
Background and Motivation

The need for the Emergent Algorithm Simulation
Environment and Language (Easel) derives from
ongoing research in the area of survivable
systems at the Software Engineering Institute
(SEI). Survivability is defined as the ability of a
system to fulfill its mission in a timely manner
in the presence of attacks, failures, or accidents
[EFL97]. System in this context is used in the
broadest possible sense to mean networks and
large-scale systems of systems. Survivability
cannot be measured or achieved in the absence
of knowledge of the system’s purpose or mission,
and of the critical functionality and quality
attributes required to achieve that mission.
Although security and survivability have
overlapping goals and methods, they differ in
many fundamental ways. Survivability is
concerned primarily with system availability and
mission fulfillment, while security is concerned

Design and Implementation of EASEL Page 1

primarily with confidentiality of information.

This paper describes some of the motivation, design and implementation strategies for a
new simulation language with distributed system semantics. The system is intended for
simulating, depicting, and gathering information about networks, software agents, and
other active entities of the physical, electronic and software worlds, about their interactions,
and about their collective global effects. The simulator is intended as a tool for research
toward security and survivability in unbounded systems, but may have wider applicability.
The language allows simulation of hundreds to thousands of semi-autonomous actors
cooperating in a simulated world without global visibility nor central control. It supports a
loosely coupled distributed network model in contrast with shared memory multiprocessor
or multiprogramming models of most discrete event simulation systems. Special features
include mobile code, near neighbors based on either explicit communication links, physical
proximity or line of sight, actor subtypes with multiple inheritance, and a declarative
depiction facility. The translator and interpreter for the language are hosted and targeted
to a uniprocessor Macintosh under Mac OS. The implementation involves techniques and
trade-offs borrowed from instruction set architectures, distributed operating systems, and
compiler construction, as well as discrete event simulation.

Carnegie Mellon University
Pittsburgh, PA

David A. Fisher

A Language for Simulating Highly Distributed Systems

Design and Implementation of EASEL

Security employs a fortress approach that
attempts to prevent all successful intrusions and
assumes two categories of participants: trusted
insiders and untrusted outsiders. A fundamental
assumption underlying survivability is that no
individual component of a system can be
immune to all attacks, accidents, and design
errors. Furthermore, concerns for survivability
often arise in the context of modern networked
systems, such as the Internet, where everyone is
an insider whether trusted on not.

Much of the current interest in survivability
derives from concerns for infrastructure
assurance [PCCIP97]. How can one guarantee
the continued operation and service availability
for critical national infrastructures such as
banking and finance, electric power production
and distribution, transportation, and
communications, in the presence of successful
intrusions, failures, or attacks against
components of these systems? Concern for

survivability is primarily a phenomena of highly
distributed network based systems. It is also
unlikely that there can be effective solutions in
the absence of large numbers of communicating
nodes to replace functions provided by
compromised nodes. Thus, unbounded
networks constitute both the problem and
solution spaces for survivability. An unbounded
network is characterized by distributed
administrative control without central authority,
by limited visibility beyond the boundaries of
local administration, and at any individual node,
by incomplete information about the network’s
topology and component functions [EFL97].

One direction of our own research has been
emergent algorithms [FL99]. Emergent
algorithms take their analogy from biological and
social systems in which each participant
performs a simple local action involving
interactions with other participants but without
complete knowledge of either who else is
participating or their roles. In these systems,
extremely complex global properties emerge
from the simple actions and interactions of the
participants in the absence of central control or
administrative authority. Examples include
birds flying in flocks, the culture created by
people of a region, and the national economy.
Internet examples include the use of chat rooms,
the overall governance of the Internet, and the
combining of independently developed search
tool in ways unanticipated by their authors. An
emergent algorithm produces global system-wide
properties that emerge from the collective actions
of the participating nodes. These global
emergent properties may be arbitrarily complex,
but emerge from the interactions of large
numbers of individual nodes each autonomously
performing simple local actions. Failures and
compromises in a few nodes should inhibit
neither the global functionality nor other global
qualities of the system. Emergent algorithms
offer the possibility of satisfying critical mission
goals in the presence of component failures and
compromises whether or not known, and in some
cases even when small but unknown numbers
of nodes are intelligent rogues.

It is difficult, however, to envision the global
consequences that derive from the interactions

Design and Implementation of EASEL Page 2

of simple local algorithms. Developing effective

strategies and techniques for the design of
emergent algorithms and their protocols of
interaction to achieve needed mission
functionality and nonfunctional global
properties is similarly difficult. Existing
unbounded networks are generally unavailable
for experimental use, and their distributed
character would make monitoring impractical.
A system is needed in which emergent
algorithms can be tested, monitored, analyzed,
and their execution depicted in the context of
simulated unbounded networks.

For a variety of reasons, existing simulations are
inadequate for our purposes. Discrete event
simulation languages typically support a shared
memory multiprogramming model with an
interleaved semantics. For unbounded
networks, however, a loosely coupled
multiprocessing model with near neighbor
communication with parallel semantics is
needed. Even the Star-Logo [Res95] language,
which is intended for simulating emergent-like
algorithms, requires that simulations be
expressed in terms of central control and global
visibility, often in contrast with the activities they
simulate.

Thus, Easel is being developed as a tool for
research in security and survivability in
unbounded systems. Key requirements include
an execution semantics consistent with
unbounded networks and a rich set of data types
to support a broad spectrum of simulated
applications as well as monitoring, data
collection and analyses of simulations. Other
key requirements are an easy to use depiction
facility that will help users visualize emergent
properties and algorithms, and several features
unique to security and survivability. The latter
include mobile code, user definable protocols of
interaction, and the ability to share node
characteristics in arbitrary user specified
combinations. Other important characteristics
are that algorithms and protocols used in the
simulation can be identical to those of the actual
distributed application being simulated, that it
be possible to simulate systems at many different
levels of granularity in their component structure
and in time, and that the language be able to
process abstract descriptions of actors at any
desired level of precision.

Language Design

In many superficial ways the language is similar
to conventional programming languages of the
1960s, ‘70s and ‘80s. It has strong user definable
types, bounds checking on array references, no
implicit type casting, static grammatically
embedded block structured scopes, and a syntax
similar to those of Algol, Pascal and Ada. These
characteristics make programs more
understandable, easier to maintain, and less error
prone when developing applications.

Because the language is intended primarily for
applications that simulate unbounded networks,
loosely coupled systems, and highly distributed
infrastructures, the simulation mechanism of
Easel provides a simulated environment of
loosely coupled actors interacting without
central control nor global visibility. Central
control and global visibility are available to
observers and facilitators outside the simulation.

Design and Implementation of EASEL Page 3

Figure A. Dynamic Structure of Easel Program Execution.

SSSSiiiimmmmuuuullllaaaattttiiiioooonnnn

rrrreeeeaaaallll
ttttaaaasssskkkkssss

with parallel processing actors
and concurrent semantics

operating in simulated time
with neither shared memory

nor shared clock

with multiprogrammed tasks
and interleaved semantics

operating in simulated time
with shared memory

and local simulated clock

PPPPrrrroooocccceeeessssssssoooorrrr

ssssiiiimmmmuuuullllaaaatttteeeedddd
ttttaaaasssskkkkssss

with multiprogrammed tasks
and interleaved semantics

operating in real time
with shared memory

and real time clock

EEEEaaaasssseeeellll PPPPrrrrooooggggrrrraaaammmm

hhhhuuuummmmaaaannnn,,,,
pppphhhhyyyyssssiiiiccccaaaallll,,,,

eeeelllleeeeccccttttrrrroooonnnniiiicccc,,,,
aaaannnndddd ssssooooffffttttwwwwaaaarrrreeee

aaaaccccttttoooorrrrssss

Actors. An actor is any active entity of an
Easel program, simulation, or processor within
a simulation. At the program level (but outside
of simulations), actors act as multiprogrammed
tasks with the shared memory environment of a
Macintosh application. The semantics of these
tasks includes interleaved uniprocessor
execution with FIFO-by-priority scheduling,
explicit real-time wait on any thread, access to
the local real-time clock, user interaction, and
access to actual peripheral devices and persistent
storage. At the level of simulations, actors are
simulated entities of the physical world (e.g., a
system administrator, user, intruder,
automobile, bird, or the moon), of the electronic
world (e.g., a computer, router, or peripheral
device), or of the software world (e.g., a software
agent or task). Within a simulated processor of
a simulated computer network, actors serve as
simulated tasks analogous to the real
multiprogrammed tasks at the program level
with interleaved semantics, local shared
memory, and local simulated time clock.

Neighbors. Each actor can interact directly only
with its near neighbor and only in ways
prescribed by their neighbor relationships.
Neighbor relationships are protocols of
interaction and are defined as types that can be
associated with any actor. Thus, in a simulation
of a communications network, a node’s near
neighbors might be only those nodes that are
connected directly by communications links.
The associated neighbor operations might
include sending and receiving messages. In a
simulation of birds in flight, a bird’s near
neighbors might be any bird or other object which
the bird can see from its current position and
heading. In Easel, near neighbor relation is a
property of all parties to the relation, but for
definitional purposes is generally described as a
property of the actor affected by the relation.
Thus, neighbor operations are defined in the local
context of the type definition of the affected actor.
In neighbor definitions, the actor type being
defined is referenced by the pronoun “this”,
while the actor executing the definition at run-
time is referred to by the pronoun “self”.
Neighbor relationships are often asymmetrical
and can include any prefix predicate and
computation involving “this” and “self”.

Special Actor Types. An observer is a special
type of actor that has global visibility throughout
a simulation. An observer typically monitors
and oversees the simulation, dynamically depicts
the state of the simulation, or collects information
about the simulation for later analyses, but does
not correspond to any component of the system
being simulated. An observer can read the state
of any actor within a simulation. A facilitator is
a special type of actor that can exercise central
control over a simulation. A facilitator typically
controls the simulation, sets initial states, varies
characteristics and states dynamically, or serves
as a surrogate for multiple or unimplemented
actors when conducting simulations at more
abstract levels. A facilitator can read or write
the state of any actor within a simulation. A
user interacting with the simulation from a
terminal has the power, control and visibility of
a facilitator. It can suspend the simulation, can
execute an Easel statement in any context of the
simulation, and can observe or change the state

Design and Implementation of EASEL Page 4

of any actor. A processor is a special type of
actor that simulates a uniprocessor computer
system with a multiprogramming operating
system, priority scheduling, shared memory, and
local clock. A simulated network may include
any number of simulated processors. Each
processor may have any number of local tasks.
The overall dynamic structure of an Easel
program is shown in Figure A.

Simulated Time. As might be expected in a
discrete simulation languages for loosely
coupled systems, actors in an Easel simulation
execute in parallel in a world of simulated time.
Unlike many discrete simulation languages,
however, execution times in Easel are specified
in the form of assertions associated with
sequences of statements rather than as
imperative delays at points between statements.
This more abstract declarative specification
corresponds closely to the intended
interpretation and does not overspecify
constraints on the implementation. It does,
however, increase the likelihood of erroneous
results from programs that attempt to exploit
the actual implementation semantics. Although
all actors of a simulation operate in the same
simulated time frame, a shared global clock is
not provided because it would violate the laws
of physics in the world being simulated.

Built-in Types. Like most modern programming
languages Easel provides a variety of common
types and operations on scalars, composite data,
and control structures. There are built-in scalar
types for integers, floating point numbers,
booleans and characters, and type constructors
for arrays and records. Examples of mutable
array and record types have a shared semantics
and a copy operation that creates a similar
structure but with separate identity. That is,
mutable arrays and records correspond to what
in some languages are called pointers to arrays
and pointers to records. Easel also provides
union types which are easier to use and less
error prone than variant records. There are
structures for conditional, iterative, selective,
and recursive control. Pointers exist only at the
implementation level and are not a language
concept.

Type System. The Easel type system is a
generalization of strong user defined types. It
is based on a principle of property-based types
[BFM87, MS91] in which types are sets of
properties instead of sets of objects. Each property
describes some characteristic of the type and can
be interpreted as a theorem about examples of
the type. An example of a type is any object that
satisfies all of the type’s properties. Examples
of a type may have, and usually do have, other
characteristics not included in their type
description. Thus, any abstraction can be
represented as a type. Easel types closely
approximate the concept of type in everyday
use of natural languages. Easel types do not
necessarily impose any particular representation
or implementation regime on examples of the
type.

A portion of the Easel type structure is shown
in Figure B. An object can be simultaneously as
example of any number of types. The number

Design and Implementation of EASEL Page 5

5, for instance, is an example of the types:

Figure B, Partial Type Structure of Easel.

string associative
character

float

intfacilitator

simulation

array record

function

task
processor

observer
numberenumeration

ordered
type routine

actorcomposit boolean

any m
ore exam

ples
m

ore properties

ex
am

pl
e

in
he

ri
ta

nc
e

op
er

at
or

in
he

ri
ta

nc
e

positive, odd, and anything. Consequently,
multiple inheritance is both transparent and
automatic with each object inheriting the
operations for all types for which it is an example.
For example, all operations defined on positive
numbers and all operations defined on odd
integers may be applied to 5. The predefined
types include the universal type; any and ype”,
the type of all types. Although types are in some
ways first class objects of Easel, few operations
are defined on types. These include type union,
type intersection, and the is-an-example-of
predicate “in”.

Mobile Code. Because Easel will be used to
simulate security aspects of computer systems
that include mobile code (e.g., Java applets,
viruses, Trojan horses, and worms), code is a
built-in type of the language. Actors may
compute code, send it in simulated messages,
and execute it in any local context of an Easel
program.

Special Protocols. Although any arbitrary
neighbor relation can be defined within an Easel
program, three particularly useful neighbor
relations are predefined. These are directly
linked neighbors in a communications network,
near neighbors by physical proximity in a two-
or three-dimensional space, and line of sight
neighbors within a range of angles in two-
dimensional space.

Depiction. Easel provides a depiction facility
for dynamic display of the simulations.
Visualizations use declarative specifications and
clearly delineates between the responsibilities of
application developers and those of users
interacting with the application. Applications
determine what views are available to the user.
Each view is an unbounded two-dimensional
depiction world. Drawing objects for each static
and dynamic entity of the simulation can be
placed at any point in a view. Typically, each
actor would change the image or location of its
depiction with knowledge of neither other actors’
depictions nor which views are currently
associated with user windows. A window is a

Design and Implementation of EASEL Page 6

Figure C. Implementation Structure of Easel Simulation System.

TTTT rrrr
aaaa nnnn

ssss llll
aaaa tttt

oooo rrrr

RRRReeeeppppoooorrrrtttt

HHHHoooosssstttt CCCCoooommmmppppuuuutttteeeerrrr aaaannnndddd OOOOSSSS

Memory
Manager

Easel
Schedulers

Byte-Code
Interpreter

EEEEaaaasssseeeellll SSSSiiiimmmmuuuullllaaaattttoooorrrr SSSSyyyysssstttteeeemmmm

Parse

Optimize

Lexical
Analysis

Semantic
Analysis

Code
Generation

EEEEaaaasssseeeellll OOOObbbbjjjjeeeecccctttt
PPPPrrrrooooggggrrrraaaammmm

VVVViiiissssuuuuaaaallll----
iiiizzzzaaaattttiiiioooonnnn
SSSSyyyysssstttteeeemmmm

WWWWiiiinnnnddddoooowwww
SSSSyyyysssstttteeeemmmm

UUUUsssseeeerrrr

EEEEaaaasssseeeellll LLLLaaaannnngggguuuuaaaaggggeeee
SSSSoooouuuurrrrcccceeee PPPPrrrrooooggggrrrraaaammmm

DDDDyyyynnnnaaaammmmiiiicccc GGGGrrrraaaapppphhhhiiiicccc DDDDeeeeppppiiiiccccttttiiiioooonnnn

portal displaying a portion of some view on the
users screen. A user may create any number of
windows and must associate each one with some
view provided by the application. The user
dynamically determines the region and
magnification of the portal within the view.
Applications generally do not have knowledge
of the state of windows.

Implementation Strategy

The Easel implementation draws techniques
from the design of instruction set architectures
(ISA), distributed and uniprocessor operating
systems, compiler construction, user interfaces,
and discrete event simulation. Programs written
in the language are compiled into byte-codes
for a pseudo machine. The pseudo machine is
emulated in PPC code. The system also has a
source language debugger that is separate from,
but interacts with, both the compiler and the
pseudo machine emulator. The implementation
structure of the Easel simulation system is shown
in Figure C.

property ::= property type
 | [var] id : type [(= | is | :=) exp]
 | when type then property
 | define [{ property ; }] end [id]
type ::= exp
 | [type] (routine | function | simulation) fpl
 | (actor | observer | facilitator | processor |
 type) [fpl]
 | record [{ id : type }] end record [id]
 | type . . .
fpl ::= ([[id :] type { ; [id :] type }])
stat ::= null
 | ref := exp
 | exp ([exp [{ , exp }]])
 | id exp
 | wait until exp
 | [define [{ property ; }] [takes exp]
 begin { stat ; } end [id]
 | if exp then { stat ; } [{
 elsif exp then { stat ; } }] [else { stat ; }] end if
 | case exp of { when exp => { stat ; }}
 [otherwise { state ; }] end case
 | stat (when exp | where property)
 | (id : | for id : type) loop { stat ; } end loop [id]
exp ::= id | literal | (exp)
 | exp . id | exp [exp [{ , exp }]]
 | id ([exp [{ , exp }]])
 | [[exp [{ , exp }]]]
 | uop exp
 | exp bop exp
uop ::= id | new | not | op
bop ::= and | or | xor | in | op
op ::= ^ | & | * | / | | | ‘
 | < | = | > | + | - | . .

Compiler. The compiler includes subsystems
for lexical analysis, parsing, semantic analysis,
optimization, and code generation. Lexical
analysis uses a simple state machine structure.
A recursive descent parser is used for
performance reasons. The parser is table driven
for greater compactness and for flexibility during
development. For both performance reasons and
to overcome the traditional error recovery
problems of recursive descent parsers, the parser
is very permissive in allowing any legal syntactic
structure of the language to be used anywhere
some legal structure is allowed. Thus, during
the parse phase, statements can appear anywhere

Design and Implementation of EASEL Page 7

expressions or declarations are allowed and vice

-- included properties
-- state properties
-- neighbor properties
-- compound property
-- type valued expression
-- routines
-- actors
-- type type
-- record type
-- last formal parameter only
-- formal parameter list
-- null statement
-- assignment statement
-- call on routine
-- call on unary routine
-- wait condition or time
-- duration specification
-- local block
-- conditional statement

-- case statement

-- loop statement
-- atomic expressions
-- array and record reference
-- function call
-- composite value constructor
-- unary operator call
-- binary operator call
--unary operators
-- binary operators
-- operator symbols

Figure D. Grammar for Easel Language.

versa. User errors of this kind are reported later
in the semantic analysis phase when more
diagnostic information is available. The
grammar is given in Figure D.

The semantic analysis phase of the compiler
operates on the parse tree and performs all
legality checks that can be done at compile time.
It constructs the symbol table for the program,
determines and enforces the visibility rules,
annotates the parse tree with information that
will aid optimization and code generation, and
determines the representation and allocation
scope for each program entity. To minimize the
development time, optimization is not be

included in the initial implementation. It is
anticipated that optimization eventually will be
applied in the form of transformations on the
semantically analyzed parse tree representation.
The optimizer could also evaluate any
components of a program that depend only on
literals and compile-time determinable values.
This latter optimization together with the use of
memo functions at run-time could help
performance significantly in a system in which
hundreds or thousands of actors are repeating,
at least in part, the same computations.

Code generation involves a single pass over the
semantically analyzed parse tree to emit the
appropriate byte codes for each program
component that is to be evaluated at run-time.
Because the byte codes were chosen to support
the Easel language, the correspondence will be
one-to-one for most frequently used operations
and with substitutions in code macro patterns
for control structures and infrequently used
features.

Design and Implementation of EASEL Page 8

Figure E. Pseudo Machine Stack Structure.

Unsued Segment Space

Expression Stack
Code SegmentCu

rr
en
t

Ro
ut
in
e

Return Mark

Local Variables

Formal Parameters

Stacked Caller
Routine Frames

Current Actor
State Variables

tos:

lenv:

self:
Current
Code

Segment

Constants
and
Code

with

Current Code Segment

Current Actor Segment

Neighbor
State

Variables

Remainder
of

Neighbor
Actor

Segment

Current Neighbor
Actor Segment

this:

Pseudo Machine. The pseudo machine is a
stack-oriented zero-address byte-code machine
similar to those for Java and UCSD-Pascal, but
with a more compact representation. The pseudo
machine supports four levels of reference and
assignment: Most variable references and
assignments likely will be to local variables and
formal parameters of the local environment of
the current routine’s stack frame (i.e., relative to
pseudo machine register “lenv” in Figure E).
Local state variables of the currently executing
actor are accessed relative to the pseudo machine
register “self”. Local state variables of the
neighbor when executing an operation defined
within a neighbor are accessed relative to the
pseudo machine register “this”. Global variables
of an Easel program are accessed relative to the
pseudo machine register “genv”. Most
references in Easel programs will be to constants
rather than variables. Constants are generally
accessed relative to their respective code
segments, with the code segments themselves
accessed as global variables. Each program

variable occupies exactly one word with larger
structures implemented through pointers (see
Figure F). In combination, these characteristics
enable most variable references and assignments
to be encoded as a single byte using a four-bit
relative address (see Figure F). Code size is
important in an interpretative system because it
correlates with the number of interpretation
cycles required. It is important in any system
because it significantly reduces main memory
requirements, which is often a major factor in
overall system performance.

Two-byte instructions typically are used for
references to constants and compile-time
program entities, for most control structure
operations, and for calls on infrequently used
language and program routines (see Figure F).
Frequently called language and program defined
routines are encoded as eight-bit instructions.
Array reference is a byte instruction with both
the base address and the index as computed
parameters. Record reference is usually a two-
byte instruction with a base address parameter
and an offset as part of the instruction. All
references and assignments are bounds checked.

Design and Implementation of EASEL Page 9

Figure F. Variables and Byte Code Instruction Formats.

4 ops long control branch instructionsrel addr

2 ops rel addr record reference and assignment

2 ops rel addr global reference and assignment

local, self, and me relative reference and assignment6 ops addr

rel addr1 op code segment constant reference

rel addr control branch instructions3 ops

1 op indexed case branchnum cases

4 ops literalvalue

2
ops number

routine call frequently used routine

call infrequently used routineroutine
number2 ops

31 0

scalar or pointer valued word any variable

& local vars seg rel addrnum para seg num routine index word
1624

The pseudo machine has base registers for the
four standard access levels (i.e. local, self, this
and global), the current top of the stack, the
current code segment, the current processor
environment, and the current simulation.

Each actor has a frame stack and an execution
thread (See Figure E). Each frame corresponds
to one level of recursion in the routine calling
structure of an actor. Each frame consists of a
formal parameter region, a local variable region,
a return mark, and an expression stack. Actual
parameters are computed into the expression
stack of the caller where, at the time of call, they
are reinterpreted as formal parameters of the
called routine. Because the formal parameters
and local variables are contiguous within each
frame, they are implemented as a single region
(i.e., local environment). The return mark
contains the location of caller’s local
environment, the relative address of the caller’s
instruction, and the location of the caller’s code
segment. The first bytes of each routine’s code
contain the number of formal parameters and
number of local variables.

Operating System Level Features. The Easel
system provides memory management with
garbage collection, a multiprogramming real-
time scheduler, a simulated distributed
multiprocessor scheduler, a simulated
multiprogramming scheduler, declarative access
to quick draw, a specialized windowing and
dialog system, and access to Macintosh files and
devices. The memory manager allocates all
storage used within the Easel system, except
where the Mac OS requires its own allocation.
The Easel managed memory can be any portion
of the Macintosh memory and need not be
contiguous. For execution efficiency, all allocated
blocks are referenced through pointers, rather
than handles, but are relocatable through a
scheme that temporarily uses a handle between
the time a block is relocated and the next garbage
collection. Allocation is by first fit from the
previous allocation. This minimizes memory
fragmentation and maximizes performance.
Separate routines are used for garbage collection
and for compaction. Either or both can be used
to obtain a contiguous block large enough for
the current allocation. Garbage collection is a
two-pass system which first marks all storage
accessible from the program root followed by a
sequential pass through managed memory
reclaiming any unmarked areas.

The Easel system has several of the characteristics
that support security and reduce vulnerabilities.
These include bounds checking on memory
accesses, only fixed size data in the stack, run-
time knowledge of the representation of all
words in allocated memory, and the use of
logically segmented memory. At the
implementation level, each memory segment has
an explicit tag which can be used to determine
the representation of each word within the
segment. Segments whose words are nominally
pointers to other segments, use the high order
bit in each word to specify whether the word
contains a scalar or an address. Frame stack
words, for example, are type tagged in this
manner. The actor visibility rules also provide
compartmented data that can be violated only
by neighbor relationships defined for that
purpose.

Mobile Code. The interface to an interactive

Design and Implementation of EASEL Page 10

user acting as a facilitator or using the debugger

is implemented by passing the user’s textual
input through the lexical analysis and parse
phases of the compiler one statement at a time.
This incremental compilation is then completed
in the context of the appropriate preexisting local
program context. The resulting byte code is
interpreted in the context of the corresponding
frame in the on-going execution. A similar
strategy is used when simulated mobile code is
computed and later executed in a simulation.

System Structure. The compiler, operating
system, depiction system, debugger, user
interface, and run-time language features are
implemented as programs of the pseudo machine
and managed by its operating system (see Figure
C). For efficiency, many of them are represented
in PPC code instead of Easel byte codes. In all
cases, however, they conform to the
implementation conventions for Easel
applications and depend on the Easel memory
manager and scheduler.

Platform Choice. The system could have been
hosted on any platform. The primary
requirement was for a widely available machine
with reasonable system software and software
development tools. After doing some
preliminary development on both the PC and
Macintosh using CodeWarrior, the Macintosh
was our preferred choice. It provides a fast,
affordable, reliable, easy to maintain, and easy
to use hardware and software environment with
superior graphics capabilities and consistent
interface conventions. Also, our prior experience
with Inside Macintosh and software
development on the Macintosh, may help the
development schedule.

The absence of protected memory and true
multitasking in the MacOS are not additional
impediments in this project because our
requirements for specialized network semantics
in these areas could not be met by any
uniprocessor or shared-memory multiprocessor
operating system. Also, Easel requires very high
performance memory management and task
switching which probably can be achieved only
in a system specialized for Easel’s requirements
and is unlikely from an general purpose
operating system.

References

[BFM87] D.Baker, D.Fisher, D.Mundie,
J.Shultis and F.Tadman. Toward Full
Spectrum Languages: A New
Approach to Software. Incremental
Systems Corp. Technical Report
TR871002, October 1987, 44 pp.

[EFL97] R.J.Ellison, D.A.Fisher, R.C.Linger,
H.F.Lipson, T.A.Longstaff, and
N.R.Mead. Survivable Network
Systems: An Emerging Discipline.
Software Engineering Institute
Technical Report No. CMU/SEI-
97-TR-013. November 1997.

[FL99] D.A.Fisher and H.F.Lipson.
Emergent Algorithms -- A New
Method for Enhancing Survivability in
Unbounded Systems. Proceedings of
the Hawai’ i International
Conference On System Sciences,
January 5-8, 1999, Maui, Hawaii.

[MS91] Proceedings of the Workshop on
Informal Computing, May 29-31,
1991, Santa Cruz, California, D.A.
Mundie and J.C. Shultis, editors.

Design and Implementation of EASEL Page 11

[PCCIP97] Presidential Commission on Critical
Infrastructure Protection, Critical
Foundations -- Protecting America’s
Infrastructures. Presidential
C o m m i s s i o n o n C r i t i c a l
Infrastructure Protection, October
1997, 173 pp.

[Res95] M.Resnick. New Paradigms for
Computing, New Paradigms for
Thinking. Computers and
Exploratory Learning, A.diSessa,
C.Hoyles and R.Noss, editors,
Springer-Verlag (1995).

Acknowledgments

Howard Lipson has provided ongoing feedback
on the language design and contributed
especially to the design of the neighbor relation
facility. Tim Shimeall participated in the
experimental implementation done in the
summer of 1998 and contributed especially to
the design of the scheduling system. David
Mundie and Bob Ellison have been generous
reviewers of earlier versions of this paper and
have suggested several improvements
incorporated here.

