PowerPlant: A Third-Generation
Macintosh Application Framework

by Jim Trudeau
trudeau@metrowerks.com
© 1996 by Metrowerks Corp.

Abstract

This paper provides a brief overview of some high-level design features in
PowerPlant. These design patterns are presented both for their aesthetic beauty, and
as an indication of current trends in framework and software design.

Introduction

It is impossible to fully convey the implementation details of an advanced application
framework in a single paper. That is what documentation is for. The PowerPlant documentation
spans several extensive volumes. | am not going to waste your time trying to duplicate that
information here. Rather, my goal is to give you a high-level view of the PowerPlant
architecture. When you have finished this chapter you should have a clear understanding of
what a good application framework should look like.

Genesis

As Ted Lewis says in the first chapter of Object-Oriented Application Frameworks, the
Macintosh played a seminal role in the advancement of object-oriented programming [Lewis96].
The object-based nature of a graphical user interface created a strong demand for better
solutions to programming problems.

In the beginning, before the widespread acceptance of object-oriented languages, there were
application shells in procedural languages for the Macintosh environment. These were the
first-generation application frameworks. No such shell is a commercially viable entity today
because of the limitations of a procedural approach to object-oriented challenges. For example,
procedural code is much harder to modify or adapt to unique circumstances. Object-oriented code
can be extended easily by overriding inherited functions. In fact, the desire for easily extensible
and maintainable code played a large part in the advancement of object-based languages such
as C++.

In response to the need for an extensible application shell, the second-generation application
frameworks arrived. Before long, two of these frameworks dominated the market: the world’s
first commercially successful framework—MacApp—and the THINK Class Library [MacApp,
TCL]. However, each inherited a legacy of design constraints forced upon them by the then-
dominant procedural languages and the immaturity of object languages. Nevertheless, each
injected true object-oriented design into the software development process.

In 1993, a third-generation framework arrived on the scene—PowerPlant. Gregory Dow,
PowerPlant’s chief architect and designer, was also the spark behind the original TCL. Fully
aware of the compromises required at the time of TCL’s initial development, and with years of
practical framework design experience, he wanted to do it better.

PowerPlant: A Third-Generation Macintosh Application Framework 2

Applying everything he had learned, he took the concept of an application framework through
another iteration. PowerPlant has no baggage from earlier versions originally implemented in
languages lacking object-oriented characteristics. PowerPlant is a pure C++ framework that
takes full advantage of all the object-based features of the language [Metro96]. You will see
how as we examine the design principles that guided the development of PowerPlant.

As a result, although PowerPlant is the youngest of the “big three” in Macintosh application
frameworks, PowerPlant is arguably the most flexible and easiest to use. These advantages
grow directly out of a fundamental design decision made early in the process of developing
PowerPlant. Dow wanted to create a highly-modular collection of subsystems that could be used
independently of each other, thus breaking the monolithic pattern of second-generation
frameworks. However, he also wanted the modules to form a seamless and complete
application framework. How he accomplished these goals becomes clear as we discuss
PowerPlant’s design features.

Design Features

The PowerPlant application framework demonstrates the judicious use of the following
fundamental features of object-oriented design:

Multiple inheritance—a mix-in architecture with multiple base classes.
Factored design—classes are as independent as possible.
Factored classes—classes are as small as possible.

Factored behavior—individual behaviors within a class are carefully separated into
simple, component parts.

These principles taken together ensure that the PowerPlant application framework is modular
so that you can learn it quickly, yet powerful enough that you can create full-featured, world-
class applications. We should examine each of these principles to see how they affect the
PowerPlant framework, and why they make PowerPlant easier to learn and use.

Mix-in classes

PowerPlant takes full advantage of C++’s support for multiple inheritance. As a result, the
class hierarchy in PowerPlant is a series of small, loosely-connected trees rather than a
monolithic monster tree.

PowerPlant has many classes whose sole purpose is to be mixed into other classes by multiple
inheritance. (PowerPlant naming conventions use L for major classes, and U for utility classes.)
Such a mix-in class encapsulates state and behavior that are common to an otherwise disparate
group of classes. For example, you might want a wide variety of different classes to send
messages. In PowerPlant, message-sending behavior is isolated into the LBroadcaster mix-in
class. Any class that requires this behavior multiply inherits from LBroadcaster. In this way
you can add or “mix-in” the desired behavior to any class.

Among the common PowerPlant mix-in classes are:
LCommander—for objects that respond to commands.
LBroadcaster and LListener—for objects that broadcast or receive messages.
LPeriodical—for objects that receive time on a regular basis.
LAttachable—for objects to which attachments can be connected.
LModelObject—for objects that are scriptable via Apple events.

We will visit each of these classes (except LModelObject) in some detail later on.

To see the direct advantage of multiple inheritance in object design, let us look at two
PowerPlant classes related to text display: LEditField and LCaption. Both of these classes
represent visual objects, so they inherit primarily from the base PowerPlant visual class,

PowerPlant: A Third-Generation Macintosh Application Framework 3

LPane. An object of either class displays text. An LEditField object allows the user to interact
with the text by typing, copying, pasting, and so forth. LEditField also supports a flashing
text-insertion cursor. LCaption, on the other hand, simply displays a static line of text and
allows no user interaction.

As shown in Figure 1, LEditField inherits the command-related behavior it needs from
LCommander. It inherits the behavior it needs to flash the cursor from LPeriodical. Both
LCommander and LPeriodical are PowerPlant mix-in classes. As mentioned just a moment ago, a
mix-in class encapsulates particular behavior (in this case command behavior and periodical
behavior) that is added to disparate classes by multiple inheritance. LEditField needs this
behavior, so in the PowerPlant architecture the behavior is mixed into LEditField.

By contrast, LCaption has no need for either kind of behavior, so it does not inherit from either
mix-in class. This keeps LCaption as lean and as simple as possible.

| LPane | LPeriodical)
/(LCommander)

Legend

|
. LCaption | Standard clasq
(Mix-in class)

— LEdltFleId

Figure 1. LEditField and LCaption inheritance hierarchies

In a single-inheritance hierarchy, commonly-used behaviors must appear high in the chain so
that those classes that need the behavior can inherit them. Features tend to be piled onto
classes not because all classes need them, but because some classes need them somewhere down
the chain. This results in bloated objects filled with data members and member functions you
never use. In a single inheritance framework, the caption class inherits all sorts of useless
behavior, as shown in Figure 2.

PowerPlant: A Third-Generation Macintosh Application Framework 4

|
CMasterObject
I
|
CPeriodical

|
CCommander

N
CPane

AN

| CEditField | CCaption

Figure 2. A hypothetical single-inheritance hierarchy

Factored Design

PowerPlant classes are based on the principle that isolating classes from one another reduces
complexity and enhances code reusability. The mix-in architecture is the principal reason why
PowerPlant can implement its second design goal—to keep classes as independent as possible.

Beyond the important classes cited in the previous section, PowerPlant has a substantial
number of small base classes that you can use in a whole variety of circumstances—without
using any other part of PowerPlant. In some cases, you do not even need a Macintosh! Some
elements of PowerPlant are platform-independent, containing pure C++ code that makes no
reference to the Mac OS. This design excellence makes PowerPlant a treasure trove of reusable
code.

For example, implementing menus and a menu bar is a common task for a Macintosh application.
The PowerPlant LMenu and LMenuBar classes refer to each other, but to no other class. If you
want to take advantage of PowerPlant’s menu creation services, you can use those classes in your
own projects without using any other part of PowerPlant.

If you need to maintain dynamic lists in your project, you can use the LArray and LArraylterator
classes independently. These two classes are a practical realization of the iterator design
pattern [Gamma95]. As you will see in the coming discussion, PowerPlant uses this pattern
internally in many cases where an object includes an aggregation of sub-objects. However, you
can remove the pattern from PowerPlant and use it effectively in any C++ code.

There are many more examples. If you want to filter keystrokes before processing them, the
UKeyFilters class has a variety of filters ready for your use. The UDebugging class
encapsulates powerful debugging features. Each of these classes is independent of the rest of
PowerPlant.

The list goes on and on. PowerPlant consists of approximately 175 classes, containing 1,500
functions (including all the overridden functions in subclasses) implemented in about 25,000 lines
of source code. Many of the classes are small, utility classes whose purpose is to make common
programming chores simple. There are, quite literally, dozens of useful classes that have been
purposely designed to be completely or almost completely independent of the rest of
PowerPlant. In many cases, these classes implement a recognized design pattern. We are going
to examine some of these patterns a little later.

PowerPlant: A Third-Generation Macintosh Application Framework 5

The principal base classes in PowerPlant each form the trunk of a separate class hierarchy.
They are:

LPane—classes representing visual items in the interface, including windows, views, and
controls.

LMenu and LMenuBar—support for the Mac OS menu architecture.
LAction—classes that encapsulate commands, used for do, undo, and redo behavior.

LAttachment—classes representing objects that are attached to other objects to modify
behavior at runtime.

LArray and LArraylterator—PowerPlant’s list mechanism.
LStream—support for data stream in all contexts.

LFile—support for the Mac OS file system.

LDocument—connects stored data (files) with windows (views on data).

A little earlier we mentioned several mix-in classes in PowerPlant. Various classes within the
main hierarchies multiply inherit from the mix-in classes when necessary. The result is that a
complete map of the PowerPlant class inheritance is not a monolithic tree. It is instead a web of
interacting modules.

Of course, in an application framework some dependencies are unavoidable. For example, an
LDocument object expects to find and use LFile and LView objects. However, by and large these
hierarchies and the mix-in classes are completely independent. Each of these independent
classes meshes seamlessly as a vital component part of a complete application framework. The
whole is decidedly greater than the sum of its parts. However, the parts remain fully and
completely accessible to you as independent, reusable code modules.

This design encourages what chief-architect Dow calls a buffet-style approach to framework
use. “You look over all the classes, pick the ones that look interesting, and then go back for more
later. Furthermore, the wide variety of classes tempts you to experiment with features that you
might not have tried on your own [Metro96].”

From a vantage point high above the PowerPlant design you can see the clear difference
between a monolithic application framework that requires you to buy the entire store every
time you want to use one tool, and a well-designed application framework based on multiple
inheritance and a factored design where you can simply take the tools you need.

Factored Classes

The third principle that guides the PowerPlant designers is that behavior should be placed as
low as possible in the class hierarchy.

This process goes hand-in-hand with the factored design of PowerPlant we discussed in the
previous section. The distinction between a factored design and factored classes is simple.

A factored design looks at the problem domain in broad perspective. The designer determines
what parts of the problem can be separated from other parts. The designer then creates modular
class hierarchies for each separate part of the problem domain.

The process of factoring class behaviors, on the other hand, is more precise. The designer must
determine where a particular behavior should appear within a particular class hierarchy.

A careful analysis of the design of a typical Macintosh application identifies the behaviors
that various objects in the application must provide. The designer determines what a window
does, what a scroll bar does, and what a radio button does, for example.

By analyzing the behavioral demands on the various identified objects in the system, the
designers of PowerPlant have carefully factored behavior so that it appears only when
necessary. General behavior appears in base classes, so it can be inherited by all those
subclasses that need it. Behavior that is more specific to a certain kind of object does not appear
in a class declaration until necessary.

PowerPlant: A Third-Generation Macintosh Application Framework 6

This does not mean that some classes are not large and complex. The class that defines window
behavior for example, LWindow, has 60 member functions declared in the class, and inherits
about 200 more from three base classes.

However, even in a complex class like LWindow you can quickly recognize that certain member
functions come from the various base classes from which LWindow inherits, as shown in
Figure 3. This logical structure allows you to look at the most complex class as an aggregation of
its ancestors, making the whole that much more understandable.

LPane

LView

LWindow

(LCommander)

LPane
LView (' Lmodelobject)
LCommander /
LModelObject
LWindow

Figure 3. LWindow is the sum of its ancestors, plus its own behavior

Factored Behavior

The fourth principle that guides the creators of PowerPlant is that complex behaviors should
be factored into simple, constituent parts. Once again, like the emphasis on factored classes and
a factored design, factoring behaviors into their component parts continues the trend toward
small, simple building blocks that you see throughout PowerPlant.

To implement this principle, member functions that affect an object are usually split into two
parts. We will call them the setup part and the action part. The setup part handles any state-
testing or adjusting that must happen before the action takes place. The action part implements
the desired behavior.

An example will help here. A pane in its most general sense is a rectangular area in which some
drawing occurs. LPane is the base class for all classes that describe visual objects in PowerPlant.
LPane declares two member functions, Draw() and DrawSelf(). Together these functions draw
the contents of the pane at runtime, whenever the object needs to be updated visually. The
Draw() function is the setup routine. It makes sure that the pane is visible and that its
coordinate system is set up properly. Then it calls DrawSelf()—the action routine that does the
actual drawing. Each subclass of LPane inherits both functions.

Very few subclasses of LPane override the Draw() function. Setting up the drawing environment
is a task that is identical for most pane classes. However, all classes of LPane override
DrawsSelf(). The DrawSelf() function does the actual drawing. Because the appearance of each
pane varies, each requires its own version of DrawsSelf().

Because the PowerPlant designers factored drawing behavior into separate functions—setup
and action—you do not have to write housekeeping code every time you override drawing in a
derived pane class. PowerPlant does everything it can to maximize the reusability of code.
Figure 4 illustrates this principle.

PowerPlant: A Third-Generation Macintosh Application Framework 7

You will find this type of factoring throughout PowerPlant for all kinds of very common
behaviors including drawing, responding to a mouse click, activating an object, executing a
command, and so forth.

- LPane Object — MyPane Object =

| Pane- >Dr aw() nyPane- >Dr aw()

LPane: : Draw() I

s N

LPane: : Drawsel f () M/Pane: : DrawsSel f ()

Figure 4. Reuse of code because of factored behavior

Learning How to Use a Framework

No matter how powerful a framework is, it does not help you very much if you cannot figure out
how to use it. Learning a framework is not an academic exercise. You want to master the
framework so you can increase your productivity and your ability to write better, more reliable
software.

Unfortunately, there is a hurdle between you and your goal. It is safe to say that learning how
to use a framework is much more difficult than actually using it. Whatever framework you
choose, you must learn the individual peculiarities of that framework. What programming
idioms do the designers use? How does the framework create a window? What are the names of
the commonly-used functions? What are their parameters? Which functions are commonly
overridden? When a framework has hundreds of classes and thousands of functions, these are
not trivial questions.

As a third-generation framework, PowerPlant makes this task a lot easier. One of the greatest
potential benefits a programmer will derive from PowerPlant’s extraordinary design is that
PowerPlant is inherently easier to learn than other frameworks. Why? Because you can learn it
incrementally.

A typical second-generation framework is a monolith. You must swallow it almost whole if you
are to use it at all. PowerPlant really is a buffet. You can pick and choose the part of
PowerPlant that interests you most, and learn it without regard to the other parts of the
framework. This approach minimizes the amount of material you must master at any one time.

PowerPlant’s modular design makes the framework more accessible to you as a busy
programmer. If it is more accessible, easier to learn, and more flexible, then it is more likely
that you are going to master the framework and gain the advantage of reusable code.

Code reuse is one of the most important goals of object programming [Goldstein92]. Frameworks
are the most powerful and visible means of achieving that goal [Pree95]. Each of PowerPlant’s
four design principles—a mix-in architecture, factored design, factored classes, and factored
behavior—is aimed at maximizing the reusability of PowerPlant code. PowerPlant is not just a
blank Macintosh application. PowerPlant is a whole suite of tools that you can use in a wide
variety of programming projects. Let's see how these design principles bear fruit in the
practical world of code.

PowerPlant: A Third-Generation Macintosh Application Framework 8

Design Patterns

We are going to look at four programming challenges and how PowerPlant’s design implements
an elegant solution for each one. We will look at the actual classes involved and how they
work together. We will also look at the degree of interdependence between those classes and
the rest of PowerPlant. The programming tasks we examine in this section are:

Handling commands—the command hierarchy in PowerPlant.

Inter-object messaging—communication between any two disconnected objects.
Periodical behavior—implementing idle time and other repeated processes.
Attachments—runtime modification of objects by altering composition.

Handling Commands

PowerPlant provides complete and fully-realized event retrieval and identification, as you
would expect from any application framework. Things get interesting after the event is
retrieved and identified.

In PowerPlant, most events generated by the Mac OS fall into two principal categories:
commands and clicks. A command is generated by a keystroke or the user choosing a menu item—
whether by typing a key equivalent or choosing a menu item with the mouse. A click, on the
other hand, occurs when the user clicks the mouse somewhere in the content area of a
PowerPlant pane.

This separation of commands and clicks means that PowerPlant has two different event
handling hierarchies—one for commands, and one for clicks. We are going to discuss only the
command handling mechanism.

A command, then, is really a message from the user to the application. The application—or
more precisely, some object in the application—must respond to the message. PowerPlant’s
command handling mechanism is an excellent, practical example of the chain of responsibility
design pattern [Gamma95].

In PowerPlant terminology, an object that can respond to commands is called a commander. In
the chain of command, those higher up are called supercommanders and those lower down are
called subcommanders. Any given commander may be both a supercommander to its own
subcommanders, and a subcommander of some other supercommander. No object may have more
than one supercommander, but it may have several subcommanders. Therefore, the command
hierarchy is a tree, as shown in Figure 5.

| Application | Supercommander

AN

D Supercommander
ocument and subcommander

N\

) Supercommander
Window and subcommander

/ AN

| Object in Wind0|/v| Object in Windollbubcommander

Figure 5. PowerPlant command hierarchy

PowerPlant: A Third-Generation Macintosh Application Framework 9

A commander may have no subcommander at all if that particular commander is a leaf on the
command tree. And one commander—the top commander—has no supercommander. In
PowerPlant the top commander is the application object.

PowerPlant dispatches commands from the bottom up. The application keeps track of a target
object. The target object is the currently active command object destined to be the recipient of all
commands. When a command is dispatched, it goes directly to the target object, which is
always a commander.

If the target is incapable of handling the command, it passes the event up the command chain
to its supercommander. The supercommander may handle the event, or pass it on to the next
commander up the chain. Ultimately, if no object handles the event the application object
receives the event back, and must handle the event itself. Figure 6 illustrates this process.

| Application | :_I— Key EvenI
| Document | <_|
| Window | <}_|

—>| Target Object |

Figure 6. Chain of responsibility in PowerPlant

At any moment, one and only one commander is the target commander. The target may be
anywhere vertically in the command hierarchy, it need not be a leaf commander. The target
can be any commander object at any level in the command hierarchy.

The principal advantage of the bottom-up approach to the chain of responsibility is that the
target object can adjust the context of the application to match the object’s own capabilities.
Because it gets events first, the target can set up menus properly to reflect its behavior. If the
target is an editable text object for example, it might enable a font menu.

This gives you tremendous flexibility. You can put a great deal of power down deep into the
leaves of your command hierarchy, and let the commanders take care of things for you. This
makes the central control system a lot simpler. If you add a new kind of object, you do not have
to redesign the control system, you simply give that new object the knowledge necessary to
adapt the entire application to its needs.

As an additional advantage, tracing the command chain is a lot simpler from the bottom up.
Each supercommander may have several subcommanders. Figuring out which way to go from the
top down is a non-trivial task. Figuring out which way to go from the bottom up is simple. There
is only one path because each commander has one supercommander.

Finally, a bottom-up approach is usually the most efficient method of handling a command. In
most cases, the target object is the object with which the user is dealing, and in most cases it is
capable of handling the command. For example, if the target is an editable text object, it is
likely that the user is typing. Every keystroke goes directly to the object responsible for
processing the key. This makes the application more efficient and responsive because the most
likely destination for the command—the target—has the first opportunity to respond.

PowerPlant: A Third-Generation Macintosh Application Framework 10

This design works well no matter what the source of the command. The command might come
directly from the user at the keyboard, or arrive via a network connection. The design also
works well regardless of the nature of the command. If the command operates on data (for
example, a paste operation), the target gets first crack at the data. If the command is
inappropriate for the target (for example, an attempt to paste data the target does not
understand), the target can choose to pass the command to its supercommander for processing.

LCommander is the base class from which all commander objects inherit. It has functions for
command chain maintenance—changing supercommanders, or adding or removing
subcommanders. Each commander can also manage the target object. A commander has member
functions to set the target, be the target, not be the target, and so forth.

A commander may be on or off duty, and has functions to manage the duty state. This is an
important concept, because an off-duty commander will not receive or respond to commands.
When off duty, however, it is important to keep track of which subcommander (if any) was the
target the last time this particular commander was on duty. Then, when this commander
resumes duty, the framework can activate the correct subcommander as target. This is called
the latent subcommander. Each commander has the ability to set or change its latent
subcommander.

LCommander is a PowerPlant mix-in class. There are about a dozen classes that inherit from
LCommander in three separate PowerPlant class hierarchies: the application class hierarchy,
the document class hierarchy, and several scattered subclasses of LPane.

LCommander itself requires very little of PowerPlant, and is in theory an independent module.
It requires the services of PowerPlant’s array and attachment classes, and no others. As a
practical matter, however, if you are going to use PowerPlant’s command architecture, you are
likely to be using the visual architecture as well, and thus working with the largest and most
complex part of PowerPlant.

The remaining design patterns we discuss are quite different in scope. Each provides a
fundamental service, and each is an independent module within PowerPlant. Each is a useful
weapon in your programming arsenal.

Inter-Object Messaging

As you know, there are many situations where you want one object to know that something
happened to another object. In other words, one object is dependent on the state of another object.
For example, the user clicks a check box to activate some feature. As a result, new objects become
enabled and other objects become disabled. This kind of situation arises all the time.

How do you tell one object that something happened to another, unrelated object? There are all
sorts of potential solutions to this challenge. You can create complex messaging hierarchies, you
can make classes friends of each other and send direct messages. One solution to this problem is
known as the notifier, where one object notifies other objects that something has happened.
This design pattern is also known as the observer [Gamma95]. PowerPlant uses a simple and
elegant version of the observer pattern that is virtually unlimited in scope yet extraordinarily
easy to implement.

The two PowerPlant classes involved are LBroadcaster and LListener. These classes correspond
to the subject and observer in the observer design pattern, and to the notifier and responder in
other frameworks.

LBroadcaster is another extremely simple mix-in class. It has three significant functions:
AddListener(), RemoveListener(), and BroadcastMessage(). LListener is equally simple. It has
functions to start and stop listening (so you can turn off listening temporarily if you wish), and a
function named ListenToMessage().

An object that inherits from LBroadcaster has the ability to broadcast a message. Each
broadcaster has an array of listeners—objects that inherit from LListener. Whenever it

PowerPlant: A Third-Generation Macintosh Application Framework 11

broadcasts a message, the broadcaster uses an array iterator to call each listener’s
ListenToMessage() function. A practical example shows how useful object messaging can be.

PowerPlant has a group of “control” classes. These classes describe visual interface elements
that respond to clicks and cause actions to occur. For example, various kinds of buttons, a scroll
bar, and a check box are all control objects.

PowerPlant control objects are broadcasters. When the user clicks a control, it broadcasts a
message to its listeners. That message may contain arbitrary information. The message might
identify the broadcaster, pass necessary state information, and so forth.

Objects that are dependent upon the state of the control must be LListener objects. Inheriting
from LListener gives an object the ability to receive a message from a broadcaster. Each listener
registers with the control object on which it depends. When a message is sent, the listener
receives the message and may respond. Figure 7 illustrates the relationship between

broadcaster and listener.
W Listener

N
A 1 i Listener

Broadcaster i Listener

Figure 7. The broadcaster/listener mechanism

The design of the messaging system is remarkably simple, remarkably powerful, and very
loosely coupled. The broadcaster has an array of listeners, but it does not know the nature of
those listeners. The listener might be a window, a commander, a pane, or any other object that
also inherits from LListener. The true nature of the listener is irrelevant to the broadcaster.

The array of listeners is dynamic, and can change at any time with no effect on the broadcaster.
A listener may receive messages from any number of broadcasters, but does not need to know
anything about the internal workings of any broadcaster. It receives all the information it
needs in the message.

This entire mechanism, except for a dependence on the array and array iterator, is a completely
independent PowerPlant module. You can bodily remove the messaging system from PowerPlant
and drop it into any project to take advantage of this powerful design pattern.

Periodical Behavior

As a programmer, you know that certain types of objects need attention repeatedly. A classic
example is the editable text object that flashes a cursor. Regardless of what the rest of the
application is doing, this object needs periodic attention so it can manage its responsibilities.

Some periodical objects perform non-critical tasks. You might want to give such an object time
only when the rest of the application is idle and unoccupied. Other tasks require regular and
repeated attention.

PowerPlant allows you to treat a periodical object either way. Like messaging, the PowerPlant
mechanism for implementing periodical behavior is remarkably simple, yet extraordinarily
powerful.

PowerPlant: A Third-Generation Macintosh Application Framework 12

Any object that performs a task that requires periodical attention inherits from LPeriodical,
another PowerPlant mix-in class. This class maintains two lists of periodical objects. Those
that receive time when the application is idle are called idlers. Those that receive time after
every pass through the event loop are called repeaters.

Every periodical object has functions to start and stop idling, and to stop and start repeating.
The same object may be in either, neither, or both lists at any moment, the choice is yours. Each
object also has a SpendTime() function. This is the only function you must write. In this function
you implement whatever behavior you want to happen when the object receives time from
PowerPlant—either while idling or repeating. The same function serves for both purposes.

The SpendTime() function can do just about anything you want. You can maintain a progress bar,
run a simple animation, blink a cursor, and so on. PowerPlant’s internal use of the periodical
mechanism demonstrates this flexibility.

There are four classes in PowerPlant that inherit from LPeriodical. LTextEdit and LEditField
inherit from LPeriodical so that they can blink the text cursor. LMovieController is a
periodical so that it can manage QuickTime movie events properly. LGrowZone uses its
SpendTime() function to check on the application’s memory reserve. It also warns the user of
memory problems if necessary.

PowerPlant uses the same mechanism to implement cursor updating, special event processing,
and memory management. Your use of LPeriodical is limited only by your imagination. If you
have a situation where an object needs time repeatedly, make it a periodical. Design the
SpendTime() function to perform the necessary tasks. Install the object in the appropriate
gueue—either repeater or idler—at the appropriate times, and remove it from the queue when
finished.

The periodical object is not required to respond every time SpendTime() is called. Your object can
keep track of the passage of time, and only do something if a required interval has passed.

The classic example is a clock. Assume your application displays a timer or clock of some sort
that you update every minute. Your timer object might get called several thousand times during
that minute, but only act when a full minute has passed.

Once again, this mechanism is (except for requiring that extraordinarily useful array iterator
mechanism) a completely independent module in PowerPlant. The PowerPlant event loop calls
the necessary functions so that periodicals receive time at the appropriate moments. If you
want to use this same mechanism in a non-PowerPlant context, you would have to replicate that
functionality in your own event loop. Other than that, this remarkable mechanism is yours free
and clear, without any other framework overhead.

Attachments

The final design pattern we are going to discuss is PowerPlant’s attachment mechanism. This
mechanism implements a design pattern seen in MacApp [Wilson90] and widely known as the
decorator pattern [Gamma95]. In MacApp, decorator objects are called adorners. In PowerPlant
they are called attachments.

The classic use of the decorator design pattern is to attach drawing behavior to a visual
element to modify its appearance at runtime. For example, when the user selects an object in a
drawing program, the application may display four tiny squares at the corners of the object. An
attachment to the object can handle this drawing task.

From a high-level perspective, however, what an attachment does is modify the object by
modifying its composition. You connect or disconnect attachments from a host object whenever
necessary, thus modifying the runtime behavior of the object. Drawing is simply a form of
behavior. Other kinds of behavior can be modified by an attachment as well.

This is where PowerPlant takes the decorator design pattern to new heights. It takes the
concept of modifying behavior far beyond decorating a visual object. It should come as no

PowerPlant: A Third-Generation Macintosh Application Framework 13

surprise to you that the attachment mechanism in PowerPlant is very general—and very
effective.

There are two parts to the attachment mechanism in PowerPlant: the objects to which you
connect the attachments (the hosts), and the attachments themselves. There are two
corresponding base classes, LAttachable and LAttachment. We examine LAttachable first.

Figure 8 illustrates the PowerPlant classes that inherit from LAttachable. Every visual,
command, and event-related object in PowerPlant can be a host and have attachments.

(LAttachable)

—(LCommander)— many classes

—(LEventDlspatcr)ﬂh many classes

| LPane | many classes

Figure 8. The LAttachable class hierarchy

Each host maintains an array of its own attachments. (There’s that list mechanism again!) The
host—an LAttachable object—can add or remove attachments from the list, allowing you to
modify the list of attachments at runtime.

At certain well-defined moments, PowerPlant tells the host object to walk through the list of
attachments. PowerPlant sends a specific message that identifies the task that the host is
about to undertake, and sends any data that might be required to fulfill the task. The task
might be to update menu items, draw, print, respond to a keystroke, or any number of other
possibilities. The task message is sent before the host performs its principal, underlying task.

In response to the message, the host tells each attachment in its list to do whatever it is the
attachment does. The relationship between host and attachment is very loose. The host has no
knowledge of the nature of its attachments or their purpose.

The attachment object determines if the message it receives from the host is one to which it
should respond. If the attachment is designed to respond to the message, the attachment
executes. The attachment also returns a Boolean value that determines whether the host object
should execute the original task, or whether the attachment has fully handled the task.

To implement an attachment object’s functionality you write one function—ExecuteSelf(). The
attachment needs no knowledge of the nature of the object to which it is attached. It receives
any necessary information in the message, and acts accordingly. The attachment can decide
whether to respond to a given message, and how it should respond.

PowerPlant comes with several ready-made attachment classes for handling keyboard
navigation, framing or erasing a pane, updating menu items, and so forth. You can create your
own attachments easily.

In general, an attachment is an excellent solution when you have an independent behavior that
you wish to implement for a variety of panes or commanders, either in the same project or in
different programming projects. Putting this behavior in an attachment makes your code
eminently reusable.

An attachment is also an excellent solution when you want to modify the behavior of a pane or
commander dynamically. You can add and remove attachments at will depending upon the

PowerPlant: A Third-Generation Macintosh Application Framework 14

application’s context. If you think of an object as the sum of itself and its attachments, you can
modify the composition of the object dynamically by adding or removing attachments.

When considering the utility of attachments, consider the three principal kinds of objects that
can host attachments: event handlers (the application object), commanders (command handlers,
including the application object), and panes (visual objects).

Event-handling is the most powerful use for an attachment. After an event is retrieved but
before it is dispatched, the application’s attachments get a crack at it. You can do anything you
want with the event. After you handle the event, you can short circuit event dispatch or allow
the event to be handled normally. For example, you can add a menu to an application by the
simple expedient of connecting an attachment to the application.

A commander’s attachments get first crack at all command messages. You may design an
attachment to handle a specific kind of command. Rather than write the code directly in a
command class, if you decide a commander should respond to a particular kind of command you
simply hook up an attachment that does the work. For example, you could use a command-level
attachment to create a demonstration version of an application. The attachment intercepts
certain commands and disables them.

With respect to panes, attachments have an opportunity to execute before drawing, clicking,
and cursor adjustment. You may do some complex drawing in a pane. If you want any unique
behavior to occur when a pane is clicked, create an attachment to implement the behavior. The
possibilities are endless.

Like many of the other design patterns, the attachment mechanism is an independent
PowerPlant module that can be removed from the rest of PowerPlant and used in another
context.

PowerPlant’s use of attachments reflects an extraordinarily simple, robust, and unbounded
design pattern. This kind of elegance can be found elsewhere in PowerPlant—for example, in
the broadcaster/listener messaging mechanism. But nowhere else are true strength and
simplicity so well combined.

The four design patterns discussed here—chain of responsibility, messaging, the periodical,
and the attachment—are a fair sampling of the kinds of design patterns you find in
PowerPlant, but there are many more: some independent, some integral to the framework.

Creating a Visual Interface

This overview of PowerPlant would not be complete without a brief inspection of Constructor—
PowerPlant’s visual interface builder. Constructor allows you to choose visual elements (panes)
from a palette of possibilities. You interactively add or remove objects to a view such as a
window. You can size and position panes in the window, and set various characteristics
reflecting the state and/or contents of the pane. You can easily create custom pane objects with
custom data sets as well. Custom objects are easily transportable from one project to another.

Using Constructor as the interface builder, you design the appearance, initial state, and
relationships of each of the visual elements in your application. In addition, you specify the
class of each of these visual objects. Constructor stores all this information (including class
identity) in a special resource type known as a “PPob,” (pronounced pea-pob) which stands for
PowerPlant object. In a very real sense, Constructor is a visual editor for a PPob resource.

The data in the PPob resource fully describes the view and all of its contents. This data includes
the hierarchical relationships of panes contained within other panes, and each pane’s initial
state.

Constructor does not generate code per se, it generates a resource. You must write one line of code
to tell PowerPlant to build the view based on the PPob resource created in Constructor. At
runtime, this single function call tells PowerPlant to read the PPob resource stream. In response,
PowerPlant’s default code parses the data in the stream. As it reads the stream, it encounters

PowerPlant: A Third-Generation Macintosh Application Framework 15

data for each object in the view. The first datum for an object identifies the class of object about
to be created. In response, PowerPlant calls that class’s constructor function.

The constructor function reads from the resource stream and initializes the object based on the
data in the PPob resource. As a result, each object’s state is set to the initial values you decided
upon in Constructor. In addition, each object has the correct hierarchical relationship with
superviews and subviews. Each object is the correct class, complete with all the behaviors
expected of an object of that class.

In response to your single line of code, PowerPlant creates not only the overall view, but every
single object in the view hierarchy—including custom objects. Because this mechanism is built
right into the default behavior of PowerPlant, there is no need for Constructor to generate
extensive code to create the visual interface.

Because one of the primary purposes of an application framework is to create and manage the
visual interface, the Constructor/PPob resource is a vital component of the PowerPlant
approach to programming.

Figure 9 shows Constructor’s project window. As you can see, in this particular example there
are four separate PPob resources for different windows in this application. Constructor can also
describe other kinds of resources, including Mac OS menus, resources to describe text (font, size,
style, alignment, and color), and resources for custom visual objects., as well as other resource

types.

sS[=—— PowerShow.rsrc EE|
iﬁ RFezource Type and Narme Ee=z |0
= % Yindows & Views 4 items i
FowerShow window 128
GoTo Slide [dalog 129
Set Delay [dalog 130
gl Powerwand 131
[ﬁ Menu Bars 1 itern
[[a Menus 4 jterns
[m Text Traits 7 iterns
[@ Custom Types 0 iterns
[IZ] String Lists 1 itern
[@ lcon Suites 46 itemns
[a Pictures 17 items [1]
Z 1] BE

Figure 9. The Constructor project window

The Future

Although we have covered some of the high spots on this tour of PowerPlant, do not lose sight
of the fact that all the landscape in between is covered with real, robust, C++ code.

While some of the modules within PowerPlant are platform independent, PowerPlant as a
whole is a Macintosh application framework. It is not intended for cross-platform

PowerPlant: A Third-Generation Macintosh Application Framework 16

development. However, all of the features you expect to find in a Macintosh application
framework are there, including several features we have not discussed such as:

multi-threaded processes

managing actions with undo and redo

scriptability with Apple events

support for interface features like drag and drop

network-related classes providing one wrapper for both MacTCP and OpenTransport
memory management and debugging

Solutions and support are present in PowerPlant today for each of these programming
challenges.

In addition, PowerPlant is not static. The C++ language and C++ compilers are still evolving.
Old solutions to programming challenges are replaced when better solutions are developed.
New features are added as the Mac OS improves. For example, PowerPlant will continue to
support new features as they are introduced into the Mac OS, such as the Appearance Manager
in System 8.

In this brief examination of the PowerPlant design you have seen how this framework is a
cohesive collection of various design patterns, each independently realized in elegant C++
code. These patterns overlap, intermingle, and work together synergistically to create an
application framework that is powerful, flexible, and relatively easy to master.

In the closing comments of their fine work, Design Patterns, Erich Gamma et al. looked to the
future and said, “The best designs will use many design patterns that dovetail and intertwine to
produce a greater whole [Gamma95].” The promise of the future is here today.

Bibliography
[Gamma95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Addison-Wesley,
1995,

[Goldstein92] N. Goldstein, J. Alger, Developing Object-Oriented Software for the Macintosh.
Addison-Wesley, 1992.

[Lewis96] T. Lewis, Object-Oriented Application Frameworks. Manning Publications, 1996.

[MacApp] MacApp is available from APDA, Apple Computer Inc., P. O. Box 319, Buffalo, NY
14207-0319.

[Metro96] J. Trudeau, The PowerPlant Book. Metrowerks Corp., 1996-1997 (available as part of
the PowerPlant documentation).

[Power]PowerPlant is part of CodeWarrior, available from Metrowerks, Corp., Suite 300, 2201
Donley Drive, Austin, TX 78758.

[Preed5] W. Pree, Design Patterns for Object-Oriented Software Development. Addison-Wesley,
1995,

[TCL] THINK Class Library is available from Symantec Corporation, 10201 Torre Ave.,
Cupertino, CA 95014.

[Wilson90] D.A. Wilson, L.S. Rosenstein,, and D. Shafer, Programming with MacApp. Addison-
Wesley, 1990.

PowerPlant: A Third-Generation Macintosh Application Framework 17

Location Independent Internet Config

Adam Treister
adam@treestar.com

Abstract

This paper discusses ideas to override components of the popular Internet
Config extension so as to keep preference information on a central server,
instead of the local Macintosh Preference folder. Doing so removes
traditional limitations that have made it difficult to get a consistent user
experience for users who move between multiple machines, or for users of
shared machines, such as computer labs. The Application Configuration
Access Protocol is proposed as a means to accomplish this location
independence via open Internet standards.

Introduction

Internet Config has been one of the grass roots success stories of the Macintosh. It is a simple
solution to an annoying problem: having to type redundant information into several programs’
preference dialogs, or facing unexpected behavior because preference information is not entered
consistently. It puts the user experience above any need for ownership. It has gained wide
acceptance among developers, because it is easier to write a program that uses Internet Config,
than to write one that doesn’t.

Still, there are several situations that IC does not handle. Let’s look at some of these cases
(stolen verbatim from [WALL96]):

Jane is an employee of a large corporation. She works both at her office and at home after
hours. She also frequently travels on business and needs to stay in touch with the home office
via her laptop. She is constantly frustrated by having to reconfigure her electronic mail so that
the mail she needs is available and presented in the way she wants it. She is beginning to
think it’s a conspiracy by tech support to make her lose productive time.

Ahmed is a home-user of the Internet via an Internet Service Provider. Ahmed’s wife, Suellen,
also uses their ISP account to cruise the net. Suellen and Ahmed are always fighting about the
bookmarks files that they share; Suellen says that Ahmed constantly overwrites her
bookmarks, and Ahmed maintains he never knows which preferences file is which because
Suellen can’t name her files consistently. They seem to be heading either for separate PCs and
ISP accounts or divorce -- maybe both.

Hamida is a researcher for a pharmaceutical company. She has a PC in her office and a Unix
workstation in her lab. She is constantly losing track of the email addresses of her colleagues,
because she can’t remember which electronic address book she stored it on -- the PC or the
workstation. The cure for cancer is delayed every time she has to look up the same address
twice.

Location Independent Internet Config 1.8

Hector is an undergraduate student at a large research university. He goes from his dorm
computer to a public lab to the library to a research lab to his friend’s house in the course of his
day, and wants to read his NetNews subscription to alt. music.reallyweird several times a day
to keep up with the latest. The problem is he has to renew his subscription to the newsgroup at
every stop along the way, because some use a .newsrc file, some use a preferences file, and some
systems are used by other people who strangely aren’t interested in alt.music.reallyweird and
keep deleting Hector’s subscription. He’s thinking about switching to Barry Manilow if staying
hip is this much trouble.

Prunella is a tele-commuter who works from home using her PC three days a week while she
takes care of her new baby, and works in the office the other two days. Her spelling dictionary
at work is on a LAN and contains a list of special words to flag in her word processor. She has to
periodically load up 3 floppies of data to transfer to her PC at home so she can use the
dictionary at home, and frequently misses new keywords added in by the boss during her spells
at home. She’s beginning to wonder if the hassle is worth the salary and if the kid really needs
to go to college.

These are variations on the problem that Internet Config solves, but they establish that IC does
not carry the solution far enough. IC largely solves the problem of interoperability between
Mac applications, but it does little to solve the problems of platform or location independence.
It reflects a classic Macintosh myopia; it assumes that users will always sit down at the same
computer, and that it is a Mac.

As the market share of the Mac decreases, this is an increasingly dangerous assumption. Even
the most loyal Mac users sometimes have jobs, and sometimes that means they can’t use the
platform at work that they prefer, or that they use at home. This doesn’t diminish their
desire to share address books or bookmark files. The era of the personal computer is giving way
to the era of the network computer, and this is a classic example of how characteristics that
once freed us from the tyranny of MIS managers, now shackle us to our own singular workspace.

In the education market, the largest niche where the Macintosh is a major platform, this
situation is the rule not the exception. How many users in a K-12 classroom have exclusive use
of a computer, or even use the same computer from one day to the next? Apparently the system
architects at Apple think these users don’t warrant a personalized environment. The design of
the OS would imply that they think it's okay that students send email messages with a
classmate’s address in the FROM field.

Different Scenarios of Preference Management

Fortunately, the solution to all these problems is not very complicated. The Preferences folder
needs to live on a server somewhere. It should be possible to get and set application options
remotely. These fields should be platform and location independent.

Actually, it is something of an oversimplification to say “preferences should live on a server.”
In fact, where they live is a function of both the user’s habits and the machine’s usage profile.
You need to look at the user’s mobility, and at the machine’s usage. If the user only uses a
computer from one location, and that computer is only used by the one user, then the current
model works fine.

Location Independent Internet Config 19

There are a small number of possible scenarios that dictate how preferences should be stored.
Figure 1, below, shows the two by two matrix representing options for configuration
management, with one axis describing the user, and the other describing the machine.

3
é lﬂ’_' Server-based Server-based
= Configuration Configuration
% g Management Management
=
% Double
%.fﬂ Conventional Clickable
B = Preferences Preferences
W Folder or
Mr. PrefMan
Z
Single Multiple

Number of Users Sharing This Machine

Figure 1. Configuration Matrix

The bottom left box represents the one user - one machine configuration that is currently
supported in the MacOS. If you own a machine, always work there, and have physical
security (or don’t require security) and don’t share it with others, then the current model of
storing preferences in the system folder is perfectly adequate.

For the case of multiple users on the same machine, but where the users only use that one
computer (bottom-right), there needs to be a method to keep multiple preference sets on a single
computer. The includes many home machines, as well as small offices where the computer is a
shared resource that lives in a common space, instead of on an individual’s desk.

For the sake of these cases, | advocate writing applications so that the preferences file behaves
more like a document. You should be able to launch the application by double-clicking on a
preference file, and you should be able to change the current preferences by opening a preference
file from the disk. Note that this is in direct contradiction to the Interface gurus at Apple, who
have gone so far as to recommend the text in the dialog box that you should bring up when
refusing to launch your application in response to a double click on the preference file. [See
Woodcock, Gary, The Right Way To Implement Preference Files, develop 18]. If the
application supports this feature, the machine can be set up with several preference files, each
in the personal folders of the individual users.

Location Independent Internet Config 20

Another solution to the problem of shared machines, and stationary users, is an extension called
Mr. PrefMan, written by Quinn in response to people asking him for a way to get Internet Config
to support multiple users. This extension swaps entire sets of preferences in and out of the
Preference folder. It has the advantage of not requiring any modification to the existing
applications on the machine.

This still is not much of a solution for the itinerant user. Depending on the market for your
product, this might be someone who works from specific locations, like home and office(s). I'm
going to approach this from the perspective of writing products for education, where multiple
locations is the rule, not the exception. K-12 students work almost exclusively from shared
classroom computers. Sometimes they add a home computer to the configuration. To make
things even more interesting, the school computers tend to be Apples, and the home machines
tend to be Wintel. In higher education, students often own their own computer, but they use
dorm clusters and machines in the library with high frequency. They can never assume that
data left on any machine is either private or persistent.

Application Configuration Access Protocol

To solve this problem, there is a new standard under development, called the Application
Configuration Access Protocol, or ACAP. [NEWMANQ97] This protocol has roots at Carnegie
Mellon University, and comes from their transition from a proprietary mail system (the
Andrew Messaging System) to an open standards approach based on IMAP4. In the process of
moving, it became clear that there are features of a mail system which are not mail, but which
need to be handled in a location-independent, platform-independent, scalable architecture.

The fundamental unit of storage in ACAP is a dataset, a named set of entries. ACAP defines a
hierarchical namespace for datasets. A dataset is a set of entries; each entry is a set of
attribute/value pairs. There is a name attribute to uniquely distinguish an entry within a
dataset. The server maintains a modtime attribute containing the time last modified of the
entry.

Dataset types may be defined and extended as needed. The initial protocol pre-defines a
common set of dataset types: lists, mailbox lists, options, addressbooks, media types, and
bookmarks (URLS).

Access to datasets and dataset entries are regulated by Access Control Lists (ACLs - pronounced
“ackels”) which are taken from the Andrew File System that is used widely throughout the
Internet. This is similar to the Unix permission bits (controlled by chmod), but with additional
options, and a finer granularity. Individual fields can be set to govern where the attribute can
be read, written, deleted, listed, administered (i.e., edit the ACLSs), etc. and permissions can be
added and subtracted, providing a broad control over who can do what.

ACAP has a very powerful inheritance mechanism, that lets a system administrator set up
default settings for new users, which they can overwrite as they customize their own
configuration. As customizations are removed they revert to the inherited set. With this
mechanism there can be enterprise, department, group and individual versions of data such as
address books, and a new user added to the system will immediately get a good default
configuration with no work on the part of the administrator. Because the success of a
distributed computing architecture is measured by how cheaply you can add the nth user to the
system, the ability to inherit a reasonable set of defaults is very important.

Location Independent Internet Config 21

This protocol is very much still in progress. ACAP is on the IETF standards track. At the time
of this writing, it is suffering the fate of many candidate standards: the chaos of democracy on
the Internet. It is being pummeled with new features and new interpretations, and requests to
shoehorn yet another bit of functionality into its swelling specification. The ideas expressed
are individually valid, yet as the protocol attempts to accommodate them, it begins to sink
under the weight of the accumulated complexity. Fortunately, clients can ignore parts of the
protocol that they don’t need. And for the purpose of extending Internet Config to be location
independent, we need very little.

Below is a sample telnet session, that shows how one might save and restore preferences using
ACAP. Commands sent by the client are shown in bold, and with a right pointing arrow.
Replies sent by the server are shown in plain text, and with a left pointing arrow. The arrows
and line breaks are not part of the actual protocol stream.

-> telnet acap.treestar.com 674
<- * ACAPIMPLEMENTATION("Chrissfingersv1.0")
-> AO01 AUTHENTICATE XXX YYYY
<- A002 OK "Hi dude!"
-> A002
STORE(" /options/user/<user name>/vendor/TreeStar/Mailstr om/Name"
"value" "Adam Treister™)
<- A002 OK "Stored for posterity”
-> A003 STORE
(" /options/user/<username>/vendor/TreeStar/Mailstr om/Email"
"value" "adam@treestar.com")
<- A003 OK "Stored for posterity"
-> A004 STORE
(" /options/user /<user name>/vendor/TreeStar/Mailstrom/
Host.IMAP" "value" "imap.treestar.com")
(" /options/user /<user name>/vendor/TreeStar/Mailstrom/Host.SM TP
" "smtp.treestar.com")

"value
<- A004 OK "Stored for posterity”
-> A005 SEARCH
" Joptions/user/<user name>/vendor/TreeStar/Mailstrom/"
RETURN ("value") ALL
<- A005 ENTRY "Name' "Adam Treister"
<- A005 ENTRY "Email" "adam@treestar.com"
<- AQ005 ENTRY "Host.IMAP" "imap.treestar.com”
<- AQ005 ENTRY "Host.SMTP" "smtp.treestar.com"
<- A005 MODTIME "19970527191332"
<- AQ05 OK "That's the stuff, man."
-> A006 LOGOUT
<- * BYE "Have afabulous day"
<- A006 OK "dokay"
<connection closes>

Transcript 1. Sample Telnet Session to an ACAP server

This session shows how a simple set of STORE and SEARCH calls can read and write the
entries in a dataset. The protocol supports a rich set of optional parameters to request the
server to sort entries, to return only those modified since the last request, to govern how deep in

Location Independent Internet Config 22

the namespace hierarchy a search may dig, etc. For a full discussion of the options, the reader
should download the current draft specification from
http://andrew2.andrew.cmu.edu/cyrus/acap/acap-draft-003.txt

An Interface to Internet Config

The examples below show only a minimal subset of functionality that will be available with
ACAP. Because this is meant to override IC’s ReadPreferences and SavePreferences functions,
these are synchronous, brute-force transfer of all preferences stored in Internet Config knows to
ACAP, or all entries in an ACAP dataset to Internet Config. An application that chooses to use
ACAP directly for a more complex set of configuration options, such as active stocks being
tracked by the application, or user dictionaries for a spell checker, would need to use more
sophisticated, asynchronous context tracking. Since that is clearly more complex, it is left as an
exercise for the reader.

I recommend the IC files included with John Norstad’s Newswatcher [NORSTAD95]
application as a starting point for implementing an application that is Internet Config aware.
It contains reliable and well documented libraries that demonstrate how to use IC in a real
world example application.

Location Independent Internet Config 23

CBErr | QACAP(char* inHost, char* inUser, char* inPassword, char* inDataset)
{

extern |1 nstance gl nst;

const | ong kMaxBufferSi ze = 2000; I/ profusely ugly hardcode

char buf f er[kMaxBuf f er Si ze] ;

|CError icErr;

|CAttr attr;

Str255 key;

icErr = 1 CBegin(glnst, icReadnl yPernj;

if (icEr !'=noErr) return icErr;

l ong count;

i cErr = | QCount Pref(glnst, &ount);

if (icEr !'=noErr) return ickrr;

| ong size = kMaxBufferSi ze;

long i;

ACAPSt r eam acapStrean(i nHost, i nUser, inPassword);

for (i =1; i <= count; i++) // ah, Pascal
{
icErr = 1CGetIndPref(glnst, i, attribute);
if (Vickr)
{

icErr = | CCetPref(glnst, key, &ttr, buffer, &size);
if (icErr == noErr)

{
tag = acapStream GenSyn();

acapStream Store(tag, i nDataset,attribute, value);

}
}
icErr = 1 CENd(glnst);
return ickrr;

Listing 1. Saving Data From Internet Config To ACAP

Location Independent Internet Config 24

e e e
/1 ACAP2| C Suck a dataset off the net, and popul ate Internet Config
L e LT
CBErr ACAP2I Q(char* inHost, char* inUser, char* inPassword, char* inDataset)
{

extern |1 nstance gl nst;

const | ong kMaxBufferSi ze = 2000; I/ profusely ugly hardcode

char attribut e[kMaxBuf fer S ze], val ue[kMaxBufferSi ze] ;

ICError icErr = 1CBegin(glnst, icReadOnl yPerm;

if (icEr !'=noErr) return ickrr;

ACAPSt r eam acapSt rean(i nHost, inUser, inPassword);

tag = acapStream GenSym();

acapStream SendSearch(tag, inDataset, "*", kAl Attributes);
Bool ean done = fal se;

while (err == noErr && !done)

{
err = acapStream Get ResponseLine(attribute, val ue);
size = strlen(val ue);
done = (size == 0);
if (lerr & !done)
err = 1CSetPref(glnst,attribute, & cFlag, val ue, size);
}

icErr = I CENnd(glnst);

return ickrr;

Listing 2. Downloading Data from ACAP and giving itto IC

The beauty of this scheme is that it is a freebie to developers. Programs that talk to the
Internet Config API already offer users a unified view of those preferences which make sense to
be shared between applications. By moving this information out of the Preferences folder, and
onto a central server, the user gains the ability to move around to different platforms and
different locations, and not lose bookmarks, address books or personal information. Users can
share machines without stomping each others’ preferences. Developers don’t have to do
anything to take advantage of the added functionality.

Apple has yet to announce what will happen to the Preference folder and user configuration
information under Rhapsody. In the past, NeXT has done the right thing, but in the wrong
way. They used NetDB to store the data on the server using a proprietary protocol. That’s a
decent solution, if you have a NeXT computer in each home and office, but is not as
interoperable as it could be. Hopefully Apple can take this opportunity to move this scheme to
an open standard, and offer the same benefits to users who use mixed systems and have to
manage their own systems. The real winners will be administrators who have to manage
thousands of diverse systems for an enterprise.

What we want is the transparent, location-independent access to configuration information
that we associate with Unix, the look and feel of a Mac, and an open standard governing it all,
so that when the Wintel world copies it, it will all be interoperable.

Location Independent Internet Config 25

Bibliography
[NEWMAN97] Newman, C. & Meyer, J.G. ACAP - Application Configuration Access Protocol,
Internet Draft. http://andrew?2.andrew.cmu.edu/cyrus/acap/acap-draft-003.txt, 1997

[NORSTADY95] Norstad, J. Newswatcher, http://charlotte.acns.nwu.edu/jln/progs.html,
Northwestern University, 1995

[QUINN95] Quinn. Implementing Shared Internet Preferences With Internet Config, develop
23,1995

[WALLY96] Wall, Matthew. “The Application Configuration Access Protocol and User Mobility
on the Internet”, http://andrew2.andrew.cmu.edu/cyrus/acap/acap-white-paper.html2, 1996

[WOODCOCK?94] Woodcock, Gary, The Right Way To Implement Preference Files , develop
18, 1994

Like Internet Config, the ideas and code in this paper are not open for any use without
restriction. Share and enjoy. No warranty, expressedor implied, is made.

Location Independent Internet Config 26

QuickDraw Gems

©1997 by Gavriel State
gav@magmacom.com

Abstract

This paper describes five graphics techniques for getting the most out of
QuickDraw. The gems described show: how to draw dashed lines at any
angle; how to use the patXor pen mode in color to display a color marquee;
how to combine multiple polygons into a single PolyPolygon; how to speed
up the drawing of large numbers of polygons at once; and how to use Xor
drawing modes to overcome Region complexity limitations.

Introduction

Every programmer has a bag of tricks that is collected over the course of their career. Quite
often, these tricks and techniques are shared; they are published in books, in technotes, and in
papers like this one. This paper describes a number of the graphics techniques that | have
recently found useful; some of them are my own, while others were developed with the help of
friends and colleagues. Most of the Gems (borrowing the name from the famous Graphics Gems
series of books) are QuickDraw specific - the basic concepts behind them are not generally
applicable to other systems, unless those systems were designed with limitations similar to
those found in QuickDraw.

Dashed Lines at Any Angle

Unlike many other graphics systems, QuickDraw does not provide any direct means of drawing
dotted or dashed lines. Applications that need to draw dashed lines (in order to provide users
with feedback about selections, for example), usually use a special pen pattern with diagonal
stripes in order to simulate a dotted pen. When a vertical or horizontal line is drawn with this
pen pattern set, a dashed pattern will appear. See Figure 1(A) for an example.

This approach works fine for applications that require only horizontal and vertical dashes, but
some programs need to be able to draw dashed lines at arbitrary angles. For example, a
program might use dashed bezier curves to allow users to edit a shape-distortion envelope. The
bezier curve would be broken up into a series of connected line segments forming a polygon, and
each line segment would be drawn as a dashed line. If only one pattern were used, then the
dash length would increase as the angle of the line segment approaches the pattern’s diagonal
angle. Note the appearance of the 45° line in Figure 1(A).

This problem can be circumvented by using multiple patterns with different dash angles, and
selecting the pattern with the angle that is most perpendicular to the line we wish to draw. In
its simplest form of this solution, only two patterns are used, each at opposite diagonals
(though a vertical and a horizontal pattern could also be used). All lines in the upper-left and
lower-right quadrant use one pattern, while the lines in the lower-left and upper-right
guadrants use the other. See Figure 1(B).

QuickDraw Gems 27

If we like, we can increase the pattern resolution. The more patterns we use, the closer to
perfect the dashes will be. Notice the difference between the thick vertical and horizontal
lines in Figure 1(B) and 1(C). In Figure 1(B), the dash-strokes are quite clearly angled, while in
Figure 1(C) they are perfectly straight.

(A) One pattern resolution

(B) Two pattern resolution

(C) Four pattern resolution

Figure 1. Angled dotted lines with varying pattern resolutions

R

Drawing In Color With patXor

Many applications use QuickDraw’s patXor pen mode in order to produce effects like the famous
‘marching-ant’ marquee selection. This effect is created by setting the QuickDraw pen mode to
patXor, and then repeatedly calling FrameRect() to draw a rectangle, cycling the pen pattern
through a set of eight diagonally striped patterns each offset from the last by a single pixel.

Now, what happens if one wants to draw that marquee in a color other than black and white?
The first thought might be to simply set the pen foreground color to the desired color and
continue using the same set of monochrome patterns that were used before. After all, when the
pen foreground or background color is set, and shapes are drawn using a monochrome pattern in
patCopy mode, the foreground and background patterns are applied to the pattern. Why
should this not also be the case in patXor mode?

As may be expected by the simple fact that there is a gem worthy of being printed here, this
turns out not to be the case. QuickDraw does not perform this kind of colorization when drawing
in patXor mode.

So, how can a color marquee be displayed? Two methods are available. The first, shown in
[APPLE94], is to create an offscreen GWorld to hold a copy of the window area underneath the
selection, and to use CopyBits to restore the pixels underneath the selection rectangle whenever

QuickDraw Gems 28

required. With this method, the marquee is drawn using the patCopy mode, so the background
color is never seen behind the marquee. We can do much better than this.

The key to this problem is the ‘pat’ part of patXor. Rather than providing a monochrome
pattern and setting the foreground and background colors, we can instead provide a color pattern
- a PixPat. If we provide QuickDraw with a PixPat instead of a classic monochrome pattern, it
respects the colors in the PixPat and properly performs the Xor operation. PixPats can be
created in a resource editor and stored in a ‘ppat’ resource until needed, but doing this means
that the marquee colors are fixed at whatever choices were made when the ‘ppat’ was saved.

Instead of loading a PixPats out of the resource fork, we can actually create them ourselves by
transforming a monochrome pattern into a PixPat. This is possible because QuickDraw
automatically converts a monochrome pattern into a monochrome PixPat when the PenPat()
routine is called. Listing 2 shows how to create a PixPat from a monochrome pattern and a givn
foreground color.

QuickDraw Gems 29

// This function converts a classic QickDraw B&Wpattern into a

// PixPat with the passed col or being the foreground color. It

/1 assumes that the CxafPort we're going to drawinto is the current
// port. You must allocate the new Pi xPat using QuickDraw s

/1 ::NewPi xPat () function before calling this routine.

/1 Note that once you have allocated the PixPat you are responsible for
// disposing of it (after QuickDrawis done using it, of course).

voi d Convert PatternToPi xPat (Pattern *thePat, RGCol or *foreCol or,
Pi xPat Handl e newPi xPat)

{
/1 Set the B&Wpattern as the Pen Pattern. QuickDraw will create an

// equival ent PixPat and store it in the current port's pnPi xPat field.
;. PenPat (thePat);

// Copy QuickDraw s automatically generated PixPat into a new
// PixPatHandl e. Calling CopyPi xPat does a deep copy on all the
/1 data associated with the PixPat.

Pi xPat Handl e curPi xPat = ((OX af Port *)qd.thePort)->pnPi xPat ;

. CopyPi xPat (curPi xPat, newPi xPat);

// Now, we change the new PixPat's pattern type to make it a full
/1 color PixPat instead of a sinple B&Wpattern.
newPi xPat [0] - >pat Type = 1;

/1 Now we modify the PixPat's color table to insert the foreground
/1 and background colors. W take the background color set in the
// current port.

CTabHandl e t heCTab = newPi xPat [0] - >pat Map[0] - >pnirabl e;

(*t heCTab) ->ct Tabl e[0] .rgb = ((OXafPort *)qd.thePort)->rgbBkCol or;
(*theCTab) - >ct Tabl e[1] . rgb = *foreCol or;

/1 % now report to QuickDraw the fact that we’'ve nodified
// sone of its exposed data structures so that QuickDraw can
// invalidate any information it has cached internally

;. CTabChanged (t heCTab);

;. Pi xPat Changed (newPi xPat) ;

Listing 2. Pattern to PixMap conversion

With this function available, all that’s needed to use Xor mode in color is to set the port’s
foreground pattern using the PenPixPat() routine, and to set the pen mode to patXor.

PolyPolygons - How to Draw a Doughnut

Standard QuickDraw polygons are a simple collection of lines that form a closed shape (the
last point in the polygon is implicitly the first point in the polygon). These polygons can be
used in all the usual ways - they can be filled or stroked, and they can become the boundary of a
region. One useful feature provided by many graphics systems other than QuickDraw is the
ability for a polygon to be composed of a collection of both line and move operations, instead of
a collection of lines only. Such a polygon is effectively composed of multiple sub-polygons, and
because of this these structures are sometimes called ‘PolyPolygons’ on systems that have this
feature. Due to the standard even-odd fill rule used in most systems, PolyPolygons can be
hollow in one place and filled in others.

QuickDraw Gems 30

This feature is useful in a number of circumstances. For example: when drawing a filled shape
with a hole in it - such as a flattened torus - PolyPolygons can be used to avoid the need for a
clipping region. Figure 3 contrasts how a doughnut shape might be drawn using a clipping
region, as opposed to using a PolyPolygon.

Without PolyPolygons With PolyPolygons
1) Draw the background 1) Draw the background
Mmm....Doughnuts! | Mmm....Doughnut:

2) Set up clipping region (Everything outsidethe circle) 2) Now draw the shape

as a PolyPolygon that
/lf_x has a hole in the middle
Mmm....Doughnut§!
~ / Mmm.

"

3) Now Draw the shape

Mmm.

Figure 3. Drawing a doughnut - with and without PolyPolygons.

Without PolyPolygons, we need to remove the inner (hollow) part of the shape from the active
clipping region after drawing the background, but before drawing the filled part of the shape.
Setting up a clipping region like this can be expensive - QuickDraw has to perform complicated
calculations to determine the new region. On top of this, QuickDraw’s Region structures can
overflow if they are too complex (over 64K), and they are not available during PostScript
printing.

When PolyPolygons are used instead of clipping, we can completely avoid dealing with
QuickDraw Regions. Simply rasterizing the PolyPolygon gives the desired result, which is
also printable on any printing device.

How do we go about creating a PolyPolygon? It’s actually quite simple. In systems that
directly support PolyPolygons, a PolyPolygons is a structure that records the equivalents of
both the MoveTo() and LineTo() functions in QuickDraw. Since QuickDraw supports only
LineTo() calls in its Polygon structure we need to add a fake MoveTo() call using a combination
of LineTo() calls. We do this by inserting a pair of overlapping LineTo() calls into the
QuickDraw Polygon structure: one when moving to each sub-polygon, and the other when
popping back to the previous sub-polygon. Figure 4 shows a simple square PolyPolygon.

QuickDraw Gems 31

V)

MoveTo (10, 10); [/ Start
(10, 10) (110, 10)

Li neTo (110, 10); /I 1st sub-poly

LineTo (110, 110);

Li neTo (10, 110);

Li neTo (10, 10);

Li

neTo (20, 20); /! Mve in

Li neTo (100, 20); [// 2nd sub-poly (20, 100) (100, 100)
Li neTo (100, 100);
LineTo (20, 100); I
Li neTo (20, 20); (10, 110) (110, 110)

Li

neTo (10, 10); /I Pop to start.
/1 Fini shed

Figure 4. QuickDraw commands for an example PolyPolygon:

Since QuickDraw always uses an even-odd fill rule, the filled area of any PolyPolygon is
essentially the area of each sub-polygon Xor-ed in sequence. This filled area can be filled using
PaintPoly() or FillPoly(), and it can be made into a QuickDraw Region in the usual way. Itis
important to note, however, that due to the way that we have constructed our PolyPolygon,
FramePoly() should not be called with a PolyPolygon. QuickDraw’s FramePoly() routine does
nothing more than walk through the list of points in a Polygon, calling LineTo() as it goes; with
a PolyPolygon constructed as above, this would result in the lines connecting sub-polygons being
drawn. If drawing the outline of the PolyPolygon is required, it’s best to make a direct sequence
of LineTo() calls for each sub-polygon.

Speedygons - Drawing Polygons More Quickly

In QuickDraw, as with any graphics system, the programmer must supply a set of points that
specify a polygon’s geometry before that polygon is drawn. The mechanism provided by
QuickDraw to set these points is very simple: a call to OpenPoly(), followed by a MoveTo() call
and a set of LineTo() calls, topped off with a call to ClosePoly(). When OpenPoly() is called, a
new PolyHandle - a Handle to a Polygon structure - is allocated in the application heap, and
this PolyHandle is automatically grown as new points are added to it. When done with the
polygon, the programmer calls KillPoly(), and the memory occupied by the Polygon is
deallocated from the heap.

This method is sufficient for drawing the odd polygon here and there, but if a program needs to
draw thousands of polygons at once (as is often the case when drawing complex vector
illustrations), the overhead for repeated memory allocation and deallocation can become a
significant penalty. This will be especially true if many small polygons are drawn - the ratio
of time spent drawing to the time spent managing memory decreases proportionally with the
number of pixels that need to be drawn. There are a number of ways of improving performance in
this situation.

The first, and often the fastest, is to allocate an off-screen GWorld and bypass QuickDraw’s
polygon rendering altogether. This is a good solution, but can require a significant investment in
development time depending on what features of QuickDraw need to be emulated in the

QuickDraw Gems 32

offscreen drawing. Another problem with this solution is that by bypassing QuickDraw, one
can no longer record a drawing into a PICT, except as a bitmap. Additionally, the benefit of any
graphics acceleration hardware that the user might have is lost.

Another way to speed up drawing is to take note of the fact that the internal layout of the
QuickDraw Polygon structure has been available in Inside Macintosh since its first publication.
Listing 5 shows this structure.

struct Pol ygon {

short pol ySi ze;
Rect pol yBBox;
Poi nt pol yPoi nts[1] ;

s
t ypedef struct Pol ygon Pol ygon;

Listing 5. QuickDraw’s Polygon structure

Rather than using OpenPoly() to allocate a PolyHandle for each polygon, we can allocate a
single handle large enough to hold the most complex polygon that is to be drawn. When
drawing, we set the points directly in the pre-allocated polygon before calling PaintPoly() or
FillPoly(). While setting the points, we need to calculate the polyBBox field by taking the
minimum x and y values of the points we are adding as the left and top of the polyBBox, and
the maximum x and y values as the right and bottom. The polySize field must also be adjusted,
and it’s important to note that this field measures the number of bytes in the structure, not the
number of points.

By bypassing the normal way of specifying the points in a polygon, we not only save on memory
allocation overhead, but also on function call overhead, since we no longer have to use a
LineTo() call to add a new point to a polygon. Function call overhead for Toolbox routines is
significant on 68K machines due to the trap dispatch mechanism, and even more so on the
PowerPC machines due to the fact that toolbox calls are cross-TOC, and that the trap dispatch
mechanism has to go through the Mixed Mode Manager in case a 68K extension has added
patched a trap.

What kind of performance improvement does this optimization give? In certain tests,
improvements of up to 35% have been observed, but as discussed above the results will vary
with the average size of the polygons that are drawn.

There are a few important caveats to keep in mind when using this method. Despite the fact
that the Polygon structure has been public knowledge since 1984, some Apple engineers (though
no tech notes) have warned against this technique, claiming that graphics accelerators may be
confused by the ‘artificial’ polygons if they perform any caching based on the PolyHandles
they’ve been passed. This line of reasoning doesn’t hold water for two reasons: first, it is quite
rare for a program to need to draw the exact same polygon over and over again in a tight loop,
thus making polygon caching relatively worthless; secondly, Apple has provided special
functions to notify QuickDraw of direct manipulations of many other data structures (ie:
GDeviceChanged(), etc.) - if it is important for QuickDraw to know when a Polygon structure
has changed, a similar notification routine should exist for PolyHandles.

QuickDraw Gems 33

Unfortunately, the warnings about direct manipulation of the Polygon data need to be taken
seriously - there are at least three problems with some system-level software related to the use
of this technique. The first is that QuickDraw will sometimes mark an artificial PolyHandle
as purgeable if it is drawn during the recording of a PICT. The solution for this problem is to
save and restore the Handle state before calling the PaintPoly() or FillPoly() functions.
Another problem occurs when using graphics acceleration with a PCI Twin Turbo 128 video card:
triangular patterns will be drawn through polygons drawn in this manner.

One way to avoid being bitten by these potential problems, while still improving the speed of
graphics code is to give the user the option to choose what levels of compatibility vs.
performance they would prefer.

Complex Clipping Using Xor

QuickDraw’s Regions are powerful tools for graphics programming. Regions can be combined
with one another in a variety of different ways, they can be filled or painted, they can be
outlined, and last but not least, they can be used to clip out subsequent drawing operations -

confining them to those areas that are within the visible and clipping Regions of a specified
GrafPort.

The internal structure of QuickDraw Regions encodes the horizontal boundary lines that border
areas within the region. This encoding is very efficient for combining shapes with many purely
horizontal and vertical edges, but it is much less efficient when diagonals or curves are
required. In these cases, the region format effectively degenerates into a simple run-length
encoded bitmap, where different horizontal boundary information is stored for each scan line in
the region. Further information on the internal format of Regions can be found in [DUBINSS].

This encoding format would not be a limiting factor for the purposes of clipping if it wasn’t for
the fact that there is a severe limitation on the maximum size of a Region. Due to design
considerations on the original 68000-based Macintosh, Region data is limited to a maximum of
64K bytes, including header information. In today’s world of very high resolution displays,
this limit is insufficient for representing regions that can result from combinations of large,
complex polygons, or text.

Luckily, however, there is a way to clip objects to regions more complex than those that
QuickDraw is capable of. The solution is not ideal - it requires that the graphics drawn within
the clip region be drawn multiple times, in an Xor graphics mode - but it does provide an
alternative when QuickDraw is incapable of representing a region.

The procedure for Xor clipping is straightforward. First, we use Xor mode to draw whatever
graphics we want clipped. Note that it’s best to draw only a single shape or bitmap;
overlapping shapes can be problematic. If we must draw something complex, we draw it into an
offscreen bitmap first (in a Copy mode, not Xor mode), then we use CopyBits in srcXor mode to
draw the bitmap into the destination port. We refer to the graphic being clipped as the ‘source’
image.

Once this is accomplished, we set the pen mode back to patCopy, then we draw the clipping
shape in the Xor base color of the destination GrafPort. When a pixel value is Xored with the
Xor base color, the resulting pixel value is the same as the original. For 16 and 32 bit true color
ports, the Xor base color is always pure white. For indexed-color ports, this value is always
color table index zero, since for these ports QuickDraw’s Xor mode is simply a direct bitwise Xor
of the destination port’s pixel values with the source. If we are drawing to the screen, we need

QuickDraw Gems 34

to iterate through the GDevice table to choose the appropriate Xor base color for each physical
device the port intersects.

By drawing the clipping region in the Xor base color we pave the way for the final pass, this
time drawing the source again in Xor mode. Any pixels that were set outside the clipping area
are now reset to whatever value they had before our first pass. Pixels inside the clipping area
now hold the result of the Xor base color Xor-ed with the corresponding source pixels - in other
words, the source pixels.

Figure 6 shows a situation where we might want to use Xor clipping to achieve our desired
results. If we were to draw this image using a QuickDraw Region to clip out any area outside
the text boundaries we can easily overflow the maximum allowable complexity, especially if
we need to draw at a very high resolution. Also note that if we were to use QuickDraw
Regions, the text ‘Clip Me’ would have to be converted to a Region by extracting the TrueType
curves for each letter, tessellating them into polygons, and combining the polygons.

Figure 6. Desired clipping result

Figure 7 shows the Xor clipping process used to produce the result shown in Figure 6. A typical
8-bit paletted destination port with color index zero equal to pure white is assumed. First, the
source image is drawn in Xor mode. Note that since the previous background was pure white,
the Xor operation results in the source image being directly transferred to the destination. Next
the clipping area is drawn in white, sincethat is the Xor base color for this port. The clipping
area can be drawn using a simple call to DrawString() - though we would need to extract the
TrueType curves if we needed to draw rotated or skewed text. Next, the source image is Xor-ed
on again, resulting in the clipping effect. Finally, the PolyPolygon is outlined to allow us to see
the precise borders of the clipped area more clearly.

QuickDraw Gems 35

A) Drawing the source
image in Xor mode.

B) Drawing the clipping
area in the Xor base color §
(white, in this case).

C) Redrawing the source
image in Xor mode.

D) Outlining the clipping
area for effect.

Figure 7. The Xor clipping process

Bibliography
[APPLE94] Thompson, Nick, QuickDraw Snippets - Color Marquee. 1994.
http://devworld.apple.com/dev/techsupport/source/SQuickDraw.html

[DUBINS88] Dubin, Stephen, V.M.D., Ph.D., Moore, Thomas W. , Ph.D., Fun With Regions, Part
I, MacTech(MacTutor) Magazine, Volume 4, Issue 9. 1988.

QuickDraw Gems 36

Drawing to the Screen from an MP Task

© 1997 by David Slik
dslik@paradata.com

Abstract

This paper describes a mechanism to allow MP tasks to display directly to the
screen. By partially overcoming the limitation of not being able to call
QuickDraw, MP programmers can thus increase the functionality and
capabilities of their MP software. In addition, this paper introduces MP
GrafLib, a MP aware graphics library that can be extended to allow full
featured drawing capabilities.

Introduction

The Multiprocessing extensions to the Macintosh Operating System, jointly developed by Apple
Computer, Inc, and DayStar, Inc, open up many new possibilities for software development on
the MacOS platform. By providing a runtime environment for the support of fully preemptive
threads that can run on multiple processors, the way is paved for the development of scalable
high performance systems, semi-realtime software and TRUE multitasking, where processes
can be executed simultaneously. This run time environment and APl has been successfully
implemented by many developers including Adobe, Deneba and others. Unfortunately, one of
the tradeoffs required to allow this level of functionality is restrictions on the type of code
called. Like VBR tasks and code at interrupt time, almost all ToolBox functions can not be
called. As the MP environment is intended for computational intensive tasks, this trade off is
appropriate, but one key area where this limits the abilities of the developer is that there is
no supported mechanism to display graphics to the screen.

This paper presents a method that allows the construction of a library of routines that allow
graphic elements to be drawn directly from an MP task.

A Brief Overview of the MP Environment

An MP task can be thought of as a special function that runs as part of your program. It has
several unique attributes and restrictions, and like most specialized environments, is best suited
for specific applications.

MP Tasks are preemptively multitasked. This means that a task will always get processor
time, but it can be stopped and started at any point. Additionally, MP tasks can be distributed
across multiple processors. This allows programs using multiple MP tasks to do computation to
take advantage of multiple processors and the associated performance increases. As many of
the parts of the MacOS ToolBox do not support preemptive multitasking, toolbox routines can
not be called from an MP task.

Drawing to the Screen from an MP Task 37

MP Queues

Because software running under the MacOS Runtime Environment and the MP Runtime
Environment can not communicate directly, mechanism have been set up to allow executing
software in different environments to interoperate. Included with the MP API is a series of
calls to create and manage queues, which are used for communication and synchronization
purposes. It is through these queues that parameters and other information is passed back and
forth from an MP task.

Things to Remember

- PowerPC only
- Must use MP Memory management routines
- Can Not call ToolBox routines

More information about the MP Environment and API can be found in the included MP SDK,
which can be found in the “Multiprocessing SDK #2” folder.

History of Low Level Graphics Display Mechanism in the MacOS

Direct to Screen

Before the advent of today's accelerated video cards, all graphic elements on the screen were
drawn directly to the video memory. When a QuickDraw function was called, code inside
Quickdraw would rasterize the element and set the value of all effected pixels. This
mechanism, while adequate for black and white and 4 bit color, was quickly phased out after
the introduction of Color QuickDraw.

MP ToolBox

Application

QuickDraw

Hardware Abstration
Software Layer
Hardware

Figure 1: QuickDraw Direct Drawing

QuickDraw Acceleration

QuickDraw, and all of the Toolbox components that are built on top of it are structured around a
low level library that supports access to accelerated routines within the video card. This
library acts as an hardware abstraction layer that translates a QuickDraw command to draw a
graphic primitive into a native command of the graphic processor on the video card. This is

Drawing to the Screen from an MP Task 38

how "QuickDraw Acceleration” is performed, and is the reason why graphic speeds are as fast
as they are. Instead of having to fill every pixel of a rectangle, a single command can be issued
to the graphics processor, leaving the main processor free while the graphics processor utilizes
it's high speed local memory bus to fill in the pixels at a much faster rate then the main
processor could.

MP ToolBox

Application

QuickDraw

Hardware
Abstraction Layer
Vendor PCI Vided
Software Card Driver

Hardware

Figure 2: Accelerated QuickDraw Drawing

Mechanisms for MP drawing

In an MP task, the QuickDraw libraries are not available, and a different approach needs to be
taken. Two approaches can be taken, both with different advantages and disadvantages:
Direct to Screen, and Accelerated.

Direct To Screen MP Drawing is the simpler option of the two. It is straight-forward to
implement, and allows elements drawn by an MP task to co-exist with graphic elements drawn
by conventional tasks. This allows the MP task to draw within a MacOS window. This is the
method that is focused on in this paper.

MP ToolBox

MP Task

Graphics Librarly

Hardware
Abstraction LayeFr

Software
Hardware

Figure 3: Direct to Screen MP Drawing

Drawing to the Screen from an MP Task 39

Accelerated MP Drawing requires a dedicated screen, and the development of a PCI driver.
This allows the graphics processor on that PCI card to be access directly and used to draw the
primitives, taking the load off the central processor. This offers many advantages, as it is much
faster then direct to screen, and in many solutions, having a separate screen is beneficial. The
primary disadvantage is the required complexity. To properly develop a graphic library using
this approach, a layered approach would be required to ensure support for the many PCI cards
that are available in the marketplace. As every graphic processor has different commands,
this would be a major development effort.

MP ToolBox

MP Task

Graphics Librarly

PCI Video Card

Driver
Software

Hardware

Dedicated Hardwalre

Figure 4: Accelerated MP Drawing

An Overview of Direct to Screen MP Drawing

There are three steps required to draw to the screen from an MP Task: Finding the base address
of the video buffer, finding and calculating display parameters, and manipulating memory to
draw.

Step #1 - Finding the base address of the video buffer
The first step required to directly access the video buffer is to find the base address.

Note that this step can not be accomplished from an MP task, and must be executed by the host
application!

Before the advent of the second generation of PowerPC based systems, finding the base address
of a video buffer was, at best, undocumented. With the addition of the PCI bus, a new API
called the Name Registry was integrated into the system to provide a unified mechanism to
access, store and retrieve hardware and driver status. By using the Name Registry, a program
can discover enough information to write directly to the screen from an MP task.

The Name registry is organized in a tree structure, with devices being branches off their parent
bus.

Drawing to the Screen from an MP Task 40

[+ Dcarices
[sDoarices s der] ootk e
Phevicesidevice—tres: AAPL , FOM
Poevices:device—tres: PowerbT, 604
Phevices:device—tres:PowerPs,604: 12 —cache
[sDevricas s deri et reacral {aaes
[sDearicas s doar] ne b reas bandie
[sDearicas s doar] ne b reas bandie
—Deyvicegdevica—tresthandi : ATY RCLATH

ARPL,address = [B1000000 = -2130706432]

AAPL,interrupts = [00000013 = 25]

ARPL,elot—name = =Z1%

ATY ,Card# = =1089-33200-00"

ATY ,Flags = [00000000 = O]

ATY Mem# = =100-31602-00%

ATY ,Rom# = =113-33200-110%

¥IZime = [00190019 = 16368425], [D0B20900 = B521084]

[+ assigned-addresses
charaster-gat = "I200A50-1"
clagg—pede = [00030000 = 196608
dapth = [0000000B = 8]
devioe-id = [000047568 = 18264]
device type = "display”
deyveal —spesd = [00000001 = 1]
did = [ODDDOODZ21 = 33]
driver,AAFL, Macds Powarbo
driver-degcri pror
driver-iat
driver-ptr = [00031820 = 202876
driver-raf = [ffod = -51]
focde—rem—cffaat = [00000000 = O]
height = [000001e0 = 480]
interrupets = [00000001 = 1]
igo6428-1983—0olors
linebyres = [00000260 = 540]

AT

Figure 5: Name Registry Structure

Note the highlighted values in the above name registry dump. These include APPL, addr ess,
or the base address of the frame buffer, devi ce type, which identifies the device as a
display, hei ght, which indicates the vertical resolution in pixels, and | i nebyt es, how many
bytes per row of pixels. Not shown are wi dt h and dept h. The use of a constant for the device
type identifier allows the name registry to be searched using several toolbox functions.

Detailed documentation and APl information about the Name Registry can be found in [APPL94]

The sample code below will recurse through the name registry and call SysBeep for every
display card found. A Metrowerks project for this example can be found in the (Example 1)
folder with the accompanying files.

Drawing to the Screen from an MP Task 41

RegEnt ryl ter Regi stryEntrylterator;

RegEntryl D Regi stryEntry;

RegEntrylterationQ RegistryEntrylteratorQperator = kReglterRoot;
Bool ean | t erat eDone = FALSE;

C5St at us theBError = 0;

| ong Del ayTine = O;

Regi stryEntryl Dinit (&Regi stryEntry);
theError = RegistryEntrylterateCeate(&RegistryEntrylterator);
if(!'theError)

while(!lterateDone & !theError)

{
theError = RegistryEntrySearch(&Regi stryEntrylterator,
Regi stryEntryl teratorQperator, &RegistryEntry,
&l terateDone, "device_type", "display", 8);
if (!lterateDone && !'theError)
{
SysBeep(0) ;
Del ay(30, &Del ayTi ne);
Regi stryEnt ryl DDi spose(&Regi stryEntry);
}
Regi stryEntryl teratorQperator = kReglterConti nue;
}

}
Regi stryEntryl terat eD spose(&Regi stryEntrylterator);

Listing 1: Beep for every video card

NOTE: the text “devi ce_t ype” in the above source code sample may need to be replaced with
the text “ devi ce-t ype” to work on computers other then the Power Macintosh 9500.

This code is used as a foundation to create the function Ptr
Get | ndVi deoBaseAddr ess(unsigned int Display); , which recurses through every
display card and returns the associated base addresses. Source code for this function can be found
in the (Example 2) folder.

This function accepts a number that indicates which video card should be queried. For example,
passing 1 will result in the base address of the first being returned, and so on. If a video card is
not found, the function returns NULL.

Step #2 - Finding and calculating video parameters
The second step required is to find information about the selected display.

Note that this step can not be accomplished from an MP task, and must be executed by the host
application!

Once the base address has been found, other parameters need to be retrieved for the selected
video card. Again, this information can be retrieved using the Name Registry. The function

Drawing to the Screen from an MP Task 42

returns Ret r ei veVi deoPar anet er s() display information about a video card with a specific
base addresses. Source code for this function can be found in the (Example 3) folder.

OSErr RetreiveVideoParaneters(Ptr BaseAddress, unsigned int *resX
unsi gned int *resY, unsigned int *BitDepth);

This function accepts a base address, and sets the values of resX, resY and BitDepth. If the base
address is invalid, all three will be set to zero and an error indicator will be returned.

Once obtained, This information needs to be passed to an MP Task via MPCreat eTask or
MPNot i f yQueue.

Step #3 - Setting Pixels

The third and final step required to directly access the video buffer is to set memory values to
display pixels on the screen

Note that this step CAN be accomplished from both MP tasks and normal MacOS applications.

This allows the MP Library to be used from both normal and MP tasks, for development
convenience.

Pixels are set by changing a segment of memory that coincides with a pixel on the screen. The
address of the memory where the value is written to is calculated from the information about
the display that is passed by the previous step. The size of the value which is written to set
the color of the pixel is dependent on the bit depth of the screen and if direct or indexed color
tables are in use.

The calculation follows as:
Memory Address = BaseAddress + (XResolution * BitDepth * Y) + X * BitDepth

Where:
MemoryAddress is not Greater then (XResolution * YResolution * BitDepth)
BitDepth is in bytes.

Once a pixel drawing routine is in place and optimized, routines to draw various graphic
primitives can be built. All graphical elements used in the MacOS are composed of simple
graphic elements, lines, circles, bitmaps and areas. From these basic elements, complex
graphics and interfaces can be built. By manipulating pixels, all of these primitives can be
rendered. Currently, lines, and rectangles are implemented, allowing a vast majority of
graphics to be drawn. Algorithms for rendering various graphic primitives are widely
available, and more information can be found in [FOL93].

Drawing to the Screen from an MP Task 43

MP GrafLib

The MP GrafLib is a collection of routines for drawing to the screen. Supporting features such as
clipping, it forms an extendable platform for constructing a robust graphics library.

The example below is the GrafLib code that accompanies a program that creates a modal
window at the location 100,100 that is 300 pixels high and wide.

DS Rectt hed i ppi ngRect ;

I ni t MPGraf Li b(BaseAddress, BitDepth, ResH ResV);
DS _Set Rect (& hed i ppi ngRect, 100, 100, 400, 400);
Set d i ppi ngRect (t hed i ppi ngRect) ;

DS _Set For eCol or (DS_Set Col or (0, 0, 0));

DS _MoveTo(100 , 100);
DS Li neTo(500, 200);

Del ni t MPGraf Li b() ;

Listing 2: Simple MP GrafLib Program

This program will draw a single black line across the window.

MP GrafLib API

The MP GrafLib API is split into four distinct areas: Initialization, Color, Drawing and
Utilities.

Initialization Routines
Initialization routines set up the library and initialize internal structures.

CsErr I nitMPQ af Li b(Ptr BaseAddress, short BitDepth, short HRes, short VRes);
CBErr Del ni t MPGr af Li b(voi d) ;
CBErr Setd i ppi ngRect (DS_Rect thed i ppi ngRect);

Color Routines
Color routines allow color values to be created and used when objects are drawn to the screen.

voi d DS_Set For eCol or (DS_R@Col or theCol or);

voi d DS_Set BackCol or (DS_R@ECol or theCol or);

DS R@&BCol or DS _Set Col or (unsi gned char Red, unsigned char G een, unsigned char Bl ue);
DS R@&BCol or DS _Get ForeCol or (voi d) ;

DS R@BCol or DS _Get BackCol or (voi d) ;

unsi gned int DS Get Bi t Dept h(voi d);

Drawing to the Screen from an MP Task 44

Drawing Routines

Routines that allow objects to be drawn to the screen. These routines mirror equivalent ToolBox
routines, with different types to prevent accidental calling of ToolBox routines. Currently they
consist of functions for the drawing of pixels, lines and rectangles, both filled and outlined.

voi d DS _Set Pi xel (short xCooridi nate, short yCooridinate, unsigned int PixelValue);
voi d DS MweTo(short horiz, short vert);

void DS LineTo(short horiz, short vert);

void DS Line(short distHoriz, short distVert);

voi d DS _FrameRect (DS_Rect *theRect);

void DS Fill Rect (DS_Rect *theRect);

Utility Routines

Routines for common object parameter manipulation. These routines mirror equivalent ToolBox
routines, with different types to prevent accidental calling of ToolBox routines. Currently they
consist of Rect creation and manipulation functions for drawing rectangles.

void DS SetRect(DS Rect *theRect, short rLeft, short rTop, short rRght, short
rBotton);

void DS Off set Rect (DS_Rect *theRect, short distHoriz, short distVert);

void DS | nset Rect (DS_Rect *theRect, short distHoriz, short distVert);

Bool ean DS Rect |l nRect (DS_Rect *theRect, DS Rect *InsideRect);

Things to do with MP GrafLib

Here are a few ideas of things to do with MP GrafLib:

- Write a MP Progress bar update routine by drawing on top of a modal dialog box
- Write visual debugging indicators for MP Tasks

Here are a few more exotic ideas of things to do with MP GrafLib:

- Write a program that keeps on drawing, even in Macsbug!
- Write a program that displays the contents of low memory in realtime to a second
monitor.

(where the color represents the memory value)

Future Additions and Improvements

As with any unfinished work, there are many improvements and additions that can be added to
the MP GrafLib software. These include:

Drawing to the Screen from an MP Task 45

- Native MP PCI Video card drivers for accelerated drawing

- Support for additional graphic primitives (eg, arcs, circles, ovals...)

- Support for additional bit depths other then 32 bit

- Improved clipping algorithms

- Support for regions

- Support for Patterns

- BitMap support with CopyBits like functionality and offscreen buffers
- Text rendering support

- And, as always: Faster rendering speeds

In addition, once a firm foundation is in place, the addition of a windowing library, and
possibly a video playback architecture would allow complete applications to be written as MP
tasks.

If you have ANY comments, suggestions, corrections or additions, let me know. | can be reached
at dslik@paradata.com.

Bibliography
[APPL94] Apple Computer, Inc. Designing PCl Cards and Drivers for Power Macintosh
Computers. Apple Computer Inc, Cupertino, CA. 1996.

[FOL93] Foley, James D. Computer Graphics: Principles and Practice. Addison Wesley,
Reading, Massachusetts. November 1994.

Drawing to the Screen from an MP Task 46

Enabling Your Application for Multi-byte Text

©1997 by Nat McCully
nat@claris.com

So, you have developed the next greatest widget or application and you want to distribute it on
the Net. Your application has a text engine, maybe simple TextEdit, or one of the more
sophisticated engines available for license, or even one you wrote yourself. One day, you get an
e-mail from someone in Japan:

Dear M. MCully,

My nane is Takeshi Yamanoto and | use your program

Magi cBook, everyday. But, | have a probl em usi ng Japanese
characters init. Wien | hit the delete key, | get weird
gar bage characters. My friends and | wish to use both
Japanese and English in your program but it does not work
properly. Please fix it!

T. Yamanot o

Suddenly, there are people on the other side of the world who want to use your application in
their language, and you are faced with a dilemma. You have no first-hand knowledge of the
language itself, but you may be somewhat familiar with the Macintosh’s ability to handle
multiple languages in a single document with ease. Simply cracking open Inside Macintosh:
Text seems daunting. How will these new routines affect the performance of your program? Will
you introduce unwanted instability and anger your existing user base? Where can you find
information on how to use these routines best, not just a description of what each routine does?

This paper will attempt to address some of these issues, and in general familiarize you, the
reader, with some of the best things that make the Mac an excellent international computing
environment. Intelligent use of the Macintosh’s international routines, WorldScript, and the
other managers in the Toolbox can be the difference between a US-only application and a truly
“world-ready” tool that any user, anywhere, can utilize as soon as they download it to their
hard disk. Although this paper deals primarily with Japanese language issues, the concepts
outlined herein can be used with any multi-lingual environment.

What is WorldScript?

WorldScript is the set of patches to the system that enables the correct display and
measurement of multi-lingual text. Over time, many of these patches have been rolled into the
base system software, but even in MacOS 7.6.1, you will find a set of WorldScript extensions in
the Extensions folder when you install one of the Language Kits available from Apple. The
concepts and code snippets in this paper will work equally well on, for example, the Japanese
localized MacQOS, or on a standard U.S. system with the Japanese Language Kit (JLK). A good
source of localized system software and Language Kits is the Apple Developer Mailing CD-
ROM, available from the Apple Developer Catalog. WorldScript is one of the Apple-only
technologies that makes multi-lingual computing possible in a far easier way than the other
guys. And, when it comes to having Chinese, Korean and Japanese all in the same document,
WorldScript, on MacOSs, is the only thing out there.

Enabling Your Application for Multi-Byte Text 47

How to Use the Script Manager and International Utilities to Make
Your Application Two-byte Savvy

OK, let’s get to the meat, you say. How do you make your text engine handle two-byte
characters? Well, before giving you a bunch of code, let’s explain how the Mac handles two-
byte text.

What is a Script?

Each language that the Mac supports is grouped into categories called “scripts.” For example,
English and the other Roman letter-based languages like French and German all belong to the
Roman script. Japanese belongs to the Japanese script. Character glyphs in the Roman script are
each represented by a single-byte character code. Japanese characters are represented by a 16-
bit (2 byte) character code.

Setting Up the Port — Pre-System 7 API’s versus New API’s

On the Mac, each font is also associated with a script. There are Roman script fonts like
Helvetica and Palatino, and Japanese script fonts like Osaka and Heisei Minchou. As you
know, when text is drawn into a QuickDraw gr af Port, you first set up the port with the
appropriate font, size and style, and then call Dr awText () to draw the text. If you are using
the old Script Manager API’s (like Char Byt e() and Get Envi rons()), you need to set the port
to a font in the script you are interested in using. Once the port is set to a particular font, calls to
the Script Manager will follow the rules of that font’s script. So the port, by way of setting the
font, also has an implicit script setting. This is the key to using the Script Manager routines so
they will return the correct information to your application using the older API’s. The new
APIl’s have a scri pt parameter, so it is not necessary to set the font of the port before using
them. Since the Script Manager doesn’t have to call Font Scri pt () to find out the script of the
current font before passing the script to WorldScript, using the newer API’s could speed up your
application in certain cases.

Adding Script-savvy Features to your Application

First, you need to determine if the user’s system has a non-Roman script system installed. One
way to find out all the scripts installed is to loop through all 33 possible script codes (smRonman
being 0 and smni nt er p being 32) and calling Get Scri pt Manager Vari abl e() with the
selector snEnabl ed. Roman script is always enabled.

Scri pt Code script;
for (script = snRoman + 1; script <= snbhinterp; script++)

{
i f (GetScriptManagerVari abl e(script, snEnabl ed))

return TRUE, // non-Roman script present...

Listing 1: Finding Which Scripts are Installed

Of course, simply returning TRUE doesn’t necessarily do anything that useful, instead you could
at that point initialize your internal data structures that deal with specific script systems,
such as line-breaking tables, on a script-by-script basis.

Enabling Your Application for Multi-Byte Text 48

Line Breaking

Most applications don’t rely entirely on the Script Manager for line breaking, hit testing, or
word selection, because using those routines is thought to be too slow. It is possible to optimize
your text engine so that you incorporate the correct behaviors for each script system present,
while maintaining the highest possible performance. The Toolbox call for finding line breaks is
St yl edLi neBr eak() . To use it, however, you must restrict the text you pass it to lengths of
less than 32K (actually, this is true of the whole Script Manager, so tough) and text widths to
whole pixel values (can you say ‘rounding error?’), and if you are explicitly scaling the text, it
won’t work at all. You must also organize the text you pass to it in terms of script runs and style
runs within them. Therefore, most applications that have word-processing functionality choose
to implement their own line-breaking code that is customized for their own needs.
Unfortunately, many of these private implementations break when used on WorldScript
systems.

Line Breaking with Japanese Text

The simplest line-breaking algorithm for English text is to look for a space (ASCI | 0x20)
character in the line near the graphic break, and if there is none, to break on the byte-boundary
nearest the graphic break. Japanese text is a bit more complicated. Japanese text has no spaces,
so you must break at the character boundary nearest the graphic break. There is an additional
wrinkle: Certain characters are not allowed to begin a line, and certain characters are not
allowed to end a line. This set of line-breaking rules is referred to as Kinsoku shori. For
example, you cannot begin a line with a two-byte period. You cannot end a line with a two-byte
open parenthesis followed by more text on the next line. A list of kinsoku characters is
available from the Japanese Standards Association in the form of a Japanese Industrial
Standard (JIS) document. It is also in Ken Lunde’s excellent book, Understanding Japanese
Information Processing, in the section entitled “Japanese Hyphenation.” While not all Japanese
agree on the correct set of kinsoku characters, this set is a good default. Some applications
allow the user to edit the kinsoku character set to their own liking.

Once you know that the current byte offset in your text is on or just before the graphic break, you
need to see if that byte is part of a two-byte character. Then you need to see if the character is a
character that can’t end a line. Then you need to check the character after it to see if it is a
character that can’t begin a line. This can be repeated as necessary, for support of a string of
kinsoku characters. For example, suppose the character on the graphic break (the break char)
can end a line, but the character after it can’t begin a line, causing the break char to wrap.
However, the character before the break char is one that can’t end a line, so you must then
check the char before it, and so on, and so on, and... The example below is simplified to
illustrate a particular case; actual code for an application would probably be organized
differently.

Enabling Your Application for Multi-Byte Text 49

untl6 * gSt art Li neKi nsokuChar s; // chars that can’t begin

[/l aline.
unt8 gNunst ar t Ki nsokuChars; /1 nunber of chars above.
Untle * gEndLi neKi nsokuChars; // chars that can’t end a |ine
Unt8 gNunEndKi nsokuChars; // nunber of chars above.

/1 This function will return FALSE if the char at offset
// is not a valid break point. It checks the char after it,
// but not the char before it, for kinsoku.

stati c Bool ean Check@ aphi cBreak(Unt8 * textPtr,

SInt16 result;

U nt16 of fset,
Scri pt Code script);

// The textPtr starts at a known ‘good character
// boundary. In this case it is the beginning of the
// line, but it could be the beginning of the

/] stylerun.

// Find out if script only has 1-byte chars. If so,
/1 we assune it’s ok to break at this char.
if (GetScriptVariable(script, snBcriptFl ags) &

return TRUE

(1 << snsf SingByte))

result = CharacterByteType((Ptr)textPtr,

of f set,
script);
if (result == snSingl eByte)
return TRUE, // Inreal life, you' re not done

// until you check the chars before
// and after this one for ki nsoku.

if (result == snFirstByte)

return FALSE;
if (result == sniastByte)
{
unt8 i ndex;

U nt16 theChar

=*(Unt1l6 *)& extPtr[offset - 1];

// Now we have a valid break on a 2-byte char.
/1 W need to check if it’s a kinsoku character.
// This code checks Japanese ki nsoku only, but
// with alittle work this could be extended to
// all 2-byte scripts that don't break on spaces.
if (script != smlapanese)

return TRUE

for (index = 0;

{

i ndex < gNunEndKi nsokuChars; i ndex++)

if (theChar == gNunEndKi nsokuChar s[i ndex])

}

return FALSE;

/1 Now we check the char after this one, in case it
// is a char that can't start aline. First see if
// it’s a 1-byte char. Inreal life, there are 1-byte

Enabling Your Application for Multi-Byte Text 50

/1 kinsoku chars to check for.
if (textPtr[offset + 1] == NULL ||
Char acterByteType((Ptr) & extPtr[of fset + 1],
0, script) == snSingl eByte)
return TRUE

theChar = *(Unt16 *)&extPtr[offset + 1];

for (index = 0; index < gNunstartKi nsokuChars;

i ndex++)
{
if (theChar == gNunftart Ki nsokuChar s[i ndex])
return FALSE
}
}
return TRUE
}
Listing 2: Checking Graphic Break Char with Kinsoku Processing
Hit Testing

Hit testing is another area in your text engine that demands the highest possible performance.
When the user clicks in the text, any delay in setting the insertion point there will be noticed.
Drag selection is another example of the same code working hard to find the character
boundaries and setting the correct hilite area.

Some applications use a locally allocated cache of possible first byte character codes that they
use to test a particular character in the text stream for “byteness” (that is, which byte of a
possible byte-pair it is). This is simple to create, with the MacOS Toolbox call
Fill ParseTabl e().Fill ParseTabl e() returns in your pre-allocated 256 byte buffer all the
bytes that can be a first byte of a two-byte character in the script you pass to it. Be aware that
in some scripts, some character codes can be both the first byte of a two-byte character as well
as the second byte of a two-byte character, depending on their context within the text stream.
Therefore, you need more than just this information to successfully find out what kind of
character the byte you’re interested in is a part of. In a mixed stream of text with both one-byte
and two-byte characters, using the parse table in a single pass over the text is much faster than
calling Char act er Byt eType() for each byte. An example of this is below, in a sample
function that goes through a text stream and counts the number of characters in it:

Enabling Your Application for Multi-Byte Text 51

U nt32 Count CharsinScriptRun(Unt8 * textPtr, Unt32 | ength,
Scri pt Code script)

{
unt8 par seTabl e[256] ;

U nt32 curByte, charCount;

(voi d) Fi | | Par seTabl e(&par seTabl e, script);

for (curByte = OL, charCount = OL; curByte < | ength;
cur Byt e++)
{

if (parseTable[textPtr[curByte]] == 1)
conti nue;
char Count ++;

}

return (charCount);

Listing 3: Counting the Chars in Mixed-byte Text

Notice that because we started at a known ‘good’ boundary, we were able to test only the first
bytes of the two-byte characters in the stream as we counted along. This code would not work in
all cases if we started at an arbitrary point in unknown text, because of the ambiguity of the
byteness of some character codes in some scripts. Caching the parse tables for all installed
scripts in the user’s system at launch time would further speed up your processing, so you
wouldn’t have to call Fi | | Par seTabl e() every time.

Measuring Two-byte Characters

On the Mac, all two-byte characters are the same width. In a future system software release,
proportional two-byte characters will be supported, but up until now all two-byte-savvy
applications assume mono-spaced two-byte characters, and even if proportional characters are
supported, they will be mono-spaced by default so as not to break every application currently

shipping.

Before the MacOS supported measuring two-byte characters with Text W dt h(), a special code
point in the single-byte 256 char width table was reserved for the two-byte character width for
that font. In the Japanese and both Chinese scripts, this code point is 0x81. In Korean script, it
is 0x83. This code point still works, even though Apple now recommends you use Text W dt h()
for all measuring of multi-byte or mixed text. In the future for proportional measuring,
Text W dt h() will probably be what you will use.

Below is an example of a function that measures any text, and returns the amount in a Fixed
variable. This is useful if you are measuring text and the user has Fractional Glyph Widths
turned on (meaning you made a call to Set Fr act Enabl e()).

Enabling Your Application for Multi-Byte Text 52

#def i ne JSCTCW dt hChar 0x81
#def i ne KW dt hChar 0x83

typedef struct tagStyleRun {
Unt32 styleStart;

Uuntil6 font;

Untl6 size;

Uunt8 face;
} StyleRun, *StyleRunPtr;

Fi xed Get Text Wdth(Unt8 * textPtr, Unt32 | ength,

{

Styl eRunPtr styl eRuns, U nt32 nunBtyl es)

Scri pt Code cur Script;

U nt 32 byt eNum styl eNum

Fi xed total Wdth = OL;
Scri pt Code cur Script;
FMet ri cRec cur Font Metri cs;

Wdt hTabl e ** curWdt hTabl e;

unt8

par seTabl e[256] ;

// loop thru each stylerun, neasure its characters
for (styleNum= OL; styleNum< nunStyles; styleNum++)

{

// Set up the port (inreal life, you'd restore the
/1 old settings when you exit)

Text Font (styl eRuns[styl eNunj . font);

Text Face(styl eRuns[styl eNunj . f ace);

Text Si ze(styl eRuns[styl eNunj . si ze) ;

Font Metri cs(&ur Font Metrics);

cur Wdt hTabl e = cur Font Metri cs. wiabHandl e;

H_ock((Handl e) cur Wdt hTabl e) ;

curScript = FontScript();

(voi d) Fi | | Par seTabl e(&par seTabl e, cur Script);

// loop thru each char in the stylerun

for (byteNum = styl eRuns[styleNunj.styleStart;
(styleNum+ 1 < nunBtyles &
byt eNum < styl eRuns[styl eNumtl] . styleStart) ||
(styleNum+ 1 >= nunBtyl es & byteNum < | ength);

byt eNumt+)
{
if (parseTable[textPtr[byteNunj] == 1)
{
if (curScript == smlapanese ||
cur Scri pt == sniradChi nese | |
cur Script == sn8i npChi nese)
totWdth +=
(*cur Wdt hTabl e- >t abDat a) [JSCTCW dt hChar] ;
else if (curScript == snKorean)
totWdth +=
(*cur Wdt hTabl e- >t abDat a) [KW dt hChar] ;

el se
totWdth += (Fi xed)
Text Wdt h(& ext Pt r[byt eNunj,
0, 2) << 16;

Enabling Your Application for Multi-Byte Text 53

byt eNumt+;
}
el se
totWdth +=
(*curWdt hTabl e- >t abDat a) [t ext Pt r[byt eNunj] ;

}
Hunl ock((Handl e) cur W dt hTabl e) ;

}

return (totWdth);

Listing 4: Measuring Mixed-byte Text

The above function still makes expensive calls like Font Metri cs(), Fi | | Par seTabl e() and
Text W dt h() on each stylerun. It would be an even better idea to have a local cache of the
width tables and parse tables of fonts you know are in the document, so you don’t have to
rebuild them every time the user clicks or drags or types in the text.

So, now that you have a relatively fast way of measuring the text, you can use it to find the
pixel value of any character in the text, and use that for your internal CharToPixel and
PixelToChar logic. Or, you can use the MacOS Toolbox calls Char ToPi xel () and
Pi xel ToChar (), which will always work on any script but may be slower.

Localizing Your Application for Japan

Now that we have reviewed a few of the basic text engine issues for handling two-byte text,
there are a few things about Japan in particular that make localization a challenge.

Japan is possibly the most interesting major software market to localize for if you are interested
in text and text layout. It is a mature market, with a diverse number of products enjoying many
millions of dollars in sales each year. The Macintosh has a larger market share there than in
the U.S. or Europe. Text in Japan has traditionally been difficult to input and output using
machines, and the use of text in graphic design requires that the text layout be extremely
flexible. The characters are complex (so complex that bolding them may make them illegible),
and emphasis or adornment has forms that use background shading, different types of lines
around the text, and even dots or ticks above or to one side of each character. Condensed and

extended faces have different results on PostScript® printers than they do on QuickDraw

displays. Bold and italic faces were not supported on the first PostScript® Japanese printers.
Underlines are not drawn by QuickDraw when the font is a Japanese font. These last two things
might be fixed in future releases of the system software, but for now the application developer
must work around them.

For underline, you must draw a line under the text. The reason QuickDraw doesn’t draw it for
you is that it usually uses the font’s baseline as the underline location, but Japanese fonts’ two-
byte glyphs take up more room and descend below the baseline. Where you draw your underline
is up to you, but take a look at how other Japanese programs do it and make it fairly consistent.

Vertical text is pretty much a checkbox item nowadays in Japanese word-processing programs.
Most novels and many magazines are layed out vertically, but until recently computers were

horizontal-only. While the Windows95® APIs support drawing text vertically, the MacOS
still does not, outside of using QuickDrawGX typography (which is excellent, by the way). In

Enabling Your Application for Multi-Byte Text 54

comparing vertical text to horizontal text, several things change about the line layout: The
first line starts at the top right, and the text flows down to line-end, then wraps to the next
line, which is to the left of the first line; the baseline is generally considered to be in the center
of the line; underlines are drawn to the right of the text, as are emphasis dots; two-byte
characters are not rotated, but single-byte characters are, 90° clockwise; certain characters
have vertical text variants, like many punctuation characters. Where these variants are in the
font can be found inthe ‘ t at e’ table in the font (“tahteh” means “vertical” in Japanese).

Rubi are small annotation characters, placed above, below or to the side of the text they
annotate. Usually they provide pronunciation guidance for unusual or hard-to-pronounce Kaniji
characters.

Date formats in Japan include the current year of the emperor’s reign; again, supported on

Windows95® but not on MacOS. It is up to the application to support these formats if so
desired. Also, date formats 2 and 3 produce identical results, due to the fact that the
abbreviated month and the long month are the same thing in Japanese. Japanese applications
may opt to substitute a different format in one of those formats’ place.

Find and Replace needs to be expanded to include the different types of characters used in
Japanese. Standard Japanese text may contain any of the following types of characters: one-
byte Roman, two-byte Roman, one-byte numerals and symbols, two-byte numerals and symbols,
one-byte katakana syllables, two-byte katakana syllables, two-byte hiragana syllables, and
two-byte Kanji characters. The hiragana and katakana characters are equivalent in terms of
the sounds they represent in Japanese, so a good Find/Replace function should include an option
to find the search string in either syllabary.

Sorting in Japanese is difficult because the Kanji characters can have different pronunciations
depending on their context. To sort Kanji correctly, you need a separate kana key field that
indicates the pronunciation and you sort on that. Also, MacOS Conpar eText () doesn’t sort the
long sound symbol correctly (that symbol changes sound depending on the character before it, but
MacOS always sorts it in the symbols area), so for linguistically correct sorting you need to
write your own sorting routine.

If your application supports character tracking using the Color QuickDraw function
Char Extra(), be aware that the CGraf Port member chExt r a only uses 4 bits for signed
integer values and the other 12 bits for the fraction. The value you pass to Char Extra() is a
Fixed value of how many pixels you wish to track out (or in) the text, and QuickDraw divides
that by the current text size, to arrive at the chExt r a value. This means that if the tracking
value you pass to Char Ext r a() is greater than 8 times the text size, the chExt r a field will go
negative, and your text will be drawn incorrectly. Unfortunately, Japanese text is routinely
tracked out beyond this limit in many applications. The only workaround is for you to draw the
text one character at a time, and use the QuickDraw pen movement calls like MoveTo() to
move the pen yourself. The same is true for SpaceExtra() .

Inline Input

Inline input of Japanese, Chinese or Korean is a way of using an intermediate program (called
an Input Method) to translate your keystrokes into the many thousands of possible characters in
those languages, all in the same place on screen that you would normally see characters typed
in the line. In Japanese, the Input Method changes your keystrokes into phonetic Japanese kana

Enabling Your Application for Multi-Byte Text 55

characters, then converts some of those characters into Kanji characters to form a mixed kana
and Kanji sentence. Then the user hits the return key to confirm the text in the line, ending the
inline input session. Inline input on the Mac on System 7.1 or later uses the Text Services
Manager (TSM). If your application uses TextEdit as its main text engine, you can support inline
input quite easily using TSMTE. If you have your own text engine, you will need to do more work
to support TSM Inline Input.

TSM uses AppleEvents to send and receive data between your application and the Input
Method. You must implement several AppleEvent handlers, the most complex of which is the
kUpdat eAct i vel nput Ar ea. In that handler, you must draw the text in all its intermediate
stages, as the user is composing and editing the Japanese sentence before s/he confirms it to the
document. If there is text after the so-called ‘inline hole,” you must actively reflow the text if
such editing causes the length to change. Each time the user makes a change, the text in the
inline hole is received from the Input Method in an AppleEvent. The application draws it in
the text stream, along with special Inline styles that help the user tell which text in the inline
hole is raw (unconverted) text, which is converted text, which is the active phrase, where the
phrase boundaries are in the inline hole, and other information.

After implementing the TSM support in your application, it is imperative that you test it with
third-party Input Methods. At the time TSM was introduced, the documentation for how to
write an Input Method was still a little spotty. This resulted in each Input Method handling
text slightly differently. Also, Kotoeri, Apple’s Input Method, has fewer features than the
leading third-party Input Methods. Be sure to test your application with all of them you can
find, so you can verify that it won’t crash or produce strange results. Some Input Methods have
strange quirks, like always eating nouseDown events, or having different requirements about
how large a buffer they can handle without crashing. This knowledge comes from testing, and
sometimes can be found on the Internet in Usenet newsgroups (in Japanese).

What About Unicode?

Unicode is being billed as the latest panacea for the problems of internationalization. What
does Unicode give you? Where does it fall short?

Unicode was designed to solve one problem: There are many incompatible, overlapping encoding
schemes for different languages, and supporting all of these encodings is a complex problem.
What if there was a single encoding scheme that supported all the writing systems of the
world, and guaranteed that you could display text in all the languages Unicode supports if only
you had the right Unicode font for each language? Unicode tries to be that encoding.

For Japanese text data, the MacOS and Windows95® use Shift-JIS internally, while Rhapsody

and WindowsNT® use Unicode. On the internet, most Japanese text is encoded using the 7-bit
1ISO-2022-JP standard. Whether or not you use Unicode to represent text internally to your
application, you will have to support all three standards for full file and data compatibility
with the rest of the world. In Unicode, all characters are two bytes long. So, you no longer have
to worry about testing for byteness in a Unicode stream. However, all ASCII characters are
represented with a leading 0x00 in Unicode. So you can’'t have loops that look for a
terminating NULL in a C-string. And, all your formerly one-byte text doubles in size unless you
explicitly compress it (and then you lose the byteness testing advantage).

Enabling Your Application for Multi-Byte Text 56

Whether or not you think testing byteness is too complex or expensive to do, you should know
that Unicode also does another controversial thing: For the so-called “Han” languages
(Japanese, Chinese, Korean) that use characters that originated in China, it attempts to unify
them into one codepoint for each character judged by the Unicode Consortium to be unique, even
if it has variant forms in each language. The same is true for Arabic languages (Persian, Farsi).
Because of this, you cannot tell what language a character is in just from its codepoint. Unicode
was not designed to be a multi-lingual solution, in that representations of Chinese and Japanese
in the same document will have overlapping character codes, requiring the OS to provide a
parallel linguistically-coded data structure to render the glyph forms appropriately to each
language. This might be another version of today’s font/script/language relationship on
MacOS. As you can imagine, the Chinese, Japanese and Korean governments have each
published competing encoding standards to Unicode, labeling the latter as something designed
by foreigners who didn’t understand the issues (both political and linguistic) involved in trying
to make a worldwide encoding system.

Another issue about Unicode is that although it can represent 65,536 characters, there is not
enough space for all the Han characters and their variants, plus all the other languages that
Unicode currently supports. New languages are becoming computerized as more countries join the
Digital Revolution and the Unicode Consortium cannot give space to all of them. Preferring the
flat encoding model, they came up with another standard that uses four bytes per character
(the 1SO 10646 encoding standard). Given that on the Internet, where many languages need
simultaneous support on computers, bandwidth is at a premium, | would prefer using the ISO
2022 standard of mixed-byte (7-bit and 14-bit characters) plus the escape codes that tell you
what language the current stream is in to sending 32-bit characters through the wire. Since most
web pages use this encoding, expect your OS to provide utilities for encoding conversion (like
the MacOS Encoding Converter debuting soon on a Mac near you).

Cross-Platform Development Issues

Going cross-platform is already complicated without having to think about
internationalization. Should you have separate codebases for maximum use of each platform’s
unique features? Or should you have a single codebase and use an emulation layer for the other
OS’s APIs? Each has its advantages, but for this paper | can speak to those of you who have a
joint codebase, and tell you about some of the things that the Windows platform lacks that you
have to write yourself for multi-byte support and internationalization.

Windows has no Script Manager. There is no Gestalt Manager. It cannot support multiple two-
byte codepages at the same time. It uses totally separate fonts for vertical and horizontal text.
It supports proportional kana in Japanese, so you can’t assume all two-byte characters are the
same width.

If your code uses the Script Manager routines heavily, then you will have to write them
yourself on the Windows side. All the convenience of the MacOS’s international routines comes
very clear when you try the same things on a PC!

Also, Japan once again has its own special challenges. Until Windows came out in Japan, each
computer manufacturer made its own proprietary OS and hardware. Even floppy disks were
incompatible with each other. Now, most companies have adopted the Intel PC standard, but
NEC continues to manufacture its own line of incompatible PCs. NEC has such a huge share of
the market in Japan that it has teamed up with Microsoft to produce its own version of

Windows95® for NEC. So when you buy Windows95® in Japan, you find there are three

Enabling Your Application for Multi-Byte Text 57

versions: MS Windows95 for Intel, MS Windows95 for NEC, and NEC Windows95 for NEC. All
three versions are basically the same feature-for-feature, but the drivers are different and you
need to test your application on each platform to verify compatibility.

On the hardware side, you will find that Japanese hardware is different: They use different
displays, different keyboards, different printers, and different floppy formats. The drive
lettering on NEC machines is different from Intel PCs: The hard disk drive is labeled ‘A:’ on one
and ‘C:’ on the other. Make sure your installer isn’t hard-coded to install on drive C..

Conclusion

As we have seen, internationalization of your software on MacOS is not very difficult to do, and
it is to your benefit to try and enable as many users as possible to enter text in their own
language when using your program. We have also examined Japanese localization in more
depth, and demonstrated that Japanese language applications usually require some amount of
new features designed specifically for that language’s needs and conventions. As more markets
around the world reach maturity, you can be sure that there will be ample opportunity to
differentiate your product by adding locale-specific features. It is these locale-specific features
that will tell your users that they are valued customers, and that their needs are being
addressed in a very specific way. For your product, especially if you are in the initial designing
phases, | would recommend you try to make it as easily expandable as possible. Design generic
internationization into the core modules, while leaving open the opportunity to add locale-
specific features for certain markets like Japan, as you see your product’s market expand and
rise in success.

Bibliography and Related Reading
Apple Computer, Inc. Inside Macintosh: Text, Menlo Park, CA: Addison Wesley, March 1993.

Apple Computer, Inc. “Technote OV 20, Internationalization Checklist,” Cupertino, CA: Apple
Computer, Inc, November 1993.

Griffith, Tague. “Gearing Up for Asia With the Text Services Manager and TSMTE,” Develop
Issue 29. Cupertino, CA: Apple Computer, Inc, March 1997.

Apple Computer, Inc. “Technote TE 531, Text Services Manager Q&As,” Cupertino, CA: Apple
Computer, Inc, May 1993.

Lunde, Ken. Understanding Japanese Information Processing, Sebastopol, CA: O’Reilly &
Associates, September, 1993.

See also Ken Lunde's home page at http://jasper.ora.coni |l unde/. More information
about multi-byte text processing on computers.

About the Author

Nat McCully has been at Claris in the Japanese Development Group for the last 6 years. He has
worked on numerous Japanese products, including MacWrite I11-], Filemaker Pro-J, Claris
Impact-J, ClarisDraw-J, and ClarisWorks-J. He speaks, reads and writes Japanese, and enjoys
traveling in Japan. He is currently working as Technical Lead on the next release of
Clarisworks-J.

Enabling Your Application for Multi-Byte Text 58

On Having Two (or More) Heads
Real-Time Programming in Spite of the MacOS

© 1997 by Rainer Brockerhoff
rainer@machome.com.br
http://www.machome.com.br/delta/

Abstract

Using the MacOS for acquiring and displaying real-time data is a problem
with not-too-well documented solutions. Recent advances like the Thread
Manager and (for Internet applications) OpenTransport, as well as
asynchronous 1/0O, are of course helpful and indeed indispensable for
whoever tries to do real-time programming but it is not always clear how to
deploy these facilities to the greatest advantage. The MacOS, because of its
single-user, single-application origins, still places some restrictions on what
can be done in this regard. Some of those restrictions can be overcome; this is
what this paper is about. Reasonable familiarity with Macintosh
programming and PowerPlant is assumed.

Introduction

For some years my company, BESE Bio Engenharia of Belo Horizonte, Brazil, has been
manufacturing cardiac monitors for Intensive Care Units, based on the Motorola 68000 processor.
In late 1996 we designed a new product : Central BESE (which I'll call CB hereafter, for
brevity’s sake), a central monitoring station based on the PowerMac platform which acquires
real-time data sent out by up to 12 individual cardiac monitors and displays all data on the
Mac’s screen. The acquired data are also continually saved to disk for documentation purposes.
As you can imagine, such a record must be complete and uninterrupted.

I have been successful in working around most of the restrictions of the MacOS for our
application. Since many of those restrictions and solutions are not specific to our application,
I've built an example program as an illustration for this paper. The program is built in
CodeWarrior 12 (or Pro 1, as it has been renamed) C++ with PowerPlant, as is our application.
For performance considerations, CB only runs on the PowerPC; there is no 68K version.

The example program included with this paper, as well as the relevant classes, is called
“Hydra”, after the many-headed monster of Greek mythology. Recall that the mythological
Hydra grew two more heads for every one that was cut off! Fortunately, such recursive growth
didn’t happen in our case. Hydra also is a PowerPC-only program to avoid cluttering up the
example code. However, all solutions presented here are workable on the 68K too. Porting
Hydra to the 68K environment is left as an exercise for the student [: -)].

I'm assuming that you have some experience with coding applications using PowerPlant in the
CodeWarrior environment. But even if you’re just beginning to program on the Macintosh you
will hopefully get some insight into what is going on.

On Having Two (or More) Heads 59

The Problem

Suppose you have several sources sending in data to your application. They might be serial
ports, as in CB, our original case, or data streams coming in over the Internet, or they might be
simply simulation processes, as in the Hydra Example application. If you’re building a game,
you might have only low-volume data input from a joystick, but you will have several
simulation processes which depend on those data. You need to read in each data stream,
massage the data, and continually display a suitable view in a window (or part of a window).
At the same time, the user may be asking you to do other things, like changing the display
format, setting and saving preferences, printing out accumulated data, and so forth or even
switching you to the background to edit a Word document or run Netscape in the foreground.
You’re not allowed to lose data or stop the display for more than a fraction of a second. What
now?

We’ll discard preemptive threads since they don’t work on the PowerPC (and even on the 68K,
they have serious restrictions on Toolbox calls, which we need for data display).
Multiprocessing is not considered for much the same reasons. By all accounts, Rhapsody’s
upcoming “Yellow Box” will make our task much easier, but “Blue Box” applications will still
be able to use the solutions detailed in this paper.

A Bit of History

The MacOS uses cooperative multitasking; that is, well-behaved applications periodically
yield CPU time to each other by calling Wi t Next Event (). In 1984, when the first Macintosh
came out, it was impossible to run more than one application at the same time. Even so, Desk
Accessories (DA’s), which in those days were very restricted mini-applications, could be run on
top of the main application. One of those DA’s was the famous “Alarm Clock”, which of course
updated itself every second and checked if its alarm had gone off.

Probably because of that single DA, System 1.0 already had a Syst enfTask() trap which was
designed to periodically yield time to DA’s. Well-behaved applications were enjoined to call
Syst enifask() “at least 60 times a second”, to quote “Inside Macintosh”. No thought was given
to preemptive multitasking, which would have implied using more complicated (and therefore
slower and code-bloating) techniques for nearly all components of the system software. Since
CPU time and memory space were at a premium, the designers had no other choice.

Preemptive multitasking might have been introduced later on, when MultiFinder was
introduced. MultiFinder, which was later to become integrated into the System, fooled
applications into thinking they were alone on the machine. First, Wi t Next Event () was
introduced to combine the methods of the old Get Next Event () and Syst enfTask() traps.
Then, every time control was yielded to another application, parts of low memory (including
trap dispatch tables) were switched for the new applications’s .

This was a way to (1) stay compatible with older programs, (2) allow new programs to become
MultiFinder-compatible with very little change, (3) most importantly, allow MultiFinder to
run on 68000 Macs. Later chips had memory-mapping hardware either installed alongside the
CPU (68020) or built-in (68030 and 68040); had they restricted MultiFinder to those machines,
this might have allowed the System to go to a preemptive model with multiple address
spaces... now finally to be delivered in Rhapsody.

On Having Two (or More) Heads 60

However, hindsight is always 100% accurate and the installed base of 68000 machines
probably was considered too large to be ignored. Let’s now try to make our real-time application
appear to work — at least from the user’s standpoint — as if the Macintosh had gone the
preemptive way instead.

Running in the Background

This problem is the worst. With cooperative multitasking you can’t be assured of getting enough
time if you're in the background, since you depend on the foreground application calling
Wi t Next Event () often enough or with a long enough wait time. If you have others in the
background they may not yield enought time to you, either.

The solution, unfortunately, is of the cut-off-the-head-to-cure-the-headache type. In CB, we
kill all other applications, including the Finder. Basically, CB scans all active processes using
CGet Next Process(), identifies the Finder and all applications (excepting itself), kills all of
them by sending them a “Quit Application” AppleEvent, and lastly, kills the Finder.

Getting Several Data Streams at Once
There are three main approaches to the problem of simultaneous data streams.

The first approach shows up in some games, which use asynchronous PBReadAsync()’s to
acquire data. Every completion routine immediately starts off another PBReadAsync(),
pushes the data into a first-in first-out (FIFO) queue and posts a custom event to the OS Event
Queue. You can’t allocate memory or display something in the completion routine, so you have
to postpone processing to the main event loop. The main event loop eventually gets the event (as
well as user interface events) and pulls the data off the FIFO to process it.

There are some possible problems with this approach. All your data-handling is serialized;
you process one block of data at a time. In effect, you are multiplexing your several data streams
into a single stream, and just adding some info to each block or packet, so that you can tell
which stream this information comes from. This works if you don’t have to do much
postprocessing for display, or if you have to consolidate those streams anyway before
displaying them. However you may have to demultiplex your data stream again, if (for
instance) each one is displayed in a different window; you end up having things like arrays of
pointers to windows, and so forth, which are cumbersome to manage. If your display routines are
complex or time-consuming, you can’t have several windows updating at the same time because
your application is serialized.

The second approach is the one we’ve used in CB, and which is illustrated in Hydra. You use
the Thread Manager to start up a thread for each data stream. Every thread handles and
displays its own data. You use the main thread to do user interface (Ul) processing.

There are some things to be aware of with respect to this approach — they will be explained in
due course.

The third approach is a hybrid one commonly used by Internet clients (or servers), which take
advantage of OpenTransport’s facilities to postprocess data coming in over OT endpoints. Since
those facilities use the Delayed Task Manager, you have the same limitations as the
completion routines used in the first approach. However, here you use FIFO queues to pass the

On Having Two (or More) Heads 61

data off to threads (instead of to the main event loop). We won’t discuss this approach further,
both because I've never used it myself [; -)] and because once you get data into the threads, it
reduces to the second approach.

Blocked by a Mere Mouse

Suppose you’ve adopted any of those approaches; you’ll still find everything grinding to a halt
while Ul action is going on. While the user pulls down a menu or drags something with the
mouse, all other threads stop. Worse, many Ul actions assume that no other activities are going
on; menus, for instance, save and restore whatever is below them and are absolutely sure the
screen doesn’t change while they’re pulled down. Of course, asynchronous 170 is not blocked by
the mouse... but eventually you’ll be running out of buffers to store data, and you’ll need too
much time to catch up, once the user releases the mouse!

Here too, there are several possible solutions. There are two different issues to consider here :
- You will need to give time to your threads during the Ul interaction, and in consequence,
- You will want to let the threads display data without messing up the Ul display.

If you have used PowerPlant’s application/commander classes, you know that they assume that
updating is done by just calling Ref r esh() when you change a Pane’s contents. Then the main
event loop, which is hidden from you, gets an update event and redraws the changed pane.
However, this usually introduces an undesired delay into the display process. In CB, for
instance, we have to display physiological graphs (like electrocardiograms) in as close to real-
time as possible; drawing a new chunk a few times every second is not acceptable. So you need to
update the real-time display without using update events, but still handle update events if
they’re received — when a window is uncovered, for instance.

Finally, contrary to what happens in single-threaded applications, you need more cooperation
from the main event loop, which usually runs too often. Your data-handling threads need all
the priority they can get, and they will reluctantly allow the main thread to handle events
and Ul interaction whenever absolutely necessary, but not as much as usual. For this you need to
put some additional intelligence on top of PowerPlant’s thread classes.

As it happens, taking care of all of these issues has the happy side effect of also allowing you
to interleave display of your data without having all those windows (or panes) interfering
with each other.

The Example Application and the Hydra Classes

Let’s look at the example application to illustrate our points so far. The Hydra.cp and
Hydr a. h files contain our special classes which hide nearly all of the details from the main
application. In the first place, there are Hydr aAppl i cat i on and Hydr awW ndow classes. They
are subclasses of LAppl i cat i on and LW ndow respectively, but all their special functionality
is user-transparent; there are no additional methods available. You have to be careful when
overriding their internal methods, of course; normally there will be no need to do so.

Hydr aAppl i cati on calls the necessary initialization (and, later on, termination) methods for
Hydra, besides overriding some base methods to get the needed thread behavior. It also sets up
your main thread. Hydr aW ndowtakes care of menu shielding for your real-time windows,
although you also have to do one additional call for each real-time pane.

On Having Two (or More) Heads 62

The Hydr a class contains all static routines and variables we need, most of them accessible only
by the other Hydra classes; it also serves as a stack-based state saver, as we’ll see later. See
the Hydr a. cp file for detailed explanations of the available methods; | suggest you at least
page through it before reading any further.

All this means that if you open up Hydr aExanpl e. h you will see that the only noticeable
deviations from a normal PowerPlant program are that we subclass Hydr aAppl i cati on and
Hydr aW ndowinstead of LAppl i cati on and LW ndow.

In the same way you’ll find little that’s new in the Hydr aExanpl e. cp file. This example
application reproduces, in its own way, one of my first Apple 1l programs, from way-back-when
in 1977. The Exanpl eW ndowclass simulates two different types of real-time process; one that
runs at full speed, depending only on the input data rate, and one that repeats at a set rate.
Since we don’t have a ready-made data source easily available, the first type is simulated
here by drawing colored lines as fast as possible with occasional waits, and the second type by
drawing colored rectangles every so often. To simplify things we don’t use any panes inside our
windows, but a practical example would of course draw inside some LPane subclass.

Be cautioned that, this being just an example application, very little error-checking is done;
the Hydra classes themselves should at least throw some exceptions to be usable in a real-
world application.

Each Exanpl eW ndow has its own LSi npl eThr ead process to do its processing. Here this is
simply an infinite loop calling DoUpdat e() , which updates the window according to its type.
The type is stored in the window’s pane ID and may be equal to |ines, in which case
DrawLi nes() is called repeatedly, or r ect s, which causes Dr awRect s() to be called instead.

In practice the window’s process would start up asynchronous PBReadAsync() ’s to get data,
staying suspended until data are actually available, and then displaying the results in its
parent window. Meanwhile, another PBReadAsync() would be chained and waiting for more
data. | didn’t include support methods for asynchronous resumes into the Hydra classes, but you
can use the standard LThr ead methods.

As you can see, having one thread for each data source embedded in each window (or pane)
makes housekeeping very easy since you don’t need to worry about matching up your windows,
threads and data sources.

Now let's see how we keep the thread’s drawing from interfering with normal window
updating, with each other, and with menus.

Normal and Fast Window Updating

Normally in PowerPlant every time you wish to update a pane you call the pane’s Ref r esh()
method. This marks the pane’s rectangle as needing an update and generates an update event.
As soon as the main event loop gets the update event, it passes the event down the hierarchy of
views and panes until eventually the desired pane’s Dr awSel f () is called. At this time the

On Having Two (or More) Heads 63

window’s Graf Port is all set up and DrawSel f () can just call the necessary QuickDraw
methods.

PowerPlant’s pane, window and view classes take care of setting up the correct G- af Port by
calling FocusDr aw() (or one of it’s variations). LVi ewcaches the current G- af Port to avoid
some overhead and does not change the G- af Por t if it’s already selected. This speeds up cases
like when you’re redrawing a window containing several panes, for instance. And of course all
this happens as well when you uncover a window, since parts of it will need to be updated. In
this case the necessary update event is generated by the system.

We can’t use the update event mechanism for real-time display as it is too slow therefore the
thread has to draw directly to its parent window. It does this by calling FocusDr aw()
followed by Hydr a: : Shi el dMenu(nSuper Vi ew) and then doing the necessary drawing
(ShieldMenu is explained below in the menu section). But of course you also have to redraw
some or all of the window when an update occurs. The easiest way is to use a LGMr | d to hold
an image of the window (or pane) and have Dr awSel f () simply copy this image to the screen.
From the thread you can either draw directly into the LGMr | d and then call DrawSel f ()
(possibly clipping to just the updated part) or do as | did in the example, drawing the same
thing both to the screen and to the LGWr 1 d .

In your thread, if you simply call FocusDraw() and Hydra:: Shi el dMenu() to draw
something, and then yield to other threads, you won’t have any trouble. But what if your
display updating is complex and you have to yield the CPU to other threads inside
Dr awSel f () ? If the other threads also draw something (or change the current G- af Por t), this
may cause PowerPlant’s caching mechanism to fail.

You can of course walk through your program and call LVi ew: : Qut O Focus(NULL) every time
you change the Gr af Por t, or after you’ve finished with a drawing section. When using the
Hydra classes there is a more convenient way to save and restore the G- af Por t when needed :

M/Dr awi ngFen() {
Hydra saver; I/ this stores the current @ af Port
ce /1 any convenient nane wll work
::SetPort (otherPort); /1 (probably non-Power P ant G afPort)
.. EraseRect (&soneRect); // draws somet hing
}; // Hydra's destructor restores the
/1 GafPort and clears the view cache
Il if necessary

Other parts of the Hydra classes use this technique internally —when doing a thread switch,
for instance. This means simple threads never have to worry about G- af Port’s between
switches; indeed, this technique was not needed for our example program.

Handling Menus

Let’s have another look at one the drawing routines called by the example’s thread. Both
DrawLi nes() andDr awRect s() look like this:

On Having Two (or More) Heads 64

Hydra: : Shi el dMenu(this); // shields menus

/1l draws to the screen
nG/Mr | d- >Begi nDr awi ng() ;

[/l draws to the LGMrld
nG/Nr | d- >EndDr awi ng() ;

Hydra: : Sl eep(oneSecond/ 8); // yields to other tasks

}s

Why, you might ask after reading the preceding section, is it necessary to call FocusDr aw()
and Hydra:: Shi el dMenu() every time before drawing? You might think that both
Hydra:: Sleep() or Hydra::Yield() preserve the G afPort correctly, and so
FocusDr awm() would need to be called only once. That’s indeed true, but this doesn’t guarantee
your menus are protected.

Indeed the G- af Port is preserved, but its clipping region may be outdated, because of the fact
that a menu might have been pulled down (or snapped back up) while the thread was not
active. The Hydr a class implements its own LMenuBar subclass and MBar Hook procedure to
detect when a menu is pulled down and calculates the screen region hidden by the menu. Then,
when the menu snaps back up, all windows redrawn while the menu was down are updated and
the menu region is cleared. So , every time you want to draw to a Hydr aW ndow or one of its
panes, the saved menu region (if non-empty) has to be punched out from the window’s clipping
region. This enables us to draw into the window even while a menu is pulled down.

The way to do this is to call Hydr a: : Shi el dMenu() before drawing (supposing you're already
focused). The parameter to this routine must be either nSuper Vi ew (if you’re in a pane) or t hi s
(if you’re in a view or window). Hydr aW ndow: : FocusDr aw() is already overridden to do
this, but you have to do it separately for each real-time pane; either by overriding the pane’s
FocusDraw() or by explicitly calling Hydr a: : Shi el dMenu() inside its Dr awSel f () method.

Now if Hydr a: : Yi el d() is called it may yield control to the application’s main thread. As
well see later on, only the main thread checks the event queue and therefore the user interface;
if the main thread gets a click in the menu bar, it pulls the correct menu down. However, as
we’ll see later, Hydra has the Menu Manager’s loop call Hydr a: : Yi el d()! This means that,
unlike with conventional applications, your threads continue running while menus are pulled
down.

The downside of this is of course that, once Hydr a: : Sl eep() or Hydra: : Yi el d() have been
called, you can’t be sure that the menu status is still the same and your window’s clipping region
may be invalid. So be sure and call Hydra:: Shi el dMenu() again before drawing after
yielding control; you don’t need to refocus because the G af Port is saved.

An unfortunate limitation of the Hydra classes as they stand are pop-up menus. For some weird
reason the system ’s standard MDEF does not call the MBar Hook procedure when opening a pop-
up (or lower-order hierarchical) menu. Therefore you have to be careful never to open such a
menu overlapping a Hydr aW ndow. The only full solution is to install a custom MDEF for pop-up
menus; this is left as an exercise for the reader (meaning | haven’t had time for it, myself).

On Having Two (or More) Heads 65

There also is a weird bug in the standard MBDF procedure. If you pull down a menu and then drag
to an empty region of the menu bar, the menu snaps up immediately but the application is not
notified; try doing that in the example application and a “ghost” of the last menu will stay
punched out from the underlying windows. The correct thing would be for the MBDF procedure to
call the MBar Hook method with an empty rectangle, to tell us that no menu is currently pulled
down. Perhaps some volunteer will write a corrected custom MBDF (hint, hint)?

Handling the User Interface

PowerPlant suggests that events be handled inside the main thread only. This is excellent
advice the Thread Manager peers ahead into the event queue and gives scheduling priority to
the main thread if an OS Event is in the queue. If you have other threads handling events, this
can cause misscheduling, with the result that strange things may happen; mouse clicks may
appear to get lost, for instance.

Hydr a also looks ahead into the event queue to let the main thread run. As a general rule, you
should not use idlers and repeaters in a threaded application; if you need things to happen
periodically, create a thread to do that instead. Therefore the main thread can sit around idle
most of the time and should give priority to the other threads. | implemented special
Hydra:: Sl eep() and Hydra: : Yi el d() methods to take care of this; they leave the main
thread suspended and wake it up either for processing a queued event or after a certain time has
passed. This time is set by calling Set WNEFr equency() with the desired frequency; 10 Hz is
the default.

If you look at the code carefully, you will notice that the main thread just seems to loop calling
Hydra::Yiel d() instead of : : Wi t Next Event (). Actually Hydra: : Yi el d() checks if it’s
being called by the main thread; if true, it does the event handling and sets the necessary
timers to wake up the main thread again if an event is queued or the set time has passed.

A side-effect of this technique is that certain things are tied to the frequency set by
Set WNEFr equency() . This includes calling repeaters and idlers (if any), updating menus,
setting the cursor and handling help balloons. So don’t set the frequency too low (and have your
menus seem too sluggish) or too high (and lose time for your other threads). The default, 10 Hz,
seems a reasonable compromise.

Of course Hydr a: : Yi el d() has to be called inside every Ul loop that executes outside the
main event loop. In CB we installed callback procedures for menus, dialog boxes, and so forth,
but the Hydra classes simply patch ::WaitMuseUp() and Still Down() to call
Hydra::Yield() after their normal methods. Wit MuseUp() calls Still Down()
internally, so we need to be careful not to yield twice if Wai t MouseUp() is called.

If you look at the code you'll see that both patches are “head” patches, since they call the
original trap first and then execute something else. This is usually considered unsafe on the 68K
but there’s no such problem with the PowerPC. However, in this case, a head patch is
absolutely necessary; since both traps look ahead into the event queue, and Hydr a: : Yi el d()
also does, a tail patch won’t work correctly.

On Having Two (or More) Heads 66

Dragging Windows and Other Special Cases

Hydr aW ndow handles window dragging with no problems. As we’ll see later on,
Hydra: :Yi el d() isimplicitly called while dragging the window, so our threads don’t stop
while a window is dragged. This would introduce complications since the window outline
(produced by : : DragGrayRgn()) would have to be adequately shielded from Hydr aW ndow
updates. Fortunately this can be avoided by dragging the whole window around, instead of just
an outline; this is a little slower but looks great. The same goes for resizing, of course.

The :: ZoonRects() and ::ZoonRegi ons() procedure are not usable, both because the
zooming outlines are immediately erased if they go over Hydr aW ndow’s, and because you don’t
get control back while zooming is going on. In CB we coded our own procedures that call
Hydr a: : Sl eep() between the zoom steps and temporarily adds the zooming regions to the
menu region. | didn’t have time to include this into the Hydra classes, however.

If you use PowerPlant’s drag-and-drop classes to drag icons and other things around, there are
two problems; the easy one is transparently handled by Hydr a. Try dragging a window picture
to the desktop and a picture clipping will appear. You’ll notice that window updating continues
while you’re dragging, and the drag outline is not overdrawn because Hydr a installs a custom
tracking procedure to take care of it. This would not be necessary if the Drag Manager called
::Still Down(), like everybody else, instead of : : But t on() ; oh well.

But try dragging the mouse entirely out of the application’s windows and updating will stop.
This is due to the way the Drag Manager works; if you drag onto another application’s windows
you get switched out and your drag callback doesn’t get called anymore. There are three ways
around that : (1) kill all other applications, as we’ve done in CB; (2) cover all the screen with
your windows; (3) pester Apple to fix the Drag Manager to call :: Still Down() instead
of: : Butt on() after first switching your application back in.

If you use LDialogBox or other PowerPlant window classes that are handled and updated by
the main thread, you need not subclass Hydr aW ndow, as the usual update mechanism works
OK — unless you plan on dragging or resizing them, of course. No menu shielding is necessary,
either. In the example application, the “About” box is handled that way. Needless to say, you
never should call : : Al ert () and its derivatives, since those have their own internal event
loops and you won’t get control back until the alert is closed.

Help Balloons are a special case. If you set your help resources to draw help balloons as
windows, instead of saving the screen underneath, as menus do, the balloon’s window
automatically shields your Hydr aW ndow's — although, in the current implementation, the
update region isn’t always generated correctly, and you may sometimes see balloon-shaped
holes in your windows; sometimes just the balloon’s tip is not updated. Unfortunately there
seems to be no way around this bug.

The main Help Balloon problem lies with balloons drawn by : : HVBhowivenuBal | oon() . This
procedure never generates balloon windows and therefore those balloons will be overdrawn if
they overlap HydraW ndows . Unfortunately the standard MDEF procedure calls
: : HvBhowiMenuBal | oon(), so you’ll have the strange situation that balloons for menu titles
work correctly, but balloons for menu items don’t. Again, coding a custom NMDEF (or patching
. : HvBhowivenuBal | oon()) would solve this problem.

On Having Two (or More) Heads 67

Floppy disks and LocalTalk networks both have the nasty habit of disabling interrupts and
hogging the CPU much more than you would think. Avoid them like the plague! Ethernet will
probably work OK, although I’'ve done no real-world testing.

Printing — the Final Frontier

Sadly, printing while acquiring real-time data is still a serious, unsolved problem. Once you get
into the printing routines they assume full control and you can’t do much to keep your threads
going. Large read buffers are a must but even so | found that printing to an ink jet often tied up
everything for over a minute.

This should theoretically be somewhat eased by calling Hydra: : Yi el d() inside your print
item hook procedure (pointed at by pl t enPr oc in your TPPr DI gRef), but usually printers just
don’t call this procedure often enough to make any practical difference. I tried it with an HP
ink jet, and the procedure was never called during imaging and only every couple of seconds
during data transmission. And if you have background printing turned on, you also get the extra
performance hit from the extra background task.

For CB we had to resort to the somewhat desperate measure of writing our own printer driver.
Since we, fortunately, needed only to dump single graphics pages to a bundled ink jet printer,
this wasn’t too great a hardship — we simply used the common PCL-3 printer language, and
that’s general enough for our needs. If you absolutely need to print from your application, this
may be only way for you to manage it. Patching into the serial drivers to call Hydr a: : Yi el d()
periodically might work too; we plan to investigate this possibility later on.

Final Words

As you saw, it is possible to display real-time data in a threaded application if you are aware
of the problem areas. | hope this paper showed you a viable solution to the problems discussed.
Study the enclosed source code for more details and please send me your comments, critiques and
—hopefully — better or more complete solutions.

You may use the Hydra classes in your application at no cost; however, the application’s
“About” box should clearly state “Hydra classes are Copyright ©1997 by Rainer Brockerhoff”.
I’d also appreciate getting a demo copy of your application. Be warned, however, that those
classes were pulled together from all over CB for the example application and were not
submitted to industrial-strength testing. All such use is at your own risk.

Many thanks to Dave Johnson of Apple Computer for alerting me to MacHack, to Christopher
Haupt, Bill Worzel and the other folks at MacHack for the opportunity to publish this paper,
and to H4j Ross for reviewing an early version and helping me with some of the fine points of
technical English. Any remaining errors and inaccuracies are, of course, my own. An
indispensable tool for debugging all this was Alessandro Levi Montalcini’s “MenuBall” control
panel; grazie tante, Alessandro! Every serious real-time programmer should get a copy.

On Having Two (or More) Heads 68

Implementing Threaded 10 on the Mac OS

© 1997 by Jonathan "Wolfie" Rentzsch
jonathan@u-s-x.com

Abstract

This paper explains input/output (I0) on the Mac OS. After detailing the two
IO models, the paper provides an explanation of how two match the Thread
Manager with Mac OS 10 with three examples. This paper finally introduces a
new method along with the code behind it.

Introduction

Casey would waltz with the strawberry blonde

And the band played on
He'd glide ‘cross the floor with the girl he adored

And the band played on

But his brain was so loaded it nearly exploded

The poor girl was filled with alarm

He married the girl with the strawberry curls

And the band played on

You've heard about the Thread Manager, the Mac OS's implementation of cooperative
threading. You've read the develop articles. You've downloaded Inside Macintosh:Threads.
You've seen the sample code. Now you want to build software to take advantage of this
technology.

Threading really shines when your software spins off a lengthy task and returns control to the
user immediately. Instead of having to wait for your software to complete the command, your
user is free to continue working.

One of the main bottlenecks that software faces isn't computational speed, it's input/output
(10) speed. Since 10 tends to take so long, it's an ideal candidate for threading.

In this paper I'll cover:
* What 10 means
* The Mac OS's IO programming interface with examples
< How to match the Thread Manager with Mac OS 10

= The window of death (PG-13 — may be unsuitable for developers under 13 years of
age)
= How to effectively couple 10 with the Thread Manager

Implementing Threaded 10 on the MacOS 69

10 Overview

10 is by definition the act of moving data from an 10 device to RAM (input) or from RAM to an
10 device (output). Input also goes by the less formal name "read"” while output goes by "write."

Common examples of 10 devices are:
= SCSI devices like hard drives, scanners and CD-ROM drives
= Serial devices like modems, printers and other Macs
< ADB devices like mice and keyboards

So your hard drive, modem and keyboard all work towards the same noble goal of blasting bits
to and from RAM. Humbling, isn't it?

The Mac OS 10 Programming Interface

All this hardware stuff is fine and dandy, you say, but I'm a software guy. How do | code this
stuff? I'm glad you asked, otherwise this paper would be rather short.

Like most other operating systems, the Mac OS divvies up the task of managing 10 devices.
Sitting right above the hardware are chunks of code called drivers. Their job is to provide a
software interface for the hardware. By abstracting the hardware through drivers, you don't
have a bunch of software touching the hardware willy-nilly — all access goes through one
channel. If the hardware changes, only the driver needs to be rewritten.

In order to manage these drivers and the devices they control, Apple devised the Device
Manager. Your application uses the Device Manager to handle IO — you rarely talk to drivers
directly.

Figure 1: The Layering of the MacOS 10 Programming Interface

To understand Mac OS 10 is to understand the Device Manager. Fortunately, 10 isn't a complex
topic, and neither is the Device Manager. In fact, the entire Device Manager programming
interface is just a few variations on seven basic commands: Open, Close, Read, Write, Control,
Status and KilllO.

Implementing Threaded 10 on the MacOS 70

The Open command is used to open a connection to a driver. To be nice, make sure you call Close
when you're done using the device.

The Read command is used to move data from the device into RAM. The Write command is used
to move data from RAM to the device. These are the meat of the Mac OS 10 programming
interface.

Control is used when issuing command not directly related to pumping data. Changing a serial
port's speed, for example.

Status is the flip side of Control, you can use it to get a serial port's speed.
KilllO has a special purpose that we'll get into momentarily.

To execute an 10 action, you create an 1O job. A job is simply a description you pass to the Device
Manager of the 10 task you'd like accomplished. Some information included in an 10 job are the
source of the data to transfer, the destination and the size of the transfer.

There are two models for executing 10 jobs: synchronous and asynchronous. In a nutshell, the
synchronous model is easy to code but locks up your Macintosh until the 10 job completes. The
asynchronous model is more difficult to code but doesn't lock up your Macintosh until the 10 job
completes.

Fortunately, when you combine an asynchronous model with the Thread Manager, you get a new
model, threaded 10. Threaded IO combines the synchronous model's ease of use with the
asynchronous model's parallelism. A worthy goal indeed.

The Synchronous Model

The synchronous model for executing 10 jobs is easy to code. Each of the Device Manager
commands (Open, Close, Read, Write, Control, Status and KilllO) are represented by one
function call.

It could scarcely be easier to use the synchronous model — the 10 job is specified in the
parameters of each function. Let's look at the function prototypes:

CBEr r penDri ver (Const Str255Par am nane, short *drvrRef Num);

CBErr Q oseDriver(short refNum);
CBEr r FSRead(short refNum long *count, void *buffPtr);

CsErr FSWite(short refNum long *count, const void *buffPtr);
CBErr Control (short refNum short csCode, const void *csParanPtr);

CsErr Status(short ref Num short csCode, void *csParanPtr);
CsErr KilllQ short refNum);

Everything seems in order here. When you want to use a driver, you call OpenbDri ver ()
specifying the name the the driver in question. If all goes well, you get a reference number

Implementing Threaded 10 on the MacOS 71

passed back in dr vr Ref Num A reference number is a unique ID you use when referring to an open
driver. Notice every other function takes a variable named r ef Num

Once you're done with the driver, call G oseDri ver () with the aforementioned reference
number that OpenDri ver () gave you.

You use FSRead() to read. You pass it the omnipresent reference number, the size of the job
(count) and where in RAM to put the read data (buf f Pt r).

FSWite() isjustlike FSRead() exceptbuf f Pt r now points where to get the data to write out
instead of where to put the data.

When you want to pass a Control message to a driver, you call Control () with constant in
csCode that maps to the message you're passing. For example, the change serial speed message
constant is 13 (ser dSet Baud), so we'd set csCode to 13 to change the serial port's speed.

The csPar anPt r argument for Cont r ol () is where you stick the information relevant to the
Control message. In the serial speed scenario, we'd set csPar anPt r to point to a short that
tells that Serial Driver what speed to set the port.

Status() isControl ()'s mirror twin. Use it to get information from the driver. csCode and
csPar anPt r work the same way as with Cont r ol () except the information is now outgoing
instead of incoming.

KilllO() deals with asynchronous 10 — we'll talk about it then.

A Synchronous 10 Example

To illustrate the various models (synchronous, asynchronous, threaded), we'll code the same
simple task to each model. The simple task is to write the 4 byte string ATZ\ r to the modem
port. For those of you who don't know, ATZ\ r is the modem reset command in the Hayes' AT
command set. Assuming a modem is attached to the modem port, the modem will reset itself.

Before we get into the code, let me note a Serial Driver quirk. Each serial port is controlled not
by one but by two separate drivers: an input driver and an output driver.This separation is a
work-around for a Device Manager constraint.

There's a few things to remember. One, the output driver is the dominant driver. Open it first,
close it last, send all Write, Control and Status commands to it. Two, the Read command should
only be directed to the input driver. Three, only the still-mysterious KilllO command can be
directed to both the input and output drivers.

Here's a function that uses the synchronous model to execute our sample 10 job:

Implementing Threaded 10 on the MacOS 72

CsErr Synchr onousMdenReset ()

{
Str255 resetQmd = "\pATZA\r";
short i nRef Num = 0, out Ref Num = O;
| ong count = resetOd[O];
CBErr err;

/* Attenpt to open the nodemserial port */
err = penDriver("\p.AQut", &outRefNum);
if(terr)

err = penDriver("\p.Aln", & nRef Num);

/* Wite the nodemreset command using the synchronous nodel */
if(lerr)
err = FSWite(outRef Num &count, resetOd + 1);

/* Call the test function */
if(terr)
Foo();

/* If we successfully opened the modem serial port, close it now */
if(inRefNum) {

(void) A oseDriver(inRefNum);

i nRef Num = 0O;

}
if(outRefNum) {

(void) A oseDriver(outRefNum);
out Ref Num = 0;

}

return(err);

First we initialize five variables: reset Cnd, i nRef Num out Ref Num count and err.
r eset Cd holds a Pascal string containing the ATZ\r command. i nRef Numand out Ref Num
will hold the input driver's reference number and output driver's reference number,
respectively. Until then, we initially set them to zero. We do this to mark the reference number
as invalid. Bad things happen if we attempt to use an invalid reference number. count holds
the size of the 10 job. Finally, er r holds the error code.

First we open the output driver and snatch its reference number. If that works, then we open the
input driver.

If we are able to open both drivers then we write the modem reset command string out the
modem port. Foo() will then be called once FSW i t e() successfully returns.

We're all done here, now we make sure the input reference number is valid before charging off to
close the driver. We ignore the error code returned by Cl oseDri ver (), because there's nothing
we could do about it if it failed.

Note we invalidate i nRef Numby setting it to zero after we're done with it. This is a good
precautionary measure to take. We then close the driver with the out Ref Num reference
number.

Implementing Threaded 10 on the MacOS 73

Synchronous 10 Drawbacks

Synchronous 10 has two drawbacks. Your computer is effectively frozen while the 10 job
completes. Interrupts are still handled, however anything depending on Wi t Next Event () is
cut off. It's as if one process is hogging the processor. This is a bad thing.

The second drawback stems from the first: there's no way of handling timeouts. Our modem
reset command is a good example. What if the modem isn't connected to the modem port when
we synchronously write ATZ\ r to it? We wait forever for the 10 job to complete — hanging the
computer. Unfortunately the only way to discover if something is plugged in is to blindly write
to the port.

The way out of this is to write our modem reset command and wait maybe 7 seconds. If we didn't
execute our 10 job by then, it's an indicator that nothing is attached to the serial port.

The Asynchronous Model

The asynchronous model is a low-level programming interface — you have to do extra work to
use it, but it's more flexible.

Whereas you specify your 10 job in the synchronous model's function parameters, you specify
your 10 job in parameter blocks when using the asynchronous model. A parameter block is
simply a struct. When calling a function that uses a parameter block, you pass along a
parameter block's address as the argument.

Specifying 10 jobs in a parameters block is complex and error-prone, but you gain three
advantages. First, when dealing with this many parameters, it's difficult to fit them all into a
function's argument list. Second, it's easy to extend the structure to add your own fields. Third,
and most important, by giving the parameter block its own chunk of memory, you can make it
gueueable.

Let me clear up that last statement. The Mac OS has a set of utilities named the Queue
utilities. The Queue utilities are functions that maintain linked lists. A linked list with a
little extra information tied to it is called a queue.

Each driver has a jobqueue associated with it. A job queue is a linked list of parameter blocks.
When you execute an 10 job asynchronously, the Device Manager places the parameter block at
the end of that driver's job queue instead of executing it immediately (like the synchronous
model does). The Device Manager immediately returns control to your software.

Using interrupts, the driver completes the 10 jobs in its job queue. Seemingly in parallel your 10
job completes and is retired.

Now is a good time to fill you in on KilllO. Since you are given back control immediately after
executing an asynchronous IO job, you may find yourself wanting to stop an 1O job thats pending
or currently executing. That's what KilllO does — it removes each pending 10 job from the job
gueue and halts the current job. It's great for stopping run away 10 jobs like our modem reset
command string.

Implementing Threaded 10 on the MacOS 74

Here's the asynchronous programming interface's function prototypes:

CsErr PBOpenAsync(ParnBl kPtr paranBl ock);
CBErr PBA oseAsync(ParnBl kPtr paranBl ock);

CsErr PBReadAsync(ParnBl kPtr paranmBl ock);
CBEr r PBWi t eAsync(ParnBl kPtr paranBl ock);

CsErr PBCont r ol Async(ParnBl kPtr paranBl ock);
CsErr PBSt at usAsync(ParnBl kPt r paranBl ock);

CsErr PBKi | | | QAsync(ParnBl kPtr paranBl ock);
The basic commands are all here: Open, Close, Read, Write, Control, Status and KilllO.

Drivers can't be opened, closed or killed asynchronously, so that just leaves us with
PBReadAsync(),PBWiteAsync(), PBControl Async() andPBSt at usAsync() .

All the functions take the same argument type: Par nBl kPt r . Inside Macintosh:Devices tells us
that Par Bl kPt r is a pointer to a Par anBl ockRec union:

uni on Par anBl ockRec {

| CPar am i oPar am

Fi | ePar am fil eParam
Vol unePar am vol unePar am
Ot rl Param cntrl Param

Sl ot DevPar am sl ot DevPar am
Mul ti DevPar am nmul ti DevPar am

}s

The various fields are used for different purposes depending on what drivers you're working
with. i oPar amis for transport drivers like the Serial Driver. fi | ePar amis used for the File
Manager. vol umePar amis used for managing storage volumes like floppies, hard drives, CDs,
etc. cntrl Paramis used for controlling drivers themselves. We're most interested in the
i oPar amfield and thus the | OPar amstructure:

Implementing Threaded 10 on the MacOS 75

struct | CParam {

E enPtr gLi nk;

short qType;

short i oTr ap;

Ptr i oOndAddr ;

| QConpl et i onUPP i oConpl eti on;
CBErr i oResul t;
StringPtr i oNanePtr;
short i oVRef Num
short i oRef Num
SInt8 i oVer sNum
SInt8 i oPer nssn;
Ptr i OM sc;

Ptr i oBuf fer;

| ong i oReqCount ;
| ong i oAct Count ;
short i oPosMbde;

| ong i oPosIf f set ;

The first two fields, qLi nk and qType, are used by the Queue Manager. The next two fields,

i oTr ap and i oCndAddr, are used internally by the Device Manager. | wouldn't mess with
them.

i oConpl eti on is an important field. When the 10 job is completed, the Device Manager calls
the function pointer in i oConpl et i on if the field is not nil. The user-supplied function to be
called when the job is completed is called a completion routine. Completion routines may be
executed at interrupt time and are subject to interrupt time code restrictions such as they can't
use the Memory Manager, handles, QuickDraw, etc.

When the parameter block is successfully placed into the job queue, the i oResul t field is set to
1. When the 10 job is completed, i oResul t holds either 0 (noErr) or a negative error code. You
can use this knowledge to test if an 10 job is completed. If i oResul t is less than 1, the 10 job is
finished.

We can safely ignore i oNanmePt r, i oVRef Num i oVer sNum i oPer mssn and i oM sc for now.
Read Inside Macintosh:Devices for these details.

i oRef Numholds the much ballyhooed driver reference number. i oBuf f er points to the place
to put the data if reading or the place to get the data if writing. You fill in i oReqCount with
the transfer size you'd like — i oAct Count tells you what you actually have. Finally, you set
i oPosMbde to the positioning mode (from the start, from the end, from the mark, etc) and
i oPosOF f set is where to find the data when reading or where to place the data when
writing.

Implementing Threaded 10 on the MacOS 76

An Asynchronous 10 Example
Now we'll code the modem reset command using the asynchronous model.

CsErr Asynchr onousMdenReset ()
{
St r 255 reset O
short i nRef Num
Par anBl ockRec pb;
CeErr err;

"\ pATZ\r";
0, out RefNum = 0;

/* Attenpt to open the nodemserial port */
err = penDriver("\p. AQut", &outRefNum);
if(lerr)

err = penDriver("\p.Aln", & nRefNum);

/* Wite the nodemreset command using the asynchronous nodel */
if(terr) {

pb. i oParami oConpl etion = nil;

pb. i oPar am i oRef Num = out Ref Num

pb.ioParamioBuffer = (Ptr) resetOnd + 1;

pb. i oParam i oReqCount = resetOnd[O];

pb. i oParam i oPosMbde = fsFronBtart;

pb. i oParami oPosCi fset = 0;

err = PBWiteAsync(&pb;);

/* Call the test function */
if(terr)
Foo();

/* Wait until the asynchronous job conpl etes */
if(lterr)
whi | e(pb.ioParamioResult > noErr) {}

/* If we successfully opened the nodemserial port, close it now */
if(inRefNum) {

(void) A oseDriver(inRefNum);

i nRef Num = 0O;

i f(outRefNum) {
(void) doseDriver(outRefNum);
out Ref Num = 0;

}

return(err);

The driver opening code and driver closing code is directly swiped from
Synchr onousMbdenReset () . We introduce the parameter block here, pb. We initialize a
total of six fields in the parameter block before calling PBW i t eAsync() .

Unlike with Synchr onousMbdenReset (), Foo() will now possibly be called before the 10
job is completed. If we wanted to make sure the 10 job is finished before calling Foo() , we could
move it after the whi | e loop.

Implementing Threaded 10 on the MacOS 77

Speaking of which, the while loop takes advantage of the state of i oResul t to determine if
the 10 job is done yet. It does nothing while waiting, but you could easily slip some code in that
does some work.

Enter the Thread Manager

While you're waiting for 10 to complete, you'd like to get some other work done. Apple
answered our desires to have a general task sharing mechanism by creating the Thread
Manager.

Asynchronous 10 and the Thread Manager sound like they go together like peanut butter and
chocolate. Imagine you spawn a download thread. While your download thread waits for the
slow modem, it gives time to other threads.

The Ideal Threaded 10 Model

Ideally, you'd only need to add two lines of code to enable your asynchronous 10 code take
advantage of the Thread Manager.

CSEr r | deal Thr eadedModenRReset ()
{
Str 255 resetO = "\ pATATr";
short i nRef Num = 0, out Ref Num = O;
Par anBl ockRec pb;
CBErr err;
/* Attenpt to open the nodemserial port */

err = penDriver("\p.AQut", &outRefNum);
if(terr)
err = penDriver("\p.Aln", & nRef Num);

/* Wite the nodemreset command using the asynchronous nodel */
if(lerr) {
pb. i oParam i oConpl eti on = Newl OConpl eti onProc(WakeUpConpl eti onRoutine);
pb. i oPar am i oRef Num = out Ref Num
pb.ioParamioBuffer = (Ptr) resetOnd + 1;
pb. i oParami oReqCount = resetQm[0];
pb. i oParam i oPosMde = fsFronftart;
pb. i oParamioPosCf fset = 0;

err = PBWiteAsync(&pb;);

/* Sl eep until WakeUpConpl eti onRoutine fires and wakes us up */
if(lerr)
Set ThreadSt at e(kQurrent Threadl D, kSt oppedThr eadSt at e, kNoThreadl D);

/* Call the test function */
if(terr)
Foo();

/* If we successfully opened the modem serial port, close it now */
if(inRefNum) {

(void) A oseDriver(inRefNum);

i nRef Num = 0O;

Implementing Threaded 10 on the MacOS 78

}

if(outRefNum) {
(void) A oseDriver(outRefNum);
out Ref Num = 0;

}

return(err);

}

Wouldn't be great if after you execute the asynchronous PBW i t eAsync(), you could stop the
thread and depend on the completion routine to reawaken the thread?

It would be nice — but you can't.

The Window of Death

Between when you call PBWrite() and you call SetThreadState(), the 10 job can and will
complete, executing our 1O job.

Ideally, the execution path taken is like this:
= Asynchronously Write (PBWite())
= Stop the thread (Set ThreadSt at e())
= Completion routine fires, readies the thread

However, this path of execution is possible
= Asynchronously Write (PBWite())
= Completion routine fires, attempts to ready the currently ready thread
= Stop the thread (Set ThreadSt at e())

Your thread is stopped and will never be readied. Your thread is dead!

develop's Coping Mechanism

develop, Apple's Technical Journal, had an article on the Thread Manager. They advocated a
dual thread solution.

There's two threads per 10 job: the 10 thread and the waker thread. Here's its execution path:
= The 10 thread stops the waker thread
= The 10 thread executes the 10 job and stops itself
= The completion routine readies the waker thread, which is in a known stopped state
= The waker thread readies the 10 thread

This is a poor work-around. You have to manage two threads per 10 job and the scheduling
overhead is too great.

Implementing Threaded 10 on the MacOS 79

PowerPlant's Coping Mechanism
PowerPlant, Metrowerk's C++ framework, defers the completion routine.

PowerPlant uses the ideal threaded 10 model with a twist. Instead of the completion routine
blindly attempting to ready the thread, it checks to see if the thread is really stopped. If it's
not, then PowerPlant sets a Time Manager task to execute 100 microseconds in the future.
Hopefully by then the thread will be stopped.

This is a good work-around, however it complicates the completion routine.

The Polling Coping Mechanism

With the polling coping mechanism, the thread is never stopped. After executing the 10 job,
the thread simply pollsi oResul t until it's less than one, yielding all the while.

Surprisingly, due to the scheduling overhead, this method is as fast as PowerPlant's and
doesn't require a completion routine. This is the best work-around. However, it is still a work-
around and polling is inelegant — we want a solution.

Problems with the Coping Mechanism

By now you realize that the Thread Manager wasn't designed with 10 in mind. We should be
able to use the ideal thread model.

The latency of the work-arounds is too high. Imagine your application has 25 threads running.
The 10 thread executes an 10 job and yields. Even if the 10 job completes immediately, the 10
thread will have to wait behind the 24 other threads before it runs again. And one of those
threads is your event loop, which may switch out your application.

Extending the Thread Manager for Effective Threaded 10

Metaphysical question: what does it mean to stop a thread?

The Thread Manager thinks it means to mark a thread as ineligible for scheduling and
schedule another thread.

My solution: Write a function that marks a thread as ineligible for scheduling but doesn't
reschedule. This would put a thread into a known state before executing the 10 job.

However, latency would still be high. When the 10 job is completed we'd like our thread to be
first in line. We'll also add the ability to mark a thread as "priority."

That's great! How do we do it?

Implementing Threaded 10 on the MacOS 80

Creating a Thread Queue

The Thread Manager provides a hook where you can install your own scheduler. However, the
Thread Manager's data structures are completely opaque — there's no "thread queue" to access
from our scheduler. You can't even access a reference constant given a Thr eadl D!

Even if we did install a custom scheduler, we wouldn't know what to schedule!

However there is a way — create and maintain your own thread queue. The Thread Manager
provides three hooks meant for debugging: Debugger Noti f yNewThr ead(),
Debugger Not i f yDi sposeThr ead() and Debugger Not i f ySchedul er (). We'll plug into
these hooks to maintain three thread queues: an ineligible queue, an eligible queue and a
priority queue.

Maintaining the Thread Queues

When our Debugger Not i f yNewThr ead() hook is called, we'll add an element to the eligible
gueue with the new thread's ID.

When our Debugger Not i f yDi sposeThr ead() hook is called, we'll search our queues to find
the element with a matching thread ID and remove it.

Finally, when our Debugger Not i f ySchedul er () hook is called, we'll look at our priority
gueue. If there's a priority thread waiting we'll move it to the eligible queue and schedule it.
Priority status should be fleeting — otherwise it will hog the processor. If there isn't a priority
thread waiting, we'll just schedule the next thread in the eligible queue.

The Thread Queue Code

I've defined the XThreadElem structure to hold individual thread elements:

struct XThr eadEl em {

XThr eadH enft r next ;
XThr eadQueuePt r queue;
Thr eadl D t hreadl D,

}s

next points to the next element in the queue. queue points to this element's owner while
t hr eadl D holds (surprise!) the element's thread ID.

We'll store all three queues (ineligible, eligible and priority) in one handle as an array of
XThreadElem structures. We'll use the standard Mac OS Queue Utilities to manage them.
We'll keep the handle locked because the Thread Queue routine will be called at interrupt
time.

Now we need a queue header. A queue header stores important information like the first
element in the queue and the last element:

Implementing Threaded 10 on the MacOS 81

struct XThreadQueue {
short type;
XThr eadEl enft r head;
XThr eadH enft r tail;
XThr eadEl enftr mar k;

}s

The t ype field is there for Queue Utilities compatibility — we don't use it. The mar k field
points to the next thread to schedule.

I can't reprint all the Thread Queue code here — look at the included code if you're interested.

The Extended Thread Manager Programming Interface
In all, | define three extended Thread Manager calls:

CBEr r I ni t XThr eads();
XThr eadSt at e Get XThreadState(Threadl D threadl D);
CsErr Set XThreadStat e(Threadl D threadl D, XThreadState state);

Call I ni t XThr eads() once before calling any of the other extended Thread Manager calls. It
allocates XThr eadEl emarray and installs the Thread Manager debugging callbacks.

GetXThreadState() works like the Thread Manager's GetThreadState() except returns one of
three constants:

enum {
kXThreadl neligible = 0,
kXThr eadHl i gi bl e,
kXThreadPriority

}s

SetXThreadState() works like the Thread Manager's SetThreadState() except it takes the
extended Thread Manager constants and doesn't reschedule.

The Threaded 10 Programming Interface

Now is when the rubber meets the road. We've extended the Thread Manager cleanly. Now we
want to merge synchronous 10 with the extended Thread Manager to give us easy-to-code high-
performance 10.

Witness two new functions:

CsErr ThreadedRead(short refNum void *buffer, long *size, long offset, 1long
patience);
CsErr ThreadedWite(short refNum void *buffer, long *size, long offset, 1ong
patience);

Thr eadedRead() and ThreadedWite() are descendants of FSRead() and FSWite().
They're more powerful, so follow along.

Implementing Threaded 10 on the MacOS 82

r ef Numis the standard reference number, buf f er points to where to get the data or put the
data. Set si ze to the size of the 10 job — after the 1O job is done si ze will be set to the actual
number of bytes transferred. You specify where you want to read from or write to in of f set.
Finally, specify how long you're willing to wait in milliseconds in pati ence. One thousand
milliseconds is equal to one second.

Enjoy!

All the code is included with this paper, hunt around and enjoy. I'm storing this paper at my
web site and will continue to update it and the code. You can find it at: <http://www.u-s-
x.com/wolfie/rants/andthebandplayedon.html>.

Bibliography
Apple Computer. Inside Macintosh:Devices. Addison Wesley, Reading, Massachusetts. 1994.

Implementing Threaded 10 on the MacOS 83

