build your own screen types using the
existing Setup Factory screens as templates. When you export a screen, you're saving a
copy of the screen as it is currently configured. This feature is especially useful when

translating screens to foreign languages.
To export a screen:
1. Select the screen that you want to export on the Screens dialog.

2. Press the Advanced operations button (@) at the bottom of the Screens
dialog, and select Export Screen from the advanced operations menu. This will
open the Save As dialog so you can name the data file that will contain the

screen's properties.

3. Enter an appropriate name for the screen's data file.

In order for the screen to be listed in the Screen Gallery, you must save the file
beneath the Set up Fact or y\ Scr eens folder with a . dat file extension.

For example, you might save the file as:
C:\ Program Fi | es\ Set up Fact ory\ Screens\ Engl i sh\ myscr een. dat

4. Press the Save button to save the screen's settings to the . dat file.

5. Optional:
Using a text editor, create an INI file for the screen in the folder where you saved
the . dat file. This INI file is where you can specify the name and description of

the screen that will appear in the Screen Gallery, as well as the names of the
screen's . dat and . bnp files. (Please open one of the existing INI files to see

the proper format.)

156

Screens

6. Optional:
If you want a preview image to be displayed on the Screen Gallery when your
exported screen is selected, create a preview bitmap (. bnp) image of your
screen from a screenshot, and save it beneath the Set up Fact ory\ Scr eens
folder. (Please examine one of the existing preview bitmaps with an image editor
to see the proper dimensions and image format.)

Importing Screens

To import a screen that you've exported:

1. Press the Advanced operations button (@) at the bottom of the Screens
dialog, and select Import .DAT File from the advanced operations menu. This
will open the Open dialog so you can browse for the data file that you want to

import.

2. Enter the path and filename of the . dat file for the screen you want to import in

the File name field, or select the screen using the Open dialog.

3. Press the Open button (@) to import the screen described by the . dat

file into your project.

157

Chapter 10

Actions

What Are Actions?

Actions are specialized commands that your installer can perform at run time. Each action
is a discrete instruction that tells the installer to do something—whether it's to open a
document, search for a file, create a shortcut, or modify a Registry key.

A wide variety of actions are available in Setup Factory. In fact, there are more than fifty
different actions you can use, from simple file operations to advanced functions like the
Submit to Web and Read File Association actions. There are actions to register DLLs,
actions to register fonts, actions to manipulate Windows services, actions to manipulate
strings, actions to start and stop programs, actions to get input from the user, and more.

[SEE ALSO |

For a complete list of the 50+ actions, see page 263 in this user's guide,
- or see the Actions Index in the Command Reference.

Actions are a lot like programming statements, but you don't need to be a programmer
to use them. At their simplest, actions are just commands that you can use to perform
various installation tasks. Need to write a value to the Registry? Add a Modify Registry
action. Need to define a custom variable? Add an Assign Value action. It's really that
simple.

Of course, actions can also be used together in very advanced ways. The IF, WHILE, and
Assign Value actions provide the basic tools a programmer needs to build sophisticated
decision-making into an installer. You can use the IF and END IF actions to form
conditional blocks, and you can use the WHILE and END WHILE actions to set up loops.
You can even jump between lines on an action tab using the Label and GOTO Label
actions.

159

Chapter 10

Actions in a Nutshell

Here's a basic overview of actions:

160

Actions can happen at different times during the installation process; these times
are represented by the various action tabs in the Setup Factory design environment.

Actions are performed in the same order as they're listed on the action tabs
(from the top down).

You can add as many actions to your project as you want.

You can mix and match actions to perform complex tasks.

You can use actions to define custom variables.

You can share information between actions by using variables.

Actions are flexible...if there's any installation task you need performed, chances
are you can do it with actions.

You can use actions to customize the installation process completely—even
replacing some of the built-in functionality of Setup Factory.

You can import and export action lists to share them with others.

You can use IF and END IF actions to form conditional blocks.

You can use WHILE and END WHILE actions to set up loops.

You can use Label and GOTO Label actions to jump between lines on an action tab.

You can indent blocks of actions to help set them apart visually on the action tabs.

You can use the Blank Line and Comment actions to clarify your action lists with
whitespace and notes.

Actions

Action Lists

An action list is simply a sequence of one or more actions. We usually use this term to
refer to a sequence of actions that performs a single function or serves a common
purpose. It doesn't have to be that specific, though; "action list" can just as easily refer to
all the actions on a tab, or to a handful of unrelated actions that you want to select and
export to a file for future use.

Action Tabs

Action tabs are found on several dialogs throughout Setup Factory. Each action tab
corresponds to a different time during the installation process when actions can be
performed.

actions x|

El Startup EI Before Instaling |E| .t'-\fterlnstallingl E Shutdownl

These actions are executed before the files are installed, after the "Before Installing" screens are displayed.

Carnrnard |

Search for the exigtence of "Super Duper System Rebooter.exe’ on the uzer's system
Search for File [ZSuperDuperSpsternFeboaterDirk = location of Super Duper System Aebooter. exe]

IF ["=SuperDuperSpstemBebooterDirk' = "NOT FOUND"]
Show Mezzage Box [Super Duper System Rebooter must be installed first Please install Super Duper System
Abort Setup

EMD IF

Install our CarpetCleaner. dll if the user iz running ‘windows MT3

IF [ZlsWwinMT 3% = TRLE]
Inztall File (5T emplaunchDirzhCarpetCleaner.dil - &5 waDick)
Reqisgter File [£5SpzDirkhCarpetCleaner.dil]

EMD IF

BEr X B % " +3 & F |13item$inlist |
0k I Cancel | Help

The Before Installing tab of the Actions dialog

161

Chapter 10

For example, the Before Installing tab of the Actions dialog is where you would put all the
actions that you want performed immediately before the files in your project are installed.

You can add as many actions to an action tab as you want. The actions on a tab are
performed in sequence from the top down, like lines in a program. In fact, each action tab
is essentially a miniature program that you can build into your installer.

There are four dialogs in Setup Factory where action tabs can be found: the Actions
dialog, the Screen Properties dialog, the Help Button Actions dialog, and the Uninstall
dialog.

The Actions Dialog

The Actions dialog has four action tabs: Startup, Before Installing, After Installing, and
Shutdown.

Startup

The Startup tab is for actions you want performed at the very beginning of the
installation process, before any files are installed and before any screens are
displayed.

Before Installing

The Before Installing tab is for actions you want performed before Setup Factory
begins installing the files you added to the Archive and CD-ROM tabs, after the
"Before Installing" screens are displayed.

After Installing

The After Installing tab is for actions you want performed after Setup Factory
finishes installing the files you added to the Archive and CD-ROM tabs, before the
"After Installing" screens are displayed.

Shutdown

The Shutdown tab is for actions you want performed at the end of the installation
process, after all the files are installed and after all the screens are displayed. In
other words, this tab is for actions you want performed right before the installer
exits.

162

Actions

The Screen Properties Dialog

The Screen Properties dialog has two action tabs: Before, and After.

Before

The Before tab is for actions you want performed before the currently selected
screen is displayed. These actions are performed after the screen condition is
evaluated, so if the screen condition isn't met, none of the actions on this tab will
be performed. In other words, the actions on this tab are only performed if the
screen is going to be displayed.

Screen Properties: User Information (English) |
i Settingsl Cuztom E Before |E| .&fterl

These actions are executed before the screen iz displayed, after the Screen Condition is evaluated,

Cornmand

Abort before showing the User [nformation screen if the user iz paranoid
Show ves/MNo Dialog (resMoResult® = Are pou afraid of identity theft?)
IF ["%YesMoResult" = "vES")
Show Yes/Mo Dialog [ZYesMoFesult’ ='wW'e need to ask for zome personal information. 1z that okay?]
IF ["=7esMoResulty" = "N0"|
Show Mezsage Bos [Okay. . we won't agk pou any questions then. Abarting the installation..]
Abort Setup
EMD IF
EMD IF

Er X B % " +4 e 7 |1Ditemsinlist |

Ok, I Carcel | Help

The Before tab of the Screen Properties dialog for the User Information screen

163

Chapter 10

After

The After tab is for actions you want performed after the currently selected screen

is displayed. These actions are performed after the user presses the Next button to

advance to the next screen.

The Help Button Actions Dialog

The Help Button Actions dialog has one action tab: Button Click.

Button Click

The Button Click tab is for actions you want performed when the user presses the

optional Help button for the currently selected screen.

Help Button Actions

£ Button Cick |

Theze actions are executed when the Help button is clicked.

Cormmand

Check Intermet Connection (%l sConnected’ |

IF [%lzConnectedk = TRUE]
open the online HTML help file for the Select Packages screen
Open Document [open bitp: WY wick edwidgets. comwidgetdesignerhelphselectpack ages. hitml]

EWD IF

IF [%lzConnectedi = FALSE]
open the local HTML help file for the Select Packages screen
Open Document [open XTemplaunchDiri\SelectPack agesHelp. htnl)

EMD IF

By X B ¥ P +3 & |13itemsinlist |

ok I Carcel |

Help

The Button Click tab of the Help Button Actions dialog

164

Actions

To access the Help Button Actions dialog, press the Actions button (| petons |) on
the Settings tab of the Screen Properties dialog.

— Buttons
MNext:

INer:t ¥
¥ Enabled ¥ Visible

Back:

|< Back

¥ Enabled ¥ Visible

Cancel: Use this button
IEanceI to access the

Use these check =
boxes to enable ¥ Enabled v Visible

the Help button Help: A/
\\‘IHEHJ Actions... |

¥ Enabled Iv isible

|~ Button Click tab

The Actions button on the Settings tab

of the Screen Properties dialog

TIP |

3 You can display a Help button on any screen in your installer by enabling
it on the Settings tab of the Screen Properties dialog for that screen.

To enable a button, simply select the Enabled and Visible check boxes
for that button on the Settings tab.

The Uninstall Dialog

The Uninstall dialog has two action tabs: Before Uninstalling, and After Uninstalling.

Before Uninstalling

The Before Uninstalling tab is for actions you want performed before Setup Factory
begins uninstalling the files you added to the Archive and CD-ROM tabs.

165

Chapter 10

After Uninstalling

The After Uninstalling tab is for actions you want performed after Setup Factory
finishes uninstalling the files you added to the Archive and CD-ROM tabs.

unnstall x|

&y Settingsl El Before Uninztalling E After Uninstalling |

These actions are executed after the filez and shartcuts are uninstalled.

Cornmand |
IF (HDERMOH)

todify Registry [Delete Kew: HEEY_CURRENT_USERMS aftwarehwicked widgetz\widget Dezigner 1.0 Eval...
EMD IF
IF IHDEROH]

todify Reagistry [Delete Key: HEEY_CURRENT_USERMS aftwarehwicked Widgetz\widoet Deszigrer 1.0]
EMD IF

B X B 3 R+t 35 5@ & IBitemsinIist I
0k I Cancel | Help

The After Uninstalling tab of the Uninstall dialog

[NOTE

The action tabs on the Uninstall dialog allow you to "undo" any custom

@ actions that were taken when your software was installed. You only need
to use these tabs if your installer performs any actions at installation that
aren't automatically undone by the uninstaller.

The general rule of thumb is, if you add an action to do something during

the installation process, and it needs to be undone when your software is
uninstalled, you'll need to add actions to the Uninstall dialog to do so.

166

Actions

Adding Actions

To add an action:

1. Select the line on the action tab where you want the action to be inserted.

2. Press the Add Action button (@), use the Insert hotkey, or right-click and

select Add from the context menu. This will open the list of action categories

right next to the Add Action button.

£ Startup |] Before Installingl £ After Installingl] Shutdownl

Conkrol Structures

Dialogs

File Information
File Operations
Folders

IMI Files
Internek
OpenjClose Programs
Reboot
Registry
Services
Shaortcuts
Strings

Teut Files

‘ariables

Rt

Abork

Blank Line
Cornrmenk
EMD IF

END \WHILE
GOTO Label

Label !

WHILE

‘Before Installing” screens are dizplayed.

A B 4 R+ 35 5@ 5 IDitemsinIist I

o]

Cancel |

Help

The list of actions for the Control Structures category

3. Select the category that the action you want to add belongs to.

4. Select the action you want to add from the list that pops up. This will open the

appropriate Action Properties dialog.

167

Chapter 10

5. Edit the properties for the action.

[SEE ALSO
2 For a complete list of the actions you can add, see Actions Index in the
- Command Reference, or see page 263 in this User's Guide.

For detailed information on each action, including settings and error codes,
please consult the Command Reference.

Removing Actions
To remove an action from the Actions tab:
1. Select the action you want to remove.
2. Press the Remove Action button (]), use the Delete hotkey, or right-click on

the action and select Remove from the context menu.

Editing Actions

To edit an action's properties:
1. Select the action you want to edit.

2. Press the Properties button (@), use the Ctrl+P hotkey, or right-click and
select Properties from the context menu. This will open the Action Properties
dialog for the action you selected.

3. Edit the properties for the action.

| TIP

You can also double-click on an action to display its Action Properties
: ‘ dialog.

168

Actions

Rearranging Actions

Actions are performed from the top down in the same order they're listed in. The action at
the top of a list is performed first, and the action at the bottom of a list is performed last.

To change the order that actions are performed in:
1. Select the action you want to move.

2. Use the Move Up (1|) and Move Down (3) buttons or the Ctrl+Up and
Ctrl+Down hotkeys to reposition that action in the list.

| TIP |

You can drag and drop individual actions to reposition them in an action
list. To drag and drop an action, left-click on the action and hold the left
mouse button down while you drag the action to another line.

(I You can rearrange multiple actions at once by cutting and pasting them.

Indenting Actions

You can add indentation to help make your action lists easier to read. This is especially
useful to help set blocks of actions apart when using actions like IF and END IF.

A good rule of thumb is to indent your code by one level after every IF or WHILE action,
and to unindent it by one level at every END IF or END WHILE.

[NOTE

Indentation has no effect on how the actions are performed at run time.
Actions have the same effect whether they're indented or not.

169

Chapter 10

To indent a block of actions:
1. Select the actions you want to indent.

2. Press the Increase Indent button (E), use the Ctrl+H hotkey, or right-click on
the actions and select Increase Indent from the context menu.

Unindenting Actions

To remove a level of indentation from a block of actions:
1. Select the actions you want to remove a level of indentation from.

2. Press the Decrease Indent button (E|), use the Ctrl+G hotkey, or right-click on
the actions and select Decrease Indent from the context menu.

Cutting, Copying and Pasting Actions

You can cut, copy and paste actions within the same action tab, between action tabs, and

even between Setup Factory projects.

[_NOTE |

When you cut or copy actions, they are placed in the Windows clipboard.
You can open a different project file or even switch to another instance of
Setup Factory to copy actions from one project to another.

To cut an action and place it in the clipboard:
1. Select the action you want to cut.

2. Press the Cut button ((4]), use the Ctrl+X hotkey, or right-click on the action and

select Cut from the context menu.

170

Actions

To copy an action and place it in the clipboard:
1. Select the action you want to copy.

2. Press the Copy button (), use the Ctrl+C hotkey, or right-click on the action
and select Copy from the context menu.

To paste an action from the clipboard onto the Actions tab:
1. Select the line on the Actions tab where you want the action to be inserted.

2. Press the Paste button (@), use the Ctrl+V hotkey, or right-click on the action
and select Paste from the context menu.

| TIP

You can hold a Ctrl or Shift key down to select multiple actions when
preparing to cut or copy them.

Exporting Actions

You can build a library of often-used actions by exporting them to Setup Factory Action
Archive (. sf a) files. This also makes it easier to share action lists with other users.

To export actions from the Actions tab:
1. Select the actions you want to export.

2. Press the Advanced operations button (@) at the bottom of the Actions
dialog, and select Export Actions from the advanced operations menu.

(You can also use the Ctrl+E hotkey, or right-click on the actions and select
Export Actions from the context menu.)

3. Enter a name for the Setup Factory Action Archive (. sf a) file on the Save As

dialog and press the Save button.

171

Chapter 10

Importing Actions

To import actions from a Setup Factory Action Archive (. sf a) file:

4.

Select the line on the action tab where you want the actions to be inserted.

Press the Advanced operations button (=) at the bottom of the Actions
dialog, and select Import Actions from the advanced operations menu.

(You can also use the Ctrl+T hotkey, or right-click on the actions and select
Import Actions from the context menu.)

Use the Open dialog to select the Setup Factory Action Archive (. sf a) file

containing the actions you want to import.

Press the Open button to import the actions from the selected file.

Importing Registry Values

You can "import" registry keys and values from your system's Registry and insert them

into an action list in the form of Modify Registry actions. This can be especially useful

when you need to make several Registry modifications for your software.

To import a registry value:

172

Select the line on the action tab where you want the Modify Registry actions to
be inserted.

Press the Advanced operations button (@) at the bottom of the Actions
dialog, and select Import Registry Values from the advanced operations menu.
This will open the Import Registry Key/Values dialog.

Actions

Import Registry Key/¥alues 5[

----- £ HKEY_CLASSES_ROOT ﬂ

----- £3 HKEY_CURRENT_CONFIG
----- £ HKEY_CURRENT_USER

>
21 ACD Systems
23 Awcidzpunk, _I

o b

—%What do you want to impart?

" Sub keys only " Walues anly " Sub keys and walues

[~ Recurse sub keys

Ok I Cancel

The Import Registry Key/Values dialog

Use the Import Registry Key/Values dialog to select the Registry key you want to

import.

If you want to import all of the sub keys from the key you selected, but none of

the values, select the Sub keys only option.

If you want to import all of the values from the key you selected, but none of the

sub keys, select the Values only option.

If you want to import both the sub keys and values from the key you selected,

select the Sub keys and values option.

Optional:

Select the Recurse sub keys check box if you want to import the sub keys
and/or values from all of the sub keys found beneath the Registry key you
selected. In other words, this check box controls whether any Registry keys or
values "deeper" than the one you selected will be imported as well.

173

Chapter 10

6. Press the OK button to import the selected Registry keys and/or values.

Setup Factory will automatically add the appropriate Modify Registry actions to
the actions list.

Using Control Structures

Setup Factory provides several actions that you can use to build control structures into
your installer: IF, END IF, WHILE, END WHILE, Label, GOTO Label, and Abort.

IF and END IF

The IF action begins what's known as a conditional block. A conditional block is simply a
series of actions that will only be performed if a condition is met. In this case, the
condition is an expression entered on the Action Properties dialog for the IF action itself.

Each IF action must be paired with an END IF action. The END IF action marks the end of
the conditional block begun by the corresponding IF action.

A conditional block is therefore defined as the series of actions between an IF action and
the corresponding END IF action.

Here's an example of a simple conditional block:

IF %\ ariableB eing T ested® = &)
Show Mezzage Box [The value of the vanable iz fivel]
EMD IF

[NOTE

The actions in a conditional block are usually indented to help set them
apart visually from other actions.

If an IF action's condition evaluates to a true result, all of the actions between the IF
action and the next corresponding END IF action are performed. If an IF action's condition

174

Actions

evaluates to a false result, the conditional block is "skipped," and the next action after the
END IF action is performed.

For instance, in the preceding example, the message "The value of the variable is five!"
would only be shown if the value in the variable %VariableBeingTested% was 5.

Conditional blocks can be nested, which is to say that you may begin and end one
conditional block within another.

For example:

IF ["EFavontebuzic®" = "azz"]
Show Meszzage Box [Hey there coal cat.]
IF ["EFavariteSong®' = "PenniesFromHeawven'']
Show Meszsage Box [Here's your favarite song.]
Open Document [open ZapplirzhBilie HolidaytPennies From Heaven. mp3)
EMD IF
EMD IF

In this example, the first IF action matches up with the last END IF action, and the second
IF action matches up with the first END IF action. The second IF action that tests
%FavoriteSong% to see if it contains the string "PenniesFromHeaven" would only be
performed if %FavoriteMusic% contained the string "Jazz".

WHILE and END WHILE

The WHILE action begins what's known as a while loop. A while loop is simply a series of
actions that will be performed repeatedly for as long as a condition is met. In this case,
the condition is an expression entered on the Action Properties dialog for the WHILE
action itself.

Each WHILE action must be paired with an END WHILE action. The END WHILE action
marks the end of the loop begun by the corresponding WHILE action.

A while loop is therefore defined as the series of actions between a WHILE action and the
corresponding END WHILE action.

175

Chapter 10

Here's an example of a short while loop:

Bzsign Value [Zoounter® = 1)
WHILE [Fcounter® < 5]
Create Directon [FAppDirkiFolder Zcounter)
Agzzign Value [Hoounterk = Zcounterk + 1)
EMD wWHILE

[NOTE

The actions in a while loop are usually indented to help set them apart
visually from other actions.

If a WHILE action's condition evaluates to a true result, all of the actions between the
WHILE action and the next corresponding END WHILE action are performed. When the
END WHILE action is reached, Setup Factory goes back to the corresponding WHILE action
and evaluates its condition again. The actions between the WHILE and the corresponding
END WHILE continue to "loop" in this fashion until the WHILE action's condition evaluates
to a false result. When that happens, the actions in the while loop are "skipped," and the
next action after the END WHILE action is performed.

For instance, in the preceding example, the while loop would be performed repeatedly for
as long as the value in the variable %counter% was less than 5. Since %counter% is set
to 1 before the while loop and incremented by 1 before the END WHILE action, this while
loop would be performed four times. The result of the loop would be four directories
created in %AppDir%, named:

Fol der
Fol der
Fol der
Fol der

A WN PP

[NOTE

@ Each trip through a while loop is called an "iteration."

176

Actions

Like conditional blocks, while loops can also be nested, which is to say that you may begin
and end one loop within another. For example:

Azzign Walue [%a%k = 0]
WHILE [3a% < 100]
Thiz loops 20 times
Azzign Value [£b% = 0]
WHILE [%b% < &)
Thiz loopsz & times
Azzignalue [%b% = ZbX + 1)
EMD wHILE
Azzign Value [Za% = Eak + 2bE]
EMD WwHILE
Show Mezsage Box [FakX]

In this example, the inner loop would be performed 5 times during each trip through the
outer loop. At the end of the last iteration through the outer while loop, the variable %a%
would equal 100.

Label and GOTO Label

The Label action is used to assign a name to a specific line in an action list. This name or
"label" can then be used as the destination for a GOTO Label action.

The GOTO Label action can be used to "jump" directly to the line occupied by a specific
label in the same action list. You can use a GOTO label action to "skip" over other actions.
For example:

GEOTO Label [T arget]
Show Meszzage Box [Thiz action never gets performed. |
Target

In this example, the Show Message Box action will never be performed, because the
GOTO Label action causes Setup Factory to jump directly to the label nhamed "Target".

177

Chapter 10

Although GOTO Label actions have no intelligence of their own, you can place them in
conditional blocks to make jumps that are only performed when certain conditions are
met. For example:

Check. Internet Connection [%lsConnected® |
IF [#lzConnected?)

GOTO Label [Uzer 1z Connected)
EMD IF

Show Meszsage Box [vou have no Internet connectionl]
Ahbort Setup

Ilzer [z Connected

In this example, the GOTO Label action is only performed if the user's system is
connected to the Internet.

Abort

The Abort action immediately aborts the installation process and exits the installer. This
has a similar effect to the user pressing the Cancel button. (The Cancel button asks the
user to confirm before exiting; the Abort action doesn't ask, but instead just exits
immediately.)

An example of where you might want to use an Abort action is in a custom error handler,
after an irrecoverable error has been encountered.

Adding Comments and Whitespace

Setup Factory provides two important actions that you can use to make your action lists
easier to read. The first and most important one is the Comment action.
Comments

The Comment action allows you to add notes to your action lists in order to make them
easier to understand. Each comment contains a line of text that will be completely ignored
by the installer at run time. Because this text will be ignored, you can write anything you
want in a Comment action, and it will have no effect on how the installer operates.

178

Actions

Comment actions are displayed in a color that makes them easy to recognize on the
action tabs. (The comments are displayed in green by default, but you can change this
color on the Action Tabs tab of the Preferences dialog. To access the Preferences dialog,
select Edit | Preferences from the menu.)

You should make a habit of adding comments to your action lists as you build them. If
adding comments seems like a waste of time, consider how much time you will spend
working on these actions in the future. Complex action lists that make perfect sense to
you now might take a few moments to interpret the next time you need to make changes
to a project. A few comments written while things are fresh in your mind can minimize the
amount of re-thinking required.

Comments are especially important in a multi-user environment. If it's foreseeable at all
that anyone else may need to work on your Setup Factory project in the future, do your
organization a favor and document your actions well.

Here are some tips for using Comment actions:

e Use comments to summarize large blocks of actions. This way, you only have to
read the comment to know what the actions do. It's easier to read one line of text
than it is to decipher a long list of actions.

e Use comments to explain why an action is needed. This is especially important
when the purpose of an action isn't obvious.

e Use comments to highlight important actions, or to label different parts of your
action lists so they're easier to find.

e Use comments in a team environment to help keep track of changes (and who
made them).

e Use comments to document the decision process that led you to choose one
installation approach over another. This could save you time if you ever find
yourself considering other approaches again.

e Use comments appropriately. Don't waste time explaining simple actions that are
readily apparent.

179

Chapter 10

Think of comments as investing a little bit of time now to save you a lot of time over the
long run. You only have to write a comment once, but you will benefit from the comment
many times over. In the long run, well-written comments will save you time, time and
time again.

Blank Lines (Whitespace)

Blank Line actions allow you to add vertical whitespace to your action lists. ("Whitespace"
is a term programmers use to describe things like blank lines and spaces that are used to
improve the readability of their code.) Blank Line actions are ignored by the installer;
their only purpose is to allow you to separate actions with whitespace on an action tab.

You can use Blank Line actions to make your action lists easier to read. For example,
separating groups of actions with one or more blank lines makes it easier to recognize
that the actions are meant to work together as a group.

Handling Errors

Even the most well-designed installers can run into situations that generate errors. For
instance, connection problems might prevent an HTTP download from succeeding, or an
INI file you need to read from may have been deleted by a careless user.

Setup Factory gives you two ways to respond to such errors:

Built-in error handling (The On Error tab)

You can use the standard error handling features built into each action, which you
can configure using the On Error tab of the action's properties dialog.

Custom error handling (Using actions)

You can use your own combination of actions to respond to the error. These actions
could be contained in an IF/END IF block that checks built-in variables like
%LastErrorNum% to determine whether an error occurred. Or, the actions could be
assigned a label and called directly using the Continue at label setting on the On
Error tab.

180

Actions

Built-in Error Handling (The On Error Tab)

Every action in Setup Factory that could generate an error at run time has an On Error tab
on its Action Properties dialog. You can use the On Error tab to configure how Setup
Factory responds when an error is generated by that action.

Action Properties: Download File HTTP x|
& Seltings Q On Errar |

— Uzer Motification

" Mone

" Simple
" Werboze
{% Custom:

Oh oh.]

—achon
" Continue

{*' Continue at labek

My Yery Own Feally Cool Error Handler j

" Abort setup

0K I Cancel Help

The On Error tab of an Action Properties dialog

181

Chapter 10

Setting the User Notification Options

The User Notification section of the On Error tab allows you to control how much
information is given to the user when an error occurs—or even whether the user is
notified at all.

There are four user notification options you can choose from:

None

No error message is shown to the user; the user is not notified about the error at
all.

Simple

A simple error message is displayed on a dialog window. The error message lets the
user know that something happened, but provides only basic information about the
type of error that occurred.

Verbose

A more specific error message is displayed. The message might include pertinent
details about the error, such as the URL that a failed HTTP download action was
trying to connect to.

Custom

A custom error message of your own is displayed. You can enter your own message
text directly onto the On Error tab when this option is selected.

| TIP

and %LastErrorDetails% to incorporate the standard error message text in

(I You can use built-in variables like %LastErrorNum%, %LastErrorMsg%
your custom error messages.

To set the level of user notification you want, simply select the appropriate option in the
User Notification section of the On Error tab.

182

Actions

— Uzer Motification
" Mone

" Simple

" Werbose
% Custom;

A, wou broke my installer! d

[

The User Notification section of the On Error tab

Setting the Action Taken After an Error Occurs

You can choose whether you want the installer to abort because of an error, or continue
performing actions. If you have any labels defined on the Actions tab, you can even tell
Setup Factory to go to one of the labels and continue the installation from there.

There are three on-error action settings you can choose from:

Continue

After an error, the installation continues with the next action in the list—i.e., the

next action on the current action tab.

Continue at label

After an error, the installer goes directly to the specified label and continues the
installation process from there. This option is only available if there is at least one
label defined on the current action tab.

Abort setup

After an error, the installation is aborted. No more actions are performed, and no

more screens are shown.

To set the on-error action you want, simply select the appropriate option in the Action
section of the On Error tab.

183

Chapter 10

Action

% Cortinue
{7 Cortitue at abel:

| -

 Ahort setup

The Action section of the On Error tab

Custom Error Handling (Using Actions)

In addition to the "built-in" error handling provided by Setup Factory, you can use Setup
Factory actions to respond to errors in a custom fashion. For example, you might want to
try an alternative download site if an HTTP download fails. Or, you might want to present
a Yes/No dialog to the user and let them choose whether to abort the installation.

There are two ways you can trigger a custom error handling routine:

Checking %LastErrorNum%

You can use an IF action to check the built-in variable %LastErrorNum% and

determine whether the previous action generated an error.

Using Continue at label

You can use the Continue at label option on an action's On Error tab to jump to
your custom error-handling routine when that action generates an error.

Checking %LastErrorNum%

%LastErrorNum% is a built-in variable that gets updated every time an action is
performed by the installer. If an action is successful, %LastErrorNum% is set to 0. If an
action generates an error, %LastErrorNum® is set to a positive integer value that
represents the error that occurred.

Each action has its own set of possible error numbers or "return values" that are assigned
to %LastErrorNum% when an error occurs. Some actions, like Execute File, only have one
error number. Others, like Download HTTP, have several.

184

Actions

[SEE ALSO |

You can find a complete list of return values for each action in the
Command Reference.

You can use %LlastErrorNum% in the Condition field of an IF action to test whether the
previous action generated an error. Any actions between the IF action and the next
corresponding END IF action will only be performed when the preceding action fails.

Your error handler might look something like this:

Tricky download
achion that might Fail:
HTTP Download [http: /v, urrehable. com/ shmdchance. exe > ZSrchirk)
IF [FLaztE rmorM um]
these actions are only performed when ZLaztEmoMum iz not 0
Show Yesz/Mo Dialog [£vezMoResultis = The download failed.. would vou like to ty again’?)
IF [FvezMoResulti]
GOTO Label [Tricky dowvnload)
EMD IF
EMD IF

If you only wanted to handle specific errors, you could set things up like this instead:

IF [[ELastErorum? = 3] 0OR [ZLaztEmorum? = 4]]
these actions are only perfarmed when ZLastEmatum® iz setto 3or 4.
EMD IF

Three other built-in variables are updated every time an action is performed by the
installer: %LastCommand%, %LlastErrorMsg% and %LastErrorDetails%.

%LastCommand®% is set to the ID of the action.

%LastErrorMsg% is set to the standard "simple" error message for the action.
%LastErrorDetails% is set to the standard "verbose" error message for the action.
(Both error messages are localized—they're taken from the language file.)

Note: %LastErrorMsg% and %LastErrorDetails% are only set when the previous
action generated an error. Both variables are empty ("") when the previous action was
successful.

185

Chapter 10

Using Continue at label

Another way to trigger a custom error-handling routine is to use the Continue at label
option found on an action's On Error tab. Just group your error-handling actions together,
preface them with a label, and select that label for the Continue at label option.

You'll probably also want to use GOTO actions and additional labels to skip over your
error-handling routines, so they remain isolated from the rest of your actions.

Using the Continue at label option, your error handler might look something like this:

normal actions above thiz point...
GOTO Label [Continue]
Error Handler
these actions are only performed
when an action failz
and itz Continue at label option
iz zet to "Ermor Handler"!
Continue
back to normal actions again...

| TIP

You can use a variable like %LastCommand% in the Continue at label
field to jump to labels that you've named based on the different actions
whose errors you want to handle.

186

Chapter 11

Packages

What Are Packages?

Packages are special categories that you can define in order to group related files
together. They're usually used to give users the ability to choose which parts of an
application they want to install.

[SEE ALSO

r) For more information on packages, see page 41.

Packages in a Nutshell

Here's a basic overview of packages:
e Each package consists of a name, a description and a unique custom variable.
e You can assign files to packages by using the File Properties dialog.
e You can have as many packages in a Setup Factory project as you want.
e You can assign as many files to a package as you want.
e You can assign the same file to more than one package.
e You can associate a file with more than one package.

e You can let your users select packages by adding Select Packages or Select Install
Type screens to your installer.

e Selecting a package sets its variable to "true". Deselecting a package sets its
variable to "false".

187

Chapter 11

e The package variable is what determines whether files are installed.

e Files assigned to a package are installed when that package's variable is set to
"true".

e Files assigned to multiple packages are installed when at least one of the packages'
variables is set to "true".

e Setup Factory automatically calculates the total size of the files in each package.
These package sizes can optionally be displayed on the Select Packages screen.

e The name and description of a package can be localized so they will appear in the
user's chosen language.

x

& Packages |

Package Mame | Y ariable | Default State |

al Documents kage Mo ial_[locumen... Lnch

BHE Lo BB T8

0k I Cancel Help

The Packages dialog

188

Packages

Using Packages

Using packages in your Setup Factory project involves three simple steps:
1. Create the packages.
2. Assign files to the packages.
3. Add screens to your project so users can select the packages.

For example, let's say you include a set of tutorials with your application in the form of
very large video files. Because these files are so large, you want your users to be able to
choose whether or not to install them at run time. Here's how you could accomplish this

by using packages:

First, you would use the Packages dialog to create a package for the video files. You would
give the package an appropriate name like "Video Tutorial Files" and change the default
variable name to something unique and easy to remember; a good name for this
package's variable would be something like %Package_VideoTutorialFiles%.

You could also write a brief description to help your users decide whether they want to
install the tutorial files, e.g. "Optional tutorial files in AVI video format. Windows
MediaPlayer 6 or above is required in order to view these files."

Next, you would assign the video files to the package. To do this, you would select all the
video files on the project window, press the File Properties button () to access the
Multiple File Properties dialog, and use the Packages tab to assign the files to the "Video
Tutorial Files" package. Once this is done, the video files will only be installed if the value
in %Package_VideoTutorialFiles% is set to "true".

Finally, you would use the Screens dialog to add a Select Packages screen to your project.
The Select Packages screen is able to display any number of packages in a list, with check
boxes that the user can use to turn the individual packages on or off. In order for the
"Video Tutorial Files" package to appear on this screen, you need to add it to the list of
packages that the screen will display. To do this, you would access the Custom tab of the
Screen Properties dialog for the Select Packages screen, and add the "Video Tutorial Files"
package to the list of available packages.

189

Chapter 11

[NOTE

"Custom" option is chosen on a preceding Select Install Type screen at run
time. If you aren't using a Select Install Type screen, you will need to
modify the screen condition for the Select Packages screen to remove this
restriction. To do so, simply edit the expression in the Condition field on
the Settings tab of the Screen Properties dialog for the Select Packages
screen.

@ By default, the Select Packages screen will only be displayed if the

Naming Package Variables

Because each package requires a unique custom variable name, it's a good idea to
establish a naming convention for your package variables. (A naming convention is a set
of rules that you follow when forming a name for something.) We recommend that you
use the following naming convention for your package variables:

% < prefix><package name>%

In other words, begin each package variable with a prefix like %Package or %Package_
followed by the name of the package and a percentage sign. If the package name
contains spaces, either remove them or replace them with underscores (_).

For example, if the package name is "Extra Help Files", a good name for the package
variable would be something like %PackageExtraHelpFiles% or
%Package_Extra_Help_Files%.

Forming a variable name based on the name of the package not only makes it easier to
come up with appropriate names, it makes it easier to determine what variable name was

used for an existing package.

[NOTE

difficult to know at a glance what package a variable name like
%Packagel234% represents.

5 Using numbers to make variable names unique isn't recommended; it's

190

Packages

package variables consistently throughout your project.

Whichever naming convention you adopt, the most important thing is to name your

[SEE ALSO

2 For more information on naming variables, see page 216.

Adding Packages

To add a package to your project:

Select the line on the Packages dialog where you want the package to be

inserted.

Press the Add Package button (), use the Insert hotkey, or right-click and

select Add from the context menu. This will open the Package Properties dialog

for the package you're adding.

Package Properties
Settings I@ Localizel

Fackage name:

INDn-e&sentiaI Documents

Dezcription;

Optional reading material, including technical white papers and
interesting anecdotes from the developers of ‘Widget Designer.

Yariable:

-
[

If’éF’ackage_NUnessentiaI_Documents%

" TRLUE [Selected)] {* FALSE [Unselected)

"Default walue

0K I Cancel

Help

The Package Properties dialog

191

Chapter 11

3. Provide a name for the package in the Package name field. This is the name
that your users will see on a Select Packages screen at run time.
4. Provide a description for the package in the Description field. This description
will be displayed on the Select Packages screen when users select this package.
5. Enter a unique variable name for this package in the Variable field. This is the
variable that will be set to true or false in order to enable or disable this package.
6. Select the value that you want the package to have by default, i.e. either TRUE
(the package is selected) or FALSE (the package is unselected).
This sets the initial value of the package variable, and determines whether the
package will be installed if no overriding selections or assignments are made at
run time.
7. Optional:
Use the Localize tab to translate the package name and description into different
languages.
[SEE ALSO
2 For more information on translating packages, see page 245.
Removing Packages

To remove a package:

1.

2.

192

Select the package you want to remove on the Packages dialog.

Press the Remove Package button (x|), use the Delete hotkey, or right-click
on the package and select Remove from the context menu.

Packages

Editing Packages

To edit a package:
1. Select the package you want to edit on the Packages dialog.

2. Press the View Properties button (@), use the Ctrl+P hotkey, or right-click and
select Properties from the context menu. This will open the Package Properties
dialog for the package you selected.

Package Properties x|
Settings |G Localizel

FPackaage name:

ISampIes

Dezcription:

Sample files and tutonals that vou can uze with Foobar P ;I
=

Wariable:

IZF‘ackage_S amples?

Default value
’7 " TRUE [Selected) {* FALSE [Unselected)

Ok I Cancel Help

The Package Properties dialog

3. Edit the properties for the package.

| TIP

Q You can also double-click on a package to display its Package Properties
dialog.

193

Chapter 11

Rearranging Packages

The order of the items on the Packages dialog determines the order that packages are
displayed in throughout the Setup Factory design environment. By rearranging the items
on the Packages dialog, you can control the order that packages will be listed in on the
other dialogs you use at design time.

For example, the Packages tab of the File Properties dialog lists all of the packages in your
project. You can change the order of the packages in this list by rearranging the items on
the Packages dialog.

[NOTE

This only affects the package lists that you use at design time. It has no
effect on the order that packages are displayed in at run time.

To change the order of the package lists within the design environment:
1. Select the package you want to move on the Packages dialog.

2. Use the Move Up (1|) and Move Down (3) buttons or the Ctrl+Up and
Ctrl+Down hotkeys to reposition that package in the list.

| TIP

Packages available on this screen list directly in the properties of the

(I To change the order that packages are displayed in at run time, edit the
Select Packages screen.

You can move multiple items at once by cutting them into the clipboard
and then pasting them back onto the list at another location.

To select multiple items, hold a Ctrl or Shift key down while making your
selections with the mouse.

194

Packages

Cutting, Copying and Pasting Packages

You can cut, copy and paste packages within the Packages tab, and even between Setup

Factory projects.

[NOTE |

You can open a different project file or even switch to another instance of
Setup Factory to copy packages from one project to another.

5 When you cut or copy packages, they are placed in the Windows clipboard.

To cut a package and place it in the clipboard:
1. Select the package you want to cut.

2. Press the Cut button (1), use the Ctrl+X hotkey, or right-click on the package

and select Cut from the context menu.
To copy a package and place it in the clipboard:
1. Select the package you want to copy.

2. Press the Copy button (), use the Ctrl+C hotkey, or right-click on the package
and select Copy from the context menu.

To paste a package from the clipboard onto the Packages tab:
1. Select the line on the Packages tab where you want the package to be inserted.

2. Press the Paste button (), use the Ctrl+V hotkey, or right-click on the screen

and select Paste from the context menu.

If you're pasting a copy of a package that already exists in the list, the name and
variable of the new package will be adjusted in order to prevent duplicates.

195

Chapter 11

Assigning Files to Packages

To assign a file to one or more packages:
1. Select the file that you want to assign to a package on the project window.

2. Access the File Properties dialog for this file by pressing the File Properties
button (), using the Ctrl+P hotkey, or right-clicking and selecting
File Properties from the context menu.

zl
& Generall = | Shnltcutl .t’-‘-.dvancedl T} Conditions &5 Packages |

Belongs to packages:

[|Mon-essential data files
[]Samples
[Uzer documnenation

QK I Cancel Help

The Packages tab of the File Properties dialog

3. On the Packages tab, select the packages that you want this file to belong to.

TIP

3 You can assign more than one file to a package at once by selecting
multiple files on the project window.

196

Packages

Install Types

Not all of your users will want or need the degree of control over their installations that
Setup Factory packages can provide them. And, true enough, some users should probably
be protected from such advanced features. For this reason, many installers are designed
to make packages optional, and simplify the user's decision by presenting streamlined

choices in the form of install types.
There are four standard install types traditionally provided by installers:

Typical

A Typical install type should install a balanced set of features—the options you
believe most users will want or need. Although it varies with the software you're
installing, a Typical installation generally includes most of the files in your project.
However, a Typical installation might exclude, for example, special drivers that only
a limited number of users need, extra sample files, and extra documentation
written for software developers (SDKs).

Complete

A Complete install type should install everything.

Minimum
A Minimum install type should only install files that are absolutely essential. This

"bare minimum" installation would general be used when installing your software to
a computer with a minimum of disk space (e.g. a laptop).

Custom

A Custom install type should allow the user to choose which individual packages are
installed. Custom installations are most often used by "power users" who know
what they are doing and want full control over what gets installed on their system.

In Setup Factory, install types are handled entirely by the Select Install Type screen. Each
Select Install Type screen supports up to four install types. Adding, removing, configuring,
and naming install types are all done directly on the Custom tab of the Screen Properties
dialog for the Select Install Type screen.

197

Chapter 11

You can think of install types as package "presets." Each install type will automatically
enable or disable specific packages in your project, turning them individually on or off
according to the Select Install Type screen settings.

When the user selects an install type on a Select Install Type screen, the name of the
selected install type is assigned to a custom variable. You can use this variable in screen
conditions to make some screens only appear if a specific install type was selected.

For example, the Select Packages screen has the following screen condition by default:

"%W nstall Type%' = "Custont

This screen condition effectively hides the Select Packages screen unless the user selects
the "Custom" install type on the Select Install Type screen. So, by default, the "Custom"
install type appears to lead to a screen with more advanced customization options.

Packages and run-time conditions

Assigning a file to a package is just like setting a run-time condition for the file.
In fact, you could completely duplicate the functionality of packages by using
equivalent run-time conditions.

For example, if you have a package called "Extra Stuff" and it uses a package variable
named %PackageExtraStuff%, assigning a file to that package is a lot like adding the
following run-time condition to the file:

%PackageExtraStuff% = TRUE

Of course, run-time conditions don't have easily localized names and descriptions like
packages do. Assigning a run-time condition to a file also doesn't add that file's size to
the package size shown on the Select Packages screen at run time.

If you ever want to assign a file to a package without having the file's size affect the
package size, set up a run-time condition instead. That way, the file will still only be
installed if the package variable is set to true, but its size won't affect the package size
shown on the Select Packages screen.

198

Chapter 12

Runtime Support

Some executables in your project may require other files in order to work properly. These
required files are known as runtime support files or dependency files.

Dependency files are external support files that an executable requires for proper
operation. In other words, they are the external files that a program file "depends on" in
order to function properly. Dependency files may include INI files, DLLs, ActiveX controls,
OCX components, or any other support file type.

[_NOTE |

Many of today's development tools require that you distribute runtime

(} support files along with your application. Please consult your development
tool's documentation to determine what files you need to distribute with
your software.

There are three ways that you can add dependency files to your installer:
e You can add pre-packaged runtime modules using the Runtime Support dialog.

e You can scan a Visual Basic project file for dependencies using Setup Factory's

Visual Basic project scanner.

e You can scan an executable for dependencies using Setup Factory's dependency file

scanner.

The Runtime Support Dialog

The Runtime Support dialog allows you to add pre-packaged runtime support modules to
your Setup Factory project. You can access the Runtime Support dialog by selecting
Design | Runtime Support from the menu, or by clicking on the Runtime Support icon

on the shortcut bar.

199

Chapter 12

x
& Modules |

Module Mame | Dezcription | Size |

O Wisual Basic 5.0 [SP3] Microsoft Visual Basic 5.0 service pack 3 corer... 225 ME
[Wisual Basic 6.0 [SPE] Microsoft Visual Basic 6.0 service pack B corer... 225 ME

Detals... |
Ok I Cancel | Help |

The Runtime Support dialog

The Runtime Support dialog lists all of the runtime modules that can be included in your
project. You can add runtime modules to your project by clicking on the check boxes in
the list. Any modules that have check marks beside them will automatically be included in
the setup executable when you build the current project.

Clicking on an empty check box adds a check mark, and clicking on a box that already has
a check mark clears it.

An empty check box looks like this: [Wizual Basic 6.0 [SP5)
A selected check box looks like this: [¥] izual Basic 6.0 [SP5)

When you select a runtime module for inclusion in your project, you won't notice any
immediate changes to your project file. Instead, the necessary files and actions

200

Runtime Support

will automatically be merged with the project file at build time.

To learn more about a particular runtime module, select it in the list and press the
Details button () on the Runtime Support dialog. This will open any
documentation available for this runtime module.

| TIP |

the Indigo Rose web site. We will be posting new runtime modules as they

(; If you need a runtime module that doesn't ship with Setup Factory, check
become available.

The Visual Basic Project Scanner

You can use Setup Factory's Visual Basic project scanner to scan a Visual Basic project
(. vbp) file for any "extra" dependencies not found in the core Visual Basic runtime

modules.
To scan a Visual Basic project file for dependencies:

1. Select Tools | Scan Visual Basic Project from the menu. This will open the
Scan Visual Basic Project dialog.

Scan Yisual Basic Project ﬂ

—¥izual B asic Yersion

= Wisual Basic 5.0
& Vizual Basic £.0

— Project Infarmation

Froject file to scan:

IC:\.PrDiects\.S uper Duper ApplSuperDuper.vbp J

0k I Cancel Help |

The Scan Visual Basic Project dialog

201

Chapter 12

2. Select the version (5.0 or 6.0) of the Visual Basic project you want to scan.

3. Enter the path and filename of the . vbp file you want to scan in the Project file

to scan field, or press the Browse button ([|) to browse for a file.

4. Press the OK button to begin the dependency scan.

The Visual Basic project scanner will analyze your Visual Basic project (. vbp) file
and determine any dependencies that it has beyond the core Visual Basic
runtime files. When it finds other dependencies, it will attempt to determine the
dependencies of those files as well. Setup Factory will then add all the
dependency files to your Setup Factory project.

If your Visual Basic project does not use any files beyond the core runtime files,
no files will be added to your Setup Factory project. Instead, the appropriate
Visual Basic runtime module will automatically be checked for you on the
Runtime Support dialog.

[IMPORTANT

| The Visual Basic project scanner will not add your actual executable file, or
- any other support files (such as help files, images, documents, etc.) other
than DLL and OCX files.

Also, bear in mind that the project importer relies on third-party control
manufacturers having adhered to Microsoft's standard . DEP file format. If
you are using complex third-party runtimes, you should always consult the
documentation of those runtimes for more distribution information.

202

Runtime Support

The Dependency File Scanner

You can use Setup Factory's dependency file scanner to scan any Portable Executable file

for dependencies.
To scan a file for dependencies:

1. Select Tools | Scan File Dependencies from the menu. This will open the Scan

Dependencies dialog.

Scan Dependencies x|

File to zcan:
IE:\F‘mducts‘-XY’Z Bitmap ViewerhWiewer. exe J

[v Exclude files in negative file list
The following dependency files will be added ta the project when you select OK:

C:4Productz'>$rZ Bitmap ViewerhWiewer exe
CAwANNT S psterm32NOLEPRO32.0LL

s Scan Mow |
Ok I Cancel Help |

The Scan Dependencies dialog

2. Enter the path and filename of the Portable Executable file that you want to scan
in the File to scan field, or press the Browse button ([) to browse for a file.

203

Chapter 12

3. Select the Exclude files in negative file list check box if you want to exclude
standard system files that normally should not be distributed with your installer.
(This setting is enabled by default.)

In general, you should leave this setting enabled to avoid shipping core system
files with your setup. Shipping certain system files could result in corruption of
your user's system.

[NOTE

The negative file list is located in the Dat a sub-folder of the Setup Factory

(} application directory on your hard drive. It is stored as an INI file called
negativelist.ini.You can edit this list with a text editor if you need
to add or remove negative files to suit your needs.

4. Press the Scan Now button (| Seantiow |) to scan the file.

Setup Factory will analyze the file and determine any dependencies that it

has. When it finds dependencies, it will attempt to determine the dependencies
of those files as well. Setup Factory will then add all the dependency files to the
list on the Scan Dependencies dialog.

5. Optional:
Fine-tune the list of dependency files by removing any files that you don't want
added to your Setup Factory project. Simply select any dependency files that you
want to exclude, and press the Remove button (@) on the Scan Dependencies
dialog.

6. Press the OK button to add the files on the Scan Dependencies dialog to your
project.

NOTE

5 Dependency files are always added to the Archive tab.

204

Chapter 13

Uninstall

Although as developers we have a hard time believing that someone would ever want to

remove our software, it happens. After all, someone may need to remove a copy of your

software from one system in order to install it on another without violating your license

agreements. Fortunately, Setup Factory makes creating an uninstaller very easy.

The Uninstall Dialog

The Uninstall dialog is where you can configure the uninstallation settings for your project.

You can access the Uninstall dialog by selecting Design | Uninstall from the menu, or by

clicking on the Uninstall icon on the shortcut bar.

R Settings | £ Before Unin&tallingl E] .&fterUninstaIIingI

~ General

¥ Include am uninstall program
Control panel description:

I"/:.F'roductName’/o

Unigque registry kew

|><YZ_B itmap_viewer_1.0.0.1

Configuration file:

|zAppD irENinnin. i

YWizard image:

— Shartcut lcon

¥ Create uninstall icon in shortcut folder

Shortcut icon description:

IUninstaII EProduct amek

[T Use external icon file

Ewternal icon path:

IU ninztall (grall).brp

Ok, I Cancel

Help

The Settings tab of the Uninstall dialog

205

Chapter 13

There are three tabs on the Uninstall dialog: Settings, Before Uninstalling, and After
Uninstalling.

The Settings Tab

The Settings tab is used to configure general options for the uninstaller, such as whether
an uninstall item should be added to the Start menu, and what text should appear in the
Add/Remove Programs component of the Windows control panel.

[SEE ALSO

For more information on the Settings tab, please consult the Command
Reference.

The Before Uninstalling Tab

The Before Uninstalling tab is an action tab. This is where you can add any actions that
you want performed before Setup Factory begins uninstalling the files you added to the
Archive and CD-ROM tabs.

[SEE ALSO

For more information on the Before Uninstalling tab, please consult the
Command Reference.

The After Uninstalling Tab

The After Uninstalling tab is an action tab. This is where you can add any actions that you
want performed after Setup Factory finishes uninstalling the files you added to the Archive
and CD-ROM tabs.

[SEE ALSO

For more information on the After Uninstalling tab, please consult the
. Command Reference.

206

Uninstall

T x|

¥ Settings EJ Before Uninstalling | 1 iter Uninstaling |

These actions are executed before the files and shortcuts are uningtalled.

Cornmand

remove the shortcuts that we added with Create Shortcut actions
Remove Shortout [ESCFolderPathZWisit Ourwebsite]

Rermove Shaortcut [ZSCFalderPathZhS amples\The Funky Chicken)
Rermove Shaortcut [Z5CFalderPathzhS amples\The Soggy Donut)
Femove Shortout [Z5CFolderPathh\S amples‘\Hop Scotch Central]

remove the ""Samples'’ directory fram the Start mern
Remove Directory [FSCFolderPath:hS amples)

By X B 3 R+t 35 5@ F IBitemsinIist I
0k I Cancel | Help

The Before Uninstalling tab of the Uninstall dialog

NOTE |

actions that were taken when your software was installed. You only need
to use these tabs if your installer performs any actions during the
installation that aren't automatically undone by the uninstaller.

@ The action tabs on the Uninstall dialog allow you to "undo" any custom

The general rule of thumb is, if you add an action to do something during
the installation process, and it needs to be undone when your software is
uninstalled, you'll need to add actions to the Uninstall dialog to do so.

207

Chapter 13

How the Uninstall Works

Before you add any uninstall actions, it's important to understand what the Setup Factory

uninstaller automatically does for you.

By default, the uninstaller:

208

Removes all of the files that were installed by the setup executable. In other words,
any files that were listed on the project window at design time are automatically
removed by default.

There are, however, two exceptions to this rule:

If you select the Never remove option for a file, that file will not be uninstalled
automatically.

If you select the Shared/System file option for a file, that file will only be
uninstalled automatically if its usage count reaches zero during the uninstall. The
usage count is the number of installed programs that require access to a specific
registered file. This information is stored in the Registry for all shared files so they

aren't removed if they're still required by another program.

(Both of these options are configured on the Advanced tab of the File Properties
dialog.)

Removes any shortcuts and shortcut folders that were automatically created by the
setup executable. This includes all of the shortcuts created using the Shortcuts tab
of the File Properties dialog. It does not include any shortcuts created using Create
Shortcut actions.

Removes any folders automatically created by the setup executable, assuming they
are empty after the automatically uninstalled files are uninstalled.

Uninstall

By default, the uninstaller does not:

e Remove any Registry entries created during the installation. You will need to
remove your Registry entries manually by adding Modify Registry actions to the
Before Uninstalling or After Uninstalling tab.

e Remove any shortcuts or shortcut folders created as the result of Create Shortcut
actions. Only shortcuts and shortcut folders created using the Shortcuts tab of the
File Properties dialog are removed automatically.

e Undo any INI file changes that were made during the installation. Since INI file
changes are done with actions, you will need to use actions to undo them.

e Undo any text file changes that were made during the installation. Like INI files,
text file modifications are done with actions and undone with actions.

e Remove files that were created by your software after installation.

e Remove files that were manually copied to your software's application directory by
the user after installation.

e Remove files or directories that were copied, renamed, or moved during the
installation. Of course, you can use the file and folder actions to make any changes
you want with your uninstaller as well.

e Undo any changes made by external programs that were called from your installer
using Execute Program actions.

e Undo any changes that were made to the user's system using actions. Anything
you do with actions in the installer can only be undone with actions in the
uninstaller.

209

Chapter 14

Variables

What Are Variables?

In Setup Factory, variables are special named "containers" for values that change. They're
used to store information that won't be known until run time, like the location of the
user's system directory, or the result of a Yes/No dialog presented to the user.

All variable names in Setup Factory begin and end with a percentage sign. At design time
these variable names serve as placeholders, marking the places where the values will go
once those values become known.

[SEE ALSO

2 For more information on variables, see page 35.

There are two kinds of variables in Setup Factory: built-in variables, and custom variables.

Built-in Variables

Setup Factory has a number of built-in variables that are already defined for you. They
include:

e Directory and path variables such as %SrcDir% (the "source directory," where the
Setup Factory installer is being run from), %WinDir% (the W ndows directory),
%SysDir% (the W ndows\ Syst emdirectory), etc.

e System variables such as %0S% (the Operating System), %ScreenWidth% (the

width of the user's display screen in pixels), %SysLanguage% (the numeric ID for
the language being used on the user's system), etc.

211

Chapter 14

e Product information variables such as %ProductName% (the name of your
product), %CompanyName% (the name of your company), etc. (These variables
are defined on the Product Info tab of the General Design dialog.)

e Time and date variables such as %JulianDate% (the number of days since midnight
on January 1, 4713 B.C.), %CurrentMinute% (the current minute as set on the
user's system), %CurrentYear% (the current year as set on the user's system),

etc.

e Action-related variables such as %LastCommand% (the last action that was
performed), %LastErrorNum® (a code indicating whether an error occurred while
the last action was being performed), etc.

[SEE ALSO

For a complete list of the built-in variables, see Built-in Variables in the
- Command Reference, or see page 269 of this User's Guide.

Custom Variables

Custom variables are entirely up to you, and are specific to each project. Defining custom
variables is easy—you just provide a variable name where a variable name is required.
There are three places in Setup Factory where you can define custom variables:

Screen Properties dialogs

You can define variables to store the information received as a result of user input
on many of the screens that you can include in your installer.

Action Properties dialogs

You can define variables using many of the actions in Setup Factory. These variables
only come into effect as each action is performed.

Package Properties dialogs

You can define variables by setting up packages. Each package needs a unique
custom variable that will be set to either true or false depending on whether the
user selects or deselects that package.

212

Variables

What Can You Do With Variables?

Variables offer a lot of flexibility. You can use variables in the following ways:

10.

11.

12.

You can use them to receive user input on screens with edit fields, list boxes,
radio buttons, check boxes, and buttons.

You can use them to receive information from the Registry with a Read from
Registry action, or to receive information from an INI file with a Read from INI
File action.

You can use them in conditional expressions to set up run-time install conditions
that determine whether individual files are installed.

You can use variables in the messages that get displayed on screens.

You can use them in screen conditions that determine whether individual screens
are displayed.

You can use variables as temporary storage when manipulating strings with
string actions.

You can use them in conditional expressions to set up conditional blocks and
loops with IF and WHILE actions.

You can load the contents of a text file into a variable using a Read Text File

action.

You can use actions to write their values to the Registry, to INI files or to text
files.

You can use them in expressions to perform calculations on data retrieved from

the user's system.

You can use them wherever you need to provide a path.

Basically, anywhere that you can enter text, you can use variables.

213

Chapter 14

Defining Variables with Actions

Many of the actions in Setup Factory produce results that must be stored in variables. For
example, the Read from Registry action reads a value from the Registry, and assigns that
value to the variable of your choice. The value that is read from the Registry is the
action's result, and the variable is where that result is stored.

Each of these actions has a field where you can provide the name of the variable you want
the result to be stored in. If you provide the name of an existing variable, the result will
overwrite that variable's contents. If you provide a new variable name, a new variable will
be created automatically. The action's result will be stored in the variable you provide,
regardless of whether the variable already exists.

Essentially, wherever a result needs to be stored, you can create a new variable "on the
fly" by simply providing a variable name that isn't already being used in your project.

[SEE ALSO |

For more information on the various actions, many of which allow you to
define variables, please consult the Command Reference.

Defining Variables with Screens

Many of the screens in Setup Factory can receive input from the user. Whether that input
is in the form of text entered in an edit field, or the checked or unchecked nature of a
check box, it needs to be stored in a variable so it can be used by rest of the installer.

For example, the default User Information screen prompts the user to enter their name
and their company's name into a pair of edit fields, and assigns the value of each field to
the variable of your choice. The text that the user enters into each field is the value that
will be assigned to the corresponding variable.

Another example: a variable is required for each check box on a 12 Check Boxes screen.
When the user selects a check box, the value "true" is assigned to the corresponding
variable. If the user deselects that check box, the value "false" is assigned to the variable

214

Variables

instead. In other words, each check box has a variable that is set to either true or false to
represent whether the check box was selected or not.

For every item on a screen that can receive user input, there is a field where you can
provide the name of the variable you want the result to be stored in. If you provide the
name of an existing variable, the result will overwrite that variable's contents. If you
provide a new variable name, a new variable will be created automatically. The result of
the user's input will be stored in the variable you provide, regardless of whether that
variable already exists.

| TIP

You can display the contents of a variable on a screen by including the
variable name in the screen's message text.

A Little Common Sense Never Hurts

When defining and using variables, be sure to think about when and where they will be
used, and what their values will be at that point in time. A variable that is only assigned a
value at the end of the installation process won't have a value at the start.

For example, let's say you set up a User Information screen that asks the user for their
name and stores it in a variable called %UserName%. It's important to realize that
%UserName% won't contain the user's name until after that screen is shown. If the User
Information screen is only displayed at the end of the installation process, %UserName%
won't have a value at the beginning when your Welcome screen is shown. In this case,
including %UserName% in the text of your Welcome screen would result in a message
like "Hello %UserName%" instead of a message like "Hello Mary Lou."

The same is true for variables that you define on action tabs. When you assign a value to
a variable using an action, the value doesn't get assigned to the variable until the moment
the action is performed. A variable that you define on an action tab is only available to the
actions that are listed below it on the tab, and to the actions on tabs that are performed
"later" in the installation process. If you try to use the variable in another action higher
"up" on the action tab, or on an action tab that happens earlier in the installation process,
the variable won't have a value yet, and your installer probably won't work properly.

215

Chapter 14

In other words, when you define a variable with an action, it is only available to the parts

of the installation that are performed after that action. If you want to use a variable in a

screen condition to control whether that screen is shown, make sure a value is assigned

to the variable before it's that screen's turn to be displayed. If you want to use a variable

in a run-time install condition, make sure a value is assigned to the variable before all the

files are installed.

Naming Variables

You can name your custom variables anything you like, but there are a few guidelines to

follow:

216

All variable names should begin and end with a percentage sign (%).

Variable names are not case sensitive—the names %MyVar% and %myvar%
both refer to the same variable.

Don't use the same variable hame twice unless you mean to.

Using a name twice is fine if you're defining a variable in one place, and using it
in another. Just be careful not to unintentionally give the same name to two
different variables if they're being used to represent two different things.

Of course, it's okay to define a variable twice if you want its value to change. In
that case, the first value will only be in effect until the second one "overwrites" it.

Don't use a built-in variable name for one of your custom variables unless you
know what you're doing.

For example, calling a variable %SysDir% would override the built-in variable
with the same name. Take time to familiarize yourself with the built-in variable
names so you don't use any of them by accident.

Variables

Try to use meaningful names.

For example, if you read a product's installation date from the Registry, naming
the variable %Greegleborg452sx% probably isn't a good idea. Use a variable
name like %]InstallDate% instead.

Be consistent.

If you start out with %UserName% and %UserAge%, don't name your third
variable %WhereTheUserGoesToWork%. A name like %UserCompanyName% will
be easier to remember when you find yourself asking "what did I name that

variable, again?"
When in doubt, double-check.
A common mistake is to name a variable one thing in one part of Setup Factory,

and start calling it something else later. If you're not sure what name you used,
double-check by going back to the screen where you defined the variable.

217

Chapter 14

Inserting Variables

You can easily insert variables where applicable by right-clicking on an edit field and
selecting Insert | Variable from the context menu.

Condition:
Zlnztalledversion’ = :I
Undo
0k
Copy
Paste
Delete
Select All
_ 1
e Sr
File Path, .. Chrl+F
Folder Path... Ckrl+D
File Reference... Ctrl+R

The Insert | Variable item in the right-click context menu

This will open the Insert Variable dialog with all the built-in variables, custom variables,
and design-time constants listed. Just select the variable you want to insert, and click OK.

Insert Yariable |

L IANDATE
HPROJECTFILEDIR#
HSUFDIRH
#SYSDIRH

i IMDIR#
EoppDrei
%BDEPathz
%ColorDepthi
ZCommonFilesk
ECompanyM ame?
ECopuright
ZCurrentD aw
ECurmentHourk
ECurenttinute?:
ECurentt anthz
#CurmentS econd? ;I

kK I Cancel Help |

The Insert Variable screen

218

Variables

| TIP |

Any custom variables you define in Setup Factory will automatically show
up on the Insert Variable dialog.

Using Variables in Expressions

Before an expression is evaluated, any variable names in it are replaced by the values
they represent. If these values contain spaces (or other value-delimiting characters) they
can cause the expression to produce unexpected results, and even generate errors at run
time.

[SEE ALSO

2 For more information on expressions, see page 221.

For instance, let's say we want to concatenate (i.e. join) the string " is a nice person" to
the string contained in the variable %UserName%. We could use the expression:

%UserName% + " is a nice person"

...which works fine if the variable %UserName®% contains a single word like Mark. But if
%UserName% contains a space like, say, Mark Smark, the expression becomes:

Mark Smark + " is a nice person"

...which fails, because Mark and Smark are seen as two separate values with no operator
between them. The space between Mark and Smark acts as a delimiter, "splitting" the
words into two separate values. Setup Factory expects to see Mark <operator> Smark,
but the operator is missing, and the resulting "broken" expression generates an error.

In order to avoid these problems, it's a good idea to surround variable names with
quotation marks when using them in expressions. Any value between quotes is always
interpreted as a single value, regardless of any spaces or other delimiting characters it
might contain. By putting quotes around variables, each variable's contents are
guaranteed to be seen as a single value.

219

Chapter 14

So, if we rewrite our example expression as:

"%UserName%" + " is a nice person"

...we end up with:

"Mark Smark" + " is a nice person."

...which will not cause any problems.

[NOTE

Variables only need to be quoted in two places: in expressions, and in the
command line arguments for an execute command. You don't have to put
quotes around variables anywhere else.

Value-delimiting characters

Delimiting characters separate values in expressions. In Setup Factory, spaces and all
the operators except AND, OR and MOD act as delimiters in unquoted strings. These
characters will delimit or "break" a string into multiple parts unless the string is
surrounded by quotation marks.

In order to be seen as a single value, a variable must be surrounded by quotation
marks if it contains spaces or any of the following characters:

+-*/=><()

Examples: "242" (single value, not delimited)
2-2 (same as: "2" - "2")
score (single value, not delimited)

yes/no (same as: "yes" / "no")

220

Chapter 15

Expressions

What Are Expressions?

An expression is any valid combination of values and operators that resolves to a single
result. For instance, in the expression 1 + 2, "1" and "2" are values, "+" is the add
operator, and the resulting value would be 3.

You can use expressions to perform calculations, compare values, set conditions and

make decisions at run time.

Where Can You Use Them?

There are five places where expressions can be used in Setup Factory: in build-time
conditions, in run-time conditions, in screen conditions, in conditions for IF and WHILE
actions, and in Assign Value actions.

Build-time Conditions

You can use expressions to set up build-time conditions. Build-time conditions determine
whether individual files are included in the installer.

Each file in a Setup Factory project has a build-time condition associated with it. You can
edit the build-time condition in the Build-time include condition field, which is found on
the Conditions tab of the File Properties dialog.

221

Chapter 15

x
& Generall i Shnrtcutl Advanced Tl Conditions I'ﬁ Package&l

Fun-time install condition;

Build-time: include condition:
"HEBUILD#" = "RELEASE" ;I

[~
Buid._|

QK I Cancel | Help |

A build-time condition on the Conditions tab

Before any file on the Archive tab is added to the setup executable, its build-time
condition is evaluated, and the result is interpreted as a Boolean value. If the result is
true, the build-time condition has been met, and the file will be included in the setup
executable. If the result is false, the condition has not been met, and the file won't be
included in the setup executable.

For a file on the CD-ROM tab, the build-time condition determines whether the installer
will be aware of the file. Files on the CD-ROM tab are never included in the setup
executable, but their build-time conditions can affect whether the installer creates any
shortcuts for them, or includes them in any disk space calculations that are performed.

[NOTE

If the build-time condition for a file is not met, the installer will operate as
though that file was never added to the project at all.

222

Expressions

Run-time Conditions

You can use expressions to set up run-time conditions. Run-time conditions determine
whether individual files are installed on the user's system.

Each file in a Setup Factory project has a run-time condition associated with it. You can
edit the run-time condition in the Run-time install condition field, which is found on the
Condition tab of the File Properties dialog.

x
& Generall | Shurtcutl bvanced T Conditions |ﬁ F'ackagesl

Fun-time inztall condition:
Zl2winMT4% OR %lswin2000% OR XlswinPx :l

Build-time include condition:

K I Cancel | Help |

A run-time condition on the Conditions tab

Before a file is installed, its run-time condition is evaluated, and the result is interpreted
as a Boolean value. If the result is true, the run-time condition has been met, and the file
is installed on the user's system. (Assuming, of course, that any other conditions for the
file are met, such as the file's overwrite settings, and—if the file belongs to a package—
whether the appropriate package was selected.) If the result is false, the condition has
not been met, and the file won't be installed.

223

Chapter 15

Screen Conditions

You can use expressions to set up screen conditions. Screen conditions determine whether
individual screens in the installer are displayed at run time.

Each screen in a Setup Factory project has a screen condition associated with it. You can
edit the screen condition in the Screen Condition field, which is found on the Settings

tab of the Screen Properties dialog.

Screen Condition

["ElnztallTypei" = "Custom”] AMD [%Syzlangquagei = 9) ;I

LI Build... |

The default screen condition for the Select Packages screen

Before a screen is displayed, its screen condition is evaluated, and the result is
interpreted as a Boolean value. If the result is true, the screen condition has been met,
and the screen will be displayed. If the result is false, the condition has not been met, and

the screen will not be displayed.

[_NOTE |

Screen conditions are evaluated before any of the actions on the screen's
Before tab are performed. If the screen conditions aren't met, none of the
actions attached to that screen are performed.

224

Expressions

IF and WHILE actions

You can use expressions to set up IF and WHILE actions. The IF action causes every
action between it and the corresponding END IF action to be performed only if its
expression evaluates to a true result. The WHILE action continues performing every action
between it and the corresponding END WHILE action until its expression evaluates to a

false result.

IF [FUszerMame® = "Joe Blow™]
These actionz are only performed if the wariable. ..
&l zer ameX containg the ztring "loe Blow"
Show Mezzage Box (Hello Joel)

EMD IF

Example of IF and END IF actions in use

You can enter expressions in the Condition field on any Action Properties: IF Statement

or Action Properties: WHILE dialog.

Action Properties: IF Statement ﬂ
i Settings |° On Errorl

Condition:
%LastErnorMNum? < 0 ;I

[® Buid.. |

kK I Cancel Help

An expression in the Condition field for an IF action

225

Chapter 15

Assign Value actions

You can use expressions to calculate values on Action Properties: Assign Value dialogs.
These dialogs have a special Evaluate value as expression check box that determines
how the text in the Value field is interpreted.

When the Evaluate value as expression check box is selected, anything you type into
the Value field is evaluated at run time, and the result of the evaluated expression is
then assigned to the variable. When the check box is not selected, whatever you type in
the Value field is assigned to the variable without being evaluated first.

Action Properties: Assign ¥alue il
b Settings |Q On Em:nrl

Wanable name:

I?GABigFatZero?é

Walue:

[[[T+452]/2]-5 |=]

¥ Evaluate value az expression E Bild. . |

Ok I Cancel Help

An expression in the Value field for an Assign Value action

| TIP

s On any dialog where you can enter an expression, you can press the Build
Expression button () to open the Build Expression dialog.

226

Expressions

=k

[#lulianDate - #IULIAMDATEH) < 30 ;I Q. I
Cancel |
q _|_I

Help |
b
oLl - Lo onfme| [1] 5[]e]x

Built-in vanables [dbl-click to insert): Cuztom wanables [dbl-click to insert);
Zlawingazk ﬂ ElnstallT ypelndex? ﬂ
FlawinkE % ZPackageMonvegiani
Zl#winMT 3% ZShowReadme?

ZlwinMT 4% 1 | #StartSetupFactons

ElawirelPE EllserCompany®

ZlulianD ateX ZllserMames

ZLAMDomaing ZlserSenalMumberk

#LAMHost: | |zresMoResulz -

The Build Expression screen

Values

There are five kinds of values that you can use in Setup Factory expressions: integers,
real numbers, strings, versions and variables.

Integers

Integers consist of whole numbers, like 1, -32516 and 475. They can be written
with or without quotation marks, e.g. "341" and 341 are equivalent.

Real Numbers

Real numbers consist of "fractional" or "floating point" values, like 0.594, -1.5 and
123.654. They can be written with our without quotation marks—for example, "0.5"
and 0.5 are equivalent. Any leading zero can be omitted as well, so, for example,
".75" and "0.75" are equivalent.

Strings

Strings consist of any sequence of characters surrounded by quotation marks, like
"Wilbur", "the 25 happiest days of summer" and "hello world".

227

Chapter 15

Versions

Versions are special strings that begin with the letter "v" followed by numbers which
can be separated by one or more periods. (If there are two or more periods, the
letter "v" can be omitted.) Examples: "v2", "v4.0", "v1.03", "0.2.0.0", and "6.0.1".

Variables

You can use variable names as placeholders for integers, strings or versions in an
expression. Before an expression is evaluated, any variable names in the
expression are converted to the values they represent.

[IMPORTANT |

| You should always surround variable names with quotation marks
whenever they're used as values in expressions, in case they're assigned
values that contain spaces. This way, a variable like "%fullname?"
becomes a single string like "Joe Blow" instead of being interpreted as two
string values like "Joe" and "Blow", which would generate an error.

[SEE ALSO

2 For more information on using variables in expressions, see page 219.

Expressions can also be used as "values" in a more complex expression. For instance, in
the expression (1 + 2) - 3, the sub-expression (1 + 2) is evaluated first, resulting in the
value 3. Then the expression 3 - 3 is evaluated, resulting in the final value 0.

228

Expressions

Boolean Values (True and False)

Boolean values are used to describe logical truths—whether something is "true" or "false."

In Setup Factory 6.0, an expression is considered true if it resolves to either the word
"true" or any non-zero integer value. An expression is considered false if it resolves to the
number 0 or any string other than "true".

For example, an expression that resolves to "-26" is considered true. An expression that
resolves to "0" is considered false. An expression that resolves to "True" is true, and an
expression that resolves to "yikes!" is false.

Real numbers are a bit of a special case: a real number only resolves to true if it is
greater than or equal to 1.0, or less than or equal to -1.0. In other words, if a real
number falls between -1.0 and 1.0, it's false.

This is because the fractional part of a real number is discarded before the number is
interpreted as a true or false value. So, "1.5" becomes "1", which resolves to true. "0.0"
and "0.9" both become "0", so they both resolve to false.

Another way of looking at this is, if the part of the number to the left of the decimal is

zero, the real number resolves to false...otherwise, it resolves to true.

So, for example, an expression that resolves to "-27.3" is considered true, but an
expression that resolves to "-0.5" is considered false. An expression that resolves to "1.0"
is true, and an expression that resolves to "0.99999999999" is false.

How values are stored
All values are stored internally as strings. It's the content of the strings that
determines how they're interpreted at run time.

A string containing only numeric characters is considered an integer when it's used in
an expression. A string consisting of numbers and a single decimal point is considered
a real number. A string consisting of numbers separated by 2 or more decimal points
is considered a version. A string that begins with the letter "v" followed by numbers
(that may or may not be separated by decimal points) is also considered a version.

Anything else is assumed to just be a string.

229

Chapter 15

Operators

Operators are used in expressions to perform specific actions on one or more operands,
generating a single return value or result. Operands are simply the values or expressions
that each operator operates on. For instance, in the expression 1 + 2, the values "1" and
"2" are the operands, and "+" is the symbol for the add operator.

Operators are said to have precedence, which is a way of describing the rules that
determine which operations in a series of sub-expressions get performed first. A simple
example would be the expression 1 + 2 * 3. In Setup Factory, the multiply (*) operator
has higher precedence than the add (+) operator, so this expression is equivalent to

1 + (2 * 3). In other words, the sub-expression 2 * 3 is performed first, and then 1 + 6 is
performed, resulting in the final value 7.

You can override the natural order of precedence by using parentheses. For instance, the
expression (1 + 2) * 3 resolves to 9. The parentheses make the whole sub-expression

1 + 2 the left operand of the multiply (*) operator. Essentially, the sub-expression 1 + 2
is evaluated first, and the result is then used in the expression 3 * 3.

Operators are also said to have associativity, which is a way of describing which sub-
expressions are performed first when the operators have equal precedence. In Setup
Factory, most operators are left associative, which means that whenever two operators
have the same precedence, the operation on the left is performed first. (The only
exceptions are the unary plus, the unary minus, and the logical NOT operators, all three
of which are right-associative.)

The left-associativity of the subtract (-) operator is why the expression 10 - 5 - 2 resolves
to 3 instead of 7. It's interpreted as (10 - 5) - 2, and not 10 - (5 - 2).

230

Expressions

Table of Operator Precedence and Associativity

The following operators can be used in Setup Factory expressions.

Notes: A unary operator takes a single value.
A binary operator takes two values.
A right-associative operator operates on the value to its right.
An infix operator operates on one value to its left and one value to its right.
(All infix operators in Setup Factory are left-associative.)

In order of precedence, from highest to lowest:

Name: Notes: Precedence level:
(open parenthesis 8 (highest)
) closed parenthesis 8
+ unary plus unary, right-associative 7
unary minus unary, right-associative 7
! logical not unary, right-associative 7
* multiply binary, infix 6
/ divide binary, infix 6
MOD modulus binary, infix 6
+ add binary, infix 5
- subtract binary, infix 5
< less than binary, infix 4
<= less than or equal binary, infix 4
> greater than binary, infix 4
>= greater than or equal binary, infix 4
= equal binary, infix 3
I= or <> not equal binary, infix 3
AND Boolean AND binary, infix 2
OR Boolean OR binary, infix 1 (lowest)

231

Chapter 15

Parentheses

Parentheses are used to group sub-expressions and override the rules for precedence and
associativity. Anything between an open parenthesis and a closed parenthesis is resolved
first, before the rest of the expression is evaluated.

For instance, in the expression (5 + 2) * 3, the part between parentheses is performed
first, and the result (7) is then used as a value in the larger expression 7 * 3. If the
parentheses were omitted, the expression 5 + 2 * 3 would resolve to 11 instead.

You can "nest" parentheses to form more complex expressions. Nesting just means using
parenthetical expressions inside other parenthetical expressions. For example, the
expression -((2 + 4) * 2) has a nested parenthetical expression and resolves to -12.

| TIP

Use parentheses whenever you can to help make your expressions easier
to read. 10 + (2 * 5) requires less thought to interpret than 10 + 2 * 5.

Logical (Boolean) Operators

Logical operators are used to combine the results of Boolean expressions. A Boolean
expression is just like any other expression, but its result is evaluated to either true (any
non-zero value) or false (0). In Setup Factory, true and false are represented by 1 and 0.

There are three logical operators in Setup Factory: AND, OR and !.

AND And Returns 1 (true) if both of its values are true. Returns 0
(false) otherwise.

Example: 23 AND 0 resolves to 0

OR Or Returns 1 (true) if either of its values are true. Returns 0
(false) if both of its values are false.

Example: 5 OR 0 resolves to 1

1 Not Returns the Boolean opposite of its value, which is 1 (true) if
its value is false, and 0 (false) if its value is true.

Example: !5 resolves to 0

232

Expressions

Relational Operators

Relational operators are used to compare two values. Relational expressions resolve to a

Boolean (true/false) value: a true result resolves to 1, and a false result resolves to 0. For

example, 23 > 4 is true because 23 is greater than 4, so this expression resolves to 1.

"orange" < "apple" is false because the string "orange" is not alphabetically lower than

"apple", so this expression resolves to 0.

When versions are compared, each individual number in one version is compared with the

corresponding number from the other. So, "1.3.4" < "1.10.4" is true, because the "3" in

the middle of the first version is less than the "10" in the middle of the other.

There are seven relational operators in Setup Factory: =, >, >=, <, <=, <> and !=.

Equal

Returns 1 (true) if the value on its left is equal to the value
on its right. Returns 0 (false) if its two values are not the
same.

Example: 4 = 4 resolves to 1

> Greater than Returns 1 (true) if the value on its left is greater than the
value on its right. Returns 0 (false) otherwise.
Example: 5 > 20 resolves to 0
>= Greater than Returns 1 (true) if the value on its left is greater than or
or equal equal to the value on its right. Returns 0 (false) otherwise.
Example: 5 >= 5 resolves to 1
< Less than Returns 1 (true) if the value on its left is less than the value
on its right. Returns 0 (false) otherwise.
Example: 5 < 20 resolves to 1
<= Less than Returns 1 (true) if the value on its left is less than or equal
or equal to the value on its right. Returns 0 (false) otherwise.
Example: "bart" <= "lisa" resolves to 1
<> Not equal Returns 1 (true) if the value on its left is not equal to the
value on its right. Returns 0 (false) if both values are the
same.
Example: "1.4.7" <> "1.4.8" resolves to 1
I= Not equal Same as the <> operator above.

Example: 3 != 3 resolves to 0

233

Chapter 15

Arithmetic Operators

There are seven arithmetic operators in Setup Factory: plus, minus, +, -, * , / and MOD.

+ Unary plus

Indicates a positive value.

Example: +7 resolves to 7

- Unary minus

Forms a negative value.

Example: -4 resolves to -4

+ Add Adds two values together.
Example: 2 + 3 resolves to 5
- Subtract Subtracts one value from another.
Example: 150 - 120 resolves to 30
* Multiply Multiplies one value by another.
Example: 5 * 3 resolves to 15
/ Divide Divides one value by another. If both values are integers,

integer division is performed—any remainder is discarded.

Example: 21 / 2 resolves to 10

MOD Modulus

Returns the remainder after a division is performed.

Example: 21 MOD 2 resolves to 1

String Operators

There are three special string operators in Setup Factory: +, - and *.

+ Add Concatenates two strings, i.e. appends one string to another.
(concatenate)
Example: "hello" + "world" resolves to helloworld
- Subtract Strips one string from another, i.e. removes every occurrence
(strip) of the string on the right from the string on the left.
Example: "happy apple" - "p" resolves to hay ale
* Multiply Repeats a string a given number of times.
(repeat)

Example: "Apple" * 3 resolves to AppleAppleApple

234

Expressions

Version Operators

There are two special version operators in Setup Factory: + and -.

+ Add Adds two versions together.

Example: "1.3.2" + "v1.7" resolves to 2.10.2

- Subtract Subtracts each element of one version from the
corresponding element of another. Negative results are
"truncated" to zero.

Example: "2.0.5" - "v1.9" resolves to 1.0.5

NOTE |

5 The seven relational operators (=, >, >=, <, <=, <> and !=) can also be

used with versions. When versions are compared, each individual number
in one version is compared with the corresponding number from the other.

Notes

1. Anything between quotes (""), including whitespace, is considered a single value.

2. An expression is considered true if it resolves to either the word "true" or any
non-zero integer value. An expression is considered false if it resolves to anything
else.

3. A real number is considered true if it is greater than or equal to 1.0, or less than or
equal to -1.0. In other words, if a real number falls between -1.0 and 1.0, it's false.
For example, 1.0 is considered true, and 0.99999 is considered false.

4. The strings "true" and "false" can be used to represent the two Boolean values in
Setup Factory expressions. For example, the expression true or false is equivalent to
the expression 1 or 0. Both expressions resolve to 1.

5. "True" and "false" are not case sensitive. "True", "true", "tRUE" and "TRUE" all resolve

to 1. "False", "false", "fAIsE" and "FALSE" all resolve to 0.

235

Chapter 15

10.

11.

12.

13.

14.

15.

16.

236

Non-quoted strings are delimited by whitespace and any of the operators except
MOD, AND and OR. For instance, sandy is seen as the single value "sandy" and not
the expression "s and y".

You can perform string concatenation with the add operator ('+').

You can compare strings alphabetically using the <, <=, >, >=, =, I=and <>
operators.

String comparisons are case insensitive. "Hello world" is equal to "hEIIO WoRID" in
Setup Factory.

You can "multiply" strings with an integer value. (2 * "Ha" resolves to HaHa)

You can "strip" every occurrence of one string from another with the subtract
operator ('-').

All stand-alone strings except "true" resolve to 0 (false) when a Boolean result is
expected. For instance, the expression "hello" resolves to 0 (false) when used alone
in an IF statement.

With the exception of "true", strings resolve to 0 (false) when used with the Boolean
infix operators AND and OR. For instance, 1 AND "hello" is equivalent to 1 and 0 and
resolves to 0 (false).

Strings that begin with the letter "v" followed by only numbers and periods are
interpreted as versions. A string consisting of only humbers separated by two or more
periods is automatically considered a version even if the letter "v" is omitted.

The "v" prefix is omitted from the result when a version calculation is performed. For
example, v1.0 + v2.3 resolves to 3.3, and not v3.3.

You can compare versions using <, <=, >, >=, =, !=and <>, and you can perform
"corresponding element addition" and "corresponding element subtraction" on them
using + and -. "Version.revision" notation is assumed, so v1.1 + v1.9is 2.10 ("the
10" revision of version 2"), not 3.0. After a calculation, any negative numbers in a
version string are reduced to 0. For example, 2.3.5 - 7.1.6 resolves to 0.2.0.

Expressions

Syntax Rules

The following rules describe the various syntax checks that are performed on all

expressions in Setup Factory:

1.

Each '(' must have a matching ') and vice-versa.

Good: ((%a%))

Bad: ((%a%)

No empty parentheses. '()' is not allowed.

Good: (%BelovedGazeIlnThineOwnHeart%)

Bad: 0O

No open parenthesis immediately after a closed parenthesis. ')(' isn't allowed.

Good: (%fo0%) > (%bar%)
(2 > 3) OR ("tree" <= "tree-house")

Bad: (%f00%)(%bar%)
(2 > 3)("tree" <= "tree-house")

Each closed parenthesis must follow a value or a closed parenthesis. Only '<value>)'
and '))' are allowed.

Good: (%f00% = (%bar% + "hello"))
((1 < 2) AND (2 < 3))

Bad: (%fo0% =)
3*(5+)

237

Chapter 15

238

Only open parentheses and right-associative operators are allowed before the first
value in an expression. An expression can't begin with a binary infix operator or a
closed parentheses.

Good: 17
1(1(10))

Bad: * %f00%
I(/4)

You can't have two values in a row without an operator between them.
'<value><value>'isn't allowed.

Good: %f00% = %bar%
Bad: %f00% %bar%
llapplell lljackll

You can't have a value immediately before an open parenthesis. '<value>("'isn't

allowed.
Good: "hello" + ("wo" + "rld")
Bad: "hello" ("wo" + "rld")

You can't have a value immediately after a closed parenthesis. ')<value>'isn't

allowed.

Good: (2 + 4) + "th day violation"
(%count% + 1) > 5

Bad: (2 + 4) "th day violation"

(%count% + 1) 5

Expressions

10.

11.

All right-associative operators must be followed by a value, with no other operators
between the right-associative operator and its value except for open parentheses and
other NOT ('!') operators. In other words, the NOT operator is allowed to repeat, but
not the unary plus or minus...you can have 'l!!<value>', but not '++++<value>"'.

Good: 1((-(-1))
i
+(-(-2))

Bad: 14+-%fo0%
11-6
-12
--(2)
+-5

Every infix operator must have a value to the left of it.

Good: %f00% + %bar%
4*5AND 2 + 3

Bad: /12
AND 26
*5+ 2

The last token in an expression must be a value or a closed parenthesis. It can't be
an infix operator, right-associative operator or open parenthesis.

Good: 2+3
(5> 2)

Bad: 2+
5>

239

Chapter 16

Supporting Multiple
Languages

One of Setup Factory's strongest features is its support for creating foreign language
installations. You can use Setup Factory to create an installer that will automatically
display messages and prompts in your user's native language.

| TIP

The multi-language feature also allows you to customize the English text
displayed by "built-in" messages and prompts at run time.

There are four steps to creating a multilingual installer: translating screens, translating
language files, translating packages, and translating actions.

Translating Screens

The first step in creating a multilingual installer is to translate all of your screens into the
languages that you want to support. This can be done from the Screens dialog. To access
the Screens dialog, select Design | Screens from the menu, or click on the Screens icon
in the shortcut bar.

Create one screen of each type (Welcome screen, Select Install Folder screen, etc.) for
each language that you want to support. It's a good idea to include the name of the
language in the name that you assign to each screen—names like "Welcome (French)"
make it easy to identify which language a screen has been translated to.

Edit the screen properties to translate any text that is displayed on the screen, including
text that appears on the title bar and navigation buttons.

Then, set up a screen condition so the screen will only be displayed if the appropriate
language is being used on the user's system. You can use the built-in variable

241

Chapter 16

%SysLanguage% to compare the language ID for the user's system to the language ID

for the screen's language. For example, a condition like %SysLanguage% = 10 would

cause a screen to only be displayed if the user's system language was Spanish.

Once you've finished translating a screen, you might want to export it using the

Advanced operations button (@). This way you can add the translated screen to

future projects without having to translate the original screen again.

[SEE ALSO

=1 Befare Installing |f] After Installingl

For more information on the Screens dialog, see Screens in the Command
Reference, or see page 142 in this User's Guide.

Screen Mame

| Screen Title | Condition |

BE L e +8 3 B

Licenze Agreement [Englizh) ZProductMame? Setup %5yslanguageX =9
Usger Infarmation [English) ZProductMame’ Setup ZSyzlanguage® =9
Scroling Test ([English) EZProductMame’ Setup ZSyzlanguage® =9
Select Inztall Folder [English] ZProductMame Setup ZSyzlanguageX =9
Select Shortcut Folder [En... ZProductMame? Setup ZSyslanguage® =9
Ready ta Install [Englizh) ZProductMamel Setup %SyslanguageX =9

YWelcome - Side Banner [Fr...
Licenze Agreement [French)
Usger Infarmation [French)
Scroling Test [French]
Select Install Folder [French)
Select Shortcut Folder [Fre...
Feady to Install [French)

ome - Side Banner [E. .. roducti am

=)

Installation de ZProducth ame?
Installation de ZProducth ame?;
Inztallation de ZProductMame?
Installation de ZProductM ame?
Installation de ZProduct ame?:
Installation de ZProducth ame?:
Installation de ZProducth ame?;

%Syslanguageik =12
Z5yzlanguage®: =12
#Syslanguage® =12
%Syslanguage® =12
%Syslanguageik =12
%Syslanguageik =12
ZSyslanguage®: =12

o |

Cancel Help

242

Translated screens on the Screens dialog

Supporting Multiple Languages

Translating Language Files

Once your screens are translated, the next thing that requires translation are the other
messages, buttons and prompts that can appear during an installation. These "built-in"
messages are stored in Setup Factory language (. | ng) files.

Language files are special INI files used by Setup Factory. Each language file corresponds
to a Windows language ID, and includes all of the "built-in" messages for that language in
plain text format.

[NOTE

Setup Factory comes prepared with language files for many common
languages. You can find the Setup Factory language files in your
C.\ Program Fi | es\ Set up Fact ory\ Languages folder.

To translate a language file:

1. Make a copy of the language file you want to translate and name it according to
the new language, e.g. copy "Engl i sh. | ng" to "Ger man. | ng".

2. Open the new language file in a text editor and change the language ID to the
appropriate ID for the new language. For example, if you were translating the
English messages to German, you would change the line that reads:
Languagel D=9
to:

Languagel D=7

A complete list of language IDs can be found in the
C.\ Program Fi | es\ Setup Factory\l anguages\| angi ds. i ni file.

243

Chapter 16

3. Add the new language file to your Setup Factory project on the Languages tab of
the General Design dialog.

You can access the General Design dialog by selecting Design | General Design
from the menu, or by clicking on the General Design icon on the shortcut bar.

4. Select the new language in the list, and press the Properties button () to
translate the messages using the Language Module Messages dialog.

| TIP

s You can also edit the messages using your text editor, and then add the
translated language file to your Setup Factory project.

English: C:'Program Files'Setup Factory 6.0 Demo‘ L anguag 5'

v This iz the default language

Double click a message to edit the text:

Category | 1D I Text I:I
disc LaMG MAME i 3
Mizc MISC_BYTES bytes

Button BTH_CAMCEL Cancel

Button BTH_DK 0K

Buttan BTH_BROWSE Browsze...

Buttan BTH_START Start

Buttan BTH_CLOSE Cloze

Button BTH_TES Tes

Button BTH_NO Mo

Button BTM_YES_TO_ALL Tes to Al

Button BTM_MO_TO_ALL Moo Al

Title DLG_MOTICE Motice

Title DLG_ERROR Errar

Title DLG_FATAL Fatal Error

Title DLG COMFIRM Confirm Action LI

Q 0k, I Cancel Help |

The Language Module Messages dialog

244

Supporting Multiple Languages

Translating Packages

The next step in creating a multilingual installer is to translate the names and descriptions
of your packages. Of course, this step is only necessary if you are using packages in your
installer.

To translate your packages:
1. Select Design | Packages from the menu.
2. Select the package that you want to translate.

3. Press the Edit Package button (2). This will open the Package Properties
dialog.

4. Switch to the Localize tab.
5. Press the Add button (). This will open the Localize Package dialog.

6. Select the language that you wish to translate the package to in the Language
drop-down list.

7. Enter the translated text for the name and description of the package in the
Name and Description fields.

8. Press the OK button to accept the translation.

Translating Actions

The final (and completely optional) step in creating a multilingual installer is to translate
any custom messages displayed as the result of actions.

There are two ways that actions can cause messages to be displayed: a message can be
displayed using a Show Message Box or Yes/No Message Box action, and a custom error
message can be displayed when an error occurs.

245

Chapter 16

The best way to handle both of these cases is to do what programmers call "adding
indirection." Instead of entering the message text directly into the action or custom error
message, define a custom variable to hold the message instead. Then use a series of IF
actions to assign the appropriate translation to the variable, depending on what language
ID is detected on the user's system.

For example, to display a message in either English, French, or German, you could use
actions that look something like this:

English mezzage
IF [%5ypzLanguagei = 9)

Azzign Value [Emeszage® = my messzage in englizh]
EMD IF

French meszage
IF [%5ypzLanguages = 12)

Azzign Value [Zmeszage® = mon message en frangaiz)
EMD IF

Ferman meszage
IF [*5pzlanguage? = 7]

Azzign Value [Emezzagek = meine meldung auf deutzch)
EMD IF

Show Mezsage Box [XmeszageX]

[SEE ALSO

For more information on supporting multiple languages, please consult the
Command Reference.

246

Chapter 17

Creating a CD-ROM
Installer

In the past few years, CD-ROM has become the distribution medium of choice. Setup
Factory is perfectly suited to meet the needs of a CD-ROM installation. Most CD-ROM
installs will fall into one of the following three scenarios:

e You want to install all of the files to the user's hard drive. In this case you are just
using the CD-ROM as a means of distributing your setup, and once the software is
installed to the hard drive, the CD-ROM is no longer used to operate the program.

e You want your files to remain on the CD-ROM so the user can run the program
from there. In this scenario, you'll need to install some shortcuts on the user's
system, and possibly make some system changes to support your software. The
shortcuts will allow the user to easily run the program files directly off the CD-ROM.

e You have a large distribution that users with lots of hard drive space may want to
install for performance reasons, but that others will want to run from the CD. In
this case, you want to let the user decide which option is best for them. You could
even let them choose which files they want to install, and which files they want to
leave on the CD-ROM.

Each of these scenarios is examined in detail below.

Full Install to the Hard Drive

In this scenario, you want to install all of your files to the user's hard drive, and the
CD-ROM is just a distribution medium for the installer, just like floppy disks or an Internet
download would be. The only difference is that you need to decide whether to compress
the files into the setup executable, or leave them uncompressed on the CD-ROM and
install them from there. (You can ship files separately when you're using other distribution
methods, but it's uniquely convenient to do so when you're distributing software on CDs.)

247

Chapter 17

Here are some advantages to including the files in the setup archive:

e The files will be compressed and will require less space on the CD-ROM. This could
be important if your CD is packed with data and you need every bit of space to
count.

e The setup executable is self-contained and portable. The same executable that you
distribute on CD-ROM can easily be placed on your web site for download.

e The setup archive is secure. The files in the setup executable are compressed and
cannot be read from outside the setup. This way, you can use a Verify Serial
Number screen to protect the data in your installer, and not have to worry about
unauthorized access to your files on the CD-ROM.

Here are some advantages to excluding the files from the setup archive and just having
them remain uncompressed on the CD-ROM:

e The files will be accessible from the CD-ROM, so your users can access the files any
way they want to.

e You'll be able to update the files independently. If you make minor changes to one
or more files, you won't have to rebuild the setup executable. You can just replace
the old files with new versions on your master CD.

[NOTE

Contrary to what you might expect, there is really no performance

@ difference between installing files from the setup executable and installing
them directly from the CD-ROM. Any performance loss from having to
decompress large files in the setup archive is made up by not having to
read as much data off the CD.

Also, Setup Factory's advanced file streaming engine doesn't require any
more temporary space on the user's hard drive when it installs files from
the setup executable than it does when it installs files directly off the
CD-ROM.

248

Creating a CD-ROM Installer

Of course, you aren't limited to just one or the other; you can distribute some of the files
in your project in the setup executable, and some of the files "out bare" on the CD-ROM.
Once you've decided how you want to distribute the files, just add the files that you want
in the setup to the Archive tab, and add the files that you want to leave on the CD to the
CD-ROM tab. The rest of the installation process is the same as it is for any other
installation.

Leaving All Files on the CD-ROM

In this scenario, you always want your program to be run from and remain on the
CD-ROM. For example, you may be distributing large multimedia applications or extensive
online help systems that your users have said they prefer not to install.

In this case, you don't need to include any files in your Setup Factory project at all. You'll
probably just need to create shortcuts on the Start menu to give your users easy access
to the application on your CD-ROM. Of course, if your application requires any changes
made to the user's system, such as Registry entries to personalize the software, the
installer will also need to make those changes.

To create shortcuts to files on the CD-ROM, you can either use the Shortcut tab of the File
Properties dialog, or you can use Create Shortcut actions.

When using Create Shortcut actions, you would enter the path to the file on the CD-ROM
in the Target file field. Since you probably don't know what drive letter will be assigned
to the user's CD-ROM drive, you'll need to use the built-in variable %SrcDrv% in this
path. %SrcDrv% represents the letter of the drive where the setup executable is being
run from. Assuming that your setup executable is run from the CD-ROM, you can use
%SrcDrv% to represent the user's CD-ROM drive letter in your paths.

So, for example, if you wanted to make a shortcut to a file called MyApp. exe on the root
of your CD-ROM, you would set the Target file field to %5r cDr v% MyApp. exe.

249

Chapter 17

Letting the User Choose

In this scenario, you want to give your users the choice of whether to install the
application to their hard drive or run it from the CD-ROM. The main difference between
this scenario and the previous ones is that you will use the Packages dialog to create
packages for your files so the user can choose what type of installation they want.

To create this type of installer:

1. Add all of your files to the CD-ROM tab. This way you aren't storing two copies of
every file on the CD (one copy on the CD-ROM, and one in the setup executable).

2. Use the Packages dialog to create a package called "Hard Drive Install".

3. Select all the files on the CD-ROM tab, and use the Multiple File Properties dialog
to assign them all to the "Hard Drive Install" package.

4. Use the Screens dialog to add a Select Install Type screen to your installer.

5. Configure the Select Install Type screen to offer two install types to the user, so
they can choose to "Install to the hard drive" or "Leave files on the CD-ROM."
The "Install to the hard drive" install type should have the "Hard Drive Install"
package enabled, and the other install type should have it disabled.

6. Design the rest of your installer as you normally would.
The end result should be that the user can choose whether to install all the files

to their hard drive by selecting the appropriate install type on the Select Install
Type screen.

250

Creating a CD-ROM Installer

Burning Your CD-ROM

Here are some guidelines that you should follow when preparing your CD-ROM:

e Burn your CD-ROM using the ISO-9660 format. This format will ensure that your
CD is compatible with the vast majority of CD-ROM drives. Packet writing or
"rewritable" formats are fine for testing purposes, but many of your users will not
be able to access your CD if you use these formats.

e Consider making all files on your CD-ROM follow the "8.3" filename format. This is
because the ISO-9660 format only supports these short filenames. If you use a
long filename-supporting format like Joliet, your CD-ROM may not be compatible
with older CD-ROM drives.

Creating an AutoPlay Menu

One nice final touch is to include an AutoPlay or "autorun" menu on your CD-ROM. An
AutoPlay menu is a visual interface that is displayed automatically whenever the user
inserts the CD into the CD-ROM drive.

The best way to create such a menu is to use a product designed for the purpose, such as

Indigo Rose's AutoPlay Menu Studio. Please visit http://www.indigorose.com/autoplay for
more details and a free evaluation version that you can download.

251

http://www.indigorose.com/autoplay

Chapter 18

Building and
Distributing Your
Installer

Building Your Installer

Once your installer has been configured and checked for accuracy, it is time to generate a

setup executable.

To start the build process, select Project | Build from the menu. You can also start the
build process by pressing the Build button (=), or by using the F7 hotkey.

You will be asked to confirm that you want to start the build process. If you select Yes,

the Status dialog will appear and the build process will proceed.

| TIP |

starting build process check box on the General tab of the Preferences
dialog. To access the Preferences dialog, select Edit | Preferences from
the menu.

(I You can disable this confirmation step by deselecting the Confirm before

If setup executable already exists in the output folder, you will be asked to confirm that

you want to overwrite the file.

[NOTE |

The output folder and setup executable filename can be configured on the
Build Settings tab of the Project Settings dialog. To access the Project
Settings dialog, select Project | Settings from the menu.

253

Chapter 18

If all goes well, the setup executable will be generated in the output folder, ready for you
to test and distribute.

| TIP

You can start the build process from a batch file by running Setup Factory
with the Unattended Build (/ B) command line option. (See page 260.)

Testing Your Installer

Perhaps the most important and most often overlooked step when creating an installer is
testing it after it has been built. You should test your setup executable on as many
computers and operating systems as possible. Try it on Windows 95, Windows 98, and
Windows ME. Try it on Windows NT, Windows 2000 and Windows XP. Try it using different
screen resolutions, color depths and font sizes. Try it on systems with small amounts of
hard drive space and on others with gigantic hard drives.

If you are supporting multiple languages with your installer, be sure to try running the
setup executable in all of those languages. If you are distributing a lot of runtime files
(such as the runtimes required by Visual Basic programs), try the install on a "virgin"
system that does not have the runtime files installed, or on a base Windows 95A machine.

If you run into a problem with your installer, always try it on as many other systems as
you can. You might be able to narrow down a common factor between the systems that is
causing the installation (or your software) to fail.

Distributing Your Installer

Once your installer has been thoroughly tested, it is time to distribute your software.
There are several ways to distribute your setup files, but the three main media are
floppies, CD-ROMs, and the Internet.

254

Building and Distributing Your Installer

CD-ROM Distribution

CD-ROMs have become the standard distribution media for software. Creating an installer
appropriate for CD-ROM distribution is as simple as generating the setup executable and
then burning the file onto a CD-ROM.

When building the setup executable, set the Output folder to be a directory on your hard
drive, e.g. C: \ Qut put , and choose "Largest possible" as the Output file segment size.
This will create a single, self-contained set up. exe file. You can then simply burn this file
to your CD-ROM just like any other file.

[NOTE

If the setup executable is too large to fit on a single CD-ROM, set the

(} output file segment size to the maximum file size that will fit on a CD.
Setup Factory will create a series of files that you can then burn onto
multiple discs. At run time, the user will be prompted to insert the next
disc as required.

[SEE ALSO

9] For more information on CD-ROM installs, see page 247.

Internet Distribution

It is increasingly common to have setup executables available for download from the
Internet. Creating a set up. exe file for Internet distribution is as simple as generating

the setup executable and uploading it to your web site.

The instructions are the same as for building a CD-ROM distribution, but instead of
burning the file to a CD, you will upload the file to your web site, and provide a download
link to the file on your web page.

| TIP |

To avoid any problems with data corruption that might occur when users
download the setup files, enable the Verify archive before installing
option on the Settings tab of the General Design dialog .

255

Chapter 18

Floppy Disk Distribution

Low-capacity floppy disks have almost been made obsolescent for software distribution by
the rise of cheap CD-RW drives and recordable CDs. However, they still remain a popular
media for very small distributions, if only for the near-universal availability of floppy
drives. Setup Factory allows you to easily create multiple-floppy, "disk spanning" setup
distributions.

The easiest way to prepare a floppy distribution is to build your setup executable right
onto the floppies. Simply choose your floppy drive letter (e.g. "A:") as the Output folder
on the Build Settings tab of the Project Settings dialog, and set the Output file segment
size setting to "Largest possible." Setup Factory will automatically fill each floppy disk to
its capacity and then ask for additional disks as required.

[NOTE

Setup Factory will create a file called set up. exe on the first disk,
set up. 2 on the second, set up. 3 on the third, etc.

Why not "1.44 MB Floppy?"
You may wonder why you wouldn't select "1.44 MB Floppy" as the Output file
segment size when building the setup executable onto 1.44 MB floppies.

The "1.44 MB Floppy" setting is only provided in case you want to output the setup
executable in 1.44 MB segments to a directory on your hard drive, and then copy the

segments to floppy disks later.

Building your installer onto new, formatted floppies using the "Largest possible"

setting is the easiest way to get the job done.

| TIP

especially true if you will be using the disks as masters to create

(I Always be sure to test your setup disks on several systems. This is
duplicates.

256

Chapter 19

Command Line Options

Command line options are special values that can be passed to an executable file when it
is run. Also known as "command line switches" or "arguments," command line options are
usually used to set program options.

For example, entering "C: \ abc. exe /W / F" on a command line would run a program
called abc. exe and pass two command line options to it: / Wand / F. The abc. exe

program would see those options and handle them internally.

You can test command line options by running an executable from the Command Prompt
in NT, or the DOS prompt in Windows. You can also use command line options in program
shortcuts, or when running an application by using Start -> Run.

[_NOTE |

meaningful command line options is specific to each program. /W might
mean "wait for return" in one program, but it could mean "enable wacky
walk animation" in another—or it might not even be recognized at all.

5 Not all executables accept command line options, and the list of

Many executables will display a list of the command line options they
support if you run them with the / ? option.

Installer Options

The following command line options are supported by the Setup Factory installer:

Language (/L)

The / L option forces the installer to use the messages associated with a specific language

ID, instead of using the messages that correspond with the user's system locale settings.

257

Chapter 19

By default, the setup executable detects the language being used on the user's system,

and uses the messages that were loaded from the corresponding language file at design
time. If there were no messages defined for the user's language, the messages from the
default language file are used.

[SEE ALSO

You can add different language files to your installer by using the
- Languages tab of the General Design dialog. For more information on the
Languages tab, see page 130.

The / L option allows you to test your installer in multiple languages without having to

change your system language and reboot.

The syntax for the / L option is:

/L. #

Replace # with the language ID for the language you want Setup Factory to "detect." The
installer will configure itself as though that language was the current system language.

Example: setup.exe /L:17

(forces the installer to "detect" Japanese as the system language)

| TIP

A complete list of language IDs can be found in the
C:\ Program Fi | es\ Set up Fact ory\ Languages\| angi ds. i ni file.

Silent Mode (/S)

You can force the installer to run in silent mode by using the / S option. In silent mode,
no screens, errors, or any other parts of the interface will be shown. This includes any
messages displayed using the Show Message Box and Yes/No Message Box actions.

Example: setup.exe /S

258

Command Line Options

[NOTE |

The built-in variable %SilentMode% is set to TRUE when the installer is
running in silent mode.

Temp Path (/T)

Every setup executable requires some temporary space on the user's hard drive during
the installation process. By default, Setup Factory uses the user's TEMP directory for
extracting temporary files and other miscellaneous operations. You can force the setup
executable to use an alternate directory by using the / T command line option.

The syntax for the / T option is:

| T: path

Replace path with the path to the folder you want the setup executable to use for its
temporary files. (Be sure to put quotes around the entire argument if the path includes
any spaces.) If the folder doesn't already exist on the user's system, it will be created
automatically.

Example: C:\ Downl oads\setup.exe "/T:C:\MWy Tenp Dir"

(forces the installer to use "C:\My Temp Dir" for temporary files)

Wait for Return (/W)

Use the /W option to have the Setup Factory launcher wait for the setup executable to
return before exiting. This is useful if you're running the installer from another process
and you want that process to wait for Setup Factory to finish before proceeding.

To keep the setup executable compact, part of its code is transported in a compressed
form. Whenever the user runs your installer, the setup executable automatically
extracts this compressed code, runs it, and exits—essentially handing the installation
process over to the uncompressed code. By using the /W option, you can have the

launcher program "stick around" until the end of the installation process.

259

Chapter 19

Uninstaller Options

The following command line option is supported by the Setup Factory uninstaller:

Silent Mode (/S)

You can force the uninstaller to run in silent mode by using the / S option. In silent mode,
no screens, errors, or any other parts of the interface will be shown. This includes any
messages displayed using the Show Message Box and Yes/No Message Box actions.

Example: iun600.exe "C:\Program Fil es\ Foobar 2002\irunin.ini" /S

[NOTE

The built-in variable %SilentMode% is set to TRUE when the uninstaller is
running in silent mode.

Design Environment (Build) Options

The following command line options are supported by the Setup Factory design

environment:

Unattended Build (/B)

Performs an unattended build of a project. This allows you to build a setup executable
"automatically" from a batch file.

The syntax for the / B option is:
| B: unattended-build INI file

Replace unattended build INI file with the path and filename of an INI file containing the
unattended build settings you want Setup Factory to use. (Be sure to put quotes around
the entire argument if the path or filename includes any spaces.)

Example: SUF60Desi gn.exe D:\foo.sf6 "/B:D:\rel ease build.ini"

260

Command Line Options

[NOTE |

The project file name should always be passed as the first command line
parameter.

The unattended-build INI file allows you to pass values into your project in the form of
design-time constants. You can define as many design-time constants as you want in the
INI file, with each constant on a separate line beneath the [Constants] section. For

example:

[Const ant s]

#OUTPUTDI R#=C: \ Qut put\ Foobar 2002\ Rel ease
#SETUPNAME#=f oobar 2002set up. exe

#BUI LD#=r el ease

When you use the / B option, the specified project file is loaded into Setup Factory, the
constants described in the specified unattended-build INI file are set, and the setup
executable is generated—all without any interaction.

The SUF60Desi gn. exe process returns an exit code of 1 if an error occurred during the
unattended build, or 0 if the build was successful. You can use this return code to make
your batch files respond to the success or failure of the Setup Factory build process.

| TIP

The unattended build option is usually used in conjunction with the
Minimize (/ M) option.

Minimize (/M)

Minimizes the Setup Factory design environment when used with the unattended build
(/ B) option.

Example: SUF60Desi gn.exe C:D:\xyz.sf6 /B:D:\autobuild.ini /M

261

Appendix A

Actions Index

The following actions are available in Setup Factory:

Action Category Description
Control
Abort Structures Aborts the setup process.
Assign . . .
Value Variables Assigns a value to a variable.
Blank Control Allows you to insert a blank line in an action list.
Line Structures Blank lines have no effect on run-time operation.
Call DLL Open/Close e . .
Function Programs Calls a specific function in a DLL file.
Check Checks to see if the user's system is currently connected
Internet Internet
N to the Internet.
Connection
Close Open/Close .
Locates and closes a running program.
Program Programs
Control Allows you to insert a comment in an action list.
Comment . -
Structures Comments have no effect on run-time operation.
Cont||_1ue Services Continues a previously paused Windows service.
Service
. File .)
Copy Files Operations Copies files.
Count Counts the number of strings that could be made from an
Delimited Strings existing string by splitting it wherever specific delimiting
Strings characters are found.

263

Appendix A

Action Category Description
Cou[\t RIS Text Files Counts the number of lines in a text file.
Lines
Freate Folders Creates a directory.
Directory
Crea_te Services Creates a Windows service.
Service
Create
Shortcut Shortcuts Creates a shortcut.
Delete File Tells Windows to delete a file the next time the system is
Reboot
on Reboot rebooted.
Delete Files F’Ie. Deletes files.
Operations
Dele_te Services Deletes a Windows service.
Service
Delete Text . Deletes the line of text at a specific (zero-based) line in a
N Text Files -
Line file.
Download) .
File HTTP Internet Downloads a file from a web site.
END IF control qo minates an IF/END IF block.
Structures
END WHILE control 1o minates a WHILE/END WHILE block.
Structures
Execute File Open/Close Runs an executable file or batch file.
Programs
Find String Strings Searches for one string within another, and determines

the location of the match if found.

264

Actions

Action Category Description
Format . Formats a floating-point number (i.e. real number) to a
Strings . .
Number specified number of decimal places.
Generate Generates a random integer value between two numbers,
Random Variables or generates a random string based on a mask (e.g. a
Value serial number).
Get Gets a specific entry in a delimited string given delimiting
Delimited Strings -
. characters and a zero-based index.
String
Get_Text Text Files C_5ets the line of text at a specific (zero-based) line in a
Line file.
GOTO Label Control Jumps directly to a Label on the Actions tab.
Structures
Control Begins an IF/END IF block. The actions in this block will
IF only be performed if the condition in the IF action
Structures
resolves to a non-zero (true) result.
Insert Text . Inserts a line of text at a specific (zero-based) line in a
. Text Files "
Line file.
Install File Fi/e' Installs a file onto the user's system.
Operations
Label Control Marks a position in the list of actions that can be reached
Structures using a GOTO Label action.
. . Creates a new string from the left-most x characters of an
Left String Strings existing string.
Lesng-th of Strings Counts the number of characters in a string.
tring
. . . Creates a new string consisting of a number of characters
Mid String S starting from a given position in an existing string.
Modify INI . Sets an INI file value, deletes an INI file value, or deletes
- INI Files) .
File an INI file section.

265

Appendix A

Action Category Description
Modify . .
Registry Registry Creates or deletes a Registry key or value.
Move File Tells Windows to move a file the next time the system is
Reboot
on Reboot rebooted.
. File ’ . .
Move Files . Moves files between directories.
Operations
Open Open/Close Opens, plays, prints or performs other actions on a
Document Programs document using its associated viewer.
Parse Path Strings Parses a string to extract specific information from it if it
is a path.
Pau§e Services Pauses a Windows service.
Service
Query Servi Queries the system for the status of a specific service,
" ervices : . -
Service and stores the status in a specified variable.
Read File File Assigns the path of the executable associated with a file
Association Information extension (e.g. ".txt") to a variable.
Read File File Determines a file's version, its CRC value, its size in
Information Information bytes, or whether it exists.
Read fl_'om INI Files Reads a value from an INI file and stores it in a variable.
INI File
Read from Registr Reads a value from the Registry and stores it in a
Registry gistry variable, or sets a variable to True if a key exists.
Reaf“:eXt Text Files Reads the contents of a text file into a variable.
Register File Registers a DLL or OCX file with the user's operating
File Operations system.

266

Actions

Action Category Description
Register File . '
Font Operations Registers a TrueType font on the user's system.
Remove Removes (deletes) a directory on the user's system. The
- Folders . -
Directory directory must be empty in order to be removed.
Remove :
Shortcut Shortcuts Removes (deletes) a shortcut file.
Rename File ’
. . Renames a file.
File Operations
Right String Strings Creatgs.a new_strlng from the right-most x characters of
an existing string.
Run File on Tells Windows to execute a file the next time the system
Reboot .
Reboot is rebooted.
Set File File .]
Attributes Operations Sets the attributes of a file.
Sl Displays a standard Windows message box to present
Message Dialogs - .
information to the user.
Box
Start Services Starts a Windows service.
Service
Sto_p Services Stops a Windows service.
Service
Submit to Submits data to a web site and stores the response.
Internet Allows you to perform a POST or GET to a web script or
Web :
program just as you would from an HTML form.
Unzip Files Flle_ Extr?cts all the files from a zip file to a directory on the
Operations user's system.
Control Begins a WHILE/END WHILE block. The actions in this
WHILE Structures block will be performed while the condition in the WHILE

action resolves to a non-zero (true) result.

267

Appendix A

Action Category Description
Write to . . .)
Text File Strings Writes a string to a text file.
Yes/No Displays a standard Windows message box to get a
Message Dialogs Yes/No response from the user. The response is stored in
Box a variable that you specify.

268

Appendix B

Built-in Variables

%AppDir%

%AppDrv%

% BDEPath%

% ColorDepth%

% CommonFiles%

% CompanyName%o

%Copyright%

% CurrentDay%

% CurrentHour%

Your application's main directory, where all of your
files and folders will be installed.

For example, by default Setup Factory's main directory
is:

C.\Program Fi | es\ Setup Factory 6.0
The drive letter of %AppDir%.
The user's BDE (Borland Database Engine) directory.

The color depth of the user's video display, in bits per
pixel.

The user's Common Files directory.
Typically, this is something like:

C.\Program Fi | es\ Coormon Fil es

Your company's name. The value of this variable is set
in the Company name field on the Product Info tab of
the General Design dialog.

The copyright message for your product. The value of
this variable is set in the Copyright notice field on
the Product Info tab of the General Design dialog.

A number representing the current day of the month,
calculated when the setup begins.

A number representing the current hour in 24-hour

time (e.g. 4:00 PM is 16), calculated when the setup
begins.

269

Appendix B

% CurrentMinute%

% CurrentMonth%

% CurrentSecond%

% CurrentYear%

%DAOPath%

%Date%

% Desktop%

% DesktopNT%

% DoReboot%

270

The current minute, calculated when the setup begins.
This number is always expressed with two digits, so 4
minutes into the hour will be "04".

A number representing the current month, calculated
when the setup begins. January is represented by "1"
and December is represented by "12".

The current second, calculated when the setup begins.
This number is always expressed with two digits, so 4
seconds into the minute will be "04".

The four-digit number representing the current year,
calculated when the setup begins.

The path to the user's DAO (Data Access Objects)
directory.

The current date on the user's system when the setup
executable is run. It's in the format MM/DD/YY.

For example, if the user ran the installer on
May 23, 2002, %Date% would be:

05/23/02

The path to the user's Desktop directory. On Windows
NT, this is the path from the per-user profile.

The path to the user's Desktop directory. On Windows
NT, this is the path from the All Users profile.

Whether or not Setup Factory should restart the
system at the end of the installation process. If set to
any true value (e.g. "TRUE" or "1"), the system will be
rebooted.

Note: This variable is also used by the uninstaller. So,
if %DoReboot% is set to "TRUE" during the uninstall,
the user's system will be rebooted after the uninstall is
complete.

Built-in Variables

%EuropeanDate%

%FontDir%

% InfoURL%

%ISODate%

% IsUserNTAdmin%

%IsWin95%

%IsWin98%

%IsWinME%

The current date on the user's system when the setup
executable is run, in the European dating format:
DD/MM/YY.

For example, if the user ran the installer on
May 23, 2002, %EuropeanDate% would be:

23/05/02
The path to the user's font directory.

The URL to a web site where the user can find more
information about your product. The value of this
variable is set in the Information URL field on the
Product Info tab of the General Design dialog.

The current date on the user's system when the setup
executable is run, in the ISO format: YYYY-MM-DD.

For example, if the user ran the installer on
May 23, 2002, %ISODate% would be:

2002-05-23

This variable is set to "True" if the user running the
setup executable is currently logged into Windows NT,
2000 or XP with Administrator permissions. Otherwise,
it's set to "False".

On systems that aren't running some version of
Windows NT, this variable is always set to "False".

This variable is set to "True" if the setup executable is
running on Windows 95, and "False" otherwise.

This variable is set to "True" if the setup executable is
running on Windows 98, and "False" otherwise.

This variable is set to "True" if the setup executable is
running on Windows Millennium, and "False"
otherwise.

271

Appendix B

%]IsWinNT4%

%IsWin2000%

% IsWinXP%

%JulianDate%

% LANDomain%

% LANHost%

%LANIP%

%LANNIC%

% LANUser%

%LastCommand®%

272

This variable is set to "True" if the setup executable is
running on Windows NT 4.0, and "False" otherwise.

This variable is set to "True" if the setup executable is
running on Windows 2000, and "False" otherwise.

This variable is set to "True" if the setup executable is
running on Windows XP, and "False" otherwise.

An integer value representing the number of days

since midnight on January 1, 4713 B.C. Very useful
when comparing dates or performing arithmetic to
determine the number of days between two dates.

The domain that the user is logged in to. If the user's
system is not connected to a LAN, this variable will
default to "UNKNOWN".

The user's local computer name. If the user's system
is not connected to a LAN, this variable will default to
"UNKNOWN".

The user's IP address on the local network. If the
user's system is not connected to a LAN, this variable
will default to "UNKNOWN".

The MAC address of the user's NIC (Network Interface
Card). If the user's system does not contain a network
card, this variable will default to "UNKNOWN".

The user name that the user is currently logged in as.
If the user's system is not connected to a LAN, this
variable will default to "UNKNOWN".

The ID of the last action that was performed. (See the
specific actions in the Command Reference for their
respective action IDs.)

Built-in Variables

%LastErrorDetails%

% LastErrorMsg%

%LastErrorNum%

% MousePresent%

% MyDocumentsDir%

If an error is generated, this variable is set to the
"verbose" error message for the last action that
occurred (the action that generated the error). When
an action doesn't generate an error, this variable is
empty ("").

For a complete list of the verbose error messages
which can be generated by an action, see that action's
documentation in the Command Reference.

If an error is generated, this variable is set to the
"simple" error message for the last action that
occurred (the action that generated the error). When
an action doesn't generate an error, this variable is
empty ("").

For a complete list of the simple error messages which
can be generated by an action, see that action's
documentation in the Command Reference.

If an error is generated, this variable is set to an
action-specific error number that identifies the last
error that occurred. When an action does not generate
an error, this variable is set to 0.

For a complete list of the error numbers associated
with an action, see that action's documentation in the
Command Reference.

Whether or not a user has a mouse connected to their
system. This variable is set to "True" if the user has a
mouse connected to their system; otherwise, it's set to
"False".

The path to the user's My Documents directory, for
example:

C.\My Docunents

273

Appendix B

% NeedsReboot%

% ProductName%

%ProductTagline%

%ProductVer%

%ProgramFiles%

% RegOwner%

%RegOrganization%

% SCFolderPath%

% SCFolderTitle%

%ScreenHeight%

% ScreenWidth%

%SilentMode%

274

Whether or not the system needs to be restarted at
the end of the installation process in order to install
files that were in use. This is set to "True" when the
system needs to be restarted, and "False" when the
system doesn't.

The name of the product that you are installing. The
value of this variable is set in the Product name field
on the Product Info tab of the General Design dialog.

The marketing tagline for the product that you are
installing. The value of this variable is set in the
Product tagline field on the Product Info tab of the
General Design dialog.

The version of the product that you are installing. The
value of this variable is set in the Version field on the
Product Info tab of the General Design dialog.

The path to the user's Program Files directory.

The name of the registered user of the system.

The organization of the registered user of the system.

The full path to the shortcut folder on the Start menu
where your application's shortcuts will be stored.

The name of the shortcut folder on the Start menu
where your application's shortcuts will be stored.

The user's screen height in pixels.
The user's screen width in pixels.
Whether or not the installer (or uninstaller) is running
in silent mode. This variable is set to "True" when the

installer (or uninstaller) is running in silent mode;
otherwise, it's set to "False".

Built-in Variables

%SrcDir%

%SrcDrv%

%SrcFile%

% SoundCardPresent%

% StartMenu%o

%StartMenuNT%

% StartMenuPrograms%

% StartMenuProgramsNT%

% Startup%

%StartupNT%

The full path to the folder the setup executable was
run from. For example:

C:. \ Downl oads

The drive that the setup executable was run from.
For example:

C.

The full path, including the filename, for the currently
running setup executable. For example:

C:. \ Downl oads\ set up. exe

Whether there is a sound card installed on the user's
system. Set to either "True" or "False".

The path to the user's Start menu directory. On
Windows NT, this is the path from the per-user profile.

The path to the user's Start menu directory. On
Windows NT, this is the path from the All Users profile.

The path to the Programs folder in the user's Start
menu. On Windows NT, this is the path from the per-
user profile.

The path to the Programs folder in the user's Start
menu. On Windows NT, this is the path from the All

Users profile.

The path to the user's Startup folder. On Windows NT,
this is the path from the per-user profile.

The path to the user's Startup folder. On Windows NT,
this is the path from the All Users profile.

275

Appendix B

%0SysDir%

%SysDrv%

% SysLanguage®

%SystemRAM%

% TempDir%

% TempLaunchDir%

% WinDir%

276

The path to the user's Windows System directory, for
example:

C:\ W ndows\ Syst em

The drive that the user's Windows System directory is
located on. For example:

C.

The numeric primary language ID for the user's
system language.

The amount of physical memory on the user's system
in megabytes.

The path to the user's Temp directory.

The path to the temporary directory where Setup
Factory extracts the files it will need for the
installation. (For example, this is the directory where
Primer files are extracted to.)

Usually this directory will be the user's temporary
directory, unless the user overrides the temporary
directory with the /T command line option.

The path to the user's Windows directory. For
example:

C.\ W ndows

Built-in Variables

Design-time Constants

Design-time constants are similar to variables, but instead of being converted to values at

run time, design-time constants get converted at build time. We call them design-time

constants because the names you give them only exist at design time. At build time, the

name of each design-time constant is replaced by the value that was assigned to it.

Here are some design-time constants that are built into Setup Factory:

#ASC??2?#

#JULIANDATE#

#PROJECTFILEDIR#

#SUFDIR#

#SYSDIR#

#WINDIR#

This is a special set of design-time constants. When a
constant's name starts with "#ASC", Setup Factory will
interpret the value assigned to that constant as the
ASCII value of a character, and will replace the
constant's name with that character at build time.

So, for example, to create a design-time constant to
represent a null character (ASCII value 0), you could
assign the value "0" to "#ASCNULL#".

An integer value representing the number of days

since midnight on January 1, 4713 B.C. Very useful
when comparing dates or performing arithmetic to
determine the number of days between two dates.

Note: #JULIANDATE# is a design-time constant. This

means that it will equal the date when your setup
executable was built.

The path to the directory where your Setup Factory
project (. sf 6) file was saved.

The path to the directory where Setup Factory is
installed on your development system.

The path to the SYSTEM directory on your
development system.

The path to the Windows directory on your
development system.

277

Appendix C

Contact Info

Indigo Rose Corporation is a world leader in software installation and deployment tools.

Programmers, electronic publishers, multimedia developers and software professionals
from all over the world turn to Indigo Rose Corporation for state-of-the-art solutions.

Corporate Headquarters

Web: http://www.indigorose.com
Email: info@indigorose.com
Office Hours: Monday to Friday

9:00 AM to 5:00 PM Central Standard Time

Sales

The Indigo Rose sales team is ready to answer your questions Monday to Friday from
9:00 AM to 5:00 PM Central Standard Time.

Contact a sales representative for information on the latest Indigo Rose products or to
purchase technical support subscriptions, upgrades or additional product licenses.

If your question is technical in nature, please contact Technical Support.

Phone: (204) 946-0263

Fax: (204) 942-3421

Web: http://www.indigorose.com
Email: sales@indigorose.com

279

http://www.indigorose.com/
mailto:sales@indigorose.com

Appendix C

Technical Support

Indigo Rose Corporation offers a variety of technical support programs designed to match
your specific needs. Both complimentary and fee-based support options are available.
Please refer to the Developer Support Programs brochure included with your package for
complete details on the available support programs.

Your connection to all of our support resources can be found at:
http://www.indigorose.com/support/

Before You Contact Our Support Department

Save yourself both time and money by referring to our supplementary resources before
you contact our technical support department. Answers to just about any question can be
found in these self-help resources. You'll be able to get the answers you need 24 hours a
day, 7 days a week.

Product Documentation

The product documentation includes this User's Guide, the Command Reference,
and any last-minute notes in a readme.txt file. Answers to most common support
issues can be found in the product documentation.

Knowledge Base

A collection of informational articles and how-to tutorials. These articles cover both
common and uncommon situations, including advanced technical issues. Many
articles are written in response to consulting-type situations. You'll find a wealth of
good information in the knowledge base.

Discussion Groups

Indigo Rose maintains a number of community message boards. These discussion
groups are frequented by many developers, including our own technical support
representatives. The discussion groups are a great source for ideas, solutions and
peer support.

280

Contact Info

Limitations of Technical Support

Technical Support is limited to general product usage questions. Questions relating to
external functionality such as operating systems, development environments, third-party
products or various Windows technologies are not included. All services are provided
subject to the current Support Terms and Conditions as listed at our web site.

Limitations include, but are not limited to:

. Problems with your development tool such as Visual Basic, Delphi, Director, etc.
Please consult your development tool's documentation for these issues.

e Third-party technologies you are distributing (such as BDE or QuickTime).
e Issues relating to distribution media such as CD-R burning.

® A specific design issue that is unique to your distribution.

| TIP |

If your situation requires a more personalized solution, you might want to
consider using our Consulting Services. Our consulting department can
help you with matters that go beyond standard technical product issues.

For more information on Consulting Services, please visit our web site.

281

Appendix D

Minimum System
Requirements

Setup Factory requires the following minimum system configuration in order to operate
properly:

Setup Factory Design Environment
e Windows 95 (OSR2), 98, ME, NT 4.0 (SP3), 2000, XP
e Pentium processor
. 128 MB RAM
e 800x600 SVGA display with small fonts setting enabled
e Video card set to 16 bit 32K color or greater (recommended)
e Mouse

e 20+ MB free hard drive space

Setup Factory Run-Time Executable
e Windows 95, 98, ME, NT 4.0 (SP3), 2000, XP
e 486 processor
e 32 MB RAM
e 640x480 SVGA display
e Video card set to 8 bit 256 color or greater (recommended)

e 10+ MB free hard drive space

283

Glossary

action
application

associativity

binary operator

Boolean

build time

built-in variable

CRC value

current release

An instruction that the Setup Factory installer can perform at run
time.

An executable program capable of performing several tasks or
functions.

A way of describing the rules that determine which sub-
expressions are performed first when operators have equal
precedence. If two operators have the same precedence and are
left-associative, the operation on the left is performed first. If two
operators have the same precedence and are right-associative,
the operation on the right is performed first. (Most of the
operators in Setup Factory are left-associative.)

[See: expression, operator, precedence, sub-expression]

An operator that operates on two operands. In Setup Factory,

all binary operators are infix operators, so one operand precedes
the operator, and the other operand follows it. In other words, a
binary operator operates on one value to the left of it, and one
value to the right. [See: expression, operand, operator]

A term for values that are used to describe the results of logical
comparisons. A Boolean value can be either True or False.

When Setup Factory generates the setup executable.

A variable automatically defined for you by Setup Factory.
[See: variable]

Cyclic Redundancy Check value. A 32-bit checksum number
calculated from the contents of a file, that changes whenever the
file's contents change.

The most up-to-date external (meaning "available to users")
version of your software. Also called the "latest release."

285

Glossary

custom variable

design time

design-time
constant

dialog

directory

drive

executable

expression

286

A variable that you define yourself. [See: variable]

The process of designing your installer using the Setup Factory
design environment.

A special kind of variable that gets converted at build time
instead of at run time. They are called design-time constants
because the names you give them only exist at design time.
When Setup Factory builds the setup executable, the name of
each design-time constant is replaced by the value you assigned
to it.

In Setup Factory, design-time constant names always begin and
end with a number sign (#). [See: variable]

A window that displays options or questions in order to receive
input or instruction from a user. Also: a single window in an
interface made up of logical steps that must be followed.

[See: wizard]

A named location within a file system where other folders or files
can be stored. [See: folder, file]

A form of fixed, networked or removable media used as a storage
device. Also: the letter assigned to a drive during the computer
boot process.

A program file, usually containing instructions for a computer in
the form of machine code. In Windows, executables typically
have a . exe extension.

Any valid combination of operands and operators that resolves to
a single result. For example, the expression (4 + 3) * 2 resolves
to 14. [See: operand, operator]

Glossary

extension

external version

file

filename

firewall

folder

full-history patch

HTTP

A period (.) followed by one or more letters at the end of a
filename.

Windows uses the file extension to determine what kind of
information is contained in a file. For example, in the filename
nmyfile.txt,.txt isthe file extension that identifies
myfile. txt as a text file.

A version of your software that is available to users.
[See: release, version]

A collection of data stored as a single entity in a file system.

Some files only serve as receptacles for data (text files,
document files, bitmap image files), while others contain
instructions for the system to perform (program files, dynamically
linked library or ". dI | " files).

The name given to a file when it is created or saved.

A firewall is a combination of computer hardware and software
used to keep a network secure. The firewall acts as a gatekeeper
between an internal network and the Internet, allowing only
specific kinds of messages to flow in or out.

The common term for a directory in Windows. A named location
within a file system where other folders or files can be stored.
[See: directory]

An advanced patch that can update all older versions of a
software product using a single self-extracting executable.

Indigo Rose's Visual Patch creates full-history patches.
[See: patch]

Hypertext Transfer Protocol. The Internet protocol used to
transmit and receive data over the World Wide Web. Often used
between a Web browser and a server to request a document and
transfer its contents.

287

Glossary

infix operator

INI file

internal version

Intranet

Julian Date

LAN

latest release

NIC

288

An operator that needs to be placed between the operands it
operates on. For example, to multiply 2 by 3 with the Multiply
operator (which is a binary infix operator) you would place the
Multiply operator between the two values, like so: 2 * 3.
[See: binary operator, operand, operator]

Short for "initialization file." A text file where user, application or
system settings can be stored and retrieved by an application or
the system as required.

A version of your software that is not available to users. In other
words, a version of your software that is never released, but only
exists internally. [See: version]

An "internal Internet" designed for use within a single company,
university or organization. Essentially, a private network using
the same technologies that drive the Internet. The main
difference between an intranet and the Internet is that an
intranet is not meant to be accessible to the public.

In Setup Factory, this is a date expressed as an integer using the
Chronological Julian Day numbering system. This system counts
the number of days since midnight on January 1, 4713 B.C.

The Julian Date is primarily useful when comparing dates or
performing arithmetic to determine the number of days between
two dates.

Local Area Network. A network that connects computers located
on the same floor or in the same building or nearby buildings.

The most up-to-date external (meaning "available to users")
version of your software. Also called the "current release."

Network Interface Card. A computer component that allows the
computer to physically connect to and communicate over a
network.

Glossary

operand

operator

password

patch

path

portable
executable file

precedence

prefix operator

A value or sub-expression that an operator operates on. For
example, in the expression 3 + 4, the values "3" and "4" are both
operands of the "+" (or "Add") operator.

[See: expression, operator]

A symbol used to represent an operation that can be performed
on one or more operands in an expression. For example, in the
expression 3 + 4, the "+" is the symbol for the "Add" operator.
[See: expression, operand]

A string of text used to gain access to something.
[See: serial number]

A file that, when run, modifies or replaces specific files on a
computer system, usually to bring an already-installed software
product up to date.

[See: full-history patch]

Text that describes a location within a file structure. Each path
describes a route followed by the operating system to find, store
or retrieve a file or folder.

In Windows and MS-DOS, each folder in a path is separated by a
backwards slash (\).

An executable file that is portable across all 32-bit Microsoft
operating systems. Each Portable Executable (or "PE") file will run
on all versions of Windows 95, 98, ME, NT, 2000 and XP.

A way of describing the rules that determine which operators in a
series of sub-expressions are applied first. Operators with higher
precedence are applied before operators with lower precedence.
[See: associativity, expression, operator, sub-expression]

An operator that needs to precede the operand it operates on.
For example, to make the value 2 a negative number with the
unary minus operator (which is a prefix operator), you would
place the unary minus operator before the value, like so: -2.
[See: infix operator, operand, operator, unary operator]

289

Glossary

protocol

Registry

release

root folder

run time

screen

serial number

server

290

A set of rules that computers use to communicate with each
other. Protocols ensure that different kinds of network hardware
and software can work together.

A database used by 32-bit versions of the Windows operating
system to store system and software configuration details.

The Windows Registry serves a similar purpose to the wi n. i ni
and system i ni files used by earlier versions of Windows.

A set of files that are distributed as a whole unit, i.e. all the files
that make up one version of your software.
[See: external version, version]

The "base" or "main" folder on any drive, where all of the other
folders on a drive are located.

When you double-click on the C: drive in My Computer, you're
opening the root folder of the C: drive

When the actual setup executable is run.

A window in a graphical user interface.

The user interface of a Setup Factory installer is made up of
individual screens which can be added to or removed from any
Setup Factory project. [See: dialog, window]

Some text (usually a sequence of numbers and/or letters) used
to enable or identify one instance of a software product.

A computer on a network that runs programs and stores data for
use by other computers. Servers store information and respond
to requests for that information by "serving" the information to
other computers.

Glossary

service

shell

shell operation

shortcut

shortcut file

shortcut folder

shortcut icon

string

An application type supported by Windows NT, 2000 and XP that
conforms to the interface rules of the Service Control Manager
(SCM). Services can be started programmatically by applications
using Windows API function calls, manually by users via the
Services applet in the Control Panel, or automatically by the
Service Control Manager during the system boot process.

Because services can run when there is no user logged into the
system, it is often desirable to run an application as a service (if
it conforms to the SCM interface rules) so it can perform
operations before any user logs on, and so it can continue to
operate after the current user logs out of the system.

An interface between a user and an operating system. Often used
to present an alternative interface which abstracts the details of
the operating system and allows a user to perform tasks without
accessing the underlying operating system directly.

[See: shell operation]

An operating system task performed by the shell, usually at the
request of a user or application. [See: shell]

[See: shortcut file]

A very small file that links to another file or web page in the
Windows operating system. Items in the Favorites menu and the
Start menu are all shortcuts. (Shortcut files have a . | nk, . pi f,
or . url extension that is hidden by the Windows operating
system.)

A folder that contains shortcut files.

A visual representation of a Shortcut File in Windows.
[See: shortcut file]

A series of ASCII characters. This can be a word, phrase,
number, or an entire book.

291

Glossary

sub-directory

sub-expression

sub-folder

unary operator

UNC path

variable

version

WAN

292

A directory that is located within another directory.
[See: sub-folder, folder, directory]

An expression used as an operand in a larger expression. For
example, (1 + 2) * (3 - 1) is an expression made up of two sub-
expressions, "(1 + 2)" and "(3 - 1)". [See: expression, operand]

A folder that is located within another folder.
[See: sub-directory]

An operator that operates on a single operand. The unary
operators in Setup Factory are all prefix operators, which means
they precede their operands. In other words, a unary operator
operates on the value to the right of it.

[See: binary operator, expression, operand, operator]

A Universal Naming Convention path. The Universal Naming
Convention is a way to refer to files, folders and volumes in a
device-independent way (especially across a network).

The format for a UNC path is:
\\server\volunme\directory\file

A special named "container" for values that change.

In Setup Factory, variable names always begin and end with a
percentage sign (%).

A single instance or variant of something that has changed or is
expected to change over time. When changes are made to a
software application, the result is a new "version" of the original
application.

Also, the name or number used to identify one version from
another. [See: external version, internal version, release)

Wide Area Network. A network that connects computers over long
distances. A WAN connects computers that are physically or even
geographically far apart.

Glossary

window

wizard

A rectangular area used as a canvas in the Windows operating
system's graphical user interface, upon which objects such as
text or buttons can be "drawn" by the operating system or
individual applications. These windows can often be manipulated
separately (moved, resized, minimized, maximized, etc.).

An interface made up of logical steps that must be followed,
presented using successive dialog windows, often including
additional explanation or involving simplification to streamline
steps or be friendlier to novice users. [See: dialog, screen]

293

Index

%AppDir% 49, 105, 114, 129, 269
Abort action........coeviiiiiiiiii 178
action lists.....covvviiiiiiiniiin 161
action tabscoovvviiiiiii 161
action tabs preferences.................... 66
ACHIONS i 34
ABOrt e 178
Adding ..ovvvieii 167
control structures..........ccovveninins 174
cutting, copying, and pasting...... 170
editing oo 168
exporting ...ovvviiiiii 171
IFand END IF.....ccooviiiiiiienens 174
IMPOrting «.ovvvviiiiiiineees 172
ina nutshellcovviiiinnn, 160
indenting.....ccovvviiiiinine 169
1o 1= QPP 263-68
Label and GOTO Label................ 177
rearrangingocoevveveiinniinnnnenns 169
FEMOVING vivieiiiieiiiniieneieneeaens 168
translating.......coooeviiiiiiiiiininennn 245
unindenting ...ocoveveeeeneneneneneieenss 170
what are actions?ccoveinenens 159
WHILE and END WHILE.............. 175
actions dialog......coviviniiiiiiiiiian 162
after installing tabcccceeevenis 162
before installing tab................... 162
shutdown tab..........cooviviiiiiennnns 162
startup tab ... 162
actions in a nutshell...........cooovnnin 160
adding a serial number................... 138
adding actionsS.......ccevvviiiiieinnenennnn 167
adding design-time constants 104
adding files....cccvvvvviiiiiiireee 111
by dragging them onto the project
WINAOW .evveeieiiieee e 113
from within Setup Factory 111
adding indentation to actions.......... 169
adding packagescocvviiiiiininnnnn, 191
archivetabcoovviiiiiiiiinnnn, 56, 109
arithmetic operatorscccocvvvnnns 234
Assign Value action...........ccevvenenens 226
assigning files to packages 196
automatic file treatment options........ 62
automatically running a program before
or after the build process 102
autoplay menu......ccvviviiiiiniieininns 251
base directories.........ccoevviiiiiinnnn 105

changing ...c.ovvviviiiiiiiiiens 107
before adding filescccoeveveiennnnns 111
blank lin€scoiiiiiiiiiies 180
Booleancvvviiiiiiiiii e 285
Boolean operators.........cccoevivnennnnn. 232
Boolean values..........ccevvvennns 39, 229
build expression button 226
build process confirmation 63
build settingsccvvviiiiiiiiin 100

automatically running a program
before or after the build process

... 102
changing the output folder.......... 100
output file segment size 101
setup executable filename 101
build time ..o 25
building ...ccovviiiiiii 107, 253
build-time conditions................ 40, 221
built-in error handling 180, 181

setting the action taken after an error

[Lol o{ U | = 183
setting the user notification options

... 182

built-in variables.......... 36, 211, 269-77
%AppDir% ... 49, 105, 114, 129, 269
YoAPPDIVYo. .. 269
%BDEPath%ccvvvviiiiiiiiiennns 269
%ColorDepth%ocvvveveveieinnnnnns. 269
%CommonFiles%coovvveininnnnn. 269
%CompanyName%............ 128, 269
%Copyright%coveuvnnenen 128, 269
%CurrentDay%cveevviiiiiininnnns 269
%CurrentHour%......c.cocvvveinnnnne. 269
%CurrentMinute®%coevnennnns 270
%CurrentMonth%..........covvvnnnne. 270
%CurrentSecond%c.cvevennnnn. 270
%CurrentYear%ococvevevninininnnnn, 270
%DAOPath%ocovvvviiiiiiiininnns 270
%Date%o vvviiiiiii 270
Y%oDeSKEOPY0..vuvneeeiereieieieiainaannn 270
%DeSKtOPNT0 .ueuiiiriieieiaiaiaann, 270
%DOREDOOtY%0 .ouvuvveieieieieieiaenn 270
%EuropeanDate%cvevvnnnn. 271
YFONtDIr%0 ..o 271
%INfOURL% ..uiviininiiinininnen 128, 271
%ISODAteY0 .uvvviiiiiiiiieieean 271
%IsUserNTAdmMIiN%ovvvvvvnnnnn. 271
%ISWIN2000% . evvuvvnienininieninnns 272

Index

YISWINO5%0 vvvvirieiiiiiieieienenenens
Y%ISWINI8% vvvvviviiiiiieieeneenens
YISWINMEY ...vvviiiviiieieiiieneens
YISWINNTA% covvvviiiiiiieieeneenens
YISWINXPY0 vvvviviiiiiiiiieienenenenens
%JulianDate%coovvviiinininnns
%LANDOMAINY0 .ouveieiiieiieeaens
YoLANHOSEY0 .evvviviiiiiceeeeens
YoLANIPY vvvieiiieieieieeeeneneens
YoLANNICY0 . vvviviviiiiieieeneeens
YoLANUSEIr% ..vviviiiiiiiieienenenans
%LastCommand%.............. 185,
%LastErrorDetails% 185,
%LastErrorMsg% 185,
%LastErrorNum% 184,
%MousePresent%cccvvennnns
%MyDocumentsDir%c......
%NeedsReboot%ceevvvenenens
%ProductName®% 128,
%ProductTagline%.............. 128,
%ProductVer%c.coceunnns 128,
%ProgramFiles%......cccovvvnvnenenens
%RegOrganization%..................
%RegOWNEer%ocvvveieiiiiieanns
%SCFolderPath%ccovuennns
%SCFolderTitle% 129,
%ScreenHeight%coovviiiinens
%ScreenWidth%cccvvvivenenens
%SilentMode% 259, 260,
%SoundCardPresent%...............
RIS ol D[A,
%SrcDrv% covvviiieiiiieee 249,
%SrcFile% ..vvviiiiiiiiii e
%StartMenu%ccoiiiiiiins
%StartMenuNT%cooevvviiinininnns
%StartMenuPrograms%
%StartMenuProgramsNT%.........
%oStartup ...oovvviiiiiii
%StartupNT% .ovvvvvviieiiiieieeans
%oSYSDIr%...vvvviiiiiiiiiiiniinens 50,
% SYSDIV%0 ..o
%SysLanguage% 242,
%SystemRAMY% cvvvvviiiiiiiiiiians
%TempDir% ...c.ovvvviiiiiiiiiinininens
%TemplLaunchDir%............. 43,
YoWINDIr%0 vvvvvveriieeienenenennnnnns
button click tabcocoviiiinnnin
CD-ROM
burning ...cooovvviiii
creating an AutoPlay menu.........
creating installs for...........c.eevene

296

full install to the hard drive......... 247
leaving all files on the CD 249
letting the user choose............... 250
CD-ROM tab......coovvviniiiniininnnns 57, 109
changing a serial nhumber................ 138
changing the action list colors 67
changing the indent size.................. 67
changing the output file segment size
... 101
changing the output folder.............. 100
changing the setup executable filename
... 101
choosing startup options.................. 63
[00o] Lo} =S 67
column headers.......coevvviiniininnes 57
command line options 257-58
design environment (build)......... 260
minimize (/M) .ooovvviiiiiiieninenens 261
unattended build (/B) 260
installer....covvvevieeens 257
language (/L)..c.oovviiiinininininnns 257
silent mode (/S)...cvvvivvninnnnnns 258
temp path (/T) .ooovviiiiinnnns 259
wait for return (/W)cccenvnene. 259
uninstaller ..o 260
silent mode (/S)...covvvvninnnnnns 260
command referencecoevvnvninnnns 23
COMMENES. .o 178
conditional expressions.................... 39
conditions
build-time........cooviiiiiiii 40
run-time.....coooviiiiieee 41
configuration filescccovviiiiinnnns 46
configuring user toolS........cocveuenianns 70
contact info.....coveviiiiiiininnnnnn, 279-81
context MeNUSccvvvviiiiiiiiiiieenes 60
continue at label......cccvvviiiiiinnns 186
control structurescoiiiininnnn. 174
CRC ValuEsovvvviiiieiiiiiieeeeen 31
CRC-32 i 31
creating a list of serial numbers....... 135
custom error handling............. 180, 184
checking %LastErrorNum% 184
using continue at label 186
custom error messagesvvvvvevinenns 182
custom variablescvieinnnnn 36, 212
defining with actions.................. 214
defining with screens 214
NAMING. . ettt 216
cutting, copying and pasting
ACLIONS 1 170

PACKAgeS....iiiiiiinir s 195
£ 1< 0 155
default language files..........coevninenns 65
default output folder........ccovvvnenennn. 62
defining variables
with actions........ccovvviiiiiiinnnnnns 214
with screenscccoevveiiiiiiinennnns 214
dependency file scanner................. 203
dependency filesccooveviiiiiniiinninanns 47
design time....ccoviiiiiiii 25
design-time constants.............. 37, 103
FASC? 22 i 277
#IULIANDATE# .ciiiiiiiiiiieeeennnn, 277
#PROJECTFILEDIR# ..cvvvvenennnn. 277
#SUFDIRZ .ovvviiiiiiiiiieieceeaean 277
#SYSDIRH ovvviiiiiiieneneneneneneeens 277
HFWINDIRH covviiiiieieeiaieaeaans 277
Adding .vovveii e 104
editing «.oviii 105
FEMOVING vivieiiieiieneiieereeeaenes 104
disabling build process confirmation...63
distributingcooviiiiii 254
CD-ROM ..iiiiiiiiiiiieiiceceeececeeee e 255
floppy disK..eveveieieiiiiiiiieieeen 256
Internet ..coooiiiiiiiii 255
document conventionscocveenene. 21
dragging files onto the project window
... 113
ArIVES i 27
editing
actionS...ooviiii 168
design-time constants................ 105
MESSAGES cuuuiurrnininirarirnrenaenenes 131
PACKageS....iiiiiiiiins 193
enabling build process confirmation ...63
END IF action......covveviviiiiniiiiinnnnnss 174
END WHILE actioncocvvvvninnnnns 175
error handlingccovvviiiiiiinns 180
bUilt-in..cooi 180
CUSEOM v 180
evaluate value as expression 226
exporting actions...........coeeiiiiini 171
EXPreSSIONS tiviiriireiieiirianeaierieraneanens 38
arithmetic operators 234
Assign Value actions.................. 226
Boolean operators 232
Boolean values........c.cocvvveinnnnnn. 229
IF and WHILE actions................. 225
iNtegersoooviiiii 227
logical operatorsccevieininnnn 232
NOLES v 235

operator associativityues 231
operator precedence.................. 231
operators......covviiiiiiiiiiiia 230
parentheses.......ccocvviiiiinninnne. 232
real numbers ..., 227
relational operators.................... 233
string operators.........ccoeviiinininnnn 234
StANGgS v 227
syntax rules.......covvviiiiinininininnns 237
ValUBS . 227
variablesooviiiiiiiii 228
version operatorscvevninnns 235
VEIFSIONS tivviiiiiiiiiiiiesesiesnasnnenes 228
what are expressions?................ 221
where can you use expressions?..221
eXtenSIoONS ..o 26
file associationsc.cviviiiiiiiiiiiinnnns 33
file properties....c.cvcvveveveiiiiiinns 116
advanced taboviiiiiiiiniininns 120
conditions tabccciiiiiiiiiinenns 121
general tab......coevviiiiiiinnnns 117
packages tabccceviiiiiiiininnnn, 122
shortcut tab........covviiiiiiiininnns 119
L1 = 26
folders....ooviiiiiiiiiii s 27
fOrUMS e 24
full paths ...cvvvvii 28
general design.....cccvcveveveinnnnns. 127-39
languages tabceviiiiiiiiininnnn. 130
primer files tab........ccoevvviiinennnn. 139
product info tab..........ceiienninn. 128
serial numbers tab..........ccceeenens 134
settings tab ... 129
general preferencesccovevvnvnvnnnns 61
generating a project report.............. 99
getting startedocoeiiiiinil 45-52

preparing the directory structure.. 47
what files do you need to distribute?

.. 45
what information do you need from
the user?.....oovviiiiiiiiiinnnens 52
what system changes need to be
Made? ..o 51
where do your files need to be
installed?.....cccovviviiiiiinns 48
getting the most from this user's guide
.. 20
glosSary ...coviiiiiiiiies 285-93
GOTO Label actionc.cocvvveieinnnnnn. 177
handling errors........cocevviiiieiiinniann 180
help buttoncoovviiiiiiii 145

297

Index

help button actions................. 145, 164
NOtKEYS .t 60
how the base directory is converted to
YoAPPDIr% «vviiviiniiiiiniias 114
how the uninstall works.................. 208
how values are stored.................... 229
=T o) o 174, 225
importing a project........cccviviiiiininnnns 97
importing actions............cceviinnninn, 172
indent Siz€.....cocveveiiiiiii 67
indenting actions........cocoeviviiinnns 169
Indigo Rose
contact infocoevviiininnnns 279-81
SAIES . i 279
tech support....cocoevvviiiiiiinnns 280
inserting variablesccoevvnennne. 218
install types ...cocvovviiiiiiiiiieens 197
installers and setup files................... 16
installing
configuration files.......cccovvevevennnns 49
operating system components 50
program filescocvvveveviniiininns 49
shared application resources......... 50
iNtegers ..o 227
Internet distribution...........coceveiin. 255
Julian date....coviiiiiiiiees 288
Label actionc.cvevviiiiiiiiiiiiinenenn 177
language files
translating.......coooeviiiiiiiiniiininnn 243
language preferences............cocvuvnennn 64
languages......cocvviiiiiii 130
editing messagesccevvvienenns 131
setting the default language 132
list COlOrS. it 67
list control buttons..........cocooviinenene. 59
JISES e 58
local source pathccovviiviiiinnnne. 118
logical operators.........coovvviiininnnn 232
minimum system requirements....... 283
mMissing fileS.....cocvviiuiiniiiiiiniiiens 124
multiple file properties 123
naming package variables 190
naming variables...........ccoeviiiininnnen 216
nested shortcuts.........coevviinininnnns 126
new features......ccoeveveviiiiiiiiiennns 16
on error tabcoovviiiiiiiiin 181
abort setup....ccoevviiiiiiiii 183
continUe.....ovviiiiiiiiiiaas 183
continue at label 183, 184
online help.....cvvviiiiiiiinin 23
opening an existing project............... 95

298

operating system components.......... 46
0] 01=] =1 (o] PN 230
arithmetic.......ocoviviiiiiiinnns 234
associativity .oovvviiiiiiciie 231
Boolean.......ooevvviiiiiiiiiiiin 232
logical .uvvivieiii e 232
precedencCeucvvuiininininenninianes 231
relationalcoooeviiiiiiiiiiiinnenn 233
SERNG e 234
USage NOLES ..vvvvviiiiiiiieiieiaene 235
AVZ=1 =1 o o 235
Other reSoUrCescvvvvvevevevnrnnnenenenss 23
output file namecocvviiiiiinnnn 101
output file segment size 101
package variables........ccocviiiiiinnns 42
NAMING. ..t eraeenas 190
PACKAGES . vt 41
Adding...oviieiii e 191
and run-time conditions 198
assigning files toovevvviiienenennns 196
cutting, copying and pasting 195
editing vvvvviiiii 193
inanutshell........cocoeviiiinn, 187
naming package variables 190
rearranging....ccoceevenniiinnriennnenns 194
FEMOVING ..eiiieiiieiee e e 192
translating.......cocovviviiinnnnnns 245
(UE]1 o [[P 189
what are packages?coceeuens 187
parenthesescocveveveveviinnnnnnnns 232
PAths i 28
full paths ..ccovvviiiii 28
relative paths........ccoevvviiiiiinnnn, 29
UNC pathsS ..o 30
preferences
action tabs......ccoeiiiiiiiiii 66
general cooovviiiiiii 61
languageccovieiiiiiii e 64
update ..o 68
USer tools ..ovvviiiiiiiiiee 70
preparing the directory structure 47
primer filesccvvviiiiiiiiineneens 43, 139
program fileS......cocvviviiniiiiiiiiinns 46
project build settings....................e. 100
project file properties...........ccevvuennn. 98
project files.....ccvvviviiiiiiiiiiiieeeennn 95
IMPOrting ...ovvviviiiiiiineens 97
NMEW eintiniereerereseraseaareaneeans 95
OPENING .euviniitiiiniirri s 95
Properties....coovveieiieiiiiiiiienaeenens 98
recent projects.....ccviviiiiiiiiiiininnn, 96

SAVING ettt 96
project report.......ccveviiiiiiiiiin 99
project Window........cccevuennnenen. 56, 109

sorting filescoovvviiiiiiiiiiniinenens 57
project wizardcoevviiiiiininnns 71, 98
quickstart tutorialcccoenninen. 71-93
real numbers ... 227
rearranging actionS..........c.cveevuvnenns 169
rearranging packages...........ccoevuenns 194
registering filescocoeviiiiiiiinnnnns 125
registering fonts.........cooveiiiiiinnnns 125
FEGISEIY o 32

HKEY_CLASSES_ROOT.......oevvvene. 32

HKEY_CURRENT_CONFIG.............. 33

HKEY_CURRENT_USER................. 32

HKEY_DYN_DATA ..oiiiieiieieieeeeenen 33

HKEY_LOCAL_MACHINE 32

HKEY_USERS....cciiiiiiiieieneneieeeenn 33
relational operatorsccccvvvnnenn. 233
relative paths.....c.ccoevviiiiiiiinnn, 29
FElEASES «vviiriiiiiiiiei e 26
removing actionS.......ccoevevieiiinninnne. 168
removing design-time constants...... 104
removing filesccoeveviiiiiiiiiienenes 116
removing indentation from actions... 170
removing packagesS.......coovvevninennnns 192
reopening a recent project................ 96
right-click context menus 60
root folder ...oovveiviiiiiiiiiir s 28
run time .o 25
run-time conditions 41, 223
runtime source pathceevuenenen 118
runtime supportcoevvinnnnn 199-204
runtime support dialog................... 199
saving the current project................. 96
screen actions.....c.cvvviiiiiiiiiinans 144
screen conditions.........c.ceeeunens 144, 224
screen properties......cocevvevnnnns 146, 163

aftertab......oooeiiiiiiinnn, 150, 164

before tabcccovvvviiiiinnnnns 149, 163

customtabcooviiiiiiii 148

settings tabcoovviiiiiiiiinnns 147
SCPEENS 1uvtirieinie e renereneraens 141-57

Adding ..ovvviii 151

cutting, copying, and pasting...... 155

editing ..o 153

exporting ...ovvviiiiii 156

iMporting ...ocoovviiiiiiiiiies 157

inanutshellcccovvviiiinnnnn. 142

Previewing ..ooovvveeiiiiiiiiniiinenans, 154

rearrangingocvevevevinnininnnnenns 153

FEMOVING . .eiviiiiiiiiiiii e 153
screen actionS.....vevvevvieiiinnininns 144
screen conditionS.......cccveviiinininnns 144
translating......ccocvvviiiiiinnnnnns 241
screens dialogovvveviviiniiiiiiiinn, 142
after installing tabc.cccevenis 143
before installing tab 143
serial numbersc.cocviiiiiin, 134
adding...oviiiiii 138
changing ...coovvviiiiiiiiiireeens 138
creating a list of c.ocvvviiiiniiiinnnnnnn. 135
setting automatic file treatment options
.. 62
setting default language files............ 65
setting the default language............ 132
setting the default output folder 62
setting the temporary build folder..... 61
setup executable filename 101
Setup Factory
discussion forums.......c.covevevnnnne. 24
key features........covvviiiiiiiininininnns 18
main screen (screenshot) 53
new features.........covvviiiiiininininens 16
WED SIte vuvviiiiiiiieer s 24
shared application resources............ 46
sharing actions with other users....... 171
shortcut bar....cococvviiiiiiiie 54
ShOrECUES vuvnvieiee e 30
simple error messagescoovuuns 182
sorting filenames by their extensions 62
sorting files.....cocvvivinniiiinnnn, 57, 62
startup options.......cocviiiiiiiiiinnnnn 63
string operators.....cccevviiiiiiiiiiiiinenns 234
SEANGS ..o 227
syntax rulescoevvviiiiiiiiiiiiiineens 237
tech support ..cooeviiiiii 280
temporary build folder..................... 61
testing...ovoiiiii 254
t00IbaArS v 56
CUStOMIZING c.vviieiiiiiei e 56
translating
actions ..o 245
language files......cocoviviviiiininnnnn. 243
PACKAGES ... 245
SCIEENS .uviiieeiinterintrsinersnneranneas 241
true and false......cceeviviiiiiinnnnnn, 39, 229
tutorial cevvieiii 71-93
UNC paths ..o 30
unindenting actions............ocvvvvnnes 170
uninstalloooviiiiii 205-9
how it worksccovvviiiiiiiiiiiienns 208

299

Index

uninstall dialog.........coevevuininnns 165, 205
after uninstalling tab........... 166, 206
before uninstalling tab 165, 206
settingstabcoooeviiiiiiiiiinnns 206

update preferences.........ccevvvvnennnns 68

USEr £00IS cuvuiiiiiii e 70

using continue at label 186

USING €XPreSSiONS ..cuvivieiiiieinieinenss 221
in Assign Value actions............... 226
in build-time conditions.............. 221
in IF and WHILE actions.............. 225
in run-time conditions................ 223
in screen conditions................... 224

USiNg Packages ...ocvevevevnrnrninenenenenss 189

using the project wizard 98

using variables in expressions......... 219

value-delimiting characters............. 220

ValUBS cuveeieie i e 227
how values are stored................ 229

variablesc.coviiiinnnnnn. 35, 211, 228
a little common sense................ 215

300

built-in ... 36, 211
built-in (list) ..oovvvviiiiiininnns 269-77
[o{UE] w0} o o 36, 212
defining with actions.................. 214
defining with screens 214
iN eXPresSioNS ..ovvvvevieiieiierinnnnens 219
inserting......ccoovvviiiiiiiinnn 218
NAMING. ..t 216
what are variables?...........covenns 211
what can you do with variables?..213
verbose error messagese. 182
version operators.........c.cvviiiiinennn. 235
AVZ=] =1 o N 228
visual basic project scanner 201
what are actions?cocoeviiiiinnns 159
what are expressions?..........c.coeueee. 221
what are packages?coevvviinnnnn. 187
what is Setup Factory?covnenenen 15
where can you use expressions?...... 221
WHILE actioncovvvniininnns 175, 225
whitespace......cocvviviviniiiiins 180

	Introduction
	What is Setup Factory?
	Installers and Setup Files
	What's New in 6.0?
	Key Features
	Getting the Most from this User's Guide
	Document Conventions
	Other Resources

	Key Concepts
	Design Time
	Build Time
	Run Time
	Releases
	Files, Folders and Paths
	Files
	Extensions
	Folders
	Drives
	Root Folder
	Paths

	Shortcuts
	CRC Values
	The Registry
	File Associations
	Actions
	Variables
	Built-in Variables
	Custom Variables

	Design-time Constants
	Expressions
	Conditional Expressions
	Boolean Values (True and False)
	Build-time Conditions
	Run-time Conditions
	Packages
	Package Variables

	Primer Files

	Getting Started
	What Files Do You Need to Distribute?
	Preparing the Directory Structure
	Where Do Your Files Need To Be Installed?
	Installing Program Files
	Installing Configuration Files
	Installing Operating System Components
	Installing Shared Application Resources

	What System Changes Need To Be Made?
	What Information Do You Need from the User?

	The Design Environment
	Shortcut Bar
	Toolbars
	Project Window
	Archive Tab
	CD-ROM Tab

	Column Headers
	Lists
	List Control Buttons
	Right-click Context Menus
	Hotkeys

	General Preferences
	Setting the Temporary Build Folder
	Setting the Default Output Folder
	Setting Automatic File Treatment Options
	Sorting Filenames by their Extensions
	Enabling or Disabling Build Process Confirmation
	Choosing Startup Options

	Language Preferences
	Setting Default Language Files

	Action Tabs Preferences
	Changing the Action List Colors
	Changing the Indent Size

	Update Preferences
	Automatically Checking for New Versions of Setup Factory
	Hiding the Update Interface Until a New Version is Available
	Setting How Often Setup Factory Checks for Updates
	Configuring the Setup Factory Connection Settings

	User Tools
	Configuring User Tools

	Quickstart Tutorial
	Step 1: Prepare Your Files
	Step 2: Use the Project Wizard
	Step 3: Add Additional Files to the Project
	Step 4: Create Shortcuts
	Step 5: Set Up Packages
	Step 6: Customize the Screens
	Step 7: Add Any Required Actions
	Step 8: Build the Setup Executable
	Step 9: All Done!

	Working with Projects
	What Are Project Files?
	Starting a New Project
	Opening an Existing Project
	Saving the Current Project
	Reopening a Recent Project
	Importing a Project
	Viewing and Editing Project File Properties
	Using the Project Wizard
	Generating a Project Report
	Project Build Settings
	Changing the Output Folder
	Changing the Setup Executable Filename
	Changing the Output File Segment Size
	Automatically Running a Program Before or After the Build Process

	Design-time Constants
	Adding Design-time Constants
	Removing Design-time Constants
	Editing Design-time Constants

	Base Directories
	Changing the Base Directory for the Archive Tab
	Changing the Base Directory for the CD-ROM Tab

	Building the Current Project

	Working with Files
	The Project Window
	The Archive Tab
	The CD-ROM Tab

	Before Adding Files
	Adding Files
	Adding Files From Within Setup Factory
	Dragging Files Onto the Project Window
	How the Base Directory is Converted to %AppDir%

	Removing Files
	File Properties
	The General Tab
	The Shortcut Tab
	The Advanced Tab
	The Conditions Tab
	The Packages Tab

	Multiple File Properties
	Missing Files
	Registering Files
	Registering Fonts
	Nested Shortcuts

	General Design
	The Product Info Tab
	The Settings Tab
	The Languages tab
	Editing Messages
	Setting the Default Language

	The Serial Numbers Tab
	Creating a List of Serial Numbers
	Adding a Serial Number to the List
	Changing a Serial Number in the List

	The Primer Files Tab

	Screens
	Screens in a Nutshell
	The Screens Dialog
	The Before Installing Tab
	The After Installing Tab

	Screen Conditions
	Screen Actions
	The Help Button
	Screen Properties
	Settings Tab
	Custom Tab
	Before Tab
	After tab

	Adding Screens
	Removing Screens
	Editing Screens
	Rearranging Screens
	Previewing Screens
	Cutting, Copying and Pasting Screens
	Exporting Screens
	Importing Screens

	Actions
	What Are Actions?
	Actions in a Nutshell
	Action Lists
	Action Tabs
	The Actions Dialog
	The Screen Properties Dialog
	The Help Button Actions Dialog
	The Uninstall Dialog

	Adding Actions
	Removing Actions
	Editing Actions
	Rearranging Actions
	Indenting Actions
	Unindenting Actions
	Cutting, Copying and Pasting Actions
	Exporting Actions
	Importing Actions
	Importing Registry Values
	Using Control Structures
	IF and END IF
	WHILE and END WHILE
	Label and GOTO Label
	Abort

	Adding Comments and Whitespace
	Handling Errors
	Built-in Error Handling (The On Error Tab)
	Setting the User Notification Options
	Setting the Action Taken After an Error Occurs

	Custom Error Handling (Using Actions)
	Checking %LastErrorNum%
	Using Continue at label

	Packages
	What Are Packages?
	Packages in a Nutshell
	Using Packages
	Naming Package Variables
	Adding Packages
	Removing Packages
	Editing Packages
	Rearranging Packages
	Cutting, Copying and Pasting Packages
	Assigning Files to Packages
	Install Types

	Runtime Support
	The Runtime Support Dialog
	The Visual Basic Project Scanner
	The Dependency File Scanner

	Uninstall
	The Uninstall Dialog
	The Settings Tab
	The Before Uninstalling Tab
	The After Uninstalling Tab

	How the Uninstall Works

	Variables
	What Are Variables?
	Built-in Variables
	Custom Variables

	What Can You Do With Variables?
	Defining Variables with Actions
	Defining Variables with Screens
	A Little Common Sense Never Hurts
	Naming Variables
	Inserting Variables
	Using Variables in Expressions

	Expressions
	What Are Expressions?
	Where Can You Use Them?
	Build-time Conditions
	Run-time Conditions
	Screen Conditions
	IF and WHILE actions
	Assign Value actions

	Values
	Boolean Values (True and False)

	Operators
	Table of Operator Precedence and Associativity
	Parentheses
	Logical (Boolean) Operators
	Relational Operators
	Arithmetic Operators
	String Operators
	Version Operators

	Notes
	Syntax Rules

	Supporting Multiple Languages
	Translating Screens
	Translating Language Files
	Translating Packages
	Translating Actions

	Creating a CD-ROM Installer
	Full Install to the Hard Drive
	Leaving All Files on the CD-ROM
	Letting the User Choose
	Burning Your CD-ROM
	Creating an AutoPlay Menu

	Building and Distributing Your Installer
	Building Your Installer
	Testing Your Installer
	Distributing Your Installer
	CD-ROM Distribution
	Internet Distribution
	Floppy Disk Distribution

	Command Line Options
	Installer Options
	Language (/L)
	Silent Mode (/S)
	Temp Path (/T)
	Wait for Return (/W)

	Uninstaller Options
	Silent Mode (/S)

	Design Environment (Build) Options
	Unattended Build (/B)
	Minimize (/M)

	Actions Index
	Built-in Variables
	Design-time Constants

	Contact Info
	Corporate Headquarters
	Sales
	Technical Support
	Before You Contact Our Support Department
	Limitations of Technical Support

	Minimum System Requirements
	Setup Factory Design Environment
	Setup Factory Run-Time Executable

