
ObjectProDSP Developer's Reference

PRELIMINARY

Paul P. Budnik Jr. Phd.

Internet: support@MTNMATH.COM

September 1994

c

 1994 Mountain Math Software

All rights reserved

`.dvi' �le created September 16, 1994

�

�

�

�

�E

E

E�

�

�

�

�E

E

E

E

E

E

�

�

�

�

�E

E

E�

�

�

�

�E

E

E

E

E

E

Math

Mountain

Software

P. O. Box 2124, Saratoga, CA 95070

Fax or voice (408) 353-3989

Published by Mountain Math Software, P. O. Box 2124, Saratoga, CA 95070.

Copyright

c

 1994 by Mountain Math Software. All rights reserved.

Permission is granted to make and distribute verbatim copies of this manual

provided the copyright notice and this permission notice are preserved on all

copies.

Permission is granted to copy and distribute modi�ed versions of this manual

under the conditions for verbatim copying, provided also that the sections

entitled \GNU General Public License" and \Licensing" are included exactly

as in the original, and provided that the entire resulting derived work is

distributed under the terms of a permission notice identical to this one, and

provided the derived work is clearly identi�ed as a derived work and not

solely the creation of either the orignal authors or the authors of the derived

work.

Permission is granted to copy and distribute translations of this manual into

another language, under the above conditions for modi�ed versions, except

that the sections entitled \GNU General Public License" and \Licensing",

and this permission notice, may be included in translations approved by

Mountain Math Software instead of in the original English. Translations of

the section entitled \GNU General Public License" must also be approved

by the Free Software Foundation which owns the copyright to that text.

Licensing

ObjectProDSP

TM

is licensed for free use and distribution under version 2

of the GNU General Public License. See Appendix A for the full text of

this license. There is absolutely no warranty for ObjectProDSP under this

license. ObjectProDSP is a trademark of Mountain Math Software.

You are free to use and distribute ObjectProDSP under the terms of version

2 of the GNU General Public License. Please note that none of the Object-

ProDSP system is licensed for use under the GNU Library General Public

License. The Gnu General Public License allows you to distribute executables

or librarys linked with or created by ObjectProDSP only if you make all the

source code used to create the librarys or executables (other than standard

librarys that are part of a compiler or operating system) freely available.

Please read the license in Appendix A for the full legal explanation of these

conditions.

Mountain Math Software plans to o�er, for a fee, a commercial version that

will allow you to distribute executables generated with ObjectProDSP under

standard commercial terms.

If you wish to extend ObjectProDSP you can distribute your code with Ob-

jectProDSP under the terms of the GNU General Public License. If you

include an appropriate copyright notice in your name for your upgrades then

no one, including Mountain Math Software, will be able to distribute your

code under any terms other than the GNU General Public License without

your permission.

If you �nd ObjectProDSP useful in a commercial environment you are asked

to consider purchasing a support contract. This is not shareware and you are

under no obligation to do so but you will gain aceess to direct support from

Mountain Math Software and you will make a contribution to the continued

success of ObjectProDSP and thus to any of your endeavors that bene�t from

it.

If you are interrested in a custom port of ObjectProDSP to directly support

your company's DSP development board or processor please contact us.

Mountain Math Software

P. O. Box 2124

Saratoga, CA 95070

Internet: support@MTNMATH.COM

Fax or voice (408) 353-3989

Documentation

� ObjectProDSP Overview and Tutorial This gives a general description

of ObjectProDSP's purpose and function. It includes several tutorial

examples. There are appendices on the DSP node and class library and

Mountain Math Software.

� ObjectProDSP User's Reference This describes the user interface and

DSP++, a C++ based language for DSP. (You do not need to known

DSP++ or C++ to use ObjectProDSP. DSP++ statements are generated

for you when you graphically enter a network or execute menu data base

commands.) This document includes a reference manual for the menu

data base. Appendixes contain a synopsis of menu data base commands

and a general index.

� ObjectProDSP Library Reference This gives a detailed description of

ObjectProDSP interactive objects including DSP processing nodes.

� ObjectProDSP Developer's Reference This is the document you are

reading. This tells how to write DSP processing nodes and add them to

ObjectProDSP. It describes ObjectPro++

TM

, an extended C++ language

for de�ning interactive objects for DSP or other applications. It explains

how to modify the part of the menu data base that does not come from

interactive object de�nitions in ObjectPro++. It describes how to update

the ObjectProDSP manuals to include your new nodes and objects.

Information about these objects is extracted from your de�nitions by

ObjectPro++ and added to the manuals.

ObjectProDSP and ObjectPro++ are trademarks of Mountain Math Software.

Contents

Licensing iii

Documentation v

List of �gures xi

List of tables xiii

1 Creating nodes with ObjectPro++ 1

1.1 ObjectPro++ class de�nition : : : : : : : : : : : : : : : 1

1.2 Placing a node in the data base : : : : : : : : : : : : : 6

1.3 Simpli�ed node syntax : : : : : : : : : : : : : : : : : : 7

1.4 Base classes : 8

1.4.1 Base constructor : : : : : : : : : : : : : : : : 8

1.4.2 Inherited member functions : : : : : : : : : : 11

1.5 Data stream description : : : : : : : : : : : : : : : : : 17

2 Member objects and functions 19

2.1 Interactive member functions : : : : : : : : : : : : : : 19

2.2 Parameter checking : 20

3 Node semantics 21

3.1 Node kernel : 21

3.1.1 Node timing : : : : : : : : : : : : : : : : : : : 22

3.1.2 Emitting the state : : : : : : : : : : : : : : : 22

3.2 Node destructor : 25

3.3 Check if node is deletable : : : : : : : : : : : : : : : : 25

3.4 Interactive code : 26

3.5 Stand alone target code : : : : : : : : : : : : : : : : : 26

3.6 Preinitialized target code : : : : : : : : : : : : : : : : : 27

3.7 Target arithmetic : 27

4 Integrating a new node 28

4.1 Integration with the menu data base : : : : : : : : : : 28

4.2 Integrating with the documentation : : : : : : : : : : : 29

4.3 Integrating a node into ObjectProDSP : : : : : : : : : 29

4.4 Removing a node from ObjectProDSP : : : : : : : : : 30

5 Modifying the menu data base 33

5.1 Menu data base menus : : : : : : : : : : : : : : : : : : 33

5.2 Menu items : 33

5.3 Help �les : 35

5.4 Menu quali�ers : 35

5.5 Simpli�ed menu syntax : : : : : : : : : : : : : : : : : : 36

5.6 Writing menu action code : : : : : : : : : : : : : : : : 36

5.7 Examples menu and action parameters : : : : : : : : : 36

5.8 Menus generated by ObjectPro++ : : : : : : : : : : : : 39

5.9 Menus documented at the top level : : : : : : : : : : : 42

6 Updating the documentation 45

6.1 Help �les : 45

6.1.1 Makefile to process help �les : : : : : : : : : 45

6.1.2 Help �le format : : : : : : : : : : : : : : : : : 46

6.2 Overview and tutorial : : : : : : : : : : : : : : : : : : 49

6.3 Library manual : 49

6.4 User's manual : 50

6.5 Developers manual : 50

7 Building ObjectProDSP and makemake 53

7.1 Project description : 53

7.2 Building ObjectProDSP : : : : : : : : : : : : : : : : : 61

7.3 Validation : 62

7.3.1 ObjectProDSP directory structure : : : : : : 62

7.3.2 Validation : 62

8 Regression tests 65

8.1 Running and creating regression tests : : : : : : : : : : 66

8.2 Regression tests created with TargetValidate : : : : : 66

8.3 Writing and reading a �le in di�erent tests : : : : : : : 67

8.4 Byte by byte comparison �les : : : : : : : : : : : : : : 67

8.5 Documenting tests : 68

8.6 Creating base line test data : : : : : : : : : : : : : : : 69

8.7 Make many mistakes in recording your test : : : : : : : 69

Appendixes 71

A GNU GENERAL PUBLIC LICENSE A{1

References B{1

Index C{1

List of Figures

1 ObjectPro++ example program (part 1 of 3) : : : : : : : : : : 3

2 ObjectPro++ example program (part 2 of 3) : : : : : : : : : : 4

3 ObjectPro++ example program (part 3 of 3) : : : : : : : : : : 5

4 ObjectPro++ node syntax : 9

5 ArithTypes class for data stream arithmetic types : : : : : : : 18

6 Declaring an interactive array parameter : : : : : : : : : : : : 20

7 Data access routines, also see Table 11 : : : : : : : : : : : : : 23

8 First part of the de�nition of the main menu : : : : : : : : : : 34

9 Menu data base syntax : 37

10 `Example networks' menu tree de�nition : : : : : : : : : : : : 40

11 First part of ConstantDatamenus generated by ObjectPro++ 41

12 Last part of ConstantData menus generated by ObjectPro++ : 43

13 Example gro� help �le : 47

14 L

A

T

E

X �le generated from gro� �le : : : : : : : : : : : : : : : : 48

15 makemake command line options (part 1 of 5) : : : : : : : : : 54

16 makemake command line options (part 2 of 5) : : : : : : : : : 55

17 makemake command line options (part 3 of 5) : : : : : : : : : 56

18 makemake command line options (part 4 of 5) : : : : : : : : : 57

19 makemake command line options (part 5 of 5) : : : : : : : : : 58

List of Tables

1 Files generated by ObjectPro++ from a `.usr' �le : : : : : : : 1

2 ObjectPro++ include options : : : : : : : : : : : : : : : : : : : 2

3 ObjectPro++ data types : 5

4 Symbols in ObjectPro++ syntax : : : : : : : : : : : : : : : : : 10

5 ObjectPro++ base classes : 11

6 ObjectPro++ base class parameters : : : : : : : : : : : : : : : 12

7 ObjectPro++ base class constructor parameters (part 1 of 4) : 13

8 ObjectPro++ base class constructor parameters (part 2 of 4) : 14

9 ObjectPro++ base class constructor parameters (part 3 of 4) : 15

10 ObjectPro++ base class constructor parameters (part 4 of 4) : 16

11 Data access routines, also see Figure 7 : : : : : : : : : : : : : 24

12 Groups of classes for placement in data base : : : : : : : : : : 28

13 Directories to place new nodes in : : : : : : : : : : : : : : : : 30

14 Files created by mknode (with makemake options) from name.usr 31

15 Symbols in ObjectPro++ syntax : : : : : : : : : : : : : : : : : 38

16 Lists of help �les : 45

17 Where nodes are documented : : : : : : : : : : : : : : : : : : 49

18 Source �les used as examples in this manual : : : : : : : : : : 51

19 Directories for creating documentation : : : : : : : : : : : : : 60

20 Directories for creating interactive libraries and executables : : 60

21 Directories for creating target libraries : : : : : : : : : : : : : 61

22 Directories for creating utilities : : : : : : : : : : : : : : : : : 61

23 Top level ObjectProDSP directory structure : : : : : : : : : : 63

24 User interface changes that break and do not break validation 65

1

File Purpose Section Page

xxx.h Interactive C++ header 3.4 26

xxx.C Interactive C++ �le 3.4 26

target/xxx.h Target C++ header 3.5 26

target/xxx.C Target C++ �le 3.5 26

tex/xxx.tex Node library documentation 3.5 26

texs/xxx.tex Node summary documentation 4.2 29

menus/nodes/xxx.nod Menu data base 4.1 28

xxxI.h Data base initialization 4.1 28

xxx.s Text for spelling checker 4.1 28

Table 1: Files generated by ObjectPro++ from a `.usr' �le

1 Creating nodes with ObjectPro++

ObjectPro++ translates a single `.usr' �le into two pairs of C++ `.h' and `.C'

�les and additional �les for documentation and to support integration with

the menu data base. The complete list of these �les and the sections that

describe them are in Table 1 on page 1.

We will describe the syntax of the input �le, discuss the semantics and explain

how to integrate a node into ObjectProDSP.

1.1 ObjectPro++ class de�nition

Figure 1 on page 3 shows a sample DSP node de�nition in ObjectPro++. First

are `include' statements. There are several types of `include' statements that

refer to di�erent points in the multiple �les that will be generated. These

are listed in Table 2 on page 2.

There is then a declaration of the constructor for this class that includes

documentation. The class name is followed by a parenthesized list of param-

eter descriptions. These descriptions have three elements. First is a line that

gives the parameter type, default value and bounds. The allowed types are

2 1. CREATING NODES WITH ObjectPro++

Name File Interactive Target Before standard includes

Cinclude `.C' yes yes yes

Hinclude `.h' yes yes yes

cinclude `.C' yes yes no

hinclude `.h' yes yes no

ICinclude `.C' yes no yes

IHinclude `.h' yes no yes

Icinclude `.C' yes no no

Ihinclude `.h' yes no no

TCinclude `.C' no yes yes

THinclude `.h' no yes yes

Tcinclude `.C' no yes no

Thinclude `.h' no yes no

Table 2: ObjectPro++ include options

given in Table 3 on page 5. The key words Min and Max designate the largest

and smallest values for a given data type.

Any ObjectPro++ class can be the type of a parameter. The syntax for this

and for type string is di�erent from that for numeric values. Only the

default and not the bounds are relevant for these data types. The default for

a string can be 0 to represent a null pointer.

Either or both of two key words can precede the data type. Changeable

indicates that the parameter can be modi�ed after the constructor is called.

An entry in the menu for the object instance under set to change the value

is generated for each Changeable parameter. FirstDefault indicates that

this variable and all subsequent variables can be assigned default values when

the constructor is typed in. (The menu data base create default option

assigns all default parameters without regard to FirstDefault.)

Following the parameter and bounds check is a MenuLine this gives a brief

synopsis of the parameter. This synopsis will appear in the menu data base

above the buttons when the cursor is positioned over the button for this

parameter. This line will be used in the printed documentation to provide

1.1 ObjectPro++ class de�nition 3

#cinclude "ObjProComGui/cgidbg.h"

#cinclude "ObjProGui/yacintfc.h"

Block (int16 ElementSize : 1 <= 2 <= MAX

MenuLine {output element size}

Description {

$ElementSize is the number of words in each output sample

(1 for real, 2 for complex or larger for other purposes).},

FirstDefault int16 BlockSize : 1 <= 1 <= MAX

MenuLine {output block size}

Description {

$BlockSize is the number of samples in each output block. If

set to 1 the output is not blocked.},

int16 OutputArithmetic : 0 <= 0 <= 2

MenuLine {output data: 0 - MachWord, 1 - int32, 2 - float}

Description {

$Block can read data from any input arithmetic type.

$OutputArithmetic selects the output arithmetic type. On a

32 bit simulator $Block can write output as either 32 bit

floating point or 32 bit fixed point. Choose 0 to write

output in the default type of the simulator, 1 for 32 bit

integers and 2 for 32 bit floating point.}

): public ProcessNodeStr(STREAM_IN = new StreamStr(

SizeVariable,SizeVariable,ArithType::ArithCapabilityAny),

STREAM_OUT= new StreamStr(ElementSize,BlockSize,

(OutputArithmetic == 2 ? ArithType::ArithFloat :

(OutputArithmetic == 1 ? ArithType::ArithInt32 :

ArithType::ArithTypeUndefined

)

)

)

);

Figure 1: ObjectPro++ example program (part 1 of 3)

4 1. CREATING NODES WITH ObjectPro++

Class {

enum convert_type {undefined,no_conversion, float_to_int,

int_to_float} ;

#ifdef INTERACTIVE

int InitAfterLinked();

void input_linked(int in_channel);

void static_ctor();

#endif

void ctor();

ErrCode kernel(int32 k);

};

StaticDeclare {

int the_convert_type ;

}

StaticInit {

static_ctor();

}

Constructor {

ctor();

}

Figure 2: ObjectPro++ example program (part 2 of 3)

1.1 ObjectPro++ class de�nition 5

MenuLine {Converts an input stream to a new blocking and sample size}

Description {

$Block converts its input stream to an output stream with

$ElementSize words per sample and $BlockSize samples per block.

The sample size and block size of the input data stream are

ignored. The stream is treated as if it were an unblocked real

data stream. On a 32 bit simulator $Block can convert an

integer or floating point input channel to floating point or

integer output. If overflow occurs in converting integer to

floating point the result will saturate and no warning message

will be given. Some nodes that read disk files only generate

a real data stream. If such a node is used to read complex data

$Block can do the needed transformation. If a node is used to

read FFT output from another process you can use $BlockSize

to structure the data so it will be plotted correctly with one

FFT window per plot. If $BlockSize is 1 the output is not blocked. }

HelpFile block

Kernel {

return kernel(k);

}

Figure 3: ObjectPro++ example program (part 3 of 3)

Name De�nition

int16 16 bit integers

int32 32 bit integers

MachWord native machine word of simulator

double double precision
oating point

string character string

class any ObjectPro++ object in class

Table 3: ObjectPro++ data types

6 1. CREATING NODES WITH ObjectPro++

a brief description of the parameter. Next is an optional Description that

provides a more complete description of the parameter. This description

will appear in the ObjectProDSP information window whenever the mouse

button is pressed in a button representing this parameter. This description

will also be used in the printed documentation.

After the parenthesis that closes the parameter list there is `: public' fol-

lowed by a base class constructor. There must always be a base class to tie

this node into the existing ObjectProDSP class structure. Table 5 on page 11

gives the base classes ordinarily used for DSP objects. It is possible to de�ne

base classes with `.usr' �les but all base classes must ultimately be built on

classes prede�ned within ObjectProDSP that do not have a `.usr' �le. The

bottom of this hierarchy is class UserEntity which is common to all interac-

tive objects. There are seemingly redundant base classes in Table 5 ending

with su�x `Str'. These refer to di�erent methods of de�ning parameters in

the base class. Those that end it `Str' should be used. The others are for

backwards compatibility with nodes that have not been updated. Currently

the BlockPlot and Plot classes are redundant since all plot nodes support

blocked and unblocked data. Eventually some specialized plotting routines

may not support blocked data.

Following the base class name are the parameters for the base class construc-

tor. These are not assigned in position order as they are in C++ but are

assigned by name. There are defaults for all options. Only those for which

the defaults are incorrect need to be assigned. The allowed names di�er with

di�erent base classes, The base classes are described in Section 1.4 on page

8.

Next is a MenuLine for the node. This is like the MenuLine for each parameter

but it describes the node.

1.2 Placing a node in the data base

The key word MenuLine may be followed by the name of a menu (de�ned

in opd.menu described in Section 5 on page 33) to connect this node to

the menu data base. If this is not present the node will be added to menu

DspNodesMenu (or another standard menu as determined by the optional

1.3 Simpli�ed node syntax 7

InteractiveEntityList option described in Table 4.1 on page 28). This

also controls where the node will be documented in the printed manuals.

The text of the MenuLine is followed by a Description of the class which is

similar to the Description of a parameter,

Next is an optional line that gives a HelpFile for the class. This �le will

appear in a separate window when the right mouse button is released with

the cursor over the button for this class. See Section 6.1 on page 45 for

information on preparing and integrating help �les.

Following this are a number of optional sections and one mandatory section.

The mandatory section is the Kernel which contains the code to implement

the kernel processing.

Unless the code for the node is short you may want to use include or addi-

tional `.C' �les for most of the kernel and initialization code. The mandatory

Kernel section can call another subroutine that does the processing. The

best choice is usually to use `.C' �les. The directory in which the `.usr' �le

occurs is only used for interactive code and not for target code. Any `.C' �le

that is common to both should be paced in the subdirectory common under

the directory containing the `.usr' �le. If you use header �les they should

be put in directory

$OPD ROOT/src/include/ObjProDSPcom

and referenced as "ObjProDSPcom/�le name.

1.3 Simpli�ed node syntax

Figure 4 on page 9 gives a simpli�ed yacc (or bison) syntax for a node.

The rules are in alphabetical order. The top level symbol is DfNode. Lit-

eral terminal symbols are in typewriter font and enclosed in single quotes.

Standard terminal symbols like integer are in italicized font. If a rule ends

with `j' it can be reduced to the null symbol.

Table 4 on page 10 gives a brief explanation for each nonterminal symbol

and references for some. The full yacc (or bison) syntax is in �le

$OPD ROOT/src/util/mknode/mknod b.y.

8 1. CREATING NODES WITH ObjectPro++

Note some constructs in the full syntax are for future expansion (such

as TargetDesignator) and others are obsolete but retained for backwards

compatibility.

1.4 Base classes

Base classes in ObjectPro++ function like and are implemented with base

classes in C++. The concept is extended to provide interactive member func-

tions which are shared by all nodes with a common base class. Multiple

inheritance is not supported for interactive functions but can be used for

C++ only constructs. The base classes and their purpose are in Table 5 on

page 11. This table also lists the parent class and the header �le that de�nes

the class. These header �les are in directory

$OPD ROOT/src/include/ObjProDSPint/ObjProUsr

(for base classes de�ned with a `.usr' �le) and

$OPD ROOT/src/include/ObjProGui/ObjProNet

(for base classes de�ned directly in C++). The .usr' for the base class (if it

exists) will be in some directory under $OPD ROOT/src/dsp or

$OPD ROOT/src/dsp/dsp gui.

1.4.1 Base constructor

The base class constructor parameters determine the number of input and

output channels (IN and OUT) the type of data on these channels (STREAM IN

and STREAM OUT) and the amount of output data generated for a given

amount of input data (NODE DELAY, DELTA IN, DELTA OUT and OVERLAP) and

other properties such as the node timing. The use of these values to do

process scheduling are described in ObjectProDSP User's Reference[2] in the

`Data
ow model' subsection of the chapter on `The DSP++ language".

Additional constructor parameters are for special classes of nodes such as

those for plotting.

The parameters used in each base class are in Table 5 on page 11. The pa-

rameters are described in alphabetical order in Table 6 on page 12 along with

1.4 Base classes 9

BaseDescription : `BaseDescription' `{' text of description `}'

Body : StateEmit Timing Kernel Instances

Comment : `//' text to end of line

Cpp : `{' C++ code `}'

Ctor : `Constructor' Cpp

Declaration : ReferencedNameList DeclarationCode j DeclarationCode

DeclarationCode : `Class' Cpp `;'

DefaultList : NumParmValue j `f' NumberList `g'

Description : MenuLine FullDescription HelpFile

j MenuLine FullDescription

DfNode : Header NodeDescription Body j Header

DfNodeCtor : BaseDfNodeCtor `,' OtherBaseList j BaseDfNodeCtor j

Dtor : `Destructor' Cpp

FullDescription : `Description' `{' text of description `}'

Header : Includes ClassName NodeName Parameters HeaderEnd

HeaderEnd : Declaration StaticDeclare StaticInit Ctor Dtor Safe

Help : `HelpDefaultFile' string

Instance : Name '(' ConstantList ')' InstanceDescription

InstanceDescription : Description j

Instances : Instances `Instance' Instance ';' j `NoDefaultInstance' ';' j

InteractiveClass : `InteractiveEntityList' name `;'

Kernel : `Kernel' Cpp

Member : type MemberName `(' ParameterList `)' `Wait' Description `;'

MemberHelp : Member j Help

MenuLine : `MenuLine' `f' text of description `g'

NodeDescription : Description j BaseDescription

NodeDescription : InteractiveClass DfNode j DfNode

Parameter :

type Name `:' ParamValue `<=' ParmValue `<=' ParmValue Description j

type Name `:' ParmValue Description j

type Name Size `:' ParmValue `<=' DefaultList `<=' ParmValue

ParameterAndCheck : `FirstDefault' Parameter j

`FirstDefault' Parameter CheckParameter' Cpp

ParameterList : ParameterAndCheck j ParameterList `,' ParameterAndCheck j

Parameters : `(' ParameterList `)' DfNodeCtor `;'

ReferencedNameList : ReferencedNameList MemberHelp j MemberHelp

Safe : `SafeDelete' Cpp

Size : `[' integer `]' j `[' integer `-' integer `]' j

StateEmit : `StateEmit' Cpp

Timing : `Timing' Cpp j `Timing' `(' Name `,' Name `)' Cpp j

`Timing' `(' `,' Name `)' Cpp j `Timing' `(' Name `,' `)' Cpp j

Figure 4: ObjectPro++ node syntax

10 1. CREATING NODES WITH ObjectPro++

Symbol Meaning Section Page

BaseDfNodeCtor constructor for primary base function

BaseDescription describes the purpose of a base class

Body parts needed only for an executable node

Comment C++ style comments can end any line

Cpp C++ code delimited with `f' and `g'

Ctor Ctor constructor code

Declaration constructor and base class

DeclarationCode C++ class declarations 2 19

Default marks �rst default 1.1 2

DefaultList default values for an array parameter

DfNode node de�nition

DfNodeCtor base and member constructors

Dtor destructor code 3.2 25

FullDescription long description of a construct

Header �rst part of node de�nition

Help default help �le 6.1 45

Includes include �les 1.1 1

InteractiveClass class of classes for node 4.1 28

Kernel kernel code 3.1 21

MemberName member function name

Member member object or function 2 19

MenuLine synopsis of object, parameter or function

NodeDescription documentation of node

NodeName class name of node being de�ned

NumParamValue numeric parameter value

NumberList list of numbers separated by a `,'

OtherBaseList member or base function constructor

ParamValue numeric (or enum parameter value

Parameter name, limits and documentation

ParameterAndCheck full parameter de�nition 2.2 20

ParameterList for constructor or member function

Parameters constructor parameters and base

Safe code to test if node can be deleted 3.3 25

Size allowed size of array parameter

StateEmit emit state code 3.1.2 22

StaticDeclare members to preinitialize 3.6 27

StaticInit target preinitialization 3.6 27

Timing code for timing 3.1.1 22

Wait suspends user input until complete

Table 4: Symbols in ObjectPro++ syntax

1.4 Base classes 11

Base class Used for Parent header �le

BufferDescript bu�ering UserEntity buffer.h

DfNode all DSP nodes TargetNode dfnode.h

DisplayNode plotting DisplayNodeStr display.h

DisplayNodeStr DSP output Node dsplstr.h

GenericBlockPlot two dimensional plotting GenericPlot blockplt.h

GenericBlockPlotStr plotting GenericPlotStr blkpltstr.h

GenericPlot plotting GenericPlotStr genplot.h

GenericPlotStr plotting PlotNode gpltstr.h

Miscellaneous miscellaneous UserEntity miscel.h

NetControl network control UserEntity netcnt.h

NetworkSystem network systems Miscellaneous netsys.h

Node all DSP nodes DfNode node.h

PlotNode plotting DisplayNodeStr plotnd.h

ProcessNet networks UserEntity network.h

ProcessNode DSP processing ProcessNodeStr procnode.h

ProcessNodeStr DSP processing Node procstr.h

Signal DSP signals SignalStr sigbase.h

SignalStr DSP signals Node signode.h

Table 5: ObjectPro++ base classes

their type, default value and bounds. For most parameters these character-

istics are the same for every base class that uses the parameter. If this is

not true the parameter entry is repeated for each base class that uses the pa-

rameter. These contain the name of the class and the limits and defaults for

that class. If there is no class name then the entry applys to all base classes

that use the parameter. The table is split both horizontally and vertically

into several parts across pages.

1.4.2 Inherited member functions

Base class constructors de�ne the generic characteristics of a node and also

determine what common interactive member functions they inherit. Separate

12 1. CREATING NODES WITH ObjectPro++

Base class Constructor parameters

BufferDescript SIZE TYPE

DfNode DELAY IN DELTA IN DELTA OUT IN NODE DELAY OUT

OVERLAP STREAM IN STREAM OUT TIMING TYPE

DisplayNode ARITH TYPE IN BLOCK SIZE DELTA IN

ELEMENT SIZE IN TIMING TYPE

DisplayNodeStr DELTA IN IN STREAM IN TIMING TYPE

GenericBlockPlot BLOCK SIZE CAPTION ELEMENT SIZE MAXIMUM X

MAXIMUM Y MINIMUM X MINIMUM Y NUMBER BLOCKS

SCALE FLAG TIMING TYPE

GenericBlockPlotStr CAPTION DYNAMIC TYPE MAXIMUM X MAXIMUM Y

MINIMUM X MINIMUM Y NUMBER BLOCKS

SCALE FLAG STREAM IN TIMING TYPE

GenericPlot BLOCK SIZE CAPTION ELEMENT SIZE IN MAXIMUM X

MAXIMUM Y MINIMUM X MINIMUM Y NUMBER BLOCKS

PLOTTING STREAM TYPE SCALE FLAG

TIMING TYPE XY SAMPLES PER PLOT

GenericPlotStr CAPTION DYNAMIC TYPE IN MAXIMUM X MAXIMUM Y

MINIMUM X MINIMUM Y NUMBER BLOCKS

PLOTTING STREAM TYPE SCALE FLAG STREAM IN

TIMING TYPE XY SAMPLES PER PLOT

Miscellaneous

NetControl NETWORK

NetworkSystem

Node DELAY IN DELTA IN DELTA OUT IN NODE DELAY OUT

OVERLAP STREAM IN STREAM OUT TIMING TYPE

PlotNode IN SCALE FLAG STREAM IN TIMING TYPE

ProcessNet

ProcessNode ARITH TYPE IN ARITH TYPE OUT BLOCK SIZE

DELAY IN DELTA IN DELTA OUT ELEMENT SIZE

ELEMENT SIZE OUT IN NODE DELAY OUT OVERLAP

TIMING TYPE

ProcessNodeStr DELAY IN DELTA IN DELTA OUT IN NODE DELAY OUT

OVERLAP STREAM IN STREAM OUT TIMING TYPE

Signal ARITH TYPE OUT BLOCK SIZE DELTA OUT

ELEMENT SIZE OUT TIMING TYPE

SignalStr DELTA OUT OUT STREAM OUT TIMING TYPE

Table 6: ObjectPro++ base class parameters

1.4 Base classes 13

Parameter Description Class

ARITH TYPE IN input arithmetic type

1

ARITH TYPE OUT output arithmetic type

1

BLOCK SIZE number of samples in a block

CAPTION plot or listing caption

DELAY IN not used

DELTA IN input samples for DELTA OUT outputs

DELTA OUT output samples for DELTA IN inputs

2

DYNAMIC TYPE �xed or dynamic input data type

ELEMENT SIZE input sample size in words

ELEMENT SIZE OUT output sample size in words

IN number of input channels

MAXIMUM X maximum X plot value

3

GenericBlockPlot

MAXIMUM X maximum X plot value

3

GenericBlockPlotStr

MAXIMUM X maximum X plot value

3

GenericPlot

MAXIMUM X maximum X plot value

3

GenericPlotStr

MAXIMUM Y maximum Y plot value

3

MINIMUM X minimum X plot value

3

GenericBlockPlot

MINIMUM X minimum X plot value

3

GenericBlockPlotStr

MINIMUM X minimum X plot value

3

GenericPlot

MINIMUM X minimum X plot value

3

GenericPlotStr

MINIMUM Y minimum Y plot value

3

NETWORK class ProcessNet

NODE DELAY sampless generated with no input

NUMBER BLOCKS number of blocks in one display

4

GenericBlockPlot

NUMBER BLOCKS number of blocks in one display

4

GenericBlockPlotStr

Table 7: ObjectPro++ base class constructor parameters (part 1 of 4)

1

The arithmetic types are given in Table 3.7 on page 27. The default and Min enum values

are pre�xed with ArithType. This was removed to save space in the table.

2

DELTA OUT is used to set the output link parameter IncrementOut. Sorry!

3

Ordinarily plots are dynamically scaled and these limits are set to allow this.

4

The current plotting nodes either �x the number of samples in a plot at the block size or

allow the user to change the number of samples if the data is not blocked.In some cases

these can be overridden with options to �x the samples of blocks per plot.

14 1. CREATING NODES WITH ObjectPro++

Parameter Type Default Min Max

ARITH TYPE IN UserEntity ArithTypeUndefined ArithTypeUndefined MaxArithTypes

ARITH TYPE OUT UserEntity ArithTypeUndefined ArithTypeUndefined MaxArithTypes

BLOCK SIZE int32 0 0 2147483647

CAPTION char * NULL

DELAY IN int32 0 0 2147483647

DELTA IN int32 1 1 2147483647

DELTA OUT int32 1 1 2147483647

DYNAMIC TYPE UserEntity PlotDynStatic PlotDynStatic PlotDynDyn

ELEMENT SIZE int32 1 1 2147483647

ELEMENT SIZE OUT int32 0 0 2147483647

IN int16 1 0 32767

MAXIMUM X double 15 -1e+100 1e+100

MAXIMUM X double 0 -1e+100 1e+100

MAXIMUM X double 0 -1e+100 1e+100

MAXIMUM X double 0 -1e+100 1e+100

MAXIMUM Y double 0 -1e+100 1e+100

MINIMUM X double -16 -1e+100 1e+100

MINIMUM X double 0 -1e+100 1e+100

MINIMUM X double 0 -1e+100 1e+100

MINIMUM X double 0 -1e+100 1e+100

MINIMUM Y double 0 -1e+100 1e+100

NETWORK ProcessNet DefProcessNet

NODE DELAY int32 0 -2147483647 2147483647

NUMBER BLOCKS int16 1 1 32767

NUMBER BLOCKS int16 1 1 32767

Table 8: ObjectPro++ base class constructor parameters (part 2 of 4)

1.4 Base classes 15

Parameter Description Class

NUMBER BLOCKS number of blocks in one display

4

GenericPlot

NUMBER BLOCKS number of blocks in one display

4

GenericPlotStr

OUT number of output channels

OVERLAP overlapped input samples

5

PLOTTING STREAM TYPE eye plot or linear plot

SCALE FLAG not used

SIZE bu�er size

STREAM IN input data stream description

6

DfNode

STREAM IN input data stream description

6

DisplayNodeStr

STREAM IN input data stream description

6

GenericBlockPlotStr

STREAM IN input data stream description

6

GenericPlotStr

STREAM IN input data stream description

6

Node

STREAM IN input data stream description

6

PlotNode

STREAM IN input data stream description

6

ProcessNodeStr

STREAM OUT output data stream description

6

DfNode

STREAM OUT output data stream description

6

Node

STREAM OUT output data stream description

6

ProcessNodeStr

STREAM OUT output data stream description

6

SignalStr

TIMING TYPE linear or unde�ned timing

7

TYPE type of bu�ering

8

XY SAMPLES PER PLOT number of samples in an eye plot

4

Table 9: ObjectPro++ base class constructor parameters (part 3 of 4)

4

The current plotting nodes either �x the number of samples in a plot at the block size or

allow the user to change the number of samples if the data is not blocked.In some cases

these can be overridden with options to �x the samples of blocks per plot.

5

Any overlapped data must be stored internally. The node will not be called until suf-

�cient input is availible for the �rst execution. After that the overlapped data may be

overwritten on the input bu�er.

6

The stucture that describes data streams is documented in Section 1.5 on page 17. The

default value for streams is new StreamStr(name in table). The constructor was removed

from the table (only the parameter was left) to save space and StreamNotInitialize was

shortened tp NotInitialized.

7

The TIMING TYPE default, min and max enum values have TimingType as a pre�x. This

was deleted from the table to save space.

8

Currently only circular bu�ers (CircBufDes) are supported.

16 1. CREATING NODES WITH ObjectPro++

Parameter Type Default Min Max

OUT int16 1 0 32767

OVERLAP int32 0 0 2147483647

PLOTTING STREAM TYPE UserEntity PlotYs PlotYs PlotPairs

SCALE FLAG int16 0 0 1

SIZE int32 512 1 2147483647

STREAM IN StreamStr NotInitialized

STREAM IN StreamStr StreamNotSet

STREAM IN StreamStr StreamNotSet

STREAM IN StreamStr StreamNotSet

STREAM IN StreamStr NotInitialized

STREAM IN StreamStr StreamNotSet

STREAM IN StreamStr StreamNotSet

STREAM OUT StreamStr NotInitialized

STREAM OUT StreamStr NotInitialized

STREAM OUT StreamStr StreamNotSet

STREAM OUT StreamStr StreamReal

TIMING TYPE UserEntity Linear Linear Random

TYPE int 1 0 1

XY SAMPLES PER PLOT double 0 0 1e+100

Table 10: ObjectPro++ base class constructor parameters (part 4 of 4)

1.5 Data stream description 17

base classes are provided for signal creation, DSP processing and display or

output nodes. The list of these classes the nodes that belong to them and

references to their member functions are in the chapter on `Class hierarchy'

in ObjectProDSP User's Reference[2].

1.5 Data stream description

The class StreamStr de�ned in �le

$OPD ROOT/src/include/ObjProGui/ObjProGui/strmstr.h

gives the ElementSize, BlockSize and StreamArithType for each channel.

The constructor for a node creates one copy of this structure for the input

channels and another for the output channels. Whenever practical it is best

to write a node that works on as wide variety of data types and that adjusts

itself to the data it receives. For example the Plot node can operate on real

and complex input. It can also tell it its input is from an FFT (using the

BlockSize parameter) and generate a frequency axis. One does not need to

set parameters for these inputs. The Plot node reads the information from

the StreamStr object for its input channel.

The STREAM IN and STREAM OUT parameters for a node can be set to speci�c

values. To do this use the constructor for StreamStr that explicitly sets the

values. There are prede�ned objects for unblocked real (StreamReal) and

unblocked complex StreamComplex data. To use these use the constructor

that operates on an existing StreamStr object, i. e. write

STREAM IN = new StreamStr(StreamComplex)

to for a node with a complex input stream. For a node that adjust to the

input block and sample size use the prede�ned object StreamNotSet.

Signal generation nodes that read disk �les (such as InputNode) may not

be able to set the block and sample size until after they read the �le that

contains this information. Use the prede�ned object StreamNotInitialized

for these.

Most of the prede�ned objects set the ArithType to the default type of

the simulator. A few allow you to set the output type, (Block) or do type

conversions(ToInteger and ToMach). Only the 32 bit
oating point version

of the simulator supports both integer and
oating point data streams.

18 1. CREATING NODES WITH ObjectPro++

// Dummy class to limit name space polution

class ArithType {

public:

enum ArithTypes {ArithTypeUndefined=0,ArithDouble=1, ArithInt16=2,

ArithInt32=3, ArithFloat=4, MaxArithTypes=4};

enum ArithCapabilities {

ArithCapabilityFixed= MaxArithTypes+1,

ArithCapabilityAnyInt= MaxArithTypes+2,

ArithCapabilityAny= MaxArithTypes+3,

MaxArithCapabilities= MaxArithTypes+3};

static const char * CppNames[] ;

static const double Accuracy[MaxArithTypes+1];

static const char * target_sub_dir[MaxArithTypes+1];

static const int SizeInBytes[MaxArithTypes+1];

static const char * CapabilityNames[MaxArithCapabilities+2] ;

static const char * ClassSuffix[MaxArithCapabilities+2] ;

ArithType();

};

Figure 5: ArithTypes class for data stream arithmetic types

It is possible to write nodes that will operate on either 32 bit �xed point or

32 bit
oating point data. This is done using the arithmetic types de�ned in

Figrure 5 on page 18.

The arithmetic type of an output data stream must be de�ned before any

node is linked on one of its output channels. The input arithmetic type can

be de�ned any time before the network is executed. There are two virtual

functions that are used to set these types. input linked is called after the

�rst input channel to a node is linked. InitAfterLinked is called after the

network has been completely linked but before it is executed. If you need

to propagate an arithmetic type from the input of a node to the output you

must do this in input linked. If you only need to adjust the input type

based on the data being input you can use InitAfterLinked. There is a

standard base function DfNode::propagate arith type that will propagate

the input arithmetic type from the �rst channel linked to all other input

19

channels and all output channels. Figure 1 on page 3 is an example of how

these functions are declared.

Information on the arithmetic type of channels is only available for the inter-

active nodes and networks. Flags that determine the type should be set in

the above functions and these
ags should be declared Static as described

in Section 3.6 on page 27 so the values set by the interactive code will be

preinitialized in the target code.

2 Member objects and functions

Member objects and functions can be declared in three ways. Members

declared in the Class construct are standard C++ members. They are not

accessible interactively and passed unchanged by ObjectPro++ to C++.

Members objects declared inside the StaticDeclare construct are treated

similarly for interactive execution. It is assumed that these are initialized

in the interactive simulator prior to execution. These are then initialized to

those value when code is generated for stand alone execution as explained in

Section 3.6 on page 27.

2.1 Interactive member functions

The declaration for an interactivemember function is similar to the de�nition

of an interactive class constructor. Entries for each member function will

appear in the menu data base under the class and under each instance of

the class. The functions can be called from the instance menus and can be

called in DSP++ statements entered directly.

Member objects can be declared at the same place interactive member func-

tions are as the Member syntactic construct. Currently there is little di�erence

between these and member functions declared in the Class construct. If a

variable name is declared in this way then a function to access the variable

called Getname() is generated. This is currently only a C++ and not an

interactive function.

20 2. MEMBER OBJECTS AND FUNCTIONS

ScaledMachWord * Coeff [3 - 1024] : -30000 <= {

1.00018552e-01,

3.70747893e-01,

4.46594395e-01,

-5.36969535e-01

} <= 30000

Figure 6: Declaring an interactive array parameter

2.2 Parameter checking

The most common form of parameter checking speci�es upper and lower

inclusive bounds. The key words Min and Max can be used to specify the

limits for a particular data type.

For array parameters the limits apply to each value in the array. One must

also specify lower and upper limits on the array size as shown in Figure 6 on

page 20. The array parameter Coeff in this example must contain at least 3

and no more than 1024 elements. Each element can be between -30000 and

30000.

The type ScaledMachineWord is provided to allow values to be scaled as

appropriate for a given simulator arithmetic. For the
oating point simulator

the values will be as shown. For the 16 bit simulator 1.0 is multiplied by

NornToOneMachWord or 32768. This is de�ned in �le

ObjProArith/normone.h.

The values inside the braces de�ne the default array which has four values.

You can include more general checks on parameters by placing code after the

CheckParameter key word in the parameter de�nition. Typically this is a

subroutine call and not the code to do the check. Examples are in

$OPD_ROOT/src/dsp/nodes/sigdsk/import.usr. The body of the called

subroutines is in

$OPD_ROOT/src/dsp/nodes/sigdsk/common/importi.C.

21

3 Node semantics

There are several constructs that specify the semantics of the node all of these

(except the Kernel) are optional. These all consist of a key word followed

by C++ code enclosed in braces.

� Kernel Code to process data. This section is required.

� Timing Time of �rst sample output.

� StateEmit Non standard state de�nition.

� SafeDelete Test if this object can be deleted.

� Destructor Delete an instance of the node.

3.1 Node kernel

The code following the key word Kernel is used to de�ne the body of a mem-

ber function DoNode with the single int32 parameter, k. This is the number

of `chunks' to process. The chunk size is the product of the BlockSize, the

ElementSize and IncrementOut. (IncrementOut is set by the DELTA OUT

parameter described in Table 7 on page 13. The other values are set in the

same way and the other names are more consistent.

DoNode will ordinarily not be called unless there is enough available input

data and output bu�er space to process k blocks. If there is not a stan-

dard relationship between the input samples available and the output space

needed, TimingTypeRandom (see Section 3.1.1 on page 22), then it may not be

possible to process k blocks. It is never necessary to process this much data

for interactive execution or for target execution with dynamic scheduling.

With �xed scheduling a node must process exactly the data it is requested

to process. It is always necessary to update the bu�er pointers to re
ect the

data processed and output written.

The simplest way to process data is to use ReadWord to read an input sample

and WriteWord to write and output sample. These adjust the bu�er point-

ers and report an error if you wrap the bu�ers. This is ine�cient. Data

22 3. NODE SEMANTICS

can be accessed and updated more e�ciently using the routines that ac-

cess data via pointers. The declarations for these routines are given in 7

on page 23 and their purpose given in Table 11 on page 24. These are all

member functions of TargetNode (de�ned in ObjProDSPcom/tarnod.h) and

thus available in both interactive and stand alone execution. Many of these

routines come in versions for IntegerMachWord and MachWord data. This

di�erence is only meaningful in the
oating point simulators. There is also

an UnsignedIntegerMachWord data type.

Classes ReadWriteSingleChannel and ReadWriteBlock de�ned in

ObjProDSPcom/blckwrt.h can simplify the use of these routines for some

applications.

When the node completes execution it should return the enum OK if no prob-

lems were encountered and FatalError if a error su�cient to halt network

execution was encountered. Other possible return values as de�ned in �le

ObjProGen/errcode.h are OutputBuffersFull, Warning, EndOfData and

ExecutionComplete. These other options are primarily for internal use.

3.1.1 Node timing

Ordinarily initial node timing is computed from base function constructor

parameters. These de�ne the relationship between input and output data

as described in ObjectProDSP User's Reference[2] in the `Data
ow model'

subsection of the chapter on `The DSP++ language". You can override this

with the code in the Timing construct or you can directly de�ne the virtual

function

double class name::TimeFirst(DfNodeInLink *In, DfNodeOutLink * Out)

that this construct emits. With the former you do not need to use condi-

tionals to keep the declaration out of the target code. This routine returns

the absolute sample time of the �rst sample output.

3.1.2 Emitting the state

When the state of ObjectProDSP is saved a �le is written that contains a

call to the constructor for each object currently de�ned. The parameters to

3.1 Node kernel 23

void UpdateRead(int32 size, int chan=0) ;

void UpdateWrite(int32 size, int chan=0) ;

const MachWord * GetReadPtr(int chan=0) const ;

const MachWord * GetReadBase(int chan=0) const ;

const MachWord * GetReadEnd(int chan=0) const ;

MachWord * GetWritePtr(int chan=0) const ;

MachWord * GetWriteBase(int chan=0) const ;

MachWord * GetWriteEnd(int chan=0) const ;

const UnsignedIntegerMachWord * GetBinReadPtr(int chan=0) const ;

const UnsignedIntegerMachWord * GetBinReadBase(int chan=0) const ;

const UnsignedIntegerMachWord * GetBinReadEnd(int chan=0) const ;

UnsignedIntegerMachWord * GetBinWritePtr(int chan=0) const ;

UnsignedIntegerMachWord * GetBinWriteBase(int chan=0) const ;

UnsignedIntegerMachWord * GetBinWriteEnd(int chan=0) const ;

void WriteInteger(IntegerMachWord Data, int chan=0) ;

void WriteWord(MachWord Data, int chan=0) ;

IntegerMachWord ReadBinary(int chan=0) ;

MachWord ReadWord(int chan=0) ;

int32 GetAvailableData(int chan=0) const ;

int32 GetSpace(int chan=0) const ;

int32 GetContiguousAvailableData(int chan=0) const ;

int32 GetContiguousSpace(int chan=0) const ;

void WriteCxWord(CxMachWord Data, int chan=0) ;

CxMachWord ReadCxWord(int chan=0) ;

Figure 7: Data access routines, also see Table 11

24 3. NODE SEMANTICS

Routine Operation

UpdateRead update read pointer on chan size words

UpdateWrite update write pointer on chan size words

GetReadPtr get read pointer on chan

GetReadBase get base of input bu�er on chan

GetReadEnd get address past end of input bu�er on chan

GetWritePtr get write pointer on chan

GetWriteBase get base of output bu�er on chan

GetWriteEnd get address past end of output bu�er on chan

GetBinReadPtr same as GetReadPtr, unsigned integer pointer

GetBinReadBase same as GetReadBase, unsigned integer pointer

GetBinReadEnd same as GetReadEnd, unsigned integer pointer

GetBinWritePtr same as GetWritePtr, unsigned integer pointer

GetBinWriteBase same as GetWriteBase, unsigned integer pointer

GetBinWriteEnd same as GetWriteEnd, unsigned integer pointer

WriteInteger write one integer word, update pointers

WriteWord write one MachWord, update pointers

ReadInteger read one integer word, update pointers

ReadWord read one MachWord, update pointers

GetAvailableData get number of words available on input chan

GetSpace get words of space on output chan

GetContiguousAvailableData get number of contiguous input words on chan

GetContiguousSpace get words of contiguous space on output chan

WriteCxWord write one CxMachWord, update pointers

ReadCxWord read one CxMachWord, update pointers

Table 11: Data access routines, also see Figure 7

3.2 Node destructor 25

this call are the current values for them in the object. This should work for

any DSP nodes but does not work for other objects such as networks. For

these the StateEmit construct de�nes a virtual function

const char * class name::EmitState(OutTokens& Out)

that emits the state. OutTokens is a class used to output text for various

purposes. It is not usually needed in writing nodes. It is de�ned in �le

ObjProGen/outtok.h.

3.2 Node destructor

If the node allocates dynamic storage or can be referenced by other objects

in some way other then the standard network interface you need to write

a C++ destructor for it using the ObjectPro++ Ctor construct. The should

delete any dynamically allocated objects and remove any external references

to them or to the node being deleted.

Base class constructors insure that all references through the network are

deleted and that any menu references including those currently displayed are

removed. Deleting an object can cause displayed menus to disappear.

3.3 Check if node is deletable

Interactively deleting objects can create problems. For example one can-

not delete a network without removing any nodes linked in that network.

Otherwise those nodes will reference a deleted object. Most nodes are only

referenced through the standard network interface. If this is true they can

be deleted at any time. However if other objects can reference a node in non

standard ways these references must be removed as part of the destructor for

the object (see Section 3.2 on page 25) or the object must be
agged as not

interactively deletable.

Before the constructor for a node is called the virtual function

int CheckSafeDelete() is called. If this returns 0 the destructor is not

called and the object is not deleted. The ObjectPro++ construct SafeDelete

de�nes this virtual function. The �rst two lines of the emitted code are:

26 3. NODE SEMANTICS

int Safe_Check_Return = UserEntity::CheckSafeDelete();

if (!Safe_Check_Return) return 0;

The code you write comes after this and can include additional tests.

3.4 Interactive code

The code you generate is used for both target and interactive execution.

There are some things you can do to make the interactive code more user

friendly. For example if an error condition is encountered you should report

it with the a call to State.Error(). There must be one parameter and can

be up to 8 of type const char *. When concatenated these parameters

should produce a meaningful error message.

You can direct messages to the user using the C++ stream like construct

HelpOut.

Debugging messages can be directed to log �le dsp.messages using the

stream LogOut.

All of the above can be used for both stand alone and interactive code. For

example HelpOut is de�ned is cerr for stand alone code.

If you need to write code that is only used for interactive execution you can

use the C++ de�ne INTERACTIVE. This is only de�ned for code compiled for

interactive execution.

3.5 Stand alone target code

There are many di�erences between code compiled for stand alone target

execution and that compiled for interactive execution. All stand alone nodes

have the same base class, TargetNode, with a simple �xed set of constructor

parameters. The interactive node base classes have TargetNode as a parent.

All the interactive code such as code to describe parameters or set them is

stripped from the target code.

3.6 Preinitialized target code 27

As much as possible values are precomputed and initialized as part of the

process of emitting the target C++ code. This can minimize both code space

and execution time. There are facilities to allow user de�ned variables and

arrays to be initialized during interactive execution and those values emitted

as static initializers for the target code. These are described in the next

section.

3.6 Preinitialized target code

Objects and arrays declared in the ObjectPro++ construct, StaticDeclare,

are initialized during interactive execution and those values are used as static

initializers in generating target stand alone code. The initialization is most

commonly done in two places. Code in the StaticInit construct is only

output in the interactive code and occurs in the node constructor before the

code output in the Ctor construct. You can put initialization code here that

will not be needed on the target. The code in the Ctor section can assume

this initialization has been done before it starts regardless of whether the

code is executing on interactively or as a stand alone target.

In some cases static initialization cannot be completed until the node is linked

into a network. For example this may be necessary for a node that can

operate on di�erent input data types. This can be done in virtual function

InitAfterLinked. This function should only be de�ned interactively by

using C++ conditional compilation, #ifdef INTERACTIVE

or by placing it in a .C �le in the same directory that the .usr �le is.

3.7 Target arithmetic

For the
oating point simulator target arithmetic using the types MachWord

and AccMachWord is done with single precision
oating point arithmetic.

For the 16 bit simulator these two data types represent 16 and 32 bit accuracy

that might be available on an integer DSP processor. Multiply for this type

is de�ned as if the number was a binary faction with the decimal point to the

left of the most signi�cant non sign bit. Thus fractions between 1 - 1/32768 to

28 4. INTEGRATING A NEW NODE

Name Type of objects

InteractiveNode DSP processing nodes (default)

InteractiveNet networks

InteractiveBuffer bu�ers between nodes

InteractiveScheduler network controllers

InteractiveSignal input or signal generation nodes

InteractiveDisplay output or display nodes

InteractiveMiscellaneous other types of objects

Table 12: Groups of classes for placement in data base

-1 are represented. Multiplication by two full scale values will never produce

an over
ow although the product of -1 � -1 will be 1 - 1/32768 and not 1

which cannot be represented.

You can write nodes that will work with both simulators but you must be

careful with normalization when using integer arithmetic.

You can de�ne arithmetic operations that exactly match the hardware of

your target processor and create a new simulator for that arithmetic. That

is outside the scope of this manual. The �les to do this for the existing sim-

ulators are in directory

$OPD_ROOT/src/dsp/arith

and subdirectories of this directory. The header �les are in directories under

ObjProFlt and ObjProInt16 which are subdirectories of

$OPD_ROOT/src/include.

4 Integrating a new node

4.1 Integration with the menu data base

ObjectPro++ outputs a .nod �le into directory

$OPD_ROOT/src/menus/nodes

for integration of the node with the menu data base. You must specify where

4.2 Integrating with the documentation 29

this documentation is to be placed. If you do nothing special it will treated

as a DSP processing node. You can specify the menu it is to be added to as

described in Section 1.2 on page 6.

You can use the InteractiveEntityList construct to de�ne the class of

classes the node belongs to. If you did not give a speci�c menu for it this

will determine where it is linked. The possible classes are listed in Table 12

on page 28.

4.2 Integrating with the documentation

The two .tex �les are written to subdirectories tex and texs these are used

to integrate the node into the ObjectProDSP manuals. The texs �les are

used in ObjectProDSP Overview and Tutorial[1]. The tex �les are used in

ObjectProDSP Library Reference[3]. The .nod �les are used to create the

.tex documentation of the data base in ObjectProDSP User's Reference[2].

4.3 Integrating a node into ObjectProDSP

The simplest way to integrate a node is to place it in a directory in which

there are already .usr �les. The standard directories are listed in Table 13

on page 30. You should manually execute routine

$OPD_ROOT/bin/mknode

with the new .usr �le as a single argument. This will create output .C and

.h �les. Then go to directory

$OPD_ROOT/src/dsp/build/fltgui or

$OPD_ROOT/src/dsp/build/int16gui

for the
oating point or 16 bit simulators and execute the command domake-

make. Then go back to the directory with the new .usr �le and touch that

�le so it will be processed again with mknode using the correct parameters

for creating the documentation and target �les. Then you can go to the

appropriate subdirectory (fltgui or int16gui) and do a make to run mknode

and the C++ compiler for your new node.

To rebuild ObjectProDSP with your new node go back to the master build

30 4. INTEGRATING A NEW NODE

Directory under Type of nodes

$OPD ROOT/src/dsp/nodes

proc DSP processing nodes

proc16 DSP nodes only for 16 bit simulator

proc32 DSP nodes only for 32 bit simulator

sigdsk input nodes that read disk �les

signal other signal nodes

ionode input/output nodes supported on all targets

display output nodes

Table 13: Directories to place new nodes in

directory for the version you are working with

($OPD_ROOT/src/dsp/build/fltgui or

$OPD_ROOT/src/dsp/build/int16gui)

and do a make. To include your new node in target libraries go to the master

build directory

($OPD ROOT/build) and do a make TOUCH DOMAKEMAKE followed with a make

EXE. Remember to do the latter using make both.sh if you want to update

both the 16 bit integer and
oating point versions. Otherwise only the
oat-

ing point versions will be updated. After ObjectProDSP has been built with

you new node you can update the documentation by doing make DOC in the

master build directory.

4.4 Removing a node from ObjectProDSP

To remove a node you must remove the node source �le and all the �les cre-

ated by mknode from the source �le when mknode is invoked with the options

speci�ed by makemake. These �les are shown in Table 14 on page 31. After

that do make TOUCH DOMAKEMAKE and make EXE in the master build directory

($OPD ROOT/build). Note �le

$OPD ROOT/src/include/initinc.h

references �le node nameI.h for each node. initinc.h is created when

domenus is run based on the .nod �les in $OPD ROOT/menus/nodes. You

must remove the .nod �le before running domenus from make. Do not worry

4.4 Removing a node from ObjectProDSP 31

File Purpose Directory (. is relative to node others

are relative to $OPD ROOT/src)

name.C interactive source .

name.C target source ./target

name.h interactive source include/ObjProDSPint/ObjProUsr

name.h target source include/ObjProDSPtar/ObjProUsr

name.tex full documentation ./tex

name.tex synopsis documentation ./texs

nameI.h default objects .

name.nod interactive documentation menus/nodes

name.e text for spelling check subdierecroty mknode is executed from

Table 14: Files created by mknode (with makemake options) from name.usr

if you get an unde�ned reference to the I.h �le when you run domakemake.

This reference will be absent when initinc.h is recreated when domenus is

run.

You will also need to rebuild the �les in

$OPD ROOT/overview/doc that reference the .tex �les. Do a fgrep in this

directory on *.tex for the base name of the �le name.usr �le you are delet-

ing. Make sure the two �les that reference name.tex are created by make and

them delete them so they will be remade the next time the documentation

is rebuilt.

32 4. INTEGRATING A NEW NODE

33

5 Modifying the menu data base

The menu data base is de�ned by a text �le opd.menu in directory

$OPD_ROOT/menus and by the .nod text �les created by ObjectPro++. In this

section we describe the syntax and semantics of these �les.

5.1 Menu data base menus

Figure 8 on page 34 is the start of the de�nition of the main menu from

that �le. The keyword Menu followed by `f' indicates the start of the menu.

The items in the menu are delimited by the opening and closing braces. The

closing brace for the main menu is not in the �gure because this is only a

part of the meu. Next is the menu name MainCgi. This id used in higher

level menus to specify a submenu. For this main menu it is referenced at the

start of the �le to de�ne the root of the menu tree. (The syntax there that

supports multiple main menus is obsolete and not documented but you do

need to copy that structure to specify the root menu.)

Following the menu name is a `:' and text that describes the menu. This text

is displayed above the buttons for the menu when the cursor is not positioned

over any of those buttons. Next is a sequence of menu items each of which

corresponds to a button in the menu. If there are more items then there is

space for buttons submenus under `other' are automatically created.

5.2 Menu items

The �rst menu item starts with the command or label for the button, help,

followed by a `,' and the name of the structure corresponding to that com-

mand the character `=' and the type of the command. In this example all

three menu items reference submenus. Next there is a `:' and text describ-

ing the menu item. This is the text displayed above the menus when the

cursor is positioned over the button for this item. Next is optional text

enclosed in braces that provides a more complete description of this item.

Any of this text enclosed with `$' characters should refer to user commands.

34 5. MODIFYING THE MENU DATA BASE

Menu { MainCgi : ObjectProDSP menu data base

help,HelpMenu=Menu : Main help menu {

The $help$ menu contains information organized by topics.

It covers the ObjectProDSP language and describes the use

of this program. It has information for the new user and is

an on-line reference manual. You can control the amount of

automatic help information from

this menu. }

HelpFile : help

objects,AllCls=Menu : Display and describe existing objects {

The $objects$ menu provides tree structured access to the

definitions and descriptions of objects. It allows objects

to be created and destroyed. }

HelpFile : objects

setup,FilesMenu=Menu : Read state and plot files, debugging {

From the $setup$ menu

you may read and execute a ObjectProDSP state file created

in a previous session or created manually. You may also read

a plot file created in a previous session and control debugging

options. }

HelpFile : setup

Figure 8: First part of the de�nition of the main menu

5.3 Help �les 35

These are set in typescript font in the documentation and index entries

are created for them. Such text is enclosed in single quotes when the text is

displayed interactively. This description of the item is displayed in the help

information window when the left or right mouse button is released with

the cursor over this button. This can be disabled by changing the help levels.

If the same text is used in several menu items it can be de�ned once with

the HelpDefinition f de�nition name help text g

construct. The text can then be referenced many times with the `de�ni-

tion name=HelpText' option in the syntax for a menu item.

5.3 Help �les

Finally is the keyword HelpFile a `:' and the base name for the help �le.

This is optional. See Section 6.1 on page 45 for more information on these

�les. Instead of a help �le base name the key word `Default' may be used.

This refers to the last help �le speci�ed with the HelpFileDefault construct.

5.4 Menu quali�ers

There are several quali�ers that can precede the key word menu.

� HistoryThe action taken may be a function of previous selections using

action parameters as described in 5.7 on page 36.

� Dynamic The menu may have items added to it after executions starts.

� Multiple Use The menu may occur at multiple points in the tree with

di�erent initializations (obsolete).

� OrphanA menu that has no prede�ned place in the tree. This is used for

member functions of a base class. The class member functions are not

included in the tree through the class itself but through other classes

derived from the base class. The Orphan menu generated for such a

class is merged with the member function menus of all derived classes

that occur in the tree.

36 5. MODIFYING THE MENU DATA BASE

� SelectThe actions are initialized at execution time based on a Template

menu item. See Section 5.7 on page 36.

5.5 Simpli�ed menu syntax

Figure 9 on page 37 gives a simpli�ed yacc (or bison) syntax for the menus.

The rules are in alphabetical order. The top level symbol is ObjectList. Lit-

eral terminal symbols are in typewriter font and enclosed in single quotes.

Standard terminal symbols like name are in italicized font. If a rule ends

with `j' it can be reduced to the null symbol.

Table 15 on page 38 gives a brief explanation for each nonterminal symbol

and references for some. The full yacc (or bison) syntax is in �le

$OPD ROOT/src/util/mkmenu/menu b.y.

Note some constructs in the full syntax are for future expansion and others

are obsolete but retained for backwards compatibility.

5.6 Writing menu action code

A menu item can select another menu display a help �le or perform some

action. These actions can be Local (executed on the user interface process)

Remote (executed on the DSP process) or LocalRemote (executed on both).

The name for an action (that precedes the character `ActionType') should

be the name of a C++ subroutine in the appropriate executable. Dummy

stubs for all actions are generated unless the action name is listed in the

DefinedAction construct. After you have written the code for an action

you must add its name to this list or you will get a double de�nition of the

subroutine when you link.

5.7 Examples menu and action parameters

Actions can have parameters which refer to previous menu selections. This

is most commonly used in menus generated by ObjectPro++ described in

5.7 Examples menu and action parameters 37

Action : Name Parameters j Name Parameters `Wait' j `Orphan'

ActionType : `=Local' j `=Remote' j `=LocalRemote' j `=RemoteOptions' j `=Menu'

j `=DynamicMenu' j `HelpFile'

ClassRelation : `f' name name `g'

Command : WordString

Comment : `//' text to end of line

De�nedActionList : `DefinedAction' `f' NameList `g'

Help : `f' text `g'

HelpDef : `HelpDefinition' `f' name help text `g'

HelpDefaultFile : `HelpDefaultFile' quoted string

HelpFile : =HelpFile `base file name j `Default' j

HelpRef : `,' name `=HelpText'

InitEntry : `Init' `f' C++ code `g' name '=' PriorNameList `;'

j `Init' `f' C++ code `g' name `;'

Menu : MenuId `f' Name `:' MenuTitle MenuBody `g'

j `Add To Menu' `f' name MenuBody `g'

MenuBody : MenuBody MenuItem j

MenuId : Quali�er `Menu'

MenuItem : Command `,' Action ActionType HelpRef `:' text Help HelpFile

j Command `,' Action ActionType HelpRef `:' text HelpFile

j Command `,' Action ActionType `:' text Help HelpFile

j Command `,' Action ActionType `:' text HelpFile

j `Template' `,' Action ActionType `:' text HelpFile

j Command `=Reference'

MenuStackReference : `[' nonnegative integer `]' MenuTitle : text

NameList : name j NameList `,' name

Object : Menu j HelpDef j HelpDefaultFile j De�nedActionList j

InitEntry j ClassRelation

ObjectList : Object j ObjectList Object

Parameter : number j quoted string j MenuStackReference

ParameterList : ParameterList `,' Parameter j Parameter

Parameters : '(' ParameterList ')' j

PriorNameList : name j PriorNameList `,' name

Quali�er : Quali�er `Dynamic' j Quali�er `Multiple Use'

j Quali�er `History' j Quali�er `Select' j Quali�er `Orphan' j

WordString : text

Figure 9: Menu data base syntax

38 5. MODIFYING THE MENU DATA BASE

Symbol Meaning Section Page

Action what to do if selected 5.6 36

ActionType what type of action 5.6 36

ClassRelation class and base class 5.8 39

Command user command name 5.2 33

Comment C++ style comments can end any line

De�nedActionList actions implemented 5.6 36

Help help text for an item 5.2 33

HelpDef help text used more than once 5.2 33

HelpDefaultFile default help �le name 5.3 35

HelpFile help �le action 5.6 36

HelpRef reference to help text 5.8 39

InitEntry initialization of default objects 5.8 39

Menu complete menu 5.1 33

MenuBody items in a menu 5.2 33

MenuId menu type and internal name 5.1 33

MenuItem one entry under a menu 5.2 33

MenuStackReference previous menu reference 5.6 36

MenuTitle displayed title of menu 5.1 33

NameList list of de�ned actions 5.6 36

Object menu or other major syntactic element

ObjectList top level syntactic object

Parameter action parameter 5.7 36

ParameterList list of parameters 5.7 36

Parameters parameters for an action 5.7 36

PriorNameList required objects 5.8 39

Quali�er type of menu 5.4 35

Wait disables input until command completes

WordString command name 5.2 33

Table 15: Symbols in ObjectPro++ syntax

5.8 Menus generated by ObjectPro++ 39

Section 5.8 on page 39. Action parameters are also used in the examples

menu. The top level menu for examples is a Select menu that has a single

Template menu item. This template will be copied for every item under

this menu. This is done by reading a directory where examples are stored

and generating an entry for every �le with a .xml su�x in that directory.

The code to update the menus is in class DynamicMenuServer de�ned in �les

dynmnu.h and dynmnug.C in directory

$OPD_ROOT/src/dsp_gui/gui

The code that calls the DunamicMenuServer with the action names for the

menu items is in the constructor of ExamplesDspPP in �le

$OPD_ROOT/src/gui/lib/examp.C.

The de�nition of the `Example networks' menu subtree from opd.menu is

shown in Figure 10 on page 40. The �rst top level menu contains a single

Template menu item that will be duplicated for each example found as just

explained. The rest of the �gure contains the menu items in the `Describe

or execute this example' menu. Each of these actions has at least one

parameter that refers to the selection in the previous menu. In the �rst item

the action is DescribeExample([1]). When this item is selected subroutine

DescrubeExamplewill be called with a single `const char *' parameter that

will be the label on the button selected. This is denoted by `[1]' in the menu

de�nition. The integer one refers to the most recent menu selection. Earlier

selections can are denoted by larger integers.

The ExecutExample action has a second parameter: "no". An action can

have any number of parameters and they can be literal strings integers or

previous menu selections.

5.8 Menus generated by ObjectPro++

Figures 11 on page 41 and 12 on page 43 show the �rst and last parts of

the menus generated by ObjectPro++ for the node de�ned in const.usr.

This starts with a line that designates ConstantData as a derived class from

Signal. This will insure any member functions of Signal will also appear

in the menus under ConstantData. This is followed by Init and C++ code

enclosed in braces to initialize default instances of this class. This code is

40 5. MODIFYING THE MENU DATA BASE

Multiple Use Dynamic Select Menu { ExampleMenu : Example networks

Template,ExampOptMenu=Menu : Select this network

}

History Menu { ExampOptMenu : Describe or execute this example

desc,DescribeExample([1])=Local : Describe this example

HelpFile:examp

execute,ExecuteExample([1],"no")=Local : Execute this example {

This executes the selected example. First a graphical display

of the DSP network will appear. This will be followed by

windows for each plot or listing object in the network. When

execution completes you can edit the example network. You can

only execute an example once because after that all the objects

in the example will be defined and cannot be redefined

with the execute command.}

HelpFile:examp

execute over,ExecuteExample([1],"over")=Local

: Execute this example and overwrites existing objects {

This executes the selected example. First a graphical display

of the DSP network will appear. This will be followed by windows

for each plot or listing object in the network. When execution

completes you can edit the example network. $execute over$

overwrites any objects in the example that are already defined.

You can execute this command as many times as you want but it can

also overwrite objects you have defined.

Be careful in using this option.}

HelpFile:examp

}

Figure 10: `Example networks' menu tree de�nition

5.8 Menus generated by ObjectPro++ 41

{ ConstantData Signal }

Init {

#include "ObjProUsr/const.h"

ConstantDataDef = new ConstantData("ConstantDataDef", 1024);

} ConstantDataDef ;

HelpDefinition { ConstantDataMainHelpDefinition

`ConstantData' writes parameter `Value' to the output stream

repeatedly. It is written as a binary integer constant.

}

Add To Menu { SignalNodesMenu

ConstantData,ConstantDataNodeOptMenu=Menu,

ConstantDataMainHelpDefinition=HelpText :

generate a `MachWord' constant

HelpFile : signalT

}

Figure 11: First part of ConstantData menus generated by ObjectPro++

collected in �le meninit.C in routine InitAllMenuRoutines under directory

$OPD_ROOT/src/menus/dsp.

Next is statementAdd To Menu which provides the connection to the full

menu tree. It causes an item to be added under the menu named Signal-

NodesMenu. This connection is speci�ed by giving the menu name after the

key word MenuLine for the node. In opd.menu menu SignalNodesMenu is

de�ned without any entries for commands or submenus.

Next is a Dynamic menu to select an instance of ConstantData. This menu

has no prede�ned entries. It is a Template used to add entries to the menu

as new instances of ConstantData are created. Next is the submenu

ConstantDataInstancesAccessMenu

that operates on the selected instance. This is done by referring to previous

selections in the action. For example the action

DescribeNodeInstance("ConstantData",[1])=Remote

calls the function DescribeNodeInstance in the DSP process with parame-

ters "ConstantData" and a string giving the name of the selected instance

42 5. MODIFYING THE MENU DATA BASE

of ConstantData.

5.9 Menus documented at the top level

The menus are automatically translated to documentation for the Object-

ProDSP User's Reference. The table of contents of this document has a

hierarchy that mirrors the menu hierarchy. To prevent too many levels the

menu for all classes is forced to the top level i. e. \section level. The name

of this menu, AllCls is hardwired into program

$OPD_ROOT/src/util/mkmenu/menmain.C.

It is also used in

$OPD_ROOT/doc/userman/menu.tex.

If you change the name of this menu you wiil need to edit those �les.

However to keep the table of contents from getting t going too many levels

deep some menus are forced

5.9 Menus documented at the top level 43

Multiple Use Dynamic Select Menu { ConstantDataInstancesMenu :

Select an Instance of `ConstantData' t

Template,ConstantDataInstanceAccessMenu=Menu :

Select this instance of `ConstantData'

}

History Menu { ConstantDataInstanceAccessMenu:

Describe or delete an instance of object `ConstantData'

desc,DescribeNodeInstance("ConstantData",[1])=Remote,

NodeInstanceDescribeHelp=HelpText :

Describe this instance of `ConstantData'

HelpFile : Default

param,ConstantDataInstanceParamMenu=Menu,

ParamInstanceDescribeHelp=HelpText :

Describe parameters of this `ConstantData'

HelpFile : Default

exec, Orphan=Menu,

HelpMemberExecute=HelpText :

Select a member of `ConstantData' to execute

HelpFile : Default

variables,ConstantDataInstanceVariableMenu=Menu,

VariableInstanceDescribeHelp=HelpText :

Describe variables of this `ConstantData'

HelpFile : Default

set,ConstantDataSetInstanceVariableMenu=Menu,

VariableInstanceDescribeHelp=HelpText :

Set variable values of this `ConstantData'

HelpFile : Default

delete,DeleteNodeInteractiveEntity("ConstantData", [1])=Remote,

NodeDeleteHelp=HelpText : Delete this `ConstantData'

HelpFile : Default

}

Figure 12: Last part of ConstantDatamenus generated by ObjectPro++

44 5. MODIFYING THE MENU DATA BASE

45

List �le Directory Manual Manual �le

$OPD_ROOT/doc/

examp list examptex ObjectProDSP User's Reference exampmn.tex

node list nodetex ObjectProDSP Library Reference ovnodlst.tex

help list helptex ObjectProDSP User's Reference mnroffmn.tex

Table 16: Lists of help �les

6 Updating the documentation

6.1 Help �les

The help �les referenced in the menu data base and the pull down menus

are also used in the printed documentation. They are written in a very re-

stricted groff format using the mm macro package. They are translated to

L

A

T

E

X format for inclusion in the manuals. The originals are in directory

$OPD_ROOT/doc/roff. A help �le name help.hlp comes from a �leXhelp.roff

or XhelpT.roff. `X' can be any single character. The optional `T' indicates

the ro� �le must be processed with tbl. Such �les must be displayed with a

�xed font or the tables will be skewed. The `T' is used to control this.

6.1.1 Makefile to process help �les

A subdirectory mmake under the ro� directory contains tools for creating the

Makefile to process the help �les with groff and L

A

T

E

X. Each help �le

name is listed in one of three �les shown in Figure 16 on page 45. These are

read by mmake (source �le mmake.C) to create the Makefile in the parent

directory. If you add an example or help �le you need to update these list

�les and do a make in the directory they occur to create the Makefile with

your changes in the parent directory.

Table 16 on page 45 also shows the the directory (under $OPD ROOT/doc)

that the generated L

A

T

E

X �les are written to, the manual those �les are

incorporated in and the �le for that manual that references these �les.

exampmn.tex is created with the names of all the �les in examp list and sim-

46 6. UPDATING THE DOCUMENTATION

ilarly ovnodlst.tex is created with all the names of all the �les in node list

when you make the manuals. To add a new entry to the documentation you

only need to add it to the appropriate list and do the required make's.

mnroffmn.tex includes the �les from help list indirectly through several

�les that are created automatically. This is to allow di�erent introductory

comments for di�erent groups of �les. Comments in mnroffmn.tex describe

these groups and are used to automatically create the indirect include �les.

You can add a new help �le to any of these sections by adding it at the

appropriate place in help list and doing the required makes.

6.1.2 Help �le format

Figure 13 on page 47 is an example groff help �le. It begins with a section

name at level 1. All help �les should start this way. This will be translated

to a \subsection L

A

T

E

X command. Lower level sections will be translated

consistently.

The groff comment starting with `\".LINE' is a way of providing di�erent

text to L

A

T

E

X and groff. The remainder of the text on this line is only

processed by L

A

T

E

X. It it is a comment in groff and the `\".LINE' is removed

from the L

A

T

E

X �le. The next line is not copied to the L

A

T

E

X �les and is thus

only processed by groff.

The groff comment \".CAPTION starts a L

A

T

E

X table. It provides a caption

and label for the table as two strings. Preceding these strings is a list of in-

tegers indicating columns in the table. The text in those columns is enclosed

in the \Index macro. If the column number is negative the \DppNm macro

is used instead. The �rst macro includes the text as an index entry. The

second macro also sets the text in typewriter font. The remainder of the

table is speci�ed in groff format and translated to L

A

T

E

X. Figure 14 on page

48 shows the L

A

T

E

X �le generated from the groff �le in Figure 13 on page

47. Note any words in single quotes in the .roff �le are made arguments of

the \DppNm macro in the .tex �le.

6.1 Help �les 47

\" ssignalT.roff from ObjectProDSP 0.1

\" Copyright (C) 1994, Mountain Math Software, All rights reserved.

\" Licensed for free use and distribution under version 2 of the Gnu General

\" Public License. Please see file COPYING for details and restrictions.

\"

\" ObjectProDSP is a trademark of Mountain Math Software.

\"

.H 1 "Signal nodes"

The nodes under `objects' and `signal' generate standard

test signal. They create output data streams as a function

of node parameters. They (along with nodes that read their

input from disk are the initial source of data for a network.

\".LINE Signal generation nodes are shown in Table~\PageRef{Tbl:sig_gen}.

Signal generation nodes include the following:

\".CAPTION -1 "Signal generation nodes\index{signal}" "Tbl:sig_gen"

.TS

center;

ll.

Name Signal type

ConstantData constant level

Cos real cosine

CxCos complex cosine

CxImp complex impulse or square wave

Normal Gaussian distributed noise

Ramp ramp function

UniformNoise uniformly distributed noise

.TE

You can use the `Add' node (under `objects' and `dsp processing') to sum

2 or more of these signal sources.

Figure 13: Example gro� help �le

48 6. UPDATING THE DOCUMENTATION

% ssignalT.tex from ObjectProDSP 0.1

% Copyright (C) 1994, Mountain Math Software, All rights reserved.

% Licensed for free use and distribution under version 2 of the Gnu General

% Public License. Please see file COPYING for details and restrictions.

%

% ObjectProDSP is a trademark of Mountain Math Software.

%

\subsection{Signal nodes }

\index{ Signal nodes }

The nodes under \DppNm{objects} and \DppNm{signal} generate

standard test signal. They create output data streams as a

function of node parameters. They (along with nodes that

read their input from disk are the initial source of data

for a network.

Signal generation nodes are shown in Table~\PageRef{Tbl:sig_gen}.

\begin{table}

\begin{center}

\begin{tabular}{|ll|} \hline

Name & Signal type \\ \hline

\DppNm{ConstantData} & constant level \\

\DppNm{Cos} & real cosine \\

\DppNm{CxCos} & complex cosine \\

\DppNm{CxImp} & complex impulse or square wave \\

\DppNm{Normal} & Gaussian distributed noise \\

\DppNm{Ramp} & ramp function \\

\DppNm{UniformNoise} & uniformly distributed noise \\

\hline

\end{tabular}

\end{center}

\caption{Signal generation nodes\index{signal}}

\label{Tbl:sig_gen}

\end{table}

You can use the \DppNm{Add} node (under \DppNm{objects} and

\DppNm{dsp processing}) to sum 2 or more of these signal

sources.

Figure 14: L

A

T

E

X �le generated from gro� �le

6.2 Overview and tutorial 49

Directory under File Type of �le

$OPD ROOT/src/dsp

nodes/proc node.tex processing nodes

nodes/proc32 node.tex only used in 32 bit simulator

nodes/signal signal.tex signal generation nodes

nodes/sigdsk signal.tex read signal from disk

nodes/display display.tex output and display

selected �les basenod.tex shared member functions

lib/control auxfuncs.tex other than node classes

lib/network auxfuncs.tex other than node classes

Table 17: Where nodes are documented

6.2 Overview and tutorial

Appendix A in ObjectProDSP Overview and Tutorial is generated automat-

ically from the .tex �les created in subdirectory texs from the directory

in which the node .usr �le is created. Lists of these �les are created when

you make the ObjectProDSP Overview and Tutorial. These �les are sorted

alphabetically based on the class name and occur in the Appendix in that

order and grouped in sections as shown in Table 17 on page 49.

As long as you are adding nodes to an existing directory listed in Table 17 you

do not need to do anything except remake this manual to include new nodes

in the Appendix. The names under `Files' in this table are for the ObjectPro-

DSP Library Reference. A �le `name.tex' in the table will be `names.tex'

in the Makefile for creating the Appendix.

No help �les are used in this manual.

6.3 Library manual

Nodes in ObjectProDSP Library Reference are updated just as they are for

ObjectProDSP Overview and Tutorial as described in the previous section.

The .tex �les in subdirectory tex (not texs) are used. Table 17 on page 49

shows where di�erent kinds of nodes occur in the manual and what directories

50 6. UPDATING THE DOCUMENTATION

are searched for these nodes.

Help �les that describe nodes or classes of nodes are included in ovnode.tex.

If you add a help �le for a node or group of nodes you should add it to

ovnode.tex and edit the Makefile.

6.4 User's manual

The nodes are not directly documented in the ObjectProDSP User's Ref-

erence. However the entire menu tree is including the portions of it that

are built from the node de�nitions. The L

A

T

E

X �les for this are created by

the Makefile in directory $OPD_ROOT/doc/build. You should run this make

whenever you add nodes, update existing ones or make other changes to the

menu data base. This will update L

A

T

E

X �les for the ObjectProDSP User's

Reference. These updated .tex �les are built from opd.menu and the .nod

�les in subdirectory nodes under $OPD ROOT/src/menus".

All help �les other than those documenting nodes or classes of nodes are

included in this manual from �le mnroffmn.tex. You should update this �le

and the Makefile for this manual if you add help �les like this.

6.5 Developers manual

The developers manual (this manual) does not ordinarily need to be updated

as a result of changing nodes or menus. However if you need to de�ne new

base classes with new constructor parameters you will need to update the

structures de�ned in

$OPD_ROOT/src/util/mknode/ctorinit.C.

You should update the documentation included in these data structures.

That documentation is used in creating several tables in Section 1.4.1 on

page 8.

It is outside the current scope of this manual to explain how to do this but

if necessary you should be able to �gure it out from the code in ctorinit.h

and ctorinit.C and the Makefile for the developer's manual.

6.5 Developers manual 51

File under $OPD_ROOT L

A

T

E

X �le Figure Page

src/dsp/nodes/proc/block.usr blockusr 1 3

src/include/ObjProDSP/arthtyp.h artyp 5 18

src/menus/opd.menu mmenu 8 34

src/menus/opd.menu exampmenu 10 40

doc/roff/ssignalT.roff sighlp 13 47

doc/nodetex/ssignalT.tex sigtex 14 48

Table 18: Source �les used as examples in this manual

Several �les are used as examples in creating this manual. If you change any

of these �les you should check to insure this does not mess up their use in

the documentation. These �les are shown in Table 18 on page 51.

52 6. UPDATING THE DOCUMENTATION

53

7 Building ObjectProDSP and makemake

The Makefiles used to generate utilities and ObjectProDSP executables are

created by a custom makemake utility. This utility is less
exible then imake

but very much faster. It knows about much of the structure of ObjectProDSP

such as the relationship between .usr �les, .C �les and menu �les. It does

not use the C preprocessor to expand source so it is sometimes necessary to

create dummy headers to prevent warning messages about missing �les that

are conditionally included.

It is outside the current scope of this manual to fully document this utility.

Figure 15 on page 54 is a terse synopsis of its options. Some of these are

obsolete or for future expansion.

In this section we will describe how you invoke makemake, where its gets its

input from and what you need to do add or delete a directory or .usr �le

to the existing structure. To add a .C or .h �le to a directory in which such

�les already exist you only need to add them and regenerate the Makefiles.

7.1 Project description

In each directory in which an executable is constructed there is a �le do-

makemake which invokes makemake to create all needed Makefiles. The

Makefile created in this main directory is made dependent on domakemake

so subsequent Makefile's will be updated if you change domakemake.

The master directory is the �rst argument for the -m option in makemake.

Subsequent arguments indicate additional directories with .C �les. Directo-

ries with .C �les can also be designated with the -l option. Libraries are

constructed in these directories.

The Makefiles created are independent. The master Makefile for the main

directory will by default invoke all other Makefiles. If you do make Target

then none of the other makes will be done. If you change a single �le you

only need to do a make for the directory in which that �le occurs and a make

Target in the main directory. Of course if you change a header �le it is

54 7. BUILDING OBJECTPRODSP AND MAKEMAKE

Usage is:

[-arith] | [-c cdir1 cdir2 ... cdirn] | [

-check_make_lst dir1 dir2 ... dirn] | [-ckusrc] | [

-coll] | [-dbXtra] | [-dir_space N] | [

-ext_lib_make dir lib] | [-f command_line_file] | [

-gf] | [-gfb] | [-gfs] | [-h hdir1 hdir2 ...

hdirn] | [-inc make include file] | [-incm main make

include file] | [-int_lib_make dir lib] | [-l libdir1

libdir2 ... libdirn] | [-Lib N] | [-libcolldirlst

dir_lib dir1 dir2 ... dirn] | [-libdirlst dir1 dir2 ...

dirn] | [-liblst dir1/file1 dir2/file2 ... dirn/filen] |

[-libnm] | [-libs [dir1/]file1 [dir2/]file2 ...

[dirn/]filen] | [-libupdirlst dir1 dir2 ... dirn] | [

-list_files] | [-lkf] | [-m cdir_link cdir2 ...

cdirn] | [-makemake command [file1 file2 ... filen]] | [

-menu MenuDir MenuInput MenuIncDir file1 file2 ...

filen] | [-menuflag flag] | [-nc file1 file2 ... filen

] | [-ncoll dir1 dir2 ... dirn] | [-NE] | [

-no_source_list dir1 dir2 ... dirn] | [-o executable

] | [-obj obj_suffix] | [-og] | [-rl] | [-root

root directory name] | [-sc subdirectory name] | [-scu

usr subdirectory name] | [-sourcelist] | [-tex] | [

-tic30] | [-user_copyright] | [-usr usrdir1 usrdir2

... usrdirn]

The interpretation of these options is:

-arith

Specifies that C files supporting multiple arithmetic

models are supported.

-c cdir1 cdir2 ... cdirn

Specifies the list of directories with `.C' program files.

-check_make_lst dir1 dir2 ... dirn

Specifies a list of directories to connect to and do a make

before anything else.

-ckusrc

Specifies insure that all -usr files are also -c file.

Figure 15: makemake command line options (part 1 of 5)

7.1 Project description 55

-coll

Specifies the collection of all object files not in library

directories in a gloabl library.

-dbXtra

Specifies create file dbXtra.in to give list of source

directories.

-dir_space N

Specifies the extra space for directories (default 32

should be adequate).

-ext_lib_make dir lib

Specifies go to directory `dir' to `make' library `lib'.

-f command_line_file

Specifies that all other options are to be read from the

file argument.

-gf

Specifies that the global macro lists are to be output to

files.

-gfb

Specifies each line of the global macro files will end with

a back slash (\).

-gfs

Specifies no newlines in the global macro files.

-h hdir1 hdir2 ... hdirn

Specifies the list of directories with `.h' header files.

-inc make include file

Specifies a file to be included in all Makefiles generated.

-incm main make include file

Specifies a file to be included in the master Makefile.

-int_lib_make dir lib

Specifies move library created in (use -l) `dir' to `lib'.

-l libdir1 libdir2 ... libdirn

Specifies the list of library directories with `.C' program

files.

-Lib N

Specifies N repetitions of the library references in the

Figure 16: makemake command line options (part 2 of 5)

56 7. BUILDING OBJECTPRODSP AND MAKEMAKE

final link (this may be needed with some linkers to pull in

all referenced files).

-libcolldirlst dir_lib dir1 dir2 ... dirn

Specifies a list of directories from which files will be

linked in a single library directory `dir_lib'.

-libdirlst dir1 dir2 ... dirn

Specifies the list of directorys where librarys with names

Libdiri are contained.

-liblst dir1/file1 dir2/file2 ... dirn/filen

Specifies the list of library names.

-libnm

Specifies the use of the parent directory name to generate

the library name.

-libs [dir1/]file1 [dir2/]file2 ... [dirn/]filen

Specifies the list of librarys to be searched in building

the executable.

-libupdirlst dir1 dir2 ... dirn

Specifies the list of directorys where librarys with name

LibUpDiri are contained where UpDiri is the parent

directory of diri.

-list_files

Specifies write lists of various file types in `ALL_type'.

-lkf

Specifies that the final link is to be done using file

`makemake_link'.

-m cdir_link cdir2 ... cdirn

Specifies the list of directories with `.C' program files

beginning with directory for global (across directory)

linking.

-makemake command [file1 file2 ... filen]

Specifies command to make `Makefile' and list of

dependencies.

-menu MenuDir MenuInput MenuIncDir file1 file2 ...

filen

Specifies the directory for creating menu files, the menu

Figure 17: makemake command line options (part 3 of 5)

7.1 Project description 57

input file, the menu includes directory and the list of

files created by the menu generator.

-menuflag flag

Specifies pass the parameter to the `domenus' command

(requires -menu).

-nc file1 file2 ... filen

Specifies the `.C' files for which no CC command will be

created (usually the files are compiled with special

options using `Makefile.tail').

-ncoll dir1 dir2 ... dirn

Specifies the directories to skip in collecting object

files (the -coll option must be set).

-NE

Specifies creation of librarys only with no executable.

-no_source_list dir1 dir2 ... dirn

Specifies the list of library directories for which source

code is not available. If `-dbXtra' or `-sourcelist' is

set, any library directory not containing file

`source.list' and not in the list specified by this command

gives a warning.

-o executable

Specifies name of executable to create (default is `a.out').

-obj obj_suffix

Specifies the suffix for object files (default is o).

-og

Specifies no global macros in the `Makefile' (if these

macros are too long, some versions of make abort with a

core dump).

-rl

Specifies use ranlib.

-root root directory name

Specifies set root name (the default is:

/usr/local/lib/opd_root).

-sc subdirectory name

Specifies the directory name (as a subdirectory of the C

Figure 18: makemake command line options (part 4 of 5)

58 7. BUILDING OBJECTPRODSP AND MAKEMAKE

and library directories) to put the object and library

generated files (if this subdirectory does not exist it

will be created).

-scu usr subdirectory name

Specifies set usr subdirectory name (by default it is set

to the C subdirectory name this overides that default).

-sourcelist

Specifies creation in each library and executable directory

of file `source.lst' containing all directories that

provide source code.

-tex

Specifies output command line options in tex format.

-tic30

Specifies create line file names for tic30.

-user_copyright

Specifies add user copyright notice to each Makefile

generated.

-usr usrdir1 usrdir2 ... usrdirn

Specifies the list of directories with `.usr' program files

(usually each `.usr' directory must also be a header (-h)

directory and either a library (-l) or C (-c) directory).

Figure 19: makemake command line options (part 5 of 5)

7.1 Project description 59

generally necessary to run make on all the Makefiles.

Most often the -sc option is used so the compiles are done in a subdirectory

o� the directory containing the source code. This allows the same source to

be used to generate multiple libraries and executables with di�erent compile

time
ags. The master domakemake is in this subdirectory of the direc-

tory speci�ed by the �rst argument to -m. A single makemake can generate

Makefiles for many di�erent directories. If -sc is used a subdirectory will

be created for every directory under the -m and -l options.

Typically a number of �les are read by domakemake. These include script

�les in $OPD ROOT/scripts and various head, inc and tail �les in various

directories. File SYSTEM in the scripts directory determines the operating

system the make is for. This in
uences what head and tail �les will be

incorporated in the Makefile by de�ning a su�x for this search. Comments

in the Makefile show what �les are included and at what point.

The algorithm for selecting these �les is as follows.

1. Makefile head* | include all with searched su�xes in searched direc-

tories at the start of the Makefile.

2. Makefile inc* | include all with searched su�xes in searched direc-

tories at the end of the Makefile.

3. Makefile tail* | include exactly one �le. If multiple �les with

searched su�xes are present choose the �rst one in the search sequence.

This is the last part of the Makefile.

The search sequence looks in generic places (such as the scripts directory)

�rst and in speci�c places last. This sequence is inverted when only a single

�le is included for Makefile tail. In all other cases all matching �les are

included.

The serach sequence for directories is as follows.

1. $OPD_ROOT/scripts.

2. Directory that is the �rst argument to -m (main directory).

60 7. BUILDING OBJECTPRODSP AND MAKEMAKE

Directory Object Purpose

$OPD ROOT/doc/ $OPD ROOT/doc/

build all .dvi �les

devman devman/devman.dvi ObjectProDSP Developer's Reference

overview overview/overview.dvi ObjectProDSP Overview and Tutorial

overview/nodeman.dvi ObjectProDSP Library Reference

roff .hlp �les groff to .hlp and .tex format

roff/mmake doc/roff/Makefile create Makefile from lists of help �les

userman userman/userman.dvi ObjectProDSP User's Reference

Table 19: Directories for creating documentation

Directory Object Purpose

$OPD ROOT/src/ $OPD ROOT/bin/

gui/build/iv opd gui exe user interface process

dsp/build/fltgui opd dsp exe
oating point DSP process

dsp/build/int16gui opd dsp exe 16 bit integer DSP process

start up opd executable to start both processes

genlib/opdgen/opdgeno $OPD ROOT/lib/ generic library

Libopdgen

$OPD ROOT/build everything

Table 20: Directories for creating interactive libraries and executables

3. -sc speci�ed subdirectory of main directory.

4. The directory for which this Makefile is being generated (from a -m or

-l argument).

5. The -sc subdirectory of the directory for which this Makefile is being

generated. (The Makefile is placed in this subdirectory.)

The serach sequences for su�xes is as follows.

1. NULL su�x.

2. .name where name is the �rst line in �le $OPD ROOT/scripts/SYSTEM.

7.2 Building ObjectProDSP 61

Directory Object Purpose

$OPD ROOT/src/dsp/lib/Target/ $OPD ROOT/lib/

tarflt LibTarLnxFlt stand alone
oat libraries

TarnobenchmFlt

tarint LibTarLnxInt16 stand alone 16 bit libraries

TarnobenchmInt16

Table 21: Directories for creating target libraries

Directory Object Purpose

$OPD ROOT/src/util/ $OPD ROOT/bin/

hyphen cp part copy selected part of �le

hyphen add hyphenation for L

A

T

E

X

toc depth L

A

T

E

X table of contents �lter

indextex/ix indextex create index for L

A

T

E

X

makemake/mk makemake Makefile generator

maketex/mktex maketex create lists of �les in a directory

mkmenu/menuo domenus create menu data base code

mknode mknode/mkndoeo translate ObjectPro++ source

nametrans nametrns adds conditional include to header

used in $OPD ROOT/bin/headcnv

rofftotex rofftotex limited roff mm to L

A

T

E

X translator

Table 22: Directories for creating utilities

The search �rst looks for all su�xes in a directory and then moves on to the

next directory.

7.2 Building ObjectProDSP

README in $OPD ROOT/build contains instructions for building ObjectPro-

DSP from the source distribution. Tables 19 on page 60 through 22 on page

61 gives the directories for building speci�c components of ObjectProDSP.

You should only need to go to one of these directories and enter make to

update one of these components.

62 7. BUILDING OBJECTPRODSP AND MAKEMAKE

7.3 Validation

7.3.1 ObjectProDSP directory structure

Table 23 on page 63 gives the top level ObjectProDSP directory structure.

7.3.2 Validation

The validation shell script

$OPD ROOT/scripts/master validate.sh

controls the creation of base line test data and the execution of tests against

that data.

7.3 Validation 63

Directory under $OPD ROOT Contents

bin executables

build master build directory for everything

doc documentation

doc/build master build directory for documentation

doc/mac documentation macros

doc/scripts documentation script �les

doc/trademarks restricted use macros

examp ObjectProDSP examples

help interactive help �les

lib libraries

src source code

src/dsp DSP source code

src/dsp/build master directory for DSP process

src/dsp/lib libraries for interactive and stand alone DSP code

src/dsp/lib/target root for stand alone code

src/dsp/lib/target/build master directory for stand alone libraries

src/dsp gui classes common to both processes

src/gui user interface process source code

src/gui/build master directory for user interface process

src/include include �les for writing nodes

src/menus menus and menu builds for both processes

src/genlib generic library source code

src/start up start up code that initiates both processes

src/util utilities source code

validate validation log, action �les, and DSP++ programs

Table 23: Top level ObjectProDSP directory structure

64 7. BUILDING OBJECTPRODSP AND MAKEMAKE

65

Feature A�ect

changing menu data base structure a�ects everything lower in tree

new menu data base items or menus no a�ect

delete menu data base items only a�ects item deleted

changing menu bar key codes a�ects items changed

new menu bar items no a�ect

new menu bar top level menus no a�ect

deleting menu bar items and menus a�ects only items deleted

adding new classes or member functions no a�ect

changing class names a�ects classes changed

Table 24: User interface changes that break and do not break validation

8 Regression tests

Regression tests can assure that under controlled inputs a program produces

exactly the output it had previously. The original output that the test is run

against must be manually checked. One di�culty is insuring the correctness

of this base line test output. Another di�culty is making the regression

tests `orthogonal' so a small change in the program will have a known small

change in the test output. Regression tests allow one to make code changes

and have a reasonable assurance that one has not �xed one bug only to

introduce several new ones. However this is only possible if the tests can be

made su�ciently independent of each other. This can be particularly di�cult

in user interface code.

Table 24 on page 65 shows what elements of the user interface can and cannot

be changed without invalidating the existing regression test suite. Of course

these lists are not exhaustive. However they describe important areas where

you cannot make changes unless you are willing to recreate or heavily edit the

regression tests. They describe other important areas where you can change

the user interface without breaking the existing validation suite.

66 8. REGRESSION TESTS

8.1 Running and creating regression tests

Script $OPD ROOT/scripts/master validate.sh creates and runs the stan-

dard suite of regression tests. This is most conveniently used with the

Makefile in $OPD ROOT/build. For instructions execute the shell script or

do a make with no arguments. The rest of this section describes how to add

tests to the standard suite created and run by this script.

The standard tests are determined by the �les in $OPD ROOT/validate of the

forms make * validate.rec,

make * validate float.rec and

make * validate int16.rec.

Files of the �rst type are used to generate tests for both simulators. The other

types generate tests for the
oating point and 16 bit simulators individually.

To add new tests create an action �le with the appropriate name and add

it to this directory. This action �le must construct a network and do a

TargetValidate on the network. It should then exit (preferably without

saving the state). Make sure your network does not con
ict with any of the

networks already used. (For each network there is directory

$OPD ROOT/validate/test nodes/val network name float

and/or a directory

$OPD ROOT/validate/test nodes/val network name int16

created. Make sure your new network is not the same as network name in

any of these directory names.) (To assign a name to a network create a

nondefault instance of a network. You will be prompted for the name to use.

You must do this before you create any instances of objects or a network

will be created with a default name and the objects associated with that

network. You can move objects between networks, if they are not linked, but

you cannot change the name of a network once it has been created.)

8.2 Regression tests created with TargetValidate

The Networkmember function TargetValidate generates ObjectProDSP.dpp

�les and shell scripts to create and execute regression tests. In these scripts

the output of all Listing and Plot nodes is automatically tested. Two net-

works are generated from the original. In the �rst each occurrence of Listing

8.3 Writing and reading a �le in di�erent tests 67

or Plot is replaced with an OutputNode. In the second the same nodes are

replaced with a CompareDisk node. CompareDisk reads the data generated

by the OutputNode and compares it with the current input. The scripts cre-

ated by TargetValidate are used for both target code and interactive code

validation.)

8.3 Writing and reading a �le in di�erent tests

There are two ways to test output �les (other than those created by

OutputNode). You can write a �le in one test and then read it in a sub-

sequent test. The second test should send the data to a Plot or Listing

node. so the data will be veri�ed. You can also do byte by byte comparison

against base line validation �les by writing a �le that ends with su�x .cmp.

If you write a �le in one test and read it in another you must be sure the

two tests are done in the correct order. Tests are done in alphabetical order

(as de�ned by the sort command). They are alphabetized by network name

and by the make*validate.rec name. To have one test generate output and

a second read it you must choose these names so the tests that creates the

data runs �rst.

Di�erent tests are run in di�erent directories. You must specify an absolute

path name if di�erent tests are to access the same �le. The standard place

to put the data is directory $OPD ROOT/validate/test data. (You can use

environmental variables when entering �le names.) If this directory does not

exist it will be created when validation starts. You may need to create the

directory manually for debugging your tests.

8.4 Byte by byte comparison �les

Some �les cannot be easily tested by writing and then reading a �le. Such

�les can be tested by doing a byte by byte comparison against a base line

version of the �le. To test �les in this way write them in the current directory

and give them a name ending with .cmp. When you do a make VAL DATA

to integrate your tests (as described below) a base line version of these �les

68 8. REGRESSION TESTS

will be created with su�x .cmpb. Subsequent make VALIDATE executions

will test the newly generated .cmp �les against the .cmpb �les by doing a

comparison on every byte in both �les.

All tests must contain at least one Plot or Listing node and must include

the MakeTarget operation. If no output is generated the test will abort.

MakeTarget is necessary to create the test scripts.

8.5 Documenting tests

Each make * validate.rec �le must start with documentation of the tests.

If a �le does not contain a line similar to the following the validation script

will abort:

END OF VALIDATION LIST

This indicates the end of the information that annotates the tests. Program

$OPD ROOT/report test reads the information above this line in each test

�le and uses it to print a summary of what nodes and other features were

tested and how completely these features were tested. If report test does

not �nd the line exactly as it expects, it will abort with an error message.

Copy the line from an existing �le to make sure it is exactly correct.

Above this line you should include a single line for each node that occurs in

your test of the form:

node_name tests performed or other comments

Do not include Listing or Plot nodes in the above list as these are replaced

with other nodes in generating the tests. Make sure that every thread ends

with either a Plot or Listing node so at least the �nal output of the thread

will be veri�ed.

Following all nodes you can list other features tested one per line. These lines

should start with two sharp signs: ##. See any of the standard validation

�les, make * validate*.rec, for examples. In these features list include the

name of any .cmp �les that the test generates. This will make it easy to go

from the .cmp �le name to the validation script that generated the �le.

8.6 Creating base line test data 69

8.6 Creating base line test data

To create base line test data run $OPD ROOT/scripts/master validate.sh

with argument VAL DATA. You can temporarily move all of the existing

make*validate.rec �les in $OPD ROOT/validate to a di�erent directory

to just do a make VAL DATA with your new validation �les. This will not

change the base line test data for the existing tests. (If you just add your

�les and then do a make VAL DATA all base line test data will be recre-

ated.) You can then transfer the original make*validate.rec �les back to

$OPD ROOT/validate and the next make VALIDATE will run the full suite in-

cluding those tests you added. Make sure you manually check the correctness

of the base line test data you have added.

When you next do make VALIDATE the validation log should report no errors

but additional test cases not in the previous log. Copy this log to the appro-

priate base line validation log to complete the update. File base log is the

log for
oating point and 16 bit integer tests. base float log is for
oating

point tests only. (There is no capability to run only 16 bit integer tests.) If

your update includes
oating point tests you should update both base line

log �les.

8.7 Make many mistakes in recording your test

These are tests of both the DSP process and the GUI since the networks are

built interactively. It is good to make mistakes in construction the actions

�les for these tests. It makes the GUI test more e�ective.

70 8. REGRESSION TESTS

APPENDIXES

A{1

A GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to

share and change it. By contrast, the GNU General Public License is in-

tended to guarantee your freedom to share and change free software{to make

sure the software is free for all its users. This General Public License applies

to most of the Free Software Foundation's software and to any other program

whose authors commit to using it. (Some other Free Software Foundation

software is covered by the GNU Library General Public License instead.)

You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our

General Public Licenses are designed to make sure that you have the freedom

to distribute copies of free software (and charge for this service if you wish),

that you receive source code or can get it if you want it, that you can change

the software or use pieces of it in new free programs; and that you know you

can do these things.

To protect your rights, we need to make restrictions that forbid anyone to

deny you these rights or to ask you to surrender the rights. These restrictions

translate to certain responsibilities for you if you distribute copies of the

software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or

for a fee, you must give the recipients all the rights that you have. You must

make sure that they, too, receive or can get the source code. And you must

A{2 A. GNU GENERAL PUBLIC LICENSE

show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)

o�er you this license which gives you legal permission to copy, distribute

and/or modify the software.

Also, for each author's protection and ours, we want to make certain that

everyone understands that there is no warranty for this free software. If the

software is modi�ed by someone else and passed on, we want its recipients to

know that what they have is not the original, so that any problems introduced

by others will not re
ect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We

wish to avoid the danger that redistributors of a free program will individually

obtain patent licenses, in e�ect making the program proprietary. To prevent

this, we have made it clear that any patent must be licensed for everyone's

free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation

follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION

0. This License applies to any program or other work which contains a

notice placed by the copyright holder saying it may be distributed under

the terms of this General Public License. The \Program", below, refers

to any such program or work, and a \work based on the Program" means

either the Program or any derivative work under copyright law: that is to

say, a work containing the Program or a portion of it, either verbatim or

with modi�cations and/or translated into another language. (Hereinafter,

translation is included without limitation in the term \modi�cation".) Each

licensee is addressed as \you".

Activities other than copying, distribution and modi�cation are not covered

by this License; they are outside its scope. The act of running the Program

is not restricted, and the output from the Program is covered only if its

A{3

contents constitute a work based on the Program (independent of having

been made by running the Program). Whether that is true depends on what

the Program does.

1. You may copy and distribute verbatim copies of the Program's source

code as you receive it, in any medium, provided that you conspicuously

and appropriately publish on each copy an appropriate copyright notice and

disclaimer of warranty; keep intact all the notices that refer to this License

and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may

at your option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of

it, thus forming a work based on the Program, and copy and distribute such

modi�cations or work under the terms of Section 1 above, provided that you

also meet all of these conditions:

a) You must cause the modi�ed �les to carry prominent notices

stating that you changed the �les and the date of any change.

b) You must cause any work that you distribute or publish, that

in whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modi�ed program normally reads commands interactively

when run, you must cause it, when started running for such interac-

tive use in the most ordinary way, to print or display an announce-

ment including an appropriate copyright notice and a notice that

there is no warranty (or else, saying that you provide a warranty)

and that users may redistribute the program under these condi-

tions, and telling the user how to view a copy of this License. (Ex-

ception: if the Program itself is interactive but does not normally

print such an announcement, your work based on the Program is

not required to print an announcement.)

A{4 A. GNU GENERAL PUBLIC LICENSE

These requirements apply to the modi�ed work as a whole. If identi�able sec-

tions of that work are not derived from the Program, and can be reasonably

considered independent and separate works in themselves, then this License,

and its terms, do not apply to those sections when you distribute them as

separate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be

on the terms of this License, whose permissions for other licensees extend to

the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your

rights to work written entirely by you; rather, the intent is to exercise the

right to control the distribution of derivative or collective works based on the

Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under the

scope of this License.

3. You may copy and distribute the Program (or a work based on it, under

Section 2) in object code or executable form under the terms of Sections 1

and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sec-

tions 1 and 2 above on a medium customarily used for software

interchange; or,

b) Accompany it with a written o�er, valid for at least three years,

to give any third party, for a charge no more than your cost of phys-

ically performing source distribution, a complete machine-readable

copy of the corresponding source code, to be distributed under the

terms of Sections 1 and 2 above on a medium customarily used for

software interchange; or,

c) Accompany it with the information you received as to the o�er to

distribute corresponding source code. (This alternative is allowed

only for noncommercial distribution and only if you received the

program in object code or executable form with such an o�er, in

A{5

accord with Subsection b above.)

The source code for a work means the preferred form of the work for making

modi�cations to it. For an executable work, complete source code means

all the source code for all modules it contains, plus any associated interface

de�nition �les, plus the scripts used to control compilation and installation of

the executable. However, as a special exception, the source code distributed

need not include anything that is normally distributed (in either source or

binary form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component itself

accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy

from a designated place, then o�ering equivalent access to copy the source

code from the same place counts as distribution of the source code, even

though third parties are not compelled to copy the source along with the

object code.

4. You may not copy, modify, sublicense, or distribute the Program except

as expressly provided under this License. Any attempt otherwise to copy,

modify, sublicense or distribute the Program is void, and will automatically

terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed

it. However, nothing else grants you permission to modify or distribute the

Program or its derivative works. These actions are prohibited by law if you do

not accept this License. Therefore, by modifying or distributing the Program

(or any work based on the Program), you indicate your acceptance of this

License to do so, and all its terms and conditions for copying, distributing or

modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-

gram), the recipient automatically receives a license from the original licensor

to copy, distribute or modify the Program subject to these terms and condi-

tions. You may not impose any further restrictions on the recipients' exercise

of the rights granted herein. You are not responsible for enforcing compliance

A{6 A. GNU GENERAL PUBLIC LICENSE

by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-

ment or for any other reason (not limited to patent issues), conditions are

imposed on you (whether by court order, agreement or otherwise) that con-

tradict the conditions of this License, they do not excuse you from the condi-

tions of this License. If you cannot distribute so as to satisfy simultaneously

your obligations under this License and any other pertinent obligations, then

as a consequence you may not distribute the Program at all. For example,

if a patent license would not permit royalty-free redistribution of the Pro-

gram by all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any par-

ticular circumstance, the balance of the section is intended to apply and the

section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents

or other property right claims or to contest validity of any such claims; this

section has the sole purpose of protecting the integrity of the free software

distribution system, which is implemented by public license practices. Many

people have made generous contributions to the wide range of software dis-

tributed through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to dis-

tribute software through any other system and a licensee cannot impose that

choice.

This section is intended to make thoroughly clear what is believed to be a

consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain

countries either by patents or by copyrighted interfaces, the original copy-

right holder who places the Program under this License may add an explicit

geographical distribution limitation excluding those countries, so that distri-

bution is permitted only in or among countries not thus excluded. In such

case, this License incorporates the limitation as if written in the body of this

License.

A{7

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will be

similar in spirit to the present version, but may di�er in detail to address

new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-

i�es a version number of this License which applies to it and \any later

version", you have the option of following the terms and conditions either of

that version or of any later version published by the Free Software Founda-

tion. If the Program does not specify a version number of this License, you

may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs

whose distribution conditions are di�erent, write to the author to ask for

permission. For software which is copyrighted by the Free Software Founda-

tion, write to the Free Software Foundation; we sometimes make exceptions

for this. Our decision will be guided by the two goals of preserving the free

status of all derivatives of our free software and of promoting the sharing and

reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT

PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE

STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM \AS IS" WITHOUT WARRANTY

OF ANYKIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIEDWARRANTIESOFMERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-

GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,

YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR

OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR

AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR

A{8 A. GNU GENERAL PUBLIC LICENSE

ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR

DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-

ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible

use to the public, the best way to achieve this is to make it free software

which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach

them to the start of each source �le to most e�ectively convey the exclusion

of warranty; and each �le should have at least the \copyright" line and a

pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it

does.> Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published

by the Free Software Foundation; either version 2 of the License,

or (at your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied war-

ranty of MERCHANTABILITY or FITNESS FOR A PARTICU-

LAR PURPOSE. See the GNU General Public License for more

details.

A{9

You should have received a copy of the GNU General Public Li-

cense along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it

starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for

details type `show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appro-

priate parts of the General Public License. Of course, the commands you use

may be called something other than `show w' and `show c'; they could even

be mouse-clicks or menu items{whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a \copyright disclaimer" for the program, if necessary.

Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the pro-

gram `Gnomovision' (which makes passes at compilers) written by

James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Library General Public

License instead of this License.

A{10 A. GNU GENERAL PUBLIC LICENSE

References

[1] P. Budnik, ObjectProDSP Overview and Tutorial Mountain Math Soft-

ware, September 1994

[2] P. Budnik, DppUser, Mountain Math Software, September 1994

[3] P. Budnik, ObjectProDSP Library Reference, Mountain Math Software,

September 1994

[4] P. Budnik, ObjectProDSP Developer's Reference, Mountain Math Soft-

ware, September 1994

[5] Brian W. Kernighan and Dennis R. Ritchie, The C Programming Lan-

guage, Prentice-Hall, 1978.

[6] The ANSI X3J11 committe and Herbert Schildt The Annotated ANSI

C Standard, ANSI/ISO 9899-1990, Osborne McGraw-Hill, 1990.

[7] Edward A. Lee and David G. Messerschmitt, Synchronous Data Flow,

Proceedings of the IEEE, Vol 75, No. 9, September 1987.

[8] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,

1986.

B{1

B{2

Index

$OPD ROOT 63

$OPD ROOT/build 61

$OPD ROOT/scripts/SYSTEM 60

$OPD ROOT/bin/ 60

$OPD ROOT/bin/headcnv 61

$OPD ROOT/build 30, 60, 66

$OPD ROOT/doc/ 60

$OPD ROOT/lib/ 60, 61

$OPD ROOT/menus/nodes 30

$OPD ROOT/overview/doc 31

$OPD ROOT/report test 68

$OPD ROOT/scripts/master validate.sh

62, 66, 69

$OPD ROOT/src 31

$OPD ROOT/src/ 60

$OPD ROOT/src/dsp/lib/Target/

61

$OPD ROOT/src/include/initinc.h

30

$OPD ROOT/src/util/ 61

$OPD ROOT/validate 66, 69

$OPD ROOT/validate/test data 67

-l 53, 59, 60

-m 53, 59, 60

-sc 59, 60

./target 31

./tex 31

./texs 31

.C 1, 29, 53

.CAPTION 46

.cmp 67, 68

.cmpb 68

.h 1, 29, 53

.hlp 60

.LINE 46

.nod 28, 29, 33, 50

.ro� 46

.tex 29, 31, 46, 49, 50, 60

.xml 39

// 9, 37

[1] 39

=DynamicMenu 37

=HelpFile 37

=HelpText 35, 37

=Local 37

=LocalRemote 37

=Menu 37

=Reference 37

=Remote 37

=RemoteOptions 37

AccMachWord 27

Action 37, 38

ActionType 36, 37, 38

Add To Menu 37

AllCls 42

arithmetic types 27

ArithType 17

ARITH TYPE IN 12, 13, 14

ARITH TYPE OUT 12, 13, 14

ArithTypes 18

ArithTypeUnde�ned 14

artyp 51

auxfuncs.tex 49

C{1

base class constructor parameters

13, 14, 15, 16

base class parameters 12

base classes 8, 11

base constructor 8

BaseDescription 9, 10

BaseDfNodeCtor 10

base
oat log 69

base log 69

basenod.tex 49

bin 63

bison 7, 36

blkpltstr.h 11

Block 17

BlockPlot 6

blockplt.h 11

BLOCK SIZE 12, 13, 14, 17, 21

blockusr 51

Body 9, 10

bu�er.h 11

Bu�erDescript 11, 12

build 60, 63

CAPTION 12, 13, 14

cerr 26

Changeable 2

char * 14

CheckParameter 9, 20

Cinclude 2

CircBufDes 15

circular bu�ers 15

Class 9, 19

ClassRelation 37, 38

Coe� 20

Command 37, 38

Comment 9, 10, 37, 38

common 7

CompareDisk 67

consistency checking 20

const.usr 39

ConstantData 39, 41, 42

ConstantDataInstancesAccessMenu

41

Constructor 9

Cpp 9, 10

cp part 61

Ctor 9, 10, 25, 27

ctorinit.C 50

ctorinit.h 50

CxMachWord 24

data stream 17

Declaration 9, 10

DeclarationCode 9, 10

Default 10, 35, 37

DefaultList 9, 10

De�nedAction 36, 37

De�nedActionList 37, 38

DefProcessNet 14

DELAY IN 12, 13, 14

delete node 25

DELTA IN 8, 12, 13, 14

DELTA OUT 8, 12, 13, 14, 21

DescribeNodeInstance 41

Description 7, 9

DescrubeExample 39

Destructor 9, 21, 25

devman 60

devman/devman.dvi 60

DfNode 7, 9, 10, 11, 12

dfnode.h 11

DfNode::propagate arith type 18

DfNodeCtor 9, 10

display 30

C{2

display.h 11

display.tex 49

DisplayNode 11, 12

DisplayNodeStr 11, 12

domakemake 53, 59

doc 63

doc/build 63

doc/mac 63

doc/ro�/Make�le 60

doc/scripts 63

doc/trademarks 63

domakemake 31

domenus 30, 31, 61

DoNode 21

double 14, 16

DppNm 46

dsp.messages 26

dsp/build/
tgui 60

dsp/build/int16gui 60

dsplstr.h 11

DspNodesMenu 6

Dtor 9, 10

DunamicMenuServer 39

Dynamic 35, 37, 41

DynamicMenu 37

DynamicMenuServer 39

DYNAMIC TYPE 12, 13, 14

dynmnu.h 39

dynmnug.C 39

ELEMENT SIZE 12, 13, 14, 17, 21

ELEMENT SIZE OUT 12, 13, 14

emit state 22, 25

EndOfData 22

errcode.h 22

examp 63

ExamplesDspPP 39

examp list 45

exampmenu 51

exampmn.tex 45

examptex 45

ExecutExample 39

ExecutionComplete 22

FatalError 22

fgrep 31

FirstDefault 2

tgui 29

FullDescription 9, 10

GenericBlockPlot 11, 12

GenericBlockPlotStr 11, 12

GenericPlot 11, 12

GenericPlotStr 11, 12

genlib/opdgen/opdgeno 60

genplot.h 11

GetAvailableData 24

GetBinReadBase 24

GetBinReadEnd 24

GetBinReadPtr 24

GetBinWriteBase 24

GetBinWriteEnd 24

GetBinWritePtr 24

GetContiguousAvailableData 24

GetContiguousSpace 24

GetReadBase 24

GetReadEnd 24

GetReadPtr 24

GetSpace 24

GetWriteBase 24

GetWriteEnd 24

GetWritePtr 24

gpltstr.h 11

gro� 45, 46, 60

gui/build/iv 60

C{3

head 59

Header 9, 10

HeaderEnd 9

Help 9, 10, 37, 38, 63

HelpDefinition 35

help information 35

HelpDef 37, 38

HelpDefaultFile 9, 37, 38

HelpDe�nition 37

HelpFile 7, 35, 37, 38

HelpFileDefault 35

help list 45, 46

HelpOut 26

HelpRef 37, 38

helptex 45

HelpText 37

Hinclude 2

History 35, 37

hyphen 61

ICinclude 2

IHinclude 2

imake 53

IN 8, 12, 13, 14

inc 59

include options 2, 5

include/ObjProDSPint/ObjProUsr

31

include/ObjProDSPtar/ObjProUsr

31

Includes 10

IncrementOut 13, 21

Index 46

indextex 61

indextex/ix 61

Init 37, 39

InitAfterLinked 18, 27

InitAllMenuRoutines 41

InitEntry 37, 38

initinc.h 30, 31

input linked 18

InputNode 17

Instance 9, 19

InstanceDescription 9

Instances 9

int 16

int16 14, 16

int16gui 29

int32 14, 16, 21

IntegerMachWord 22

INTERACTIVE 26

InteractiveBu�er 28

InteractiveClass 9, 10

InteractiveDisplay 28

InteractiveEntityList 7, 9, 29

InteractiveMiscellaneous 28

InteractiveNet 28

InteractiveNode 28

InteractiveScheduler 28

InteractiveSignal 28

ionode 30

k 21

Kernel 7, 9, 10, 21

LaTeX 45

lib 63

lib/control 49

lib/network 49

Libopdgen 60

LibTarLnxFlt 61

LibTarLnxInt16 61

Linear 16

Listing 66, 67, 68

Local 36, 37

C{4

LocalRemote 36, 37

LogOut 26

MachWord 22, 24, 27

MainCgi 33

make DOC 30

make EXE 30

make Target 53

make TOUCH DOMAKEMAKE 30

make VAL DATA 67, 69

make VALIDATE 68, 69

make both.sh 30

Make�le head* 59

Make�le inc* 59

Make�les 53

Make�le tail 59

Make�le tail* 59

makemake 30, 31, 53, 59, 61

makemake/mk 61

MakeTarget 68

maketex 61

maketex/mktex 61

make * validate.rec 66, 67, 68, 69

make * validate
oat.rec 66

make * validate int16.rec 66

Max 2, 20

MaxArithTypes 14

MAXIMUM X 12, 13, 14

MAXIMUM Y 12, 13, 14

Member 9, 10, 19

member functions 8, 11, 19

member objects 19

MemberHelp 9

MemberName 10

meninit.C 41

Menu 33, 37, 38

menu syntax 36

MenuBody 37, 38

MenuId 37, 38

MenuItem 37, 38

MenuLine 2, 6, 7, 9, 10, 41

menus/nodes 31

menus/nodes/xxx.nod 1

MenuStackReference 37, 38

MenuTitle 37, 38

Min 2, 20

MINIMUM X 12, 13, 14

MINIMUM Y 12, 13, 14

miscel.h 11

Miscellaneous 11, 12

mkmenu/menuo 61

mkmenu b.y 36

mknod b.y 8

mknode 29, 30, 31, 61

mknode/mkndoeo 61

mm 45

mmake 45

mmake.C 45

mmenu 51

mnro�mn.tex 45, 46, 50

Multiple Use 35, 37

NameList 37, 38

nametrans 61

nametrns 61

netcnt.h 11

NetControl 11, 12

netsys.h 11

NETWORK 12, 13, 14, 66

network.h 11

NetworkSystem 11, 12

Node 11, 12

node syntax 7

node.h 11

C{5

node.tex 49

NODE DELAY 8, 12, 13, 14

NodeDescription 9, 10

NoDefaultInstance 9

node list 45, 46

NodeName 10

nodes 50

nodes/display 49

nodes/proc 49

nodes/proc32 49

nodes/sigdsk 49

nodes/signal 49

nodetex 45

NornToOneMachWord 20

NotInitialized 15, 16

NUMBER BLOCKS 12, 13, 14, 15

NumberList 10

NumParamValue 10

Object 37, 38

ObjectList 36, 37, 38

ObjProArith/normone.h 20

ObjProDSPcom 7

ObjProDSPcom/blckwrt.h 22

ObjProDSPcom/tarnod.h 22

ObjProFlt 28

ObjProInt16 28

OK 22

opd 60

opd.menu 6, 33, 39, 41, 50

opd dsp exe 60

opd gui exe 60

Orphan 35, 37

other 33

OtherBaseList 10

OUT 8, 12, 15, 16

OutputBu�ersFull 22

OutputNode 67

outtok.h 25

OutTokens 25

OVERLAP 8, 12, 15, 16

overview 60

overview/nodeman.dvi 60

overview/overview.dvi 60

ovnode.tex 50

ovnodlst.tex 45, 46

Parameter 9, 10, 37, 38

parameter checking 20

ParameterAndCheck 9, 10

ParameterList 9, 10, 37, 38

Parameters 9, 10, 37, 38

ParamValue 10

Plot 6, 17, 66, 67, 68

PlotDynDyn 14

PlotDynStatic 14

plotnd.h 11

PlotNode 11, 12

PlotPairs 16

PLOTTING STREAM TYPE 12,

15, 16

PlotYs 16

PriorNameList 37, 38

proc 30

proc16 30

proc32 30

ProcessNet 11, 12, 13, 14

ProcessNode 11, 12

ProcessNodeStr 11, 12

procnode.h 11

procstr.h 11

Quali�er 37, 38

Random 16

C{6

ReadCxWord 24

ReadInteger 24

ReadWord 21, 24

ReadWriteBlock 22

ReadWriteSingleChannel 22

Reference 37

ReferencedNameList 9

Remote 36, 37

RemoteOptions 37

report test 68

ro� 60

ro� mm 61

ro�/mmake 60

ro�totex 61

Safe 9, 10

SafeDelete 9, 21, 25

ScaledMachineWord 20

SCALE FLAG 12, 15, 16

scripts 59

scripts directory 59

Select 36, 37, 39

set 2

sigbase.h 11

sigdsk 30

sighlp 51

Signal 11, 12, 30, 39

SignalNodesMenu 41

signal.tex 49

SignalStr 11, 12

signode.h 11

sigtex 51

Size 9, 10, 12, 15, 16

sort 67

src 63

src/dsp 63

src/dsp/build 63

src/dsp/lib 63

src/dsp/lib/target 63

src/dsp/lib/target/build 63

src/dsp gui 63

src/genlib 63

src/gui 63

src/gui/build 63

src/include 63

src/menus 63

src/start up 63

src/util 63

start up 60

state emit 22

StateEmit 9, 10, 21, 25

Static 19

StaticDeclare 10, 19, 27

StaticInit 10, 27

Str 6

stream 17

StreamArithType 17

StreamComplex 17

STREAM IN 8, 12, 15, 16, 17

StreamNotInitialize 15

StreamNotInitialized 17

StreamNotSet 16, 17

STREAM OUT 8, 12, 15, 16, 17

StreamReal 16, 17

StreamStr 16, 17

string 2

strmstr.h 17

subsection 46

su�x Str 6

Symbol 10, 38

SYSTEM 59

tail 59

tar
t 61

C{7

Target 53

target arithmetic 27

target/xxx.C 1

target/xxx.h 1

TargetDesignator 8

TargetNode 11, 22, 26

TargetValidate 66, 67

tarint 61

TarnobenchmFlt 61

TarnobenchmInt16 61

tbl 45

TCinclude 2

Template 36, 37, 39, 41

tex 29, 49

tex/xxx.tex 1

texs 29, 49

texs/xxx.tex 1

THinclude 2

TimeFirst 22

Timing 9, 10, 21, 22

TIMING TYPE 12, 15, 16

TimingTypeRandom 21

toc depth 61

ToInteger 17

ToMach 17

touch 29

TYPE 12, 15, 16

UnsignedIntegerMachWord 22

UpdateRead 24

UpdateWrite 24

UserEntity 6, 11, 14, 16

userman 60

userman/userman.dvi 60

VAL DATA 69

validate 63

Wait 9, 10, 37, 38

Warning 22

WordString 37, 38

WriteCxWord 24

WriteInteger 24

WriteWord 21, 24

xxx.C 1

xxx.h 1

xxx.s 1

xxxI.h 1

XY SAMPLES PER PLOT 12, 15,

16

yacc 7, 36

C{8

