STk Reference manual
Version 3.0

Erick Gallesio
Université de Nice - Sophia Antipolis
Laboratoire 135S - CNRS URA 1376 - ESSI.
Route des Colles
B.P. 145
06903 Sophia-Antipolis Cedex - FRANCE

email: eg@unice.fr

January 1996

Document Reference

Erick Gallesio, STk Reference Manual, RT 95-31a, I3S-CNRS / Université de Nice -
Sophia Antipolis, juillet 1995.

Contents

I Reference Manual

1

Overview of STK e
Lexical conventions
2.1 Identifiers
2.2 Comments e e
2.3 Other notations
Basic concepts e
Expressions e e
4.1 Primitive expression types
4.2 Derived expression types
Program structure Lo
Standard procedures L
6.1 Booleans e
6.2 Equivalence predicates Lo
6.3 Pairs and lists L
6.4 Symbols
6.5 Numbers e
6.6 Characters e
6.7 Strings
6.8 Vectors e
6.9 Control features
6.10 Input and output
6.11 Keywords
6.12 Tkcommands.
6.13 Environments e e
6.14 Macros e
6.15 System procedures
6.16 Addresses
6.17 Signals.o o
6.18 Hashtables
6.19 Regular expressions L.
6.20 Processes e
6.21 Sockets
6.22 Miscellaneous L

I Annexes

A Using the Tk toolkit
Calling a Tk-command L
Associating Callbacks to Tk-commands 0L

1

2
3

Tk bindings

H
O WO 0 00 o =1 =] ~1 =] ~1 &

e Q0 Q0 W W WD NN NN = e e e e e
O 0O RN O OO RO SO0 CTWN R OO

4 STk Reference Manual
B Differences with R4RS 53
1 Symbols 53

2 Types . . e 54

3 Procedures 54

C An introduction to STKLOS 55
1 Introduction 55

2 Class definition and instantiation 55
2.1 Class definition 55

3 Inheritance 56
3.1 Class hierarchy and inheritance of slots 56

3.2 Instance creation and slot access 57

3.3 Slot description L 57

3.4 Class precedence list 60

4 Generic functions 61
4.1 Generic functions and methods 61

4.2 Next-method 62

4.3 Example 63

D Miscellaneous Informations 65
1 Introduction 65

2 About STK 65
2.1 Last release 65

2.2 Sharing Code 65

2.3 STK Mailing list 65

2.4 STK FAQ e 66

2.5 Reportingabug L 66

3 STk and Emacso 66
3.1 Using the SLIB package with STK 67

4 Getting information about Scheme00 oo 0oL 67
4.1 The R*RS document 67

4.2 The Scheme Repository 68

4.3 Usenet newsgroup and other addresses L. 68

Part 1

Reference Manual

Introduction

This document provides a complete list of procedures and special forms implemented in version 3.0
of STK. Since STK is (nearly) compliant with the language described in the Revised* Report on
the Algorithmic Language Scheme (denoted R'RS hereafter!)[1], the organization of this manual
follows the R'RS and only describes extensions.

1 Overview of STK

Today’s graphical toolkits for applicative languages are often not satisfactory. Most of the time,
they ask the user to be an X window system expert and force him/her to cope with arcane details
such as server connections and event queues. This is a real problem, since programmers using this
kind of languages are generally not inclined to system programming, and few of them will bridge
the gap between the different abstraction levels.

Tk 1s a powerful graphical toolkit promising to fill that gap. It was developed at the University
of Berkeley by John Ousterhout [2]. The toolkit offers high level widgets such as buttons or
menus and is easily programmable, requiring little knowledge of X fundamentals. Tk relies on an
interpretative shell-like language named Tecl [3].

STK is an implementation of the Scheme programming language, providing a full integration
of the Tk toolkit. In this implementation, Scheme establishes the link between the user and the
Tk toolkit, replacing Tcl.

2 Lexical conventions

2.1 Identifiers

Syntactic keywords can be used as variables in STK. Users must be aware that this extension of
the language could lead to ambiguities in some situations.

2.2 Comments

As in the R*RS, a semicolon (;) indicates the start of a comment. In STK, comments can also be
introduced by #!. This extension is particularly useful for building STk scripts. On most Unix
implementations, if the first line of a script looks like this:

#!/usr/local/bin/stk -file
then the script can be started directly as if it were a binary. STK is loaded behind the scenes and

reads and executes the script as a Scheme program. Of course this assumes that STK is located
in /usr/local/bin.

2.8 Other notations

STK accepts all the notations defined in R*RS plus

[1 Brackets are equivalent to parentheses. They are used for grouping and to notate lists. A list
opened with a left square bracket must be closed with a right square bracket (section 6.3).

: A colon at the beginning of a symbol introduces a keyword. Keywords are described in sec-
tion 6.11.

IThe Revised* Report on the Algorithmic Language Scheme is available through anonymous FTP from
ftp.cs.indiana.edu in the directory /pub/scheme-repository/doc

8 STK Reference Manual

#.<expr> is read as the evaluation of the Scheme expression <expr>. The evaluation is done
during the read process, when the #. is encountered. Evalustaion is done in the global-
environment.

(define foo 1)

#.foo
= 1

> (foo #.foo #.(+ foo foo))
— (foo 1 2)

(let ((foo 2))

#.foo)

= 1

3 Basic concepts

Identical to R*RS.

4 Expressions

4.1 Primitive expression types

(quote (datum)) syntax
’(datum) syntax

The quoting mechanism is identical to R*RS. Keywords (see section 6.11), as numerical constants,
string constants, character constants, and boolean constants evaluate “to themselves”; they need
not be quoted.

?l|a'bcl| :> l|abcl|
l|abcl| :> l|abcl|
7145932 — 145932
145932 — 145932
it — #t

it — #t
:key — :key
rkey — :key

Note: R'RS requires to quote constant lists and constant vectors. This is not necessary with STK.

({operator) (operand;) ...) syntax

Identical to R*RS. Furthermore, {operator) can be a macro (see section 6.14).

(lambda (formals) (body)) syntax
(if (test) (consequent) (alternate)) syntax
(if (test) (consequent)) syntax
(set! (variable) {expression)) syntax

Identical to R*RS.

STK Reference Manual 9

4.2 Derived expression types

(cond (clause;) (clauses) ...) syntax
(case (key) (clause;) (clauses) ...) syntax
(and (testy) ...) syntax
(or (testy) ...) syntax

Identical to R*RS.

(when (test) (expression;) {expressions) ...) syntax
If the (test) expression yields a true value, the {expression)s are evaluated from left to right and
the value of the last (expression) is returned.

(unless (test) (expression;) (expressions) ...) syntax

If the {test) expression yields a false value, the {expression)s are evaluated from left to right and
the value of the last (expression) is returned.

(let (bindings) (body)) syntax
(let (variable) (bindings) (body)) syntax
(let* (bindings) (body)) syntax

Identical to R*RS.

(fluid-let (bindings) (body)) syntax

The bindings are evaluated in the current environment, in some unspecified order, the current
values of the variables present in bindings are saved, and the new evaluated values are assigned
to the bindings variables. Once this is done, the expressions of body are evaluated sequentially in
the current environment; the value of the last expression is the result of fluid-let. Upon exit,
the stored variables values are restored. An error is signalled if any of the bindings variable is
unbound.

(let* ((a ’out)
(f (lambda () a)))
(list a
(fluid-let ((a ’in)) (£))
a))
—> (out in out)

When the body of a fluid-1let is exited by invoking a continuation, the new variable values are
saved, and the variables are set to their old values. Then, if the body is reentered by invoking
a continuation, the old values are saved and new values are restored. The following example
illustrates this behaviour

(let ((cont #f)
1 ()
(a Jout))

(set! 1 (cons a 1))

(fluid-let ((a ’in))
(set! cont (call/cc (lambda (k) k)))
(set! 1 (cons a 1)))

(set! 1 (cons a 1))

(if cont (cont #f) 1))
—> (out in out in out)

10 STK Reference Manual

(letrec (bindings) (body)) syntax
(begin (expression;) (expressions) ...) syntax
(do (inits) (test) (body)) syntax
(delay (expression)) syntax
(quasiquote (template)) syntax
* (template) syntax

Identical to R*RS.

(dotimes (var count) (expression;) (expressions) ...) syntax
(dotimes (var count result) (expression;) (expressions) ...) syntax

Dotimes evaluates the count form, which must return an integer. It then evaluates the (expression)s
once for each integer from zero (inclusive) to count (exclusive), in order, with the variable var
bound to the integer; if the value of count is zero or negative, then the (expression)s are not
evaluated. When the loop completes, result is evaluated and its value is returned as the value of
the dotimes expression. If result is omitted, dotimes returns #f£.

(et ((1 70
(dotimes (i 4 1)
(set! 1 (cons i 1))))
= (3210)

(while (test) (expression;) (expressions) ...) syntax

While evaluates the {expression)s until (test) returns a false value. The value of a while construct
1s unspecified.

(until (test) (expression;) (expressions) ...) syntax

Until evaluates the (expression)s while (test) returns a false value. The value of an unless
construct is unspecified.

5 Program structure

Identical to R*RS.

6 Standard procedures
6.1 Booleans
In STK the boolean value #f is different from the empty list, as required by R*RS.

(not oby) procedure
(boolean? objy) procedure

Identical to R*RS.

STK Reference Manual 11

6.2 Equivalence predicates

(eqv? oby obys) procedure

STK extends the eqv? predicate defined in the R*RS to take keywords into account: if obj; and
obj, are both keywords, the eqv? predicate will yield #t if and only if

(string=7 (keyword->string objl)

(keyword->string obj2))
— #t

(eq? obp objs) procedure

STK extends the eq? predicate defined in R*'RS to take keywords into account. On keywords, eq?
behaves like eqv?.

(eq? :key :key) = #t

(equal? oby obj) procedure
Identical to R*RS.

6.3 Pairs and lists

(pair? oby) procedure
(cons obj; objs) procedure
(car pair) procedure
(cdr pair) procedure
(set-car! pair obj) procedure
(set-cdr! pair obj) procedure
(caar pair) procedure
(cadr pair) procedure
(cdddar pair) procedure
(cddddr pair) procedure
(null? obj) procedure
(list? obj) procedure
(list oby ...) procedure
(length list) procedure
(append list ...) procedure
(reverse list) procedure
(list-tail list k) procedure
(list-ref list k) procedure
(memq objy list) procedure
(memv objy list) procedure
(member obj list) procedure
(assq obj alist) procedure
(assv obj alist) procedure
(assoc obj alist) procedure

Identical to R*RS.

12 STK Reference Manual

(list* obj) procedure

list* is like 1ist except that the last argument to list* is used as the edr of the last pair
constructed.

(list* 1 2 3) = (12 . 3)
(list* 1 2 3 ’(4 5)) = (1 2345)
(copy-tree objy) procedure

Copy-tree recursively copies trees of pairs. If obj is not a pair, it is returned; otherwise the result
is a new pair whose car and cdr are obtained by calling copy-tree on the car and cdr of obj,
respectively.

6.4 Symbols

The STK reader can cope with symbols whose names contain special characters or letters in the
non standard case. When a symbol is read, the parts enclosed in bars (“1”) will be entered
verbatim into the symbol’s name. The “|” characters are not part of the symbol; they only serve
to delimit the sequence of characters that must be entered “asis”. In order to maintain read-write
invariance, symbols containing such sequences of special characters will be written between a pair
Of 49 | ”

x| = x

(string->symbol "X") = |XI|

(symbol->string ’|X|) — U“x"

"la bl = la bl

’alBlc = |aBcl

(write ’|Fo0|) —> writes the string "|Fo0|"
(display ’|Fo0l) —> writes the string "Fol"

Note: This notation has been introduced because R'RS states that case must not be significant in
symbols whereas the Tk toolkit is case significant (or more precisely thinks it runs over Tcl which is case
13 | ”

significant). However, symbols containing the character itself still can’t be read in.

(symbol? obj) procedure

Returns #t if 0bj is a symbol, otherwise returns #£.

(symbol? ’foo) = #t

(symbol? (car ’(a b))) — #t

(symbol? "bar") = #f

(symbol? ’nil) = #t

(symbol? > ()) = #f

(symbol? #f) — #f

(symbol? :key) = #f
(symbol->string symbol) procedure
(string->symbol siring) procedure
Identical to R*RS.
(gensym) procedure
(gensym prefiz) procedure

Gensym creates a new symbol. The print name of the generated symbol consists of a prefix (which
defaults to "G") followed by the decimal representation of a number. If prefiz is specified, it must
be a string.

STK Reference Manual 13

(gensym)

= 1G100|
(gensym "foo-")

— foo-101

6.5 Numbers

The only numbers recognized by STK are integers (with arbitrary precision) and reals (imple-
mented as C double floats).

(number? obj) procedure

Returns #t if 0bj is a number, otherwise returns #£.

(complex? oby) procedure

Returns the same result as number?. Note that complex numbers are not implemented.

(real? obj) procedure

Returns #t if 0bj is a float number, otherwise returns #£.

(rational? obj) procedure

Returns the same result as number?. Note that rational numbers are not implemented.

(integer? obj) procedure

Returns #t if 0bj is an integer, otherwise returns #£. Note: The STK interpreter distinguishes between
integers which fit in a C long int (minus 8 bits) and integers of arbitrary length (aka “bignums”). This
should be transparent to the user, though.

(exact? z) procedure
(inexact? z) procedure

In this implementation, integers (C long int or “bignums”) are exact numbers and floats are
inexact.

(=21 29 23 ...) procedure
(< 21 29 23 ...) procedure
(> 21 29 23 ...) procedure
(<= 2y 29 23 ...) procedure
(>= 2y 29 23 ...) procedure
(zero? z) procedure
(positive? z) procedure
(negative? z) procedure
(0dd? z) procedure
(even? z) procedure
(max z1 22 ...) procedure
(min =1 2o ...) procedure
(+ 21 ...) procedure
(* z1 ...) procedure
(- 21 z9) procedure
(- 2) procedure

(- 21 29 ...) procedure

14 STk Reference Manual
(/ z1 z9) procedure
(/ z) procedure
(/ 21 z9 ...) procedure
(abs) procedure
(quotient ny ny) procedure
(remainder n; no) procedure
(modulo ny ns) procedure
(ged ny ...) procedure
(lem ng ...) procedure
Identical to R*RS.

(numerator ¢) procedure
(denominator ¢) procedure
Not implemented.

(floor =) procedure
(ceiling z) procedure
(truncate) procedure
(round z) procedure
Identical to R*RS.

(rationalize z y) procedure
not yet implemented.

(exp 2) procedure
(log 2) procedure
(sin z) procedure
(cos z) procedure
(tan z) procedure
(asin z) procedure
(acos z) procedure
(atan z) procedure
(atan y z) procedure
(sqrt z) procedure
(expt z1 z2) procedure
Identical to R*RS.

(make-rectangular z; z2) procedure
(make-polar z; z3) procedure
(real-part z) procedure
(imag-part z) procedure
(magnitude z) procedure
(angle 2) procedure
These procedures are not implemented since complex numbers are not defined.
(exact->inexact z) procedure
(inexact->exact z) procedure
(number->string number) procedure
(number->string number radiz) procedure
(string->number siring) procedure
(string->number string radiz) procedure

Identical to R*RS.

STK Reference Manual

15

name | value

nul 000
soh 001
stx 002
etx 003
eot 004
enq 005
ack 006
bel 007
dle 020
dcl 021
dc2 022
dc3 023
dc4 024
nak 025
syn 026
etb 027

sp 040
del 177

alternate name || name | value | alternate name

null bs 010 backspace
ht 011 tab
nl 012 newline
vt 013
np 014 page
cr 015 return
SO 016

bell si 017
can 030
em 031
sub 032
esc 033 escape
fs 034
gs 035
s 036
us 037

space

delete

6.6 Characters

Table .1: Valid character names

Table 1 gives the list of allowed character names together with their ASCII equivalent expressed

in octal.

(char? obj)

(char=? char; chary)
(char<? char; chary)
(char>? char; charsy)
(char<=? char; chary)
(char>=? char; chary)
(char—-ci=7? chary charsy)
(char—-ci<? chary charsy)
(char—-ci>? chary charsy)
(char-ci<=7? char, charsy)
(char-ci>=7? char, charsy)
(char-alphabetic? char)
(char-numeric? char)
(char-whitespace? char)
(char—upper-case? letter)
(char-lower-case? leiter)
(char->integer char)
(integer->char n)
(char-upcase char)
(char-downcase char)

Identical to R*RS.

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

16

STK Reference Manual

Sequence

Character inserted

\b

\e

\n

\t

\n

\Oabc
\<newline>
\<other>

Backspace
Escape

Newline
Horizontal Tab
Carriage Return

ASCII character with octal value abc
None (permits to enter a string on several lines)

<other>

Table .2: String escape sequences

6.7 Strings

STK string constants allow the insertion of arbitrary characters by encoding them as escape
sequences, introduced by a backslash (\). The valid escape sequences are shown in Table 2. For

instance, the string

"ab\040c\nd\
el!

is the string consisting of the characters #\a, #\b #\space, #\c, #\newline, #\d and #\e.

(string? obj)

(make-string k)
(make-string k char)
(string char ...)
(string-length siring)
(string-ref string k)
(string-set! string k char)
(string=7 string; strings)
(string-ci=7 string; strings)
(string<? string; strings)
(string>? string; strings)
(string<=7? string; strings)
(string>=7 string; strings)
(string-ci<? string; strings)
(string-ci>? string; strings)
(string-ci<=7 string; strings)
(string-ci>=7 string; strings)
(substring string start end)
(string-append siring ...)
(string->list string)
(1ist->string chars)
(string-copy string)
(string-£ill! string char)

Identical to R*RS.

(string-find? string; strings)

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure

Returns #t if string; appears somewhere in strings; otherwise returns #£.

STK Reference Manual 17

(string-index string; strings) procedure

Returns the index of where string; is a substring of strings if it exists; returns #f otherwise.

(string-index "ca" '"abracadabra")
= 4

(string-index "ba" '"abracadabra")
— #f

(string-lower string) procedure

Returns a string in which all upper case letters of string have been replaced by their lower case
equivalent.

(string-upper string) procedure

Returns a string in which all lower case letters of string have been replaced by their upper case
equivalent.

6.8 Vectors

(vector? obj) procedure
(make-vector k) procedure
(make-vector k fill) procedure
(vector obj ...) procedure
(vector-length vector) procedure
(vector-ref wector k) procedure
(vector-set! vector k objy) procedure
(vector->list wvector) procedure
(list->vector list) procedure
(vector-fill! wector fill) procedure

Identical to R*RS.

(vector-copy wvector) procedure

returns a copy of vector.

(vector-resize vector size) procedure

vector-resize physically changes the size of vector. If size is greater than the old vector size, the
contents of the newly allocated cells are undefined.

6.9 Control features

(procedure? objy) procedure
(apply proc args) procedure
(apply proc argy ... args) procedure
(map proc listy lists ...) procedure
(for-each proc list; listy ...) procedure
(force promise) procedure

Identical to R*RS.

18 STK Reference Manual

(call-with-current-continuation proc) procedure
(call/cc proc) procedure

Call/cc is a shorter name for call-with-current-continuation.

(closure? objy) procedure

returns #t if obj is a procedure created by evaluating a lambda expression, otherwise returns #f.

(primitive? objy) procedure

returns #t if obj is a procedure and is not a closure, otherwise returns #£.

(promise? oby) procedure

returns #t if obj is an object returned by the application of delay, otherwise returns #f.

(continuation? objy) procedure

returns #t if obj is a continuation obtained by call/cc, otherwise returns #f.

(dynamic-wind (thunk;) (thunks) (thunks)) procedure

(Thunky), (thunks) and (thunks) are called in order. The result of dynamic-wind is the value
returned by (thunks). If (thunks) escapes from its continuation during evaluation (by calling a
continuation obtained by call/cc or on error), (thunks) is called. If (thunks) is later reentered,

(thunky) is called.

(catch (expression;) (expressions) ...) syntax

The (expression)s are evaluated from left to right. If an error occurs, evaluation of the (expression)s
is aborted, and #t is returned to catch’s caller. If evaluation finishes without an error, catch
returns #£f.

(let* ((x 0)
(y (catch
(set! x 1)
(/ 0) ; causes a "division by 0" error
(set! x 2))))
(cons x y))
= (1 . #t)

(procedure-body (procedure)) procedure

returns the body of (procedure). If (procedure) is not a closure, procedure-body returns #f.

(define (f a b)
(+a (xb2)))

(procedure-body £) — (lambda (a b)
(+a (xb2))
(procedure-body car) = #f

STK Reference Manual 19

6.10 Input and output

The R'RS states that ports represent input and output devices. However, it defines only ports
which are attached to files. In STK, ports can also be attached to strings or to a external command
input or output. String ports are similar to file ports, except that characters are read from (or
written to) a string rather than a file. External command input or output ports are implemented
with Unix pipes and are called pipe ports. A pipe port is created by specifying the command to
execute prefixed with the string "| ". Specification of a pipe port can occur everywhere a file
name is needed.

(call-with-input-file siring proc) procedure
(call-with-output-file string proc) procedure
Note: if string starts with the two characters "'| ", these procedures return a pipe port. Consequently,

it is not possible to open a file whose name starts with those two characters.

(call-with-input-string string proc) procedure

behaves exactly as call-with—input-file except that the port passed to proc is the string port
obtained from string.

(call-with-input-string "123 456" (lambda (x) (read x)))
= 123

(call-with-output-string proc) procedure

Proc should be a procedure of one argument. Call-with-output-string calls proc with a freshly
opened output string port. The result of this procedure is a string containing all the text that has
been written on the string port.

(call-with-output-string
(lambda (x) (write 123 x) (display "Hello" x)))
= "123Hello"

(input-port? obj) procedure
(output-port? oby) procedure

Identical to R*RS.

(input-string-port? obj) procedure
(output-string-port? obj) procedure
Returns #t if 0bj is either an input or an output string port, otherwise returns #£.
(current-input-port) procedure
(current-output-port) procedure

Identical to R*RS.

(current-error-port) procedure
Returns the current default error port.

(with-input-from-file siring thunk) procedure
(with-output-to-file string thunk) procedure
Identical to R*RS.

20 STK Reference Manual

The following example uses a pipe port opened for reading. It permits to read all the lines produced
by an external 1s command (i.e. the ouput of the 1s command is redirected to the Scheme pipe

port).

(with-input-from-file "| 1ls -1s"
(lambda ()
(do ((1 (read-line) (read-line)))
((eof-object? 1))
(display 1)
(newline))))

Hereafter is another example of Unix command redirection. This time, 1t is the standard input of
the Unix command which is redirected.

(with-output-to-file "| mail root"
(lambda ()
(format #t "A simple mail sent from STk\n'")))

(with-input-from-string string thunk) procedure

A string port is opened for input from séring. Current-input-port is set to the port and thunk is
called. When thunk returns, the previous default input port is restored. With-input-from-string
returns the value yielded by thunk.

(with-input-from-string "123 456" (lambda () (read)))
= 123

(with-output-to-string thunk) procedure

A string port is opened for output. Current-output-port is set to it and thunk is called. When
the thunk returns, the previous default output port is restored. With-output-to-string returns
the string containing all the text written on the string port.

(with-output-to-string (lambda () (write 123) (write "Hello")))
— "123Hello"

(open-input-file filename) procedure
(open-output-file filename) procedure
Identical to R*RS.

Note: if filename starts with the string '"| ", these procedure return a pipe port. Consequently, it is not

possible to open a file whose name starts with those two characters.

(open-input-string string) procedure

Returns an input string port capable of delivering characters from string.

(open-output-string) procedure

Returns an output string port capable of receiving and collecting characters.

(get-output-string port) procedure

Returns a string containing all the text that has been written on the output string port.

STK Reference Manual 21

(let ((p (open-output-string)))
(display "Hello, world" p)
(get-output-string p))

— "Hello, world"

(close-input-port port) procedure
(close-output-port port) procedure

Identical to R*RS.

(read) procedure
(read port) procedure
(read-char) procedure
(read-char port) procedure
(peek-char) procedure
(peek-char port) procedure
(char-ready?) procedure
(char-ready? port) procedure

Identical to R*RS.

(read-line) procedure
(read-line port) procedure

Reads the next line available from the input port port and returns it as a string. The termi-
nating newline is not included in the string. If no more characters are available, an end of file
object is returned. Port may be omitted, in which case it defaults to the value returned by
current-input-port.

(write obj) procedure
(write obj port) procedure
(display obj) procedure
(display obj port) procedure
(newline) procedure
(newline port) procedure
(write-char char) procedure
(write-char char port) procedure

Identical to R*RS.

(format port string obj; objs ...) procedure

Writes the objs to the given port, according to the format string string. String is written literally,
except for the following sequences:

e “aor “A is replaced by the printed representation of the next obj.

e “sor "Sis replaced by the “slashified” printed representation of the next obj.
e ~~ s replaced by a single tilde.

e “% is replaced by a newline

Port can be a boolean, a port or a string port. If port is #t, output goes to the current output
port; if port is #f, the output is returned as a string. Otherwise, the output is printed on the
specified port.

22 STK Reference Manual

(format #f "A test.")

— "A test."
(format #f "A "a." "test")
— "A test."

(format #f "A “s." "test")
— YA \"test\"."

(get-output-string port) procedure
Returns the string associated with the output string port.

(let ((p (open-output-string)))
(display "Hello, world" p)
(get-output-string p))

— "Hello, world"

(flush) procedure
(flush port) procedure

Flushes the buffer associated with the given port. The port argument may be omitted, in which
case 1t defaults to the value returned by current-output-port.

(load filename) procedure
Identical to R*RS.

Note: The load primitive has been extended to allow loading of object files, though this is not implemented
on all systems 2. See [?] for more details.

(try-load filename) procedure
Tries to load the file named filename. If filename exists and is readable, it is loaded, and try-load
returns #t. Otherwise, the result of the call 1s #£.

(autoload filename (symboly) (symbols) ...) syntax

Defines {(symbol)s as autoload symbols associated to file filename. Fisrt evaluation of an autoload
symbol will cause the loading of its associated file. Filename must provide a definition for the
symbol which lead to its loading, otherwise an error is signaled.

(autoload? symbol) procedure

Returns #t if symbol 1s an autoload symbol; returns #f otherwise.

(require string) procedure
(provide string) procedure
(provided? string) procedure

Require loads the file whose name is string if it was not previously “provided” .Provide permits
to store string in the list of already provided files. Providing a file permits to avoid subsequent
loads of this file. Provided? returns #t if string was already provided; it returns #£f otherwise.

(transcript-on filename) procedure
(transcript-off) procedure

Not implemented.

2Current version (3.0) allows image dumping only on some platforms:SunOs 4.1.x, SunOs 5.3, NetBSD 1.0,
HPUX, Irix 5.3

STK Reference Manual 23

(open-file filename mode) procedure

Opens the file whose name is filename with the specified mode. Mode must be “r” to open for
reading or “w” to open for writing. If the file can be opened, open-file returns the port associated
with the given file, otherwise it returns #f. Here again, the “magic” string "| ‘¢ permit to open
a pipe port.

(close-port port) procedure

Closes port. If port denotes a string port, further reading or writing on this port is disallowed.

(transcript-on filename) procedure
(transcript-off) procedure

Not implemented.

(port->string port) procedure
(port->list reader port) procedure
(port->string-1list port) procedure
(port->sexp-list port) procedure

Those procedures are utility for generally parsing input streams. Their specification has been
stolen from scsh.
Port->string reads the input port until eof, then returns the accumulated string.

(port->string (open-input-file "| (echo AAA; echo BBB)"))
—> "AAA\nBBB\n"
(define exec
(lambda (command)
(call-with-input-file
(string-append "| " command) port->string)))

(exec "ls -1") — a string which contains the result of "ls -1"

Port->1list uses the reader function to repeatedly read objects from port. Thes objects are
accumulated in a list which is returned upon eof.

(port->list read-line (open-input-file "| (echo AAA; echo BBB)"))
:> (l!AAAH ”BBB”)

Port->string-1list reads the input port line by line until eof, then returns the accumulated list
of lines. This procedure is defined as

(define port->string-list (lambda (p) (port->list read-line p)))
Port->sexp-list repeatedly reads data from the port until eof, then returns the accumulated list
of items. This procedure is defined as

(define port->sexp-list (lambda (p) (port->list read p)))
For instance, the following expression gives the list of users currently connected on the machine
running the STK interpreter.

(port->sexp-list (open-input-file "| users"))

24 STK Reference Manual

6.11 Keywords
Keywords are symbolic constants which evaluate to themselves. A keyword must begin with a

colon.

(keyword? oby) procedure

Returns #t if 0bj i1s a keyword, otherwise returns #£.

(make-keyword obj) procedure

Builds a keyword from the given obj. obj must be a symbol or a string. A colon is automatically
prepended.

(make-keyword "test'")

— :test
(make-keyword ’test)
— :test
(make-keyword ":hello")
= ::hello
(keyword->string keyword) procedure

Returns the name of keyword as a string. The leading colon is included in the result.

(keyword->string :test)

= ":test"
(get-keyword keyword list) procedure
(get-keyword keyword list default) procedure

List must be a list of keywords and their respective values. Get-keyword scans the list and returns
the value associated with the given keyword. If the keyword does not appear in an odd position
in list, the specified default is returned, or an error is raised if no default was specified.

(get-keyword :one ’(:one 1 :two 2))
— 1

(get-keyword :four ’(:one 1 :two 2) #f)
— #f

(get-keyword :four ’(:omne 1 :two 2))
— error

6.12 Tk commands

As we mentioned in the introduction, STK can easily communicate with the Tk toolkit. All the
commands defined by the Tk toolkit are visible as Tk-commands, a basic type recognized by the
interpreter. Tk-commands can be called like regular scheme procedures, serving as an entry point
into the Tk library.

Note: Some Tk-commands can dynamically create other Tk-commands. For instance, execution of the

expression

(label ’.lab)

STK Reference Manual 25

will create a new Tk-command called “.lab”. This new object, which was created by a primitive Tk—command,
will be called a widget.

Note: When a new widget 1s created, it captures its creation environment. This permits to have bindings
which access variables in the scope of the widget creation call (see 6.16).

(tk-command? obj) procedure

Returns #t if 0bj is a Tk—command, otherwise returns #£.

(tk—command? label)
— #t

(begin (label ’.lab) (tk-command? .lab))
— #t

(tk—command? 12)
— #f

(widget? oby) procedure

Returns #t if oby is a widget, otherwise returns #f. A widget is a Tk-command created by a
primitive Tk-—command such as button, label, menu, etc.

(widget? label)
— #f

(begin (label ’.lab) (widget? .lab))
— #t

(widget? 12)
— #f

(widget->string widgel) procedure

Returns the widget name of widgetl as a string.

(begin (label ’.lab) (widget->string .lab))
— ".lab"

(string->widget sir) procedure

Returns the widget whose name is str if it exists; otherwise returns #f£.

(begin (label ’.lab) (string->widget ".lab"))
— the Tk-command named ".lab"

(widget-name widgel) procedure

Returns the widget name of widget as a symbol.

(begin (label ’.lab) (widget->name .lab))
— .lab

(set-widget-data! widgel expr) procedure

26 STK Reference Manual

Set-widget-data! associates arbitrary data with a widget. The system makes no assumptions
about the type of expr; the data is for programmer convenience only. As shown below, it could
be used as a kind of property list for widgets.

(get-widget-data widget) procedure
Returns the data previously associated with widget if it exists; otherwise returns #£.

(begin
(set-widget-data! .w ’ (:mapped #t :geometry "10x50"))
(get-keyword :mapped (get-widget-data .w)))
— #t

6.13 Environments

Environments are first class objects in STk. The following primitives are defined on environments.

(environment? obj) procedure

Returns #t if 0bj is an environment, otherwise returns #£.

(the-environment) procedure

Returns the current environment.

(global-environment) procedure

Returns the “global” environment (i.e. the toplevel environment).

(parent-environment env) procedure

Returns the parent environment of env. If env is the “global” environment (i.e. the toplevel
environment), parent-environment returns #f.

(environment->list environment) procedure

Returns a list of a-lists, representing the bindings in environment. Each a-list describes one level
of bindings, with the innermost level coming first.

(define E (let ((a 1) (b 2))
(let ((c 3))
(the-environment))))

(car (environmment->list E)) — ((c . 3))

(cadr (environment->list E))— ((b . 2) (a . 1))

(procedure-environment procedure) procedure

Returns the environment associated with procedure. Procedure-environment returns #£ if procedure
is not a closure.

(define foo (let ((a 1)) (lambda () a)))
(car (environment->list
(procedure-environment foo)))
= ((a . 1))

STK Reference Manual 27

(symbol-bound? symbol) procedure
(symbol-bound? symbol environment) procedure

Returns #t if symbol has a value in the given environment, otherwise returns #f. FEnvironment
may be omitted, in which case it defaults to the global environment.

6.14 Macros

STK provides low level macros.
Note: STK macros are not the sort of macros defined in the appendix of R*RS, but rather the macros

one can find in most of Lisp dialects.

(macro (formals) (body)) syntax

Macro permits to create a macro. When a macro is called, the whole form (i.e. the macro itself
and its parameters) is passed to the macro body. Binding association is done in the environment
of the call. The result of the binding association is called the macro-ezpansion. The result of the
macro call 18 the result of the evaluation of the macro expansion in the call environment.

(define foo (macro f ~(quote ,f)))
(foo 1 2 3) — (foo 1 2 3)

(define 1+ (macro form (list + (cadr form) 1)))
(let ((x 1)) (1+ x)) = 2

(macro? obj) procedure

Returns #t if 0bj is a macro, otherwise returns #£.

(macro-expand-1 form) procedure
(macro-expand form) procedure

Macro-expand-1 returns the macro expansion of form if it is a macro call, otherwise form is
returned unchanged. Macro-expand is similar to macro-expand-1, but repeately expand form
until 1t is no longer a macro call.

(define 1- (macro form (- ,(cadr form) 1)))
(define -- (macro form " (1- ,(cadr form))))
(macro-expand-1 ’(1- 10)) = (- 10 1)
(macro-expand ’(1- 10)) = (- 10 1)
(macro-expand-1 ’(-- 10)) = (1- 10)
(macro-expand ’(-- 10)) = (- 10 1)

(macro-expand form) procedure

Returns the macro expansion of form if it is a macro call, otherwise form is returned unchanged.
Macro expansion continue until, the form obtained 1s

(define 1- (macro form (list ’- (cadr form) 1)))
(macro-expand ’ (1- 10)) = (- 10 1)
(macro-body macro) procedure

Returns the body of macro

28 STK Reference Manual

(macro-body 1+)
—> (macro form (list + (cadr form) 1))

(define-macro ({name) (formals)) (body)) macro

Define-macro is a macro which permits to define a macro more easily than with the macro form.
It is similar to the defmacro of Common Lisp [4].

(define-macro (incr x) ~(set! ,x (+ ,x 1)))
(let ((a 1)) (incr a) a) — 2

(define-macro (when test . body)
*(if ,test ,0(if (null? (cdr body)) body ° ((begin ,@body)))))
(macro-expand ’(when a b)) =— (if a b)
(macro-expand ’(when a b ¢ d4))
— (if a (begin b c d))

Note: Calls to macros defined by define-macro are physically replaced by their macro-expansion if the
variable *debugx is #£f (i.e. their body is “in-lined” in the macro call). To avoid this feature, and to ease

debugging, you have to set this variable to #t. (See also 6.22).

6.15 System procedures

This section lists a set of procedures which permits to access some system internals.

(expand-file-name string) procedure

Expand-file-name expands the filename given in string to an absolute path. This function un-
derstands the tide convention for filenames.

;; Current directory is /users/eg/STk
(expand-file-name "..")

— "/users/eg"
(expand-file-name "“root/bin)

= "/bin"
(expand-file-name "~/STk)"

— "/users/eg/STk"

(canonical-path path) procedure

Expands all symbolic links in path and returns its canonicalized absolute pathname. The resulting
path do not have symbolic links. If path doesn’t designate a valid pathname, canonical-path returns
#t.

(dirname string) procedure

Returns a string containing all but the last component of the path name given in string.

(dirname "/a/b/c.stk")
:> "/a/b"

(basename string) procedure

Returns a string containing the last component of the path name given in string.

STK Reference Manual 29

(basname '"/a/b/c.stk")
— "'c.stk"

(decompose-file-name string) procedure

Returns an “exploded” list of the path name components given in string. The first element in the
list denotes if the given string is an absolute path or a relative one, being '"/" or "." respectively.
Each component of this list is a string.

(decompose-file-name "/a/b/c.stk")
— (n/n gt tpy ”C.Stk”)
(decompose-file-name "a/b/c.stk")

— (”.” "a'" "b" ”C.Stk”)
(file-is-directory? string) procedure
(file-is-regular? siring) procedure
(file-is-readable? string) procedure
(file-is-writable? string) procedure
(file-is-executable? string) procedure
(file-exists? string) procedure

Returns #t if the predicate is true for the path name given in string; returns #f otherwise (or if
string denotes a file which does not exist).

(glob patterny patterns ...) procedure

The code for glob is taken from the Tcl library. It performs file name “globbing” in a fashion
similar to the csh shell. Glob returns a list of the filenames that match at least one of the pattern
arguments. The pattern arguments may contain the following special characters:

e 7 Matches any single character.
e * Matches any sequence of zero or more characters.

e [chars] Matches any single character in chars. If chars contains a sequence of the form a-b
then any character between a and b (inclusive) will match.

o \x Matches the character x.

{a,b,...} Matches any of the strings a, b, etc.

As with csh, a “.” at the beginning of a file’s name or just after a “/” must be matched explicitly
or with a {} construct. In addition, all “/” characters must be matched explicitly.

If the first character in a pattern is “~” then it refers to the home directory of the user whose
name follows the “~”. If the “~” is followed immediately by “/” then the value of the environment
variable HOME is used.

Glob differs from csh globbing in two ways. First, it does not sort its result list (use the sort
procedure if you want the list sorted). Second, glob only returns the names of files that actually
exist; in csh no check for existence 1s made unless a pattern contains a 7, *, or [Jconstruct.

(getcwd string) procedure

Getcwd returns a string containing the current working directory.

(chdir string) procedure

30 STK Reference Manual

Chdir changes the current directory to the directory given in string.

(getpid string) procedure

Returns the system process number of the current STK interpreter (i.e. the Unix pid). Result is
an integer.

(system string) procedure
(! string) procedure

Sends the given string to the system shell /bin/sh. The result of system is the integer status code
the shell returns.

(exec string) procedure

Executes the command contained in string and redirects its output in a string. This string
constitutes the result of exec.

(getenv string) procedure

Looks for the environment variable named string and returns its value as a string, if 1t exists.
Otherwise, getenv returns #f.

(getenv "SHELL")
= "/bin/zsh"

6.16 Addresses

An addressis a Scheme object which contains a reference to another Scheme object. This type can
be viewed as a kind of pointer to a Scheme object. Addresses, even though they are very dangerous,
have been introduced in STK so that objects that have no “readable” external representation can
still be transformed into strings and back without loss of information. Adresses were useful with
pre-3.0 version of STK; their usage is now stongly discouraged, unless you know what you do.
In particular, an address can designate an object at a time and another one later (i.e. after the
garbage collector has marked the zone as free).

Addresses are printed with a special syntax: #pNNN, where NNN is an hexadecimal value. Reading
this value back yields the original object whose location i1s NNN.

(address-of obj) procedure

Returns the address of obj.

(address? objy) procedure

Returns #t if 0bj is an address; returns #£ otherwise.

6.17 Signals

STK allows the use to associate handlers to signals. Signal handlers for a given signal can even be
chained in a list. When a signal occurs, the first signal of the list is executed. Unless this signal
yields the symbol break the next signal of the list is evaluated. When a signal handler is called,
the integer value of this signal is passed to it as (the only) parameter.

The following POXIX.1 constants for signal numbers are defined: SIGABRT, SIGALRM, SIGFPE,
SIGHUP, SIGILL, SIGINT, SIGKILL, SIGPIPE, SIGQUIT, SIGSEGV, SIGTERM, SIGUSR1, SIGUSR2,
SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU. Moreover, the following constants,

STK Reference Manual 31

which are often available on most systems are also defined®: SIGTRAP, SIGIOT, SIGEMT, SIGBUS,
SIGSYS, SIGURG, SIGCLD, SIGIO, SIGPOLL, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF, SIGWINCH,
SIGLOST.

See your Unix documentation for the exact meaning of each constant or [5]. Use symbolic constants
rather than their numeric value if you plan to port your program on another system.

A special signal, managed by the interpreter, is also defined: SIGHADGC. This signal is raised when
the garbage collector phase terminates.

When the interpreter starts running, all signals are sets to their default value, excepted SIGINT
(generally bound to Control-C) which is handled specially.

(set-signal-handler! sig handler) procedure
Replace the handler for signal sig with handler. Handler can be
- #t to reset the signal handler for sig to the default system handler.

- #f to completly ignore sig (Note that Posix.1 states that SIGKILL and SIGSTOP cannot be
caught or ignored).

- a one parameter procedure.
This procedure returns the new handler, or (length 1) handler list, associated to sig.

(Tetx ((x #f)
(handler (lambda (i) (set! x #t))))
(set-signal-handler! |SIGHADGC| handler)

(go)
x)
= #t
(add-signal-handler! sig handler) procedure

Adds handler to the list of handlers for signal sig. If the old signal handler is a boolean, this
procedure is equivalent to set-signal-handler!. Otherwise, the new handler is added in front
of the previous list of handler. This procedure returns the new handler, or handler list, associated
to sig.

(let* ((x ()
(handler1l (lambda (i) (set! x (cons 1 x))))
(handler2 (lambda (i) (set! x (cons 2 x)))))
(add-signal-handler! |SIGHADGC| handlerl)
(add-signal-handler! |SIGHADGC| handler2)

(go)
x)
= (1 2)
(let* ((x ()

(handler1l (lambda (i) (set! x (cons 1 x))))
(handler2 (lambda (i) (set! x (cons 2 x)) ’break)))
(add-signal-handler! |SIGHADGC| handlerl)
(add-signal-handler! |SIGHADGC| handler2)
(go)
x)
= (2)

3Some of these constants may be undefined if they are not supported by your system

32 STK Reference Manual

(get-signal-handlers) procedure
(get-signal-handlers sig) procedure

Returns the handlers, or the list of handlers, associated to the signal sig. If sig is omitted,
get-signal-handlers returns a vector of all the signal handlers currently in effect.

6.18 Hash tables

A hash table consists of zero or more entries, each consisting of a key and a value. Given the key
for an entry, the hashing function can very quickly locate the entry, and hence the corresponding
value. There may be at most one entry in a hash table with a particular key, but many entries
may have the same value.

STK hash tables grow gracefully as the number of entries increases, so that there are always less
than three entries per hash bucket, on average. This allows for fast lookups regardless of the
number of entries in a table.

Note: Hash table manipulation procedures are built upon the efficient Tcl hash table package.

(make-hash-table) procedure
(make-hash-table comparison) procedure
(make-hash-table comparison hash) procedure

Make-hash-table admits three different forms. The most general form admit two arguments.
The first argument is a comparison function which determine how keys are compared; the second
argument is a function which computes a hash code for an object and returns the hash code as
a non negative integer. Objets with the same hash code are stored in an A-list registered in the
bucket corresponding to the key.

If omitted,

e hash defaults to the hash-table-hash procedure.

e comparison defaults to the eq? procedure
Consequently,
(define h (make-hash-table))

1s equivalent to

(define h (make-hash-table eq? hash-table-hash))

Another interesting example is

(define h (make-hash-table string-ci=? string-length))

which defines a new hash table which uses string-ci=? for comparing keys. Here, we use
the string-length as a (very simple) hashing function. Of course, a function which gives a key
depending of the characters composing the string gives a better repartition and should probably
enhance performances. For instance, the following call to make-hash-table should return a more
efficient, even if not perfect, hash table:

(make-hash-table

string-ci=7?

(lambda (s)

(let ((len (string-length s)))
(do ((h0) (0 (+1i1)))
((= i len) h)
(set! h (+ h (char->integer
(char-downcase (string-ref s 1)))))))))

STK Reference Manual 33

Note: Hash tables with a comparison function equal to eq? or string=7 are handled in an more efficient
way (in fact, they don’t use the hash-table-hash fucntion to speed up hash table retrievals).

(hash-table? obj) procedure

Returns #t if 0bj is a hash table, returns #f otherwise.

(hash-table-hash obj) procedure

hash-table-hash computes a hash code for an object and returns the hash code as a non negative
integer. A property of hash-table-hash is that

(equal? x y) implies (equal? (hash-table-hash x) (hash-table-hash y)

as the the Common Lisp sxhash function from which this procedure is modeled.

(hash-table-put! hash key value) procedure

Hash-table-put! enters an association between key and wvalue in the hash table. The value
returned by hash-table-put! is undefined.

(hash-table-get hash key) procedure
(hash-table-get hash key defaultl) procedure

Hash-table-get returns the value associated with key in the given hash table. If no value has
been associated with key in hash, the specified default is returned if given; otherwise an error is
raised.

(define hl (make-hash-table))
(hash-table-put! hl ’foo (list 1 2 3))
(hash-table-get hl ’foo)
= (123
(hash-table-get hl ’bar ’absent)
— absent
(hash-table-get hl ’bar)
— error
(hash-table-put! hl ’(a b c) ’present)
(hash-table-get hl ’(a b c¢) ’absent)
— ’absent

(define h2 (make-hash-table equal?))
(hash-table-put! h2 ’(a b c) ’present)
(hash-table-get h2 ’(a b ¢))

— ’present

(hash-table-remove! hash key) procedure

hash must be a hash table containing an entry for key. Hash-table-remove! deletes the entry
for key in hash, if it exists. Result of Hash-table-remove! is unspecified.

(define h (make-hash-table))
(hash-table-put! h ’foo (list 1 2 3))
(hash-table-get h ’foo)

= (12 3)
(hash-table-remove! h ’foo)
(hash-table-get h ’foo ’absent)

— absent

34 STK Reference Manual

(hash-table-for-each hash proc) procedure

Proc must be a procedure taking two arguments. Hash-table-for-each calls proc on each
key/value association in hash, with the key as the first argument and the value as the second. The
value returned by hash-table-for-each is undefined.

Note: The order of application of proc is unspecified.

(let ((h (make-hash-table))
(sum 0))
(hash-table-put! h ’foo 2)
(hash-table-put! h ’bar 3)
(hash-table-for-each h (lambda (key value)
(set! sum (+ sum value))))

sum)

(hash-table-map hash proc) procedure

Proc must be a procedure taking two arguments. Hash-table-map calls proc on each entry in
hash, with the entry’s key as the first argument and the entry’s value as the second. The result
of hash-table-map is a list of the values returned by proc, in unspecified order.

Note: The order of application of proc is unspecified.

(let ((h (make-hash-table)))
(dotimes (i 5)
(hash-table-put! h i (number->string i)))
(hash-table-map h (lambda (key value)
(cons key value))))
— ((0 . ||0||) (3 . ||3||) (2 . ||2||) (1 . ||1||) (4 . ||4||))

(hash-table->1list hash) procedure

hash-table->list returns an “association list” built from the entries in hash. Each entry in hash
will be represented as a pair whose car is the entry’s key and whose cdr is its value. Note: The

order of pairs in the resulting list is unspecified.

(let ((h (make-hash-table)))
(dotimes (i 5)
(hash-table-put! h i (number->string i)))

(hash-table->1list h))
— ((0 . ||0||) (3 . ||3||) (2 . ||2||) (1 . ||1||) (4 . ||4||))

(hash-table-stats hash) procedure

Hash-table-stats returns a string with overall information about hash, such as the number of
entries it contains, the number of buckets in its hash array, and the utilization of the buckets.

6.19 Regular expressions

Regular expressions are first class objects in STK. A regular expression is created by the string->regexp
procedure. Matching a regular expression against a string is simply done by applying a previously
created regular expression to this string. Regular expressions are implemented using code in the

STK Reference Manual 35

Henry Spencer’s package, and much of the description of regular expressions below is copied from
his manual.

(string->regexp siring) procedure

String->regexp compiles the string and returns the corresponding regular expression.

Matching a regular expression against a string is done by applying the result of string->regexp
to this string. This application yields a list of integer couples if a matching occurs; 1t returns #£
otherwise. Those integers correspond to indexes in the string which match the regular expression.
A regular expression is zero or more branches, separated by “|”
one of the branches.

A branch is zero or more pteces, concatenated. It matches a match for the first, followed by a
match for the second, etc.

A piece is an atom possibly followed by “*”, “+” or “?”. An atom followed by “*” matches a
sequence of 0 or more matches of the atom. An atom followed by “+” matches a sequence of 1 or
more matches of the atom. An atom followed by “?” matches a match of the atom, or the null
string.

An atom is a regular expression in parentheses (matching a match for the regular expression),
a range (see below), “.” (matching any single character), (matching the null string at the
beginning of the input string), “$” (matching the null string at the end of the input string), a
“N” followed by a single character (matching that character), or a single character with no other
significance (matching that character).

A range is a sequence of characters enclosed in “[]1”. It normally matches any single character
from the sequence. If the sequence begins with “*” it matches any single character not from the
rest of the sequence. If two characters in the sequence are separated by “-”, this is shorthand
for the full list of ASCII characters between them (e.g. “[0-9]” matches any decimal digit). To
include a literal “1” in the sequence, make it the first character (following a possible “~”). To
include a literal “=”, make it the first or last character.

In general there may be more than one way to match a regular expression to an input string.
Considering only the rules given so far could lead to ambiguities. To resolve those ambiguities,
the generated regular expression chooses among alternatives using the rule “first then longest”. In
other words, it considers the possible matches in order working from left to right across the input
string and the pattern, and it attempts to match longer pieces of the input string before shorter
ones. More specifically, the following rules apply in decreasing order of priority:

. It matches anything that matches

[E5)

1. If a regular expression could match two different parts of an input string then it will match
the one that begins earliest.

((l??

2. If a regular expression contains operators then the leftmost matching sub-expression is

chosen.
3. In “¥” “+” ‘and “?” constructs, longer matches are chosen in preference to shorter ones.
4. In sequences of expression components the components are considered from left to right.

(define r1 (string->regexp "abc"))

(r1 "xyz") = #f

(r1 "12abc345") = ((2 5))
(define r2 (string->regexp "[a-z]+"))
(r2 "12abc345") = ((2 5))

If the regular expression contains parenthesis, and if there is a match, the result returned by the
application will contain several couples of integers. First couple will be the indexes of the first
longest substring which match the regular expression. Subsequent couples, will be the indexes of
all the sub-parts of this regular expression, in sequence.

36 STK Reference Manual

(define r3 (string->regexp "(a*) (b*)c"))

(r3 "abc") = ((03) (0 1) (12))

(r3 "c") = ((0 1) (0 0) (0 0))

((string->regexp "([a-z]+), ([a-z]+)") "XXabcd,eXX")
= ((28) (26) (7 8))

(regexp? obj) procedure

Returns #t if obj is a regular expression created by string->regexp; otherwise returns #£.

(regexp? (string->regexp "[a-zA-Z][a-zA-Z0-9]%"))

= #t
(regexp-replace patlern string substitution) procedure
(regexp-replace-all paltern string substitution) procedure

Regexp-replace matches the regular expression pattern against string. If there is a match, the
portion of string which match pattern is replaced by the substitution string. If there is no match,
regexp-replace returns siring unmodified. Note that the given pattern could be here either
a string or a regular expression. If pattern contains strings of the form “\n”, where n is a digit

between 1 and 9, then it is replaced in the substitution with the portion of string that matched the
n-th parenthesized subexpression of pattern. If n is equal to 0, then it is replaced in substitution
with the portion of string that matched pattern.

(regexp-replace "a*b'" "aaabbcccc!" "X")

— "Xbcccc"
(regexp-replace (string->regexp "axb") "aaabbcccc" "X")
— "Xbcccc"

(regexp-replace "(a*)b" "aaabbcccc" "X\\1Y")

— "XaaaYbcccc"
(regexp-replace "(a*)b" "aaabbcccc" "X\\0OY")

— "XaaabYbcccc"
(regexp-replace "([a-z]#*) ([a-z]l*)" "john brown" "\\2 \\1")

= "brown john"

Regexp-replace replaces the first occurence of pattern in string. To replace all the occurences of
the pattern, use regexp-replace-all

(regexp-replace "a*b'" "aaabbcccc!" "X")

— "Xbcccc"
(regexp-replace-all "a*b'" "aaabbcccc'" "X")
— "XXcccc"

6.20 Processes

STK provides access to Unix processes as first class objects. Basically, a process contains four
informations: the standard Unix process identification (aka PID) and the three standard files of
the process.

(run-process command p1 ps p3 ...) procedure

run-process creates a new process and run the executable specified in command. The p corre-
spond to the command line arguments. The following values of p have a special meaning:

STK Reference Manual 37

e :input permits to redirect the standard input file of the process. Redirection can come from
a file or from a pipe. To redirect the standard input from a file, the name of this file must be
specified after :input. Use the special keyword :pipe to redirect the standard input from

a pipe.

e :output permits to redirect the standard output file of the process. Redirection can go to
a file or to a pipe. To redirect the standard output to a file, the name of this file must be
specified after :output. Use the special keyword :pipe to redirect the standard output to

a pipe.

e :error permits to redirect the standard error file of the process. Redirection can go to a file
or to a pipe. To redirect the standard error to a file, the name of this file must be specified
after :error. Use the special keyword :pipe to redirect the standard error to a pipe.

e :wait must be followed by a boolean value. This value specifies if the process must be run
asynchronously or not. By default, the process is run asynchronously (i.e. :wait is #f).

e :host must be followed by a string. This string represents the name of the machine on
which the command must be executed. This option uses the external command rsh. The
shell variable PATH must be correctly set for accessing it without specifying its abolute path.

The following example launches a process which execute the Unix command 1s with the arguments
-1 and /bin. The lines printed by this command are stored in the file /tmp/X

(run-process "ls'" "-1" "/bin" :output "/tmp/X" :wait #f)

(process? process) procedure

Returns #t if process is a process, otherwise returns #£.

(process-alive? process) procedure

Returns #t if process if the process is currently running, otherwise returns #£.

(process-pid process) procedure

Returns an integer value which represents the Unix identification (PID) of process.

(process-input process) procedure
(process-output process) procedure
(process-error process) procedure

Returns the file port associated to the standard input, output or error of process, if it is redirected
in (or to) a pipe; otherwise returns #£. Note that the returned port is opened for reading when
calling process-output or process—error; it is opened for writing when calling process-input.

(process-wait process) procedure

Process-wait stops the current process until process completion. Process-wait returns #f when
process is already terminated; it returns #t otherwise.

(process-exit-status process) procedure

Process—exit—-status returns the exit status of process if it has finished its execution; returns #f
otherwise.

38 STK Reference Manual

(process-send-signal process n) procedure

Send the signal whose integer value is n to process. Value of n is system dependant. Use the
defined signal constants to make your program indpendant of the running system (see 6.17). The
result of process-send-signal is undefined.

(process-kill process) procedure

Process-kill brutally kills process. The result of process-kill is undefined. This procedure is
equivalent to

(process-send-signal process |SIGTERM|)

(process-stop process) procedure
(process-continue process) procedure

Those procedures are only available on systems which support job control. Process-stop stops the
execution of process and process-continue resumes its execution. They are equivalent to

(process-send-signal process |SIGSTOP|)
(process-send-signal process |SIGCONT|)

(process-list) procedure

process-1list returns the list of processes which are currently running (i.e. alive).

6.21 Sockets

STK defines sockets, on systems which support them, as first class objects. Sockets permits
processes to communicate even if they are on different machines. Sockets are useful for creating
client-server applications.

(make-client-socket hostname port-number) procedure

make-client-socket returns a new socket object. This socket establishes a link between the
running application listening on port port-number of hostname.

(socket? socket) procedure

Returns #t if socket is a socket, otherwise returns #£.

(socket-hostname socket) procedure

Returns a string which contains the name of the host on which socket is connected. This name
i1s always the string “localhost” if socket is a server socket, it is the host name given when
make-client-socket was called otherwise.

(socket-port-number socket) procedure

Returns the integer number of the port used for the listening socket.

(socket-input socket) procedure
(socket-output socket) procedure

Returns the file port associated for reading or writing with the program connected with socket. If
no connection has already been established, these fucntions returns #f.

The following example shows how to make a client socket. Here we create a socket on port 13 of
the machine “kaolin.unice.fr”*:

4Port 13 is generally used for testing: making a connection to it permits to know the distant system’s idea of
the time of day.

STK Reference Manual 39

(let ((s (make-client-socket "kaolin.unice.fr'" 13)))
(format #t "Time is: "A\n" (read-line (socket-input s)))
(socket-shutdown s))

(make-server—-socket) procedure
(make-server—-socket port-number) procedure

make-server-socket returns a new socket object. If port-number is specified, the socket is lis-
tening on the specified port; otherwise, the communication port i1s choosen by the system.

(socket-accept-connection socket) procedure

socket-accept-connection waits for a client connection on the given socket. If no client is
already waiting for a connection, this procedure blocks its caller; otherwise, the first connection
request on the queue of pending connections is connected to socket. This procedure must be called
on a server socket created with make-server—-socket. The result of socket-accept-connection
is undefined.

The following exemple is a simple server which waits for a connection on the port 1234°. Once the
connection with the distant program is established, we read a line on the input port associated to
the socket and we write the length of this line on its output port.

(let ((s (make-server-socket 1234)))
(socket-accept-connection s)
(let ((1 (read-line (socket-input))))
(format (socket-output s) "Length is: “A\n" (string-length 1))
(flush (socket-output s)))
(socket-shutdown s))

(socket-shutdown socket) procedure
(socket-shutdown socket close) procedure

Socket-shutdown shutdowns the connection associated to socket. Close 1s a boolean; it indicates
if the socket must be close or not, when the connection is dstroyed. Closing the socket forbids
further connections on the same port with the socket-accept-connection procedure. Omitting
a value for close implies the closing of socket. The result of socket-shutdown is undefined.

The following example shows a simple server: when there is a new connection on the port number
1234, the server displays the first line sent to it by the client, discards the others and go back
waiting for further client connections.

(let ((s (make-server-socket 1234)))
(let loop O
(socket-accept-connection s)
(format #t "I’ve read: “A\n" (read-line (socket-input s)))
(socket-shutdown s #f)
(loop)))

5Under Unix, you can simply connect to listening socket with the telnet command. With the given example,
this can be achived by typing the following command in a window shell:
$ telnet localhost 1234

40 STK Reference Manual

6.22 Miscellaneous
This section lists the primitives defined in STK that did not fit anywhere else.

(eval (expr)) syntax
(eval (expr) {environment)) syntax

Evaluates (expr) in the given environment. (Environment) may be omitted, in which case it
defaults to the global environment.

(define foo (let ((a 1)) (lambda () a)))

(foo) — 1
(eval ’(set! a 2) (procedure-environment foo))
(foo) — 2
(version) procedure

returns a string identifying the current version of STK.

(machine-type) procedure

returns a string identifying the kind of machine which is running the interpreter. The form of the
result is [os-name]-[os-version]-[processor-typel.

(random n) procedure

returns an integer in the range 0, n — 1 inclusive.

(set-random-seed! seed) procedure

Set the random seed to the specified seed. Seed must be an integer which fits in a C long int.

(eval-string siring environment) procedure

Evaluates the contents of the given string in the given environment and returns its result. If
environment 1s omitted it defaults to the global environment. If evaluation leads to an error, the
result of eval-string is undefined.

(define x 1)
(eval-string "(+ x 1)")

= 2
(eval-string "x" (let ((x 2)) (the-environment)))
= 2
(read-from-string (string)) procedure

Performs a read from the given string. If string is the empty string, an end of file object is returned.
If an error occurs during string reading, the result of read-from-string is undefined.

(read-from-string "123 456")
= 123
(read-from-string "")
— an eof object

STK Reference Manual 41

(dump string) procedure

Dump grabs the current continuation and creates an image of the current STK interpreter in the
file whose name is string®. This image can be used later to restart the interpreter from the saved
state. See the STK man page about the —image option for more details.

Note: Image creation cannot be done if Tk is initialized.

(trace-var symbol thunk) procedure

Trace-var call the given thunk when the value of the variable denoted by symbol is changed.

(define x 1)
(define y 0)
(trace-var ’x (lambda () (set! y 1)))
(set! x 2)
(cons x y)
= (2.1

Note: Several traces can be associated with a single symbol. They are executed in reverse order to their
definition. For instance, the execution of

(begin
(trace-var ’z (lambda () (display "One")))
(trace-var ’z (lambda () (display "Two")))
(set! z 10))

will display the string "Two" before the string "One" on the current output port.

(untrace-var symbol) procedure

Deletes all the traces associated to the variable denoted by symbol.

(error string string,; objs ...) procedure

error prints the objs according to the specification given in string on the current error port (or
in an error window if Tk is initialized). The specification string follows the “tilde conventions” of
format(see 6.10). Once the message is printed, execution returns to toplevel.

(ge) procedure

Runs the garbage collector. See 6.17 for the signals associated to garbage collection.

(gc-stats) procedure

Provides some statistics about current memory usage. This procedure is primarily for debugging
the STK interpreter, hence its weird printing format.

(expand-heap n) procedure

Expand the heap so that it will contains at least n cells. Normally, the heap automatically grows
when more memory is needed. However, using only automatic heap growing is sometimes very
penalizing. This is particulary true for programs which uses a lot of temporary data (which are not
pointed by any a variable) and a small amount of global data. In this case, the garbage collector
will be often called and the heap will not be automatically expanded (since most of the consumed
heap will be reclaimed by the GC). This could be annoying epecially for program where response

8 Image creation is not yet implemented on all systems. The current version (3.0) allows image dumping only on
some platforms: SunOs 4.1.x, Linux 1, FreeBsd

42 STK Reference Manual

time is critical. Using expand-heap permits to enlarge the heap size (which is set to 20000 cells
by default), to avoid those continual calls to the GC.

(get-internal-info) procedure

Returns a 7-length vector which contains the following informations:
0 total cpu used in milli-seconds
1 number of cells currently in use.
2 total number of allocated cells
3 number of cells used since the last call to get-internal-info
4 number of gc runs
5 total time used in the gc

6 a boolean indicating if Tk is initialized

(sort obj predicate) procedure

Obj must be a list or a vector. Sort returns a copy of 0bj sorted according to predicate. Predicate
must be a procedure which takes two arguments and returns a true value if the first argument is
strictly “before” the second.

(sort (1 2 -4 12 9 -1 2 3) <)
— (-4 -112239 12)
(sort #("one" "two" "three'" "four'")
(lambda (x y) (> (string-length x) (string-length y))))
— #("three" "four" "one'" "two')

(uncode form) procedure

When STK evaluates an expression it encodes it so that further evaluations of this expression
will be more efficient. Since encoded forms are generally difficult to read, uncode can be used to
(re-)obtain the original form.

(define (foo a b)
(let ((x a) (y (+ b 1))) (cons x y)))

(procedure-body foo)
— (lambda (a b)
(let ((x a) (y (+ b 1))) (cons x y)))
(foo 1 2) = (1 . 3)
(procedure-body foo)
— (lambda (a b)
(#let (x y)
(#<local a @0,0)>
(#<global +> #<local b @0,1)> 1))
(#<global cons> #<local x €0,0)>
#<local y @0,1)>)))

(uncode (procedure-body foo))
— (lambda (a b)
(let ((x a) (y (+ b 1))) (cons x y)))

STK Reference Manual 43

General imspector

Comand Help |

Objects Values

[(12(3@5)8) [o125 6

|#~:Tk—cnmmand A= | #<Tk-cammand .I1=

Figure .1: A view of the Inspector

Note: When a macro has been directly expanded into the macro call code, it is not possible to retrieve

the original macro call. Set *debug* to #t to avoid macro expansion in-lining.

(time (expr)) macro

Evaluates the expression {expr) in the current environment. Prints the elapsed CPU time and the
number of conses used before returning the result of this evaluation.

(apropos symbol) procedure

Apropos returns a list of symbol whose print name contains the characters of symbol. Symbols
are searched for in the current environment.

(apropos ’cadd)
—> (caddar caddr cadddr)

(inspect obj) procedure

Inspect permits to graphically inspect an object. The first call of this procedure creates a top
level window containing the object to inspect and its current value. If the inspector window is
already on screen, obj will be appended to the list of inspected objects. The inspector window
contains menus which permit to call the viewer or detailer on each inspected object. See the
on-line documentation for further details. A view of the general inspector is given in figure 1.
Note: Tk must be initialized to use inspect.

(view oby) procedure

View permits to obtain a graphical representation of an STK object. The type of representation
depends on the type of the viewed object. Here again, menus are provided to switch to the
inspector or to the detailer. See the on-line documentation for more details. A snapshot of the
viewer 1s given in figure 2.

Note: Tk must be initialized to use view.

(detail oby) procedure

detail permits to display the fields of a composite Scheme object. The type of detailer depends on
the type of the composite object detailed. Here again, menus are provided to go to the inspector
or to the viewer. See the on-line documentation for more details. Figure 3 shows the detailer
examining a tk-command.

Note: Tk must be initialized to use detail.

(quit retcode) procedure
(quit) procedure

44 STK Reference Manual

Figure .2: A view of the Viewer

(exit retcode) procedure
(exit) procedure
(bye retcode) procedure
(bye) procedure

Exits the STK interpreter with the specified integer return code. If omitted, the interpreter
terminates with a return code of 0.

STK Reference Manual

45

|

#=<Tk-cammand .I11=

Figure .3: A view of the Detailer

46

STK Reference Manual

Part 11

Annexes

47

Appendix A

Using the Tk toolkit

When STK detects that a tk-command must be called, parameters are processed to be recognized
by the corresponding toolkit function. Since the Tk toolkit is left (mostly) unmodified, all its
primitives “think” there is a running Tcl interpreter behind the scene. Consequently, to work
with the Tk toolkit, a little set of rewriting rules must be known. These rules are described
hereafter.

Note: This appendix is placed here to permit an STK user to make programs with the original Tcl/Tk
documentation by hand. In no case will it substitute to the abundant Tcl/Tk manual pages nor to the
excellent book by J. Ousterhout[6]

1 Calling a Tk-command

Since Tcl uses strings to communicate with the Tk toolkit, parameters to a Tk-command must be
translated to strings before calling the C function which implement it. The following conversions
are done, depending on the type of the parameter that STK must give to the toolkit:

symbol: the print name of the symbol,

number: the external representation of the number expressed in radix 10;

string: no conversion;

keyword: the print name of the keyword where the initial semicolon has been replaced

by a dash (“-7);
boolean: the string 707 if #£f and 717 if #t
tk-command: the name of the tk-command
closure: the address of the closure using the representation shown in 6.16.

otherwise: the external “slashified” version of the object.

As an example, let us make a button with a label containing the string "Hello, word". According
the original Tk/Tcl documentation, this can be done in Tcl with

button .hello -text "Hello, world"

Following the rewriting rules expressed above, this can be done in STK with

(button ’.hello ’-text '"Hello, world")

This call defines a new widget object which 1s stored in the STK variable .hello. This object can
be used as a procedure to customize our button. For instance, setting the border of this button
to 5 pixels wide and its background to gray would be done in Tcl with

49

50 STK Reference Manual

.hello configure -border 5 -background gray

In STK this would be expressed as
(.hello ’configure ’-border 5 ’-background "gray")

Since keyword colon is replaced by a dash when a Tk-command is called, this expression could also
have been written as:

(.hello ’configure :border 5 :background "gray")

2 Associating Callbacks to Tk-commands

Starting with version 3.0, STK callbacks are Scheme closures'. Apart scroll commands, callbacks
are Schemes procedures without parameter. Suppose for example, that we want to associate a
command with the previous .hello button. In Tcl, such a command can be expressed as

.hello configure -command {puts stdout "Hello, world"; destroy .}

In STK, we can write

(.hello ’configure :command (lambda ()
(display "Hello, world\n'")
(destroy *root*)))

When the user will press the mouse left button, the closure associated to the : command option will
be evaluated in the global environment. Evaluation of the given closure will display the message
and call the destroy Tk-command.

Note: The root widget is denoted “.” in Tcl. This convention is ambiguous with the dotted pair
convention and the dot must be quoted to avoid problems. Since this problem arises so often, the variable
root has been introduced in STK to denote the Tk main window.

Managing Widget Scrollbars

When using scrollbars, Tk library passes parameters to the widget associated to the scrollbar
(and wvice versa). Let us look at a text widget with an associated scrollbar. When the scrollbar is
moved, the command of the associated widget is invoked to change its view. On the other side,
when browsing the content of the text widget (with arrows for example), the scrollbar is updated
by calling it’s associated closure. Tk library passes position informations to scrolling closures.
This informations are the parameters of the closure. Hereafter is an example implementing a text
widget with a scrollbar (see the help pages for details):

(text ’.txt :yscrollcommand (lambda 1 (apply .scroll ’set 1)))
(scrollbar ’.scroll :command (lambda 1 (apply .txt ’yview 1)))

(pack .txt :side "left")
(pack .scroll :fill "y" :expand #t :side "left")

3 Tk bindings

Bindings are Scheme closures

The Tk bind command associates Scheme scripts with X events. Starting with version 3.0 those
scripts must be Scheme closures?. Binding closures can have parameters. Those parameters are

101d syntax for callbacks (i.e. strings) is always supported but its use is deprecated.
201d syntax for bindings (i.e. strings) is no more supported. Old bindings scripts must hence be rewritten.

STK Reference Manual 51

one char symbols (with the same conventions than the Tcl % char, see the bind help page for
details). For instance, the following Tcl script

bind .w <ButtonPress-3> {puts "Press on widget %W at position %x %y"}

can be translated into

(bind .w "<ButtonPress-3>"
(lambda (IW] x y)
(format #t "Press on widget "A at position "A “A\n" [W| x y)))

Note: Usage of verticals bars for the W symbol is necessary here because the Tk toolkit is case sensitive
(€.g. W in bindings is the path name of the window to which the event was reported, whereas w is the width
field from the event.

Bindings are chained

In Tk4.0 and later, bindings are chained since it is possible for several bindings to match a given X
event. If the bindings are associated with different tags, then each of the bindings will be executed,
in order. By default, a class binding will be executed first, followed by a binding for the widget,
a binding for its toplevel, and an all binding. The bindtags command may be used to change
this order for a particular window or to associate additional binding tags with the window (see
corresponding help page for details). If the result of closure in the bindings chain is the symbol
break, the next closures of the chain are not executed. The example below illustrates this:

(pack (entry ’.e))
(bind .e "<KeyPress>" (lambda (|Al)
(unless (string->number |A|) ’break)))

Bindings for the entry .e are executed before those for its class (i.e. Entry). This allows us to
filter the characters which are effectively passed to the .e widget. The test in this binding closure
breaks the chain of bindings if the typed character is not a digit. Otherwise, the following binding,
the one for the Entry class, is executed and inserts the character typed (a digit). Consequently,
the simple previous binding makes .e a controlled entry which only accepts integer numbers.

52

STK Reference Manual

Appendix B

Differences with R4RS

This appendix summarizes the main differences between the STK Scheme implementation and the

language described in R*RS.

1 Symbols

STK symbol syntax has been augmented to allow case significant symbols. This extension is
discussed in 6.4.
The following symbols are defined in the global environment.

e xdebug*. Setting *debug#* to #t prevents macro inlining and expression recoding (see 6.22).

e xgc-verbose*. If #gc-verbose* is #t, a message will be printed before and after each run
of garbage collector. The message is printed on the standard error stream.

e *load-verbose*. If *load-verbose* is #t, the absolute path name of each loaded file is
printed before its effective reading. File names are printed on the standard error stream.

e xload-path* must contain a list of strings. Each string is taken as a directory path name
in which a file will be searched for loading. This variable can be set automatically from the
STK_LOAD_PATH shell variable. See stk(1) for more details.

e xload-suffixes* must contain a list of strings. When the system try to load a file in a
given directory (according to *load-path# value), it will first try to load it without suffix.
If this file does not exist, the system will sequentially try to find the file by appending each
suffix of this list. A typical value for this variable may be ("stk'" "stklos" '"scm" '"so'").

e xhelp-path* must contain a list of strings. Each string is taken as a directory path name
in which documentation files are searched. This variable can be set automatically from the
STK_HELP PATH shell variable. See stk(1) for more details.

e xargc# contains the number of arguments (0 if none), not including interpreter options. See
stk(1) for more details.

e xargv#* contains a Scheme list whose elements are the arguments (not including the inter-
preter options), in order, or an empty list if there are no arguments. See stk(1) for more
details.

e *program-name* contains the file name specified with the -file option, if present. Other-
wise, 1t contains the name through which the interpreter was invoked. See stk(1) for more
details.

53

54 STK Reference Manual

e *print-banner*. If *print-verbose* is #f, the usual copyright message is not displayed
when the interpreter is started.

e *root#* designates the Tk main window (see A-2). This variable is not set if the Tk toolkit
is not initialized.

2 Types

STK implements all the types defined as mandatory in R*RS. However, complex numbers and
rational numbers (which are defined but not required in R*RS) are not implemented. The lack of
these types implies that some functions of R*RS are not defined.

Some types which are not defined in R*RS are implemented in STK. Those types are listed below:

e input string port type (6.10)
e output string port type (6.10)
e keyword type (6.11)

e Tk command type (6.12)

e environment type (6.13)

e macro type (6.14)

e address type (6.16)

e hash table type (6.18)

e Regular expression type (6.19)
e process type (6.20)

o socket type (6.21)

3 Procedures

The following procedures are required by R*RS and are not implemented in the STK interpreter.

e transcript-off

e transcript-on

Transcript-off and transcript-on can be simulated with various Unix tools such as script or
fep.

The following procedures are not implemented in the STK interpreter whereas they are defined in
R*RS (but not required). They are all related to complex or rational numbers.

e numerator

e denominator

e rationalize

e make-rectangular
e make-polar

e real-part

e magnitude

e angle

Appendix C

An introduction to STKLOS

1 Introduction

STKLOS is the object oriented layer of STK. Its implementation is derived from version 1.3 of the
Gregor Kickzales Tiny Clos package [7]. However, it has been extended to be as close as possible
to CLOS, the Common Lisp Object System[4]. Some features of STKLOS are also issued from
Dylan[8] or SOS[9].

Briefly stated, the STKLOS extension gives the user a full object oriented system with meta-classes,
multiple inheritance, generic functions and multi-methods. Furthermore, the whole implementa-
tion relies on a true meta object protocol, in the spirit of the one defined for CLOS[10]. This
model has also been used to embody the predefined Tk widgets in a hierarchy of STKLOS classes.
This set of classes permits to simplify the core Tk usage by providing homogeneous accesses to
widget options and by hiding the low level details of Tk widgets, such as naming conventions.
Furthermore, as expected, using of objects facilitates code reuse and definition of new widgets
classes.

The purpose of this appendix is to introduce briefly the STKL0S package and in no case will it
replace the STKLOS reference manual (which needs to be urgently written now . ..). In particular,
methods relative to the meta object protocol and access to the Tk toolkit will not be described
here.

2 Class definition and instantiation

2.1 Class definition

A new class is defined with the define-class macro. The syntax of define-class is close to
CLOS defclass:

(define-class class ((superclass;) (superclassy)...)
((slot description;) (slot descriptionz}...)
(metaclass option})

The (metaclass option) will not be discussed in this appendix. The (superclass)es list specifies the
super classes of class (see 3 for more details). A (slot description) gives the name of a slot and,
eventually, some “properties” of this slot (such as its initial value, the function which permit to
access its value, ...). Slot descriptions will be discussed in 3.3.

As an exemple, consider now that we have to define a complex number. This can be done with
the following class definition:

(define-class <complex> (<number>)

55

56 STK Reference Manual

<top>

<obj ect> <pair> <procedure> <number>

|

<real>

/R
VE

Figure C.1: A class hierarchy

(r 1))

This binds the symbol <complex> to a new class whose instances contain two slots. These slots are
called r an i and we suppose here that they contain respectively the real part and the imaginary
part of a complex number. Note that this class inherits from <number> which is a pre-defined

class (<number> is the super class of the <real> and <integer> pre-defined classes).!.

3 Inheritance

3.1 Class hierarchy and inheritance of slots

Inheritance is specified upon class definition. As said in the introduction, STKLOS supports
multiple inheritance. Hereafter are some classes definition:

(define-class A () (a))
(define-class B () (b))
(define-class C () (c))
(define-class D (A B) (4 a))
(define-class E (A C) (e ¢))
F

(define-class F (D E) (f))

A, B, C have a null list of super classes. In this case, the system will replace it by the list which
only contains <object>, the root of all the classes defined by define-class. D, E, F use multiple
inheritance: each class inherits from two previously defined classes. Those class definitions define
a hierarchy which is shown in Figure 1. In this figure, the class <top> is also shown; this class
is the super class of all Scheme objects. In particular, <top> is the super class of all standard
Scheme types.

I'With this definition, a <real> is not a <complex> since <real> inherits from <number> rather than <complex>.
In practice, inheritance could be modified a posteriori, if needed. However, this necessitates some knowledge of the
meta object protocol and it will not be shown in this document

STK Reference Manual 57

The set of slots of a given class is calculated by “unioning” the slots of all its super class. For
instance, each instance of the class D, defined before will have three slots (a, b and d). The slots
of a class can be obtained by the class-slots primitive. For instance,

(class-slots A)

= (a)
(class-slots E)

= (a e <)
(class-slots F)

— (dabcf)

Note: The order of slots is not significant.

3.2 Instance creation and slot access

Creation of an instance of a previously defined class can be done with the make procedure. This
procedure takes one mandatory parameter which is the class of the instance which must be created
and a list of optional arguments. Optional arguments are generally used to initialize some slots of
the newly created instance. For instance, the following form

(define ¢ (make <complex>))

will create a new <complex> object and will bind it to the ¢ Scheme variable.

Accessing the slots of the new complex number can be done with the slot-ref and the slot-set!
primitives. Slot-set! primitive permits to set the value of an object slot and slot-ref permits
to get its value.

(slot-set! ¢ ’r 10)
(slot-set! ¢ ’1i 3)
(slot-ref ¢ ’r)
— 10
(slot-ref c ’1i)
= 3

Using the describe generic function is a simple way to see all the slots of an object at one time:
this function prints all the slots of an object on the standard output. For instance, the expression

(describe c)

will print the following informations on the standard output:

#[<complex> 122398] is an instance of class <complex>
Slots are:

r =10

i=3

3.3 Slot description

When specifying a slot, a set of options can be given to the system. Each option is specified with
a keyword. The list of authorised keywords is given below:

e :initform permits to supply a default value for the slot. This default value is obtained by
evaluating the form given after the :initform in the global environment.

58

STK Reference Manual

:init-keyword permits to specify the keyword for initializing a slot. The init-keyword may
be provided during instance creation (i.e. in the make optional parameter list). Specifying
such a keyword during instance initialization will supersede the default slot initialization
possibly given with :initform.

:getter permits to supply the name for the slot getter. The name binding is done in the
global environment.

:setter permits to supply the name for the slot setter. The name binding is done in the
global environment.

:accessor permits to supply the name for the slot accessor. The name binding i1s done in
the global environment. An accessor permits to get and set the value of a slot. Setting the
value of a slot is done with the extended version of set!.

:allocation permits to specify how storage for the slot is allocated. Three kinds of alloca-
tion are provided. They are described below:

— :instance indicates that each instance gets its own storage for the slot. This is the
default.

— :class indicates that there is one storage location used by all the direct and indirect
instances of the class. This permits to define a kind of global variable which can be
accessed only by (in)direct instances of the class which defines this slot.

— :virtual indicates that no storage will be allocated for this slot. It is up to the user
to define a getter and a setter function for this slot. Those functions must be defined
with the :slot-ref and :slot-set! options. See the example below.

To illustrate slot description, we shall redefine the <complex> class seen before. A definition could

be:

(define-class <complex> (<number>)
((r :initform O :getter get-r :setter set-r! :init-keyword :r)
(i :initform O :getter get-i :setter set-i! :init-keyword :1)))

With this definition, the r and i slot are set to 0 by default. Value of a slot can also be specified by
calling make with the :r and :i keywords. Furthermore, the generic functions get-r and set-r!
(resp. get-i and set-i!) are automatically defined by the system to read and write the r (resp.
i) slot.

(define c1 (make <complex> :r 1 :i 2))
(get-r c1)
= 1
(set-r! cl 12)
(get-r c1)
== 12
(define c2 (make <complex> :r 2))
(get-r c2)
= 2
(get-i ¢2)
== 0

Accessors provide an uniform access for reading and writing an object slot. Writing a slot is done
with an extended form of set! which is close to the Common Lisp setf macro. So, another
definition of the previous <complex> class, using the :accessor option, could be:

(define-class <complex> (<number>)
((r :initform 0 :accessor real-part :init-keyword :r)
(i :initform O :accessor imag-part :init-keyword :i)))

STK Reference Manual 59

(define-class <complex> (<number>)
(;; True slots use rectangular coordinates
(r :initform O :accessor real-part :init-keyword :r)
(i :initform O :accessor imag-part :init-keyword :i)
;3 Virtual slots access do the conversion
(m :accessor magnitude :init-keyword :magn
:allocation :virtual
:slot-ref (lambda (o)
(let ((r (slot-ref o ’r)) (i (slot-ref o ’i)))
(sqrt (+ (* r) (* i i)))))
:slot-set! (lambda (o m)
(let ((a (slot-ref o ’a)))
(slot-set! o ’'r (* m (cos a)))
(slot-set! o ’i (* m (sin a))))))
(a :accessor angle :init-keyword :angle
:allocation :virtual
:slot-ref (lambda (o)
(atan (slot-ref o ’i) (slot-ref o ’r)))
:slot-set! (lambda(o a)
(let ((m (slot-ref o ’m)))
(slot-set! o ’'r (* m (cos a)))
(slot-set! o ’i (* m (sin a))))))))

Figure C.2: A <complex> number class definition using virtual slots

Using this class definition, reading the real part of the ¢ complex can be done with:

(real-part ¢)

and setting it to the value contained in the new-value variable can be done using the extended
form of set!.

(set! (real-part c¢) new-value)

Suppose now that we have to manipulate complex numbers with rectangular coordinates as well
as with polar coordinates. One solution could be to have a definition of complex numbers which
uses one particular representation and some conversion functions to pass from one representation
to the other. A better solution uses virtual slots. A complete definition of the <complex> class
using virtual slots is given in Figure 2.

This class definition implements two real slots (r and i). Values of the m and a virtual slots are
calculated from real slot values. Reading a virtual slot leads to the application of the function
defined in the :slot-ref option. Writing such a slot leads to the application of the function
defined in the :slot-set! option. For instance, the following expression

(slot-set! c ’a 3)

permits to set the angle of the ¢ complex number. This expression conducts, in fact, to the
evaluation of the following expression

((lambda o m)

(let ((m (slot-ref o ’'m)))
(slot-set! o ’r (* m (cos a)))
(slot-set! o ’i (* m (sin a))))

c 3)

A more complete example is given below:

60 STK Reference Manual

(define ¢ (make <complex> :r 12 :i 20))
(real-part ¢)
== 12
(angle ¢)
— 1.03037682652431
(slot-set! ¢ ’i 10)
(set! (real-part ¢) 1)
(describe c)
=
#[<complex> 128bf8] is an instance of class <complex>
Slots are:
=1
=10
= 10.0498756211209
1.47112767430373

M B HoH
|

Since initialization keywords have been defined for the four slots, we can now define the make-rectangular
and make-polar standard Scheme primitives.

(define make-rectangular
(lambda (x y) (make <complex> :r x :i y)))

(define make-polar
(lambda (x y) (make <complex> :magn x :angle y)))

3.4 Class precedence list

A class may have more than one superclass.? With single inheritance (one superclass), it is easy
to order the super classes from most to least specific. This is the rule:

Rule 1: Each class is more specific than its superclasses.

With multiple inheritance, ordering is harder. Suppose we have

(define-class X ()
((x :initform 1)))

(define-class Y ()
((x :initform 2)))

(define-class Z (X Y)
C...n

In this case, the Z class is more specific than the X or Y class for instances of Z. However, the
:initform specified in X and Y leads to a problem: which one overrides the other? The rule in
STkLoS, as in CLOS, is that the superclasses listed earlier are more specific than those listed
later. So:

Rule 2: For a given class, superclasses listed earlier are more spe-
cific than those listed later.

These rules are used to compute a linear order for a class and all its superclasses, from most
specific to least specific. This order is called the “class precedence list” of the class. Given those

2This section is an adaptation of Jeff Dalton’s (J.Dalton@ed.ac.uk) Brief introduction to CLOS)

STK Reference Manual 61

two rules, we can claim that the initial form for the x slot of previous example is 2 since the class
X 1s placed before Y in class precedence list of Z.

This two rules are not always enough to determine a unique order, however, but they give an idea
of how things work. STKLOS algorithm for calculating the precedence list is a little simpler than
the CLOS one described in [10] for breaking ties. Consequently the calculated class precedence list
could be different. Taking the F class shown in Figure 1, the STKLOS calculated class precedence
list 1s

(f d e a b c <object> <top>)

whereas it would be the following list with a CLOS-like algorithm:
(f d e a ¢ b <object> <top>)

However, it is usually considered a bad idea for programmers to rely on exactly what the order is.
If the order for some superclasses is important, it can be expressed directly in the class definition.
The precedence list of a class can be obtained by the function class-precedence-list. This
function returns a ordered list whose first element is the most specific class. For instance,

(class-precedence-list B)
= (#t[<class> 12a248] #[<class> 1074e8] #[<class> 107498])

However, this result is not too much readable; using the function class-name yields a clearer
result:

(map class-name (class-precedence-list B))
=—> (b <object> <top>)

4 Generic functions

4.1 Generic functions and methods

Neither STKLOS nor CLOS use the message mechanism for methods as most Object Oriented
language do. Instead, they use the notion of generic function. A generic function can be seen
as a methods “tanker”. When the evaluator requestd the application of a generic function, all
the methods of this generic function will be grabbed and the most specific among them will be
applied. We say that a method M is more specific than a method M’ if the class of its parameters
are more specific than the M’ ones. To be more precise, when a generic funtion must be “called”
the system will

1. search among all the generic function those which are applicable
2. sort the list of applicable methods in the “most specific” order

3. call the most specific method of this list (i.e. the first method of the sorted methods list).

The definition of a generic function is done with the define-generic macro. Definition of a
new method is done with the define-method macro. Note that define-method automatically
defines the generic function if it has not been defined before. Consequently, most of the time, the
define-generic needs not be used.

Consider the following definitions:

(define-generic M)

(define-method M((a <integer>) b) ’integer)
(define-method M((a <real>) b) ’real)
(define-method M(a b) ’top)

62 STK Reference Manual

The define-generic call defines M as a generic function. Note that the signature of the generic
function is not given upon definition, contrarily to CLOS. This will permit methods with different
signatures for a given generic function, as we shall see later. The three next lines define methods
for the M generic function. Each method uses a sequence of parameter specializers that specify
when the given method is applicable. A specializer permits to indicate the class a parameter must
belong to (directly or indirectly) to be applicable. If no speciliazer is given, the system defaults it
to <top>. Thus, the first method definition is equivalent to

(define-method M((a <integer>) (b <top>)) ’integer)

Now, let us look at some possible calls to generic function M:

M 2 3)

= integer
(M 2 #t)

= integer
M 1.2 ’a)

— real
(M #3 ’a)

— real
(M #t #f)

— top
M1 2 3)

— error (since no method exists for 3 parameters)

The preceding methods use only one specializer per parameter list. Of course, each parameter can
use a specializer. In this case, the parameter list is scanned from left to right to determine the
applicability of a method. Suppose we declare now

(define-method M ((a <integer>) (b <number>)) ’integer-number)
(define-method M ((a <integer>) (b <real>)) ’integer-real)
(define-method M (a (b <number>)) ’top-number)

In this case,

M1 2)
= integer-integer
(M 11.0)
— integer-real
(M 1 #t)
= integer
M ’a 1)
— ’top-number

4.2 Next-method

When a generic function is called, the list of applicable methods is built. As mentioned before,
the most specific method of this list is applied (see 4.1). This method may call the next method
in the list of applicable methods. This is done by using the special form next-method. Consider
the following definitions

(define-method Test((a <integer>)) (cons ’integer (next-method)))
(define-method Test ((a <number>)) (cons ’number (next-method)))
(define-method Test (a) (list ’top))

With those definitions,

STK Reference Manual 63

(define-generic new—+)
(et ((+ +))
(define-method new-+ ((a <real>) (b <real>)) (+ a b))

(define-method new-+ ((a <real>) (b <complex>))
(make-rectangular (+ a (real-part b)) (imag-part b)))

(define-method new-+ ((a <complex>) (b <real>))
(make-rectangular (+ (real-part a) b) (imag-part a)))

(define-method new-+ ((a <complex>) (b <complex>))
(make-rectangular (+ (real-part a) (real-part b))
(+ (imag-part a) (imag-part b))))
(define-method new-+ ((a <number>)) a)
(define-method new-+ () 0)

(define-method new-+ args (new-+ (car args) (apply new-+ (cdr args)))))

(set! + new-+)

Figure C.3: Ezxtending + for dealing with complex numbers

(Test 1)

— (integer number top)
(Test 1.0)

— (number top)
(Test #t)

= (top)

4.3 Example

In this section we shall continue to define operations on the <complex> class defined in Figure 2.
Suppose that we want to use it to implement complex numbers completely. For instance a definition
for the addition of two complexes could be

(define-method new-+ ((a <complex>) (b <complex>))
(make-rectangular (+ (real-part a) (real-part b))
(+ (imag-part a) (imag-part b))))

To be sure that the + used in the method new—+ is the standard addition we can do:

(define-generic new-+)

(let ((+ +))
(define-method new-+ ((a <complex>) (b <complex>))
(make-rectangular (+ (real-part a) (real-part b))
(+ (imag-part a) (imag-part b)))))

The define-generic ensures here that new-+ will be defined in the global environment. Once
this 1s done, we can add methods to the generic function new-+ which make a closure on the +
symbol. A complete writing of the new—+ methods is shown in Figure 3.

We use here the fact that generic function are not obliged to have the same number of parameters,
contrarily to CLOS. The four first methods implement the dyadic addition. The fifth method

64 STK Reference Manual

says that the addition of a single element is this element itself. The sixth method says that using
the addition with no parameter always return 0. The last method takes an arbitrary number of
parameters®. This method acts as a kind of reduce: it calls the dyadic addition on the car of
the list and on the result of applying it on its rest. To finish, the set! permits to redefine the +
symbol to our extended addition.

To terminate our implementation (integration?) of complex numbers, we can redefine standard
Scheme predicates in the following manner:

(define-method complex? (c <complex>) #t)
(define-method complex? (c) #1)

(define-method number? (n <number>) #t)
(define-method number? (n) #£)

Standard primitives in which complex numbers are involved could also be redefined in the same
manner.
This ends this brief presentation of the STKLOS extension.

3The third parameter of a define-method is a parameter list which follow the conventions used for lambda
expressions. In particular it can use the dot notation or a symbol to denote an arbitrary number of parameters

Appendix D

Miscellaneous Informations

1 Introduction

This appendix list a number of things which cannot go elsewhere in this document. The only link
between the items listed her is that they should ease your life when using STK.

2 About STK

2.1 Last release

STK distribution is available on various sites. The original distribution site is kaolin.unice.fr
(193.48.229.225). Files are available through anonymous ftp and are located in the /pub direc-
tory. Distribution file names have the form STk-x.y.tar.gz, where x and y represent the version
and the release of the package. You can also find interim releases of STK. Interim releases are
stored in file whose name have the form STk-x.y.z.tar.gz where z is the interim release number.
David Fox maintains a mirror site of kaolin.unice.fr. This site is located in the USA and is
available at the following URL: ftp://cs.nyu.edu/pub/local/fox/stk.

2.2 Sharing Code

If you have written code that you want to share with the (small) STK community, you can deposit
it in the directory /pub/Incoming of kaolin.unice.fr. Mail me a small note when you deposit
a file in this directory so I can put in in its definitive place (/pub/Contrib directory contains the
contributed code).

2.3 STk Mailing list

There i1s a mailing list for STK located on kaolin.unice.fr. The intent of this mailing list is to
permit to STK users to share experiences, expose problems, submit ideas and . . . everything which
you find interesting (and which is related to STk).

To subscribe to the mailing list, simply send a message with the word subscribe in the Subject:
field of you mail. Mail must be sent to the following address: stk-request@kaolin.unice.fr
To unsubscribe from the mailing list, send a mail at previous email address with the word
unsubscribe in the Subject: field.

For more information on the mailing list management send a message with the word help in the
Subject: field of your mail. In particular, i1t is possible to find all the messages which have already
been sent on the STK mailing list.

Subscription /un-subscription/information requests are processed automatically without human
intervention. If you something goes wrong, send a mail to eg@unice.fr.

Once you have properly subscribe to the mailing list,

65

66 STK Reference Manual

e you can send your messages about STK to stk@kaolin.unice.fr,

e you will receive all the messages of the mailing list to the email address you used when you
subscribed to the list.

2.4 STk FAQ

Marc Furrer has set up a FAQ for STK. This FAQ is regularly posted on the STK mailing list. It
can also be accessed through http://ltiwww.epfl.ch/ furrer/STk/FAQ.html. ASCII version
of the FAQ 1s available from http://ltiwww.epfl.ch/ furrer/STk/FAQ.txt.

2.5 Reporting a bug

When you find a bug in STK, please send its description to the following address stk-bugs@kaolin.unice.fr.
Don’t forget to indicate the version you use and the architecture the system is compiled on. STk

version and architecture can be found by using the version and machine-type Scheme primitives.

If possible, try to find a small program which exhibit the bug.

3 STK and Emacs

The Emacs family editors can be customized to ease viewing and editing programs of a particular
sort. Hints given below enable a fine “integration” of STK in Emacs.

Automatic scheme-mode setting

Emacs mode can be chosen automatically on the file’s name. To edit file ended by .stk or
.stklos in Scheme mode, you have to set the Elisp variable auto-mode-alist to control the
correspondence between those suffixes and the scheme mode. The simpler way to set this variable
consists to add the following lines in your .emacs startup file.

;3 Add the ’.stk’ and ’.stklos’ suffix in the auto—-mode-alist Emacs
;; variable. Setting this variable permits to automagically place the
;3 buffer in scheme-mode.
(setq-default auto-mode-alist (append auto-mode-alist

("\\.stk$" . scheme-mode)

("\\.stklos$" . scheme-mode)))

Using Emacs and CMU Scheme

CMU Scheme package package permits to run the STK interpreter in an Emacs window. Once the
package is loaded, you can send text to the inferior STK interpreter from other buffers containing
Scheme source. The CMU Scheme package is distributed with Emacs (both FSF-Emacs and
Xemacs) and you should have it if you are running this editor.

To use the CMU Scheme package with STK, place the following lines in your .emacs startup file.

;3 Use cmu-scheme rather than xscheme which is launched by default
;3 whence running ’run-scheme’ (xscheme is wired with CScheme)
(autoload ’run-scheme "cmuscheme" "Run an inferior Scheme" t)
(setq scheme-program-name "stk'")

(setq inferior-scheme-mode-hook ’(lambda() (split-window)))

After having entered those lines in your .emacs file, you can simply run the STK interpreter by
typing

M-x run-scheme

STK Reference Manual 67

Read the CMU Scheme documentation (or use the describe-mode Elisp command) for a complete
description of this package.

Using Emacs and the Ilisp package

llisp is another scheme package which allows to run the STK interpreter in an Emacs window.
This is a rich package with a lot of nice features. Ilisp comes pre-installed with Xemacs; it
has to be installed with FSF Emacs (the last version of Ilisp can be ftp’ed anonymously from
ftp.cs.cmu.edu (128.2.206.173) in the /user/ai/lang/lisp/util/emacs/ilisp directory).

To use the Ilisp package with STK, place the following lines in your .emacs startup file.

(autoload ’run-ilisp "ilisp" "Select a new inferior LISP." t)
(autoload ’stk "ilisp" "Run stk in ILISP." t)
(add-hook ’ilisp-load-hook

> (lambda ()

(require ’completer)

;; Define STk dialect characteristics
(defdialect stk "STk Scheme"
scheme
(setq comint-prompt-regexp "“STk> ")
(setq ilisp-program "stk -interactive')
(setq comint-ptyp t)
(setq comint-always-scroll t)
(setq ilisp-last-command "*"))))

After having entered those lines in your .emacs file, you can simply run the STK interpreter by
typing
M-x stk

The Ilisp package comes with a rich documentation which describe how to customize the package.

Other packages

Another way to use STK and Emacs consists to use a special purpose STK mode. You can find
two such modes in the /pub/Contrib directory of kaolin.unice.fr.

3.1 Using the SLIB package with STk
Aubrey Jaffer maintains a package called SLIB which 1s a portable Scheme library which provides

compatibility and utility functions for all standard scheme implementations. To use this package,
you have just to type

(require "slib")

and follow the instructions given in the SLIB library to use a particular package. Note: SLIB uses
also the require/provide mechanism to load components of the library. Once SLIB has been loaded, the
standard STK require and provide are overloaded such as if their parameter is a string this is the old
STK procedure which is called, and if their parameter is a symbol, this is the SLIB one which is called.

4 Getting information about Scheme

4.1 The R*RS document

R*RS is the document which fully describe the Scheme Programming Language, it can be found
in the Scheme repository (see ??) in the directory:

68 STK Reference Manual

ftp.cs.indiana.edu:/pub/scheme-repository/doc

Aubrey Jaffer has also translated this document in HTML. A version of this document is available
at

file://swiss-ftp.ai.mit.edu/pub/scm/HTML/r4rs toc.html

4.2 The Scheme Repository

The main site where you can find (many) informations about Scheme is located in the University
of Indiana. The Scheme repository is maintained by David Eby. The repository currently consists
of the following areas:

e Lots of scheme code meant for benchmarking, library /support, research, education, and fun.

e On-line documents: Machine readable standards documents, standards proposals, various
Scheme-related tech reports, conference papers, mail archives, etc.

e Most of the publicly distributable Scheme Implementations.

Material designed primarily for instruction.

Freely-distributable promotional or demonstration material for Scheme-related products.
e Utilities (e.g., Schemeweb, SLaTeX).
e Extraneous stuff, extensions, etc.
You can access the Scheme repository with
e ftp.cs.indiana.edu:/pub/scheme-repository
e http://www.cs.indiana.edu/scheme-repository/SRhome.html
The Scheme Repository is mirrored in Europe:
e ftp.inria.fr:/lang/Scheme
e fauiB80.informatik.uni-erlangen.de:/pub/scheme/yorku

e ftp.informatik.uni-muenchen.de:/pub/comp/programming/languages/scheme/scheme-repository

4.3 Usenet newsgroup and other addresses

There is a usenet newsgroup about the Scheme Programming language: comp.lang.scheme.
Following addresses contains also material about the Scheme language

e http://www.cs.cmu.edu:8001/Web/Groups/AI/html/faqs/lang/scheme/top.html contains
the Scheme FAQ.

e http://wwu-swiss.ai.mit.edu/scheme-home.html is the Scheme Home page at MIT

e http://www.ai.mit.edu/projects/su/su.html is the Scheme Underground web page

Bibliography

[1] William Clinger and Jonathan Rees (editors). Revised* Report on the Algorithmic Language
Scheme. ACM Lisp Pointers, 4(3), 1991.

[2] John K. Ousterhout. An X11 toolkit based on the Tcl Language. In USENIX Winter
Conference, pages 105-115, January 1991.

[3] John K. Ousterhout. Tcl: an embeddable command language. In USENIX Winter Conference,
pages 183-192, January 1990.

[4] Guy L. Steele Jr. Common Lisp: the Language, 2nd Edition. Digital Press, 12 Crosby Drive,
Bedford, MA 01730, USA, 1990.

[5] POSIX Committee. System Application Program Interface (API) [C Language]. Information
technology—Portable Operating System Interface (POSIX). IEEE Computer Society Press,
1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1990.

[6] John K. Ousterhout. Tel and the Tk toolkit. Addison-Wesley, 1994.

[7] Gregor Kickzales. Tiny-clos. Source available on parcftp.xerox.com in directory /pub/mops,
December 1992.

[8] Apple Computer. Dylan: an Object Oriented Dynamic Language. April 1992.

[9] Chris Hanson. The sos reference manual, version 1.5. in-line documentation of the SOS
package. Source available on martigny.ai.mit.edu in /archive/cph directory, March 1993.

[10] Jim de Rivieres Gregor Kickzales and Daniel G. Bobrow. The Art of Meta Object Protocol.
MIT Press, 1991.

69

P 30
K 13
RATGCH .o 53
RATGVH .o 53
kdebug*............ 28; 43, 53
*gc-verbose® 53
help-path........................... 53
load-path............. 53
load-suffixes....................... 53
load-verbose............ 53
print-banner........................ 54
program-name 53
XLOOTH ... o 50; 54
o 13
PP 13
L 14
TACCESSOT ct it 58
allocation............coooiuiiuinn. 58
ClasSs ..t 58
getter ... 58
init-keyword............. 58
initform.............. ... o i il 57
instance.............. .. oo il 58
setter ... i 58
slot-ref 58; 59
tslot—-set! i 58; 59
tvirtual ... 58
L 13
o 13
<object>... ... 56
<EOP> ..o 56; 62
S 13
> 13
> 13
A
DS 14
ACCESOT « v v vttt e e e 58
ACOS . ittt 14
add-signal-handler!.................. 31
address—of........... o i 30
address? 30
and 9
angle..............oooiiil 14; 54

70

append 11
apply ... 17
APTOPOS ottt 43
asin..... ... 14
ASSOC oot 11
=TT 11
AV ettt 11
atan.. ... 14
autoload................. i, 22
autoload?......... ...t 22

basename...............iiiiiiiain., 28
begin................ 10
bind....... .. 50
bindtags....................ooool 51
booleanT.......oiiiiiii 10
break.......... ... i 30; 51
button 25
DY e 44

G e 31
CAAT . ettt 11
cadr ..o 11
call-with-current-continuation..... 18
call-with-input-file................. 19
call-with-input-string.............. 19
call-with-output—file................ 19
call-with-output-string............. 19
Call/CC it 18
canonical-path........................ 28
CAL et e e 11
CASE . ottt ettt 9
catch...... . 18
cdddar ... 11
cddddr 11
CAT o 11
ceiling il 14
char->integer............... 15
char-alphabetic?..................... 15
char-ci<=7.......o 15
char-ci<?.... i 15

STK Reference Manual

char-ci=7....... i 15
char-ci>=7....... i 15
char-ci>7. 15
char-downcasecoovunn... 15
char-lower-case?............cooueunnu.. 15
char-numeric?................cooin... 15
char-ready?...........ooiiiiiiiii 21
char-upcase........................... 15
char-upper-case?..................... 15
char-whitespace?..................... 15
char<=7 15
char<? i 15
char=7 15
char>=7 15
char>? 15
char? 15
characters L. 15
chdir...... ..o i 29
class. 55
class-precedence-list................ 61
class—sSlots ...t 57
close-input-port..................... 21
close-output-port 21
close-port..........l 23
CloSUreT ..t 18
cmu scheme.......... L 66
complex?.........o 13
COnd ..ot 9
COMS . ettt ittt e 11
continuation 18; 41
continuation?............. ... 18
COPY-Bree. ... vt 12
COS it e 14
current-error-port................... 19
current-input-port............ 19; 20, 21
current-output-port........... 19; 20, 22

D

decompose-file-name.................. 29
default slot value................... 57
define-class.................... ... 55; 56
define-generic.................... 61; 62
define-macro............... ... 28
define-method 61
delay.......ooiiiiiiiiii 10; 18
denominator........................ 14; 54
describe......... ... 57
detail 43
dirname............ 28
display .. covoniiiiiiiiniii 21
Ao . 10
dotimeso i 10

dynamic-wind 18

E

emacs editor.......... 66
environment—>list 26
environment?, 26
=Y P P 11; 32, 33
equal? ... 11
BV T 11
1= o ¥ 41
eval. . 40
eval-string........................... 40
BV ottt 13
exact->inexact........................ 14
BXACE T 13
B . ettt e 30
exit. ... 44
B D e e 14
expand-file-name..................... 28
expand-heap.............. ... 41; 42
XD . 14

faq ..o 66
file-exists? it 29
file-is-directory?................... 29
file-is-executable?.................. 29
file-is-readable?.................... 29
file-is-regular?..................... 29
file-is-writable?.................... 29
FloOL .ot 14
fluid-let........ ... 9
flush 22
for-each.............. il 17
force .. 17
format....... ...l 21; 41

B 41
ge-stats ... 41
gCd . 14
GONSYIM ...ttt 12
get-internal-info.................... 42
get-keyword............... 24
get-output-string................. 20; 22
get-signal-handlers.................. 32
get-widget-data....................... 26
getewd ... 29
getenv ...l 30
getpid ... 30
getter......... ... 58

STK Reference Manual

H

hash-table->list..................... 34
hash-table-for-each.................. 34
hash-table-get........................ 33
hash-table-hash................... 33; 32
hash-table-map........................ 34
hash-table-put!.................... ... 33
hash-table-remove! 33
hash-table-stats..................... 34
hash-table?............ 33
help, getting.................. 53

I 8
ilisp package L 67
imag-part........... ... il 14
inexact->exact......... ... oL 14
inexact?.... ... i 13
initial environment...................... 10
input-port?.............. ... ol 19
input-string-port?................ ... 19
inspectl 43
mmstance ... 57
integer->char......................... 15
integer?......... ...l 13

K

keyword 57
keyword->string....................... 24
Reyword? ... 24

label ..o 25
lambda . ..ot 8
1O e 14
length ... i 11
let 9
letd. 9
letrec ..o 10
= 11; 12
Tist® ... 12
list->string................ 16
list->vector............ccoiino... 17
list-ref.......... 11
list-tail.............oiviiiiiiinn. 11
1ist? . 11
load. ..o 22

M

machine-type.......................... 40
MACTO .ttt ettt ieeee e e e 27; 28
macro-body............... 27
macro-expand 27
macro-expand-1........................ 27
MACTO-EXPANSION . . o\t ve ettt 27
MACTOT .ottt ettt e e 27
magnitude................ ... L 14; 54
make......... . i i 57
make-client-socket................... 38
make-hash-table....................... 32
make-keyword, 24
make-polar..................... 14; 54, 60
make-rectangular.............. 14; 54, 60
make-server—-socket 39
make-string................. 16
make-vector....... 17
11E= o 17
11E P 13
MEMBET ...ttt 11
1113 T P PO 11
11T (PP 11
TS o PN 25
MIN. .. 13
Modulo ... 14
N

negative?........ 13
newline............ oo, 21
next-method......... 62
DOb oottt 10
NULL? 11
number->string.............. 14
nUMbETr? ... 13
nuUmMeratort 14; 54

Obj .. 12; 30
odd?.. ... 13
open-file................. 23
open—input-file....................... 20
open—input-string.................... 20
open-output-file..................... 20
open—-output-string................... 20
OF ot 9
output-port?............ 19
output-string-port?.................. 19

P

Palr? . 11

STK Reference Manual 73
parent-environment 26 requirel 22; 67
peek-char........... oL 21 TEVEESE ottt ittt 11
Pid. 36; 37 root window 50
port—>list............ . il 23 round ... 14
port—>sexp-list............ 23 TUN-PrOCESS ..ottt 36
port->string.......................... 23
port->string-list.................... 23
positive?........ ool 13 S
posix.l ..o 30 scheme repository............ 68
primitive?....... 18 set! ... 8; 58
procedure=body........................ 18 set-car!. ... i 11
procedure-environment................ 26 set—cdr! 11
procedure?.t 17 set-random-seed! 40
process-alive?........................ 37 set-signal-handler!.................. 31
process-continue..................... 38 set-widget—data! ... 25
PLOCESS—€TTOT ...\ oo, 37 setter. ... oo 58
process—exit-status.................. 37 sigabrt........... ..o 30
Process—input 37 sigalrm..........ol 30
process—Killccoooiiii.. 38 sigbus ... 31
process—1ist ...l 38 sigchld........... 30
ProcesS—OUtPULooooeeeeene .. 37 sigeld 31
Process—pidl. 37 sigecont ...l 30
process-send-signal 38 sigfpe ... 30
process—-stop................ 38 sighup ... 30
Process—waitooooiii.. 37 sigill ... 30
Process?o 37 sigint..........ooo 30; 31
promise?....... ...l 18 SIGI0o.....oi 31
Provideiiii 29 67 sigiot 31
provided?........... L 22 Sighill ..o 30; 31
siglost ... 31
sigpipe....... .o 30
Cg sigpoll 31
quasiquote.......... ..., 10 sigprof 31
QUIt . oo 43 Sigsegv 30
QUOT . ottt 8 sigstop...............oolll 30; 31
QUOtientoiii 14 SIZSYS ittt 31
sigterm........l 30
sigtrap......... ...l 31
}{ sigttin........ ..ol 30
TATS oo 7,67 sigttou.........iiiii 30
random........... ... i 40 sigurg ... 31
rational?...........l 13 sigusrl. 30
rationalize........................ 14; 54 sigwinch.......... L 31
readl 21; 8 sigxepu.........iiiiiL 31
read-char....................... ... 21 sigxfsz il 31
read-from-string..................... 40 sinm..... 14
read-line................ 21 slib package.................... 67
real-part ...l 14; 54 slob ..o 55
real? 13 slot-ref......l 57
regexp-replace........................ 36 slot-set!l 57
regexp-replace-all................... 36 socket-accept-connection............ 39
TEEEXPT ot 36 socket-hostname....................... 38
regular eXpression.......... 34 socket-input 38
remainder........... ..., 14 socket-output............. 38

74 STk Reference Manual
socket-port-number 38 [J
socket-shutdown....................... 39 UNCOAE .ottt 42
socket? 38 UN1EeSS . ot e 9, 10
SOTT ...t 42; 29 Until oo 10
=T o 2 14 UNtTACE—VAT . .o oo oo oo 41
string............ooooolol 16; 17

string->list........ 16 \/
string->number........................ 14

SEring->regexp................. 35; 34, 36 vector...: 17
SEring—>symbol........cooooveenn... 12 vector->list 17
string->widget........................ 25 VECTOT=COPY oot 17
String-append......................... 16 vector-fill!l 17
SELANG=CI<ET covteee e 16 vector-length......................... 17
SELANG=CI<T .ttt 16 vector—ref: 17
SELANG=CI=T .\ttt 16 vector-resize......................... 17
SELANG=CI>=T .vtoeee e 16 vector-set!........ 17
SELANG=CI>T .\ttt 16 vectér? 17
SETANE=COPY - v v enereeeeeeeneeeenan, 16 Version...............iiiiiii 40
SETANE=Fi11! e 16 VieW... ... 43
string-find?.............. 16

string-index 17 \A/
string-length......................... 16 When. ..o 9
SETing=1OWETot 17 while 10
string-ref............................. 16 widget 25
string-set! o L 16 widget—->string.................... ..., 25
sString-upper.......................... 17 widget-name 25
string<=7................L 16 Widget? 25
String<?.. 16 with-input-from-file................. 19
SErINg=7 i 16 with-input-from-string.............. 20
string>='? 16 With—output—to—file ,,,,,,,,,,,,,,,,,, 19
string>'? 16 With—output—to—string ,,,,,,,,,,,,,,,, 20
string? ... 16 WEATE oottt 21
substring................o 16 Write—char.............cooviivenii... 21
symbol->string........................ 12

symbol-bound?......................... 27 ><

SYMbOL? ... 12)

system ... 30 x window system.......................o 7

BaAD . . 14
the-environment....................... 26
tilde expansion.............., 28
time. 43
tk toolkit............... L 7; 24, 41
tk-command 24; 25, 50
thk—command? 25
toolkit..... 7; 24, 41
top level environment 10; 26, 57, 58
trace-—var.. ... 41
transcript-off................. 22; 23, 54
transcript-on.................. 22; 23, 54
truncate............ 14

try-load...... ..ot 22

Z

ZETO T 13

