
Swapping Stacks and Flooding STREAMS - Page 1

Swapping Stacks and Flooding STREAMS
Mixing Fast Threads with Open Transport

Copyright © 2000 Red Shed Software. All rights reserved.
Written by Jonathan 'Wolf' Rentzsch (jon at redshed dot net).

This paper presents an effective method of tying Open Transport to a new thread model
that affords both maximum performance and ease of programming. First, a history of
multitasking on the Macintosh is presented, and then the new thread model is offered. After
a brief history and overview of Open Transport, this paper reviews a chunk of code from a
working web server, which illustrates how the two can work together.

Introduction
Way back in 1997, I wrote my first paper

for MacHack. It was titled Implementing
Threaded IO on the Mac OS, and went into
detail about the Device Manager and the
File Manager and how to hook them up to
the Thread Manager. The paper also
showed off the less appealing side of the
Thread Manager, and offered advice and
code to work around it.

After MacHack 1997, it became clearer
about how best to perform threading on
lightweight operating systems like the
traditional Mac OS. A new scheme was
invented, pulsars, which was detailed in a
session at MacHack 1998.

This paper pulls together the paper of
1997 with the session of 1998. The
examples use Open Transport (instead of
the Device Manager and the File Manager of
the 1997 paper), and describe in detail how
pulsars work. To make all this theory real
world, a working multi-threaded web server
is included.

Multitasking The SystemTask
Way

As introduced in 1984, the original
Macintosh could run only one application at
a time. The currently running application
had the entire Macintosh all to itself. Well,
almost all to itself. The application had to
support smaller parasite programs called
desk accessories.

These desk accessories were small and
quick to open. Folks could use them to
quickly take a note, set an alarm or multiply
a bunch of numbers. When desk accessories
allocated memory, it was stolen from the
host application's memory pool. Desk
accessories also created windows, and had

to be careful to mark them as desk
accessory windows so the application
wouldn't try to draw into them, close them
and other undesirable acts.

Some of these desk accessories needed to
draw into their windows at regular
intervals. The Alarm Clock desk accessory
needed to update the current time, and the
Note Pad needed to flash the TextEdit
insertion point. Apple handed application
developers a special call, SystemTask, and
instructed them to call it at least 60 times
per second.

Behind the scenes, SystemTask would
walk a list and send an accRun message to
each desk accessory that requested time.
This is illustrated in Figure 1.

Figure 1.

This is the simplest form of multitasking,
and has two distinguishing characteristics.
The first is the cooperative nature of the
sharing of the processor. The application
volunteers to call SystemTask so the desk
accessories get time to perform periodic
tasks. When called, the desk accessories
return to SystemTask so that other desk
accessories and the application get time. If
each program doesn't voluntarily relinquish

Page 2 - Swapping Stacks and Flooding STREAMSd

the processor, the others do not get to
proceed.

The second characteristic is that the desk
accessories share the stack with the
application. When called, the desk
accessories are free to push variables and
the like onto the stack, however they must
pop their items before returning to the
application. This is a shame, since the stack
is a quick and easy place to store a
program's state. Instead, the desk accessory
developer would need to explicitly store its
state somewhere in the heap, and then find
and read that data upon reentry.

Multitasking the MultiFinder
Way

Originally an option on System 6,
MultiFinder is always active from System 7
forward. As the Macintosh became faster
and stuffed with more memory, the copy-
quit-launch-paste jig of using multiple
applications to accomplish a task became
unnecessary. MultiFinder allowed multiple
applications to seemingly run at the same
time.

Of course, on the single-processor
computer, only one application can actually
execute at a time. However, computers can
quickly switch among different applications
to make it appear it is actually performing
many tasks at once.

Running many applications at once is
very handy, a point not missed by Apple.
However, Apple didn't want to rewrite the
entire Mac OS, or force application
developers to do the same. Instead, in grand
programmer tradition, Apple wrote a hack
on top of the Mac OS: MultiFinder.

Applications built in the days before
MultiFinder thought they had the Mac's
memory and processor all to itself. In
reality, under MultiFinder, each application
would get only a fraction of the Mac's
memory and processor's time. Apple
needed to design a way to force
applications to share both.

The are two basic models to sharing the
processor's time: cooperative and
preemptive. The cooperative model relies
on applications explicitly yielding control of
the processor to each other. This is the

model used by applications to give time to
desk accessories.

The preemptive model takes away the
voluntary system and replaces it with a
forced system. Instead of each application
deciding when it's ready to yield the
processor, the operating system routinely
takes control from one application and
gives it to another.

Each model has its pros and cons. Most
programmers prefer the preemptive model
since it frees them about having to worry
about when and how often to yield the
processor. However, the cooperative model
doesn't have the synchronization issues of
the preemptive model.

Apple had little choice but to go with the
cooperative model. The sad fact is that
most Macintosh programming interfaces
and large chunks of the Mac OS simply
weren't designed to be used by more than
one application at once. Put technically,
much of the Mac OS wasn't reentrant.
Preemptive multitasking does a good job of
pretending that one processor is many, and
the traditional Mac OS simply couldn't
handle multiple applications all asking to
draw onto the screen at once.

While the cooperative model requires
each application explicitly yield the
processor, applications written in the days
before MultiFinder did no such thing. To
make applications share the processor,
Apple identified a system call that all
applications frequently made,
GetNextEvent, and modified it to yield the
processor in addition to its normal duties.

Now that Apple had applications
sharing the processor, they had to find a
way for applications to share memory. To
accomplish this task, Apple changed the
way memory was laid out under
MultiFinder. The changes are illustrated in
Figure 2.

Swapping Stacks and Flooding STREAMS - Page 3

Figure 2.

Apple provided a fairly good
programming interface for dynamic (heap)
memory allocation, so that aspect of the
transition went well. However, applications
store information in places other than the
heap.

First, the address of the currently
executing instruction is stored in the
processor's Program Counter. The address
of the current location in the application's
stack is stored in the processor's Stack
Pointer. The processor's registers hold
intermediate results of the calculations the
application is performing. Environmental
information is held in low memory.

Taken together, all these elements define
an application in progress. It's an
application's context.

One of MultiFinder's many jobs were to
save an application's context when it was
suspended, and restore it before
resumption. Figure 3 illustrates the process.
Two applications, MacWrite and MacPaint,
are running. MacWrite calls GetNextEvent,
which invokes the Mac OS. The Mac OS
looks at its list of running programs and
decides who gets to go next. In this case, it's
MacPaint. The Mac OS saves MacWrite's
context into memory and restores
MacPaint's context, and jumps back to
where MacPaint left off.

Figure 3.

MacWrite and MacPaint know nothing
about being switched in and out. To their
perception, their call to GetNextEvent
simply took a much longer time than before,
which bring us to the performance issue.

Multitasking never comes free. Every
element of the old context must be copied to
a safe location, and every element of the
new context must be copied back in. On top
of all that work, there's virtual memory. If
virtual memory is active and memory is low,
then chunks of RAM need to be written to
disk and read back in.

To illustrate just how much a
performance hit multitasking can be, in the
early days of MultiFinder, it was necessary
to throttle how often application switching
would take place. Otherwise, the Mac
would spend all its time switching
applications and none on actually getting
work done.

Multitasking, in general, slows things
down. If you had to run two or more
processor-bound applications (that is,
applications whose performance is most
limited by the speed of the processor), it
will always be faster to run each by itself,
one after another, than run all of them at
once. This is because of the overhead
introduced by multitasking.

However, even in this worst-case
scenario, multitasking is nice since the
computer can still be responsive to the user
even while running many applications.
Perfect for you guys who calculate pi while
surfing the web.

Multitasking truly shines with io-bound
applications (applications whose
performance is most limited by
input/output). While the application is
waiting for the hard drive to read a file,
other applications can get work done. This
benefit is becoming increasingly pronounced

Page 4 - Swapping Stacks and Flooding STREAMSd

as the performance ratio between
processors and IO increases.

Multitasking the Thread
Manager Way

Shipped as an extension to System 7 in
1994 and later rolled into the system, the
Thread Manager offers a multitasking
abilities within applications.

A thread is a lightweight execution
context. In contrast to the heavyweight
application context, a thread only owns
two resources: a set of registers and a stack.
All other resources are owned by the
application, which threads access via
simple memory sharing. Figure 4 illustrates
the resources owned by a thread, and Figure
5 illustrates the relationship between
threads and applications.

Figure 4.

Figure 5.

Threads allow a single application to
work on more than one task at once. A web
browser is a good candidate for threading.
Each window can contain a web page, and
the task of reading the HTML text and
processing the images are easily separated.
Figure 6 suggests such architecture.

Figure 6.

Initially, the Thread Manager offered two
models for thread scheduling: cooperative
and preemptive. However, the support for
preemptive threads was dropped when the
Thread Manager was ported to the
PowerPC.

The Thread Manager's cooperative model
works much like MultiFinder's cooperative
model. Under MultiFinder, each application
must call GetNextEvent (or its modern
equivalent, WaitNextEvent), where upon
the next application is resumed. Under the
Thread Manager, each thread must call
YieldToAnyThread, where upon the next
thread is resumed. The interaction between
the Thread Manager and MultiFinder is
illustrated in Figure 7. The thin, short
vertical arrows represent a thread's call to
YieldToAnyThread. The thick, long vertical
arrows represent an application's call to
GetNextEvent.

Swapping Stacks and Flooding STREAMS - Page 5

Figure 7.

The paper of 1997 was largely about
integrating the Thread Manager with the
Device Manager for easy threaded
input/output. There are some nice gotchas
to be wary of, the biggest of which was the
so-called "Window of Death."

The Window of Death is a phenomena
where a thread starts a job and goes to
sleep, depending on an external event to
wake it up. The "window" of the Window of
Death refers to the small window of time
between when the thread starts the job and
when it goes to sleep. If the external event
fires before the thread put itself to sleep, the
thread is never awoken and sleeps forever.

Different developers took different paths
in avoiding the Window of Death. A develop
article advocated a dual-thread approach.
PowerPlant, Metrowerks's C++ framework,
used a timer. Other developers used a
polling model, where the thread is never put
to sleep. The 1997 paper offered XThreads,
a package written in C, which avoided the
Window of Death and cut scheduling
latency. However, all these work-arounds
were still hampered by the need to run at
SystemTask time.

The traditional Mac OS offers two basic
execution levels: SystemTask time (named
after the SystemTask call) and interrupt
time. Most applications spend most of their
time at SystemTask time. At SystemTask
time, you can call any Toolbox call.
However, because of the cooperative nature
of MultiFinder, there's no way to predict

when an application will get its turn at use
the processor.

Interrupt time doesn't suffer from this
behavior, however only a small subset of the
Toolbox is available at interrupt time (this
is because of the reentrancy issue touched
on above in the MultiFinder section).

Since the Thread Manager lives at
SystemTask time, there is no way to keep
threads running when one application is
hogging the processor. And before you start
cursing about poorly written applications
that hog the processor, keep in mind that
even the best written application will
monopolize the processor while the user has
the mouse button down.

Multitasking the Pulsar Way
Pulsars is a model that provides

threading at interrupt time with very little
latency. The best way to explain the pulsar
model is to contrast it with the Thread
Manager. As an example, we'll copy a file.
The main task of copying a file is
repetitively reading a block from the source
file and writing it to the destination file.

Listing 1 presents some C-style
psuedocode, which copies a file. For
simplicity's sake, the code that avoids the
Window of Death is not shown, so this
code is not suitable as a model for a real
implementation.

Listing 1.
CopyFileViaThreadManager(File

sourceFile, Folder destinationFolder)
{
 /* Create the destination file in the

destination folder.*/
 sourceFileName = GetFileName(

sourceFile);
 destinationFile = CreateFile(

sourceFileName, destinationFolder);

 /* Open both files.*/
 sourceFileRef = OpenFile(sourceFile

);
 destinationFileRef = OpenFile(

destinationFile);

 /* Set the destination file to the
source file's size.*/

 sourceFileSize = GetFileSize(
sourceFileRef);

 SetFileSize(destinationFileRef,
sourceFileSize);

 /* Repetitively read from the source
file and write to the destination file.*/

 while(sourceFileSize > 0) {
 block = ReadFile(sourceFileRef,

BLOCKSIZE, ThreadManagerCallback);
 SetThreadState(kCurrentThreadID,

kStoppedThreadState, kNoThreadID);

Page 6 - Swapping Stacks and Flooding STREAMSd

 WriteFile(destinationFileRef,
block, BLOCKSIZE, ThreadManagerCallback);

 SetThreadState(kCurrentThreadID,
kStoppedThreadState, kNoThreadID);

 sourceFileSize -= BLOCKSIZE;
 }

 /* Close both files.*/
 CloseFile(destinationFile);
 CloseFile(sourceFile);
}

ThreadManagerCallback(ThreadID thread)
{
 SetThreadState(thread,

kReadyThreadState, kNoThreadID);
}

As shown in Listing 1, our copying
engine calls ReadFile and then goes to
sleep by calling YieldToAnyThread. When
the read is complete, the Mac OS calls the
supplied callback ThreadManagerCallback
at interrupt time. Since you can't use much
of the thread manager at interrupt time, all
we can do is mark the thread as ready and
return. Figure 8 is a visualization of this
technique.

Figure 8.

Unfortunately, this technique is subject
to great latency. The time between when the
completion routine marks a thread as ready
and when the thread runs is large, and can
vary widely. The XThreads package cut
down on the internal application latency by
maintaining a priority thread queue.
However, since the Thread Manager works
at SystemTask time, our application will
still be held up by something as innocent as
the user holding down the mouse button.

Listing 2 exhibits the pulsar model. As
you can see, the code for the pulsar model is
almost exactly like the Thread Manager
model, however the pulsar model acts very
differently from the Thread Manager model.

Listing 2.
CopyFileViaPulsar(File sourceFile,

Folder destinationFolder)
{
 /* Create the destination file in the

destination folder.*/
 sourceFileName = GetFileName(

sourceFile);
 destinationFile = CreateFile(

sourceFileName, destinationFolder);

 /* Open both files.*/
 sourceFileRef = OpenFile(sourceFile

);
 destinationFileRef = OpenFile(

destinationFile);

 /* Set the destination file to the
source file's size.*/

 sourceFileSize = GetFileSize(
sourceFileRef);

 SetFileSize(destinationFileRef,
sourceFileSize);

 /* Repetitively read from the source
file and write to the destination file.*/

 while(sourceFileSize > 0) {
 block = ReadFile(sourceFileRef,

BLOCKSIZE, PulsarCallback);
 Sleep(); /* Different.*/

 WriteFile(destinationFileRef,
block, BLOCKSIZE, PulsarCallback);

 Sleep(); /* Different.*/

 sourceFileSize -= BLOCKSIZE;
 }

 /* Close both files.*/
 CloseFile(destinationFile);
 CloseFile(sourceFile);
}

PulsarCallback(Thread thread)
{
 Pulse(thread); /* Different.*/
}

Instead of merely marking the thread as
ready from the completion routine
(PulsarCallback), the completion routine
actually saves the caller's context and
swaps in CopyFileViaPulsar's context
and reenters it at interrupt time. The Copy
Thread performs the block write and
immediately returns to the completion
routine via the Sleep call, which then
returns to the Mac OS.

Swapping Stacks and Flooding STREAMS - Page 7

Figure 9.

The completion routine passes control to
the Copy Thread, depending on the Copy
Thread to quickly pass control back. In
effect, the completion routine quickly starts
and stops the Copy Thread, or "pulses" it.
This is where the model's name originates.

A pulsar is simply a callback that starts
and stops a thread from within the
callback. Since the Mac OS makes great use
of callbacks, the model is a great match.

Since the Mac OS supplies callbacks that
interrupt the current process (like VBL
tasks, Time Manager tasks and Deferred
Tasks), you can architect your application
to perform much of its work at interrupt
time, effectively emulating a preemptive
operating system. Your application can
continue working even if the user is holding
down the mouse button in someone else's
application. However, the pulsar model
does require threads make explicit yielding
calls, so that benefit of preemptive
multitasking isn't fully realized.

But enough with all this threading, let's
dive into Open Transport.

A Brief History of Open
Transport

The very first Macintosh shipped with
built-in networking in 1984. Back then,
AppleTalk over LocalTalk was a "medium
speed" networking technology, topping out
a 230Kbps. Eventually Apple added
support for faster network hardware
(Ethernet, Token Ring) and different
network protocols (IP, IPX).

After the Power Macs shipped, Apple
could have simply ported the existing
network software. However, it wouldn't be
an easy port: much of the software was
written in unportable 68K assembly
language. Additionally, Apple's support of
the increasingly important Internet Protocol
was provided via MacTCP - a low-
performance hack that was entirely Apple-
proprietary.

Apple made the decision to move to
fast, flexible and standards-based network
software: STREAMS with a X/Open
Transport Interface.

STREAMS (uppercased to help separate
from the overloaded stream concept), was
first introduced by AT&T in their UNIX
System V. Dennis M. Ritchie (yes, that
Dennis Ritchie, co-inventor of UNIX and C)
wanted a better architecture for performing
input/output.

Following the UNIX philosophy of tying
small tools together to accomplish large
tasks, he devised a flexible method of
layering modules on top of each other. This
was an interesting take on a networking
architecture. Traditionally, the networking
software provided with an operating
system was monolithic: in order to add a
new protocol, you'd need to rewrite and
recompile at least a library, if not the kernel
itself. STREAMS made it easy to add new
protocols and devices at will.

By the time Apple was in the market for
new networking software, STREAMS had
grown up. At first, STREAMS's flexibility
made it slower then other operating
system's monolithic architecture. However,
a small company named Mentat solved the
performance problems and proceeded to
license their product, Mentat Portable
Streams (MPS), to numerous Operating
System suppliers including Sun (Solaris),
Digital (Ultrix) and Hewlett-Packard
(HP/UX).

MPS was a great fit for Apple, as
STREAMS allows multiple protocols
simultaneously. While TCP/IP was coming
on strong, Apple still needed to support
AppleTalk. Furthermore, all of Mentat's
code was in portable C. While some
modifications were necessary to move MPS
from a UNIX-style Operating System to the

Page 8 - Swapping Stacks and Flooding STREAMSd

Mac OS, it was much faster than writing
from scratch.

To add icing to the cake, MPS supports
the X/Open Transport Interface (XTI).
X/Open is a standards group formed a
while back. One of their standards is XTI, a
network programming interface. In theory,
this would make it easier to move code from
Unix to the Mac. In reality, most Unix
network programming is done with BSD-
style sockets. While Mentat offers a sockets
API for MPS, Apple chose not to license it.
However, Matthias Neeracher wrote and
maintains GUSI, a free open-source sockets
interface that rides on top of Open
Transport.

Open Transport's
Architecture

In the previous section, I glossed over
Open Transport's architecture. Now we get
down and dirty.

Perhaps you've heard of "protocol
stacks". The basic observation is that
protocols can be built two ways: as one
large protocol, or as many smaller protocols
working together. Just as modular software
gives you more flexibility, modular
protocols offer better support for different
tasks and future extension. Most of today's
networking protocols are "stacked", that is,
each protocol relies of the services of a
lower protocol until you reach the
hardware. The basic model is illustrated in
Figure 10.

Figure 10.

The most famous protocol stack is the
Open Systems Interconnection (OSI) model.
OSI attempts to define a generic protocol
stack as a model for others to implement.
See Figure 11.

Figure 11.

While the OSI model is largely academic,
protocols have been built with a one-to-one
correspondence with OSI.

Let's look at a few of real-world
examples of protocol stacks. The first is
when you mount a disk from another
Macintosh using Personal File Sharing over
LocalTalk. See Figure 12.

Figure 12.

Our next example is when you download
a web page over an Ethernet network, which
is tied to the Internet. See Figure 13.

Figure 13.

Finally, Figure 14 shows an example of
downloading a web page over a modem
connection:

Figure 14.

As you can see, each module uses the
services of the one below it. Open Transport
is simply a realization of this simple
abstraction.

Building Stacks
Now we're ready to put some of this

architectural theory into practice. Let's say
we're writing a simple program that
downloads web pages. The protocol for

Swapping Stacks and Flooding STREAMS - Page 9

downloading web pages is HTTP, which
rides upon TCP, which rides upon IP, which
rides upon Ethernet.

We want to tell Open Transport to build
this stack for us. First, we create a
"configuration". A configuration is a black
box that describes a protocol stack to Open
Transport. We call the
OTCreateConfiguration function, which
takes a C string as its sole parameter and
returns an OTConfigurationRef. The C
string is a comma-delimited string
describing the stack we want.

While you can specify the stack to build
in complete detail (for example, "tcp, ipm,
enet0" or "afp, asp, ddp, enet0"), this is
inflexible. The user may decide to connect
via a LocalTalk port, Ethernet port or
Modem port. The better way is to only
specify the top-most protocol you want (for
example "tcp" or "afp") and allow Open
Transport to figure out how to build the
stack for you.

You might wonder how Open Transport
figures out how to build the stack. While
Open Transport could just read a
configuration file, instead Open Transport
employs a modular approach. It will call
upon user-installed modules that return
how to build the stack. These modules are
known as configurators. A third party
could write a configurator that
automatically pushes their module on top of
any IP module. This third party module
would then witness all Internet traffic as it
passes by, which is tremendously flexible.

Given an OTConfigurationRef returned
by OTCreateConfiguration, we can then
open an endpoint. From the user's view, an
endpoint is an instance of a stack of
modules. There are four functions that can
open an endpoint: OTOpenEndpoint,
OTAsyncOpenEndpoint,
OTOpenEndpointInContext and
OTAsyncOpenEndpointInContext.

The first two, OTOpenEndpoint and
OTAsyncOpenEndpoint, were the original
methods to open an endpoint in
synchronous/blocking mode and
asynchronous/nonblocking mode,
respectively (I'll explain what those mean
later on).

Under Carbon, those functions were
replaced with OTOpenEndpointInContext

and OTAsyncOpenEndpointInContext.
These operate largely the same as the
original two, except they take an additional
OTClientContextPtr parameter. This
makes it easier for Open Transport to track
which resources belong to which client.

If you're writing a standard application,
you can simply pass nil as the
OTClientContextPtr parameter and Open
Transport will be happy. Indeed, when
compiling for Carbon, Apple includes a
macro version of OTOpenEndpoint and
OTAsyncOpenEndpoint, which call through
to OTOpenEndpointInContext and
OTAsyncOpenEndpointInContext,
supplying nil in the OTClientContextPtr
parameter.

To close the endpoint, you call
OTCloseProvider, passing the
EndpointRef you were handed when you
opened the endpoint.

One more thing while we're talking about
endpoints: an endpoint can have a callback
associated with it. This callback is known
as a notifier and is used by Open Transport
to send you messages about what is going
on.

Listing 3 presents a simple function that
shows off the entire Open Transport
lifecycle for an application.

Listing 3.
#if TARGET_API_MAC_CARBON
 #define InitOpenTransport() \
 InitOpenTransportInContext(\
 kInitOTForApplicationMask, nil)
 #define CloseOpenTransport() \
 CloseOpenTransportInContext(nil)
#endif

 OSStatus
OpenAndClose()
{
 Boolean initedOT = false;
 OTConfigurationRef cfig;
 EndpointRef ref =

kOTInvalidEndpointRef;
 OSStatus err, err2;

 err = InitOpenTransport();

 if(!err)
 initedOT = true;

 if(!err) {
 cfig = OTCreateConfiguration("tcp"

);
 ref = OTOpenEndpoint(cfig, 0, nil,

&err);
 }

 if(ref != kOTInvalidEndpointRef) {
 err2 = OTCloseProvider(ref);
 if(!err)
 err = err2;

Page 10 - Swapping Stacks and Flooding STREAMSd

 }

 if(initedOT) {
 CloseOpenTransport();
 }

 return(err);
}

First thing we notice is a couple of
macros that are only defined if we're
compiling for Carbon. Much like the
OTOpenEndpoint/OTOpenEndpointInCont
ext story above, Apple took the simple
parameterless InitOpenTransport and
replaced it with the two-parameter
InitOpenTransportInContext. Same deal
with CloseOpenTransport versus
CloseOpenTransportInContext.

While Apple provided a convenient
macro to map the old OTOpenEndpoint
onto the new OTOpenEndpointInContext,
they didn't provide the same for
InitOpenTransport and
CloseOpenTransport. So, we do so here.

After declaring a few variables, we call
InitOpenTransport (which, under Carbon,
is a macro that expands to
InitOpenTransportInContext). If
successful, we call
OTCreateConfiguration, which builds a
description of the stack to build and passes
back a pointer to the description. If
OTCreateConfiguration fails, it will pass
back an invalid pointer. You'll notice that
we blindly pass the result to
OTOpenEndpoint. This is explicitly
documented as being okay:
OTOpenEndpoint will make sure the
configuration is valid before using it.
Otherwise, OTOpenEndpoint will return an
appropriate error code.

Since this is only an demonstration, we
don't do anything with the endpoint -- we
simply close it with OTCloseProvider and
go on our merry way.

Finally, if we successfully initialized
Open Transport, we close it here with a call
to CloseOpenTransport (which, under
Carbon, is a macro that expands to
CloseOpenTransportInContext).

The Open Transport
Programming Modes

Open Transport offers two binary modes
(synchronous/asynchronous and
blocking/nonblocking), which combined
offer four distinct modes of operation. As
we'll see later, only three of these modes
make sense.

The first mode,
synchronous/asynchronous, determines
how Open Transport reacts when called
from you application. In synchronous mode,
your application is halted while Open
Transport executes your request. This is
similar to using the synchronous version of
the File Manager calls (i.e. PBReadSync), or
setting the sendMode of AESend to
kAEWaitReply.

In asynchronous mode, Open Transport
simply queues your request and returns
immediately to your application. This is
similar to using the asynchronous version
the File Manager calls (i.e. PBReadAsync), or
setting the sendMode of AESend to
kAEQueueReply.

The second mode, blocking/nonblocking,
determines how Open Transport reacts
when it must wait to send or receive data.
In blocking mode, if a call is made
synchronously, Open Transport simply
waits as long as necessary for the data to be
sent or received. On the other hand, if the
call was made asynchronously, Open
Transport will return an error if it cannot
immediately execute the request. In
nonblocking mode, Open Transport
attempts to send or receive the data and
returns an error if it cannot immediately
execute the request.

The purpose of all these modes can be
confusing. To clarify, let's take a sample
Open Transport call and see how it's
affected by the different modes. The sample
call we'll use is OTConnect, which is the call
responsible for creating a connection
between your computer and a remote
computer.

Synchronous/Blocking: In this mode,
calling OTConnect would effectively hang
the entire Mac until the connection was
established. Basically, Open Transport

Swapping Stacks and Flooding STREAMS - Page 11

would sit in a tight loop babysitting the
connection until completion.

While waiting for a connection doesn't
seem that bad, keep in mind that the user
sometime mistypes an address or the
network goes down. In this situation, it can
take Open Transport up to four minutes to
give up and return an error. However, your
application will never see that error since
the user would have pulled the plug after
the first 30 seconds.

However, you can have Open Transport
call back into your application while it
babysits the connection. From your callback,
you can safely call YieldToAnyThread and
WaitNextEvent, giving other threads and
applications time. In order to have Open
Transport perform this act of kindness, you
must call OTUseSyncIdleEvents before
performing any potentially lengthy tasks.
When turned on, Open Transport will send
a special event kOTSyncIdleEvent to your
endpoint's notifier callback.

In summary, the synchronous/blocking
mode only makes sense if you couple it with
the Thread Manager by calling
OTUseSyncIdleEvents. This model is very
easy to program, however suffers from
mediocre performance since it depends on
other applications calling WaitNextEvent in
a timely fashion.

Synchronous/Nonblocking: This mode
is very similar to the synchronous/blocking
mode, except for how it handles congestion
when sending and receiving data. Under
synchronous/blocking, if your computer has
to wait for the remote side to catch up,
Open Transport does the waiting for you.
Under this mode, Open Transport doesn't
wait -- it returns an error. Once the remote
side has caught up, Open Transport will
send you a T_GODATA or T_GOEXDATA
message to your endpoint's notifier callback.

Asynchronous/Blocking: This mode is
the mode of professionals. It's difficult to
program but as fast as you can get. In this
mode, OTConnect would start the
connection process in the background and
immediately return to your application. You
are free to do anything you want while
waiting for Open Transport to complete
your request. A couple of suggestions
include displaying a progress bar, and

giving time to other threads and
applications.

When Open Transport has completed
the connection, it calls your endpoint's
notifier at interrupt time with the event
T_CONNECT.

Unlike synchronous/blocking and
synchronous/nonblocking, you cannot
efficiently tie this model to the Thread
Manager since your notifier callback will be
called at interrupt time. However, the
pulsar model works at interrupt time, and
makes a great match.

Asynchronous/Nonblocking: This is the
useless mode as mentioned above. It
provides no benefit over the
asynchronous/blocking model, and requires
extra code on your part to handle resource
exhaustion.

Writing a Threaded Open
Transport Server

To illustrate the differences between the
various models (synchronous/blocking with
the Thread Manager,
asynchronous/blocking with notifiers and
asynchronous/blocking with pulsars), we'll
code up the same task in each of the three
models. The task is to create a listener
endpoint on port 80 -- the port used by the
HyperText Transfer Protocol (HTTP, the
protocol of web servers).

First up is synchronous/blocking with
the Thread Manager, as illustrated in Listing
4.

Listing 4.
pascal
 void*
ThreadedListener(
 void */*param*/)
{
 OSStatus err, err2;
 TEndpointInfo info;
 EndpointRef ref = OTOpenEndpoint(

OTCreateConfiguration("tilisten,tcp"), 0,
&info, &err);

 if(!err)
 // Register for quit messages.
 err = RegisterQuitting(

QuitOTThread, ref, nil);
 if(!err)
 // OTOpenEndpoint creates a
 // synchronous/nonblocking
 // endpoint. Set it to
 // synchronous/blocking.
 err = OTSetBlocking(ref);
 if(!err)
 // Install our yielding notifier.
 err = OTInstallNotifier(ref,

Page 12 - Swapping Stacks and Flooding STREAMSd

gThreadedNotifier, nil);
 if(!err)
 // Tell Open Transport to call it
 // when waiting.
 err = OTUseSyncIdleEvents(ref, true

);
 if(!err) {
 // Enable IP address reuse.
 TOption option = { sizeof option,

INET_IP, IP_REUSEADDR, 0, true };
 TOptMgmt request = { sizeof option,

sizeof option, (UInt8*) &option,
T_NEGOTIATE };

 err = OTOptionManagement(ref,
&request, &request);

 if(!err && option.status !=
T_SUCCESS) {

 err = option.status;
 }
 }
 if(!err) {
 // Bind to port 80.
 InetAddress in = { AF_INET, 80, 0,

0,0,0,0,0,0,0,0 };
 TBind bind = { sizeof in, sizeof

in, (UInt8*) &in, 1 };
 err = OTBind(ref, &bind, nil);
 }

 bool done = false;
 while(!err && !done) {
 // Wait for a connection.
 InetAddress address;
 TCall call = { sizeof address,

sizeof address, (UInt8*) &address, 0, 0, 0,
0, 0, 0, 0 };

 err = OTListen(ref, &call);

 if(!err) {
 // ...Hand off connection to
 // worker thread...
 }
 }

 // Unregister for quit messages.
 err2 = UnregisterQuitting(

QuitOTThread, ref, nil);
 if(!err)
 err = err2;

 // Close the endpoint.
 if(ref != kOTInvalidEndpointRef) {
 err2 = OTCloseProvider(ref);
 if(!err)
 err = err2;
 ref = kOTInvalidEndpointRef;
 }

 return(nil);
}

First we create a configuration using
OTCreateConfiguration, in this case
tilisten, tcp. For clients, it's common to
pass kTCPName as the parameter to
OTCreateConfiguration.

Note we push an extra module on top of
the TCP module: tilisten. Open
Transport makes it very difficult to have a
server deal with multiple simultaneous
connection requests. Inside Macintosh:
Networking with Open Transport puts it this
way:

1. You have a listening endpoint
(one bound with a qlen greater
than 0) in asynchronous mode.
(The problem is independent of
the mode of the listening
endpoint but, for the sake of
this example, we'll assume the
listening endpoint is in
asynchronous mode.)

2. An incoming connection
arrives, and the listening
endpoint calls your notifer with
a T_LISTEN event.

3. Your notifer reads the details
of the incoming connection
using the OTListen routine.

4. Your notifer decides to accept
the incoming connection by
calling the function OTAccept.

5. However, the OTAccept call
fails with a kOTLookErr
because there is another
pending T_LISTEN event on
the listening endpoint. (This
behavior is explicitly allowed
in the XTI specifcation.)

tilisten, first shipped with Open
Transport 1.1.1, handles this mess for you -
- all you have to do is push it on top of the
TCP module for your listening endpoint.

Now that OTCreateConfiguration
created the configuration, we use
OTOpenEndpoint to open an endpoint that
listens for requests. But before we start
listening, we have to set up a few things.
First off, we register our threads for quit
messages. This is my own code from my
Quitting Package, which is included on the
MacHack CD.

It turns out that OTOpenEndpoint creates
an endpoint in synchronous/nonblocking
mode, so we need to change it to
synchronous/blocking using
OTSetBlocking. Next up we install our
yielding notifier, which looks like Listing 5.

Listing 5.
 pascal
 void
ThreadedNotifier(
 void */*context*/,
 OTEventCode code,

Swapping Stacks and Flooding STREAMS - Page 13

 OTResult /*result*/,
 void */*cookie*/)
{
 if(code == kOTSyncIdleEvent) {
 YieldToAnyThread();
 }
}

ThreadedNotifier is called repeatedly
by Open Transport while it waits for a task
to complete. To enable this useful behavior,
you must call OTUseSyncIdleEvents.

The next chunk of code works around a
design issue of TCP/IP. It turns out TCP/IP
forces a two minute wait between
disconnection and reconnection of a port.
That means if the user quits and
immediately relaunches our application, our
server would be deaf for two minutes. This
code works around this issue by sending a
message directly to the IP module sitting
below TCP (OTOptionManagement).

Now we've set everything up the way we
need it. All we have to do now is tell Open
Transport which port to listen in on (in this
case, port 80) by calling OTBind and then
wait for connections by calling OTListen.

Now we'll do the same thing using the
asynchronous/blocking with notifiers,
except instead of spinning off a worker
thread, we'll have the listener handle the
request itself. This is to better illustrate the
flow of messages a notifier sees in the
course of handling an connection. See
Listing 6.

Listing 6.
pascal
 void
MyNotifier(
 void */*context*/,
 OTEventCode code,
 OTResult result,
 void *cookie)
{
 OSStatus err = noErr;

 switch(code) {
 case T_OPENCOMPLETE: {
 gRef = (EndpointRef) cookie;

 err = OTSetBlocking(gRef);

 if(!err) {
 TOption option = { sizeof(

option), INET_IP, IP_REUSEADDR, 0, true };
 TOptMgmt request = { sizeof

option, sizeof option, (UInt8*) &option,
T_NEGOTIATE };

 err = OTOptionManagement(
(EndpointRef) cookie, &request, &request);

 }
 /* Continued at

T_OPTMGMTCOMPLETE...*/
 } break;
 case T_OPTMGMTCOMPLETE: {
 InetAddress in = { AF_INET, 80,

0, 0,0,0,0,0,0,0,0 };
 TBind bind = { sizeof in,

sizeof in, (UInt8*) &in, 20 };
 err = OTBind(gRef, &bind, nil);
 /* Continued at

T_BINDCOMPLETE...*/
 } break;
 case T_BINDCOMPLETE: {
 /* Continued at T_LISTEN...*/
 } break;
 case T_LISTEN: {
 /* ...Worker accepts the

connection...*/
 InetAddress address;
 TCall call = { sizeof address,

sizeof address, (UInt8*) &address, 0, 0, 0,
0, 0, 0, 0 };

 err = OTListen(gRef, &call);

 if(!err)
 err = OTAccept(gRef, gRef,

&call);
 /* Continued at

T_ACCEPTCOMPLETE...*/
 } break;
 case T_ACCEPTCOMPLETE: {
 /* Continued at T_PASSCON...*/
 } break;
 case T_PASSCON: {
 OTSnd(gRef, "hello", sizeof(

"hello") - 1, 0);

 err = OTSndOrderlyDisconnect(gRef
);

 /* Continued at T_ORDREL...*/
 } break;
 case T_ORDREL: {
 err = OTRcvOrderlyDisconnect(gRef

);
 /* Continued at T_LISTEN...*/
 } break;
 }
}

Most of the code to handle the
connection is within the notifier,
MyNotifier. However, keep in mind
notifiers are called by Open Transport,
which means we need to kick off Open
Transport before it can call our notifier.

You can begin the process by calling
OTAsyncOpenEndpoint as illustrated in
Listing 7. OTAsyncOpenEndpoint is similar
to OTOpenEndpoint as they both create an
endpoint based on a OTConfigurationRef
generated by OTCreateConfiguration.
However, they differ in three ways. First,
OTAsyncOpenEndpoint creates an endpoint
in asynchronous/nonblocking mode.
Second, OTAsyncOpenEndpoint takes a
notifier as an parameter -- there's no need to
call OTInstallNotifier. Finally,
OTAsyncOpenEndpoint immediately returns
to its caller. Later on, a T_OPENCOMPLETE
will be send to the newly opened endpoint's
notifier.

Page 14 - Swapping Stacks and Flooding STREAMSd

Listing 7.
OTAsyncOpenEndpoint(

OTCreateConfiguration("tilisten,tcp"), 0,
nil, NewOTNotifyUPP(MyNotifier), nil);

Take a look at MyNotifier and notice
how it accepts four parameters. The first
parameter, context, is for your own use.
Think of it as a reference constant. The
second parameter, code, indicates what
event Open Transport is reporting to your
notifer. You'll notice we switch off this code
to figure out what to do. The third
parameter, result, contains the error code
of the event. The final parameter, cookie,
contains event-specific information. For
example, during a T_OPENCOMPLETE event,
cookie holds the newly created endpoint.

Initially, MyNotifier receives a
T_OPENCOMPLETE event. It stores away the
EndpointRef stored away in cookie -- we
won't see it again. First we change the mode
from asynchronous/nonblocking to
asynchronous/blocking by calling
OTSetBlocking. Then we sidestep the TCP
two minute delay by calling
OTOptionManagement. Note that
OTOptionManagement operates
asynchronously, so we return from our
notifier and await for Open Transport to
call our notifier with the
T_OPTMGMTCOMPLETE event.

From there we chain to binding the
endpoint (OTBind) and listening for
connections (OTListen). For this example,
we simply send a friendly "hello" to the
incoming connection (OTSnd), and
disconnect them
(OTSndOrderlyDisconnect and
OTRcvOrderlyDisconnect).

Finally, let's see pulsars in action.
Unfortunately, this paper described the
pulsar model, not an implementation. In
order to provide a sample of pulsars in
action, I'll have to use my commercial
implementation of pulsars: Red Shed
Threads. Listing 8 shows how a C++ object
named Listener handles the task.

Listing 8.
void
Listener::Entry()
{
 EndpointRef ref =

kOTInvalidEndpointRef;
 bool done = false;
 OSStatus err =

RegisterForQuitMessages(&this-
>messageQueue);

 if(!err) {
 ref = TOTOpenEndpoint(this,

OTCreateConfiguration("tilisten,tcp"), 0,
nil, &err, 0);

 }

 if(!err) {
 // Enable IP address reuse.
 TOption option = { sizeof(option

), INET_IP, IP_REUSEADDR, 0, true };
 TOptMgmt request = { sizeof option,

sizeof option, (UInt8*) &option,
T_NEGOTIATE };

 err = TOTOptionManagement(this,
ref, &request, &request, 0);

 if(!err && option.status !=
T_SUCCESS) {

 err = option.status;
 }
 }

 if(!err) {
 // Bind to port 80.
 InetAddress in = { AF_INET, 80, 0,

0,0,0,0,0,0,0,0 };
 TBind bind = { sizeof in,

sizeof in, (UInt8*) &in, 20 };
 err = TOTBind(this, ref, &bind,

nil, 0);
 }

 while(!err && !done) {
 OTEventCode otEvent;
 AtomicMessage message =

WaitReceiveRedShedThreadMessage(this, nil,
kNoAtomicMessage, (long*) &otEvent, nil,
nil);

 switch(message) {
 case kQuitMessage:
 done = true;
 break;
 case kOTEventMessage:
 switch(otEvent) {
 case T_LISTEN:
 err =

Server::ReceiveConnection(ref);
 if(err) {
 InetAddress a;
 TCall call = { sizeof a,

sizeof a, (UInt8*) &a, 0, 0, 0, 0, 0, 0, 0
};

 err = OTListen(ref, &call
);

 if(!err)
 err = TOTSndDisconnect(

this, ref, &call, 0);
 }
 break;
 case T_ACCEPTCOMPLETE:
 case T_DISCONNECTCOMPLETE:
 break;
 }
 break;
 }
 }

 // Kill our endpoint.
 if(ref != kOTInvalidEndpointRef) {
 err = OTSetSynchronous(ref);
 err = OTCloseProvider(ref);
 ref = kOTInvalidEndpointRef;
 }

 // Drop down to Event Task time.
 WaitEventTask(this, kPriority);
 UnregisterForQuitMessages(

&this>messageQueue);
}

Swapping Stacks and Flooding STREAMS - Page 15

As you can see, the
asynchronous/blocking with pulsars code
looks much like the synchronous/blocking
with the Thread Manager. While similar,
there are differences.

First off, note that all the asynchronous
Open Transport functions
(OTAsyncOpenEndpoint,
OTOptionManagement, OTBind, etc.) have
been replaced with similarly named
wrapper functions (TOTOpenEndpoint,
TOTOptionManagement, TOTBind, etc.).
That "T" in front of each function stands for
"Threaded".

To thread an asynchronous Open
Transport function, you must first call the
Open Transport function and then wait for
Open Transport to call your notifier with
the correct event code. Between when your
thread calls Open Transport and when
Open Transport calls your notifier, your
thread can sleep.

The threaded wrapper functions provide
this code for you. Let's take
TOTOpenEndpoint for example, see Listing
9.

Listing 9.
 EndpointRef
TOTOpenEndpoint(
 RedShedThread *thread,
 OTConfigurationRef cfig,
 OTOpenFlags oflag,
 TEndpointInfo *info,
 OSStatus *err,
 long patience)
{
 OSStatus err2;
 EndpointRef result =

kOTInvalidEndpointRef;

 err2 = OTAsyncOpenEndpoint(cfig,
oflag, info, NotifyRedShedThread, thread);

 if(!err2) {
 OTEventCode event = T_OPENCOMPLETE;
 err2 = WaitOTEvent(thread, &event,

(long*) &result, patience);
 if(err2)
 result = kOTInvalidEndpointRef;
 }
 if(!err2)
 err2 = OTSetBlocking(result);

 if(err)
 *err = err2;
 return(result);
}

First TOTOpenEndpoint calls upon
OTAsyncOpenEndpoint. Then it waits for
Open Transport to issue the
T_OPENCOMPLETE event.

The final point of difference between the
models is how the T_LISTEN event is
handled. The synchronous/blocking Thread
Manager model calls OTListen, which
blocks until it finds a T_LISTEN code.
However, the asynchronous/blocking pulsar
model accepts any Open Transport event,
and calls OTListen once it spies a
T_LISTEN.

Summary
This paper provided an overview and

comparison of the various forms on
multitasking on the Macintosh, including a
new model. After providing an architectural
overview of Open Transport, this paper
provided sample code that illustrated how
to tie Open Transport to three different
multitasking models.

