
STK Reference manual
Version 3.0

Erick Gallesio

Université de Nice - Sophia Antipolis

Laboratoire I3S - CNRS URA 1376 - ESSI.

Route des Colles

B.P. 145

06903 Sophia-Antipolis Cedex - FRANCE

email: eg@unice.fr

January 1996



Document Reference

Erick Gallesio, STk Reference Manual, RT 95-31a, I3S-CNRS / Université de Nice -
Sophia Antipolis, juillet 1995.



Contents

I Reference Manual 5
1 Overview of STk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Lexical conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Other notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Primitive expression types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Derived expression types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Standard procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1 Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Equivalence predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 Pairs and lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.4 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.5 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.6 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.7 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.8 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.9 Control features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.10 Input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.11 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.12 Tk commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.13 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.14 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.15 System procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.16 Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.17 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.18 Hash tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.19 Regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.20 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.21 Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.22 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Annexes 47

A Using the Tk toolkit 49

1 Calling a Tk-command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2 Associating Callbacks to Tk-commands . . . . . . . . . . . . . . . . . . . . . . . . 50
3 Tk bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



4 STk Reference Manual

B Differences with R4RS 53

1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C An introduction to STklos 55

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2 Class definition and instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.1 Class definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Class hierarchy and inheritance of slots . . . . . . . . . . . . . . . . . . . . 56
3.2 Instance creation and slot access . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Slot description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Class precedence list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Generic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Generic functions and methods . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Next-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D Miscellaneous Informations 65

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2 About STk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.1 Last release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2 Sharing Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3 STk Mailing list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4 STk FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.5 Reporting a bug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 STk and Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1 Using the SLIB package with STk . . . . . . . . . . . . . . . . . . . . . . . 67

4 Getting information about Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 The R4RS document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 The Scheme Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Usenet newsgroup and other addresses . . . . . . . . . . . . . . . . . . . . . 68



Part I

Reference Manual

5





Introduction

This document provides a complete list of procedures and special forms implemented in version 3.0
of STk. Since STk is (nearly) compliant with the language described in the Revised4 Report on
the Algorithmic Language Scheme (denoted R4RS hereafter1)[1], the organization of this manual
follows the R4RS and only describes extensions.

1 Overview of STk

Today’s graphical toolkits for applicative languages are often not satisfactory. Most of the time,
they ask the user to be an X window system expert and force him/her to cope with arcane details
such as server connections and event queues. This is a real problem, since programmers using this
kind of languages are generally not inclined to system programming, and few of them will bridge
the gap between the different abstraction levels.

Tk is a powerful graphical toolkit promising to fill that gap. It was developed at the University
of Berkeley by John Ousterhout [2]. The toolkit offers high level widgets such as buttons or
menus and is easily programmable, requiring little knowledge of X fundamentals. Tk relies on an
interpretative shell-like language named Tcl [3].

STk is an implementation of the Scheme programming language, providing a full integration
of the Tk toolkit. In this implementation, Scheme establishes the link between the user and the
Tk toolkit, replacing Tcl.

2 Lexical conventions

2.1 Identifiers

Syntactic keywords can be used as variables in STk. Users must be aware that this extension of
the language could lead to ambiguities in some situations.

2.2 Comments

As in the R4RS, a semicolon (;) indicates the start of a comment. In STk, comments can also be
introduced by #!. This extension is particularly useful for building STk scripts. On most Unix
implementations, if the first line of a script looks like this:

#!/usr/local/bin/stk -file

then the script can be started directly as if it were a binary. STk is loaded behind the scenes and
reads and executes the script as a Scheme program. Of course this assumes that STk is located
in /usr/local/bin.

2.3 Other notations

STk accepts all the notations defined in R4RS plus

[ ] Brackets are equivalent to parentheses. They are used for grouping and to notate lists. A list
opened with a left square bracket must be closed with a right square bracket (section 6.3).

: A colon at the beginning of a symbol introduces a keyword. Keywords are described in sec-
tion 6.11.

1The Revised4 Report on the Algorithmic Language Scheme is available through anonymous FTP from
ftp.cs.indiana.edu in the directory /pub/scheme-repository/doc

7



8 STk Reference Manual

#.<expr> is read as the evaluation of the Scheme expression <expr>. The evaluation is done
during the read process, when the #. is encountered. Evalustaion is done in the global-
environment.

(define foo 1)

#.foo

=⇒ 1

’(foo #.foo #.(+ foo foo))

=⇒ (foo 1 2)

(let ((foo 2))

#.foo)

=⇒ 1

3 Basic concepts

Identical to R4RS.

4 Expressions

4.1 Primitive expression types

(quote 〈datum〉) syntax
’〈datum〉 syntax

The quoting mechanism is identical to R4RS. Keywords (see section 6.11), as numerical constants,
string constants, character constants, and boolean constants evaluate “to themselves”; they need
not be quoted.

’"abc" =⇒ "abc"

"abc" =⇒ "abc"

’145932 =⇒ 145932

145932 =⇒ 145932

’#t =⇒ #t

#t =⇒ #t

’:key =⇒ :key

:key =⇒ :key

Note: R4
RS requires to quote constant lists and constant vectors. This is not necessary with STk.

(〈operator〉 〈operand1〉 . . . ) syntax

Identical to R4RS. Furthermore, 〈operator〉 can be a macro (see section 6.14).

(lambda 〈formals〉 〈body〉) syntax
(if 〈test〉 〈consequent〉 〈alternate〉) syntax
(if 〈test〉 〈consequent〉) syntax
(set! 〈variable〉 〈expression〉) syntax

Identical to R4RS.



STk Reference Manual 9

4.2 Derived expression types

(cond 〈clause1〉 〈clause2〉 . . . ) syntax
(case 〈key〉 〈clause1〉 〈clause2〉 . . . ) syntax
(and 〈test1〉 . . .) syntax
(or 〈test1〉 . . . ) syntax

Identical to R4RS.

(when 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax

If the 〈test〉 expression yields a true value, the 〈expression〉s are evaluated from left to right and
the value of the last 〈expression〉 is returned.

(unless 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax

If the 〈test〉 expression yields a false value, the 〈expression〉s are evaluated from left to right and
the value of the last 〈expression〉 is returned.

(let 〈bindings〉 〈body〉) syntax
(let 〈variable〉 〈bindings〉 〈body〉) syntax
(let* 〈bindings〉 〈body〉) syntax

Identical to R4RS.

(fluid-let 〈bindings〉 〈body〉) syntax

The bindings are evaluated in the current environment, in some unspecified order, the current
values of the variables present in bindings are saved, and the new evaluated values are assigned
to the bindings variables. Once this is done, the expressions of body are evaluated sequentially in
the current environment; the value of the last expression is the result of fluid-let. Upon exit,
the stored variables values are restored. An error is signalled if any of the bindings variable is
unbound.

(let* ((a ’out)

(f (lambda () a)))

(list a

(fluid-let ((a ’in)) (f))

a))

=⇒ (out in out)

When the body of a fluid-let is exited by invoking a continuation, the new variable values are
saved, and the variables are set to their old values. Then, if the body is reentered by invoking
a continuation, the old values are saved and new values are restored. The following example
illustrates this behaviour

(let ((cont #f)

(l ’())

(a ’out))

(set! l (cons a l))

(fluid-let ((a ’in))

(set! cont (call/cc (lambda (k) k)))

(set! l (cons a l)))

(set! l (cons a l))

(if cont (cont #f) l))

=⇒ (out in out in out)



10 STk Reference Manual

(letrec 〈bindings〉 〈body〉) syntax
(begin 〈expression1〉 〈expression2〉 . . .) syntax
(do 〈inits〉 〈test〉 〈body〉) syntax
(delay 〈expression〉) syntax
(quasiquote 〈template〉) syntax
`〈template〉 syntax

Identical to R4RS.

(dotimes (var count) 〈expression1〉 〈expression2〉 . . . ) syntax
(dotimes (var count result) 〈expression1〉 〈expression2〉 . . .) syntax

Dotimes evaluates the count form, which must return an integer. It then evaluates the 〈expression〉s
once for each integer from zero (inclusive) to count (exclusive), in order, with the variable var
bound to the integer; if the value of count is zero or negative, then the 〈expression〉s are not
evaluated. When the loop completes, result is evaluated and its value is returned as the value of
the dotimes expression. If result is omitted, dotimes returns #f.

(let ((l ’()))

(dotimes (i 4 l)

(set! l (cons i l))))

=⇒ (3 2 1 0)

(while 〈test〉 〈expression1〉 〈expression2〉 . . . ) syntax

While evaluates the 〈expression〉s until 〈test〉 returns a false value. The value of a while construct
is unspecified.

(until 〈test〉 〈expression1〉 〈expression2〉 . . . ) syntax

Until evaluates the 〈expression〉s while 〈test〉 returns a false value. The value of an unless

construct is unspecified.

5 Program structure

Identical to R4RS.

6 Standard procedures

6.1 Booleans

In STk the boolean value #f is different from the empty list, as required by R4RS.

(not obj) procedure
(boolean? obj) procedure

Identical to R4RS.



STk Reference Manual 11

6.2 Equivalence predicates

(eqv? obj1 obj2) procedure

STk extends the eqv? predicate defined in the R4RS to take keywords into account: if obj1 and
obj2 are both keywords, the eqv? predicate will yield #t if and only if

(string=? (keyword->string obj1)

(keyword->string obj2))

=⇒ #t

(eq? obj1 obj2) procedure

STk extends the eq? predicate defined in R4RS to take keywords into account. On keywords, eq?
behaves like eqv?.

(eq? :key :key) =⇒ #t

(equal? obj1 obj2) procedure

Identical to R4RS.

6.3 Pairs and lists

(pair? obj) procedure
(cons obj1 obj2) procedure
(car pair) procedure
(cdr pair) procedure
(set-car! pair obj) procedure
(set-cdr! pair obj) procedure
(caar pair) procedure
(cadr pair) procedure

...
...

(cdddar pair) procedure
(cddddr pair) procedure
(null? obj) procedure
(list? obj) procedure
(list obj . . . ) procedure
(length list) procedure
(append list . . . ) procedure
(reverse list) procedure
(list-tail list k) procedure
(list-ref list k) procedure
(memq obj list) procedure
(memv obj list) procedure
(member obj list) procedure
(assq obj alist) procedure
(assv obj alist) procedure
(assoc obj alist) procedure

Identical to R4RS.



12 STk Reference Manual

(list* obj) procedure

list* is like list except that the last argument to list* is used as the cdr of the last pair
constructed.

(list* 1 2 3) =⇒ (1 2 . 3)

(list* 1 2 3 ’(4 5)) =⇒ (1 2 3 4 5)

(copy-tree obj) procedure

Copy-tree recursively copies trees of pairs. If obj is not a pair, it is returned; otherwise the result
is a new pair whose car and cdr are obtained by calling copy-tree on the car and cdr of obj,
respectively.

6.4 Symbols

The STk reader can cope with symbols whose names contain special characters or letters in the
non standard case. When a symbol is read, the parts enclosed in bars (“|”) will be entered
verbatim into the symbol’s name. The “|” characters are not part of the symbol; they only serve
to delimit the sequence of characters that must be entered “as is”. In order to maintain read-write
invariance, symbols containing such sequences of special characters will be written between a pair
of “|”

’|x| =⇒ x

(string->symbol "X") =⇒ |X|

(symbol->string ’|X|) =⇒ "X"

’|a b| =⇒ |a b|

’a|B|c =⇒ |aBc|

(write ’|FoO|) =⇒ writes the string "|FoO|"

(display ’|FoO|) =⇒ writes the string "FoO"

Note: This notation has been introduced because R4
RS states that case must not be significant in

symbols whereas the Tk toolkit is case significant (or more precisely thinks it runs over Tcl which is case

significant). However, symbols containing the character “|” itself still can’t be read in.

(symbol? obj) procedure

Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) =⇒ #t

(symbol? (car ’(a b))) =⇒ #t

(symbol? "bar") =⇒ #f

(symbol? ’nil) =⇒ #t

(symbol? ’()) =⇒ #f

(symbol? #f) =⇒ #f

(symbol? :key) =⇒ #f

(symbol->string symbol) procedure
(string->symbol string) procedure

Identical to R4RS.

(gensym) procedure
(gensym prefix) procedure

Gensym creates a new symbol. The print name of the generated symbol consists of a prefix (which
defaults to "G") followed by the decimal representation of a number. If prefix is specified, it must
be a string.



STk Reference Manual 13

(gensym)

=⇒ |G100|

(gensym "foo-")

=⇒ foo-101

6.5 Numbers

The only numbers recognized by STk are integers (with arbitrary precision) and reals (imple-
mented as C double floats).

(number? obj) procedure

Returns #t if obj is a number, otherwise returns #f.

(complex? obj) procedure

Returns the same result as number? . Note that complex numbers are not implemented.

(real? obj) procedure

Returns #t if obj is a float number, otherwise returns #f.

(rational? obj) procedure

Returns the same result as number? . Note that rational numbers are not implemented.

(integer? obj) procedure

Returns #t if obj is an integer, otherwise returns #f. Note: The STk interpreter distinguishes between

integers which fit in a C long int (minus 8 bits) and integers of arbitrary length (aka “bignums”). This

should be transparent to the user, though.

(exact? z) procedure
(inexact? z) procedure

In this implementation, integers (C long int or “bignums”) are exact numbers and floats are
inexact.

(= z1 z2 z3 . . . ) procedure
(< x1 x2 x3 . . .) procedure
(> x1 x2 x3 . . .) procedure
(<= x1 x2 x3 . . . ) procedure
(>= x1 x2 x3 . . . ) procedure
(zero? z) procedure
(positive? z) procedure
(negative? z) procedure
(odd? z) procedure
(even? z) procedure
(max x1 x2 . . . ) procedure
(min x1 x2 . . . ) procedure
(+ z1 . . . ) procedure
(* z1 . . . ) procedure
(- z1 z2) procedure
(- z) procedure
(- z1 z2 . . .) procedure



14 STk Reference Manual

(/ z1 z2) procedure
(/ z) procedure
(/ z1 z2 . . .) procedure
(abs x) procedure
(quotient n1 n2) procedure
(remainder n1 n2) procedure
(modulo n1 n2) procedure
(gcd n1 . . .) procedure
(lcm n1 . . .) procedure

Identical to R4RS.

(numerator q) procedure
(denominator q) procedure

Not implemented.

(floor x) procedure
(ceiling x) procedure
(truncate x) procedure
(round x) procedure

Identical to R4RS.

(rationalize x y) procedure

not yet implemented.

(exp z) procedure
(log z) procedure
(sin z) procedure
(cos z) procedure
(tan z) procedure
(asin z) procedure
(acos z) procedure
(atan z) procedure
(atan y x) procedure
(sqrt z) procedure
(expt z1 z2) procedure

Identical to R4RS.

(make-rectangular x1 x2) procedure
(make-polar x1 x2) procedure
(real-part z) procedure
(imag-part z) procedure
(magnitude z) procedure
(angle z) procedure

These procedures are not implemented since complex numbers are not defined.

(exact->inexact z) procedure
(inexact->exact z) procedure
(number->string number) procedure
(number->string number radix) procedure
(string->number string) procedure
(string->number string radix) procedure

Identical to R4RS.



STk Reference Manual 15

name value alternate name name value alternate name

nul 000 null bs 010 backspace
soh 001 ht 011 tab
stx 002 nl 012 newline
etx 003 vt 013
eot 004 np 014 page
enq 005 cr 015 return
ack 006 so 016
bel 007 bell si 017

dle 020 can 030
dc1 021 em 031
dc2 022 sub 032
dc3 023 esc 033 escape
dc4 024 fs 034
nak 025 gs 035
syn 026 rs 036
etb 027 us 037

sp 040 space

del 177 delete

Table .1: Valid character names

6.6 Characters

Table 1 gives the list of allowed character names together with their ASCII equivalent expressed
in octal.

(char? obj) procedure
(char=? char1 char2) procedure
(char<? char1 char2) procedure
(char>? char1 char2) procedure
(char<=? char1 char2) procedure
(char>=? char1 char2) procedure
(char-ci=? char1 char2) procedure
(char-ci<? char1 char2) procedure
(char-ci>? char1 char2) procedure
(char-ci<=? char1 char2) procedure
(char-ci>=? char1 char2) procedure
(char-alphabetic? char) procedure
(char-numeric? char) procedure
(char-whitespace? char) procedure
(char-upper-case? letter) procedure
(char-lower-case? letter) procedure
(char->integer char) procedure
(integer->char n) procedure
(char-upcase char) procedure
(char-downcase char) procedure

Identical to R4RS.



16 STk Reference Manual

Sequence Character inserted

\b Backspace
\e Escape
\n Newline
\t Horizontal Tab
\n Carriage Return
\0abc ASCII character with octal value abc
\<newline> None (permits to enter a string on several lines)
\<other> <other>

Table .2: String escape sequences

6.7 Strings

STk string constants allow the insertion of arbitrary characters by encoding them as escape
sequences, introduced by a backslash (\). The valid escape sequences are shown in Table 2. For
instance, the string

"ab\040c\nd\

e"

is the string consisting of the characters #\a, #\b,#\space, #\c, #\newline, #\d and #\e.

(string? obj) procedure
(make-string k) procedure
(make-string k char) procedure
(string char . . . ) procedure
(string-length string) procedure
(string-ref string k) procedure
(string-set! string k char) procedure
(string=? string1 string2) procedure
(string-ci=? string1 string2) procedure
(string<? string1 string2) procedure
(string>? string1 string2) procedure
(string<=? string1 string2) procedure
(string>=? string1 string2) procedure
(string-ci<? string1 string2) procedure
(string-ci>? string1 string2) procedure
(string-ci<=? string1 string2) procedure
(string-ci>=? string1 string2) procedure
(substring string start end) procedure
(string-append string . . .) procedure
(string->list string) procedure
(list->string chars) procedure
(string-copy string) procedure
(string-fill! string char) procedure

Identical to R4RS.

(string-find? string1 string2) procedure

Returns #t if string1 appears somewhere in string2; otherwise returns #f.



STk Reference Manual 17

(string-index string1 string2) procedure

Returns the index of where string1 is a substring of string2 if it exists; returns #f otherwise.

(string-index "ca" "abracadabra")

=⇒ 4

(string-index "ba" "abracadabra")

=⇒ #f

(string-lower string) procedure

Returns a string in which all upper case letters of string have been replaced by their lower case
equivalent.

(string-upper string) procedure

Returns a string in which all lower case letters of string have been replaced by their upper case
equivalent.

6.8 Vectors

(vector? obj) procedure
(make-vector k) procedure
(make-vector k fill) procedure
(vector obj . . . ) procedure
(vector-length vector) procedure
(vector-ref vector k) procedure
(vector-set! vector k obj) procedure
(vector->list vector) procedure
(list->vector list) procedure
(vector-fill! vector fill) procedure

Identical to R4RS.

(vector-copy vector) procedure

returns a copy of vector .

(vector-resize vector size) procedure

vector-resize physically changes the size of vector . If size is greater than the old vector size, the
contents of the newly allocated cells are undefined.

6.9 Control features

(procedure? obj) procedure
(apply proc args) procedure
(apply proc arg1 . . . args) procedure
(map proc list1 list2 . . . ) procedure
(for-each proc list1 list2 . . . ) procedure
(force promise) procedure

Identical to R4RS.



18 STk Reference Manual

(call-with-current-continuation proc) procedure
(call/cc proc) procedure

Call/cc is a shorter name for call-with-current-continuation.

(closure? obj) procedure

returns #t if obj is a procedure created by evaluating a lambda expression, otherwise returns #f.

(primitive? obj) procedure

returns #t if obj is a procedure and is not a closure, otherwise returns #f.

(promise? obj) procedure

returns #t if obj is an object returned by the application of delay, otherwise returns #f.

(continuation? obj) procedure

returns #t if obj is a continuation obtained by call/cc, otherwise returns #f.

(dynamic-wind 〈thunk1〉 〈thunk2〉 〈thunk3〉) procedure

〈Thunk1〉, 〈thunk2〉 and 〈thunk3〉 are called in order. The result of dynamic-wind is the value
returned by 〈thunk2〉. If 〈thunk2〉 escapes from its continuation during evaluation (by calling a
continuation obtained by call/cc or on error), 〈thunk3〉 is called. If 〈thunk2〉 is later reentered,
〈thunk1〉 is called.

(catch 〈expression1〉 〈expression2〉 . . .) syntax

The 〈expression〉s are evaluated from left to right. If an error occurs, evaluation of the 〈expression〉s
is aborted, and #t is returned to catch’s caller. If evaluation finishes without an error, catch
returns #f.

(let* ((x 0)

(y (catch

(set! x 1)

(/ 0) ; causes a "division by 0" error

(set! x 2))))

(cons x y))

=⇒ (1 . #t)

(procedure-body 〈procedure〉) procedure

returns the body of 〈procedure〉. If 〈procedure〉 is not a closure, procedure-body returns #f.

(define (f a b)

(+ a (* b 2)))

(procedure-body f) =⇒ (lambda (a b)

(+ a (* b 2)))

(procedure-body car) =⇒ #f



STk Reference Manual 19

6.10 Input and output

The R4RS states that ports represent input and output devices. However, it defines only ports
which are attached to files. In STk, ports can also be attached to strings or to a external command
input or output. String ports are similar to file ports, except that characters are read from (or
written to) a string rather than a file. External command input or output ports are implemented
with Unix pipes and are called pipe ports. A pipe port is created by specifying the command to
execute prefixed with the string "| ". Specification of a pipe port can occur everywhere a file
name is needed.

(call-with-input-file string proc) procedure
(call-with-output-file string proc) procedure

Note: if string starts with the two characters "| ", these procedures return a pipe port. Consequently,

it is not possible to open a file whose name starts with those two characters.

(call-with-input-string string proc) procedure

behaves exactly as call-with-input-file except that the port passed to proc is the string port
obtained from string.

(call-with-input-string "123 456" (lambda (x) (read x)))

=⇒ 123

(call-with-output-string proc) procedure

Proc should be a procedure of one argument. Call-with-output-string calls proc with a freshly
opened output string port. The result of this procedure is a string containing all the text that has
been written on the string port.

(call-with-output-string

(lambda (x) (write 123 x) (display "Hello" x)))

=⇒ "123Hello"

(input-port? obj) procedure
(output-port? obj) procedure

Identical to R4RS.

(input-string-port? obj) procedure
(output-string-port? obj) procedure

Returns #t if obj is either an input or an output string port, otherwise returns #f.

(current-input-port) procedure
(current-output-port) procedure

Identical to R4RS.

(current-error-port) procedure

Returns the current default error port.

(with-input-from-file string thunk) procedure
(with-output-to-file string thunk) procedure

Identical to R4RS.



20 STk Reference Manual

The following example uses a pipe port opened for reading. It permits to read all the lines produced
by an external ls command (i.e. the ouput of the ls command is redirected to the Scheme pipe
port).

(with-input-from-file "| ls -ls"

(lambda ()

(do ((l (read-line) (read-line)))

((eof-object? l))

(display l)

(newline))))

Hereafter is another example of Unix command redirection. This time, it is the standard input of
the Unix command which is redirected.

(with-output-to-file "| mail root"

(lambda()

(format #t "A simple mail sent from STk\n")))

(with-input-from-string string thunk) procedure

A string port is opened for input from string. Current-input-port is set to the port and thunk is
called. When thunk returns, the previous default input port is restored. With-input-from-string
returns the value yielded by thunk .

(with-input-from-string "123 456" (lambda () (read)))

=⇒ 123

(with-output-to-string thunk) procedure

A string port is opened for output. Current-output-port is set to it and thunk is called. When
the thunk returns, the previous default output port is restored. With-output-to-string returns
the string containing all the text written on the string port.

(with-output-to-string (lambda () (write 123) (write "Hello")))

=⇒ "123Hello"

(open-input-file filename) procedure
(open-output-file filename) procedure

Identical to R4RS.
Note: if f ilename starts with the string "| ", these procedure return a pipe port. Consequently, it is not

possible to open a file whose name starts with those two characters.

(open-input-string string) procedure

Returns an input string port capable of delivering characters from string.

(open-output-string) procedure

Returns an output string port capable of receiving and collecting characters.

(get-output-string port) procedure

Returns a string containing all the text that has been written on the output string port .



STk Reference Manual 21

(let ((p (open-output-string)))

(display "Hello, world" p)

(get-output-string p))

=⇒ "Hello, world"

(close-input-port port) procedure
(close-output-port port) procedure

Identical to R4RS.

(read) procedure
(read port) procedure
(read-char) procedure
(read-char port) procedure
(peek-char) procedure
(peek-char port) procedure
(char-ready?) procedure
(char-ready? port) procedure

Identical to R4RS.

(read-line) procedure
(read-line port) procedure

Reads the next line available from the input port port and returns it as a string. The termi-
nating newline is not included in the string. If no more characters are available, an end of file
object is returned. Port may be omitted, in which case it defaults to the value returned by
current-input-port.

(write obj) procedure
(write obj port) procedure
(display obj) procedure
(display obj port) procedure
(newline) procedure
(newline port) procedure
(write-char char) procedure
(write-char char port) procedure

Identical to R4RS.

(format port string obj1 obj2 . . .) procedure

Writes the obj s to the given port , according to the format string string. String is written literally,
except for the following sequences:

• ~a or ~A is replaced by the printed representation of the next obj .

• ~s or ~S is replaced by the “slashified” printed representation of the next obj .

• ~~ is replaced by a single tilde.

• ~% is replaced by a newline

Port can be a boolean, a port or a string port. If port is #t, output goes to the current output
port; if port is #f, the output is returned as a string. Otherwise, the output is printed on the
specified port.



22 STk Reference Manual

(format #f "A test.")

=⇒ "A test."

(format #f "A ~a." "test")

=⇒ "A test."

(format #f "A ~s." "test")

=⇒ "A \"test\"."

(get-output-string port) procedure

Returns the string associated with the output string port .

(let ((p (open-output-string)))

(display "Hello, world" p)

(get-output-string p))

=⇒ "Hello, world"

(flush) procedure
(flush port) procedure

Flushes the buffer associated with the given port . The port argument may be omitted, in which
case it defaults to the value returned by current-output-port.

(load filename) procedure

Identical to R4RS.
Note: The load primitive has been extended to allow loading of object files, though this is not implemented

on all systems 2. See [?] for more details.

(try-load filename) procedure

Tries to load the file named filename. If filename exists and is readable, it is loaded, and try-load

returns #t. Otherwise, the result of the call is #f.

(autoload filename 〈symbol1〉 〈symbol2〉 . . . ) syntax

Defines 〈symbol〉s as autoload symbols associated to file filename. Fisrt evaluation of an autoload
symbol will cause the loading of its associated file. Filename must provide a definition for the
symbol which lead to its loading, otherwise an error is signaled.

(autoload? symbol) procedure

Returns #t if symbol is an autoload symbol; returns #f otherwise.

(require string) procedure
(provide string) procedure
(provided? string) procedure

Require loads the file whose name is string if it was not previously “provided”.Provide permits
to store string in the list of already provided files. Providing a file permits to avoid subsequent
loads of this file. Provided? returns #t if string was already provided; it returns #f otherwise.

(transcript-on filename) procedure
(transcript-off) procedure

Not implemented.

2Current version (3.0) allows image dumping only on some platforms:SunOs 4.1.x, SunOs 5.3, NetBSD 1.0,
HPUX, Irix 5.3



STk Reference Manual 23

(open-file filename mode) procedure

Opens the file whose name is filename with the specified mode. Mode must be “r” to open for
reading or “w” to open for writing. If the file can be opened, open-file returns the port associated
with the given file, otherwise it returns #f. Here again, the “magic” string "| ‘‘ permit to open
a pipe port.

(close-port port) procedure

Closes port . If port denotes a string port, further reading or writing on this port is disallowed.

(transcript-on filename) procedure
(transcript-off) procedure

Not implemented.

(port->string port) procedure
(port->list reader port) procedure
(port->string-list port) procedure
(port->sexp-list port) procedure

Those procedures are utility for generally parsing input streams. Their specification has been
stolen from scsh.
Port->string reads the input port until eof, then returns the accumulated string.

(port->string (open-input-file "| (echo AAA; echo BBB)"))

=⇒ "AAA\nBBB\n"

(define exec

(lambda (command)

(call-with-input-file

(string-append "| " command) port->string)))

(exec "ls -l") =⇒ a string which contains the result of "ls -l"

Port->list uses the reader function to repeatedly read objects from port . Thes objects are
accumulated in a list which is returned upon eof.

(port->list read-line (open-input-file "| (echo AAA; echo BBB)"))

=⇒ ("AAA" "BBB")

Port->string-list reads the input port line by line until eof, then returns the accumulated list
of lines. This procedure is defined as

(define port->string-list (lambda (p)(port->list read-line p)))

Port->sexp-list repeatedly reads data from the port until eof, then returns the accumulated list
of items. This procedure is defined as

(define port->sexp-list (lambda (p) (port->list read p)))

For instance, the following expression gives the list of users currently connected on the machine
running the STk interpreter.

(port->sexp-list (open-input-file "| users"))



24 STk Reference Manual

6.11 Keywords

Keywords are symbolic constants which evaluate to themselves. A keyword must begin with a
colon.

(keyword? obj) procedure

Returns #t if obj is a keyword, otherwise returns #f.

(make-keyword obj) procedure

Builds a keyword from the given obj . obj must be a symbol or a string. A colon is automatically
prepended.

(make-keyword "test")

=⇒ :test

(make-keyword ’test)

=⇒ :test

(make-keyword ":hello")

=⇒ ::hello

(keyword->string keyword) procedure

Returns the name of keyword as a string. The leading colon is included in the result.

(keyword->string :test)

=⇒ ":test"

(get-keyword keyword list) procedure
(get-keyword keyword list default) procedure

List must be a list of keywords and their respective values. Get-keyword scans the list and returns
the value associated with the given keyword . If the keyword does not appear in an odd position
in list , the specified default is returned, or an error is raised if no default was specified.

(get-keyword :one ’(:one 1 :two 2))

=⇒ 1

(get-keyword :four ’(:one 1 :two 2) #f)

=⇒ #f

(get-keyword :four ’(:one 1 :two 2))

=⇒ error

6.12 Tk commands

As we mentioned in the introduction, STk can easily communicate with the Tk toolkit. All the
commands defined by the Tk toolkit are visible as Tk-commands, a basic type recognized by the
interpreter. Tk-commands can be called like regular scheme procedures, serving as an entry point
into the Tk library.

Note: Some Tk-commands can dynamically create other Tk-commands. For instance, execution of the
expression

(label ’.lab)



STk Reference Manual 25

will create a new Tk-command called “.lab”. This new object, which was created by a primitive Tk-command,

will be called a widget .

Note: When a new widget is created, it captures its creation environment. This permits to have bindings

which access variables in the scope of the widget creation call (see 6.16).

(tk-command? obj) procedure

Returns #t if obj is a Tk-command, otherwise returns #f.

(tk-command? label)

=⇒ #t

(begin (label ’.lab) (tk-command? .lab))

=⇒ #t

(tk-command? 12)

=⇒ #f

(widget? obj) procedure

Returns #t if obj is a widget, otherwise returns #f. A widget is a Tk-command created by a
primitive Tk-command such as button, label, menu, etc.

(widget? label)

=⇒ #f

(begin (label ’.lab) (widget? .lab))

=⇒ #t

(widget? 12)

=⇒ #f

(widget->string widget) procedure

Returns the widget name of widget as a string.

(begin (label ’.lab) (widget->string .lab))

=⇒ ".lab"

(string->widget str) procedure

Returns the widget whose name is str if it exists; otherwise returns #f.

(begin (label ’.lab) (string->widget ".lab"))

=⇒ the Tk-command named ".lab"

(widget-name widget) procedure

Returns the widget name of widget as a symbol.

(begin (label ’.lab) (widget->name .lab))

=⇒ .lab

(set-widget-data! widget expr) procedure



26 STk Reference Manual

Set-widget-data! associates arbitrary data with a widget . The system makes no assumptions
about the type of expr; the data is for programmer convenience only. As shown below, it could
be used as a kind of property list for widgets.

(get-widget-data widget) procedure

Returns the data previously associated with widget if it exists; otherwise returns #f.

(begin

(set-widget-data! .w ’(:mapped #t :geometry "10x50"))

(get-keyword :mapped (get-widget-data .w)))

=⇒ #t

6.13 Environments

Environments are first class objects in STk. The following primitives are defined on environments.

(environment? obj) procedure

Returns #t if obj is an environment, otherwise returns #f.

(the-environment) procedure

Returns the current environment.

(global-environment) procedure

Returns the “global” environment (i.e. the toplevel environment).

(parent-environment env) procedure

Returns the parent environment of env . If env is the “global” environment (i.e. the toplevel
environment), parent-environment returns #f.

(environment->list environment) procedure

Returns a list of a-lists, representing the bindings in environment . Each a-list describes one level
of bindings, with the innermost level coming first.

(define E (let ((a 1) (b 2))

(let ((c 3))

(the-environment))))

(car (environment->list E)) =⇒ ((c . 3))

(cadr (environment->list E))=⇒ ((b . 2) (a . 1))

(procedure-environment procedure) procedure

Returns the environment associated with procedure. Procedure-environment returns #f if procedure
is not a closure.

(define foo (let ((a 1)) (lambda () a)))

(car (environment->list

(procedure-environment foo)))

=⇒ ((a . 1))



STk Reference Manual 27

(symbol-bound? symbol) procedure
(symbol-bound? symbol environment) procedure

Returns #t if symbol has a value in the given environment , otherwise returns #f. Environment
may be omitted, in which case it defaults to the global environment.

6.14 Macros

STk provides low level macros.
Note: STk macros are not the sort of macros defined in the appendix of R4

RS, but rather the macros

one can find in most of Lisp dialects.

(macro 〈formals〉 〈body〉) syntax

Macro permits to create a macro. When a macro is called, the whole form (i.e. the macro itself
and its parameters) is passed to the macro body. Binding association is done in the environment
of the call. The result of the binding association is called the macro-expansion. The result of the
macro call is the result of the evaluation of the macro expansion in the call environment.

(define foo (macro f `(quote ,f)))

(foo 1 2 3) =⇒ (foo 1 2 3)

(define 1+ (macro form (list + (cadr form) 1)))

(let ((x 1)) (1+ x)) =⇒ 2

(macro? obj) procedure

Returns #t if obj is a macro, otherwise returns #f.

(macro-expand-1 form) procedure
(macro-expand form) procedure

Macro-expand-1 returns the macro expansion of form if it is a macro call, otherwise form is
returned unchanged. Macro-expand is similar to macro-expand-1, but repeately expand form
until it is no longer a macro call.

(define 1- (macro form `(- ,(cadr form) 1)))

(define -- (macro form `(1- ,(cadr form))))

(macro-expand-1 ’(1- 10)) =⇒ (- 10 1)

(macro-expand ’(1- 10)) =⇒ (- 10 1)

(macro-expand-1 ’(-- 10)) =⇒ (1- 10)

(macro-expand ’(-- 10)) =⇒ (- 10 1)

(macro-expand form) procedure

Returns the macro expansion of form if it is a macro call, otherwise form is returned unchanged.
Macro expansion continue until, the form obtained is

(define 1- (macro form (list ’- (cadr form) 1)))

(macro-expand ’(1- 10)) =⇒ (- 10 1)

(macro-body macro) procedure

Returns the body of macro



28 STk Reference Manual

(macro-body 1+)

=⇒ (macro form (list + (cadr form) 1))

(define-macro (〈name〉 〈formals〉) 〈body〉) macro

Define-macro is a macro which permits to define a macro more easily than with the macro form.
It is similar to the defmacro of Common Lisp [4].

(define-macro (incr x) `(set! ,x (+ ,x 1)))

(let ((a 1)) (incr a) a) =⇒ 2

(define-macro (when test . body)

`(if ,test ,@(if (null? (cdr body)) body `((begin ,@body)))))

(macro-expand ’(when a b)) =⇒ (if a b)

(macro-expand ’(when a b c d))

=⇒ (if a (begin b c d))

Note: Calls to macros defined by define-macro are physically replaced by their macro-expansion if the

variable *debug* is #f (i.e. their body is “in-lined” in the macro call). To avoid this feature, and to ease

debugging, you have to set this variable to #t. (See also 6.22).

6.15 System procedures

This section lists a set of procedures which permits to access some system internals.

(expand-file-name string) procedure

Expand-file-name expands the filename given in string to an absolute path. This function un-
derstands the tilde convention for filenames.

;; Current directory is /users/eg/STk

(expand-file-name "..")

=⇒ "/users/eg"

(expand-file-name "~root/bin)

=⇒ "/bin"

(expand-file-name "~/STk)"

=⇒ "/users/eg/STk"

(canonical-path path) procedure

Expands all symbolic links in path and returns its canonicalized absolute pathname. The resulting
path do not have symbolic links. If path doesn’t designate a valid pathname, canonical-path returns
#f.

(dirname string) procedure

Returns a string containing all but the last component of the path name given in string.

(dirname "/a/b/c.stk")

=⇒ "/a/b"

(basename string) procedure

Returns a string containing the last component of the path name given in string.



STk Reference Manual 29

(basname "/a/b/c.stk")

=⇒ "c.stk"

(decompose-file-name string) procedure

Returns an “exploded” list of the path name components given in string. The first element in the
list denotes if the given string is an absolute path or a relative one, being "/" or "." respectively.
Each component of this list is a string.

(decompose-file-name "/a/b/c.stk")

=⇒ ("/" "a" "b" "c.stk")

(decompose-file-name "a/b/c.stk")

=⇒ ("." "a" "b" "c.stk")

(file-is-directory? string) procedure
(file-is-regular? string) procedure
(file-is-readable? string) procedure
(file-is-writable? string) procedure
(file-is-executable? string) procedure
(file-exists? string) procedure

Returns #t if the predicate is true for the path name given in string; returns #f otherwise (or if
string denotes a file which does not exist).

(glob pattern1 pattern2 . . . ) procedure

The code for glob is taken from the Tcl library. It performs file name “globbing” in a fashion
similar to the csh shell. Glob returns a list of the filenames that match at least one of the pattern
arguments. The pattern arguments may contain the following special characters:

• ? Matches any single character.

• * Matches any sequence of zero or more characters.

• [chars] Matches any single character in chars. If chars contains a sequence of the form a-b

then any character between a and b (inclusive) will match.

• \x Matches the character x.

• {a,b,...} Matches any of the strings a, b, etc.

As with csh, a “.” at the beginning of a file’s name or just after a “/” must be matched explicitly
or with a {} construct. In addition, all “/” characters must be matched explicitly.
If the first character in a pattern is “~” then it refers to the home directory of the user whose
name follows the “~”. If the “~” is followed immediately by “/” then the value of the environment
variable HOME is used.
Glob differs from csh globbing in two ways. First, it does not sort its result list (use the sort

procedure if you want the list sorted). Second, glob only returns the names of files that actually
exist; in csh no check for existence is made unless a pattern contains a ?, *, or []construct.

(getcwd string) procedure

Getcwd returns a string containing the current working directory.

(chdir string) procedure



30 STk Reference Manual

Chdir changes the current directory to the directory given in string.

(getpid string) procedure

Returns the system process number of the current STk interpreter (i.e. the Unix pid). Result is
an integer.

(system string) procedure
(! string) procedure

Sends the given string to the system shell /bin/sh . The result of system is the integer status code
the shell returns.

(exec string) procedure

Executes the command contained in string and redirects its output in a string. This string
constitutes the result of exec.

(getenv string) procedure

Looks for the environment variable named string and returns its value as a string, if it exists.
Otherwise, getenv returns #f.

(getenv "SHELL")

=⇒ "/bin/zsh"

6.16 Addresses

An address is a Scheme object which contains a reference to another Scheme object. This type can
be viewed as a kind of pointer to a Scheme object. Addresses, even though they are very dangerous,
have been introduced in STk so that objects that have no “readable” external representation can
still be transformed into strings and back without loss of information. Adresses were useful with
pre-3.0 version of STk; their usage is now stongly discouraged, unless you know what you do.
In particular, an address can designate an object at a time and another one later (i.e. after the
garbage collector has marked the zone as free).
Addresses are printed with a special syntax: #pNNN, where NNN is an hexadecimal value. Reading
this value back yields the original object whose location is NNN.

(address-of obj) procedure

Returns the address of obj.

(address? obj) procedure

Returns #t if obj is an address; returns #f otherwise.

6.17 Signals

STk allows the use to associate handlers to signals. Signal handlers for a given signal can even be
chained in a list. When a signal occurs, the first signal of the list is executed. Unless this signal
yields the symbol break the next signal of the list is evaluated. When a signal handler is called,
the integer value of this signal is passed to it as (the only) parameter.
The following POXIX.1 constants for signal numbers are defined: SIGABRT, SIGALRM, SIGFPE,
SIGHUP, SIGILL, SIGINT, SIGKILL, SIGPIPE, SIGQUIT, SIGSEGV, SIGTERM, SIGUSR1, SIGUSR2,
SIGCHLD, SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU. Moreover, the following constants,



STk Reference Manual 31

which are often available on most systems are also defined3: SIGTRAP, SIGIOT, SIGEMT, SIGBUS,
SIGSYS, SIGURG, SIGCLD, SIGIO, SIGPOLL, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF, SIGWINCH,
SIGLOST.
See your Unix documentation for the exact meaning of each constant or [5]. Use symbolic constants
rather than their numeric value if you plan to port your program on another system.
A special signal, managed by the interpreter, is also defined: SIGHADGC. This signal is raised when
the garbage collector phase terminates.
When the interpreter starts running, all signals are sets to their default value, excepted SIGINT

(generally bound to Control-C) which is handled specially.

(set-signal-handler! sig handler) procedure

Replace the handler for signal sig with handler . Handler can be

- #t to reset the signal handler for sig to the default system handler.

- #f to completly ignore sig (Note that Posix.1 states that SIGKILL and SIGSTOP cannot be
caught or ignored).

- a one parameter procedure.

This procedure returns the new handler, or (length 1) handler list, associated to sig .

(let* ((x #f)

(handler (lambda (i) (set! x #t))))

(set-signal-handler! |SIGHADGC| handler)

(gc)

x)

=⇒ #t

(add-signal-handler! sig handler) procedure

Adds handler to the list of handlers for signal sig . If the old signal handler is a boolean, this
procedure is equivalent to set-signal-handler!. Otherwise, the new handler is added in front
of the previous list of handler. This procedure returns the new handler, or handler list, associated
to sig .

(let* ((x ’())

(handler1 (lambda (i) (set! x (cons 1 x))))

(handler2 (lambda (i) (set! x (cons 2 x)))))

(add-signal-handler! |SIGHADGC| handler1)

(add-signal-handler! |SIGHADGC| handler2)

(gc)

x)

=⇒ (1 2)

(let* ((x ’())

(handler1 (lambda (i) (set! x (cons 1 x))))

(handler2 (lambda (i) (set! x (cons 2 x)) ’break)))

(add-signal-handler! |SIGHADGC| handler1)

(add-signal-handler! |SIGHADGC| handler2)

(gc)

x)

=⇒ (2)

3Some of these constants may be undefined if they are not supported by your system



32 STk Reference Manual

(get-signal-handlers) procedure
(get-signal-handlers sig) procedure

Returns the handlers, or the list of handlers, associated to the signal sig . If sig is omitted,
get-signal-handlers returns a vector of all the signal handlers currently in effect.

6.18 Hash tables

A hash table consists of zero or more entries, each consisting of a key and a value. Given the key
for an entry, the hashing function can very quickly locate the entry, and hence the corresponding
value. There may be at most one entry in a hash table with a particular key, but many entries
may have the same value.
STk hash tables grow gracefully as the number of entries increases, so that there are always less
than three entries per hash bucket, on average. This allows for fast lookups regardless of the
number of entries in a table.

Note: Hash table manipulation procedures are built upon the efficient Tcl hash table package.

(make-hash-table) procedure
(make-hash-table comparison) procedure
(make-hash-table comparison hash) procedure

Make-hash-table admits three different forms. The most general form admit two arguments.
The first argument is a comparison function which determine how keys are compared; the second
argument is a function which computes a hash code for an object and returns the hash code as
a non negative integer. Objets with the same hash code are stored in an A-list registered in the
bucket corresponding to the key.
If omitted,

• hash defaults to the hash-table-hash procedure.

• comparison defaults to the eq? procedure

Consequently,

(define h (make-hash-table))

is equivalent to

(define h (make-hash-table eq? hash-table-hash))

Another interesting example is

(define h (make-hash-table string-ci=? string-length))

which defines a new hash table which uses string-ci=? for comparing keys. Here, we use
the string-length as a (very simple) hashing function. Of course, a function which gives a key
depending of the characters composing the string gives a better repartition and should probably
enhance performances. For instance, the following call to make-hash-table should return a more
efficient, even if not perfect, hash table:

(make-hash-table

string-ci=?

(lambda (s)

(let ((len (string-length s)))

(do ((h 0) (i 0 (+ i 1)))

((= i len) h)

(set! h (+ h (char->integer

(char-downcase (string-ref s i)))))))))



STk Reference Manual 33

Note: Hash tables with a comparison function equal to eq? or string=? are handled in an more efficient

way (in fact, they don’t use the hash-table-hash fucntion to speed up hash table retrievals).

(hash-table? obj) procedure

Returns #t if obj is a hash table, returns #f otherwise.

(hash-table-hash obj) procedure

hash-table-hash computes a hash code for an object and returns the hash code as a non negative
integer. A property of hash-table-hash is that

(equal? x y) implies (equal? (hash-table-hash x) (hash-table-hash y)

as the the Common Lisp sxhash function from which this procedure is modeled.

(hash-table-put! hash key value) procedure

Hash-table-put! enters an association between key and value in the hash table. The value
returned by hash-table-put! is undefined.

(hash-table-get hash key) procedure
(hash-table-get hash key default) procedure

Hash-table-get returns the value associated with key in the given hash table. If no value has
been associated with key in hash , the specified default is returned if given; otherwise an error is
raised.

(define h1 (make-hash-table))

(hash-table-put! h1 ’foo (list 1 2 3))

(hash-table-get h1 ’foo)

=⇒ (1 2 3)

(hash-table-get h1 ’bar ’absent)

=⇒ absent

(hash-table-get h1 ’bar)

=⇒ error

(hash-table-put! h1 ’(a b c) ’present)

(hash-table-get h1 ’(a b c) ’absent)

=⇒ ’absent

(define h2 (make-hash-table equal?))

(hash-table-put! h2 ’(a b c) ’present)

(hash-table-get h2 ’(a b c))

=⇒ ’present

(hash-table-remove! hash key) procedure

hash must be a hash table containing an entry for key . Hash-table-remove! deletes the entry
for key in hash, if it exists. Result of Hash-table-remove! is unspecified.

(define h (make-hash-table))

(hash-table-put! h ’foo (list 1 2 3))

(hash-table-get h ’foo)

=⇒ (1 2 3)

(hash-table-remove! h ’foo)

(hash-table-get h ’foo ’absent)

=⇒ absent



34 STk Reference Manual

(hash-table-for-each hash proc) procedure

Proc must be a procedure taking two arguments. Hash-table-for-each calls proc on each
key/value association in hash , with the key as the first argument and the value as the second. The
value returned by hash-table-for-each is undefined.

Note: The order of application of proc is unspecified.

(let ((h (make-hash-table))

(sum 0))

(hash-table-put! h ’foo 2)

(hash-table-put! h ’bar 3)

(hash-table-for-each h (lambda (key value)

(set! sum (+ sum value))))

sum)

=⇒ 5

(hash-table-map hash proc) procedure

Proc must be a procedure taking two arguments. Hash-table-map calls proc on each entry in
hash , with the entry’s key as the first argument and the entry’s value as the second. The result
of hash-table-map is a list of the values returned by proc, in unspecified order.

Note: The order of application of proc is unspecified.

(let ((h (make-hash-table)))

(dotimes (i 5)

(hash-table-put! h i (number->string i)))

(hash-table-map h (lambda (key value)

(cons key value))))

=⇒ ((0 . "0") (3 . "3") (2 . "2") (1 . "1") (4 . "4"))

(hash-table->list hash) procedure

hash-table->list returns an “association list” built from the entries in hash . Each entry in hash
will be represented as a pair whose car is the entry’s key and whose cdr is its value. Note: The
order of pairs in the resulting list is unspecified.

(let ((h (make-hash-table)))

(dotimes (i 5)

(hash-table-put! h i (number->string i)))

(hash-table->list h))

=⇒ ((0 . "0") (3 . "3") (2 . "2") (1 . "1") (4 . "4"))

(hash-table-stats hash) procedure

Hash-table-stats returns a string with overall information about hash , such as the number of
entries it contains, the number of buckets in its hash array, and the utilization of the buckets.

6.19 Regular expressions

Regular expressions are first class objects in STk. A regular expression is created by the string->regexp
procedure. Matching a regular expression against a string is simply done by applying a previously
created regular expression to this string. Regular expressions are implemented using code in the



STk Reference Manual 35

Henry Spencer’s package, and much of the description of regular expressions below is copied from
his manual.

(string->regexp string) procedure

String->regexp compiles the string and returns the corresponding regular expression.

Matching a regular expression against a string is done by applying the result of string->regexp
to this string. This application yields a list of integer couples if a matching occurs; it returns #f
otherwise. Those integers correspond to indexes in the string which match the regular expression.
A regular expression is zero or more branches, separated by “|”. It matches anything that matches
one of the branches.
A branch is zero or more pieces, concatenated. It matches a match for the first, followed by a
match for the second, etc.
A piece is an atom possibly followed by “*”, “+”, or “?”. An atom followed by “*” matches a
sequence of 0 or more matches of the atom. An atom followed by “+” matches a sequence of 1 or
more matches of the atom. An atom followed by “?” matches a match of the atom, or the null
string.
An atom is a regular expression in parentheses (matching a match for the regular expression),
a range (see below), “.” (matching any single character), “^” (matching the null string at the
beginning of the input string), “$” (matching the null string at the end of the input string), a
“\” followed by a single character (matching that character), or a single character with no other
significance (matching that character).
A range is a sequence of characters enclosed in “[]”. It normally matches any single character
from the sequence. If the sequence begins with “^”, it matches any single character not from the
rest of the sequence. If two characters in the sequence are separated by “-”, this is shorthand
for the full list of ASCII characters between them (e.g. “[0-9]” matches any decimal digit). To
include a literal “]” in the sequence, make it the first character (following a possible “^”). To
include a literal “-”, make it the first or last character.
In general there may be more than one way to match a regular expression to an input string.
Considering only the rules given so far could lead to ambiguities. To resolve those ambiguities,
the generated regular expression chooses among alternatives using the rule “first then longest”. In
other words, it considers the possible matches in order working from left to right across the input
string and the pattern, and it attempts to match longer pieces of the input string before shorter
ones. More specifically, the following rules apply in decreasing order of priority:

1. If a regular expression could match two different parts of an input string then it will match
the one that begins earliest.

2. If a regular expression contains “|” operators then the leftmost matching sub-expression is
chosen.

3. In “*”, “+”, and “?” constructs, longer matches are chosen in preference to shorter ones.

4. In sequences of expression components the components are considered from left to right.

(define r1 (string->regexp "abc"))

(r1 "xyz") =⇒ #f

(r1 "12abc345") =⇒ ((2 5))

(define r2 (string->regexp "[a-z]+"))

(r2 "12abc345") =⇒ ((2 5))

If the regular expression contains parenthesis, and if there is a match, the result returned by the
application will contain several couples of integers. First couple will be the indexes of the first
longest substring which match the regular expression. Subsequent couples, will be the indexes of
all the sub-parts of this regular expression, in sequence.



36 STk Reference Manual

(define r3 (string->regexp "(a*)(b*)c"))

(r3 "abc") =⇒ ((0 3) (0 1) (1 2))

(r3 "c") =⇒ ((0 1) (0 0) (0 0))

((string->regexp "([a-z]+),([a-z]+)") "XXabcd,eXX")

=⇒ ((2 8) (2 6) (7 8))

(regexp? obj) procedure

Returns #t if obj is a regular expression created by string->regexp; otherwise returns #f.

(regexp? (string->regexp "[a-zA-Z][a-zA-Z0-9]*"))

=⇒ #t

(regexp-replace pattern string substitution) procedure
(regexp-replace-all pattern string substitution) procedure

Regexp-replace matches the regular expression pattern against string . If there is a match, the
portion of string which match pattern is replaced by the substitution string. If there is no match,
regexp-replace returns string unmodified. Note that the given pattern could be here either
a string or a regular expression. If pattern contains strings of the form “\n”, where n is a digit

between 1 and 9, then it is replaced in the substitution with the portion of string that matched the
n-th parenthesized subexpression of pattern. If n is equal to 0, then it is replaced in substitution
with the portion of string that matched pattern.

(regexp-replace "a*b" "aaabbcccc" "X")

=⇒ "Xbcccc"

(regexp-replace (string->regexp "a*b") "aaabbcccc" "X")

=⇒ "Xbcccc"

(regexp-replace "(a*)b" "aaabbcccc" "X\\1Y")

=⇒ "XaaaYbcccc"

(regexp-replace "(a*)b" "aaabbcccc" "X\\0Y")

=⇒ "XaaabYbcccc"

(regexp-replace "([a-z]*) ([a-z]*)" "john brown" "\\2 \\1")

=⇒ "brown john"

Regexp-replace replaces the first occurence of pattern in string . To replace all the occurences of
the pattern, use regexp-replace-all

(regexp-replace "a*b" "aaabbcccc" "X")

=⇒ "Xbcccc"

(regexp-replace-all "a*b" "aaabbcccc" "X")

=⇒ "XXcccc"

6.20 Processes

STk provides access to Unix processes as first class objects. Basically, a process contains four
informations: the standard Unix process identification (aka PID) and the three standard files of
the process.

(run-process command p1 p2 p3 . . .) procedure

run-process creates a new process and run the executable specified in command . The p corre-
spond to the command line arguments. The following values of p have a special meaning:



STk Reference Manual 37

• :input permits to redirect the standard input file of the process. Redirection can come from
a file or from a pipe. To redirect the standard input from a file, the name of this file must be
specified after :input. Use the special keyword :pipe to redirect the standard input from
a pipe.

• :output permits to redirect the standard output file of the process. Redirection can go to
a file or to a pipe. To redirect the standard output to a file, the name of this file must be
specified after :output. Use the special keyword :pipe to redirect the standard output to
a pipe.

• :error permits to redirect the standard error file of the process. Redirection can go to a file
or to a pipe. To redirect the standard error to a file, the name of this file must be specified
after :error. Use the special keyword :pipe to redirect the standard error to a pipe.

• :wait must be followed by a boolean value. This value specifies if the process must be run
asynchronously or not. By default, the process is run asynchronously (i.e. :wait is #f).

• :host must be followed by a string. This string represents the name of the machine on
which the command must be executed. This option uses the external command rsh. The
shell variable PATH must be correctly set for accessing it without specifying its abolute path.

The following example launches a process which execute the Unix command ls with the arguments
-l and /bin. The lines printed by this command are stored in the file /tmp/X

(run-process "ls" "-l" "/bin" :output "/tmp/X" :wait #f)

(process? process) procedure

Returns #t if process is a process, otherwise returns #f.

(process-alive? process) procedure

Returns #t if process if the process is currently running, otherwise returns #f.

(process-pid process) procedure

Returns an integer value which represents the Unix identification (PID) of process .

(process-input process) procedure
(process-output process) procedure
(process-error process) procedure

Returns the file port associated to the standard input, output or error of process , if it is redirected
in (or to) a pipe; otherwise returns #f. Note that the returned port is opened for reading when
calling process-output or process-error; it is opened for writing when calling process-input.

(process-wait process) procedure

Process-wait stops the current process until process completion. Process-wait returns #f when
process is already terminated; it returns #t otherwise.

(process-exit-status process) procedure

Process-exit-status returns the exit status of process if it has finished its execution; returns #f
otherwise.



38 STk Reference Manual

(process-send-signal process n) procedure

Send the signal whose integer value is n to process . Value of n is system dependant. Use the
defined signal constants to make your program indpendant of the running system (see 6.17). The
result of process-send-signal is undefined.

(process-kill process) procedure

Process-kill brutally kills process . The result of process-kill is undefined. This procedure is
equivalent to

(process-send-signal process |SIGTERM|)

(process-stop process) procedure
(process-continue process) procedure

Those procedures are only available on systems which support job control. Process-stop stops the
execution of process and process-continue resumes its execution. They are equivalent to

(process-send-signal process |SIGSTOP|)

(process-send-signal process |SIGCONT|)

(process-list) procedure

process-list returns the list of processes which are currently running (i.e. alive).

6.21 Sockets

STk defines sockets, on systems which support them, as first class objects. Sockets permits
processes to communicate even if they are on different machines. Sockets are useful for creating
client-server applications.

(make-client-socket hostname port-number) procedure

make-client-socket returns a new socket object. This socket establishes a link between the
running application listening on port port-number of hostname.

(socket? socket) procedure

Returns #t if socket is a socket, otherwise returns #f.

(socket-hostname socket) procedure

Returns a string which contains the name of the host on which socket is connected. This name
is always the string “localhost” if socket is a server socket, it is the host name given when
make-client-socket was called otherwise.

(socket-port-number socket) procedure

Returns the integer number of the port used for the listening socket .

(socket-input socket) procedure
(socket-output socket) procedure

Returns the file port associated for reading or writing with the program connected with socket . If
no connection has already been established, these fucntions returns #f.
The following example shows how to make a client socket. Here we create a socket on port 13 of
the machine “kaolin.unice.fr”4:

4Port 13 is generally used for testing: making a connection to it permits to know the distant system’s idea of
the time of day.



STk Reference Manual 39

(let ((s (make-client-socket "kaolin.unice.fr" 13)))

(format #t "Time is: ~A\n" (read-line (socket-input s)))

(socket-shutdown s))

(make-server-socket) procedure
(make-server-socket port-number) procedure

make-server-socket returns a new socket object. If port-number is specified, the socket is lis-
tening on the specified port; otherwise, the communication port is choosen by the system.

(socket-accept-connection socket) procedure

socket-accept-connection waits for a client connection on the given socket . If no client is
already waiting for a connection, this procedure blocks its caller; otherwise, the first connection
request on the queue of pending connections is connected to socket . This procedure must be called
on a server socket created with make-server-socket. The result of socket-accept-connection
is undefined.
The following exemple is a simple server which waits for a connection on the port 12345. Once the
connection with the distant program is established, we read a line on the input port associated to
the socket and we write the length of this line on its output port.

(let ((s (make-server-socket 1234)))

(socket-accept-connection s)

(let ((l (read-line (socket-input s))))

(format (socket-output s) "Length is: ~A\n" (string-length l))

(flush (socket-output s)))

(socket-shutdown s))

(socket-shutdown socket) procedure
(socket-shutdown socket close) procedure

Socket-shutdown shutdowns the connection associated to socket . Close is a boolean; it indicates
if the socket must be close or not, when the connection is dstroyed. Closing the socket forbids
further connections on the same port with the socket-accept-connection procedure. Omitting
a value for close implies the closing of socket. The result of socket-shutdown is undefined.
The following example shows a simple server: when there is a new connection on the port number
1234, the server displays the first line sent to it by the client, discards the others and go back
waiting for further client connections.

(let ((s (make-server-socket 1234)))

(let loop ()

(socket-accept-connection s)

(format #t "I’ve read: ~A\n" (read-line (socket-input s)))

(socket-shutdown s #f)

(loop)))

5Under Unix, you can simply connect to listening socket with the telnet command. With the given example,
this can be achived by typing the following command in a window shell:
$ telnet localhost 1234



40 STk Reference Manual

6.22 Miscellaneous

This section lists the primitives defined in STk that did not fit anywhere else.

(eval 〈expr〉) syntax
(eval 〈expr〉 〈environment〉) syntax

Evaluates 〈expr〉 in the given environment. 〈Environment〉 may be omitted, in which case it
defaults to the global environment.

(define foo (let ((a 1)) (lambda () a)))

(foo) =⇒ 1

(eval ’(set! a 2) (procedure-environment foo))

(foo) =⇒ 2

(version) procedure

returns a string identifying the current version of STk.

(machine-type) procedure

returns a string identifying the kind of machine which is running the interpreter. The form of the
result is [os-name]-[os-version]-[processor-type].

(random n) procedure

returns an integer in the range 0, n − 1 inclusive.

(set-random-seed! seed) procedure

Set the random seed to the specified seed . Seed must be an integer which fits in a C long int.

(eval-string string environment) procedure

Evaluates the contents of the given string in the given environment and returns its result. If
environment is omitted it defaults to the global environment. If evaluation leads to an error, the
result of eval-string is undefined.

(define x 1)

(eval-string "(+ x 1)")

=⇒ 2

(eval-string "x" (let ((x 2)) (the-environment)))

=⇒ 2

(read-from-string 〈string〉) procedure

Performs a read from the given string. If string is the empty string, an end of file object is returned.
If an error occurs during string reading, the result of read-from-string is undefined.

(read-from-string "123 456")

=⇒ 123

(read-from-string "")

=⇒ an eof object



STk Reference Manual 41

(dump string) procedure

Dump grabs the current continuation and creates an image of the current STk interpreter in the
file whose name is string6. This image can be used later to restart the interpreter from the saved
state. See the STk man page about the -image option for more details.
Note: Image creation cannot be done if Tk is initialized.

(trace-var symbol thunk) procedure

Trace-var call the given thunk when the value of the variable denoted by symbol is changed.

(define x 1)

(define y 0)

(trace-var ’x (lambda () (set! y 1)))

(set! x 2)

(cons x y)

=⇒ (2 . 1)

Note: Several traces can be associated with a single symbol. They are executed in reverse order to their
definition. For instance, the execution of

(begin

(trace-var ’z (lambda () (display "One")))

(trace-var ’z (lambda () (display "Two")))

(set! z 10))

will display the string "Two" before the string "One" on the current output port.

(untrace-var symbol) procedure

Deletes all the traces associated to the variable denoted by symbol .

(error string string1 obj2 . . . ) procedure

error prints the obj s according to the specification given in string on the current error port (or
in an error window if Tk is initialized). The specification string follows the “tilde conventions” of
format(see 6.10). Once the message is printed, execution returns to toplevel.

(gc) procedure

Runs the garbage collector. See 6.17 for the signals associated to garbage collection.

(gc-stats) procedure

Provides some statistics about current memory usage. This procedure is primarily for debugging
the STk interpreter, hence its weird printing format.

(expand-heap n) procedure

Expand the heap so that it will contains at least n cells. Normally, the heap automatically grows
when more memory is needed. However, using only automatic heap growing is sometimes very
penalizing. This is particulary true for programs which uses a lot of temporary data (which are not
pointed by any a variable) and a small amount of global data. In this case, the garbage collector
will be often called and the heap will not be automatically expanded (since most of the consumed
heap will be reclaimed by the GC). This could be annoying epecially for program where response

6Image creation is not yet implemented on all systems. The current version (3.0) allows image dumping only on
some platforms: SunOs 4.1.x, Linux 1, FreeBsd



42 STk Reference Manual

time is critical. Using expand-heap permits to enlarge the heap size (which is set to 20000 cells
by default), to avoid those continual calls to the GC.

(get-internal-info) procedure

Returns a 7-length vector which contains the following informations:

0 total cpu used in milli-seconds

1 number of cells currently in use.

2 total number of allocated cells

3 number of cells used since the last call to get-internal-info

4 number of gc runs

5 total time used in the gc

6 a boolean indicating if Tk is initialized

(sort obj predicate) procedure

Obj must be a list or a vector. Sort returns a copy of obj sorted according to predicate . Predicate
must be a procedure which takes two arguments and returns a true value if the first argument is
strictly “before” the second.

(sort ’(1 2 -4 12 9 -1 2 3) <)

=⇒ (-4 -1 1 2 2 3 9 12)

(sort #("one" "two" "three" "four")

(lambda (x y) (> (string-length x) (string-length y))))

=⇒ #("three" "four" "one" "two")

(uncode form) procedure

When STk evaluates an expression it encodes it so that further evaluations of this expression
will be more efficient. Since encoded forms are generally difficult to read, uncode can be used to
(re-)obtain the original form.

(define (foo a b)

(let ((x a) (y (+ b 1))) (cons x y)))

(procedure-body foo)

=⇒ (lambda (a b)

(let ((x a) (y (+ b 1))) (cons x y)))

(foo 1 2) =⇒ (1 . 3)

(procedure-body foo)

=⇒ (lambda (a b)

(#let (x y)

(#<local a @0,0)>

(#<global +> #<local b @0,1)> 1))

(#<global cons> #<local x @0,0)>

#<local y @0,1)>)))

(uncode (procedure-body foo))

=⇒ (lambda (a b)

(let ((x a) (y (+ b 1))) (cons x y)))


