
Do not distribute—Apple Confidential 1

Appearance 1.0

Technical Documentation

®

APPLE CONFIDENTIAL

Do not distribute—Apple Confidential 2

Overview
This document describes the toolbox enhancements for Mac OS 8.

Goals
The main goals of these enhancements is to lay the foundation for switchable theme, try to
bring back a consistent interface, and make it much easier to write programs for the Mac OS.
We will accomplish these goals by doing the following:

• provide many new control types previously unavailable on the MacOS,
such as sliders, tabs, and group boxes.

• allow applications to adopt these new controls so they will be theme
savvy automatically when theme switching is available.

• provide enough functionality to make it no longer necessary for devel-
opers to create their own defprocs, etc. This allows us to avoid a patch-
work appearance when running under themes.

• provide a richer environment for controls to allow multicolored back-
grounds, embedding, and correct drawing order and hit testing.

Deployment

Extension
Appearance 1.0 is delivered as a system extension.

Appearance APIs
APIs mentioned in this document are delivered as classic 68K trap-based routines, CFM-68K
routines, and CFM-PPC routines.

System-Wide Appearance
Appearance is by default system-wide. This means that all applications that are running auto-
matically get the grayscale look. The new defprocs introduced with Appearance have differ-
ent resource IDs (and hence proc IDs) than the classic System 7 controls. To cause
applications to use the new Appearance defprocs, we implement a set of 'mapper' CDEFs.
When an application asks for WDEF 0, it gets our mapper WDEF instead.

Some defprocs have a compatibility mode within them that are activated when called thru a
mapper. Any special compatibility behavior is mentioned with each defproc description be-
low.

Do not distribute—Apple Confidential 3

Compatibility Mode
For compatibility reasons, it is possible to turn off the system-wide aspect of Appearance in
the Appearance control panel. This has the effect of putting the system back into the classic
System 7 look. A restart is required for this change. When in this mode, the mappers simply
call thru to the classic defprocs in the system file, causing any request for WDEF 0 to actually
get the classic WDEF 0, as expected.

Applications that adopt the new Appearance defprocs directly and call a new routine (Regis-
terAppearanceClient) will continue to have a grayscale look when system-wide appearance is
off. The mappers sense clients and call thru to the new defprocs in this case. If an appearance
client adopts the Appearance defprocs directly by using the new defproc IDs, this will bypass
the mapper defprocs, eliminating the overhead involved in mapping the calls to the right def-
procs.

System Font Replacement
The user can change the system font from Chicago to Charcoal and back in the Appearance
control panel (the default is Charcoal). Some applications may not get along perfectly with
Charcoal (we have found only 1 to date), so this option is made available to users so they can
adjust it to suit their needs or personal preference.

Control Manager Extensions

Control Feature Flags
The Control Manager defines bits which represents the feature set of a specific control. The
features possible are listed below:

enum
{

kControlSupportsGhosting = 1 << 0,
kControlSupportsEmbedding = 1 << 1,
kControlSupportsFocus = 1 << 2,
kControlWantsIdle = 1 << 3,
kControlWantsActivate = 1 << 4,
kControlHandlesTracking = 1 << 5,
kControlSupportsDataAccess = 1 << 6,
kControlHasSpecialBackground = 1 << 7,
kControlGetsFocusOnClick = 1 << 8,
kControlSupportsCalcBestRect = 1 << 9,
kControlSupportsLiveFeedback = 1 << 10

};

To obtain a control's features, the GetControlFeatures routine is available.

New Control Messages
To provide for the extended functionality of controls, the following messages have been add-
ed:

Do not distribute—Apple Confidential 4

enum
{

kControlMsgDrawGhost = 13,
kControlMsgCalcBestRect = 14,
kControlMsgHandleTracking = 15,
kControlMsgFocus = 16,
kControlMsgKeyDown = 17,
kControlMsgIdle = 18,
kControlMsgGetFeatures = 19,
kControlMsgSetData = 20,
kControlMsgGetData = 21,
kControlMsgActivate = 22,
kControlMsgSetUpBackground = 23,
kControlMsgCalcValueFromPos = 24,
kControlMsgTestNewMsgSupport = 25

};

To send these messages to a control, a new API has been added: SendControlMessage.

Supporting the New Messages
In order to declare that you support the new features/messages, a CDEF should respond to the
kControlMsgTestNewMsgSupport by returning the constant kControlSupportsNewMessages
as the result code of the CDEF. If a CDEF does not respond to this message, it is assume to
not know anything about the new messages.

Control Features
As a prerequisite to most of the following, a control which wishes to support the new features
we'll be getting into should support the kControlMsgGetFeatures message. A CDEF should
return as its result a bitfield comprised of the bits representing the features you support. These
bits are the simple OR-ing of the constants shown above. Here is an example:

... in your main CDEF function someplace...

case kControlMsgGetFeatures:
result = kControlSupportsDataAccess | kControlWantsI-

dle;
break;

This control would both support data access and would like to receive idle events. Both are
explained below.

Tagged Control Data
There is a definite need to have read and write access to different attributes of a control. In
most cases, these attributes are unique to a particular control. To facilitate accessing this data
without exposing the implementation of a CDEF, there are a series of routines to allow you to
get and set particular pieces of information in a CDEF. These routines are listed in the Control
Manager Reference section below.

Do not distribute—Apple Confidential 5

To advertise that a CDEF supports data access, it should return kControlSupportsDataAccess
as one of its feature bits in response to the kControlMsgGetFeatures message. If you then call
the new GetControlData or SetControlData routines, it will then be called with the kCon-
trolMsgSetData and kControlMsgGetData messages with the 'param' parameter holding a
pointer to the following structure:

struct DataAccessRec
{

ResType tag;
ControlPartCode part;
Size size;
Ptr dataPtr;

};

The tag field indicates the name of the piece of data we want, for example, we might want the
transform of a bevel button's image. The part field indicates what part of the control this ap-
plies to, it is usually 0, meaning the entire control. For controls like tabs, it might refer to a
specific tab. The size and dataPtr generally specify a buffer and how long it is. These two
fields are used specially during the GetData messages. If the dataPtr is nil, the information
should not be copied in (obviously, I hope). This tells the GetData handler that we are merely
interested in the size of the data. In all calls to GetData, the CDEF should fill in the actual size
of the data in the size field before returning.

It is the responsibility of the CDEF writer to return errDataNotSupported if the tag is unknown
or invalid (perhaps you don't want people to set a particular value). The CDEF returns the er-
ror code as the function result of the CDEF itself.

Here's an example of a CDEF responding to a GetData message. Let's assume that the piece
of data in question in a short integer:

... someplace in your CDEF main...

case kControlMsgGetData:
{

OSErr err;
DataAccessPtrptr;

ptr = (DataAccessPtr)param;
if (ptr->tag == kMyWizzyDataTag)
{

if (ptr->dataPtr)
(SInt16)info->dataPtr = Get-

MyWizzyData();

ptr->size = sizeof(SInt16);
result = noErr;

}
else

result = errDataNotSupported;
}
break;

Do not distribute—Apple Confidential 6

. .. more stuff here ...

/* return the result */
return result;

}

Notice how we return errDataNotSupported for an invalid tag. We also fill in the size regard-
less of whether dataPtr is nil or not. This is the proper way to handle this message.

Indicator Ghosting
Scroll Bars and Sliders, while tracking the indicator, drag a ghost image of the indicator
around instead of the old dotted outline. To accomplish this, these controls return the feature
flag kControlSupportsGhosting in response to a kControlMsgGetFeatures message. When
TrackControl is called to track the indicator, it checks this feature flag and if set, calls the con-
trol with the message kControlMsgDrawGhost, with the param parameter set to a region han-
dle indicating where the ghost indicator should be drawn. This region is a copy of the indicator
region offset by some amount, depending on where the user dragged it to.

Live Feedback
Live feedback is the more generic term for live scrolling. Scroll bars and sliders support live
feedback thru different variants. When the right variant is chosen, these controls return the
kControlSupportsLiveFeedback bit as part of their feature bit set in response to the kCon-
trolMsgGetFeatures message.

When TrackControl is called, it checks to see if this feature is supported, and that there is an
actionProc installed (via SetControlAction). If so, it tracks the indicator, calling the CDEF
with a kControlMsgCalcValueFromPos message whenever the user moves the mouse. The
'param' parameter contains a handle to the indicator region being dragged. The CDEF should
respond by recalculating its value based on the new position of the region passed in. Once re-
calculated, the CDEF should redraw itself, making sure it draws the indicator in the position
the region passed in represents. The region should NOT be changed. It is very important to
draw exactly where the indicator is currently located, otherwise the feedback will behave im-
properly. Drawing where the region is also makes for a very smooth scrolling experience.
When the user let's go of the mouse button, you will be asked to draw again. At this time, you
can recalculate your correct position and redraw.

Do not distribute—Apple Confidential 7

Calc Best Rectangle
In order to make group boxes work right, it was necessary to add the ability to ask check boxes
and popups to calculate the best size so that they could be placed properly at the top of the
group box. A control advertises that they support the kControlMsgCalcBestRect message by
setting the right bit in their feature flags (kControlSupportsCalcBest). When called with this
message, a CDEF is passed the address of a rectangle in its 'param' parameter. A control
should calculate its best width and height and adjust the rectangle accordingly. It should mere-
ly set the bottom and right fields of the rectangle to the appropriate values. It should also re-
turn the baseline for where the text should line up based off the bottom of the rectangle
(normally negative) as the CDEF function result.

With this message, a control's rectangle can automatically be sized to just fit the check box
icon and the text, for example. Currently push buttons, check boxes and popup buttons are the
only controls to support this message. In fact the StandardAlert routine (mentioned later) uses
this to help autosize the push buttons in the alert.

Handle Tracking
Sometimes it is desirable to not have the default tracking behavior that TrackControl provides.
In particular, if a control needs to do special tracking, such as the bevel buttons need when
displaying a menu, the only way to do this is to hook into autoTrack. In this case, TrackCon-
trol will always return the part code that was initially hit, even if the user tracked off the menu.
This is often undesirable. Also, controls like Bevel Buttons have toggling and sticky behavior,
where they actually modify their own values after tracking.

To allow for this special behavior, a control can perform all aspects of tracking by advertising
it wishes to do so by returning kControlHandlesTracking in the attributes returned via a Get-
ControlFeatures call. With this bit set, the control is called when TrackControl or the new rou-
tine, HandleControlClick, is called. (HandleControlClick is virtually identical to
TrackControl, only it allows modifier keys to be passed in.)

A structure of type ControlTrackingRec is passed in param when the CDEF is called with the
kControlMsgHandleTracking message. The structure looks like this:

struct ControlTrackingRec
{

Point startPt;
SInt16 modifiers;
ControlActionUPPaction;

};

The action parameter should be called during tracking. The value of action can be a valid
procPtr, nil, or -1. -1 indicates the control should do what it wants to if it actually has some
special autoTrack behavior it wants to add. Most of the time, -1 would probably be treated like
nil, meaning do nothing.

When the CDEF is done tracking, it should return the part code that was hit, or kControlNo-
Part if the user tracked off, etc. as the result code of the CDEF.

Do not distribute—Apple Confidential 8

Focus
To accommodate the needs of focusing onto a control for keyboard input, there is a new key-
board focus messaging mechanism. A control tells the Control Manager it wants to receive
keyboard input by returning kControlSupportsFocus as part of its feature bit set. When the
control needs to be focused (which is determined by the Control Manager or some other out-
side influence), the CDEF is called with a kControlMsgFocus message, with param being the
part code to focus. There are some special part codes that can be passed in param:

enum
{

kFocusNoPart= 0,
kFocusNextPart= -1,
kFocusPrevPart= -2

};
typedef SInt16FocusPart;

The kFocusNoPart part code indicates the control should lose its focus. It might respond by
deactivating its text edit handle and erasing its focus ring.

The kFocusNextPart and kFocusPrevPart part codes indicate that the CDEF should advance
or reverse the focus to the next/previous sub-part. A date/time CDEF might advance to the
day or year part, for example.

Alternatively, the CDEF might be asked to focus a specific part. It is up to the CDEF to decide
how to behave in this case. Most controls only have one part and simply focus themselves.

In response to a focus message, the CDEF should return the part code that actually was fo-
cused. If it is out of parts, i.e. it has run off the end or beginning of its subparts, it should return
kFocusNoPart. It should also return kFocusNoPart if called with kFocusNoPart. This tells the
focusing mechanism to jump to the next control that supports focus.

Some controls actually want the focus when clicked, while others do not. To make sure a
CDEF gets the focus with a click, it needs to set the kControlGetsFocusOnClick feature bit in
response to a kControlMsgGetFeatures message. With that bit set, if the control is clicked on,
whatever part is returned by a call to TestControl should be passed in as the part code for fo-
cusing.

Idle Processing
A CDEF can specify that it wants to get idle time by OR-ing the constant kControlWantsIdle
into its feature bits. When this is set, it is called with the kControlMsgIdle message whenever
someone calls IdleControls on the window the control is in. The param parameter is unde-
fined. The chasing arrows and indeterminate progress indicator controls use idle time to do
their animation.

Do not distribute—Apple Confidential 9

Embedding
If a control is an embedder, i.e. it is designed to have other controls and widgets within its
contents, it should set the kControlSupportsEmbedding flag in response to a GetFeatures call.
This lets the Control Manager know to treat the control differently. See the section on Control
Embedding below. When a CDEF is an embedder that has a background, such as a window
header, it should also support the background message, mentioned below.

Activate Events
It is often desirable for a CDEF to know that it is becoming deactivated at a high level. The
only way for a CDEF to determine such a change in state in the past was to check the current
hilite state against a previously saved hilite state on each call to draw. The kControlMsgActi-
vate message eliminates the need to do this. When a control is going to be deactivated, its fea-
ture set is checked to see if its kControlWantsActivate bit is set. If so, it is called with the
kControlMsgActivate message with the value of param being either 1 or 0, with 1 indicating
the control is becoming active. The control can do any special processing it needs, such as de-
activating its TEHandle or ListHandle.

Background Color
Some controls that embed other controls sometimes have their own fill color. This may or may
not be different than the current window background color. We need to make sure that any
controls that are drawn on top of it can erase to the correct color using EraseRect or EraseRgn.
It is very important that these two calls work, as a control might call toolbox routines such as
TETextBox, which internally call EraseRect.

To make sure the background is always correct when drawing a control, before drawing it, the
Control Manager works its way backwards from the control to be drawn, checking to see
whether any control behind it has its kControlHasSpecialBackground feature bit is set. If it is,
the control is asked to set up its background color and/or pattern. The Control Manager saves
and restores the graphics state before and after the drawing. This way the CDEF can draw as
it always has, using standard routines. The CDEF should never assume, however, that the
background is a flat color and not a pattern, so it is wise to call BackPat with a white pattern
before erasing to a specific color.

Special Font Styles
It is now possible, thru the new data access support, to set the text style of a control. All con-
trols that display text have been written to support this feature. This allows for easier handling
of control fonts by not forcing frameworks etc. to have to use the window font variant and
constantly muck with the font of the window to make sure everything draws right. Since so
many controls support this piece of tagged data, there is an API to actually set this informa-
tion: SetControlFontStyle.

Do not distribute—Apple Confidential 10

There is also a new resource type ('dftb') which is automatically read in by the Dialog Manager
to facilitate a data-driven approach to setting font information for all controls in a dialog. This
resource simply consists of an array of ControlFontStyleRecs. This resource is meant to re-
place the ictb, since the old control color table information is ignored under Appearance. Also,
ictbs don't allow font specification for controls, just edit and static text. When this new re-
source is read in, the control font styles are set, and the resource is then purged.

Control Embedding

Overview
We have introduced the concept of a containment hierarchy to the Control Manager to help
impose drawing and hit testing order based on visual containment. Standard control drawing
order is the order of the controls in the control list of a window, which is backward from the
order that items are added to a window. This is due to the fact that the Control Manager adds
controls at the head of the list, creating a push-down stack of controls.

A hierarchy is a very useful method of making sure embedder controls draw before their em-
bedded content. It also is helpful in doing an "inside-out" hit testing function to determine the
most deeply nested control that is hit by the mouse. Other advantages to this hierarchy are
helping to correctly setting up a control's background color, as mentioned in the Background
Color section above (we can easily know what's 'behind' something), and helping with key-
board focus.

Root Control
To enable embedding in a window, a window needs to have a root control created for it. This
control merely serves as the top level of the containment hierarchy for its window. No embed-
ding can take place until a call to CreateRootControl is successfully made. Once created, the
root can be retrieved by calling GetRootControl. Once a root is created, all controls created
after that are automatically added into the root. If any controls exist prior to calling Create-
RootControl, an error is returned and the root is not created. The root control is implemented
as a User Pane, one of the new CDEFs added with Appearance.

Embedding
Embedding of controls is accomplished by two routines, EmbedControl and AutoEmbedCon-
trol. EmbedControl tells the Control Manager to embed one control specifically into another.
AutoEmbedControl tells the Control Manager to find the most likely container for the control
based on where it is compared to what else is in the window. If a control is visually within a
group box, for example, it will be embedded in that group box automatically with AutoEm-
bedControl, provided the group box already exists (see the DITL Ordering section, below).

New routines are available to correctly deal with the hierarchy, and classic routines have been
changed to support this new construct. Consult the API section at the end of this document for
specifics.

Do not distribute—Apple Confidential 11

DITL Ordering
The DITL ordering plays multiple roles with an embedding hierarchy. First, it helps determine
what gets embedded in what. As items are added to a dialog during dialog creation, controls
that exist in the window (because they've already been created), can be valid target containers
for any new controls that are created, provided they support embedding. It is therefore impor-
tant to control the order that things are placed in the DITL. The large, embedder controls
should be at the beginning. Smaller ones should follow. So you'd add your tab control first,
and then follow it with some radio buttons, etc. Because the tab control would be created and
already in place, the radio buttons can then be autoembedded with the tab control, as long as
they were actually contained within it visually.

DITL ordering also affects focus ordering. The default focus order is the order things are add-
ed into the hierarchy. Future versions of the toolbox will most likely support other, more vis-
ceral methods of focusing.

Latency
To properly handled embedded content, it is necessary to have a certain latent state when deal-
ing with the enabled state and visibility of a control. For example, consider a control within a
group box. Disabling the group box disables the control as well. When the group box is reen-
abled, the controls within should reenable if they were enabled originally. If an embedded
controls was disabled, it should remain disabled.

To handle this we have introduced the concept of latency. When disabling an embedder, any
embedded content which is enabled becomes latent, or 'pending enabled'. This lets the Control
Manager know to reenable them when the embedder becomes active again. This same concept
applies to visibility as well. Clients should never need to know whether something is latent or
not - every thing will just seem to work.

CONTROL DEFINITIONS

Check Boxes, Radio Buttons and Push Buttons
These controls have been modified to handle drawing with the new appearance.

There is a mechanism to specify that a push button get the default appearance, i.e. it is drawn
with a default ring around it. This is accomplished thru the data access mechanism. The de-
fault ring is drawn outside the control rectangle.

Bevel Buttons
Bevel buttons are the most complex new control type. There are a multitude of states, along
with three different behaviors. On top of this are three different bevel size choices, and the
ability to display an icon, text, or a picture. It is also possible to have the button display a com-
bination of text and a graphic.

Do not distribute—Apple Confidential 12

Bevel buttons allow the caller to control the content type (pict/icon/etc.), the behavior (push-
button/toggle/sticky), and the bevel size. The caller also has the option of attaching a menu.
When a menu is present, the caller can specify which way the popup arrow is facing (down or
right).

This is all made possible by overloading the Min, Max, and Value parameters for the control,
as well as adjusting the variant code. A similar approach is used in the current popup menu
control.

ParameterMeaning

Min Hi byte = Behavior; Lo byte = content type.

Max ResID for resource-based content types.

Value MenuID to attach; 0 = no menu, please.

The variant code is broken down into two halves. The low 2 bits control the bevel type. Bit 2
controls the popup arrow direction (if a menu is present) and bit 3 controls whether or not to
use the control's owning window's font.

The three behaviors of bevel buttons are push button, toggle, and sticky. The push button be-
havior makes bevel buttons pop back up after clicking them, just like the normal push button
control. The toggle behavior allows the buttons to toggle state automatically when clicked
(from on to off). Sticky buttons never pop up after clicking them. They stay down permanent-
ly, until the client calls SetControlValue(0) on them. These are useful in tool palettes. All of
these behaviors are handled by the CDEF by setting itself up for self tracking when initialized.
The high byte of the Min parameter contains the behavior of the button.

It is also possible to mark a button as having multi-valued menus. This means that the button
does not maintain the menu value as it normally would (i.e. only one item can be selected at
a time). This essentially allows a user to toggle entries in a menu and have multiple items
checked. In this mode, the GetBevelButtonMenuValue routine returns the value of the menu
item last selected.

One last behavior is to offset the contents while pressed. Some people believe it gives it a
more realistic button feel.

The four types of data that can be displayed in a bevel button are icon, picture, text, and CIcon.
The IDs for the icon/pict resource are passed in the Max parameter. The content type is passed
in the low byte of the Min parameter. The variant code kControlUsesOwningWindowsFont-
Variant applies when text content is used.

An example call:

control = NewControl(window, &bounds, "\p", true, 0,

kContentIconSuiteRes + kBehaviorToggles,

myIconSuiteID, bevelButtonSmallBevelProc, 0L);

Attaching a menu:

Do not distribute—Apple Confidential 13

control = NewControl(window, &bounds, "\p", true, kMyMenuID,

kContentIconSuiteRes, myIconSuiteID,

bevelButtonSmallBevelProc + kBevelButtonMenuOnRight,

0L);

This will attach the menu with ID kMyMenuID to the button, with the popup arrow facing
right. This also puts the menu to the right of the button.

Bevel buttons with menus actually have two values: the value of the button (on/off), and the
value of the menu. The menu value can be extracted with the routine GetBevelButtonMenu-
Value.

One can mix graphics and text by selecting a graphical content type while providing a control
title.

It is possible to align and place graphic and text content in special ways. For example, text
buttons can have their text aligned to the left, right, centered, or use the current script direc-
tion. Graphic contents can be aligned likewise, but can also be aligned to the top, bottom, left,
right, and all four corners of the button. With each of these alignment options, you can specify
an offset from the particular side you are aligning the element to. For example, you can spec-
ify that the graphic be aligned to the top of the button, but allow 4 pixels of space.

Text placement can be specified as well if you are combining text and a graphic. You can
specify whether the text should go above, below, to the left, or to the right of the graphic. This
can be combined with the graphic alignment property to create a button where the graphic and
text is left justified with the text below the graphic. You can also use a script direction place-
ment in combination with a script direction graphic alignment. This means it is possible to
have a graphic on the left with the text to the right in left-to-right systems, and the graphic on
the right with the text to the left of it on right-to-left systems. All of this is automatic.

All bevel button private data is hidden. Accessor routines get and set values.

The caller can create its own control and then set the content to an existing handle to an icon
suite, etc., using the accessors. Resource-based content is owned by the control, while handle-
based content is owned by the caller. The CDEF will not try to dispose of handle-based con-
tent.

The bevel button can return 3 possible part codes: kControlNoPart, kControlButtonPart, and
kControlMenuPart. The most complex case is when a Menu is attached. If the user selects a
menu item, the part code kControlMenuPart is returned. If the user tracks out of the menu, but
is still over the button when the mouse is released, the kControlButtonPart code is returned.
If the user tracks outside of the button and the menu, kControlNoPart is returned. The button
always returns kControlNoPart when it is disabled, as is expected.

Chasing Arrows
Chasing arrows are a small CDEF. Animation is handled on idle, which this CDEF sets itself
up to be called with an idle message (when IdleControls is called) by OR-ing in the kControl-
WantsIdle bit into its feature flags.

Do not distribute—Apple Confidential 14

 This control’s min, max, and value parameters are reserved.

Clock
This CDEF implements either an editable or non-editable time/date field, such as can be
found in the Date & Time control panel. It is focusable and keyboard aware. The little arrows
it uses to allow manipulating a particular portion of the date or time are actually coded as part
of this control, i.e. it does not use the actual Little Arrows control. This is to make sure the
little arrows will never get the focus on their own when in this type of control in the future
when generic focusing is introduced all around.

The clock also has a ’live’ variant. With this variant, the clock actually ticks on idle. You can
use the non-editable version to place a live clock in a window, etc. If you combine the live
variant with the editable variant, you end up with a clock that will actually affect the system
clock. This is what the Date & Time control panel uses.

 This control’s min, max, and value parameters are reserved.

Disclosure Triangle
This is a fairly straightforward CDEF with two possible values, 0 and 1 for collapsed and ex-
panded, respectively. There is a variant code bit to select between right- and left-facing ver-
sions. There is also a variant which allows autotracking to take the burden off application
programmers. This control maintains its last value, so it knows what transition is taking place
when a SetControlValue is called on it (expanded to collapsed, or vice versa). A function is
available to set the last value of the control to make sure animation is set up properly.

Editable Text Control
A CDEF implements editable text complete with theme-savvy border and focus rings.

This control advertises that it should be included in the Dialog Manager focus chain by setting
a flag in the control's feature flags: kControlSupportsFocus. It has two variants: the normal
variant is used in a window (non-dialog) situation, and in this state it maintains its own TE-
Handle. The second variant is used in dialogs, so that it shares the dialog's common text han-
dle, just like the edit text dialog primitive does. This is to provide maximum compatibility,
and to make sure that routines like DlgCut, etc. still work, since they are implemented as glue
routines in MacOS.lib. They assume the text edit handle in the dialog record is valid and up-
to-date.

This control can also have a key filter attached to it to handle filtered input. The filter is at-
tached via the Data Access routines.

There is a password variant of this control which is script manager-savvy. The clear text of
the password can be gotten thru GetControlData. The tag is kEditTextPasswordTag.

 This control’s min, max, and value parameters are reserved.

Do not distribute—Apple Confidential 15

Group Box
The primary group box is implemented as a CDEF with variants for no header, check box
header, text header, and popup header. The part code returned from TestControl or TrackCon-
trol depends on what type of header is in use. If the header is text, this always returns kCon-
trolNoPart. If it is a check box, it will return kControlButtonPart if the check box was hit. If
it is a popup menu, it will return kControlButtonPart if the mouse was released over the button
and kControlMenuPart if an item in the menu was selected. If the user tracked completely out
of the control, kControlNoPart is returned.

Secondary group boxes are a variant with all the same options and a slightly different group
box line look.

It is up to the caller to perform any pane-switching when using a popup title variant and the
value of the popup changes. Likewise, the caller must enable/disable contents if using a check
box variant. The easiest way to do this is to simply embed all content of the group box into a
user pane.

Icon CDEF
This CDEF merely takes an ID to a cicn, ICON, or icon suite in its Value parameter on cre-
ation and displays that icon in its contrlRect. After the control is initialized, the value param-
eter is reset to zero.

There is a 'no track' variant which tells it to just return the part hit immediately and return, it
doesn't actually track the mouse in this mode. This is used in dialogs when the dialog has an
embedding hierarchy and wants an icon. This control is created with the no-track variant so
that it behaves like it always has.

 This control’s min, max, and value parameters are reserved.

Image Well
A simple CDEF performs imaging for icons and picts. The control is controlled in much the
same way as the bevel button, but with fewer options and states. Menus may not be attached.
Currently, it is used for display only, but future versions will support drag and drop function-
ality that an application can plug into. This control’s min, max, and value parameters are re-
served.

Little Arrows
This simple CDEF acts like a subset of a scroll bar, i.e., it returns the part codes kControlUp-
ButtonPart and kControlDownButtonPart. Callers use ControlActionUPPs (as with scroll
bars) to be called back during tracking. The control has a minimum, maximum and value.

Do not distribute—Apple Confidential 16

List Box
This CDEF allows clients to put a List Box into dialogs with minimal effort. An auxiliary re-
source type ('ldes') is used to provide the information necessary to create the list. The ID of
this resource is passed into the Value parameter of the control when created. The Min, Max,
and Value parameters currently serve no purpose. Cursor navigation is included for moving
around with the arrow keys. Double-clicking an item returns a special part code to make you
aware of such an action. There is a keyFilter available for this control. The list handle that the
list box creates has its refCon filled out with the control handle of the list box control. This
allows any custom LDEFs to determine whether or not the control should be drawn active or
inactive by looking at the current state of the control. Clients should never reset this field to
anything else and instead use the control’s refCon field to store data. This control’s min, max,
and value parameters are reserved.

Picture CDEF
This CDEF merely takes an ID to a PICT resource in its Value parameter on creation and dis-
plays that picture in its contrlRect. There is a 'no track' variant which tells it to just return the
part hit immediately and return, it doesn't actually track the mouse in this mode. This control’s
min, max, and value parameters are reserved.

Placard
This CDEF implements a small placard control. Its value, min, and max are reserved, as a fu-
ture version will allow a pushbutton variant. This control supports embedding.

Popup Button
The popup button has been revved for the new grayscale look. The older implementation
made many assumptions about the menu handle, its numbering, and its inclusion in the menu
list, which diminished its usefulness in modeless panels and other contexts requiring closer
control of the menu handle. A special menu ID (-12345) value tells the control not to try to
create the menu handle itself, to allow for a NULL menu handle, and to insert the menu in the
menu list with a unique ID only for a short time directly around the PopupMenuSelect call.

Setting the title width (Min) to -1 tells the popup button to auto-calculate the title width.

Popup Glyph
This is a simple CDEF with 4 variants that draws the popup glyph. The pixel data will be em-
bedded in the CDEF. The CDEF does no mouse tracking or hiliting and has no values. It’s
min, max, and value fields are reserved.

Progress Indicator
Both determinate and indeterminate progress indicators are supported, and it is possible for
one mode to transition to the other.

Indeterminate progress is accomplished using the Data Access APIs to set the control's inde-
terminate tag. From that point forward, the control will request idle events, which is what
drives the animation. By resetting the indeterminate flag, it resumes its normal function.

Do not distribute—Apple Confidential 17

Scroll Bar
Scroll bars have been given a facelift. They also have support for ghosting its indicator, as
well as live scrolling.

Separator Line
A simple CDEF draws separator lines. Orientation of the bounding rectangle will determine
the orientation of the line, i.e. if the bounding rect is more horizontal than vertical the hori-
zontal line will be drawn. (Scroll bars currently do this as well). The CDEF does no mouse
tracking or hiliting and has no values. It’s min, max, and value fields are reserved.

Sliders/Slider Tick Marks
The slider control is relatively straightforward, with a minimum, maximum, and value. De-
pending on whether he control is taller or wider, a vertical or horizontal slider will be created.
This CDEF supports ghosting and live feedback. By default, the indicator points either down
or to the left, depending on the orientation. You can reverse this by adding the kSliderRe-
verseDirection variant into the procID for this control. Ticks marks are normally not shown,
but can be by adding kSliderHasTickMarks to the procID. The number of tick marks is passed
in the value parameter - after initialization in this case, the value is set to the minimum and
the number of tick marks is stored internally.

There is also a non-directional thumb variant. Using this variant disables the tick mark and
reverse direction options. They are not allowed to be combined.

This control also supports live feedback.

Static Text
CDEF Implementation of Static Text. It supports getting and setting its style, like a dialog's
ictb information. It also supports different justification options.

This control’s min, max, and value parameters are reserved.

Tabs
The tab mechanism is implemented as a CDEF. An auxiliary 'tab#' resource holds the tab
names and icon IDs. This resource ID is passed into the Value parameter of the control. Call-
ers check the value after getting a hit; they switch to the appropriate pane through whatever
mechanism they prefer, such as AppendDITL. The value of the control is the one-based index
of the currently selected tab (front most tab).

It is possible to get the content rectangle for tabs and also get/set a particular tab's enabled state
using the Data Access routines. This CDEF is an embedder.

User Pane
This CDEF is a general purpose control. It is used as the root pane for a window, but could
also be used by clients to hook in callbacks for drawing, hit testing, etc. This is especially use-
ful for frameworks that wish to tap into the new control manager's hierarchy. This should be
used in place of UserItems in dialogs when in Appearance-Savvy mode (see below).

Do not distribute—Apple Confidential 18

This control’s min, max, and value parameters are free for you to use once the control is cre-
ated.

Window Header
A CDEF provides both icon and list view headers for windows. This two-state functionality
is handled by a variant. The list view header lacks the bottom line. This is an embedding con-
trol.

 This control’s min, max, and value parameters are reserved.

MENU DEFINITIONS

New Menu Features

The following support has been added to the standard menus:

• Support for extended modifiers keys (option, control, etc.)

• Support for icon suites

• Ability to store application specific data for a menu item

• Ability to set a command ID for a menu item.

• Ability to set a hierarchical ID for an item with a high-level API.

A replacement to MenuKey has been added to allow modifiers to be considered when search-
ing for the item. The new routine is called MenuEvent and takes an event record as its only
parameter. It returns a long, just like MenuSelect.

For resource-based creation of menus, a new resource type has been added, 'xmnu'. This re-
source contains the extended menu information for each item in a menu. After creating a
menu, GetMenu looks for an 'xmnu' resource with the same ID. The information is set for each
menu item. At that point the resource can be purged or released.

Menu Bar

The menu bar has been changed to accommodate the new look.

Pull Down Menus
These have been changed to accommodate the new look. They handle extended modifier keys
and deal with the new extended information mentioned above.

Dialog Manager

Quite a few new features have been added to the Dialog Manager.

Do not distribute—Apple Confidential 19

FEATURE FLAGS

A caller may activate the New Appearance mode of the Dialog Manager on a per-dialog basis
by relating a special resource to their DLOG and ALRT resources. The new resource types
which hold the new, extended information are the 'dlgx' and 'alrx'. In the new resources, there
is a new flag word that is used to determine dialog or alert features. Whenever a dialog is cre-
ated via GetNewDialog, Alert, StopAlert, CautionAlert, or NoteAlert, after the DLOG or
ALRT is read in, we search for a resource type of 'dlgx' or 'alrx', respectively, with the same
ID as the DLOG or ALRT. If the resource is found, we read the information and use it to help
create the dialog.

Clients creating dialogs without using GetNewDialog will be able to use these features by
calling the new NewFeaturesDialog routine, which in addition to the usual NewDialog param-
eters also takes a flag word parameter to specify the desired features. Following is a rundown
of the features that can be set in the extended information.

Use Theme Backgrounds
If the kDialogFlagsUseThemeBackground bit is set in the flags, we set the background color
to the correct color for the current theme automatically.

Use Control Hierarchy
When the kDialogFlagsUseControlHierarchy bit is set, right after the window is created, the
CreateRootControl routine is called for the window to establish an embedding hierarchy. This
has two effects; first, the hierarchy is established and embedding of controls is possible; sec-
ond, all dialog items (except user items, for reasons explained later) are controls. This means
that if a static text item is in the DITL, a static text control is created instead of the old dialog
primitive. This ends up having many advantages, such as homogenous treatment of dialog
items, and the ability to disable all items in a dialog, including edit text.

GetDialogItem in this situation still behaves as it always has. To get the control handle for an
item, use the new API GetDialogItemAsControl. With a control handle, you can do cool stuff
like disable static and edit text items, which was never before possible without great pain.

Use Theme Controls
This bit should generally always be set for Appearance-savviness. It tells the dialog manager
that when it encounters a push button, check box, or radio button primitive (i.e. dialog items
of type kButtonDialogItem, kRadioButtonDialogItem, etc.) to create a new theme-savvy con-
trol instead of the classic control. This bit is necessary, otherwise the Dialog Manager won't
know the difference, since there is no other way to tell that we want theme controls. The use
theme background doesn't have to be set to use this bit. In fact, there are times when that is
the desired behavior.

Do not distribute—Apple Confidential 20

Handle Movable Modal
The kDialogFlagsHandleMovableModal bit in the flags tells the Dialog Manger to handle all
movable modal behavior if ModalDialog is called with this window frontmost. This only
works if the window itself is a movable modal dialog. When told to handle this situation, the
Dialog Manager handles window dragging and allows the user to click into another applica-
tion.

Event filtering is handled a little differently, in that ALL events are passed thru to the appli-
cation in this mode. This allows the app to handle suspend and resume events, as well as han-
dle Apple Events if it so wished.

ALERTS

Movable Alerts
If the kAlertFlagsHandleMovableModal bit is set, it tells the Dialog Manager whether or not
this alert should be movable. If so, a movable modal dialog is used instead of a standard modal
one. The behavior is the same as it is for normal movable modals, as mentioned above.

It is also possible, thru the use of a ’alrx’ resource, to specify a title for a movable alert.

Another field in the ’alrx’ resource tells the dialog manager to directly use the new appear-
ance-savvy defprocs instead of going thru the mapping layer.

It is now possible to specify a refCon for an alert in the ’alrx’ also.

AUTOMATIC SIZING
The Dialog Manager introduces a new routine, AutoSizeDialog, that automatically resizes a
dialog to fit all static text contained in it. This is used by the new StandardAlert routine to en-
sure that all the text of an alert is visible and doesn't get truncated. The DITL is iterated over,
looking for static text items. When one is found, the item is resized, the window height is ad-
justed, and any items below the static text item are moved downward the appropriate amount.

This API only adjusts the height, not the width, of a dialog. It also assumes that items are
placed reasonably and formatted correctly to display text in the standard format.

Window Manager

COLLAPSING API
The routines for collapsing and uncollapsing a window are exposed to developers. This will
allow clients such to control the collapsed state of windows in an intelligent manner. A good
example of this might be uncollapsing automatically after double-clicking on an icon to bring
its window forward.

There are four routines to do with collapsing: CollapseWindow, CollapseAllWindows,
IsWindowCollapsed, and IsWindowCollapsable. These routines only affect windows that ad-
vertise that they support the collapsing API, which brings us to window features.

Do not distribute—Apple Confidential 21

WINDOW FEATURES

It is possible to determine a window's features thru the GetWindowFeatures API. This is im-
plemented thru a new message, kWindowMsgGetFeatures, which is just like the correspond-
ing version for controls. In response to the GetFeatures message, the window should return a
bitfield representing the features it supports. Those features are listed here:

enum
{

kWindowCanGrow = (1 << 0),
kWindowCanZoom = (1 << 1),
kWindowCanCollapse = (1 << 2),
kWindowIsModal = (1 << 3),
kWindowCanGetWindowRegion= (1 << 4),
kWindowIsAlert = (1 << 5),
kWindowHasTitleBar = (1 << 6)

};

WINDOW DEFINITIONS

WindowShade Widget
The new WDEFs in Mac OS 8 support the collapse widget. If a window can be collapsed, a
collapse box appears in the title bar of the window. A click on this returns the part code in-
CollapseBox.

The collapsing behavior is handled automatically by the system. Future releases will allow
you to intercept this to handle it yourself if you have special requirements.

Document Windows (WDEF 64)
This WDEF draws in the new grayscale look, and supports the new horizontal and vertical
zoom boxes. The variants are more straightforward than the old WDEF 0 variants with respect
to how grow, zoom, etc. are specified. This WDEF also supports GetWindowFeatures and
GetWindowRegion. When called thru the mapper WDEF, this defproc operates in a compat-
ibility mode whereby the grow box is not drawn unless DrawGrowIcon is called. When used
directly, the variant alone dictates whether a grow box will be drawn. There is no need to call
DrawGrowIcon in this situation.

Dialogs (WDEF 65)
The new WDEF for dialogs supports modal, movable modal, plain, and shadow dialog vari-
ants. When called from the mapper WDEF, this defproc operates in a compatibility mode.
When in this mode, a 3-pixel space exists between the content region and the structure region,
as it always did in the past. When used directly, this area is banished and content can finally
be run up to the edge of the window. There have been numerous applications which were do-
ing some pretty wild stuff to make this happen in the past.

Do not distribute—Apple Confidential 22

Utility Windows (WDEF 66 & 67)
WDEF 66 is the normal, top-title-bar variant, and 67 is the side title bar variant. The old
WDEF was split in two to allow for the new horizontal and vertical zoom boxes. This defproc
runs in a compatibility mode when called from the mapper WDEF. When in this mode, the
grow box is not drawn until a call to DrawGrowIcon is made. When used directly (no com-
patibility mode), the presence of a grow box is completely driven thru the variant codes.

SUPPORT

Gestalt Selector

On startup, the extension installs a gestalt selector to indicate that Appearance is running. The
result returned is a bit field with the following possible values:

enum
{

gestaltAppearanceExists= 0,
gestaltAppearanceCompatMode= 1

};

The gestaltAppearanceExists bit indicates appearance is running. gestaltAppearance-
CompatMode indicates that we are running in compatibility mode and are using the system 7
defprocs. The gestaltAppearanceCompatMode bit indicates that system-wide appearance is
currently off.

Do not distribute—Apple Confidential 23

Control Manager Reference

This section describes the new routines added to the Control Manager as well
as the new behavior of several classic routines.

Internal Routines

The routines in this section are SPI only and are utilities used by the Control
Manager and Dialog Manager.

SendControlMessage

Use the SendControlMessage to send a low-level message to a control.

pascal SInt32 SendControlMessage(ControlRef theControl,

SInt16 message, SInt32 param)

DESCRIPTION

The SendControlMessage sends the specified message to a CDEF and gets a
response.

DumpControlHierarchy

This routine dumps the contents of the control hierarchy for the specified
window into a file.

pascal OSErr DumpControlHierarchy(WindowRef window,
const

FSSpec* file)

DESCRIPTION

DumpControlHierarchy dumps a text listing of the current pane hierarchy
for the window specified into the file specified, overwriting any existing file.

Do not distribute—Apple Confidential 24

Creating Controls

NewControl

NewControl is adjusted to automatically embed the control into the root con-
trol if the root exists. All other aspects of behavior are the same.

Embedding Controls
The routines in this section allow you to create the root control for a window
and also embed controls within others.

CreateRootControl

Use CreateRootControl to create the root container control for a window and
enable embedding in a window.

pascal OSErr CreateRootControl(WindowRef window, Con-
trolRef* control)

DESCRIPTION

CreateRootControl creates the top-level container control for a window.
From that point on, the embedding routines EmbedControl and AutoEmbed-
Control can be used. If controls were already added to the window when
CreateRootControl is called, an error is returned and the root is not created.

GetRootControl

GetRootControl returns the root container control for the specified window.

pascal OSErr GetRootControl(WindowRef window,

ControlRef* control)

DESCRIPTION

GetRootControl returns the root container control for the window specified.
If a hierarchy doesn't exist, an error is returned.

Do not distribute—Apple Confidential 25

EmbedControl

Use EmbedControl to place one control inside another.

pascal OSErrEmbedControl(ControlRef control,

ControlRef container);

DESCRIPTION

EmbedControl is used to place one control inside of another control. You
might use this to place a radio button inside of a group box, for example. If
the container does not support embedding, or there is no root control for the
container's owning window, an error is returned.

AutoEmbedControl

Use AutoEmbedControl to have a control find its best embedding container.

pascal OSErrAutoEmbedControl(ControlRef control,

WindowRef window)

DESCRIPTION

The AutoEmbedControl automatically finds the 'best fit' container for a con-
trol. It essentially searches for the smallest embedder control that contains the
given control and automatically embeds the control in there. The Dialog
Manager uses this to automatically assume the embedding hierarchy from
the DITL. If there is no root control for the window, an error is returned.

Drawing Controls

DrawOneControl

DrawOneControl has been changed to draw all controls contained within a
control if the control passed in is an embedder and the window has a root
control. If the root control for a window is passed in, the result is the same as
if DrawControls was called.

DrawControls

Do not distribute—Apple Confidential 26

If a root control is present, DrawControls uses the hierarchy to determine
drawing order and draws using that information, else it draws it in the classic
manner.

UpdateControls

If a root control is present, UpdateControls uses the hierarchy to determine
drawing order and draws using that information, else it draws it in the classic
manner.

DrawControlInCurrentPort

Use DrawControlInCurrentPort to tell a control to draw in the current port
and not in its owner's port.

pascal void DrawControlInCurrentPort(ControlRef control
);

DESCRIPTION

DrawControlInCurrentPort draws a control in whatever the current port is at
the time. This is unlike DrawOneControl (or DrawControls/UpdateCon-
trols) in that controls normally are forced to draw in their owner's port. The
Control Manager sees to this. This routine is designed to allow for offscreen
drawing. All system controls support this type of functionality. For a custom
control to work right with this, it just needs to assume that the right port is
always set up for it, and not set the port to its owner. If the control has sub-
controls, they are drawn as well.

Testing and Changing Control Settings
The routines in this section allow you to manipulate controls and check their
state.

IsControlActive

Use IsControlActive to tell whether a control is currently active.

pascal Boolean IsControlActive(ControlRef control);

DESCRIPTION

Do not distribute—Apple Confidential 27

IsControlActive is used to tell whether the given control is active, that is, it is
not disabled or pending disabled (latent).

IsControlVisible

Use IsControlVisible to tell whether a control is visible.

pascal Boolean IsControlVisible(ControlRef control);

DESCRIPTION

IsControlVisible returns true if the given control is currently visible.

SetControlVisibility

Use SetControlVisibility to make a control visible or hidden.

pascal Boolean SetControlVisibility(ControlRef control,
Boolean visible, Boolean draw);

DESCRIPTION

SetControlVisibility is very useful when you want to hide or show a control.
Unlike the HideControl and ShowControl APIs, SetControlVisibility allows
you to control whether drawing occurs on screen. By passing false into the
draw parameter, you can set the control’s visibility without any unsightly
drawing.

ActivateControl

Use ActivateControl to activate a control and any subcontrols.

pascal OSErr ActivateControl(ControlRef control);

DESCRIPTION

Do not distribute—Apple Confidential 28

ActivateControl activates the given control. If the control is an embedder and
embedding is on, this activates all subcontrols that are currently latent. Pass-
ing the root control into this routine will activate all controls in the root's win-
dow. You can use this routine in that manner to activate all controls in a
window when the window becomes active. If a control supports activate
events, it will receive an activate event before getting a draw call to update
its appearance.

You should always use this routine instead of HiliteControl(0) to activate a
control when a root control is present. It doesn't hurt to use it other times as
well.

DeactivateControl

Use ActivateControl to deactivate a control and any subcontrols.

pascal OSErr DeactivateControl(ControlRef control);

DESCRIPTION

DeactivateControl deactivates the given control. If the control is an embedder
and embedding is on, this deactivates all subcontrols as well. Any subcon-
trols that are enabled become latent. Passing the root control into this routine
will deactivate all controls in the root's window. You can use this routine in
that manner to deactivate all controls in a window when the window be-
comes inactive.If a control supports activate events, it will receive an activate
event before getting a draw call to update its appearance.

Calling this routine when a window is inactive is the only way to guarantee
that the item will truly get disabled when a root control is present. Calling Hi-
liteControl(255) will short-circuit because the hilite is already 255. You
should generally always use this routine instead of HiliteControl(255).

SetControlFontStyle

Use SetControlFontStyle to give a control a special font style.

pascal OSErr SetControlFontStyle(ControlRef control,

ControlFontStylePtr style
);

DESCRIPTION

Do not distribute—Apple Confidential 29

SetControlFontStyle sets the font style of the given control to that specified in
style. Normally a control uses the System font unless directed to use the win-
dow font via a variant. This routine allows you to override that and force the
control to use a special font style. Not all controls support this feature. To
clear a style in effect, simply pass in a style record with a cleared flags field.
The CDEF is expected to respond by falling back to using the old system/
window font logic.

ShowControl

If embedding is enabled for a window, this call will show any subcontrols
that are embedded within the control passed in. Passing the root control into
this routine will show all items in a window, if they were previously hidden.

HideControl

If embedding is enabled for a window, this call will hide any subcontrols that
are embedded within the control passed in. Passing the root control into this
routine will hide all items in a window, if they were previously hidden. Hid-
ing will save the states of all subpanes so that when the control is later shown,
all panes that were visible when it was originally hidden will be displayed.

MoveControl

If embedding is enabled for the control's window, this call will move the con-
trol and any subcontrols it might have.

HiliteControl

If embedding is enabled for the control's window, this call does the follow-
ing:

• If the part code passed in is 0, the control and all subcontrols are activated

• If the part code passed in is 255, the control and all subcontrols are deacti-
vated.

• If the part code is any other value, the control's hilite value is set, and:

• If the control is inactive, it remains inactive, but will take on the new hilite
when activated.

• If the control is active, it will be drawn in its new hilite state.

Do not distribute—Apple Confidential 30

In addition, if a control is caused to become active/inactive, it will call the
control with an activate message if the CDEF supports it.

If an embedding hierarchy is not present, this routine behaves as it always
has.

Handling Mouse Events in Controls

FindControl

FindControl is changed to use the hierarchy to determine what control the
mouse went down in before calling TestControl. If no hierarchy is present, it
uses the control list as usual.

FindControlUnderMouse

Use FindControlUnderMouseto to locate a control under the given point, re-
gardless if any parts of the control are hit.

pascal ControlRef FindControlUnderMouse(Point where,
WindowRef window, SInt16* part)

DESCRIPTION

FindControlUnderMouse is a variation of FindControl that, unlike FindCon-
trol, actually returns the ControlRef for the control currently under the given
point. FindControl only returns the ControlRef if a part was hit. This can be
used to help adjust the cursor, etc. when over particular items. FindDialog-
Item uses this when a control hierarchy is present for a dialog.

HandleControlClick

Use HandleControlClick to handle a mouse click on a control.

pascal SInt16 HandleControlClick(ControlRef control,
Point where, SInt16 modifiers, ControlActionUPP action)

Do not distribute—Apple Confidential 31

DESCRIPTION

Like TrackControl, this routine tracks a control until the mouse is released.
All that applies to TrackControl applies here as well. The difference, howev-
er, is that this routine allows modifier keys to be passed in so that the control
may use these if the control is set up to handle its own tracking.

SetControlSupervisor

Use SetControlSupervisor to route mouse down events from one control to
another.

pascal OSErr SetControlSupervisor(ControlRef control,

ControlRef supervisor
)

DESCRIPTION

This routine is used to make sure that things like list box controls work cor-
rectly. List boxes control their scroll bars in an intimate way, and handle the
tracking in LClick. Because the new hierarchy is in place. When these controls
are created, they get their own panes and report that they are hit (as they
rightfully should). This presents a problem in that the list box will never
know it got hit (after all, we hit the scroll bar, right?), and LClick will never
be called. This routine alleviates this problem by routing the event to the su-
pervisory control, in this case the list box.

Handling Keyboard Events in Controls

HandleControlKey

Use HandleControlKey to send a keyboard event to a control.

pascal SInt16 HandleControlKey(ControlRef control,
SInt16 keyCode, SInt16 charCode, SInt16 modifiers);

DESCRIPTION

HandleControlKey is used when a control supports focus. It sends the neces-
sary information, keyCode, charCode, and modifiers into the CDEF so that it
can process it as it wished. This routine returns the part code that the control
considers 'hit' by the keyboard event.

Do not distribute—Apple Confidential 32

Idle Processing for Controls

IdleControls

Use IdleControls to give idle time to controls in a window.

pascal void IdleControls(WindowRef window);

DESCRIPTION

IdleControls calls each control in a window who wants idle events with an
idle event so it can do its idle-time processing. The Chasing Arrows CDEF
uses this time to perform its animation.

Determining Features of Controls

GetControlFeatures

Use GetControlFeatures to find out what messages a control supports.

pascal UInt32 GetControlFeatures(ControlRef control)

DESCRIPTION

GetControlFeatures returns a 32-bit bitfield which represents the different
features that a control supports.

GetBestControlRect

Use GetBestControlRect to find out what a control's favorite size is.

pascal OSErr GetBestControlRect(ControlRef control,
Rect* rect,

SInt16* baseLineOffset
)

Do not distribute—Apple Confidential 33

DESCRIPTION

GetBestControlRect is implemented on top of the kControlMsgCalcBestRect
control message. It allows an application to find out what the optimal control
size is and where text should be placed in relation to the control's bottom co-
ordinate. You should generally pass in an empty rect (0, 0, 0, 0). This routine
will call the CDEF that drives the specified control to fill out the right and bot-
tom sides of the rectangle, so you can determine its metrics for correct place-
ment, etc. This allows you to autosize some controls based on their text, such
as Push Buttons. The StandardAlert routine uses this call to help its button
placement algorithm. The baseLineOffset parameter returns where the text
baseline should be in relation to the bottom of the control rectangle. It is a
negative value.

Handling Focus for Controls
The routines in this section allow you to manage keyboard focus.

GetKeyboardFocus

Use GetKeyboardFocus to get the current keyboard focus for a window.

pascal OSErr GetKeyboardFocus(WindowRef window,

ControlRef* control);

DESCRIPTION

The GetKeyboardFocus returns the ControlRef of the control which currently
is the keyboard focus of the window specified.

SetKeyboardFocus

Use SetKeyboardFocus to set the current keyboard focus for a window.

pascal OSErr SetKeyboardFocus(WindowRef window,

ControlRef control, FocusPart part
)

DESCRIPTION

Do not distribute—Apple Confidential 34

The SetKeyboardFocus routine is used to set the current keyboard focus to
the specified control. The part parameter tells the control what part to focus
on. This parameter can be a positive part code or one of the constants, kFo-
cusNoPart, kFocusNextPart, or kFocusPrevPart. These values tell the control
to clear, advance, or reverse, its focus. If the control cannot become the focus
for some reason, an error is returned. Using this routine, it is possible to set
the focus to a disabled or invisible control. You might need to do this when
preparing a dialog while hidden.

AdvanceKeybordFocus

Use AdvanceKeyboardFocus to move the keyboard focus forward.

pascal OSErr AdvanceKeyboardFocus(WindowRef window);

DESCRIPTION

AdvanceKeyboardFocus attempts to advance forward to the next focusable
item in a window and make it the current focus. It skips over disabled and
hidden items.

ReverseKeyboardFocus

Use ReverseKeyboardFocus to move the keyboard focus backwards.

pascal OSErr ReverseKeyboardFocus(WindowRef window);

DESCRIPTION

ReverseKeyboardFocus attempts to advance backwards to the next focusable
item in a window and make it the current focus. It skips over disabled and
hidden items.

ClearKeyboardFocus

Use ClearKeyboardFocus to clear any keyboard focus that exists in a win-
dow.

pascal OSErr ClearKeyboardFocus(WindowRef window);

Do not distribute—Apple Confidential 35

DESCRIPTION

Clear keyboard focus tells any control that might be the current focus to clear
its focus. After the successful execution of this routine, nothing in a window
has the keyboard focus.

Getting and Setting Control Data
The routines in this section allow you to get and set values in a control's pri-
vate data. You might use this to get the text from an edit text or static text
control, or set the indeterminate flag of a progress indicator.

SetControlData

Use SetControlData to set a piece of data for of a control.

pascal OSErr SetControlData(ControlRef control,

ControlPartCode part, ResType tag,

Size dataSize, Ptr dataPtr);

DESCRIPTION

The SetControlData routine is used to set the data represented by tag of the
specified control to the data pointed to by dataPtr. The part parameter indi-
cates which part of the control should get the data.

Passing kControlEntireControl in for part indicates it doesn't belong to any
specific part, but the control as a whole. For some pieces of data, part may not
make sense and is ignored by the CDEF.

GetControlData

Use GetControlData to get a piece of data from a control.

pascal OSErr GetControlData(ControlRef control,

ControlPartCode part, ResType tag,

Size bufferSize, Ptr buffer, Size*

actualSize);

DESCRIPTION

Do not distribute—Apple Confidential 36

The GetControlPartText is used to get the data represented by tag in the spec-
ified control. The part parameter indicates which part of the control the data
should come from. The actual size of the data is returned in actualSize. You
can pass nil in this parameter to avoid getting the size back. Calling this rou-
tine will a nil buffer pointer is functionally equivalent to calling GetControl-
DataSize.

Passing kControlEntireControl in for part indicates it doesn't belong to any
specific part, but the control as a whole. For some pieces of data, part may not
make sense and is ignored by the CDEF.

GetControlDataSize

Use GetControlDataSize to set the size of a data member of a control.

pascal OSErr GetControlDataSize(ControlRef control,

ControlPartCode part, ResType tag,

Size* size);

DESCRIPTION

The GetControlDataSize routine is used to get the size of a specific piece of
data the specified control owns. The part parameter indicates which part of
the control should be checked for the data.

Passing kControlEntireControl in for part indicates it doesn't belong to any
specific part, but the control as a whole. For some pieces of data, part may not
make sense and is ignored by the CDEF.

Iterating Over the Control Hierarchy
The routines in this section allow you to walk the control hierarchy of a win-
dow.

CountSubControls

CountSubControls returns the number of controls embedded within a con-
trol.

pascal OSErr CountSubControls(ControlRef control,

SInt16* numChildren);

DESCRIPTION

Do not distribute—Apple Confidential 37

The CountSubControls routine returns the number of controls that are inside
of the given control. If the control does not support embedding, or embed-
ding is not enabled in its window, an error is returned.

GetIndexedSubControl

GetIndexedSubControl returns a specific control embedded within another
control.

pascal OSErr GetIndexedSubControl(ControlRef control,

SInt16 index, ControlRef*
child);

DESCRIPTION

The GetIndexedSubControl routine returns the control at the index specified
within the control passed in. If the control does not support embedding, or
embedding is not enabled in its window, an error is returned. If the index
passed in is invalid, an error is returned.

GetSuperControl

GetSuperControl returns the parent of a control.

pascal OSErr GetSuperControl(ControlRef control,

ControlRef* daddy);

DESCRIPTION

The GetSuperControl routine returns the parent control of the given control.
If the control does not support embedding, or embedding is not enabled in
its window, an error is returned.

RemovingControls

DisposeControl

Do not distribute—Apple Confidential 38

DisposeControl is changed to remove any subcontrols that might be embed-
ded within it. Passing the root control into this routine is the same as calling
KillControls. In fact, this is what KillControls does.

KillControls

KillControls gets the root control for a window and if it exists, it disposes of
it and all subcontrols via a call to DisposeControl. If a root control does not
exist, it does the same thing it always has.

Application-Defined Routines
This section describes routines that an application can provide to hook into
the new architecture.

MyKeyFilter

Controls that support keyboard focus often have the ability to allow filtering
of keystrokes. This is accomplished by a key filter proc.

pascal KeyFilterResult MyKeyFilter(ControlRef theCon-
trol,

SInt16* keyCode, SInt16* charCode, SInt16* mod-
ifiers);

theControlthe control we are dealing with

keyCodethe key code of the key that was pressed

charCodethe character code of the key that was pressed

modifiersthe modifiers that were down when the key was pressed

This callback should be called from a CDEF when its receives a key hit mes-
sage. The callback can change the keystroke in any way they see fit, leave it
alone, or completely block the CDEF from getting it. This does rely on the
CDEF implementing this correctly. There are two results the key filter can re-
turn: kKeyFilterPassKey or kKeyFilterBlockKey to allow keystrokes thru or
to block them, respectively.

UserPane Callbacks

Do not distribute—Apple Confidential 39

When using a UserPane control, you can hook callback procedures into it to
have it call you back to draw, perform hit testing, etc. In its most basic form,
it is just like an old-style UserItem. Essentially a UserPane is a real control
which just calls you back to do all the fun stuff.

MyUserPaneDrawProc

To handle drawing, you can attach a draw proc to a user pane control.

pascal void MyUserPaneDrawProc(ControlRef control,
SInt16 part);

controlthe control to draw

part the part to draw, 0 = everything

MyUserPaneHitTestProc

To handle hit testing in a user pane, you can attach a hit testing procedure.

pascal ControlPartCode MyUserPaneHitTestProc(ControlRef
control,

Point
where);

controlthe control to test

where the point where the mouse went down, in local coordinates

When called with this message, your routine should determine what part, if
any, the mouse hit in your control and return that part code as its result.

MyUserPaneTrackProc

To handle tracking in a user pane, you can attach a tracking procedure. This
routine will only get called if you've specified the HandlesTracking bit of the
control features, which get passed into the value of the control on creation.

Do not distribute—Apple Confidential 40

pascal ControlPartCode MyUserPaneTrackProc(ControlRef
control,

Point startPt, ControlActionUPP ac-
tionProc);

controlthe control to track

startPtthe point where the mouse went down, in local coordinates

actionProcthe address of a routine to call during tracking.

When called with this message, your routine should track your control, call-
ing actionProc repeatedly until the mouse is released. The value of actionProc
can be a valid procPtr, nil, or -1. -1 indicates the control should do what it
wants to if it actually has some special autoTrack behavior it wants to add.
Most of the time, -1 would probably be treated like nil, i.e. do nothing. When
the mouse is released, the part the mouse was released on should be returned
to indicate a successful tracking session.

MyUserPaneIdleProc

To handle idle processing in a user pane, you can attach an idle procedure.
This routine will only get called if you've specified the WantsIdle bit of the
control features, which get passed into the value of the control on creation.

pascal void MyUserPaneIdleProc(ControlRef control);

controlthe control to idle

You can use this to take advantage of control idle time to do some animation,
etc.

MyUserPaneKeyDownProc

To handle keyboard event processing in a user pane, you can attach an key-
down procedure. This routine will only get called if you've specified the Sup-
portsFocus bit of the control features, which get passed into the value of the
control on creation.

Do not distribute—Apple Confidential 41

pascal ControlPartCode MyUserPaneKeyDownProc(ControlRef
control,

SInt16 keyCode, SInt16 charCode, SInt16
modifiers);

controlthe control that received the key event

keyCodethe key code of the key that was pressed

charCodethe character that the key generated

modifiersthe modifiers that were held down during the keypress

When called with this message, your routine should do whatever is right for
your special item, returning the part code of the item that was hit, if you wish.
The standard EditText control, for example, returns kControlEditTextPart so
that DialogSelect will return the itemHit when a keystroke is pressed.

MyUserPaneActivateProc

To handle activate/deactivate events in a user pane, you can attach an acti-
vate procedure. This routine will only get called if you've specified the Want-
sActivate bit of the control features, which get passed into the value of the
control on creation.

pascal void MyUserPaneActivateProc(ControlRef control,

Boolean acti-
vating);

controlthe control that is becoming active/inactive

activating true if the control is becoming active, false otherwise.

Your routine should do whatever is proper to become active or inactive, such
as calling LActivate, etc.

MyUserPaneFocusProc

Do not distribute—Apple Confidential 42

To handle focus events in a user pane, you can attach an focus procedure.
This routine will only get called if you've specified the SupportsFocus bit of
the control features, which get passed into the value of the control on cre-
ation.

pascal ControlPartCode MyUserPaneFocusProc(ControlRef
control,

FocusPart
part);

controlthe control in question

part the part code to focus

This routine is called in response to a change in focus. The part code passed
in can mean many different things:

kFocusNoPart Clear your focus, return kFocusNoPart

kFocusNextPart Focus on the next item. If nothing is in focus now, fo-
cus the first item. If there are no more items, clear
your focus and return kFocusNoPart.

kFocusPrevPart Focus on the previous item. If nothing is in focus
now, focus the last item. If there are no more items,
clear your focus and return kFocusNoPart.

<part code> Focus on this part. You can interpret this in any way
you wish.

It is very important that your return the right part code for what you consider
to be focused after you are called with this. By returning kFocusNoPart, you
are telling the Control Manager to go onto another control, or that you can't
be focused right now and go bother someone else.

Control Manager Summary

Constants

/* New part codes returned by FindControl/TestControl/FindControlUn-
derMouse*/

enum

{

Do not distribute—Apple Confidential 43

kControlEditTextPart= 5,/* an edit text field was hit */

kControlPicturePart= 6,/* a picture control was hit */

kControlIconPart= 7,/* an icon control was hit */

kControlClockPart= 8,/* a clock control was hit */

kControlListBoxPart= 24,/* a list box was clicked */

kControlListBoxDoubleClickPart= 25/* a list box was double-
clicked*/

};

/* values for focusing */

enum

{

kFocusNoPart= 0,/*Lose focus or returned to mean focus lost*/

kFocusNextPart= -1,/*Focus on next part, if any*/

kFocusPrevPart= -2/*Focus on previous part, if any*/

};

typedef SInt16 FocusPart;

/* return results for key filters */

enum

{

kKeyFilterBlockKey= 0,/* allow keypress to go thru to control */

kKeyFilterPassKey= 1/* stop keypress from going to control */

};

typedef SInt16 KeyFilterResult;

/* Error codes */

enum

{

errMessageNotSupported= -30580,

errDataNotSupported= -30581,

errControlDoesntSupportFocus= -30582,

errWindowDoesntSupportFocus= -30583,

errPaneNotFound = -30584,

errCouldntSetFocus= -30585,

Do not distribute—Apple Confidential 44

errNoRootControl= -30586,

errRootAlreadyExists= -30587,

errInvalidPartCode= -30588,

errControlsAlreadyExist= -30589,

errControlIsNotEmbedder= -30590,

errDataSizeMismatch= -30591,

errControlHiddenOrDisabled= -30592

};

/* Feature bits to be returned when a CDEF is called with a 'get fea-
tures' msg*/

enum

{

kControlSupportsGhosting= 1 << 0,

kControlSupportsEmbedding= 1 << 1,

kControlSupportsFocus= 1 << 2,

kControlWantsIdle= 1 << 3,

kControlWantsActivate= 1 << 4,

kControlHandlesTracking= 1 << 5,

kControlSupportsDataAccess= 1 << 6,

kControlHasSpecialBackground= 1 << 7,

kControlGetsFocusOnClick= 1 << 8,

kControlSupportsCalcBest= 1 << 9,

kControlSupportsLiveFeedback= 1 << 10

};

/* New control messages */

enum

{

kControlMsgDrawGhost= 13,/* Draw a ghost image of the indicator*/

kControlMsgCalcBestRect= 14,/* Calculate and return the best
bounds*/

kControlMsgHandleTracking= 15,/* Handles tracking */

kControlMsgFocus= 16,/* Focus on a part, or clear focus */

kControlMsgKeyDown= 17,/* Handle a keyboard event */

Do not distribute—Apple Confidential 45

kControlMsgIdle = 18,/* Do some idle processing */

kControlMsgGetFeatures= 19,/* Return 32-bit field of features */

kControlMsgSetData= 20,/* Set a piece of private data */

kControlMsgGetData= 21,/* Get a piece of private data */

kControlMsgActivate= 22,/* Handle activate/deactivate */

kControlMsgSetUpBackground= 23,/* Set up background color, etc */

kControlMsgCalcValueFromPos= 26

};

/* These constants are meta-font values used in ControlFontStyleRecs*/

enum

{

kControlFontBigSystemFont= -1,/* force to big system font */

kControlFontSmallSystemFont= -2,/* force to small system font */

kControlFontSmallBoldSystemFont= -3/* force to small bold system
font */

};

/* bits to set in flags of ControlFontStyleRec to control what to set
*/

enum

{

kUseFontMask= 0x0001,/* Set the font */

kUseFaceMask= 0x0002,/* Set the face */

kUseSizeMask= 0x0004,/* Set the size */

kUseForeColorMask= 0x0008,/* Set the foreground color */

kUseBackColorMask= 0x0010,/* Set the background color */

kUseModeMask= 0x0020,/* Set the text mode */

kUseJustMask= 0x0040,/* Set the justification */

kUseAllMask = 0x00FF,/* Set all of the above */

kAddFontSizeMask= 0x0100/* size represents value to add */

/* to current font size */

};

Do not distribute—Apple Confidential 46

/* some common data tags */

enum

{

kControlFontStyleTag= 'font',/* font style (ControlFontStyleRec)*/

kControlKeyFilterTag= 'fltr'/* key filter (ControlKeyFilterUPP)*/

};

Data Types

/* This structure is passed to CDEFs when called via HandleControl-
Click, */

/* provided that the control does its own tracking */

struct ControlTrackingRec

{

Point startPt;

SInt16 modifiers;

ControlActionUPPaction;

};

typedef struct ControlTrackingRec ControlTrackingRec, *ControlTrack-
ingPtr;

/* This structure is passed to the CDEF for keyboard events */

struct ControlKeyDownRec

{

SInt16 modifiers;

SInt16 keyCode;

SInt16 charCode;

};

typedef struct ControlKeyDownRec ControlKeyDownRec, *ControlKeyDownP-
tr;

/* this structure is passed to CDEFs for the Get/SetData message */

struct DataAccessRec

{

ResType tag; /* 'name' of the data we are specifying */

ControlPartCodepart;/* part of the control this tag refers to */

Do not distribute—Apple Confidential 47

Size size; /* size of the data or buffer */

Ptr dataPtr;/* pointer to the data or buffer */

};

typedef struct DataAccessRec DataAccessRec, *DataAccessPtr;

/* this is used by many controls to set a special font style */

struct ControlFontStyleRec

{

SInt16 flags; /* which pieces should we set */

SInt16 font; /* the font to set to (can be meta-font) */

SInt16 size; /* the size of the type */

SInt16 style; /* the style (bold, italic, etc.) */

SInt16 mode; /* text mode (srcOr, etc.) */

SInt16 just; /* justification */

RGBColorforeColor;/* foreground color */

RGBColorbackColor;/* background color */

};

typedef struct ControlFontStyleRec ControlFontStyleRec, *ControlFont-
StylePtr;

Control Manager Routines

Internal Routines

pascal SInt32 SendControlMessage(ControlRef theControl, SInt16 mes-
sage, SInt32 param);

pascal OSErr GetControlDialogItemNo(ControlRef window, SInt16* item-
No);

pascal OSErr SetControlDialogItemNo(ControlRef window, SInt16 itemNo
);

pascal OSErr DumpControlHierarchy(WindowRef window, const FSSpec*
file);

Embedding Routines

Do not distribute—Apple Confidential 48

pascal OSErr CreateRootControl(WindowRef window, ControlRef* control
);

pascal OSErr GetRootControl(WindowRef window, ControlRef* control);

pascal OSErr EmbedControl(ControlRef control, ControlRef container);

pascal OSErr AutoEmbedControl(ControlRef control, WindowRef window
);

Drawing Controls

pascal void DrawControlInCurrentPort(ControlRef control);

Testing and Changing Control Settings

pascal Boolean IsControlActive(ControlRef control);

pascal Boolean IsControlVisible(ControlRef control);

pascal OSErr ActivateControl(ControlRef control);

pascal OSErr DeactivateControl(ControlRef control);

pascal OSErr SetControlFontStyle(ControlRef control,ControlFontSty-
lePtr style);

Handling Mouse Events in Controls

pascal ControlRef FindControlUnderMouse

(Point where, WindowRef window, SInt16* part);

pascal SInt16 HandleControlClick(ControlRef control, Point where,
SInt16 modifiers, Contro-
lActionUPP action);

pascal OSErr SetControlSupervisor(ControlRef control, ControlRef
boss);

Handling Keyboard Events in Controls

pascal SInt16 HandleControlKey(ControlRef control, SInt16 keyCode,
SInt16 charCode, SInt16
modifiers);

Idle Processing for Controls

pascal void IdleControls(WindowRef window)

Handling Focus for Controls

Do not distribute—Apple Confidential 49

pascal OSErr GetKeyboardFocus(WindowRef window, ControlRef* control
);

pascal OSErr SetKeyboardFocus(WindowRef window, ControlRef control,
FocusPart part);

pascal OSErr AdvanceKeyboardFocus(WindowRef window);

pascal OSErr ReverseKeyboardFocus(WindowRef window);

Determining Features of Controls

pascal UInt32 GetControlFeatures(ControlRef control);

Getting and Setting Control Data

pascal OSErr SetControlData(ControlRef control, ControlPartCode
part, ResType tagName,
Size size, Ptr dataPtr);

pascal OSErr GetControlData(ControlRef control, ControlPartCode
part, ResType tagName,
Size bufferSize, Ptr buff-
erPtr, Size* actualSize);

pascal OSErr GetControlDataSize(ControlRef control, ControlPartCode
part, ResType tagName,
Size* size);

Iterating Over the Control Hierarchy

pascal OSErr CountSubControls(ControlRef control, SInt16* numChil-
dren);

pascal OSErr GetIndexedSubControl(ControlRef control, SInt16 index,
ControlRef* child);

pascal OSErr GetSuperControl(ControlRef control, ControlRef* parent
);

Application-Defined Routines

pascal KeyFilterResult MyKeyFilter(ControlRef theControl, SInt16*
keyCode,

SInt16* charCode, SInt16*
modifiers);

pascal void MyUserPaneDrawProc(ControlRef control, SInt16 part);

pascal ControlPartCode MyUserPaneHitTestProc

(ControlRef control, Point
where);

pascal ControlPartCode MyUserPaneTrackProc

Do not distribute—Apple Confidential 50

(ControlRef control, Point
startPt, ControlActionUPP
actionProc);

pascal void MyUserPaneIdleProc(ControlRef control);

pascal ControlPartCode MyUserPaneKeyDownProc

(ControlRef control, SInt16
keyCode,

SInt16 charCode, SInt16
modifiers);

pascal void MyUserPaneActivateProc(ControlRef control, Boolean acti-
vating);

pascal ControlPartCode MyUserPaneFocusProc

(ControlRef control, Focus-
Part part);

Do not distribute—Apple Confidential 51

Dialog Manager Reference

This section describes the new routines added to the Dialog Manager as well
as how some routines have been altered when running with a hierarchy.

Creating Dialogs And Alerts

NewFeaturesDialog

Call NewFeaturesDialog to create a dialog while specifying features for the
dialog.

pascal DialogRef NewFeaturesDialog(void *wStorage,

const Rect *boundsRect, ConstStr255Param title,

Boolean visible, SInt16 procID, WindowRef be-
hind,

Boolean goAwayFlag, SInt32 refCon,

Handle itmLstHndl, SInt32 flags);

DESCRIPTION

This new routine allows the creation of a dialog while specifying options,
such as theme savvyness, when the dialog is created.

Presenting Dialogs

StandardAlert

Call StandardAlert to use a system-supplied default alert template.

pascal OSErr StandardAlert(

AlertType type,

StringPtr error,

StringPtr explanation,

AlertStdAlertParamPtr param,

Do not distribute—Apple Confidential 52

SInt16* itemHit);

DESCRIPTION

The StandardAlert routine is available as an easy to use template for creating
alerts. It allows you to set the error text, as well as text to further explain what
went wrong and how to fix it. The explanatory text is displayed in the small
system font. The button that was hit (you can specify up to 3) is returned in
itemHit.

The param parameter is used for special alert customization. You pass the ad-
dress of a structure which contains information telling the Dialog Manager to
make the alert movable, give the alert a filterproc, specify text for buttons, etc.

The alert can be movable by passing true in for the movable field of this struc-
ture. If you make your alert movable, you should make sure you pass a mod-
al filter into filterProc. This will allow you to handle update events for
window’s behind the alert. Be aware that when you are using a movable
alert, all events that your application receives are passed to you, i.e. the mask
used on GetNextEvent is everyEvent.

You can have up to 4 buttons in the alert: an OK button, a cancel button, an
'other' button, and a help button. The buttons auto-size and autoposition
themselves correctly in the alert for you. By default, the rightmost button text
is "OK", the button to the immediate left of the OK button (cancel position)
defaults to having the text "Cancel", and the 'other' (leftmost) button text is
"Don't Save". The 'other' button is always left justified in the alert, and allows
you to easily create a save alert. To specify that the default button names
should be used, you pass -1 in for the text parameters. Passing nil in for a but-
ton text parameter indicates that no button should be displayed for that par-
ticular button. The rightmost button cannot be hidden, so passing nil is
equivalent to passing -1 in for that parameter.

You can pass true in the param structure for the helpButton field to indicate
that a help button is to be displayed.

You can specify which button is the default button, and which is the cancel
button in the param struct. This controls which button is ’pressed’ when typ-
ing return or enter and which button is ’pressed’ by typing command-period.

By default, the StandardAlert routine positions the alert in the alert position
on the parent window’s screen. You can override this by passing another
auto-centering constant into the position field of the structure.

Any errors are returned as the function result.

ModifyingDialogs
The routines in this section allow you to manipulate aspects of a dialog.

AutoSizeDialog

Use AutoSizeDialog to automatically resize a dialog to make sure all static
text is visible.

pascal OSErr AutoSizeDialog(DialogPtr dialog);

DESCRIPTION

Do not distribute—Apple Confidential 53

The AutoSizeDialog routine resizes the given dialog enough to show all static
text. This is extremely useful in dialogs where the amount of text to be dis-
played is determined at runtime. Calling this routine iterates over the items
in the dialog. For each static text item it finds, it adjusts the bottom of the win-
dow to accomodate the amount of text. Any items below a static text field be-
ing adjusted are moved down accordingly. If the dialog is visible when this
routine is called, it is hidden, resized, and then shown. If the dialog has
enough room to show the text as is, no resizing is done.

MoveDialogItem

Use MoveDialogItem to move an item from one location to another, keeping
any control rectangles in sync with the dialog item’s rectangle.

pascal OSErr MoveDialogItem(DialogPtr dialog,

SInt16 itemNo, SInt16 horiz, SInt16 vert);

DESCRIPTION

The MoveDialogItem should be called when moving any item in a dialog. If
the item is a control, it will call MoveControl to move the control to the right
place. This routine allows the dialog manager to make sure that the dialog
item rectangles always match a control’s rectangle. Simply calling MoveCon-
trol without adjusting the dialog item’s rectangle can confuse the Dialog
Manager.

SizeDialogItem

Use SizeDialogItem to change a dialog item’s size, keeping any control rect-
angles in sync with the dialog item’s rectangle.

pascal OSErr SizeDialogItem(DialogPtr dialog,

SInt16 itemNo, SInt16 width, SInt16 height);

DESCRIPTION

The SizeDialogItem should be called when resizing any item in a dialog. If
the item is a control, it will call MoveControl to move the control to the right
place. This routine allows the dialog manager to make sure that the dialog
item rectangles always match a control’s rectangle. Simply calling MoveCon-
trol without adjusting the dialog item’s rectangle can confuse the Dialog
Manager.

Routines to Get Information About Dialog Items
The routines in this section allow you to get information about dialog items.

Do not distribute—Apple Confidential 54

GetDialogItemAsControl

Use GetDialogItemAsControl to get the actual control handle for a dialog
item. This is especially useful when an embedding hierarchy is established.

pascal OSErr GetDialogItemAsControl(DialogPtr dialog,

 SInt16 itemNo, ControlHandle *control)

DESCRIPTION

GetDialogItemAsControl returns the control handle for the item specified. If
the item is not a control, an error is returned. If a dialog is in embedding
mode, all items are controls, and this routine will work on any item. This rou-
tine is useful when it is necessary to get the control for an edit text or static
text item in a dialog.

Changes To Existing Routines
This section documents new behavior of some of the classic Dialog Manager
routines when a dialog is in the Appearance Savvy mode.

GetNewDialog

GetNewDialog has been changed to check for the presence of a 'dlgx' re-
source with the same ID as the dialog resource ID passed in. If found, the in-
formation is read in and used. The 'dlgx' resource holds information such as
the dialog flags for setting features like 'use theme background' and 'use em-
bedding hierarchy'.

Alert, CautionAlert, StopAlert, NoteAlert

These routines have been changed to check for the presence of a 'alrx' re-
source esource with the same ID as the alert resource ID passed in. If found,
the information is read in and used. The 'alrx' resource holds information
such as the alert flags for setting features like 'use theme background' and
'use embedding hierarchy'.

GetDialogItem

GetDialogItem is changed so that calling it when the dialog has an embed-
ding hierarchy talks to the controls to get the appropriate data. The API still
returns the same types of handles as it always has.

SetDialogItem

Do not distribute—Apple Confidential 55

SetDialogItem is changed so that calling it when the dialog has an embedding
hierarchy has a couple of restrictions: you can’t change the type or handle of
an item. User item drawing procedures can still be set. If an embedding hier-
archy does not exist, it works as it always has in the past. Also, if you set the
control rectangle on an item when an embedding hierarchy is present, it will
move and resize the item appropriately for you.

GetDialogItemText

GetDialogItemText is changed such that calling it when the dialog has an em-
bedding hierarchy it will expect a ControlRef in the handle parameter. It will
ask the EditText control for the text and return it in the string parameter.

SetDialogItemText

SetDialogItem is changed so that calling it when the dialog has an embedding
hierarchy it can take either ControlRef or a text handle. The string passed in
is set in the Edit Text control.

Summary of the Dialog Manager

Constants

/* Flags for NewFeaturesDialog, as well as dlgx and alrx resources */

enum

{

kDialogFlagsUseThemeBackground = 1,

kDialogFlagsUseControlHierarchy= 2,

kDialogFlagsHandleMovableModal= 4,

kDialogFlagsUseThemeControls = 8

};

Creating Dialogs and Alerts

pascal DialogRef NewFeaturesDialog(void *wStorage, const Rect
*boundsRect,
ConstStr255Param title,
Boolean visible, SInt16

Do not distribute—Apple Confidential 56

procID, WindowRef behind,
Boolean goAwayFlag, SInt32
refCon, Handle itmLstHndl,
SInt32 flags);

pascal void AutoSizeDialog(DialogPtr dialog);

pascal OSErr StandardAlert(AlertType type,StringPtr error, StringP-
tr explanation, Boolean
movable, ModalFilterUPP
filterProc, StringPtr de-
faultText, StringPtr can-
celText, tringPtr
otherText, const FSSpec*
agFileSpec, SInt16 agSe-
quenceID, SInt16* itemHit
);

Do not distribute—Apple Confidential 57

Window Manager Reference

This section describes the new routines added to the Window Manager.

Window Collapsing Support

A new part code is introduced to represent the Collapse Box:

enum

{

inCollapseBox = 9

};

Normally this is hidden from an application and taken care of by our Syste-
mEvent patch. We are working on trying to establish a mechanism whereby
apps can signal us that they want to receive these events themselves, bypass-
ing the automatic behavior.

A new message has been created for getting the features of a window defini-
tion function:

enum

{

kWindowMsgGetFeatures= 7

};

When sent this message, the WDEF should respond by filling out a 32-bit re-
sponse field and returning it as the result of the definition function. The val-
ues that are currently valid are:

enum {
kWindowCanGrow = (1 << 0),
kWindowCanZoom = (1 << 1),
kWindowCanCollapse = (1 << 2),
kWindowIsModal = (1 << 3),
kWindowCanGetWindowRegion = (1 << 4),
kWindowIsAlert = (1 << 5),
kWindowHasTitleBar = (1 << 6)

};

Do not distribute—Apple Confidential 58

When a WDEF supports the collapsing, it knows to calculate its regions in its
collapsed state by testing to see whether IsWindowCollapsed returns true. If
so, it should calculates its structure region based on the collapsed state. If not,
it should do its normal structure calculation.

Collapsing Routines

CollapseWindow

Call CollapseWindow to collapse a window. A window typically collapses to
its title bar.

pascal OSErr CollapseWindow(WindowRef window, Boolean
collapse);

DESCRIPTION

This routine will either tell a window to collapse or uncollapse a window, de-
pending on the value of the collapse parameter. If a window does not support
collapsing thru the new mechanism, an error is returned.

CollapseAllWindows

Call CollapseAllWindows to collapse or uncollapse all windows.

pascal OSErr CollapseAllWindows(Boolean collapseEm);

DESCRIPTION

This routine will either tell all windows that are in the current layer to col-
lapse or uncollapse a window, depending on the value of the collapse param-
eter. If a window does not support collapsing thru the new mechanism, an
error is returned.

IsWindowCollapsed

Do not distribute—Apple Confidential 59

Call IsWindowCollapsed to check to see whether a window is in its collapsed
state.

pascal Boolean IsWindowCollapsed(WindowRef window);

DESCRIPTION

This routine will return true or false depending on the collapse state of the
window. If the window does not support collapsing, false is returned.

Routines to Get Window Information

GetWindowFeatures

Use GetWindowFeatures to determine what features a window supports, as
well as what type of window it is.

pascal OSStatus GetWindowFeatures(WindowPtr window,

UInt32 *features)

DESCRIPTION

This routine is used to determine what features a window supports, such as
collapsing, as well as getting what widgets are shown and what type of win-
dow you are dealing with (modal, for example). The features are returned in
the features parameter. The bits are defined below:

enum {
kWindowCanGrow = (1 << 0),
kWindowCanZoom = (1 << 1),
kWindowCanCollapse = (1 << 2),
kWindowIsModal = (1 << 3),
kWindowCanGetWindowRegion = (1 << 4),
kWindowIsAlert = (1 << 5),
kWindowHasTitleBar = (1 << 6)

};

GetWindowRegion

Use GetWindowRegion to get a specific region of a window.

pascal OSStatus GetWindowRegion(WindowPtr window,
WindowRegionCode regionCode,
RgnHandle winRgn);

DESCRIPTION

GetWindowRegion allows you to get specific regions of a window, such as
the grow box region, or the close box or title region.

Do not distribute—Apple Confidential 60

Summary of the Window Manager

Constants

/* Part codes returned by FindWindow */

enum

{

inCollapseBox = 9 /* Collapse box of a window was hit */

};

/* Window definition function task codes */

enum

{

kWindowMsgGetFeatures= 7

};

enum {

kWindowCanGrow = (1 << 0),

kWindowCanZoom = (1 << 1),

kWindowCanCollapse = (1 << 2),

kWindowIsModal = (1 << 3),

kWindowCanGetWindowRegion = (1 << 4),

kWindowIsAlert = (1 << 5),

kWindowHasTitleBar = (1 << 6)

};

enum {

kWindowTitleBarRgn= 0,

kWindowTitleTextRgn= 1,

kWindowCloseBoxRgn= 2,

kWindowZoomBoxRgn= 3,

kWindowDragRgn = 5,

kWindowGrowRgn = 6,

Do not distribute—Apple Confidential 61

kWindowCollapseBoxRgn= 7,

kWindowStructureRgn= 32,

kWindowContentRgn= 33

};

/* Window feature bits */

enum

{

kWindowCanGrow = (1 << 0),

kWindowCanZoom = (1 << 1),

kWindowCanCollapse= (1 << 2),

kWindowIsModal = (1 << 3),

kWindowIsMovableModal= (1 << 4)

};

Collapsing Windows

pascal OSErr CollapseWindow(WindowRef window, Boolean collapse);

pascal OSErr CollapseAllWindows(Boolean collapse);

pascal Boolean IsWindowCollapsed(WindowRef window);

pascal OSStatus GetWindowFeatures(WindowPtr window, UInt32 *features)

pascal OSStatus GetWindowRegion(WindowPtr window, WindowRegionCode
regionCode, RgnHandle win-
Rgn)

Do not distribute—Apple Confidential 62

Menu Manager Reference

This section describes the new routines added to the Menu Manager. It has
been extended to allow for more modifier keys to be used, such as shift and
option. We have also added the ability to set a command ID for a menu item
an other information. The routines in this section only function when the sys-
tem supplied MDEF is used.

Handling Keyboard Events

MenuEvent

Call MenuEvent instead of MenuKey to determine if a keyboard equivalent
for a menu item has been pressed when using the extended modifiers.

pascal UInt32 MenuEvent(EventRecord* event);

DESCRIPTION

MenuEvent is used to determine if a keyboard equivalent has been pressed
by the user when using the new extended set of modifiers. The charCode and
modifiers are normally taken from an EventRecord's message and modifiers
fields.

Getting and Setting Menu Item Data

SetMenuItemModifiers

Call SetMenuItemModifiers to set the modifier keys to use for a specific
menu item.

pascal OSErr SetMenuItemModifiers(MenuRef menu, SInt16
item,

 SInt16 modifiers);

DESCRIPTION

Do not distribute—Apple Confidential 63

This routine will set the modifiers field of a menu item. The Command key is
always implied to be set; however, it is possible to set a modifier sequence
without the command key using the kMenuNoCommand flag in modifiers.

GetMenuItemModifiers

Call GetMenuItemModifiers to set the modifier keys to use for a specific
menu item.

pascal OSErr SetMenuItemModifiers(MenuRef menu, SInt16
item,

 SInt16* modifiers);

DESCRIPTION

This routine will get the modifiers field of a menu item.

SetMenuItemCommandID

Call SetMenuItemCommandID to set the command ID for a specific menu
item.

pascal OSErr SetMenuItemCommandID(MenuRef menu, SInt16
item,

 UInt32 commandID);

DESCRIPTION

This routine will set the command ID of a menu item. You can use the com-
mand ID as a position independent method of signaling a specific action in
an application. After a successful call to MenuSelect, MenuKey, or Extended-
MenuKey, you can call GetMenuItemCommandID to get the command of the
item and do the appropriate thing.

GetMenuItemCommandID

Call GetMenuItemCommandID to get the command ID for a specific menu
item.

Do not distribute—Apple Confidential 64

pascal OSErr GetMenuItemCommandID (MenuRef menu, SInt16
item,

 UInt32* commandID);

DESCRIPTION

This routine will get the command ID of a menu item. You can use the com-
mand ID as a position independent method of signaling a specific action in
an application. After a successful call to MenuSelect, MenuKey, or Extended-
MenuKey, you can call GetMenuItemCommandID to get the command of the
item and do the appropriate thing.

SetMenuItemTextEncoding

Call SetMenuItemTextEncoding to set the script code to use for a specific
menu item.

pascal OSErr SetMenuItemTextEncoding(MenuRef menu,

SInt16 item, TextEncoding encoding
);

DESCRIPTION

This routine will set the script code of a menu item. You can use this routine
instead of the older method of using $1C in the command key equivalent
field, which uses up that field as well as the icon field, which would hold the
script code. Using this new method allows you to gain those fields back for
your use. If a menu item has a command code of $1C when this routine is
called, the command and icon fields are cleared, in favor of the new setting
passed in and stored with the extended information for this item.

GetMenuItemTextEncoding

Call GetMenuItemTextEncoding to get the script code for a specific menu
item.

pascal OSErr GetMenuItemTextEncoding(MenuRef menu,

SInt16 item, TextEncoding* encoding);

Do not distribute—Apple Confidential 65

DESCRIPTION

This routine will get the script code of a menu item. If the script code is set
using the old method ($1C in the key equivalent field), the script code is ex-
tracted from the icon field and returned. In general, when running Appear-
ance, you should use the new SetMenuItemScript routine instead of the older
method.

SetMenuItemIconHandle

Call SetMenuItemIconHandle to set an icon to use for a specific menu item.

pascal OSErr SetMenuItemIconHandle(MenuRef menu, SInt16
item,

 MenuIconType type,

Handle icon);

DESCRIPTION

This routine will set the icon of a menu item with an icon handle instead of
an ID. This call allows you to set icons of type ICON, cicn, SICN, and icon
suites. The menu will not dispose of any icons, it is up to the application to
do so.

GetMenuItemIconHandle

Call GetMenuItemIconHandle to get the handle of an icon you've set using
SetMenuItemIconHandle.

pascal OSErr GetMenuItemIconHandle(MenuRef menu, SInt16
item,

 MenuIconType* type,

Handle* suite);

DESCRIPTION

Do not distribute—Apple Confidential 66

This routine will return the icon handle and the type of icon. If there is no icon
for this item, nil is returned for the icon handle and kMenuNoIcon is returned
for the type.

SetMenuItemRefCon

Call SetMenuItemRefCon to set an application-specific piece of information
for a menu item.

pascal OSErr SetMenuItemRefCon(MenuRef menu, SInt16
item,

 SInt32 refCon);

DESCRIPTION

This routine allows an application to set a piece of application specific data to
a menu item.

GetMenuItemRefCon

Call GetMenuItemRefCon to get an application-specific piece of information
for a menu item.

pascal OSErr GetMenuItemRefCon(MenuRef menu, SInt16
item,

 SInt32* refCon);

DESCRIPTION

This routine returns the application specific data set for a menu item with
SetMenuItemRefCon.

SetMenuItemRefCon2

Call SetMenuItemRefCon2 to set an application-specific piece of information
for a menu item.

Do not distribute—Apple Confidential 67

pascal OSErr SetMenuItemRefCon2(MenuRef menu, SInt16
item,

 SInt32 refCon);

DESCRIPTION

This routine allows an application to set a piece of application specific data to
a menu item.

GetMenuItemRefCon2

Call GetMenuItemRefCon2 to get an application-specific piece of informa-
tion for a menu item.

pascal OSErr GetMenuItemRefCon2(MenuRef menu, SInt16
item,

 SInt32* refCon);

DESCRIPTION

This routine returns the application specific data set for a menu item with
SetMenuItemRefCon2.

SetMenuItemHierarchicalID

Call SetMenuItemHierarchicalID to attach a submenu to a menu item.

pascal OSErr SetMenuItemHierarchicalID(MenuRef menu,
SInt16 item,

 SInt16 hierID);

DESCRIPTION

This routine allows you to attach a hierarchical menu to the given menu item.
This is a high-level method than existed in the past, as it allows you to forget
about how hierarchicals are attached to menus. Currently, the hierarchical
menu ID is still restricted to 0-255, but a future version will allow a full 16-bit
integer to be used.

Do not distribute—Apple Confidential 68

GetMenuItemHierarchicalID

Call GetMenuItemHierarchicalID to get an application-specific piece of infor-
mation for a menu item.

pascal OSErr GetMenuItemHierarchicalID(MenuRef menu,
SInt16 item,

 SInt16* hierID);

DESCRIPTION

This routine returns the hierarchical menu ID for the given menu item. If the
keyboard equivalent for the item is set to $1B, the menu ID is extracted from
the item mark field and returned.

SetMenuItemFont

Call SetMenuItemFont to set the font for a specific menu item.

pascal OSErr SetMenuItemFont(MenuRef menu, SInt16 item,

 SInt16 fontNum);

DESCRIPTION

This routine allows you to set the font to use when drawing the given menu
item. This effectively allows you to set up a font menu with each item being
drawn in the actual font.

GetMenuItemFont

Call GetMenuItemFont get the font used by a specific menu item.

pascal OSErr GetMenuItemFont(MenuRef menu, SInt16 item,

 SInt16* fontNum);

Do not distribute—Apple Confidential 69

DESCRIPTION

This routine returns the font for the given menu item.

SetMenuItemKeyGlyph

Call SetMenuItemKeyGlyph to set the glyph to display as the keyboard
equivalent for a specific menu item.

pascal OSErr SetMenuItemKeyGlyph(MenuRef menu,
SInt16 item, SInt16 glyph);

DESCRIPTION

This routine allows you to set a different glyph that would be normally dis-
played for the keyboard equivalent of a menu item. This is needed at times
when the character code for some keys (like the delete key - ascii 8) does not
map to the correct glyph in the font (which would be ascii 10). This glyph
overrides the normal key that would be displayed. If zero is passed in for
glyph, it clears the glyph and the menu item displays the actual character.

GetMenuItemKeyGlyph

Call GetMenuItemKeyGlyph to get the glyph to display as the keyboard
equivalent for a specific menu item.

pascal OSErr GetMenuItemKeyGlyph(MenuRef menu,
SInt16 item, SInt16* glyph);

DESCRIPTION

This routine allows you to get the glyph that overrides the keyboard equiva-
lent for a menu item.

Do not distribute—Apple Confidential 70

Summary of the Menu Manager

Constants

/* Modifier flags used by SetMenuItemModifiers */

enum

{

kMenuOptionKey= 1,

kMenuShiftKey= 2,

kMenuControlKey= 4,

kMenuNoCommandKey= 8

};

/* Valid icon types for SetMenuItemIconHandle */

enum

{

kMenuIcon = 1, /* old ICON data */

kMenuColorIcon= 2,/* cicn format */

kMenuSmallIcon= 3,/* SICN format */

kMenuIconSuite= 4,/* Icon Suite */

kMenuIconRef= 5 /* Icon Ref */

};

Routines

Handling Keyboard Events

pascal SInt32 MenuEvent(EventRecord* event);

pascal OSErr SetMenuItemModifiers(MenuRef menu, SInt16 item, SInt16
modifiers);

Getting and Setting Menu Data

pascal OSErr SetMenuItemModifiers(MenuRef menu, SInt16 item, SInt16*
modifiers);

Do not distribute—Apple Confidential 71

pascal OSErr SetMenuItemCommandID(MenuRef menu, SInt16 item, UInt32
commandID);

pascal OSErr GetMenuItemCommandID (MenuRef menu, SInt16 item, UInt32*
commandID);

pascal OSErr SetMenuItemScriptID(MenuRef menu, SInt16 item, Script-
Code script);

pascal OSErr GetMenuItemScriptID(MenuRef menu, SInt16 item,Script-
Code* script);

pascal OSErr SetMenuItemIconHandle(MenuRef menu, SInt16 item, MenuI-
conType type, Handle icon
);

pascal OSErr GetMenuItemIconHandle(MenuRef menu, SInt16 item, MenuI-
conType* type, Handle*
suite);

pascal OSErr SetMenuItemRefCon(MenuRef menu, SInt16 item, SInt32
refCon);

pascal OSErr GetMenuItemRefCon(MenuRef menu, SInt16 item, SInt32*
refCon);

pascal OSErr SetMenuItemRefCon2(MenuRef menu, SInt16 item, SInt32
refCon);

pascal OSErr GetMenuItemRefCon2(MenuRef menu, SInt16 item, SInt32*
refCon);

pascal OSErr SetMenuItemHierarchicalID(MenuRef menu, SInt16 item,
SInt16 hier);

pascal OSErr GetMenuItemHierarchicalID(MenuRef menu, SInt16 item,
SInt16* hier);

pascal OSErr SetMenuItemFont(MenuRef menu, SInt16 item, SInt16 font
);

Do not distribute—Apple Confidential 72

pascal OSErr GetMenuItemFont(MenuRef menu, SInt16 item, SInt16* font
);

pascal OSErr SetMenuItemKeyGlyph(MenuRef menu, SInt16 item, SInt16
keyGlyph);

pascal OSErr GetMenuItemKeyGlyph(MenuRef menu, SInt16 item, SInt16*
keyGlyph);

Manipulating the Menu Bar Clock

pascal void DrawMenuBarClock(StringPtr text, Handle batteryIconSuite
);

Do not distribute—Apple Confidential 73

Appearance Manager Reference

This section describes the routines available as part of the Appearance Man-
ager.

Registering with Appearance

RegisterAppearanceClient

Use RegisterAppearanceClient to let the Appearance Manager know you are
a client of the new Appearance defprocs and APIs.

pascal OSStatus RegisterAppearanceClient(void)

DESCRIPTION

This routine should be called at the very beginning of your application if you
are adopting Appearance. It tells the system to autoroute calls to the classic
defprocs (WDEF 0, CDEF 0, etc.) to the new Appearance-Savvy defprocs au-
tomatically. This call is necessary to call to ensure your application behaves
correctly with Appearance.

UnregisterAppearanceClient

Use RegisterAppearanceClient to let the Appearance Manager know you are
no longer using new Appearance defprocs and APIs.

pascal OSStatus UnregisterAppearanceClient(void)

DESCRIPTION

This routine should be called when you want to stop autorouting calls to the
classic defprocs (WDEF 0, CDEF 0, etc.) to the new Appearance-Savvy def-
procs automatically. This should not normally be called until your applica-
tion terminates. The only exception would be around calls to plug-ins that
might require the classic defprocs.

Using Patterns and Colors

SetThemePen

Use SetThemePen to set the foreground color to a specified pattern.

Do not distribute—Apple Confidential 74

pascal OSStatus SetThemePen(ThemeBrush brush,
SInt16 depth, Boolean colorDevice);

DESCRIPTION

SetThemePen simply sets the foreground pattern to the pattern specified in
the brush parameter. You also pass the depth and a boolean indicating
whether or not you are drawing on a color device. This information helps the
Appearance manager know what exact color or pattern to use for the situa-
tion. This is typically used inside a DeviceLoop drawing procedure.

SetThemeBackground

Use SetThemeBackground to set the background pattern of a window.

pascal OSStatus SetThemeBackground(ThemeBrush brush,
SInt16 depth, Boolean colorDevice);

DESCRIPTION

SetThemeBackground simply sets the background pattern to the pattern
specified in the brush parameter. You also pass the depth and a boolean in-
dicating whether or not you are drawing on a color device. This information
helps the Appearance manager know what exact color or pattern to use for
the situation. This is typically used inside a DeviceLoop drawing procedure.

SetThemeTextColor

Use SetThemeTextColor to set the foreground color for drawing text.

pascal OSStatus SetThemeTextColor(ThemeTextColor color,
SInt16 depth, Boolean colorDevice);

DESCRIPTION

SetThemeTextColor sets the foreground color to the color specified in the
color parameter for drawing text. You also pass the depth and a boolean in-
dicating whether or not you are drawing on a color device. This information
helps the Appearance manager know what exact color to use for the situa-
tion. This is typically used inside a DeviceLoop drawing procedure.

Do not distribute—Apple Confidential 75

SetThemeWindowBackground

Use SetThemeWindowBackground to set the background color of a window.

pascal OSStatus SetThemeWindowBackground(
WindowPtr window, ThemeBrush brush,
Boolean update)

DESCRIPTION

SetThemeWindowBackground is used to set the background color of a win-
dow. This is the actual content color that PaintOne will erase to when called,
and can be different than the actual background color stored in the grafPort
for the window. The color to use is passed in the brush parameter. If update
is true, the window is erased and an update event is generated for the entire
contents.

Drawing Theme-Savvy Primitives

DrawThemeWindowHeader

Call DrawThemeWindowHeader to draw the correct window header for the
current theme.

pascal OSErr DrawThemeWindowHeader(const Rect* rect,

ThemeDrawState
state);

DESCRIPTION

This routine will draw a window header which looks right for the current
theme. The header is the same as that used in the Finder. The state parameter
indicates which state to draw the header in.

DrawThemeWindowListViewHeader

Call DrawThemeFinderListViewHeader to draw the correct window header
for a list view for the current theme.

Do not distribute—Apple Confidential 76

pascal OSErr DrawThemeFinderListViewHeader(const Rect*
rect,

ThemeDraw-
State state);

DESCRIPTION

This routine will draw a window header for a list view which looks right for
the current theme. The header is the same as that used in the Finder. The state
parameter indicates which state to draw the header in.

DrawThemePlacard

Call DrawThemePlacard to draw a placard for the current theme.

pascal OSErr DrawThemePlacard(const Rect* rect,

ThemeDrawState state
);

DESCRIPTION

This routine will draw a placard which looks right for the current theme. The
state parameter indicates which state to draw the header in.

DrawThemeModelessDialogFrame

Call DrawThemeModelessDialogFrame to draw the right frame for a mode-
less dialog for the current theme.

pascal OSErr DrawThemeModelessDialogFrame (const Rect*
rect,

ThemeDraw-
State state);

DESCRIPTION

Do not distribute—Apple Confidential 77

This routine will draw a modeless dialog frame which looks right for the cur-
rent theme. The state parameter indicates which state to draw the frame in.
This call is actually used by the Dialog Manager to draw appearance-savvy
dialogs. It is provided for those developers which implement windows that
act like dialogs without the use of the Dialog Manager.

DrawThemeEditTextFrame

Call DrawThemeEditTextFrame to draw an edit text frame in the current
theme.

pascal OSErr DrawThemeEditTextFrame(const Rect* rect,

ThemeDraw-
State state);

DESCRIPTION

This routine will draw an edit text frame which looks right for the current
theme. The state parameter indicates which state to draw the frame in. The
frame is can actually be outset from the rectangle you pass in. In practice, you
would pass the bounding rectangle of your item. This routine would outset
the appropriate amount as specified by the theme and draw the frame.

DrawThemeListBoxFrame

Call DrawThemeListBoxFrame to draw an edit text frame in the current
theme.

pascal OSErr DrawThemeListBoxFrame(const Rect* rect,

ThemeDrawState state);

DESCRIPTION

This routine will draw a list box frame which looks right for the current
theme. The state parameter indicates which state to draw the frame in. The
frame is can actually be outset from the rectangle you pass in. In practice, you
would pass the bounding rectangle of your item. This routine would outset
the appropriate amount as specified by the theme and draw the frame.

Do not distribute—Apple Confidential 78

DrawThemeFocusRect

Call DrawThemeFocusRect to draw a rectangular generic focus ring around
a rectangle.

pascal OSErr DrawThemeFocusRect(const Rect* rect,

Boolean hasFocus);

DESCRIPTION

This routine will draw a generic focus ring which looks right for the current
theme. The hasFocus parameter indicates whether to draw or erase the ring.
The ring is actually outset from the rectangle you pass in. In practice, you
would pass the bounding rectangle of your item. This routine would outset
the appropriate amount as specified by the theme and draw the ring.

DrawThemePrimaryGroup

Call DrawThemePrimaryGroup to draw the right frame for a primary group
box.

pascal OSErr DrawThemePrimaryGroup(const Rect* rect,

ThemeDraw-
State state);

DESCRIPTION

This routine will draw a primary group frame which looks right for the cur-
rent theme. The state parameter indicates which state to draw the header in.

DrawThemeSecondaryGroup

Call DrawThemeSecondaryGroup to draw the right frame for a secondary
group box.

pascal OSErr DrawThemeSecondaryGroup(const Rect* rect,

ThemeDraw-

Do not distribute—Apple Confidential 79

State state);

DESCRIPTION

This routine will draw a secondary group frame which looks right for the
current theme. The state parameter indicates which state to draw the header
in.

DrawThemeSeparator

Call DrawThemeSeparator to draw a visual separator for the current theme.

pascal OSErr DrawThemeSeparator(const Rect* rect,

ThemeDraw-
State state);

DESCRIPTION

This routine will draw a visual separator which looks right for the current
theme. The state parameter indicates which state to draw the header in. The
orientation of the rect passed in determines whether the line is horizontal or
vertical.

Summary of the Appearance Manager

Constants

enum {

kThemeActiveDialogBackgroundBrush = 1,

kThemeInactiveDialogBackgroundBrush = 2,

kThemeActiveAlertBackgroundBrush = 3,

kThemeInactiveAlertBackgroundBrush = 4,

kThemeActiveModelessDialogBackgroundBrush = 5,

kThemeInactiveModelessDialogBackgroundBrush = 6,

kThemeActiveUtilityWindowBackgroundBrush = 7,

kThemeInactiveUtilityWindowBackgroundBrush = 8,

Do not distribute—Apple Confidential 80

kThemeListViewSortColumnBackgroundBrush = 9,

kThemeListViewBackgroundBrush = 10,

kThemeIconLabelBackgroundBrush = 11,

kThemeListViewSeparatorBrush = 12,

kThemeChasingArrowsBrush = 13,

kThemeDragHiliteBrush = 14,

kThemeDocumentWindowBackgroundBrush = 15,

kThemeFinderWindowBackgroundBrush = 16

};

typedef SInt16 ThemeBrush;

enum {

kThemeActiveDialogTextColor = 1,

kThemeInactiveDialogTextColor = 2,

kThemeActiveAlertTextColor = 3,

kThemeInactiveAlertTextColor = 4,

kThemeActiveModelessDialogTextColor = 5,

kThemeInactiveModelessDialogTextColor = 6,

kThemeActiveWindowHeaderTextColor = 7,

kThemeInactiveWindowHeaderTextColor = 8,

kThemeActivePlacardTextColor = 9,

kThemeInactivePlacardTextColor = 10,

kThemePressedPlacardTextColor = 11,

kThemeActivePushButtonTextColor = 12,

kThemeInactivePushButtonTextColor = 13,

kThemePressedPushButtonTextColor = 14,

kThemeActiveBevelButtonTextColor = 15,

kThemeInactiveBevelButtonTextColor = 16,

kThemePressedBevelButtonTextColor = 17,

kThemeActivePopupButtonTextColor = 18,

kThemeInactivePopupButtonTextColor = 19,

kThemePressedPopupButtonTextColor = 20,

kThemeIconLabelTextColor = 21,

kThemeListViewTextColor = 22

Do not distribute—Apple Confidential 81

};

typedef SInt16 ThemeTextColor;

/* States to draw primitives: disabled, active, and pressed (hilited)
*/

enum {

kThemeStateDisabled= 0,

kThemeStateActive= 1,

kThemeStatePressed= 2

};

typedef UInt32 ThemeDrawState;

Routines

Getting Patterns and Colors

pascal OSStatus SetThemePen(ThemeBrush brush, SInt16 depth, Boolean
colorDevice);

pascal OSStatus SetThemeBackground(ThemeBrush brush, SInt16 depth,
Boolean colorDevice);

pascal OSStatus SetThemeTextColor(ThemeTextColor color, SInt16 depth,
Boolean colorDevice);

pascal OSStatus SetThemeWindowBackground(WindowPtr window, ThemeBrush
brush, Boolean update);

Drawing Theme-Savvy Primitives

pascal OSErr DrawThemeWindowHeader(const Rect* rect, ThemeDrawState
state);

pascal OSErr DrawThemeFinderListViewHeader

(const Rect* rect, Theme-
DrawState state);

pascal OSErr DrawThemePlacard(const Rect* rect, ThemeDrawState
state);

Do not distribute—Apple Confidential 82

pascal OSErr DrawThemeModelessDialogFrame

(const Rect* rect, Theme-
DrawState state);

pascal OSErr DrawThemeEditTextFrame(const Rect* rect, ThemeDraw-
State state);

pascal OSErr DrawThemeFocusRect(const Rect* rect, Boolean hasFocus
);

pascal OSErr DrawThemePrimaryGroup(const Rect* rect, ThemeDrawState
state);

pascal OSErr DrawThemeSecondaryGroup(const Rect* rect, ThemeDraw-
State state);

pascal OSErr DrawThemeSeparator(const Rect* rect, ThemeDrawState
state);

