
Old Possum’s Book of Practical Objects

by Shane D. Looker

Object-oriented programming has been promoted as a way to increase code reusability,
code reliability, and get your socks whiter. The potential is there, but nobody seems to
be sharing or selling classes that are truly reusable. In this paper, several small but
powerful C++ base objects are described that can be taken and used as is, or, by
overriding a few methods extended to fit a specific need in a product. Design
techniques are development benefits are discussed. Classes shown are a FIFO queue, a
simple binary tree class, a Boyer-Moore search object, and a keyword class.

Object-oriented programming has been
promoted as a way to increase code reusability,
code reliability, and get your socks whiter. The
potential is there, but nobody seems to be sharing
or selling classes that are truly reusable. Brad
Cox expounded the concept of the Software IC
back in the mid-1980’s. The Software IC is a
standard object that can be taken off the shelf
and plugged into new code with no changes. It can
be extended to meet a specific need, but the core is
unchanged. It is a good idea, but I haven’t seen it
actually applied, at least not in the Macintosh
world. The closest that I have seen are the class
libraries such as MacApp or TCL which have
only a few reusable classes which are not totally
dependent on the entire class library.

One of the goals of this paper is to actually
publish classes that are reusable in practical
situations. Hopefully this will save you
development time and give you more time to work
on pieces of code that are unique to your program.

Making It Reusable

What is a reusable object, or more correctly
a reusable class? It is a core class that can be used
in multiple projects for different purposes without
needing modification. The class is structured in
such a way that internal data is not specific to a
given purpose, and can be changed by overriding
the internal data creation methods. The converse
of the “what is” question is often easier to answer
and can be used to identify non-reusable classes.
Let’s examine properties of a class that prevent it
from being reusable.

First: Is the class tied to a particular
project? This often can be seen by inspecting the
instance variables and methods of a class. Do
they have names that reflect a particular project,
or structures in a project? This is a warning flag
that reusability was not stressed during the
coding phase of the class, and perhaps not during
the design phase.

Second: Is the class inflexible? Is it written
in such a way that behaviors can’t be overridden

to change or add functionality? For instance, are
assumptions made about major internal data
structures, so they can’t be easily changed?

Third: Are data members and methods
declared as private? Doing so prevents access
and/or overrides from child classes, causing
either new accessor methods to be written in the
parent class, or changing the items to protected
instead. (Protected is my preferred way to handle
this, since it maintains the data hiding from the
instantiating code, but allows legitimate
descendants access to important internal
structures.)

Snippet 1 illustrates both the second and third
problems. By making a few simple changes (as
seen in Snippet 2), the class can be converted into
a reusable class.

Snippet 1 makes a number of assumptions
that prevent the code from being reused. (Yes,
this is blatant. It’s an example.) The data buffer
can only hold 2 byte values. The buffer is always
stored in a Pointer. The method
CreateTheBuffer() can’t be overridden by any
child class (both private and non-virtual). All in
all, it works great for storing 2 byte values in the
heap somewhere, but it can’t be extended to do
anything beyond that. What if, for instance, the
values being stored were a list of used sectors on a
disk? If the file system changes (say to support

more than 64K sectors per disk) the values to be
stored might need to be changed to 4 byte integers.
The entire class would need to be modified,
possibly leading to hours of debugging when one
of the internal assumptions is missed during the
code changes.

Now consider Snippet 2. If this object were
used to hold 2-byte integers, a new sub-class could
be created by overriding CreateTheBuffer(),
GetBufferPoint(), and the constructor (to set
fItemSize). The code for AddNewItem() and
GetAnItem() would have been written to use
GetBufferPoint() when an index was needed,
so the only further change required (regarding
this object) would be to change the object
instantiation to use the new child class instead of
NewBufferedData.

It is assumed in this object that all items
being inserted into the buffer are of the same size.
Without this assumption, the underlying code
would be much more complex.

There are two primary arguments against
the code in Snippet 2: It avoids type checking
which is very useful when writing code and you

Page 2 Old Possum’s Book of Practical Objects

class BufferedData
{

Ptr fDataBuffer;
long fItemCount;

public:
… // Constructors, etc.

AddNewItem(short anItem);
short GetAnItem(void);

private:
Ptr CreateTheBuffer(

long defaultItemCount);
};

Snippet 1 – Non-Reusable Object

class NewBufferedData
{

void* fDataBuffer;
long fItemCount;
long fItemSize;

public:
… // Constructors, etc.

void AddNewItem(void* anItemPtr);
void GetAnItem(void* outItemPtr);
long GetBufferItemSize(void);

protected:
virtual void* CreateTheBuffer(

long defaultItemCount);

virtual void* GetBufferPoint(
long whichItem);

long GetBufferItemSize(void);
};

Snippet 2 – Reusable Object

also end up having to coerce data from one format
to another. Both of these concerns can be
addressed when writing a descendant class. The
type checking can be moved into the new child
class by overloading the methods AddNewItem()
and GetAnItem() to accept the data of the
correct type for that class. This also allows the
actual data coercion to be hidden inside the child
class.

The benefits of the code for
NewBufferedData far outweigh the two
arguments against using it, in my opinion. With
minimal effort, I can now create a buffer for any
data type, store and retrieve that data at will,
and even change the storage from a pointer to a
handle if I want, all in a simple override.

Arguments can be made both for and against
flexibility. On one hand, flexibility is usually
useful at some point of an objects lifespan. On the
other hand, flexibility adds complexity which
usually results in slower execution and more
implementation and debugging effort. A balance
will often need to be struck when designing and
implementing a reusable class.

Digging In

Since the requirements for a good reusable
base class are fairly simple, we should look at
several classes that are useful to keep around.
While not every project needs any one of these
classes, they do come in handy from time to time.

A FIFO Queue

The first item I want to discuss is a FIFO
(First In, First Out) queue. This is a basic element
in computer science which is pretty useful. Items
are added to the end of the queue, and are only
accessed/removed from the front of the queue
(hence first in, first out).

There are a few restrictions on this object
which allow it to be kept very simple. Since this
isn’t a general purpose queue, there are no
accessors for arbitrary queue elements. More
importantly, every element of the queue must be

the same size. Snippet 3 shows the class
definition for this queue.1

While a simple queue is actually
conceptually easy to write, there are added
considerations to make it flexible and reusable.
There are also a few items about the actual code
for this object which should be discussed.

I have actually written two separate
classes for FIFO queuing. The first (shown here)
depends on using a handle to store the queue. The
second (not shown) added the flexibility to
override the standard queue behavior of using a
handle for the data storage. This class is the
simpler and for most purposes the more practical
to use, since it doesn’t have the added overhead
needed for flexible storage. It simply uses a
handle that can be extended on demand. It also
doesn’t shrink the handle unless the queue is
forced empty by a call to EmptyQueue().

Notice that even though you will probably
never need to override this class, most of the
functionality is defined in virtual methods. Also
protected has been used for the one internal
function that doesn’t need to be referenced
directly by the user of this class.

The data handling internally uses the
toolbox function ::BlockMoveData to shift data
around, which is extremely inefficient for small
data blocks. This is partially offset by the
ability to tell the object that the data is the size
of a long (for Handles, Pointers, or just plain
integer values) so they an be directly
manipulated.

While this object is very simple, it can be
used in multiple ways. In drag and drop
applications I often use this class to hold the list
of files to be processed. If you had a multiply
threaded application, different classes of
threads could be given different priorities, which
each priority level having its own task queue.
The actual data supplied to the object is flexible,
1 The headers shown here will usually be
condensed from the full header. Full source code
for the objects described in this paper will be
available on the MacHack ’96 CD-ROM.

Old Possum’s Book of Practical Objects Page 3

but the queue behavior is integral to the class.

A Binary Tree Object

Now let’s take a look at the second object I
want to present: a binary tree. Binary trees are
simple and have been used for years. So why do
people reimplement them so often when they go
to write code? Because other versions of their
binary trees are usually tied to specific data
structures. The non-object version of a binary tree
usually uses a structure to hold the data for each
node of the tree. It might look like:

struct BinaryNode {
long key;
Ptr someData;
BinaryNode *leftNode, *rightNode;

} BinaryNode;

The key and data for the node are tied into
the full structure and are not easily separated.

Binary trees are also often implemented
procedurally using recursive functions. A basic
binary tree is just a collection of nodes (objects)
that are linked to peers of the same type. Each
node can have up to two children and a single
parent. The node is defined as containing some
sort of key value and data associated with that
key. Normally the key value is used to determine
the insertion location. The key value must be
unique with the tree.

We can now take a quick look at the
functionality we might want from a binary tree:

• Flexible key and data types
• Insert and delete nodes
• Find a node based on a key
• Tree traversal (in order, reverse order)
• Node count
• Maximum tree depth

There are also a few advanced functions we
might want:

• Balancing of the tree
• Finding a key based on data

Most of the implementation of a binary tree
is straightforward and easy to implement. By
doing the implementation using a reusable object,
we gain greater flexibility. The important point
is to note that the key and data for any given tree
are the only items that are not determined when
the object is written. Simple default behaviors
can be put in the base class (instead of making
this a pure virtual class), and to customize the
code for a project, only two methods must be
overridden. Those two methods are the
comparison methods CompareToNodeKey() and
CompareToNodeData(). Once those are
overridden, any new type of data can be tested for
insertion or searching.

In this class I’ve decided to take the easy
way out and make the key (fNodeKey) and data
(fNodeData) of type void*, letting me put
arbitrary data or pointers or even up to 4 bytes of
raw data (another abuse of C++) into each.

One last detail of the design is whether
any arbitrary node within the tree represents the
entire tree, or whether a node can be considered
the independent root of it’s own subtree. Since
each key is required to be unique (in the basic tree
object), I have decided that each node must be
able to represent the entire tree. This means I can
tell any node to insert the new data into the tree,
and it will insert in the correct spot for the entire
tree. This is very useful, since it means I can use
any node available as my entry to the tree, not
just the root of the tree.

In the header file included with this paper
you might note that most methods are declared as
virtual, even though there will probably never
been a need to override them. While this does
generate slightly slower code (an additional
branch instruction to the method code), it may
make it slightly easier to adapt the class for
other purposes.

Boyer-Moore Search Object

Boyer-Moore is a nice, fast searching
algorithm for finding one string within another.
It depends on the ability to back-up in the search

Page 4 Old Possum’s Book of Practical Objects

string and restart a search, which means it is best
suited for data contained completely in memory.
Boyer-Moore works by comparing a search string
against a target string, working from left to right
for the overall search, but comparing bytes in a
right to left fashion working from the last
character of the search string. If the characters
being compared don’t match, the target string
pointer is advanced by a distance defined in an
internal skip table (based on the search string)
and comparing begins again.2

With additional work, it would be possible

2 R. Sedgewick, Algorithms in C, Addison-
Wesley, Reading, MA, 1990

to read data from a file, backing up if necessary
by resetting the file pointer and reading again.
As you will see from this object, with proper
overriding, this can be done, although the results
may be less than satisfactory.

The primary data used in the Boyer-Moore
search are a search string, and the data to search
in. Both of these need to be supplied to the object.
Internally, it builds the required search table,
and can start searching from any arbitrary offset
into the data.

From the implementation perspective, this
object shows how to mask the real data type

Old Possum’s Book of Practical Objects Page 5

class CQueue
{

Handle fQueueHead;
long fQueueMaxElements;
long fQueueElements;
long fQueueElementSize;
Boolean fOnlyLongs; // This flag means we are cheating and taking the

// void* from AddElement as a long, not a pointer to
// data. This can make us MUCH faster for Ptrs, etc.

Boolean fAutoExpand; // Can we grow the queue on need?

public:
CQueue(Boolean autoExpand = true, Boolean onlyLongs = false);
CQueue(long elementSize, long maxElements = kDefaultQueueSize,

Boolean autoExpand = true, Boolean onlyLongs = false);
virtual ~CQueue(void);

// SetMaxQueueSize could return an error (-108, or QueueTooBig)
OSErr SetMaxQueueSize(long maxElements);
long GetMaxQueueSize(void);

long GetQueueElementSize(void);

// these functions return FALSE if they failed in some way.
// GetFrontElement could fail if the queue is empty.
virtual Boolean AddElement(void *theData);
virtual Boolean GetFrontElement(void* theData);
virtual void EmptyQueue(void);

long GetQueueLength(void);

protected:
virtual void AddOneElementToQueue(void *theData);

};
Snippet 3 – CQueue Class Definition

being supplied by a child class. It uses two
overrideable methods (PrepareSearchData()
and CleanupSearchData()) to setup the
addressability of the text to be searched. The
data search area is limited to a long (2
Gigabytes) which should not be a major
limitation for the foreseeable future.

Conversely, this object is built in such a
way that it can’t search for a target string more
than 256 characters long. To implement that
change would require updating the internal skip
table to a larger data type (currently unsigned
char), and redefining the way the search string is
stored (currently an array of unsigned char.)
Changing this would require either dynamic
storage for the search string, or a reduction in the
flexibility of data types which can be fed into
this search object, due to the requirement that the
caller hold the data for the object. (Not to
mention the fact that the purpose of an object is to
hide implementation details from the caller.)

I have also added one other feature to this
search object, the ability to be case insensitive.
By setting this flag, all comparisons on data are
done after calling tolower (from the standard
ANSI library) on the data. The side effect of
this is that only ANSI text can be compared. A
more correct way to handle this is to move the
comparison of the two characters into a separate
method which returns a Boolean result.

The reason I have chosen not to do this is
because of the extremely high overhead such a
call would create. I also don’t want to use an
inline method, since that would defeat the entire
purpose of creating a separate method.

Designing an Object–Keywords

Although many of you reading this paper
already are familiar with designing an object and
coding it, I thought it would be a good exercise to
follow the thought/design process I used for this
final reusable class.

I have had occasion in the past to want an
easy way to attach keywords to objects, but I’ve

never gotten around to writing a consistent way to
do it. Last year I actually had to write a keyword
object for an image browser. They class worked,
but because of the structure of the project and time
deadlines, the classes I wrote were not as flexible
as they could have been.

The original solution I wrote dealt with
keywords for a collection of images. Images were
collected in albums, and albums could have child
albums. A fair amount of work was done to map
keywords from different albums to the same
keyword in a master list. There was also some
code that is best left undescribed due to some of
the internal document structures.

Now I have taken the lessons I learned and
created a fairly easy to use class that allows
arbitrary keywords to be maintained in a single
object (multiple instantiations can hold multiple
lists, of course) with user defined references
attached to each keyword. I’ve also supplied
methods for searching they keyword list by
keyword or by reference information. These
methods were not integral to my original solution
and caused extra work during the building of the
search engine.

The initial design process I tend to use is an
internal dialog: I answer internal questions about
the functionality of a class and how it is
implemented as the questions occur to me. The
questions usually follow from the previous
answer, so there is a natural progression and
refinement to the class which happens before I
actually start to even write the header. What
follows is a compressed version of my internal
dialog.

One final point before my discussion: By the
time I write a reusable class, I have already
either thought about or written a different
version of the class. As a result, I am not starting
with an entirely clean slate. This can give a good
boost to the design process, since pitfalls of
previous code are known and can hopefully be
avoided.

Page 6 Old Possum’s Book of Practical Objects

The Dialog

What should the object do? It should hold
keywords that can be attached to other objects or
items. I should also be able to search for anything
that uses a given keyword.

How can you search for uses of a keyword?
Each keyword should have a reference to
anything that uses that keyword.

What is that reference? Undetermined. It
could be a pointer, or a handle, or some user-
defined token.

So how do you define a token? It should be
at least a long word of storage. In the past I’ve
needed more than a single long though, so let’s
assume that at least two longs of data are going to
be used.

How long can a keyword be? Virtually
unlimited would be nice. It should be able to at
least be as long as a Str255.

How do I identify a keyword? Each
keyword should have a unique token that can be
used to find the text of the keyword and any
references it holds. I also need to be able to find a
keyword by name.

How do I want to store the keywords? I
could store each keyword in its own storage block,
but that would take a lot of Handles or Pointers,
and that would slow down the Memory Manager
if I had a lot of keywords. If I used something
like malloc(), I would still need to keep track of
the address for each one. I could cluster blocks
into large blocks and then link those larger blocks
together for easy indexing.

How do I prevent wasting a lot of storage if
the keyword is short? Don’t assume a fixed
length for keyword storage. Try using basic blocks
that can be extended. Then I could use multiple
storage blocks for longer keywords.3
3 This is where implementing something
previously helps. I had already successfully used
this technique in a previous implementation.

 How do I generate an ID for each keyword?
Easy, the ID is the addressing mode to get to the
start of the keyword.

If I delete a keyword, should I compress the
structures to remove the hole? No. If you do that,
all the IDs that have been assigned will get
screwed up. That would be bad if some of the
references are stored in a file somewhere.

If I delete a keyword what happens to the
ID? Well, the block holding the keyword will be
freed. It could be reassigned, so make sure to use
the references for the keyword to remove all
traces of it first.

How are references stored? I could attach
the references to each keyword, but then I am
back to the major problem of having a lot of
handles, or whatever, to keep track of and
possible slogging through thousands of multiple
handle de-references to search through the
references.

Starting the Code

At this point I have the basic idea for the
class laid out on in front of me with some major
implementation details left. As I code this class,
further things may cause me to reexamine some of
my decisions, but for now I think they are sound.

At this point, it looks like there may be a
fair amount of work to making this class work
properly, especially the references. Why not just
write a class for what I need and not bother? The
reason it is useful to write this flexibly, is that
the next time I need to do something similar, I
don’t want to have to start from scratch, or take
the time to modify and debug a different version
of the code. Also, with a common piece of source
code, any bugs only need to be fixed once. Code
changes don’t have to be propagated to five or ten
different projects with the possibility that a new
bug is introduced in any of those projects. I think
you would agree that this could make life much
easier.

Old Possum’s Book of Practical Objects Page 7

Implementation Details

Now we need to turn our attention to the
implementation details. How do long keywords
get stored efficiently and as cleanly as possible?
How are references stored? And how do I search
for items using this object?

There are two major portions to the object,
the actual data storage, and the data searching.
Attempting to pre-allocate enough storage for all
the keywords can lead to grabbing large amounts
of memory at once, which may not be needed.
Conversely, storing each item individually leads
to excessive use of pointers or handles. It is
possible to allocate each keyword from a block
using malloc() or new(), but again, that leads
to a large number of pointers that must be
maintained. Instead I elected to create “pages” of
keywords. Each page consists of header
information and data in much the same way that
virtual memory uses pages. In this
implementation I’ve chosen to allocate keyword
pages as Handles so they can be moved in memory
when they are not directly in use.

Keyword storage is a trade-off between
allocating each storage chunks dynamically, and
allocating fixed storage sizes. The fixed sizes
allow much faster indexing through the
keywords, but we don’t want to waste too much
space with unused data storage. As a compromise,
I have used a storage blocked essentially defined
as:

struct {
short blockCount;
short length;
char keywordData[28];

} KeywordHolder;

If a keyword is more than 28 characters
(defined as an enum in the real header file) then
they keyword will take the next KeywordHolder
in the list and use the entire structure (all 32
bytes) to contain the remainder of the keyword.
Of course, of more than two blocks are required,
they are used.

They keywords themselves can be up to
32763 characters, although keywords that long
are considered bad form. (In the default
implementation, there are 100 keywords, with a
keyword block size of 32 bytes, per page, and the
header on a keyword block is 4 bytes.)

Keywords can be referenced by ID, with the
first keyword having an ID of 1. Keywords are
not necessarily assigned in sequential order, since
deletion of a keyword can leave a reusable hole
inside the data page that may be reused
(depending on the flag settings). While this may
seem inefficient with memory, or more
complicated to maintain, it is very important
since it leave keywords static over a save and
restore cycle. This means that an object can
maintain a simple keyword reference without
fear of the keyword ID becoming invalid.

Keywords can also be searched for entire or
partial matches. The CKeywords class uses an
instance of the BoyerMoore object to search an
entire block quickly and efficiently for the named
keyword.

Keyword References

Each keyword can also have multiple
references associated with it. The associations
are one or more longs which are stored internally
and can be used as a link from the keyword to all
objects which use that keyword. When the
CKeywords object is instantiated, the number of
longs used to make a single association is one of
the optional parameters (the default value is 1
long). When a keyword reference is added a
pointer to an array of longs is passed in.

The references are also stored in pages for
searching and indexing. The pages allow minimal
wasted storage while giving some flexibility to
the memory requirements of the references.

Searching

Searching for the keywords is done through
use of the BoyerMoore object described above. It
allows for partial matches on keywords, or on

Page 8 Old Possum’s Book of Practical Objects

entire keywords. References can also be searched
to find all keywords attached to a given object.

Source Code

The full headers for these object is fairly
extensive and will not fit in the space limitations
for this paper. The headers and the source code
for the objects described in this paper can be found
on the MacHack ’96 CD-ROM.

Summary

While the objects shown in this paper are
all fairly straightforward, they have the useful
property of being reusable. They can be taken off
the shelf and used in a program with little or no
changes required. The advantages of this are
obvious, but during development, most code
written is still designed with a one-shot
approach: make it work well enough for today
and don’t worry about tomorrow.

Unfortunately, tomorrow we often have to
use a slight variation of the code from yesterday,
but we forget how the old code was written, or it
is just different enough that the old code isn’t
usable. If we take a little extra time to plan
ahead today, we can save ourselves time in the
future. As the saying goes “There’s never enough
time to do a job right, but there is always time to
do it over.”

It is past time for us to use the power of the
tools at our disposal to do the job right the first
time. Using simple techniques when we design
objects, we can make tools that are more than just
adequate for today, but actually useful next week
as well. By asking what we want to accomplish,
whether what we are writing actually
accomplishes our goal, and whether it can be
extended for other uses in the future we can save
time and effort.

If we don’t, we will still be reinventing the
wheel every time we start a new project.

Old Possum’s Book of Practical Objects Page 9

