
Schmoozing with the OmniNetworking Framework
William Garrison

garrison@standardorbit.com
Abstract
Historically, the Cocoa frameworks have not provided integrated support for TCP/IP network
programming. The OmniNetworking framework fills this gap by providing Objective-C
wrappers around the BSD socket API that integrate well the Cocoa frameworks. This paper
presents an introduction to the OmniNetworking framework and its use in developing client and
server applications for TCP/IP network communication.

Introduction
Mac OS X provides a variety of APIs for
TCP/IP network programming. The Carbon
environment uses Open Transport as its native
networking API. CoreFoundation provides
CFSocket, a C-based API with pseudo object-
oriented semantics. Historically, Cocoa (nee
OpenStep) has not provided its own object
oriented classes for network programming,
relying instead on the C-based BSD sockets
API to provide this service.

The OmniNetworking framework fills this gap
for Cocoa developers by providing an
Objective-C framework encapsulating sockets
in an object-oriented interface. With a few
classes plus NSData and NSString, the Cocoa
programmer can use OmniNetworking to create
sophisticated TCP/IP network applications in
relatively short order.

BSD Sockets API
BSD sockets is a mature and well documented
networking API available in all flavors of
UNIX, Linux, even Windows (although not
without a few Borg enhancements). “Unix
Networking Programming” [Stevens90] and
“Internetworking with TCP/IP, Vol III”
[Comer93] are classic references for writing
clients and servers for TCP/IP networking
using this API. One or both of these should be
on your shelf (and can probably be found at
used book sales for bargain prices, given their
mature age).

Understanding the OmniNetworking
framework is helped by having some
familiarity with the concepts and terminology

of BSD sockets. The following is an
extraordinarily brief introduction. A more
complete presentation of BSD sockets can be
found in Chapter 6 of Stevens. The real
networking geek will want to check out all of
Comer, Vol III. The terms “socket” and “inet”
provide reasonable starting points for
information in the man pages.

Sockets
As the name implies, sockets are the organizing
principle in the sockets API. A socket
represents one endpoint in a network
communications channel. A complete network
connection involves two sockets — one for the
originating end and another for the target —
through which two processes on those
computers can exchange data with each other.

A socket describes two important elements of
the network endpoint: the host address and
the port number. The host address uniquely
identifies the network and the computer where
the endpoint is located. In the sockets API,
host addresses are represented as 32 bit
unsigned integers by the C structure struct
in_addr. The port number maps the network
connection to a specific running process that
will be sending and/or receiving data from that
host address. Port numbers are represented by
a 16 bit unsigned integers.

Addressing
Hosts are usually (and more conveniently)
referred to by their host names. Host names can
be expressed in alphanumeric form (e.g.
hal9000.ibm.org) or as a “dotted quad”[1] (e.g.
“10.1.0.40”). A host name has to be resolved

Schmoozing with OmniNetworking , page 1

into its corresponding struct in_addr host
address before it can be used in the socket API.
Dotted quad names can be transformed
directly into struct in_addr form. Alphanumeric
name resolution usually involves contacting a
DNS (domain name server) somewhere on the
network, through which the name is mapped
into its dotted quad equivalent, then into a
struct in_addr.

TCP vs UDP
Sockets in the Internet protocol (IP) family
usually come in UDP and TCP flavors. UDP
sockets can send and receive bytes using the
User Datagram Protocol, which is intended for
connectionless, one-way delivery of datagrams
(messages of known length). UDP makes no
guarantee that its messages will be delivered
reliably or intact. TCP sockets use the
Transmission Control Protocol to provide
reliable, two-way communication of byte
streams over the network. TCP is intended for
use in connection-oriented communications.
Most Internet applications use the TCP
protocol.

Using the BSD Socket API
A socket, in either TCP or UDP flavors, is
created using the socket() routine. This newly
created socket must then be mapped to the
local host address and a port number using the
bind() routine.

Client applications use the connect() routine to
initiate a network connection between its local
socket and another, typically located on
another computer. A server application uses
the listen() call to direct its own local socket to
listen for incoming connection requests. A
server then calls accept() to receive and
complete those requests.

Once a connection is established between two
sockets, data can be sent or received across the
connection using the read() and write()
functions. When communications are no longer
needed, the close(), shutdown() or abort()
routines are used to close the connection and
release the local socket from memory.

BSD sockets, given its basis in C, can be used
directly in any Cocoa application. The API is

simple and is supported by an abundance of
documentation in the way of books and freely
available source code.

OmniNetworking Framework
The OmniNetworking framework offers two
compelling features for the aspiring developer
of Cocoa-based network applications: a
simple object-oriented interface and convenient
integration with the Cocoa frameworks. Two
classes, ONHost and ONTCPSocket, handle
the most of the heavy lifting in TCP/IP
networking. OmniNetworking’s network I/O
methods are written in terms of NSData and
NSString, making it easy to use the network as
a data source for other Foundation and
AppKit objects in your Cocoa application.

A Lay of the Framework
The OmniNetworking framework contains
thirteen classes, but the ones you’ll use most
frequently for TCP/IP applications are
ONHost, ONTCPSocket, and
ONSocketStream. ONHost provides host
name to address translation methods.
ONTCPSocket represents a TCP socket.
ONSocketStream takes an ONTCPSocket and
provides direct write and buffered read access.
I have found that for immediate reference, the
source and headers for these four classes are
indispensable: ONHost, ONInternetSocket,
ONTCPSocket, and ONSocketStream. To get
a complete more complete understanding of
these classes, you’ll need to also look at
ONSocket and ONHostAddress.

ONHost
The starting point for using OmniNetworking is
ONHost. A client application will need an
ONHost object to represent the target for a
network connection. A server will have one
available identifying the computer from which
it has accepted a connection.

+ (ONHost*) hostForHostname:
 (NSString*) aHostname;
- (NSString*) hostname;
- (NSString*) canonicalHostname;
+ (NSString*) localHostname;

hostForHostname: is the most frequently used
method of ONHost. It takes a host name and

Schmoozing with OmniNetworking , page 2

returns an initialized ONHost object to
represent it. The host name argument can be
specified in dotted quad form, or as an
unqualified or fully qualified domain name.
ONHost caches name-to-address translations
internally and will satisfy subsequent lookups
from there before going back out to a DNS.
The hostname: method returns the name used to
initialize an ONHost object. The
canonicalHostname: method returns the host’s
canonical DNS name. When the ONHost class
is loaded and initialized at runtime, the local
host’s name is obtained from the system. The
localHostname: class method returns this as an
NSString. hostForHostname: will throw an
exception if an error occurs doing the name
resolution. Refer to the ONHost header for
more details or check out the example project,
SchmoozingExamples, accompanying this
paper.

ONTCPSocket
The socket classes of OmniNetworking are the
workhorses of the framework. ONTCPSocket
and ONUDPSocket have methods for creating
new socket objects, initiating connections,
reading and writing data. ONTCPSocket also
has methods for establishing server listeners
and accepting new connections on a socket. I
will discuss ONTCPSocket and its uses in the
rest of this paper. ONTCPSocket’s methods
throw a variety of exceptions when error
conditions arise. Refer to the headers for
ONTCPSocket and ONInternetSocket, or the
SchmoozingExamples project for more details.

Creation method
+ (ONTCPSocket*) tcpSocket;

ONTCPSocket provides the tcpSocket: factory
method for creating a properly initialized and
autoreleased TCP socket object. You will need
to retain the ONTCPSocket if it is needed
beyond the scope of the autorelease pool in
which it was created.

Connection methods
- (void) setLocalPortNumber;
- (void) connectToHost: (ONHost*)host

port: (unsigned short) port;
- (void) abortSocket;
- (void) startListeningOnLocalPort:

(unsigned short)port;
- (void) acceptConnection;
- (ONTCPSocket*)

 acceptConnectionOnNewSocket;

With an ONTCPSocket in hand, you can use it
to either make or receive a network connection.
You can send it the connectToHost:port:
message, specifying the ONHost representing
the target and the port number of the service
offers on that host.

For a typical client application, an arbitrary
unused port number is used on the local end of
the connection. If no port has been explicitly
set on the local socket, BSD will bind the local
socket to a system-selected port number [2] as
a side effect of the connectToHost: method.
Should a specific local port number be needed,
the socket can be configured with one before
initiating a connection by sending it the
setLocalPortNumber: message.

ONTCPSocket automatically takes care of
closing a connection in common circumstances.
When an ONTCPSocket object is deallocated
after receiving its final release: message, the
underlying BSD socket is gracefully closed.
Also, when an end-of-file is detected during a
socket read (an indicator that the socket on the
other end of the connection has closed), the
ONTCPSocket object will also gracefully close
its own socket.

An ONTCPSocket can be directed to explicitly
close its side of a socket connection sending it
the abortSocket: message. In response, the
ONTCPSocket will immediately shutdown its
underlying BSD socket, refusing to send or
receive any more bytes.

A server application can configure its
ONTCPSocket object to listen for incoming
connections by sending it the
startListeningOnLocalPort: message. A port
number must be chosen that will be well-known
to all clients [3]. To accept those incoming
connections, a server would send
acceptConnectionOnNewSocket: or
acceptConnection: to its listening socket.
acceptConnectionOnNewSocket: is the more
commonly used method. It directs a socket to

Schmoozing with OmniNetworking , page 3

accept an incoming connection request and
returns a new ONTCPSocket object dedicated
to handling it, leaving the socket in its listening
mode, ready to accept the next connection.
The new socket is bound to an arbitrary port
on the server, leaving the well-known port
available to the listening socket.

Reading and writing methods
- (void) setNonBlocking:

(BOOL) shouldBeNonBlocking;
- (void) setStringEncoding:

(NSStringEncoding) aStringEncoding;
- (void) setReadBufferSize:(int) aSize;
- (void) readData:

(NSMutableData*) dataRead;
- (NSData*) readData;
- (NSString*) readString;
- (void) writeData:(NSData*) someData;
- (void) writeString:(NSString*) aString;
- (void) writeFormat: (NSString*) aFormat, ...;

The convenience with which one can read and
write data to a network connection is one of
OmniNetworking’s most attractive features.
Data from the network connection can be read
directly into NSData or NSString objects using
the readData: or readString: methods. By
default, a 2048 byte buffer is used for reading
off the socket. This buffer can be resized using
setReadBufferSize: method. The corresponding
methods for writing to the network are
writeData: and writeString:. Formatted strings
can also be written to the network using the
writeFormat: method. NSStrings are read from
or written to the network using ISO Latin-1 as
the default character encoding. An
ONTCPSocket can be configured to use any
encoding available to NSString by way of the
setStringEncoding: method. Caveat emptor: the
readString: method’s implementation is valid
only for single byte character encodings (e.g.
ASCII, ISO Latin-1, or UTF-8). When reading
from multi-byte encoded character streams,
like Unicode, the NSData-based read methods
should be used instead.

Status methods
- (BOOL) isConnected;
- (BOOL) didAbort;
- (BOOL) isReadable;
- (BOOL) isWritable;

ONTCPSocket provides methods for
determining connection and I/O status.
isConnected: and didAbort: return YES if the
socket object is connected or has been
disconnected. If you are writing a non-
threaded network application, isReadable: and
isWritable: can be useful for constructing
network I/O polling loops that keep your
application from blocking. If no data is
available to be read from the network
connection, isReadable: returns NO without
blocking program execution. If the socket
cannot accept more data for writing to the
connection, isWritable: returns NO, also without
blocking.

Attribute methods
- (int) socketFD;
- (const struct sockaddr_in*) localAddress;
- (const struct sockaddr_in*) remoteAddress;
- (ONHost*) remoteAddressHost;
- (NSMutableDictionary*) debugDictionary;

ONTCPSocket provides a number of accessor
methods to return the BSD socket level data
structures associated with the connection.
socketFD: returns the file descriptor for the
underlying BSD socket. localAddress: and
remoteAddress: return the BSD socket address
description (struct sockaddr_in) for the local
and remote ends of the connection, from which
the Internet host address and port numbers can
be accessed. remoteAddressHost: returns an
ONHost representing the host at the other end
of the connection. The debugDictionary:
method returns a description of the
ONTCPSocket object containing useful
debugging information consisting of the BSD
socket descriptor and the state of the socket
object (connected, listening, or aborted).

ONSocketStream
The ONSocketStream class provides a higher
level interface to ONTCPSocket that is
particularly useful when working with ASCII or
ISO Latin-1 based Internet application
protocols. ONSocketStream features methods
for performing buffered reads on a TCP socket
and for reading network data one line at a
time.

Schmoozing with OmniNetworking , page 4

Creation methods
+ (id) streamWithSocket:(ONSocket *)aSocket;
- (id) initWithSocket:(ONSocket*)aSocket;

An ONSocketStream object layers functionality
on top of that provided by ONTCPSocket, so
an instance of an ONTCPSocket is a
prerequisite for its creation. ONSocketStream
throws no specific exceptions of its own, but
does relay those passed from its
ONTCPSocket object. streamWithSocket:
returns an allocated, initialized and
autoreleased ONSocketStream instance.
initWithSocket: will initialize a manually
allocated ONSocketStream instance.

Reading and writing methods
- (NSString*) readLine;
- (NSString*) peekLine;
- (NSData*) readData;
- (NSData*) readDataOfLength:

(unsigned int)length;
- (NSData*) readDataWithMaxLength:

(unsigned int)length;
- (NSString*) readString;
- (unsigned int) readBytesWithMaxLength:

(unsigned int)length
intoBuffer:(void*)buffer;

- (void) readBytesOfLength:
(unsigned int)length
intoBuffer:(void*)buffer;

- (void) writeData:(NSData*)theData;
- (void) writeString:(NSString*)theString;
- (void) writeFormat:(NSString*)aFormat, ...;

ONSocketStream implements its writing
methods by calling through to the
corresponding methods on its instance of
ONTCPSocket. Its read methods are
implemented around an internal
NSMutableData object that serves as a read
buffer.

The readLine: method returns a “line” of data
from the network connection as an NSString.
The line includes all bytes up to the first
newline character (‘\r’) or carriage return-
newline characters (‘\r\n’). To get a line of
network data without removing it from the
buffer, use the peekLine: method. readData:
returns an NSData holding all of the bytes
currently in the ONSocketStream’s buffer or

available from the socket, if the buffer is
empty. An arbitrary number of bytes can be
read from the socket using the
readDataForLength: message. To read from the
socket up to a maximum number of bytes, send
the readDataWithMaxLength: message. The
readBytesWithMaxLength: and
readBytesOfLength: methods can be used to
read into an arbitrary C-based character
buffer. The readString: method returns the data
currently available on the socket as an
NSString. As with ONTCPSocket, this
readString: method is only valid when reading
single byte encoded character streams. Multi-
byte encoded streams should be read with the
NSData-based methods.

Writing A TCP Client
Comer describes the following algorithm for
writing a TCP client [Comer93, p. 64]:

1) Find the IP address and port number of the
server.
2) Allocate a socket.
3) Specify that the connection needs an
arbitrary port on the local server.
4) Connect the socket to the server.
5) Communicate with the server using an
application-level protocol (e.g. sending
requests and awaiting replies).
6) Close the connection.

Given this basic algorithm, an exceptionally
trivial TCP client application using the
OmniNetworking framework is shown in
Listing 1. Source for a more complete TCP
client can be found in the SchmoozingExamples
project.

Writing A TCP Server
TCP servers can be characterized by the way
they handle multiple connections and state.
Servers that handle only one connection at a
time are known as iterative servers.
Concurrent servers accept and handle multiple
connections in parallel. Both iterative and
concurrent servers can implement stateless or
stateful connections. A stateless server
maintains no information from one connection
request to the next. A request is received,
processed, replied to, then forgotten. A
stateful server, on the other hand, maintains

Schmoozing with OmniNetworking , page 5

information associated with each client
connection. With a stateful server, a
connection between client and server would
likely encompass several request and reply
transactions.

OmniNetworking provides basic networking
primitives useful to either iterative or
concurrent servers, with or without state.
Server implementations, especially state
handling, tend to involve logic beyond the
scope of OmniNetworking. I’ll present the
basic algorithms for implementing iterative and
concurrent servers with OmniNetworking,
leaving the issue of state as another exercise for
the reader.

Iterative Servers
Comer describes the algorithm for an iterative
TCP server [Comer93, p. 103] as follows:

1) Create a socket and bind it to a well known
port number for the server being offered.
2) Establish a listener on the socket for
incoming connections.
3) Accept the next connection request on the
socket and obtain a new socket for the
connection.
4) Repeatedly read the socket for a client
request, generate a response, and send the
reply back according to the application’s
protocol.
5) When finished handling a particular client
request, close the connection and go back to
step 3, accepting the next connection.

Implementing an iterative TCP server with
OmniNetworking is straightforward, as Listing
2 illustrates. Refer to the SchmoozingExamples
project for a more complete example.

Concurrent Servers
A concurrent server has two roles, a master
and slave. The master is responsible for setting
up a socket to listen for connections, accept
them, and create slaves to process them. The
slave’s responsibility is to interact with the
client connection, leaving the master free to
continue accepting new connections.

Comer describes the algorithm for a concurrent
TCP server [Comer93, p. 108]:

Master 1) Create a socket for the server and
bind it to the well known port for the service
being offered.
Master 2) Establishing a listener on the socket.
Master 3) Repeatedly accept incoming requests
and create new slaves to handle the response.
Slave 1) Receive a connection request/socket
upon creation.
Slave 2) Interact with the client using the
socket, reading requests and sending back
replies.
Slave 3) Close the connection and exit. The
slave exits after handling all requests from one
client.

To implement the concurrent processing of
connections, the server can implement the slave
role with multiple processes or multiple
threads.

Concurrent Server Using Processes
The server’s initial process implements the
three steps of Comer server algorithm’s Master
role. It creates a socket bound to the port
designated for the server being offered, and
puts the socket into listening mode, and
accepts incoming connections. When a new
connection is accepted, a new process is
created that will implement the three steps of
the Slave role.

The slave process is created using the BSD
system call fork(). fork() splits the original
server process into two nearly identical
processes. The calling process is referred to as
the parent. The newly created process is
known as the child. The two processes are
duplicate copies of each other, except that
each has a unique process identifier and
different parent processes. The child process
will implement the slave role, processing the
client connection, while the parent continues as
the master.

The return value of fork() is used by each
process to determine which course of execution
to follow from that point forward. fork()
returns a zero value to the child process. To
the parent process, fork() returns the process id
of the child. Based on the return value of
fork(), each process branches execution to the

Schmoozing with OmniNetworking , page 6

implementation for their respective roles. The
parent process cleans up from the fork and
loops back to wait for the next incoming
connection. The child process cleans up from
the fork and continues on to process the
accepted connection. Listing 3 illustrates a
skeletal forking server using OmniNetworking.

With forking servers, the parent process must
ensure that all forked child processes have
been completely terminated. BSD uses the
signal mechanism to notify the parent when
any of its forked children have exited. To
properly exit, a child process must issue the
exit() system call. When this happens, BSD
sends the SIGCHLD signal to the parent. The
parent process can arrange to handle the
SIGCHLD signal with a routine that ensures
that the child processes are completely
terminated[4]. This process is known,
gruesomely, as “reaping” the children.

The following code can be used as a boilerplate
reaping routine for handling the SIGCHLD
signal.

void reaper() {
 pid_t reaped;
 int exitStatus;
 do {
 reaped = waitpid(-1, &exitStatus,
 WNOHANG | WUNTRACED);
 } while (reaped > 0);
 // Loop around until all child
 // processes have been reaped by
 // waitpid().
}
Listing 4. A common SIGCHLD signal handler for

reaping forked processes.

Concurrent Servers Using Threads
The Cocoa-based server application’s main
thread implements the master role of Comer’s
algorithm. A new thread is created for each
new connection that is accepted that will
implement the slave role. The NSThread
detachNewThreadSelector: method is used to
create the new thread.
detachNewThreadSelector: works by executing a
designated method of some specified object in
its own thread. Consequently, connection
processing must be implemented in some

method of an object in the server application.
There are many ways to design a
multithreaded server application to satisfy this
requirement. I will describe an architecture
based on the one implemented in the
OmniFTPServer application [5].

This architecture encapsulates the behavior of
the server and its client connection in their own
classes. Listing 5 depicts the implementation
for a connection handling class, Connection. Its
initWithConnectedSocket: method receives the
connection socket, implementing Slave Step 1.
The processConnection: method encapsulates the
communication between the server and client,
corresponding to Slave Step 2.
processConnection: would also implement Slave
Step 3, closing the client connection after all
client requests have been handled. Listing 6
presents a minimal implementation of a
threaded concurrent TCP server using the
Connection class. A more complete example is
included in the SchmoozingExamples project.

Alternatives to OmniNetworking
OmniNetworking isn’t the only game in town
when it comes to writing Cocoa-based Internet
applications. Here are some alternative
approaches to consider.

BSD Sockets and NSFileHandle
With Mac OS X, the Foundation framework
class NSFileHandle now provides direct
support for reading and writing data from
network sockets as well as files. NSFileHandle
objects are tied into a Cocoa application’s run
loop, making it possible to easily accept
network connections and read data
asynchronously. NSFileHandle does not
handle socket creation and host addressing, so
one would continue to use the BSD sockets for
this part of the programming.

CFSockets
CFSocket provides a C-based wrapper around
BSD sockets using the pseudo object-oriented
semantics of the CoreFoundation APIs.
CFSocket’s primary purpose is to provide a
common substrate through which the Carbon
and Cocoa frameworks can access underlying
networking functionality. CFSockets can also
used as sources for run loop events, which can

Schmoozing with OmniNetworking , page 7

benefit the writing of multithreaded Cocoa
network applications.

CFSockets is a somewhat tedious API,
especially when compared to BSD sockets or
ONTCPSocket, but the capability for run loop
integration is very attractive. Ben Golding has
written a subclass of ONTCPSocket that uses
CFSocket to enable it as a source for run loop
events. The source for his subclass,
TCPCFSocket, was originally posted to the
MacOSX-Dev mailing list on February 21, 2001
and is included, with permission, in the
SchmoozingExamples project.

EDInternet
EDInternet is an Objective-C framework by
Erik Dörnenburg for Internet programming
featuring classes for manipulating MIME, mail,
and news messages, as well as a wrapper
around the BSD socket library. EDInternet’s
distinction is that it uses Foundation’s
NSFileHandle as a base for its socket class,
giving it a hook into the Cocoa application run
loop, thus enabling asynchronous network I/O.
EDInternet is more modern in its design than
OmniNetworking in that makes more use of
classes provided in the Foundation framework,
which did not exist when OmniNetworking
was first released. EDInternet can be obtained
from <http://www.mulle-kybernetik.com>.

Java Network Classes
Cocoa applications can also be written using
Java, which provides its own object-oriented
interface to TCP/IP networking via the
java.net classes.

Conclusion
OmniNetworking provides a convenient
Objective-C framework for programming
TCP/IP network applications using Cocoa. It
fills a gap in the Foundation framework for an
object-oriented interface to Mac OS X’s native
BSD sockets layer. Networking functionality
can be incorporated into a Cocoa application
using two classes, ONHost and
ONTCPSocket. OmniNetworking implements
network I/O in terms of the common
Foundation data classes, NSData and
NSString, making it easy to use network data
with other Foundation and AppKit objects.

The OmniNetworking framework can be
downloaded from the Omni Group ftp site at
<ftp://ftp.omnigroup.com/pub/software/
Source/>. OmniNetworking is released to the
Cocoa developer community for use under the
Omni Source License[6].

Notes
[1] Also known as “dotted decimal”. The
dotted quad form is a translation of the 32 bit
integer host address into four decimal parts,
each corresponding to one byte in the address.

[2] The Mac OS X implementation of BSD
sockets uses the range from 49152 and 65535
for dynamic port assignments.

[3] For example, HTTP servers listen for TCP
connections on the well-known port number 80.
The official list of registered port numbers for
Internet services is maintained by IANA, the
Internet Assigned Numbers Authority
<http://www.iana.org>. Browsing through
the /etc/services file will also reveal a list of
services and their well-known port numbers.

[4] An incompletely terminated process is
known as a zombie. It has become orphaned
from its parent, whose responsibility it was to
ensure that the process exits completely.
Zombie processes remain on the system until
the next reboot.

[5] OmniFTPServer, also from the Omni Group,
implements an ftp server as a multithreaded
Cocoa application using their OmniNetworking
framework. It features an elegant design
wherein the ftp server’s functionality is
implemented with a delegate object via an
informal protocol, and the server and
connections are modeled with their own
classes. OmniFTPServer can be downloaded
from the Omni Group’s ftp site.

[6] The Omni Source License can be viewed at
<http://www.omnigroup.com/community/de
veloper/sourcecode/sourcelicense/>. It
can be characterized as much closer to the BSD
license than the GNU GPL.

Bibliography

Schmoozing with OmniNetworking , page 8

[Stevens90] Unix Network Programming. W.
Richard Stevens. Prentice-Hall, Inc., Englewood
Cliffs, NJ. 1990.

[Comer91] Internetworking with TCP/IP:
Principles, Protocols, and Architecture.
Douglas E. Comer. Prentice-Hall, Inc.,
Englewood Cliffs, NJ. 1991.

[Comer93] Internetworking with TCP/IP:
Client-Server Programming and Applications.
Volume 3. Douglas E. Comer & David L.
Stevens. Prentice-Hall, Inc., Englewood Cliffs,
NJ. 1993.

Schmoozing with OmniNetworking , page 9

// TCP Client Using OmniNetworking

NSAutoreleasePool *mainPool;
ONHost *serverHost;
ONTCPSocket *connectionSocket;
NSString *serverHostname = @"www.machack.com";
unsigned short serverPort = 80;

mainPool = [[NSAutoreleasePool alloc] init];

serverHost = [ONHost hostForHostname:serverHostname];
// Step 1. Get the Internet address of the server.

connectionSocket = [ONTCPSocket tcpSocket];
// Step 2. Allocate a socket.

[connectionSocket setLocalPortNumber];
// Step 3. Configure the socket to use an arbitrary local port number.

[connectionSocket connectToHost:serverHost port:serverPort];
// Step 4. Connect to the server.

// Step 5. Communicate with server using some application protocol.

NSString *httpRequest = @"GET / HTTP 1.0\r\n\r\n";
NSMutableString *httpReply = [NSMutableString string];
NSString *someString;

[connectionSocket writeString: httpRequest];
// Send the HTTP request to the server.

[httpReply appendString: [connectionSocket readString]];
// readString: will read up to 2048 bytes from the socket.

while ([connectionSocket isReadable])
 [httpReply appendString: [connectionSocket readString]];
// Read any remaining bytes from the socket to get a complete reply.

NSLog(@"%@", httpReply);

[mainPool release];
// Step 6. The connection socket is closed when the pool is released.

Listing 1. TCP client using OmniNetworking

Schmoozing with OmniNetworking , page 10

// An Iterative TCP Server Using OmniNetworking

unsigned short serverPort = 1701;
ONTCPSocket *serverSocket;
NSAutoreleasePool *mainPool;

mainPool = [[NSAutoreleasePool alloc] init];

serverSocket = [ONTCPSocket tcpSocket];
// Step 1. Allocate a socket.

[serverSocket startListeningOnLocalPort: serverPort allowingAddressReuse:YES];
// Step 2. Start listening for connections on the port.

do {
ONTCPSocket *connectionSocket;
NSMutableData *clientData;
NSString *clientRequest;
NSAutoreleasePool *loopPool;

loopPool = [[NSAutoreleasePool alloc] init];

connectionSocket = [serverSocket acceptConnectionOnNewSocket];
 // Step 3. Accept the next connection.

clientData = [NSMutableData data];
[clientData appendData: [connectionSocket readData]];
while ([connectionSocket isReadable])

 [clientData appendData: [connectionSocket readData]];

clientRequest = [[[NSString alloc] initWithData:clientData
encoding:NSASCIIStringEncoding] autorelease];

[connectionSocket writeFormat:@"You sent me: %@", clientRequest];
[connectionSocket writeFormat:@"I'm sending you this: %@",

[clientRequest uppercaseString]];
// Step 4. Interact with the client.

[loopPool release];
// Step 5. Close the connection. When the pool is release, the
// connection socket will be gracefully closed.

} while (1);
// Loop forever listening for new connections

[mainPool release];

Listing 2. An iterative server using OmniNetworking

Schmoozing with OmniNetworking , page 11

// A Forking Concurrent TCP Server Using OmniNetworking

void myReaper();
ONTCPSocket *serverSocket;
unsigned short serverPort = 1701;
NSAutoreleasePool *mainPool;

signal(SIGCHLD, myReaper);
// Install myReaper() as the SIGCHLD signal handler. You’ll need to define
// a reaper routine, such as the one defined in the text, to ensure proper
// disposal of all created child processes.

mainPool = [[NSAutoreleasePool alloc] init];

serverSocket = [ONTCPSocket tcpSocket];
// Master Step 1. Allocate a socket.

[serverSocket startListeningOnLocalPort: serverPort];
// Master Step 2. Listen for connections on the bound server port.

do {
ONTCPSocket *connectionSocket;
pid_t forkedPID;

NSAutoreleasePool *loopPool = [[NSAutoreleasePool alloc] init];

connectionSocket = [serverSocket acceptConnectionOnNewSocket];

 // Master Step 3.

forkedPID = fork();
// Fork the server process into two processes. One will continue
// to act as the master. The other will assume the role of the
// slave, processing the connection.

if (forkedPID == 0) {
// The executing process is the forked child process.
NSMutableString *clientRequest;
NSString *serverReply;

// Slave Step 1 is implicitly satisfied. We have the connection
// socket and can just start using it.

[serverSocket abortSocket];
 // Clean up from the fork by closing the child’s copy of the

// listening socket.

clientRequest = [NSMutableString string];
[clientRequest appendString: [connectionSocket readString];
while ([connectionSocket isReadable])

[clientRequest appendString: [connectionSocket readString];

 serverReply = [clientRequest uppercaseString];

Schmoozing with OmniNetworking , page 12

[stream writeFormat:@"You sent me this: %@\n", clientRequest];
[stream writeFormat:@"I'm sending you this: %@\n", serverReply];

 // Slave Step 2. Interact with the client.

[loopPool release];
// Slave Step 3. The connection socket is closed when the pool is
// released.

break;
// Break out of the loop so the child process can exit.

}
else if (forkedPID > 0) {

// The executing process is the parent.

[loopPool release];
// The accepted connection socket is closed with the pool’s release,
// performing all the fork cleanup that needs to be done on the
// parent process.

}

} while (1);

[mainPool release];

Listing 3. A forking concurrent server using OmniNetworking.

Schmoozing with OmniNetworking , page 13

// The Connection class implementation

#import "Connection.h"
@implementation Connection

- initWithConnectedSocket: (ONTCPSocket*) aSocket
{

// Slave Step 1. Receive the accepted socket
 self = [super init];
 if (self) {
 if ([aSocket isConnected])
 mySocket = [aSocket retain];
 else
 return nil;
 }

return self;
}

- (void) processConnection
{

ONSocketStream *stream;
NSString *inFromClient;

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

stream = [ONSocketStream streamWithSocket: mySocket];

inFromClient = [stream readLine];
[stream writeFormat:@"%@: %@ received connection from %@\r\n",

[NSCalendarDate calendarDate],
[ONHost localHostname],
[[mySocket remoteAddressHost] hostname]];

[stream writeFormat:@"%@\r\n", [inFromClient uppercaseString]];
// Slave Step 2. Interact with client.

 [mySocket abortSocket];
// Slave Step 3. Close the connection. This server is pretty draconian.

 [pool release];
}

- (void) dealloc
{
 [mySocket release];
 [super dealloc];
}
@end

Listing 5. A class encapsulating a server’s client connection and its processing.

Schmoozing with OmniNetworking , page 14

// A Threaded Concurrent TCP Server Using OmniNetworking

#import “Connection.h”

ONTCPSocket *serverSocket;
unsigned short serverPort = 1701;
NSAutoreleasePool *mainPool;

mainPool = [[NSAutoreleasePool alloc] init];

serverSocket = [ONTCPSocket tcpSocket];
// Master Step 1. Allocate a socket

[serverSocket startListeningOnLocalPort: serverPort];
// Master Step 2. Establish a listener

while (1) {
NSAutoreleasePool *loopPool;
Connection *client;
ONTCPSocket *connectionSocket;

loopPool = [[NSAutoreleasePool alloc] init];

connectionSocket = [serverSocket acceptConnectionOnNewSocket];
// Master Step 3. Accept new connections

client = [[Connection alloc] initWithSocket:connectionSocket];
 [client autorelease];

// Slave Step 1. Receive the connection’s socket in our connection
// handling object.

[NSThread detachNewThreadSelector:@selector(processConnection)
 toTarget:client withObject:nil];

// Slave Step 2. Interact with the client, in a separate thread,
// by way of Connection’s processConnection: method.
// Slave Step 3. Closing the connection, is handled in the spawned thread.

[loopPool release];
}

[mainPool release];

Listing 6. A threaded concurrent server using OmniNetworking

Schmoozing with OmniNetworking , page 15

