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Introduction

Materials science is the core set of
knowledge describing why materials
have the properties they do and how
they come to be.  It covers questions
like why crystals form and why
diamonds are so pretty, why glass is
glassy and what makes glass in
different colors, why pieces of metal get
harder to bend the more you bend
them, and why some metals corrode
and others don’t.

Essentially, materials scientists are in
the business of understanding why
materials work they way they do, and
finding ways to make them work better.
One of the fundamental principles of
materials science is that the structure of
materials determines their properties.
For example, an abalone shell is made
mostly from the same material as
blackboard chalk, CaCO3, yet the two
materials differ in almost every way:
color, hardness, strength, water
absorption, etc. [1].  Structure can mean

the atomic level arrangement at the
nanometer scale, the variation in
composition of a material, which can
span from the nanometer s to
centimeters, or the distribution of
crystal defects such as grain boundaries
and dislocations, generally on the
micrometer scale.

Any sort of materials property might be
of interest: strength, ductility, heat
conduction, heat capacity, electrical
conductivity, transparency, or any
number of others. All these properties
depend intimately on the
microstructure of the material.
Understanding the evolution of
materials microstructures thus
contributes to an understanding of how
materials properties develop and can be
engineered.

Simulation applications can be used to
explore these structures, both as a
research tool in conjunction with
experimental techniques and as an
education tool for developing intuition
about important factors in
microstructural evolution.

Applications for Simulations of 
Materials Microstructures

Abstract :  We present two approaches toward simulation in Materials Science 
with implementations as Macintosh applications. Continuum simulations are 
used to model materials structures which can be described by a smoothly 
varying parameter which is a function of position.  For example, the elemental 
composition of a material , its temperature, or its crystallinity can be expressed 
in this way.  Modelling the evolution of such a parameter through time is 
approached through a phase-field approach.

An alternative approach is to identify discrete entities in a materials structure 
and model their individual behaviors through a set of equations which couple 
their interactions.  At the most basic level, individual atoms in a material are 
treated as discrete objects.   This atomistic approach can be used to calculate 
many macroscopic materials properies based on the fundamental interactions 
between particles.

Olof Hellman



Materials Simulations - page 2

There are a wide variety of approaches
towards simulation in materials science.
This paper covers the two most widely-
used types of simulations which are
applied to microstructural evolution.
The two kinds of simulation illustrated
here are:

• Continuum  -- A grid of points is
used to model the continuum
behavior of a material:  each grid
point represents a small region of
space.  Finite Element Method is a
kind of continuum simulation.
Applying a blur in photoshop is a
continuum simulation of diffusion.

• Autonomous Cell  -- A collection of
objects interacting with each other
according to a set of rules.
Molecular Dynamics is this kind of
simulation, where each atom is an
object interacting with other
particles through Newton’s Laws.
SimCity is another.

Phase Field Simulations: CahnMan

CahnMan is an application for phase
field, continuum simulations.  In a
phase field simulation, a grid of points
is defined, each of which is associated
with one or more physical parameters,
such as composition, temperature,
crystallinity, etc. Parameters  not
assigned to the grid points apply to the
grid as a whole:  for example, if
temperature is not a grid point
parameter, it can be assumed to be
constant for the whole and is a
parameter for the whole simulation.

The grid of points can one-, two-   or
three-dimensional.   It can also be
regular or adaptive:  the grid points can
consist of a set of fixed, regularly
spaced points, or they can be irregular
and unfixed, with points being created
and destoyed as called for by the
simulation.  It  also has a boundary
symmetry:  In the simplest case, there is

translational symmetry (i.e. wrap-
around) where the points at the edges
are  assumed to be adjacent to the
points on the opposite side.   The image
in figure 1 is an example of a two-
dimensional grid of compositions as
calculated with our application
CahnMan.

Let’s illustrate this type of simulation
for the simplest possible case:  a 2D
system with two components, A and B.
A single parameter represents the
composition at each point on the grid.
This composition parameter will vary
from 0 (pure A) to 1 (pure B).

This system will evolve based on some
simple rules about the interactions of
the parameters.  The most important
rule is that the system will evolve to
lower its energy,  Just as in physics
where masses are accelerated in a
gravitational field toward positions of
lower potential energy, materials
systems are pushed toward
configurations of lower energy.  It is
necessary, then, for a simulation to be
able to calculate the energies for any
configuration.

Figure 1.  A two dimensional grid of 
composition values.  The scale from 
blue to white corresponds to 0% to 
100% of a component in the two 
component system.
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Figure 2.  Schematic phase diagram for a phase separating system.

Composition

Tm

Energy Models

The energy of the system is calculated
based on the values of the parameters at
each point.  For example the regular
solution model calculates the energy of
mixtures of two components as

Here, Tc is a critical temperature above
which mixing occurs and below which
a separation occurs, and C is the
composition between 0 and 1.  When
performing the simulation, this energy
can be calculated at each point on the
grid, and the total energy of the grid is
the sum of those energies.  This model
for compositional energy results in the
phase diagram for the system as shown
in figure 2.

The phase diagram gives information
about what phases are expected to be
present in a system of a given overall
composition at a given temperature.
Points above the curve in figure 2  are
one-phase; points below the curve will
exhibit phase separation into two-
phases.  For example, point X on the
diagram represents a composition of
Cx, roughly 60% of component B and
40% of component A, at a temperature
Tx.  For this combination of
temperature and composition, two
phases are expected to coexist:  an A-
rich phase of composition CxA, and a
B-rich composition of composition CxB.
The relative amounts of these phases
will be proportional to the length of the
line segments fA and fB:  i.e. the
fraction of the A-rich phase will be fA /
(fB + fA ).  This is the so-called lever
rule.

There are a number of actual systems

ƒ(C) = T
T

c

C ln C  + (1 − C) ln(1− C)( )
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which exhibit similar types of behavior:
the two components might be water
and a light oil, or metal alloys such as
Aluminum-Copper or Copper-Cobalt,
or they might be two types of polymer.
In all cases, these systems exist as a
single phase at a higher temperature
and separate into two phases at a lower
temperature.

One constraint on composition is that
the total amount of components A and
B can not change.  So, change in the
compositionat one grid point must be
balanced by a of the opposite
magnitude at another point.  Such a
parameter is called a conservative
quantity.  Other parameters, such as
crystallinity, need not be conservative.
For any parameter, the rate at which it
can change is also a property of the
material.  For changes in composition,
this corresponds to a diffusivity or
mobility of each component in the
material.

Calculating Rates of Change
For conservative quantities like
composition C,  the change in that
quantity can be estimated from the
spatial curvature of ƒ©:  If the curvature
is positive, energy is reduced by
homogenization:  two regions of
different composition can lower their
energy by exchanging matter so that
they have the same composition.   If the
curvature is negative, phase separation
is expected:  two regions of similar
composition can lower their energy by
exchanging matter so that their
compositions differ.
Assuming that matter can move with a
mobility M , the change in composition
as a function of time t due to
compositional energy is then

where ∇2is the laplacian:  i.e. the second
derivative taken in all spatial
dimensions.

However, in most systems,
compositional energy is not the only
contribution to the energy.  There is
also a contribution from gradients in
the composition field.  That is, a region
of the grid in which the composition is
changing has a positive energy, and
thus the system will tend to evolve to
get rid of boundaries between regions
of different compositions.  The
contribution of this gradient energy is
taken to be proportional to the
curvature of the concentration:

where κc is a constant proportional to
the boundary energy.  The effect of this
assumption is that the composition
must vary smoothly from a region of
one concentration to another:  an abrupt
change in composition would imply an
infinite curvature in the composition
and thus an infinite boundary energy.

Now all the pieces are in place to find

how the system evolves with time.   The
change in composition as a function of
time at any point on the grid is given by

which is known as the Cahn-Hilliard
equation.[2] Essentially, the right hand
side is the mobility M times a vector
which  points downhill on a plot of  the
energy as a function of all N2 - 1
composition variables.   All those
composition variables will change so
that  the system will move down that
slope at a speed proportional to M,
which is the mobility of material
moving from one point to another.  This
function is rather curious because it
involves a fourth order spatial
derivative that directly describes a
physical phenomenon.  Efficient
calculation of the time evolution of

∂C
∂t

= M∇2 ∂f
∂C

 
  

 
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= M∇2 ∂f
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systems described by this equation are
a matter of current research.

For one iteration of the simulation, we
examine each grid point, calculating the
instantaneous value of dC/dt.  We
approximate the derivatives
numerically, such that in two
dimensions, the laplacian is just

where i and j denote the indices of grid
points in the two dimensions and h is
the grid point spacing.

Then we choose a timestep small
enough that the changes in composition
over that amount of time are smaller
than a threshold, and change the
composition values accordingly.  The
result is a physically accurate
description of the evolutions of
isotropic systems determined by
compositional and boundary energies.

Using CahnMan

The parameters which are controlled by
the user in a CahnMan simulation are
the same parameters which might be
accessible in a real experiment, as well
as others that are not accessible:  For
example, the temperature would be
controlled by an external heater:  in
CahnMan it is a property of the
simulation object which is linked to a
GUI control.  The interface energy
parameter  κc is reflective of a materials
property which is fixed for a given
material.  In the simulation, however, it
can be freely changed.  All of these
parametrs are global for the simulation:
they do not vary from grid point to grid
point.

CahnMan calculates and presents to the
user the quantities which are evaluated
at each grid point.  The visual
representation of these structures over

time is the qualitative output of the
simulation.  These values can also be
accessed quantitatively through
interaction by AppleScript.

For students exploring the basics of
microstructural evolution, CahnMan
represents the first interactive
application with a combination of
realtime visual feedback as well as
quantitative the more traditional
numerical output.

Atomistic Simulations with kSan

Materials can also be models on the
atomistic level, the most basic level of
interactions which determine most
physical properties.  On this level, a set
of atoms interact with each other by
forming bonds, the energy of which are
approximated with an interatomic
potential (the interatomic potential is
also called the force field in atomistic
organic chemistry modelling).  That is,
it is assumed that each particle can be
assigned an energy based on the local
configuration of atoms.  Forces on
particles are determined from the
derivative of the potential as a function
of position of the particle in question.

The goal  of most atomistic modelling is
to calculate a macroscopic property of a
large collection of atoms by making
only simple of assumptions about how
particles interact.  These macroscopic
properties can also be measurable
properties, so that direct comparison of
calculation and experimental values can
be made.  For example, the heat
capacity of a material is the amount of
energy per mass of material required to
raise its temperature, expressed as
energy per mole per Kelvin.  On the
atomic scale, we can simulate the
motions of a collection of atoms and
explicitly calculate their energies at
different temperatures, resulting in a
calculation of energy per atom per
Kelvin.  Just as it is difficult to
experimentally measure the energy of a

∇2ui,j =
1
h2 ui+1, j + ui ,j+1 + ui−1,j +ui, j−1 − 4ui,j( )
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single atom, it is impractical to simulate
a mole of atoms (6.02 x 1023).

Thus, simulation and experiment are
often performed at different length or
time scales. It can be a simple matter to
extrapolate from one extreme to the
other. On the other hand, advanced
experimental techniques are bringing
the experimental length scales down
just as fast as increasing computation
power is increasing the length scales
accessible to simulation.

Some Examples of Simulation

1. Grain structure in a nanocrystal.

Recent experiments have shown that
the properties of materials can change
in

surprising ways when the grain size is
very small.  This occurs  in a rapidly
solidified material, or in supersaturated
alloys, or in materials which have been
mechanically deformed so that the

original grain structure is destroyed.
The resulting grains can be smaller than
a simulation cell, and thus simulation
can be performed to predict the atomic
arrangements in these materials.  Figure
3  shows a 2D simulation where the
initial positions of the particles are
chosen at random, and the energy is
minimized.   The equilibrium
configuration for this 2D  solid is a
hexagonal lattice.  The color of each
particle is based on the local rotation of
this lattice:  thus the colors represent
different grains.

2. Energy and Stress Grain

Boundaries

The region in a crystal where the local
rotation of a lattice changes is called a
grain boundary.  These boundaries are
unstable with respect to the undefective
crystal:  i.e. a lower energy can be
obtained by getting rid of the boundary.
Thus the boundaries have an excess
energy which can be calculated in a
simulation.  This boundary energy can

Figure 3.  Local arrangement 
of particles in a 2D 
nanocrystal.  Color is applied 
based on the local rotational 
orientation of a hexagonal 
lattice.  This image was 
generated by placing 1000 
particles at random positions 
in the simulation cell and 
perforing an energy 
minimization.
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vary as a function of the relative
rotation of the lattices on either side of
the boundary.  Such a calculation is
illustrated in figure 5.

The magnitude of the boundary energy
can be calculated from the difference
between the actual sum of the energies
of the particles, and the sum of their
energies of there were no boundary:
the result is about 1 Joule per square
meter .

Stress is defined as a change in energy
associated with a volume expansion or

contraction.  If the energy is negative
for expansion it is a compressive stress.
This can be evaluated in a simulation
on a point by point basis.  Visualization
of this stress distribution results in the
figure shown in figure 6.

3.  Dynamics of atomic motion

Using a molecular dynamics
simulation, the atomic motions can be
tracked on the scale of nanoseconds.
This is sufficient time for a surface atom
to make several hops from one surface

Figure 4.  Energy Map of Particles near a grain boundary.  A projection in one dimension 
parallel to the boundary is shown above.  Colors are applied based on the energy of each 
particle.  A quantitative plot is shown in the graph.
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location to another, or for a crystal
defect such as a vacancy to exchange
position with neighboring atoms.
Movies can be generated of this process.

A still from one such animation is
shown in Figure 7.  This is an animation
of atomic motion at a surface.  During

such a simulation, the positions of the
surface atoms are tracked over time to
estimate their mobility.  Mobility of
surface atoms is crucial in many of the
electronic   materials processing which
makes semiconductor devices.  Low
mobilities will prevent good crystal

Figure 6.  Frame from an animation of simulation of atoms moving on a surface.  The lower 
atoms are in a face-packed cubic structure, and individual atoms are placed on the 
surface.  The mobilities of surface atoms will determine how materials grow during a thin 
film growth process such as vapor deposition.

Figure 5.  Stress distribution near a grain boundary.  Blue sites are in tension, red sites in 
compression.  The magnitude of the stress is highest at the tensile stress, but the spatial 
extent of the compression extends further from the grain boundary
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growth.  High mobilities will allow
interdiffusion, which can destroy the
carefully engineered nanostructures of
a device.

Components of a Simulation

A number of different pieces are put
together to make an atomistic
simulation.  We discuss them here in
terms of the programmatic object model
used in our application kSan.

1.  Interatomic Potential

We have already mentioned that the
energies of particles and the forces on
them are calculated by an interatomic
potential.  Here we review the basic
types in common use.   One common
feature of most potentials is that they
are limited in spatial extent to a small
radius around any given particle,
typically encompassing anywhere from
4 to 100 neighboring particles.  This is
usually appropriate for most materials,
the only exception being ionic solids.
All potentials depend in part on the
distance between particles, and the
form for this dependence is usually
repulsive at short distances,  and
attractive at long distances, with a
minimum somewhere close to the
equilibrium atomic spacing.

At the simplest end is the pair potential,
in which the energy of each particle is
the sum of the energies of interaction of
that particle with its neighbors.  The
term pair potential implies that each
two-particle interaction is calculated
independent of the positions of any of
the other neighboring particles.  Pair
potentials such as the Lennard-Jones [3]
potential are easy to calculate,  as they
are based only on the distance between
particles but they fail to predict most of
the real properties of materials,
although they seem to work well for
liquids and solids of noble gases like

neon or argon.  Pair potenital are
speedy: Systems of hundreds of
thousands of particles can be treated in
seconds.

There are a number of different ways to
incorporate many body effects into a
potential.  One approach is to explicitly
calculate the angles between bonds
formed by the particle, and express
each bond energy as a function of the
bond angles as well as a function of the
radial separation.  This is the approach
taken in Tersoff’s potentials for
silicon[4] .  This is computationally
simple only for  a small number of
neighbors:  in the case of silicon, the
structure is the four-fold tetrahedrally
coordinated diamond structure, so this
is not a problem.  This is also the
approach used in a number of
potentials used for organic molecules,
where the coordination numbers,  i.e.
the number of bonds formed by each
particle,  are small.  If the number of
bonds is high, this calculation becomes
slower because the number of bond
angles which must be calculated
increases by the number of neighbors
squared (N2/2).   A potential like this
can also be speedy, but the calculation
of bond angles slows the calculation by
one order of magnitude compared with
a pair potential.

There is also a method for implicitly
including a dependence on bond angle:
this is the basis of the Modified
Embedded Atom Potential[5].   This
potential is designed for metals  in
various crystal structures.  This scheme
uses some mathematical sleight of hand
to incorporate a bond angle dependence
without explicitly calculatingbond
angles.  Thus, a bond angle dependence
can be efficiently calculated without
calculating N2/2 bond angles.  One
limitation is that all the bond angles are
equally weighted, but this can be
tolerated, especially in metals where the
number of effective neighbors is usually
between 12 and 14.
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A more general potential for metals is
the glue potential, also called the
Embedded Atom Method (EAM)
potential [6].  It incorporates a many
body effect by calculating a, “electron
density” created by the neighboring
atoms.  The energy of a particle is
composed of a sum of pair interactions
plus an embedding term or glue term
which is a function of the “electron
density”.  This kind of potential has a
“feel-good” factor in that the math
resembles the math used for a quantum
mechanical calculation of the energies,
even if all the parameters used in the
potential are actually empirically
determined.  Some recent research has
focussed on deriving parameters for
these potentials from quantum
mechanical calculations.

These potentials are rather efficient to
calculate because they require only a
single iteration through each
neighboring atom to get the pair
interaction and the contribution to the
electron density.  Accurate EAM
potentials have been developed for a
number of pure metals, including
Aluminum, Nickel, Magnesium and
Gold, all of which are close packed
crystal structures with 12 equivalent
nearest neighbors.

The EAM is also fairly good at
describing the interactions in alloy
systems.  This is because the electron
density can be calculated no matter
what the type of atom at each
neighboring site, and the pair
interaction between atoms of different
types can be tuned to account for
stronger or weaker bonding behavior.
These potentials are essentially an order
of magnitude slower than pair
potentials.

Although most potentials are short
ranged, ionic solids are an exception.  In
an ionic material, electrons are
transferred from cation atoms to anion
atoms, creating packings of discrete
electrically charged particles.  These

charges interact with other through
Coulombic forces, which are long-
ranged.  Rather than calculate all of
these long range forces discretely,
which would involve a prohibitively
large number of pair interactions,  the
calculation is split into near-range
interaction calculated the traditional
way, and long range interactions
calculated in reciprocal space.  This is
the method of the Ewald sum, and is
only used when necessary for these
long-range interactions.

There are a number of approaches for a
more rigorous incorporation of
quantum mechanics in the interatomic
potentials.  One is the bond-order
potential, which essentially attempts to
determine the valence of a particular
atom in a particular configuration
before calculating the energy.  A second
approach is called semi-empirical tight-
binding, in which multiple particle
effects are accounted for in a simple
solution of single atom electron orbitals
and the pair interactions are
determined empirically.  These
methods are much slower than pair
potentials, typically three orders of
maginitude slower.

Still more rigorous approaches are used
with no empirical input.  These are
known as ab initio methods.  Essentially,
they are different ways to solve the
Schrödinger equation so as to calculate
the states of all the electrons involved in
interatomic bonds.  Here ther are more
acronyms than you can imagine,
including LCAO (Linear Combination
of Atomic Orbitals), FLAPW methods
(Fully Linearized Augmented Plane
Wave) , LMTO (Linear Muffin Tin
Orbital).  These calculation really
require a lot of computing power, often
requiring months of computer time to
perform the most basic of calculations
on a system of only hundreds of
particles.

The application kSan treats the
interatomic potential as a property of
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the simulation, and is implemented as
an AppleEvent object.  Each interatomic
potential class inherits from the
interatomic potential class, and it
required to provide functions to
calculate particle energies and forces on
particles given a particular
configuration.  different interatomic
potentials can be implemented as plug-
ins to the application.

2. Iterator

Most atomistic simulations use an
iterative process to generate different
atomic configurations.  The exact nature
of the iterative process can be different
depending on the goal of the
simulation.  Each iterative process is
similar in that a collection of particles
with positions, velocities, atom types,
etc. are transformed into a similar
collection of particles with, perhaps,
new positions, new velocities, new
atomtypes, etc.

2a. Minimization

There are three traditional iterators.
The first is the energy minimizer.  In
this iterator, the particle positions are
changed such that the total potential
energy of the system is reduced, just as
the iteration method in CahnMan
proceeded to reduce the total energy of
the system.  The enrgy minimizer is
often implemented by a steepest
gradient algorithm or a congugate
gradient algorithm.  Both algorithms
terminate in a local energy minimum
which may or may not be the global
minimum.  Particle velocities are
ignored.
Note that energy in the atomistic
simulation can come from the potential
energy of the particles as calculated by
the interatomic potential, and from the
kinetic energies of all the particles.

2b. Molecular Dynamics

The second traditional iterator is the
Molecular Dynamics (MD) iterator [7].
This is a straightforward application of
kinematics on the atomic scale:
knowing each particle’s position ( i.e. r)
and velocity (i.e. dr/dt), the interatomic
potential can be used to calculate forces
on particles and hence accelerations (
i.e. d2r/dt2).  All this information can
be used to predict the position and
velocity of the particle after  some very
short amount of time. With new
positions, a new acceleration can be
calculated, and the iterative process can
continue.

In one implementation of the MD
iterator known as the Verlet method [8],
the effect of the third derivative can be
made to disappear, and hence the error
in the calculation is of the order of the
fourth derivative.  In another method
known as the predictor/corrector
method, third and fourth derivatives
from previous iterations are stored and
used to predict future positions,
velocities and accelerations.  The actual
future accelerations are then calculated,
the error in the predicted quantities are
estimated, and all the predicted
quantities are corrected by this factor.
In both of these MD methods, error in
the calculation results in the non-
conservation of energy, which results in
extra kinetic energy being released into
the system ( i.e. heating) .  To account
for this, MD methods must provide
some sort of thermal equilibration.
Using smaller timesteps results in less
error but uses more CPU time.  The
tradeoff is using a stronger thermal
equilibration.  However, this is an
artificial constraint and will tend to
produce less real trajectories of
particles.  Finding the right balance
depends on the goal of the simulation.
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2c. Monte Carlo methods

The third traditional iterator is called
Monte Carlo, or often simulated annealing.
This method is by far the most powerful
and most elegant of the three.  The
result of a Monte Carlo simulation is a
sequence of configurations which are
representative of the system at a certain
temperature.  The theory behind the
method is  both simple and subtle:
Imagine a system which can have two
different configurations, A and B.
There will be an energy associated with
state A and an energy associate with
state B, and accordingly a change in
energy when moving from state A to
state B.  Now we ask “ what is the
probability that there is sufficient
thermal energy available to move from
A to B?”

Some of the time, moving from A to B
represents a decrease in energy, and so
no thermal energy is required:  the
probability is 100%.  If, however, the
change is an increase in energy, then
the answer is more difficult.  In any
material at some temperature, there is a
distribution of particle energies, both
potential energies and kinetic energies.
The actual amount of energy is rought
kT, where k is the boltzmann constant
and T is the temperature.  At room
temperature, kT is about 0.025 electron
volts, or 4 x 10 -21 Joules.  For

comparison, the energy in one photon
of green light is about 2 electron volts,
much higher than kT (this is why most
objects do not naturally glow green at
room temperature).

Of course, there is a broad distribution:
sometimes there is less than kT
available, sometimes much more.
However, we believe that we know
what this distribution is, and we can
predict that the probability of having a
certain amount of energy E available
any particular time is  exactly

because this is the kind of distribution
generated by random exchanges in
energy from one particle to another.
Graphically this means that at a
temperature of 1, the probability of
having thermal energy E/kT is shown
in figure 3.

The meaning of this distribution is
interesting:  most of the time the
thermal energy available is about kT.
However, it is possible but infrequent
to have much higher energies available.
The energy of 10kT is available one
chance in 20,000.  energy of 20kT is
available one chance in 500 million.
These improbable events do actually
occur and are responsible for  chemical

P = e
−E
kT

 
 

 
 

Figure 7.  Graph of the likelihood that sufficient energy is available for a particular 
transition to take place as a function of the transition energy E over kT.
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reactions  which are thermally activated
processes.  Common examples include
evaporation of water and burning of
wood.  The secret is that nature tries a
lot.  For example, most molecules
vibrate at a frequency of 10 thousand
Gigahertz or so.  If you played the Big
Game Lottery at the same rate, you
would hit the jackpot  150,000 times per
second.

For the purposes of simulated
annealing, the meaning is much more
subtle.  When coming up with the
comfigurations A and B, we don’t really
care about how those configurations
came to be: all we care about is their
energy.   For the same reasons that
random fluctuations generate the
probability chart shown above, we can
say that the relative probabilities of
configurations A and B are also given
by

where ∆E is the difference in energies.
i.e. if configuration A has a certain
probability Pa, then configuration B has
the probability Pb = Pa * P∆.  All
configurations of equal energy have the
same probability.  Then here’s the
algorithm for collecting a representative
sampling of configurations:  starting
with configuration A, use some random
method to generate a configuration B.
Calculate the difference in energies
between configuration A and
configuration B.  If the change in energy
is negative, always accept it.  If the
change in energy is positive, choose a
random real number between 0 and 1.
If the random number is less than
exp(-∆E /kT)  then accept the change,
otherwise reject it.

Following this rule iteratively will
generate a sequence of configurations
representative of all the possible
configurations for a given temperature
T if the method used to generate

configuration B is sufficiently flexible
and not biased among configurations.
This general scheme for simulated
annealing is called the Metropolis
algorithm [9].

Metropolis can be applied to situations
which are obviously not real and yet
produce exacly correct answers.  For
example, one way to generate
configuration B is to change the identity
of one particle from one element to
another, i.e. transmutation.  Even
though transmutation does not actually
occur readily in a real system ( i.e. it is
not a real kinetic pathway for an atom
of another element to occupy an  atomic
site), as long as some pathway exists
which can cause this switching ( e.g.
solid state diffusion) the comparison of
the two states is valid and the relative
probabilities of both states is equal to
exp(-∆E /kT) .

2d.  Iterators in kSan

The application kSan treats the iterator
as a property of the simulation, and is
implemented as an AppleEvent object.
Each iterator class inherits from the
basic iterator class, and it required to
provide functions that transform the
current configuration of particles into a
new configuration.  different iterator
can be implemented as plug-ins to the
application.

3. Simulation Cell

Each simulation represents the particles
in a small region of three-dimensional
space.  To accurately represent the
conditions of being inside a solid, kSan
uses periodic boundary conditions to
avoid the existence of artificial
simulation walls or edges.  That is,
replicas of the simulation cell appear at
positions +x, -x, +y, -y, +z, -z, +xz, -xz,
+xy, -xy, etc., where xyz are the vectors

P∆ = e
−∆E
kT

 
 

 
 
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of the cell edges.  The simulation cell is
a parallelpiped, which can be but does
not need to be orthorhombic.

The cell volume is defined by the three
vectors of its edges.  Simulations can be
run under various conditions which
affect the cell size.  A fixed cell size
implies a constant volume simulation,
and therefore the stress in the cell will
be a function of the contents.

The cell can also be allowed to change
size or shape in response to the
pressure.  Simple elongation or
contraction in one direction is called
simple strain.  Note that simple strain
on an axis which is not a principal axis
can change the shape of the cell: i.e. if a
cell starts out as orthorhombic,
elongating on a cell diagonal will
produce a non-orthorhobic cell.  A cell
can also be deformed so as to preserve
its volume.  This is called shear strain:
an elongation in one axis accompanied
by a contraction in an orthogonal
direction.  Strain can occur in six axes
for a three dimensional cell: three
simple strain directions (x,y,z) and
three shear directions (xy, yz, zx) .
Accordingly, there are six components
of the stress which form the stress
tensor.

As each simulation has only one cell,
properties of the cell are treated as
properties of the simulation itself.
Constraints on the cell dimension, such
as whether changes are allowed in each
direction, whether shear strain is
allowed and the magnitude of the
applied stresses are also properties of
the simulation.  Each iteration, the cell
size may change by some algorithm,
and the object which implements this
algorithm is also a property of the
simulation, and can be changed.  Cell
resizer objects might use an algorithm
based on a Monte Carlo method, as
outlined above, a dynamical method,
where the cell walls are treated as
objects with mass which respond to
forces, or some other algorithm.

4. Particles

Particles are elements of the simulation
object. They have properties of position,
velocity, energy, force, selected and
atomtype.    The position, velocity and
force quantities are vectors, and are
represented as lists of values.   Position,
velocity and atomtype can be modified
by the iterator.  These are also
read/write properties in the object
model.  Force and energy are calculated
by the interatomic potential, and so
these are read-only properties

As a simulation can have thousands of
particles, and the speed of a calculation
depends on the efficient packing of the
particle data in memory, particles are
not created as distinct programmatic
objects.  Instead, their properties are
cared for by the simulation object and
any plug-ins.  When an iterator object
or interatomic potential object is called
upon to perform a calculation, there are
access functions provided to gain access
to the arrays of position, velocity,
energy, force, atomtype, etc.

The atomtype property is special, as
this is a reference to another object:.
Atomtypes are another class of object
which can be created in the simulation,
and the internal representation of the
atomtype property in kSan in just a
one-byte integer, which represents the
index of the atomtype in the
simulation’s list of atomtypes.

When these properties are accessed
from an AppleEvent, the event  is
handled by the simulation object, and a
AppleEvent Object token is generated
which refers both to the simulation
object and to information sufficient to
specify the particle(s) and the desired
property.  In order to make AppleEvent
processing more efficient, the tokens
can represent lists of particles as an
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array of integer values indicating the
indices of the particles.

In addition, plug-ins can define
additional properties for the particles.
A plug-in can register a particular
property with the simulation object.
For example,  the energy minimization
iterator defines a most-recent
displacement for each particle.  To
expose this property to the scripting
interface,. this iterator registers a four-
byte code for this property with the
simulation.  If  this property is involved
in a GetData or SetData event, the event
will be handed off to the iterator object.

5. Graphics displays

Part of the value of using MacOS for a
simulation is that the visualization of
the simulation can be performed in real
time with the simulation.  Any number
of windows can be opened with a
different kind of simulation
visualization.   Although the simulation
can be done in three dimensions, it is
seldom of value to create a three
dimensional shaded representation of
the particles themselves, as can be done
with OpenGL.  This is because the color
can be more effectively used to
illustrate some other property.  Thus,
we use Quick-Draw based graphics and
draw the particles on the screen in
reverse order of their distance from the
viewer.

The algorithm used to decide on a color
for each particle is part of the colorizer
object which is the coloring method
property of the window.  Colors might
be applied based on energy, stress,
force, velocity, volume, or any  other
property which can be calculated from
the simulation data.  The windows also
have properties of magnification
particle size factor, view angle,  and a
list of particles which are visible within
the window.

The examples in Figures3 through 6
provide examples of different coloring
schemes.  In each case, the color applied
to the particles can illustrate different
physical phenomena.  In figure 3, one
sees the spatial grouping of regions
with the same crystallographic
orientation:  in essence this is a
discretized visualization of the grain
structure which can be seen under a
microscope.  Figures 4 and 5 show the
energy and stresses associated with a
grain boundary:  The visualization by
energy shows the spatial extent of
energy fluctuation caused by the grain
boundary.  Visualization of the strain
highlights the opposing forces of
tension and compression.

The computational time to render this
type of scene for the boundary is much
smaller than the time taken to perform
the actual calculation.  Thus, real time
visualization of simulations is a natural
extension of existing simulations.

Because the quantitative data of the
simulation is equally accessible from
kSan simulations,  no compromises are
made in the ability to analyze data, On
the other hand,  insights gained from
qualitative representations of the data
can give simulations meaning which
the numerical data cannot.  This is
especially true for educational
applications, where teaching concepts is
more important than extracting
quantitative information.

Challenges for the Future

The recent past in Mac hardware
development has provided the
computational muscle to contemplate
the kinds of simulations which were
once reserved for supercomputers.  The
future of the MacOS is likely to bring
compelling advances with CPUs based
on multiprocessor architectures and a
foundation which allows for multiple-
CPU supercomputing clusters.
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In general, parallelization of the
algorithms used for materials
simulations is straightforward.   One of
the simplifying assumptions of most
simulations is that interactions between
particles or gridpoints are local.  Thus,
domain decomposition can be used to
spread tasks over multiple processors:
the physical space modelled in the
simulation  by divided up among the
CPUs, and message passing is used to
communicate between CPUs about the
changes in the conditions of the border
regions.  Message passing overhead can
be reduced to a small fraction of the
whole simulation effort for systems
with a moderate number of CPUs and a
large physical space, because the ratio
of the amount of border to amount of
space will be small.

There is a continuing challenge to
match these calculation techniques with
real time visualization.  Current parallel

processing techniques generally ignore
visualization not to mention any sort of
human interface, in an attempt to
optimize the calculation. This offers a
significant entry point for new software
which can capitalize on both the
processing power of MacOS and its
best-of-class user interface features.

Conclusions

 Simulation is rapidly becoming a
standard tool for materials scientists to
understand the behavior of materials on
an atomic scale and on the microscale.
The integration of these simulation
tools with the human interface of the
MacOS promises to offer a powerful
combination of usability accessibility
and computational power.
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