Pedestal: A Modern Approach To Traditional
Framework Design

Joshua Juran

Freelance Software Developer

Abstract

Application frameworks for the Macintosh abound, but applications that lack
seemingly standard (or at least highly desirable) features, such as advanced
editing keys (e.g. Shift-arrow, forward delete, etc.), or exhibit other annoying
defects (like flickering graphics) are even more plentiful. Perhaps the
developers of these programs find that existing frameworks don’t meet their
needs. This paper is not only a discussion of what these needs might be and
how they could be addressed, but also a case study of Pedestal, an open-
source C++ Mac application framework, in development.

Introduction

Pedestal is a framework for
developing Mac OS applications in
C++. While it may appear similar (in
some respects) to existing frameworks,
Pedestal was designed not with
similarity to or compatibility with them
in mind.

Pedestal is traditional in the sense
that it consists of C++ classes that are
compiled and linked into the
application, as opposed to a
dynamically interpreting runtime
environment. What makes Pedestal
modern is its vision.

Jean-Louis Gassée has described the
role of a Macintosh developer as
someone who stands inside a swimming
pool underneath a user and reaches up
to place a palm at the surface right
where the user is about to step, so that
the user has the experience of walking
on water. Pedestal’s job is to let the
developer do this without getting sore
arms.

The primary design goals of Pedestal
are fidelity to the Mac interface and
spirit (and accuracy in being faithful),
elegance in interface and
implementation, and extreme

modaularity in the class hierarchy,
trading economy of numbers for ruthless
factorization. In other words: There are
more classes, but they’re simple,
lightweight, and they do their job
efficiently and effectively. Not only
that, but only the functionality an
application needs has to be compiled in
— for example, the visual containment
subsystem fully supports scrolling
content, but only if you need it. Even
the nesting of views itself is optional —
it's either seamlessly integrated or
inconspicuously absent. The design of
Pedestal’s visual subsystem is one of the
areas this paper discusses in detail.

Visual Subsystem
Introduction

Most frameworks, in the process of
representing a visual hierarchy, resort to
a pair of abstract concepts which they
call ‘views’ and ‘panes’. Although the
names match, the actual concepts
they’re meant to denote usually vary
across frameworks. While this variance
is not problematic in and of itself
(unless you're attempting to unify the
frameworks), there is a disturbing lack
of clarity around what the concepts

Pedistal: A Modern Framework - Page 1



actually are within a particular
framework. This is evident from
examining the class hierarchy. For
example, there may be an abstract View
class, which may support subviews or
handle mouse clicks. Now, consider a
checkbox: A checkbox is a kind of
button, which is a control, which is a
pane, which is a view. So a checkbox
inherits mouse clicks — but it also
inherits subviews, which is
inappropriate, or at least superfluous.
On the other hand, an offscreen view is
a view that generally speaking will have
subviews (so there’s something to be
drawn offscreen) but has no need to
handle mouse clicks. Although it might
never result in erroneous runtime
behavior, these inconsistencies
nevertheless indicate a flaw in the
design of the inheritance model. While it
is possible to write working applications
based on such a framework, the
discrepancy between the model (e.g. the
checkbox class) and that which is
modeled (the conceptual checkbox that
Mac users are familiar with) is a
stumbling block for the developer. Itis
possible to be ever mindful and careful
and never stub one’s toe, but one is less
likely to walk away unscathed than if
the block weren’t there in the first place.

Views and Panes

Pedestal’s primary design goals are
accuracy/fidelity, elegance, and
modularity. Nowhere are these three
more evident than in Pedestal’s visual
model. The key distinction is the
relationship between views and panes.
Rather than the traditional incestuous
liaisons espoused by already-existing
frameworks, Pedestal introduces a
respectful but no less intimate courtship.
The revolutionary arrangement is this:
Views and panes are distinct, disjoint
types. One does not inherit from the
other, nor do they share a common base
(with the possible exception of a
framework-wide root class).
Furthermore, the abstract View class
does not contain panes (or other views),

Page 2 - Pedistal: A Modern Framework

and doesn’t even know what panes are.
The View class is a paragon of
innocence — or at least ignorance. The
Pane class, however, does know about
views — in fact, every pane is contained
by one, which is its superview. But it
doesn’t contain any panes or views
either.

How can this be? How can anything
be accomplished in such an austere
model? The answer becomes apparent
upon examination of a coterie of
subclasses.

Nesting

The first question concerns nesting,
without which there is no hierarchy.
Although the View class (PedView)
doesn’t contain anything, all view
objects can contain panes, by virtue of
some derived class. One example is
PedWindow, which is defined has
having exactly one pane. The
mechanism for adding several panes
where only one can fit involves a
subview. The subview class
(PedViewSub), a subclass of PedView,
must be further derived from to define
exactly how it contains panes (for
example, a scroller contains up to two
scrollbars and one content pane). The
subview is associated with (*not*
contained by) a subview-pane
(PedPaneSubView) which is installed in
the window. The containment of a pane
by a view and the link between a
subview and its subview-pane are *not*
the same relationship. Likewise, a
chicken laying an egg and an egg
hatching a chicken are inequal
operations (and note that the combined
process is different from a live birth). In
this case, however, we are not interested
in the question of which came first (the
view, if you’re wondering), but instead
the two-step manner in which they’re
nested.



Scrolling

Scrolling is a fairly complex process,
involving several different activities.
The content has to be redrawn and the
scrollbars’ values (and occasionally their
maxima) must be adjusted. To further
complicate things, there are different
ways to cause scrolling to occur, with
different procedures for implementing
scrolling in each case. For example, if
the user moves the scroll box, you just
compare the scrollbar’s value before and
after and the difference is how much to
scroll the content. However, if the user
clicks in a scroll arrow or a paging
region, you call ::TrackControl(), which
repeatedly calls your
ControlActionProc. Instead of sampling
the control value to get the scroll
distance, you supply it your own. You
redraw immediately, instead of waiting
for the next update event. But if you’re
scrolling to make a selection visible, then
the distance is calculated and you scroll
all at once, redrawing later (as with
dragging the scroll box) but you still
have to set the control value on the
scroll bar. In all cases, if you’ve just
scrolled away an area below the bounds
of the content, you need to recalibrate
the scroll bar’s maximum. Finally, there
are applications like MacPaint and
Stickies which feature scrolling, but lack
scroll bars.

Pedestal’s approach is to divide the
work. The scrollbar class (PedScrollbar)
is a subclass of PedControl which is in
turn derived from PedPane. A
scrollview (PedViewsScroll) is a subview
that has one pane (the content pane)
and a scroll position that determines
which part of the pane is displayed.
Scrolling does not affect the bounds of

the content pane, just the scroll position.

(It helps to think of the scrollview as an
actual scroll. The document may be
several feet long, but you only see a foot
or so at a time.) Rounding out the set is
the scroller class (PedViewsScroller). A
scroller doesn’t actually perform any
scrolling on its own, but it manages the
interaction between the scrollbars and
the scrolling object. Usually this object

is the scrollview, but if the content pane
manages its own scrolling (e.g. a
TextEdit pane), then a customized
scroller is called for. So a scroller object
will be an instance of either
PedViewsScrollerSimple or
PedViewsScrollerTE.

Command Subsystem

Pedestal has a command hierarchy
similar to that of other frameworks,
though with some slight differences.
Instead of bearing anthropomorphic
names like Bureaucrat and Commander,
Pedestal’s units of control are simply
called ‘tasks’. Another, perhaps less
nominal difference is that the tasks
represented by the abstract Task class
(PedTask) are not comingled with views
or panes. A task represents some
process of finite duration that has a
discrete beginning, middle, and end.
While some screen elements may be
associated with tasks, they are distinct:
A click in the close box is interpreted as
a command to close the window by the
Windowv class, but the fulfillment of that
command (or its cancellation, as well as
the invocation of a ‘save changes’ dialog
to determine which) is handled by a
task (specifically, an agent).

Tasks may have subtasks to whom
subsets of the parent task’s
responsibility is delegated. The root
task is the application itself, whose
purpose is to provide some core
functionality to the user, and host an
interface to expose that functionality.
Subclasses include Agents (PedAgent),
which manage windows (e.g. setting the
window’s name, deciding to close the
window immediately or ask the user
first), Documents (PedDocument),
which model documents as we know
them (usually with an Agent subtask
and a file reference), and Operations
(PedOperation), which oversee some
operation such as transfering a file or
performing a search. While it’s quite
plausible for an operation to be a kind
of task, the derivation of the other

Pedistal: A Modern Framework - Page 3



subclasses is less intuitive — and
explained thus: Whereas a file transfer
has a point of initiation, a point of
completion, and the work done in
between, an application, agent or
document is at some point opened, later
closed, and in the interim is processing
events. Both have a beginning, middle,
and end. The conceptual difference is
that an operation is ‘getting stuff done’
while the user is idle, and the tasks
which merely respond to events have
nothing to do then, so a document
appears as a static ‘thing’, rather than a
running process.

In addition to responding to events,
tasks can get time in between events to
perform chores. A chore (PedChore) is
not a task. Rather than having a
beginning, middle, and end, the chore is
atomic — accomplished in one function
call — for example, calling ::TEldle() or
drawing a frame of an animation. In
order to be run, a task’s chores must be
installed either in its repeat queue or its
idle queue. The repeat queue is runin
between every event, and the idle queue
is run only after a null event. A queue is
run by sending the appropriate message
to the root task, which runs the queue
and forwards the message to all of its
subtasks.

I/O Subsystem

Pedestal’s 1/0 subsystem is
exemplary of the degree of modularity
prescribed by the design goals. A
supposedly simple operation such as
reading a file involves no less than five
distinct classes of objects (though only
three are instantiated directly): First,
the file is located using a file system
reference (class PedFSRef). The
reference is used to create a file data-
source (class PedDataSourceFile), which
creates a raw access path
(PedAccessRaw) to the file. There are
two kinds — PedAccessData and
PedAccessRF, for reading the data and
resource forks respectively. (There’s
also PedAccessRes, which is for

Page 4 - Pedistal: A Modern Framework

accessing resource files through the
Resource Manager, and therefore can’t
be used for a data source.) A data
source is simply that — it’s a source of
data that is accessed a bufferfull
(PedBuffer) at a time. Finally, an input
stream (in this case a buffered input
stream (PedStreamInputBuffered)) is
created to draw from the data source
(or if it’s a text source,
PedStreamInputBufferedText). An
input stream of any kind
(PedStreamlnput) is read one byte at a
time, at which point the application is
free to do with it as it sees fit, possibly
using a dispenser object (e.g.
PedDispenserString) to package the
data in some desireable form.

This is even more useful than it may at
first appear. Simply by calling
GetByte() on a buffered input stream (or
using a dispenser, which will do the
same thing), blocks of the file are read in
and buffered as necessary, and those
buffers are automatically deleted after
their data have been read. But why is
this any better than using the File
Manager’s built-in buffering?

The advantage of having such highly
factored behavior becomes evident upon
examining other possibilities for its use.
A data source could be an HTTP stream
instead of a file. One data source could
be passed (through an input stream) to
another one which compressed or
decompressed it along the way. A
special kind of access path could read
the ‘MacBinary’ fork of a file (by
internally reading both data and
resource forks and performing the
encoding). An input stream could return
random bytes, null characters, or end-
of-file (analogous to Unix’s
/dev/random, /dev/zero, and
/dev/null respectively). In addition,
the text input stream transparently
converts newlines (the lack of which
feature has caused no end of mischief).

An equally full-featured output
system is in the works.



