Graphic Elements:
Designing a High-Performance,
Highly General Graphics Subsystem

Al Evans

Graphic Elements is a highly general graphics subsystem which offers performance on a par with dedicated
“sprite” systems. A Graphic Element is an abstract entity that knows how and where to draw itself on a
computer display, and may (or may not) know how to respond to all possible causes of change in its appear-
ance: the passage of time, contact with another Graphic Element, and direct action by the user. This paper
discusses the design goals set for Graphic Elements, the design decisions made on the basis of those goals, and
the insights gained by the author in the process of implementing those decisions in the real world of current

microcomputers.
1 — Introduction

During the first fifteen years of the history of micro-
computers, all systems for doing high-performance
graphics were “compromised” in one way or another. On
the Apple ][, odd and even pixels were of different colors.
On the Apple ///, you could accomplish limited anima-
tion by dynamically changing character sets. On the early
PCs, with their plethora of video cards and modes, the
bus was so slow that it was often better to keep a copy of
the screen in RAM, compare the new pixels to the old,
and send out only the ones that had actually changed.

memory was slowed by the necessity of sharing access
with the video-display hardware. The first generation of
color Macintoshes did not improve the situation greatly
— although we now had 256 colors, lack of memory and
slow bus speeds limited us to the same kinds of ap-
proaches we had used on the older black-and-white
machines.

Finally, in 1991, there was the Macintosh / /si. It
shipped at a reasonable price — less than I spent for my
first Apple ][ — with 5 megabytes of RAM and an 80-meg
drive. Although its video RAM was not fast, at least its
speed wasn’t limited by being out on a slow bus. To me,

PROCEDURE CopyBits(srcBits,
node:

dstBits:
| NTEGER, maskRgn:

CopyBits Made Graphics Programming FUN!!

Bi t Map; srcRect, dstRect:

RgnHandl e) ;

Rect ;

In 1983 and 1984, Apple’s Lisa, and later the Macintosh,
offered the first glimmer of hope. From the viewpoint of
the application program, their video buffers looked like
arrays of contiguous pixels, and they came with a fast
built-in CopyBits procedure which was guaranteed to
work the same on every machine. Today, these features
seem trivial — but back then, they were victories worth
celebrating.

And we did celebrate — with MacPaint and MacDraw,
with many changes of font, size, and style, with
PageMaker, Dark Castle, Déja Vu, and my own Cap’n
Magneto.

But there were still severe limitations. Pixels could be
either black or white. Although CopyBits made it easy to
use offscreen bitmaps, there was practically no space to
store an offscreen image — only 80K of heap space in the
original Macintosh. Even writing directly to screen

this was an indication that Apple was beginning to
recognize the importance of fast video displays, and that
the use of high-performance interactive graphics would
soon become a day-to-day reality for large numbers of
people.

There are two basic kinds of high-performance interac-
tive graphics engines. The first kind is like a camera and
projector. The “camera” constructs each frame, and the
“projector” transfers it to the monitor screen. All 3D
modelling and “walkaround” engines, everything which
is “Doom-like”, is of this kind. In these engines, there is
an implicit assumption that everything changes on every
frame. Thus there is little to be gained by keeping track
of exactly which pixels will change in the next frame, and
efforts to enhance performance must concentrate on
speeding up the modeler and renderer which construct

Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem —1-1



the frames and the blitter which transfers them to the
screen.

The second kind of graphics engine is more like a
machine for cel animation. In cel animation, there is a
background which normally remains stationary, and one
or more layers of “cels” containing individual graphics
which are overlaid on the background to construct each
frame. Animation is obtained by changing the image on
and/or the position of one of the cel layers. A computer
engine performing this kind of animation benefits, of
course, from fast routines for constructing its frames and
transferring them to the screen. But in addition, it can
and should take advantage of the fact that most pixels
don’t change from one frame to the next.

Graphic Elements began its life as a graphics engine of
this second kind; in the world of microcomputers,
normally called a “sprite engine”. Through a process of
repeated application to real problems and iterative
redesign, it has evolved into a highly flexible tool for
machine-human interaction, the best solution for a large
class of problems in real-world computer graphics.

2 — Design Objectives in Graphic Elements

In this paper, I will pretend that the design of Graphic
Elements sprang forth fully formed, as from the forehead
of Zeus. Of course, this is far from the truth.

&

The truth is that I spent much of my limited spare time
during 1992 testing animation techniques, using Ricardo
Batista’s “Color Sprite Manager” from one of the Apple
Developer CDs as an initial test bed. My first modest
objective was to get eight 32X32 color shapes moving
and animating between a foreground and background
on the / /si. I was convinced that if I could attain this
level of performance without “cheating” on compatibil-
ity and generality, machines capable of running a good
general animation system would be widely available by
the time I could actually finish designing and imple-
menting such a system. By early 1993, I had accom-
plished this objective, and was ready to start working on

“the real thing”.

My spare time in 1993 was devoted to designing,
testing, redesigning and retesting, and to the first use of
my evolving system in actual application programming.
As might be expected, this led to a complete redesign,
from the top down and from the bottom up. This rede-
sign led to the first version of Graphic Elements, and the
APT has remained very stable since late 1993, with only a
few changes in parameters and types, and the addition of
several calls and capabilities. GE is now approaching my
ideal of a “perfect” graphics subsystem, a long-nurtured
image of how an application program, a graphics sub-
system, and a computer ought to interact in a perfect
world.

In such a perfect graphics subsystem, the application
program would tell an individual element of the screen
display what to do, then step out of the way while the
graphic executed its commands. For example, the
application program might say “change frames and
update your position every 30 ms; bounce according to
this rule if you contact a wall; explode and disappear if
you are touched by one of these.” Then the application
program would go off and do whatever else it needed to
do, relying on the individual graphic to maintain the
correct on-screen appearance.

Each individual graphic would know what it needed to

i

know in order to play its part in the application: where it
was at any given moment and how to draw itself, or any
portion of itself that needed to be drawn. In addition, it
would be capable of responding, by itself, to any or all of
the possible causes for a change in its appearance: the
passage of time, contact with another graphic, and direct
action by the user.

In between the application program and the individual
graphic would be a controller, sequencer, and event-
distributor which would know nothing at all about the
application program and very little about the individual
graphics. This module would keep track of time and
memory, would call upon the individual graphics to do

1 - 2 — Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem



Offscreen
Source
Graphic

Exists if element
is based on a bitmap

I Graphic's Data Record I— Subsidary
Hement

Rendering Procedure

Draws graphic on
commands from
Display Controller

| | Bit-copy
Procedure

Periodic Change
Procedure

Called at regular
intervals. Can move,
change frames, etc.

1
Collision Procedure

Called when element
touches another element

Interact Procedure

Action

Called when user presses
Procedure

mouse button in element

whatever needed to be done at a given moment, and
would transfer completed frames to the video hardware.
In addition, it would provide general services — access to
individual graphics, movement routines, and visibility-
control routines — to both the application and the
individual graphics.

3 — Design Decisions

Based on the testing I had done, I began the implemen-
tation of Graphic Elements with a set of design decisions
about its basic operating principles already in place.
Although they are stated separately, all of these decisions
are interdependent — a change in any one of them would
likely lead to a change in the others.

Although it is a system of objects, I chose to write GE in
C (and 68K assembly, where appropriate). The reasons

for this decision were purely practical — C compilers
were more highly-evolved than C++ compilers, and it is
easy to link a C library to an application created with any
compiler. The limited needs of the system for object
subclassing were easy to handle explicitly, by the use of
typedefs, custom creation routines, custom disposal
routines, and function pointers.

The fact that Graphic Elements was intended to be a
completely general system dictated several features of its
design. For example, performance enhancements based
on palette tricks or on requiring certain alignments or
sizes of rectangles to be blitted could not be considered;
neither could tricks like pixel-doubling blitters. Similarly,
I considered it improper for the system to require that the
user be in a certain graphics mode, or to place any
restrictions on the size or location of the GrafPort it was
drawing into. The system had to be able to deal with
whatever graphic environment the application program
handed it.

This intended generality, along with the extreme
difficulty of debugging low-level, high-performance
graphics routines from the level of the application,
dictated the error-handling philosophy of the system.
Stated simply, this philosophy is “when in doubt, do
nothing.” If a routine has (or thinks it has) the data it
needs to perform its function, it will do so. Otherwise, it
will do nothing at all. This approach to error control
works well in the context of a visual-display system ,
where most bugs are immediately obvious, and the ones
that are not are extremely difficult to find.

Offscreen

In its initial incarnation, Graphic Elements would
support only 8-bit graphics in its offscreen operations.
This is a good compromise between versatility, on the one
hand, and speed and memory consumption, on the other.
In brief, the offscreen graphics data space required by an
application using GE is usually between two and four
times the on-screen area, perhaps more if animation is
used extensively. For a 640 X 480 pixel screen, this is
between 600K and 1.2 megs of offscreen memory. The use
of 16- or 32-bit offscreen graphics would double or
quadruple both the memory consumption and the time
spent moving pixels from one place to another.

All graphics would be constructed offscreen, then
blitted on-screen. This design decision simplifies other
parts of the system, particularly the determination of

" This error-handling has been tested more than once, by
the unintentional omission of some or all of the required
graphics from application resources or data files. Except
for the lack of graphics, such applications are completely
functional.

Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem —1-3



I
Program | QuickDraw or Wi
wor indow
Module 1 other “Built-In P on Screen
| Graphics
Names: | T
GRF1 N\W-\. i
GRF2 BZ ahg {
G5 Rl L N
GRF3 (B Ot oo
Graphics Creation I i CENTRAL
Generate Frames
| Handle Mouse o DISPLAY
| | CONTROLLER
Program 3¢
J d Eﬂmmalﬁf
| Module 2 s 3 2 et
| III;J:-"F'M'? o
Names: | / \
I GRF4 | CONTROL
I | / \
I
| Graphics Creation | GRF4
| I | Data | | Data | | Data | | Data |
1 1 1 1
| AII;)EIC_)ISBARQ(I\)/IN | Render | | Render | | Render | | Render |
[ | Optional Optional Optional Optional
R —— Procs Procs Procs Procs

which portions of individual graphics need to be drawn
versus which parts of the final image must be transferred
to the screen. It allows for the easy and “legal” use of
custom blitters for the offscreen image. It eliminates the
necessity of synchronizing to the vertical retrace of the
monitor, which is tricky in terms of code and expensive in
terms of time. And it insures that the “graphics memory”
which is accessed the most is normal DRAM, and thus
cachable.

This use of offscreen memory for all construction also
makes it possible to rely on CopyBits() for all on-screen
display. This brings automatic benefits which far out-
weigh any possible disadvantages — automatic support
of all graphic modes, automatic support of multiple-
monitor systems, and guaranteed compatibility with
future Macintosh systems.

The ”speed cost” of all this generality is difficult to
quantify, and will vary from system to system. However,
on the / /siI was using when I first worked on Graphic
Elements, I determined that if I did all my construction
directly on the screen, the maximum possible time savings
in the overall process was in the neighborhood of 17%.

This number is likely to be much lower — perhaps even
negative — on more modern machines.

4— Some Solutions

During the development of Graphic Elements, I spent
weeks trying to find out what was actually happening, as
compared to what I thought should happen based on the
code I meant to write. The larger the system, and the
more conceptually “asynchronous” it is, the more difficult
and important it becomes to find out what it is really
doing. T'used both active and passive profiling, along
with ad hoc techniques such as histograms showing the
frequencies of times spent animating versus times spent
doing other things in the main event loop. I also wrote
small test applications to apply various extreme sets of
conditions to the system, in order to see where it broke
down.

All profilers tell you where your code is spending its
time. “Active” profilers — such as the ones that come
with Metrowerks” and Symantec’s development environ-
ments — keep track of the number of times a routine is
entered, and the amount of time between entry and exit.

1 - 4 — Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem



“Passive” profilers — such as the one that comes with
MPW — sample the program counter at regular intervals,
and keep track of the number of times they have caught
the processor executing in a given address range. After
the test run, the output of the passive profiler is corre-
lated with a link map and a ROM map for the computer
used in testing, in order to assign routine names to these
address ranges.

Active profilers can tell you precisely how many calls
you make to a routine, and how long that routine takes to
execute. However, code must be inserted, by the com-
piler, at the entry and exit of each routine being profiled.
So they are useless for calls to ROM, to libraries, or to
anything else for which you do not have source code.
The sampling technique used by passive profilers over-
comes this problem. If you have a link map of the library
or a map of the ROM, they can give a very accurate
picture of the relative amounts of time spent in various
operations, even in ToolBox calls. But passive profiling
provides no information on how many times a routine
has been called. Each type of profiling provides data you
can’t get from the other.

When profilers don’t provide enough detail, a simple
Macintosh trick for precise timing of individual routine
calls is to use the Time Manager. If you call PrimeTime()
with a delay specified as a negative number, the Time
Manager works in microseconds instead of milliseconds.
Code like that at the bottom of the page can be used to get
a precise indication of how long it takes to execute an
individual routine.

It is important to be sure the machine is as idle as

possible when testing your code’s performance. File
sharing should be off, no other applications should be
running. There will always be some unknowable amount
of “stolen” time included in your results, but it is reason-
able to assume that this time is spread evenly through
your code.

The many hours spent testing, rewriting, and retesting
led me to several conclusions which had the quality of
“revelations” — they seemed perfectly obvious, but only
AFTER I reached them.

Optimize Algorithms, Not Code

Any high-performance graphics system is going to
spend at least 90% of its total time moving bits from one
place to another. The temptation is strong to spend the
bulk of one’s optimizing time working on low-level
blitter code — and indeed, each machine cycle saved in
the inner loop of a blitter can save thousands of cycles per
frame.

Remember, though, that the absolute number of pixels
which must be transferred increases as the square of the
rectangle bounding those pixels. It is at least equally
fruitful to concentrate on moving the minimum number
of pixels possible. The “revelation” here was that there is
only one time this number can be determined — immedi-
ately before the frame is generated.

In Graphic Elements, any change or movement merely
adds to a list of “dirty” rectangles — rectangular areas of
the image which must be redrawn because of the change.
This list is kept sorted, and rectangles added to it are
merged with rectangles aready on the list according to an

// 30 seconds in
#define thirtySeconds 30L * 1000 * 1000

TMTask aTimeTask;
unsigned long msUsed;

[ Init Timer
aTimeTask.tmAddr = nil;

aTimeTask.tmWakeUp = 0O;
aTimeTask.tmReserved = 0;

/I Start timer, call routine, stop timer

RoutineToBeTimed();
RmvTime((QElemPtr) &aTimeTask);

/I Calculate number of milliseconds used

usec for timer — never time out

PrimeTime((QElemPtr) &aTimeTask, -thirtySeconds);

msUsed = (thirtySeconds + aTimeTask.tmCount) / 1000;

Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem —1-5



algorithm derived from the results of profiling. Immedi-
ately before frame-generation time, this list is compared
against each object to determine what part of that object,
if any, needs to be redrawn on this cycle. The list is re-
used to transfer only those portions of the “world” which
have actually changed to the screen.

This way of doing things has a side-effect which has
sometimes been useful: since no actual drawing is done
when they are called, the basic routines which control
visibility, movement, and frame-changing are all inter-
rupt-safe. The Graphic Elements system supports this by
actually keeping two lists of dirty rectangles, so that the
application can continue making changes to one even
while the other is used to generate a new frame.

Don’t Overlook the Small Things

In looking over the output from my active profiling, I
found several routines which used only fractions of a
percent of the total time, but which were called tens or
hundreds of times as often as the blitting code. These
were essentially routines for doing rectangle arithmetic —
unions, intersections, and offsetting.

The “revelation” here is that, even though such routines
don’t account for much time in the overall scheme of
things, each cycle saved in one of them is worth tens or
hundreds of cycles saved in, for example, the setup
portion of a blitter.

For Graphic Elements, I wrote optimized assembly
versions of all the rectangle-arithmetic routines for the

/|

Dirty

Rectangles

68K (and optimized C versions for the PowerMac). The
savings would have been even greater had I been using
the ToolBox versions of these operations, with their
associated trap overhead.

Memory Allocation Strategies

It was apparent that several kinds of data entities in the

system would need to be allocated and deallocated very
rapidly and kept in lists, some of them ordered. As you
can see from the paragraphs above, rectangles are a good
example of such an entity. In all of my prior work with
the Macintosh, I had left memory management up to the
system. I knew when to lock handles and how to keep
the heap from getting fragmented — but NewHandle()
and NewPointer() had always sufficed for memory
allocation in the software I worked on. Now I needed to
allocate and deallocate hundreds or thousands of rect-
angles a second. Istudied and tested various memory-
management techniques, and decided that the best
approach was to allocate fixed-sized records from a pre-
allocated, pre-linked chunk.

This kind of memory management is perfect when you
have relatively small numbers of same-sized memory
objects that must be allocated and deallocated rapidly. It
is also very simple; a sample implementation is given on
the following pages.

The “revelation” here is that allocating a record in
memory need only take two moves and a clear. If you
need fast dynamic memory allocation, don’t be afraid to
do it yourself.

Graphic Elements makes extensive use of list-handling
routines similar to those shown above, except that they
are expanded to include the allocation and management
of multiple “chunks” of list entries. These routines play
roughly the same role as the use of overridden “new” and
“delete” operators in an object-oriented language.

As I tested the system and began to use it in real
applications, I ran into increasing numbers of situations
where a graphic “grew” some piece of auxiliary data: a
path record, a string, or a mask to be used in animation.
The bookkeeping for these memory allocations began to
get messy. I wanted the application program to be able to
free all memory occupied by an object just by calling
DisposeGrafElement() on it, or to free up a whole world
of elements just by calling DisposeGEWorld(). But now,
the application had to remember what spare parts it had
attached to various Grephic Elements, and dispose of
them as well.

I added fields to the element record to hold pointers to
extra data for use in various parts of its operation, plus a
field for a pointer to a “custom disposal” procedure. If it
exists, this procedure will be called automatically during
the disposal of the element. This mechanism plays the
part of the “virtual destructor” in an object-oriented
system.

The “revelation” here is that the best time to make
provisions for the complete destruction of an object is at
the time of its creation.

The Paradigm-Glitch Test

The most significant of these revelations, though, came

1 - 6 — Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem



I/l Type definitions for managing lists of fixed-size records
typedef struct LMember *LMemberPtr;

typedef struct LMember {

LMemberPtr next;
long data; // Dummy data field
} LMember;

typedef struct LHeader *LHeaderPtr;

typedef struct LHeader {

LMemberPtr listHead;

LMemberPtr free;

short entrySize; // Actual size of data field
} LHeader;

I/l Code to implement list of fixed-size records

/I Link entire list, starting at firstEntry
void ChainList(Ptr firstEntry, short entrySize, short nEntries)

{
short elemCount;
Ptr currElem, nextElem;
currElem = firstEntry;
for (elemCount = 1; elemCount < nEntries; elemCount++) {
nextElem = currElem + entrySize;
((LMemberPtr) currElem)->next = (LMemberPtr) nextElem;
currElem = nextElem;
}
((LMemberPtr) currElem)->next = nil;
}

/I Allocate memory for header and list
Il Place all list members on “free” chain
LHeaderPtr InitList(short chunkSize, short entrySize)

{
LHeaderPtr hdr;
hdr = (LHeaderPtr) NewPtrClear(chunkSize * entrySize + sizeof(LHeader));
if (!hdr) return nil;
hdr->entrySize = entrySize;
hdr->listHead = nil;
hdr->free = (LMemberPtr) (((Ptr) hdr) + sizeof(LHeader));
ChainList((Ptr) hdr->free, entrySize, chunkSize);
return hdr;
}

Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem —1-7



/I Return next free list entry
LMemberPtr AllocateEntry(LHeaderPtr thisList)

{
LMemberPtr freeEntry = thisList->free;
if (freeEntry) {
thisList->free = freeEntry->next;
freeEntry->next = nil;
return (freeEntry);
}

/I Delete entry “thisMember” and move it to free list

{

LMemberPtr aMember, prevMember = nil;

if (thisList->listHead == thisMember)
thisList->listHead = thisMember->next;
else {
aMember = thisList->listHead;
while (aMember = thisMember) {
prevMember = aMember;
aMember = aMember->next;

}

prevMember->next = thisMember->next;

}

thisMember->next = thisList->free;
thisList->free = thisMember;

}

void DeleteEntry(LHeaderPtr thisList, LMemberPtr thisMember)

from one of those simple but perverse cases that seems to
arise in any software system, no matter how well de-
signed and implemented Take, for example, the case of
two small balls bouncing over a background. As I
described above, during frame generation the rectangles
made “dirty” by the movement of these balls will be
compared to the rectangle of the background, to deter-
mine the minimum portion of the background which
must be redrawn on this cycle.

But suppose one ball is in the upper left corner of the
scene, and the other is in the lower right? Then, regard-
less of how small the balls themselves are, the “minimum
portion” of the background to be redrawn will be the
whole thing. I considered several possible solutions to
this problem, ranging in quality from ungainly to down-
right ugly.

The “correct” answer was already there, latent in the
system’s design. First, for memory conservation, GE
loads the actual bits of a graphic only once, regardless of
how many elements use these bits. Second, in order to
handle some common forms of animation, there is a
facility for chaining groups of elements together so that
they can be manipulated by the application program as a
single entity. AllThad to do was write a new kind of

Graphic Element which would take height and width
specifications for the rectangles of a grid, then create an
appropriate number of elements from the same graphic
and chain them together. In this way, the “invalidations”
caused by the two balls would only affect each other
when the balls were close together.

The revelation here was that if you design a software
system well, there will be ways of using the system you
never imagined when you were building it. Sufficient
generality can be used to patch cracks in the paradigm.

The corollary is equally important: when you find a
well-designed system, don’t hesitate to imagine uses for it
that the designers never intended. Two good examples in
the Graphic Elements system are the “grabber” element
and the QuickTime movie element .

The Grabber Graphic Element

One of the possible causes for a change in the appear-
ance of a graphic on the display is the user’s interaction
with the graphic. The system supports this in a very

¥ Complete source code for both of these, as well as the
rectangle-grid element described above, are included in
the Graphic Elements release.

1 - 8 — Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem



The worldRect

notation).

routine (with invalidate

world has handled the click.

void DisposeGEWorld(GEWorldPtr world);

are called as required.

API Overview — Managing GEWorlds
A new GEWorld capable of holding Graphic Elements is created by the following display controller call:

GEWorldPtr NewGEWorld(GrafPtr worldPort, Rect *worldRect,
Fixed scale, CTabHandle worldColors);

and scale parameters determine the position and size of the GEWorld within worldPort
Briefly, if the world has a certain position and size in a GrafPort at scaleOneToOne (0x00010000), it will have the
same relative position and size, in a GrafPort half the size of the original, at a scale of 0x00008000 (0.5 in fixed-point

After creating and populating a GEWorld, the application makes contact with the display controller at only a few points:
void DoWorldUpdate(GEWorldPtr world, Boolean invalidate);

This is called every time through the main event loop (with invalidate
true) to keep the world’s onscreen representation up to date.

Boolean MouseDownInSensor(GEWorldPtr world, Point gMousePt);

This is called from the “in content” part of the application’s mouse click handler. It returns true if an element in the

When it is completely finished with a GEWorld, the application program calls:

This destroys a world and everything in it, freeing all memory. Custom dispose procedures of individual elements

false) and from the application’s draw

general way: any element can be assigned a “sensor
rectangle”, a tracking procedure, and an action proce-
dure. When the mouse button goes down, the applica-
tion program calls MouseDownInSensor() from its event-
handling code. The system looks through its list of
registered active rectangles, and dispatches the event to
the “topmost” element which handles mouse events in
that location, if any. That element’s tracking procedure
then takes over for as long as the mouse button is
pressed, and calls the element’s action procedure as
appropriate.

But GE itself makes no assumptions about what such a
sensor-type element might do. To the system, it is just an
element like any other. Because of this generality, it was
possible — and even easy — to write a Graphic Element
which has as its sole function the on-screen manipulation
of other elements.

This “grabber” is, essentially, a sensor-type element
which covers the entire “world” at the “topmost” level
when it is active. When the user presses the mouse
button and its tracking procedure is called, it searches for
an element under the current mouse position. If it finds
such an element, the grabber “captures” it and moves it
to follow the mouse for as long as the button is held
down. When the grabber has captured another element,
its rendering procedure draws a rectangle around that
element. Otherwise, it does nothing.

QuickTime Movie as a “Sprite”

Apple’s QuickTime is an excellent example of a “well-
designed system”. Although its API is optimized to make
it easy for the application programmer to play back
digital-video movies, QuickTime and parts of QuickTime
can be used for many purposes at a variety of different
granularities.

When I heard that a then-future version of QuickTime
would support “sprite-like” graphics in QuickTime
movies, I accepted the challenge of adopting QuickTime
movies into the Graphic Elements system. Because of the
generality of the design paradigms of both systems, this
proved to be almost trivial — a hundred lines of C code,
including blanks and comments, with only two small
hacks.

The first was due to the fact that QuickTime ignores the
clip region of a GrafPort, so the visible region of the port
was manipulated explicitly to get the fastest update times
possible (calling SetMovieDisplayClipRegion() was much
slower). This is necessary because, as a Graphic Element,
the movie may well have to be drawn more often than
once per frame.

The second hack was required in order to be certain
that changes in the screen position of the movie were
passed on to QuickTime. The current top-left point of the
movie element’s location is saved in an extra field in its
record, and the element’s autochange procedure com-
pares its current location to this field on each iteration. If

Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem —1-9



it has moved, the autochange procedure calls
SetMovieBox() for the new location and updates the field.
The result is a fully functional Graphic Element that is
also a fully functional QuickTime movie, with only the
inevitable constraints due to the fact that it is being
“displayed” in an 8-bit graphics environment and the fact
that it must be copied one extra time to reach the screen.

5— The Animation Cycle

After all the elements used by an application program
have been initialized, the system connects to the main line
of the application’s code at only three points. When the
user clicks the mouse in a window containing a GEWorld,
the application calls MouseDownInSensor() to allow
active elements in that world to handle the mouse click.
As described above, MouseDownlInSensor() dispatches
the mouse click to the topmost element having a sensor
rectangle which contains the mouse point.

Everything else except incrementing the world’s timer
(which is done from an interrupt-level task) happens
when the application program calls DoWorldUpdate().
The program calls this function to redraw the whole
world in response to update events, and “as often as
possible” — normally once each time through its event
loop — to allow the GE system to handle time-based and
graphics tasks.

DoWorldUpdate() begins by performing a “reality

check” — unless the world has been invalidated, or the
world is active and the last update was more than a
millisecond ago, it just returns. This is done to avoid
useless processing — the minimum time granularity in
Graphic Elements is 4ms, and the minimum time interval
that is actually “useful” in computer graphics is around
15ms.

If these tests are passed and the world is not being
drawn due to an update event, each element which has
an “AutoChange” procedure (and for which the interval
between changes has passed) is called to perform its
periodic action. Of course, these actions can result in
collisions, which can result in other actions, and so on.
But as mentioned above, the only actual effects of these
actions at this point are changes to the elements’ internal
states and changes in a list of rectangles. So this
AutoChange processing is relatively fast.

After processing changes due to the passage of time,
DoWorldUpdate() checks the world’s timer again, to see
whether it is time to generate another frame onscreen.
Each world can have its own “minimum time between
frames” value.

If it is time to generate a new frame, DoWorldUpdate()
swaps the world’s two rectangle lists, so that possible
changes generated by interrupt tasks can continue while
it is drawing. Then it intersects each rectangle on the
world’s “redraw” list with the “screen” rectangle of each

to an element’s fields.

Basic visibility control.

times useful).

Set element’s front-to-back position.

API Overview — Universal Services

The display controller provides services to the application, to the individual elements, or to any other software entity with
access to a GEWorld pointer. These are services that deal with elements in their global context, as parts of a world, and can be
used with any type of element, regardless of how it is constructed or rendered, or of what it does.

GrafEIPtr FindElementBylID(GEWorldPtr world, OSType objectID);

Although elements are generally managed by reference to their IDs, this function returns a pointer for direct access

void ShowElement(GEWorldPtr world, OSType elementID, Boolean showilt);

void MoveElement(GEWorldPtr world, OSType elementID, short dh, short dv);
void MoveElementTo(GEWorldPtr world, OSType elementID, short h, short v);
void PtrMoveElement(GEWorldPtr world, GrafEIPtr element, short dh, short dv);

void PtrMoveElementTo(GEWorldPtr world, GrafEIPtr element,
short h, short v, Boolean doScale);

Basic movement. The “Ptr” versions are for cases, such as an element’s AutoChange procedure, where a pointer to
the element is already available. The doScale parameter in the last call determines whether the h and v param-
eters are scaled to the world (the normal case), or whether they are interpreted as absolute pixel positions (some-

void SetElementPlane(GEWorldPtr world, OSType elementID, short newPlane);

1 - 10 — Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem




change in its appearance:

Set up element for periodic action.

Set up element to react to contact with other elements.

Set up element to react to mouse clicks.

API Overview — Setting Up the Action

The display controller provides services used to set up an individual Graphic Element to respond to the possible causes for a

void SetAutoChange(GEWorldPtr world, OSType elementiD,
AutoChangeProc changeProc, Ptr changeData, short changelntrvl);

void SetCollision(GEWorldPtr world, OSType elementiD,
CollisionProc collideProc, short collidePlane);

void AddSensorToList(GEWorldPtr world, OSType id, Rect *sensorRect);
void RemoveSensorFromList(GEWorldPtr world, OSType id);

void SetSensorAction(GEWorldPtr world, OSType sensorID,
SensorAction newAction);

void SetCleanupProc(GEWorldPtr world, OSType elementID,
CleanupProc elemCleanup);

Set a function which will be called when the element is destroyed.

element in the world. The result — or rather, the union of
all the results — is stored in each element’s “draw
rectangle”. At the end of this operation, the system
knows exactly what portions of all elements must be
drawn in order to refresh the display for each rectangle
on the list.

DoWorldUpdate() then calls the rendering procedure of
each of these elements, in order from back to front. The
graphics environment has been set so that each element
will draw itself into the world’s offscreen “stage”
GWorld.

Finally, DoWorldUpdate() copies each rectangle from
the list from offscreen to onscreen, resulting in an up-
dated frame on the display.

6— Conclusion

Graphic Elements began as a system to cover 90% of all
needs for high-performance computer graphics, without
requiring any special graphics knowledge on the part of
the application programmer. On one hand, this results in
limitations — the system will probably be slower, or less
memory-efficient, that a graphics system designed
specifically for a given application. On the other, the
generality of Graphic Elements leads to new possibilities.

For example, one of the most interesting elements
created so far represents the musical score in a music
education program. Each score page is constructed
offscreen from a display list, shown onscreen, and the
notes on it are highlighted as the music is played via

MIDI or digital sound. The score is interactive, and
allows the user to set a selection on the page or across
multiple pages with the mouse. This kind of functional-
ity is easy to obtain with Graphic Elements, and very
difficult with a simple “sprite system”.

This generality, in particular the clear distinction
between the display controller and the individual graph-
ics, also makes Graphic Elements easy to adapt to new
environments. GE worlds are easy to “wrap” in screen
savers or in the views or panes of any application frame-
work. Further, GE’s paradigm is meant to be easy to
implement in any OS meeting certain minimal require-
ments. It has already been ported to Windows 95 and
BeOS, and source code written using the standard
elements provided with Graphic Elements will compile
and execute the same way in all three systems.

Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem —1-11




API Overview — A Typical Graphic Element

The simplest Graphic Elementcan be created with a single call from the application. It can then be completely “forgotten” by the
application, if it is something like a background or piece of scenery.

A more typical and interesting element type is the frame-sequence graphic (FSG), a standard animation based on two or more
PICTs, considered as a series of frames. Here is the API for the standard frame-sequence graphic included in the system:

GrafEIPtr NewAnimatedGraphic(GEWorldPtr world, OSType id, short plane,
short resNum, short mode, short xPos, short yPos, short nFrames);

Create a new frame-sequence graphic from a series of nFrames PICT resources starting at resNum.

typedef enum { singleframe=0,
reciprocating,
loop,
oneshotvanish,
oneshotstop,
oneshotloop} AnimSequence;

The types of animation that can be applied automatically to the standard FSG. “One shot” animations are very
common in actual applications, and the last three types cover their variations: disappear at end of animation, stop at
end of animation, go from beginning to end to beginning and stop in original position.

void AnimateGraphic(GEWorldPtr world, OSType elementiD,
short interval, AnimSequence sequence);

The application calls AnimateGraphic() to start one of the built-in animation sequences. The sequence then
proceeds automatically.

void SetAnimDirection(GEWorldPtr world, OSType elementID, Boolean forward);
FSGs can be run from frame 1 to frame nFrames, or from frame nFrames down to frame 1.

void SetMirroring(GEWorldPtr world, OSType elementlD,
Boolean mirrorH, Boolean mirrorV);

FSGs can be mirrored left-for-right and / or top-for-bottom.

power pivot’

— = — =

1 - 12 — Graphic Elements: Designing a High-Performance, Highly-General Graphics Subsystem



