
At home, but not alone - Page 1

At home, but not alone
Cross-platform, distributed development

© 2000 by Andrew S. Downs
andrew@downs.net

Abstract
Distributed development may be a way of life in the open source community, but many
commercial products are only beginning to realize the advantages of having a dispersed team.
Add cross-platform issues to the mix, and you have a truly challenging project. Planning the
project requires some creativity.

Introduction
Software companies are rediscovering
the benefits of providing cross-platform
versions of their products. If the cost
can be kept under control, having a
product that runs on as many desktop
platforms as possible is a good thing.
Sometimes one of your clients may force
the issue, if your product does not
support that client’s preferred platform.

Deciding to go with a distributed team
environment adds an extra layer of
complexity. Let’s look at some of the
requirements for a cross-platform,
distributed development project.

Finding developers
A small team requires a broad range of
skills from its members. If you consider
job functions, a minimal team consists of
one architect/lead and several engineers.
The lead may also work as an engineer.
The distribution of technical tasks is not
always evenly balanced, in order to
accommodate individual strengths and
interests. For example:

• Engineer A: Win32 user interface

• Engineer B: infrastructure (including
threading models), some Mac OS
user interface

• Engineer C: Win32 and Mac OS user
interface, architecture and design
documents, overall direction

With regard to total development
experience (not job titles), a distributed
team will succeed if most or all of its
members are senior, with maybe one
falling into the intermediate category:

• Engineer A: 3 years

• Engineer B: 8 years

• Engineer C: 8 years

Success in the virtual atmosphere
requires a fair amount of independence
and autonomy, a passion for writing
software, and a lot of self-discipline. As
a neophyte developer I would not have
been very successful on a distributed
project. I had too many questions and
an immature knowledge of tools,
platforms, and especially development
practices.

Over the years, I have known a handful
of junior-level developers that could
successfully navigate the obstacles that a
distributed project throws in your way,
particularly if time-to-market is critical.
For those reasons, I tend to favor senior
developers for a distributed team.

The team can take a long time to gel if
the developers rarely get to meet. This
makes the hiring process especially
important. It may take a long time to
discover you made a poor hiring decision
if you only talk once a week. In order to
minimize ramp-up time and to minimize
the risk of failure, consider hiring
developers that come recommended by
someone already on the team.

What’s so important about a team
“gelling”? From a lead’s perspective, it

Page 2 - At home, but not alone

allows you to anticipate everyone’s
moves. You can continue planning,
developing, and making periodic changes
without upsetting daily operations.

During the hiring process, discuss with
each candidate the project goals, what
the daily grind would be like, and each
developer’s responsibilities. After hiring,
allow some extra time for the initial
round of questions. Even if you’ve
worked with some members of the team
before, any new project will have its
share of issues. Even among senior
developers, it’s common to have some
“what does this thing do” questions,
particularly regarding existing features
and practices.

Building Infrastructure
Tools

There are a variety of tools available,
and it makes sense to do some research
to determine which ones will work for
your project. Not every project requires
the latest and greatest cross-platform
framework, but every project needs a
good IDE. CodeWarrior is an excellent
cross-platform choice, but if the
company has made a substantial
investment in other, harder-to-use tools
your options may be limited.

Each developer needs to be familiar with
the development tools. Not everyone
needs to be an expert, and the division
of labor will determine to a degree who
specializes in which tools. At a
minimum everyone needs to understand
the IDE project options and how to use
the debugger. Good debugger info is
hard to find, especially if you write a
variety of code types (e.g. applications
as well as extensions). Most
documentation is geared toward
application debugging, which is a good
start.

Source code control is key to keeping the
project healthy. I have been on projects
where changes were emailed to one
person, who then integrated all the

changes manually and then performed a
build (the buildmeister role). Yuck!
Whatever the cost, a source code control
system is paramount to team success.
Whether it merges for you (a la CVS), or
requires single-user checkout and locking
at the file level, the cost and time spent
learning the system will reap huge
rewards. And once you’ve used one
source control system, it is fairly easy to
learn a new one.

Communication

Email is often the preferred method for
non-critical tasks, whether informative or
inquisitive. Early in the development
cycle for a particular release, mail is
relatively sparse. Daily or even hourly
summaries of code updates and bug
fixes occur when a release is imminent.

AOL’s Instant Messenger (or an
equivalent program) is almost a necessity
for getting quick responses, and even for
sending small files around. (On high-
speed connections “small” may be on the
order of several Megabytes.) Since I
sometimes get tired of typing long
streams of questions, I try to make sure
the phone list is close by.

Team meetings can dramatically affect
attitude. At some companies (or
projects) meetings are anticipated with a
sense of dread, while at others meeting-
time is a lot of fun! Face-time is
extremely important in a virtual
company. It not only makes discussions
more effective, but also reinforces the
team atmosphere, providing form to
those mysterious Instant Messenger
screen names.

During these discussions, don’t assume
from vigorous head nodding that
everyone understands what you’re
saying. Ask individual developers to
restate their responsibilities or perhaps
some part of the architecture that
directly affects them, so that you know
they understand (or at least are good
listeners).

At home, but not alone - Page 3

Team meetings for a distributed project
may come in two flavors. The local
development team (those who live within
driving distance of each other) may meet
once a week for an hour to discuss
progress, roadblocks, and demo any new
ideas or technologies that might be
useful. A company-wide meeting may
also occur, perhaps once a month, and
last an entire day. This gives developers
a chance to discuss larger issues, and
meet the other groups in the company
face-to-face.

Scheduling

Most projects attempt to adhere to a
schedule, which allows you to adjust
resources (time, money, and people) on
an ongoing basis. Due to the
decentralized nature of the activities and
the potential for uncontrollable outside
influences, any schedule for a
distributed, cross-platform project must
remain more flexible than for a more
mainstream project.

Schedule milestones are extremely
important in a distributed project. Since
it is more difficult to contact a remote
developer than by simply walking into
his or her office, you need to keep a
closer, constant watch over the state of
the project. This doesn’t mean that you
bury the development team in status
reports, or require agonizingly detailed
change summaries. Rather, simple items
(such as getting the initial “Hello, world”
build completed) become items of note.
Later, bug fix or feature checklists and
their corresponding rates of closure can
be used as indicators.

One simple phenomena you can use to
measure how close a project is to
shipping is the size and frequency of
source code changes. Early on, code
updates are infrequent while the
architecture and design get hashed out,
developers play with the tools and try
out ideas, etc. Once development is in

full swing, code changes are being made
continually. If you remain on schedule
and have allowed enough time, as you
approach the release date the changes
should diminish in size and intensity.
This is for a couple of reasons:

1. most features are already in
2. no one wants to break working code

Ideally, the time immediately following
the release should be fairly quiet too.
Yes, bug reports will probably start
rolling in, but the “really bad” bugs
should have been found prior to
shipping. This is the time to regroup and
plan the next version.

Two common scenarios
Starting from scratch

If there is no existing product, a number
of issues disappear, including backward
compatibility with previous versions,
maintaining the product’s look-and-feel,
and convincing users to upgrade.

One disadvantage is that in this
situation it may be more difficult to both
gauge progress and to know that the end
result will be pleasing to the user.

This scenario requires more up-front
planning. You need to determine the
architecture and design. For non-trivial
programs, these will prove critical once
development commences. And of
course, all of the code will require
writing.

Porting an existing product

If there is already a product in place, you
can ideally keep the architecture intact,
and reuse portions of the design and
source code. Depending on how API-
specific the original application was
written, the cross-platform version may
require a substantial rewrite or be fairly
easy to do.

Page 4 - At home, but not alone

A variation on the porting issue is when
the existing product does not perform as
expected. For example, most developers
are aware of the performance issues
surrounding Java. The allure of a single
cross-platform code base is tempered by
an often large runtime memory footprint
and slower execution speed than a
compiled code version of the program.
Plus, platform-specific features are
wickedly easy to integrate into Java
source code these days, resulting in
conditional runtime checks or separate
source files that must be kept
synchronized.

You may need to do some tweaking
(such as checking which Virtual Machine
is currently in operation) to improve the
user experience. For example, both
Win32 and Mac OS provide native
runtime help systems, while Java does
not (as part of the core API). This
aspect of an application may require
platform customization. On Win32,
tooltips are help strings that appear in a
floating window, while on Mac OS
balloon help is the nearest equivalent
(though not for long). So this is one area
where it is fairly easy to write
conditionalized platform-dependent
code in Java, though if you do not
provide wrapper classes and native
libraries you will need to go through
JDirect on each platform to get the actual
work done.

On both platforms a real issue can be
runtime memory footprint. “About This
Computer” sometimes tells a harsh
story. A moderately large Java
application can easily require 15-20 MB
of space. Try running that in 32 MB of
physical memory along with other apps.
Most users will tell you to get bent.

In addition, the overwhelming variety of
operating system, virtual machine, and
shared library versions can make
compatibility testing extremely difficult.
Sometimes a bug that manifests itself
under Java on Window NT can not be
reproduced on Windows 95 or 98, and
vice versa. I think Mac OS is better off in

this area since the actual public releases
of MRJ are relatively few.

For these or other reasons, it may be
desirable to port the Java application to
C/C++ or some other language in order
to gain better control over the
performance issues.

Complications

There are a lot of operating system and
API-related issues that require attention
early on, during the architecture and
design stages. Previous MacHack
papers have included discussions of the
platform similarities and differences
between Win32 and Mac OS. In
addition, Apple has some web-based
developer documentation on the subject.

Common concerns that may require
addressing include:

• backward compatibility on each
platform, including testing against
system library versions

• when to use a common user
interface vs. each platform’s look-
and-feel

• maximizing platform-independent
code (e.g. using the C standard
library to read text files) without
sacrificing platform-specific features

Also, someone needs to be in charge of
builds. I have been on projects where the
lead had that role, and other projects
where the senior developers took turns
on a weekly basis. Regardless, the
buildmeister has to be adept at
recognizing and correcting minor
problems, finger-pointing when necessary
and occasionally cracking the whip to
enforce the build schedule.

Many projects suffer from poor internal
developer documentation, the docs that
other developers on the team use to write
their code. As a project grows it tends
to add people; if the current architecture
and design are not documented or up-to-
date, senior developers will spend a lot

At home, but not alone - Page 5

of time explaining how things work to
the newcomers, rather than writing code.
Allow approximately eight hours per
week for writing and maintaining
documentation on a small project.

Don’t substitute well-documented source
code for actual documentation. It will
simply result in a developer wading
through reams of code attempting to
determine how everything fits together.

Each developer requires a remote LAN
connection. Faster is better assuming
that the cost is not prohibitive (since the
company should be reimbursing for this
expense), and that the connection is
available when needed. (I have had
some problems with my local ADSL
provider regarding the latter.)

If it makes sense to use something like
Timbuktu to observe and manipulate
machines remotely, then a high-speed
connection becomes a requirement. On
the other hand, simply downloading
source code updates twice a week
doesn’t require very much bandwidth,
and a dialup connection may suffice.

Finally, remote developers must do their
own technical support. Familiarity with
the nuances of the operating system
(from a user or administrator
perspective) helps tremendously. This
issue is the one most likely to frustrate
developers and cause management to
shut down a distributed effort.

Conclusion

Working with multiple platforms,
programming languages and developers
on a project is quite challenging.
Working in a distributed environment
adds further complexity. But the
situation is both manageable and fun if
you apply some of the ideas presented
here.

Bibliography

[Booch] Booch, Grady. Object Solutions.
Addison-Wesley, Menlo Park, CA.
1996.

[Downs] Downs, Andrew. From
Engineer to Technical Lead. Software
Development Magazine, Vol. 8 No. 4.
San Francisco, CA. 2000.

[McConnell93] McConnell, Steve. Code
Complete. Microsoft Press, Redmond,
WA. 1993.

[McConnell98] McConnell, Steve.
Software Project Survival Guide.
Microsoft Press, Redmond, WA. 1998.

[Wang] Wang, Gene. The Programmer’s
Job Handbook. McGraw-Hill, Berkeley,
CA. 1996.

