Appearance 1.0

Technical Documentation

Do not distribute—A pple Confidential 1

Overview
This document describes the toolbox enhancements for Mac OS 8.

Goals

The main goals of these enhancementsisto lay the foundation for switchable theme, try to
bring back a consistent interface, and make it much easier to write programs for the Mac OS.
We will accomplish these goals by doing the following:

* provide many new control types previously unavailable on the MacOS,
such as dliders, tabs, and group boxes.

» alow applications to adopt these new controls so they will be theme
savvy automatically when theme switching is available.

e provide enough functionality to make it no longer necessary for devel-
opersto create their own defprocs, etc. Thisallows us to avoid a patch-
work appearance when running under themes.

* provide aricher environment for controls to alow multicolored back-
grounds, embedding, and correct drawing order and hit testing.

Deployment

Extension
Appearance 1.0 is delivered as a system extension.

Appearance APIs
APIsmentioned in this document are delivered as classic 68K trap-based routines, CFM-68K

routines, and CFM-PPC routines.

System-Wide Appearance

Appearanceis by default system-wide. This meansthat all applicationsthat are running auto-
matically get the grayscale look. The new defprocs introduced with Appearance have differ-
ent resource | Ds (and hence proc IDs) than the classic System 7 controls. To cause
applications to use the new Appearance defprocs, we implement a set of 'mapper’ CDEFs.
When an application asks for WDEF 0, it gets our mapper WDEF instead.

Some defprocs have a compatibility mode within them that are activated when called thru a
mapper. Any special compatibility behavior is mentioned with each defproc description be-
low.

Do not distribute—A pple Confidential 2

Compatibility Mode

For compatibility reasons, it is possible to turn off the system-wide aspect of Appearance in
the Appearance control panel. This has the effect of putting the system back into the classic
System 7 look. A restart is required for this change. When in this mode, the mappers simply
call thru to the classic defprocsin the system file, causing any request for WDEF 0 to actually
get the classic WDEF 0, as expected.

Applications that adopt the new Appearance defprocs directly and call a new routine (Regis-
terAppearanceClient) will continue to have agrayscal elook when system-wide appearanceis
off. The mappers sense clients and call thru to the new defprocsin this case. If an appearance
client adopts the Appearance defprocs directly by using the new defproc IDs, thiswill bypass
the mapper defprocs, eliminating the overhead involved in mapping the calls to the right def-
procs.

System Font Replacement

The user can change the system font from Chicago to Charcoal and back in the Appearance
control panel (the default is Charcoal). Some applications may not get along perfectly with
Charcoal (we havefound only 1 to date), so this option is made available to users so they can
adjust it to suit their needs or personal preference.

Control Manager Extensions

Control Feature Flags
The Control Manager defines bits which represents the feature set of a specific control. The
features possible are listed below:

enum

{
kCont r ol SupportsGhosti ng =1 << 0,
kCont r ol Support sEnmbeddi ng =1 << 1,
kCont r ol Support sFocus =1 << 2,
kCont rol Vant sl dl e =1 << 3,
kCont r ol Want sActi vat e = 1 << 4,
kCont r ol Handl esTr acki ng = 1 << 5,
kCont r ol Support sDat aAccess = 1 << 6,
kCont r ol HasSpeci al Backgr ound =1 << 7,
kCont r ol Get sFocusOnd i ck =1 << 8,
kCont r ol Support sCal cBest Rect =1 << 9,
kCont r ol SupportsLi veFeedback =1<<10

}s
To obtain a control's features, the GetControl Features routine is available.

New Control Messages
To provide for the extended functionality of controls, the following messages have been add-
ed:

Do not distribute—A pple Confidential 3

enum

kCont r ol MsgDr awGhost = 13,
kCont r ol MsgCal cBest Rect = 14,
kCont r ol MsgHandl eTr acki ng = 15,
kCont r ol MsgFocus = 16,
kCont r ol MsgKeyDown = 17,
kControl Msgl dl e = 18,
kCont r ol MsgGet Feat ur es = 19,
kCont r ol MsgSet Dat a = 20,
kCont r ol MsgCet Dat a = 21,
kControl MsgActi vate = 22,
kCont r ol MsgSet UpBackgr ound = 23,
kCont r ol MsgCal cVal ueFr onPos = 24,
kCont r ol MsgTest NewisgSuppor t =25

H
To send these messages to a control, anew API has been added: SendControlMessage.

Supporting the New Messages

In order to declare that you support the new features/messages, a CDEF should respond to the
kControl M sgTestNewM sgSupport by returning the constant kControl SupportsNewM essages
asthe result code of the CDEF. If a CDEF does not respond to this message, it is assume to
not know anything about the new messages.

Control Features

Asaprerequisite to most of the following, a control which wishesto support the new features
we'll be getting into should support the kControl M sgGetFeatures message. A CDEF should
return asitsresult abitfield comprised of the bits representing the features you support. These
bits are the simple OR-ing of the constants shown above. Here is an example:

in your main CDEF function sonepl ace. ..

case kControl MsgGet Feat ur es:
result = kControl SupportsDat aAccess | kControl Want sl -
dl e;
br eak;

This control would both support data access and would like to receive idle events. Both are
explained below.

Tagged Control Data

There is adefinite need to have read and write access to different attributes of a control. In
most cases, these attributes are unique to a particular control. To facilitate accessing this data
without exposing the implementation of a CDEF, there are aseries of routinesto allow you to
get and set particular piecesof informationinaCDEF. Theseroutinesarelisted in the Control
Manager Reference section below.

Do not distribute—A pple Confidential 4

To advertise that a CDEF supports data access, it should return kControl SupportsDataA ccess
asone of itsfeature bitsin response to the kControl M sgGetFeatures message. If you then call
the new GetControlData or SetControl Data routines, it will then be called with the kCon-
trolIMsgSetData and kControl M sgGetData messages with the 'param' parameter holding a
pointer to the following structure:

struct Dat aAccessRec

{
ResType tag;
Cont r ol Part Code part;
Size si ze;
Ptr dataPtr;
b

Thetag field indicates the name of the piece of datawe want, for example, we might want the
transform of abevel button'simage. The part field indicates what part of the control this ap-
pliesto, it isusually 0, meaning the entire control. For controls like tabs, it might refer to a
specific tab. The size and dataPtr generally specify a buffer and how long it is. These two
fields are used specially during the GetData messages. If the dataPtr is nil, the information
should not be copied in (obviously, | hope). Thistellsthe GetData handler that we are merely
interested in the size of the data. In all callsto GetData, the CDEF should fill in the actual size
of the datain the size field before returning.

Itistheresponsibility of the CDEF writer to return errDataNotSupported if thetag isunknown
or invalid (perhaps you don't want people to set a particular value). The CDEF returns the er-
ror code as the function result of the CDEF itself.

Here's an example of a CDEF responding to a GetData message. L et's assume that the piece
of datain question in a short integer:

somepl ace in your CDEF main. ..

case kContr ol MsgCet Dat a:
{
CSErr err;
Dat aAccessPtrptr;

ptr = (DataAccessPtr)param
if (ptr->tag == KM/W zzyDat aTag)

if (ptr->dataPtr)
(SInt16)info->dataPtr = Get -
MyW zzyDat a() ;

ptr->size = sizeof (SIntl6);
result = noErr;

}
el se
result = errDataNot Support ed;
}
br eak;

Do not distribute—A pple Confidential 5

. nore stuff here ...

/* return the result */
return result;

}

Notice how we return errDataNotSupported for an invalid tag. We also fill in the size regard-
less of whether dataPtr is nil or not. Thisisthe proper way to handle this message.

Indicator Ghosting

Scroll Bars and Sliders, while tracking the indicator, drag a ghost image of the indicator
around instead of the old dotted outline. To accomplish this, these controls return the feature
flag kControl SupportsGhosting in response to a kControl M sgGetFeatures message. When
TrackControl iscalled to track theindicator, it checksthisfeature flag and if set, callsthe con-
trol with the message kControlM sgDrawGhost, with the param parameter set to aregion han-
dleindicating where the ghost indicator should be drawn. Thisregionisacopy of theindicator
region offset by some amount, depending on where the user dragged it to.

Live Feedback

Live feedback isthe more generic term for live scrolling. Scroll bars and sliders support live
feedback thru different variants. When the right variant is chosen, these controls return the
kControl SupportsLiveFeedback bit as part of their feature bit set in response to the kCon-
trol M sgGetFeatures message.

When TrackControl is called, it checksto seeif thisfeature is supported, and that thereis an
actionProc installed (via SetControl Action). If so, it tracks the indicator, calling the CDEF
with a kControl M sgCal cV alueFromPos message whenever the user moves the mouse. The
‘param’ parameter contains a handle to the indicator region being dragged. The CDEF should
respond by recal culating its value based on the new position of the region passed in. Oncere-
calculated, the CDEF should redraw itself, making sure it draws the indicator in the position
the region passed in represents. The region should NOT be changed. It is very important to
draw exactly where the indicator is currently located, otherwise the feedback will behave im-
properly. Drawing where the region is also makes for a very smooth scrolling experience.
When the user let's go of the mouse button, you will be asked to draw again. At thistime, you
can recal culate your correct position and redraw.

Do not distribute—A pple Confidential 6

Calc Best Rectangle

In order to make group boxeswork right, it was necessary to add the ability to ask check boxes
and popups to calculate the best size so that they could be placed properly at the top of the
group box. A control advertisesthat they support the kControl M sgCal cBestRect message by
setting the right bit in their feature flags (kControl SupportsCalcBest). When called with this
message, a CDEF is passed the address of arectanglein its 'param’ parameter. A control
should calculateits best width and height and adjust the rectangle accordingly. It should mere-
ly set the bottom and right fields of the rectangle to the appropriate values. It should also re-
turn the baseline for where the text should line up based off the bottom of the rectangle
(normally negative) as the CDEF function result.

With this message, a control's rectangle can automatically be sized to just fit the check box
icon and the text, for example. Currently push buttons, check boxes and popup buttons are the
only controlsto support this message. In fact the StandardAlert routine (mentioned later) uses
thisto help autosize the push buttons in the aert.

Handle Tracking

Sometimesit isdesirableto not have the default tracking behavior that TrackControl provides.
In particular, if acontrol needs to do special tracking, such as the bevel buttons need when
displaying a menu, the only way to do thisisto hook into autoTrack. In this case, TrackCon-
trol will alwaysreturn the part code that wasinitially hit, evenif the user tracked off the menu.
Thisisoften undesirable. Also, controlslike Bevel Buttons havetoggling and sticky behavior,
where they actually modify their own values after tracking.

Toallow for this special behavior, acontrol can perform all aspects of tracking by advertising
it wishesto do so by returning kControlHandlesTracking in the attributes returned via a Get-
ControlFeatures call. With thisbit set, the control is called when TrackControl or the new rou-
tine, HandleControl Click, is called. (HandleControl Click is virtually identical to
TrackControl, only it allows modifier keysto be passed in.)

A structure of type Control TrackingRec is passed in param when the CDEF is called with the
kControlMsgHandleTracking message. The structure looks like this:

struct Control Tracki ngRec

{
Poi nt startPt;

SInt 16 nodi fi ers;
Cont r ol Acti onUPPact i on;

};

The action parameter should be called during tracking. The value of action can beavalid
procPtr, nil, or -1. -1 indicates the control should do what it wantsto if it actually has some
special autoTrack behavior it wantsto add. Most of thetime, -1 would probably betreated like
nil, meaning do nothing.

When the CDEF is done tracking, it should return the part code that was hit, or kControlNo-
Part if the user tracked off, etc. as the result code of the CDEF.

Do not distribute—A pple Confidential 7

Focus

To accommodate the needs of focusing onto a control for keyboard input, thereis anew key-
board focus messaging mechanism. A control tells the Control Manager it wants to receive
keyboard input by returning kControl SupportsFocus as part of its feature bit set. When the
control needs to be focused (which is determined by the Control Manager or some other out-
sideinfluence), the CDEF is called with akControl M sgFocus message, with param being the
part code to focus. There are some special part codes that can be passed in param:

enum

kFocusNoPart = 0,
kFocusNext Part= -1,
kFocusPrevPart= -2

|
typedef Sl nt16FocusPart;

The kFocusNoPart part code indicates the control should lose its focus. It might respond by
deactivating its text edit handle and erasing its focus ring.

The kFocusNextPart and kFocusPrevPart part codes indicate that the CDEF should advance
or reverse the focus to the next/previous sub-part. A date/time CDEF might advance to the
day or year part, for example.

Alternatively, the CDEF might be asked to focus a specific part. It isup to the CDEF to decide
how to behave in this case. Most controls only have one part and ssimply focus themselves.

In response to a focus message, the CDEF should return the part code that actually was fo-
cused. If itisout of parts, i.e. it hasrun off the end or beginning of its subparts, it should return
kFocusNoPart. It should also return kFocusNoPart if called with kFocusNoPart. Thistellsthe
focusing mechanism to jump to the next control that supports focus.

Some controls actually want the focus when clicked, while others do not. To make surea
CDEF getsthefocuswith aclick, it needsto set the kControl GetsFocusOnClick feature bit in
response to akControl M sgGetFeatures message. With that bit set, if the control isclicked on,
whatever part is returned by a call to TestControl should be passed in as the part code for fo-
cusing.

Idle Processing

A CDEF can specify that it wantsto get idle time by OR-ing the constant kControlWantsldle
into itsfeature bits. When thisis set, it is called with the kControl M sgl dle message whenever
someone calls IdleControls on the window the control isin. The param parameter is unde-
fined. The chasing arrows and indeterminate progress indicator controls use idle time to do
their animation.

Do not distribute—A pple Confidential 8

Embedding

If acontrol isan embedder, i.e. it is designed to have other controls and widgets within its
contents, it should set the kControl SupportsEmbedding flag in response to a GetFeatures call.
Thisletsthe Control Manager know to treat the control differently. See the section on Control
Embedding below. When a CDEF is an embedder that has a background, such as a window
header, it should also support the background message, mentioned below.

Activate Events

It is often desirable for a CDEF to know that it is becoming deactivated at a high level. The
only way for a CDEF to determine such a change in state in the past wasto check the current
hilite state against a previously saved hilite state on each call to draw. The kControl M sgActi-
vate message eliminates the need to do this. When a control is going to be deactivated, itsfea
ture set is checked to see if its kControlWantsActivate bit is set. If so, it is called with the
kControl M sgA ctivate message with the value of param being either 1 or 0, with 1 indicating
the control is becoming active. The control can do any special processing it needs, such as de-
activating its TEHandle or ListHandle.

Background Color

Some controlsthat embed other controls sometimes havetheir ownfill color. Thismay or may
not be different than the current window background color. We need to make sure that any
controlsthat are drawn on top of it can erase to the correct color using EraseRect or EraseRgn.
It isvery important that these two calls work, as a control might call toolbox routines such as
TETextBox, which internally call EraseRect.

To make surethe background is always correct when drawing a control, before drawing it, the
Control Manager works its way backwards from the control to be drawn, checking to see
whether any control behind it hasits kControlHasSpecial Background feature bit isset. If itis,
the control is asked to set up its background color and/or pattern. The Control Manager saves
and restores the graphics state before and after the drawing. This way the CDEF can draw as
it dlways has, using standard routines. The CDEF should never assume, however, that the
background is aflat color and not a pattern, so it iswise to call BackPat with awhite pattern
before erasing to a specific color.

Special Font Styles

It isnow possible, thru the new data access support, to set the text style of a control. All con-
trolsthat display text have been written to support thisfeature. Thisallowsfor easier handling
of control fonts by not forcing frameworks etc. to have to use the window font variant and
constantly muck with the font of the window to make sure everything draws right. Since so
many controls support this piece of tagged data, thereisan API to actually set thisinforma
tion: SetControl FontStyle.

Do not distribute—A pple Confidential 9

Thereisalso anew resourcetype (‘dftb’) whichisautomatically read in by the Dialog M anager
to facilitate adata-driven approach to setting font information for al controlsin adialog. This
resource simply consists of an array of ControlFontStyleRecs. This resource is meant to re-
placetheictb, sincetheold control color tableinformationisignored under Appearance. Also,
ictbs don't allow font specification for controls, just edit and static text. When this new re-
source isread in, the control font styles are set, and the resource is then purged.

Control Embedding

Overview

We have introduced the concept of a containment hierarchy to the Control Manager to help
impose drawing and hit testing order based on visual containment. Standard control drawing
order isthe order of the controlsin the control list of awindow, which is backward from the
order that items are added to awindow. Thisis dueto the fact that the Control Manager adds
controls at the head of the list, creating a push-down stack of controls.

A hierarchy isavery useful method of making sure embedder controls draw before their em-
bedded content. It also ishelpful in doing an"inside-out” hit testing function to determine the
most deeply nested control that is hit by the mouse. Other advantages to this hierarchy are
helping to correctly setting up a control's background color, as mentioned in the Background
Color section above (we can easily know what's 'behind' something), and helping with key-
board focus.

Root Control

To enable embedding in awindow, awindow needsto have aroot control created for it. This
control merely servesasthetop level of the containment hierarchy for its window. No embed-
ding can take place until acall to CreateRootControl is successfully made. Once created, the
root can be retrieved by calling GetRootControl. Once aroot is created, al controls created
after that are automatically added into the root. If any controls exist prior to calling Create-
RootControl, an error isreturned and the root is not created. The root control isimplemented
as aUser Pane, one of the new CDEFs added with Appearance.

Embedding

Embedding of controlsisaccomplished by two routines, EmbedControl and AutoEmbedCon-
trol. EmbedControl tellsthe Control Manager to embed one control specifically into another.
AutoEmbedControl tellsthe Control Manager to find the most likely container for the control
based on where it is compared to what elseisin the window. If acontrol isvisually within a
group box, for example, it will be embedded in that group box automatically with AutoEm-
bedControl, provided the group box already exists (see the DITL Ordering section, below).

New routines are availableto correctly deal with the hierarchy, and classic routines have been
changed to support this new construct. Consult the API section at the end of thisdocument for
specifics.

Do not distribute—A pple Confidential 10

DITL Ordering

TheDITL ordering plays multipleroleswith an embedding hierarchy. First, it helpsdetermine
what gets embedded in what. Asitems are added to a dialog during dialog creation, controls
that exist in the window (because they've already been created), can be valid target containers
for any new controlsthat are created, provided they support embedding. It istherefore impor-
tant to control the order that things are placed in the DITL. The large, embedder controls
should be at the beginning. Smaller ones should follow. So you'd add your tab control first,
and then follow it with some radio buttons, etc. Because the tab control would be created and
already in place, the radio buttons can then be autoembedded with the tab control, aslong as
they were actually contained within it visually.

DITL ordering also affectsfocus ordering. The default focus order isthe order things are add-
ed into the hierarchy. Future versions of the toolbox will most likely support other, more vis-
ceral methods of focusing.

Latency

To properly handled embedded content, it isnecessary to have acertain latent state when deal -
ing with the enabled state and visibility of acontrol. For example, consider acontrol withina
group box. Disabling the group box disables the control as well. When the group box is reen-
abled, the controls within should reenable if they were enabled originally. If an embedded
controls was disabled, it should remain disabled.

To handle this we have introduced the concept of latency. When disabling an embedder, any
embedded content which isenabled becomes|atent, or 'pending enabled'. Thisletsthe Control
Manager know to reenable them when the embedder becomes active again. This same concept
appliesto visibility aswell. Clients should never need to know whether something islatent or
not - every thing will just seem to work.

CONTROL DEFINITIONS

Check Boxes, Radio Buttons and Push Buttons
These controls have been modified to handle drawing with the new appearance.

Thereisamechanism to specify that a push button get the default appearance, i.e. itisdrawn
with a default ring around it. This is accomplished thru the data access mechanism. The de-
fault ring is drawn outside the control rectangle.

Bevel Buttons

Bevel buttons are the most complex new control type. There are a multitude of states, along
with three different behaviors. On top of this are three different bevel size choices, and the
ability to display anicon, text, or apicture. It isalso possibleto have the button display acom-
bination of text and a graphic.

Do not distribute—A pple Confidential 11

Bevel buttons allow the caller to control the content type (pict/icon/etc.), the behavior (push-
button/toggle/sticky), and the bevel size. The caller also has the option of attaching a menu.
When amenuis present, the caller can specify which way the popup arrow isfacing (down or
right).

Thisisall made possible by overloading the Min, Max, and VVaue parametersfor the control,
aswell as adjusting the variant code. A similar approach is used in the current popup menu
control.

Parameter M eaning

Min Hi byte = Behavior; Lo byte = content type.
Max ResID for resource-based content types.
Vaue Menul D to attach; 0 = no menu, please.

The variant code is broken down into two halves. The low 2 bits control the bevel type. Bit 2
controls the popup arrow direction (if amenu is present) and bit 3 controls whether or not to
use the control's owning window's font.

The three behaviors of bevel buttons are push button, toggle, and sticky. The push button be-
havior makes bevel buttons pop back up after clicking them, just like the normal push button
control. The toggle behavior allows the buttons to toggle state automatically when clicked
(from on to off). Sticky buttons never pop up after clicking them. They stay down permanent-
ly, until the client calls SetControlVaue(0) on them. These are useful in tool palettes. All of
these behaviors are handled by the CDEF by setting itself up for self tracking wheninitialized.
The high byte of the Min parameter contains the behavior of the button.

It isalso possible to mark abutton as having multi-valued menus. This means that the button
does not maintain the menu value as it normally would (i.e. only one item can be selected at
atime). This essentially allows a user to toggle entriesin a menu and have multiple items
checked. In this mode, the GetBevel ButtonMenuV al ue routine returns the value of the menu
item last selected.

One last behavior isto offset the contents while pressed. Some people believe it givesit a
more realistic button feel.

Thefour typesof datathat can be displayed in abevel button areicon, picture, text, and Clcon.
ThelDsfor theicon/pict resource are passed in the Max parameter. The content typeis passed
in the low byte of the Min parameter. The variant code kControl UsesOwningWindowsFont-
Variant applies when text content is used.
An example call:
control = NewControl (w ndow, &bounds, "\p", true, O,

kCont ent | conSui t eRes + kBehavi or Toggl es,

nmyl conSui tel D, bevel ButtonSmal | Bevel Proc, OL);

Attaching a menu:

Do not distribute—A pple Confidential 12

control = NewControl (w ndow, &bounds, "\p", true, kMyMenul D,
kCont ent | conSui t eRes, mnyl conSui t el D,
bevel Butt onSnal | Bevel Proc + kBevel Butt onMenuOnRi ght
oL);

Thiswill attach the menu with ID kMyMenul D to the button, with the popup arrow facing
right. This also puts the menu to the right of the button.

Bevel buttons with menus actually have two values: the value of the button (on/off), and the
value of the menu. The menu value can be extracted with the routine GetBevel ButtonM enu-
Vaue.

One can mix graphics and text by selecting agraphical content type while providing a control
title.

It is possible to align and place graphic and text content in special ways. For example, text
buttons can have their text aligned to the left, right, centered, or use the current script direc-
tion. Graphic contents can be aligned likewise, but can also be aligned to the top, bottom, left,
right, and all four corners of the button. With each of these alignment options, you can specify
an offset from the particular side you are aligning the element to. For example, you can spec-
ify that the graphic be aligned to the top of the button, but allow 4 pixels of space.

Text placement can be specified aswell if you are combining text and a graphic. Y ou can
specify whether the text should go above, below, to theleft, or to theright of the graphic. This
can be combined with the graphic alignment property to create a button where the graphic and
text isleft justified with the text below the graphic. Y ou can also use a script direction place-
ment in combination with a script direction graphic alignment. This meansit is possible to
have a graphic on the left with the text to the right in | eft-to-right systems, and the graphic on
the right with the text to the left of it on right-to-left systems. All of thisis automatic.

All bevel button private datais hidden. Accessor routines get and set values.

The caller can create its own control and then set the content to an existing handle to anicon
suite, etc., using the accessors. Resource-based content is owned by the control, while handle-
based content is owned by the caller. The CDEF will not try to dispose of handle-based con-
tent.

The bevel button can return 3 possible part codes: kControlNoPart, kControl ButtonPart, and
kControlMenuPart. The most complex caseis when aMenu is attached. If the user selectsa
menu item, the part code kControlMenuPart isreturned. If the user tracks out of the menu, but
is still over the button when the mouse is released, the kControlButtonPart code is returned.
If the user tracks outside of the button and the menu, kControlNoPart is returned. The button
always returns kControlNoPart when it is disabled, asis expected.

Chasing Arrows

Chasing arrows are asmall CDEF. Animation is handled onidle, which this CDEF setsitself
up to be called with an idle message (when IdleControlsis called) by OR-ing in the kControl-
Wantsldle bit into its feature flags.

Do not distribute—A pple Confidential 13

This control’s min, max, and value parameters are reserved.

Clock

This CDEF implements either an editable or non-editable time/date field, such as can be
found in the Date & Time control panel. It isfocusable and keyboard aware. Thelittle arrows
it usesto allow manipulating a particular portion of the date or time are actually coded as part
of this control, i.e. it does not use the actual Little Arrows control. Thisis to make sure the
little arrows will never get the focus on their own when in thistype of control in the future
when generic focusing is introduced all around.

Theclock also hasa’live’ variant. With thisvariant, the clock actually ticksonidle. Y ou can
use the non-editable version to place alive clock in awindow, etc. If you combine the live
variant with the editable variant, you end up with a clock that will actually affect the system
clock. Thisiswhat the Date & Time control panel uses.

This control’s min, max, and value parameters are reserved.

Disclosure Triangle

Thisisafairly straightforward CDEF with two possible values, 0 and 1 for collapsed and ex-
panded, respectively. Thereisavariant code bit to select between right- and left-facing ver-
sions. There is also a variant which allows autotracking to take the burden off application
programmers. This control maintainsitslast value, so it knowswhat transition istaking place
when a SetControlValue is called on it (expanded to collapsed, or vice versa). A functionis
available to set the last value of the control to make sure animation is set up properly.

Editable Text Control
A CDEF implements editable text complete with theme-savvy border and focus rings.

Thiscontrol advertisesthat it should beincluded in the Dialog Manager focus chain by setting
aflag in the control's feature flags:. kControl SupportsFocus. It has two variants: the normal
variant is used in awindow (non-dialog) situation, and in this state it maintainsits own TE-
Handle. The second variant is used in dialogs, so that it shares the dialog's common text han-
dle, just like the edit text dialog primitive does. Thisisto provide maximum compatibility,
and to make surethat routineslike DIgCut, etc. still work, since they are implemented as glue
routinesin MacOS.lib. They assume the text edit handle in the dialog record is valid and up-
to-date.

This control can also have akey filter attached to it to handle filtered input. Thefilter is at-
tached via the Data Access routines.

Thereis apassword variant of this control which is script manager-savvy. The clear text of
the password can be gotten thru GetControlData. The tag is KEditTextPasswordTag.

This control’s min, max, and value parameters are reserved.

Do not distribute—A pple Confidential 14

Group Box

The primary group box is implemented as a CDEF with variants for no header, check box
header, text header, and popup header. The part code returned from TestControl or TrackCon-
trol depends on what type of header isin use. If the header is text, this always returns kCon-
trolNoPart. If it isacheck box, it will return kControlButtonPart if the check box was hit. If
itisapopup menu, it will return kControl ButtonPart if the mouse was rel eased over the button
and kControlMenuPart if an item in the menu was selected. If the user tracked completely out
of the control, kControlNoPart is returned.

Secondary group boxes are a variant with all the same options and a dlightly different group
box line look.

It isup to the caller to perform any pane-switching when using a popup title variant and the
value of the popup changes. Likewise, the caller must enable/disable contentsif using acheck
box variant. The easiest way to do thisisto simply embed all content of the group box into a
user pane.

Icon CDEF

This CDEF merely takes an ID to acicn, ICON, or icon suitein its Vaue parameter on cre-
ation and displays that icon in its contriRect. After the control isinitialized, the value param-
eter isreset to zero.

Thereisa'no track’ variant which tellsit to just return the part hit immediately and return, it
doesn't actually track the mouse in thismode. Thisis used in dialogs when the dialog has an
embedding hierarchy and wants an icon. This control is created with the no-track variant so
that it behaves like it always has.

This control’s min, max, and value parameters are reserved.

Image Well

A simple CDEF performsimaging for icons and picts. The control is controlled in much the
same way asthe bevel button, but with fewer options and states. Menus may not be attached.

Currently, it isused for display only, but future versions will support drag and drop function-
ality that an application can plug into. This control’s min, max, and value parameters are re-
served.

Little Arrows

Thissimple CDEF acts like a subset of ascroll bar, i.e., it returns the part codes kControlUp-
ButtonPart and kControl DownButtonPart. Callers use Control ActionUPPs (as with scroll
bars) to be called back during tracking. The control has a minimum, maximum and value.

Do not distribute—A pple Confidential 15

List Box

This CDEF alows clientsto put a List Box into dialogs with minimal effort. An auxiliary re-
source type ('ldes) is used to provide the information necessary to create thelist. The ID of
thisresource is passed into the Value parameter of the control when created. The Min, Max,
and Value parameters currently serve no purpose. Cursor navigation isincluded for moving
around with the arrow keys. Double-clicking an item returns a special part code to make you
aware of such an action. ThereisakeyFilter availablefor thiscontrol. Thelist handlethat the
list box creates hasits refCon filled out with the control handle of the list box control. This
allows any custom L DEFs to determine whether or not the control should be drawn active or
inactive by looking at the current state of the control. Clients should never reset thisfield to
anything else and instead use the control’ srefConfield to storedata. Thiscontrol’smin, max,
and value parameters are reserved.

Picture CDEF

This CDEF merely takesan ID to aPICT resourcein its Value parameter on creation and dis-
playsthat picturein its contrlRect. Thereisa'no track' variant which tellsit to just return the
part hitimmediately and return, it doesn't actually track the mousein thismode. Thiscontrol’s
min, max, and value parameters are reserved.

Placard
This CDEF implements a small placard control. Its value, min, and max are reserved, as afu-
ture version will allow a pushbutton variant. This control supports embedding.

Popup Button

The popup button has been revved for the new grayscale look. The older implementation
made many assumptions about the menu handle, its numbering, and itsinclusion in the menu
list, which diminished its usefulness in modeless panels and other contexts requiring closer
control of the menu handle. A special menu ID (-12345) value tells the control not to try to
create the menu handleitself, to allow for aNULL menu handle, and to insert the menuin the
menu list with aunique ID only for a short time directly around the PopupMenuSel ect call.

Setting the title width (Min) to -1 tells the popup button to auto-cal cul ate the title width.

Popup Glyph

Thisisasimple CDEF with 4 variants that draws the popup glyph. The pixel datawill be em-
bedded in the CDEF. The CDEF does no mouse tracking or hiliting and has no values. It's
min, max, and value fields are reserved.

Progress Indicator
Both determinate and indeterminate progress indicators are supported, and it is possible for
one mode to transition to the other.

Indeterminate progress is accomplished using the Data Access APIs to set the control's inde-
terminate tag. From that point forward, the control will request idle events, which is what
drives the animation. By resetting the indeterminate flag, it resumesits normal function.

Do not distribute—A pple Confidential 16

Scroll Bar
Scroll bars have been given afacelift. They also have support for ghosting its indicator, as
well aslive scrolling.

Separator Line

A simple CDEF draws separator lines. Orientation of the bounding rectangle will determine
the orientation of theling, i.e. if the bounding rect is more horizontal than vertical the hori-
zontal line will be drawn. (Scroll bars currently do this as well). The CDEF does no mouse
tracking or hiliting and has no values. It's min, max, and value fields are reserved.

Sliders/Slider Tick Marks

The dlider control isrelatively straightforward, with a minimum, maximum, and value. De-
pending on whether he control istaller or wider, avertical or horizontal slider will be created.
This CDEF supports ghosting and live feedback. By default, the indicator points either down
or to the left, depending on the orientation. Y ou can reverse this by adding the kSliderRe-
verseDirection variant into the procl D for this control. Ticks marks are normally not shown,
but can be by adding kSliderHasTickMarksto the procl D. The number of tick marksis passed
in the value parameter - after initialization in this case, the value is set to the minimum and
the number of tick marksis stored internally.

Thereis also anon-directional thumb variant. Using this variant disables the tick mark and
reverse direction options. They are not allowed to be combined.

This control also supports live feedback.

Static Text
CDEF Implementation of Static Text. It supports getting and setting its style, like adialog's
ictb information. It also supports different justification options.

This control’s min, max, and value parameters are reserved.

Tabs

The tab mechanism isimplemented as a CDEF. An auxiliary 'tab# resource holds the tab
names and icon IDs. Thisresource ID is passed into the Value parameter of the control. Call-
ers check the value after getting a hit; they switch to the appropriate pane through whatever
mechanism they prefer, such as AppendDITL. Thevalue of the control isthe one-based index
of the currently selected tab (front most tab).

Itispossibleto get the content rectanglefor tabsand al so get/set aparticular tab's enabled state
using the Data Access routines. This CDEF is an embedder.

User Pane

This CDEF isagenera purpose control. It isused as the root pane for awindow, but could
also be used by clientsto hook in callbacksfor drawing, hit testing, etc. Thisisespecially use-
ful for frameworks that wish to tap into the new control manager's hierarchy. This should be
used in place of Userltemsin dialogs when in Appearance-Savvy mode (see below).

Do not distribute—A pple Confidential 17

This control’s min, max, and value parameters are free for you to use once the control is cre-
ated.

Window Header

A CDEF provides both icon and list view headers for windows. This two-state functionality
ishandled by avariant. Thelist view header lacks the bottom line. Thisis an embedding con-
trol.

This control’s min, max, and value parameters are reserved.

MENU DEFINITIONS

New Menu Features
The following support has been added to the standard menus:
* Support for extended modifiers keys (option, control, etc.)
* Support for icon suites
* Ability to store application specific datafor amenu item
* Ability to set acommand ID for amenu item.
* Ahility to set ahierarchical 1D for an item with ahigh-level API.

A replacement to MenuK ey has been added to allow modifiersto be considered when search-
ing for the item. The new routine is called MenuEvent and takes an event record asits only
parameter. It returns along, just like MenuSel ect.

For resource-based creation of menus, a new resource type has been added, 'xmnu'. Thisre-
source contains the extended menu information for each item in amenu. After creating a
menu, GetMenu looksfor an 'xmnu' resource with thesameID. Theinformationisset for each
menu item. At that point the resource can be purged or released.

Menu Bar

The menu bar has been changed to accommodate the new look.

Pull Down Menus
These have been changed to accommodate the new look. They handle extended modifier keys
and deal with the new extended information mentioned above.

Dialog Manager
Quite afew new features have been added to the Dialog Manager.

Do not distribute—A pple Confidential 18

FEATURE FLAGS

A caller may activate the New A ppearance mode of the Dialog Manager on a per-dialog basis
by relating a special resource to their DLOG and ALRT resources. The new resource types
which hold the new, extended information are the 'digx' and 'alrx’. In the new resources, there
isanew flag word that is used to determine dialog or alert features. Whenever adialog iscre-
ated via GetNewDialog, Alert, StopAlert, CautionAlert, or NoteAlert, after the DLOG or
ALRT isread in, we search for aresource type of 'digx’ or ‘alrx’, respectively, with the same
ID asthe DLOG or ALRT. If the resourceisfound, we read theinformation and useit to help
create the dialog.

Clients creating dialogs without using GetNewDialog will be able to use these features by
calling the new NewFeaturesDial og routine, which in addition to the usual NewDial og param-
eters also takes aflag word parameter to specify the desired features. Following isarundown
of the features that can be set in the extended information.

Use Theme Backgrounds
If the kDial ogFlagsUseThemeBackground bit is set in the flags, we set the background color
to the correct color for the current theme automatically.

Use Control Hierarchy

When the kDial ogFlagsUseControlHierarchy bit is set, right after the window is created, the
CreateRootControl routineiscalled for the window to establish an embedding hierarchy. This
has two effects; first, the hierarchy is established and embedding of controlsis possible; sec-
ond, all dialog items (except user items, for reasons explained | ater) are controls. This means
that if astatic text itemisinthe DITL, astatic text control is created instead of the old dialog
primitive. This ends up having many advantages, such as homogenous treatment of dialog
items, and the ability to disable all itemsin adialog, including edit text.

GetDiaogltem in thissituation still behaves asit always has. To get the control handle for an
item, use the new API GetDialogltemAsControl. With acontrol handle, you can do cool stuff
like disable static and edit text items, which was never before possible without great pain.

Use Theme Controls

Thisbit should generally always be set for Appearance-savviness. It tells the dialog manager
that when it encounters a push button, check box, or radio button primitive (i.e. dialog items
of type kButtonDial ogltem, kRadioButtonDial ogltem, etc.) to create anew theme-savvy con-
trol instead of the classic control. Thisbit is necessary, otherwise the Dialog Manager won't
know the difference, since thereis no other way to tell that we want theme controls. The use
theme background doesn't have to be set to use this bit. In fact, there are times when that is
the desired behavior.

Do not distribute—A pple Confidential 19

Handle Movable Modal

The kDialogFlagsHandleM ovableModal bit in the flagstells the Dialog Manger to handle all
movable modal behavior if ModalDialog is called with this window frontmost. This only
worksif the window itself isamovable modal dialog. When told to handle this situation, the
Dialog Manager handles window dragging and allows the user to click into another applica-
tion.

Event filtering is handled alittle differently, in that ALL events are passed thru to the appli-
cation in this mode. This alows the app to handle suspend and resume events, aswell as han-
dle Apple Eventsif it so wished.

ALERTS

Movable Alerts

If the kAlertFlagsHandleMovableModal bit is set, it tells the Dialog Manager whether or not
thisalert should be movable. If so, amovable modal dialogisused instead of astandard modal
one. The behavior isthe same asit is for normal movable modals, as mentioned above.

It isalso possible, thru the use of a’alrx’ resource, to specify atitle for amovable alert.

Another field inthe’alrx’ resource tells the dialog manager to directly use the new appear-
ance-savvy defprocs instead of going thru the mapping layer.

It isnow possible to specify arefCon for an alert inthe’alrx’ also.

AUTOMATIC SIZING

The Dialog Manager introduces a new routine, AutoSizeDialog, that automatically resizes a
dialog tofit all static text contained init. Thisisused by the new StandardAlert routine to en-
sure that all the text of an alert isvisible and doesn't get truncated. The DITL isiterated over,
looking for static text items. When oneisfound, the item is resized, the window height is ad-
justed, and any items below the static text item are moved downward the appropriate amount.

This API only adjusts the height, not the width, of adialog. It also assumes that items are
placed reasonably and formatted correctly to display text in the standard format.

Window Manager

COLLAPSING API

The routines for collapsing and uncollapsing awindow are exposed to developers. This will
allow clients such to control the collapsed state of windowsin an intelligent manner. A good
example of this might be uncollapsing automatically after double-clicking on aniconto bring
its window forward.

There are four routines to do with collapsing: CollapseWindow, CollapseAllWindows,
IsWindowCollapsed, and IswWindowCollapsable. These routines only affect windows that ad-
vertise that they support the collapsing API, which brings us to window features.

Do not distribute—A pple Confidential 20

WINDOW FEATURES

It is possible to determine a window's features thru the GetWindowFeatures API. Thisisim-
plemented thru a new message, kWindowM sgGetFeatures, which isjust like the correspond-
ing version for controls. In response to the GetFeatures message, the window should return a
bitfield representing the features it supports. Those features are listed here:

enum

{
kW ndowCanG ow = (1 << 0),
kW ndowCanZoom = (1 << 1),
kW ndowCanCol | apse = (1 << 2),
kW ndow shbdal = (1 << 3),

kW ndowCanCet W ndowRegi on= (1 << 4),
kW ndow sAl ert (1 << 5),
kW ndowHasTi t | eBar (1 << 6)

b
WINDOW DEFINITIONS

WindowShade Widget

The new WDEFsin Mac OS 8 support the collapse widget. If awindow can be collapsed, a
collapse box appears in the title bar of the window. A click on this returns the part code in-
CollapseBox.

The collapsing behavior is handled automatically by the system. Future releases will allow
you to intercept thisto handle it yourself if you have special requirements.

Document Windows (WDEF 64)

This WDEF draws in the new grayscale look, and supports the new horizontal and vertical
zoom boxes. Thevariantsare more straightforward than the old WDEF 0 variantswith respect
to how grow, zoom, etc. are specified. This WDEF also supports GetWindowFeatures and
GetWindowRegion. When called thru the mapper WDEF, this defproc operates in a compat-
ibility mode whereby the grow box is not drawn unless DrawGrowlconis called. When used
directly, the variant aone dictates whether agrow box will be drawn. Thereisno need to call
DrawGrowlcon in this situation.

Dialogs (WDEF 65)

The new WDEF for dialogs supports modal, movable modal, plain, and shadow diaog vari-
ants. When called from the mapper WDEF, this defproc operates in a compatibility mode.
When in thismode, a 3-pixel space exists between the content region and the structure region,
asit awaysdid in the past. When used directly, this areais banished and content can finally
be run up to the edge of the window. There have been numerous applications which were do-
ing some pretty wild stuff to make this happen in the past.

Do not distribute—A pple Confidential 21

Utility Windows (WDEF 66 & 67)

WDEF 66 is the normal, top-title-bar variant, and 67 isthe side title bar variant. The old
WDEF was split intwo to alow for the new horizontal and vertical zoom boxes. This defproc
runs in a compatibility mode when called from the mapper WDEF. When in this mode, the
grow box is not drawn until acall to DrawGrowlcon is made. When used directly (no com-
patibility mode), the presence of a grow box is completely driven thru the variant codes.

SUPPORT

Gestalt Selector

On startup, the extension installs agestalt selector to indicate that Appearanceisrunning. The
result returned is a bit field with the following possible values:

enum

gest al t Appear anceExi st s= 0,
gest al t Appear anceConpat Mode= 1

b

The gest al t Appear anceExi st s bit indicates appearance is running. gest al t Appear ance-
Conpat Mode indicates that we are running in compatibility mode and are using the system 7
defprocs. Thegest al t Appear anceConpat Mode bit indicates that system-wide appearanceis
currently off.

Do not distribute—A pple Confidential 22

Control Manager Reference

This section describes the new routines added to the Control Manager as well
as the new behavior of several classic routines.

Internal Routines

The routines in this section are SPI only and are utilities used by the Control
Manager and Dialog Manager.

SendControlMessage
Use the SendControlMessage to send a low-level message to a control.

pascal SInt32 SendControl Message(Control Ref theControl,
Sl nt 16 nessage, SInt32 param)

DESCRIPTION

The SendControlMessage sends the specified message to a CDEF and gets a
response.

DumpControlHierarchy

This routine dumps the contents of the control hierarchy for the specified
window into a file.

pascal OSErr DunpControl Hi erarchy(W ndowRef w ndow,
const

FSSpec* file)

DESCRIPTION

DumpControlHierarchy dumps a text listing of the current pane hierarchy
for the window specified into the file specified, overwriting any existing file.

Do not distribute—A pple Confidential 23

Creating Controls

NewControl

NewControl is adjusted to automatically embed the control into the root con-
trol if the root exists. All other aspects of behavior are the same.

Embedding Controls

The routines in this section allow you to create the root control for a window
and also embed controls within others.

CreateRootControl

Use CreateRootControl to create the root container control for a window and
enable embedding in a window.

pascal OSErr CreateRoot Control (W ndowRef w ndow, Con-
trol Ref* control)

DESCRIPTION

CreateRootControl creates the top-level container control for a window.
From that point on, the embedding routines EmbedControl and AutoEmbed-
Control can be used. If controls were already added to the window when
CreateRootControl is called, an error is returned and the root is not created.

GetRootControl
GetRootControl returns the root container control for the specified window.

pascal OSErr Get Root Control (W ndowRef w ndow,

Control Ref* control)

DESCRIPTION

GetRootControl returns the root container control for the window specified.
If a hierarchy doesn't exist, an error is returned.

Do not distribute—A pple Confidential 24

EmbedControl
Use EmbedControl to place one control inside another.

pascal OSErrEnbedControl (Control Ref control,

Control Ref container);

DESCRIPTION

EmbedControl is used to place one control inside of another control. You
might use this to place a radio button inside of a group box, for example. If
the container does not support embedding, or there is no root control for the
container's owning window, an error is returned.

AutoEmbedControl
Use AutoEmbedControl to have a control find its best embedding container.

pascal OSErr Aut oEnbedControl (Control Ref control,
W ndowRef w ndow)

DESCRIPTION

The AutoEmbedControl automatically finds the 'best fit' container for a con-
trol. It essentially searches for the smallest embedder control that contains the
given control and automatically embeds the control in there. The Dialog
Manager uses this to automatically assume the embedding hierarchy from
the DITL. If there is no root control for the window, an error is returned.

Drawing Controls

DrawOneControl

DrawOneControl has been changed to draw all controls contained within a
control if the control passed in is an embedder and the window has a root
control. If the root control for a window is passed in, the result is the same as
if DrawControls was called.

DrawControls

Do not distribute—A pple Confidential 25

If a root control is present, DrawControls uses the hierarchy to determine
drawing order and draws using that information, else it draws it in the classic
manner.

UpdateControls

If a root control is present, UpdateControls uses the hierarchy to determine
drawing order and draws using that information, else it draws it in the classic
manner.

DrawControlInCurrentPort

Use DrawControlInCurrentPort to tell a control to draw in the current port
and not in its owner's port.

pascal void DrawControl I nCurrentPort(Control Ref control
)

DESCRIPTION

DrawControlinCurrentPort draws a control in whatever the current port is at
the time. This is unlike DrawOneControl (or DrawControls/UpdateCon-
trols) in that controls normally are forced to draw in their owner's port. The
Control Manager sees to this. This routine is designed to allow for offscreen
drawing. All system controls support this type of functionality. For a custom
control to work right with this, it just needs to assume that the right port is
always set up for it, and not set the port to its owner. If the control has sub-
controls, they are drawn as well.

Testing and Changing Control Settings

The routines in this section allow you to manipulate controls and check their
state.

IsControlActive
Use IsControlActive to tell whether a control is currently active.
pascal Bool ean IsControl Active(Control Ref control);

DESCRIPTION

Do not distribute—A pple Confidential 26

IsControlActive is used to tell whether the given control is active, that is, it is
not disabled or pending disabled (latent).

IsControlVisible

Use IsControlVisible to tell whether a control is visible.

pascal Bool ean |sControl Visible(Control Ref control);

DESCRIPTION

IsControlVisible returns true if the given control is currently visible.

SetControlVisibility

Use SetControlVisibility to make a control visible or hidden.

pascal Bool ean Set Control Visibility(Control Ref control,
Bool ean visible, Bool ean draw);

DESCRIPTION
SetControlVisibility is very useful when you want to hide or show a control.
Unlike the HideControl and ShowControl APIs, SetControlVisibility allows
you to control whether drawing occurs on screen. By passing false into the
draw parameter, you can set the control’s visibility without any unsightly
drawing.

ActivateControl
Use ActivateControl to activate a control and any subcontrols.
pascal OSErr ActivateControl(Control Ref control);

DESCRIPTION

Do not distribute—A pple Confidential 27

ActivateControl activates the given control. If the control is an embedder and
embedding is on, this activates all subcontrols that are currently latent. Pass-
ing the root control into this routine will activate all controls in the root's win-
dow. You can use this routine in that manner to activate all controls in a
window when the window becomes active. If a control supports activate
events, it will receive an activate event before getting a draw call to update
its appearance.

You should always use this routine instead of HiliteControl(0) to activate a
control when a root control is present. It doesn't hurt to use it other times as
well.

DeactivateControl

Use ActivateControl to deactivate a control and any subcontrols.

pascal OSErr DeactivateControl (Control Ref control);

DESCRIPTION

DeactivateControl deactivates the given control. If the control isan embedder
and embedding is on, this deactivates all subcontrols as well. Any subcon-
trols that are enabled become latent. Passing the root control into this routine
will deactivate all controls in the root's window. You can use this routine in
that manner to deactivate all controls in a window when the window be-
comes inactive.If a control supports activate events, it will receive an activate
event before getting a draw call to update its appearance.

Calling this routine when a window is inactive is the only way to guarantee
that the item will truly get disabled when a root control is present. Calling Hi-
liteControl(255) will short-circuit because the hilite is already 255. You
should generally always use this routine instead of HiliteControl(255).

SetControlFontStyle

Use SetControlFontStyle to give a control a special font style.

pascal OSErr Set Control Font Styl e(Control Ref control,

Control Font Styl ePtr style
)

DESCRIPTION

Do not distribute—A pple Confidential 28

SetControlFontStyle sets the font style of the given control to that specified in
style. Normally a control uses the System font unless directed to use the win-
dow font via a variant. This routine allows you to override that and force the
control to use a special font style. Not all controls support this feature. To
clear a style in effect, simply pass in a style record with a cleared flags field.
The CDEF is expected to respond by falling back to using the old system/
window font logic.

ShowControl

If embedding is enabled for a window, this call will show any subcontrols
that are embedded within the control passed in. Passing the root control into
this routine will show all items in a window, if they were previously hidden.

HideControl

If embedding is enabled for a window, this call will hide any subcontrols that
are embedded within the control passed in. Passing the root control into this
routine will hide all items in a window, if they were previously hidden. Hid-
ing will save the states of all subpanes so that when the control is later shown,
all panes that were visible when it was originally hidden will be displayed.

MoveControl

If embedding is enabled for the control's window, this call will move the con-
trol and any subcontrols it might have.

HiliteControl

If embedding is enabled for the control's window, this call does the follow-
ing:
= If the part code passed in is 0, the control and all subcontrols are activated

= |f the part code passed in is 255, the control and all subcontrols are deacti-
vated.

= If the part code is any other value, the control's hilite value is set, and:

= |f the control is inactive, it remains inactive, but will take on the new hilite
when activated.

« |f the control is active, it will be drawn in its new hilite state.

Do not distribute—A pple Confidential 29

In addition, if a control is caused to become active/inactive, it will call the
control with an activate message if the CDEF supports it.

If an embedding hierarchy is not present, this routine behaves as it always
has.

Handling Mouse Events in Controls

FindControl

FindControl is changed to use the hierarchy to determine what control the
mouse went down in before calling TestControl. If no hierarchy is present, it
uses the control list as usual.

FindControlUnderMouse

Use FindControlUnderMouseto to locate a control under the given point, re-
gardless if any parts of the control are hit.

pascal Control Ref Fi ndControl Under Mouse(Poi nt where,
W ndowRef w ndow, SInt16* part)

DESCRIPTION

FindControlUnderMouse is a variation of FindControl that, unlike FindCon-
trol, actually returns the ControlRef for the control currently under the given
point. FindControl only returns the ControlRef if a part was hit. This can be
used to help adjust the cursor, etc. when over particular items. FindDialog-
Item uses this when a control hierarchy is present for a dialog.

HandleControlClick
Use HandleControlClick to handle a mouse click on a control.

pascal SInt16 Handl eControl Cick(Control Ref control,
Poi nt where, SInt16 nodifiers, Control Acti onUPP action)

Do not distribute—A pple Confidential 30

DESCRIPTION

Like TrackControl, this routine tracks a control until the mouse is released.
All that applies to TrackControl applies here as well. The difference, howev-
er, is that this routine allows modifier keys to be passed in so that the control
may use these if the control is set up to handle its own tracking.

SetControlSupervisor

Use SetControlSupervisor to route mouse down events from one control to
another.

pascal OSErr Set Control Supervisor(Control Ref control,

Cont r ol Ref supervi sor

DESCRIPTION

This routine is used to make sure that things like list box controls work cor-
rectly. List boxes control their scroll bars in an intimate way, and handle the
tracking in LClick. Because the new hierarchy is in place. When these controls
are created, they get their own panes and report that they are hit (as they
rightfully should). This presents a problem in that the list box will never
know it got hit (after all, we hit the scroll bar, right?), and LClick will never
be called. This routine alleviates this problem by routing the event to the su-
pervisory control, in this case the list box.

Handling Keyboard Events in Controls

HandleControlKey
Use HandleControlKey to send a keyboard event to a control.

pascal Sl nt16 Handl eControl Key(Control Ref control,
SInt16 keyCode, SInt16 charCode, SInt16 nodifiers);

DESCRIPTION

HandleControlKey is used when a control supports focus. It sends the neces-
sary information, keyCode, charCode, and modifiers into the CDEF so that it
can process it as it wished. This routine returns the part code that the control
considers 'hit' by the keyboard event.

Do not distribute—A pple Confidential 31

Idle Processing for Controls

IdleControls
Use IdleControls to give idle time to controls in a window.

pascal void IdleControls(WndowRef w ndow);

DESCRIPTION

IdleControls calls each control in a window who wants idle events with an
idle event so it can do its idle-time processing. The Chasing Arrows CDEF
uses this time to perform its animation.

Determining Features of Controls

GetControlFeatures
Use GetControlFeatures to find out what messages a control supports.

pascal Ul nt32 Cet Control Features(Control Ref control)

DESCRIPTION

GetControlFeatures returns a 32-bit bitfield which represents the different
features that a control supports.

GetBestControlRect
Use GetBestControlRect to find out what a control's favorite size is.

pascal OSErr GetBest Control Rect(Control Ref control,
Rect* rect,

Sl nt 16* baseLi neO f set

Do not distribute—A pple Confidential 32

DESCRIPTION

GetBestControlRect is implemented on top of the kControlMsgCalcBestRect
control message. Itallows an application to find out what the optimal control
size is and where text should be placed in relation to the control's bottom co-
ordinate. You should generally pass in an empty rect (0, 0, 0, 0). This routine
will call the CDEF that drives the specified control to fill out the right and bot-
tom sides of the rectangle, so you can determine its metrics for correct place-
ment, etc. This allows you to autosize some controls based on their text, such
as Push Buttons. The StandardAlert routine uses this call to help its button
placement algorithm. The baseLineOffset parameter returns where the text
baseline should be in relation to the bottom of the control rectangle. It is a
negative value.

Handling Focus for Controls

The routines in this section allow you to manage keyboard focus.

GetKeyboardFocus

Use GetKeyboardFocus to get the current keyboard focus for a window.

pascal OSErr Get KeyboardFocus(W ndowRef wi ndow,

Control Ref* control);

DESCRIPTION
The GetKeyboardFocus returns the ControlRef of the control which currently
is the keyboard focus of the window specified.

SetKeyboardFocus
Use SetKeyboardFocus to set the current keyboard focus for a window.
pascal OSErr Set KeyboardFocus(W ndowRef wi ndow,

Control Ref control, FocusPart part
)
DESCRIPTION

Do not distribute—A pple Confidential 33

The SetKeyboardFocus routine is used to set the current keyboard focus to
the specified control. The part parameter tells the control what part to focus
on. This parameter can be a positive part code or one of the constants, kFo-
cusNoPart, kFocusNextPart, or KFocusPrevPart. These values tell the control
to clear, advance, or reverse, its focus. If the control cannot become the focus
for some reason, an error is returned. Using this routine, it is possible to set
the focus to a disabled or invisible control. You might need to do this when
preparing a dialog while hidden.

AdvanceKeybordFocus

Use AdvanceKeyboardFocus to move the keyboard focus forward.

pascal OSErr AdvanceKeyboar dFocus(W ndowRef w ndow);

DESCRIPTION
AdvanceKeyboardFocus attempts to advance forward to the next focusable
item in a window and make it the current focus. It skips over disabled and
hidden items.
ReverseKeyboardFocus
Use ReverseKeyboardFocus to move the keyboard focus backwards.
pascal OSErr ReverseKeyboardFocus(W ndowRef w ndow);
DESCRIPTION

ReverseKeyboardFocus attempts to advance backwards to the next focusable
item in a window and make it the current focus. It skips over disabled and
hidden items.

ClearKeyboardFocus

Use ClearKeyboardFocus to clear any keyboard focus that exists in a win-
dow.

pascal OSErr C ear Keyboar dFocus(W ndowRef wi ndow);

Do not distribute—A pple Confidential 34

DESCRIPTION

Clear keyboard focus tells any control that might be the current focus to clear
its focus. After the successful execution of this routine, nothing in a window
has the keyboard focus.

Getting and Setting Control Data

The routines in this section allow you to get and set values in a control's pri-
vate data. You might use this to get the text from an edit text or static text
control, or set the indeterminate flag of a progress indicator.

SetControlData

Use SetControlData to set a piece of data for of a control.

pascal OSErr Set Control Data(Control Ref control,
Control Part Code part, ResType tag,
Si ze dataSize, Ptr databPtr);

DESCRIPTION

The SetControlData routine is used to set the data represented by t ag of the
specified control to the data pointed to by dataPtr. The part parameter indi-
cates which part of the control should get the data.

Passing kControlEntireControl in for part indicates it doesn't belong to any
specific part, but the control as a whole. For some pieces of data, part may not
make sense and is ignored by the CDEF.

GetControlData

Use GetControlData to get a piece of data from a control.

pascal OSErr GetControl Data(Control Ref control,
Cont rol Part Code part, ResType tag,
Si ze bufferSize, Ptr buffer, Size*

actual Si ze);

DESCRIPTION

Do not distribute—A pple Confidential 35

The GetControlPartText is used to get the data represented by tag in the spec-
ified control. The part parameter indicates which part of the control the data
should come from. The actual size of the data is returned in actualSize. You

can pass nil in this parameter to avoid getting the size back. Calling this rou-
tine will a nil buffer pointer is functionally equivalent to calling GetControl-
DataSize.

Passing kControlEntireControl in for part indicates it doesn't belong to any
specific part, but the control as a whole. For some pieces of data, part may not
make sense and is ignored by the CDEF.

GetControlDataSize
Use GetControlDataSize to set the size of a data member of a control.

pascal OSErr Get Control DataSi ze(Control Ref control,
Control Part Code part, ResType tag,

Size* size);

DESCRIPTION

The GetControlDataSize routine is used to get the size of a specific piece of
data the specified control owns. The part parameter indicates which part of
the control should be checked for the data.

Passing kControlEntireControl in for part indicates it doesn't belong to any
specific part, but the control as a whole. For some pieces of data, part may not
make sense and is ignored by the CDEF.

Iterating Over the Control Hierarchy

The routines in this section allow you to walk the control hierarchy of a win-
dow.

CountSubControls

CountSubControls returns the number of controls embedded within a con-
trol.

pascal OSErr Count SubControl s(Control Ref control,
Sl nt 16* nuntChil dren);

DESCRIPTION

Do not distribute—A pple Confidential 36

The CountSubControls routine returns the number of controls that are inside
of the given control. If the control does not support embedding, or embed-
ding is not enabled in its window, an error is returned.

GetlndexedSubControl

GetlndexedSubControl returns a specific control embedded within another
control.

pascal OSErr Getl ndexedSubControl (Control Ref control,
SInt 16 index, Control Ref*

child);
DESCRIPTION
The GetlndexedSubControl routine returns the control at the index specified
within the control passed in. If the control does not support embedding, or
embedding is not enabled in its window, an error is returned. If the index
passed in is invalid, an error is returned.
GetSuperControl
GetSuperControl returns the parent of a control.
pascal OSErr Get SuperControl (Control Ref control,
Control Ref * daddy);
DESCRIPTION

The GetSuperControl routine returns the parent control of the given control.
If the control does not support embedding, or embedding is not enabled in
its window, an error is returned.

RemovingControls

DisposeControl

Do not distribute—A pple Confidential 37

DisposeControl is changed to remove any subcontrols that might be embed-
ded within it. Passing the root control into this routine is the same as calling
KillControls. In fact, this is what KillControls does.

KillControls

KillControls gets the root control for a window and if it exists, it disposes of
it and all subcontrols via a call to DisposeControl. If a root control does not
exist, it does the same thing it always has.

Application-Defined Routines

This section describes routines that an application can provide to hook into
the new architecture.

MyKeyFilter

Controls that support keyboard focus often have the ability to allow filtering
of keystrokes. This is accomplished by a key filter proc.

pascal KeyFilterResult MyKeyFilter(Control Ref theCon-
trol,

SInt 16* keyCode, SInt16* char Code, SInt16* nod-
ifiers);

t heCont r ol the control we are dealing with
keyCodethe key code of the key that was pressed
char Codethe character code of the key that was pressed

nmodi f i er sthe modifiers that were down when the key was pressed

This callback should be called from a CDEF when its receives a key hit mes-
sage. The callback can change the keystroke in any way they see fit, leave it
alone, or completely block the CDEF from getting it. This does rely on the
CDEF implementing this correctly. There are two results the key filter can re-
turn: kKeyFilterPassKey or kKeyFilterBlockKey to allow keystrokes thru or
to block them, respectively.

UserPane Callbacks

Do not distribute—A pple Confidential 38

When using a UserPane control, you can hook callback procedures into it to
have it call you back to draw, perform hit testing, etc. In its most basic form,
itis just like an old-style Userltem. Essentially a UserPane is a real control
which just calls you back to do all the fun stuff.

MyUserPaneDrawProc

To handle drawing, you can attach a draw proc to a user pane control.

pascal void MyUser PaneDr awProc(Control Ref control,
SInt16 part);

cont r ol the control to draw

part the part to draw, 0 = everything

MyUserPaneHitTestProc

To handle hit testing in a user pane, you can attach a hit testing procedure.

pascal Control Part Code MyUser PaneHi t Test Proc(Cont r ol Ref

control,
Poi nt
where);
cont r ol the control to test
wher e the point where the mouse went down, in local coordinates

When called with this message, your routine should determine what part, if
any, the mouse hit in your control and return that part code as its result.

MyUserPaneTrackProc

To handle tracking in a user pane, you can attach a tracking procedure. This
routine will only get called if you've specified the HandlesTracking bit of the
control features, which get passed into the value of the control on creation.

Do not distribute—A pple Confidential 39

pascal Control Part Code MyUser PaneTr ackProc(Contr ol Ref
control,

Point startPt, Control Acti onUPP ac-
tionProc);

cont r ol the control to track
st ar t Pt the point where the mouse went down, in local coordinates

act i onPr octhe address of a routine to call during tracking.

When called with this message, your routine should track your control, call-
ing actionProc repeatedly until the mouse is released. The value of actionProc
can be a valid procPtr, nil, or -1. -1 indicates the control should do what it
wants to if it actually has some special autoTrack behavior it wants to add.
Most of the time, -1 would probably be treated like nil, i.e. do nothing. When
the mouse is released, the part the mouse was released on should be returned
to indicate a successful tracking session.

MyUserPaneldleProc

To handle idle processing in a user pane, you can attach an idle procedure.
This routine will only get called if you've specified the Wantsldle bit of the
control features, which get passed into the value of the control on creation.

pascal void MyUser Panel dl eProc(Control Ref control);

cont r ol the control to idle

You can use this to take advantage of control idle time to do some animation,
etc.

MyUserPaneKeyDownProc

To handle keyboard event processing in a user pane, you can attach an key-
down procedure. This routine will only get called if you've specified the Sup-
portsFocus bit of the control features, which get passed into the value of the
control on creation.

Do not distribute—A pple Confidential 40

pascal Control Part Code MyUser PaneKeyDownPr oc(Cont r ol Ref
control,

SInt16 keyCode, SInt16 charCode, SInt16
nodi fiers);

cont r ol the control that received the key event
keyCodethe key code of the key that was pressed
char Codethe character that the key generated

nmodi f i er sthe modifiers that were held down during the keypress

When called with this message, your routine should do whatever is right for
your special item, returning the part code of the item that was hit, if you wish.
The standard EditText control, for example, returns kControlEditTextPart so
that DialogSelect will return the itemHit when a keystroke is pressed.

MyUserPaneActivateProc

To handle activate/deactivate events in a user pane, you can attach an acti-
vate procedure. This routine will only get called if you've specified the Want-
sActivate bit of the control features, which get passed into the value of the
control on creation.

pascal void MyUser PaneActi vat eProc(Control Ref control,

Bool ean acti -
vating);

cont r ol the control that is becoming active/inactive

acti vati ng true if the control is becoming active, false otherwise.

Your routine should do whatever is proper to become active or inactive, such
as calling LActivate, etc.

MyUserPaneFocusProc

Do not distribute—A pple Confidential 41

To handle focus events in a user pane, you can attach an focus procedure.
This routine will only get called if you've specified the SupportsFocus bit of
the control features, which get passed into the value of the control on cre-
ation.

pascal Control Part Code MyUser PaneFocusProc(Contr ol Ref
control,

FocusPart
part);

cont r ol the control in question

part the part code to focus

This routine is called in response to a change in focus. The part code passed
in can mean many different things:

kFocusNoPar t Clear your focus, return kFocusNoPart

kFocusNext Par t Focus on the next item. If nothing is in focus now, fo-
cus the first item. If there are no more items, clear
your focus and return kFocusNoPart.

kFocusPr evPart Focus on the previous item. If nothing is in focus
now, focus the last item. If there are no more items,
clear your focus and return kFocusNoPart.

<part code> Focus on this part. You can interpret this in any way
you wish.

Itis very important that your return the right part code for what you consider
to be focused after you are called with this. By returning kFocusNoPart, you
are telling the Control Manager to go onto another control, or that you can't
be focused right now and go bother someone else.

Control Manager Summary

Constants

/* New part codes returned by FindControl/TestControl/Fi ndControl Un-
der Mouse*/

enum

{

Do not distribute—A pple Confidential 42

kControl Edit TextPart= 5,/* an edit text field was hit */
kControl PicturePart= 6,/* a picture control was hit */
kControl lconPart= 7,/* an icon control was hit */
kControl d ockPart= 8,/* a clock control was hit */
kControl Li stBoxPart= 24,/* a |list box was clicked */

kCont rol Li st BoxDoubl ed i ckPart= 25/* a |list box was doubl e-
clicked*/

H

/* values for focusing */

enum

{
kFocusNoPart= 0,/ *Lose focus or returned to mean focus |ost*/
kFocusNext Part= -1,/*Focus on next part, if any*/
kFocusPrevPart = -2/*Focus on previous part, if any*/

b

typedef SInt16 FocusPart;

/[* return results for key filters */

enum

{
kKeyFi | t er Bl ockkey= 0,/* all ow keypress to go thru to control */
kKeyFi | t er PassKey= 1/* stop keypress fromgoing to control */

b

typedef SIint16 KeyFilterResult;

/* Error codes */

enum

{
err MessageNot Support ed= - 30580,
er r Dat aNot Support ed= - 30581
err Cont r ol Doesnt Support Focus= - 30582
err W ndowDoesnt Support Focus= - 30583,
er r PaneNot Found = -30584,
err Coul dnt Set Focus= - 30585

Do not distribute—A pple Confidential 43

er r NoRoot Cont r ol = - 305886,

err Root Al r eadyExi st s= - 30587,
errlnval i dPart Code= - 30588,

err Control sAl readyExi st = -30589,
err Control | sNot Enbedder = - 30590,
err Dat aSi zeM smat ch= - 30591,

err Control H ddenOr Di sabl ed= - 30592

H

/* Feature bits to be returned when a CDEF is called with a 'get fea-
tures' msg*/

enum

{
kCont r ol SupportsGhosting= 1 << 0,
kContr ol SupportsEnbeddi ng= 1 << 1,
kControl SupportsFocus= 1 << 2,
kControl Vantsldle= 1 << 3,
kCont r ol Vant sActivate= 1 << 4,
kControl Handl esTracki ng= 1 << 5,
kCont r ol Support sDat aAccess= 1 << 6,
kCont r ol HasSpeci al Background= 1 << 7,
kCont r ol Get sFocusOnC i ck= 1 << 8§,
kControl SupportsCal cBest= 1 << 9,
kContr ol SupportsLi veFeedback= 1 << 10

H

/* New control nessages */
enum
{
kContr ol MsgDr awGhost = 13,/* Draw a ghost inmage of the indicator*/

kControl MsgCal cBest Rect= 14,/* Cal cul ate and return the best
bounds*/

kCont r ol MsgHandl eTr acki ng= 15,/* Handl es tracki ng */
kControl MsgFocus= 16,/* Focus on a part, or clear focus */
kControl MsgKeyDown= 17,/* Handl e a keyboard event */

Do not distribute—A pple Confidential 44

kControl Msgl dl e = 18,/* Do sone idle processing */

kCont rol MsgCet Features= 19,/* Return 32-bit field of features */
kControl MsgSet Dat a= 20,/* Set a piece of private data */

kControl MsgGet Data= 21,/* Get a piece of private data */

kCont rol MsgActi vate= 22,/* Handl e activate/deactivate */

kCont r ol MsgSet UpBackgr ound= 23,/* Set up background color, etc */
kCont r ol MsgCal cVal ueFr onPos= 26

H

/* These constants are nmeta-font val ues used i n Control Font Styl eRecs*/

enum

{
kCont r ol Font Bi gSystenfont= -1,/* force to big systemfont */
kCont r ol Font Smal | Systenfont= -2,/* force to small systemfont */
kCont r ol Font Smal | Bol dSyst enfFont= -3/* force to small bold system

font */
b
i;‘ bits to set in flags of Control Font Styl eRec to control what to set
enum
{
kUseFont Mask= 0x0001,/* Set the font */
kUseFaceMask= 0x0002,/* Set the face */
kUseSi zeMask= 0x0004,/* Set the size */
kUseFor eCol or Mask= 0x0008,/* Set the foreground col or */
kUseBackCol or Mask= 0x0010,/* Set the background col or */
kUseMbdeMask= 0x0020,/* Set the text node */
kUseJust Mask= 0x0040,/* Set the justification */
kUseAl | Mask = OxO0FF,/* Set all of the above */
kAddFont Si zeMask= 0x0100/* si ze represents value to add */
/* to current font size */
b

Do not distribute—A pple Confidential 45

/* some comon data tags */

enum

{
kControl Font Styl eTag= 'font',/* font style (Control Font Styl eRec) */
kControl KeyFilterTag= '"fltr'/* key filter (Control KeyFilterUPP)*/

b
Data Types

/[* This structure is passed to CDEFs when cal |l ed via Handl eControl -
dick, */

[* provided that the control does its own tracking */
struct Control Tracki ngRec
{
Poi nt startPt;
SIint16 nodifiers;
Control Acti onUPPacti on;
b

typedef struct Control Tracki ngRec Control Tracki ngRec, *Control Track-
i ngPtr;

/* This structure is passed to the CDEF for keyboard events */

struct Control KeyDownRec

{
SInt16 nodifiers;
SInt16 keyCode;
SInt 16 char Code;
b
Eypedef struct Control KeyDownRec Cont rol KeyDownRec, *Contr ol KeyDownP-
r,

/* this structure is passed to CDEFs for the Get/SetData nessage */
struct Dat aAccessRec
{

ResType tag; /[* 'nanme' of the data we are specifying */

Control Part Codepart;/* part of the control this tag refers to */

Do not distribute—A pple Confidential 46

Si ze si ze; /* size of the data or buffer */

Ptr dataPtr;/* pointer to the data or buffer */
b
typedef struct DataAccessRec DataAccessRec, *DataAccessPtr

/* this is used by many controls to set a special font style */

struct Control Font Styl eRec

{
SInt16 fl ags; /* which pieces should we set */
SInt16 font; /* the font to set to (can be nmeta-font) */
SInt16 size; /* the size of the type */
SInt16 style; /* the style (bold, italic, etc.) */
SInt16 node; /[* text node (srcOr, etc.) */
SInt16 just; /* justification */

RGBCol or f oreCol or; /* foreground col or */
RGBCol or backCol or; /* background col or */
b

typedef struct Control Font Styl eRec Control Font Styl eRec, *Contr ol Font -
StylePtr;

Control Manager Routines

Internal Routines

pascal Sl nt32 SendControl Message(Control Ref theControl, SIntl6 nes-
sage, SInt32 param);

pascal OSErr Get Control Di al ogltemNo(Control Ref wi ndow, SIntl16* item

No);

pascal OSErr Set Control Di al ogltemNo(Control Ref wi ndow, SInt16 itemNo
)

pascal OSErr DunpControl Hi erarchy(W ndowRef w ndow, const FSSpec*
file);

Embedding Routines

Do not distribute—A pple Confidential 47

pascal OSErr CreateRoot Control (WndowRef wi ndow, Control Ref* contr ol
)

pascal OSErr Get Root Control (W ndowRef wi ndow, Control Ref* control);
pascal OSErr EmbedControl (Control Ref control, Control Ref container);

pascal OSErr Aut oEnbedControl (Control Ref control, WndowRef w ndow
)

Drawing Controls
pascal void DrawControl I nCurrentPort(Control Ref control);

Testing and Changing Control Settings

pascal Bool ean IsControl Active(Control Ref control);
pascal Bool ean | sControl Visible(Control Ref control);
pascal OSErr ActivateControl (Control Ref control);
pascal OSErr DeactivateControl (Control Ref control);

pascal OSErr Set Control Font Styl e(Control Ref control, Control Font Sty-
lePtr style);

Handling Mouse Eventsin Controls
pascal Control Ref Fi ndControl Under Mouse
(Point where, WndowRef wi ndow, SIntl16* part);

pascal SInt16 Handl eControl Cick(Control Ref control, Point where,
SInt16 nodifiers, Contro-
| Acti onUPP action);

pascal OSErr Set Control Supervisor(Control Ref control, Control Ref
boss);

Handling Keyboard Eventsin Controls

pascal SlInt16 Handl eControl Key(Control Ref control, SIntl6 keyCode,
SInt 16 char Code, SlInt16
nmodi fiers);

Idle Processing for Controls
pascal void Idl eControls(WndowRef w ndow)

Handling Focus for Controls

Do not distribute—A pple Confidential 48

pascal OSErr Get KeyboardFocus(W ndowRef wi ndow, Control Ref* control
)

pascal OSErr Set Keyboar dFocus(W ndowRef w ndow, Control Ref control,
FocusPart part);

pascal OSErr AdvanceKeyboar dFocus(W ndowRef w ndow);

pascal OSErr ReverseKeyboardFocus(W ndowRef w ndow);

Determining Features of Controls
pascal U nt32 CetControl Features(Control Ref control);

Getting and Setting Control Data

pascal OSErr Set Control Data(Control Ref control, Control Part Code
part, ResType tagNane,
Size size, Ptr dataPtr);

pascal OSErr GetControl Data(Control Ref control, Control Part Code
part, ResType tagNane,
Size bufferSize, Ptr buff-
erPtr, Size* actual Size);

pascal OSErr Get Control Dat aSi ze(Control Ref control, Control Part Code
part, ResType tagNane,
Si ze* size);

Iterating Over the Control Hierarchy

pascal OSErr Count SubControl s(Control Ref control, SInt16* nuntChil -
dren);

pascal OSErr Getl ndexedSubControl (Control Ref control, SIntl16 index,
Control Ref* child);

pascal OSErr Get SuperControl (Control Ref control, Control Ref* parent
)

Application-Defined Routines

pascal KeyFilterResult MyKeyFilter(Control Ref theControl, SIntl16*
keyCode,

Sl nt 16* char Code, SInt 16*
nmodi fiers);

pascal void MyUser PaneDr awProc(Control Ref control, SIntl6 part);
pascal Control Part Code MyUser PaneHi t Test Proc

(Control Ref control, Point
where);

pascal Control Part Code MyUser PaneTr ackProc

Do not distribute—A pple Confidential 49

(Control Ref control, Point
startPt, Control Acti onUPP
actionProc);

pascal void MyUser Panel dl eProc(Control Ref control);
pascal Control Part Code MyUser PaneKeyDownPr oc

(Control Ref control, SIntl6
keyCode,

SInt 16 char Code, SInt16
nmodi fiers);

pascal void MyUser PaneActi vat eProc(Control Ref control, Bool ean acti -
vating);

pascal Control Part Code MyUser PaneFocusProc

(Control Ref control, Focus-
Part part);

Do not distribute—A pple Confidential 50

Dialog Manager Reference

This section describes the new routines added to the Dialog Manager as well
as how some routines have been altered when running with a hierarchy.

Creating Dialogs And Alerts

NewFeaturesDialog

Call NewFeaturesDialog to create a dialog while specifying features for the
dialog.

pascal Di al ogRef Newkeat uresDi al og(voi d *wSt or age,
const Rect *boundsRect, Const Str255Paramtitle,

Bool ean visible, SInt16 proclD, W ndowRef be-
hi nd,

Bool ean goAwayFl ag, SInt 32 ref Con,
Handl e itnmistHndl, SInt32 flags);

DESCRIPTION

This new routine allows the creation of a dialog while specifying options,
such as theme savvyness, when the dialog is created.

Presenting Dialogs

StandardAlert
Call StandardAlert to use a system-supplied default alert template.

pascal OSErr StandardAl ert(
Al ert Type type,
StringPtr error,
StringPtr explanation,
Al ert StdAl ert ParanPtr param

Do not distribute—A pple Confidential 51

SInt16* itenmHit);

DESCRIPTION

The StandardAlert routine is available as an easy to use template for creating
alerts. It allows you to set the error text, as well as text to further explain what
went wrong and how to fix it. The explanatory text is displayed in the small
system font. The button that was hit (you can specify up to 3) is returned in
itemHit.

The param parameter is used for special alert customization. You pass the ad-
dress of a structure which contains information telling the Dialog Manager to
make the alert movable, give the alert a filterproc, specify text for buttons, etc.

The alert can be movable by passing true in for the movable field of this struc-
ture. If you make your alert movable, you should make sure you pass a mod-
al filter into filterProc. This will allow you to handle update events for
window’s behind the alert. Be aware that when you are using a movable
alert, all events that your application receives are passed to you, i.e. the mask
used on GetNextEvent is everyEvent.

You can have up to 4 buttons in the alert: an OK button, a cancel button, an
‘other’ button, and a help button. The buttons auto-size and autoposition
themselves correctly in the alert for you. By default, the rightmost button text
is "OK", the button to the immediate left of the OK button (cancel position)
defaults to having the text "Cancel", and the 'other' (leftmost) button text is
"Don't Save". The 'other' button is always left justified in the alert, and allows
you to easily create a save alert. To specify that the default button names
should be used, you pass -1 in for the text parameters. Passing nil in for a but-
ton text parameter indicates that no button should be displayed for that par-
ticular button. The rightmost button cannot be hidden, so passing nil is
equivalent to passing -1 in for that parameter.

You can pass true in the param structure for the helpButton field to indicate
that a help button is to be displayed.

You can specify which button is the default button, and which is the cancel
button in the param struct. This controls which button is ’pressed’ when typ-
ing return or enter and which button is ’pressed’ by typing command-period.

By default, the StandardAlert routine positions the alert in the alert position
on the parent window’s screen. You can override this by passing another
auto-centering constant into the position field of the structure.

Any errors are returned as the function result.
ModifyingDialogs
The routines in this section allow you to manipulate aspects of a dialog.

AutoSizeDialog

Use AutoSizeDialog to automatically resize a dialog to make sure all static
text is visible.

pascal OSErr AutoSizeD al og(DialogPtr dialog);

DESCRIPTION

Do not distribute—A pple Confidential 52

The AutoSizeDialog routine resizes the given dialog enough to show all static
text. This is extremely useful in dialogs where the amount of text to be dis-
played is determined at runtime. Calling this routine iterates over the items
in the dialog. For each static text item it finds, it adjusts the bottom of the win-
dow to accomodate the amount of text. Any items below a static text field be-
ing adjusted are moved down accordingly. If the dialog is visible when this
routine is called, it is hidden, resized, and then shown. If the dialog has
enough room to show the text as is, no resizing is done.

MoveDialogltem

Use MoveDialogltem to move an item from one location to another, keeping
any control rectangles in sync with the dialog item’s rectangle.

pascal OCSErr MoveDi al ogltem(Di al ogPtr di al og,
SInt16 itemNo, SIntl16 horiz, SIntl1l6 vert);

DESCRIPTION

The MoveDialogltem should be called when moving any item in a dialog. If
the item is a control, it will call MoveControl to move the control to the right
place. This routine allows the dialog manager to make sure that the dialog
item rectangles always match a control’s rectangle. Simply calling MoveCon-
trol without adjusting the dialog item’s rectangle can confuse the Dialog
Manager.

SizeDialogltem

Use SizeDialogltem to change a dialog item’s size, keeping any control rect-
angles in sync with the dialog item’s rectangle.

pascal OSErr SizeDial oglten(Di al ogPtr dial og,
SInt16 itemNo, SIntl16 width, SIntl16 height);

DESCRIPTION

The SizeDialogltem should be called when resizing any item in a dialog. If
the item is a control, it will call MoveControl to move the control to the right
place. This routine allows the dialog manager to make sure that the dialog
item rectangles always match a control’s rectangle. Simply calling MoveCon-
trol without adjusting the dialog item’s rectangle can confuse the Dialog
Manager.

Routines to Get Information About Dialog Items

The routines in this section allow you to get information about dialog items.

Do not distribute—A pple Confidential 53

GetDialogltemAsControl

Use GetDialogltemAsControl to get the actual control handle for a dialog
item. This is especially useful when an embedding hierarchy is established.

pascal OSErr GetDial ogltemAsControl (Di al ogPtr dial og,
SInt16 itemNo, Control Handl e *control)

DESCRIPTION

GetDialogltemAsControl returns the control handle for the item specified. If
the item is not a control, an error is returned. If a dialog is in embedding
mode, all items are controls, and this routine will work on any item. This rou-
tine is useful when it is necessary to get the control for an edit text or static
text item in a dialog.

Changes To Existing Routines

This section documents new behavior of some of the classic Dialog Manager
routines when a dialog is in the Appearance Savvy mode.

GetNewDialog

GetNewDialog has been changed to check for the presence of a 'dlgx’ re-
source with the same ID as the dialog resource ID passed in. If found, the in-
formation is read in and used. The 'digx’ resource holds information such as
the dialog flags for setting features like 'use theme background' and ‘'use em-
bedding hierarchy'.

Alert, CautionAlert, StopAlert, NoteAlert

These routines have been changed to check for the presence of a 'alrx' re-
source esource with the same ID as the alert resource ID passed in. If found,
the information is read in and used. The "alrx’ resource holds information
such as the alert flags for setting features like 'use theme background' and
‘use embedding hierarchy'.

GetDialogltem

GetDialogltem is changed so that calling it when the dialog has an embed-
ding hierarchy talks to the controls to get the appropriate data. The API still
returns the same types of handles as it always has.

SetDialogltem

Do not distribute—A pple Confidential 54

SetDialogltem is changed so that calling it when the dialog has an embedding
hierarchy has a couple of restrictions: you can’t change the type or handle of
an item. User item drawing procedures can still be set. If an embedding hier-
archy does not exist, it works as it always has in the past. Also, if you set the
control rectangle on an item when an embedding hierarchy is present, it will
move and resize the item appropriately for you.

GetDialogltemText

GetDialogltemText is changed such that calling it when the dialog has an em-
bedding hierarchy it will expect a ControlRef in the handle parameter. It will
ask the EditText control for the text and return it in the string parameter.

SetDialogltemText

SetDialogltem is changed so that calling it when the dialog has an embedding
hierarchy it can take either ControlRef or a text handle. The string passed in
is set in the Edit Text control.

Summary of the Dialog Manager

Constants

/* Flags for NewreaturesDi al og, as well as dlgx and al rx resources */
enum
{

kDi al ogFl agsUseThenmeBackground = 1,

kDi al ogFl agsUseCont r ol Hi erarchy= 2,

kDi al ogFl agsHandl eMovabl eMbdal = 4,

kDi al ogFl agsUseTheneControls = 8

b
Creating Dialogs and Alerts

pascal Di al ogRef NewFeat uresDi al og(void *wStorage, const Rect
*poundsRect ,
Const Str255Paramtitle,
Bool ean visible, SIntl6

Do not distribute—A pple Confidential 55

procl D, W ndowRef behi nd,

Bool ean goAwayFl ag, SInt 32
ref Con, Handl e it nLst Hndl ,
SInt32 flags);

pascal void AutoSizeDi alog(D alogPtr dialog);

pascal OSErr StandardAlert(AlertType type, StringPtr error, StringP-

tr explanation, Bool ean
nmovabl e, Mbdal Fil t er UPP
filterProc, StringPtr de-
faul t Text, StringPtr can-
cel Text, tringPtr

ot her Text, const FSSpec*
agFi | eSpec, SIntl16 agSe-
quencel D, SInt16* itenHit
)

Do not distribute—A pple Confidential

56

Window Manager Reference

This section describes the new routines added to the Window Manager.

Window Collapsing Support

A new part code is introduced to represent the Collapse Box:
enum

i nCol | apseBox = 9
b

Normally this is hidden from an application and taken care of by our Syste-
mEvent patch. We are working on trying to establish a mechanism whereby
apps can signal us that they want to receive these events themselves, bypass-
ing the automatic behavior.

A new message has been created for getting the features of a window defini-
tion function:

enum

kW ndowvsgCet Feat ures= 7

When sent this message, the WDEF should respond by filling out a 32-bit re-
sponse field and returning it as the result of the definition function. The val-
ues that are currently valid are:

enum {
kW ndowCanG ow = (1 << 0),
kW ndowCanZoom = (1 << 1),
kW ndowCanCol | apse = (1 << 2),
kW ndow sMbdal = (1 << 3),
kW ndowCanGet W ndowRegi on = (1 << 4),
kW ndow sAl ert = (1 << b),
kW ndowHasTi t | eBar = (1 << 6)

Do not distribute—A pple Confidential 57

When a WDEF supports the collapsing, it knows to calculate its regions in its
collapsed state by testing to see whether IswWindowCollapsed returns true. If
so, it should calculates its structure region based on the collapsed state. If not,
it should do its normal structure calculation.

Collapsing Routines

CollapseWindow

Call CollapseWindow to collapse a window. A window typically collapses to
its title bar.

pascal CSErr Col | apseW ndow W ndowRef wi ndow, Bool ean
col I apse);

DESCRIPTION

This routine will either tell a window to collapse or uncollapse a window, de-
pending on the value of the collapse parameter. If awindow does not support
collapsing thru the new mechanism, an error is returned.

CollapseAllWindows
Call CollapseAllWindows to collapse or uncollapse all windows.

pascal OSErr Col | apseAl | Wndows(Bool ean col | apseEm);

DESCRIPTION

This routine will either tell all windows that are in the current layer to col-
lapse or uncollapse a window, depending on the value of the collapse param-
eter. If a window does not support collapsing thru the new mechanism, an
error is returned.

IswindowCollapsed

Do not distribute—A pple Confidential 58

Call IswindowcCollapsed to check to see whether a window is in its collapsed
state.

pascal Bool ean | sW ndowCol | apsed(W ndowRef wi ndow);

DESCRIPTION

This routine will return true or false depending on the collapse state of the
window. If the window does not support collapsing, false is returned.

Routines to Get Window Information

GetWindowFeatures

Use GetWindowFeatures to determine what features a window supports, as
well as what type of window it is.

pascal OSStatus Get WndowkFeat ur es(W ndowPtr wi ndow,
U nt 32 *features)
DESCRIPTION

This routine is used to determine what features a window supports, such as
collapsing, as well as getting what widgets are shown and what type of win-
dow you are dealing with (modal, for example). The features are returned in
the features parameter. The bits are defined below:

enum {
kW ndowCanG ow = (1 << 0),
kW ndowCanZoom = (1 << 1),
kW ndowCanCol | apse = (1 << 2),
kW ndow sMbdal = (1 << 3),
kW ndowCanGet W ndowRegi on = (1 << 4),
kW ndowl sAl ert = (1 << b),
kW ndowHasTi t | eBar = (1 << 6)

H

GetWindowRegion
Use GetWindowRegion to get a specific region of a window.

pascal OSStatus Get WndowRegi on(W ndowPt r wi ndow,
W ndowRegi onCode regi onCode,
RgnHandl e wi nRgn) ;

DESCRIPTION

GetWindowRegion allows you to get specific regions of a window, such as
the grow box region, or the close box or title region.

Do not distribute—A pple Confidential 59

Summary of the Window Manager

Constants

/* Part codes returned by Fi ndW ndow */

enum

{

i nCol | apseBox = 9 /* Collapse box of a wi ndow was hit */

H

/* Wndow definition function task codes */

enum
{
kW ndowivsgCet Feat ures= 7
H
enum {
kW ndowCanG ow =(1<<0)),
kW ndowCanZoom = (1 << 1),
kW ndowCanCol | apse = (1 << 2),
kW ndow sMbdal = (1 << 3),

kW ndowCanCet W ndowRegi on = (1 << 4),

kW ndow sAl ert = (1 << b),
kW ndowHasTi t | eBar = (1 << 6)
b
enum {

kW ndowTi t | eBar Rgn= 0,
kW ndowTi t | eText Rgn= 1,
kW ndowCl oseBoxRgnh= 2,
kW ndowZoonBoxRgn= 3,
kW ndowDr agRgn 5,
kW ndowGr owRgn 6,

Do not distribute—A pple Confidential 60

kW ndowCol | apseBoxRgn= 7,
kW ndowSt ruct ur eRgn= 32,
kW ndowCont ent Rgn= 33

H

/* Wndow feature bits */

enum

{

kW ndowCanGow = (1 << 0),

kW ndowCanZoom = (1 << 1),

kW ndowCanCol | apse= (1 << 2),
kW ndowl svbdal = (1 << 3),

kW ndowi sMovabl eMbdal = (1 << 4)

H

Collapsing Windows

pascal
pascal
pascal
pascal

pascal

CSErr Col | apseW ndow(W ndowRef w ndow, Bool ean coll apse);
OSErr Col | apseAl | Wndows(Bool ean col | apse);

Bool ean | sW ndowCol | apsed(W ndowRef wi ndow);

0SSt at us Get W ndowFeat ur es(W ndowPt r wi ndow, Ul nt 32 *f eat ures)

OSSt at us Get W ndowRegi on(W ndowPt r wi ndow, W ndowRegi onCode
regi onCode, RgnHandl e wi n-
Rgn)

Do not distribute—A pple Confidential 61

Menu Manager Reference

This section describes the new routines added to the Menu Manager. It has
been extended to allow for more modifier keys to be used, such as shift and
option. We have also added the ability to set a command ID for a menu item
an other information. The routines in this section only function when the sys-
tem supplied MDEEF is used.

Handling Keyboard Events

MenuEvent
Call MenuEvent instead of MenuKey to determine if a keyboard equivalent
for a menu item has been pressed when using the extended modifiers.
pascal U nt32 MenuEvent(Event Record* event);

DESCRIPTION

MenuEvent is used to determine if a keyboard equivalent has been pressed
by the user when using the new extended set of modifiers. The charCode and
modifiers are normally taken from an EventRecord's message and modifiers
fields.

Getting and Setting Menu Item Data

SetMenultemModifiers

Call SetMenultemModifiers to set the modifier keys to use for a specific
menu item.

pascal OSErr Set Menultenibdifiers(MenuRef nenu, SIntl6
item

SInt16 nodifiers);

DESCRIPTION

Do not distribute—A pple Confidential 62

This routine will set the modifiers field of a menu item. The Command key is
always implied to be set; however, it is possible to set a modifier sequence
without the command key using the kMenuNoCommand flag in modifiers.

GetMenultemModifiers

Call GetMenultemModifiers to set the modifier keys to use for a specific
menu item.

pascal OCSErr Set Menultenibdi fiers(MenuRef nenu, Slntl16
item

SInt16* nodifiers);

DESCRIPTION

This routine will get the modifiers field of a menu item.

SetMenultemCommandID

Call SetMenultemCommandID to set the command ID for a specific menu
item.

pascal OSErr Set Menult enCommandl D{ MenuRef nenu, SInt16
item

U nt32 commandl D);

DESCRIPTION

This routine will set the command ID of a menu item. You can use the com-
mand ID as a position independent method of signaling a specific action in
an application. After a successful call to MenuSelect, MenuKey, or Extended-
MenuKey, you can call GetMenultemCommandID to get the command of the
item and do the appropriate thing.

GetMenultemCommandID

Call GetMenultemCommandID to get the command ID for a specific menu
item.

Do not distribute—A pple Confidential 63

pascal OSErr Get MenultenCommandl D (MenuRef nenu, SIntl6
item

U nt 32* command| D);

DESCRIPTION

This routine will get the command ID of a menu item. You can use the com-
mand ID as a position independent method of signaling a specific action in
an application. After a successful call to MenuSelect, MenuKey, or Extended-
MenuKey, you can call GetMenultemCommandID to get the command of the
item and do the appropriate thing.

SetMenultemTextEncoding

Call SetMenultemTextEncoding to set the script code to use for a specific
menu item.

pascal OSErr Set MenultenText Encodi ng(MenuRef nenu,

SInt16 item Text Encodi ng encodi ng
)

DESCRIPTION

This routine will set the script code of a menu item. You can use this routine
instead of the older method of using $1C in the command key equivalent
field, which uses up that field as well as the icon field, which would hold the
script code. Using this new method allows you to gain those fields back for
your use. If a menu item has a command code of $1C when this routine is
called, the command and icon fields are cleared, in favor of the new setting
passed in and stored with the extended information for this item.

GetMenultemTextEncoding

Call GetMenultemTextEncoding to get the script code for a specific menu
item.

pascal OSErr Get Menult enText Encodi ng(MenuRef menu,
SInt1l6 item TextEncodi ng* encoding);

Do not distribute—A pple Confidential 64

DESCRIPTION

This routine will get the script code of a menu item. If the script code is set
using the old method ($1C in the key equivalent field), the script code is ex-
tracted from the icon field and returned. In general, when running Appear-
ance, you should use the new SetMenultemScript routine instead of the older
method.

SetMenultemlconHandle

Call SetMenultemlconHandle to set an icon to use for a specific menu item.

pascal CSErr Set Menultem conHandl e(MenuRef nenu, SInt16
item

Menul conType type,
Handl e icon);

DESCRIPTION

This routine will set the icon of a menu item with an icon handle instead of
an ID. This call allows you to set icons of type ICON, cicn, SICN, and icon
suites. The menu will not dispose of any icons, it is up to the application to
do so.

GetMenultemlconHandle

Call GetMenultemlconHandle to get the handle of an icon you've set using
SetMenultemiconHandle.

pascal OSErr Get Menultenl conHandl e(MenuRef nenu, SIntl16
item

Menul conType* type,
Handl e* suite);

DESCRIPTION

Do not distribute—A pple Confidential 65

This routine will return the icon handle and the type of icon. If there isnoicon
for this item, nil is returned for the icon handle and kMenuNolcon is returned
for the type.

SetMenultemRefCon

DESCRIPTION

Call SetMenultemRefCon to set an application-specific piece of information
for a menu item.

pascal OSErr Set MenultenRef Con(MenuRef nmenu, SInt16
item

SInt32 refCon);

This routine allows an application to set a piece of application specific data to
amenu item.

GetMenultemRefCon

DESCRIPTION

Call GetMenultemRefCon to get an application-specific piece of information
for a menu item.

pascal OSErr Get MenultenRef Con(MenuRef nenu, SInt16
item

SInt32* refCon);

This routine returns the application specific data set for a menu item with
SetMenultemRefCon.

SetMenultemRefCon2

Call SetMenultemRefCon2 to set an application-specific piece of information
for a menu item.

Do not distribute—A pple Confidential 66

pascal OSErr Set MenultenRef Con2(MenuRef nenu, Sint16
item

SInt32 refCon);

DESCRIPTION

This routine allows an application to set a piece of application specific data to
a menu item.

GetMenultemRefCon?2

Call GetMenultemRefConz2 to get an application-specific piece of informa-
tion for a menu item.

pascal OSErr Get Menult enRef Con2(MenuRef nenu, Sint16
item

SInt 32* ref Con);

DESCRIPTION

This routine returns the application specific data set for a menu item with
SetMenultemRefCon2.

SetMenultemHierarchicallD

Call SetMenultemHierarchicallD to attach a submenu to a menu item.

pascal OSErr Set MenultentHi erarchical |l D{ MenuRef nenu,
SIntl6 item

SInt16 hierlD);

DESCRIPTION

This routine allows you to attach a hierarchical menu to the given menu item.
This is a high-level method than existed in the past, as it allows you to forget
about how hierarchicals are attached to menus. Currently, the hierarchical
menu ID is still restricted to 0-255, but a future version will allow a full 16-bit
integer to be used.

Do not distribute—A pple Confidential 67

GetMenultemHierarchicalID

Call GetMenultemHierarchicallD to get an application-specific piece of infor-
mation for a menu item.

pascal OSErr Get Menultenti erarchicall D{ MenuRef menu,
SIntl6 item

SInt16* hierlD);

DESCRIPTION

This routine returns the hierarchical menu ID for the given menu item. If the
keyboard equivalent for the item is set to $1B, the menu ID is extracted from
the item mark field and returned.

SetMenultemFont

Call SetMenultemFont to set the font for a specific menu item.

pascal OSErr Set Menultentont(MenuRef nenu, SIntl6 item
SInt16 fontNum);

DESCRIPTION

This routine allows you to set the font to use when drawing the given menu
item. This effectively allows you to set up a font menu with each item being
drawn in the actual font.

GetMenultemFont

Call GetMenultemFont get the font used by a specific menu item.

pascal OSErr Get Menultenfont(MenuRef nenu, SIntl6 item
Sl nt 16* fontNum);

Do not distribute—A pple Confidential 68

DESCRIPTION

This routine returns the font for the given menu item.

SetMenultemKeyGlyph

Call SetMenultemKeyGlyph to set the glyph to display as the keyboard
equivalent for a specific menu item.

pascal OCSErr Set MenultenKeyd yph(MenuRef nmenu,
SIntl6 item SIntl6 glyph);

DESCRIPTION

This routine allows you to set a different glyph that would be normally dis-
played for the keyboard equivalent of a menu item. This is needed at times
when the character code for some keys (like the delete key - ascii 8) does not
map to the correct glyph in the font (which would be ascii 10). This glyph
overrides the normal key that would be displayed. If zero is passed in for
glyph, it clears the glyph and the menu item displays the actual character.

GetMenultemKeyGlyph

Call GetMenultemKeyGlyph to get the glyph to display as the keyboard
equivalent for a specific menu item.

pascal OSErr Get MenultenkKeyd yph(MenuRef menu,
SInt16 item SInt16* glyph);

DESCRIPTION

This routine allows you to get the glyph that overrides the keyboard equiva-
lent for a menu item.

Do not distribute—A pple Confidential 69

Summary of the Menu Manager

Constants

/* Modifier flags used by Set Menultemvbdifiers */
enum
{

kMenuQOpt i onKey= 1,

kMenuShi f t Key= 2,

kMenuCont r ol Key= 4,

kMenuNoComrandKey= 8

H

/* Valid icon types for SetMenultem conHandl e */
enum
{
kMenul con =1, /* old | CON data */
kMenuCol orlcon= 2,/* cicn format */
kMenuSmal I I con= 3,/* SICN format */
kMenul conSuite= 4,/* lcon Suite */

kMenul conRef= 5 /* lcon Ref */
H

Routines

Handling Keyboard Events
pascal SlInt32 MenuEvent (Event Record* event);

pascal OSErr Set Menulteniodifiers(MenuRef nmenu, SIntl6 item SIntl16
nmodi fiers);

Getting and Setting Menu Data

pascal OSErr Set MenulteniVbdi fiers(MenuRef nmenu, Sintl6item SInt16*
nmodi fiers);

Do not distribute—A pple Confidential 70

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

OSEr r

OSEr r

CSEr r

CSEr r

CSEr r

OSEr r

CSEr r

CSEr r

CSEr r

OSEr r

OSEr r

OSEr r

CSEr r

Set Menul t enCommandl D(MenuRef menu, SInt16 item Ul nt32
commandl D);

Get Menul t enCommandl D (MenuRef nenu, SInt16item Ul nt32*
commandl D) ;

Set Menul tentcri pt I Dl MenuRef menu, SIntl1l6 item Script-
Code script);

Get Menul tenScriptl D{ MenuRef nenu, SIntl1l6 item Script-
Code* script);

Set Menul t eml conHandl e(MenuRef nenu, SIntl16 item Menul -
conType type, Handl e icon

Get Menul t em conHandl e(MenuRef nmenu, SIntl16 item Menul -
conType* type, Handl e*
suite);

Set Menul t enRef Con(MenuRef nmenu, SIntl6 item SInt32
ref Con);

Get Menul t enRef Con(MenuRef nenu, SIntl6 item SInt32*
ref Con);

Set Menul t enRef Con2(MenuRef nenu, SIntl6 item SlInt32
ref Con);

Get Menul t enRef Con2(MenuRef nenu, SIntl6 item SlInt32*
ref Con);

Set Menul t enHi erar chi cal | D{ MenuRef nmenu, SIntl6 item
SInt16 hier);

Get Menul t enHi erarchi cal 1 D{ MenuRef nmenu, SIntl6 item
SInt16* hier);

Set Menul t enfFont (MenuRef nenu, SIntl6 item SIintl6 font
)

Do not distribute—A pple Confidential 71

pascal OSErr Get MenultenfFont(MenuRef nmenu, Sintl16 item SInt16* font

)

pascal OCSErr Set MenultenKeyd yph(MenuRef menu, SIntl16 item SInt16
keyd yph);

pascal OSErr Get MenultenKeyd yph(MenuRef menu, SInt16 item SInt16*
keydyph);

Manipulating the Menu Bar Clock

pascal void DrawMenuBar Cl ock(StringPtr text, Handl e batteryl conSuite
)

Do not distribute—A pple Confidential 72

Appearance Manager Reference

This section describes the routines available as part of the Appearance Man-
ager.

Registering with Appearance

RegisterAppearanceClient

Use RegisterAppearanceClient to let the Appearance Manager know you are
a client of the new Appearance defprocs and APIs.

pascal OSStatus Regi st er Appearanced i ent (voi d)

DESCRIPTION

This routine should be called at the very beginning of your application if you
are adopting Appearance. It tells the system to autoroute calls to the classic
defprocs (WDEF 0, CDEF 0, etc.) to the new Appearance-Savvy defprocs au-
tomatically. This call is necessary to call to ensure your application behaves
correctly with Appearance.

UnregisterAppearanceClient

Use RegisterAppearanceClient to let the Appearance Manager know you are
no longer using new Appearance defprocs and APIs.

pascal OSStatus Unregi st er AppearanceC i ent (voi d)

DESCRIPTION

This routine should be called when you want to stop autorouting calls to the
classic defprocs (WDEF 0, CDEF 0, etc.) to the new Appearance-Savvy def-
procs automatically. This should not normally be called until your applica-
tion terminates. The only exception would be around calls to plug-ins that
might require the classic defprocs.

Using Patterns and Colors

SetThemePen

Use SetThemePen to set the foreground color to a specified pattern.

Do not distribute—A pple Confidential 73

pascal OSStatus Set ThenePen(ThenmeBrush brush,
SInt 16 depth, Bool ean col or Devi ce);

DESCRIPTION

SetThemePen simply sets the foreground pattern to the pattern specified in
the brush parameter. You also pass the depth and a boolean indicating
whether or not you are drawing on a color device. This information helps the
Appearance manager know what exact color or pattern to use for the situa-
tion. This is typically used inside a DeviceLoop drawing procedure.

SetThemeBackground

Use SetThemeBackground to set the background pattern of a window.

pascal OSStatus Set TheneBackground(TheneBrush brush,
SInt 16 depth, Bool ean col orDevi ce);

DESCRIPTION

SetThemeBackground simply sets the background pattern to the pattern
specified in the brush parameter. You also pass the depth and a boolean in-
dicating whether or not you are drawing on a color device. This information
helps the Appearance manager know what exact color or pattern to use for
the situation. This is typically used inside a DeviceLoop drawing procedure.

SetThemeTextColor

Use SetThemeTextColor to set the foreground color for drawing text.

pascal OSStatus Set ThenmeText Col or (TheneText Col or col or,
Sl nt 16 depth, Bool ean col orDevi ce);

DESCRIPTION

SetThemeTextColor sets the foreground color to the color specified in the
color parameter for drawing text. You also pass the depth and a boolean in-
dicating whether or not you are drawing on a color device. This information
helps the Appearance manager know what exact color to use for the situa-
tion. This is typically used inside a DeviceLoop drawing procedure.

Do not distribute—A pple Confidential 74

SetThemeWindowBackground
Use SetThemeWindowBackground to set the background color of a window.

pascal OSStatus Set TheneW ndowBackgr ound(
W ndowPt r wi ndow, TheneBrush brush,
Bool ean updat e)

DESCRIPTION

SetThemeWindowBackground is used to set the background color of a win-
dow. This is the actual content color that PaintOne will erase to when called,
and can be different than the actual background color stored in the grafPort
for the window. The color to use is passed in the brush parameter. If update
is true, the window is erased and an update event is generated for the entire
contents.

Drawing Theme-Savvy Primitives

DrawThemeWindowHeader

Call DrawThemeWindowHeader to draw the correct window header for the
current theme.

pascal OSErr DrawTheneW ndowHeader (const Rect* rect,

ThenmeDr awsSt at e
state);

DESCRIPTION

This routine will draw a window header which looks right for the current
theme. The header is the same as that used in the Finder. The state parameter
indicates which state to draw the header in.

DrawThemeWindowListViewHeader

Call DrawThemeFinderListViewHeader to draw the correct window header
for a list view for the current theme.

Do not distribute—A pple Confidential 75

DESCRIPTION

pascal OSErr DrawTheneFi nderLi st Vi ewHeader (const Rect*
rect,

TheneDr aw
State state);

This routine will draw a window header for a list view which looks right for
the current theme. The header is the same as that used in the Finder. The state
parameter indicates which state to draw the header in.

DrawThemePlacard

DESCRIPTION

Call DrawThemePlacard to draw a placard for the current theme.

pascal OSErr DrawThenePl acard(const Rect* rect,

TheneDr awSt at e state
)

This routine will draw a placard which looks right for the current theme. The
state parameter indicates which state to draw the header in.

DrawThemeModelessDialogFrame

DESCRIPTION

Call DrawThemeModelessDialogFrame to draw the right frame for a mode-
less dialog for the current theme.

pascal OSErr DrawTheneMdel essDi al ogFranme (const Rect*
rect,

TheneDr aw
State state);

Do not distribute—A pple Confidential 76

This routine will draw a modeless dialog frame which looks right for the cur-
rent theme. The state parameter indicates which state to draw the frame in.

This call is actually used by the Dialog Manager to draw appearance-savvy

dialogs. It is provided for those developers which implement windows that
act like dialogs without the use of the Dialog Manager.

DrawThemeEditTextFrame

Call DrawThemeEditTextFrame to draw an edit text frame in the current
theme.

pascal OSErr DrawTheneEdit Text Frane(const Rect* rect,

ThenmeDr aw
State state);

DESCRIPTION

This routine will draw an edit text frame which looks right for the current
theme. The state parameter indicates which state to draw the frame in. The
frame is can actually be outset from the rectangle you pass in. In practice, you
would pass the bounding rectangle of your item. This routine would outset
the appropriate amount as specified by the theme and draw the frame.

DrawThemeListBoxFrame

Call DrawThemeListBoxFrame to draw an edit text frame in the current
theme.

pascal OSErr DrawThenelLi st BoxFranme(const Rect* rect,
TheneDrawSt ate state);

DESCRIPTION

This routine will draw a list box frame which looks right for the current
theme. The state parameter indicates which state to draw the frame in. The
frame is can actually be outset from the rectangle you pass in. In practice, you
would pass the bounding rectangle of your item. This routine would outset
the appropriate amount as specified by the theme and draw the frame.

Do not distribute—A pple Confidential 77

DrawThemeFocusRect

Call DrawThemeFocusRect to draw a rectangular generic focus ring around
arectangle.

pascal OSErr DrawTheneFocusRect(const Rect* rect,

Bool ean hasFocus);

DESCRIPTION

This routine will draw a generic focus ring which looks right for the current
theme. The hasFocus parameter indicates whether to draw or erase the ring.
The ring is actually outset from the rectangle you pass in. In practice, you
would pass the bounding rectangle of your item. This routine would outset
the appropriate amount as specified by the theme and draw the ring.

DrawThemePrimaryGroup

Call DrawThemePrimaryGroup to draw the right frame for a primary group
box.

pascal OCSErr DrawThenePrimaryG oup(const Rect* rect,

TheneDr aw
State state);

DESCRIPTION

This routine will draw a primary group frame which looks right for the cur-
rent theme. The state parameter indicates which state to draw the header in.

DrawThemeSecondaryGroup

Call DrawThemeSecondaryGroup to draw the right frame for a secondary
group box.

pascal CSErr DrawTheneSecondaryG oup(const Rect* rect,

ThenmeDr aw

Do not distribute—A pple Confidential 78

State state);

DESCRIPTION
This routine will draw a secondary group frame which looks right for the
current theme. The state parameter indicates which state to draw the header
in.

DrawThemeSeparator
Call DrawThemeSeparator to draw a visual separator for the current theme.
pascal OSErr DrawTheneSeparator(const Rect* rect,

TheneDr aw

State state);

DESCRIPTION

This routine will draw a visual separator which looks right for the current
theme. The state parameter indicates which state to draw the header in. The
orientation of the rect passed in determines whether the line is horizontal or
vertical.

Summary of the Appearance Manager

Constants

enum {

kThemeAct i veDi al ogBackgr oundBr ush =

kThenel nact i veDi al ogBackgr oundBr ush =

kThemeAct i veAl ert Backgr oundBr ush =

kThenel nacti veAl ert Backgr oundBr ush =

kTheneAct i veMbdel essDi al ogBackgr oundBr ush =

kThenel nact i veMbdel essDi al ogBackgr oundBr ush =

kThemeActiveUtilityW ndowBackgroundBrush =

© N o U A W NP

kThenel nacti veUtilityW ndowBackgr oundBr ush =

Do not distribute—A pple Confidential 79

H

kTheneLi st Vi ewSor t Col uimBackgr oundBr ush

kTheneLi st Vi ewBackgr oundBr ush
kThenel conLabel Backgr oundBr ush
kTheneLi st Vi ewSepar at or Br ush
kThemeChasi ngAr r owsBr ush
kThemeDr agHi | i t eBrush
kTheneDocunent W ndowBackgr oundBr ush
kTheneFi nder W ndowBackgr oundBr ush

typedef SInt16 ThenmeBrush;

enum {

kTheneActi veDi al ogText Col or

kThenel nacti veDi al ogText Col or
kThemeAct i veAl ert Text Col or

kThemnel nacti veAl ert Text Col or
kTheneAct i veMbdel essDi al ogText Col or
kThenel nact i veMbdel essDi al ogText Col or
kThemeAct i veW ndowHeader Text Col or
kTherel nact i veW ndowHeader Text Col or
kThemeAct i vePl acar dText Col or
kThemel nact i vePl acar dText Col or
kThemePr essedPl| acar dText Col or
kThemeAct i vePushBut t onText Col or
kThenel nact i vePushBut t onText Col or
kThemePr essedPushBut t onText Col or
kThemeAct i veBevel But t onText Col or
kThenel nact i veBevel But t onText Col or
kThemePr essedBevel But t onText Col or
kThemeAct i vePopupBut t onText Col or
kThenel nact i vePopupBut t onText Col or
kThenePr essedPopupBut t onText Col or
kThemel conLabel Text Col or

kThemneLi st Vi ewText Col or

10,
11,
12,
13,
14,
15,
16

© ©® N o U A W N P

N NN PR R R R R R R R R R
N PO © 0 NS s W DN BEP O

Do not distribute—A pple Confidential 80

H
typedef SInt16 ThemeText Col or;

/* States to draw primtives: disabled, active, and pressed (hilited)
*/

enum {
kThemeSt at eDi sabl ed= 0,
kThemeSt at eActi ve= 1,
kThemeSt at ePressed= 2

H

typedef Ul nt32 ThenmeDr awSt at e;

Routines

Getting Patternsand Colors

pascal OSStatus Set ThenePen(ThenmeBrush brush, SInt16 depth, Bool ean
col or Devi ce);

pascal OSStatus Set TheneBackground(TheneBrush brush, SInt16 depth,
Bool ean col or Devi ce);

pascal OSStatus Set ThenmeText Col or (TheneText Col or col or, SInt16 depth,
Bool ean col or Devi ce);

pascal OSSt atus Set ThemeW ndowBackgr ound(W ndowPt r wi ndow, TheneBr ush
brush, Bool ean update);

Drawing Theme-Savvy Primitives

pascal OSErr DrawTheneW ndowHeader (const Rect* rect, TheneDrawSt ate
state);

pascal OSErr DrawTheneFi nderLi st Vi ewHeader

(const Rect* rect, Thene-
DrawState state);

pascal OSErr DrawThenePl acard(const Rect* rect, TheneDrawState
state);

Do not distribute—A pple Confidential 81

pascal

pascal

pascal

pascal

pascal

pascal

OSEr r

OSEr r

CSEr r

CSEr r

CSEr r

OSEr r

Dr awThenmeModel essDi al ogFr ane

(const Rect* rect, Thene-
DrawState state);

Dr awTheneEdi t Text Frame(const Rect* rect, ThenmeDraw
State state);

Dr awTheneFocusRect (const Rect* rect, Bool ean hasFocus

)

Dr awThenePri maryG oup(const Rect* rect, TheneDrawState
state);

Dr awTheneSecondar yGroup(const Rect* rect, TheneDraw
State state);

Dr awThenmeSepar at or (const Rect* rect, ThenmeDrawState
state);

Do not distribute—A pple Confidential 82

