
Extending the STK interpreter

Erick Gallesio

Universit�e de Nice - Sophia-Antipolis

Laboratoire I3S - CNRS URA 1376 - ESSI.

Route des Colles

B.P. 145

06903 Sophia-Antipolis Cedex - FRANCE

email: eg@unice.fr

July 1995

Abstract

This document describes how to extend the STk interpreter with new primitives proce-

dures and/or new types. Extending the interpreter can be done by writing new modules in C.

New C code can be statically linked to the core interpreter or dynamically loaded on operating

systems which support shared libraries. This document also presents how to integrate new

Tk widgets written for the Tcl interpreter in STk.

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Adding new primitives 3

2.1 A simple example . 3

2.2 Passing arguments to a primitive . 4

2.3 Evaluating arguments . 7

2.4 Signaling errors . 8

3 Variables 9

3.1 Scheme Symbols and Variables . 9

3.2 Connecting Scheme and C variables . 10

4 Calling Scheme from C 11

5 Adding new types 11

5.1 De�nition of a Scheme extended type . 11

5.1.1 How the GC works . 11

5.1.2 The Extended type data structure . 12

5.1.3 Registering the new type . 13

5.1.4 New type instances creation . 14

5.2 De�nition of a C extended type . 15

5.3 About memory: Common pitfalls . 15

6 Loading an extension 15

7 Adding new Tk widgets 16

7.1 Widget compilation . 16

7.2 Widget linking . 17

8 Extending the interpreter with C++ 18

9 Embedding the STk interpreter 18

2

2 ADDING NEW PRIMITIVES

1 Introduction

This document describes how to extend the STk[2] interpreter using the C language[4]. To begin,

we will start with a simple extension which will only consist to add some simple new primitives

to the interpreter. Second section will describe how to add a new type (and the primitives for

manipulating this new type). Another interesting extension consists to add new kind of primitives

(i.e. primitives which evaluate their argument in particular way). This kind of extension will be

discussed in the third section. Fourth section discusses how to add a new widget to the interpreter.

Calling some Scheme code from a C function is showed in section 5. And last, we will show how

to load an extension at load time. This facility will permit to extend the STk interpreter without

having to recompile it, on systems which support dynamic loading.

2 Adding new primitives

2.1 A simple example

One of the simpler extension one can wish to do consists to add new primitives procedures to

the interpreter. To illustrate this, suppose we want to add two new primitives to the interpreter:

posix-time and posix-ctime. The former function correspond to the POSIX.1[1] function time:

it returns the number of seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal

Time (UTC). The latter is a wrapper around the POSIX.1 function ctime which returns a string

containing the current time in an human readable format.

First, we will see how to write the new Scheme primitive posix-time. Implementing a new

primitive requires to write a new C function which will do the work. Here, we write the C

function posix time to implement the Scheme primitive posix-time. The code of this function

is given below.

static PRIMITIVE posix_time(void)

{

return STk_makeinteger((long) time(NULL));

}

This function uses the interpreter STk makeinteger function which converts a C long integer to

a STk integer. Once the posix time C function is written, we have to bind this new primitive to

the Scheme symbol posix-time. This is achieved by the following C function call.

STk_add_new_primitive("posix-time", tc_subr_0, posix_time);

Note: The C type SCM is used to describe the objects manipulated in Scheme. PRIMITIVE is an

alias for this type; it is preferably used when de�ning a new primitive.

STk add new primitive tells the interpreter that the Scheme symbol posix-time must be bound

to the (C written) primitive posix time. The constant tc subr 0 used as the second argument

indicates the arity of this primitive. In this case, the arity of the primitive is 0.

Let's now have a look at the primitive posix-ctime. A �rst writing of this primitive could be

3

2 ADDING NEW PRIMITIVES 2.2 Passing arguments to a primitive

static PRIMITIVE posix_ctime(void)

{

char *s;

time_t t = time(NULL);

s = ctime(&t);

return STk_makestring(s);

}

This functions uses another interpreter routine (STk makestring) which takes as parameter a null

terminated string and returns a Scheme string.

Binding of the scheme symbol time-string to the C function get time is done by the call

STk_add_new_primitive("posix-ctime", tc_subr_0, posix_ctime);

A complete listing of this code is given in Figure 2.1. Provided that we have done a shared object

of this �le, and that its name is posix.so, our two new primitives can be loaded dynamically by:

(load "time.so")

Notes:

� Su�x can be omitted. Su�xes given in the Scheme variable *load-suffixes* gives the

order in which su�xes must be tried for loading a �le. Default value for this variable is

("stk" "stklos" "scm" "so").

� When dynamic loading is used, the interpreter try to call a function whose name is equal

to the string "STk init " followed by the name of the �le, without su�x. De�nitions of

new primitives are generally done in this function. Here, the C function in charge of module

initialization must be called STk init posix.

2.2 Passing arguments to a primitive

This section shows how to pass arguments to a new primitive written in C. To illustrate our

purpose, we will rewrite the primitive posix-ctime to be conform to POSIX.1 (this function

should take an integer, a count of seconds, and should return corresponding date as a string). A

second writing of previous function could be:

static PRIMITIVE posix_ctime(SCM seconds)

{

long sec;

sec = STk_integer_value_no_overflow(seconds);

return STk_makestring(ctime((time_t *)&sec));

}

This function has one parameter since Scheme primitive arity is one. The C primitives parameters

are always SCM objects. An object of this type is a pointer to a struct obj: the type which

permits to represent all the Scheme objects. The SCM and struct obj types de�nitions can be

found in the Src/stk.h header �le.

The �rst job of this function consists to convert the Scheme parameter (seconds) to a C integer

long int. This is done with the function STk integer value no overflowwhich takes a SCM and

4

2 ADDING NEW PRIMITIVES 2.2 Passing arguments to a primitive

#include <sys/types.h>

#include <sys/time.h>

#include <time.h>

#include <stk.h> /* Declaration of STk objects/primitives */

static PRIMITIVE posix_time(void)

f

return STk_makeinteger((long) time(NULL));

g

static PRIMITIVE posix_ctime(void)

f

char *s;

time_t t = time(NULL);

s = ctime(&t);

return STk_makestring(s);

g

PRIMITIVE STk_init_posix(void)

f

STk_add_new_primitive("posix-time", tc_subr_0, posix_time);

STk_add_new_primitive("posix-ctime", tc_subr_0, posix_ctime);

return UNDEFINED;

g

Figure 1: A �rst version of �le posix.c

returns a long int. This functions returns LONG MIN if the argument is not a an integer number

(or a number which don't �t in the C representation of a C long int). Once this conversion is

done, the rest of the job is similar to the code presented above.

To add this primitive to the global Scheme environment, we have to change the previous STk add new primitive

for this primitive by:

STk_add_new_primitive("posix-ctime", tc_subr_1, posix_ctime);

in the init section. This call states that the type of this primitive is �xed to a tc subr 1 (a arity-1

primitive).

However, this function is not too satisfying, even if close to the POSIX de�nition: it obliges to

pass a parameter which will be probably most of the time the result of the primitive posix-time

(i.e. the most frequent usage of this function will be

(posix-ctime (posix-time))

which is not very elegant). A better approach consists to allow this primitive to have a optional

parameter. This permits to be at the same time conform to the POSIX convention and close to

Scheme habits. The following version implements the posix-ctime with a optional parameter:

static PRIMITIVE posix_ctime(SCM seconds)

{

long sec;

sec = (seconds==UNBOUND) ? time(NULL)

: STk_integer_value_no_overflow(seconds);

return STk_makestring(ctime((time_t *) &sec));

}

5

2 ADDING NEW PRIMITIVES 2.2 Passing arguments to a primitive

If the Scheme posix-ctime primitive is called with one parameter, it will be passed to the C

function in the seconds parameter. If posix-ctime is called without parameter, seconds is set

to the special value UNBOUND. So, the �rst test in this function consists to set a correct value to

the variable sec; this value is either the current time, either the given integer, depending of the

number of parameters given to posix-ctime.

Of course, the type of this new primitive must be changed to allow 0 or 1 parameter. This is done

by changing the tc subr 0 in the previous STk add new primitive by tc subr 0 or 1.

The following types are available for C primitives:

� tc subr 0 for arity-0 primitives

� tc subr 1 for arity-1 primitives

� tc subr 2 for arity-2 primitives

� tc subr 3 for arity-3 primitives

� tc subr 0 or 1 for primitives which have 0 or 1 parameter (e.g. read). On the C side you

have to declare a function which takes one SCM argument. This argument is set to the

(evaluated) parameter if present, to UNBOUND otherwise.

� tc subr 1 or 2 for primitives which have 1 or 2 parameters (e.g. write). Here you have to

declare a C function with two SCM parameters. The �rst one will contain the �rst Scheme

argument and the second will contain the second argument value or UNBOUND if omitted.

� tc subr 2 or 3 for primitives which have 2 or 3 parameters (there's no primitive of this type

in core interpreter). Of course, you'll have to declare a C function with three SCM parameters.

Apart that, conventions are the same has before.

� tc lsubr for primitives which have a variable number of arguments. Actuals arguments

are collected in a list which is given as the �rst argument of the C primitive. The second

argument of the C function is an integer counting the actual number of arguments given to

the primitive. Hence, the signature of the C function which implement a tc lsubr must be

PRIMITIVE function(SCM arglist, int argcount);

Note that all the Scheme arguments are evaluated during the construction of the list which

is passed to the C function.

� tc fsubr is similar to tc lsubr except that arguments are not evaluated. On the C side, you

have to declare a function with three SCM parameters: the list of (non evaluated) arguments,

the current environment and the length of the arguments list. The signature of the C function

which implement a tc fsubr must be

PRIMITIVE function(SCM arglist, SCM env, int argcount);

See ?? more details about tc fsubr.

� tc tkcommand for primitives which follow the Tcl command argument passing style (i.e. �a la

argc/argv). This is this kind of procedure that will be used for to add new widgets in the

STk interpreter. See ?? and [5] for more details.

To illustrate how to write a tc lsubr primitive, let's have a look at the code, given below, of the

function which implement the Scheme primitive vector:

6

2 ADDING NEW PRIMITIVES 2.3 Evaluating arguments

PRIMITIVE STk_vector(SCM arglist, int argcount)

{

int j;

SCM z = STk_makevect(argcount, NULL);

for (j = 0; j < argcount; j++, arglist=CDR(arglist)) {

VECT(z)[j] = CAR(arglist);

}

return z;

}

This function receives the values passed to the vector primitives in the list arglist (the length of

this list is stored in argcount). This function uses STk makevect which returns a Scheme vector.

Its �rst argument is the length of the vector and its second argument is the initial value of the

vector's elements. Next section will show how to implement a primitive which evaluates itself its

parameters (i.e. a tc fsubr primitive.

2.3 Evaluating arguments

In some circumstances it could be useful to add new primitives which don't evaluate their argu-

ments. This permits to add new control structures to the interpreter. To illustrate this, we will

add two new primitives to the STk interpreter: when and unless. As explained in the preceding

section, the C functions which will implement those control structures must be of type tc fsubr.

A tc fsubr primitive, on the C side, is given three parameters when called:

1. a list of its (non evaluated) parameters,

2. the local environment when it was called (and in which evaluations should generally take

place),

3. the length of the parameters list.

The C function can step through its parameter list using the C macros CAR, CDR and NULLP (which

do the obvious work) and evaluates elements of this list as needed. Evaluation of an expression

can be done with the STk eval C function. STk eval takes two parameters: the expression to

evaluate and the environment in which evaluation takes place (the NIL variable, by convention,

denotes the Indexglobal environment).

Note: a list of arguments is always a proper list. You don't need to test if it is well

formed.

Hereafter is the code of the when primitive.

static PRIMITIVE when(SCM l, SCM env, int argcount)

{

SCM res = UNDEFINED;

if (argcount > 1) {

if (STk_eval(CAR(l), env) != Ntruth) {

for (l = CDR(l); !NULLP(l); l = CDR(l)) {

res = STk_eval(CAR(l), env);

}

}

}

return res;

}

7

2 ADDING NEW PRIMITIVES 2.4 Signaling errors

#include <stk.h>

static PRIMITIVE when(SCM l, SCM env, int argcount)

{

SCM res = UNDEFINED;

if (argcount > 1) {

if (STk_eval(CAR(l), env) != Ntruth) {

for (l = CDR(l); !NULLP(l); l = CDR(l)) {

res = STk_eval(CAR(l), env);

}

}

}

return res;

}

static PRIMITIVE unless(SCM l, SCM env, int argcount)

{

SCM res = UNDEFINED;

if (argcount > 1) {

if (STk_eval(CAR(l), env) == Ntruth) {

for (l = CDR(l); !NULLP(l); l = CDR(l)) {

res = STk_eval(CAR(l), env);

}

}

}

return res;

}

PRIMITIVE STk_init_when_unless(void)

{

add_new_primitive("when", tc_fsubr, when);

add_new_primitive("unless", tc_fsubr, unless);

return UNDEFINED;

}

Figure 2: Source listing of �le when unless.c

Some points to note here:

� UNDEFINED is an interpreter constant. It serves to denote the notion of \unspeci�ed result"

of R

4

RS.

� Truth and Ntruth are two global constants of the interpreter which denote respectively the

#t and #f Scheme constants.

Figure 2.3 shows a complete implementation of when and unless.

2.4 Signaling errors

For now, only one function is provided to signal errors: STk err. This function takes two param-

eters: a C string which constitutes the body of the message and a Scheme object (a SCM pointer)

designating the erroneous object. If the second argument is NIL, it will not be printed. Execution

of the function STk err never returns. It provokes a jump at the start of the top-level loop. Here-

after, is a new implementation of the when function which uses STk err when given an erroneous

arguments list.

8

3 VARIABLES

static PRIMITIVE when(SCM l, SCM env, int argcount)

f

SCM res = UNDEFINED;

switch (argcount) f

case 0: STk_err("when: no argument list given", NIL);

case 1: STk_err("when: null body", NIL);

default: /* Argument list is well formed.

* Evaluate each expression of the body

*/

if (STk_eval(CAR(l), env) != Ntruth)

for (l = CDR(l); !NULLP(l); l = CDR(l))

res = STk_eval(CAR(l), env);

g

return res;

g

3 Variables

This section shows how you can access a Scheme variable within C code. It also shows how you

can connect a Scheme and C variable such that modifying it in Scheme will modify the associated

variable and vice versa.

3.1 Scheme Symbols and Variables

De�ning a symbol:

Interning a symbol in the global table of symbols is done with the STk intern C function.

Since this function is often used, you can use the C macro Intern as a shortcut. The

result of Intern is the SCM object which denotes the scheme symbol associated to the C

string passed as parameter. For example, assigning the list

'(green orange red)

to the C variable fire can be done by

SCM fire = Cons(Intern("green"),

Cons(Intern("orange"),

Cons(Intern("red"), NIL)));

Since this notation is di�cult to read, some macros have been de�ned in Src/stk.h for

building list. These macros are called LISTx where x is a number (comprised between 1

and 9) which represent the length of the list to create. Thus, the previous example could

have been written as

SCM fire = LIST3(Intern("green"), Intern("orange"), Intern("red"));

Reading a variable:

Reading a variable in Scheme corresponds in fact to look at the value associated to a sym-

bol. The value associated to a symbol can be obtained with the STk get symbol value

C macro. This macro returns a SCM object which correspond to the value associated to

the symbol whose name is equal to the parameter string. STk get symbol value returns

the special value UNBOUND is this symbols has no value in the global environment. The

following piece of code

9

3 VARIABLES 3.2 Connecting Scheme and C variables

{

SCM val = STk_get_symbol_value("foo");

if (val == UNBOUND)

STk_err("foo is undefined", NIL);

else

STk_display(val, UNBOUND);

}

displays the value of the foo symbol, or a message is foo is unde�ned in the global

environment. Note the use of the STk display function which implement the behavior

of the Scheme display primitive. This call correspond to a call to display with only

one parameter, since second parameter is set to UNBOUND (output is done on the standard

output port in this case).

Setting a variable:

Setting a Scheme variable corresponds to associate a new value to a symbol. The value

of a symbol can be set with the STk set symbol value C macro. For example,

STk_set_symbol_value("bar", STk_makeinteger(3L));

sets the value of the bar symbol to the integer 3. Note that you can set a symbol in C

without using a define form as it is necessary in Scheme.

3.2 Connecting Scheme and C variables

When building a specialized interpreter, it could be useful to have a variable you can access

both in Scheme an in C. Modifying such a variable in C must modify the Scheme associated

variable and, symmetrically, modifying it in Scheme must modify the corresponding C variable.

One way to do this connection consists to create a special Scheme variable whose content is

read/written by a special getter/setter. De�nition of such a variable, is done by calling the

function STk define C variable. The C prototype for this function is

void STk_define_C_variable(char *var,

SCM (*getter)(char *var),

void (*setter)(char *var, SCM value));

The following piece of code shows how we can connect the Scheme variable *errno* to the C

variable errno:

static SCM get_errno(char *s)

{

return STk_makeinteger((long) errno);

}

static void set_errno(char *s, SCM value)

{

long n = STk_integer_value_no_overflow(value);

if (n == LONG_MIN) Err("setting *errno*: bad integer", value);

errno = n;

}

{

...

STk_define_C_variable("*errno*", get_errno, set_errno);

...

}

10

5 ADDING NEW TYPES

After this call to STk define C variable, reading (resp. writing) the value of the *errno* Scheme

variable calls the get errno (resp. set errno) C function.

4 Calling Scheme from C

Sometimes, it could be necessary to execute some Scheme code from a C function. If the Scheme

function you have to call is a primitive, it is preferred to call directly the C function which

implement it. To know the name of the C function which implement a Scheme primitive, you'll

have to look in the C �le primitive_c which contains the list of all the primitives of the core

interpreter. If the Scheme code you want to execute is not a call to a primitive, it is generally

easier to put your code in a C string and call the C function STk eval C string. This function

takes two parameters: the string to evaluate and the environment in which evaluation must take

place. As for STk eval, a NIL value for the environment denotes the global environment. Suppose,

for instance, that you have already written in Scheme the fact procedure; evaluating the factorial

of 10 can be done in C with:

STk_eval_string("(fact 10)", NIL);

This call returns a pointer on a Scheme object (a SCM pointer) containing the result of the evalu-

ation. If an error occurs during evaluation. It is signaled to the user and the constant NULL is

returned by STk eval string.

5 Adding new types

This sections discusses how to add a new type to the STk interpreter. Interested reader can �nd

some new types de�nitions in the Extensions directory of STk. STklos, in particular, is written

as an extended type whose de�nition is dynamically done as soon as objects are needed. Hash

tables, processes and sockets are other examples of extended types.

5.1 De�nition of a Scheme extended type

De�ning a scheme extended type is a little bit more complicated than de�ning new primitives

since it implies to take into account how this new type interact with the GC (Garbage Collector).

Note that until now we have not discussed about GC problems since the interpreter is able to hide

you it, as far as you don't de�ne new types.

To illustrate the discussion, we will show how to add the stack type to the STk interpreter in this

section. The complete code for this section can be found in appendix.

5.1.1 How the GC works

Before showing how to de�ne a new Scheme type, it is important to understand how the GC works.

First a certain number of cells are created

1

. When the interpreter needs a new cell, in the cons

primitive for instance, it will take an unused cell in the pool of pre-allocated cells. If no more cell

is available in this area, the GC is called. Its works is divided in two phases. First phase consists

to mark all the cells which are currently in use. Finding the cells which are in used is done by

marking recursively all the object which are accessible from

1

by default 20 000; Use the -cells option of the interpreter to change this default

11

5 ADDING NEW TYPES 5.1 De�nition of a Scheme extended type

� the Scheme symbol table,

� the registers used by the program,

� the C stack,

� global variables of type SCM.

Marking phase is recursive; that means that if a variable denotes a list, all the elements of this

list have to be marked , to avoid that the GC frees some of them. Of course, the recursive call for

marking the component of a cell depends on the cell's type. This �rst phase is called the marking

phase.

The second phase of the GC is called the sweeping phase. It is relatively simple: each allocated

cells whose mark bit is unset is placed in the list of free cells, since nobody points anymore on it.

If no cells can be obtained when the sweeping phase terminates, the pool of pre-allocated cells will

be extended by a new bank of cells.

5.1.2 The Extended type data structure

De�ning a new Scheme type consists mainly to de�ne a new STk extended scheme type structure

and �ll in this �elds. This structure is de�ned as:

typedef struct {

char *type_name;

int flags;

void (*gc_mark_fct)(SCM x);

void (*gc_sweep_fct)(SCM x);

SCM (*apply_fct)(SCM x, SCM args, SCM env);

void (*display_fct)(SCM x, SCM port, int mode);

} STk_extended_scheme_type;

Each �eld of this structure is de�ned below

type name:

is a string. It denotes the external name of the new type. The purpose of this �eld is

mainly for debugging.

ags: is the union of binary constants. For now, only two constants are de�ned:

� EXT ISPROC must be set if the new type is a procedure (i.e. if the Scheme procedure

must answer #t when called with this object).

� EXT EVALPARAM must be set if the new type must evaluates its parameters when

used as a function.

gc mark fct:

is a pointer to the function which marks objects of the extended type. The code associated

to this function is simple. It consists to call on each �eld whose type is SCM in the type

associated data. This function is automatically called by the interpreter when it scans

all the used cells in the GC marking phase. One example of gc mark fct is given below.

gc sweep fct:

is a pointer to the function which frees the resources allocated for representing the new

type of object. This function is automatically called by the GC in the sweeping phase

for each cell which is unused.

12

5 ADDING NEW TYPES 5.1 De�nition of a Scheme extended type

apply function:

is a pointer to a function which is called when applying this object to a list of arguments.

This function can only be called if the bit EXT ISPROC is set. The arguments given to

this function are evaluated if the EXT EVALPARAM bit is set. Finally, the environment in

which the call is done is passed as the third argument of the apply function. It serves

principally when the EXT EVALPARAM bit is unset.

Set the apply function to NULL to use the interpreter default apply function. The

default function raises an error when called. You can use the default function when the

new type you de�ne is not a function.

display fct:

is a pointer to a C function which displays objects of the new type. The display function

has three parameters. The �rst parameter is the object to print. The second parameter

is the port to which the object must be printed. Printing an object must be done with

one of the following functions

� int STk getc(FILE *f);

� int STk ungetc(int c, FILE *f);

� int STk putc(int c, FILE *f);

� int STk puts(char *s, FILE *f);

� int STk eof(FILE *f);

Those functions are extensions of their C equivalent: they are able to handle the STk

string ports.

The third parameter of the display fct is a mode constant which can take three di�erent

values.

� DSP MODE is used when the object must be displayed in a human readable format

(as with display);

� WRT MODE is used when the object must be written in a machine readable format (as

with write);

� TK MODE is used when the object must be passed to a Tk command. This permits

to customize the way a Scheme object is converted to a string when discussing with

the Tk library.

Note: display fct can be set to NULL. In this case the interpreter uses a default

printing format. This default format print the name of the type (found in the type name)

followed by an hexadecimal address.

5.1.3 Registering the new type

Once a STk extended scheme type structure is de�ned, the new type can be registered into the

interpreter. Registering a new type is done by the STk add new type function. The prototype of

this function is given below

int STk_add_new_type(STk_extended_scheme_type *p)

The integer returned by this function is the (unique) key associated to the new type. This key is

stored in each cell of the new type.

We have now enough material to de�ne the STk extended scheme type for the new type stack.

This declaration can be done in the following way:

13

5 ADDING NEW TYPES 5.1 De�nition of a Scheme extended type

static void mark_stack(SCM p);

static void free_stack(SCM p);

static void display_stack(SCM s, SCM port, int mode);

static int tc_stack;

static STk_extended_scheme_type stack_type = {

"stack", /* name */

0, /* is_procp */

mark_stack, /* gc_mark_fct */

free_stack, /* gc_sweep_fct */

NULL, /* apply_fct */

display_stack /* display_fct */

};

This de�nition tells the interpreter that the new type is not a procedure (�eld is procp is set to

0). Consequently, the apply fct is set to NULL. Note that a display function is provided here.

It permits to used a customized printing function.

5.1.4 New type instances creation

Creation of a new instance of the extended type necessitates the de�nition of a constructor function.

This constructor obeys always the same framework. First you have to create a new cell with

the NEWCELL macro. This macro has two parameters, a SCM object which will point the new

cell and the type of the cell to create. The second argument is generally equal to the value

returned by STk add new type. Once the cell is created, we have generally to (dynamically)

allocate a C structure which contains the informations which are necessary to implement the new

type. Dynamic allocation can be done with the function STk must malloc. The area returned by

STk must malloc must be stored in the data �eld of the new cell. This �eld can be accessed with

the EXTDATA macro.

Let's go back to the stack example. We can now de�ne a new primitive function to make a

new stack. Provided that the global variable tc stack already contains the value returned by

STk add new type, we can write

#define STACKP(x) (TYPEP(x, tc_stack))

#define NSTACKP(x) (NTYPEP(x, tc_stack))

#define STACK(x) ((Stack *) EXTDATA(x))

typedef struct {

int len;

SCM values;

} Stack;

static PRIMITIVE make_stack(void)

{

SCM z;

NEWCELL(z, tc_stack);

EXTDATA(z) = STk_must_malloc(sizeof(Stack));

STACK(z)->len = 0;

STACK(z)->values = NIL;

return z;

}

Here, the Stack structure is used to represent a stack. This structure contains two �elds: len

and values. Since the latter �eld is a SCM object, it must be recursively marked when a stack is

marked. We can now de�ne the utility function necessary for the GC:

14

6 LOADING AN EXTENSION 5.2 De�nition of a C extended type

static void mark_stack(SCM p)

{

STk_gc_mark(STACK(p)->values);

}

static void free_stack(SCM p)

{

free(EXTDATA(p));

}

To terminate with this example, we give below the code of the primitive stack push!. Other

primitive are built in the same fashion and will not be described here. A complete listing of the

stack implementation is given in appendix.

static PRIMITIVE stack_push(SCM s, SCM val)

{

Stack *sp;

if (NSTACKP(s)) STk_err("stack-push: bad stack", s);

sp = STACK(s);

sp->len += 1;

sp->values = Cons(val, sp->values);

return UNDEFINED;

}

5.2 De�nition of a C extended type

The STk interpreter permits to handle C pointers as �rst class objects. [for eg: �nd an example

to explain how it works: gdbm?]

5.3 About memory: Common pitfalls

6 Loading an extension

STk support dynamic loading for several architectures/systems. The way to provide dynamic

loadable modules is di�erent from one system to another and you will have to adapt what is said

here to the conventions used by your system, architecture or compiler. Static loading can be used

for systems which doesn' support dynamic loading (such as Ultrix) or for which the interpreter

doesn't support yet dynamic loading.

Note: STk) also supports the DLD Gnu package for dynamic loading. DlD is a library package

of C functions that performs "dynamic link editing". Since the time to load dynamically a module

with this package is rather long, it is preferred to avoid to use it. However, this package is the only

way to provide dynamic loading on Linux systems which don't support the ELF format (versions

1.0 to 1.2). Since the ELF format is becoming the new standard for Linux, this package will be

no more necessary in the future.

The last version of the DLD package can be found at several places:

� ftp-swiss.ai.mit.edu:pub/scm

� prep.ai.mit.edu:/pub/gnu/jacal

15

7 ADDING NEW TK WIDGETS

� ftp.cs.indiana.edu:/pub/scheme-repository/imp/SCM-support

We suppose here that we want to include the posix module de�ned in section2.1 into the STk

interpreter.

Dynamic Loading:

If the system running STk supports dynamic loading (and if the interpreter has been

compiled with dynamic loading support), you compile your source �le �le to make a shared

object �le. On SunOs 4.1, for instance, this can be done by compiling the module with

the pic compilation option (pic stands for position independent code). Once compilation

is done, you can pre-load your �le with the line

ld -assert pure-text -o time.so time.o

This will produce a �le name posix.so which can be loaded with the load Scheme

primitive procedure. The load primitive recognizes that this �le is a shared object and

calls a function whose name the concatenation of the string STk init and the base name

of �le loaded. Thus, loading the �le posix.so impies the call of a pimitive whose name

is STk init posix.

Look at Src/Extensions directory to see some examples of shared object construction.

Note: when the STk is built, the Makefile in the Src/Extensions is customized

for your system/compiler. A simple way to determine the options you have to use for

compiling your program consist to run the make command on one of the �le present in

this directory. For instance, issuing the following command

make -n posix.so

on a Linux box using the DLD package will output the following lines:

gcc -g -DSTk_CODE -DUSE_DLD -DLINUX -DHAVE_UNISTD_H=1 \

-DHAVE_SIGACTION=1 -I../Tk -I../Tcl -I../Src -I../Mp \

-I/usr/X11R6/include -c posix.c -o posix.o

ld -r -o posix.so posix.o

Static loading:

A C module which de�ne a new type can also be statically loded in the interepreter. To

load your module, you have to modify the Src/Makefile or Snow/Makefile. Once yo

have added your extension object in the USER OBJ variable , you must modify the �le

Src/userinit.c to add you initialization (and eventually cleanup) code. The call to

your initialization function must be done in the STk user init C function. Once this is

done, you can run the make command again to build the extended interpreter.

7 Adding new Tk widgets

7.1 Widget compilation

Adding a new Tk widget to the STk interpreter is generally a simple hack. Most of the time,

extension widgets written for Tcl/Tk can be added to the STk interpreter without modifying

the source code of the widget. However, there is no unique method to add a widget to the Tcl

interpreter; consequently, what is given below is a set of hints to widget integration rather than a

always working recipe. To illustrate this section, we will see how we can add the fscale widget (a

oating-point scale widget available on the Tcl/Tk repository in the tkFScale-?.?.tar.gz �le)

2

.

2

This widget is now integrated in the standard Tk4.0; it is provided as an extension widget with Tk3.6.

16

7 ADDING NEW TK WIDGETS 7.2 Widget linking

Generally, the code of a Tcl/Tk extension widget can be divided in two parts: the code which

implement widget's behavior and the extension initialization code. Extension initialization code,

in Tcl/Tk, must be placed in the procedure Tcl AppInit which is located in the �le tkAppInit.c.

If the extension package adds a lot of widgets, it generally de�nes a function to do all the ini-

tializations. On the other hand, if the extension only de�nes a single widget, the extension code

generally consists to call the C function Tcl CreateCommand for each new widget de�ned in the

extension. Tcl CreateCommand is the Tcl standard way to add a new command. This function

also exists in the STk interpreter; it creates a new Tk command object [3]. The prototype of this

function is:

void Tcl_CreateCommand(Tcl_Interp *interp,

char *cmdName,

Tcl_CmdProc *proc,

ClientData clientData,

Tcl_CmdDeleteProc *deleteProc));

For STk,

� the interp is always the global variable Stk main interp

� cmdName is the name of the widget in the Scheme world.

� proc is the name of the C function which implement the Tk command

� clientData are informations which are associated to the widget code. For a new widget,

clientData can generally set to the result of

Tk_MainWindow(Stk_main_interp);

� deleteProc is a function which is called when the widget is destroyed. You generally don't

need to change the value of this parameter (which is often set to NULL).

The usual way to integrate this initialization code in a Tcl interpreter consists to patch the

tkAppInit.c �le to add the call to the initialization (or the Tcl CreateCommand) function. To

add an extension written for Tcl/Tk to STk, all that is needed consists to adapt the initialization

code for STk. For example, the fscale widget initialization code adds the following call in the

body of the Tcl AppInit function:

Tcl_CreateCommand(interp, "fscale", Tk_FScaleCmd,

(ClientData) main,

(void (*)()) NULL);

For STk, this call can be written

Tcl_CreateCommand(STk_main_interp, "fscale", Tk_FScaleCmd,

(ClientData) Tk_MainWindow(STk_main_interp),

(void (*)()) NULL);

This call must executed before trying to create a new fscale widget.

7.2 Widget linking

The cleaner way to add a new widget to STk consists to de�ne a special C module for this widget.

De�ning the widget in a C module allows us to make the new widget dynamically loadable. The

code for making the fscale widget dynamically loadable could be:

17

9 EMBEDDING THE STK INTERPRETER

/* Contents of the file fscale.c */

#ifndef USE_TK

#define USE_TK

#endif

#include <stk.h>

/*

*include the widget source code. Ugly but this avoid to have two

* source files to link

*/

#include "tkFScale.c"

PRIMITIVE STk_init_fscale(void)

{

Tcl_CreateCommand(STk_main_interp,

"fscale",

Tk_FScaleCmd,

(ClientData) Tk_MainWindow(STk_main_interp),

(void (*)()) NULL);

}

8 Extending the interpreter with C++

[for eg : Identify the problems]

9 Embedding the STk interpreter

[for eg: This parts need some work in the interpreter]

18

9 EMBEDDING THE STK INTERPRETER

Appendix

Hereafter is the complete code for the stack type discussed in 5.1

/*

*

* s t a c k . c -- Implementation of the extended type Stack

*

*/

#include <stk.h>

static void mark_stack(SCM p);

static void free_stack(SCM p);

static void display_stack(SCM s, SCM port, int mode);

static int tc_stack;

static STk_extended_scheme_type stack_type = {

"stack",/* name */

0,/* is_procp */

mark_stack,/* gc_mark_fct */

free_stack,/* gc_sweep_fct */

NULL,/* apply_fct */

display_stack /* display_fct */

};

#define STACKP(x) (TYPEP(x, tc_stack))

#define NSTACKP(x) (NTYPEP(x, tc_stack))

#define STACK(x) ((Stack *) EXTDATA(x))

typedef struct {

int len;

SCM values;

} Stack;

static void mark_stack(SCM p)

{

STk_gc_mark(STACK(p)->values);

}

static void free_stack(SCM p)

{

free(EXTDATA(p));

}

static void display_stack(SCM s, SCM port, int mode)

{

char buffer[100];

if (mode == DSP_MODE) {

/* A verbose display */

if (STACK(s)->len) {

sprintf(buffer, "Stack length = %d\nValues = ", STACK(s)->len);

Puts(buffer, FILEPTR(port));

STk_display(STACK(s)->values, port);

}

else

Puts("Stack is empty", FILEPTR(port));

}

else { /* WRT_MODE or TK_MODE */

sprintf(buffer, "#<stack (length=%d) %ld>", STACK(s)->len, s);

Puts(buffer, FILEPTR(port));

}

}

static PRIMITIVE make_stack(void)

{

SCM z;

19

9 EMBEDDING THE STK INTERPRETER

NEWCELL(z, tc_stack);

EXTDATA(z) = STk_must_malloc(sizeof(Stack));

STACK(z)->len = 0;

STACK(z)->values = NIL;

return z;

}

static PRIMITIVE stackp(SCM s)

{

return STACKP(s)? Truth: Ntruth;

}

static PRIMITIVE stack_push(SCM s, SCM val)

{

Stack *sp;

if (NSTACKP(s)) STk_err("stack-push: bad stack", s);

sp = STACK(s);

sp->len += 1;

sp->values = Cons(val, sp->values);

return UNDEFINED;

}

static PRIMITIVE stack_pop(SCM s)

{

Stack *sp;

SCM res;

if (NSTACKP(s)) STk_err("stack-pop: bad stack", s);

sp = STACK(s);

if (sp->len == 0) STk_err("stack-pop: empty stack", s);

res = CAR(sp->values);

sp->len -= 1;

sp->values = CDR(sp->values);

return res;

}

static PRIMITIVE stack_emptyp(SCM s)

{

if (NSTACKP(s)) STk_err("stack-empty?: bad stack", s);

return (STACK(s)->len) ? Truth: Ntruth;

}

PRIMITIVE STk_init_stack(void)

{

/* Register the new type */

tc_stack = STk_add_new_type(&stack_type);

/* Declare new primitives */

STk_add_new_primitive("make-stack", tc_subr_0, make_stack);

STk_add_new_primitive("stack?", tc_subr_1, stackp);

STk_add_new_primitive("stack-push!", tc_subr_2, stack_push);

STk_add_new_primitive("stack-pop", tc_subr_1, stack_pop);

STk_add_new_primitive("stack-empty?", tc_subr_1, stack_emptyp);

return UNDEFINED;

}

20

REFERENCES REFERENCES

References

[1] POSIX Committee. System Application Program Interface (API) [C Language]. Information

technology|Portable Operating System Interface (POSIX). IEEE Computer Society Press,

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1990.

[2] Erick Gallesio. Embedding a scheme interpreter in the Tk toolkit. In Lawrence A. Rowe,

editor, First Tcl/Tk Workshop, Berkeley, pages 103{109, June 1993.

[3] Erick Gallesio. STk reference manual. Technical Report RT 95-31, I3S CNRS / Universit�e de

Nice - Sophia Antipolis, juillet 1995.

[4] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall,

Englewood Cli�s, NJ 07632, USA, second edition, 1988.

[5] John K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley, 1994.

21

Index

load-su�xes, 4

#f, 8

#t, 8

DLD Gnu package, 15

DSP MODE, 13

ELF, 15

EXT EVALPARAM, 12, 13

EXT ISPROC, 12, 13

EXTDATA, 14

Garbage Collector, 11

Intern, 9

LISTx, 9

load, 16

make, 16

Make�le, 16

marking phase, 12

NEWCELL, 14

NIL, 7, 8, 11

Ntruth, 8

pic compilation option, 16

PRIMITIVE, 3

SCM, 3, 4

shared object, 16

Src/stk.h, 4, 9

Src/userinit.c, 16

STk add new primitive, 3

STk add new type, 13, 14

STk de�ne C variable, 10

STk display, 10

STk eof, 13

STk err, 8

STk eval, 7

STk eval C string, 11

STk extended scheme type, 12

STk gc mark, 12

STk get symbol value, 9

STk getc, 13

STk init pre�x, 16

STk integer value no over
ow, 4

STk intern, 9

Stk main interp, 17

STk makeinteger, 3

STk makestring, 4

STk makevect, 7

STk must malloc, 14

STk putc, 13

STk puts, 13

STk set symbol value, 10

STk ungetc, 13

STk user init, 16

struct obj, 4

sweeping phase, 12

tc fsubr, 6, 7

tc lsubr, 6

tc subr 0, 3, 6

tc subr 0 or 1, 6

tc subr 1, 5, 6

tc subr 1 or 2, 6

tc subr 2, 6

tc subr 2 or 3, 6

tc subr 3, 6

Tcl CreateCommand, 17

Tk command, 17

TK MODE, 13

Truth, 8

UNBOUND, 6, 9

UNDEFINED, 8

unspeci�ed result, 8

USER OBJ, 16

WRT MODE, 13

22

