
Microsoft MS-DOS CD-ROM Extensions
Version 2.21

Hardware-Dependent Device Driver
Specification

This document describes the CD-ROM hardware-dependent device driver and its
interface with MSCDEX.EXE, the MS-DOS CD-ROM Extensions resident
program. Differences between CD-ROM drives and hard- or floppy-disk drives
account for the differences in this device driver specification from the normal
MS-DOS block and character device driver specification. For more information
on device drivers,see the MS-DOS Programmer's Reference Manual and
Advanced MS-DOS Programming by Ray Duncan. (Both books are published by
Microsoft Press.) For information on the terms describing for CD-ROM operating
characteristics, see the IEC 908 and ISO 10149 specifications.

The MS-DOS operating system reads CONFIG.SYS and installs the device.
MSCDEX.EXE performs an open system call on the device driver name in order
to communicate with it and uses an IOCTL call to ask the device driver for the
address of its device header. From the device header address, MSCDEX.EXE
locates the device driver's interrupt and strategy routines. After that, all requests
the device driver receives come directly from MSCDEX.EXE, not MS-DOS. To
avoid reentrancy problems and allow MSCDEX to monitor all media changes, all
other applications that wish to communicate directly with CD-ROM device
drivers should do so through the Send Device Driver Request INT 2Fh function
1510h. MSCDEX.EXE interfaces with MS-DOS so that normal requests for I/O
with files on a CD-ROM drive down to the MS-DOS INT 21h service layer will
work just as they would for a normal MS-DOS device. For maximum
compatibility between your CD-ROM device driver, MSCDEX, and other
components in the system, observe the following guidelines when developing
your device driver:

Avoid disabling interrupts for extended periods
CD-ROM drives and drivers that use DMA must use Windows virtual DMA
device services for 386 enhanced mode operation. For information for using
Windows virtual DMA device services, see the Microsoft Windows Device
Driver Adaptation Guide included in the Microsoft Windows Device
Development Kit.

Installation
The device driver will be installed in the same way as any other device with an

entry in CONFIG.SYS. The syntax is:
DEVICE=<filename> /D:<device_name> /N:<number of drives>
The following are examples:
DEVICE=HITACHI.SYS /D:MSCD001 /D:MSCD002 DEVICE=SONY.SYS
/D:MSCD003 /N:2
The arguments will be the character device names that will be used on the
command line when starting MSCDEX.EXE so that it can find and communicate
with the
device driver.

A device driver may support one or more physical drives or logical disks. This
may be done by having multiple device headers in the device driver file (in which
case it will be necessary to have more than one device_name on the command line
- one for each device header; see the HITACHI.SYS example above) or through
the use of subunits. Each disk handled by a device driver that supports multiple
disks using subunits is addressed by the subunit field of the request header when a
request is made for that disk. A device driver that supports more than one disk can
share code and data instead of requiring separate device drivers for each disk. A
"jukebox" CD-ROM system would be an example of a CD-ROM device that
might wish to support more than one drive or a disk pack using a single device
driver.

Device drivers that use multiple subunits should use the optional switch
/n:<number of drives> to say how many drives are present. If not present, the
default number of drives is 1. If the driver can tell how many drives are installed
without a command line switch, then this argument is not necessary. Unless there
are special considerations, it is better practice to support multiple drives using
subunits than to have multiple device headers in the same device driver file.

Device header
The device header is an extension to what is described in the MS-DOS
Programmer's Refrence Manual.

DevHdr DD -1 ; Ptr to next driver in

; file or -1 if last driver
DW ? ; Device attributes
DW ? ; Device strategy entry point
DW ? ; Device interrupt entry point
DB 8 dup (?) ; Character device name field
DW 0 ; Reserved
DB 0 ; Drive letter
DB ? ; Number of units

The following are the device attributes for MSCDEX.EXE device drivers:

Bit 15 1 - Character device
Bit 14 1 - IOCTL supported

Bit 13 0 - Output 'till busy
Bit 12 0 - Reserved
Bit 11 1 - OPEN/CLOSE/RM supported
Bit 10-4 0 - Reserved
Bit 3 0 - Dev is CLOCK
Bit 2 0 - Dev is NUL
Bit 1 0 - Dev is STO
Bit 0 0 - Dev is STI

MSCDEX.EXE device drivers will be character devices that understand IOCTL
calls and handle OPEN/CLOSE/RM calls. The drive letter field is a read-only
field for the
device driver and is initialized to 0. The field is for MSCDEX.EXE to use when it
assigns the device driver to a drive letter (A = 1, B = 2...Z = 26). It should never
be modified by the device driver. For drivers that support more than one unit, the
drive letter will indicate the first unit, and each successive unit is assigned the
next higher drive letter. For example, if the device driver has four units defined
(0-3), it requires four drive letters. The position of the driver in the list of all
drivers determines which units correspond to which drive letters. If driver
ALPHA is the first driver in the device list, and it defines 4 units (0-3), they will
be A, B, C, and D. If BETA is the second driver and defines three units (0-2), they
will be E, F, and G, and so on. The theoretical limit to the number of drive letters
is 63, but it should be noted that the device installation code will not allow the
installation of a device if it would result in a drive letter > 'Z' (5Ah). All block
device drivers present in the standard resident BIOS will be placed ahead of
installable device drivers in the list.

NOTE:
It is important that one set lastdrive=<letter> in CONFIG.SYS to accommodate
the additional drive letters that CD-ROM device drivers will require. The number-
of-units field is set by the device driver to the number of disks that are supported.
Normal character devices do not support more than one unit and MS-DOS does
not expect a character device to handle more than one unit or have a nonzero
subunit value in the request header. Since these device drivers are not called by
MS-DOS directly, this is not a problem. Nonetheless, the number of units
returned by the device driver in the number-of-units field during the INIT call
must be 0, since MS-DOS makes the INIT call and does not expect a nonzero
value for a character device. MSCDEX.EXE will never see what is returned
anyway, and relies on the number-of-units field in the device header.

The signature field is necessary for MSCDEX confirmation that the device driver
is a valid cd-rom device driver and consists of the 4 bytes 'MSCD' followed by
two ascii digits for the version which is '00' at present.
Sample device header:

HsgDrv

DD -1 ; Pointer to next device
DW 0c800h ; Device attributes
DW STRATEGY ; Pointer to device

; strategy routine
DW DEVINT ; Pointer to device

; interrupt routine
DB 'MSCD003 ' ; 8-byte character

; device name field
DW 0 ; Reserved (must be zero)
DB 0 ; Drive letter (must be zero)
DB 1 ; Number of units supported

; (one or more)

As with other MS-DOS device drivers, the code originates at offset 0, not 100H.
The first device header will be at offset 0 of the code segment. The pointer to the
next driver is a double word field (offset/segment) that is the address of the next
device driver in the list, or -1 if the device header is the only one or the last in the
list. The strategy and interrupt entry points are word fields and must be offsets
into the same segment as the device header. The device driver is expected to
overwrite the name(s) in each of its one or more device headers with the
<device_name> command line arguments during its initialization.

MSCDEX.EXE will call the device driver in the following manner:

1. MSCDEX.EXE makes a far call to the strategy entry.

2. MSCDEX.EXE passes device driver information in a request header to the
strategy routine.

3. MSCDEX.EXE makes a far call to the interrupt entry.

Request header
MSCDEX.EXE will call the device's strategy routine with the address of a request
header in ES:BX. The format of the request header is the same as what is
described in the MS-DOS Programmer's Reference Manual.

ReqHdr

DB ? ; Length in bytes of request header
DB ? ; Subunit code for minor devices
DB ? ; Command code field
DW ? ; Status
DB 8 dup (?) ; Reserved

Status
The status word also has the same format as described in the MS-DOS

Programmer's Reference Manual. It is 0 on entry and is set by the device driver.
Bit 15 - Error bit
Bit 14-10 - Reserved
Bit 9 - Busy
Bit 8 - Done
Bit 7-0 - Error code (bit 15 on)

Bit 15, the error bit, is set by the device driver if an error is detected or if an
invalid request is made to the driver. The low 8 bits indicate the error code.

Bit 9, the busy bit, should be set by the device driver when the drive is in audio
play mode. Device drivers should fail all requests to the physical device that
require head movement when the device is playing and return the request with
this bit and the error bit set and an error code. Requests that would not interrupt
audio play may return without error but will also have this bit set when the drive
is in audio play mode. Play mode can be terminated prematurely with a reset or
STOP AUDIO request and a new request can be made at that point. Monitoring
this bit in each successive request, an Audio Q-Channel Info IOCTL for example,
will tell when play mode is complete.

Bit 8, the done bit, is set by the device driver when the operation is finished.

Error codes include the following:
0 Write-protect violation
1 Unknown unit
2 Drive not ready
3 Unknown command
4 CRC error
5 Bad drive request structure length
6 Seek error
7 Unknown media
8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure
D Reserved
E Reserved
F Invalid disk change

While MS-DOS reserves D as a general error code, the audio PLAY command
uses it for a "PARAMETER OUT OF RANGE" error.

Command code field
The following values are valid command codes:
* 0 INIT

1 MEDIA CHECK (block devices)
2 BUILD BPB (block devices)

* 3 IOCTL INPUT
4 INPUT (read)
5 NONDESTRUCTIVE INPUT NO WAIT
6 INPUT STATUS

* 7 INPUT FLUSH
8 OUTPUT (write)
9 OUTPUT WITH VERIFY
10 OUTPUT STATUS

11 OUTPUT FLUSH
* 12 IOCTL OUTPUT
* 13 DEVICE OPEN
* 14 DEVICE CLOSE

15 REMOVABLE MEDIA (block devices)
16 OUTPUT UNTIL BUSY

* 128 READ LONG
129 Reserved

* 130 READ LONG PREFETCH
* 131 SEEK
+ 132 PLAY AUDIO
+ 133 STOP AUDIO
134 WRITE LONG
135 WRITE LONG VERIFY
+ 136 RESUME AUDIO

* Supported by a basic CD-ROM device driver (required)
+ Supported by an extended CD-ROM device driver (required for multimedia

driver) See also IOCTL INPUT
Supported by writable CD-ROM device drivers for authoring systems

Unsupported or illegal commands will set the error bit and return the error code
for Unknown Command. This includes command codes 1, 2, 4, 5, 6, 8, 9, 10, 15,
16, and 129; and 11, 134 and 135 for systems that do not support writing.

If, in the time since the last request to that device driver unit, the media has
changed, the device driver will return the error code for invalid disk change and
set the error bit. MSCDEX.EXE will then decide whether to retry the request or
abort it. The minimal CD-ROM device driver will read cooked Mode 1data
sectors using HSG addressing mode and return appropriate values for the IOCTL
calls. Most other features enhance performance or add useful capabilities.

INIT
Command code = 0
ES:BX = INIT

INIT
DB 13 dup (0) ; Request header
DB 0 ; Number of units (must be 0)
DD ? ; End address
DD ? ; Ptr to BPB array
DB 0 ; Block device number

This call is made only once, when the device is installed. INIT and a single
IOCTL call for the device header address are the only device driver calls that
come directly from MS-DOS. Because the INIT function is called from MS-DOS,
the number of units returned is 0, as for normal MS-DOS character devices.
MSCDEX.EXE will get the number of units supported from the device header.

The device must return the END ADDRESS, which is a DWORD pointer to the
end of the portion of the device driver to remain resident. Code and data
following the pointer is used for initialization and then discarded. (The device
driver should discard this code to reduce its resident size.) If there are multiple
device drivers in a single file, the ending address returned by the last INIT call
will be the one that MS-DOS uses, but it is recommended that all the device
drivers in the file return the same address. The code to remain resident for all the
devices in a single file should be grouped together low in memory with the
initialization code for all devices following it in memory.

The pointer to BPB array points to the character after the "=" on the line in
CONFIG.SYS that caused this device driver to be loaded. This data is read-only
and allows the device driver to scan the invocation line for parameters. This line
is terminated by a carriage return or a line feed.

During initialization, the device driver must set the device name field in the
device header to the argument provided on the invocation line in CONFIG.SYS.
The device driver must also check that the device_name command line argument
is a legal 8-character filename and pad it out to 8 characters with spaces (20H)
when copying it to the device name field.

The block device number and number of units are both 0 for character devices.
The device driver should return the error code for Unknown Command for
subsequent calls to INIT.

READ (IOCTL Input)
Command code = 3
ES:BX = IOCTLI

IOCTLI DB 13 dup (0) ; Request header

DB 0 ; Media descriptor byte from BPB
DD ? ; Transfer address

DW ? ; Number of bytes to transfer
DW 0 ; Starting sector number
DD 0 ; DWORD ptr to requested vol

; ID if error 0FH

The media descriptor byte, starting sector number, and volume ID fields are all 0.
The transfer address points to a control block that is used to communicate with the
device driver. (The control blocks are defined in the following table.) The first
byte of the control block determines the request that is being made. If the
command code is reserved or the function not supported, then the device driver
will return the error code for Unknown Command. If, for some reason, the device
driver is not able to process the request at that time, it will return the error code
for Drive Not Ready.

Code Number of bytes to transfer Function
0 5 Return Address of Device Header

* 1 6 Location of Head
2 ? Reserved
3 ? Error Statistics

* 4 9 Audio Channel Info
5 130 Read Drive Bytes
6 5 Device Status
7 4 Return Sector Size
8 5 Return Volume Size
9 2 Media Changed

* 10 7 Audio Disk Info
* 11 7 Audio Track Info
* 12 11 Audio Q-Channel Info
* 13 13 Audio Sub-Channel Info
* 14 11 UPC Code
* 15 11 Audio Status Info

16-255 ? Reserved
* Required only for extended/multimedia drivers.
- Return Address of Device Header

Raddr DB 0 ; Control block code

DD ? ; Address of device header

The device driver will fill the 4-byte field with the address of its device header.
This is used by MSCDEX.EXE to locate the device driver's strategy and interrupt
routines.
- Location of Head

LocHead DB 1 ; Control block code

DB ? ; Addressing mode

DD ? ; Location of drive head

The device driver will return a 4-byte address that indicates where the head is
located. The value will be interpreted based on the addressing mode. (See
function READ LONG for more information about addressing modes.)
NOTE: the drive could provide this information by monitoring the Q-channel on
the disc.
- Error Statistics

ErrStat DB 3 ; Control block code

DB N dup (?) ; Error statistics

The format of the Error Statistics is not defined. - Audio Channel Info

AudInfo DB 4 ; Control block code

DB ? ; Input channel (0, 1, 2, or
; 3) for output
; channel 0

DB ? ; Volume control (0 - 0xff)
; for output channel 0

DB ? ; Input channel (0, 1, 2, or
; 3) for output
; channel 1

DB ? ; Volume control (0 - 0xff)
; for output channel 1

DB ? ; Input channel (0, 1, 2, or
; 3) for output
; channel 2

DB ? ; Volume control (0 - 0xff)
; for output channel 2

DB ? ; Input channel (0, 1, 2, or
; 3) for output
; channel 3

DB ? ; Volume control (0 - 0xff)
; for output channel 3

This function returns the present settings of the audio channel control set with the
Audio Channel Control Ioctl Write function. The default settings for the audio
channel control are for each input channel to be assigned to its corresponding
output channel (0 to 0, 1 to 1, etc.) and for the volume control on each channel is
set at 0xff.
- Read Drive Bytes

DrvBytes DB 5 ; Control block code

DB ? ; Number bytes read
DB 128 dup (?) ; Read buffer

Data returned from the CD-ROM drive itself can be read using this function. The
number-bytes-read field returns the length of the number of bytes read, which will
not exceed 128 per call. If more than this needs to be returned, the application
should repeat the call until the number returned is less than 128.
The function and content of these bytes are entirely device and device driver
dependent. This function is provided to allow access to device-specific features
that are not addressed under any other portion of the device driver spec.
- Device Status

DevStat DB 6 ; Control block code

DD ? ; Device parameters

The device driver will return a 32-bit value. Bit 0 is the least significant bit. The
bits are interpreted as follows:
Bit 0 0 Door closed

1 Door open
Bit 1 0 Door locked

1 Door unlocked
Bit 2 0 Supports only cooked reading

1 Supports cooked and raw reading
Bit 3 0 Read only

1 Read/write
Bit 4 0 Data read only

1 Data read and plays audio/video tracks
Bit 5 0 No interleaving

1 Supports ISO-9660 interleaving using
interleave size and skip factor

Bit 6 0 Reserved
Bit 7 0 No prefetching

1 Supports prefetching requests
Bit 8 0 No audio channel manipulation

1 Supports audio channel manipulation
Bit 9 0 Supports HSG addressing mode

1 Supports HSG and Redbook addressing modes
Bit 10 0 Reserved
Bit 11 0 Disc is present in drive

1 No disc is present in drive
Bit 12 0 Doesn't support R-W sub-channels

1 Supports R-W sub-channels
Bit 13-31 0 Reserved (all 0)
- Return Sector Size

SectSize DB 7 ; Control block code

DB ? ; Read mode
DW ? ; Sector size

The device driver will return the sector size of the device given the read mode
provided. In the case of CDROM, the value returned for cooked is 2048, and the
return value for raw is 2352.
- Return Volume Size

VolSize DB 8 ; Control block code

DD ? ; Volume size

The device driver will return the number of sectors on the device. The size
returned is the address of the lead-out track in the TOC converted to a binary
value according to FRAME + (SEC * 75) + (MIN * 60 * 75). A disc with a lead
out track starting at 31:14.63 would return a volume size of 140613. The address
of the leadout track is assumed to point to the first sector following the last
addressable sector recorded on the disc.
- Media Changed

MedChng DB 9 ; Control block code

DB ? ; Media byte

The normal media check function (command code 1) is not performed on
character devices and contains additional semantics that are not needed for CD-
ROM device drivers. This is why there is an IOCTL request for this function.

When the device driver receives a call to see if the media has changed on that
subunit since the last call to this IOCTL, it will return one of the following values:
1 Media not changed
0 Don't know if changed
-1 (0FFh) Media changed

If the driver can assure that the media has not been changed (through a door-lock
or other interlock mechanism), performance is enhanced because MSCDEX.EXE
does not need to reread the Volume Descriptor and invalidate in-memory buffers
for each directory access. For drives that do not report if the media has changed,
CD-ROM device drivers can utilize the same solution that has been applied to
floppy disks. In some floppydisk device drivers, if the MEDIA CHECK occurs
within 2 seconds of a floppy-disk access, the driver reports "Media not changed."
It is highly recommended though that drives be able to detect and report media
changes.

If the drive can enforce a door lock mechanism so that the device driver is
notified when the door lock has been unlocked or the device driver is requested to
do so by MSCDEX.EXE, then to improve performance, the driver could return
that the media has not changed without bothering to communicate with the
physical device.
If the media has not been changed, MSCDEX.EXE will proceed with the disk

access. If the value returned is "Don't know," or "Media changed," then
MSCDEX.EXE will check to see if the disk has changed. It will continue if it has
not, and reinitialize what it knows about the disk if it has.

Multimedia drivers assume that after a MEDIA CHECK cached TOC (Table of
Contents) information is correct.
- Audio Disk Info

DiskInfo DB 10 ; Control block code

DB ? ; Lowest track number
DB ? ; Highest track number
DD ? ; Starting point of the lead-out track

This function returns TOC (Table of Contents) information from the Q-Channel
in the lead-in track indicating what the first and last track numbers are and the
Redbook address for the lead-out track (PMIN/PSEC/PFRAME when POINT =
A2). The first and last track numbers are binary values and not BCD. It is
recommended that the information for Audio Disk Info and Audio Track Info
should be read by the drive when the disc is initialized and made accessible to the
driver so that when these functions are called, the drive or driver do not have to
interrupt audio play to read them from the TOC. If the TOC is not made available
to the driver and the driver must obtain the information itself from the lead-in
track, the driver should read and and attempt to cache the disk and track
information during the Audio Disk Info command and invalidate this information
only if the media changes. Note that the lowest and highest track numbers do not
include the lead-in or lead-out tracks.
- Audio Track Info

TnoInfo DB 11 ; Control block code

DB ? ; Track number
DD ? ; Starting point of the track
DB ? ; Track control information

This function takes a binary track number, from within the range specified by the
lowest and highest track number given by the Audio Disk Info command, and
returns the Redbook address for the starting point of the track and the track
control information for that track. The track control information byte corresponds
to the byte in the TOC in the lead-in track containing the two 4-bit fields for
CONTROL and ADR in the entry for that track. The CONTROL information is in
the most significant 4 bits and the ADR information is in the lower 4 bits. The
track control information is encoded as follows:
00x00000 - 2 audio channels without pre-emphasis 00x10000 - 2 audio channels
with pre-emphasis 10x00000 - 4 audio channels without pre-emphasis 10x10000
- 4 audio channels with pre-emphasis 01x00000 - data track

01x10000 - reserved
11xx0000 - reserved

xx0x0000 - digital copy prohibited xx1x0000 - digital copy permitted - Audio Q-
Channel Info

QInfo DB 12 ; Control block code

DB ? ; CONTROL and ADR byte
DB ? ; Track number (TNO)
DB ? ; (POINT) or Index (X)

; Running time within a track
DB ? ; (MIN)
DB ? ; (SEC)
DB ? ; (FRAME)
DB ? ; (ZERO)

; Running time on the disk
DB ? ; (AMIN) or (PMIN)
DB ? ; (ASEC) or (PSEC)
DB ? ; (AFRAME) or (PFRAME)

This function reads and returns the most up to date Qchannel address presently
available. It must not interrupt the present status of the drive as one of its intended
purposes is to monitor the location of the read head while playing audio tracks.
This function should return valid information even when no audio tracks are being
played and the head is stationary. The fields returned correspond to the data that is
stored in the Q-channel as described in the Redbook. The values in MIN-SEC-
FRAME, AMIN-ASEC-AFRAME and PMIN-PSECPFRAME are converted by
the driver from BCD to binary so that minutes range from 0 to 59+, seconds from
0 to 59, and frames from 0 to 74. The Control and ADR byte, TNO, and
POINT/Index bytes are always passed through as they appear on the disc and are
not converted. If the drive returns Q-channel information when ADR is not equal
to 1, then when ADR is not equal to 1 all ten bytes of information are passed
through unmodified to the caller.

Audio Sub-Channel Info

SubChanInfo DB 13 ; Control block code

DD ? ; Starting sector address
DD ? ; Transfer address
DD ? ; Number of sectors to read

This function takes a Redbook address of a particular sector (also known as a
block or frame) and copies the sub-channel information for each sector requested
to the transfer address. If multiple sectors are requested, they are copied
sequentially. Each sector contains 96 bytes of sub-channel information. These
bytes do not include the two sync patterns (S0 and S1) that head the subcoding

block. They contain only the subcoding symbols--each with one bit of
information for the eight different channels (P-W) that follow them. In this byte,
the 2 most significant bits that represent channels P and Q are undefined, the next
most significant bit (bit 6) represents channel R, and the least significant bit (bit
1) represents channel W.

For the sub-channel data to be generally useful it must be provided during an
AUDIO PLAY operation without interrupting it. Therefore, when the requested
sectors lie within the current play request they should be provided in real-time.
This requires data buffering (in the drive or by the driver) for at least one sector of
sub-channel information. This is because an application using sub-channel
information will send an AUDIO PLAY command, follow it up with successive
and contiguous sub-channel information commands, and expect to get that data
starting with the first sector of the play request. It is recommended that the buffer
handle up to 32 sectors, to give an application time to process sub-channel data
between requests.

Since implementation of this command is optional, bit 12 in the device status long
word should indicate whether sub-channel support is available. The driver will
return an error code of Unknown Command if it is not supported.

The method of data error detection and correction for RW channels is specified in
the Redbook standard, and if not implemented by the drive, must be provided in
the driver software.
- UPC Code

UPCCode DB 14 ; Control block code

DB ? ; CONTROL and ADR byte
DB 7 dup (?) ; UPC/EAN code

; (last 4 bits are zero; the ; low-order nibble of byte 7)
DB ? ; Zero
DB ? ; Aframe

This function returns the UPC/EAN (Universal Product Code - BAR coding) for
the disc. This information is stored as a mode-2 (ADR=2) Q-channel entry. The
UPC code is 13 successive BCD digits (4 bits each) followed by 12 bits of zero.
The last byte is the continuation of FRAME in mode-1 though in the lead-in track
(TNO=0) this byte is zero. If the CONTROL/ADR byte is zero or if the 13 digits
of UPC code are all zero, then either no catalog number was encoded on the disc
or it was missed by the device driver. If the command is supported but the disc
does not have a UPC Code recorded, then the driver will return an error code of
Sector not Found. If the command is not supported, then the driver will return an
error code of Unknown Command.(ISRC is currently unsupported.)

Audio Status Info

AudStat DB 15 ; Control block code

DW ? ; Audio status bits
; Bit 0 is Audio Paused bit
; Bits 1-15 are reserved

DD ? ; Starting location of last Play or
; for next Resume

DD ? ; Ending location for last Play or
; for next Resume

The Audio Paused bit and Starting and Ending locations are those referred to in
the RESUME command. These are recorded in Redbook addressing mode.
WRITE (IOCTL OUTPUT)
Command code = 12
ES:BX = IOCTLO

IOCTLO DB 13 dup (0) ; Request header

DB 0 ; Media descriptor byte from BPB
DD ? ; Transfer address
DW ? ; Number of bytes to transfer
DW 0 ; Starting sector number
DD 0 ; DWORD ptr to requested vol

; ID if error 0FH

The media descriptor byte, starting sector number, and volume ID fields are all 0.
The transfer address points to a control block that is used to communicate with the
device driver. The first byte of the control block determines the request that is
being made. The Length of Block is the number of bytes to transfer. With the
exception of Reset Drive and Write Device Control String, the action of these
request may be verified with the READ IOCTL Audio Channel Info or Device
Status functions. If the command is not supported, then the driver will return an
error code of Unknown Command.

Code Length of Block Function
0 1 Eject Disk
1 2 Lock/Unlock Door
2 1 Reset Drive
3 9 Audio Channel Control
4 ? Write Device Control String
5 1 Close Tray
6-255 ? Reserved

Eject Disk

Eject DB 0 ; Control block code

The device driver will unlock the drive and eject the CD-ROM disk from the
drive unit. The door will report as being open until the user has inserted a disk
into the drive unit and closed the door. The status bit for door open can be
monitored to determine when a disk has been reinserted.

Lock/Unlock Door

LockDoor DB 1 ; Control block code

DB ? ; Lock function

When this function is received, the device driver will ask the CD-ROM drive to
unlock or lock the door. If lock function is 0, the device driver will unlock the
door. If lock function is 1, it will lock the door. - Reset Drive

ResetDrv DB 2 ; Control block code

This function directs the device driver to reset and reinitialize the drive.

Audio Channel Control

AudInfo DB 3 ; Control block code

DB ? ; Input channel (0, 1, 2, or
; 3) for output channel 0

DB ? ; Volume control (0 - 0xff)
; for output channel 0

DB ? ; Input channel (0, 1, 2, or
; 3) for output channel 1

DB ? ; Volume control (0 - 0xff)
; for output channel 1

DB ? ; Input channel (0, 1, 2, or
; 3) for output channel 2

DB ? ; Volume control (0 - 0xff)
; for output channel 2

DB ? ; Input channel (0, 1, 2, or
; 3) for output channel 3

DB ? ; Volume control (0 - 0xff)
; for output channel 3

This function is intended to provide playback control of audio information on the
disk. It allows input channels on the CD-ROM to be assigned to specific output
speaker connections. The purpose of this function is to allow two independent
channels to be recorded - in different languages for example - and to play back
only one of them at a time or to be able to manipulate an audio signal so that the
source appears to move - to make a sound seem to move from left to right for
example.

Output channel 0 is the left channel, 1 is right, 2 is left prime, and 3 is right prime.
The Redbook specification allows for 4 audio channels. The two "prime" channels
(2 and 3) extend stereo to quadrophonic stereo. An audio volume setting of 0
means off. Drives that don't support 4 output audio channels may ignore output to
channels 2 and 3. Assignment of input channels 2 and 3 to output channels 0 and
1 may be treated as though the volume control for that channel is 0.

Drives that do not support variable audio control will treat a setting of 0 as off and
1-0xff as on. Drives that support less than 256 volume settings will do their best
to break up the 256 settings among the settings they can support. For example, if
there are 16 settings supported, then the first setting will cover 0x01-0x10, the
second 0x11-0x20...the sixteenth 0xf10xff. Drives that can't play a single channel
in both must play only that one channel and try to suppress the other if possible.
Drives that can't swap channels should play the channel that was moved in its
normal channel.
- Write Device Control String

DrvBytes DB 4 ; Control block code

DB N dup (?) ; Write buffer

This function is provided to allow programs to talk directly to the CD-ROM drive.
All remaining bytes are sent uninterpreted to the drive unit.
The function and content of these bytes are entirely device and device driver
dependent. This function is provided to allow access to device-specific features
that are not addressed under any other portion of the device driver spec.

Close Tray

CloseTray DB 5 ; Control block code

This command is the logical complement to the Eject Disk command. This
command will instruct drives that can do so to close the door or tray.

READ LONG
Command code = 128
ES:BX = ReadL

ReadL DB 13 dup (0) ; Request header

DB ? ; Addressing mode
DD ? ; Transfer address
DW ? ; Number of sectors to read
DD ? ; Starting sector number
DB ? ; Data read mode
DB ? ; Interleave size
DB ? ; Interleave skip factor

The request block is different from a normal character device READ to
accommodate the larger size and different characteristics of CD-ROM devices.
The media descriptor byte, which has no meaning for character devices, is now
the addressing mode field. The following values are recognized addressing
modes:

0 HSG addressing mode
1 Redbook addressing mode
2-255 Reserved

The default addressing mode is the HSG addressing mode. Long (DWORD)
address values are treated as logical block numbers, as defined by the High Sierra
proposal. When Redbook addressing mode is on, all disk addresses are interpreted
as Minute/Second/Frame addresses, according to the Philips/Sony Redbook
standard. Each of these fields is 1 byte. The least significant byte of the address
field contains data for frames, the second least significant byte contains data for
seconds, the third least significant byte contains data for minutes, and the most
significant byte of the 4-byte field is unused. These values are represented in
binary rather than in BCD format. For example, if we are referencing the sector
addressed by minute 36, second 24, frame 12, the hex long value for this would be
0x0024180C. This 4 byte value is recorded in the starting sector number field
with the least significant byte first and most
significant byte last.

The relationship between High Sierra sectors and Redbook frames is described by
the equation:

Sector = Minute * 60 * 75 + Second * 75 + Frame - 150

The byte/sector count field becomes the number of sectors to read and the starting
sector number expands from one word to two, which means we can address up to
4 giga-sectors (over 8 terabytes). The DWORD ptr for requested volume ID is
eliminated and MSCDEX.EXE will keep track of what volume is needed.
MSCDEX.EXE handles buffering requests, but performance may be improved if
the device driver reads ahead or uses a sector caching scheme, given the slow
seek times of CD-ROM drives. The operating system will use the prefetch
function when it can to give hints to the driver.

The data read mode field will be one of the following:
0 Cooked mode
1 Raw mode
2-255 Reserved

Cooked mode is the default mode in which the hardware typically handles the
EDC/ECC and the device driver returns 2048 bytes of data per sector read. When
raw mode is set, the driver will return all 2352 bytes of user data, including any
EDC/ECC present independent of the actual sector mode (Mode 2 Form 1 vs.

Mode 2 Form 2). User programs will have to consider this and allow enough
room for buffer space when reading in raw mode as each sector returned will take
up 2352 bytes of space. Drives that cannot return all 2352 bytes will return what
they can and leave blank what they cannot. For example, drives that can return all
2336 bytes except the 16 byte header will leave a space in the first 16 bytes where
the header would go so that the sectors align on 2352 byte boundaries. Drivers
should do what they can to return as much of the user data per sector as possible.

The two interleave parameters are for drivers that support interleaved reading. If
the driver does not support interleaving, these fields are both ignored. If it does,
interleave size is the number of consecutive logical blocks or sectors that are
stored sequentially, and the interleave skip factor is the number of consecutive
logical blocks or sectors that separate portions of the interleaved file.

READ LONG PREFETCH
Command code = 130
ES:BX = ReadLPre

ReadLPre DB 13 dup (0); Request header

DB ? ; Addressing mode
DD 0 ; Transfer address
DW ? ; Number of sectors to read
DD ? ; Starting sector number
DB ? ; Read mode
DB ? ; Interleave size
DB ? ; Interleave skip factor

This function is similar in form to READ LONG, but control returns immediately
to the requesting process. The device driver is not obligated to read in the
requested sectors but can instead consider the request for these sectors as hints
from the operating system that they are likely to be needed. It is recommended
that at a minimum, the driver seek to the location provided. The attribute in the
device status for prefetching is used to distinguish drivers that do more than just
seek to the given location. The requests are low priority and preemptible by other
requests for service. A READ LONG PREFETCH with 0 number of sectors to
read should be treated as an advisory seek, and the driver can, if it is not busy,
move the head to the starting sector. Since prefetching requests are advisory, there
will be no functional difference between a device driver that supports prefetching
from one that does not, except in terms of performance. The transfer address is
not applicable for this call as the driver is not meant to transfer any data into the
user address space.

SEEK
Command code = 131
ES:BX = SeekReq

SeekReq DB 13 dup (0) ; Request header

DB ? ; Addressing mode
DD 0 ; Transfer address
DW 0 ; Number of sectors to read
DD ? ; Starting sector number

Control returns immediately to the caller without blocking and waiting for the
seek to be completed. The number of sectors to be read and the transfer address
are ignored. SEEK is used to relocate the head in order to begin playing audio or
video tracks, or in anticipation of reading in a particular region on the disk.
Further requests for disk activity will wait until the given SEEK is completed.
This seek is not advisory and the head must move to the desired location. If the
address is not within the range of the disc, return a "SEEK ERROR".

PLAY AUDIO
Command code = 132
ES:BX = PlayReq

PlayReq DB 13 dup (0) ; Request header

DB ? ; Addressing mode
DD ? ; Starting sector number
DD ? ; Number of sectors to read

This function will cause the driver to play the selected audio tracks until the
requested sectors have been exhausted or until play is interrupted with an AUDIO
STOP request. Control returns immediately to the caller. The busy bit in the status
word will indicate if the drive is presently playing audio and when the play
request is completed. The busy bit in the status word of the request header, as well
as the paused bit and starting and ending locations returned by the Audio Status
Info IOCTL, will be updated. If the drive does not support playing audio this
request is ignored and it should return the error code for Unknown Command. If a
data address is supplied, a "READ FAULT" error should be returned and the
command should fail. If the sum of the starting sector and number of sectors to
read exceeds the range of the disc, or there are intermediate data tracks, return the
error code for PARAMETER OUT OF RANGE.

STOP AUDIO
Command code = 133
ES:BX = StopPlayReq

StopPlayReq DB 13 dup (0) ; Request header _______________

This function is included to pause the drive unit when it is currently in play mode,

or to reset the starting and ending locations when in paused mode. If applicable,
at the next stopping point it reaches the drive will discontinue playing, and
process the next request. The busy bit in the status word of the request header, as
well as the paused bit and starting location returned by the Audio Status Info
IOCTL, will be updated. If the drive does not support playing audio, it should
ignore this request and return the error code for Unknown Command.

RESUME AUDIO
Command code = 136
ES:BX = ResumeReq

ResumeReq DB 13 dup (0) ; Request header _______________

This function is used to resume playing audio tracks when a previous PLAY
AUDIO call has been paused with a STOP AUDIO command. It will resume
playing from the starting location indicated by the Audio Status Info IOCTL. It
will modify the Audio Paused bit returned by the Audio Status Info IOCTL, and
the busy bit in the status word of the request header. If the drive does not support
playing audio, it should ignore this request and return the error code for Unknown
Command.

In the following example the playing flag corresponds to the state reported by the
busy bit in the status word of the request header when the drive is in audio play
mode. The paused flag corresponds to the Audio Paused bit and last_startloc and
last_endloc correspond to the starting and ending location reported in the Audio
Status Info IOCTL.
// upon RESET, NEW DISC, or PLAY/RESUME COMPLETED the state
//should be updated:
playing = FALSE;
paused = FALSE;
last_startloc = 0;
last_endloc = 0;
PLAY_AUDIO(startloc, endloc)

{
if (playing) return error; // Play overrides pause else if (play(startloc, endloc) !
= SUCCESSFUL)
return error;

else
{

playing = TRUE;
paused = FALSE;
last_startloc = startloc
last_endloc = endloc
return no error;

}
}

STOP_AUDIO(void)
{

if (playing)
{

last_startloc = present q-channel location playing = FALSE;
paused = TRUE;
stop();
return no error;

}
else
{

playing = FALSE;
paused = FALSE;
last_startloc = 0;
last_endloc = 0;
return no error;

}
}
RESUME_AUDIO()
{

if (paused)
{

if (play(last_startloc, last_endloc) != SUCCESSFUL) return error;
else
{

playing = TRUE;
paused = FALSE;

return no error;
}

}
else

return error;
}
WRITE LONG
Command code = 134
ES:BX = WriteL

WriteL DB (dup 13 0) ; Request header

DB ? ; Addressing mode
DD ? ; Transfer address
DW ? ; Number of sectors to write
DD ? ; Starting sector number
DB ? ; Write mode
DB ? ; Interleave size
DB ? ; Interleave skip factor

The device will copy the data at the transfer address to the CD RAM device at the
sector indicated. The media must be writable for this function to work. Data is
written sector by sector, depending on the current write mode and the interleave
parameters. The following values are recognized as valid write modes:

0 Mode 0
1 Mode 1
2 Mode 2 Form 1
3 Mode 2 Form 2
4-255 Reserved

Writing in Mode 1 is the default and must be supported. If the device driver
supports the other modes, then they can be used. If Mode 0 is used, the transfer
address is ignored and all sectors are written with zeroes. If the current write
mode is Mode 1 or Mode 2 Form 1, each sector will consist of 2048 bytes of data
located sequentially at the transfer address. If the write mode is Mode 2 Form 2,
the device driver will expect 2336 bytes of data per sector at the transfer address.

WRITE LONG VERIFY
Command code = 135
ES:BX = WriteLV

WriteLV DB (dup 13 0) ; Request header

DB ? ; Addressing mode
DD ? ; Transfer address
DW ? ; Number of sectors to write
DD ? ; Starting sector number
DB ? ; Write mode
DB ? ; Interleave size
DB ? ; Interleave skip factor

This function is identical to WRITE LONG, with the addition that the device
driver is responsible for verifying the data written to the device.

INPUT FLUSH
Command code = 7
ES:BX = FlushI

FlushI DB 13 dup (0) ; Request header ______________
Requests that the device driver free all input buffers and clear any pending
requests.
OUTPUT FLUSH
Command code = 11
ES:BX = FlushO

FlushO DB (dup 13 0) ; Request header ______________
Requests that the device driver write all unwritten buffers to the disk.

DEVICE OPEN
DEVICE CLOSE
Command code = 13,14
ES:BX = DevOpen, DevClose

DevOpen DB 13 dup (0) ; Request header ______________
Used by the device driver to monitor how many different callers are currently
using the CD-ROM device driver. All new device drivers should support these
calls even if nothing is done with the information.

End.

	Microsoft MS-DOS CD-ROM Extensions Version 2.21
	Hardware-Dependent Device Driver Specification
	End.

