
“Ideal” Disk Optimizer 1

Fast Processors, Slow Hard Drives...
What’s wrong with this picture?

The anatomy of an “ideal” disk optimizer.

By Chris Russ

Reindeer Games, Inc.

This paper describes methods of achieving optimal performance from mechanical memory where latencies
measured in milliseconds are the primary culprits in the loss of computer performance. This includes file
arrangement, data structures, and the kinds of prediction of future events that are really possible.

Overview - Why is disk performance
the issue?
Generally, the computer’s organizational struc-
ture is a pyramid. The really fast accesses are in
a small memory space with slower accesses in
large memory spaces. The following illustra-
tion shows this:

-------- Tape Backup ---------

2-80GB Hard Disk

16M-1GB Dynamic RAM

0-2MB Static RAM

32K Data /32K Instruction

64
Registers

Figure 1 - Memory Hierarchy Pyramid

Mechanical Storage

The bottom of the pyramid is filled with very
large and slow devices. Although the sizes
have changed over the years (and some devices
like paper tape and punch cards are omitted

here) generally they have the same properties
when compared to non-mechanical memory:

• Big

• Slow

• Cheap

• Sometimes removable

There are a few basic types of magnetic and
optical mechanical devices for storage. (For the
purposes of this discussion, ignore punch cards
and paper tape.)

Magnetic Tape

Drum

Disk

2 “Ideal” Disk Optimizer

Removable Disks:

Magneto-Optical,
Winchester,
Bernoulli,
Floppy (Zip)

CD (CD-R,
CD–RW)

DVD (DVD-RAM)

Figure 2: Mechanical R/O and R/W Mass-
Storage Device

Tape has a *really* long latency, depending
upon where the data is on the reel. (Even
longer if the reel is not mounted.) Because of
this property, it is generally better to get more
than one thing at a time while searching.
However, streaming tape can be a very good
way to record large volumes of data at high
speed. (To this day, NASA still has magnetic
tape from the Apollo program that has never
been read or transferred to another format. It
may no longer be readable.)

Drum has only a rotational latency that is rela-
tively short, but requires many heads, and the
amount of storage is relatively small. It is listed
here as a blast from the past, but it does illus-
trate that there are other kinds of mechanical
storage than disks and tape.

Normal hard disks have a short rotational
latency, but potentially high seek latency.
Thus, while a disk may have a rotational
velocity of 7200 RPM it may have an average
seek time of 13 msec. What is average seek
time? It depends upon the data provided by
the manufacturer. It is not well defined. The
easiest way to increase the size of a hard disk is
to increase the number of platters, which has
little effect on the seek time.

There are many kinds of removable media such
as optical disks, magneto-optical disks,
Winchester and Bernoulli drives, Zip and
floppy drives.

Optical disks and magneto-optical disks tend to
be very non-volatile, but require relatively large
heads. Because of their high mass, the seek
times for these heads are also high. This in-
cludes CD-R, CD-RW, and DVD-RAM. Note:

the description 12x or 20x merely refers to a
faster rotation speed and a higher data transfer
rate. The head seek times are still 3-5x longer
than equivalent hard disks. Some of the drives
like CD-R’s are very slow when writing data
and seeking.

Winchester drives are much faster, but cannot
compete with hard disks since it is very difficult
to make a multi-platter version of a removable
Winchester. They are also subject to magnetic
fields in the same way that a hard disk is (and
optical and magneto-optical media are not).
There are data density limits since it is difficult
to completely seal the platter while at the same
time keeping the head and supporting
hardware in the drive unit.

Floppy media has come in and out of vogue
many times. Everything from single density 8”
floppy drives to 100MB zip disks constitutes
this family. The primary consideration is price,
not speed, for these devices.

Read Only removable media such as CD’s and
DVD’s are not suitable for the main active
memory space, but many of the optimization
tricks discussed later in the paper will apply.

Because of all of these properties, hard disks
(and RAIDs) have become the standard for
large capacity active memory (at the bottom of
the pyramid in figure 1). At this time, tape is
still the leader for raw capacity and is used for
archival purposes, although the removable
media types do compete.

High Level - Where to start?
The first problem with designing an optimizer
for a disk is to examine where the problems lie.
Contrary to popular opinion, the problem isn’t
fragmentation. The primary problem is really
how much time is wasted while the disk head
seeks from one position to another. The sec-
ondary problem is how many seeks are
required to get all of the requested data.

“Ideal” Disk Optimizer 3

Disk Optimization Goals

The goals for optimizing a disk are two-fold:

1) Minimize Head Seeking:
Fragmentation is only a problem if a lot
of time is spent seeking to the fragment
required.

2) Make the most of a seek operation: If
seeking is required, get other data along
the way. This also means that a larger
block size should be read in hopes that
the nearby data will also be useful.

Disk Optimization Solutions

Try not to access the disk if possible. Caching
works very well if the same data is requested
more than one time, subject to the size of the
cache. The major problem with caching is that
it does nothing for data that is requested the
first time and can cause increased overhead if
that data does not get used again.

If it is necessary to access the disk, the
following methods minimize the amount of
seeking:

A) Put the Most Frequently Accessed data
in the middle of the platter. This will
reduce the average seek time. (Thus,
partitioning is a bad from a speed
perspective.)

B) The data that is referenced concurrently
should be in close spatial proximity.

C) Data that is accessed sequentially (as
opposed to randomly) can be placed
toward the inside and outside edges of
the disk (movies, audio).

D) Infrequently Accessed data can be
placed as far out as possible toward the
inside and outside edges. (Help files,
reference data, old user data, utility
applications.)

There is another method of caching data. If the
data is too large to fit in a RAM-based cache,
but it is accessed frequently and is static, it can
be placed in multiple places on the disk. In this

way, a seek must only travel to the nearest copy
instead of the only copy. This could be very
effective for system related data.

Mid Level - Candidates for
Improvement
It is one thing to say “put infrequently used
data as far out as possible” and something else
to figure out what is frequent and what isn’t.

User and OS behavior become an issue when
determining frequency of use. It is important to
look at what the user does.

Types of user access:

1) Booting

2) System Files, Libraries, Finder, Fonts

3) Launching an Application

4) Running an Application

5) Running Multiple Applications

6) File Sharing

7) Accessing documents - read only

a) Large Sequential Access
b) Random Access

8) Accessing documents, creating new
ones

9) Accessing documents, changing por-
tions of them

a) Large Sequential Access
b) Random Access

Typically, each of these files has a different disk
usage pattern, and are fairly easy to character-
ize. For instance, the boot sequence files are
readily identifiable from their positions in the
disk directory and file types.

The disk can be broken into speed zones.
Different portions of the disk provide for faster
access than others.

4 “Ideal” Disk Optimizer

One way to visualize this is to picture the disk
in zones around the ideal center:

Inside Middle Outside

 Slow <--------- Fast --------> Medium

Inside Edge: Medium data rate, slow random
access, good sequential access (like a tape)

Middle: Good data rate, fast random access,
good sequential access (like a drum)

Outside Edge: High data rate: slow random
access, excellent sequential access (like a fast
tape)

Booting

While making a Macsbug log of the files
opened during the boot process (Mac OS 8.5.1
with IE removed), over 600 file open references
were made prior to Finder Launch.

This includes every access to each font, each
‘ndrv’ driver over a dozen times, each ‘cdev’
control panel, each ‘INIT’ extension, QuickTime
over 90 times, the System file over 100 times,
and over 130 references to preference files.

What the user sees during the boot is a small
subset of the files opened. Generally these
include only the extensions and control panels
from Apple or third parties.

…

 …

Figure 4 - Parade of icons

If the boot sequence files, including their re-
spective preference files, were all stored
together the only significant seeking would be
to the directory to find the locations of the files.
Ideally, at the start, the directory should be
referenced to get all the directory contents of
the System Folder, Extensions Folder, Fonts
Folder, and Control Panels Folder loaded into
the cache. Then, with the disk access time
minimized, the remaining boot time is largely
execution time. If all the extensions could be
loaded as one large file, the disk access time
could be virtually removed. [Author’s Note: in
tests this cuts boot times in half.]

Note: The real problem with this notion is that
some members of the boot sequence write to
the disk. The directory has to be updated, and
writies either to the extension or its respective
preference file is much slower. Ideally these
writes could be saved up to the end.

Files that remain open

It turns out that under Mac OS 8.5 a large num-
ber of files are constantly open. Without con-
sidering the effects of IE (which was removed
for other reasons) there are 58 files open occu-
pying 64 FCB’s. Two of those FCB’s were the
directory files, but the truly interesting part
here is which files are open. (See Table 1,
below.)

Naturally, the System and Finder are open.
There are a few support files for Finder that
probably do need to be flushed out to disk as
they are changed — the Desktop Database files,
the Users & Groups File (assuming it changes
much, certainly not a given), and Finder
Preferences are really the only ones that should
be allowed to change on the disk.

“Ideal” Disk Optimizer 5

Table 1 - list of files open under Mac OS 8.5.1
(without IE)

4 Background Apps (appe)
- Application Switcher
- Control Strip Extension
- Folder Actions
- Time Synchronizer

3 B*Tree data files (BTFL, DTFL)
- User & Groups Data File
- Desktop DB
- Desktop DF

34 fonts (FFIL)
- Varies, depends upon user

Finder (FNDR)

2 Inits (INIT)
- QuickTime™
- Shared Library Manager PPC

13 Libraries (libr)
- 6 Open Transport (11 FCB’s)
- IrLanScannerPPC
- Serial (Build-in)

1 Preference file (pref)
- Finder Preferences

1 Shared Library (shlb)
- File Sharing Library (2 FCB’s)

System Files (zsyr, zsys)
- System Resources
- System

Directory (files #3 and #4)
- Catalog Tree
- Extent Tree

Except for the directory files, these open files
should either completely exist in memory, or be
where they can be accessed quickly. Unfortu-
nately, resource files incur additional overhead.
The best bet would be to completely cache in
memory as many of these files (except the cata-
log and extent tree files) as possible. If files
aren’t used, VM will swap them out. (The VM
system will be addressed below.)

The disk directory is really a couple of files.
They are the second-most and third-most freq-
uently accessed files in the system behind the
VM backing store. Because of this, anything
that can be done to reduce seek time will make
a significant difference. The obvious place to
put this data is right in the middle of the
volume. This way, the average seek time is half
of what it would be if it was placed on the
inside edge (typical position).

Alternatively, the system files in the list rarely
get modified and are good candidates for a set
of static data caches.

Root

… … … … … … … … … … … … … … … … … …

<-------------------- Leaf Nodes ------------------>

Figure 5 - Disk Directory Tree

It is possible to optimize the contents of the
Directory B* Trees as well, with significant
performance improvements. To put it simply,
placing B*Tree nodes that are used concurrently
in adjacent blocks in the catalog or extent files,
causes seek latency to be reduced. This is really
a low-level issue and will be addressed later.

[Author’s Note: The current implementation of
PBGetCatInfo() is slow for a catalog indexed miss.
Since there is a miss at the end of every directory,
Finder and the Standard File Package spend a lot of
time building the complete list of files for any path.]

Safe File Updates and Swapping

This is one of the big contributors to making a
disk slower. If frequently used files are placed
near their respective applications, and they are
constantly being replaced by modified copies
(that are usually farther away), the performance
of the system is degraded. In addition, frag-
mentation does occur since there are now a lot
of holes where the files used to be. Defrag-
mentation programs can address part of this
issue, but do not place files in good proximity.

“Original”
Directory
Reference

Replacement
File

Figure 6a - Write the new file

6 “Ideal” Disk Optimizer

“Original”
Directory
Reference

Replacement
File

Figure 6b - Swap directory references

“Original”
Directory
Reference

Replacement
File

Figure 6c - Delete the old file using new
reference

File Categorization

Applications are good candidates for caching.
Generally, they are read only and accessed
infrequently to load in some new piece of code.
VM systems map application files into the
memory space at specific addresses and achieve
further speed improvements, unless the appli-
cation files are far away from the VM backing
store on the volume.

The bigger problem comes from the document
and preference files for the (hopefully nearby)
applications. The goal is to reduce seek time, so
it is a bad idea (and the worst case!) to place
documents and their respective applications on
opposite ends of the disk.

Q: How should an optimizer tell if an
application gets used a lot? (Most
Frequently Used)

A: It has a lot of documents with a variety
of modification dates.

Q: Which applications were Most Recently
Used?

A: If there is a preference file that has a
recent modification date, or a document
of the application’s creator and type

with a recent modification date, it is a
candidate.

Q: For a document instead of an applica-
tion, how Frequently Modified is it?

A: The best estimator is the difference be-
tween the creation date and the modifi-
cation date. There will be a lot of docu-
ments with little difference between the
creation date and the modification date.
However, there will be a few that get
modified often. (This is especially true
of preference files.)

Q: What about a static document? There
are no indicators for how often or re-
cently it was accessed.

A: True. The only solution is to watch the
OS and see what files fit into this
category. Or, on the basis of file type or
a list of typical files, this may be possi-
ble. For specific application (at least the
popular ones) it is possible to make such
a list (i.e., CodeWarrior, Photoshop,
etc.).

This gives us a few categories to put files into:

• Boot Files (Mostly read only, accessed
together and then not again until next
time)

• Disk Directories (R/W in place, very
frequently)

• System Files (not VM) (Read Only,
accessed frequently)

• VM Backing Store (R/W in place, most
frequently)

• VM Photoshop (same as VM Backing
Store, temporary file, grows, may exist
on multiple volumes)

• Frequently Used Applications (Read
only, multiple accesses within the file,
lots of concurrent read accesses to doc-
ument files, part of VM memory
depending upon implementation)

“Ideal” Disk Optimizer 7

• Frequently Used Applications that
create or modify documents a lot (lots of
potential head seeking to the new or
modified documents)

• Infrequently Used Applications
(generally can place related documents
nearby, but can be safely placed in slow
zones)

• Static files that are frequently accessed
(help, desktop graphics, reference ma-
terials, libraries, include files)

• Documents that are frequently modified
or created (includes temp files) (Best
placed right next to their respective
applications)

• Documents that are rarely used

• Sequential access multimedia files

This is a lot more than the three basic categories
of Document, Application, and System.

Virtual Memory

Everything revolves around the virtual
memory file, called the VM Backing Store. It is
the most frequently accessed file in the system.

The best choice is to purchase a RAID device
(level 0 is sufficient, no redundancy is needed
unless the cost of the system going down is
really high) and use it for the VM backing
store. It only has to be as large as the VM back-
ing store it is supporting. Access time is a big
issue. The lower the effective seek time, the
better. No other data should be stored on this
device, since accessing that data would affect
the VM performance. A cheap 4 GB RAID
system with its own Ultra SCSI-3 (or firewire)
controller card would be perfect.

The second best choice is to place the VM file at
the center of the volume. Conversely, if the VM
is really large, it should be split into two frag-
ments with the disk directory files at the center
of the volume.

This is complicated by mapping applications
into the Virtual Memory space. These files
effectively become part of the VM backing
store, so if they are far away from the center of

the disk, performance will again be degraded.
The most frequently used applications should
be near the VM file, while at the same time as
close to their currently used documents. Thus,
a swapping space on the volume to push an
application and its currently used files next to
the VM file (and the center) would make a
performance improvement.

Photoshop’s Virtual Memory

A significant fraction of the Macintosh’s user
base uses Adobe Photoshop™. Since
Photoshop has its own virtual memory system
for storing large images (and undo informa-
tion), it has the same set of problems that the
operating system has, except that the PS VM
file is temporary. It only exists during the
execution of the application, and grows as it
needs to. Ideally it should also have its own
RAID device, with its own controller card.

Failing a separate hard disk for the PS VM file,
the file would benefit from being near the
Photoshop application (which in turn needs to
be near the OS VM file if VM is on).
Fragmentation is also an issue with this large
file being created and grown while other files
are written to disk. One reason is that the
directory extent file needs to be accessed to
locate the fragments. Another is that the PS VM
file is deleted when Photoshop quits and the
holes are partially filled in by other
applications’ documents. Fragmentation
happens quickly. As a direct result, pieces of
files are everywhere and seek times go up.
[Author’s note: this is one of the cases where a
traditional Defragger makes some difference -- by
creating a single large hole for the PS VM file.]

File Placement

Q: Now that the file characteristics have
been determined, where should they be
placed?

The next three figures (7a, 7b, and 7c) show
some disk layouts. The first two are the most
common optimization patterns, and the third is
the proposed “Ideal” layout that incorporates
the changes that were discussed above.

8 “Ideal” Disk Optimizer

Documents

Free
 (VM, Temp files, Photoshop)

Applications

Directory: Cat Tree, Ext Tree

System Software,
Libraries,
Finder, etc.

Inside

Middle

Outside

Head has to travel from VM to
the directory every time a non-
cached reference is made to the
directory.

Most of the data on the disk
is packed up on the slower datarate
edge of the disk.

(This layout would be ideal if all
software was cached, VM was off,
and one big document is accessed

Figure 7a - Most common optimization layout

Documents

Free
 (VM, Temp files, Photoshop)

Applications

Directory: Cat Tree, Ext Tree

System Software,
Libraries,
Finder, etc.

Inside

Middle

Outside

The Directory, System, and
Applications are on one end

The documents, preferences, etc.
are all at the other end of the disk.

A single large free space is kept
in the middle of the disk.

Figure 7b - Another common optimization layout (Worst Case?)

“Ideal” Disk Optimizer 9

Infrequent Applications

Infrequent Documents

Startup Inits, etc.

“A” Free

Frequent Documents

Frequent Applications + Prefs
Custom Icon Files

Libraries

Directory: Cat Tree, Ext Tree

System Software
(constantly open files)
Finder, etc.

VM (if turned on)

File Sharing Databases

Photoshop VM

“B” Free

Really Infrequent Documents

.h files, PowerPlant™,
Reference data, Help files, etc.

Quicktime™ Movies

Inside

Middle

Outside

Drive head spends most of its
time in the middle of the platter.

If a seek is required, the worst case
is 1/2 the width of the disk.

Generally, the most frequently needed
data is within 1/6 of the width of the
disk.

Photoshop's VM has room to
grow.

As new documents are created,
older ones can be moved toward
the inside edge. Really old ones
can be moved to the outside.

Does not include constantly
open files, just transient boot
files

By keeping documents near
their respective applications,
launch and open times are reduced.

Most applications hit their preference
files early. By keeping these tiny
preferences next to their applications
more time is saved.

This end of the disk has the highest
data rates, but has slow seek times
to anywhere else.

Figure 7c - “Ideal” disk layout diagram

10 “Ideal” Disk Optimizer

In the first case (Figure 7a), all the files are
packed up against the inside edge of the disk.
The primary reasons for this are that the direc-
tory was already placed there when the drive
was formatted, and the volume bitmap (which
contains the list of which blocks are currently in
use) is located right there. If writing is going to
take place, quick access to the volume bitmap is
a good idea. In general, only half the distance
of the disk needs to be traversed to get anyplace
and the head spends most of its time near the
inside edge.

In the second case (Figure 7b), the documents
are put at the far end of the disk from the appli-
cations and other data that is located at the
inside edge. The goal is to put the empty space
on the drive in the middle so that VM is faster.
The unfortunate side-effect is that every time a
new document file is opened, the head has to
seek from the directory to the document on the
far side of the disk. This is the worst case for
seeking.

The third case (Figure 7c) tries to place the most
frequently accessed material on the disk in the
center. The average seek time can be reduced
to approximately 1/6 of the second case and
approximately 1/3 of the first case. There is
one problem with this proposal; while it is pos-
sible to move the Volume Bitmap (VBM) to the
center of the platter, the Master Directory Block
(MDB) is a problem. The MDB contains global
information like the next CNID (Catalog Node
ID) and how much free space there is on disk
and needs to be updated every time a file or
folder is written or changed. That would not
matter for a Read-Only medium (such as a CD-
ROM), but for a R/W device this is a problem.

One viable (but ugly) hack for 7c would be to
partition the disk into three equal partitions:
Inside, Middle, and Outside. The middle parti-
tion receives the OS and the VM files. Then,
allocate some additional space on the middle
partition to hold the storage for a Foreign File
System that will control the other two partitions
as one volume. In this way, the complete direc-
tory information will be at the center of the
disk, the best performance will be achieved,
and a really ugly driver or boot-block hack will
not be necessary to move the MDB. It will be
moved to another partition. This also allows
the foreign file system to keep track of the files

that are being written and do a better job of
optimization.

Low Level - Directory Performance
A simple test was constructed to measure boot
times. By building a full system (System 7.01)
and placing it and a minimal directory tree on a
disk, boot times for a MacClassic were 2x faster
than an optimized (case 7a - MacTools) disk.

Q: Why would this matter? The system
software and the boot files are in the
same place. There is no obvious head
seeking from one side of the disk to the
other.

A: The directory tree on the new volume
was not fragmented. The old volume
had directory nodes and leaves every-
where, so that the process of indexing
down a directory with PBGetCatInfo()
or locating a file for the first time was
very time consuming.

The problem goes like this:

Take a pair of nodes or leaves that are adjacent
but need to have new data inserted between
them.

A new node is allocated (from the free space at
the end of the B*Tree file) and linked in-
between.

This kind of insertion in a linked-list (or a
doubly linked list) is the whole basis behind
pointers and list data structures. Unfortunately,
the underlying assumption is that the memory

“Ideal” Disk Optimizer 11

is random access. On a hard drive it isn’t
exactly random access. Some kinds of accesses
are faster than others. Thus, some places in
memory are faster than others. Accesses within
the same cylinder are the fastest and only wait
for the disk latency. Beyond that, accesses that
are nearby are much faster than accesses that
are far. Since the free space in the B*Tree file is
at the end of the file, and the odds are that at
least one of the two nodes that the insertion
occurs between are not at the end, a lot of
seeking will go on.

Q: Doesn’t caching fix this problem?

A: Yes and no. Obviously it won’t work for
the first access, but also there is a
limited amount of cache memory
available. The additional problem is
that the cache would be more efficient
with a lot of small pages than a few
large ones. However, it takes just about
as long to read a full cylinder on a hard
disk as it does to read one block. Thus it
helps if the necessary data is contained
within the same cylinder most of the
time. The cache will be much more
efficient.

The problem with the B*Tree isn’t just theory.
There are two practical examples that illustrate
the potential gains.

• MacTools: When MacTools repaired
the directory, it actually made a com-
plete new one. That new directory file
was written to disk and the Volume Info
Block (Master Directory Block or MDB)
was updated. The biggest surprise was
the reports from users that the computer
seemed faster. In fact, it was.

• TimesTwo 2.0: TimesTwo was slow.
TimesTwo was very slow. In to make
the performance better a number of
tricks were used (including not com-
pressing the system files or the disk
directory), but the biggest trick was to
build an optimized Catalog B*Tree file.
On slower media (particularly with low
rotation speeds and high seek times) it
made a very large difference.

Q: So, how should a Catalog B*Tree be re-
arranged to be more efficient (since
changing the data structure is not an
option)?

A: The catalog nodes and leaves for the
following should be tightly packed at
the start of the Catalog File:

1) Links to Desktop DB,DF

2) System Folder and all folders and
files contained within, but especially
the ones that are hit first during
boot: Root of System, Fonts,
Preferences, Extensions, and Control
Panels

3) Root of the boot volume

4) Folders containing applications that
have frequently or recently modified
files

5) Folders containing applications with
aliases under the Apple Menu, on
the desktop, and on the root of the
volume

6) Folders containing recently used
documents.

Leave strategicly placed gaps (empty
leaf records) for future growth.

Note: Metrowerks include files and linking
libraries would not fall under any of these since
they are neither recently modified nor do they
have aliases. However, if their respective nodes
are all kept together, there would be significant
speed increases in Metrowerks.

Prediction of Future Events and Idle
Time
Pre-filling caches is one other method of
improving the apparent performance of the
machine. If there is some way to determine
what the user is likely to do next based upon
his previous history, then new data or code can

12 “Ideal” Disk Optimizer

be pre-loaded into the cache in anticipation of
the next event.

For instance, if the user is in the process of
quitting TeachText and 30% of the time
launches ClarisWorks next, but only 2% of the
time relaunches TeachText, then it makes sense
to remove TeachText from the cache and load
ClarisWorks in its place. This would all be
done in idle time while the user is still navigat-
ing in the Finder and moving the mouse, well
before the application launch. Thus, 30% of the
time the machine would appear faster.

Photoshop does something like this -- when the
screen is updating after a processing operation,
the first tile to be rendered on the screen is the
one under the cursor. It still takes as long to
draw the image on the screen, but the user has
a better experience.

Some of the following knowledge can be col-
lected to accomplish this feat:

• What concurrent activities does the user
do? Are the same 3 programs always
launched together?

• What sequential activities does the user
do? It is fair to assume that when an
application is terminated that it will
NOT be used again? (Is this reasonable
when the user isn’t trying to benchmark
application launches?)

• Are there ways to improve the cache
usage? Specifically, what should NOT
get cached? Files that are used in a
sequential manner and are rarely re-
used will completely flush a cache that
uses an LRU replacement algorithm.
Example: a 50MB QuickTime™ movie
and an 8MB cache. The cache will end
up holding the last 8MB of the movie
after it has played. If the big fireball
ending in the movie is about to be
replayed (if the application was
MoviePlayer, for instance) this might
not be a bad thing. However, in most
non-editing applications this would not
be true.

• Are there certain types of files that only
get used with a specific application? If
so, can they be pre-loaded when the
application is launched (preference

files), or can they be purged when the
application quits (most documents)?

This information needs to be collected by
watching the user’s activities. The prefilling is
best performed during user idle time or while
the disk is idle so that there is no apparent
slow-down in the event that the guess is wrong.

Conclusion
There are really two philosophies for optimiza-
tion: Static Optimization (stand-alone applica-
tions) and Dynamic Optimization (extensions).
For the most part, the current tools are static.
Occasionally the Disk Optimizer is scheduled to
run (or the Disk Optimizing Screen Saver)
putting all the files in semi-optimal positions.

Static Method - Run the application from time
to time to reorganize the contents of the disk
and directory based upon statistics from the
data present. BDOW (Best Disk Optimizer in
the West). (Note: this would work very well for
improving CD-ROM performance, too.)

Dynamic Method - Get to watch what the user
is doing and use that information effectively.
Here are some possible utility programs:

- Least Impact (tell how much time is
being spent waiting for the head to seek)
Thrash Meter.

- Low Impact (pointing the allocation
mechanism to *better* places for files to
be written, including temp files vs. doc-
uments, also when the Safe File Save &
Swap occurs, swap positions of the files
on disk if they fit and the size < xx) Hole
Master.

- Medium Impact (swap files that are
going to be used a lot for a while to the
middle of the disk and push files that
are not farther out. Do a better job of
managing applications next to pref
files.) Disk Meister.

- High Impact (figure out what the user is
going to do next, based upon previous
activity, and asynchronously preload

“Ideal” Disk Optimizer 13

data based upon the probabilities.)
Mental Pick-Pocket.

It is a lot easier to write a static optimizer than a
dynamic one. However there are a lot more
potential gains from a dynamic one.

A better static optimizer can be constructed
that, for a brief period of time, will provide
really good results. The challenge is gathering
the knowledge that will make an optimal
layout. A static optimizer is easier to write than
a dynamic one, and it is generally safer since
there is no danger of something sneaky going
on in the background that could cause data to
be lost.

A good dynamic optimizer, on the other hand,
can collect the knowledge about the user and
the operating system needed to really be opti-
mal and stay that way. The problem to be over-
come is safety. It is imperative that any process
that changes data structures on the disk not be
susceptible to a crash at the wrong moment,
and that it be immune to other processes that
are running on the system.

The alternative is to make the disk faster. A
little money spent on extra drives and con-
trollers or small RAIDs will have a big perfor-
mance impact. The idea of buying a 800MHz
computer with a cheap partitioned 8GB IDE
drive and expecting performance is insane.

Remember, adding more memory makes the
machine faster because more data can be
cached in memory at once. It still doesn’t help
loading something the first time.

As volume size increases and the number of
files on the volume increases, any performance
problems with the data structures in the file
system will become magnified. An improve-
ment to the B*Tree allocation mechanism, or a
simple optimizer for the B*Tree can have pro-
found improvements on the performance of the
computer.

