

Questions and Answers

Q: Can you provide more info on how the READ/WRITE device control string
should work. Does the read device bytes command get information that was
written by the write device control string?

A: At present, there are very few people that use this command. There are a
couple other features that are either used only in special instances or not at all
at present. This is not to say that they won't be used at some later time.

The purpose of these commands was to allow a standard way of delivering
commands that were not specified in the CD-ROM device driver spec to the
drive. For example, sending SCSI command strings and reading the responses
from the drive. This function is deliberately open-ended and vague because it
was intended to provide a catch-all mechanism for application programs to
communicate requests or request data in ways that were not specified by the
device driver spec. For application programs to use these functions they have
to know the driver supports these functions and also how to communicate with
that specific drive. The mechanism would let the driver do what it does best
and worry about which ports and interrupts to use. This relieves the
application program from these details and allow it to deal with controlling the
device at a higher level.

Right now, if the driver does not support these functions, it should return an
error for Unknown Command. One could test whether these two function
were supported this way. Note: if there are commands which you feel should
be supported by the device driver specification, please communicate them to
us and we will consider adding them if they are of sufficient general interest.

Q: How can an application access CD-ROM drives that are subunits of one
driver? The IOCTL calls do not take an argument for subunit. MSCDEX
seems to handle this OK since when I do a directory of each CD-ROM in turn
it accesses the correct drive. I do not see any clean way for an application to,
for example lock the door on CD-ROM drive G: which is the third drive
handled by the driver.

A: Requests all have a sub-unit field in the request header. Commands that one
would expect to be directed to a specific drive, such as open door, are targeted
at a particular drive through the use of the sub-unit field.

Q: Why doesn't MSCDEX allow IOCTL access via the drive letter (that is, MS-

DOS func. 44h subfunc. #4,5), as if the CD-ROM were a normal drive. I
understand that the driver is not a block device, but this is being handled
already in some way since you allow a user to perform file I/O to a CD-ROM
making it appear to be a block device. It would seem that all that would be
necessary to accomplish this is to intercept IOCTL calls in the same way that
file access calls are being intercepted.

A: MSCDEX doesn't presently hook INT 21h, which is what this would involve.
It's doubtful that this will change. It's not that much more difficult to open the
file and send an IOCTL to the handle. File access calls are not caught at an
INT 21h level but are caught from within MS-DOS at another interface. CD-
ROM drives are far more like network drives than traditional MS-DOS FAT
file structure block drives and their drivers. For example, try to FORMAT a
CD-ROM drive and you'll see. Part of all this prevents IOCTL's to the drive
letter from being directed to the appropriate driver. For more information, see
the section “MS-DOSifying Your CD-ROM.”

Q: Why not allow access to the PLAY, STOP and SEEK functions via the INT
2Fh entry point as is allowed for READ LONG. This would be much simpler
than requiring the application to locate the driver header and then find the
STRATEGY entry point and create request control blocks etc. This is a lot of
code to start the music playing!

A: The reason we haven't included play and other commands of this type in the
INT 2Fh interface is to avoid loading down MSCDEX with additional
functionality that most people don't use. Your suggestion would only move
that code from the CD-playing program into MSCDEX. It makes your
program smaller at the expense of making MSCDEX larger.

Q: Shouldn't the specification eliminate the need for the application to OPEN the
driver by name? This is especially important in systems where the driver
creates a new driver header for each CD-ROM drive. As it is, MS-DOS allows
so few file handles to be open simultaneously that requiring applications to
open even more is very bad.

A: Simply close the driver handle after you have located the device header. You
no longer need to communicate through MS-DOS to control it, so free the
handle and make it available for other programs to use. With version 2.10, it is
no longer necessary to OPEN the device driver in order to communicate with
it. Applications can communicate with the device driver using Send Device
Driver Request.

Q: It seems that there should be bits in the Device Status word to indicate
whether a driver supports Reading/Writing device control strings.

A: Reading and writing device control strings was put in as a catch-all for
anything that was missed so that application programs could send specific
commands through the device driver to the device if they understood the
device and knew how to communicate to it. A manufacturers CD-ROM
diagnostic program would be an example of a program that might choose to
communicate with the drive in this way. If the driver does not support these
functions, it should return an error. One can test whether these two function
are supported by testing if the error returned is for Unknown Command.

Q: In the spec, treatment of the BUSY bit in the status word with regard to the
PLAY AUDIO function seems to assume only one CD-ROM drive. What
happens when the user has two or more drives each of which want to be
playing music? How does the application tell whether the desired drive is
busy? It would seem better to use some of the bits in the upper word of Device
Status to indicate BUSY for each drive, perhaps allowing 8 or 16 drives.

A: Requests all have sub-unit numbers associated with them. A request for
service from one sub-unit may report that the drive is busy at the same time
another sub-unit was not busy. The sub-unit field is used to distinguish
requests between the drives supported by the driver. The busy bit serves as an
indication of drive status for the sub-unit the request is for.

Q: In the device driver spec, it says that if more than one unit is supported by the
driver that this field should be set to the number of units. I suspect that this is
wrong since this is not a block device. As far as I can see, this field should
only ever be set to one since each unit will actually have its own header with
its own unique name.

A: CD-ROM device drivers are a hybrid of block and char device drivers and are
not technically legal as one or the other. Block drivers make some
assumptions about the media format that aren't meaningful for CD-ROM and
don't have a read call that can deal with CD-ROM's large data space. They
were made as char devices with some additional calls and rules. One of the
changes that was made for CD-ROM device drivers was to allow multiple
sub-units for the device so the treatment of this field is correct as specified
even though CD-ROM device drivers are character device drivers.

If one has more than one CD-ROM drive, one can approach supporting them
from several ways. One could have separate device drivers for each drive and
load one per drive, have a single driver with multiple device headers, or have
a single driver with one device header that supports sub-units. This last
method is borrowed from block drivers. For the case that the drives and drive
commands are all the same, using sub-units will allow you to distinguish
between which drive receives which command. The alternatives clutter MS-

DOS up with drivers or device headers. Sub-units may not be legal character
device driver fields but conceptually, they're the right thing. Since CD-ROM
device drivers could not be block drivers and had to be char device drivers,
some liberties were taken with the specification to merge the best of both
specifications.

Q: Is there any support through MSCDEX for WRITE LONG? I have a need for
this to support a CD mastering system. I would like to be able to treat a
WORM drive as a CD-ROM and allow writing to the drive once to create a
master and then be able to test it out by using it as CD-ROM to verify that our
data has been correctly stored in High Sierra format.

A: Such a call exists. It only serves to define a standard interface for CD-ROM
device drivers that are running over re-writable media - such as a CD
mastering system. It is in the driver specificiation starting with version 2.00 of
the CD-ROM Extensions.

Q: How important is it that I should support RAW mode access in my driver?
What would this typically be used for?

A: This is something that is gaining in importance. Several drives support reading
in raw mode. Since drives and their command capabilities are hardware
dependent, you would know based on the capabilities of your hardware if you
were capable of supporting it. This function was added for completeness. A
standard way was needed to define how to get at the 288 bytes of EDC/ECC if
drives allowed access and to have an avenue prepared if people found useful
applications that would not use EDC/ECC where they wanted the additional
space (such as gracefully degrading low-fidelity audio or graphics). It will be
useful for copying audio information or for audio systems that will want to be
able to manipulate audio tracks. Many people have expressed interest in
having this capability.

Q: In the structure for the UPC Code function, "The UPC/EAN code (last 4 bits
are zero)". Does this mean the low order or high order 4 bits?

A: This is less ambiguous if you read Redbook under mode-2 of the Q-channel
info. This is now clarified in the UPC Code call. It should be the low nibble of
byte 7. Redbook specifies that MSB comes out first so the high nibble will
contain the 13th nibble of the UPC code and the 14th nibble will be zero.

Unfortunately, scanning for the UPC code is time consuming especially if it is
done by the software. This is due to the design of the q-channel in Redbook.
It's a pity because this could be a useful number to verify the correct disc has
been inserted. Most CD-ROMs do not have a UPC code or have it zeroed out.

The same seems to be true for CD-audio as well. We believe that CD-ROM
drives should scan for the UPC code as they read the Table of Contents when
initializing from power up or a new disc. If the hardware does not do this, the
UPC code has to be scanned by polling the q-channel which may occasionally
miss the UPC code.

Q: It would be nice if the device driver spec included a list of what types of disk
access functions would and would not work so that users could get an idea of
what utilities and applications will and will not work with the extensions.

A: The device driver specification describes just what is necessary for writing a
CD-ROM device driver. The information you would like concerning things
such as INT 25h/26h not supported as well as the behavior
CHKDSK/FORMAT/etc belongs and is mentioned in the MSCDEX
overview.

Q: If I have a low priority request and if the system has time, can the prefetch
request read into and transfer the data into a transfer address?

A: We have looked at this for some time but the bottom line is that asynchronous
I/O under MS-DOS is very difficult to support in all cases. It is difficult for
MSCDEX or the CD-ROM device driver to know that the transfer address is
still valid because MS-DOS never notifies MSCDEX or the device driver if
the requesting process was been terminated. The request runs the risk of
writing over another program. The best approach now is if the driver wants to,
it can reserve internal buffer space for data from the disc and put prefetched
data there. Then it can copy the data to the read transfer address once the read
request finally arrives. Alternately, some of the caching or prefetching can
reside in the CD-ROM controller or in the drive itself.

Q: Is there any status indication that a prefetch transfer has occurred or some
interaction with the READ LONG command?

A: There is no way to tell if a prefetch request was successful or the state of it.
The prefetch simply provides a hint to the driver and the read request later is
the request that finally takes delivery of the data.

Q: My driver seems to work ok except that whenever I connect to a subdirectory
and do a directory, I am suddenly back in the root directory again. What's
going wrong?

A: What is most likely happening is the driver is returning an incorrect value for
MEDIA CHECK and MSCDEX thinks that the disc is changing all the time.
When this happens, MSCDEX rereads the volume descriptors and pathtable
and reinitializes what it knows about the disc and changes the current working

directory back to root as if the drawer had been opened, the disc removed, and
then reinserted. This will be accompanied with a larger amount of disc activity
than one would expect for a simple directory scan. Fixing the driver to return
the correct value when asked for a media check will correct this behavior.

Q: What is the best way for my application to know if the disc has changed since
it was last accessed?

A: Use the MS-DOS function find first and look for the volume id. When the disc
has been read and MSCDEX has already initialized the internal information it
keeps for each disc, this is a relatively inexpensive operation. The information
is in memory and the disc does not have to be touched, so checking the
volume id is very quick. Only if the disc has been changed does the disc have
to be touched. This operation takes considerably longer than if the disc was
not changed but even so, this has to be done anyway because MSCDEX has to
read and initialize what it knows about the new disc so it can report the
volume id correctly so the application can know if the disc in the drive is the
one that it is looking for.

Q: When I do a directory, the first couple filenames are either duplicated or they
are random characters. What might cause this?

A: The problem comes from having the incorrect bytes in the file identifier field
for the first two directory entries. The first directory entry in each directory
file is supposed begin with a copy of the directory record for that directory file
followed by a copy of the directory record for the parent directory (also
known as '.' and '..' on Unix or MS-DOS). The filename or directory identifier
is supposed to be 1 byte long and the contents are supposed to be 0 for the
first directory entry and 1 for the second directory entry. This is discussed in
clause 6.8.2.2 of the ECMA standard or the ISO-9660 proposal. Several
places on the disc in question, you have a 1 where there should be a 0 and in
one directory, the file identifier consists of 0x8A which is why DIR in that
directory begins with an "e". Incorrectly formatted discs will not be handled
by the extensions correctly. This is why it is a good idea to test your disc
image using MSCDEX before you press a disc to make sure your data is
formatted correctly and as MSCDEX expects it.

Q: I have a directory file that is 4 kilobytes long but when I do a DIR in that
directory, it is slower than usual and random filenames are printed out. I can
tell by watching the device driver commands that MSCDEX is asking for
sectors far beyond the end of the directory. I can see how this might account
for the random filenames but why is it scanning so far?

A: Problems such as this result from having with multi-sector directory files that

include empty sectors in the directory file. The High Sierra specification does
not allow you to have empty directory sectors at the end or to have gaps in the
middle. However, ISO9660 does not have this constraint. (This will be
addressed in a later version.) The problem stems from the fact that your
directory length is too long. For example, for the disc in question, the root
directory begins at sector 28 and its length is 4096 bytes but the second sector
is completely blank (all 0's). This confuses MSCDEX because it does not
expect to see empty sectors.

Q: I noticed that Function Request 0 Get Number of CD-ROM drive letters may
not always return unambiguous results. Suppose I start the network first and
use one of the drive letters for a network drive (F:). When I start the
Extensions, it will begin assigning drive letters after the last used drive letter
(C: on my machine). If I have 4 CD-ROM drives on my system, they will be
assigned drive letters D:, E:, G:, and H:. Function 0 returns 4 in BX for the
number of CD-ROM drives and 3 in CX for drive letter D: correctly. But as
you can see, the CD-ROM drives do not use contiguous drive letters so I
cannot deduce from what this function returns that drive F: is not a CD-ROM
drive.

A: That is correct. This is why function 0Dh Get CD-ROM drive letters was
added. To get an unambiguous list of CD-ROM drives, use this function or
use function 0Bh CD-ROM Drive Check to tell if a drive letter is for a CD-
ROM drive.

Q: Is it possible to do an absolute read using the Extensions. I am trying to read
mode 2 (uncooked) data using Function Request 8 Absolute Read. I use a
normal device I/O to turn off error correction and perform a read but all I get
back is 2048 bytes of data instead of the full 2356 bytes. Is there another way
in INT 2Fh to get the data uncooked?

A: Not at present. If you want to get at the data including error correction code,
you will have to communicate directly with the device driver. The Extensions
provides the Send Device Driver Request mechanism for communicating with
the device driver.

Q: Is it possible to access a non-High Sierra disc with the Extensions using an
absolute disc read?

A: One can use either the extensions to read a non-High Sierra disc using INT
2Fh or one can communicate directly with the device driver to do this. The
device driver itself makes no distinction between High Sierra and non-High
Sierra discs so it can be used to read them although the burden of file system
translation and reading then falls on the application talking to the driver. The

INT 2Fh Absolute Read function simply packages the request to read and
sends it directly to the driver and returns the result.

Q: What we have done is, in AUTOEXEC.BAT, first loaded the MS-DOS CD-
ROM Extensions and then the MS-NET software. The error message is
"Redirector already installed". The network software is then not loaded. We
are using MS-NET 1.1 in an HP product called ThinLAN. Any hints as to
what they should try next?

A: MSCDEX is a CD-ROM "redirector". It hooks into MS-DOS the same way
the network redirector does to get requests for file access to files that are not
on local hard/floppy disks. As far as MS-DOS is concerned, CD-ROM drives
look just like network drives. MS-DOS passes all file accesses through the
redirector interface to the network redirector which in turn sends file access
requests out over the net. MSCDEX splices itself in front of the network
redirector and takes requests belonging to CD-ROM drives and passes the rest
to the network redirector.

The problem is that the network redirector code assumes that there will only
be one redirector installed (itself) whereas MSCDEX does not make this
assumption. If the network redirector is installed after MSCDEX (before it in
the interrupt chain), it will process all requests from MS-DOS and never pass
any CD-ROM requests through to MSCDEX. For this reason, MSCDEX has
to be installed after the network redirector (before it in the interrupt chain) and
so MSCDEX prevents the network redirector from installing afterwards to
ensure this. Since you installed MSCDEX first, the network believes a
redirector is already installed so it does not install itself which is what you are
seeing. In order to install both, simply install your network software first and
MSCDEX second and you're set.

Q: CHKDSK, ASSIGN, and SUBST report that the CD-ROM is a network disc.
Why is this?

A: From the above explanation, you understand that to MS-DOS, the CD-ROM
drives look like network drives. The programs CHKDSK, ASSIGN, and
SUBST check the same fields MS-DOS does and think the same thing. There
is no way to get around this.

Q: RENAME gives error message "Duplicate file name or File not found" instead
of something that makes sense such as "Access denied" or "Can't rename CD-
ROM files".

A: The error message is coming from the code for RENAME and not MSCDEX.
The error condition is being returned correctly but the error code returned by

version 1.01 is correct according to MS-DOS documentation. The problem
seems to be that there are two error codes for access denied - 5 and a special
one 65 which is error_net_access_denied which is returned by the network
redirector when it has a problem. MSCDEX version 2.00 and up returns error
code error_net_access_denied and so RENAME now reports "Access denied".

Q: Why does the SETVER command have to be used when MSCDEX 2.20 is
used with MS-DOS 5.0?

A: MSCDEX 2.20 was completed in the early phases of MS-DOS 5.0
development, thus, the capabilities of MS-DOS 5.0 were not available for
MSCDEX development. While MSCDEX 2.20 was developed in advance of
MS-DOS 5.0, its release however,was delayed until a few months before that
of MS-DOS 5.0.

Q: Why can't I load MSCDEX 2.21 in high memory using MS-DOS 5.0?

A: MSCDEX Version 2.21 cannot load high because it is essentially an upgrade
to improve the interface between it and MS-DOS 5.0. A future release of
MSCDEX will take advantage of the features available in MS-DOS 5.0.

While you cannot load MSCDEX 2.21 in high memory, you can still use
the /E command line switch to have MSCDEX use the expanded memory
installed in your system. This moves a portion of MSCDEX into expanded
memory which frees some of the lower memory normally used by MSCDEX.

Q: Where can I get more information on CD-AUDIO, CD-ROM devices, and
MS-DOS device drivers?

A: ISO 9660 specifies the standards of the volume and file structure used by CD-
ROM discs. ISO 10149 specifies the data characteristics (such as the format of
the tracks, error-detecting and error-correcting characters, and coding of
information) of CD-ROM discs. IEC 908 specifies the standards used by CD
digital audio system. These specifications are available from ISO
(International Organization for Standardization) and IEC (International
Electrotechnical Commission).

For information about MS-DOS drivers, you will find the following books
helpful:

Duncan, Ray. Advanced MS-DOS Programming. Redmond: Microsoft
Press, 1988

Microsoft MS-DOS Programmer's Reference, Redmond: Microsoft
Press, 1991.

Also, the MS KnowledgeBase topics of The Microsoft Programmer's Library
CD-ROM contain answers to many of the common questions asked about
programming under MS-DOS.

Q: What is the current support for CDROM XA in MSCDEX?

 A: CDROM XA is a novel definition of the use of Mode 2 sectors on a CD.
MSCDEX supports plain ISO 9660 file access to files with XA system use
fields. It is the responsibility of the driver and hardware to process or control
the XA subsystems. A driver that has such specialized support will have bit 10
set in the DEVICE_STATUS (IOCTL Read (03h) subfunction 06h) return
value.

End.

	Questions and Answers
	End.

